Science.gov

Sample records for large atomic displacement

  1. Atomic displacements in quantum crystals

    NASA Astrophysics Data System (ADS)

    Dusseault, Marisa; Boninsegni, Massimo

    2017-03-01

    Displacements of atoms and molecules away from lattice sites in helium and parahydrogen solids at low temperature have been studied by means of quantum Monte Carlo simulations. In the bcc phases of 3He and 4He, atomic displacements are largely quantum-mechanical in character, even at melting. The computed Lindemann ratio at melting is found to be in good agreement with experimental results for 4He. Unlike the case of helium, in solid parahydrogen there exists near melting a significant thermal contribution to molecular vibrations, accounting for roughly half of the total effect. Although the Lindemann ratio at melting is in quantitative agreement with experiment, computed molecular mean square fluctuations feature a clear temperature dependence, in disagreement with recent experimental observations.

  2. Large displacement spherical joint

    DOEpatents

    Bieg, Lothar F.; Benavides, Gilbert L.

    2002-01-01

    A new class of spherical joints has a very large accessible full cone angle, a property which is beneficial for a wide range of applications. Despite the large cone angles, these joints move freely without singularities.

  3. Atomic displacements in ferroelectric trigonal and orthorhombic boracite structures

    USGS Publications Warehouse

    Dowty, Eric; Clark, J.R.

    1972-01-01

    New crystal-structure refinements of Pca21 boracite, Mg3ClB7O13, and R??{lunate}c ericaite, Fe2.4Mg0.6ClB7O13, show that some boron and oxygen atoms are involved in the 'ferro' transitions as well as the metal and halogen atoms. The atomic displacements associated with the polarity changes are as large as 0.6A??. ?? 1972.

  4. Atomic displacement energy in amorphous compounds

    NASA Astrophysics Data System (ADS)

    Sanditov, D. S.; Mashanov, A. A.

    2016-12-01

    Atomic displacement energy Δɛe in multicomponent sheet and lead-silicate glasses is calculated from the free activation energy of a viscous flow. The value of Δɛe is shown to remain constant in a rather wide range of temperatures in the glass transition region. Satisfactory agreement with calculations of Δɛe using the current formula incorporating the glass transition temperature and the fluctuation volume fraction frozen at this temperature is obtained. The validity of the above formula not only at the glass transition temperature but also in the temperature region adjacent to it is confirmed.

  5. Frictional behavior of large displacement experimental faults

    USGS Publications Warehouse

    Beeler, N.M.; Tullis, T.E.; Blanpied, M.L.; Weeks, J.D.

    1996-01-01

    The coefficient of friction and velocity dependence of friction of initially bare surfaces and 1-mm-thick simulated fault gouges (400 mm at 25??C and 25 MPa normal stress. Steady state negative friction velocity dependence and a steady state fault zone microstructure are achieved after ???18 mm displacement, and an approximately constant strength is reached after a few tens of millimeters of sliding on initially bare surfaces. Simulated fault gouges show a large but systematic variation of friction, velocity dependence of friction, dilatancy, and degree of localization with displacement. At short displacement (<10 mm), simulated gouge is strong, velocity strengthening and changes in sliding velocity are accompanied by relatively large changes in dilatancy rate. With continued displacement, simulated gouges become progressively weaker and less velocity strengthening, the velocity dependence of dilatancy rate decreases, and deformation becomes localized into a narrow basal shear which at its most localized is observed to be velocity weakening. With subsequent displacement, the fault restrengthens, returns to velocity strengthening, or to velocity neutral, the velocity dependence of dilatancy rate becomes larger, and deformation becomes distributed. Correlation of friction, velocity dependence of friction and of dilatancy rate, and degree of localization at all displacements in simulated gouge suggest that all quantities are interrelated. The observations do not distinguish the independent variables but suggest that the degree of localization is controlled by the fault strength, not by the friction velocity dependence. The friction velocity dependence and velocity dependence of dilatancy rate can be used as qualitative measures of the degree of localization in simulated gouge, in agreement with previous studies. Theory equating the friction velocity dependence of simulated gouge to the sum of the friction velocity dependence of bare surfaces and the velocity

  6. Displacement per Atom, Primary Knocked-on Atoms Produced in an Atomic Solid Target

    SciTech Connect

    2015-07-01

    Version 00 DART calculates the total number of displacements, primary knocked-on atoms, recoil spectra, displacement cross sections and displacement per atoms rates in a poly atomic solid target, composed of many different isotopes, using ENDF/B-VI derived cross sections. To calculate these values, different incident particles were considered: neutrons, ions and electrons. The user needs only to specify an incident particle energy spectrum and the composition of the target. The number of displaced atoms is calculated within the Binary Collision Approximation framework. To calculate the number of displacements the DART code does not use the classical NRT dpa analytical formula, which is only appropriate for projectile and target of the same mass. It numerically solves the linearized Boltzmann equation for a polyatomic target. It can be a useful tool to select the nature and energy of ions or electrons in particle accelerators or electron microscopes to mimic the primary damage induced by neutron irradiation in nuclear plants or fission facilities. Nuclear data: • Typically any ENDFB format evaluation may be used. This package includes the ENDFB-VI nuclear data library. Energy ranges: • Neutron or ion : 10E-11 to 20 MeV Data library distributed with DART v1.0: • ENDFB-VI nuclear data library

  7. Quantum Phonon Optics: Squeezing Quantum Noise in the Atomic Displacements.

    NASA Astrophysics Data System (ADS)

    Hu, X.; Nori, F.

    1996-03-01

    We have investigated(X. Hu and F. Nori, Physical Review B, in press; preprints.) coherent and squeezed quantum states of phonons. Squeezed states are interesting because they allow the possibility of modulating the quantum fluctuations of atomic displacements below the zero-point quantum noise level of phonon vacuum states. We have studiedfootnotemark[1] the possibility of squeezing quantum noise in the atomic displacement using a polariton-based approach and also a method based on the three-phonon anharmonic interaction. Our focus here is on the first approach. We have diagonalized the polariton Hamiltonian and calculated the corresponding expectation values and fluctuations of both the atomic displacement and the lattice amplitude operators (the later is the phonon analog of the electric field operator for photons). Our results shows that squeezing of quantum fluctuations in the atomic displacements can be achieved with appropriate initial states of both photon and phonon fields. The degree of squeezing is directly related to the crystal susceptibility, which is indicative of the interaction strength between the incident light and the crystal.

  8. Static atomic displacements in crystalline solid solution alloys

    SciTech Connect

    Ice, G.; Sparks, C.; Robertson, J.L.; Epperson, J.E.; Jiang, Xiaogang

    1996-06-01

    Atomic size differences induce static displacements from an average alloy lattice and play an important role in controlling alloy phase stability and properties. Details of this, however, are difficult to study, as chemical order and displacements are strongly interrelated and static displacements are hard to measure. Diffuse x-ray scattering with tunable-synchrotron radiation can now measure element- specific static displacements with an accuracy of {+-}0.1 pm and can simultaneously measure local chemical order out to 20 shells or more. Ideal alloys for this are those that have previously been the most intractable: alloys with small Z contrast, alloys with only local order and alloys with small size differences. The combination of precise characterization of local chemical order and precise measurement of static displacement provides new information that challenges existing alloy models. This paper reports on an ongoing systematic study of static displacements in the Fe/Ni/Cr alloys and compares the observed static displacements to these predicted by current theories. Availability of more brilliant 3rd generation hard x-ray sources will greatly enhance these measurements.

  9. On the Origin of Large Interstitial Clusters in Displacement Cascades

    SciTech Connect

    Andrew, Calder F; Barashev, Aleksandr; Bacon, David J; Osetskiy, Yury N

    2010-01-01

    Displacement cascades with wide ranges of primary knock-on atom (PKA) energy and mass in iron were simulated using molecular dynamics. New visualisation techniques are introduced to show how the shock-front dynamics and internal structure of a cascade develop over time. These reveal that the nature of the final damage is determined early on in the cascade process. We define a zone (termed 'spaghetti') in which atoms are moved to new lattice sites and show how it is created by a supersonic shock-front expanding from the primary recoil event. A large cluster of self-interstitial atoms can form on the periphery of the spaghetti if a hypersonic recoil creates damage with a supersonic shock ahead of the main supersonic front. When the two fronts meet, the main one injects atoms into the low-density core of the other: these become interstitial atoms during the rapid recovery of the surrounding crystal. The hypersonic recoil occurs in less than 0.1 ps after the primary recoil and the interstitial cluster is formed before the onset of the thermal spike phase of the cascade process. The corresponding number of vacancies is then formed in the spaghetti core as the crystal cools, i.e. at times one to two orders of magnitude longer. By using the spaghetti zone to define cascade volume, the energy density of a cascade is shown to be almost independent of the PKA mass. This throws into doubt the conventional energy-density interpretation of an increased defect yield with increasing PKA mass in ion irradiation.

  10. Effect of magnetism and atomic order on static atomic displacements in the Invar alloy Fe-27 at.% Pt

    NASA Astrophysics Data System (ADS)

    Sax, C. R.; Schönfeld, B.; Ruban, A. V.

    2015-08-01

    Fe-27 at.% Pt was aged at 1123 K and quenched to room temperature (RT) to set up a state of thermal equilibrium. The local atomic arrangement was studied by diffuse x-ray scattering above (at 427 K) and below (at RT) the Curie temperature as well as at RT under a saturating magnetic field. The separated short-range order scattering remained unchanged for all three states, with maxima at 100 positions. Effective pair interaction parameters determined by the inverse Monte Carlo method gave an order-disorder transition temperature of about 1088 K, close to direct experimental findings. The species-dependent static atomic displacements for the first two shells show large differences, with a strong increase in magnitude from the state at 427 K over RT to the state under saturating magnetic field. This outcome is in agreement with an increase in atomic volume of Fe with increasing local magnetic moment. Electronic-structure calculations closely reproduce the values for the static atomic displacements in the ferromagnetic state, and predict their dependence on the atomic configuration. They also reveal a strong dependence of the magnetic exchange interactions in Fe-Pt on the atomic configuration state and lattice parameter. In particular, the increase of the Curie temperature in a random state relative to that in the ordered one is demonstrated to be related to the corresponding change of the magnetic exchange interactions due to the different local atomic chemical environment. There exists a similar strong concentration dependence of the chemical interactions as in the case of magnetic exchange interactions. Theoretical effective interactions for Fe-27 at.% Pt alloy are in good agreement with experimental results, and they also reproduce well the L1 2-A1 transition temperature.

  11. Deformable image registration for tissues with large displacements.

    PubMed

    Huang, Xishi; Ren, Jing; Abdalbari, Anwar; Green, Mark

    2017-01-01

    Image registration for internal organs and soft tissues is considered extremely challenging due to organ shifts and tissue deformation caused by patients' movements such as respiration and repositioning. In our previous work, we proposed a fast registration method for deformable tissues with small rotations. We extend our method to deformable registration of soft tissues with large displacements. We analyzed the deformation field of the liver by decomposing the deformation into shift, rotation, and pure deformation components and concluded that in many clinical cases, the liver deformation contains large rotations and small deformations. This analysis justified the use of linear elastic theory in our image registration method. We also proposed a region-based neuro-fuzzy transformation model to seamlessly stitch together local affine and local rigid models in different regions. We have performed the experiments on a liver MRI image set and showed the effectiveness of the proposed registration method. We have also compared the performance of the proposed method with the previous method on tissues with large rotations and showed that the proposed method outperformed the previous method when dealing with the combination of pure deformation and large rotations. Validation results show that we can achieve a target registration error of [Formula: see text] and an average centerline distance error of [Formula: see text]. The proposed technique has the potential to significantly improve registration capabilities and the quality of intraoperative image guidance. To the best of our knowledge, this is the first time that the complex displacement of the liver is explicitly separated into local pure deformation and rigid motion.

  12. Atomic displacements due to spin-spin repulsion in conjugated alternant hydrocarbons

    NASA Astrophysics Data System (ADS)

    Estrada, Ernesto; Benzi, Michele

    2013-05-01

    We develop a theoretical model to account for the spin-induced atomic displacements in conjugated alternant hydrocarbons. It appears to be responsible for an enlargement of the distance between pairs of atoms separated by two atoms and located at the end of linear polyenes. It also correlates very well with the bond dissociation enthalpies for the cleavage of the C-H bond as well as to the spin density at carbon atoms in both open and closed shell at graphene nanoflakes (GNFs). Finally, we have modified the Schrödinger equation to study the propagation of the spin-induced perturbations through the atoms of GNFs.

  13. Reactor Power for Large Displacement Autonomous Underwater Vehicles

    SciTech Connect

    McClure, Patrick Ray; Reid, Robert Stowers; Poston, David Irvin; Dasari, Venkateswara Rao

    2016-08-24

    This is a PentaChart on reactor power for large displacement autonomous underwater vehicles. Currently AUVs use batteries or combinations of batteries and fuel cells for power. Battery/fuel cell technology is limited by duration. Batteries and cell fuels are a good match for some missions, but other missions could benefit greatly by a longer duration. The goal is the following: to design nuclear systems to power an AUV and meet design constraints including non-proliferation issues, power level, size constraints, and power conversion limitations. The action plan is to continue development of a range of systems for terrestrial systems and focus on a system for Titan Moon as alternative to Pu-238 for NASA.

  14. Note: Seesaw actuation of atomic force microscope probes for improved imaging bandwidth and displacement range

    SciTech Connect

    Torun, H.; Torello, D.; Degertekin, F. L.

    2011-08-15

    The authors describe a method of actuation for atomic force microscope (AFM) probes to improve imaging speed and displacement range simultaneously. Unlike conventional piezoelectric tube actuation, the proposed method involves a lever and fulcrum ''seesaw'' like actuation mechanism that uses a small, fast piezoelectric transducer. The lever arm of the seesaw mechanism increases the apparent displacement range by an adjustable gain factor, overcoming the standard tradeoff between imaging speed and displacement range. Experimental characterization of a cantilever holder implementing the method is provided together with comparative line scans obtained with contact mode imaging. An imaging bandwidth of 30 kHz in air with the current setup was demonstrated.

  15. Direct observation of depth-dependent atomic displacements associated with dislocations in gallium nitride.

    PubMed

    Lozano, J G; Yang, H; Guerrero-Lebrero, M P; D'Alfonso, A J; Yasuhara, A; Okunishi, E; Zhang, S; Humphreys, C J; Allen, L J; Galindo, P L; Hirsch, P B; Nellist, P D

    2014-09-26

    We demonstrate that the aberration-corrected scanning transmission electron microscope has a sufficiently small depth of field to observe depth-dependent atomic displacements in a crystal. The depth-dependent displacements associated with the Eshelby twist of dislocations in GaN normal to the foil with a screw component of the Burgers vector are directly imaged. We show that these displacements are observed as a rotation of the lattice between images taken in a focal series. From the sense of the rotation, the sign of the screw component can be determined.

  16. Gamma induced atom displacements in LYSO and LuYAP crystals as used in medical imaging applications

    NASA Astrophysics Data System (ADS)

    Piñera, Ibrahin; Cruz, Carlos M.; Abreu, Yamiel; Leyva, Antonio; Van Espen, Piet; Díaz, Angelina; Cabal, Ana E.; Van Remortel, Nick

    2015-08-01

    The radiation damage, in terms of atom displacements, induced by gamma irradiation in LYSO and LuYAP crystals is presented. 44Sc, 22Na and 48V are used as gamma sources for this study. The energy of gammas from the electron-positron annihilation processes (511 keV) is also included in the study. The atom displacements distributions inside each material are calculated following the Monte Carlo assisted Classical Method introduced by the authors. This procedure also allows to study the atom displacements in-depth distributions inside each crystal. The atom displacements damage in LYSO crystals is found to be higher than in LuYAP crystals, mainly provoked by the displacements of silicon and oxygen atoms. But the difference between atom displacements produced in LYSO and LuYAP decreases when more energetic sources are used. On the other hand, the correlation between the atom displacements and energy deposition in-depth distributions is excellent. The atom displacements to energy deposition ratio is found to increases with more energetic photon sources. LYSO crystals are then more liable to the atom displacements damage than LuYAP crystals.

  17. Atomic displacement in solids: analysis of the primary event and the collision cascade. Part I: Neutron and positive ion irradiation

    NASA Astrophysics Data System (ADS)

    de Almeida, P.; Räisänen, J.

    2005-05-01

    A modern, mathematical-physics introduction to the analytical problem of atomic displacement in solids which is both technically adequate and relevant to an introductory graduate students' curriculum in radiation damage theory is reported. The problematic of atomic displacement in solids is introduced didactically, deriving first the primary event (that is, the formation of the primary knock-on atom) and then building on that specific set of results in order to extend their basics to secondary, tertiary and higher-order progeny—the collision cascade—for both neutrons and positive ions, namely, their average damage functions, displacement cross-sections and energy spectra. A comparison of atomic displacement in solids under neutron and positive ion irradiation is discussed in terms of the physical concept of concentration of displaced atoms (or displacement dose).

  18. Topological phase transition induced by atomic displacements in PbS and PbTe

    NASA Astrophysics Data System (ADS)

    Kim, Jinwoong; Jhi, Seung-Hoon

    2013-03-01

    Discovery of 3D topological insulator initiates exploration of finding new materials having topological insulating phase or mechanisms for topological phase transitions. Introducing interactions or strains into non-interacting electron systems, for example, can produce non-trivial topological phases in them otherwise having trivial band insulating phase at equilibrium conditions. Using first-principles methods, we study emerging topological phases in band insulating PbS and PbTe, which are induced by selective atomic displacements. Phonon modes corresponding to the displacements are identified and conditions of inducing the topological phase transition are suggested. We show that surface states develop flickering Dirac cones at band-inversion k-points upon dynamic atomic displacements with sufficient amplitude. Our results demonstrate that elementary excitation modes like phonon can induce topological phases in trivial band insulators.

  19. Collective nonaffine displacements in amorphous materials during large-amplitude oscillatory shear

    NASA Astrophysics Data System (ADS)

    Priezjev, Nikolai V.

    2017-02-01

    Using molecular dynamics simulations, we study the transient response of a binary Lennard-Jones glass subjected to periodic shear deformation. The amorphous solid is modeled as a three-dimensional Kob-Andersen binary mixture at a low temperature. The cyclic loading is applied to slowly annealed, quiescent samples, which induces irreversible particle rearrangements at large strain amplitudes, leading to stress-strain hysteresis and a drift of the potential energy towards higher values. We find that the initial response to cyclic shear near the critical strain amplitude involves disconnected clusters of atoms with large nonaffine displacements. In contrast, the amplitude of shear stress oscillations decreases after a certain number of cycles, which is accompanied by the initiation and subsequent growth of a shear band.

  20. Considerable knock-on displacement of metal atoms under a low energy electron beam.

    PubMed

    Gu, Hengfei; Li, Geping; Liu, Chengze; Yuan, Fusen; Han, Fuzhou; Zhang, Lifeng; Wu, Songquan

    2017-03-15

    Under electron beam irradiation, knock-on atomic displacement is commonly thought to occur only when the incident electron energy is above the incident-energy threshold of the material in question. However, we report that when exposed to intense electrons at room temperature at a low incident energy of 30 keV, which is far below the theoretically predicted incident-energy threshold of zirconium, Zircaloy-4 (Zr-1.50Sn-0.25Fe-0.15Cr (wt.%)) surfaces can undergo considerable displacement damage. We demonstrate that electron beam irradiation of the bulk Zircaloy-4 surface resulted in a striking radiation effect that nanoscale precipitates within the surface layer gradually emerged and became clearly visible with increasing the irradiation time. Our transmission electron microscope (TEM) observations further reveal that electron beam irradiation of the thin-film Zircaly-4 surface caused the sputtering of surface α-Zr atoms, the nanoscale atomic restructuring in the α-Zr matrix, and the amorphization of precipitates. These results are the first direct evidences suggesting that displacement of metal atoms can be induced by a low incident electron energy below threshold. The presented way to irradiate may be extended to other materials aiming at producing appealing properties for applications in fields of nanotechnology, surface technology, and others.

  1. Diffuse scattering measurements of static atomic displacements in crystalline binary solid solutions

    SciTech Connect

    Ice, G.E.; Sparks, C.J.; Jiang, X.; Robertson, L.

    1997-09-01

    Diffuse x-ray scattering from crystalline solid solutions is sensitive to both local chemical order and local bond distances. In short-range ordered alloys, fluctuations of chemistry and bond distances break the long-range symmetry of the crystal within a local region and contribute to the total energy of the alloy. Recent use of tunable synchrotron radiation to change the x-ray scattering contrast between elements has greatly advanced the measurement of bond distances between the three kinds of atom pairs found in crystalline binary alloys. The estimated standard deviation on these recovered static displacements approaches {+-}0.001 {angstrom} (0.0001 nm) which is an order of magnitude more precise than obtained with EXAFS. In addition, both the radial and tangential displacements can be recovered to five near neighbors and beyond. These static displacement measurements provide new information which challenges the most advanced theoretical models of binary crystalline alloys. 29 refs., 8 figs., 2 tabs.

  2. Note: Compact and light displacement sensor for a precision measurement system in large motion

    SciTech Connect

    Lee, Sang Heon

    2015-08-15

    We developed a compact and light displacement sensor applicable to systems that require wide range motions of its sensing device. The proposed sensor utilized the optical pickup unit of the optical disk drive, which has been used applied to atomic force microscopy (AFM) because of its compactness and lightness as well as its high performance. We modified the structure of optical pickup unit and made the compact sensor driver attachable to a probe head of AFM to make large rotation. The feasibilities of the developed sensor for a general probe-moving measurement device and for probe-rotating AFM were verified. Moreover, a simple and precise measurement of alignment between centers of rotator and probe tip in probe-rotation AFM was experimentally demonstrated using the developed sensor.

  3. Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy

    SciTech Connect

    Balke, Nina; Jesse, Stephen; Yu, Pu; Carmichael, Ben; Kalinin, Sergei V.; Tselev, Alexander

    2016-09-15

    Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ~1–3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip–sample contact stiffness. The approach has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. Furthermore, this analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.

  4. Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy

    DOE PAGES

    Balke, Nina; Jesse, Stephen; Yu, Pu; ...

    2016-09-15

    Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ~1–3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip–sample contact stiffness. The approachmore » has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. Furthermore, this analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.« less

  5. Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Balke, Nina; Jesse, Stephen; Yu, Pu; Carmichael, Ben; Kalinin, Sergei V.; Tselev, Alexander

    2016-10-01

    Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ˜1-3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip-sample contact stiffness. The approach has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. This analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.

  6. Collective Atomic Displacements during Complex Phase Boundary Migration in Solid-Solid Phase Transformations.

    PubMed

    Duncan, Juliana; Harjunmaa, Ari; Terrell, Rye; Drautz, Ralf; Henkelman, Graeme; Rogal, Jutta

    2016-01-22

    The A15 to bcc phase transition is simulated at the atomic scale based on an interatomic potential for molybdenum. The migration of the phase boundary proceeds via long-range collective displacements of entire groups of atoms across the interface. To capture the kinetics of these complex atomic rearrangements over extended time scales we use the adaptive kinetic Monte Carlo approach. An effective barrier of 0.5 eV is determined for the formation of each new bcc layer. This barrier is not associated with any particular atomistic process that governs the dynamics of the phase boundary migration. Instead, the effective layer transformation barrier represents a collective property of the complex potential energy surface.

  7. Optical knife-edge displacement sensor for high-speed atomic force microscopy

    SciTech Connect

    Braunsmann, Christoph; Schäffer, Tilman E.; Prucker, Veronika

    2014-03-10

    We show that an optical knife-edge technique can be used to detect the parallel shift of an object with sub-nanometer resolution over a wide bandwidth. This allows to design simple, contact-free, and high-speed displacement sensors that can be implemented in high-speed atomic force microscope scanners. In an experimental setup, we achieved a root-mean-square sensor noise of 0.8 nm within a bandwidth from 1 Hz to 1.1 MHz. We used this sensor to detect and correct the nonlinear z-piezo displacement during force curves acquired with rates of up to 5 kHz. We discuss the fundamental resolution limit and the linearity of the sensor.

  8. Temperature dependent local atomic displacements in ammonia intercalated iron selenide superconductor.

    PubMed

    Paris, E; Simonelli, L; Wakita, T; Marini, C; Lee, J-H; Olszewski, W; Terashima, K; Kakuto, T; Nishimoto, N; Kimura, T; Kudo, K; Kambe, T; Nohara, M; Yokoya, T; Saini, N L

    2016-06-09

    Recently, ammonia-thermal reaction has been used for molecular intercalation in layered FeSe, resulting a new Lix(NH3)yFe2Se2 superconductor with Tc ~ 45 K. Here, we have used temperature dependent extended x-ray absorption fine structure (EXAFS) to investigate local atomic displacements in single crystals of this new superconductor. Using polarized EXAFS at Fe K-edge we have obtained direct information on the local Fe-Se and Fe-Fe bondlengths and corresponding mean square relative displacements (MSRD). We find that the Se-height in the intercalated system is lower than the one in the binary FeSe, suggesting compressed FeSe4 tetrahedron in the title system. Incidentally, there is hardly any effect of the intercalation on the bondlengths characteristics, revealed by the Einstein temperatures, that are similar to those found in the binary FeSe. Therefore, the molecular intercalation induces an effective compression and decouples the FeSe slabs. Furthermore, the results reveal an anomalous change in the atomic correlations across Tc, appearing as a clear decrease in the MSRD, indicating hardening of the local lattice mode. Similar response of the local lattice has been found in other families of superconductors, e.g., A15-type and cuprates superconductors. This observation suggests that local atomic correlations should have some direct correlation with the superconductivity.

  9. Temperature dependent local atomic displacements in ammonia intercalated iron selenide superconductor

    PubMed Central

    Paris, E.; Simonelli, L.; Wakita, T.; Marini, C.; Lee, J.-H.; Olszewski, W.; Terashima, K.; Kakuto, T.; Nishimoto, N.; Kimura, T.; Kudo, K.; Kambe, T.; Nohara, M.; Yokoya, T.; Saini, N. L.

    2016-01-01

    Recently, ammonia-thermal reaction has been used for molecular intercalation in layered FeSe, resulting a new Lix(NH3)yFe2Se2 superconductor with Tc ~ 45 K. Here, we have used temperature dependent extended x-ray absorption fine structure (EXAFS) to investigate local atomic displacements in single crystals of this new superconductor. Using polarized EXAFS at Fe K-edge we have obtained direct information on the local Fe-Se and Fe-Fe bondlengths and corresponding mean square relative displacements (MSRD). We find that the Se-height in the intercalated system is lower than the one in the binary FeSe, suggesting compressed FeSe4 tetrahedron in the title system. Incidentally, there is hardly any effect of the intercalation on the bondlengths characteristics, revealed by the Einstein temperatures, that are similar to those found in the binary FeSe. Therefore, the molecular intercalation induces an effective compression and decouples the FeSe slabs. Furthermore, the results reveal an anomalous change in the atomic correlations across Tc, appearing as a clear decrease in the MSRD, indicating hardening of the local lattice mode. Similar response of the local lattice has been found in other families of superconductors, e.g., A15-type and cuprates superconductors. This observation suggests that local atomic correlations should have some direct correlation with the superconductivity. PMID:27276997

  10. Bandgap modulation in photoexcited topological insulator Bi2Te3 via atomic displacements.

    PubMed

    Hada, Masaki; Norimatsu, Katsura; Tanaka, Sei Ichi; Keskin, Sercan; Tsuruta, Tetsuya; Igarashi, Kyushiro; Ishikawa, Tadahiko; Kayanuma, Yosuke; Miller, R J Dwayne; Onda, Ken; Sasagawa, Takao; Koshihara, Shin-Ya; Nakamura, Kazutaka G

    2016-07-14

    The atomic and electronic dynamics in the topological insulator (TI) Bi2Te3 under strong photoexcitation were characterized with time-resolved electron diffraction and time-resolved mid-infrared spectroscopy. Three-dimensional TIs characterized as bulk insulators with an electronic conduction surface band have shown a variety of exotic responses in terms of electronic transport when observed under conditions of applied pressure, magnetic field, or circularly polarized light. However, the atomic motions and their correlation between electronic systems in TIs under strong photoexcitation have not been explored. The artificial and transient modification of the electronic structures in TIs via photoinduced atomic motions represents a novel mechanism for providing a comparable level of bandgap control. The results of time-domain crystallography indicate that photoexcitation induces two-step atomic motions: first bismuth and then tellurium center-symmetric displacements. These atomic motions in Bi2Te3 trigger 10% bulk bandgap narrowing, which is consistent with the time-resolved mid-infrared spectroscopy results.

  11. Characterizing absolute piezoelectric microelectromechanical system displacement using an atomic force microscope

    SciTech Connect

    Evans, J. Chapman, S.

    2014-08-14

    Piezoresponse Force Microscopy (PFM) is a popular tool for the study of ferroelectric and piezoelectric materials at the nanometer level. Progress in the development of piezoelectric MEMS fabrication is highlighting the need to characterize absolute displacement at the nanometer and Ångstrom scales, something Atomic Force Microscopy (AFM) might do but PFM cannot. Absolute displacement is measured by executing a polarization measurement of the ferroelectric or piezoelectric capacitor in question while monitoring the absolute vertical position of the sample surface with a stationary AFM cantilever. Two issues dominate the execution and precision of such a measurement: (1) the small amplitude of the electrical signal from the AFM at the Ångstrom level and (2) calibration of the AFM. The authors have developed a calibration routine and test technique for mitigating the two issues, making it possible to use an atomic force microscope to measure both the movement of a capacitor surface as well as the motion of a micro-machine structure actuated by that capacitor. The theory, procedures, pitfalls, and results of using an AFM for absolute piezoelectric measurement are provided.

  12. Demonstration of Vibrational Braille Code Display Using Large Displacement Micro-Electro-Mechanical Systems Actuators

    NASA Astrophysics Data System (ADS)

    Watanabe, Junpei; Ishikawa, Hiroaki; Arouette, Xavier; Matsumoto, Yasuaki; Miki, Norihisa

    2012-06-01

    In this paper, we present a vibrational Braille code display with large-displacement micro-electro-mechanical systems (MEMS) actuator arrays. Tactile receptors are more sensitive to vibrational stimuli than to static ones. Therefore, when each cell of the Braille code vibrates at optimal frequencies, subjects can recognize the codes more efficiently. We fabricated a vibrational Braille code display that used actuators consisting of piezoelectric actuators and a hydraulic displacement amplification mechanism (HDAM) as cells. The HDAM that encapsulated incompressible liquids in microchambers with two flexible polymer membranes could amplify the displacement of the MEMS actuator. We investigated the voltage required for subjects to recognize Braille codes when each cell, i.e., the large-displacement MEMS actuator, vibrated at various frequencies. Lower voltages were required at vibration frequencies higher than 50 Hz than at vibration frequencies lower than 50 Hz, which verified that the proposed vibrational Braille code display is efficient by successfully exploiting the characteristics of human tactile receptors.

  13. Atomic motion from the mean square displacement in a monatomic liquid

    SciTech Connect

    Wallace, Duane C.; De Lorenzi-Venneri, Giulia; Chisolm, Eric D.

    2016-04-08

    V-T theory is constructed in the many-body Hamiltonian formulation, and is being developed as a novel approach to liquid dynamics theory. In this theory the liquid atomic motion consists of two contributions, normal mode vibrations in a single representative potential energy valley, and transits, which carry the system across boundaries between valleys. The mean square displacement time correlation function (the MSD) is a direct measure of the atomic motion, and our goal is to determine if the V-T formalism can produce a physically sensible account of this motion. We employ molecular dynamics (MD) data for a system representing liquid Na, and find the motion evolves in three successive time intervals: on the first 'vibrational' interval, the vibrational motion alone gives a highly accurate account of the MD data; on the second 'crossover' interval, the vibrational MSD saturates to a constant while the transit motion builds up from zero; on the third 'random walk' interval, the transit motion produces a purely diffusive random walk of the vibrational equilibrium positions. Furthermore, this motional evolution agrees with, and adds refinement to, the MSD atomic motion as described by current liquid dynamics theories.

  14. Atomic motion from the mean square displacement in a monatomic liquid

    DOE PAGES

    Wallace, Duane C.; De Lorenzi-Venneri, Giulia; Chisolm, Eric D.

    2016-04-08

    V-T theory is constructed in the many-body Hamiltonian formulation, and is being developed as a novel approach to liquid dynamics theory. In this theory the liquid atomic motion consists of two contributions, normal mode vibrations in a single representative potential energy valley, and transits, which carry the system across boundaries between valleys. The mean square displacement time correlation function (the MSD) is a direct measure of the atomic motion, and our goal is to determine if the V-T formalism can produce a physically sensible account of this motion. We employ molecular dynamics (MD) data for a system representing liquid Na,more » and find the motion evolves in three successive time intervals: on the first 'vibrational' interval, the vibrational motion alone gives a highly accurate account of the MD data; on the second 'crossover' interval, the vibrational MSD saturates to a constant while the transit motion builds up from zero; on the third 'random walk' interval, the transit motion produces a purely diffusive random walk of the vibrational equilibrium positions. Furthermore, this motional evolution agrees with, and adds refinement to, the MSD atomic motion as described by current liquid dynamics theories.« less

  15. Atomic motion from the mean square displacement in a monatomic liquid.

    PubMed

    Wallace, Duane C; De Lorenzi-Venneri, Giulia; Chisolm, Eric D

    2016-05-11

    V-T theory is constructed in the many-body Hamiltonian formulation, and is being developed as a novel approach to liquid dynamics theory. In this theory the liquid atomic motion consists of two contributions, normal mode vibrations in a single representative potential energy valley, and transits, which carry the system across boundaries between valleys. The mean square displacement time correlation function (the MSD) is a direct measure of the atomic motion, and our goal is to determine if the V-T formalism can produce a physically sensible account of this motion. We employ molecular dynamics (MD) data for a system representing liquid Na, and find the motion evolves in three successive time intervals: on the first 'vibrational' interval, the vibrational motion alone gives a highly accurate account of the MD data; on the second 'crossover' interval, the vibrational MSD saturates to a constant while the transit motion builds up from zero; on the third 'random walk' interval, the transit motion produces a purely diffusive random walk of the vibrational equilibrium positions. This motional evolution agrees with, and adds refinement to, the MSD atomic motion as described by current liquid dynamics theories.

  16. Role of valence changes and nanoscale atomic displacements in BiS2-based superconductors.

    PubMed

    Cheng, Jie; Zhai, Huifei; Wang, Yu; Xu, Wei; Liu, Shengli; Cao, Guanghan

    2016-11-22

    Superconductivity within layered crystal structures has attracted sustained interest among condensed matter community, primarily due to their exotic superconducting properties. EuBiS2F is a newly discovered member in the BiS2-based superconducting family, which shows superconductivity at 0.3 K without extrinsic doping. With 50 at.% Ce substitution for Eu, superconductivity is enhanced with Tc increased up to 2.2 K. However, the mechanisms for the Tc enhancement have not yet been elucidated. In this study, the Ce-doping effect on the self-electron-doped superconductor EuBiS2F was investigated by X-ray absorption spectroscopy (XAS). We have established a relationship between Ce-doping and the Tc enhancement in terms of Eu valence changes and nanoscale atomic displacements. The new finding sheds light on the interplay among superconductivity, charge and local structure in BiS2-based superconductors.

  17. Role of valence changes and nanoscale atomic displacements in BiS2-based superconductors

    NASA Astrophysics Data System (ADS)

    Cheng, Jie; Zhai, Huifei; Wang, Yu; Xu, Wei; Liu, Shengli; Cao, Guanghan

    2016-11-01

    Superconductivity within layered crystal structures has attracted sustained interest among condensed matter community, primarily due to their exotic superconducting properties. EuBiS2F is a newly discovered member in the BiS2-based superconducting family, which shows superconductivity at 0.3 K without extrinsic doping. With 50 at.% Ce substitution for Eu, superconductivity is enhanced with Tc increased up to 2.2 K. However, the mechanisms for the Tc enhancement have not yet been elucidated. In this study, the Ce-doping effect on the self-electron-doped superconductor EuBiS2F was investigated by X-ray absorption spectroscopy (XAS). We have established a relationship between Ce-doping and the Tc enhancement in terms of Eu valence changes and nanoscale atomic displacements. The new finding sheds light on the interplay among superconductivity, charge and local structure in BiS2-based superconductors.

  18. Development of a laser synthetic wavelength interferometer for large displacement measurement with nanometer accuracy.

    PubMed

    Chen, Benyong; Yan, Liping; Yao, Xiguo; Yang, Tao; Li, Dacheng; Dong, Wenjun; Li, Chaorong; Tang, Weihua

    2010-02-01

    A laser synthetic wavelength interferometer that is capable of achieving large displacement measurement with nanometer accuracy is developed. The principle and the signal processing method of the interferometer are introduced. The displacement measurement experiments and the comparisons with a commercial interferometer both in small and large ranges are performed in order to verify the performance of the interferometer. Experimental results show that the average errors and standard deviations of the interferometer are in accordance with those obtained from the commercial interferometer. The resolution and the nonlinearity of the interferometer are also discussed in detail. These results show that the development of the interferometer is reasonable and feasible.

  19. Curved Displacement Transfer Functions for Geometric Nonlinear Large Deformation Structure Shape Predictions

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran; Lung, Shun-Fat

    2017-01-01

    For shape predictions of structures under large geometrically nonlinear deformations, Curved Displacement Transfer Functions were formulated based on a curved displacement, traced by a material point from the undeformed position to deformed position. The embedded beam (depth-wise cross section of a structure along a surface strain-sensing line) was discretized into multiple small domains, with domain junctures matching the strain-sensing stations. Thus, the surface strain distribution could be described with a piecewise linear or a piecewise nonlinear function. The discretization approach enabled piecewise integrations of the embedded-beam curvature equations to yield the Curved Displacement Transfer Functions, expressed in terms of embedded beam geometrical parameters and surface strains. By entering the surface strain data into the Displacement Transfer Functions, deflections along each embedded beam can be calculated at multiple points for mapping the overall structural deformed shapes. Finite-element linear and nonlinear analyses of a tapered cantilever tubular beam were performed to generate linear and nonlinear surface strains and the associated deflections to be used for validation. The shape prediction accuracies were then determined by comparing the theoretical deflections with the finiteelement- generated deflections. The results show that the newly developed Curved Displacement Transfer Functions are very accurate for shape predictions of structures under large geometrically nonlinear deformations.

  20. Extended ALE Method for fluid-structure interaction problems with large structural displacements

    NASA Astrophysics Data System (ADS)

    Basting, Steffen; Quaini, Annalisa; Čanić, Sunčica; Glowinski, Roland

    2017-02-01

    Standard Arbitrary Lagrangian-Eulerian (ALE) methods for the simulation of fluid-structure interaction (FSI) problems fail due to excessive mesh deformations when the structural displacement is large. We propose a method that successfully deals with this problem, keeping the same mesh connectivity while enforcing mesh alignment with the structure. The proposed Extended ALE Method relies on a variational mesh optimization technique, where mesh alignment with the structure is achieved via a constraint. This gives rise to a constrained optimization problem for mesh optimization, which is solved whenever the mesh quality deteriorates. The performance of the proposed Extended ALE Method is demonstrated on a series of numerical examples involving 2D FSI problems with large displacements. Two-way coupling between the fluid and structure is considered in all the examples. The FSI problems are solved using either a Dirichlet-Neumann algorithm, or a Robin-Neumann algorithm. The Dirichlet-Neumann algorithm is enhanced by an adaptive relaxation procedure based on Aitken's acceleration. We show that the proposed method has excellent performance in problems with large displacements, and that it agrees well with a standard ALE method in problems with mild displacement.

  1. Static atomic displacements in a CdTe epitaxial layer on a GaAs substrate

    NASA Astrophysics Data System (ADS)

    Horning, R. D.; Staudenmann, J.-L.

    1987-05-01

    A (001)CdTe epitaxial layer on a (001)GaAs substrate was studied by x-ray diffraction between 10 and 360 K. The CdTe growth took place at 380 °C in a vertical gas flow metalorganic chemical vapor deposition reactor. Lattice parameters and integrated intensities of both the substrate and the epitaxial layer using the (00l) and (hhh) Bragg reflections reveal three important features. Firstly, the GaAs substrate does not exhibit severe strain after deposition and it is as perfect as a bulk GaAs. Secondly, the CdTe unit cell distorts tetragonally with a⊥>a∥ below 300 K. The decay of the (00l) reflection intensities as a function of the temperature yields a Debye temperature of 142 K, the same value as for bulk CdTe. Thirdly, a temperature-dependent isotropic static displacement of the Cd and the Te atoms is introduced to account for the anomalous behavior of the (hhh) intensities.

  2. Static atomic displacements in a CdTe epitaxial layer on a GaAs substrate

    SciTech Connect

    Horning, R.D.; Staudenmann, J.

    1987-05-25

    A (001)CdTe epitaxial layer on a (001)GaAs substrate was studied by x-ray diffraction between 10 and 360 K. The CdTe growth took place at 380 /sup 0/C in a vertical gas flow metalorganic chemical vapor deposition reactor. Lattice parameters and integrated intensities of both the substrate and the epitaxial layer using the (00l) and (hhh) Bragg reflections reveal three important features. Firstly, the GaAs substrate does not exhibit severe strain after deposition and it is as perfect as a bulk GaAs. Secondly, the CdTe unit cell distorts tetragonally with a/sub perpendicular/>a/sub parallel/ below 300 K. The decay of the (00l) reflection intensities as a function of the temperature yields a Debye temperature of 142 K, the same value as for bulk CdTe. Thirdly, a temperature-dependent isotropic static displacement of the Cd and the Te atoms is introduced to account for the anomalous behavior of the (hhh) intensities.

  3. Role of valence changes and nanoscale atomic displacements in BiS2-based superconductors

    PubMed Central

    Cheng, Jie; Zhai, Huifei; Wang, Yu; Xu, Wei; Liu, Shengli; Cao, Guanghan

    2016-01-01

    Superconductivity within layered crystal structures has attracted sustained interest among condensed matter community, primarily due to their exotic superconducting properties. EuBiS2F is a newly discovered member in the BiS2-based superconducting family, which shows superconductivity at 0.3 K without extrinsic doping. With 50 at.% Ce substitution for Eu, superconductivity is enhanced with Tc increased up to 2.2 K. However, the mechanisms for the Tc enhancement have not yet been elucidated. In this study, the Ce-doping effect on the self-electron-doped superconductor EuBiS2F was investigated by X-ray absorption spectroscopy (XAS). We have established a relationship between Ce-doping and the Tc enhancement in terms of Eu valence changes and nanoscale atomic displacements. The new finding sheds light on the interplay among superconductivity, charge and local structure in BiS2-based superconductors. PMID:27874040

  4. Exploiting Universality in Atoms with Large Scattering Lengths

    SciTech Connect

    Braaten, Eric

    2012-05-31

    The focus of this research project was atoms with scattering lengths that are large compared to the range of their interactions and which therefore exhibit universal behavior at sufficiently low energies. Recent dramatic advances in cooling atoms and in manipulating their scattering lengths have made this phenomenon of practical importance for controlling ultracold atoms and molecules. This research project was aimed at developing a systematically improvable method for calculating few-body observables for atoms with large scattering lengths starting from the universal results as a first approximation. Significant progress towards this goal was made during the five years of the project.

  5. Large Out-of-Plane Displacement Bistable Electromagnetic Microswitch on a Single Wafer

    PubMed Central

    Miao, Xiaodan; Dai, Xuhan; Huang, Yi; Ding, Guifu; Zhao, Xiaolin

    2016-01-01

    This paper presents a bistable microswitch fully batch-fabricated on a single glass wafer, comprising of a microactuator, a signal transformer, a microspring and a permanent magnet. The bistable mechanism of the microswitch with large displacement of 160 μm depends on the balance of the magnetic force and elastic force. Both the magnetic force and elastic force were optimized by finite-element simulation to predict the reliable of the device. The prototype was fabricated and characterized. By utilizing thick laminated photoresist sacrificial layer, the large displacement was obtained to ensure the insulation of the microswitch. The testing results show that the microswitch realized the bistable mechanism at a 3–5 V input voltage and closed in 0.96 ms, which verified the simulation. PMID:27164107

  6. Multicamera system extrinsic stability analysis and large-span truss string structure displacement measurement.

    PubMed

    Liu, Cong; Dong, Shuai; Mokhtar, Mohammed; He, Xiaoyuan; Lu, Jinyu; Wu, Xiaolong

    2016-10-10

    A novel technique for measuring the displacements of large-span truss string structures that employs multicamera systems is proposed. The coordinates of the stereo-vision systems are unified in a single global coordinate system by employing 3D data reconstructed using close-range photogrammetry. To estimate the camera's attitude motions during an experiment, an instantaneous extrinsic rectification algorithm was developed. Experiments in which a camera was rotated and translated were conducted to verify the accuracy and precision of the developed algorithm. In addition, the proposed multicamera systems were employed to analyze a large-span truss string structure. The displacement results obtained from numerical simulations and experiments using pre-calibration and rectification methods are compared in this paper, and the stability of the camera's extrinsic parameters is discussed.

  7. Long-delayed bright dancing sprite with large horizontal displacement from its parent flash

    NASA Astrophysics Data System (ADS)

    Yang, J.; Lu, G.; Lee, L. J.; Feng, G.

    2015-12-01

    A long-delayed very bright dancing sprite with large horizontal displacement from its parent flash was observed. The dancing sprite lasted only 60 ms, and the morphology consisted of three fields with two slim dim sprite elements in the first two fields and a very bright large sprite element in the third field, different from other observations. The bright sprite displaced at least 38 km from its parent flash and occurred over comparatively higher cloud top region. The parent flash was positive, with only one return stroke (~24 kA) and obvious continuing current process, and the charge moment change of the stroke was small (roughly the threshold for sprite production). All of the sprite elements occurred during the continuing current period, and the bright sprite induced considerable current. The sprite dancing features may be linked to parent storm electrical structure, dynamics and microphysics, and the parent CG discharge process which was consistent with VHF observations.

  8. Fuzzy clustering methods: An application to atomic displacement cascades in solids

    NASA Astrophysics Data System (ADS)

    Hou, M.

    1989-03-01

    Representations based on the concepts of the theory of fuzzy sets are suggested to apply to a wide variety of problems in physics. A grade of membership is associated to each element in a set, which is a measure of its distance to a prototype. Fuzzy representations are thus adequate for dealing with situations where the belongingness of an object or a phenomenon to a class is uncertain, or to situations where the classes have no exact definition. An explicit relation is shown between fuzzy representation and dimensionality. Unambiguous definitions of the degree of fuzziness, cluster overlap, and isolated points are given on the basis of an anisotropic grade of membership function. The example is treated of collision cascades generated by xenon atoms incident on a polycrystalline gold surface with energies ranging from 20 keV to 1 MeV. The cascades are simulated in the binary collision approximation with the Marlowe computer code. They are shown to germinate from simultaneously growing collisions clusters. The displacement cascades are found to be only partially space filling. This is emphasized on the basis of their fuzzy geometrical characteristics, without need of any assumption concerning self-similarity. Their possible overlap and lumping are identified on the basis of the grade of membership of each vacated lattice site to each cluster. The final cluster pattern of the vacancy distributions is shown to depend on the degree of fuzziness. The sensitivity of several properties of vacancy clusters on the degree of fuzziness is discussed. This sensitivity is suggested to be a consequence of their granular structure. Consequently, their experimental characterization may be influenced by the resolution of the observation method. Fuzzy analysis is suggested as a tool to establish the relation between measures at different scales of the same phenomenon.

  9. Determination of local atomic displacements in CeO(1-x)F(x)BiS2 system.

    PubMed

    Paris, E; Joseph, B; Iadecola, A; Sugimoto, T; Olivi, L; Demura, S; Mizuguchi, Y; Takano, Y; Mizokawa, T; Saini, N L

    2014-10-29

    We have used Bi and Ce L3-edges extended x-ray absorption fine structure measurements to study local structure of CeO(1-x)F(x)BiS2 system as a function of F-substitution. The local structure of both BiS2 active layer and CeO1-xFx spacer layer changes systematically. The in-plane Bi-S1 distance decreases (ΔRmax ∼ 0.08 Å) and the out-of-plane Bi-S2 distance increases (ΔRmax ∼ 0.12 Å) with increasing F-content. On the other hand, the Ce-O/F distance increases (ΔRmax ∼ 0.2 Å) with a concomitant decrease of the Ce-S2 distance (ΔRmax ∼ 0.15 Å). Interestingly, the Bi-S1 distance is characterized by a large disorder that increases with F-content. The results provide useful information on the local atomic displacements in CeO(1-x)F(x)BiS2, that should be important for the understanding of the coexistence of superconductivity and low temperature ferromagnetism in this system.

  10. Effect of mass of the primary knock-on atom on displacement cascade debris in alpha-iron

    SciTech Connect

    Andrew, Calder F; Bacon, David J; Barashev, Aleksandr; Osetskiy, Yury N

    2008-01-01

    Results are presented from molecular dynamics (MD) simulations of displacement cascades created in -iron (Fe) by primary knock-on atoms (PKAs) with energy from 5 to 20 keV and mass chosen to represent C, Fe and Bi. Molecular Bi2 has also been simulated using two Bi PKAs, and PKA-Fe interaction potential has also been varied. Four effects are reported. First, the PKA mass has a major effect on cascade damage while the interaction potential has little if any. Second, the total number of point defects produced in a cascade decreases with increasing PKA mass. This fact is not accounted for in models used conventionally for estimating damage. Third, interstitial loops of <111> type and both vacancy and interstitial loops of <100> type are formed, the latter being observed in MD simulation for the first time. The probability of <100> loop appearance increases with increasing PKA mass as well as energy. Finally, there is a correlation between production of large vacancy and interstitial clusters in the same cascade.

  11. Large spin relaxation rates in trapped submerged-shell atoms

    SciTech Connect

    Connolly, Colin B.; Au, Yat Shan; Doret, S. Charles; Doyle, John M.; Ketterle, Wolfgang

    2010-01-15

    Spin relaxation due to atom-atom collisions is measured for magnetically trapped erbium and thulium atoms at a temperature near 500 mK. The rate constants for Er-Er and Tm-Tm collisions are 3.0x10{sup -10} and 1.1x10{sup -10} cm{sup 3} s{sup -1}, respectively, 2-3 orders of magnitude larger than those observed for highly magnetic S-state atoms. This is strong evidence for an additional, dominant, spin relaxation mechanism, electronic interaction anisotropy, in collisions between these 'submerged-shell,' Lnot =0 atoms. These large spin relaxation rates imply that evaporative cooling of these atoms in a magnetic trap will be highly inefficient.

  12. Large Displacement in Relaxor Ferroelectric Terpolymer Blend Derived Actuators Using Al Electrode for Braille Displays

    PubMed Central

    Lu, S. G.; Chen, X.; Levard, T.; Diglio, P. J.; Gorny, L. J.; Rahn, C. D.; Zhang, Q. M.

    2015-01-01

    Poly(vinylidene fluoride) (PVDF) based polymers are attractive for applications for artificial muscles, high energy density storage devices etc. Recently these polymers have been found great potential for being used as actuators for refreshable full-page Braille displays for visually impaired people in terms of light weight, miniaturized size, and larger displacement, compared with currently used lead zirconate titanate ceramic actuators. The applied voltages of published polymer actuators, however, cannot be reduced to meet the requirements of using city power. Here, we report the polymer actuator generating quite large displacement and blocking force at a voltage close to the city power. Our embodiments also show good self-healing performance and disuse of lead-containing material, which makes the Braille device safer, more reliable and more environment-friendly. PMID:26079628

  13. Large Displacement in Relaxor Ferroelectric Terpolymer Blend Derived Actuators Using Al Electrode for Braille Displays

    NASA Astrophysics Data System (ADS)

    Lu, S. G.; Chen, X.; Levard, T.; Diglio, P. J.; Gorny, L. J.; Rahn, C. D.; Zhang, Q. M.

    2015-06-01

    Poly(vinylidene fluoride) (PVDF) based polymers are attractive for applications for artificial muscles, high energy density storage devices etc. Recently these polymers have been found great potential for being used as actuators for refreshable full-page Braille displays for visually impaired people in terms of light weight, miniaturized size, and larger displacement, compared with currently used lead zirconate titanate ceramic actuators. The applied voltages of published polymer actuators, however, cannot be reduced to meet the requirements of using city power. Here, we report the polymer actuator generating quite large displacement and blocking force at a voltage close to the city power. Our embodiments also show good self-healing performance and disuse of lead-containing material, which makes the Braille device safer, more reliable and more environment-friendly.

  14. Large Displacement in Relaxor Ferroelectric Terpolymer Blend Derived Actuators Using Al Electrode for Braille Displays.

    PubMed

    Lu, S G; Chen, X; Levard, T; Diglio, P J; Gorny, L J; Rahn, C D; Zhang, Q M

    2015-06-16

    Poly(vinylidene fluoride) (PVDF) based polymers are attractive for applications for artificial muscles, high energy density storage devices etc. Recently these polymers have been found great potential for being used as actuators for refreshable full-page Braille displays for visually impaired people in terms of light weight, miniaturized size, and larger displacement, compared with currently used lead zirconate titanate ceramic actuators. The applied voltages of published polymer actuators, however, cannot be reduced to meet the requirements of using city power. Here, we report the polymer actuator generating quite large displacement and blocking force at a voltage close to the city power. Our embodiments also show good self-healing performance and disuse of lead-containing material, which makes the Braille device safer, more reliable and more environment-friendly.

  15. Giant atomic displacement at a magnetic phase transition in metastable Mn3O4

    SciTech Connect

    Hirai, Shigeto; Moreira Dos Santos, Antonio F; Shapiro, Max C; Molaison, Jamie J; Pradhan, Neelam; Guthrie, Malcolm; Tulk, Christopher A; Fisher, Ian R; Mao, Wendy

    2013-01-01

    We present x-ray, neutron scattering, and heat capacity data that reveal a coupled first-order magnetic and structural phase transition of the metastable mixed-valence postspinel compound Mn3O4 at 210 K. Powder neutron diffraction measurements reveal a magnetic structure in which Mn3+ spins align antiferromagnetically along the edge-sharing a axis, with a magnetic propagation vector k = [1/2,0,0]. In contrast, the Mn2+ spins, which are geometrically frustrated, do not order until a much lower temperature. Although the Mn2+ spins do not directly participate in the magnetic phase transition at 210 K, structural refinements reveal a large atomic shift at this phase transition, corresponding to a physical motion of approximately 0.25 angstrom, even though the crystal symmetry remains unchanged. This "giant" response is due to the coupled effect of built-in strain in the metastable postspinel structure with the orbital realignment of the Mn3+ ion.

  16. Experiments on Methane Displacement by Carbon Dioxide in Large Coal Specimens

    NASA Astrophysics Data System (ADS)

    Liang, Weiguo; Zhao, Yangsheng; Wu, Di; Dusseault, Maurice B.

    2011-09-01

    Carbon dioxide (CO2) is considered to be the most important greenhouse gas in terms of overall effect. CO2 geological storage in coal beds is of academic and industrial interest because of economic synergies between greenhouse gas sequestration and coal bed methane (CH4) recovery by displacement/adsorption. Previously, most work focused on either theoretical analyses and mathematical simulations or gas adsorption-desorption experiments using coal particles of millimeter size or smaller. Those studies provided basic understanding of CH4 recovery by CO2 displacement in coal fragments, but more relevant and realistic investigations are still rare. To study the processes more realistically, we conducted experimental CH4 displacement by CO2 and CO2 sequestration with intact 100 × 100 × 200 mm coal specimens. The coal specimen permeability was measured first, and results show that the permeability of the specimen is different for CH4 and CO2; the CO2 permeability was found to be at least two orders of magnitude greater than that for CH4. Simultaneously, a negative exponential relationship between the permeability and the applied mean stress on the specimen was found. Under the experimental stress conditions, 17.5-28.0 volumes CO2 can be stored in one volume of coal, and the displacement ratio CO2-CH4 is as much as 7.0-13.9. The process of injection, adsorption and desorption, displacement, and output of gases proceeds smoothly under an applied constant pressure differential, and the CH4 content in the output gas amounted to 20-50% at early stages, persisting to 10-16% during the last stage of the experiments. Production rate and CH4 fraction are governed by complex factors including initial CH4 content, the pore and fissure fabric of the coal, the changes in this fabric as the result of differential adsorption of CO2, the applied stress, and so on. During CO2 injection and CH4 displacement, the coal can swell from effects of gas adsorption and desorption, leading to

  17. Electrooptic converter to control linear displacements of the large structures of the buildings and facilities

    NASA Astrophysics Data System (ADS)

    Vasilev, Aleksandr S.; Konyakhin, Igor A.; Timofeev, Alexander N.; Lashmanov, Oleg U.; Molev, Fedor V.

    2015-05-01

    The paper analyzes the construction matters and metrological parameters of the electrooptic converter to control linear displacements of the large structures of the buildings and facilities. The converter includes the base module, the processing module and a set of the reference marks. The base module is the main unit of the system, it includes the receiving optical system and the CMOS photodetector array that realizes the instrument coordinate system that controls the mark coordinates in the space. The methods of the frame-to-frame difference, adaptive threshold filtration, binarization and objects search by the tied areas to detect the marks against accidental contrast background is the basis of the algorithm. The entire algorithm is performed during one image reading stage and is based on the FPGA. The developed and manufactured converter experimental model was tested in laboratory conditions at the metrological bench at the distance between the base module and the mark 50±0.2 m. The static characteristic was read during the experiment of the reference mark displacement at the pitch of 5 mm in the horizontal and vertical directions for the displacement range 400 mm. The converter experimental model error not exceeding ±0.5 mm was obtained in the result of the experiment.

  18. Large-Deformation Displacement Transfer Functions for Shape Predictions of Highly Flexible Slender Aerospace Structures

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran

    2013-01-01

    Large deformation displacement transfer functions were formulated for deformed shape predictions of highly flexible slender structures like aircraft wings. In the formulation, the embedded beam (depth wise cross section of structure along the surface strain sensing line) was first evenly discretized into multiple small domains, with surface strain sensing stations located at the domain junctures. Thus, the surface strain (bending strains) variation within each domain could be expressed with linear of nonlinear function. Such piecewise approach enabled piecewise integrations of the embedded beam curvature equations [classical (Eulerian), physical (Lagrangian), and shifted curvature equations] to yield closed form slope and deflection equations in recursive forms.

  19. On 'large-scale' stable fiber displacement during interfacial failure in metal matrix composites

    NASA Technical Reports Server (NTRS)

    Petrich, R. R.; Koss, D. A.; Hellmann, J. R.; Kallas, M. N.

    1993-01-01

    Experimental results are presented to show that interfacial failure in sapphire-reinforced niobium is characterized by 'large-scale' (5-15 microns) plasticity-controlled fiber displacements occurring under increasing loads. The results are based on the responses during thin-slice fiber pushout tests wherein the fiber is supported over a hole twice the fiber diameter. The results describe an interfacial failure process that should also occur near fiber ends during pullout when a fiber is well-bonded to a soft, ductile matrix, such that eventual failure occurs by shear within the matrix near the interface.

  20. Charge-screening role of c -axis atomic displacements in YBa2Cu3O6 +x and related superconductors

    NASA Astrophysics Data System (ADS)

    Božin, E. S.; Huq, A.; Shen, Bing; Claus, H.; Kwok, W. K.; Tranquada, J. M.

    2016-02-01

    The importance of charge reservoir layers for supplying holes to the CuO2 planes of cuprate superconductors has long been recognized. Less attention has been paid to the screening of the charge transfer by the intervening ionic layers. We address this issue in the case of YBa2Cu3O6 +x , where CuO chains supply the holes for the planes. We present a simple dielectric-screening model that gives a linear correlation between the relative displacements of ions along the c axis, determined by neutron powder diffraction, and the hole density of the planes. Applying this model to the temperature-dependent shifts of ions along the c axis, we infer a charge transfer of 5-10% of the hole density from the planes to the chains on warming from the superconducting transition to room temperature. Given the significant coupling of c -axis displacements to the average charge density, we point out the relevance of local displacements for screening charge modulations and note recent evidence for dynamic screening of in-plane quasiparticles. This line of argument leads us to a simple model for atomic displacements and charge modulation that is consistent with images from scanning-tunneling microscopy for underdoped Bi2Sr2CaCu2O8 +δ .

  1. Analysis of large displacements/small strains of enhanced 3D beam with section changes

    NASA Astrophysics Data System (ADS)

    Gao, Sasa; Liang, Biao; Vidal-Salle, Emmanuelle

    2016-10-01

    Modeling fabric process at the mesoscopic (i.e. the yarn) scale can be able to give realistic fabric shape predictions. For that, we proposed a new 3D beam element with section changes while breaking from classical beam hypothesis, which can describe the compression and shape change of the yarn. However, the results presented previously are only the first step of a more ambitious work. Indeed, the final goal is to use those elements to model yarns in a textile composite preform. For that purpose, the present paper aims to carry out validation for large displacements and small strains. A nonlinear theory of deformation is based on the updated Lagrangian method. The work employs small strain theory on each element like the co-rotational technique, and only the unit vectors of the cross-sections are employed instead of the full three-dimensional rotational vectors or angles. Finally, a set of numerical examples show that the enhanced 3D element provides an excellent numerical performance under large displacements/ small strains.

  2. Large displacement behavior of double parallelogram flexure mechanisms with underconstraint eliminators

    DOE PAGES

    Panas, Robert M.

    2016-06-23

    This paper presents a new analytical method for predicting the large displacement behavior of flexural double parallelogram (DP) bearings with underconstraint eliminator (UE) linkages. This closed-form perturbative Euler analysis method is able to – for the first time – directly incorporate the elastomechanics of a discrete UE linkage, which is a hybrid flexure element that is linked to ground as well as both stages on the bearing. The models are used to understand a nested linkage UE design, however the method is extensible to other UE linkages. Design rules and figures-of-merit are extracted from the analysis models, which provide powerfulmore » tools for accelerating the design process. The models, rules and figures-of-merit enable the rapid design of a UE for a desired large displacement behavior, as well as providing a means for determining the limits of UE and DP structures. This will aid in the adoption of UE linkages into DP bearings for precision mechanisms. Models are generated for a nested linkage UE design, and the performance of this DP with UE structure is compared to a DP-only bearing. As a result, the perturbative Euler analysis is shown to match existing theories for DP-only bearings with distributed compliance within ≈2%, and Finite Element Analysis for the DP with UE bearings within an average 10%.« less

  3. Large displacement behavior of double parallelogram flexure mechanisms with underconstraint eliminators

    SciTech Connect

    Panas, Robert M.

    2016-06-23

    This paper presents a new analytical method for predicting the large displacement behavior of flexural double parallelogram (DP) bearings with underconstraint eliminator (UE) linkages. This closed-form perturbative Euler analysis method is able to – for the first time – directly incorporate the elastomechanics of a discrete UE linkage, which is a hybrid flexure element that is linked to ground as well as both stages on the bearing. The models are used to understand a nested linkage UE design, however the method is extensible to other UE linkages. Design rules and figures-of-merit are extracted from the analysis models, which provide powerful tools for accelerating the design process. The models, rules and figures-of-merit enable the rapid design of a UE for a desired large displacement behavior, as well as providing a means for determining the limits of UE and DP structures. This will aid in the adoption of UE linkages into DP bearings for precision mechanisms. Models are generated for a nested linkage UE design, and the performance of this DP with UE structure is compared to a DP-only bearing. As a result, the perturbative Euler analysis is shown to match existing theories for DP-only bearings with distributed compliance within ≈2%, and Finite Element Analysis for the DP with UE bearings within an average 10%.

  4. Evidence for large-scale effects of competition: niche displacement in Canada lynx and bobcat.

    PubMed

    Peers, Michael J L; Thornton, Daniel H; Murray, Dennis L

    2013-12-22

    Determining the patterns, causes and consequences of character displacement is central to our understanding of competition in ecological communities. However, the majority of competition research has occurred over small spatial extents or focused on fine-scale differences in morphology or behaviour. The effects of competition on broad-scale distribution and niche characteristics of species remain poorly understood but critically important. Using range-wide species distribution models, we evaluated whether Canada lynx (Lynx canadensis) or bobcat (Lynx rufus) were displaced in regions of sympatry. Consistent with our prediction, we found that lynx niches were less similar to those of bobcat in areas of sympatry versus allopatry, with a stronger reliance on snow cover driving lynx niche divergence in the sympatric zone. By contrast, bobcat increased niche breadth in zones of sympatry, and bobcat niches were equally similar to those of lynx in zones of sympatry and allopatry. These findings suggest that competitively disadvantaged species avoid competition at large scales by restricting their niche to highly suitable conditions, while superior competitors expand the diversity of environments used. Our results indicate that competition can manifest within climatic niche space across species' ranges, highlighting the importance of biotic interactions occurring at large spatial scales on niche dynamics.

  5. Modified Fabry-Perot interferometer for displacement measurement in ultra large measuring range.

    PubMed

    Chang, Chung-Ping; Tung, Pi-Cheng; Shyu, Lih-Horng; Wang, Yung-Cheng; Manske, Eberhard

    2013-05-01

    Laser interferometers have demonstrated outstanding measuring performances for high precision positioning or dimensional measurements in the precision industry, especially in the length measurement. Due to the non-common-optical-path structure, appreciable measurement errors can be easily induced under ordinary measurement conditions. That will lead to the limitation and inconvenience for in situ industrial applications. To minimize the environmental and mechanical effects, a new interferometric displacement measuring system with the common-optical-path structure and the resistance to tilt-angle is proposed. With the integration of optomechatronic modules in the novel interferometric system, the resolution up to picometer order, high precision, and ultra large measuring range have been realized. For the signal stabilization of displacement measurement, an automatic gain control module has been proposed. A self-developed interpolation model has been employed for enhancing the resolution. The novel interferometer can hold the advantage of high resolution and large measuring range simultaneously. By the experimental verifications, it has been proven that the actual resolution of 2.5 nm can be achieved in the measuring range of 500 mm. According to the comparison experiments, the maximal standard deviation of the difference between the self-developed Fabry-Perot interferometer and the reference commercial Michelson interferometer is 0.146 μm in the traveling range of 500 mm. With the prominent measuring characteristics, this should be the largest dynamic measurement range of a Fabry-Perot interferometer up till now.

  6. Long-delayed bright dancing sprite with large Horizontal displacement from its parent flash

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Lu, Gaopeng; Lee, Li-Jou; Feng, Guili

    2015-07-01

    We reported in this paper the observation of a very bright long-delayed dancing sprite with distinct horizontal displacement from its parent stroke. The dancing sprite lasted only 60 ms, and the morphology consisted of three fields with two slim dim sprite elements in the first two fields and a very bright large element in the third field, different from other observations where the dancing sprites usually contained multiple elements over a longer time interval, and the sprite shape and brightness in the video field are often similar to the previous fields. The bright sprite was displaced at least 38 km from its parent cloud-to-ground (CG) stroke and occurred over comparatively higher cloud top region. The parent flash of this compact dancing sprite was of positive polarity, with only one return stroke (approximately +24 kA) and obvious continuing current process, and the charge moment change of stroke was small (barely above the threshold for sprite production). All the sprite elements occurred during the continuing current stage, and the bright long-delayed sprite element induced a considerable current pulse. The dancing feature of this sprite may be linked to the electrical charge structure, dynamics and microphysics of parent storm, and the inferred development of parent CG flash was consistent with previous very high-frequency (VHF) observations of lightning in the same region.

  7. A translation micromirror with large quasi-static displacement and high surface quality

    NASA Astrophysics Data System (ADS)

    Xue, Yuan; He, Siyuan

    2017-01-01

    A large displacement with high surface quality translation micromirror is presented. The micromirror consists of a magnetic actuator and a mirror plate. The actuator and the mirror plate are fabricated separately using two processes and then bonded together. The actuator consists of a moving film which is a 20 µm thick nickel film fabricated by MetalMUMPs and a solenoid located underneath the moving film. The moving film is designed to curve up through the residual stress gradient in the nickel film and a curve-up mechanism which includes four trapezoidal plates and anchoring springs. The mirror plate is simply diced from a polished silicon wafer and coated with a metal thin film. The mirror plate is bonded onto the central ring of the moving film. A solenoid attracts the moving film along with the mirror plate downwards to realize translation. A quasi-static displacement of 123 µm is achieved at a driving current of 400 mA. A high mirror surface quality is realized, e.g. 15.6 m of curvature radius and 2 nm surface roughness.

  8. Characterization of large instabilities displacements using Ground-Based InSAR

    NASA Astrophysics Data System (ADS)

    Rouyet, L.; Kristensen, L.; Derron, M.-H.; Michoud, C.; Blikra, L. H.; Jaboyedoff, M.

    2012-04-01

    A master thesis in progress at the Lausanne University (IGAR) in cooperation with the Åknes/Tafjord Early Warning Centre in Norway aims to characterize various instabilities displacements using Ground-Based Interferometric Synthetic Aperture Radar system (GB-InSAR). The main goal is to evaluate the potential of GB-InSAR to determine displacement velocities and mechanical behaviours of several large rock instabilities in Norway. GB-InSAR data are processed and interpreted for three case studies. The first test site is the unstable complex area of Mannen located in the Romsdalen valley (Møre og Romsdal county), threatening infrastructures and potentially able to cause a debacle event downstream. Its total volume is estimated to 15-25 mill m3. Mannen instability is monitored permanently with GB-InSAR since February 2010 and shows displacements towards the radar up to -8 mm per month during the most sensitive period. Børa area located on the southwest side of Mannen instability shows also some signs of activity. It monitored temporarily between August and October 2011 and could help to understand the behaviour of Mannen site. The second, Indre Nordnes rockslide in Lyngenfjord (Troms county), is directly located above an important fjord in North Norway causing a significant risk of tsunami. The volume is estimated to be around 10-15 mill m3. The site was monitored temporarily between June and August 2011. The data show displacements towards the radar up to -12 mm in 2 weeks. The third case concerns rock falls along the road between Oppdølsstranda and Sunndalsøra (Møre og Romsdal county). Even if the volume of rock is less important than the first two cases, rock falls are an important problem for the road 70 underneath. Several campaigns are done between beginning of 2010 and end of 2011. In June 2011 an important rock fall occurs in an area where significant movements were previously detected by GB-InSAR. In order to understand the behaviour of these

  9. Large displacement haptic stimulus actuator using piezoelectric pump for wearable devices.

    PubMed

    Kodama, Taisuke; Izumi, Shintaro; Masaki, Kana; Kawaguchi, Hiroshi; Maenaka, Kazusuke; Yoshimoto, Masahiko

    2015-08-01

    Recently, given Japan's aging society background, wearable healthcare devices have increasingly attracted attention. Many devices have been developed, but most devices have only a sensing function. To expand the application area of wearable healthcare devices, an interactive communication function with the human body is required using an actuator. For example, a device must be useful for medication assistance, predictive alerts of a disease such as arrhythmia, and exercise. In this work, a haptic stimulus actuator using a piezoelectric pump is proposed to realize a large displacement in wearable devices. The proposed actuator drives tactile sensation of the human body. The measurement results obtained using a sensory examination demonstrate that the proposed actuator can generate sufficient stimuli even if adhered to the chest, which has fewer tactile receptors than either the fingertip or wrist.

  10. Atomic displacement free interfaces and atomic registry in SiO2/(1×1) Si(100)

    NASA Astrophysics Data System (ADS)

    Shaw, Justin M.; Herbots, N.; Hurst, Q. B.; Bradley, D.; Culbertson, R. J.; Atluri, V.; Queeney, K. T.

    2006-11-01

    We use ion beam analysis to probe the structure and interface of ultrathin thermal oxide films grown on (1×1) Si(100) surfaces prepared using the Herbots-Atluri [U.S. patent No. 6,613,677 (Sept. 2, 2003)] wet chemical clean. We discover that these oxide layers are structurally registered with the substrate lattice with no interfacial structural disorder. Registry of Si atoms is most pronounced along ⟨111⟩ directions relative to the Si substrate, consistent with a β-cristobalite epitaxial phase. This structurally registered phase transitions to an amorphous structure approximately 2nm from the interface.

  11. Atomic displacement free interfaces and atomic registry in SiO{sub 2}/(1x1) Si(100)

    SciTech Connect

    Shaw, Justin M.; Herbots, N.; Hurst, Q. B.; Bradley, D.; Culbertson, R. J.; Atluri, V.; Queeney, K. T.

    2006-11-15

    We use ion beam analysis to probe the structure and interface of ultrathin thermal oxide films grown on (1x1) Si(100) surfaces prepared using the Herbots-Atluri [U.S. patent No. 6,613,677 (Sept. 2, 2003)] wet chemical clean. We discover that these oxide layers are structurally registered with the substrate lattice with no interfacial structural disorder. Registry of Si atoms is most pronounced along <111> directions relative to the Si substrate, consistent with a {beta}-cristobalite epitaxial phase. This structurally registered phase transitions to an amorphous structure approximately 2 nm from the interface.

  12. Selective spatial localization of the atom displacements in one-dimensional hybrid quasi-regular (Thue Morse and Rudin Shapiro)/periodic structures

    NASA Astrophysics Data System (ADS)

    Montalbán, A.; Velasco, V. R.; Tutor, J.; Fernández-Velicia, F. J.

    2007-06-01

    We have studied the vibrational frequencies and atom displacements of one-dimensional systems formed by combinations of Thue-Morse and Rudin-Shapiro quasi-regular stackings with periodic ones. The materials are described by nearest-neighbor force constants and the corresponding atom masses. These systems exhibit differences in the frequency spectrum as compared to the original simple quasi-regular generations and periodic structures. The most important feature is the presence of separate confinement of the atom displacements in one of the parts forming the total composite structure for different frequency ranges, thus acting as a kind of phononic cavity.

  13. Subradiance in a Large Cloud of Cold Atoms

    NASA Astrophysics Data System (ADS)

    Guerin, William; Araújo, Michelle O.; Kaiser, Robin

    2016-02-01

    Since Dicke's seminal paper on coherence in spontaneous radiation by atomic ensembles, superradiance has been extensively studied. Subradiance, on the contrary, has remained elusive, mainly because subradiant states are weakly coupled to the environment and are very sensitive to nonradiative decoherence processes. Here, we report the experimental observation of subradiance in an extended and dilute cold-atom sample containing a large number of particles. We use a far detuned laser to avoid multiple scattering and observe the temporal decay after a sudden switch-off of the laser beam. After the fast decay of most of the fluorescence, we detect a very slow decay, with time constants as long as 100 times the natural lifetime of the excited state of individual atoms. This subradiant time constant scales linearly with the cooperativity parameter, corresponding to the on-resonance optical depth of the sample, and is independent of the laser detuning, as expected from a coupled-dipole model.

  14. A versatile MEMS bimorph actuator with large vertical displacement and high resolution: Design and fabrication process

    NASA Astrophysics Data System (ADS)

    Rangra, Aarushee; Maninder, K.; Soni, Shilpi; Rangra, K. J.

    2016-04-01

    This paper presents design, simulation results and envisaged fabrication process for a versatile MEMS bimorph actuator with large out of plane displacement and high resolution. A comparative study of mechanical, thermal and electrical response of the micro-actuator is presented by using two well-known MEMS simulation tools. The bimorph structure measuring 700 × 1280 mm2 is fully integrable with CMOS fabrication process. It is indented for tunable filter applications where the precise vertical motion of the payload, the top metallic electrode anchored rigidly to bimorph `springs' spans the vertical range of 250-300 microns with submicron resolution. Each bimorph spring resembles a hair pin structure and is composed of materials with large difference in thermal expansion coefficients e.g. electroplated gold and polysilicon for optimal out-of-the plane deflection. The novel structure can also be configured for analog micro-mirror based optical and IR spectroscopy applications by controlling the actuation bias and top electrode surface parameters.

  15. Large-angle illumination STEM: Toward three-dimensional atom-by-atom imaging

    SciTech Connect

    Ishikawa, Ryo; Lupini, Andrew R.; Hinuma, Yoyo; Pennycook, Stephen

    2014-11-26

    To completely understand and control materials and their properties, it is of critical importance to determine their atomic structures in all three dimensions. Recent revolutionary advances in electron optics – the inventions of geometric and chromatic aberration correctors as well as electron source monochromators – have provided fertile ground for performing optical depth sectioning at atomic-scale dimensions. In this study we theoretically demonstrate the imaging of top/sub-surface atomic structures and identify the depth of single dopants, single vacancies and the other point defects within materials by large-angle illumination scanning transmission electron microscopy (LAI-STEM). The proposed method also allows us to measure specimen properties such as thickness or three-dimensional surface morphology using observations from a single crystallographic orientation.

  16. Large-angle illumination STEM: Toward three-dimensional atom-by-atom imaging

    DOE PAGES

    Ishikawa, Ryo; Lupini, Andrew R.; Hinuma, Yoyo; ...

    2014-11-26

    To completely understand and control materials and their properties, it is of critical importance to determine their atomic structures in all three dimensions. Recent revolutionary advances in electron optics – the inventions of geometric and chromatic aberration correctors as well as electron source monochromators – have provided fertile ground for performing optical depth sectioning at atomic-scale dimensions. In this study we theoretically demonstrate the imaging of top/sub-surface atomic structures and identify the depth of single dopants, single vacancies and the other point defects within materials by large-angle illumination scanning transmission electron microscopy (LAI-STEM). The proposed method also allows us tomore » measure specimen properties such as thickness or three-dimensional surface morphology using observations from a single crystallographic orientation.« less

  17. Subpixelic Measurement of Large 1D Displacements: Principle, Processing Algorithms, Performances and Software

    PubMed Central

    Guelpa, Valérian; Laurent, Guillaume J.; Sandoz, Patrick; Zea, July Galeano; Clévy, Cédric

    2014-01-01

    This paper presents a visual measurement method able to sense 1D rigid body displacements with very high resolutions, large ranges and high processing rates. Sub-pixelic resolution is obtained thanks to a structured pattern placed on the target. The pattern is made of twin periodic grids with slightly different periods. The periodic frames are suited for Fourier-like phase calculations—leading to high resolution—while the period difference allows the removal of phase ambiguity and thus a high range-to-resolution ratio. The paper presents the measurement principle as well as the processing algorithms (source files are provided as supplementary materials). The theoretical and experimental performances are also discussed. The processing time is around 3 μs for a line of 780 pixels, which means that the measurement rate is mostly limited by the image acquisition frame rate. A 3-σ repeatability of 5 nm is experimentally demonstrated which has to be compared with the 168 μm measurement range. PMID:24625736

  18. Subpixelic measurement of large 1D displacements: principle, processing algorithms, performances and software.

    PubMed

    Guelpa, Valérian; Laurent, Guillaume J; Sandoz, Patrick; Zea, July Galeano; Clévy, Cédric

    2014-03-12

    This paper presents a visual measurement method able to sense 1D rigid body displacements with very high resolutions, large ranges and high processing rates. Sub-pixelic resolution is obtained thanks to a structured pattern placed on the target. The pattern is made of twin periodic grids with slightly different periods. The periodic frames are suited for Fourier-like phase calculations-leading to high resolution-while the period difference allows the removal of phase ambiguity and thus a high range-to-resolution ratio. The paper presents the measurement principle as well as the processing algorithms (source files are provided as supplementary materials). The theoretical and experimental performances are also discussed. The processing time is around 3 µs for a line of 780 pixels, which means that the measurement rate is mostly limited by the image acquisition frame rate. A 3-σ repeatability of 5 nm is experimentally demonstrated which has to be compared with the 168 µm measurement range.

  19. Large-displacement structural durability analyses of simple bend specimen emulating rocket nozzle liners

    NASA Astrophysics Data System (ADS)

    Arya, Vinod K.; Halford, Gary R.

    1994-06-01

    Large-displacement elastic and elastic-plastic, finite-element stress-strain analyses of an oxygen-tree high-conductivity (OFHC) copper plate specimen were performed using an updated Lagrangian formulation. The plate specimen is intended for low-cost experiments that emulate the most important thermomechanical loading and failure modes of a more complex rocket nozzle. The plate, which is loaded in bending at 593 C, contains a centrally located and internally pressurized channel. The cyclic crack initiation lives were estimated using the results from the analyses and isothermal strain-controlled low-cycle fatigue data for OFHC copper. A comparison of the predicted and experimental cyclic lives showed that an elastic analysis predicts a longer cyclic life than that observed in experiments by a factor greater than 4. The results from elastic-plastic analysis for the plate bend specimen, however, predicted a cyclic life in close agreement with experiment, thus justifying the need for the more rigorous stress-strain analysis.

  20. One-step displacement dispersive liquid-liquid microextraction coupled with graphite furnace atomic absorption spectrometry for the selective determination of methylmercury in environmental samples.

    PubMed

    Liang, Pei; Kang, Caiyan; Mo, Yajun

    2016-01-01

    A novel method for the selective determination of methylmercury (MeHg) was developed by one-step displacement dispersive liquid-liquid microextraction (D-DLLME) coupled with graphite furnace atomic absorption spectrometry. In the proposed method, Cu(II) reacted with diethyldithiocarbamate (DDTC) to form Cu-DDTC complex, which was used as the chelating agent instead of DDTC for the dispersive liquid-liquid microextraction (DLLME) of MeHg. Because the stability of MeHg-DDTC is higher than that of Cu-DDTC, MeHg can displace Cu from the Cu-DDTC complex and be preconcentrated in a single DLLME procedure. MeHg could be extracted into the extraction solvent phase at pH 6 while Hg(II) remained in the sample solution. Potential interference from co-existing metal ions with lower DDTC complex stability was largely eliminated without the need of any masking reagent. Under the optimal conditions, the limit of detection of this method was 13.6ngL(-1) (as Hg), and an enhancement factor of 81 was achieved with a sample volume of 5.0mL. The proposed method was successfully applied for the determination of trace MeHg in some environmental samples with satisfactory results.

  1. Detection of large thermal vibration for Cu atoms in tetrahedrite by high-angle annular dark-field imaging

    NASA Astrophysics Data System (ADS)

    Prasad Mishra, Tara; Koyano, Mikio; Oshima, Yoshifumi

    2017-04-01

    Tetrahedrite (Cu12Sb4S13) is a new type of thermoelectric material with an extremely low thermal conductivity attributed to the anomalous large thermal vibration of specific Cu sites. The tetrahedrite crystal was observed from the [111] direction by high-angle annular dark-field (HAADF) imaging and the image intensity was found to be 64% lower at specific sites. This could be explained by the blurring of the intensity distribution owing to a large atomic displacement, suggesting that anomalous large thermal vibrations at specific sites in the crystal can be distinguished in HAADF images.

  2. An arbitrary Lagrangian-Eulerian formulation for solving moving boundary problems with large displacements and rotations

    NASA Astrophysics Data System (ADS)

    Erzincanli, Belkis; Sahin, Mehmet

    2013-12-01

    An Arbitrary Lagrangian-Eulerian (ALE) formulation based on the unstructured finite volume method is proposed for solving moving boundary problems with large displacements and rotations. The numerical method is based on the side-centered arrangement of the primitive variables that does not require any ad-hoc modifications in order to enhance pressure coupling. The continuity equation is satisfied within each element at machine precision and the summation of the continuity equations can be exactly reduced to the domain boundary, which is important for the global mass conservation. A special attention is given to construct an ALE algorithm obeying the discrete geometric conservation law (DGCL). The mesh deformation algorithm is based on the indirect Radial Basis Function (RBF) algorithm at each time level while avoiding remeshing in order to enhance numerical robustness. For the parallel solution of resulting large-scale algebraic equations in a fully coupled form, a matrix factorization is introduced similar to that of the projection method for the whole system and the parallel algebraic multigrid solver BoomerAMG is used for the scaled discrete Laplacian provided by the HYPRE library which we access through the PETSc library. The present numerical algorithm is initially validated for the decaying Taylor-Green vortex flow, the flow past an oscillating circular cylinder in a channel and the flow induced by an oscillating sphere in a cubic cavity. Then the numerical algorithm is applied to the numerical simulation of flow field around a pair of flapping Drosophila wings in hover flight. The time variation of the Eulerian coherent structures in the near wake is shown along with the aerodynamic loads.

  3. Measurement of transient atomic displacements in thin films with picosecond and femtometer resolution.

    PubMed

    Kozina, M; Hu, T; Wittenberg, J S; Szilagyi, E; Trigo, M; Miller, T A; Uher, C; Damodaran, A; Martin, L; Mehta, A; Corbett, J; Safranek, J; Reis, D A; Lindenberg, A M

    2014-05-01

    We report measurements of the transient structural response of weakly photo-excited thin films of BiFeO3, Pb(Zr,Ti)O3, and Bi and time-scales for interfacial thermal transport. Utilizing picosecond x-ray diffraction at a 1.28 MHz repetition rate with time resolution extending down to 15 ps, transient changes in the diffraction angle are recorded. These changes are associated with photo-induced lattice strains within nanolayer thin films, resolved at the part-per-million level, corresponding to a shift in the scattering angle three orders of magnitude smaller than the rocking curve width and changes in the interlayer lattice spacing of fractions of a femtometer. The combination of high brightness, repetition rate, and stability of the synchrotron, in conjunction with high time resolution, represents a novel means to probe atomic-scale, near-equilibrium dynamics.

  4. Detection of atomic force microscopy cantilever displacement with a transmitted electron beam.

    PubMed

    Wagner, R; Woehl, T J; Keller, R R; Killgore, J P

    2016-07-25

    The response time of an atomic force microscopy (AFM) cantilever can be decreased by reducing cantilever size; however, the fastest AFM cantilevers are currently nearing the smallest size that can be detected with the conventional optical lever approach. Here, we demonstrate an electron beam detection scheme for measuring AFM cantilever oscillations. The oscillating AFM tip is positioned perpendicular to and in the path of a stationary focused nanometer sized electron beam. As the tip oscillates, the thickness of the material under the electron beam changes, causing a fluctuation in the number of scattered transmitted electrons that are detected. We demonstrate detection of sub-nanometer vibration amplitudes with an electron beam, providing a pathway for dynamic AFM with cantilevers that are orders of magnitude smaller and faster than the current state of the art.

  5. Detection of atomic force microscopy cantilever displacement with a transmitted electron beam

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Woehl, T. J.; Keller, R. R.; Killgore, J. P.

    2016-07-01

    The response time of an atomic force microscopy (AFM) cantilever can be decreased by reducing cantilever size; however, the fastest AFM cantilevers are currently nearing the smallest size that can be detected with the conventional optical lever approach. Here, we demonstrate an electron beam detection scheme for measuring AFM cantilever oscillations. The oscillating AFM tip is positioned perpendicular to and in the path of a stationary focused nanometer sized electron beam. As the tip oscillates, the thickness of the material under the electron beam changes, causing a fluctuation in the number of scattered transmitted electrons that are detected. We demonstrate detection of sub-nanometer vibration amplitudes with an electron beam, providing a pathway for dynamic AFM with cantilevers that are orders of magnitude smaller and faster than the current state of the art.

  6. Molecular dynamics modeling of atomic displacement cascades in 3C-SiC: Comparison of interatomic potentials

    SciTech Connect

    Samolyuk, German D.; Osetskiy, Yury N.; Stoller, Roger E.

    2015-06-03

    We used molecular dynamics modeling of atomic displacement cascades to characterize the nature of primary radiation damage in 3C-SiC. We demonstrated that the most commonly used interatomic potentials are inconsistent with ab initio calculations of defect energetics. Both the Tersoff potential used in this work and a modified embedded-atom method potential reveal a barrier to recombination of the carbon interstitial and carbon vacancy which is much higher than the density functional theory (DFT) results. The barrier obtained with a newer potential by Gao and Weber is closer to the DFT result. This difference results in significant differences in the cascade production of point defects. We have completed both 10 keV and 50 keV cascade simulations in 3C-SiC at a range of temperatures. In contrast to the Tersoff potential, the Gao-Weber potential produces almost twice as many C vacancies and interstitials at the time of maximum disorder (~0.2 ps) but only about 25% more stable defects at the end of the simulation. Only about 20% of the carbon defects produced with the Tersoff potential recombine during the in-cascade annealing phase, while about 60% recombine with the Gao-Weber potential.

  7. Molecular dynamics modeling of atomic displacement cascades in 3C-SiC: Comparison of interatomic potentials

    DOE PAGES

    Samolyuk, German D.; Osetskiy, Yury N.; Stoller, Roger E.

    2015-06-03

    We used molecular dynamics modeling of atomic displacement cascades to characterize the nature of primary radiation damage in 3C-SiC. We demonstrated that the most commonly used interatomic potentials are inconsistent with ab initio calculations of defect energetics. Both the Tersoff potential used in this work and a modified embedded-atom method potential reveal a barrier to recombination of the carbon interstitial and carbon vacancy which is much higher than the density functional theory (DFT) results. The barrier obtained with a newer potential by Gao and Weber is closer to the DFT result. This difference results in significant differences in the cascademore » production of point defects. We have completed both 10 keV and 50 keV cascade simulations in 3C-SiC at a range of temperatures. In contrast to the Tersoff potential, the Gao-Weber potential produces almost twice as many C vacancies and interstitials at the time of maximum disorder (~0.2 ps) but only about 25% more stable defects at the end of the simulation. Only about 20% of the carbon defects produced with the Tersoff potential recombine during the in-cascade annealing phase, while about 60% recombine with the Gao-Weber potential.« less

  8. Molecular dynamics modeling of atomic displacement cascades in 3C-SiC: Comparison of interatomic potentials

    NASA Astrophysics Data System (ADS)

    Samolyuk, G. D.; Osetsky, Y. N.; Stoller, R. E.

    2015-10-01

    We used molecular dynamics modeling of atomic displacement cascades to characterize the nature of primary radiation damage in 3C-SiC. We demonstrated that the most commonly used interatomic potentials are inconsistent with ab initio calculations of defect energetics. Both the Tersoff potential used in this work and a modified embedded-atom method potential reveal a barrier to recombination of the carbon interstitial and carbon vacancy which is much higher than the density functional theory (DFT) results. The barrier obtained with a newer potential by Gao and Weber is closer to the DFT result. This difference results in significant differences in the cascade production of point defects. We have completed both 10 keV and 50 keV cascade simulations in 3C-SiC at a range of temperatures. In contrast to the Tersoff potential, the Gao-Weber potential produces almost twice as many C vacancies and interstitials at the time of maximum disorder (∼0.2 ps) but only about 25% more stable defects at the end of the simulation. Only about 20% of the carbon defects produced with the Tersoff potential recombine during the in-cascade annealing phase, while about 60% recombine with the Gao-Weber potential. The Gao-Weber potential appears to give a more realistic description of cascade dynamics in SiC, but still has some shortcomings when the defect migration barriers are compared to the ab initio results.

  9. Dynamic displacement measurement of large-scale structures based on the Lucas-Kanade template tracking algorithm

    NASA Astrophysics Data System (ADS)

    Guo, Jie; Zhu, Chang`an

    2016-01-01

    The development of optics and computer technologies enables the application of the vision-based technique that uses digital cameras to the displacement measurement of large-scale structures. Compared with traditional contact measurements, vision-based technique allows for remote measurement, has a non-intrusive characteristic, and does not necessitate mass introduction. In this study, a high-speed camera system is developed to complete the displacement measurement in real time. The system consists of a high-speed camera and a notebook computer. The high-speed camera can capture images at a speed of hundreds of frames per second. To process the captured images in computer, the Lucas-Kanade template tracking algorithm in the field of computer vision is introduced. Additionally, a modified inverse compositional algorithm is proposed to reduce the computing time of the original algorithm and improve the efficiency further. The modified algorithm can rapidly accomplish one displacement extraction within 1 ms without having to install any pre-designed target panel onto the structures in advance. The accuracy and the efficiency of the system in the remote measurement of dynamic displacement are demonstrated in the experiments on motion platform and sound barrier on suspension viaduct. Experimental results show that the proposed algorithm can extract accurate displacement signal and accomplish the vibration measurement of large-scale structures.

  10. The large-Z Behavior of pseudorelativistic atoms

    NASA Astrophysics Data System (ADS)

    Sørensen, Thomas Østergaard

    2005-05-01

    In this paper we study the large-Z behavior of the ground state energy of atoms with electrons having relativistic kinetic energy √p2c2+m2c4 -mc2. We prove that to leading order in Z the energy is the same as in the nonrelativistic case, given by (nonrelativistic) Thomas-Fermi theory. For the problem to make sense, we keep the product Zα fixed (here α is Sommerfeld's fine structure constant), and smaller than, or equal to, 2/π, which means that as Z tends to infinity, α tends to zero.

  11. Fast figuring of large optics by reactive atom plasma

    NASA Astrophysics Data System (ADS)

    Castelli, Marco; Jourdain, Renaud; Morantz, Paul; Shore, Paul

    2012-09-01

    The next generation of ground-based astronomical observatories will require fabrication and maintenance of extremely large segmented mirrors tens of meters in diameter. At present, the large production of segments required by projects like E-ELT and TMT poses time frames and costs feasibility questions. This is principally due to a bottleneck stage in the optical fabrication chain: the final figuring step. State-of-the-art figure correction techniques, so far, have failed to meet the needs of the astronomical community for mass production of large, ultra-precise optical surfaces. In this context, Reactive Atom Plasma (RAP) is proposed as a candidate figuring process that combines nanometer level accuracy with high material removal rates. RAP is a form of plasma enhanced chemical etching at atmospheric pressure based on Inductively Coupled Plasma technology. The rapid figuring capability of the RAP process has already been proven on medium sized optical surfaces made of silicon based materials. In this paper, the figure correction of a 3 meters radius of curvature, 400 mm diameter spherical ULE mirror is presented. This work demonstrates the large scale figuring capability of the Reactive Atom Plasma process. The figuring is carried out by applying an in-house developed procedure that promotes rapid convergence. A 2.3 μm p-v initial figure error is removed within three iterations, for a total processing time of 2.5 hours. The same surface is then re-polished and the residual error corrected again down to λ/20 nm rms. These results highlight the possibility of figuring a metre-class mirror in about ten hours.

  12. Compiler-aided systematic construction of large-scale DNA strand displacement circuits using unpurified components

    NASA Astrophysics Data System (ADS)

    Thubagere, Anupama J.; Thachuk, Chris; Berleant, Joseph; Johnson, Robert F.; Ardelean, Diana A.; Cherry, Kevin M.; Qian, Lulu

    2017-02-01

    Biochemical circuits made of rationally designed DNA molecules are proofs of concept for embedding control within complex molecular environments. They hold promise for transforming the current technologies in chemistry, biology, medicine and material science by introducing programmable and responsive behaviour to diverse molecular systems. As the transformative power of a technology depends on its accessibility, two main challenges are an automated design process and simple experimental procedures. Here we demonstrate the use of circuit design software, combined with the use of unpurified strands and simplified experimental procedures, for creating a complex DNA strand displacement circuit that consists of 78 distinct species. We develop a systematic procedure for overcoming the challenges involved in using unpurified DNA strands. We also develop a model that takes synthesis errors into consideration and semi-quantitatively reproduces the experimental data. Our methods now enable even novice researchers to successfully design and construct complex DNA strand displacement circuits.

  13. Compiler-aided systematic construction of large-scale DNA strand displacement circuits using unpurified components

    PubMed Central

    Thubagere, Anupama J.; Thachuk, Chris; Berleant, Joseph; Johnson, Robert F.; Ardelean, Diana A.; Cherry, Kevin M.; Qian, Lulu

    2017-01-01

    Biochemical circuits made of rationally designed DNA molecules are proofs of concept for embedding control within complex molecular environments. They hold promise for transforming the current technologies in chemistry, biology, medicine and material science by introducing programmable and responsive behaviour to diverse molecular systems. As the transformative power of a technology depends on its accessibility, two main challenges are an automated design process and simple experimental procedures. Here we demonstrate the use of circuit design software, combined with the use of unpurified strands and simplified experimental procedures, for creating a complex DNA strand displacement circuit that consists of 78 distinct species. We develop a systematic procedure for overcoming the challenges involved in using unpurified DNA strands. We also develop a model that takes synthesis errors into consideration and semi-quantitatively reproduces the experimental data. Our methods now enable even novice researchers to successfully design and construct complex DNA strand displacement circuits. PMID:28230154

  14. Enteral fluid therapy in 108 horses with large colon impactions and dorsal displacements.

    PubMed

    Monreal, L; Navarro, M; Armengou, L; José-Cunilleras, E; Cesarini, C; Segura, D

    2010-02-27

    To assess the effect of enteral fluid therapy (EFT) in horses with colic, 78 adult horses with colon impactions and 30 with left dorsal colon displacements received an isotonic electrolyte solution via a nasogastric tube at a rate of 8 to 10 l every two hours until resolution of clinical signs. Clinical progression was monitored closely, and plasma biochemistry was evaluated before, during and after treatment. Volume of fluids, time to resolution, and outcome were also recorded. EFT was well tolerated by 102 of 108 horses and was an effective method to resolve 99 per cent of colon impactions and 83 per cent of displacements. For both groups, the mean (sd) time to resolution was 20.2 (5.2) hours and the volume of fluid administered was 118.6 (34.5) l. No relevant abnormalities were observed in most plasma biochemistry parameters during treatment, except for a mild haemodilution effect in 63 per cent of horses.

  15. Compiler-aided systematic construction of large-scale DNA strand displacement circuits using unpurified components.

    PubMed

    Thubagere, Anupama J; Thachuk, Chris; Berleant, Joseph; Johnson, Robert F; Ardelean, Diana A; Cherry, Kevin M; Qian, Lulu

    2017-02-23

    Biochemical circuits made of rationally designed DNA molecules are proofs of concept for embedding control within complex molecular environments. They hold promise for transforming the current technologies in chemistry, biology, medicine and material science by introducing programmable and responsive behaviour to diverse molecular systems. As the transformative power of a technology depends on its accessibility, two main challenges are an automated design process and simple experimental procedures. Here we demonstrate the use of circuit design software, combined with the use of unpurified strands and simplified experimental procedures, for creating a complex DNA strand displacement circuit that consists of 78 distinct species. We develop a systematic procedure for overcoming the challenges involved in using unpurified DNA strands. We also develop a model that takes synthesis errors into consideration and semi-quantitatively reproduces the experimental data. Our methods now enable even novice researchers to successfully design and construct complex DNA strand displacement circuits.

  16. Large Atomic Natural Orbital Basis Sets for the First Transition Row Atoms

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R. (Technical Monitor)

    1994-01-01

    Large atomic natural orbital (ANO) basis sets are tabulated for the Sc to Cu. The primitive sets are taken from the large sets optimized by Partridge, namely (21s 13p 8d) for Sc and Ti and (20s 12p 9d) for V to Cu. These primitive sets are supplemented with three p, one d, six f, and four g functions. The ANO sets are derived from configuration interaction density matrices constructed as the average of the lowest states derived from the 3d(sup n)4s(sup 2) and 3d(sup n+1)4s(sup 1) occupations. For Ni, the 1S(3d(sup 10)) state is included in the averaging. The choice of basis sets for molecular calculations is discussed.

  17. Studying Displacement After a Disaster Using Large Scale Survey Methods: Sumatra After the 2004 Tsunami

    PubMed Central

    Gray, Clark; Frankenberg, Elizabeth; Gillespie, Thomas; Sumantri, Cecep; Thomas, Duncan

    2014-01-01

    Understanding of human vulnerability to environmental change has advanced in recent years, but measuring vulnerability and interpreting mobility across many sites differentially affected by change remains a significant challenge. Drawing on longitudinal data collected on the same respondents who were living in coastal areas of Indonesia before the 2004 Indian Ocean tsunami and were re-interviewed after the tsunami, this paper illustrates how the combination of population-based survey methods, satellite imagery and multivariate statistical analyses has the potential to provide new insights into vulnerability, mobility and impacts of major disasters on population well-being. The data are used to map and analyze vulnerability to post-tsunami displacement across the provinces of Aceh and North Sumatra and to compare patterns of migration after the tsunami between damaged areas and areas not directly affected by the tsunami. The comparison reveals that migration after a disaster is less selective overall than migration in other contexts. Gender and age, for example, are strong predictors of moving from undamaged areas but are not related to displacement in areas experiencing damage. In our analyses traditional predictors of vulnerability do not always operate in expected directions. Low levels of socioeconomic status and education were not predictive of moving after the tsunami, although for those who did move, they were predictive of displacement to a camp rather than a private home. This survey-based approach, though not without difficulties, is broadly applicable to many topics in human-environment research, and potentially opens the door to rigorous testing of new hypotheses in this literature. PMID:24839300

  18. Long term simulation of point defect cluster size distributions from atomic displacement cascades in Fe70Cr20Ni10

    NASA Astrophysics Data System (ADS)

    Souidi, A.; Hou, M.; Becquart, C. S.; Domain, C.; De Backer, A.

    2015-06-01

    We have used an Object Kinetic Monte Carlo (OKMC) model to simulate the long term evolution of the primary damage in Fe70Cr20Ni10 alloys. The mean number of Frenkel pairs created by different Primary Knocked on Atoms (PKA) was estimated by Molecular Dynamics using a ternary EAM potential developed in the framework of the PERFORM-60 European project. This number was then used to obtain the vacancy-interstitial recombination distance required in the calculation of displacement cascades in the Binary Collision Approximation (BCA) with code MARLOWE (Robinson, 1989). The BCA cascades have been generated in the 10-100 keV range with the MARLOWE code and two different screened Coulomb potentials, namely, the Molière approximation to the Thomas-Fermi potential and the so-called "Universal" potential by Ziegler, Biersack and Littmark (ZBL). These cascades have been used as input to the OKMC code LAKIMOCA (Domain et al., 2004), with a set of parameters for describing the mobility of point defect clusters based on ab initio calculations and experimental data. The cluster size distributions have been estimated for irradiation doses of 0.1 and 1 dpa, and a dose rate of 10-7 dpa/s at 600 K. We demonstrate that, like in the case of BCC iron, cluster size distributions in the long term are independent of the cascade energy and that the recursive cascade model suggested for BCC iron in Souidi et al. (2011) also applies to FCC Fe70Cr20Ni10. The results also show that the influence of the BCA potential is sizeable but the qualitative correspondence in the predicted long term evolution is excellent.

  19. Three-dimensional displacements of a large volcano flank movement during the May 2010 eruptions at Pacaya Volcano, Guatemala

    NASA Astrophysics Data System (ADS)

    Schaefer, L. N.; Wang, T.; Escobar-Wolf, R.; Oommen, T.; Lu, Z.; Kim, J.; Lundgren, P. R.; Waite, G. P.

    2017-01-01

    Although massive flank failure is fairly common in the evolution of volcanoes, measurements of flank movement indicative of instability are rare. Here 3-D displacements from airborne radar amplitude images derived using an amplitude image pixel offset tracking technique show that the west and southwest flanks of Pacaya Volcano in Guatemala experienced large ( 4 m), discrete landsliding that was ultimately aborted. Pixel offset tracking improved measurement recovery by nearly 50% over classic interferometric synthetic aperture radar techniques, providing unique measurements at the event. The 3-D displacement field shows that the flank moved coherently downslope along a complex failure surface involving both rotational and along-slope movement. Notably, the lack of continuous movement of the slide in the years leading up to the event emphasizes that active movement should not always be expected at volcanoes for which triggering factors (e.g., magmatic intrusions and eruptions) could precipitate sudden major flank instability.

  20. Adjusting and positioning method with high displacement resolution for large-load worktable based on the invariable restoring force

    NASA Astrophysics Data System (ADS)

    Huang, Jingzhi; Sun, Tao; Gu, Wei; Wen, Zhongpu; Guo, Tenghui

    2015-02-01

    With the fast development of the advanced equipment manufacturing toward precision and ultra-precision trend, especially with the continuously improving of the aviation engine's performance, the problem of high displacement resolution for the large-load two-dimension adjusting and positioning worktable used for the aeroengine assembling become evident. A method was proposed which is based on the invariable restoring force, and the adjusting and positioning physical model was established. The experiment results indicate that under the occasion of a load with 508 kilogram, the worktable has got a displacement resolution of 0.3μm after using the improved method compared to 1.4μm of the traditional method. The improved method could meet the requirements of aviation engine assembling worktable.

  1. Fabry-Perot interferometer utilized for displacement measurement in a large measuring range

    SciTech Connect

    Wang, Yung-Cheng; Shyu, Lih-Horng; Chang, Chung-Ping

    2010-09-15

    The optical configuration of a Fabry-Perot interferometer is uncomplicated. This has already been applied in different measurement systems. For the displacement measurement with the Fabry-Perot interferometer, the result is significantly influenced by the tilt angles of the measurement mirror in the interferometer. Hence, only for the rather small measuring range, the Fabry-Perot interferometer is available. The goal of this investigation is to enhance the measuring range of Fabry-Perot interferometer by compensating the tilt angles. To verify the measuring characteristic of the self-developed Fabry-Perot interferometer, some comparison measurements with a reference standard have been performed. The maximum deviation of comparison experiments is less than 0.3 {mu}m in the traveling range of 30 mm. The experimental results show that the Fabry-Perot interferometer is highly stable, insensitive to environment effects, and can meet the measuring requirement of the submicrometer order.

  2. Large-Area Atom Interferometry with Frequency-Swept Raman Adiabatic Passage.

    PubMed

    Kotru, Krish; Butts, David L; Kinast, Joseph M; Stoner, Richard E

    2015-09-04

    We demonstrate light-pulse atom interferometry with large-momentum-transfer atom optics based on stimulated Raman transitions and frequency-swept adiabatic rapid passage. Our atom optics have produced momentum splittings of up to 30 photon recoil momenta in an acceleration-sensitive interferometer for laser cooled atoms. We experimentally verify the enhancement of phase shift per unit acceleration and characterize interferometer contrast loss. By forgoing evaporative cooling and velocity selection, this method lowers the atom shot-noise-limited measurement uncertainty and enables large-area atom interferometry at higher data rates.

  3. How large are nonadiabatic effects in atomic and diatomic systems?

    SciTech Connect

    Yang, Yubo; Kylänpää, Ilkka; Tubman, Norm M.; Krogel, Jaron T.; Hammes-Schiffer, Sharon; Ceperley, David M.

    2015-09-29

    With recent developments in simulating nonadiabatic systems to high accuracy, it has become possible to determine how much energy is attributed to nuclear quantum effects beyond zero-point energy. Here, we calculate the non-relativistic ground-state energies of atomic and molecular systems without the Born-Oppenheimer approximation. For this purpose, we utilize the fixed-node diffusion Monte Carlo method, in which the nodes depend on both the electronic and ionic positions. Our report shows the ground-state energies for all systems studied, ionization energies for the first-row atoms and atomization energies for the first-row hydrides. We find the ionization energies of the atoms to be nearly independent of the Born-Oppenheimer approximation, within the accuracy of our results. The atomization energies of molecular systems, however, show small effects of the nonadiabatic coupling between electrons and nuclei.

  4. How large are nonadiabatic effects in atomic and diatomic systems?

    DOE PAGES

    Yang, Yubo; Kylänpää, Ilkka; Tubman, Norm M.; ...

    2015-09-29

    With recent developments in simulating nonadiabatic systems to high accuracy, it has become possible to determine how much energy is attributed to nuclear quantum effects beyond zero-point energy. Here, we calculate the non-relativistic ground-state energies of atomic and molecular systems without the Born-Oppenheimer approximation. For this purpose, we utilize the fixed-node diffusion Monte Carlo method, in which the nodes depend on both the electronic and ionic positions. Our report shows the ground-state energies for all systems studied, ionization energies for the first-row atoms and atomization energies for the first-row hydrides. We find the ionization energies of the atoms to bemore » nearly independent of the Born-Oppenheimer approximation, within the accuracy of our results. The atomization energies of molecular systems, however, show small effects of the nonadiabatic coupling between electrons and nuclei.« less

  5. Atomic displacement in the CrMnFeCoNi high-entropy alloy - A scaling factor to predict solid solution strengthening

    NASA Astrophysics Data System (ADS)

    Okamoto, Norihiko L.; Yuge, Koretaka; Tanaka, Katsushi; Inui, Haruyuki; George, Easo P.

    2016-12-01

    Although metals strengthened by alloying have been used for millennia, models to quantify solid solution strengthening (SSS) were first proposed scarcely seventy years ago. Early models could predict the strengths of only simple alloys such as dilute binaries and not those of compositionally complex alloys because of the difficulty of calculating dislocation-solute interaction energies. Recently, models and theories of SSS have been proposed to tackle complex high-entropy alloys (HEAs). Here we show that the strength at 0 K of a prototypical HEA, CrMnFeCoNi, can be scaled and predicted using the root-mean-square atomic displacement, which can be deduced from X-ray diffraction and first-principles calculations as the isotropic atomic displacement parameter, that is, the average displacements of the constituent atoms from regular lattice positions. We show that our approach can be applied successfully to rationalize SSS in FeCoNi, MnFeCoNi, MnCoNi, MnFeNi, CrCoNi, CrFeCoNi, and CrMnCoNi, which are all medium-entropy subsets of the CrMnFeCoNi HEA.

  6. Determination of the Shear Buckling Load of a Large Polymer Composite I-Section Using Strain and Displacement Sensors

    PubMed Central

    Park, Jin Y.; Lee, Jeong Wan

    2012-01-01

    This paper presents a method and procedure of sensing and determining critical shear buckling load and corresponding deformations of a comparably large composite I-section using strain rosettes and displacement sensors. The tested specimen was a pultruded composite beam made of vinyl ester resin, E-glass and carbon fibers. Various coupon tests were performed before the shear buckling test to obtain fundamental material properties of the I-section. In order to sensitively detect shear buckling of the tested I-section, twenty strain rosettes and eight displacement sensors were applied and attached on the web and flange surfaces. An asymmetric four-point bending loading scheme was utilized for the test. The loading scheme resulted a high shear and almost zero moment condition at the center of the web panel. The web shear buckling load was determined after analyzing the obtained test data from strain rosettes and displacement sensors. Finite element analysis was also performed to verify the experimental results and to support the discussed experimental approach. PMID:23443364

  7. Search for displaced supersymmetry in events with an electron and a muon with large impact parameters.

    PubMed

    Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Bergauer, T; Dragicevic, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hartl, C; Hörmann, N; Hrubec, J; Jeitler, M; Kiesenhofer, W; Knünz, V; Krammer, M; Krätschmer, I; Liko, D; Mikulec, I; Rabady, D; Rahbaran, B; Rohringer, H; Schöfbeck, R; Strauss, J; Taurok, A; Treberer-Treberspurg, W; Waltenberger, W; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Alderweireldt, S; Bansal, M; Bansal, S; Cornelis, T; De Wolf, E A; Janssen, X; Knutsson, A; Luyckx, S; Ochesanu, S; Rougny, R; Van De Klundert, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Blekman, F; Blyweert, S; D'Hondt, J; Daci, N; Heracleous, N; Keaveney, J; Lowette, S; Maes, M; Olbrechts, A; Python, Q; Strom, D; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Villella, I; Caillol, C; Clerbaux, B; De Lentdecker, G; Dobur, D; Favart, L; Gay, A P R; Grebenyuk, A; Léonard, A; Mohammadi, A; Perniè, L; Reis, T; Seva, T; Thomas, L; Vander Velde, C; Vanlaer, P; Wang, J; Zenoni, F; Adler, V; Beernaert, K; Benucci, L; Cimmino, A; Costantini, S; Crucy, S; Dildick, S; Fagot, A; Garcia, G; Mccartin, J; Ocampo Rios, A A; Ryckbosch, D; Salva Diblen, S; Sigamani, M; Strobbe, N; Thyssen, F; Tytgat, M; Yazgan, E; Zaganidis, N; Basegmez, S; Beluffi, C; Bruno, G; Castello, R; Caudron, A; Ceard, L; Da Silveira, G G; Delaere, C; du Pree, T; Favart, D; Forthomme, L; Giammanco, A; Hollar, J; Jafari, A; Jez, P; Komm, M; Lemaitre, V; Nuttens, C; Pagano, D; Perrini, L; Pin, A; Piotrzkowski, K; Popov, A; Quertenmont, L; Selvaggi, M; Vidal Marono, M; Vizan Garcia, J M; Beliy, N; Caebergs, T; Daubie, E; Hammad, G H; Aldá Júnior, W L; Alves, G A; Brito, L; Correa Martins Junior, M; Dos Reis Martins, T; Mora Herrera, C; Pol, M E; Carvalho, W; Chinellato, J; Custódio, A; Da Costa, E M; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Malbouisson, H; Matos Figueiredo, D; Mundim, L; Nogima, H; Prado Da Silva, W L; Santaolalla, J; Santoro, A; Sznajder, A; Tonelli Manganote, E J; Vilela Pereira, A; Bernardes, C A; Dogra, S; Fernandez Perez Tomei, T R; Gregores, E M; Mercadante, P G; Novaes, S F; Padula, Sandra S; Aleksandrov, A; Genchev, V; Iaydjiev, P; Marinov, A; Piperov, S; Rodozov, M; Stoykova, S; Sultanov, G; Vutova, M; Dimitrov, A; Glushkov, I; Hadjiiska, R; Kozhuharov, V; Litov, L; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Chen, M; Du, R; Jiang, C H; Plestina, R; Romeo, F; Tao, J; Wang, Z; Asawatangtrakuldee, C; Ban, Y; Liu, S; Mao, Y; Qian, S J; Wang, D; Zhang, L; Zou, W; Avila, C; Chaparro Sierra, L F; Florez, C; Gomez, J P; Gomez Moreno, B; Sanabria, J C; Godinovic, N; Lelas, D; Polic, D; Puljak, I; Antunovic, Z; Kovac, M; Brigljevic, V; Kadija, K; Luetic, J; Mekterovic, D; Sudic, L; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Bodlak, M; Finger, M; Finger, M; Assran, Y; Ellithi Kamel, A; Mahmoud, M A; Radi, A; Kadastik, M; Murumaa, M; Raidal, M; Tiko, A; Eerola, P; Fedi, G; Voutilainen, M; Härkönen, J; Karimäki, V; Kinnunen, R; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Peltola, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Wendland, L; Talvitie, J; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Favaro, C; Ferri, F; Ganjour, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Malcles, J; Rander, J; Rosowsky, A; Titov, M; Baffioni, S; Beaudette, F; Busson, P; Charlot, C; Dahms, T; Dalchenko, M; Dobrzynski, L; Filipovic, N; Florent, A; Granier de Cassagnac, R; Mastrolorenzo, L; Miné, P; Mironov, C; Naranjo, I N; Nguyen, M; Ochando, C; Paganini, P; Regnard, S; Salerno, R; Sauvan, J B; Sirois, Y; Veelken, C; Yilmaz, Y; Zabi, A; Agram, J-L; Andrea, J; Aubin, A; Bloch, D; Brom, J-M; Chabert, E C; Collard, C; Conte, E; Fontaine, J-C; Gelé, D; Goerlach, U; Goetzmann, C; Le Bihan, A-C; Van Hove, P; Gadrat, S; Beauceron, S; Beaupere, N; Boudoul, G; Bouvier, E; Brochet, S; Carrillo Montoya, C A; Chasserat, J; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fan, J; Fay, J; Gascon, S; Gouzevitch, M; Ille, B; Kurca, T; Lethuillier, M; Mirabito, L; Perries, S; Ruiz Alvarez, J D; Sabes, D; Sgandurra, L; Sordini, V; Vander Donckt, M; Verdier, P; Viret, S; Xiao, H; Tsamalaidze, Z; Autermann, C; Beranek, S; Bontenackels, M; Edelhoff, M; Feld, L; Hindrichs, O; Klein, K; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Weber, H; Wittmer, B; Zhukov, V; Ata, M; Brodski, M; Dietz-Laursonn, E; Duchardt, D; Erdmann, M; Fischer, R; Güth, A; Hebbeker, T; Heidemann, C; Hoepfner, K; Klingebiel, D; Knutzen, S; Kreuzer, P; Merschmeyer, M; Meyer, A; Millet, P; Olschewski, M; Padeken, K; Papacz, P; Reithler, H; Schmitz, S A; Sonnenschein, L; Teyssier, D; Thüer, S; Weber, M; Cherepanov, V; Erdogan, Y; Flügge, G; Geenen, H; Geisler, M; Haj Ahmad, W; Heister, A; Hoehle, F; Kargoll, B; Kress, T; Kuessel, Y; Künsken, A; Lingemann, J; Nowack, A; Nugent, I M; Perchalla, L; Pooth, O; Stahl, A; Asin, I; Bartosik, N; Behr, J; Behrenhoff, W; Behrens, U; Bell, A J; Bergholz, M; Bethani, A; Borras, K; Burgmeier, A; Cakir, A; Calligaris, L; Campbell, A; Choudhury, S; Costanza, F; Diez Pardos, C; Dooling, S; Dorland, T; Eckerlin, G; Eckstein, D; Eichhorn, T; Flucke, G; Garay Garcia, J; Geiser, A; Gunnellini, P; Hauk, J; Hempel, M; Horton, D; Jung, H; Kalogeropoulos, A; Kasemann, M; Katsas, P; Kieseler, J; Kleinwort, C; Krücker, D; Lange, W; Leonard, J; Lipka, K; Lobanov, A; Lohmann, W; Lutz, B; Mankel, R; Marfin, I; Melzer-Pellmann, I-A; Meyer, A B; Mittag, G; Mnich, J; Mussgiller, A; Naumann-Emme, S; Nayak, A; Novgorodova, O; Ntomari, E; Perrey, H; Pitzl, D; Placakyte, R; Raspereza, A; Ribeiro Cipriano, P M; Roland, B; Ron, E; Sahin, M Ö; Salfeld-Nebgen, J; Saxena, P; Schmidt, R; Schoerner-Sadenius, T; Schröder, M; Seitz, C; Spannagel, S; Vargas Trevino, A D R; Walsh, R; Wissing, C; Aldaya Martin, M; Blobel, V; Centis Vignali, M; Draeger, A R; Erfle, J; Garutti, E; Goebel, K; Görner, M; Haller, J; Hoffmann, M; Höing, R S; Kirschenmann, H; Klanner, R; Kogler, R; Lange, J; Lapsien, T; Lenz, T; Marchesini, I; Ott, J; Peiffer, T; Pietsch, N; Poehlsen, J; Poehlsen, T; Rathjens, D; Sander, C; Schettler, H; Schleper, P; Schlieckau, E; Schmidt, A; Seidel, M; Sola, V; Stadie, H; Steinbrück, G; Troendle, D; Usai, E; Vanelderen, L; Vanhoefer, A; Barth, C; Baus, C; Berger, J; Böser, C; Butz, E; Chwalek, T; De Boer, W; Descroix, A; Dierlamm, A; Feindt, M; Frensch, F; Giffels, M; Hartmann, F; Hauth, T; Husemann, U; Katkov, I; Kornmayer, A; Kuznetsova, E; Lobelle Pardo, P; Mozer, M U; Müller, Th; Nürnberg, A; Quast, G; Rabbertz, K; Ratnikov, F; Röcker, S; Simonis, H J; Stober, F M; Ulrich, R; Wagner-Kuhr, J; Wayand, S; Weiler, T; Wolf, R; Anagnostou, G; Daskalakis, G; Geralis, T; Giakoumopoulou, V A; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Psallidas, A; Topsis-Giotis, I; Kesisoglou, S; Panagiotou, A; Saoulidou, N; Stiliaris, E; Aslanoglou, X; Evangelou, I; Flouris, G; Foudas, C; Kokkas, P; Manthos, N; Papadopoulos, I; Paradas, E; Bencze, G; Hajdu, C; Hidas, P; Horvath, D; Sikler, F; Veszpremi, V; Vesztergombi, G; Zsigmond, A J; Beni, N; Czellar, S; Karancsi, J; Molnar, J; Palinkas, J; Szillasi, Z; Raics, P; Trocsanyi, Z L; Ujvari, B; Swain, S K; Beri, S B; Bhatnagar, V; Gupta, R; Bhawandeep, U; Kalsi, A K; Kaur, M; Kumar, R; Mittal, M; Nishu, N; Singh, J B; Kumar, Ashok; Kumar, Arun; Ahuja, S; Bhardwaj, A; Choudhary, B C; Kumar, A; Malhotra, S; Naimuddin, M; Ranjan, K; Sharma, V; Banerjee, S; Bhattacharya, S; Chatterjee, K; Dutta, S; Gomber, B; Jain, Sa; Jain, Sh; Khurana, R; Modak, A; Mukherjee, S; Roy, D; Sarkar, S; Sharan, M; Abdulsalam, A; Dutta, D; Kailas, S; Kumar, V; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Banerjee, S; Bhowmik, S; Chatterjee, R M; Dewanjee, R K; Dugad, S; Ganguly, S; Ghosh, S; Guchait, M; Gurtu, A; Kole, G; Kumar, S; Maity, M; Majumder, G; Mazumdar, K; Mohanty, G B; Parida, B; Sudhakar, K; Wickramage, N; Bakhshiansohi, H; Behnamian, H; Etesami, S M; Fahim, A; Goldouzian, R; Khakzad, M; Mohammadi Najafabadi, M; Naseri, M; Paktinat Mehdiabadi, S; Rezaei Hosseinabadi, F; Safarzadeh, B; Zeinali, M; Felcini, M; Grunewald, M; Abbrescia, M; Barbone, L; Calabria, C; Chhibra, S S; Colaleo, A; Creanza, D; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Maggi, G; Maggi, M; My, S; Nuzzo, S; Pompili, A; Pugliese, G; Radogna, R; Selvaggi, G; Sharma, A; Silvestris, L; Venditti, R; Zito, G; Abbiendi, G; Benvenuti, A C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Campanini, R; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Perrotta, A; Primavera, F; Rossi, A M; Rovelli, T; Siroli, G P; Tosi, N; Travaglini, R; Albergo, S; Cappello, G; Chiorboli, M; Costa, S; Giordano, F; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Gallo, E; Gonzi, S; Gori, V; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bianco, S; Fabbri, F; Piccolo, D; Ferretti, R; Ferro, F; Lo Vetere, M; Robutti, E; Tosi, S; Dinardo, M E; Fiorendi, S; Gennai, S; Gerosa, R; Ghezzi, A; Govoni, P; Lucchini, M T; Malvezzi, S; Manzoni, R A; Martelli, A; Marzocchi, B; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Ragazzi, S; Redaelli, N; Tabarelli de Fatis, T; Buontempo, S; Cavallo, N; Di Guida, S; Fabozzi, F; Iorio, A O M; Lista, L; Meola, S; Merola, M; Paolucci, P; Azzi, P; Bisello, D; Branca, A; Carlin, R; Checchia, P; Dall'Osso, M; Dorigo, T; Galanti, M; Gasparini, F; Gasparini, U; Giubilato, P; Gozzelino, A; Kanishchev, K; Lacaprara, S; Margoni, M; Meneguzzo, A T; Pazzini, J; Pegoraro, M; Pozzobon, N; Ronchese, P; Simonetto, F; Torassa, E; Tosi, M; Triossi, A; Zotto, P; Zucchetta, A; Zumerle, G; Gabusi, M; Ratti, S P; Re, V; Riccardi, C; Salvini, P; Vitulo, P; Biasini, M; Bilei, G M; Ciangottini, D; Fanò, L; Lariccia, P; Mantovani, G; Menichelli, M; Saha, A; Santocchia, A; Spiezia, A; Androsov, K; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Broccolo, G; Castaldi, R; Ciocci, M A; Dell'Orso, R; Donato, S; Fiori, F; Foà, L; Giassi, A; Grippo, M T; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Moon, C S; Palla, F; Rizzi, A; Savoy-Navarro, A; Serban, A T; Spagnolo, P; Squillacioti, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Vernieri, C; Barone, L; Cavallari, F; D'imperio, G; Del Re, D; Diemoz, M; Grassi, M; Jorda, C; Longo, E; Margaroli, F; Meridiani, P; Micheli, F; Nourbakhsh, S; Organtini, G; Paramatti, R; Rahatlou, S; Rovelli, C; Santanastasio, F; Soffi, L; Traczyk, P; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Bellan, R; Biino, C; Cartiglia, N; Casasso, S; Costa, M; Degano, A; Demaria, N; Finco, L; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Musich, M; Obertino, M M; Ortona, G; Pacher, L; Pastrone, N; Pelliccioni, M; Pinna Angioni, G L; Potenza, A; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Tamponi, U; Belforte, S; Candelise, V; Casarsa, M; Cossutti, F; Della Ricca, G; Gobbo, B; La Licata, C; Marone, M; Schizzi, A; Umer, T; Zanetti, A; Chang, S; Kropivnitskaya, A; Nam, S K; Kim, D H; Kim, G N; Kim, M S; Kong, D J; Lee, S; Oh, Y D; Park, H; Sakharov, A; Son, D C; Kim, T J; Kim, J Y; Song, S; Choi, S; Gyun, D; Hong, B; Jo, M; Kim, H; Kim, Y; Lee, B; Lee, K S; Park, S K; Roh, Y; Choi, M; Kim, J H; Park, I C; Ryu, G; Ryu, M S; Choi, Y; Choi, Y K; Goh, J; Kim, D; Kwon, E; Lee, J; Seo, H; Yu, I; Juodagalvis, A; Komaragiri, J R; Md Ali, M A B; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-de La Cruz, I; Hernandez-Almada, A; Lopez-Fernandez, R; Sanchez-Hernandez, A; Carrillo Moreno, S; Vazquez Valencia, F; Pedraza, I; Salazar Ibarguen, H A; Casimiro Linares, E; Morelos Pineda, A; Krofcheck, D; Butler, P H; Reucroft, S; Ahmad, A; Ahmad, M; Hassan, Q; Hoorani, H R; Khan, W A; Khurshid, T; Shah, M A; Shoaib, M; Bialkowska, H; Bluj, M; Boimska, B; Frueboes, T; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Zalewski, P; Brona, G; Bunkowski, K; Cwiok, M; Dominik, W; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Misiura, M; Olszewski, M; Wolszczak, W; Bargassa, P; Beirão Da Cruz E Silva, C; Faccioli, P; Ferreira Parracho, P G; Gallinaro, M; Lloret Iglesias, L; Nguyen, F; Rodrigues Antunes, J; Seixas, J; Varela, J; Vischia, P; Afanasiev, S; Bunin, P; Gavrilenko, M; Golutvin, I; Gorbunov, I; Kamenev, A; Karjavin, V; Konoplyanikov, V; Lanev, A; Malakhov, A; Matveev, V; Moisenz, P; Palichik, V; Perelygin, V; Shmatov, S; Skatchkov, N; Smirnov, V; Zarubin, A; Golovtsov, V; Ivanov, Y; Kim, V; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Vorobyev, An; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Gavrilov, V; Lychkovskaya, N; Popov, V; Pozdnyakov, I; Safronov, G; Semenov, S; Spiridonov, A; Stolin, V; Vlasov, E; Zhokin, A; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Mesyats, G; Rusakov, S V; Vinogradov, A; Belyaev, A; Boos, E; Bunichev, V; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Lokhtin, I; Obraztsov, S; Petrushanko, S; Savrin, V; Snigirev, A; Azhgirey, I; Bayshev, I; Bitioukov, S; Kachanov, V; Kalinin, A; Konstantinov, D; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Ekmedzic, M; Milosevic, J; Rekovic, V; Alcaraz Maestre, J; Battilana, C; Calvo, E; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Delgado Peris, A; Domínguez Vázquez, D; Escalante Del Valle, A; Fernandez Bedoya, C; Fernández Ramos, J P; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Navarro De Martino, E; Pérez-Calero Yzquierdo, A; Puerta Pelayo, J; Quintario Olmeda, A; Redondo, I; Romero, L; Soares, M S; Albajar, C; de Trocóniz, J F; Missiroli, M; Moran, D; Brun, H; Cuevas, J; Fernandez Menendez, J; Folgueras, S; Gonzalez Caballero, I; Brochero Cifuentes, J A; Cabrillo, I J; Calderon, A; Duarte Campderros, J; Fernandez, M; Gomez, G; Graziano, A; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Matorras, F; Munoz Sanchez, F J; Piedra Gomez, J; Rodrigo, T; Rodríguez-Marrero, A Y; Ruiz-Jimeno, A; Scodellaro, L; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Bachtis, M; Baillon, P; Ball, A H; Barney, D; Benaglia, A; Bendavid, J; Benhabib, L; Benitez, J F; Bernet, C; Bloch, P; Bocci, A; Bonato, A; Bondu, O; Botta, C; Breuker, H; Camporesi, T; Cerminara, G; Colafranceschi, S; D'Alfonso, M; d'Enterria, D; Dabrowski, A; David, A; De Guio, F; De Roeck, A; De Visscher, S; Di Marco, E; Dobson, M; Dordevic, M; Dupont-Sagorin, N; Elliott-Peisert, A; Eugster, J; Franzoni, G; Funk, W; Gigi, D; Gill, K; Giordano, D; Girone, M; Glege, F; Guida, R; Gundacker, S; Guthoff, M; Hammer, J; Hansen, M; Harris, P; Hegeman, J; Innocente, V; Janot, P; Kousouris, K; Krajczar, K; Lecoq, P; Lourenço, C; Magini, N; Malgeri, L; Mannelli, M; Marrouche, J; Masetti, L; Meijers, F; Mersi, S; Meschi, E; Moortgat, F; Morovic, S; Mulders, M; Musella, P; Orsini, L; Pape, L; Perez, E; Perrozzi, L; Petrilli, A; Petrucciani, G; Pfeiffer, A; Pierini, M; Pimiä, M; Piparo, D; Plagge, M; Racz, A; Rolandi, G; Rovere, M; Sakulin, H; Schäfer, C; Schwick, C; Sharma, A; Siegrist, P; Silva, P; Simon, M; Sphicas, P; Spiga, D; Steggemann, J; Stieger, B; Stoye, M; Takahashi, Y; Treille, D; Tsirou, A; Veres, G I; Wardle, N; Wöhri, H K; Wollny, H; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Horisberger, R; Ingram, Q; Kaestli, H C; Kotlinski, D; Langenegger, U; Renker, D; Rohe, T; Bachmair, F; Bäni, L; Bianchini, L; Buchmann, M A; Casal, B; Chanon, N; Dissertori, G; Dittmar, M; Donegà, M; Dünser, M; Eller, P; Grab, C; Hits, D; Hoss, J; Lustermann, W; Mangano, B; Marini, A C; Martinez Ruiz del Arbol, P; Masciovecchio, M; Meister, D; Mohr, N; Nägeli, C; Nessi-Tedaldi, F; Pandolfi, F; Pauss, F; Peruzzi, M; Quittnat, M; Rebane, L; Rossini, M; Starodumov, A; Takahashi, M; Theofilatos, K; Wallny, R; Weber, H A; Amsler, C; Canelli, M F; Chiochia, V; De Cosa, A; Hinzmann, A; Hreus, T; Kilminster, B; Lange, C; Millan Mejias, B; Ngadiuba, J; Robmann, P; Ronga, F J; Taroni, S; Verzetti, M; Yang, Y; Cardaci, M; Chen, K H; Ferro, C; Kuo, C M; Lin, W; Lu, Y J; Volpe, R; Yu, S S; Chang, P; Chang, Y H; Chang, Y W; Chao, Y; Chen, K F; Chen, P H; Dietz, C; Grundler, U; Hou, W-S; Kao, K Y; Lei, Y J; Liu, Y F; Lu, R-S; Majumder, D; Petrakou, E; Tzeng, Y M; Wilken, R; Asavapibhop, B; Singh, G; Srimanobhas, N; Suwonjandee, N; Adiguzel, A; Bakirci, M N; Cerci, S; Dozen, C; Dumanoglu, I; Eskut, E; Girgis, S; Gokbulut, G; Gurpinar, E; Hos, I; Kangal, E E; Kayis Topaksu, A; Onengut, G; Ozdemir, K; Ozturk, S; Polatoz, A; Sunar Cerci, D; Tali, B; Topakli, H; Vergili, M; Akin, I V; Bilin, B; Bilmis, S; Gamsizkan, H; Karapinar, G; Ocalan, K; Sekmen, S; Surat, U E; Yalvac, M; Zeyrek, M; Gülmez, E; Isildak, B; Kaya, M; Kaya, O; Cankocak, K; Vardarlı, F I; Levchuk, L; Sorokin, P; Brooke, J J; Clement, E; Cussans, D; Flacher, H; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Jacob, J; Kreczko, L; Lucas, C; Meng, Z; Newbold, D M; Paramesvaran, S; Poll, A; Senkin, S; Smith, V J; Williams, T; Bell, K W; Belyaev, A; Brew, C; Brown, R M; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Olaiya, E; Petyt, D; Shepherd-Themistocleous, C H; Thea, A; Tomalin, I R; Womersley, W J; Worm, S D; Baber, M; Bainbridge, R; Buchmuller, O; Burton, D; Colling, D; Cripps, N; Cutajar, M; Dauncey, P; Davies, G; Della Negra, M; Dunne, P; Ferguson, W; Fulcher, J; Futyan, D; Gilbert, A; Hall, G; Iles, G; Jarvis, M; Karapostoli, G; Kenzie, M; Lane, R; Lucas, R; Lyons, L; Magnan, A-M; Malik, S; Mathias, B; Nash, J; Nikitenko, A; Pela, J; Pesaresi, M; Petridis, K; Raymond, D M; Rogerson, S; Rose, A; Seez, C; Sharp, P; Tapper, A; Vazquez Acosta, M; Virdee, T; Zenz, S C; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leggat, D; Leslie, D; Martin, W; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Dittmann, J; Hatakeyama, K; Kasmi, A; Liu, H; Scarborough, T; Charaf, O; Cooper, S I; Henderson, C; Rumerio, P; Avetisyan, A; Bose, T; Fantasia, C; Lawson, P; Richardson, C; Rohlf, J; St John, J; Sulak, L; Alimena, J; Berry, E; Bhattacharya, S; Christopher, G; Cutts, D; Demiragli, Z; Dhingra, N; Ferapontov, A; Garabedian, A; Heintz, U; Kukartsev, G; Laird, E; Landsberg, G; Luk, M; Narain, M; Segala, M; Sinthuprasith, T; Speer, T; Swanson, J; Breedon, R; Breto, G; Calderon De La Barca Sanchez, M; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, P T; Erbacher, R; Gardner, M; Ko, W; Lander, R; Miceli, T; Mulhearn, M; Pellett, D; Pilot, J; Ricci-Tam, F; Searle, M; Shalhout, S; Smith, J; Squires, M; Stolp, D; Tripathi, M; Wilbur, S; Yohay, R; Cousins, R; Everaerts, P; Farrell, C; Hauser, J; Ignatenko, M; Rakness, G; Takasugi, E; Valuev, V; Weber, M; Burt, K; Clare, R; Ellison, J; Gary, J W; Hanson, G; Heilman, J; Ivova Rikova, M; Jandir, P; Kennedy, E; Lacroix, F; Long, O R; Luthra, A; Malberti, M; Olmedo Negrete, M; Shrinivas, A; Sumowidagdo, S; Wimpenny, S; Andrews, W; Branson, J G; Cerati, G B; Cittolin, S; D'Agnolo, R T; Evans, D; Holzner, A; Kelley, R; Klein, D; Lebourgeois, M; Letts, J; Macneill, I; Olivito, D; Padhi, S; Palmer, C; Pieri, M; Sani, M; Sharma, V; Simon, S; Sudano, E; Tadel, M; Tu, Y; Vartak, A; Welke, C; Würthwein, F; Yagil, A; Barge, D; Bradmiller-Feld, J; Campagnari, C; Danielson, T; Dishaw, A; Dutta, V; Flowers, K; Franco Sevilla, M; Geffert, P; George, C; Golf, F; Gouskos, L; Incandela, J; Justus, C; Mccoll, N; Richman, J; Stuart, D; To, W; West, C; Yoo, J; Apresyan, A; Bornheim, A; Bunn, J; Chen, Y; Duarte, J; Mott, A; Newman, H B; Pena, C; Rogan, C; Spiropulu, M; Timciuc, V; Vlimant, J R; Wilkinson, R; Xie, S; Zhu, R Y; Azzolini, V; Calamba, A; Carlson, B; Ferguson, T; Iiyama, Y; Paulini, M; Russ, J; Vogel, H; Vorobiev, I; Cumalat, J P; Ford, W T; Gaz, A; Krohn, M; Luiggi Lopez, E; Nauenberg, U; Smith, J G; Stenson, K; Ulmer, K A; Wagner, S R; Alexander, J; Chatterjee, A; Chu, J; Dittmer, S; Eggert, N; Mirman, N; Nicolas Kaufman, G; Patterson, J R; Ryd, A; Salvati, E; Skinnari, L; Sun, W; Teo, W D; Thom, J; Thompson, J; Tucker, J; Weng, Y; Winstrom, L; Wittich, P; Winn, D; Abdullin, S; Albrow, M; Anderson, J; Apollinari, G; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bolla, G; Burkett, K; Butler, J N; Cheung, H W K; Chlebana, F; Cihangir, S; Elvira, V D; Fisk, I; Freeman, J; Gao, Y; Gottschalk, E; Gray, L; Green, D; Grünendahl, S; Gutsche, O; Hanlon, J; Hare, D; Harris, R M; Hirschauer, J; Hooberman, B; Jindariani, S; Johnson, M; Joshi, U; Kaadze, K; Klima, B; Kreis, B; Kwan, S; Linacre, J; Lincoln, D; Lipton, R; Liu, T; Lykken, J; Maeshima, K; Marraffino, J M; Martinez Outschoorn, V I; Maruyama, S; Mason, D; McBride, P; Merkel, P; Mishra, K; Mrenna, S; Musienko, Y; Nahn, S; Newman-Holmes, C; O'Dell, V; Prokofyev, O; Sexton-Kennedy, E; Sharma, S; Soha, A; Spalding, W J; Spiegel, L; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vidal, R; Whitbeck, A; Whitmore, J; Yang, F; Acosta, D; Avery, P; Bortignon, P; Bourilkov, D; Carver, M; Cheng, T; Curry, D; Das, S; De Gruttola, M; Di Giovanni, G P; Field, R D; Fisher, M; Furic, I K; Hugon, J; Konigsberg, J; Korytov, A; Kypreos, T; Low, J F; Matchev, K; Milenovic, P; Mitselmakher, G; Muniz, L; Rinkevicius, A; Shchutska, L; Snowball, M; Sperka, D; Yelton, J; Zakaria, M; Hewamanage, S; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Bochenek, J; Diamond, B; Haas, J; Hagopian, S; Hagopian, V; Johnson, K F; Prosper, H; Veeraraghavan, V; Weinberg, M; Baarmand, M M; Hohlmann, M; Kalakhety, H; Yumiceva, F; Adams, M R; Apanasevich, L; Bazterra, V E; Berry, D; Betts, R R; Bucinskaite, I; Cavanaugh, R; Evdokimov, O; Gauthier, L; Gerber, C E; Hofman, D J; Khalatyan, S; Kurt, P; Moon, D H; O'Brien, C; Silkworth, C; Turner, P; Varelas, N; Albayrak, E A; Bilki, B; Clarida, W; Dilsiz, K; Duru, F; Haytmyradov, M; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Ogul, H; Onel, Y; Ozok, F; Penzo, A; Rahmat, R; Sen, S; Tan, P; Tiras, E; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bolognesi, S; Fehling, D; Gritsan, A V; Maksimovic, P; Martin, C; Swartz, M; Baringer, P; Bean, A; Benelli, G; Bruner, C; Kenny, R P; Malek, M; Murray, M; Noonan, D; Sanders, S; Sekaric, J; Stringer, R; Wang, Q; Wood, J S; Chakaberia, I; Ivanov, A; Khalil, S; Makouski, M; Maravin, Y; Saini, L K; Shrestha, S; Skhirtladze, N; Svintradze, I; Gronberg, J; Lange, D; Rebassoo, F; Wright, D; Baden, A; Belloni, A; Calvert, B; Eno, S C; Gomez, J A; Hadley, N J; Kellogg, R G; Kolberg, T; Lu, Y; Marionneau, M; Mignerey, A C; Pedro, K; Skuja, A; Tonjes, M B; Tonwar, S C; Apyan, A; Barbieri, R; Bauer, G; Busza, W; Cali, I A; Chan, M; Di Matteo, L; Gomez Ceballos, G; Goncharov, M; Gulhan, D; Klute, M; Lai, Y S; Lee, Y-J; Levin, A; Luckey, P D; Ma, T; Paus, C; Ralph, D; Roland, C; Roland, G; Stephans, G S F; Stöckli, F; Sumorok, K; Velicanu, D; Veverka, J; Wyslouch, B; Yang, M; Zanetti, M; Zhukova, V; Dahmes, B; Gude, A; Kao, S C; Klapoetke, K; Kubota, Y; Mans, J; Pastika, N; Rusack, R; Singovsky, A; Tambe, N; Turkewitz, J; Acosta, J G; Oliveros, S; Avdeeva, E; Bloom, K; Bose, S; Claes, D R; Dominguez, A; Gonzalez Suarez, R; Keller, J; Knowlton, D; Kravchenko, I; Lazo-Flores, J; Malik, S; Meier, F; Snow, G R; Zvada, M; Dolen, J; Godshalk, A; Iashvili, I; Kharchilava, A; Kumar, A; Rappoccio, S; Alverson, G; Barberis, E; Baumgartel, D; Chasco, M; Haley, J; Massironi, A; Morse, D M; Nash, D; Orimoto, T; Trocino, D; Wang, R-J; Wood, D; Zhang, J; Hahn, K A; Kubik, A; Mucia, N; Odell, N; Pollack, B; Pozdnyakov, A; Schmitt, M; Stoynev, S; Sung, K; Velasco, M; Won, S; Brinkerhoff, A; Chan, K M; Drozdetskiy, A; Hildreth, M; Jessop, C; Karmgard, D J; Kellams, N; Lannon, K; Luo, W; Lynch, S; Marinelli, N; Pearson, T; Planer, M; Ruchti, R; Valls, N; Wayne, M; Wolf, M; Woodard, A; Antonelli, L; Brinson, J; Bylsma, B; Durkin, L S; Flowers, S; Hart, A; Hill, C; Hughes, R; Kotov, K; Ling, T Y; Puigh, D; Rodenburg, M; Smith, G; Winer, B L; Wolfe, H; Wulsin, H W; Driga, O; Elmer, P; Hebda, P; Hunt, A; Koay, S A; Lujan, P; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Quan, X; Saka, H; Stickland, D; Tully, C; Werner, J S; Zuranski, A; Brownson, E; Mendez, H; Ramirez Vargas, J E; Barnes, V E; Benedetti, D; Bortoletto, D; De Mattia, M; Gutay, L; Hu, Z; Jha, M K; Jones, M; Jung, K; Kress, M; Leonardo, N; Lopes Pegna, D; Maroussov, V; Miller, D H; Neumeister, N; Radburn-Smith, B C; Shi, X; Shipsey, I; Silvers, D; Svyatkovskiy, A; Wang, F; Xie, W; Xu, L; Yoo, H D; Zablocki, J; Zheng, Y; Parashar, N; Stupak, J; Adair, A; Akgun, B; Ecklund, K M; Geurts, F J M; Li, W; Michlin, B; Padley, B P; Redjimi, R; Roberts, J; Zabel, J; Betchart, B; Bodek, A; Covarelli, R; de Barbaro, P; Demina, R; Eshaq, Y; Ferbel, T; Garcia-Bellido, A; Goldenzweig, P; Han, J; Harel, A; Khukhunaishvili, A; Petrillo, G; Vishnevskiy, D; Ciesielski, R; Demortier, L; Goulianos, K; Lungu, G; Mesropian, C; Arora, S; Barker, A; Chou, J P; Contreras-Campana, C; Contreras-Campana, E; Duggan, D; Ferencek, D; Gershtein, Y; Gray, R; Halkiadakis, E; Hidas, D; Kaplan, S; Lath, A; Panwalkar, S; Park, M; Patel, R; Salur, S; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Thomassen, P; Walker, M; Rose, K; Spanier, S; York, A; Bouhali, O; Castaneda Hernandez, A; Eusebi, R; Flanagan, W; Gilmore, J; Kamon, T; Khotilovich, V; Krutelyov, V; Montalvo, R; Osipenkov, I; Pakhotin, Y; Perloff, A; Roe, J; Rose, A; Safonov, A; Sakuma, T; Suarez, I; Tatarinov, A; Akchurin, N; Cowden, C; Damgov, J; Dragoiu, C; Dudero, P R; Faulkner, J; Kovitanggoon, K; Kunori, S; Lee, S W; Libeiro, T; Volobouev, I; Appelt, E; Delannoy, A G; Greene, S; Gurrola, A; Johns, W; Maguire, C; Mao, Y; Melo, A; Sharma, M; Sheldon, P; Snook, B; Tuo, S; Velkovska, J; Arenton, M W; Boutle, S; Cox, B; Francis, B; Goodell, J; Hirosky, R; Ledovskoy, A; Li, H; Lin, C; Neu, C; Wood, J; Clarke, C; Harr, R; Karchin, P E; Kottachchi Kankanamge Don, C; Lamichhane, P; Sturdy, J; Belknap, D A; Carlsmith, D; Cepeda, M; Dasu, S; Dodd, L; Duric, S; Friis, E; Hall-Wilton, R; Herndon, M; Hervé, A; Klabbers, P; Lanaro, A; Lazaridis, C; Levine, A; Loveless, R; Mohapatra, A; Ojalvo, I; Perry, T; Pierro, G A; Polese, G; Ross, I; Sarangi, T; Savin, A; Smith, W H; Taylor, D; Verwilligen, P; Vuosalo, C; Woods, N

    2015-02-13

    A search for new long-lived particles decaying to leptons is presented using proton-proton collisions produced by the LHC at √[s]=8  TeV. Data used for the analysis were collected by the CMS detector and correspond to an integrated luminosity of 19.7  fb(-1). Events are selected with an electron and muon with opposite charges that both have transverse impact parameter values between 0.02 and 2 cm. The search has been designed to be sensitive to a wide range of models with nonprompt e-μ final states. Limits are set on the "displaced supersymmetry" model, with pair production of top squarks decaying into an e-μ final state via R-parity-violating interactions. The results are the most restrictive to date on this model, with the most stringent limit being obtained for a top squark lifetime corresponding to cτ=2  cm, excluding masses below 790 GeV at 95% confidence level.

  8. Large-scale separation of amino acids by continuous displacement chromatography

    SciTech Connect

    DeCarli, J.P. II; Carta, G.; Byers, C.H.

    1989-10-01

    Continuous annular chromatography (CAC) is a developing technology that allows truly continuous chromatographic separations. Previous work has demonstrated the utility of this technology for the separation of various materials by isocratic elution on a bench scale. Novel applications and improved operation of the process were studied in this work, demonstrating that CAC is a versatile apparatus which is capable of separations at high throughput. Three specific separation systems were investigated. Pilot-scale separations at high loadings were performed using an industrial sugar mixture as an example of scale-up for isocratic separations. Bench-scale experiments of a low concentration metal ion mixture were performed to demonstrate stepwise elution, a chromatographic technique which decreases dilution and increases sorbent capacity. Finally, the separation of mixtures of amino acids by ion exchange was investigated to demonstrate the use of displacement development on the CAC. This technique, which perhaps has the most potential, when applied to the CAC allowed simultaneous separation and concentration of multicomponent mixtures on a continuous basis. Mathematical models were developed to describe the CAC performance and optimize the operating conditions. For all the systems investigated, the continuous separation performance of the CAC was found to be very nearly the same as the batchwise performance of conventional chromatography. The technology appears, thus, to be very promising for industrial applications.

  9. Fabry-Pérot interferometer utilized for displacement measurement in a large measuring range.

    PubMed

    Wang, Yung-Cheng; Shyu, Lih-Horng; Chang, Chung-Ping

    2010-09-01

    The optical configuration of a Fabry-Pérot interferometer is uncomplicated. This has already been applied in different measurement systems. For the displacement measurement with the Fabry-Pérot interferometer, the result is significantly influenced by the tilt angles of the measurement mirror in the interferometer. Hence, only for the rather small measuring range, the Fabry-Pérot interferometer is available. The goal of this investigation is to enhance the measuring range of Fabry-Pérot interferometer by compensating the tilt angles. To verify the measuring characteristic of the self-developed Fabry-Pérot interferometer, some comparison measurements with a reference standard have been performed. The maximum deviation of comparison experiments is less than 0.3 μm in the traveling range of 30 mm. The experimental results show that the Fabry-Pérot interferometer is highly stable, insensitive to environment effects, and can meet the measuring requirement of the submicrometer order.

  10. Syntectonic remagnetization in the southern Methow block: Resolving large displacements in the southern Canadian Cordillera

    USGS Publications Warehouse

    Enkin, R.J.; Mahoney, J.B.; Baker, J.; Kiessling, M.; Haugerud, R.A.

    2002-01-01

    The Upper Cretaceous Ventura Member of the Goat Wall unit in the southern Methow block of southern British Columbia and northern Washington State holds a syntectonic magnetization. Eight new sites from Manning Park in British Columbia give a mean direction of D = 27.5??, I = 60.1??, k = 304.7, ??95 = 3.2?? after optimal partial tilt correction. Of five groups of bedded sites from farther south in the basin reported by Bazard et al. [1990], four have a syntectonic remanence with a direction similar to what we observe. The exception is one group which has optimal concentration of remanence directions on >100% untilting and an abherent direction which must be rejected. Combining the accepted sites, the optimal differential syntilting direction is D = 11.8??, I = 61.5??, k = 39.3, ??95 = 3.4?? (N = 47), giving a mean pole of 79.8??N, 359.2??E, K = 19.5, and A95 = 4.8??. The age of the remagnetization is constrained to be between 88 and 80 Ma. Compared to cratonic North America, this result indicates that the southern Methow block was displaced from the south by 1800 ?? 500 km, meaning it lay south of the Sierra Nevada subduction zone but well north of other paleomagnetically constrained Cretaceous rock units from the Insular superterrane, including correlative strata of the Mount Tatlow area in the northern Methow block. Among several possibilities to reconcile this discrepancy, the most plausible has the whole Methow block translated coherently but with the southern Methow block strata remagnetized during transit.

  11. Charge-screening role of c-axis atomic displacements in YBa2Cu3O6+x and related superconductors

    DOE PAGES

    E. S. Bozin; Huq, A.; Shen, Bing; ...

    2016-02-29

    Here, the importance of charge reservoir layers for supplying holes to the CuO2 planes of cuprate superconductors has long been recognized. Less attention has been paid to the screening of the charge transfer by the intervening ionic layers. We address this issue in the case of YBa2Cu3O6+x, where CuO chains supply the holes for the planes. We present a simple dielectric-screening model that gives a linear correlation between the relative displacements of ions along the c axis, determined by neutron powder diffraction, and the hole density of the planes. Applying this model to the temperature-dependent shifts of ions along themore » c axis, we infer a charge transfer of 5–10% of the hole density from the planes to the chains on warming from the superconducting transition to room temperature. Given the significant coupling of c-axis displacements to the average charge density, we point out the relevance of local displacements for screening charge modulations and note recent evidence for dynamic screening of in-plane quasiparticles. This line of argument leads us to a simple model for atomic displacements and charge modulation that is consistent with images from scanning-tunneling microscopy for underdoped Bi2Sr2CaCu2O8+δ.« less

  12. A three-degree-of-freedom thin-film PZT-actuated microactuator with large out-of-plane displacement

    PubMed Central

    Choi, Jongsoo; Qiu, Zhen; Rhee, Choong-Ho; Wang, Thomas; Oldham, Kenn

    2014-01-01

    A novel three degree-of-freedom microactuator based on thin-film lead-zirconate-titanate (PZT) is described with its detailed structural model. Its central rectangular-shaped mirror platform, also referred to as the stage, is actuated by four symmetric PZT bending legs such that each leg provides vertical translation for one corner of the stage. It has been developed to support real-time in vivo vertical cross-sectional imaging with a dual axes confocal endomicroscope for early cancer detection, having large displacements in three axes (z, θx, θy) and a relatively high bandwidth in the z-axis direction. Prototype microactuators closely meet the performance requirements for this application; in the out-of-plane (z-axis) direction, it has shown more than 177 μm of displacement and about 84 Hz of structural natural frequency, when two diagonal legs are actuated at 14V. With all four legs, another prototype of the same design with lighter stage mass has achieved more than 430 μm of out-of-plane displacement at 15V and about 200 Hz of bandwidth. The former design has shown approximately 6.4° and 2.9° of stage tilting about the x-axis and y-axis, respectively, at 14V. This paper also presents a modeling technique that uses experimental data to account for the effects of fabrication uncertainties in residual stress and structural dimensions. The presented model predicts the static motion of the stage within an average absolute error of 14.6 μm, which approaches the desired imaging resolution, 5 μm, and also reasonably anticipates the structural dynamic behavior of the stage. The refined model will support development of a future trajectory tracking controller for the system. PMID:25506131

  13. Element-specific modal formulations for large-displacement multibody dynamics

    NASA Technical Reports Server (NTRS)

    Ryan, R. R.; Yoo, H. H.

    1989-01-01

    Large dispacement assumed-mode modeling techniques are examined in the context of multibody elastodynamics. The range of both general and element-specific approaches are studied with the aid of examples involving beams, plates, and shells. For systems undergoing primarily structural bending and twisting with little or no membrane distortion, it is found that fully-linear, element-specific, modal formulations provide the most accurate time history solutions at the least expense. When membrane effects become dominant in structural problems due to loading and boundary conditions, one must naturally resort to a formulation involving a nonlinear stress-strain relationship in addition to nonlinear terms associated with large overall system motion. Such nonlinear models were investigated using assumed modes and found to lead to modal convergence difficulties when standard free-free structural modes are employed. A constrained mode formulation aimed at addressing the convergence problem is proposed.

  14. A report of left dorsal displacement of the large colon in a tropical horse

    PubMed Central

    Sasani, Farhang; Javanbakht, Javad; Ghamsari, Mehdi; Hassan, Mehdi Aghamohammad

    2013-01-01

    We report one such case which was diagnosed intraoperatively as left dorsal colon volvulus due to multiple mesenteric abnormalities. A 17-year-old castrated male horse was taken to the Tehran University Veterinary Hospital for treatment of metacarpal wound accompanied by severe abdominal distension and acute colic. The treatment and measurement were taken for a month, and the prepared biopsy indicated that the healing trend was obvious. Unfortunately, prior to discharge, the clinical colic manifestations emerged and the animal suddenly died. Dilated large intestine was palpated per rectum and a ventral midline exploratory laparotomy was performed, a complete volvulus of the ascending colon was identified with multiple mesenteric anomalies of unknown aetiology. The pathologic changes observed in this study accurately reflect those changes reported in horse with naturally occurring colonic volvulus and can serve as a reference for subsequent studies on attenuating bowel injury. The present study results can be used to make a scientific assessment of prognosis in the pre-operative, operative, and post-operative management of horses with large colon volvulus. PMID:23620860

  15. Response to displaced neighbours in a territorial songbird with a large repertoire

    NASA Astrophysics Data System (ADS)

    Briefer, Elodie; Aubin, Thierry; Rybak, Fanny

    2009-09-01

    Neighbour recognition allows territory owners to modulate their territorial response according to the threat posed by each neighbour and thus to reduce the costs associated with territorial defence. Individual acoustic recognition of neighbours has been shown in numerous bird species, but few of them had a large repertoire. Here, we tested individual vocal recognition in a songbird with a large repertoire, the skylark Alauda arvensis. We first examined the physical basis for recognition in the song, and we then experimentally tested recognition by playing back songs of adjacent neighbours and strangers. Males showed a lower territorial response to adjacent neighbours than to strangers when we broadcast songs from the shared boundary. However, when we broadcast songs from the opposite boundary, males showed a similar response to neighbours and strangers, indicating a spatial categorisation of adjacent neighbours’ songs. Acoustic analyses revealed that males could potentially use the syntactical arrangement of syllables in sequences to identify the songs of their neighbours. Neighbour interactions in skylarks are thus subtle relationships that can be modulated according to the spatial position of each neighbour.

  16. Large phase-by-phase modulations in atomic interfaces.

    PubMed

    Artoni, M; Zavatta, A

    2015-09-11

    Phase-resonant closed-loop optical transitions can be engineered to achieve broadly tunable light phase shifts. Such a novel phase-by-phase control mechanism does not require a cavity and is illustrated here for an atomic interface where a classical light pulse undergoes radian level phase modulations all-optically controllable over a few micron scale. It works even at low intensities and hence may be relevant to new applications of all-optical weak-light signal processing.

  17. [Analysis of accidents for magnetically induced displacement of the large ferromagnetic material in magnetic resonance systems].

    PubMed

    Yamatani, Yuya; Doi, Tsukasa; Ueyama, Tsuyoshi; Nishiki, Shigeo; Ogura, Akio; Kawamitsu, Hideaki; Tsuchihashi, Toshio; Okuaki, Tomoyuki; Matsuda, Tsuyoshi

    2013-01-01

    To improve magnetic resonance (MR) safety, we surveyed the accidents caused by large ferromagnetic materials brought into MR systems accidentally. We sent a questionnaire to 700 Japanese medical institutions and received 405 valid responses (58%). A total of 97 accidents in 77 institutions were observed and we analyzed them regarding incidental rate, the detail situation and environmental factors. The mean accident rate of each institute was 0.7/100,000 examinations, which was widely distributed (0-25.6/100,000) depending on the institute. In this survey, relatively small institutes with less than 500 beds tend to have these accidents more frequently (p<0.01). The institutes in which daily MR examination counts are more than 10 patients have fewer accidents than those with less than 10 daily examinations. The institutes with 6-10 MR examinations daily have significantly more accidents than that with more than 10 daily MR examinations (p<0.01). The main mental factors of the accidents were considered to be "prejudice" and "carelessness" but some advocate "ignorance." Though we could not find significant reduction in the institutes that have lectures and training for MR safety, we should continue lectures and training for MR safety to reduce accidents due to "ignorance."

  18. Neutron scattering studies of short-range order, atomic displacements, and effective pair interactions in a null-matrix Ni0.5262Pt0.48 crystal

    NASA Astrophysics Data System (ADS)

    Rodriguez, J. A.; Moss, S. C.; Robertson, J. L.; Copley, J. R. D.; Neumann, D. A.; Major, J.

    2006-09-01

    The best known exception to the Heine-Sampson and Bieber-Gauthier arguments for ordering effects in transition metal alloys (similar to the Hume-Rothery rules) is a NiPt alloy, whose phase diagram is similar to that of the CuAu system. Using neutron scattering we have investigated the local atomic order in a null-matrix Ni0.5262Pt0.48 single crystal. In a null-matrix alloy, the isotopic composition is adjusted so that the average neutron scattering length vanishes ( Ni62 has a negative scattering length nearly equal in magnitude to that of Pt). Consequently, all contributions to the total scattering depending on the average lattice are suppressed. The only remaining components of the elastic scattering are the short-range order (SRO) and size effect terms. These data permit the extraction of the SRO parameters (concentration-concentration correlations) as well as the displacement parameters (concentration-displacement correlations). Using the Krivoglaz-Clapp-Moss theory, we obtain the effective pair interactions (EPIs) between near neighbors in the alloy. The results can be used by theorists to model the alloy in the context of the electronic theory of alloy phase stability, including a preliminary evaluation of the local species-dependent displacements. Our maps of V(q) , the Fourier transform of the EPIs, show very similar shapes in the experimental and reconstructed data. This is of importance when comparing to electronic structure calculations.

  19. Superradiance in a Large and Dilute Cloud of Cold Atoms in the Linear-Optics Regime

    NASA Astrophysics Data System (ADS)

    Araújo, Michelle O.; Krešić, Ivor; Kaiser, Robin; Guerin, William

    2016-08-01

    Superradiance has been extensively studied in the 1970s and 1980s in the regime of superfluorescence, where a large number of atoms are initially excited. Cooperative scattering in the linear-optics regime, or "single-photon superradiance," has been investigated much more recently, and superradiant decay has also been predicted, even for a spherical sample of large extent and low density, where the distance between atoms is much larger than the wavelength. Here, we demonstrate this effect experimentally by directly measuring the decay rate of the off-axis fluorescence of a large and dilute cloud of cold rubidium atoms after the sudden switch off of a low-intensity laser driving the atomic transition. We show that, at large detuning, the decay rate increases with the on-resonance optical depth. In contrast to forward scattering, the superradiant decay of off-axis fluorescence is suppressed near resonance due to attenuation and multiple-scattering effects.

  20. A vision-based system for measuring the displacements of large structures: Simultaneous adaptive calibration and full motion estimation

    NASA Astrophysics Data System (ADS)

    Santos, C. Almeida; Costa, C. Oliveira; Batista, J.

    2016-05-01

    The paper describes a kinematic model-based solution to estimate simultaneously the calibration parameters of the vision system and the full-motion (6-DOF) of large civil engineering structures, namely of long deck suspension bridges, from a sequence of stereo images captured by digital cameras. Using an arbitrary number of images and assuming a smooth structure motion, an Iterated Extended Kalman Filter is used to recursively estimate the projection matrices of the cameras and the structure full-motion (displacement and rotation) over time, helping to meet the structure health monitoring fulfilment. Results related to the performance evaluation, obtained by numerical simulation and with real experiments, are reported. The real experiments were carried out in indoor and outdoor environment using a reduced structure model to impose controlled motions. In both cases, the results obtained with a minimum setup comprising only two cameras and four non-coplanar tracking points, showed a high accuracy results for on-line camera calibration and structure full motion estimation.

  1. Simultaneous piston position and tilt angle sensing for large vertical displacement micromirrors by frequency detection inductive sensing

    NASA Astrophysics Data System (ADS)

    Tseng, V. F.-G.; Xie, H.

    2015-11-01

    This paper presents a frequency detection based inductive eddy current sensing mechanism to simultaneously sense the piston position and tilt angle of the mirror plate of large vertical displacement micromirrors that exhibit piston scan ranges above 100 μm. This is accomplished by sensing the inductance change, and thus resonant frequency shift, of two microfabricated sensing coils packaged underneath the mirror plate. For demonstration purpose, the coils were paired with discrete circuit components to oscillate at 11.9 MHz and 12.5 MHz, respectively. The piston position and tilt angle of the mirror plate could be simultaneously monitored over a 500 μm piston scan range, achieving a maximum piston sensitivity of 4.15 kHz/μm with a piston sensing resolution of 96 nm and a maximum tilt angle sensitivity of 60.5 kHz/° with a tilt angle sensing resolution of 0.0013°. Analytical modeling of the coil inductance change via image theory was also conducted, showing that the sensor sensitivity and resolution could be improved by increasing the coil oscillation frequency and decreasing the coil size.

  2. Optimal size, shape, and control design in dynamics of planar frame structures under large displacements and rotations

    NASA Astrophysics Data System (ADS)

    Gams, M.; Saje, M.; Planinc, I.; Kegl, M.

    2010-01-01

    Size, shape, and drive optimization procedures are combined with an energy-conserving time-integration scheme for the dynamic analysis of planar geometrically non-linear frame structures undergoing large overall motions. The solution method is based on the finite-element formulation, employing the classical displacement-based planar beam finite elements described in an inertial frame. Finite axial, bending, and shear strains are taken into account. If the system is conservative, the energy and momenta conservation in the discrete system during motion is guaranteed. Size, shape, and drive design variables are introduced into the model. Shape parameterization is achieved by the design element technique, using Bezier patches. The sensitivity analysis is performed by the discrete approach and the analytical direct differentiation method. A gradient-based optimization method, using an automatically adjustable convex approximation technique, is employed. The efficiency and the applicability of the approach are demonstrated via numerical examples. The shape and the driving function of a load-moving robot arm are optimized to reduce oscillations in its final position. The shape of a steel frame is optimized to reduce oscillations after an idealized ground motion jerk.

  3. Atomic displacements and lattice distortion in the magnetic-field-induced charge-ordered state of SmRu4P12

    NASA Astrophysics Data System (ADS)

    Matsumura, Takeshi; Michimura, Shinji; Inami, Toshiya; Fushiya, Kengo; Matsuda, Tatsuma D.; Higashinaka, Ryuji; Aoki, Yuji; Sugawara, Hitoshi

    2016-11-01

    Structural properties of SmRu4P12 in the anomalous magnetic ordered phase between T*˜14 K and TN=16.5 K in magnetic fields has been studied by x-ray diffraction. Atomic displacements of Ru and P, reflecting the field-induced charge order of the p electrons, have been deduced by analyzing the intensities of the forbidden Bragg peaks, assuming a cubic space group P m 3 ¯ . Also, by utilizing a high-resolution x-ray diffraction experiment, we observed a splitting of fundamental Bragg peaks, clarifying that the unit cell in the magnetic ordered phase is rhombohedral elongated along the [1 1 1 ] axis. The response of the rhombohedral domains to the magnetic field, which reflects the direction of the magnetic moment, is studied in detail.

  4. Design and fabrication of a high-aspect-ratio parylene-based comb-drive actuator for large displacements at a low driving force

    NASA Astrophysics Data System (ADS)

    Kuo, Wen-Cheng; Chen, Chen-Wei; Liu, Chih-Ming

    2013-06-01

    This paper presents a comb-drive actuator integrated with parylene-based flexible beams for large displacements at a low driving force. Single-crystal silicon and polysilicon are the traditional materials used for comb-drive actuators in the microeletromechanical systems industry. However, the larger Young's modulus limits the displacement at a low applied voltage. This study uses the parylene beams with the characteristic of a low modulus of the elastic comb-drive actuator as a compliant suspension to create a larger displacement (>50 µm) with smaller driving forces than that of silicon. High-aspect-ratio parylene beams can be fabricated through the deposition and removal of parylene in multiple stages on a silicon micro-trench. The proposed process uses a silicon-on-insulator wafer as the substrate to fabricate suspended silicon and parylene beams as rigid and compliant structures, respectively. The test devices of parylene- and silicon-based comb-drive actuators were fabricated with 100 pairs of comb fingers with gaps of 5 µm, and compliant beams of 15 µm in width, 2000 µm in span and 50 µm in thickness. When a driving voltage of 40 V dc was applied, the parylene-based comb-drive actuator generated a displacement of up to 55 µm, whereas the silicon-based comb-drive actuator generated a displacement of 2 µm. The parylene-based comb-drive actuator can generate about 27 times of displacement than that of silicon. This design is suitable for application in devices with large in-plane displacement and low switching speed.

  5. Subpicometer-scale atomic displacements and magnetic properties in the oxygen-isotope substituted multiferroic DyMn O3

    NASA Astrophysics Data System (ADS)

    Narayanan, N.; Graham, P. J.; Reynolds, N.; Li, F.; Rovillain, P.; Hester, J.; Kimpton, J.; Yethiraj, M.; McIntyre, G. J.; Hutchison, W. D.; Ulrich, C.

    2017-02-01

    We have investigated DyMn O163 and its isotopically substituted counterpart DyMn O183 by neutron powder diffraction, x-ray diffraction, and heat capacity measurements to investigate the mechanism leading to its magnetically induced electric polarization. 18O isotope substitution does not influence the magnetic ordering temperature of the Mn ions TN ,Mn or the multiferroic ordering temperature Tl coinciding with the onset of the spin spiral phase; however, it does reduce the ordering temperature of Dy into its incommensurate magnetic state TN ,Dy from 7.0(1) K to 5.9(1) K. The temperature dependence of the magnetic propagation vector, qIC, changes with 18O substitution, while Tl remains almost constant, independent of qIC. Pronounced changes in the lattice parameters occur at the various phase transitions. Furthermore, distinct subpicometer-scale distortions of the Mn O6 octahedra and displacements of the Dy ions are observed below the ferroelectric phase transition at Tl in both samples, pointing toward the mechanism for electric polarization and its coupling to the orbital degrees of freedom.

  6. A large displacement of the SXN motif of Cys115-modified penicillin-binding protein 5 from Escherichia coli

    PubMed Central

    2005-01-01

    Penicillin-binding proteins (PBPs), which are the lethal targets of β-lactam antibiotics, catalyse the final stages of peptidoglycan biosynthesis of the bacterial cell wall. PBP 5 of Escherichia coli is a D-alanine CPase (carboxypeptidase) that has served as a useful model to elucidate the catalytic mechanism of low-molecular-mass PBPs. Previous studies have shown that modification of Cys115 with a variety of reagents results in a loss of CPase activity and a large decrease in the rate of deacylation of the penicilloyl–PBP 5 complex [Tamura, Imae and Strominger (1976) J. Biol. Chem. 251, 414–423; Curtis and Strominger (1978) J. Biol. Chem. 253, 2584–2588]. The crystal structure of wild-type PBP 5 in which Cys115 fortuitously had formed a covalent adduct with 2-mercaptoethanol was solved at 2.0 Å (0.2 nm) resolution, and these results provide a structural rationale for how thiol-directed reagents lower the rate of deacylation. When compared with the structure of the unmodified wild-type enzyme, a major change in the architecture of the active site is observed. The two largest differences are the disordering of a loop comprising residues 74–90 and a shift in residues 106–111, which results in the displacement of Ser110 of the SXN active-site motif. These results support the developing hypothesis that the SXN motif of PBP 5, and especially Ser110, is intimately involved in the catalytic mechanism of deacylation. PMID:16038617

  7. Implementation of Shifted Periodic Boundary Conditions in the Large-Scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) Software

    DTIC Science & Technology

    2015-08-01

    Atomic /Molecular Massively Parallel Simulator (LAMMPS) Software by N Scott Weingarten and James P Larentzos Approved for...0687 ● AUG 2015 US Army Research Laboratory Implementation of Shifted Periodic Boundary Conditions in the Large-Scale Atomic /Molecular...Shifted Periodic Boundary Conditions in the Large-Scale Atomic /Molecular Massively Parallel Simulator (LAMMPS) Software 5a. CONTRACT NUMBER 5b

  8. Optically trapped atom interferometry using the clock transition of large 87Rb Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Altin, P. A.; McDonald, G.; Döring, D.; Debs, J. E.; Barter, T. H.; Close, J. D.; Robins, N. P.; Haine, S. A.; Hanna, T. M.; Anderson, R. P.

    2011-06-01

    We present a Ramsey-type atom interferometer operating with an optically trapped sample of 106 Bose-condensed 87Rb atoms. We investigate this interferometer experimentally and theoretically with an eye to the construction of future high precision atomic sensors. Our results indicate that, with further experimental refinements, it will be possible to produce and measure the output of a sub-shot-noise-limited, large atom number BEC-based interferometer. The optical trap allows us to couple the |F=1, mF=0rang→|F=2, mF=0rang clock states using a single photon 6.8 GHz microwave transition, while state selective readout is achieved with absorption imaging. We analyse the process of absorption imaging and show that it is possible to observe atom number variance directly, with a signal-to-noise ratio ten times better than the atomic projection noise limit on 106 condensate atoms. We discuss the technical and fundamental noise sources that limit our current system, and present theoretical and experimental results on interferometer contrast, de-phasing and miscibility.

  9. Control of light trapping in a large atomic system by a static magnetic field

    NASA Astrophysics Data System (ADS)

    Skipetrov, S. E.; Sokolov, I. M.; Havey, M. D.

    2016-07-01

    We propose to control light trapping in a large ensemble of cold atoms by an external, static magnetic field. For an appropriate choice of frequency and polarization of the exciting pulse, the field is expected to speed up the fluorescence of a dilute atomic system. In a dense ensemble, the field does not affect the early-time superradiant signal but amplifies intensity oscillations at intermediate times and induces a very slow, nonexponential long-time decay. The slowing down of fluorescence is due to the excitation of spatially localized collective atomic states that appear only under a strong magnetic field and have exponentially long lifetimes. Our results therefore pave a way towards experimental observation of the disorder-induced localization of light in cold atomic systems.

  10. Hydrogen transport diagnostics by atomic and molecular emission line profiles simultaneously measured for large helical device

    SciTech Connect

    Fujii, K.; Shikama, T.; Hasuo, M.; Goto, M.; Morita, S.

    2013-01-15

    We observe the Balmer-{alpha}, -{beta}, and -{gamma} lines of hydrogen atoms and Q branches of the Fulcher-{alpha} band of hydrogen molecules simultaneously with their polarization resolved for large helical device. From the fit including the line splits and the polarization dependences by the Zeeman effect, the emission locations, intensities, and the temperatures of the atoms and molecules are determined. The emission locations of the hydrogen atoms are determined outside but close to the last closed flux surface (LCFS). The results are consistent with a previous work (Phys. Plasmas 12, 042501 (2005)). On the other hand, the emission locations of the molecules are determined to be in the divertor legs, which is farer from those of the atoms. The kinetic energy of the atoms is 1 {approx} 20 eV, while the rotational temperature of molecules is {approx}0.04 eV. Additionally, substantial wings, which originate from high velocity atoms and are not reproduced by the conventional spectral analysis, are observed in the Balmer line profiles. We develop a one-dimensional model to simulate the transport of the atoms and molecules. The model reproduces the differences of the emission locations of the atoms and molecules when their initial temperatures are assumed to be 3 eV and 0.04 eV, respectively. From the model, the wings of the Balmer-{alpha} line is attributed to the high velocity atoms exist deep inside the LCFS, which are generated by the charge exchange collisions with hot protons there.

  11. Molecular Dynamics Simulations from SNL's Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)

    DOE Data Explorer

    Plimpton, Steve; Thompson, Aidan; Crozier, Paul

    LAMMPS (http://lammps.sandia.gov/index.html) stands for Large-scale Atomic/Molecular Massively Parallel Simulator and is a code that can be used to model atoms or, as the LAMMPS website says, as a parallel particle simulator at the atomic, meso, or continuum scale. This Sandia-based website provides a long list of animations from large simulations. These were created using different visualization packages to read LAMMPS output, and each one provides the name of the PI and a brief description of the work done or visualization package used. See also the static images produced from simulations at http://lammps.sandia.gov/pictures.html The foundation paper for LAMMPS is: S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J Comp Phys, 117, 1-19 (1995), but the website also lists other papers describing contributions to LAMMPS over the years.

  12. Studies concerning the effect of large droplets creation during fuel atomization

    NASA Astrophysics Data System (ADS)

    Beniuga, Marius; Mihai, Ioan

    2016-12-01

    This paper presents how to form and evolve atomized fuel droplets obtained experimentally for a high wear injector if the injection pressure is below nominal. The emergence and development of large droplet atomization phenomenon in spark-ignition engines are considered an undesirable phenomenon. The presence of large droplets of the atomized fuel leads to the deposition of substances on the surface of the injector nozzle of the spray in the areas of the intake valve and its seat aspects of oxides which give rise to these areas. In addition, there is the possibility of harm in larger quantities than the normal atomization, in which case the operation of the engine and becomes defective. For proper engine operating at the same time ensuring economy, injection equipment must provide a fuel pressure to the maximum prescribed. The article studied how faulty air mixture formation petrol deviations from uniformity is a due injectors waste can generate large drops of fuel. To conduct this study was conducted an experimental stand [1] which allows modification of the duration of injection and its cyclicality. To highlight the injector nozzle wear scans were performed by laser profilometry. Highlighting the large droplets of fuel was performed using rapid shootings.

  13. Design of a MEMS-based motion stage based on a lever mechanism for generating large displacements and forces

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Sik; Shi, Hongliang; Dagalakis, Nicholas G.; Gupta, Satyandra K.

    2016-09-01

    Conventional miniaturized motion stages have a volume of 50-60 cm3 and a range of motion around 100 μm. Micro-electro-mechanical systems (MEMS)-based motion stages have been good alternatives in some applications for small footprint, micron-level accuracy, and a lower cost. However, existing MEMS-based motion stages are able to provide a force of μN level, small displacements (less than tens of microns), and need additional features for practical applications like a probe or a stage. In this paper, a single degree of freedom motion stage is designed and analyzed for a larger displacement, a larger output force, a smaller out-of-plane deformation, and a bigger moving stage for further applications. For these purposes, the presented motion stage is designed with a thermal actuator, folded springs, and a lever, and it is experimentally characterized. Furthermore, three different types of flexure joints are investigated to characterize their capabilities and suitability to serve as the revolute joint of the lever: a beam, a cartwheel, and a butterfly flexure. The presented motion stage has a moving stage of 15 mm  ×  15 mm and shows a maximum displacement over 80 μm, and out-of-plane deformation under a weight of 120 μN less than 2 μm. The force generated by the actuator is estimated to be 68.6 mN.

  14. A Sheared Sill Triggers Large Flank Displacements at Piton de la Fournaise Volcano (Réunion Island)

    NASA Astrophysics Data System (ADS)

    Tridon, M.; Cayol, V.; Froger, J. L.; Augier, A.

    2015-12-01

    In April 2007, an eruption with an exceptional intensity occured 7 km southeast of the central cone of the Piton de la Fournaise (Réunion Island). ALOS and ENVISAT satellites recorded up to 1.4 meter of displacement towards the east, and a general subsidence up to 45 cm of the Eastern Flank of the volcano. This movement continued for more than one year after the end of the eruption. In this work, we address the Eastern Flank displacement during and after the April 2007 eruption by inverting post-eruptive InSAR data. Our purpose is twofold: assess the hazard associated to flank displacement and understand the origin of the distal location of the eruption. C-band ENVISAT interferograms from six different lines of sight were interpolated to cover a common period from May 2007 to July 2008. We combine a Mixed Boundary Element Method (MBEM) assuming linear elasticity of the edifice and a Neighborhood Algorithm to invert the surface displacement. The real topography is taken into account using a Digital Elevation Model. The fracture geometry is supposed to be a curved quadrangle. Linear parameters such as pressure and shear stress are also inverted. Inversion results show that a 5 by 8 km trapezoïdal fracture reproduces well the first order displacement of the Eastern Flank. The fracture is 500 to 1000 m deep with a low dip angle to the East. It links the summit cone to the eruptive fissure of April 2007 which corresponds to the expected magma path. The fracture is submitted to an eastward slip up to around 25 cm, and a closure up to 20 cm. To confirm the surprising result of a closure, we made an inversion with a version of MBEM where closure is forbidden and we tested a linear inversion of slip distribution on a fracture of the same geometry assuming an elastic half space. These inversions confirmed the closure and lead us to propose that the source of the April 2007 eruption is a sheared sill, which underwent closure in the post-eruptive period.

  15. Fission-fusion correlations for swelling and microstructure in stainless steels: effect of the helium-to-displacement-per-atom ratio

    SciTech Connect

    Odette, G.R.; Maziaz, P.J.; Spitznagel, J.A.

    1981-01-01

    The initial irradiated structural materials data base for fusion applications will be developed in fission reactors. Hence, this data may need to be adjusted using physically-based procedures to represent behavior in fusion environments, viz. - fission-fusion correlations. Such correlation should reflect a sound mechanistic understanding, and be verified in facilities which most closely simulate fusion conditions. In this paper we review the effects of only one of a number of potentially significant damage variables, the helium to displacement per atom ratio, on microstructural evolution in austenitic stainless steels. Dual-ion and helium preinjection data are analyzed to provide mechanistic guidance; these results appear to be qualitatively consistent with a more detailed comparison made between fast (EBR-II) and mixed (HFIR) spectrum neutron data for a single heat of 20% cold-worked 316 stainless steel. These two fission environments bound fusion (He/dpa ratios. A model calibrated to the fission reactor data is used to extrapolate to fusion conditions. Both the theory and broad empirical observation suggest that helium to dpa ratios have both a qualitative and quantitative influence on microstructural evolution; and that the very high and low ratios found in HFIR and EBR-II may not result in behavior which brackets intermediate fusion conditions.

  16. Comparison of void strengthening in fcc and bcc metals : large-scale atomic-level modelling.

    SciTech Connect

    Osetskiy, Yury N; Bacon, David J

    2005-01-01

    Strengthening due to voids can be a significant radiation effect in metals. Treatment of this by elasticity theory of dislocations is difficult when atomic structure of the obstacle and dislocation is influential. In this paper, we report results of large-scale atomic-level modelling of edge dislocation-void interaction in fcc (copper) and bcc (iron) metals. Voids of up to 5 nm diameter were studied over the temperature range from 0 to 600 K. We demonstrate that atomistic modelling is able to reveal important effects, which are beyond the continuum approach. Some arise from features of the dislocation core and crystal structure, others involve dislocation climb and temperature effects.

  17. Method for large-scale fabrication of atomic-scale structures on material surfaces using surface vacancies

    DOEpatents

    Lim, Chong Wee; Ohmori, Kenji; Petrov, Ivan Georgiev; Greene, Joseph E.

    2004-07-13

    A method for forming atomic-scale structures on a surface of a substrate on a large-scale includes creating a predetermined amount of surface vacancies on the surface of the substrate by removing an amount of atoms on the surface of the material corresponding to the predetermined amount of the surface vacancies. Once the surface vacancies have been created, atoms of a desired structure material are deposited on the surface of the substrate to enable the surface vacancies and the atoms of the structure material to interact. The interaction causes the atoms of the structure material to form the atomic-scale structures.

  18. Novel Applications of Buffer-gas Cooling to Cold Atoms, Diatomic Molecules, and Large Molecules

    NASA Astrophysics Data System (ADS)

    Drayna, Garrett Korda

    Cold gases of atoms and molecules provide a system for the exploration of a diverse set of physical phenomena. For example, cold gasses of magnetically and electrically polar atoms and molecules are ideal systems for quantum simulation and quantum computation experiments, and cold gasses of large polar molecules allow for novel spectroscopic techniques. Buffer-gas cooling is a robust and widely applicable method for cooling atoms and molecules to temperatures of approximately 1 Kelvin. In this thesis, I present novel applications of buffer-gas cooling to obtaining gases of trapped, ultracold atoms and diatomic molecules, as well as the study of the cooling of large organic molecules. In the first experiment of this thesis, a buffer-gas beam source of atoms is used to directly load a magneto-optical trap. Due to the versatility of the buffer-gas beam source, we obtain trapped, sub-milliKelvin gases of four different lanthanide species using the same experimental apparatus. In the second experiment of this thesis, a buffer-gas beam is used as the initial stage of an experiment to directly laser cool and magneto-optically trap the diatomic molecule CaF. In the third experiment of this thesis, buffer-gas cooling is used to study the cooling of the conformational state of large organic molecules. We directly observe conformational relaxation of gas-phase 1,2-propanediol due to cold collisions with helium gas. Lastly, I present preliminary results on a variety of novel applications of buffer-gas cooling, such as mixture analysis, separation of chiral mixtures, the measurement of parity-violation in chiral molecules, and the cooling and spectroscopy of highly unstable reaction intermediates.

  19. Inhibition of clot formation in deterministic lateral displacement arrays for processing large volumes of blood for rare cell capture.

    PubMed

    D'Silva, Joseph; Austin, Robert H; Sturm, James C

    2015-05-21

    Microfluidic deterministic lateral displacement (DLD) arrays have been applied for fractionation and analysis of cells in quantities of ~100 μL of blood, with processing of larger quantities limited by clogging in the chip. In this paper, we (i) demonstrate that this clogging phenomenon is due to conventional platelet-driven clot formation, (ii) identify and inhibit the two dominant biological mechanisms driving this process, and (iii) characterize how further reductions in clot formation can be achieved through higher flow rates and blood dilution. Following from these three advances, we demonstrate processing of 14 mL equivalent volume of undiluted whole blood through a single DLD array in 38 minutes to harvest PC3 cancer cells with ~86% yield. It is possible to fit more than 10 such DLD arrays on a single chip, which would then provide the capability to process well over 100 mL of undiluted whole blood on a single chip in less than one hour.

  20. Simulation approach of atomic layer deposition in large 3D structures

    NASA Astrophysics Data System (ADS)

    Schwille, Matthias C.; Barth, Jonas; Schössler, Timo; Schön, Florian; Bartha, Johann W.; Oettel, Martin

    2017-04-01

    We present a new simulation method predicting thicknesses of thin films obtained by atomic layer deposition in high aspect ratio 3D geometries as they appear in MEMS manufacturing. The method features a Monte-Carlo computation of film deposition in free molecular flow, as well as in the Knudsen and diffusive gas regime, applicable for large structures. We compare our approach to analytic and simulation results from the literature. The capability of the method is demonstrated by a comparison to experimental film thicknesses in a large 3D structure. Finally, the feasability to extract process parameters, i.e. sticking coefficients is shown.

  1. Atoms and quantum dots with a large number of electrons: The ground-state energy

    SciTech Connect

    Kunz, Herve; Rueedi, Rico

    2010-03-15

    We compute the ground-state energy of atoms and quantum dots with a large number N of electrons. Both systems are described by a nonrelativistic Hamiltonian of electrons in a d-dimensional space. The electrons interact via the Coulomb potential. In the case of atoms (d=3), the electrons are attracted by the nucleus via the Coulomb potential. In the case of quantum dots (d=2), the electrons are confined by an external potential, whose shape can be varied. We show that the dominant terms of the ground-state energy are those given by a semiclassical Hartree-exchange energy, whose N{yields}{infinity} limit corresponds to Thomas-Fermi theory. This semiclassical Hartree-exchange theory creates oscillations in the ground-state energy as a function of N. These oscillations reflect the dynamics of a classical particle moving in the presence of the Thomas-Fermi potential. The dynamics is regular for atoms and some dots, but in general in the case of dots, the motion contains a chaotic component. We compute the correlation effects. They appear at the order NlnN for atoms, in agreement with available data. For dots, they appear at the order N.

  2. Large-Area Atomic Oxygen Facility Used to Clean Fire-Damaged Artwork

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; Banks, Bruce A.; Steuber, Thomas J.; Sechkar, Edward A.

    2000-01-01

    In addition to completely destroying artwork, fires in museums and public buildings can soil a displayed artwork with so much accumulated soot that it can no longer be used for study or be enjoyed by the public. In situations where the surface has not undergone extensive charring or melting, restoration can be attempted. However, soot deposits can be very difficult to remove from some types of painted surfaces, particularly when the paint is fragile or flaking or when the top surface of the paint binder has been damaged. Restoration typically involves the use of organic solvents to clean the surface, but these solvents may cause the paint layers to swell or leach out. Also, immersion of the surface or swabbing during solvent cleaning may move or remove pigment through mechanical contact, especially if the fire damage extends into the paint binder. A noncontact technique of removing organic deposits from surfaces was developed out of NASA research on the effects of oxygen atoms on various materials. Atomic oxygen is present in the atmosphere surrounding the Earth at the altitudes where satellites typically orbit. It can react chemically with surface coatings or deposits that contain carbon. In the reaction, the carbon is converted to carbon monoxide and some carbon dioxide. Water vapor is also a byproduct of the reaction if the surface contains carbon-hydrogen bonds. To study this reaction, NASA developed Earth-based facilities to produce atomic oxygen for material exposure and testing. A vacuum facility designed and built by the Electro-Physics Branch of the NASA Glenn Research Center at Lewis Field to provide atomic oxygen over a large area for studying reactions in low Earth orbit has been used to successfully clean several full-size paintings. (This facility can accommodate paintings up to 1.5 by 2.1 m. The atomic oxygen plasma is produced between two large parallel aluminum plates using a radiofrequency power source operating at roughly 400 W. Atomic oxygen is

  3. Identifying a large landslide with small displacements in a zone of coseismic tectonic deformation; the Villa Del Monte landslide triggered by the 1989 Loma Prieta, California, earthquake

    USGS Publications Warehouse

    Keefer, David K.; Harp, Edwin L.; Griggs, Gary B.; Evans, Stephen G.; DeGraff, Jerome V.

    2002-01-01

    The Villa Del Monte landslide was one of 20 large and complex landslides triggered by the 1989 LomaPrieta, California, earthquake in a zone of pervasive coseismicground cracking near the fault rupture. The landslide was approximately 980 m long, 870 m wide, and encompassed an area of approximately 68 ha. Drilling data suggested that movement may have extended to depths as great as 85 m below the ground surface. Even though the landslide moved <1 m, it caused substantial damage to numerous dwellings and other structures, primarily as a result of differential displacements and internal Assuring. Surface cracks, scarps, and compression features delineating the Villa Del Monte landslide were discontinuous, probably because coseismic displacements were small; such discontinuous features were also characteristic of the other large, coseismic landslides in the area, which also moved only short distances during the earthquake. Because features marking landslide boundaries were discontinuous and because other types of coseismic ground cracks were widespread in the area, identification of the landslides required detailed mapping and analysis. Recognition that landslides such as that at Villa Del Monte may occur near earthquake-generating fault ruptures should aid in future hazard evaluations of areas along active faults.

  4. Large-scale quantum transport calculations for electronic devices with over ten thousand atoms

    NASA Astrophysics Data System (ADS)

    Lu, Wenchang; Lu, Yan; Xiao, Zhongcan; Hodak, Miro; Briggs, Emil; Bernholc, Jerry

    The non-equilibrium Green's function method (NEGF) has been implemented in our massively parallel DFT software, the real space multigrid (RMG) code suite. Our implementation employs multi-level parallelization strategies and fully utilizes both multi-core CPUs and GPU accelerators. Since the cost of the calculations increases dramatically with the number of orbitals, an optimal basis set is crucial for including a large number of atoms in the ``active device'' part of the simulations. In our implementation, the localized orbitals are separately optimized for each principal layer of the device region, in order to obtain an accurate and optimal basis set. As a large example, we calculated the transmission characteristics of a Si nanowire p-n junction. The nanowire is along (110) direction in order to minimize the number dangling bonds that are saturated by H atoms. Its diameter is 3 nm. The length of 24 nm is necessary because of the long-range screening length in Si. Our calculations clearly show the I-V characteristics of a diode, i.e., the current increases exponentially with forward bias and is near zero with backward bias. Other examples will also be presented, including three-terminal transistors and large sensor structures.

  5. Large-scale chemical assembly of atomically thin transistors and circuits

    NASA Astrophysics Data System (ADS)

    Zhao, Mervin; Ye, Yu; Han, Yimo; Xia, Yang; Zhu, Hanyu; Wang, Siqi; Wang, Yuan; Muller, David A.; Zhang, Xiang

    2016-11-01

    Next-generation electronics calls for new materials beyond silicon, aiming at increased functionality, performance and scaling in integrated circuits. In this respect, two-dimensional gapless graphene and semiconducting transition-metal dichalcogenides have emerged as promising candidates due to their atomic thickness and chemical stability. However, difficulties with precise spatial control during their assembly currently impede actual integration into devices. Here, we report on the large-scale, spatially controlled synthesis of heterostructures made of single-layer semiconducting molybdenum disulfide contacting conductive graphene. Transmission electron microscopy studies reveal that the single-layer molybdenum disulfide nucleates at the graphene edges. We demonstrate that such chemically assembled atomic transistors exhibit high transconductance (10 µS), on-off ratio (˜106) and mobility (˜17 cm2 V-1 s-1). The precise site selectivity from atomically thin conducting and semiconducting crystals enables us to exploit these heterostructures to assemble two-dimensional logic circuits, such as an NMOS inverter with high voltage gain (up to 70).

  6. Modeling optical properties of silicon clusters by first principles: From a few atoms to large nanocrystals

    SciTech Connect

    Nurbawono, Argo; Liu, Shuanglong; Zhang, Chun

    2015-04-21

    Time dependent density functional tight binding (TDDFTB) method is implemented with sparse matrix techniques and improved parallelization algorithms. The method is employed to calculate the optical properties of various Si nanocrystals (NCs). The calculated light absorption spectra of small Si NCs from TDDFTB were found to be comparable with many body perturbation methods utilizing planewave basis sets. For large Si NCs (more than a thousand atoms) that are beyond the reach of conventional approaches, the TDDFTB method is able to produce reasonable results that are consistent with prior experiments. We also employed the method to study the effects of surface chemistry on the optical properties of large Si NCs. We learned that the optical properties of Si NCs can be manipulated with small molecule passivations such as methyl, hydroxyl, amino, and fluorine. In general, the shifts and profiles in the absorption spectra can be tuned with suitably chosen passivants.

  7. Charge-screening role of c-axis atomic displacements in YBa2Cu3O6+x and related superconductors

    SciTech Connect

    E. S. Bozin; Huq, A.; Shen, Bing; Claus, H.; Kwok, W. K.; Tranquada, J. M.

    2016-02-29

    Here, the importance of charge reservoir layers for supplying holes to the CuO2 planes of cuprate superconductors has long been recognized. Less attention has been paid to the screening of the charge transfer by the intervening ionic layers. We address this issue in the case of YBa2Cu3O6+x, where CuO chains supply the holes for the planes. We present a simple dielectric-screening model that gives a linear correlation between the relative displacements of ions along the c axis, determined by neutron powder diffraction, and the hole density of the planes. Applying this model to the temperature-dependent shifts of ions along the c axis, we infer a charge transfer of 5–10% of the hole density from the planes to the chains on warming from the superconducting transition to room temperature. Given the significant coupling of c-axis displacements to the average charge density, we point out the relevance of local displacements for screening charge modulations and note recent evidence for dynamic screening of in-plane quasiparticles. This line of argument leads us to a simple model for atomic displacements and charge modulation that is consistent with images from scanning-tunneling microscopy for underdoped Bi2Sr2CaCu2O8+δ.

  8. Simultaneous in-plane and out-of-plane displacement measurement based on a dual-camera imaging system and its application to inspection of large-scale space structures

    NASA Astrophysics Data System (ADS)

    Ri, Shien; Tsuda, Hiroshi; Yoshida, Takeshi; Umebayashi, Takashi; Sato, Akiyoshi; Sato, Eiichi

    2015-07-01

    Optical methods providing full-field deformation data have potentially enormous interest for mechanical engineers. In this study, an in-plane and out-of-plane displacement measurement method based on a dual-camera imaging system is proposed. The in-plane and out-of-plane displacements are determined simultaneously using two measured in-plane displacement data observed from two digital cameras at different view angles. The fundamental measurement principle and experimental results of accuracy confirmation are presented. In addition, we applied this method to the displacement measurement in a static loading and bending test of a solid rocket motor case (CFRP material; 2.2 m diameter and 2.3 m long) for an up-to-date Epsilon rocket developed by JAXA. The effectiveness and measurement accuracy is confirmed by comparing with conventional displacement sensor. This method could be useful to diagnose the reliability of large-scale space structures in the rocket development.

  9. A blasting agent having unusually low velocity and producing unusually low ground vibration and large burden displacement

    SciTech Connect

    Coursen, D.L.

    1994-12-31

    Detonation propagates in the subject blasting agent at about 2.7 km/sec when it is heavily primed but explosion propagates in it at only about 0.43 km/sec when it is lightly primed. When propagating at 0.43 km/sec, it produces a borehole pressure that is slightly less than 1 kb, but no yellow fumes or other sign of incomplete reaction. It is a pumped AN/emulsion blend to which additional water is added by circumferential injection at the inlet of the hose through which it is pumped. This composition, when lightly primed, belongs to a new class of blasting agents which have promise for use in the following situations: where maximum throw of the burden at fixed powder factor is desired, as in coal stripping; where fixed throw at minimum powder factor is desired, as in quarry-blasting of well-jointed rock; where a clean and stable remaining face is required; where armor stone is to be produced from rock having large, competent blocks in place; or where heavy blasting is to be done at locations where ground vibration is a problem.

  10. Apparent Dependence of Rate- and State-Dependent Friction Parameters on Loading Velocity and Cumulative Displacement Inferred from Large-Scale Biaxial Friction Experiments

    NASA Astrophysics Data System (ADS)

    Urata, Yumi; Yamashita, Futoshi; Fukuyama, Eiichi; Noda, Hiroyuki; Mizoguchi, Kazuo

    2016-11-01

    We investigated the constitutive parameters in the rate- and state-dependent friction (RSF) law by conducting numerical simulations, using the friction data from large-scale biaxial rock friction experiments for Indian metagabbro. The sliding surface area was 1.5 m long and 0.5 m wide, slid for 400 s under a normal stress of 1.33 MPa at a loading velocity of either 0.1 or 1.0 mm/s. During the experiments, many stick-slips were observed and those features were as follows. (1) The friction drop and recurrence time of the stick-slip events increased with cumulative slip displacement in an experiment before which the gouges on the surface were removed, but they became almost constant throughout an experiment conducted after several experiments without gouge removal. (2) The friction drop was larger and the recurrence time was shorter in the experiments with faster loading velocity. We applied a one-degree-of-freedom spring-slider model with mass to estimate the RSF parameters by fitting the stick-slip intervals and slip-weakening curves measured based on spring force and acceleration of the specimens. We developed an efficient algorithm for the numerical time integration, and we conducted forward modeling for evolution parameters (b) and the state-evolution distances (L_{c} ), keeping the direct effect parameter (a) constant. We then identified the confident range of b and L_{c} values. Comparison between the results of the experiments and our simulations suggests that both b and L_{c} increase as the cumulative slip displacement increases, and b increases and L_{c} decreases as the loading velocity increases. Conventional RSF laws could not explain the large-scale friction data, and more complex state evolution laws are needed.

  11. Large-displacement, hydrothermal frictional properties of DFDP-1 fault rocks, Alpine Fault, New Zealand: Implications for deep rupture propagation.

    PubMed

    Niemeijer, A R; Boulton, C; Toy, V G; Townend, J; Sutherland, R

    2016-02-01

    The Alpine Fault, New Zealand, is a major plate-bounding fault that accommodates 65-75% of the total relative motion between the Australian and Pacific plates. Here we present data on the hydrothermal frictional properties of Alpine Fault rocks that surround the principal slip zones (PSZ) of the Alpine Fault and those comprising the PSZ itself. The samples were retrieved from relatively shallow depths during phase 1 of the Deep Fault Drilling Project (DFDP-1) at Gaunt Creek. Simulated fault gouges were sheared at temperatures of 25, 150, 300, 450, and 600°C in order to determine the friction coefficient as well as the velocity dependence of friction. Friction remains more or less constant with changes in temperature, but a transition from velocity-strengthening behavior to velocity-weakening behavior occurs at a temperature of T = 150°C. The transition depends on the absolute value of sliding velocity as well as temperature, with the velocity-weakening region restricted to higher velocity for higher temperatures. Friction was substantially lower for low-velocity shearing (V < 0.3 µm/s) at 600°C, but no transition to normal stress independence was observed. In the framework of rate-and-state friction, earthquake nucleation is most likely at an intermediate temperature of T = 300°C. The velocity-strengthening nature of the Alpine Fault rocks at higher temperatures may pose a barrier for rupture propagation to deeper levels, limiting the possible depth extent of large earthquakes. Our results highlight the importance of strain rate in controlling frictional behavior under conditions spanning the classical brittle-plastic transition for quartzofeldspathic compositions.

  12. Large-area thermoelectric high-aspect-ratio nanostructures by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Ruoho, Mikko; Juntunen, Taneli; Tittonen, Ilkka

    2016-09-01

    We report on the thermoelectric properties of large-area high-aspect-ratio nanostructures. We fabricate the structures by atomic layer deposition of conformal ZnO thin films on track-etched polycarbonate substrate. The resulting structure consists of ZnO tubules which continue through the full thickness of the substrate. The electrical and thermal properties of the structures are studied both in-plane and out-of-plane. They exhibit very low out-of-plane thermal conductivity down to 0.15 W m-1 K-1 while the in-plane sheet resistance of the films was found to be half that of the same film on glass substrate, allowing material-independent doubling of output power of any planar thin-film thermoelectric generator. The wall thickness of the fabricated nanotubes was varied within a range of up to 100 nm. The samples show polycrystalline nature with (002) preferred crystal orientation.

  13. An atomic-absorption method for the determination of gold in large samples of geologic materials

    USGS Publications Warehouse

    VanSickle, Gordon H.; Lakin, Hubert William

    1968-01-01

    A laboratory method for the determination of gold in large (100-gram) samples has been developed for use in the study of the gold content of placer deposits and of trace amounts of gold in other geologic materials. In this method the sample is digested with bromine and ethyl ether, the gold is extracted into methyl isobutyl ketone, and the determination is made by atomicabsorption spectrophotometry. The lower limit of detection is 0.005 part per million in the sample. The few data obtained so far by this method agree favorably with those obtained by assay and by other atomic-absorption methods. About 25 determinations can be made per man-day.

  14. Extreme ultraviolet spectroscopy and atomic models of highly charged heavy ions in the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Suzuki, C.; Murakami, I.; Koike, F.; Tamura, N.; Sakaue, H. A.; Morita, S.; Goto, M.; Kato, D.; Ohashi, H.; Higashiguchi, T.; Sudo, S.; O'Sullivan, G.

    2017-01-01

    We report recent results of extreme ultraviolet (EUV) spectroscopy of highly charged heavy ions in plasmas produced in the Large Helical Device (LHD). The LHD is an ideal source of experimental databases of EUV spectra because of high brightness and low opacity, combined with the availability of pellet injection systems and reliable diagnostic tools. The measured heavy elements include tungsten, tin, lanthanides and bismuth, which are motivated by ITER as well as a variety of plasma applications such as EUV lithography and biological microscopy. The observed spectral features drastically change between quasicontinuum and discrete depending on the plasma temperature, which leads to some new experimental identifications of spectral lines. We have developed collisional-radiative models for some of these ions based on the measurements. The atomic number dependence of the spectral feature is also discussed.

  15. Hydrogen atom temperature measured with wavelength-modulated laser absorption spectroscopy in large scale filament arc negative hydrogen ion source

    SciTech Connect

    Nakano, H. Goto, M.; Tsumori, K.; Kisaki, M.; Ikeda, K.; Nagaoka, K.; Osakabe, M.; Takeiri, Y.; Kaneko, O.; Nishiyama, S.; Sasaki, K.

    2015-04-08

    The velocity distribution function of hydrogen atoms is one of the useful parameters to understand particle dynamics from negative hydrogen production to extraction in a negative hydrogen ion source. Hydrogen atom temperature is one of the indicators of the velocity distribution function. To find a feasibility of hydrogen atom temperature measurement in large scale filament arc negative hydrogen ion source for fusion, a model calculation of wavelength-modulated laser absorption spectroscopy of the hydrogen Balmer alpha line was performed. By utilizing a wide range tunable diode laser, we successfully obtained the hydrogen atom temperature of ∼3000 K in the vicinity of the plasma grid electrode. The hydrogen atom temperature increases as well as the arc power, and becomes constant after decreasing with the filling of hydrogen gas pressure.

  16. Nano-scale displacement sensing based on van der Waals interactions.

    PubMed

    Hu, Lin; Zhao, Jin; Yang, Jinlong

    2015-05-21

    We propose that a nano-scale displacement sensor with high resolution in weak-force systems can be realized based on vertically stacked two-dimensional (2D) atomic corrugated layer materials bound through van der Waals (vdW) interactions. Using first-principles calculations, we found that the electronic structures of bi-layer blue phosphorus (BLBP) vary appreciably with lateral and vertical interlayer displacements. The variation of the electronic structure is attributed to the change of the interlayer distance dz for both the lateral and vertical displacement. For lateral displacement, the change of dz is induced by atomic layer corrugation. Despite the different stacking configurations of BLBP, we find that the change of the indirect band gap is proportional to dz(-2). Furthermore, this dz(-2) dependence is found to be applicable to other graphene-like corrugated bi-layer materials such as MoS2. BLBP represents a large family of bi-layer 2D atomic corrugated materials for which the electronic structure is sensitive to the interlayer vertical and lateral displacement, and thus could be used for a nano-scale displacement sensor. This can be done by monitoring the tunable electronic structure using absorption spectroscopy. Because this type of sensor is established on atomic layers coupled through vdW interactions, it provides unique applications in the measurements of nano-scale displacement induced by tiny external forces.

  17. Large extrinsic spin Hall effect in Au-Cu alloys by extensive atomic disorder scattering

    NASA Astrophysics Data System (ADS)

    Zou, L. K.; Wang, S. H.; Zhang, Y.; Sun, J. R.; Cai, J. W.; Kang, S. S.

    2016-01-01

    Spin Hall angle, which denotes the conversion efficiency between spin and charge current, is a key parameter in the pure spin current phenomenon. The search for materials with large spin Hall angle is indeed important for scientific interest and potential application in spintronics. Here the large enhanced spin Hall effect (SHE) of Au-Cu alloy is reported by investigating the spin Seebeck effect, spin Hall anomalous Hall effect, and spin Hall magnetoresistance of the Y3F e5O12 (YIG)/A uxC u1 -x hybrid structure over the full composition. At the near equiatomic Au-Cu composition with maximum atomic disorder scattering, the spin Hall angle of the Au-Cu alloy increases by two to three times together with a moderate spin diffusion length in comparison with Au. The longitudinal spin Seebeck voltage and the spin Hall magnetoresistance ratio also increase by two to three times. More importantly, no evidence of anomalous Hall effect is observed in all YIG/Au-Cu samples, in contrast to the cases of other giant SHE materials Pt(Pd), Ta, and W. This behavior makes Au-Cu free from any suspicion of the magnetic proximity effect involved in the hybrid structure, and thus the Au-Cu alloy can be an ideal material for pure spin current study.

  18. Measuring vulnerability to disaster displacement

    NASA Astrophysics Data System (ADS)

    Brink, Susan A.; Khazai, Bijan; Power, Christopher; Wenzel, Friedemann

    2015-04-01

    Large scale disasters can cause devastating impacts in terms of population displacement. Between 2008 and 2013, on average 27 million people were displaced annually by disasters (Yonetani 2014). After large events such as hurricane Katrina or the Port-au-Prince earthquake, images of inadequate public shelter and concerns about large scale and often inequitable migration have been broadcast around the world. Population displacement can often be one of the most devastating and visible impacts of a natural disaster. Despite the importance of population displacement in disaster events, measures to understand the socio-economic vulnerability of a community often use broad metrics to estimate the total socio-economic risk of an event rather than focusing on the specific impacts that a community faces in a disaster. Population displacement is complex and multi-causal with the physical impact of a disaster interacting with vulnerability arising from the response, environmental issues (e.g., weather), cultural concerns (e.g., expectations of adequate shelter), and many individual factors (e.g., mobility, risk perception). In addition to the complexity of the causes, population displacement is difficult to measure because of the wide variety of different terms and definitions and its multi-dimensional nature. When we speak of severe population displacement, we may refer to a large number of displaced people, an extended length of displacement or associated difficulties such as poor shelter quality, risk of violence and crime in shelter communities, discrimination in aid, a lack of access to employment or other difficulties that can be associated with large scale population displacement. We have completed a thorough review of the literature on disaster population displacement. Research has been conducted on historic events to understand the types of negative impacts associated with population displacement and also the vulnerability of different groups to these impacts. We

  19. Semi-automated high-throughput fluorescent intercalator displacement-based discovery of cytotoxic DNA binding agents from a large compound library.

    PubMed

    Glass, Lateca S; Bapat, Aditi; Kelley, Mark R; Georgiadis, Millie M; Long, Eric C

    2010-03-01

    High-throughput fluorescent intercalator displacement (HT-FID) was adapted to the semi-automated screening of a commercial compound library containing 60,000 molecules resulting in the discovery of cytotoxic DNA-targeted agents. Although commercial libraries are routinely screened in drug discovery efforts, the DNA binding potential of the compounds they contain has largely been overlooked. HT-FID led to the rapid identification of a number of compounds for which DNA binding properties were validated through demonstration of concentration-dependent DNA binding and increased thermal melting of A/T- or G/C-rich DNA sequences. Selected compounds were assayed further for cell proliferation inhibition in glioblastoma cells. Seven distinct compounds emerged from this screening procedure that represent structures unknown previously to be capable of targeting DNA leading to cell death. These agents may represent structures worthy of further modification to optimally explore their potential as cytotoxic anti-cancer agents. In addition, the general screening strategy described may find broader impact toward the rapid discovery of DNA targeted agents with biological activity.

  20. A large-deformation thin plate theory with application to one-atom-thick layers

    NASA Astrophysics Data System (ADS)

    Delfani, M. R.; Shodja, H. M.

    2016-02-01

    Nowadays, two-dimensional materials due to their vast engineering and biomedical applications have been the focus of many researches. The present paper proposes a large-deformation theory for thin plates with application to one-atom-thick layers (OATLs). The deformation is formulated exactly in the mathematical framework of Lagrangian description. In particular, an exact finite strain analysis is given - in addition to the usual strain tensor associated to the middle surface, the second and third fundamental forms of the middle surface of the deformed thin plate are also maintained in the analysis. Exact closed-form solutions for a uniaxially curved thin plate due to pure bending in one case and due to a combination of vertical and horizontal loading in another are obtained. As a special case of the latter problem, the exact solution for the plane-strain bulge test of thin plates is derived. Subsequently, the approximation of Vlassak and Nix [Vlassak, J.J., Nix, W.D., 1992. J. Mater. Res., 7(12), 3242-3249] for the load-deflection equation is recovered. The given numerical results are devoted to graphene as the most well-known OATL.

  1. Calculations of atomic sputtering and displacement cross-sections in solid elements by electrons with energies from threshold to 1. 5 MV

    SciTech Connect

    Bradley, C.R.

    1988-12-01

    The kinetics of knock-on collisions of relativistic electrons with nuclei and details of the numerical evaluation of differential, recoil, and total Mott cross-sections are reviewed and discussed. The effects of electron beam induced displacement and sputtering, in the transmission electron microscope (TEM) environment, on microanalysis are analyzed with particular emphasis placed on the removal of material by knock-on sputtering. The mass loss predicted due to transmission knock-on sputtering is significant for many elements under conditions frequently encountered in microanalysis. Total Mott cross-sections are tabulated for all naturally occurring solid elements up to Z = 92 at displacement energies of one, two, four, and five times the sublimation energy and for accelerating voltages accessible in the transmission electron microscope. Fortran source code listings for the calculation of the differential Mott cross-section as a function of electron scattering angle (dMottCS), as a function of nuclear recoil angle (RECOIL), and the total Mott cross-section (TOTCS) are included. 48 refs., 21 figs., 12 tabs.

  2. The Enigmatic 2008 Mw 6.9 Iwate-Miyagi Nairiku, Japan, Earthquake: A Large Shallow Thrust Event with Little Surface Displacement and Scant Evidence for Paleoseismic Slip

    NASA Astrophysics Data System (ADS)

    Toda, S.; Maruyama, T.; Yoshimi, M.; Awata, Y.; Kaneda, H.; Yoshioka, T.; Ando, R.

    2008-12-01

    The 14 June 2008 Mw 6.9 Iwate-Miyagi Nairiku earthquake struck the mountainous region in northern Honshu and was accompanied by isolated surface ruptures along ~20 km-long NNE-trend. To understand its relation to the seismogenic faulting at depth, we conducted field investigations immediately after the mainshock, performing detailed mapping and measuring fault displacements using a total station instrument and ground-based LiDAR. More than 12 fault-rupture sites suggest that the total length of the tectonic ground breakage reaches ~20 km. Contractional features such as thrust fault exposures, flexure, tilting, and buckling deformations predominate on the rupture zone, which is consistent with reverse faulting driven by the WNW-ESE compressional stress field in northern Honshu. Shortening as well as vertical displacements were visible on cultural features such as concrete, asphalt paved roads, sidewalks, guardrails, drainage ditches, and rice paddies. Soaked soil underlying paddy fields immediately after rice transplanting worked particularly well to measure such small deformations, separating them into emerged and submerged parts. Amounts of vertical offset and horizontal shortening measured using such cultural piercing points are mostly less than 50 cm, indicating ~1m of net fault slip. Near the southern end of the rupture zone, the fault structure and slip sense become complex and measured offsets are exceptionally large. We found a ~1-km-long E-W-striking continuous rupture with up to 7 m right-lateral and 4 m vertical offsets of a paved road, trails, and rills near the northern rim of the Aratozawa dam reservoir. LiDAR measurements together with our field observations reveal features typical of strike-slip faulting such as mole tracks, fissures, pressure ridges, bulges, tilted trees, and shutter ridges, as well as the offset rills and ridges. The mapped zone of ruptures approximately locates along the central part of the surface projection of an inferred ~40-km

  3. Origin of Perpendicular Magnetic Anisotropy and Large Orbital Moment in Fe Atoms on MgO.

    PubMed

    Baumann, S; Donati, F; Stepanow, S; Rusponi, S; Paul, W; Gangopadhyay, S; Rau, I G; Pacchioni, G E; Gragnaniello, L; Pivetta, M; Dreiser, J; Piamonteze, C; Lutz, C P; Macfarlane, R M; Jones, B A; Gambardella, P; Heinrich, A J; Brune, H

    2015-12-04

    We report on the magnetic properties of individual Fe atoms deposited on MgO(100) thin films probed by x-ray magnetic circular dichroism and scanning tunneling spectroscopy. We show that the Fe atoms have strong perpendicular magnetic anisotropy with a zero-field splitting of 14.0±0.3  meV/atom. This is a factor of 10 larger than the interface anisotropy of epitaxial Fe layers on MgO and the largest value reported for Fe atoms adsorbed on surfaces. The interplay between the ligand field at the O adsorption sites and spin-orbit coupling is analyzed by density functional theory and multiplet calculations, providing a comprehensive model of the magnetic properties of Fe atoms in a low-symmetry bonding environment.

  4. Origin of Perpendicular Magnetic Anisotropy and Large Orbital Moment in Fe Atoms on MgO

    NASA Astrophysics Data System (ADS)

    Baumann, S.; Donati, F.; Stepanow, S.; Rusponi, S.; Paul, W.; Gangopadhyay, S.; Rau, I. G.; Pacchioni, G. E.; Gragnaniello, L.; Pivetta, M.; Dreiser, J.; Piamonteze, C.; Lutz, C. P.; Macfarlane, R. M.; Jones, B. A.; Gambardella, P.; Heinrich, A. J.; Brune, H.

    2015-12-01

    We report on the magnetic properties of individual Fe atoms deposited on MgO(100) thin films probed by x-ray magnetic circular dichroism and scanning tunneling spectroscopy. We show that the Fe atoms have strong perpendicular magnetic anisotropy with a zero-field splitting of 14.0 ±0.3 meV /atom . This is a factor of 10 larger than the interface anisotropy of epitaxial Fe layers on MgO and the largest value reported for Fe atoms adsorbed on surfaces. The interplay between the ligand field at the O adsorption sites and spin-orbit coupling is analyzed by density functional theory and multiplet calculations, providing a comprehensive model of the magnetic properties of Fe atoms in a low-symmetry bonding environment.

  5. Large quality factor in sheet metamaterials made from dark dielectric meta-atoms.

    PubMed

    Jain, Aditya; Tassin, Philippe; Koschny, Thomas; Soukoulis, Costas M

    2014-03-21

    Metamaterials--or artificial electromagnetic materials--can create media with properties unattainable in nature, but mitigating dissipation is a key challenge for their further development. Here, we demonstrate a low-loss metamaterial by exploiting dark bound states in dielectric inclusions coupled to the external waves by small nonresonant metallic antennas. We experimentally demonstrate a dispersion-engineered metamaterial based on a meta-atom made from alumina, and we show that its resonance has a much larger quality factor than metal-based meta-atoms. Finally, we show that our dielectric meta-atom can be used to create sheet metamaterials with negative permittivity or permeability.

  6. A thermal modelling of displacement cascades in uranium dioxide

    NASA Astrophysics Data System (ADS)

    Martin, G.; Garcia, P.; Sabathier, C.; Devynck, F.; Krack, M.; Maillard, S.

    2014-05-01

    The space and time dependent temperature distribution was studied in uranium dioxide during displacement cascades simulated by classical molecular dynamics (MD). The energy for each simulated radiation event ranged between 0.2 keV and 20 keV in cells at initial temperatures of 700 K or 1400 K. Spheres into which atomic velocities were rescaled (thermal spikes) have also been simulated by MD to simulate the thermal excitation induced by displacement cascades. Equipartition of energy was shown to occur in displacement cascades, half of the kinetic energy of the primary knock-on atom being converted after a few tenths of picoseconds into potential energy. The kinetic and potential parts of the system energy are however subjected to little variations during dedicated thermal spike simulations. This is probably due to the velocity rescaling process, which impacts a large number of atoms in this case and would drive the system away from a dynamical equilibrium. This result makes questionable MD simulations of thermal spikes carried out up to now (early 2014). The thermal history of cascades was compared to the heat equation solution of a punctual thermal excitation in UO2. The maximum volume brought to a temperature above the melting temperature during the simulated cascade events is well reproduced by this simple model. This volume eventually constitutes a relevant estimate of the volume affected by a displacement cascade in UO2. This definition of the cascade volume could also make sense in other materials, like iron.

  7. RTV 21 Displacements

    SciTech Connect

    Kurita, C.H.; /Fermilab

    1987-02-04

    A seal is needed for the cover of the Nitrogen Test Vessel in order to prevent leakage of the N{sub 2} gas. This seal is to be molded out of RTV 21. In this experiment, the Modulus of Elasticity of the RTV was sought after, and the displacements of the RTV due to various stresses were measured to see if they were large enough to provide a tight seal between the vessel and its cover.

  8. Method for preparing ultraflat, atomically perfect areas on large regions of a crystal surface by heteroepitaxy deposition

    DOEpatents

    El Gabaly, Farid; Schmid, Andreas K.

    2013-03-19

    A novel method of forming large atomically flat areas is described in which a crystalline substrate having a stepped surface is exposed to a vapor of another material to deposit a material onto the substrate, which material under appropriate conditions self arranges to form 3D islands across the substrate surface. These islands are atomically flat at their top surface, and conform to the stepped surface of the substrate below at the island-substrate interface. Thereafter, the deposited materials are etched away, in the etch process the atomically flat surface areas of the islands transferred to the underlying substrate. Thereafter the substrate may be cleaned and annealed to remove any remaining unwanted contaminants, and eliminate any residual defects that may have remained in the substrate surface as a result of pre-existing imperfections of the substrate.

  9. Large perpendicular magnetic anisotropy of single Co atom on MgO monolayer: A first-principles study

    SciTech Connect

    Shao, Bin; Shi, Wu-Jun; Feng, Min; Zuo, Xu

    2015-05-07

    Realizing the magnetic bit with a single atom is the ultimate goal for magnetic storage. Based on density functional theory, the magnetic anisotropy (MA) of single Co atom on MgO monolayer has been investigated. Results show that this two dimensional system possesses a large perpendicular MA, about 5.8 meV per Co atom. Besides, there exists remarkable unquenched orbital moments for different magnetization directions, which can be attributed to the reduction of coordination number in two dimensional system and is responsible for the enhanced MA. The Bloch pseudo-wavefunction and band structure of Co d-orbitals have been calculated to elucidate the origin of the perpendicular MA.

  10. Stabilization of a laser on a large-detuned atomic-reference frequency by resonant interferometry

    NASA Astrophysics Data System (ADS)

    Barboza, Priscila M. T.; Nascimento, Guilherme G.; Araújo, Michelle O.; da Silva, Cícero M.; Cavalcante, Hugo L. D. de S.; Oriá, Marcos; Chevrollier, Martine; Passerat de Silans, Thierry

    2016-04-01

    We report a simple technique for stabilization of a laser frequency at the wings of an atomic resonance. The reference signal used for stabilization issues from interference effects obtained in a low-quality cavity filled with a resonant atomic vapour. For a frequency detuned 2.6 GHz from the 133Cs D2 6S{}1/2 F = 4 to 6P{}3/2 F’ = 5 transition, the fractional frequency Allan deviation is 10-8 for averaging times of 300 s, corresponding to a frequency deviation of 4 MHz. Adequate choice of the atomic density and of the cell thickness allows locking the laser at detunings larger than 10 GHz. Such a simple technique does not require magnetic fields or signal modulation.

  11. Optically trapped atom interferometry using the clock transition of large 87Rb Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Altin, P. A.; McDonald, G.; Döring, D.; Debs, J. E.; Barter, T. H.; Robins, N. P.; Close, J. D.; Haine, S. A.; Hanna, T. M.; Anderson, R. P.

    2011-11-01

    In our original paper (Altin et al 2011 New J. Phys. 13 065020), we presented the results from a Ramsey atom interferometer operating with an optically trapped sample of up to 106 Bose-condensed 87Rb atoms in the mF = 0 clock states. We were unable to observe projection noise fluctuations on the interferometer output, which we attribute to the stability of our microwave oscillator and background magnetic field. Numerical simulations of the Gross-Pitaevskii equations for our system show that dephasing due to spatial dynamics driven by interparticle interactions accounts for much of the observed decay in fringe visibility at long interrogation times. The simulations show good agreement with the experimental data when additional technical decoherence is accounted for, and suggest that the clock states are indeed immiscible. With smaller samples of 5 × 104 atoms, we observe a coherence time of τ = 1.0+0.5-0.3 s.

  12. Combining configuration interaction with perturbation theory for atoms with a large number of valence electrons

    NASA Astrophysics Data System (ADS)

    Dzuba, V. A.; Berengut, J. C.; Harabati, C.; Flambaum, V. V.

    2017-01-01

    A version of the configuration interaction (CI) method is developed which treats highly excited many-electron basis states perturbatively, so that their inclusion does not affect the size of the CI matrix. This removes, at least in principle, the main limitation of the CI method in dealing with many-electron atoms or ions. We perform calculations of the spectra of iodine and its ions, tungsten, and ytterbium as examples of atoms with open s , p , d , and f shells. Good agreement of the calculated data with experiment illustrates the power of the method. Its advantages and limitations are discussed.

  13. Quantitative spectroscopy of hot stars: accurate atomic data applied on a large scale as driver of recent breakthroughs

    NASA Astrophysics Data System (ADS)

    Przybilla, N.; Schaffenroth, V.; Nieva, M. F.; Butler, K.

    2016-10-01

    OB-type stars present hotbeds for non-LTE physics because of their strong radiation fields that drive the atmospheric plasma out of local thermodynamic equilibrium. We report on recent breakthroughs in the quantitative analysis of the optical and UV-spectra of OB-type stars that were facilitated by application of accurate and precise atomic data on a large scale. An astrophysicist's dream has come true, by bringing observed and model spectra into close match over wide parts of the observed wavelength ranges. This allows tight observational constraints to be derived from OB-type stars for a wide range of applications in astrophysics. However, despite the progress made, many details of the modelling may be improved further. We discuss atomic data needs in terms of laboratory measurements and also ab-initio calculations. Particular emphasis is given to quantitative spectroscopy in the near-IR, which will be the focus in the era of the upcoming extremely large telescopes.

  14. Lateral displacement and rotational displacement sensor

    DOEpatents

    Duden, Thomas

    2014-04-22

    A position measuring sensor formed from opposing sets of capacitor plates measures both rotational displacement and lateral displacement from the changes in capacitances as overlapping areas of capacitors change. Capacitances are measured by a measuring circuit. The measured capacitances are provided to a calculating circuit that performs calculations to obtain angular and lateral displacement from the capacitances measured by the measuring circuit.

  15. GRASP92: a package for large-scale relativistic atomic structure calculations

    NASA Astrophysics Data System (ADS)

    Parpia, F. A.; Froese Fischer, C.; Grant, I. P.

    2006-12-01

    Program summaryTitle of program: GRASP92 Catalogue identifier: ADCU_v1_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADCU_v1_1 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: no Programming language used: Fortran Computer: IBM POWERstation 320H Operating system: IBM AIX 3.2.5+ RAM: 64M words No. of lines in distributed program, including test data, etc.: 65 224 No of bytes in distributed program, including test data, etc.: 409 198 Distribution format: tar.gz Catalogue identifier of previous version: ADCU_v1_0 Journal reference of previous version: Comput. Phys. Comm. 94 (1996) 249 Does the new version supersede the previous version?: Yes Nature of problem: Prediction of atomic spectra—atomic energy levels, oscillator strengths, and radiative decay rates—using a 'fully relativistic' approach. Solution method: Atomic orbitals are assumed to be four-component spinor eigenstates of the angular momentum operator, j=l+s, and the parity operator Π=βπ. Configuration state functions (CSFs) are linear combinations of Slater determinants of atomic orbitals, and are simultaneous eigenfunctions of the atomic electronic angular momentum operator, J, and the atomic parity operator, P. Lists of CSFs are either explicitly prescribed by the user or generated from a set of reference CSFs, a set of subshells, and rules for deriving other CSFs from these. Approximate atomic state functions (ASFs) are linear combinations of CSFs. A variational functional may be constructed by combining expressions for the energies of one or more ASFs. Average level (AL) functionals are weighted sums of energies of all possible ASFs that may be constructed from a set of CSFs; the number of ASFs is then the same as the number, n, of CSFs. Optimal level (OL) functionals are weighted sums of energies of some subset of ASFs; the GRASP92 package is optimized for this latter class of functionals. The composition of an ASF in terms

  16. Atomically flat Ge buffer layers and alternating shutter growth of CaGe2 for large area germanane

    NASA Astrophysics Data System (ADS)

    Xu, Jinsong; Katoch, Jyoti; Ahmed, Adam; Pinchuk, Igor; Williams, Robert; McComb, David; Kawakami, Roland

    Germanane (GeH), which is converted from CaGe2 by soaking in HCl acid, has recently attracted interest because of its novel properties, such as large band gap (1.56eV), spin orbit coupling and predictions of high mobility (18000 cm2/Vs). Previously CaGe2 was successfully grown on Ge(111) substrates by molecular beam epitaxy (MBE) growth. But there were cracks between µm-sized islands, which is not desirable for scientific study and application, and limits the material quality. By growing atomically flat Ge buffer layers and using alternating shutter MBE growth, we are able to grow crack-free, large area films of CaGe2 films. Reflection high energy electron diffraction (RHEED) patterns of Ge buffer layer and CaGe2 indicates high quality two dimensional surfaces, which is further confirmed by atomic force microscopy (AFM), showing atomically flat and uniform Ge buffer layer and CaGe2. The appearance of Laue oscillation in X-ray diffraction (XRD) and Kiessig fringes in X-ray reflectivity (XRR) proves the uniformity of CaGe2 film and the smoothness of the interface. The high quality of CaGe2 film makes it promising to explore novel properties of GeH. Funded by NSF MRSEC DMR-1420451.

  17. An atomic magnetometer with autonomous frequency stabilization and large dynamic range

    SciTech Connect

    Pradhan, S. E-mail: pradhans75@gmail.com; Poornima,; Dasgupta, K.; Mishra, S.; Behera, R.

    2015-06-15

    The operation of a highly sensitive atomic magnetometer using elliptically polarized resonant light is demonstrated. It is based on measurement of zero magnetic field resonance in degenerate two level systems using polarimetric detection. The transmitted light through the polarimeter is used for laser frequency stabilization, whereas reflected light is used for magnetic field measurement. Thus, the experimental geometry allows autonomous frequency stabilization of the laser frequency leading to compact operation of the overall device and has a preliminary sensitivity of <10 pT/Hz{sup 1/2} @ 1 Hz. Additionally, the dynamic range of the device is improved by feedback controlling the bias magnetic field without compromising on its sensitivity.

  18. Metastable helium Bose-Einstein condensate with a large number of atoms

    SciTech Connect

    Tychkov, A. S.; Jeltes, T.; McNamara, J. M.; Tol, P. J. J.; Herschbach, N.; Hogervorst, W.; Vassen, W.

    2006-03-15

    We have produced a Bose-Einstein condensate of metastable helium ({sup 4}He*) containing over 1.5x10{sup 7} atoms, which is a factor of 25 higher than previously achieved. The improved starting conditions for evaporative cooling are obtained by applying one-dimensional Doppler cooling inside a magnetic trap. The same technique is successfully used to cool the spin-polarized fermionic isotope ({sup 3}He*), for which thermalizing collisions are highly suppressed. Our detection techniques include absorption imaging, time-of-flight measurements on a microchannel plate detector, and ion counting to monitor the formation and decay of the condensate.

  19. An atomic magnetometer with autonomous frequency stabilization and large dynamic range.

    PubMed

    Pradhan, S; Mishra, S; Behera, R; Poornima; Dasgupta, K

    2015-06-01

    The operation of a highly sensitive atomic magnetometer using elliptically polarized resonant light is demonstrated. It is based on measurement of zero magnetic field resonance in degenerate two level systems using polarimetric detection. The transmitted light through the polarimeter is used for laser frequency stabilization, whereas reflected light is used for magnetic field measurement. Thus, the experimental geometry allows autonomous frequency stabilization of the laser frequency leading to compact operation of the overall device and has a preliminary sensitivity of <10 pT/Hz(1/2) @ 1 Hz. Additionally, the dynamic range of the device is improved by feedback controlling the bias magnetic field without compromising on its sensitivity.

  20. Atomic oxidation of large area epitaxial graphene on 4H-SiC(0001)

    SciTech Connect

    Velez-Fort, E.; Ouerghi, A.; Silly, M. G.; Sirtti, F.; Eddrief, M.; Marangolo, M.; Shukla, A.

    2014-03-03

    Structural and electronic properties of epitaxial graphene on 4H-SiC were studied before and after an atomic oxidation process. X-ray photoemission spectroscopy indicates that oxygen penetrates into the substrate and decouples a part of the interface layer. Raman spectroscopy demonstrates the increase of defects due to the presence of oxygen. Interestingly, we observed on the near edge x-ray absorption fine structure spectra a splitting of the π* peak into two distinct resonances centered at 284.7 and 285.2 eV. This double structure smears out after the oxidation process and permits to probe the interface architecture between graphene and the substrate.

  1. The survivability of large space-borne reflectors under atomic oxygen and micrometeoroid impact

    NASA Technical Reports Server (NTRS)

    Gulino, Daniel A.

    1987-01-01

    Solar dynamic power system mirrors for use on Space Station and other spacecraft flown in low earth orbit (LEO) are exposed to the harshness of the LEO environment. Both atomic oxygen and micrometeoroids/space debris can degrade the performance of such mirrors. Protective coatings will be required to protect oxidizable reflecting media, such as silver and aluminum, from atomic oxygen attack. Several protective coating materials have been identified as good candidates for use in this application. The durability of these coating/mirror systems after pinhole defects have been inflicted during their fabrication and deployment or through micrometeoroid/space debris impact once on-orbit is of concern. Studies of the effect of an oxygen plasma environment on protected mirror surfaces with intentionally induced pinhole defects have been conducted at NASA Lewis and are reviewed. It has been found that oxidation of the reflective layer and/or the substrate in areas adjacent to a pinhole defect, but not directly exposed by the pinhole, can occur.

  2. The survivability of large space-borne reflectors under atomic oxygen and micrometeoroid impact

    NASA Technical Reports Server (NTRS)

    Gulino, D. A.

    1987-01-01

    Solar dynamic power system mirrors for use on space station and other spacecraft flown in low Earth orbit (LEO) are exposed to the harshness of the LEO environment. Both atomic oxygen and micrometeoroids/space debris can degrade the performance of such mirrors. Protective coatings will be required to protect oxidizable reflecting media, such as silver and aluminum, from atomic oxygen attack. Several protective coating materials have been identified as good candidates for use in this application. The durability of these coating/mirror systems after pinhole defects have been inflicted during their fabrication and deployment or through micrometeoroid/space debris impact once on-orbit is of concern. Studies of the effect of an oxygen plasma environment on protected mirror surfaces with intentionally induced pinhole defects have been conducted at NASA Lewis and are reviewed. It has been found that oxidation of the reflective layer and/or the substrate in areas adjacent to a pinhole defect, but not directly exposed by the pinhole, can occur.

  3. Nano-scale displacement sensing based on van der Waals interactions

    NASA Astrophysics Data System (ADS)

    Hu, Lin; Zhao, Jin; Yang, Jinlong

    2015-05-01

    We propose that a nano-scale displacement sensor with high resolution in weak-force systems can be realized based on vertically stacked two-dimensional (2D) atomic corrugated layer materials bound through van der Waals (vdW) interactions. Using first-principles calculations, we found that the electronic structures of bi-layer blue phosphorus (BLBP) vary appreciably with lateral and vertical interlayer displacements. The variation of the electronic structure is attributed to the change of the interlayer distance dz for both the lateral and vertical displacement. For lateral displacement, the change of dz is induced by atomic layer corrugation. Despite the different stacking configurations of BLBP, we find that the change of the indirect band gap is proportional to dz-2. Furthermore, this dz-2 dependence is found to be applicable to other graphene-like corrugated bi-layer materials such as MoS2. BLBP represents a large family of bi-layer 2D atomic corrugated materials for which the electronic structure is sensitive to the interlayer vertical and lateral displacement, and thus could be used for a nano-scale displacement sensor. This can be done by monitoring the tunable electronic structure using absorption spectroscopy. Because this type of sensor is established on atomic layers coupled through vdW interactions, it provides unique applications in the measurements of nano-scale displacement induced by tiny external forces.We propose that a nano-scale displacement sensor with high resolution in weak-force systems can be realized based on vertically stacked two-dimensional (2D) atomic corrugated layer materials bound through van der Waals (vdW) interactions. Using first-principles calculations, we found that the electronic structures of bi-layer blue phosphorus (BLBP) vary appreciably with lateral and vertical interlayer displacements. The variation of the electronic structure is attributed to the change of the interlayer distance dz for both the lateral and vertical

  4. Atomic Number Dependence of Hadron Production at Large Transverse Momentum in 300 GeV Proton--Nucleus Collisions

    DOE R&D Accomplishments Database

    Cronin, J. W.; Frisch, H. J.; Shochet, M. J.; Boymond, J. P.; Mermod, R.; Piroue, P. A.; Sumner, R. L.

    1974-07-15

    In an experiment at the Fermi National Accelerator Laboratory we have compared the production of large transverse momentum hadrons from targets of W, Ti, and Be bombarded by 300 GeV protons. The hadron yields were measured at 90 degrees in the proton-nucleon c.m. system with a magnetic spectrometer equipped with 2 Cerenkov counters and a hadron calorimeter. The production cross-sections have a dependence on the atomic number A that grows with P{sub 1}, eventually leveling off proportional to A{sup 1.1}.

  5. Routes towards the experimental observation of the large fluctuations due to chaos-assisted tunneling effects with cold atoms

    NASA Astrophysics Data System (ADS)

    Dubertrand, R.; Billy, J.; Guéry-Odelin, D.; Georgeot, B.; Lemarié, G.

    2016-10-01

    In the presence of a complex classical dynamics associated with a mixed phase space, a quantum wave function can tunnel between two stable islands through the chaotic sea, an effect that has no classical counterpart. This phenomenon, referred to as chaos-assisted tunneling, is characterized by large fluctuations of the tunneling rate when a parameter is varied. To date, the full extent of this effect as well as the associated statistical distribution have never been observed in a quantum system. Here, we analyze the possibility of characterizing these effects accurately in a cold-atom experiment. Using realistic values of the parameters of an experimental setup, we examine through analytical estimates and extensive numerical simulations a specific system that can be implemented with cold atoms, the atomic modulated pendulum. We assess the efficiency of three possible routes to observe in detail chaos-assisted tunneling properties. Our main conclusion is that due to the fragility of the symmetry between positive and negative momenta as a function of quasimomentum, it is very challenging to use tunneling between classical islands centered on fixed points with opposite momentum. We show that it is more promising to use islands symmetric in position space, and characterize the regime where it could be done. The proposed experiment could be realized with current state-of-the-art technology.

  6. Large-Scale Production of Large-Size Atomically Thin Semiconducting Molybdenum Dichalcogenide Sheets in Water and Its Application for Supercapacitor

    PubMed Central

    Chen, Yu-Xiang; Wu, Chien-Wei; Kuo, Ting-Yang; Chang, Yu-Lung; Jen, Ming-Hsing; Chen, I-Wen Peter

    2016-01-01

    To progress from laboratory research to commercial applications, it is necessary to develop an effective method to prepare large quantities and high-quality of the large-size atomically thin molybdenum dichalcogenides (MoS2). Aqueous-phase processes provide a viable method for producing thin MoS2 sheets using organolithium-assisted exfoliation; unfortunately, this method is hindered by changing pristine semiconducting 2H phase to distorted metallic 1T phase. Recovery of the intrinsic 2H phase typically involves heating of the 1T MoS2 sheets on solid substrates at high temperature. This has restricted and hindered the utilization of 2H phase MoS2 sheets suspensions. Here, we demonstrate that the synergistic effect of the rigid planar structure and charged nature of organic salt such as imidazole (ImH) can be successfully used to produce atomically thin 2H-MoS2 sheets suspension in water. Moreover, lateral size and area of the exfoliated sheet can be up to 50 μm and 1000 μm2, respectively. According to the XPS measurements, nearly 100% of the 2H-MoS2 sheets was successfully prepared. A composite paper supercapacitor using the exfoliated 2H-MoS2 and carbon nanotubes delivered a superior volumetric capacitance of ~410 F/cm3. Therefore, the organic salts-assisted liquid-phase exfoliation has great potential for large-scale production of 2H-MoS2 suspensions for supercapacitor application. PMID:27225297

  7. Large-Scale Production of Large-Size Atomically Thin Semiconducting Molybdenum Dichalcogenide Sheets in Water and Its Application for Supercapacitor.

    PubMed

    Chen, Yu-Xiang; Wu, Chien-Wei; Kuo, Ting-Yang; Chang, Yu-Lung; Jen, Ming-Hsing; Chen, I-Wen Peter

    2016-05-26

    To progress from laboratory research to commercial applications, it is necessary to develop an effective method to prepare large quantities and high-quality of the large-size atomically thin molybdenum dichalcogenides (MoS2). Aqueous-phase processes provide a viable method for producing thin MoS2 sheets using organolithium-assisted exfoliation; unfortunately, this method is hindered by changing pristine semiconducting 2H phase to distorted metallic 1T phase. Recovery of the intrinsic 2H phase typically involves heating of the 1T MoS2 sheets on solid substrates at high temperature. This has restricted and hindered the utilization of 2H phase MoS2 sheets suspensions. Here, we demonstrate that the synergistic effect of the rigid planar structure and charged nature of organic salt such as imidazole (ImH) can be successfully used to produce atomically thin 2H-MoS2 sheets suspension in water. Moreover, lateral size and area of the exfoliated sheet can be up to 50 μm and 1000 μm(2), respectively. According to the XPS measurements, nearly 100% of the 2H-MoS2 sheets was successfully prepared. A composite paper supercapacitor using the exfoliated 2H-MoS2 and carbon nanotubes delivered a superior volumetric capacitance of ~410 F/cm(3). Therefore, the organic salts-assisted liquid-phase exfoliation has great potential for large-scale production of 2H-MoS2 suspensions for supercapacitor application.

  8. Cantilevered bimorph-based scanner for high speed atomic force microscopy with large scanning range.

    PubMed

    Zhou, Yusheng; Shang, Guangyi; Cai, Wei; Yao, Jun-en

    2010-05-01

    A cantilevered bimorph-based resonance-mode scanner for high speed atomic force microscope (AFM) imaging is presented. The free end of the bimorph is used for mounting a sample stage and the other one of that is fixed on the top of a conventional single tube scanner. High speed scanning is realized with the bimorph-based scanner vibrating at resonant frequency driven by a sine wave voltage applied to one piezolayer of the bimorph, while slow scanning is performed by the tube scanner. The other piezolayer provides information on vibration amplitude and phase of the bimorph itself simultaneously, which is used for real-time data processing and image calibration. By adjusting the free length of the bimorph, the line scan rate can be preset ranging from several hundred hertz to several kilohertz, which would be beneficial for the observation of samples with different properties. Combined with a home-made AFM system and a commercially available data acquisition card, AFM images of various samples have been obtained, and as an example, images of the silicon grating taken at a line rate of 1.5 kHz with the scan size of 20 microm are given. By manually moving the sample of polished Al foil surface while scanning, the capability of dynamic imaging is demonstrated.

  9. The case for character displacement in plants

    PubMed Central

    Beans, Carolyn M

    2014-01-01

    The evidence for character displacement as a widespread response to competition is now building. This progress is largely the result of the establishment of rigorous criteria for demonstrating character displacement in the animal literature. There are, however, relatively few well-supported examples of character displacement in plants. This review explores the potential for character displacement in plants by addressing the following questions: (1) Why aren't examples of character displacement in plants more common? (2) What are the requirements for character displacement to occur and how do plant populations meet those requirements? (3) What are the criteria for testing the pattern and process of character displacement and what methods can and have been used to address these criteria in the plant literature? (4) What are some additional approaches for studying character displacement in plants? While more research is needed, the few plant systems in which character displacement hypotheses have been rigorously tested suggest that character displacement may play a role in shaping plant communities. Plants are especially amenable to character displacement studies because of the experimental ease with which they can be used in common gardens, selection analyses, and breeding designs. A deeper investigation of character displacement in plants is critical for a more complete understanding of the ecological and evolutionary processes that permit the coexistence of plant species. PMID:24683467

  10. The case for character displacement in plants.

    PubMed

    Beans, Carolyn M

    2014-03-01

    The evidence for character displacement as a widespread response to competition is now building. This progress is largely the result of the establishment of rigorous criteria for demonstrating character displacement in the animal literature. There are, however, relatively few well-supported examples of character displacement in plants. This review explores the potential for character displacement in plants by addressing the following questions: (1) Why aren't examples of character displacement in plants more common? (2) What are the requirements for character displacement to occur and how do plant populations meet those requirements? (3) What are the criteria for testing the pattern and process of character displacement and what methods can and have been used to address these criteria in the plant literature? (4) What are some additional approaches for studying character displacement in plants? While more research is needed, the few plant systems in which character displacement hypotheses have been rigorously tested suggest that character displacement may play a role in shaping plant communities. Plants are especially amenable to character displacement studies because of the experimental ease with which they can be used in common gardens, selection analyses, and breeding designs. A deeper investigation of character displacement in plants is critical for a more complete understanding of the ecological and evolutionary processes that permit the coexistence of plant species.

  11. Measurement of deep groove structures using a self-fabricated long tip in a large range metrological atomic force microscope

    NASA Astrophysics Data System (ADS)

    Wang, S. H.; Tan, S. L.; Xu, G.; Koyama, K.

    2011-09-01

    Metrological atomic force microscopes are widely used in national metrology institutes for measuring step height, lateral pitch and surface roughness. However, the maximum measurable depth or height variation is limited by both the vertical scanning range of the AFM and the tip height and sharpness of the tip at the end of the cantilever. A normal commercial AFM typically has a vertical scanning range less than 10 µm and a tip height of the cantilever only up to 15 µm so that it can be used to detect only relatively smooth surfaces or shallow structures up to several micrometres. To overcome these limitations, we have successfully integrated a long diamond tip of up to 120 µm developed at Namiki Precision Jewel Co., Ltd of Japan onto our large range metrological atomic force microprobe (LRM-AFM) for deep groove structure measurement. The LRM-AFM is based on a nano-measuring machine with a large scanning range of 25 mm in the X and Y axes and 5 mm in the Z axis. This paper describes the long diamond tip fabrication process and especially its application in the LRM-AFM for measuring deep groove structures of a step height of up to 100 µm. In addition, the mechanical quality factor (Q) of the diamond tip micro-cantilever was detected in the system. The results demonstrate that the system is capable of calibrating and measuring the surface structure with deep groove in tens of micrometres.

  12. Interplay between interstitial displacement and displacive lattice transformations

    NASA Astrophysics Data System (ADS)

    Zhang, Xie; Hickel, Tilmann; Rogal, Jutta; Neugebauer, Jörg

    2016-09-01

    Diffusionless displacive lattice rearrangements, which include martensitic transformations, are in real materials often accompanied by a displacive drag of interstitials. The interplay of both processes leads to a particular atomistic arrangement of the interstitials in the product phase, which is decisive for its performance. An archetype example is the martensitic transformation in Fe-C alloys. One of the puzzles for this system is that the deviation from the cubic symmetry (i.e., the tetragonality) in the martensite resulting from this interplay is lower than what thermodynamics dictates. In our ab initio approach, the relative motion of C in the transforming lattice is studied with the nudged elastic band method. We prove that an atomic shearlike shuffle mechanism of adjacent (11 2 ¯) Fe layers along the ±[111] bcc directions is essential to achieve a redistribution of C atoms during the fcc → bcc transition, which fully explains the abnormal behavior. Furthermore, the good agreement with experiment validates our method to treat a diffusionless redistribution of interstitials and a displacive rearrangement of the host lattice simultaneously.

  13. Synthesis of Large and Few Atomic Layers of Hexagonal Boron Nitride on Melted Copper

    NASA Astrophysics Data System (ADS)

    Khan, Majharul Haque; Huang, Zhenguo; Xiao, Feng; Casillas, Gilberto; Chen, Zhixin; Molino, Paul J.; Liu, Hua Kun

    2015-01-01

    Hexagonal boron nitride nanosheets (h-BNNS) have been proposed as an ideal substrate for graphene-based electronic devices, but the synthesis of large and homogeneous h-BNNS is still challenging. In this contribution, we report a facile synthesis of few-layer h-BNNS on melted copper via an atmospheric pressure chemical vapor deposition process. Comparative studies confirm the advantage of using melted copper over solid copper as a catalyst substrate. The former leads to the formation of single crystalline h-BNNS that is several microns in size and mostly in mono- and bi-layer forms, in contrast to the polycrystalline and mixed multiple layers (1-10) yielded by the latter. This difference is likely to be due to the significantly reduced and uniformly distributed nucleation sites on the smooth melted surface, in contrast to the large amounts of unevenly distributed nucleation sites that are associated with grain boundaries and other defects on the solid surface. This synthesis is expected to contribute to the development of large-scale manufacturing of h-BNNS/graphene-based electronics.

  14. Synthesis of Large and Few Atomic Layers of Hexagonal Boron Nitride on Melted Copper

    PubMed Central

    Khan, Majharul Haque; Huang, Zhenguo; Xiao, Feng; Casillas, Gilberto; Chen, Zhixin; Molino, Paul J.; Liu, Hua Kun

    2015-01-01

    Hexagonal boron nitride nanosheets (h-BNNS) have been proposed as an ideal substrate for graphene-based electronic devices, but the synthesis of large and homogeneous h-BNNS is still challenging. In this contribution, we report a facile synthesis of few-layer h-BNNS on melted copper via an atmospheric pressure chemical vapor deposition process. Comparative studies confirm the advantage of using melted copper over solid copper as a catalyst substrate. The former leads to the formation of single crystalline h-BNNS that is several microns in size and mostly in mono- and bi-layer forms, in contrast to the polycrystalline and mixed multiple layers (1–10) yielded by the latter. This difference is likely to be due to the significantly reduced and uniformly distributed nucleation sites on the smooth melted surface, in contrast to the large amounts of unevenly distributed nucleation sites that are associated with grain boundaries and other defects on the solid surface. This synthesis is expected to contribute to the development of large-scale manufacturing of h-BNNS/graphene-based electronics. PMID:25582557

  15. Displacement Cascade Damage Production in Metals

    SciTech Connect

    Stoller, Roger E; Malerba, Lorenzo; Nordlund, Kai

    2015-01-01

    Radiation-induced changes in microstructure and mechanical properties in structural materials are the result of a complex set of physical processes initiated by the collision between an energetic particle (neutron or ion) and an atom in the lattice. This primary damage event is called an atomic displacement cascade. The simplest description of a displacement cascade is to view it as a series of many billiard-ball-like elastic collisions among the atoms in the material. This chapter describes the formation and evolution of this primary radiation damage mechanism to provide an overview of how stable defects are formed by displacement cascades, as well as the nature and morphology of the defects themselves. The impact of the relevant variables such as cascade energy and irradiation temperature is discussed, and defect formation in different materials is compared.

  16. Job Displacement Among Single Mothers:

    PubMed Central

    Brand, Jennie E.; Thomas, Juli Simon

    2015-01-01

    Given the recent era of economic upheaval, studying the effects of job displacement has seldom been so timely and consequential. Despite a large literature associating displacement with worker well-being, relatively few studies focus on the effects of parental displacement on child well-being, and fewer still focus on implications for children of single parent households. Moreover, notwithstanding a large literature on the relationship between single motherhood and children’s outcomes, research on intergenerational effects of involuntary employment separations among single mothers is limited. Using 30 years of nationally representative panel data and propensity score matching methods, we find significant negative effects of job displacement among single mothers on children’s educational attainment and social-psychological well-being in young adulthood. Effects are concentrated among older children and children whose mothers had a low likelihood of displacement, suggesting an important role for social stigma and relative deprivation in the effects of socioeconomic shocks on child well-being. PMID:25032267

  17. Large-dimension configuration-interaction calculations of positron binding to the group-II atoms

    SciTech Connect

    Bromley, M. W. J.; Mitroy, J.

    2006-03-15

    The configuration-interaction (CI) method is applied to the calculation of the structures of a number of positron binding systems, including e{sup +}Be, e{sup +}Mg, e{sup +}Ca, and e{sup +}Sr. These calculations were carried out in orbital spaces containing about 200 electron and 200 positron orbitals up to l=12. Despite the very large dimensions, the binding energy and annihilation rate converge slowly with l, and the final values do contain an appreciable correction obtained by extrapolating the calculation to the l{yields}{infinity} limit. The binding energies were 0.00317 hartree for e{sup +}Be, 0.0170 hartree for e{sup +}Mg, 0.0189 hartree for e{sup +}Ca, and 0.0131 hartree for e{sup +}Sr.

  18. Accelerating solidification process simulation for large-sized system of liquid metal atoms using GPU with CUDA

    SciTech Connect

    Jie, Liang; Li, KenLi; Shi, Lin; Liu, RangSu; Mei, Jing

    2014-01-15

    Molecular dynamics simulation is a powerful tool to simulate and analyze complex physical processes and phenomena at atomic characteristic for predicting the natural time-evolution of a system of atoms. Precise simulation of physical processes has strong requirements both in the simulation size and computing timescale. Therefore, finding available computing resources is crucial to accelerate computation. However, a tremendous computational resource (GPGPU) are recently being utilized for general purpose computing due to its high performance of floating-point arithmetic operation, wide memory bandwidth and enhanced programmability. As for the most time-consuming component in MD simulation calculation during the case of studying liquid metal solidification processes, this paper presents a fine-grained spatial decomposition method to accelerate the computation of update of neighbor lists and interaction force calculation by take advantage of modern graphics processors units (GPU), enlarging the scale of the simulation system to a simulation system involving 10 000 000 atoms. In addition, a number of evaluations and tests, ranging from executions on different precision enabled-CUDA versions, over various types of GPU (NVIDIA 480GTX, 580GTX and M2050) to CPU clusters with different number of CPU cores are discussed. The experimental results demonstrate that GPU-based calculations are typically 9∼11 times faster than the corresponding sequential execution and approximately 1.5∼2 times faster than 16 CPU cores clusters implementations. On the basis of the simulated results, the comparisons between the theoretical results and the experimental ones are executed, and the good agreement between the two and more complete and larger cluster structures in the actual macroscopic materials are observed. Moreover, different nucleation and evolution mechanism of nano-clusters and nano-crystals formed in the processes of metal solidification is observed with large

  19. Accelerating solidification process simulation for large-sized system of liquid metal atoms using GPU with CUDA

    NASA Astrophysics Data System (ADS)

    Jie, Liang; Li, KenLi; Shi, Lin; Liu, RangSu; Mei, Jing

    2014-01-01

    Molecular dynamics simulation is a powerful tool to simulate and analyze complex physical processes and phenomena at atomic characteristic for predicting the natural time-evolution of a system of atoms. Precise simulation of physical processes has strong requirements both in the simulation size and computing timescale. Therefore, finding available computing resources is crucial to accelerate computation. However, a tremendous computational resource (GPGPU) are recently being utilized for general purpose computing due to its high performance of floating-point arithmetic operation, wide memory bandwidth and enhanced programmability. As for the most time-consuming component in MD simulation calculation during the case of studying liquid metal solidification processes, this paper presents a fine-grained spatial decomposition method to accelerate the computation of update of neighbor lists and interaction force calculation by take advantage of modern graphics processors units (GPU), enlarging the scale of the simulation system to a simulation system involving 10 000 000 atoms. In addition, a number of evaluations and tests, ranging from executions on different precision enabled-CUDA versions, over various types of GPU (NVIDIA 480GTX, 580GTX and M2050) to CPU clusters with different number of CPU cores are discussed. The experimental results demonstrate that GPU-based calculations are typically 9∼11 times faster than the corresponding sequential execution and approximately 1.5∼2 times faster than 16 CPU cores clusters implementations. On the basis of the simulated results, the comparisons between the theoretical results and the experimental ones are executed, and the good agreement between the two and more complete and larger cluster structures in the actual macroscopic materials are observed. Moreover, different nucleation and evolution mechanism of nano-clusters and nano-crystals formed in the processes of metal solidification is observed with large-sized system.

  20. Large-scale synthesis of uniform hexagonal boron nitride films by plasma-enhanced atomic layer deposition

    PubMed Central

    Park, Hamin; Kim, Tae Keun; Cho, Sung Woo; Jang, Hong Seok; Lee, Sang Ick; Choi, Sung-Yool

    2017-01-01

    Hexagonal boron nitride (h-BN) has been previously manufactured using mechanical exfoliation and chemical vapor deposition methods, which make the large-scale synthesis of uniform h-BN very challenging. In this study, we produced highly uniform and scalable h-BN films by plasma-enhanced atomic layer deposition, which were characterized by various techniques including atomic force microscopy, transmission electron microscopy, Raman spectroscopy, and X-ray diffraction. The film composition studied by X-ray photoelectron spectroscopy and Auger electron spectroscopy corresponded to a B:N stoichiometric ratio close to 1:1, and the band-gap value (5.65 eV) obtained by electron energy loss spectroscopy was consistent with the dielectric properties. The h-BN-containing capacitors were characterized by highly uniform properties, a reasonable dielectric constant (3), and low leakage current density, while graphene on h-BN substrates exhibited enhanced electrical performance such as the high carrier mobility and neutral Dirac voltage, which resulted from the low density of charged impurities on the h-BN surface. PMID:28054603

  1. Large-scale synthesis of uniform hexagonal boron nitride films by plasma-enhanced atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Park, Hamin; Kim, Tae Keun; Cho, Sung Woo; Jang, Hong Seok; Lee, Sang Ick; Choi, Sung-Yool

    2017-01-01

    Hexagonal boron nitride (h-BN) has been previously manufactured using mechanical exfoliation and chemical vapor deposition methods, which make the large-scale synthesis of uniform h-BN very challenging. In this study, we produced highly uniform and scalable h-BN films by plasma-enhanced atomic layer deposition, which were characterized by various techniques including atomic force microscopy, transmission electron microscopy, Raman spectroscopy, and X-ray diffraction. The film composition studied by X-ray photoelectron spectroscopy and Auger electron spectroscopy corresponded to a B:N stoichiometric ratio close to 1:1, and the band-gap value (5.65 eV) obtained by electron energy loss spectroscopy was consistent with the dielectric properties. The h-BN-containing capacitors were characterized by highly uniform properties, a reasonable dielectric constant (3), and low leakage current density, while graphene on h-BN substrates exhibited enhanced electrical performance such as the high carrier mobility and neutral Dirac voltage, which resulted from the low density of charged impurities on the h-BN surface.

  2. Meta-Atom Behavior in Clusters Revealing Large Spin Ground States.

    PubMed

    Hernández Sánchez, Raúl; Betley, Theodore A

    2015-11-04

    The field of single molecule magnetism remains predicated on super- and double exchange mechanisms to engender large spin ground states. An alternative approach to achieving high-spin architectures involves synthesizing weak-field clusters featuring close M-M interactions to produce a single valence orbital manifold. Population of this orbital manifold in accordance with Hund's rules could potentially yield thermally persistent high-spin ground states under which the valence electrons remain coupled. We now demonstrate this effect with a reduced hexanuclear iron cluster that achieves an S = 19/2 (χ(M)T ≈ 53 cm(3) K/mol) ground state that persists to 300 K, representing the largest spin ground state persistent to room temperature reported to date. The reduced cluster displays single molecule magnet behavior manifest in both variable-temperature zero-field (57)Fe Mössbauer and magnetometry with a spin reversal barrier of 42.5(8) cm(-1) and a magnetic blocking temperature of 2.9 K (0.059 K/min).

  3. Large-scale displacement along the Altyn Tagh Fault (North Tibet) since its Eocene initiation: Insight from detrital zircon U-Pb geochronology and subsurface data

    NASA Astrophysics Data System (ADS)

    Cheng, Feng; Jolivet, Marc; Fu, Suotang; Zhang, Changhao; Zhang, Qiquan; Guo, Zhaojie

    2016-05-01

    Marking the northern boundary of the Tibetan plateau, the Altyn Tagh fault plays a crucial role in accommodating the Cenozoic crustal deformation affecting the plateau. However, its initiation time and amount of offset are still controversial despite being key information for the understanding of Tibet evolution. In this study, we present 1122 single LA-ICP-MS detrital zircon U-Pb ages obtained from 11 Mesozoic to Cenozoic sandstone samples, collected along two sections in the northwestern Qaidam basin (Eboliang and Huatugou). These data are combined with new 3D seismic reflection profiles to demonstrate that: (1) from the Paleocene to early Eocene, the Eboliang section was approximately located near the present position of Anxi, 360 ± 40 km southwest from its current location along the Altyn Tagh fault, and sediments were mainly derived from the Altyn Tagh Range. At the same period, the Huatugou section was approximately located near the present position of Tula, ca. 360 km southwest from its current location along the Altyn Tagh fault, and the Eastern Kunlun Range represented a significant sediment source. (2) Left-lateral strike-slip movement along the Altyn Tagh fault initiated during the early-middle Eocene, resulting in northeastward displacement of the two sections. (3) By early Miocene, the intensive deformation within the Altyn Tagh Range and northwestern Qaidam basin strongly modified the drainage system, preventing the materials derived from the Altyn Tagh Range to reach the Eboliang and the Huatugou sections. The post-Oligocene clastic material in the western Qaidam basin is generally derived from local sources and recycling of the deformed Paleocene to Oligocene strata. From these data, we suggest enhanced tectonic activity within the Altyn Tagh Range and northwestern Qaidam basin since Miocene time, and propose an early-middle Eocene initiation of left-lateral strike-slip faulting leading to a 360 ± 40 km offset along the Altyn Tagh fault.

  4. Multi-actuation and PI control: a simple recipe for high-speed and large-range atomic force microscopy.

    PubMed

    Soltani Bozchalooi, I; Youcef-Toumi, K

    2014-11-01

    High speed atomic force microscopy enables observation of dynamic nano-scale processes. However, maintaining a minimal interaction force between the sample and the probe is challenging at high speed specially when using conventional piezo-tubes. While rigid AFM scanners are operational at high speeds with the drawback of reduced tracking range, multi-actuation schemes have shown potential for high-speed and large-range imaging. Here we present a method to seamlessly incorporate additional actuators into conventional AFMs. The equivalent behavior of the resulting multi-actuated setup resembles that of a single high-speed and large-range actuator with maximally flat frequency response. To achieve this, the dynamics of the individual actuators and their couplings are treated through a simple control scheme. Upon the implementation of the proposed technique, commonly used PI controllers are able to meet the requirements of high-speed imaging. This forms an ideal platform for retroactive enhancement of existing AFMs with minimal cost and without compromise on the tracking range. A conventional AFM with tube scanner is retroactively enhanced through the proposed method and shows an order of magnitude improvement in closed loop bandwidth performance while maintaining large range. The effectiveness of the method is demonstrated on various types of samples imaged in contact and tapping modes, in air and in liquid.

  5. Particle displacement tracking for PIV

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    1990-01-01

    A new Particle Imaging Velocimetry (PIV) data acquisition and analysis system, which is an order of magnitude faster than any previously proposed system has been constructed and tested. The new Particle Displacement Tracing (PDT) system is an all electronic technique employing a video camera and a large memory buffer frame-grabber board. Using a simple encoding scheme, a time sequence of single exposure images are time coded into a single image and then processed to track particle displacements and determine velocity vectors. Application of the PDT technique to a counter-rotating vortex flow produced over 1100 velocity vectors in 110 seconds when processed on an 80386 PC.

  6. Interactions between displacement cascades and Σ3<110> tilt grain boundaries in Cu

    NASA Astrophysics Data System (ADS)

    Li, Bo; Long, Xiao-Jiang; Shen, Zhao-Wu; Luo, Sheng-Nian

    2016-12-01

    With large-scale molecular dynamics simulations, we investigate systematically the interaction of displacement cascades with a set of Σ3<110> tilt grain boundaries (GBs) in Cu bicrystals at low ambient temperatures, as regards irradiation-induced defect production/absorption and GB migration/faceting. Except for coherent twin boundary, GBs exhibit pronounced preferential absorption of interstitials, which depends on initial primary knock-on atom distance from GB plane and inclination angle. GB migration occurs when displacement cascades overlap with a GB plane, as induced by recrystallization of thermal spike, and concurrent asymmetric grain growth. Faceting occurs via expanding coherent twin boundaries for asymmetric GBs.

  7. A Hybrid All-Atom Structure-Based Model for Protein Folding and Large Scale Conformational Transitions.

    PubMed

    Sutto, Ludovico; Mereu, Ilaria; Gervasio, Francesco Luigi

    2011-12-13

    Structure-based models are successful at conjugating the essence of the energy landscape theory of protein folding with an easy and efficient implementation. Recently, their realm expanded beyond a single protein structure, and structure-based potentials have been used profitably to widely study complex conformational transitions. Still, when dealing with structural rearrangements between two, or more, well-defined structures, an unbiased and transferable description of the local backbone and side chain interactions could be advantageous. Here, we propose an all-atom model that merges a classical force field description of these local interactions with a structure-based long-range potential that takes into account the different conformations. We first validate the model simulating and characterizing the folding reaction and the transition state of two well-known proteins: the villin headpiece and the SH3 domain. Then, we characterize the activation mechanism of the catalytic domain of c-Src kinase. Such a process involves the conformational rearrangement of a large loop and the swing of an α helix. The appearance of a stable intermediate state in the free energy landscape between the two conformational end points suggests the mechanism of the loop opening. The low computational cost of the model together with the satisfactory accuracy of the results make it a promising approach to studying conformational transitions in large protein systems.

  8. Precision displacement reference system

    DOEpatents

    Bieg, Lothar F.; Dubois, Robert R.; Strother, Jerry D.

    2000-02-22

    A precision displacement reference system is described, which enables real time accountability over the applied displacement feedback system to precision machine tools, positioning mechanisms, motion devices, and related operations. As independent measurements of tool location is taken by a displacement feedback system, a rotating reference disk compares feedback counts with performed motion. These measurements are compared to characterize and analyze real time mechanical and control performance during operation.

  9. Amorphization of Silicon Carbide by Carbon Displacement

    SciTech Connect

    Devanathan, Ram; Gao, Fei; Weber, William J.

    2004-05-10

    We have used molecular dynamics simulations to examine the possibility of amorphizing silicon carbide (SiC) by exclusively displacing C atoms. At a defect generation corresponding to 0.2 displacements per atom, the enthalpy surpasses the level of melt-quenched SiC, the density decreases by about 15%, and the radial distribution function shows a lack of long-range order. Prior to amorphization, the surviving defects are mainly C Frenkel pairs (67%), but Si Frenkel pairs (18%) and anti-site defects (15%) are also present. The results indicate that SiC can be amorphized by C sublattice displacements. Chemical short-range disorder, arising mainly from interstitial production, plays a significant role in the amorphization.

  10. Synthesis and characterization of large-area and continuous MoS2 atomic layers by RF magnetron sputtering.

    PubMed

    Hussain, Sajjad; Shehzad, Muhammad Arslan; Vikraman, Dhanasekaran; Khan, Muhammad Farooq; Singh, Jai; Choi, Dong-Chul; Seo, Yongho; Eom, Jonghwa; Lee, Wan-Gyu; Jung, Jongwan

    2016-02-21

    In this article, we report layer-controlled, continuous and large-area molydenum sulfide (MoS2) growth onto a SiO2/Si substrate by RF sputtering combined with sulfurization. A two-step process was employed to synthesize MoS2 films. In the first step, an atomically thin MoO3 film was deposited by RF magnetron sputtering at 300 °C. Subsequently, the as-sputtered MoO3 film was further subjected to post-annealing and sulfurization processes at 650 °C for 1 hour. It was observed that the number of layers of MoS2 can be controlled by adjusting the sputtering time. The fabricated MoS2 transistors exhibited high mobility values of ∼21 cm(2) V(-1) s(-1) (bilayer) and ∼25 cm(2) V(-1) s(-1) (trilayer), on/off ratios in the range of ∼10(7) (bilayer) and 10(4)-10(5) (trilayer), respectively. We believe that our proposed paradigm can start a new method for the growth of MoS2 in future electronics and optoelectronics applications.

  11. Tactile suppression of displacement.

    PubMed

    Ziat, Mounia; Hayward, Vincent; Chapman, C Elaine; Ernst, Marc O; Lenay, Charles

    2010-10-01

    In vision, the discovery of the phenomenon of saccadic suppression of displacement has made important contributions to the understanding of the stable world problem. Here, we report a similar phenomenon in the tactile modality. When scanning a single Braille dot with two fingers of the same hand, participants were asked to decide whether the dot was stationary or whether it was displaced from one location to another. The stimulus was produced by refreshable Braille devices that have dots that can be swiftly raised and recessed. In some conditions, the dot was stationary. In others, a displacement was created by monitoring the participant's finger position and by switching the dot activation when it was not touched by either finger. The dot displacement was of either 2.5 mm or 5 mm. We found that in certain cases, displaced dots were felt to be stationary. If the displacement was orthogonal to the finger movements, tactile suppression occurred effectively when it was of 2.5 mm, but when the displacement was of 5 mm, the participants easily detected it. If the displacement was medial-lateral, the suppression effect occurred as well, but less often when the apparent movement of the dot opposed the movement of the finger. In such cases, the stimulus appeared sooner than when the brain could predict it from finger movement, supporting a predictive rather than a postdictive differential processing hypothesis.

  12. Displacement data assimilation

    NASA Astrophysics Data System (ADS)

    Rosenthal, W. Steven; Venkataramani, Shankar; Mariano, Arthur J.; Restrepo, Juan M.

    2017-02-01

    We show that modifying a Bayesian data assimilation scheme by incorporating kinematically-consistent displacement corrections produces a scheme that is demonstrably better at estimating partially observed state vectors in a setting where feature information is important. While the displacement transformation is generic, here we implement it within an ensemble Kalman Filter framework and demonstrate its effectiveness in tracking stochastically perturbed vortices.

  13. Linking Species Traits to the Abiotic Template of Flowing Waters: Contrasting Eco physiologies Underlie Displacement of Zebra Mussels by Quagga Mussels in a Large River-Estuary

    NASA Astrophysics Data System (ADS)

    Casper, A. F.

    2005-05-01

    The St. Lawrence River-Estuary was the gateway of entry for dreissenids to North America and holds some of the oldest populations. The St. Lawrence also has four distinct physical-chemical water masses (a regional scale abiotic template) that both species inhabit. Despite their ecological similarities, quagga mussels are supplanting zebra mussels in much of their shared range. In order to try to better understand the changing distributions of these two species we compared glycogen, shell mass and tissue biomass in each of the water masses. This comparative physiological combined with experimental approaches (estuarine salinity experiments and reciprocal transplants) showed that while quagga mussels should dominate in most habitats, that abiotic/bioenergetic constraints in two regions (the Ottawa River plume and the freshwater-marine transition zone) might prevent them from dominating these locations. These findings are an example of how the interaction of landscape scale abiotic heterogeneity and a species-specific physiology can have strong impacts of distribution of biota large rivers.

  14. Internal displacement in Colombia

    PubMed Central

    Shultz, James M; Ceballos, Ángela Milena Gómez; Espinel, Zelde; Oliveros, Sofia Rios; Fonseca, Maria Fernanda; Florez, Luis Jorge Hernandez

    2014-01-01

    This commentary aims to delineate the distinguishing features of conflict-induced internal displacement in the nation of Colombia, South America. Even as Colombia is currently implementing a spectrum of legal, social, economic, and health programs for “victims of armed conflict,” with particular focus on internally displaced persons (IDPs), the dynamics of forced migration on a mass scale within this country are little known beyond national borders.   The authors of this commentary are embarking on a global mental health research program in Bogota, Colombia to define best practices for reaching the displaced population and implementing sustainable, evidence-based screening and intervention for common mental disorders. Presenting the defining characteristics of internal displacement in Colombia provides the context for our work and, more importantly, conveys the compelling and complex nature of this humanitarian crisis. We attempt to demonstrate Colombia’s unique position within the global patterning of internal displacement. PMID:28228997

  15. Computer Simulation of Displacement Damage in Silicon Carbide

    SciTech Connect

    Devanathan, Ram; Gao, Fei; Weber, William J.; M. Chipara, D. L. Edwards, S. Phillips, and R. Benson

    2005-07-01

    We have performed molecular dynamics simulation of displacement events on silicon and carbon sublattices in silicon carbide for displacement doses ranging from 0.005 to 0.5 displacements per atom. Our results indicate that the displacement threshold energy is about 21 eV for C and 35 eV for Si, and amorphization can occur by accumulation of displacement damage regardless of whether Si or C is displaced. In addition, we have simulated defect production in high-energy cascades as a function of the primary knock-on atom energy and observed features that are different from the case of damage accumulation in Si. These systematic studies shed light on the phenomenon of non-ionizing energy loss that is relevant to understanding space radiation effects in semiconductor devices.

  16. Dynamic model of the threshold displacement energy

    NASA Astrophysics Data System (ADS)

    Kupchishin, A. I.; Kupchishin, A. A.

    2017-01-01

    A dynamic (cascade-probability) model for calculating the threshold displacement energy of knocked-out atoms (Ed) was proposed taking into account the influence of the instability zone (spontaneous recombination). General expression was recorded for Ed depending on the formation energy of interstitial atoms Ef and vacancies Ei, on the energy transfer coefficient α and the number of interactions i needed to move the atom out of the instability zone. The parameters of primary particles were calculated. Comparison of calculations with experimental data gives a satisfactory agreement.

  17. Isothermal Multiple Displacement Amplification

    PubMed Central

    Luthra, Rajyalakshmi; Medeiros, L. Jeffrey

    2004-01-01

    Isothermal multiple strand displacement amplification (IMDA) of the whole human genome is a promising method for procuring abundant DNA from valuable and often limited clinical specimens. However, whether DNA generated by this method is of high quality and a faithful replication of the DNA in the original specimen, allowing for subsequent molecular diagnostic testing, requires verification. In this study, we evaluated the suitability of IMDA-generated DNA (IMDA-DNA) for detecting antigen receptor gene rearrangements, chromosomal translocations, and gene mutations using Southern blot analysis, polymerase chain reaction (PCR) methods, or sequencing methods in 28 lymphoma and leukemia clinical specimens. Molecular testing before and after whole genome amplification of these specimens using the IMDA technique showed concordance in 27 of 28 (96%) specimens. Analysis of IMDA-DNA by Southern blot analysis detected restriction fragments >12 kilobases long. No amplification bias was observed at all loci tested demonstrating that this method can be useful in generating large amounts of unbiased, high molecular weight DNA from limited clinical specimens. PMID:15269301

  18. Conflict, displacement and health in the Middle East.

    PubMed

    Mowafi, Hani

    2011-01-01

    Displacement is a hallmark of modern humanitarian emergencies. Displacement itself is a traumatic event that can result in illness or death. Survivors face challenges including lack of adequate shelter, decreased access to health services, food insecurity, loss of livelihoods, social marginalisation as well as economic and sexual exploitation. Displacement takes many forms in the Middle East and the Arab World. Historical conflicts have resulted in long-term displacement of Palestinians. Internal conflicts have driven millions of Somalis and Sudanese from their homes. Iraqis have been displaced throughout the region by invasion and civil strife. In addition, large numbers of migrants transit Middle Eastern countries or live there illegally and suffer similar conditions as forcibly displaced people. Displacement in the Middle East is an urban phenomenon. Many displaced people live hidden among host country populations in poor urban neighbourhoods - often without legal status. This represents a challenge for groups attempting to access displaced populations. Furthermore, health information systems in host countries often do not collect data on displaced people, making it difficult to gather data needed to target interventions towards these vulnerable populations. The following is a discussion of the health impacts of conflict and displacement in the Middle East. A review was conducted of published literature on migration and displacement in the region. Different cases are discussed with an emphasis on the recent, large-scale and urban displacement of Iraqis to illustrate aspects of displacement in this region.

  19. Atomistic Simulation of Displacement Cascades in Zircon

    SciTech Connect

    Devanathan, Ram; Weber, William J.; Corrales, Louis R.; BP McGrail and GA Cragnolino

    2002-05-06

    Low energy displacement cascades in zircon (ZrSiO4) initiated by a Zr primary knock-on atom have been investigated by molecular dynamics simulations using a Coulombic model for long-range interactions, Buckingham potential for short-range interactions and Ziegler-Biersack potentials for close pair interactions. Displacements were found to occur mainly in the O sublattice, and O replacements by a ring mechanism were predominant. Clusters containing Si interstitials bridged by O interstitials, vacancy clusters and anti-site defects were found to occur. This Si-O-Si bridging is considerable in quenched liquid ZrSiO4.

  20. Force based displacement measurement in micromechanical devices

    SciTech Connect

    O {close_quote}Shea, S. J.; Ng, C. K.; Tan, Y. Y.; Xu, Y.; Tay, E. H.; Chua, B. L.; Tien, N. C.; Tang, X. S.; Chen, W. T.

    2001-06-18

    We demonstrate how force detection methods based on atomic force microscopy can be used to measure displacement in micromechanical devices. We show the operation of a simple microfabricated accelerometer, the proof mass of which incorporates a tip which can be moved towards an opposing surface. Both noncontact operation using long range electrostatic forces and tapping mode operation are demonstrated. The displacement sensitivity of the present device using feedback to control the tip-surface separation is approximately 1 nm. {copyright} 2001 American Institute of Physics.

  1. Advanced Triangulation Displacement Sensors

    NASA Technical Reports Server (NTRS)

    Poteet, Wade M.; Cauthen, Harold K.

    1996-01-01

    Advanced optoelectronic triangulation displacement sensors undergoing development. Highly miniaturized, more stable, more accurate, and relatively easy to use. Incorporate wideband electronic circuits suitable for real-time monitoring and control of displacements. Measurements expected to be accurate to within nanometers. In principle, sensors mass-produced at relatively low unit cost. Potential applications numerous. Possible industrial application in measuring runout of rotating shaft or other moving part during fabrication in "zero-defect" manufacturing system, in which measured runout automatically corrected.

  2. Implications of Research on Displaced Workers. ERIC Digest No. 80.

    ERIC Educational Resources Information Center

    Naylor, Michele

    Worker displacement is more closely related to structural features associated with firms than to the characteristics of the individuals who lost their jobs. Despite economic growth, large numbers of displaced workers continue to experience difficulty in making labor market adjustments. Programs to retrain and reemploy displaced workers exist at…

  3. Job Displacement and Labor Market Mobility. Final Report.

    ERIC Educational Resources Information Center

    Podgursky, Michael; Swaim, Paul

    A study examined the labor market mobility of displaced workers, using a new data file that matches the January 1984, 1986, and 1988 Displaced Worker Surveys (DWS) to the March Current Population Surveys in the same years. This large database provides information on displaced workers and their families and permits comparison of the geographic…

  4. Internal displacement in Burma.

    PubMed

    Lanjouw, S; Mortimer, G; Bamforth, V

    2000-09-01

    The internal displacement of populations in Burma is not a new phenomenon. Displacement is caused by numerous factors. Not all of it is due to outright violence, but much is a consequence of misguided social and economic development initiatives. Efforts to consolidate the state by assimilating populations in government-controlled areas by military authorities on the one hand, while brokering cease-fires with non-state actors on the other, has uprooted civilian populations throughout the country. Very few areas in which internally displaced persons (IDPs) are found are not facing social turmoil within a climate of impunity. Humanitarian access to IDP populations remains extremely problematic. While relatively little information has been collected, assistance has been focused on targeting accessible groups. International concern within Burma has couched the problems of displacement within general development modalities, while international attention along its borders has sought to contain displacement. With the exception of several recent initiatives, few approaches have gone beyond assistance and engaged in the prevention or protection of the displaced.

  5. Displacement sensor based on plasmonic slot metamaterials

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Ren, Mengxin; Pi, Biao; Cai, Wei; Xu, Jingjun

    2016-02-01

    In this paper, we demonstrate a plasmonic type displacement sensor based on slot metamaterials. The sensors are formed by arranging metamaterial arrays with different dimension parameters adjacently. Hence, the measured spectra would be modified as a result of moving the sensors across the detecting area of the spectrometer. From the spectral changes, the displacement amount could be retrieved. The sensor is demonstrated to be capable of recognizing a displacement of 200 nm, which is equal to the period of the metamaterial lattice, and the sensitivity is largely dependent on the shape and size of the acquisition area of the spectrometer used for spectra analysis.

  6. Water displacement mercury pump

    DOEpatents

    Nielsen, M.G.

    1984-04-20

    A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

  7. Water displacement mercury pump

    DOEpatents

    Nielsen, Marshall G.

    1985-01-01

    A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

  8. Optical displacement sensor

    DOEpatents

    Carr, Dustin W.

    2008-04-08

    An optical displacement sensor is disclosed which uses a vertical-cavity surface-emitting laser (VCSEL) coupled to an optical cavity formed by a moveable membrane and an output mirror of the VCSEL. This arrangement renders the lasing characteristics of the VCSEL sensitive to any movement of the membrane produced by sound, vibrations, pressure changes, acceleration, etc. Some embodiments of the optical displacement sensor can further include a light-reflective diffractive lens located on the membrane or adjacent to the VCSEL to control the amount of lasing light coupled back into the VCSEL. A photodetector detects a portion of the lasing light from the VCSEL to provide an electrical output signal for the optical displacement sensor which varies with the movement of the membrane.

  9. Quantum dots - artificial atoms, large molecules, or small pieces of bulk? Insights from time-domain ab ignition studies

    NASA Astrophysics Data System (ADS)

    Prezhdo, Oleg

    2014-03-01

    Quantum dots (QD) are quasi-zero dimensional structures with a unique combination of solid-state and atom-like properties. Unlike bulk or atomic materials, QD properties can be modified continuously by changing QD shape and size. Often, the bulk and atomic viewpoints contradict each other. The atomic view suggests strong electron-hole and charge-phonon interactions, and slow energy relaxation due to mismatch between electronic energy gaps and phonon frequencies. The bulk view advocates that the kinetic energy of quantum confinement is greater than electron-hole interactions, that charge-phonon coupling is weak, and that the relaxation through quasi-continuous bands is rapid. QDs exhibit new physical phenomena. The phonon bottleneck to electron energy relaxation and generation of multiple excitons can improve efficiencies of photovoltaic devices. Our state-of-the-art non-adiabatic molecular dynamics techniques, implemented within time-dependent density-functional-theory, allow us to model QDs at the atomistic level and in time-domain, providing a unifying description of quantum dynamics on the nanoscale.

  10. Visualization of a Large Set of Hydrogen Atomic Orbital Contours Using New and Expanded Sets of Parametric Equations

    ERIC Educational Resources Information Center

    Rhile, Ian J.

    2014-01-01

    Atomic orbitals are a theme throughout the undergraduate chemistry curriculum, and visualizing them has been a theme in this journal. Contour plots as isosurfaces or contour lines in a plane are the most familiar representations of the hydrogen wave functions. In these representations, a surface of a fixed value of the wave function ? is plotted…

  11. Thio-bisnaphthalimides as Heavy-Atom-Free Photosensitizers with Efficient Singlet Oxygen Generation and Large Stokes Shifts: Synthesis and Properties.

    PubMed

    Zhang, Lei; Huang, Zhisong; Dai, Dongdong; Xiao, Yansheng; Lei, Kecheng; Tan, Shaoying; Cheng, Jiagao; Xu, Yufang; Liu, Jianwen; Qian, Xuhong

    2016-11-04

    By structure transformation of benzo[k,l]thioxanthene-naphthalimide derivatives (ND-S), a novel series of nonplanar thio-heterocyclic bisnaphthalimide derivatives are designed and synthesized. They display high molar absorptivity and large Stokes shifts. They are also heavy-atom-free photosensitizers with high singlet oxygen quantum yields of 0.75 and 0.82. Thus, these new structures based on the naphthalimide skeleton have great potential for singlet oxygen applications.

  12. Displaced Homemakers: Unresolved Issues.

    ERIC Educational Resources Information Center

    Zawada, Mary Ann

    1980-01-01

    Problems of today's displaced homemakers overlap with those of women in the 1960s. Problems of women seeking employment are similar to those of minority groups, older workers and welfare recipients. Recent legislation has expanded to fulfill some of the needs of women returning to the labor force. (Author/BEF)

  13. Are large concentration of atomic H storable in tritium-impregnated solid in H2 below 0.10 K

    NASA Technical Reports Server (NTRS)

    Rosen, G.; Webeler, R. W. H.

    1979-01-01

    The storage and release of atomic hydrogen produced by the beta decay of tritium contained in a crystalline solid H2 matrix at concentrations greater than 2% and temperatures below 0.80 K are investigated. The temperature of a sample chamber containing tritium-impregnated H2 and placed in the mixing chamber of a dilution refrigerator was measured as the chamber was heated and cooled in order to determine the rates of energy storage and release. It is found that for samples containing 1.2 wt.% tritium, after storage at 0.054 K for 40 h, an increase in sample temperature to a trigger point of 0.17 K leads to an energy release due to the destabilization of atomic H in H2 as predicted by the phenomenological rate process theory. For a tritium weight fraction of 2.5%, energy releases were triggered at 0.54 and 0.82 K after storage at 0.080 K, indicating the trapping of H atoms at the sites of T2 and HT molecules in the sample. The application of a 15 kG magnetic field is shown to increase the storage capacity of T2 traps while reducing that of HT traps, and to lower the trigger temperatures of both. Results suggest that the direct conversion of nuclear energy to chemical energy may become technically feasible in the future.

  14. Atomic resolution holography.

    PubMed

    Hayashi, Kouichi

    2014-11-01

    Atomic resolution holography, such as X-ray fluorescence holography (XFH)[1] and photoelectron holography (PH), has the attention of researcher as an informative local structure analysis, because it provides three dimensional atomic images around specific elements within a range of a few nanometers. It can determine atomic arrangements around a specific element without any prior knowledge of structures. It is considered that the atomic resolution holographic is a third method of structural analysis at the atomic level after X-ray diffraction (XRD) and X-ray absorption fine structure (XAFS). As known by many researchers, XRD and XAFS are established methods that are widespread use in various fields. XRD and XAFS provide information on long-range translational periodicities and very local environments, respectively, whereas the atomic resolution holography gives 3D information on the local order and can visualize surrounding atoms with a large range of coordination shells. We call this feature "3D medium-range local structure observation".In addition to this feature, the atomic resolution holography is very sensitive to the displacement of atoms from their ideal positions, and one can obtain quantitative information about local lattice distortions by analyzing reconstructed atomic images[2] When dopants with different atomic radii from the matrix elements are present, the lattices around the dopants are distorted. However, using the conventional methods of structural analysis, one cannot determine the extent to which the local lattice distortions are preserved from the dopants. XFH is a good tool for solving this problem.Figure 1 shows a recent achievement on a relaxor ferroelectric of Pb(Mg1/3Nb2/3)O3 (PMN) using XFH. The structural studies of relaxor ferroelectrics have been carried out by X-ray or neutron diffractions, which suggested rhombohedral distortions of their lattices. However, their true pictures have not been obtained, yet. The Nb Kα holograms showed

  15. Threshold displacement energy in GaN; Ab initio molecular dynamics study

    SciTech Connect

    Xiao, H. Y.; Gao, Fei; Zu, Xiaotao T.; Weber, William J.

    2009-06-25

    Large-scale ab initio molecular dynamics method has been used to determine the threshold displacement energies, Ed, along five specific directions and to determine the defect configurations created during low energy events. The Ed shows a significant dependence on direction. The minimum Ed is determined to be 39 eV along the <-1010> direction for a gallium atom and 17.0 eV along the <-1010> direction for a nitrogen atom, which are in reasonable agreement with the experimental measurements. The average Ed values determined are 73.2 and 32.4 eV for gallium and nitrogen atoms, respectively. The N defects created at low energy events along different crystallographic directions have a similar configuration (a N-N dumbbell configuration), but various configurations for Ga defects are formed in GaN.

  16. Site Change of Hydrogen in Niobium on Alloying with Oversized Ta Atoms

    NASA Astrophysics Data System (ADS)

    Yagi, Eiichi; Yoshii, Motoyasu; Okada, Yoshinori; Matsuba, Hiroshi; Miyahara, Kazuya; Koike, Shigetoshi; Sugawara, Takamasa; Shishido, Toetsu; Ogiwara, Kiyoshi

    2009-06-01

    In order to clarify a difference in hydrogen interaction with oversized solute atoms and with undersized solute atoms in bcc metals in the low solute concentration region, the site occupancy of hydrogen in Nb alloyed with 5 at. % of oversized Ta atoms has been studied at room temperature for hydrogen concentrations of 0.018 and 0.025 at the hydrogen-to-metal-atom ratio (CH=[H]/[M]) by the channelling method utilizing a nuclear reaction 1H(11B,α)αα with a 11B beam of an energy of 2.03 MeV. Clearly different from the result on hydrogen in Nb alloyed with undersized Mo atoms, in both specimens H atoms are distributed over tetrahedral (T) sites and the displaced-T sites (d-T sites) which are displaced from T sites by about 0.25 Å towards their nearest neighbour octahedral (O) sites. The T site is more favourable for hydrogen occupancy, but the number of available T sites is limited, and excess H atoms occupy the d-T sites. Therefore, in contrast to a strong attractive interaction between hydrogen and undersized Mo atoms (trapping), there exists no such a strong attractive interaction between hydrogen and oversized Ta atoms. It is considered that the trapping of hydrogen by undersized solute atoms is effective to the large enhancement of the terminal solubility of hydrogen (TSH) on alloying with undersized solute atoms, at least, in the low solute concentration region.

  17. Large-Scale Fabrication of Carbon Nanotube Probe Tips For Atomic Force Microscopy Critical Dimension Imaging Applications

    NASA Technical Reports Server (NTRS)

    Ye, Qi Laura; Cassell, Alan M.; Stevens, Ramsey M.; Meyyappan, Meyya; Li, Jun; Han, Jie; Liu, Hongbing; Chao, Gordon

    2004-01-01

    Carbon nanotube (CNT) probe tips for atomic force microscopy (AFM) offer several advantages over Si/Si3N4 probe tips, including improved resolution, shape, and mechanical properties. This viewgraph presentation discusses these advantages, and the drawbacks of existing methods for fabricating CNT probe tips for AFM. The presentation introduces a bottom up wafer scale fabrication method for CNT probe tips which integrates catalyst nanopatterning and nanomaterials synthesis with traditional silicon cantilever microfabrication technology. This method makes mass production of CNT AFM probe tips feasible, and can be applied to the fabrication of other nanodevices with CNT elements.

  18. Development of a high dynamic range spectroscopic system for observation of neutral hydrogen atom density distribution in Large Helical Device core plasma

    SciTech Connect

    Fujii, K. Atsumi, S.; Watanabe, S.; Shikama, T.; Hasuo, M.; Goto, M.; Morita, S.

    2014-02-15

    We report development of a high dynamic range spectroscopic system comprising a spectrometer with 30% throughput and a camera with a low-noise fast-readout complementary metal-oxide semiconductor sensor. The system achieves a 10{sup 6} dynamic range (∼20 bit resolution) and an instrumental function approximated by a Voigt profile with Gauss and Lorentz widths of 31 and 0.31 pm, respectively, for 656 nm light. The application of the system for line profile observations of the Balmer-α emissions from high temperature plasmas generated in the Large Helical Device is also presented. In the observed line profiles, emissions are detected in far wings more than 1.0 nm away from the line center, equivalent to neutral hydrogen atom kinetic energies above 1 keV. We evaluate atom density distributions in the core plasma by analyzing the line profiles.

  19. The photoelectric displacement converter

    NASA Astrophysics Data System (ADS)

    Dragoner, Valeriu V.

    2005-02-01

    In the article are examined questions of constructing photoelectric displacement converter satisfying demands that are stated above. Converter has channels of approximate and precise readings. The approximate reading may be accomplished either by the method of reading from a code mask or by the method of the consecutive calculation of optical scale gaps number. Phase interpolator of mouar strips" gaps is determined as a precise measuring. It is shown mathematical model of converter that allow evaluating errors and operating speed of conversion.

  20. Tunable beam displacer

    SciTech Connect

    Salazar-Serrano, Luis José; Valencia, Alejandra; Torres, Juan P.

    2015-03-15

    We report the implementation of a tunable beam displacer, composed of a polarizing beam splitter (PBS) and two mirrors, that divides an initially polarized beam into two parallel beams whose separation can be continuously tuned. The two output beams are linearly polarized with either vertical or horizontal polarization and no optical path difference is introduced between them. The wavelength dependence of the device as well as the maximum separation between the beams achievable is limited mainly by the PBS characteristics.

  1. Variable displacement vane pump

    SciTech Connect

    Tschantz, J.S.; Bisson, B.J.

    1997-12-31

    What has been developed under this program is a pumping system which can vary the amount of fuel delivered according to engine needs, thereby reducing the temperature rise of the fuel to very low levels. This permits the elimination of the air/oil coolers and conserves the vital airflow through the fan. The variable displacement vane pump (VDVP) also permits a substantial simplification of the control system with the elimination of complex metering valves, offering a significant reduction in fuel system cost. This program was initiated to develop a technology that embodied the ruggedness of the gear pump with the efficiency and metering versatility of the variable displacement vane pump. Thick metal vanes emulate the teeth on pumping gears while the simple, elegant swing cam feature provides the variable displacement capability without the unwieldy multiple cam segments found in other concepts. The result is a pumping architecture which is rugged, light in weight and extremely versatile, having demonstrated superb heat management and controllability in extensive bench and engine testing. This paper will report the results that the pumps have achieved to date both in terms of durability and efficiency.

  2. Spectroscopic observations of the displacement dynamics of physically adsorbed molecules-CO on C60

    NASA Astrophysics Data System (ADS)

    Yuan, Chunqing; Yates, John T.

    2016-10-01

    In this paper, we observed physically adsorbed CO molecules on C60 surface being displaced by impinging noble gas atoms (He, Ne, Ar, Kr), either through a dynamic displacement process or an exothermic replacement process, depending on their adsorption energies. This displacement mechanism could shift from one to the other depending on the surface coverage and temperature. Furthermore, rotational energy of the impinging molecules may also contribute to the dynamic displacement process by supplying additional energy.

  3. Buoyant miscible displacement flows in vertical pipe

    NASA Astrophysics Data System (ADS)

    Amiri, A.; Larachi, F.; Taghavi, S. M.

    2016-10-01

    The displacement flow of two miscible Newtonian fluids is investigated experimentally in a vertical pipe of long aspect ratio (δ-1 ≈ 210). The fluids have a small density difference and they have the same viscosity. The heavy displacing fluid is initially placed above the light displaced fluid. The displacement flow is downwards. The experiments cover a wide range of the two dimensionless parameters that largely describe the flow: the modified Reynolds number (0 ≤ Ret⪅800) and the densimetric Froude number (0 ≤ Fr ≤ 24). We report on the stabilizing effect of the imposed flow and uncover the existence of two main flow regimes at long times: a stable displacement flow and an unstable displacement flow. The transition between the two regimes occurs at a critical modified Reynolds number " separators=" R et | Critical , as a function of Fr. We study in depth the stable flow regime: First, a lubrication model combined with a simple initial acceleration formulation delivers a reasonable prediction to the time-dependent penetrating displacing front velocity. Second, we find two sub-regimes for stable displacements, namely, sustained-back-flows and no-sustained-back-flows. The transition between the two sub-regimes is a marginal stationary interface flow state, which is also well predicted by the lubrication model. The unstable regime is associated to instabilities and diffusive features of the flow. In addition, particular patterns such as front detachment phenomenon appear in the unstable flow regime, for which we quantify the regions of existence versus the dimensionless groups.

  4. Electromagnetically induced transparency and four-wave mixing in a cold atomic ensemble with large optical depth

    NASA Astrophysics Data System (ADS)

    Geng, J.; Campbell, G. T.; Bernu, J.; Higginbottom, D. B.; Sparkes, B. M.; Assad, S. M.; Zhang, W. P.; Robins, N. P.; Lam, P. K.; Buchler, B. C.

    2014-11-01

    We report on the delay of optical pulses using electromagnetically induced transparency (EIT) in an ensemble of cold atoms with an optical depth exceeding 500. To identify the regimes in which four-wave mixing (4WM) impacts on EIT behaviour, we conduct the experiment in both 85Rb and 87Rb. Comparison with theory shows excellent agreement in both isotopes. In 87Rb negligible 4WM was observed and we obtained one pulse-width of delay with 50% efficiency. In 85Rb 4WM contributes to the output. In this regime we achieve a delay-bandwidth product of 3.7 at 50% efficiency, allowing temporally multimode delay, which we demonstrate by compressing two pulses into the memory medium.

  5. An electromechanical displacement transducer

    NASA Astrophysics Data System (ADS)

    Villiers, Marius; Mahboob, Imran; Nishiguchi, Katsuhiko; Hatanaka, Daiki; Fujiwara, Akira; Yamaguchi, Hiroshi

    2016-08-01

    Two modes of an electromechanical resonator are coupled through the strain inside the structure with a cooperativity as high as 107, a state-of-the-art value for purely mechanical systems, which enables the observation of normal-mode splitting. This coupling is exploited to transduce the resonator’s fundamental mode into the bandwidth of the second flexural mode, which is 1.4 MHz higher in frequency. Thus, an all-mechanical heterodyne detection scheme is implemented that can be developed into a high-precision displacement sensor.

  6. Synthesis of finite displacements and displacements in continental margins

    NASA Technical Reports Server (NTRS)

    Speed, R. C.; Elison, M. W.; Heck, F. R.; Russo, R. M.

    1988-01-01

    The scope of the project is the analysis of displacement-rate fields in the transitional regions between cratonal and oceanic lithospheres over Phanerozoic time (last 700 ma). Associated goals are an improved understanding of range of widths of major displacement zones; the partition of displacement gradients and rotations with position and depth in such zones; the temporal characteristics of such zones-the steadiness, episodicity, and duration of uniform versus nonunifrom fields; and the mechanisms and controls of the establishment and kinematics of displacement zones. The objective is to provide a context of time-averaged kinematics of displacement zones. The initial phase is divided topically among the methodology of measurement and reduction of displacements in the lithosphere and the preliminary analysis from geologic and other data of actual displacement histories from the Cordillera, Appalachians, and southern North America.

  7. Helium vs. Proton Induced Displacement Damage in Electronic Materials

    NASA Technical Reports Server (NTRS)

    Ringo, Sawnese; Barghouty, A. F.

    2010-01-01

    In this project, the specific effects of displacement damage due to the passage of protons and helium nuclei on some typical electronic materials will be evaluated and contrasted. As the electronic material absorbs the energetic proton and helium momentum, degradation of performance occurs, eventually leading to overall failure. Helium nuclei traveling at the same speed as protons are expected to impart more to the material displacement damage; due to the larger mass, and thus momentum, of helium nuclei compared to protons. Damage due to displacement of atoms in their crystalline structure can change the physical properties and hence performance of the electronic materials.

  8. Polyimidazoles via aromatic nucleophilic displacement

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Hergenrother, Paul M. (Inventor)

    1991-01-01

    Polyimidazoles (Pl) are prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenyl)imidazole monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The reactions are carried out in polar aprotic solvents such as N,N-dimethylacetamide, sulfolane, N-methylpyrroldinone, dimethylsulfoxide, or diphenylsulfone using alkali metal bases such as potassium carbonate at elevated temperature under nitrogen. The di(hydroxyphenyl)imidazole monomers are prepared by reacting an aromatic aldehyde with a dimethoxybenzil or by reacting an aromatic dialdehyde with a methoxybenzil in the presence of ammonium acetate. The di(methoxyphenyl)imidazole is subsequently treated with aqueous hydrobromic acid to give the di(hydroxyphenyl)imidazole monomer. This synthetic route has provided high molecular weight Pl of new chemical structure, is economically and synthetically more favorable than other routes, and allows for facile chemical structure variation due to the availability of a large variety of activated aromatic dihalides and dinitro compounds.

  9. Polyimidazoles via aromatic nucleophilic displacement

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Hergenrother, Paul M. (Inventor)

    1992-01-01

    Polyimidazoles (PI) are prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenyl) imidazole monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The reactions are carried out in polar aprotic solvents such as N,N-dimethyl acetamide, sulfolane, N-methylpyrrolidinone, dimethylsulfoxide, or diphenylsulfone using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. The di(hydroxyphenyl) imidazole monomers are prepared by reacting an aromatic aldehyde with a dimethoxybenzil or by reacting an aromatic dialdehyde with a methoxybenzil in the presence of ammonium acetate. The di(methoxyphenyl) imidazole is subsequently treated with aqueous hydrobromic acid to give the di(hydroxphenyl) imidazole monomer. This synthetic route has provided high molecular weight PI of new chemical structure, is economically and synthetically more favorable than other routes, and allows for facile chemical structure variation due to the availability of a large variety of activated aromatic dihalides and dinitro compounds.

  10. Angular displacement measuring device

    NASA Technical Reports Server (NTRS)

    Seegmiller, H. Lee B. (Inventor)

    1992-01-01

    A system for measuring the angular displacement of a point of interest on a structure, such as aircraft model within a wind tunnel, includes a source of polarized light located at the point of interest. A remote detector arrangement detects the orientation of the plane of the polarized light received from the source and compares this orientation with the initial orientation to determine the amount or rate of angular displacement of the point of interest. The detector arrangement comprises a rotating polarizing filter and a dual filter and light detector unit. The latter unit comprises an inner aligned filter and photodetector assembly which is disposed relative to the periphery of the polarizer so as to receive polarized light passing the polarizing filter and an outer aligned filter and photodetector assembly which receives the polarized light directly, i.e., without passing through the polarizing filter. The purpose of the unit is to compensate for the effects of dust, fog and the like. A polarization preserving optical fiber conducts polarized light from a remote laser source to the point of interest.

  11. Angular displacement measuring device

    NASA Astrophysics Data System (ADS)

    Seegmiller, H. Lee B.

    1992-08-01

    A system for measuring the angular displacement of a point of interest on a structure, such as aircraft model within a wind tunnel, includes a source of polarized light located at the point of interest. A remote detector arrangement detects the orientation of the plane of the polarized light received from the source and compares this orientation with the initial orientation to determine the amount or rate of angular displacement of the point of interest. The detector arrangement comprises a rotating polarizing filter and a dual filter and light detector unit. The latter unit comprises an inner aligned filter and photodetector assembly which is disposed relative to the periphery of the polarizer so as to receive polarized light passing the polarizing filter and an outer aligned filter and photodetector assembly which receives the polarized light directly, i.e., without passing through the polarizing filter. The purpose of the unit is to compensate for the effects of dust, fog and the like. A polarization preserving optical fiber conducts polarized light from a remote laser source to the point of interest.

  12. Exact solution for inner displacements of graphene lattice

    SciTech Connect

    Zubko, I. Yu.

    2015-10-27

    It is shown that in the frame of lattice statics approach to finding elastic moduli the homogeneous deformation of graphene monolayer transfers it into the non-equilibrium state. It is necessary to shift part of graphene atoms which form one of its “triangular” sublattices with respect to atoms of another sublattice in order to provide the sample minimum potential energy in a deformed state, while each sublattice is deformed homogeneously. Taking into account these inner displacements of graphene lattice allows obtaining more precise estimations of its elastic moduli. The exact expression for the vector of inner displacements depending on applied deformations and specimen size is found.

  13. Low-temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism.

    PubMed

    Han, X D; Zhang, Y F; Zheng, K; Zhang, X N; Zhang, Z; Hao, Y J; Guo, X Y; Yuan, J; Wang, Z L

    2007-02-01

    Large strain plasticity is phenomenologically defined as the ability of a material to exhibit an exceptionally large deformation rate during mechanical deformation. It is a property that is well established for metals and alloys but is rarely observed for ceramic materials especially at low temperature ( approximately 300 K). With the reduction in dimensionality, however, unusual mechanical properties are shown by ceramic nanomaterials. In this Letter, we demonstrated unusually large strain plasticity of ceramic SiC nanowires (NWs) at temperatures close to room temperature that was directly observed in situ by a novel high-resolution transmission electron microscopy technique. The continuous plasticity of the SiC NWs is accompanied by a process of increased dislocation density at an early stage, followed by an obvious lattice distortion, and finally reaches an entire structure amorphization at the most strained region of the NW. These unusual phenomena for the SiC NWs are fundamentally important for understanding the nanoscale fracture and strain-induced band structure variation for high-temperature semiconductors. Our result may also provide useful information for further studying of nanoscale elastic-plastic and brittle-ductile transitions of ceramic materials with superplasticity.

  14. Global surface displacement data for assessing variability of displacement at a point on a fault

    USGS Publications Warehouse

    Hecker, Suzanne; Sickler, Robert; Feigelson, Leah; Abrahamson, Norman; Hassett, Will; Rosa, Carla; Sanquini, Ann

    2014-01-01

    This report presents a global dataset of site-specific surface-displacement data on faults. We have compiled estimates of successive displacements attributed to individual earthquakes, mainly paleoearthquakes, at sites where two or more events have been documented, as a basis for analyzing inter-event variability in surface displacement on continental faults. An earlier version of this composite dataset was used in a recent study relating the variability of surface displacement at a point to the magnitude-frequency distribution of earthquakes on faults, and to hazard from fault rupture (Hecker and others, 2013). The purpose of this follow-on report is to provide potential data users with an updated comprehensive dataset, largely complete through 2010 for studies in English-language publications, as well as in some unpublished reports and abstract volumes.

  15. Simulation of Rutherford backscattering spectrometry from arbitrary atom structures

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Nordlund, K.; Djurabekova, F.; Zhang, Y.; Velisa, G.; Wang, T. S.

    2016-10-01

    Rutherford backscattering spectrometry in a channeling direction (RBS/C) is a powerful tool for analysis of the fraction of atoms displaced from their lattice positions. However, it is in many cases not straightforward to analyze what is the actual defect structure underlying the RBS/C signal. To reveal insights of RBS/C signals from arbitrarily complex defective atomic structures, we develop here a method for simulating the RBS/C spectrum from a set of arbitrary read-in atom coordinates (obtained, e.g., from molecular dynamics simulations). We apply the developed method to simulate the RBS/C signals from Ni crystal structures containing randomly displaced atoms, Frenkel point defects, and extended defects, respectively. The RBS/C simulations show that, even for the same number of atoms in defects, the RBS/C signal is much stronger for the extended defects. Comparison with experimental results shows that the disorder profile obtained from RBS/C signals in ion-irradiated Ni is due to a small fraction of extended defects rather than a large number of individual random atoms.

  16. Simulation of Rutherford backscattering spectrometry from arbitrary atom structures

    DOE PAGES

    Zhang, S.; Univ. of Helsinki; Nordlund, Kai; ...

    2016-10-25

    Rutherford backscattering spectrometry in a channeling direction (RBS/C) is a powerful tool for analysis of the fraction of atoms displaced from their lattice positions. However, it is in many cases not straightforward to analyze what is the actual defect structure underlying the RBS/C signal. To reveal insights of RBS/C signals from arbitrarily complex defective atomic structures, we develop in this paper a method for simulating the RBS/C spectrum from a set of arbitrary read-in atom coordinates (obtained, e.g., from molecular dynamics simulations). We apply the developed method to simulate the RBS/C signals from Ni crystal structures containing randomly displaced atoms,more » Frenkel point defects, and extended defects, respectively. The RBS/C simulations show that, even for the same number of atoms in defects, the RBS/C signal is much stronger for the extended defects. Finally, comparison with experimental results shows that the disorder profile obtained from RBS/C signals in ion-irradiated Ni is due to a small fraction of extended defects rather than a large number of individual random atoms.« less

  17. Simulation of Rutherford backscattering spectrometry from arbitrary atom structures

    SciTech Connect

    Zhang, S.; Nordlund, Kai; Djurabekova, Flyura; Zhang, Yanwen; Velisa, Gihan; Wang, T. S.

    2016-10-25

    Rutherford backscattering spectrometry in a channeling direction (RBS/C) is a powerful tool for analysis of the fraction of atoms displaced from their lattice positions. However, it is in many cases not straightforward to analyze what is the actual defect structure underlying the RBS/C signal. To reveal insights of RBS/C signals from arbitrarily complex defective atomic structures, we develop in this paper a method for simulating the RBS/C spectrum from a set of arbitrary read-in atom coordinates (obtained, e.g., from molecular dynamics simulations). We apply the developed method to simulate the RBS/C signals from Ni crystal structures containing randomly displaced atoms, Frenkel point defects, and extended defects, respectively. The RBS/C simulations show that, even for the same number of atoms in defects, the RBS/C signal is much stronger for the extended defects. Finally, comparison with experimental results shows that the disorder profile obtained from RBS/C signals in ion-irradiated Ni is due to a small fraction of extended defects rather than a large number of individual random atoms.

  18. Variable displacement blower

    DOEpatents

    Bookout, Charles C.; Stotts, Robert E.; Waring, Douglass R.; Folsom, Lawrence R.

    1986-01-01

    A blower having a stationary casing for rotatably supporting a rotor assembly having a series of open ended chambers arranged to close against the surrounding walls of the casing. Pistons are slidably mounted within each chamber with the center of rotation of the pistons being offset in regard to the center of rotation of the rotor assembly whereby the pistons reciprocate in the chambers as the rotor assembly turns. As inlet port communicates with the rotor assembly to deliver a working substance into the chamber as the pistons approach a top dead center position in the chamber while an outlet port also communicates with the rotor to exhaust the working substance as the pistons approach a bottom dead center position. The displacement of the blower is varied by adjusting the amount of eccentricity between the center of rotation of the pistons and the center of rotation of the rotor assembly.

  19. DNA nanotechnology. Programming colloidal phase transitions with DNA strand displacement.

    PubMed

    Rogers, W Benjamin; Manoharan, Vinothan N

    2015-02-06

    DNA-grafted nanoparticles have been called "programmable atom-equivalents": Like atoms, they form three-dimensional crystals, but unlike atoms, the particles themselves carry information (the sequences of the grafted strands) that can be used to "program" the equilibrium crystal structures. We show that the programmability of these colloids can be generalized to the full temperature-dependent phase diagram, not just the crystal structures themselves. We add information to the buffer in the form of soluble DNA strands designed to compete with the grafted strands through strand displacement. Using only two displacement reactions, we program phase behavior not found in atomic systems or other DNA-grafted colloids, including arbitrarily wide gas-solid coexistence, reentrant melting, and even reversible transitions between distinct crystal phases.

  20. Low frequency magnetic field suppression in an atomic spin co-magnetometer with a large electron magnetic field

    NASA Astrophysics Data System (ADS)

    Fang, Jiancheng; Chen, Yao; Zou, Sheng; Liu, Xuejing; Hu, Zhaohui; Quan, Wei; Yuan, Heng; Ding, Ming

    2016-03-01

    In a K-Rb-21Ne co-magnetometer, the Rb electron magnetic field which is experienced by the nuclear spin is about 100 times larger than that of the K in a K-3He co-magnetometer. The large electron magnetic field which is neglected in the K-3He co-magnetometer coupled Bloch equations model is considered here in the K-Rb-21Ne co-magnetometer to study the low frequency magnetic field suppression effect. Theoretical analysis and experimental results shows that in the K-Rb-21Ne spin co-magnetometer, not only the nuclear spin but also the large electron spin magnetic field compensate the external magnetic field noise. By comparison, only the 3He nuclear spins mainly compensate the external magnetic field noise in a K-3He co-magnetometer. With this study, in addition to just increasing the magnetic field of the nuclear spins, we can suppress the magnetic field noise by increasing the density of the electron spin. We also studied how the magnetic field suppression effect relates to the scale factor of the K-Rb-21Ne co-magnetometer and we compared the scale factor with that of the K-3He co-magnetometer. Lastly, we show the sensitivity of our co-magnetometer. The magnetic field noise, the air density fluctuation noise and pumping power optimization are studied to improve the sensitivity of the co-magnetometer.

  1. Displacement parameter inversion for a novel electromagnetic underground displacement sensor.

    PubMed

    Shentu, Nanying; Li, Qing; Li, Xiong; Tong, Renyuan; Shentu, Nankai; Jiang, Guoqing; Qiu, Guohua

    2014-05-22

    Underground displacement monitoring is an effective method to explore deep into rock and soil masses for execution of subsurface displacement measurements. It is not only an important means of geological hazards prediction and forecasting, but also a forefront, hot and sophisticated subject in current geological disaster monitoring. In previous research, the authors had designed a novel electromagnetic underground horizontal displacement sensor (called the H-type sensor) by combining basic electromagnetic induction principles with modern sensing techniques and established a mutual voltage measurement theoretical model called the Equation-based Equivalent Loop Approach (EELA). Based on that work, this paper presents an underground displacement inversion approach named "EELA forward modeling-approximate inversion method". Combining the EELA forward simulation approach with the approximate optimization inversion theory, it can deduce the underground horizontal displacement through parameter inversion of the H-type sensor. Comprehensive and comparative studies have been conducted between the experimentally measured and theoretically inversed values of horizontal displacement under counterpart conditions. The results show when the measured horizontal displacements are in the 0-100 mm range, the horizontal displacement inversion discrepancy is generally tested to be less than 3 mm under varied tilt angles and initial axial distances conditions, which indicates that our proposed parameter inversion method can predict underground horizontal displacement measurements effectively and robustly for the H-type sensor and the technique is applicable for practical geo-engineering applications.

  2. Evolution of atomic rearrangements in deformation in metallic glasses.

    PubMed

    Shang, B S; Li, M Z; Yao, Y G; Lu, Y J; Wang, W H

    2014-10-01

    Atomic rearrangements induced by shear stress are fundamental for understanding deformation mechanisms in metallic glasses (MGs). Using molecular dynamic simulation, the atomic rearrangements characterized by nonaffine displacements (NADs) and their spatial distribution and evolution with tensile stress in Cu50Zr50 MG were investigated. It was found that in the elastic regime the atomic rearrangements with the largest NADs are relatively homogeneous in space, but exhibit strong spatial correlation, become localized and inhomogeneous, and form large clusters as strain increases, which may facilitate the so-called shear transformation zones. Furthermore, initially they prefer to take place around Cu atoms which have more nonicosahedral configurations. As strain increases, the preference decays and disappears in the plastic regime. The atomic rearrangements with the smallest NADs are preferentially located around Cu atoms, too, but with more icosahedral or icosahedral-like atomic configurations. The preference is maintained in the whole deformation process. In contrast, the atomic rearrangements with moderate NADs distribute homogeneously, and do not show explicit preference or spatial correlation, acting as matrix during deformation. Among the atomic rearrangements with different NADs, those with largest and smallest NADs are nearest neighbors initially, but separating with increasing strain, while those with largest and moderate NADs always avoid to each other. The correlations in the fluctuations of the NADs confirm the long-range strain correlation and the scale-free characteristic of NADs in both elastic and plastic deformation, which suggests a universality of the scaling in the plastic flow in MGs.

  3. Gamma rays from atomic and molecular gas in the large complex of clouds in Orion and Monoceros

    NASA Technical Reports Server (NTRS)

    Bloemen, J. B. G. M.; Caraveo, P. A.; Hermsen, W.; Lebrun, F.; Maddalena, R. J.; Strong, A. W.; Thaddeus, P.

    1984-01-01

    A comparison of COS-B gamma-ray observations of the large complex of interstellar clouds in Orion and Monoceros with the Columbia CO and Berkeley H I surveys of this region reveals a good correlation between gamma-ray emission and total gas distribution. The observed gamma-ray emission is explainable in terms of interactions of cosmic rays that are uniformly distributed in this region with the interstellar gas. The correlation is used as the basis of a calibration of the ratio between H2 column density and the integrated CO line intensity; the value of (2.6 + or - 1.2) X 10 to the 20th mol/sq cm K km s thereby obtained is consistent with the value derived from a similar analysis for the inner galaxy.

  4. Early Science with the Large Millimeter Telescope: COOL BUDHIES I - a pilot study of molecular and atomic gas at z ≃ 0.2

    NASA Astrophysics Data System (ADS)

    Cybulski, Ryan; Yun, Min S.; Erickson, Neal; De la Luz, Victor; Narayanan, Gopal; Montaña, Alfredo; Sánchez, David; Zavala, Jorge A.; Zeballos, Milagros; Chung, Aeree; Fernández, Ximena; van Gorkom, Jacqueline; Haines, Chris P.; Jaffé, Yara L.; Montero-Castaño, María; Poggianti, Bianca M.; Verheijen, Marc A. W.; Yoon, Hyein; Deshev, Boris Z.; Harrington, Kevin; Hughes, David H.; Morrison, Glenn E.; Schloerb, F. Peter; Velazquez, Miguel

    2016-07-01

    An understanding of the mass build-up in galaxies over time necessitates tracing the evolution of cold gas (molecular and atomic) in galaxies. To that end, we have conducted a pilot study called CO Observations with the LMT of the Blind Ultra-Deep H I Environment Survey (COOL BUDHIES). We have observed 23 galaxies in and around the two clusters Abell 2192 (z = 0.188) and Abell 963 (z = 0.206), where 12 are cluster members and 11 are slightly in the foreground or background, using about 28 total hours on the Redshift Search Receiver on the Large Millimeter Telescope (LMT) to measure the 12CO J = 1 → 0 emission line and obtain molecular gas masses. These new observations provide a unique opportunity to probe both the molecular and atomic components of galaxies as a function of environment beyond the local Universe. For our sample of 23 galaxies, nine have reliable detections (S/N ≥ 3.6) of the 12CO line, and another six have marginal detections (2.0 < S/N < 3.6). For the remaining eight targets we can place upper limits on molecular gas masses roughly between 109 and 1010 M⊙. Comparing our results to other studies of molecular gas, we find that our sample is significantly more abundant in molecular gas overall, when compared to the stellar and the atomic gas component, and our median molecular gas fraction lies about 1σ above the upper limits of proposed redshift evolution in earlier studies. We discuss possible reasons for this discrepancy, with the most likely conclusion being target selection and Eddington bias.

  5. EMatch: an efficient method for aligning atomic resolution subunits into intermediate-resolution cryo-EM maps of large macromolecular assemblies

    SciTech Connect

    Dror, Oranit Lasker, Keren; Nussinov, Ruth; Wolfson, Haim

    2007-01-01

    A method for detecting structural homologs of components in an intermediate resolution cryo-EM map and their spatial configuration is presented. Structural analysis of biological machines is essential for inferring their function and mechanism. Nevertheless, owing to their large size and instability, deciphering the atomic structure of macromolecular assemblies is still considered as a challenging task that cannot keep up with the rapid advances in the protein-identification process. In contrast, structural data at lower resolution is becoming more and more available owing to recent advances in cryo-electron microscopy (cryo-EM) techniques. Once a cryo-EM map is acquired, one of the basic questions asked is what are the folds of the components in the assembly and what is their configuration. Here, a novel knowledge-based computational method, named EMatch, towards tackling this task for cryo-EM maps at 6–10 Å resolution is presented. The method recognizes and locates possible atomic resolution structural homologues of protein domains in the assembly. The strengths of EMatch are demonstrated on a cryo-EM map of native GroEL at 6 Å resolution.

  6. Unraveling low-resolution structural data of large biomolecules by constructing atomic models with experiment-targeted parallel cascade selection simulations

    NASA Astrophysics Data System (ADS)

    Peng, Junhui; Zhang, Zhiyong

    2016-07-01

    Various low-resolution experimental techniques have gained more and more popularity in obtaining structural information of large biomolecules. In order to interpret the low-resolution structural data properly, one may need to construct an atomic model of the biomolecule by fitting the data using computer simulations. Here we develop, to our knowledge, a new computational tool for such integrative modeling by taking the advantage of an efficient sampling technique called parallel cascade selection (PaCS) simulation. For given low-resolution structural data, this PaCS-Fit method converts it into a scoring function. After an initial simulation starting from a known structure of the biomolecule, the scoring function is used to pick conformations for next cycle of multiple independent simulations. By this iterative screening-after-sampling strategy, the biomolecule may be driven towards a conformation that fits well with the low-resolution data. Our method has been validated using three proteins with small-angle X-ray scattering data and two proteins with electron microscopy data. In all benchmark tests, high-quality atomic models, with generally 1-3 Å from the target structures, are obtained. Since our tool does not need to add any biasing potential in the simulations to deform the structure, any type of low-resolution data can be implemented conveniently.

  7. Small Atomic Orbital Basis Set First‐Principles Quantum Chemical Methods for Large Molecular and Periodic Systems: A Critical Analysis of Error Sources

    PubMed Central

    Sure, Rebecca; Brandenburg, Jan Gerit

    2015-01-01

    Abstract In quantum chemical computations the combination of Hartree–Fock or a density functional theory (DFT) approximation with relatively small atomic orbital basis sets of double‐zeta quality is still widely used, for example, in the popular B3LYP/6‐31G* approach. In this Review, we critically analyze the two main sources of error in such computations, that is, the basis set superposition error on the one hand and the missing London dispersion interactions on the other. We review various strategies to correct those errors and present exemplary calculations on mainly noncovalently bound systems of widely varying size. Energies and geometries of small dimers, large supramolecular complexes, and molecular crystals are covered. We conclude that it is not justified to rely on fortunate error compensation, as the main inconsistencies can be cured by modern correction schemes which clearly outperform the plain mean‐field methods. PMID:27308221

  8. Small Atomic Orbital Basis Set First-Principles Quantum Chemical Methods for Large Molecular and Periodic Systems: A Critical Analysis of Error Sources.

    PubMed

    Sure, Rebecca; Brandenburg, Jan Gerit; Grimme, Stefan

    2016-04-01

    In quantum chemical computations the combination of Hartree-Fock or a density functional theory (DFT) approximation with relatively small atomic orbital basis sets of double-zeta quality is still widely used, for example, in the popular B3LYP/6-31G* approach. In this Review, we critically analyze the two main sources of error in such computations, that is, the basis set superposition error on the one hand and the missing London dispersion interactions on the other. We review various strategies to correct those errors and present exemplary calculations on mainly noncovalently bound systems of widely varying size. Energies and geometries of small dimers, large supramolecular complexes, and molecular crystals are covered. We conclude that it is not justified to rely on fortunate error compensation, as the main inconsistencies can be cured by modern correction schemes which clearly outperform the plain mean-field methods.

  9. Laser optical displacement system

    NASA Astrophysics Data System (ADS)

    Starritt, Larry W.; Matthews, Larryl K.

    1995-04-01

    The current quality of our nations bridges is on a decline. There are roughly half a million highway bridges in the United States and out of the half a million more than 200,000 are deficient. With catastrophic failure of bridges causing the loss of life and property, the need for bridge inspection and maintenance is evident. When the Silver Bridge that crossed the Ohio River collapsed in December 1967, 46 people were killed. The failure to prevent the disaster was attributed to the poor inspection techniques used by the bridge inspectors. Current inspection techniques depend on humans being able to recognize structural imperfections without the aid of instrumentation. The Federal-Aid Highway Act of 1968 mandated both national bridge inspection standards and training for bridge inspectors. This act has encouraged the development of instruments that would allow inspectors to perform more complete inspections of bridges. To improve the quality of inspection and data, there is a great need for proven methods and instruments used to acquire data. The Laser Optical Displacement System (L.O.D.S.) developed at New Mexico State University by the Optical and Materials Science Lab is such a device. The L.O.D.S. has been tested and proven in both laboratory situations and in the field. This paper describes some of the methods that are now being used to measure deflections in bridges. Then, a description of the development and application of the L.O.D.S. unit is given.

  10. Displacement, Substitution, Sublimation: A Bibliography.

    ERIC Educational Resources Information Center

    Pedrini, D. T.; Pedrini, Bonnie C.

    Sigmund Freund worked with the mechanisms of displacement, substitution, and sublimation. These mechanisms have many similarities and have been studied diagnostically and therapeutically. Displacement and substitution seem to fit in well with phobias, hysterias, somatiyations, prejudices, and scapegoating. Phobias, prejudices, and scapegoating…

  11. Insect Wing Displacement Measurement Using Digital Holography

    SciTech Connect

    Aguayo, Daniel D.; Mendoza Santoyo, Fernando; Torre I, Manuel H. de la; Caloca Mendez, Cristian I.

    2008-04-15

    Insects in flight have been studied with optical non destructive techniques with the purpose of using meaningful results in aerodynamics. With the availability of high resolution and large dynamic range CCD sensors the so called interferometric digital holographic technique was used to measure the surface displacement of in flight insect wings, such as butterflies. The wings were illuminated with a continuous wave Verdi laser at 532 nm, and observed with a CCD Pixelfly camera that acquire images at a rate of 11.5 frames per second at a resolution of 1392x1024 pixels and 12 Bit dynamic range. At this frame rate digital holograms of the wings were captured and processed in the usual manner, namely, each individual hologram is Fourier processed in order to find the amplitude and phase corresponding to the digital hologram. The wings displacement is obtained when subtraction between two digital holograms is performed for two different wings position, a feature applied to all consecutive frames recorded. The result of subtracting is seen as a wrapped phase fringe pattern directly related to the wing displacement. The experimental data for different butterfly flying conditions and exposure times are shown as wire mesh plots in a movie of the wings displacement.

  12. Application of atomic Hirshfeld surface analysis to intermetallic systems: is Mn in cubic CeMnNi4 a thermoelectric rattler atom?

    PubMed

    Jørgensen, Mads R V; Skovsen, Iben; Clausen, Henrik F; Mi, Jian-Li; Christensen, Mogens; Nishibori, Eiji; Spackman, Mark A; Iversen, Bo B

    2012-02-06

    The Mn atom in the cubic polymorph of CeMnNi(4) appears to be located in an oversized cage-like structure, and anomalously large atomic displacement parameters (ADPs) for the Mn atom indicate that it is a potential "rattler" atom. Here, multitemperature synchrotron powder X-ray diffraction data measured between 110 and 900 K are used to estimate ADPs for the Mn "guest" atom and the "host" structure atoms in cubic CeMnNi(4). The ADPs are subsequently fitted with Debye and Einstein models, giving Θ(D) = 301(2) K for the "host" structure and Θ(E) = 165(2) K for the Mn atom. This is higher than typical Einstein temperatures for rattlers in thermoelectric skutterudites and clathrates (Θ(E) = 50-80 K), indicating that the Mn atom in cubic CeMnNi(4) is more strongly bonded. In order to probe the chemical interactions of the potential Mn rattler atom, atomic Hirshfeld surface (AHS) analysis is carried out and compared with AHS analysis of well-established guest atom rattlers in archetypical skutterudites, MCoSb(3). Surprisingly, the skutterudite rattlers have more deformed AHSs than the Mn atom in cubic CeMnNi(4). This is related to the highly ionic nature of the skutterudite rattlers, which is not taken into account in the neutral spherical atom approach of the AHS. Additionally, visualization of void spaces in the two materials using the procrystal electron density shows that while the Mn atom is tightly fitting in the CeMnNi(4) structure then the La atom in the skutterudite is truly situated in an oversized cage of the host structure. Overall, we conclude that the Mn atom in cubic CeMnNi(4) cannot be coined a rattler.

  13. Nucleation, kinetics and morphology of displacive phase transformations in iron

    NASA Astrophysics Data System (ADS)

    Suiker, A. S. J.; Thijsse, B. J.

    2013-11-01

    An extensive, systematic molecular dynamics (MD) study is performed for analysing the nucleation, kinetics and morphology characteristics of thermally-induced, displacive phase transformations from face-centred cubic (fcc) to body-centred cubic (bcc) iron. At the atomic level these transformation characteristics are influenced by a number of factors, including (i) the appearance of free surfaces, (ii) the initial presence of fcc-bcc grain boundaries, (iii) the existence of point defects (i.e., atomic vacancies) near a grain boundary, (iv) the initial thermal velocities of the atoms, and (v) the specific interatomic potential used. Other MD studies that capture the overall transformation behaviour of iron well have often underestimated or ignored the influence by these factors on the transformation response, with the risk of putting the accuracy, generality and physical explanation of the MD results on loose grounds. The present research illustrates the relative contribution of each of the above factors by means of a detailed comparison study for three different interatomic potentials. The accuracy of the interatomic potentials is established by validating for the fcc and bcc phases the calculated elastic moduli, cohesive energy, vacancy formation energy and interfacial energy against experimental and ab initio data reported in the literature. The importance of calibrating material data of both the stable bcc phase and the metastable fcc phase - instead of the stable bcc phase only - is demonstrated. The numerical results call for general caution when interpreting phenomena that start close to instability points and therefore are sensitive to small disturbances; a large spread in the overall transformation time is found under different initial thermal velocities, interfacial lattice incoherence, boundary conditions (free vs. periodic), and interatomic potentials, where for completely transformed atomic systems the discrepancy between the maximum and minimum

  14. Regenerative rotary displacer Stirling engine

    SciTech Connect

    Isshiki, Naotsugu; Watanabe, Hiroichi; Raggi, L.; Isshiki, Seita; Hirata, Koichi

    1996-12-31

    A few rotary displacer Stirling engines in which the displacer has one gas pocket space at one side and rotates in a main enclosed cylinder, which is heated from one side and cooled from opposite side without any regenerator, have been studied for some time by the authors. The authors tried to improve this engine by equipping it with a regenerator, because without a regenerator, pressure oscillation and efficiency are too small. Here, several types of regenerative rotary displacer piston Stirling engines are proposed. One is the contra-rotating tandem two disc type displacer engine using axial heat conduction through side walls or by heat pipes and another is a single disc type with circulating fluid regenerator or heat pipes. Stirling engines of this new rotary displacer type are thought to attain high speed. Here, experimental results of the original rotary displacer Stirling engine without a regenerator, and one contra-rotating tandem displacer engine with side wall regenerator by axial heat conduction are reported accompanied with a discussion of the results.

  15. Method for quantitative determination and separation of trace amounts of chemical elements in the presence of large quantities of other elements having the same atomic mass

    DOEpatents

    Miller, C.M.; Nogar, N.S.

    1982-09-02

    Photoionization via autoionizing atomic levels combined with conventional mass spectroscopy provides a technique for quantitative analysis of trace quantities of chemical elements in the presence of much larger amounts of other elements with substantially the same atomic mass. Ytterbium samples smaller than 10 ng have been detected using an ArF* excimer laser which provides the atomic ions for a time-of-flight mass spectrometer. Elemental selectivity of greater than 5:1 with respect to lutetium impurity has been obtained. Autoionization via a single photon process permits greater photon utilization efficiency because of its greater absorption cross section than bound-free transitions, while maintaining sufficient spectroscopic structure to allow significant photoionization selectivity between different atomic species. Separation of atomic species from others of substantially the same atomic mass is also described.

  16. Displacement sensing system and method

    DOEpatents

    VunKannon, Jr., Robert S

    2006-08-08

    A displacement sensing system and method addresses demanding requirements for high precision sensing of displacement of a shaft, for use typically in a linear electro-dynamic machine, having low failure rates over multi-year unattended operation in hostile environments. Applications include outer space travel by spacecraft having high-temperature, sealed environments without opportunity for servicing over many years of operation. The displacement sensing system uses a three coil sensor configuration, including a reference and sense coils, to provide a pair of ratio-metric signals, which are inputted into a synchronous comparison circuit, which is synchronously processed for a resultant displacement determination. The pair of ratio-metric signals are similarly affected by environmental conditions so that the comparison circuit is able to subtract or nullify environmental conditions that would otherwise cause changes in accuracy to occur.

  17. Lucky interferometry for displacement measurement

    NASA Astrophysics Data System (ADS)

    Ioniţă, Bogdan; Logofătu, Petre Cătălin; Apostol, Dan

    2009-11-01

    We extrapolated the lucky imaging technique, mostly used in astronomy, to the field of interferometry for displacement measurement. From the batch of interferograms generated by a Twyman-Green-type interferometer and acquired by a CCD camera, those with high overall contrast were selected and fitted to a sinusoidal function. The high-contrast interferograms showed a significantly lower dispersion and, consequently, a lower uncertainty of the measured displacement.

  18. AAO-assisted synthesis of highly ordered, large-scale TiO2 nanowire arrays via sputtering and atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Yao, Zhao; Wang, Cong; Li, Yang; Kim, Nam-Young

    2015-04-01

    Highly ordered nanoporous anodic aluminum oxide (AAO) thin films were fabricated in oxalic acid under a constant voltage via a two-step anodization process. To investigate the high-aspect-ratio (7.5:1) filling process, both sputtering and atomic layer deposition (ALD) were used to form TiO2 nanowires. Field emission scanning electron microscopy and high-resolution transmission electron microscopy images indicated that mushroom-like TiO2 structures were sputtered onto the AAO template surface, and the ALD-coated TiO2 exhibited fine filling results and clear crystal grain boundaries. Large-scale and free-standing TiO2 nanowire arrays were liberated by selectively removing the aluminum substrate and AAO template via a wet etching process with no collapsing or agglomeration after the drying process. ALD-deposited TiO2 nanowire arrays that were 67 nm in diameter and 400 nm high were transferred from the AAO template. The ALD process enabled the rapid, simple synthesis of highly ordered TiO2 nanowire arrays with desired parameters such as diameter, density, and thickness determined using diverse AAO templates.

  19. Squeezed Phonons: Modulating Quantum Fluctuations of Atomic Displacements.

    NASA Astrophysics Data System (ADS)

    Hu, Xuedong; Nori, Franco

    1997-03-01

    We have studied phonon squeezed states and also put forward several proposals for their generation(On phonon parametric process, X. Hu and F. Nori, Phys. Rev. Lett. 76), 2294 (1996); on polariton mechanism, X. Hu and F. Nori, Phys. Rev. B 53, 2419 (1996); on second-order Raman scattering, X. Hu and F. Nori, preprint.. Here, we compare the relative merits and limitations of these approaches, including several factors that will limit the amount of phonon squeezing. In particular, we investigate the effect of the initial thermal states on the phonon modes. Using a model for the phonon density matrix, we also study the mixing of the phonon squeezed states with thermal states, which describes the decay of the phonon coherence. Finally, we calculate the maximum possible squeezing from a phonon parametric process limited by phonon decay.

  20. Role of W and Mn for reliable 1X nanometer-node ultra-large-scale integration Cu interconnects proved by atom probe tomography

    SciTech Connect

    Shima, K.; Shimizu, H.; Momose, T.; Shimogaki, Y.; Tu, Y.; Takamizawa, H.; Shimizu, Y.; Inoue, K.; Nagai, Y.

    2014-09-29

    We used atom probe tomography (APT) to study the use of a Cu(Mn) as a seed layer of Cu, and a Co(W) single-layer as reliable Cu diffusion barriers for future interconnects in ultra-large-scale integration. The use of Co(W) layer enhances adhesion of Cu to prevent electromigration and stress-induced voiding failures. The use of Cu(Mn) as seed layer may enhance the diffusion barrier performance of Co(W) by stuffing the Cu diffusion pass with Mn. APT was used to visualize the distribution of W and Mn in three dimensions with sub-nanometer resolution. W was found to segregate at the grain boundaries of Co, which prevents diffusion of Cu via the grain boundaries. Mn was found to diffuse from the Cu(Mn) layer to Co(W) layer and selectively segregate at the Co(W) grain boundaries with W, reinforcing the barrier properties of Co(W) layer. Hence, a Co(W) barrier coupled with a Cu(Mn) seed layer can form a sufficient diffusion barrier with film that is less than 2.0-nm-thick. The diffusion barrier behavior was preserved following a 1-h annealing at 400 °C. The underlayer of the Cu interconnects requires a large adhesion strength with the Cu, as well as low electrical resistivity. The use of Co(W) has previously been shown to satisfy these requirements, and addition of Mn is not expected to deteriorate these properties.

  1. Molecular Dynamics Simulations of Displacement Cascades in Single and Polycrystalline Zirconia

    SciTech Connect

    Du Jincheng

    2009-03-10

    Displacement cascades in zirconia have been studied using classical molecular dynamics simulations. Polycrystalline zirconia with nano-meter grains were created using Voronoi polyhedra construction and studied in comparison with single crystalline zirconia. The results show that displacement cascades with similar kinetic energy generated larger number of displaced atoms in polycrystalline than in the single crystal structure. The fraction of atoms with coordination number change was also higher in polycrystalline zirconia that was explained to be due to the diffusion of oxygen and relaxation at grain boundaries.

  2. An amplitude modulated laser system for distance and displacement measurement

    NASA Technical Reports Server (NTRS)

    Rogowski, Robert S.; Heyman, Joseph S.; Holben, Milford S., Jr.

    1986-01-01

    A laser distance and displacement measurement system is being developed to monitor small displacements in large space structures for strain analysis and structural control. The reflected laser beam is focused on a detector and the detected signal is mixed with the reference. Small displacements are indicated by a change in modulation frequency which is adjusted to maintain quadrature between the received signal and the reference signal from the voltage-controlled oscillator in a phase-locked loop. Measurement of absolute distance is accomplished by sweeping the modulation frequency from a quadrature lock point to an adjacent lock point.

  3. Competitive adsorption, displacement, and transport of organic matter on iron oxide: II. Displacement and transport

    SciTech Connect

    Gu, B; Mehlhorn, T.L.; Liang, Liyuan

    1996-08-01

    The competitive interactions between organic matter compounds and mineral surfaces are poorly understood, yet these interactions may play a significant role in the stability and co-transport of mineral colloids and/or environmental contaminants. In this study, the processes of competitive adsorption, displacement, and transport of Suwannee River natural organic matter (SR-NOM) are investigated with several model organic compounds in packed beds of iron oxide-coated quartz columns. Results demonstrated that strongly-binding organic compounds are competitively adsorbed and displace those weakly-bound organic compounds along the flow path. Among the four organic compounds studied, polyacrylic acid (PAA) appeared to be the most competitive, whereas SR-NOM was more competitive than phthalic and salicylic acids. A diffuse adsorption and sharp desorption front (giving an appearance of irreversible adsorption) of the SR-NOM breakthrough curves are explained as being a result of the competitive time-dependent adsorption and displacement processes between different organic components within the SR-NOM. The stability and transport of iron oxide colloids varied as one organic component competitively displaces another. Relatively large quantities of iron oxide colloids are transported when the more strongly-binding PAA competitively displaces the weakly-binding SR-NOM or when SR-NOM competitively displaces phthalic and salicylic acids. Results of this study suggest that the chemical composition and hence the functional behavior of NOM (e.g., in stabilizing mineral colloids and in complexing contaminants) can change along its flow path as a result of the dynamic competitive interactions between heterogeneous NOM subcomponents. Further studies are needed to better define and quantify these NOM components as well as their roles in contaminant partitioning and transport. 37 refs., 10 figs.

  4. DISPLACEMENT CASCADE SIMULATION IN TUNGSTEN AT 1025 K

    SciTech Connect

    Setyawan, Wahyu; Nandipati, Giridhar; Roche, Kenneth J.; Heinisch, Howard L.; Kurtz, Richard J.; Wirth, Brian D.

    2013-09-30

    Molecular dynamics simulation was employed to investigate the irradiation damage properties of bulk tungsten at 1025 K (0.25 melting temperature). A comprehensive data set of primary cascade damage was generated up to primary knock-on atom (PKA) energies 100 keV. The dependence of the number of surviving Frenkel pairs (NFP) on the PKA energy (E) exhibits three different characteristic domains presumably related to the different cascade morphologies that form. The low-energy regime < 0.2 keV is characterized by a hit-or-miss type of Frenkel pair (FP) production near the displacement threshold energy of 128 eV. The middle regime 0.3 – 30 keV exhibits a sublinear dependence of log(NFP) vs log(E) associated with compact cascade morphology with a slope of 0.73. Above 30 keV, the cascade morphology consists of complex branches or interconnected damage regions. In this extended morphology, large interstitial clusters form from superposition of interstitials from nearby damage regions. Strong clustering above 30 keV results in a superlinear dependence of log(NFP) vs log(E) with a slope of 1.365. At 100 keV, an interstitial cluster of size 92 and a vacancy cluster of size 114 were observed.

  5. Measurement of axial injection displacement with trim coil current unbalance

    SciTech Connect

    Covo, Michel Kireeff

    2014-08-15

    The Dee probe used for measuring internal radial beam intensity shows large losses inside the radius of 20 cm of the 88 in. cyclotron. The current of the top and bottom innermost trim coil 1 is unbalanced to study effects of the axial injection displacement. A beam profile monitor images the ion beam bunches, turn by turn. The experimental bunch center of mass position is compared with calculations of the magnetic mirror effect displacement and shows good agreement.

  6. Measurement of axial injection displacement with trim coil current unbalance

    NASA Astrophysics Data System (ADS)

    Covo, Michel Kireeff

    2014-08-01

    The Dee probe used for measuring internal radial beam intensity shows large losses inside the radius of 20 cm of the 88 in. cyclotron. The current of the top and bottom innermost trim coil 1 is unbalanced to study effects of the axial injection displacement. A beam profile monitor images the ion beam bunches, turn by turn. The experimental bunch center of mass position is compared with calculations of the magnetic mirror effect displacement and shows good agreement.

  7. Calculation of electron-beam induced displacement in thin films by using parameter-reduced formulas

    NASA Astrophysics Data System (ADS)

    Yan, Qiang; Chen, Di; Wang, Qingyu; Li, Zhongyu; Shao, Lin

    2017-03-01

    Based on the Mott cross sections of relativistic electron collisions with atoms, we calculate displacement creation by electron beams of arbitrary energies (up to 100 MeV) in thin films of arbitrary atomic numbers (up to Z = 90). In a comparison with Mont Carlo full damage cascade simulations, we find that total number of displacements in a film can be accurately estimated as the product of average displacements created per collision and average collision numbers in the film. To calculate average displacements per electron-atom collision, energy transfer from Mott cross section is combined with NRT model. To calculate collision numbers, mean deflection angles and multi-scattering theory are combined to extract collision number dependence on film thickness. For each key parameter, parameter-reduced formulas are obtained from data fitting. The fitting formulas provide a quick and accurate method to estimate radiation damage caused by electron beams.

  8. Understanding interferometry for micro-cantilever displacement detection

    PubMed Central

    Nörenberg, Tobias; Temmen, Matthias; Reichling, Michael

    2016-01-01

    Summary Interferometric displacement detection in a cantilever-based non-contact atomic force microscope (NC-AFM) operated in ultra-high vacuum is demonstrated for the Michelson and Fabry–Pérot modes of operation. Each mode is addressed by appropriately adjusting the distance between the fiber end delivering and collecting light and a highly reflective micro-cantilever, both together forming the interferometric cavity. For a precise measurement of the cantilever displacement, the relative positioning of fiber and cantilever is of critical importance. We describe a systematic approach for accurate alignment as well as the implications of deficient fiber–cantilever configurations. In the Fabry–Pérot regime, the displacement noise spectral density strongly decreases with decreasing distance between the fiber-end and the cantilever, yielding a noise floor of 24 fm/Hz0.5 under optimum conditions. PMID:27547601

  9. Understanding interferometry for micro-cantilever displacement detection.

    PubMed

    von Schmidsfeld, Alexander; Nörenberg, Tobias; Temmen, Matthias; Reichling, Michael

    2016-01-01

    Interferometric displacement detection in a cantilever-based non-contact atomic force microscope (NC-AFM) operated in ultra-high vacuum is demonstrated for the Michelson and Fabry-Pérot modes of operation. Each mode is addressed by appropriately adjusting the distance between the fiber end delivering and collecting light and a highly reflective micro-cantilever, both together forming the interferometric cavity. For a precise measurement of the cantilever displacement, the relative positioning of fiber and cantilever is of critical importance. We describe a systematic approach for accurate alignment as well as the implications of deficient fiber-cantilever configurations. In the Fabry-Pérot regime, the displacement noise spectral density strongly decreases with decreasing distance between the fiber-end and the cantilever, yielding a noise floor of 24 fm/Hz(0.5) under optimum conditions.

  10. Perceived displacement explains wolfpack effect

    PubMed Central

    Šimkovic, Matúš; Träuble, Birgit

    2014-01-01

    We investigate the influence of perceived displacement of moving agent-like stimuli on the performance in dynamic interactive tasks. In order to reliably measure perceived displacement we utilize multiple tasks with different task demands. The perceived center of an agent's body is displaced in the direction in which the agent is facing and this perceived displacement is larger than the theoretical position of the center of mass would predict. Furthermore, the displacement in the explicit judgment is dissociated from the displacement obtained by the implicit measures. By manipulating the location of the pivot point, we show that it is not necessary to postulate orientation as an additional cue utilized by perception, as has been suggested by earlier studies. These studies showed that the agent's orientation influences the detection of chasing motion and the detection-related performance in interactive tasks. This influence has been labeled wolfpack effect. In one of the demonstrations of the wolfpack effect participants control a green circle on a display with a computer mouse. It has been shown that participants avoid display areas with agents pointing toward the green circle. Participants do so in favor of areas where the agents point in the direction perpendicular to the circle. We show that this avoidance behavior arises because the agent's pivot point selected by the earlier studies is different from where people locate the center of agent's body. As a consequence, the nominal rotation confounds rotation and translation. We show that the avoidance behavior disappears once the pivot point is set to the center of agent's body. PMID:25566114

  11. Rotor component displacement measurement system

    DOEpatents

    Mercer, Gary D.; Li, Ming C.; Baum, Charles R.

    2003-05-27

    A measuring system for measuring axial displacement of a tube relative to an axially stationary component in a rotating rotor assembly includes at least one displacement sensor adapted to be located normal to a longitudinal axis of the tube; an insulated cable system adapted for passage through the rotor assembly; a rotatable proximitor module located axially beyond the rotor assembly to which the cables are connected; and a telemetry system operatively connected to the proximitor module for sampling signals from the proximitor module and forwarding data to a ground station.

  12. Experimental measurement of local displacement and chemical pair correlations in crystalline solid solutions

    SciTech Connect

    Sparks, C.L.; Ice, G.E.; Robertson, J.L.; Shaffer, L.B.

    1993-10-01

    Measurement of near-neighbor atomic arrangements in crystalline solid solutions is well established and provides meaningful values for chemical preference of atoms for their near neighbors to beyond the first ten neighboring shells. Static displacements (atomic size) between these atom pairs have mostly been either ignored in the recovery of the local pair preferences or removed by making use of the displacement scattering dependence on momentum transfer. With intense and energy tunable x-ray synchrotron sources, our ability to recover these static displacements between atoms has greatly improved. Data taken with multiple x-ray energies to obtain the contrast necessary to separate like from unlike neighbor pair distances are discussed for the two cases studied to date: A locally ordered Ni{sub 77.5}Fe{sub 22.5} crystal and a locally clustered Fe{sub 53}Cr{sub 47} crystal. Analysis of experimental parameters and data gives the systematic and statistical errors on the recovered parameters. Meaningful atomic displacements from the mean lattice can be measured and recovered. These displacements help us understand material properties and will provide theorists with tests for their calculations.

  13. PROJECT-INDUCED DISPLACEMENT, SECONDARY STRESSORS, AND HEALTH

    PubMed Central

    Cao, Yue; Hwang, Sean-Shong; Xi, Juan

    2012-01-01

    It has been estimated that about 15 million people are displaced by development projects around the world each year. Despite the magnitude of people affected, research on the health and other impacts of project-induced displacement is rare. This study extends existing knowledge by exploring the short-term health impact of a large scale population displacement resulting from China’s Three Gorges Dam Project. The study is theoretically guided by the stress process model, but we supplement it with Cernea’s Impoverishment Risks and Reconstruction (IRR) model widely used in displacement literature. Our panel analysis indicates that the displacement is associated positively with relocatees’ depression level, and negatively with their self-rated health measured against a control group. In addition, a path analysis suggests that displacement also affects depression and self-rated health indirectly by changing social integration, socioeconomic status, and community resources. The importance of social integration as a protective mechanism, a factor that has been overlooked in past studies of population displacement, is highlighted in this study. PMID:22341203

  14. PHON: A program to calculate phonons using the small displacement method

    NASA Astrophysics Data System (ADS)

    Alfè, Dario

    2009-12-01

    ://www.quantum-espresso.org) Nature of problem: Stable crystals at low temperature can be well described by expanding the potential energy around the atomic equilibrium positions. The movements of the atoms around their equilibrium positions can then be described using harmonic theory, and is characterised by global vibrations called phonons, which can be identified by vectors in the Brillouin zone of the crystal, and there are 3 phonon branches for each atom in the primitive cell. The problem is to calculate the frequencies of these phonons for any arbitrary choice of q-vector in the Brillouin zone. Solution method: The small displacement method: each atom in the primitive cell is displaced by a small amount, and the forces induced on all the other atoms in the crystal are calculated and used to construct the force constant matrix. Supercells of ˜100 atoms are usually large enough to describe the force constant matrix up to the range where its elements have fallen to negligibly small values. The force constant matrix is then used to compute the dynamical matrix at any chosen q-vector in the Brillouin zone, and the diagonalisation of the dynamical matrix provides the squares of the phonon frequencies. The PHON code needs external programs to calculate these forces, and it can be used with any program capable of calculating forces in crystals. The most useful applications are obtained with codes based on density functional theory, but there is no restriction on what can be used. Running time: Negligible, typically a few seconds (or at most a few minutes) on a PC. It can take longer if very dense meshes of q-points are needed, for example, to compute very accurate phonon density of states.

  15. Displacement cascades and defects annealing in tungsten, Part I: Defect database from molecular dynamics simulations

    SciTech Connect

    Setyawan, Wahyu; Nandipati, Giridhar; Roche, Kenneth J.; Heinisch, Howard L.; Wirth, Brian D.; Kurtz, Richard J.

    2015-07-01

    Molecular dynamics simulations have been used to generate a comprehensive database of surviving defects due to displacement cascades in bulk tungsten. Twenty-one data points of primary knock-on atom (PKA) energies ranging from 100 eV (sub-threshold energy) to 100 keV (~780×Ed, where Ed = 128 eV is the average displacement threshold energy) have been completed at 300 K, 1025 K and 2050 K. Within this range of PKA energies, two regimes of power-law energy-dependence of the defect production are observed. A distinct power-law exponent characterizes the number of Frenkel pairs produced within each regime. The two regimes intersect at a transition energy which occurs at approximately 250×Ed. The transition energy also marks the onset of the formation of large self-interstitial atom (SIA) clusters (size 14 or more). The observed defect clustering behavior is asymmetric, with SIA clustering increasing with temperature, while the vacancy clustering decreases. This asymmetry increases with temperature such that at 2050 K (~0.5Tm) practically no large vacancy clusters are formed, meanwhile large SIA clusters appear in all simulations. The implication of such asymmetry on the long-term defect survival and damage accumulation is discussed. In addition, <100> {110} SIA loops are observed to form directly in the highest energy cascades, while vacancy <100> loops are observed to form at the lowest temperature and highest PKA energies, although the appearance of both the vacancy and SIA loops with Burgers vector of <100> type is relatively rare.

  16. Atomicity in Electronic Commerce,

    DTIC Science & Technology

    1996-01-01

    tremendous demand for the ability to electronically buy and sell goods over networks. Electronic commerce has inspired a large variety of work... commerce . It then briefly surveys some major types of electronic commerce pointing out flaws in atomicity. We pay special attention to the atomicity...problems of proposals for digital cash. The paper presents two examples of highly atomic electronic commerce systems: NetBill and Cryptographic Postage Indicia.

  17. Polybenzimidazoles Via Aromatic Nucleophilic Displacement

    NASA Technical Reports Server (NTRS)

    Connell, John W.; Hergenrother, Paul M.; Smith, Joseph G.

    1994-01-01

    Soluble polybenzimidazoles (PBI's) synthesized by nucleophilic displacement reaction of di(hydroxyphenyl)-benzimidazole monomers with activated aromatic difluoride compounds in presence of anhydrous potassium carbonate. These polymers exhibit good thermal, thermo-oxidative, and chemical stability, and high mechanical properties. Using benzimidazole monomers, more economical, and new PBI's processed more easily than commercial PBI, without loss of desirable physical properties.

  18. Retraining Displaced Workers. Policy Brief

    ERIC Educational Resources Information Center

    LaLonde, Robert; Sullivan, Daniel

    2010-01-01

    Robert LaLonde of the University of Chicago and Daniel Sullivan of the Federal Reserve Bank of Chicago suggest that retraining through our nation's community colleges is a way to reduce the skills gaps of at least some of these displaced workers and increase their reemployment earnings. Although workers may still experience significant earnings…

  19. Detection and magnification of bridge displacements using video images

    NASA Astrophysics Data System (ADS)

    Terán, Leticia; Ordóñez, Celestino; García-Cortés, Silverio; Menéndez, Agustín.

    2016-11-01

    Monitoring displacements on some structures such as large bridges is essential to study their structural performance in order to avoid severe damage or even their collapse. In this work, we use images obtained with digital video cameras to estimate the displacements of a metallic bridge by means of cross-correlation. Thus, it was possible to detect millimetric displacements for distances between the camera and the bridge upper ten meters. In order to obtain a better representation of the structural displacements along the bridge and its modal shapes, a technique of video magnification was also applied. The results obtained show that the combination of both techniques can provide relevant information for a structural analysis of the bridge.

  20. Displacement measurement using a wavelength-phase-shifting grating interferometer.

    PubMed

    Lee, Ju-Yi; Jiang, Geng-An

    2013-10-21

    A grating interferometer based on the wavelength-modulated phase-shifting method for displacement measurements is proposed. A laser beam with sequential phase shifting can be accomplished using a wavelength-modulated light passing through an unequal-path-length optical configuration. The optical phase of the moving grating is measured by the wavelength-modulated phase-shifting technique and the proposed time-domain quadrature detection method. The displacement of the grating is determined by the grating interferometry theorem with the measured phase variation. Experimental results reveal that the proposed method can detect a displacement up to a large distance of 1 mm and displacement variation down to the nanometer range.

  1. Application of the MP2/CA results in comparative studies of semi-empirical ground-state energies of large atoms

    NASA Astrophysics Data System (ADS)

    Slupski, Romuald; Nowakowski, Krzysztof

    2003-11-01

    To study the usefulness of second-order Moller-Plesset (MP2) correlation energies for ground states of closed-shell atoms (referred to as MP2/CA energies) in estimations of the total correlation energies of larger closed-shell atoms, we have considered atoms and ions containing from 10 to 86 electrons. First, it is demonstrated that for N-electron systems, 10<=N<=18, the MP2/CA energies provide very good approximations to the very accurate estimates of atomic correlation energies by Chakravorty and Davidson. Next, for systems with 10<=N<=54 comparisons are made with the semiempirical energies obtained when using the models by Charkravorty and Clementi as well as by Clementi and Corongiu. Finally, for atoms with 10<=N<=86 the MP2/CA energies are employed for comparison with DFT energies recently obtained by Andrae et al. The MP2/CA results have proven to provide reasonable estimates to the total correlation energies in all the cases considered.

  2. On the calculation of line strengths, oscillator strengths and lifetimes for very large principal quantum numbers in hydrogenic atoms and ions by the McLean-Watson formula

    NASA Astrophysics Data System (ADS)

    Hey, J. D.

    2014-08-01

    As a sequel to an earlier study (Hey 2009 J. Phys. B: At. Mol. Opt. Phys. 42 125701), we consider further the application of the line strength formula derived by Watson (2006 J. Phys. B: At. Mol. Opt. Phys. 39 L291) to transitions arising from states of very high principal quantum number in hydrogenic atoms and ions (Rydberg-Rydberg transitions, n > 1000). It is shown how apparent difficulties associated with the use of recurrence relations, derived (Hey 2006 J. Phys. B: At. Mol. Opt. Phys. 39 2641) by the ladder operator technique of Infeld and Hull (1951 Rev. Mod. Phys. 23 21), may be eliminated by a very simple numerical device, whereby this method may readily be applied up to n ≈ 10 000. Beyond this range, programming of the method may entail greater care and complexity. The use of the numerically efficient McLean-Watson formula for such cases is again illustrated by the determination of radiative lifetimes and comparison of present results with those from an asymptotic formula. The question of the influence on the results of the omission or inclusion of fine structure is considered by comparison with calculations based on the standard Condon-Shortley line strength formula. Interest in this work on the radial matrix elements for large n and n‧ is related to measurements of radio recombination lines from tenuous space plasmas, e.g. Stepkin et al (2007 Mon. Not. R. Astron. Soc. 374 852), Bell et al (2011 Astrophys. Space Sci. 333 377), to the calculation of electron impact broadening parameters for such spectra (Watson 2006 J. Phys. B: At. Mol. Opt. Phys. 39 1889) and comparison with other theoretical methods (Peach 2014 Adv. Space Res. in press), to the modelling of physical processes in H II regions (Roshi et al 2012 Astrophys. J. 749 49), and the evaluation bound-bound transitions from states of high n during primordial cosmological recombination (Grin and Hirata 2010 Phys. Rev. D 81 083005, Ali-Haïmoud and Hirata 2010 Phys. Rev. D 82 063521, Ali

  3. Influence of subcascade formation on displacement damage at high PKA energies

    SciTech Connect

    Stoller, R.E.; Greenwood, L.R.

    1997-08-01

    The design of first generation fusion reactors will have to be rely on radiation effects data obtained from experiments conducted in fission reactors. Two issues must be addressed to use this data with confidence. The first is differences in the neutron energy spectrum, and the second is differences in nuclear transmutation rates. Differences in the neutron energy spectra are reflected in the energy spectra of the primary knockon atoms (PKA). The issue of PKA energy effects has been addressed through the use of displacement cascade simulations using the method of molecular dynamics (MD). Although MD simulations can provide a detailed picture of the formation and evolution of displacement cascades, they impose a substantial computational burden. However, recent advances in computing equipment permit the simulation of high energy displacement events involving more than one-million atoms; the results presented here encompass MD cascade simulation energies from near the displacement threshold to as high as 40 keV. Two parameters have been extracted from the MD simulations: the number of point defects that remain after the displacement event is completed and the fraction of the surviving interstitials that are contained in clusters. The MD values have been normalized to the number of atomic displacements calculated with the secondary displacement model by Norgett, Robinson, and Torrens (NRT).

  4. Free displacer and Ringbom displacer for a Malone refrigerator

    SciTech Connect

    Swift, G.W.; Brown, A.O.

    1994-05-01

    Malone refrigeration uses a liquid near its critical point (instead of the customary gas) as the working fluid in a Stirling, Brayton, or similar regenerative or recuperative cycle. Thus far, we have focused on the Stirling cycle, to avoid the difficult construction of the high-pressure-difference counterflow recuperator required for a Brayton machine. Our first Malone refrigerator used liquid propylene (C{sub 3}H{sub 6}) in a double-acting 4-cylinder Stirling configuration. First measurements with a free displacer used in a liquid working fluid are presented. The displacer was operated both in harmonic mode and in Ringbom mode, in liquid carbon dioxide. The results are in reasonable agreement with expectations.

  5. Large amplitude fluxional behaviour of elemental calcium under high pressure

    PubMed Central

    Tse, J. S.; Desgreniers, S.; Ohishi, Y.; Matsuoka, T.

    2012-01-01

    Experimental evidences are presented showing unusually large and highly anisotropic vibrations in the “simple cubic” (SC) unit cell adopted by calcium over a broad pressure ranging from 30–90 GPa and at temperature as low as 40 K. X-ray diffraction patterns show a preferential broadening of the (110) Bragg reflection indicating that the atomic displacements are not isotropic but restricted to the [110] plane. The unusual observation can be rationalized invoking a simple chemical perspective. As the result of pressure-induced s → d transition, Ca atoms situated in the octahedral environment of the simple cubic structure are subjected to Jahn-Teller distortions. First-principles molecular dynamics calculations confirm this suggestion and show that the distortion is of dynamical nature as the cubic unit cell undergoes large amplitude tetragonal fluctuations. The present results show that, even under extreme compression, the atomic configuration is highly fluxional as it constantly changes. PMID:22523635

  6. An atom in molecules study of infrared intensity enhancements in fundamental donor stretching bands in hydrogen bond formation.

    PubMed

    Terrabuio, Luiz A; Richter, Wagner E; Silva, Arnaldo F; Bruns, Roy E; Haiduke, Roberto L A

    2014-12-07

    Vibrational modes ascribed to the stretching of X-H bonds from donor monomers (HXdonor) in complexes presenting hydrogen bonds (HF···HF, HCl···HCl, HCN···HCN, HNC···HNC, HCN···HF, HF···HCl and H2O···HF) exhibit large (4 to 7 times) infrared intensity increments during complexation according to CCSD/cc-pVQZ-mod calculations. These intensity increases are explained by the charge-charge flux-dipole flux (CCFDF) model based on multipoles from the Quantum Theory of Atoms in Molecules (QTAIM) as resulting from a reinforcing interaction between two contributions to the dipole moment derivatives with respect to the vibrational displacements: charge and charge flux. As such, variations that occur in their intensity cross terms in hydrogen bond formation correlate nicely with the intensity enhancements. These stretching modes of HXdonor bonds can be approximately modeled by sole displacement of the positively charged hydrogens towards the acceptor terminal atom with concomitant electronic charge transfers in the opposite direction that are larger than those occurring for the H atom displacements of their isolated donor molecules. This analysis indicates that the charge-charge flux interaction reinforcement on H-bond complexation is associated with variations of atomic charge fluxes in both parent molecules and small electronic charge transfers between them. The QTAIM/CCFDF model also indicates that atomic dipole flux contributions do not play a significant role in these intensity enhancements.

  7. Hirshfeld atom refinement.

    PubMed

    Capelli, Silvia C; Bürgi, Hans-Beat; Dittrich, Birger; Grabowsky, Simon; Jayatilaka, Dylan

    2014-09-01

    Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly-l-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree-Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs) are freely refined without constraints or restraints - even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's), all other structural parameters agree within less than 2 csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules), the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å(2) as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements - an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å.

  8. Polybenzimidazole via aromatic nucleophilic displacement

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Hergenrother, Paul M. (Inventor); Smith, Joseph G. (Inventor)

    1994-01-01

    Di(hydroxyphenyl)benzimidazole monomers were prepared from phenyl-4-hydroxybenzoate and aromatic bis(o-diamine)s. These monomers were used in the synthesis of soluble polybenzimidazoles. The reaction involved the aromatic nucleophilic displacement of various di(hydroxyphenyl)benzimidazole monomers with activated aromatic dihalides or activated aromatic dinitro compounds in the presence of an alkali metal base. These polymers exhibited lower glass transition temperatures, improved solubility, and better compression moldability over their commercial counterparts.

  9. Polyphenylquinoxalines via aromatic nucleophilic displacement

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Connell, John W. (Inventor)

    1990-01-01

    Polyphenylquinoxalines are prepared by the nucleophilic displacement reaction of di(hydroxyphenyl)quinoxaline monomers with activated aromatic dihalides or dinitro compounds. The reactions are carried out in polar aprotic solvents using alkali metal bases at elevated temperatures under nitrogen. The di(hydroxyphenyl)quinoxaline monomers are prepared either by reacting stoichiometric quantities of aromatic bis(o-diamines) with a hydroxybenzil or by reacting o-phenylenediamine with a dihydroxybenzil or bis(hydroxyphenylglyoxylyl)benzene.

  10. Polyphenylquinoxalines via aromatic nucleophilic displacement

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Connell, John W. (Inventor)

    1991-01-01

    Polyphenylquinoxalines are prepared by the nucleophilic displacement reaction of di(hydroxyphenyl)quinoxaline monomers with activated aromatic dihalides or dinitro compounds. The reactions are carried out in polar aprotic solvents during alkali metal bases at elevated temperatures under nitrogen. The di(hydroxyphenyl)quinoxaline monomers are prepared either by reacting stoichiometric quantities of aromatic bis(o-diamines) with a hydroxybenzil or by reacting o-phenylenediamine with a dihydroxybenzil or bis(hydroxyphenylglyoxylyl)benzene.

  11. Single-mode displacement sensor

    NASA Astrophysics Data System (ADS)

    Duivenvoorden, Kasper; Terhal, Barbara M.; Weigand, Daniel

    2017-01-01

    We show that one can determine both parameters of a displacement acting on an oscillator with an accuracy which scales inversely with the square root of the number of photons in the oscillator. Our results are obtained by using a grid state as a sensor state for detecting small translations in phase space (displacements). Grid states were first proposed [D. Gottesman et al., Phys. Rev. A 64, 012310 (2001), 10.1103/PhysRevA.64.012310] for encoding a qubit into an oscillator: an efficient preparation protocol of such states, using a coupling to a qubit, was later developed [B. M. Terhal and D. Weigand, Phys. Rev. A 93, 012315 (2016), 10.1103/PhysRevA.93.012315]. We compare the performance of the grid state with the quantum compass or cat code state and place our results in the context of the two-parameter quantum Cramér-Rao lower bound on the variances of the displacement parameters. We show that the accessible information about the displacement for a grid state increases with the number of photons in the state when we measure and prepare the state using a phase estimation protocol. This is in contrast with the accessible information in the quantum compass state which we show is always upper bounded by a constant, independent of the number of photons. We present numerical simulations of a phase estimation based preparation protocol of a grid state in the presence of photon loss, nonlinearities, and qubit measurement, using no post-selection, showing how the two effective squeezing parameters which characterize the grid state change during the preparation. The idea behind the phase estimation protocol is a simple maximal-information gain strategy.

  12. Measurement of a large chemical reaction rate between ultracold closed-shell 40Ca atoms and open-shell 174Yb+ ions held in a hybrid atom-ion trap.

    PubMed

    Rellergert, Wade G; Sullivan, Scott T; Kotochigova, Svetlana; Petrov, Alexander; Chen, Kuang; Schowalter, Steven J; Hudson, Eric R

    2011-12-09

    Ultracold 174Yb+ ions and 40Ca atoms are confined in a hybrid trap. The charge exchange chemical reaction rate constant between these two species is measured and found to be 4 orders of magnitude larger than recent measurements in other heteronuclear systems. The structure of the CaYb+ molecule is determined and used in a calculation that explains the fast chemical reaction as a consequence of strong radiative charge transfer. A possible explanation is offered for the apparent contradiction between typical theoretical predictions and measurements of the radiative association process in this and other recent experiments.

  13. Measurement of a Large Chemical Reaction Rate between Ultracold Closed-Shell {sup 40}Ca Atoms and Open-Shell {sup 174}Yb{sup +} Ions Held in a Hybrid Atom-Ion Trap

    SciTech Connect

    Rellergert, Wade G.; Sullivan, Scott T.; Chen Kuang; Schowalter, Steven J.; Hudson, Eric R.; Kotochigova, Svetlana; Petrov, Alexander

    2011-12-09

    Ultracold {sup 174}Yb{sup +} ions and {sup 40}Ca atoms are confined in a hybrid trap. The charge exchange chemical reaction rate constant between these two species is measured and found to be 4 orders of magnitude larger than recent measurements in other heteronuclear systems. The structure of the CaYb{sup +} molecule is determined and used in a calculation that explains the fast chemical reaction as a consequence of strong radiative charge transfer. A possible explanation is offered for the apparent contradiction between typical theoretical predictions and measurements of the radiative association process in this and other recent experiments.

  14. A wireless laser displacement sensor node for structural health monitoring.

    PubMed

    Park, Hyo Seon; Kim, Jong Moon; Choi, Se Woon; Kim, Yousok

    2013-09-30

    This study describes a wireless laser displacement sensor node that measures displacement as a representative damage index for structural health monitoring (SHM). The proposed measurement system consists of a laser displacement sensor (LDS) and a customized wireless sensor node. Wireless communication is enabled by a sensor node that consists of a sensor module, a code division multiple access (CDMA) communication module, a processor, and a power module. An LDS with a long measurement distance is chosen to increase field applicability. For a wireless sensor node driven by a battery, we use a power control module with a low-power processor, which facilitates switching between the sleep and active modes, thus maximizing the power consumption efficiency during non-measurement and non-transfer periods. The CDMA mode is also used to overcome the limitation of communication distance, which is a challenge for wireless sensor networks and wireless communication. To evaluate the reliability and field applicability of the proposed wireless displacement measurement system, the system is tested onsite to obtain the required vertical displacement measurements during the construction of mega-trusses and an edge truss, which are the primary structural members in a large-scale irregular building currently under construction. The measurement values confirm the validity of the proposed wireless displacement measurement system and its potential for use in safety evaluations of structural elements.

  15. Wettability controls slow immiscible displacement through local interfacial instabilities

    NASA Astrophysics Data System (ADS)

    Jung, Michael; Brinkmann, Martin; Seemann, Ralf; Hiller, Thomas; Sanchez de La Lama, Marta; Herminghaus, Stephan

    2016-11-01

    Immiscible fluid displacement with average front velocities in the capillary-dominated regime is studied in a transparent Hele-Shaw cell with cylindrical posts. Employing various combinations of fluids and wall materials allows us to cover a range of advancing contact angles 46∘≤θa≤180∘ of the invading fluid in our experiments. In parallel, we study the displacement process in particle-based simulations that account for wall wettability. Considering the same arrangement of posts in experiments and simulation, we find a consistent crossover between stable interfacial displacement at θa≲80∘ and capillary fingering at high contact angles θa≳120∘ . The position of the crossover is quantified through the evolution of the interface length and the final saturation of the displaced fluid. A statistical analysis of the local displacement processes demonstrates that the shape evolution of the fluid front is governed by local instabilities as proposed by Cieplak and Robbins for a quasistatic interfacial displacement [Cieplak and Robbins, Phys. Rev. Lett. 60, 2042 (1988), 10.1103/PhysRevLett.60.2042]. The regime of stable front advances coincides with a corresponding region of contact angles where cooperative interfacial instabilities prevail. Capillary fingering, however, is observed only for large θa, where noncooperative instabilities dominate the invasion process.

  16. A Wireless Laser Displacement Sensor Node for Structural Health Monitoring

    PubMed Central

    Park, Hyo Seon; Kim, Jong Moon; Choi, Se Woon; Kim, Yousok

    2013-01-01

    This study describes a wireless laser displacement sensor node that measures displacement as a representative damage index for structural health monitoring (SHM). The proposed measurement system consists of a laser displacement sensor (LDS) and a customized wireless sensor node. Wireless communication is enabled by a sensor node that consists of a sensor module, a code division multiple access (CDMA) communication module, a processor, and a power module. An LDS with a long measurement distance is chosen to increase field applicability. For a wireless sensor node driven by a battery, we use a power control module with a low-power processor, which facilitates switching between the sleep and active modes, thus maximizing the power consumption efficiency during non-measurement and non-transfer periods. The CDMA mode is also used to overcome the limitation of communication distance, which is a challenge for wireless sensor networks and wireless communication. To evaluate the reliability and field applicability of the proposed wireless displacement measurement system, the system is tested onsite to obtain the required vertical displacement measurements during the construction of mega-trusses and an edge truss, which are the primary structural members in a large-scale irregular building currently under construction. The measurement values confirm the validity of the proposed wireless displacement measurement system and its potential for use in safety evaluations of structural elements. PMID:24084114

  17. Software for determining the true displacement of faults

    NASA Astrophysics Data System (ADS)

    Nieto-Fuentes, R.; Nieto-Samaniego, Á. F.; Xu, S.-S.; Alaniz-Álvarez, S. A.

    2014-03-01

    One of the most important parameters of faults is the true (or net) displacement, which is measured by restoring two originally adjacent points, called “piercing points”, to their original positions. This measurement is not typically applicable because it is rare to observe piercing points in natural outcrops. Much more common is the measurement of the apparent displacement of a marker. Methods to calculate the true displacement of faults using descriptive geometry, trigonometry or vector algebra are common in the literature, and most of them solve a specific situation from a large amount of possible combinations of the fault parameters. True displacements are not routinely calculated because it is a tedious and tiring task, despite their importance and the relatively simple methodology. We believe that the solution is to develop software capable of performing this work. In a previous publication, our research group proposed a method to calculate the true displacement of faults by solving most combinations of fault parameters using simple trigonometric equations. The purpose of this contribution is to present a computer program for calculating the true displacement of faults. The input data are the dip of the fault; the pitch angles of the markers, slickenlines and observation lines; and the marker separation. To prevent the common difficulties involved in switching between operative systems, the software is developed using the Java programing language. The computer program could be used as a tool in education and will also be useful for the calculation of the true fault displacement in geological and engineering works. The application resolves the cases with known direction of net slip, which commonly is assumed parallel to the slickenlines. This assumption is not always valid and must be used with caution, because the slickenlines are formed during a step of the incremental displacement on the fault surface, whereas the net slip is related to the finite slip.

  18. Fiber-Optic Differential Displacement Sensor

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping

    1996-01-01

    Dual fiber-optic sensor measures small relative displacements of two proximate objects along common surface. Dual sensor comprises two fiber-optic sensors in differential configuration increasing sensitivity to displacement while decreasing sensitivity to thermal expansion and contraction.

  19. Nonaffine displacements in crystalline solids in the harmonic limit.

    PubMed

    Ganguly, Saswati; Sengupta, Surajit; Sollich, Peter; Rao, Madan

    2013-04-01

    A systematic coarse graining of microscopic atomic displacements generates a local elastic deformation tensor D as well as a positive definite scalar χ measuring nonaffinity, i.e., the extent to which the displacements are not representable as affine deformations of a reference crystal. We perform an exact calculation of the statistics of χ and D and their spatial correlations for solids at low temperatures, within a harmonic approximation and in one and two dimensions. We obtain the joint distribution P(χ,D) and the two-point spatial correlation functions for χ and D. We show that nonaffine and affine deformations are coupled even in a harmonic solid, with a strength that depends on the size of the coarse-graining volume Ω and dimensionality. As a corollary to our work, we identify the field h(χ) conjugate to χ and show that this field may be tuned to produce a transition to a state where the ensemble average <χ> and the correlation length of χ diverge. Our work should be useful as a template for understanding nonaffine displacements in realistic systems with or without disorder and as a means for developing computational tools for studying the effects of nonaffine displacements in melting, plastic flow, and the glass transition.

  20. 40 CFR 205.153 - Engine displacement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Engine displacement. 205.153 Section... TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Motorcycles § 205.153 Engine displacement. (a) Engine displacement must be calculated using nominal engine values and rounded to the nearest whole cubic...

  1. 40 CFR 205.153 - Engine displacement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Engine displacement. 205.153 Section... TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Motorcycles § 205.153 Engine displacement. (a) Engine displacement must be calculated using nominal engine values and rounded to the nearest whole cubic...

  2. Displacement Compensation of Temperature Probe Data

    NASA Technical Reports Server (NTRS)

    Welch, Christopher S.; Hubert, James A.; Barber, Patrick G.

    1996-01-01

    Analysis of temperature data from a probe in a vertical Bridgman furnace growing germanium crystals revealed a displacement of the temperature profile due to conduction error. A theoretical analysis shows that the displacement compensation is independent of local temperature gradient. A displacement compensation value should become a standard characteristic of temperature probes used for temperature profile measurements.

  3. 25 CFR 700.59 - Displaced person.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false Displaced person. 700.59 Section 700.59 Indians THE OFFICE OF NAVAJO AND HOPI INDIAN RELOCATION COMMISSION OPERATIONS AND RELOCATION PROCEDURES General Policies and Instructions Definitions § 700.59 Displaced person. Displaced person means a member of...

  4. Polyphenylquinoxalines via Aromatic Nucleophilic Displacement

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M.; Connell, John W.

    1988-01-01

    Polyphenylquinoxalines are produced by an aromatic nucleophilic displacement reaction involving an activated aromatic dihalide with an appropriate quinoxaline monomer. Polyphenylquinoxalines are high temperature thermoplastics used as adhesives, coatings, films and composite matrices. The novelty of this invention is threefold: (1) some of the quinoxaline monomers are new compositions of matter; (2) the phenylquinoxaline polymers which are the end products of the invention are new compositions of matter; and (3) the method of forming the polymers is novel, replacing a more costly prior art process, which is also limited in the kinds of products prepared therefrom.

  5. Displacement Current and Surface Flashover

    SciTech Connect

    harris, J R; Caporaso, G J; Blackfield, D; Chen, Y J

    2007-07-17

    High-voltage vacuum insulator failure is generally due to surface flashover rather than insulator bulk breakdown. Vacuum surface flashover is widely believed to be initiated by a secondary electron emission avalanche along the vacuum-insulator interface. This process requires a physical mechanism to cause secondary electrons emitted from the insulator surface to return to that surface. Here, we show that when an insulator is subjected to a fast high-voltage pulse, the magnetic field due to displacement current through the insulator can provide this mechanism. This indicates the importance of the voltage pulse shape, especially the rise time, in the flashover initiation process.

  6. Dynamic atomic contributions to infrared intensities of fundamental bands.

    PubMed

    Silva, Arnaldo F; Richter, Wagner E; Bassi, Adalberto B M S; Bruns, Roy E

    2015-11-11

    Dynamic atomic intensity contributions to fundamental infrared intensities are defined as the scalar products of dipole moment derivative vectors for atomic displacements and the total dipole derivative vector of the normal mode. Intensities of functional group vibrations of the fluorochloromethanes can be estimated within 6.5 km mol(-1) by displacing only the functional group atoms rather than all the atoms in the molecules. The asymmetric CF2 stretching intensity, calculated to be 126.5 km mol(-1) higher than the symmetric one, is accounted for by an 81.7 km mol(-1) difference owing to the carbon atom displacement and 40.6 km mol(-1) for both fluorine displacements. Within the Quantum Theory of Atoms in Molecules (QTAIM) model differences in atomic polarizations are found to be the most important for explaining the difference in these carbon dynamic intensity contributions. Carbon atom displacements almost completely account for the differences in the symmetric and asymmetric CCl2 stretching intensities of dichloromethane, 103.9 of the total calculated value of 105.2 km mol(-1). Contrary to that found for the CF2 vibrations intramolecular charge transfer provoked by the carbon atom displacement almost exclusively explains this difference. The very similar intensity values of the symmetric and asymmetric CH2 stretching intensities in CH2F2 arise from nearly equal carbon and hydrogen atom contributions for these vibrations. All atomic contributions to the intensities for these vibrations in CH2Cl2 are very small. Sums of dynamic contributions of the individual intensities for all vibrational modes of the molecule are shown to be equal to mass weighted atomic effective charges that can be determined from atomic polar tensors evaluated from experimental infrared intensities and frequencies. Dynamic contributions for individual intensities can also be determined solely from experimental data.

  7. Study of the fragmentation of a displacement cascade in subcascades within the Binary Collision Approximation framework

    SciTech Connect

    Luneville, Laurence; Simone, David; Weber, William J

    2011-01-01

    When a material is subjected to irradiation, many primary defects are cre- ated at the atomic level by sequences of ballistic collision events to form highly disordered regions defined as displacement cascades. The long term evolution of materials under irradiation is dictated by the number and the spatial distribution of the surviving defects in the displacement cascade. The peculiar power law shape of collision cross sections is responsible for the frag- mentation of a displacement cascade into smaller subcascades. However, it remains difficult to define a subcascade. Within the fractal geometry frame- work, we demonstrate in this work that the set of atomic trajectories in a displacement cascade exhibit a fractal behavior. From this analysis, we present a new criterion to describe the fragmentation of a displacement cas- cade and to calculate the distribution and the number of defects from this fragmentation. Such an analysis provides the natural framework to estimate the number of defects created in a displacement cascade to integrate with results of MD simulations. From this defiintion of the fragmentation of a displacement cascade, this work gives some new insights to describe both the primary defects produced in a material under irradiation and then to compare different irradiations performed with different particles.

  8. Atomic polarizabilities

    SciTech Connect

    Safronova, M. S.; Mitroy, J.; Clark, Charles W.; Kozlov, M. G.

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  9. Interferometric fiber optic displacement sensor

    DOEpatents

    Farah, John

    1999-01-01

    A method is presented to produce a change in the optical path length in the gap between two single mode optical fibers proportional to the lateral displacement of either fiber end normal to its axis. This is done with the use of refraction or diffraction at the interface between a guiding and non-guiding media to change the direction of propagation of the light in the gap. A method is also presented for laying a waveguide on a cantilever so that the displacement of the tip of the cantilever produces a proportional path length change in the gap by distancing the waveguide from the neutral axis of the cantilever. The fiber is supported as a cantilever or a waveguide is deposited on a micromachined cantilever and incorporated in an interferometer which is made totally on a silicon substrate with the use of integrated-optic technology. A resonant element in the form of a micro-bridge is incorporated in the ridge waveguide and produces a frequency output which is readily digitizeable and immune to laser frequency noise. Finally, monolithic mechanical means for phase modulation are provided on the same sensor substrate. This is done by vibrating the cantilever or micro-bridge either electrically or optically.

  10. Interferometric fiber optic displacement sensor

    DOEpatents

    Farah, J.

    1999-04-06

    A method is presented to produce a change in the optical path length in the gap between two single mode optical fibers proportional to the lateral displacement of either fiber end normal to its axis. This is done with the use of refraction or diffraction at the interface between a guiding and non-guiding media to change the direction of propagation of the light in the gap. A method is also presented for laying a waveguide on a cantilever so that the displacement of the tip of the cantilever produces a proportional path length change in the gap by distancing the waveguide from the neutral axis of the cantilever. The fiber is supported as a cantilever or a waveguide is deposited on a micromachined cantilever and incorporated in an interferometer which is made totally on a silicon substrate with the use of integrated-optic technology. A resonant element in the form of a micro-bridge is incorporated in the ridge waveguide and produces a frequency output which is readily digitizeable and immune to laser frequency noise. Finally, monolithic mechanical means for phase modulation are provided on the same sensor substrate. This is done by vibrating the cantilever or micro-bridge either electrically or optically. 23 figs.

  11. Interferometric fiber optic displacement sensor

    DOEpatents

    Farah, John

    1995-01-01

    A method is presented to produce a change in the optical path length in the gap between two single mode optical fibers proportional to the lateral displacement of either fiber end normal to its axis. This is done with the use of refraction or diffraction at the interface between a guiding and non-guiding media to change the direction of propagation of the light in the gap. A method is also presented for laying a waveguide on a cantilever so that the displacement of the tip of the cantilever produces a proportional path length change in the gap by distancing the waveguide from the neutral axis of the cantilever. The fiber is supported as a cantilever or a waveguide is deposited on a micromachined cantilever and incorporated in an interferometer which is made totally on a silicon substrate with the use of integrated-optic technology. A resonant element in the form of a micro-bridge is incorporated in the ridge waveguide and produces a frequency output which is readily digitizeable and immune to laser frequency noise. Finally, monolithic mechanical means for phase modulation are provided on the same sensor substrate. This is done by vibrating the cantilever or micro-bridge either electrically or optically.

  12. Interferometric fiber optic displacement sensor

    DOEpatents

    Farah, J.

    1995-05-30

    A method is presented to produce a change in the optical path length in the gap between two single mode optical fibers proportional to the lateral displacement of either fiber end normal to its axis. This is done with the use of refraction or diffraction at the interface between a guiding and non-guiding media to change the direction of propagation of the light in the gap. A method is also presented for laying a waveguide on a cantilever so that the displacement of the tip of the cantilever produces a proportional path length change in the gap by distancing the waveguide from the neutral axis of the cantilever. The fiber is supported as a cantilever or a waveguide is deposited on a micromachined cantilever and incorporated in an interferometer which is made totally on a silicon substrate with the use of integrated-optic technology. A resonant element in the form of a micro-bridge is incorporated in the ridge waveguide and produces a frequency output which is readily digitizeable and immune to laser frequency noise. Finally, monolithic mechanical means for phase modulation are provided on the same sensor substrate. This is done by vibrating the cantilever or micro-bridge either electrically or optically. 29 figs.

  13. Displacement of squeezed propagating microwave states

    NASA Astrophysics Data System (ADS)

    Fedorov, Kirill G.; Zhong, Ling; Pogorzalek, Stefan; Eder, Peter; Fischer, Michael; Goetz, Jan; Wulschner, Friedrich; Xie, Edwar; Menzel, Edwin; Deppe, Frank; Marx, Achim; Gross, Rudolf

    Displacement of propagating squeezed states is a fundamental operation for quantum communications. It can be applied to fundamental studies of macroscopic quantum coherence and has an important role in quantum teleportation protocols with propagating microwaves. We generate propagating squeezed states using a Josephson parametric amplifier and implement displacement using a cryogenic directional coupler. We study single- and two-mode displacement regimes. For the single-mode displacement we find that the squeezing level of the displaced squeezed state does not depend on the displacement amplitude. Also, we observe that quantum entanglement between two spatially separated channels stays constant across 4 orders of displacement power. We acknowledge support by the German Research Foundation through SFB 631 and FE 1564/1-1, the EU project PROMISCE, and Elite Network of Bavaria through the program ExQM.

  14. A theoretical model to predict both horizontal displacement and vertical displacement for electromagnetic induction-based deep displacement sensors.

    PubMed

    Shentu, Nanying; Zhang, Hongjian; Li, Qing; Zhou, Hongliang; Tong, Renyuan; Li, Xiong

    2012-01-01

    Deep displacement observation is one basic means of landslide dynamic study and early warning monitoring and a key part of engineering geological investigation. In our previous work, we proposed a novel electromagnetic induction-based deep displacement sensor (I-type) to predict deep horizontal displacement and a theoretical model called equation-based equivalent loop approach (EELA) to describe its sensing characters. However in many landslide and related geological engineering cases, both horizontal displacement and vertical displacement vary apparently and dynamically so both may require monitoring. In this study, a II-type deep displacement sensor is designed by revising our I-type sensor to simultaneously monitor the deep horizontal displacement and vertical displacement variations at different depths within a sliding mass. Meanwhile, a new theoretical modeling called the numerical integration-based equivalent loop approach (NIELA) has been proposed to quantitatively depict II-type sensors' mutual inductance properties with respect to predicted horizontal displacements and vertical displacements. After detailed examinations and comparative studies between measured mutual inductance voltage, NIELA-based mutual inductance and EELA-based mutual inductance, NIELA has verified to be an effective and quite accurate analytic model for characterization of II-type sensors. The NIELA model is widely applicable for II-type sensors' monitoring on all kinds of landslides and other related geohazards with satisfactory estimation accuracy and calculation efficiency.

  15. A Theoretical Model to Predict Both Horizontal Displacement and Vertical Displacement for Electromagnetic Induction-Based Deep Displacement Sensors

    PubMed Central

    Shentu, Nanying; Zhang, Hongjian; Li, Qing; Zhou, Hongliang; Tong, Renyuan; Li, Xiong

    2012-01-01

    Deep displacement observation is one basic means of landslide dynamic study and early warning monitoring and a key part of engineering geological investigation. In our previous work, we proposed a novel electromagnetic induction-based deep displacement sensor (I-type) to predict deep horizontal displacement and a theoretical model called equation-based equivalent loop approach (EELA) to describe its sensing characters. However in many landslide and related geological engineering cases, both horizontal displacement and vertical displacement vary apparently and dynamically so both may require monitoring. In this study, a II-type deep displacement sensor is designed by revising our I-type sensor to simultaneously monitor the deep horizontal displacement and vertical displacement variations at different depths within a sliding mass. Meanwhile, a new theoretical modeling called the numerical integration-based equivalent loop approach (NIELA) has been proposed to quantitatively depict II-type sensors’ mutual inductance properties with respect to predicted horizontal displacements and vertical displacements. After detailed examinations and comparative studies between measured mutual inductance voltage, NIELA-based mutual inductance and EELA-based mutual inductance, NIELA has verified to be an effective and quite accurate analytic model for characterization of II-type sensors. The NIELA model is widely applicable for II-type sensors’ monitoring on all kinds of landslides and other related geohazards with satisfactory estimation accuracy and calculation efficiency. PMID:22368467

  16. Anomalously large Born effective charges in cubic WO3

    NASA Astrophysics Data System (ADS)

    Detraux, F.; Ghosez, Ph.; Gonze, X.

    1997-07-01

    Within density-functional theory, we compute the Born effective charges of tungsten trioxyde in its reference cubic phase (defect-perovskite structure). For the tungsten atom, the effective charge tensor is isotropic, with Z*W=+12.51. For the oxygen atoms, the two independent components of the tensor, corresponding, respectively, to a displacement of the atom parallel or perpendicular to the W-O bond, have the values Z*O||=-9.13 and Z*O⊥=-1.68. Z*W and Z*O|| are anomalously large with respect to the nominal ionic charges (+6 on W and -2 on O), but compatible with the Born effective charges found in related ABO3-perovskite compounds.

  17. Research on the displacement control method of asynchronous modular contactor

    NASA Astrophysics Data System (ADS)

    He, Gong; Ming, Zong

    2017-01-01

    Ac contactor is a kind of low voltage electrical appliances with large usage and wide application. Because of the frequent operation, contactor life must be long enough to ensure the reliable operation of power system. The electrical life of the contactor, as the key to affect the service life of the contactor, is mainly affected by the arc developed in the breaking and closing course. This paper concentrates on a new type of asynchronous modular contactor. To get the contactor movement characteristics, the dynamic model of the electromagnetic system is established by MATLAB/SIMULINK. Then, according to the displacement curve of contactor, the breaking process and closing process is planned. The thought of closed loop control, by adjusting the parameters of PID controller, enables the contactor to operate as the planning displacement curve. In addition, to achieve no arc or micro arc breaking and no bounce or micro bounce closing , a displacement closed loop control system for contactor is designed.

  18. Non-contact displacement estimation using Doppler radar.

    PubMed

    Gao, Xiaomeng; Singh, Aditya; Yavari, Ehsan; Lubecke, Victor; Boric-Lubecke, Olga

    2012-01-01

    Non-contact Doppler radar has been used extensively for detection of physiological motion. Most of the results published to date have been focused on estimation of the physiological rates, such as respiratory rate and heart rate, with CW and modulated waveforms in various settings. Accurate assessment of chest displacement may take this type of monitoring to the new level, by enabling the estimation of associated cardiopulmonary volumes, and possibly pulse pressure. To obtain absolute chest displacement with highest precision, full nonlinear phase demodulation of the quadrature radar outputs must be performed. The accuracy of this type of demodulation is limited by the drifting received RF power, varying dc offset, and channel quadrature imbalance. In this paper we demonstrate that if relatively large motion is used to calibrate the system, smaller motion displacement may be acquired with the accuracy on the order of 30 µm.

  19. Secondary tasks impair adaptation to step and gradual visual displacements

    PubMed Central

    Galea, J.M.; Sami, S.; Albert, N.B.; Miall, R.C.

    2016-01-01

    Performing two competing tasks can result in dividing cognitive resources between the tasks and impaired motor adaptation. In previous work we have reported impaired learning when participants had to switch from one visual displacement adaptation task to another. Here we examined whether or not a secondary task had a similar effect on adaptation to a visual displacement . The resource dividing task involved simultaneously adapting to a step visual displacement whilst vocally shadowing an auditory stimulus . The switching task required participants to adapt to opposing visual displacements in an alternating manner with the left and right hands. We found that both manipulations had a detrimental effect on adaptation rate. We then integrated these tasks and found the combination caused a greater decrease in adaptation rate than either manipulation in isolation. Experiment 2 showed that adaptation to a gradually imposed visual displacement was influenced in a similar manner to step adaptation. Therefore although gradual adaptation involves minimal awareness it still can be disrupted by a cognitively demanding secondary task. We propose that awareness and cognitive resource can be regarded as qualitatively different but that awareness may be a marker of the amount of resource required. For example, large errors are both noticed and require substantial cognitive resource to connect. However a lack of awareness does not mean an adaptation task will be resistant to interference from a resource consuming secondary task. PMID:20101396

  20. The brain uses extrasomatic information to estimate limb displacement

    PubMed Central

    Terekhov, Alexander V.; Hayward, Vincent

    2015-01-01

    A fundamental problem faced by the brain is to estimate whether a touched object is rigidly attached to a ground reference or is movable. A simple solution to this problem would be for the brain to test whether pushing on the object with a limb is accompanied by limb displacement. The mere act of pushing excites large populations of mechanoreceptors, generating a sensory response that is only weakly sensitive to limb displacement if the movements are small, and thus can hardly be used to determine the mobility of the object. In the mechanical world, displacement or deformation of objects frequently co-occurs with microscopic fluctuations associated with the frictional sliding of surfaces in contact or with micro-failures inside an object. In this study, we provide compelling evidence that the brain relies on these microscopic mechanical events to estimate the displacement of the limb in contact with an object, and hence the mobility of the touched object. We show that when pressing with a finger on a stiff surface, fluctuations that resemble the mechanical response of granular solids provoke a sensation of limb displacement. Our findings suggest that when acting on an external object, prior knowledge about the sensory consequences of interacting with the object contributes to proprioception. PMID:26311672

  1. Displacive disorder in three high-k bismuth oxide pyrochlores

    SciTech Connect

    Melot, B.; Rodriguez, E.; Proffen, Th.; Hayward, M.A.; Seshadri, R. . E-mail: seshadri@mrl.ucsb.edu

    2006-05-25

    We use time-of-flight neutron powder diffraction to examine static displacive disorder in three different pyrochlore A{sub 2}B{sub 2}O{sub 6}O' compounds with Bi on the A site. The compounds (Bi{sub 1.5}Zn{sub 0.5})(Nb{sub 1.5}Zn{sub 0.5})O{sub 6}O' (BZN) (Bi{sub 1.5}Zn{sub 0.5})(Ta{sub 1.5}Zn{sub 0.5})O{sub 6}O' (BZT), and (Bi{sub 1.5}Zn{sub 0.5})(Sb{sub 1.5}Zn{sub 0.5})O{sub 6}O' (BZS), are of interest - particularly BZN - for their high dielectric constants in the absence of any phase transition from the cubic high temperature phase. The local structures of the three compounds is characterized by displacive disorder from the ideal pyrochlore positions for both the A and O' sites, with the precise nature of the disorder being quite similar. However the extent of displacive disorder is different, despite the B-O networks being nearly identical in the three compounds. The reported dielectric constants of the three compounds are related to the extent of local displacement, and BZN, with the largest extent of local atomic displacement of A and O', is also reported to have the largest dielectric constant at 1 MHz. The dielectric constants are also related to the magnitudes of the thermal parameters of the different ions. The strongest correlation is found to involve the thermal parameter on the B site (Nb, Ta, or Sb)

  2. Polybenzimidazoles via aromatic nucleophilic displacement

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Hergenrother, Paul M. (Inventor); Smith, Joseph G., Jr. (Inventor)

    1995-01-01

    Novel molecular weight controlled and endcapped polybenzimidazoles (PBI) are prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenyl benzimidazole) monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The PBI are endcapped with mono(hydroxyphenyl) benzimidazoles. The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N,N-dimethylacetamide using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. Mono(hydroxyphenyl) benzimidazoles are synthesizedby reacting phenyl-4-hydroxybenzoate with aromatic (o-diamine)s in diphenylsulfone. Molecular weight controlled and endcapped PBI of new chemical structures are prepared that exhibit a favorable combination of physical and mechanical properties.

  3. Polybenzimidazoles Via Aromatic Nucleophilic Displacement

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Hergerrother, Paul M. (Inventor); Smith, Joseph G., Jr. (Inventor)

    1997-01-01

    Novel molecular weight controlled and endcapped polybenzimidazoles (PBI) are prepared by the aromatic nucleophilic displacement reaction of di(hydroxyphenylbenzimidazole) monomers with activated aromatic dihalides or activated aromatic dinitro compounds. The PBI are endcapped with mono(hydroxyphenyl)benzimidazoles. The polymerizations are carried out in polar aprotic solvents such as N-methyl-2-pyrrolidinone or N,N-dimethylacetamide using alkali metal bases such as potassium carbonate at elevated temperatures under nitrogen. Mono(hydroxyphenyl)benzimidazoles are synthesized by reacting phenyl-4-hydroxybenzoate with aromatic (o-diamine)s in diphenylsulfone. Molecular weight controlled and endcapped PBI of new chemical structures are prepared that exhibit a favorable combination of physical and mechanical properties.

  4. Variable delivery, fixed displacement pump

    SciTech Connect

    Sommars, Mark F.

    2001-01-01

    A variable delivery, fixed displacement pump comprises a plurality of pistons reciprocated within corresponding cylinders in a cylinder block. The pistons are reciprocated by rotation of a fixed angle swash plate connected to the pistons. The pistons and cylinders cooperate to define a plurality of fluid compression chambers each have a delivery outlet. A vent port is provided from each fluid compression chamber to vent fluid therefrom during at least a portion of the reciprocal stroke of the piston. Each piston and cylinder combination cooperates to close the associated vent port during another portion of the reciprocal stroke so that fluid is then pumped through the associated delivery outlet. The delivery rate of the pump is varied by adjusting the axial position of the swash plate relative to the cylinder block, which varies the duration of the piston stroke during which the vent port is closed.

  5. Limb displacement and brightness seismology

    NASA Astrophysics Data System (ADS)

    Emilio, Marcelo; Cunnyngham, Ian; Kuhn, Jeff; Mehret, Leandro; Bush, Rock; Scholl, Isabelle

    2015-08-01

    The Helioseismic and Magnetic Imager (HMI) abord the Solar Dynamics Observatory (SDO) has been used to obtain the most sensitive spectrally resolved observation of individual p-modes at the extreme solar limb. Such oscillation observations of the limb displacement and brightness for some spatial and temporal regimes are even competitive in signal-to-noise to full-disk doppler measurements of the p-mode spectrum. Limb measurements of 5-min p-modes, while having many similarities to full-disk doppler observations, have significantly different sensitivities to the solar rotation and the 5-min mode solar atmospheric structure. These may provide information about the solar structure which is complementary to full-disk measurements. In this work we present results from Individual spherical harmonic p-modes that were detected around solar limb with amplitudes at the micro-arcsecond level.

  6. Displaced electrode process for welding

    DOEpatents

    Heichel, L.J.

    1975-08-26

    A method is described for the butt-welding of a relatively heavy mass to a relatively small mass such as a thin-wall tube. In butt-welding heat is normally applied at the joint between the two pieces which are butt-welded together. The application of heat at the joint results in overheating the tube which causes thinning of the tube walls and porosity in the tube material. This is eliminated by displacing the welding electrode away from the seam toward the heavier mass so that heat is applied to the heavy mass and not at the butt seam. Examples of the parameters used in welding fuel rods are given. The cladding and end plugs were made of Zircalloy. The electrode used was of 2 percent thoriated tungsten. (auth)

  7. Displaceable Gear Torque Controlled Driver

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr. (Inventor)

    1997-01-01

    Methods and apparatus are provided for a torque driver including a displaceable gear to limit torque transfer to a fastener at a precisely controlled torque limit. A biasing assembly biases a first gear into engagement with a second gear for torque transfer between the first and second gear. The biasing assembly includes a pressurized cylinder controlled at a constant pressure that corresponds to a torque limit. A calibrated gage and valve is used to set the desired torque limit. One or more coiled output linkages connect the first gear with the fastener adaptor which may be a socket for a nut. A gear tooth profile provides a separation force that overcomes the bias to limit torque at the desired torque limit. Multiple fasteners may be rotated simultaneously to a desired torque limit if additional output spur gears are provided. The torque limit is adjustable and may be different for fasteners within the same fastener configuration.

  8. DISPLACEMENT BASED SEISMIC DESIGN CRITERIA

    SciTech Connect

    HOFMAYER,C.H.

    1999-03-29

    The USNRC has initiated a project to determine if any of the likely revisions to traditional earthquake engineering practice are relevant to seismic design of the specialized structures, systems and components of nuclear power plants and of such significance to suggest that a change in design practice might be warranted. As part of the initial phase of this study, a literature survey was conducted on the recent changes in seismic design codes/standards, on-going activities of code-writing organizations/communities, and published documents on displacement-based design methods. This paper provides a summary of recent changes in building codes and on-going activities for future codes. It also discusses some technical issues for further consideration.

  9. Fiber optic multimode displacement sensor

    NASA Astrophysics Data System (ADS)

    Fisher, Karl A.; Jarzynski, Jacek

    1996-04-01

    An underwater Optical Motion Sensor (OMS) based on a design first presented by W. B. Spillman, Schlieren multimode fiber-optic hydrophone, Applied Physics Letters 37(2), 15 July 1980, p. 145-146 is described. The displacement sensor uses the same acoustooptical intensity modulation mechanism as Spillman, however the sensing mechanism is isolated from the ambient fluid environment by a small cylindrical aluminum enclosure (1″ OD×3/4″). The enclosure contains an inertial mass and the fiber collimators. The inertial mass is suspended in the center of the enclosure by three small wires rigidly mounted to the walls. The mass and wires act as a cantilever beam system with a mechanical resonance near 100 Hz. The transduction mechanism consists of two opposed optical gratings aligned and positioned between the fiber collimators. One grating is mounted on the inertial mass while the other is mounted on the lower end cap of the enclosure. Relative motion between the gratings causes a modulation of the light transmitted through the gratings. The modulated beam is focused onto a photodetector and converted to electric current. The frequency response is flat from 200 Hz-9 kHz with a minimum detectable displacement of 0.002 A and the dynamic range is 136 dB. The small size and light weight give the sensor an effective density of 1.08 g/cm3 making it almost neutrally buoyant in water. This in conjunction with the performance characteristics make this sensor suitable for use in acoustical sensing applications.

  10. Icosahedral quasicrystals of intermetallic compounds are icosahedral twins of cubic crystals of three kinds, consisting of large (about 5000 atoms) icosahedral complexes in either a cubic body-centered or a cubic face-centered arrangement or smaller (about 1350 atoms) icosahedral complexes in the beta-tungsten arrangement.

    PubMed

    Pauling, L

    1989-11-01

    The twofold-axis electron-diffraction photographs of icosahedral quasicrystals are of three kinds, reflecting three different structures of the cubic crystals that by icosahedral twinning form the quasicrystals. The first kind, represented by Al(13)Cu(4)Fe(3), contains two very large icosahedral complexes, each of about 4680 atoms, in the body-centered arrangement, with six smaller icosahedral complexes (104 atoms each) in the principal interstices. The second kind, represented by Al(5)Mn, contains four of the very large complexes in the face-centered arrangement (cubic close packing), with four of the smaller clusters in the interstices. The third kind, represented by Al(6)CuLi(3), contains eight icosahedral complexes, each of about 1350 atoms, in the beta-W arrangement. The supporting evidence for these cubic structures is discussed as well as other evidence showing that the simple quasicrystal theory, which states that quasicrystals do not involve any translational identity operations, has to be modified.

  11. Cholesterol Displaces Palmitoylceramide from Its Tight Packing with Palmitoylsphingomyelin in the Absence of a Liquid-Disordered Phase

    PubMed Central

    Busto, Jon V.; Sot, Jesús; Requejo-Isidro, José; Goñi, Félix M.; Alonso, Alicia

    2010-01-01

    A set of different biophysical approaches has been used to explore the phase behavior of palmitoylsphingomyelin (pSM)/cholesterol (Chol) model membranes in the presence and absence of palmitoylceramide (pCer). Fluorescence spectroscopy of di-4-ANEPPDHQ-stained pSM/Chol vesicles and atomic force microscopy of supported planar bilayers show gel Lβ/liquid-ordered (Lo) phase coexistence within the range XChol = 0–0.25 at 22°C. At the latter compositional point and beyond, a single Lo pSM/Chol phase is detected. In ternary pSM/Chol/pCer mixtures, differential scanning calorimetry of multilamellar vesicles and confocal fluorescence microscopy of giant unilamellar vesicles concur in showing immiscibility, but no displacement, between Lo cholesterol-enriched (pSM/Chol) and gel-like ceramide-enriched (pSM/pCer) phases at high pSM/(Chol + pCer) ratios. At higher cholesterol content, pCer is unable to displace cholesterol at any extent, even at XChol < 0.25. It is interesting that an opposite strong cholesterol-mediated pCer displacement from its tight packing with pSM is clearly detected, completely abolishing the pCer ability to generate large microdomains and giving rise instead to a single ternary phase. These observations in model membranes in the absence of the lipids commonly used to form a liquid-disordered phase support the role of cholesterol as the key determinant in controlling its own displacement from Lo domains by ceramide upon sphingomyelinase activity. PMID:20712995

  12. Displacement damage and predicted non-ionizing energy loss in GaAs

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Chen, Nanjun; Hernandez-Rivera, Efrain; Huang, Danhong; LeVan, Paul D.

    2017-03-01

    Large-scale molecular dynamics (MD) simulations, along with bond-order interatomic potentials, have been applied to study the defect production for lattice atom recoil energies from 500 eV to 20 keV in gallium arsenide (GaAs). At low energies, the most surviving defects are single interstitials and vacancies, and only 20% of the interstitial population is contained in clusters. However, a direct-impact amorphization in GaAs occurs with a high degree of probability during the cascade lifetime for Ga PKAs (primary knock-on atoms) with energies larger than 2 keV. The results reveal a non-linear defect production that increases with the PKA energy. The damage density within a cascade core is evaluated, and used to develop a model that describes a new energy partition function. Based on the MD results, we have developed a model to determine the non-ionizing energy loss (NIEL) in GaAs, which can be used to predict the displacement damage degradation induced by space radiation on electronic components. The calculated NIEL predictions are compared with the available data, thus validating the NIEL model developed in this study.

  13. The 2011 Tohoku-Oki earthquake: displacement reaching the trench axis.

    PubMed

    Fujiwara, Toshiya; Kodaira, Shuichi; No, Tetsuo; Kaiho, Yuka; Takahashi, Narumi; Kaneda, Yoshiyuki

    2011-12-02

    We detected and measured coseismic displacement caused by the 11 March 2011 Tohoku-Oki earthquake [moment magnitude (M(W)) 9.0] by using multibeam bathymetric surveys. The difference between bathymetric data acquired before and after the earthquake revealed that the displacement extended out to the axis of the Japan Trench, suggesting that the fault rupture reached the trench axis. The sea floor on the outermost landward area moved about 50 meters horizontally east-southeast and ~10 meters upward. The large horizontal displacement lifted the sea floor by up to 16 meters on the landward slope in addition to the vertical displacement.

  14. The mental health of civilians displaced by armed conflict: an ecological model of refugee distress.

    PubMed

    Miller, K E; Rasmussen, A

    2016-04-04

    Early research on the mental health of civilians displaced by armed conflict focused primarily on the direct effects of exposure to war-related violence and loss. Largely overlooked in this war exposure model were the powerful effects of ongoing stressors related to the experience of displacement itself. An ecological model of refugee distress is proposed, drawing on research demonstrating that mental health among refugees and asylum seekers stems not only from prior war exposure, but also from a host of ongoing stressors in their social ecology, or displacement-related stressors. Implications of this model for addressing the mental health and psychosocial needs of refugees and other displaced populations are considered.

  15. Juvenile Songbirds Compensate for Displacement to Oceanic Islands during Autumn Migration

    PubMed Central

    Thorup, Kasper; Ortvad, Troels Eske; Rabøl, Jørgen; Holland, Richard A.; Tøttrup, Anders P.; Wikelski, Martin

    2011-01-01

    To what degree juvenile migrant birds are able to correct for orientation errors or wind drift is still largely unknown. We studied the orientation of passerines on the Faroe Islands far off the normal migration routes of European migrants. The ability to compensate for displacement was tested in naturally occurring vagrants presumably displaced by wind and in birds experimentally displaced 1100 km from Denmark to the Faroes. The orientation was studied in orientation cages as well as in the free-flying birds after release by tracking departures using small radio transmitters. Both the naturally displaced and the experimentally displaced birds oriented in more easterly directions on the Faroes than was observed in Denmark prior to displacement. This pattern was even more pronounced in departure directions, perhaps because of wind influence. The clear directional compensation found even in experimentally displaced birds indicates that first-year birds can also possess the ability to correct for displacement in some circumstances, possibly involving either some primitive form of true navigation, or ‘sign posts’, but the cues used for this are highly speculative. We also found some indications of differences between species in the reaction to displacement. Such differences might be involved in the diversity of results reported in displacement studies so far. PMID:21464975

  16. Experimental study of permanent displacement estimate method based on strong-motion earthquake accelerograms

    NASA Astrophysics Data System (ADS)

    Lu, Tao; Hu, Guorui

    2016-04-01

    In the engineering seismology studies, the seismic permanent displacement of the near-fault site is often obtained by the process of the ground motion accelerogram recorded by the instrument on the station. Because of the selection differences of the estimate methods and the algorithm parameters, the strongly different results of the permanent displacement is gotten often. And the reliability of the methods has not only been proved in fact, but also the selection of the algorithm parameters has to be carefully considered. In order to solve this problem, the experimental study on the permanent displacement according to the accelerogram was carried out with the experiment program of using the large shaking table and the sliding mechanism in the earthquake engineering laboratory. In the experiments,the large shaking table genarated the dynamincs excitation without the permanent displacement,the sliding mechanism fixed on the shaking table genarated the permanent displacement, and the accelerogram including the permant information had been recorded by the instrument on the sliding mechanism.Then the permanent displacement value had been obtained according to the accelerogram, and been compared with the displacement value gotten by the displacement meter and the digital close range photogrammetry. The experimental study showed that the reliable permanent displacement could be obtained by the existing processing method under the simple laboratory conditions with the preconditions of the algorithm parameters selection carefully.

  17. Modelling Toehold-Mediated RNA Strand Displacement

    PubMed Central

    Šulc, Petr; Ouldridge, Thomas E.; Romano, Flavio; Doye, Jonathan P.K.; Louis, Ard A.

    2015-01-01

    We study the thermodynamics and kinetics of an RNA toehold-mediated strand displacement reaction with a recently developed coarse-grained model of RNA. Strand displacement, during which a single strand displaces a different strand previously bound to a complementary substrate strand, is an essential mechanism in active nucleic acid nanotechnology and has also been hypothesized to occur in vivo. We study the rate of displacement reactions as a function of the length of the toehold and temperature and make two experimentally testable predictions: that the displacement is faster if the toehold is placed at the 5′ end of the substrate; and that the displacement slows down with increasing temperature for longer toeholds. PMID:25762335

  18. Modelling toehold-mediated RNA strand displacement.

    PubMed

    Šulc, Petr; Ouldridge, Thomas E; Romano, Flavio; Doye, Jonathan P K; Louis, Ard A

    2015-03-10

    We study the thermodynamics and kinetics of an RNA toehold-mediated strand displacement reaction with a recently developed coarse-grained model of RNA. Strand displacement, during which a single strand displaces a different strand previously bound to a complementary substrate strand, is an essential mechanism in active nucleic acid nanotechnology and has also been hypothesized to occur in vivo. We study the rate of displacement reactions as a function of the length of the toehold and temperature and make two experimentally testable predictions: that the displacement is faster if the toehold is placed at the 5' end of the substrate; and that the displacement slows down with increasing temperature for longer toeholds.

  19. Defect structures induced by high-energy displacement cascades in γ uranium

    NASA Astrophysics Data System (ADS)

    Miao, Yinbin; Beeler, Benjamin; Deo, Chaitanya; Baskes, Michael I.; Okuniewski, Maria A.; Stubbins, James F.

    2015-01-01

    Displacement cascade simulations were conducted for the γ uranium system based on molecular dynamics. A recently developed modified embedded atom method (MEAM) potential was employed to replicate the atomic interactions while an embedded atom method (EAM) potential was adopted to help characterize the defect structures induced by the displacement cascades. The atomic displacement process was studied by providing primary knock-on atoms (PKAs) with kinetic energies from 1 keV to 50 keV. The influence of the PKA incident direction was examined. The defect structures were analyzed after the systems were fully relaxed. The states of the self-interstitial atoms (SIAs) were categorized into various types of dumbbells, the crowdion, and the octahedral interstitial. The voids were determined to have a polyhedral shape with {1 1 0} facets. The size distribution of the voids was also obtained. The results of this study not only expand the knowledge of the microstructural evolution in irradiated γ uranium, but also provide valuable references for the radiation-induced defects in uranium alloy fuels.

  20. Defect structures induced by high-energy displacement cascades in γ uranium

    SciTech Connect

    Miao, Yinbin; Beeler, Benjamin; Deo, Chaitanya; Baskes, Michael I.; Okuniewski, Maria A.; Stubbins, James F.

    2015-01-01

    Displacement cascade simulations were conducted for the c uranium system based on molecular dynamics. A recently developed modified embedded atom method (MEAM) potential was employed to replicate the atomic interactions while an embedded atom method (EAM) potential was adopted to help characterize the defect structures induced by the displacement cascades. The atomic displacement process was studied by providing primary knock-on atoms (PKAs) with kinetic energies from 1 keV to 50 keV. The influence of the PKA incident direction was examined. The defect structures were analyzed after the systems were fully relaxed. The states of the self-interstitial atoms (SIAs) were categorized into various types of dumbbells, the crowdion, and the octahedral interstitial. The voids were determined to have a polyhedral shape with {110} facets. The size distribution of the voids was also obtained. The results of this study not only expand the knowledge of the microstructural evolution in irradiated c uranium, but also provide valuable references for the radiation-induced defects in uranium alloy fuels.

  1. Atomic form factor for twisted vortex photons interacting with atoms

    NASA Astrophysics Data System (ADS)

    Guthrey, Pierson; Kaplan, Lev; McGuire, J. H.

    2014-04-01

    The relatively new atomic form factor for twisted (vortex) beams, which carry orbital angular momentum (OAM), is considered and compared to the conventional atomic form factor for plane-wave beams that carry only spin angular momentum. Since the vortex symmetry of a twisted photon is more complex that that of a plane wave, evaluation of the atomic form factor is also more complex for twisted photons. On the other hand, the twisted photon has additional parameters, including the OAM quantum number, ℓ, the nodal radial number, p, and the Rayleigh range, zR, which determine the cone angle of the vortex. This Rayleigh range may be used as a variable parameter to control the interaction of twisted photons with matter. Here we address (i) normalization of the vortex atomic form factor, (ii) displacement of target atoms away from the center of the beam vortex, and (iii) formulation of transition probabilities for a variety of photon-atom processes. We attend to features related to experiments that can test the range of validity and accuracy of calculations of these variations of the atomic form factor. Using the absolute square of the form factor for vortex beams, we introduce a vortex factor that can be directly measured.

  2. Precise displacement measurement for a local surface.

    PubMed

    Yeh, Sheng Lih; Lin, Shyh Tsong; Chang, Yu Hsin

    2009-11-01

    An optical measurement method to get the in-plane and out-of-plane displacements of a local surface using a laser is proposed. The proposed method simultaneously derives the in-plane and out-of-plane displacements by measuring the shift of interference fringes formed by scattered beams. The average errors of the in-plane and out-of-plane displacement measurements are significantly smaller than 10 nm. Moreover, the proposed method uses only low-cost optical elements.

  3. Displacement speeds in turbulent premixed flame simulations

    SciTech Connect

    Day, Marcus S.; Shepherd, Ian G.; Bell, J.; Grcar, Joseph F.; Lijewski, Michael J.

    2007-07-01

    The theory of turbulent premixed flames is based on acharacterization of the flame as a discontinuous surface propagatingthrough the fluid. The displacement speed, defined as the local speed ofthe flame front normal to itself, relative to the unburned fluid,provides one characterization of the burning velocity. In this paper, weintroduce a geometric approach to computing displacement speed anddiscuss the efficacy of the displacement speed for characterizing aturbulent flame.

  4. Graphite filter atomizer in atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Katskov, Dmitri A.

    2007-09-01

    Graphite filter atomizers (GFA) for electrothermal atomic absorption spectrometry (ETAAS) show substantial advantages over commonly employed electrothermal vaporizers and atomizers, tube and platform furnaces, for direct determination of high and medium volatility elements in matrices associated with strong spectral and chemical interferences. Two factors provide lower limits of detection and shorter determination cycles with the GFA: the vaporization area in the GFA is separated from the absorption volume by a porous graphite partition; the sample is distributed over a large surface of a collector in the vaporization area. These factors convert the GFA into an efficient chemical reactor. The research concerning the GFA concept, technique and analytical methodology, carried out mainly in the author's laboratory in Russia and South Africa, is reviewed. Examples of analytical applications of the GFA in AAS for analysis of organic liquids and slurries, bio-samples and food products are given. Future prospects for the GFA are discussed in connection with analyses by fast multi-element AAS.

  5. Cervicitis associated with lateral cervical displacement.

    PubMed

    Gjoni, Indira; Muneyyirci-Delale, Ozgul

    2012-01-01

    Lateral cervical displacement has been recognized as a sign of endometriosis; however, other causes of the finding have not been explored. In our experience, patients without endometriosis are presenting with lateral cervical displacement, mainly towards the left of midline. The common finding in these cases is the presence of cervicitis leading us to hypothesize the role of cervicitis in causing lateral displacement of the cervix. Future research into this area will provide us with a stronger understanding of the role that lateral cervical displacement plays in the development of pelvic pathology and the development of cervical cancer.

  6. Displacement of Propagating Squeezed Microwave States

    NASA Astrophysics Data System (ADS)

    Fedorov, Kirill G.; Zhong, L.; Pogorzalek, S.; Eder, P.; Fischer, M.; Goetz, J.; Xie, E.; Wulschner, F.; Inomata, K.; Yamamoto, T.; Nakamura, Y.; Di Candia, R.; Las Heras, U.; Sanz, M.; Solano, E.; Menzel, E. P.; Deppe, F.; Marx, A.; Gross, R.

    2016-07-01

    Displacement of propagating quantum states of light is a fundamental operation for quantum communication. It enables fundamental studies on macroscopic quantum coherence and plays an important role in quantum teleportation protocols with continuous variables. In our experiments, we have successfully implemented this operation for propagating squeezed microwave states. We demonstrate that, even for strong displacement amplitudes, there is no degradation of the squeezing level in the reconstructed quantum states. Furthermore, we confirm that path entanglement generated by using displaced squeezed states remains constant over a wide range of the displacement power.

  7. Atomic supersymmetry

    NASA Technical Reports Server (NTRS)

    Kostelecky, V. Alan

    1993-01-01

    Atomic supersymmetry is a quantum-mechanical supersymmetry connecting the properties of different atoms and ions. A short description of some established results in the subject are provided and a few recent developments are discussed including the extension to parabolic coordinates and the calculation of Stark maps using supersymmetry-based models.

  8. Polybenzoxazole via aromatic nucleophilic displacement

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Connell, John W. (Inventor); Smith, Joseph G., Jr. (Inventor)

    1993-01-01

    Polybenzoxazoles (PBO) are heterocyclic macromolecules which were first synthesized in a two-step process by the initial formation of aromatic diacid chlorides with bis(o-aminophenol)s through solution condensation of aromatic diacid chlorides with bis(o-aminophenol)s followed by thermal cyclodehydration. Since then several methods were utilized in their synthesis. The most common synthetic method for PBO involves a polycondensation of bis(o-aminophenol)s with aromatic diacid diphenyl esters. Another preparative route involves the solution polycondensation of the hydrochloride salts of bis(o-amino phenol)s with aromatic diacids in polyphosphoric acid. Another synthetic method involves the initial formation of poly(o-hydroxy amide)s from silylated bis(o-aminophenol)s with aromatic diacid chlorides followed by thermal cyclodehydration to PBO. A recent preparative route involves the reaction of aromatic bisphenols with bis(fluorophenyl) benzoxazoles by the displacement reaction to form PBO. The novelty of the present invention is that high molecular weight PBO of new chemical structures are prepared that exhibit a favorable combination of physical and mechanical properties.

  9. Job displacement among single mothers: effects on children's outcomes in young adulthood.

    PubMed

    Brand, Jennie E; Thomas, Juli Simon

    2014-01-01

    Given the recent era of economic upheaval, studying the effects of job displacement has seldom been so timely and consequential. Despite a large literature associating displacement with worker well-being, relatively few studies focus on the effects of parental displacement on child well-being, and fewer still focus on implications for children of single-parent households. Moreover, notwithstanding a large literature on the relationship between single motherhood and children's outcomes, research on intergenerational effects of involuntary employment separations among single mothers is limited. Using 30 years of nationally representative panel data and propensity score matching methods, the authors find significant negative effects of job displacement among single mothers on children's educational attainment and social-psychological well-being in young adulthood. Effects are concentrated among older children and children whose mothers had a low likelihood of displacement, suggesting an important role for social stigma and relative deprivation in the effects of socioeconomic shocks on child well-being.

  10. Effects of Fault Displacement on Emplacement Drifts

    SciTech Connect

    F. Duan

    2000-04-25

    The purpose of this analysis is to evaluate potential effects of fault displacement on emplacement drifts, including drip shields and waste packages emplaced in emplacement drifts. The output from this analysis not only provides data for the evaluation of long-term drift stability but also supports the Engineered Barrier System (EBS) process model report (PMR) and Disruptive Events Report currently under development. The primary scope of this analysis includes (1) examining fault displacement effects in terms of induced stresses and displacements in the rock mass surrounding an emplacement drift and (2 ) predicting fault displacement effects on the drip shield and waste package. The magnitude of the fault displacement analyzed in this analysis bounds the mean fault displacement corresponding to an annual frequency of exceedance of 10{sup -5} adopted for the preclosure period of the repository and also supports the postclosure performance assessment. This analysis is performed following the development plan prepared for analyzing effects of fault displacement on emplacement drifts (CRWMS M&O 2000). The analysis will begin with the identification and preparation of requirements, criteria, and inputs. A literature survey on accommodating fault displacements encountered in underground structures such as buried oil and gas pipelines will be conducted. For a given fault displacement, the least favorable scenario in term of the spatial relation of a fault to an emplacement drift is chosen, and the analysis is then performed analytically. Based on the analysis results, conclusions are made regarding the effects and consequences of fault displacement on emplacement drifts. Specifically, the analysis will discuss loads which can be induced by fault displacement on emplacement drifts, drip shield and/or waste packages during the time period of postclosure.

  11. First-principles and classical molecular dynamics study of threshold displacement energy in beryllium

    NASA Astrophysics Data System (ADS)

    Vladimirov, P. V.; Borodin, V. A.

    2017-02-01

    Beryllium selected as a neutron multiplier material for the tritium breeding blanket of fusion reactor should withstand high doses of fast neutron irradiation. The damage produced by irradiation is usually evaluated assuming that the number of atomic displacements to the threshold displacement energy, Ed, which is considered as an intrinsic material parameter. In this work the value of Ed for hcp beryllium is estimated simultaneously from classical and first-principles molecular dynamics simulations. Quite similar quantitative pictures of defect production are observed in both simulation types, though the predicted displacement threshold values seem to be approximately two times higher in the first-principles approach. We expect that, after more detailed first-principles investigations, this approach can be used for scaling the damage prediction predictions by classical molecular dynamics, opening a way for more consistent calculations of displacement damage in materials.

  12. Effect of strain and temperature on the threshold displacement energy in body-centered cubic iron

    NASA Astrophysics Data System (ADS)

    Beeler, Benjamin; Asta, Mark; Hosemann, Peter; Grønbech-Jensen, Niels

    2016-06-01

    The threshold displacement energy (TDE) is the minimum amount of kinetic energy required to displace an atom from its lattice site. The magnitude of the TDE displays significant variance as a function of the crystallographic direction, system temperature and applied strain, among a variety of other factors. It is critically important to determine an accurate value of the TDE in order to calculate the total number of displacements due to a given irradiation condition, and thus to understand the materials response to irradiation. In this study, molecular dynamics simulations have been performed to calculate the threshold displacement energy in body-centered cubic iron as a function of strain and temperature. With applied strain, a decrease of the TDE of up to approximately 14 eV was observed. A temperature increase from 300 K to 500 K can result in an increase of the TDE of up to approximately 9 eV.

  13. 40 CFR 205.153 - Engine displacement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Engine displacement. 205.153 Section 205.153 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Motorcycles § 205.153 Engine displacement. (a)...

  14. 40 CFR 205.153 - Engine displacement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Engine displacement. 205.153 Section 205.153 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Motorcycles § 205.153 Engine displacement. (a)...

  15. 40 CFR 205.153 - Engine displacement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Engine displacement. 205.153 Section 205.153 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Motorcycles § 205.153 Engine displacement. (a)...

  16. Is Maxwell's Displacement Current a Current?

    ERIC Educational Resources Information Center

    French, A. P.

    2000-01-01

    Discusses in detail the claim that certain well-known physics experiments demonstrate the magnetic field produced by Maxwell's displacement current. Addresses the question of whether the displacement current acts as a source of magnetic field in the same way as a current in a wire would. (Contains 12 references.) (WRM)

  17. Worker Displacement in a Strong Labor Market.

    ERIC Educational Resources Information Center

    Helwig, Ryan T.

    2001-01-01

    As economic growth continued in 1997 and 1998, job losses declined and the displacement rate was the lowest of the 1990s. Many displaced workers were able to find new jobs with little or no change in weekly earnings. (Author/JOW)

  18. Video Games, Adolescents, and the Displacement Effect

    ERIC Educational Resources Information Center

    Fisher, Carla Christine

    2012-01-01

    The displacement effect (the idea that time spent in one activity displaces time spent in other activities) was examined within the lens of adolescents' video game use and their time spent reading, doing homework, in physically active sports and activities, in creative play, and with parents and friends. Data were drawn from the Panel Study…

  19. Displaced Homemakers: Vo-Tech Workshop Guide.

    ERIC Educational Resources Information Center

    Peltier, Wanda Jo

    Written for displaced homemaker programs in vocational-technical schools, this curriculum contains material designed so that instructors can prepare student manuals appropriate to almost any educational support situation for displaced homemakers. An overview provides information on special needs groups, curriculum use, and resources and sample…

  20. New displacement-based methods for optimal truss topology design

    NASA Technical Reports Server (NTRS)

    Bendsoe, Martin P.; Ben-Tal, Aharon; Haftka, Raphael T.

    1991-01-01

    Two alternate methods for maximum stiffness truss topology design are presented. The ground structure approach is used, and the problem is formulated in terms of displacements and bar areas. This large, nonconvex optimization problem can be solved by a simultaneous analysis and design approach. Alternatively, an equivalent, unconstrained, and convex problem in the displacements only can be formulated, and this problem can be solved by a nonsmooth, steepest descent algorithm. In both methods, the explicit solving of the equilibrium equations and the assembly of the global stiffness matrix are circumvented. A large number of examples have been studied, showing the attractive features of topology design as well as exposing interesting features of optimal topologies.

  1. Internal displacement in Colombia: Fifteen distinguishing features.

    PubMed

    Shultz, James M; Ceballos, Ángela Milena Gómez; Espinel, Zelde; Oliveros, Sofia Rios; Fonseca, Maria Fernanda; Florez, Luis Jorge Hernandez

    2014-01-01

    This commentary aims to delineate the distinguishing features of conflict-induced internal displacement in the nation of Colombia, South America. Even as Colombia is currently implementing a spectrum of legal, social, economic, and health programs for "victims of armed conflict," with particular focus on internally displaced persons (IDPs), the dynamics of forced migration on a mass scale within this country are little known beyond national borders.   The authors of this commentary are embarking on a global mental health research program in Bogota, Colombia to define best practices for reaching the displaced population and implementing sustainable, evidence-based screening and intervention for common mental disorders. Presenting the defining characteristics of internal displacement in Colombia provides the context for our work and, more importantly, conveys the compelling and complex nature of this humanitarian crisis. We attempt to demonstrate Colombia's unique position within the global patterning of internal displacement.

  2. Acting Atoms.

    ERIC Educational Resources Information Center

    Farin, Susan Archie

    1997-01-01

    Describes a fun game in which students act as electrons, protons, and neutrons. This activity is designed to help students develop a concrete understanding of the abstract concept of atomic structure. (DKM)

  3. Kinetic Atom.

    ERIC Educational Resources Information Center

    Wilson, David B.

    1981-01-01

    Surveys the research of scientists like Joule, Kelvin, Maxwell, Clausius, and Boltzmann as it comments on the basic conceptual issues involved in the development of a more precise kinetic theory and the idea of a kinetic atom. (Author/SK)

  4. Sentinel-1 TOPS interferometry for along-track displacement measurement

    NASA Astrophysics Data System (ADS)

    Jiang, H. J.; Pei, Y. Y.; Li, J.

    2017-02-01

    The European Space Agency’s Sentinel-1 mission, a constellation of two C-band synthetic aperture radar (SAR) satellites, utilizes terrain observation by progressive scan (TOPS) antenna beam steering as its default operation mode to achieve wide-swath coverage and short revisit time. The beam steering during the TOPS acquisition provides a means to measure azimuth motion by using the phase difference between forward and backward looking interferograms within regions of burst overlap. Hence, there are two spectral diversity techniques for along-track displacement measurement, including multi-aperture interferometry (MAI) and “burst overlap interferometry”. This paper analyses the measurement accuracies of MAI and burst overlap interferometry. Due to large spectral separation in the overlap region, burst overlap interferometry is a more sensitive measurement. We present a TOPS interferometry approach for along-track displacement measurement. The phase bias caused by azimuth miscoregistration is first estimated by burst overlap interferometry over stationary regions. After correcting the coregistration error, the MAI phase and the interferometric phase difference between burst overlaps are recalculated to obtain along-track displacements. We test the approach with Sentinel-1 TOPS interferometric data over the 2015 Mw 7.8 Nepal earthquake fault. The results prove the feasibility of our approach and show the potential of joint estimation of along-track displacement with burst overlap interferometry and MAI.

  5. Displacement thresholds in central and peripheral vision during tracking

    NASA Technical Reports Server (NTRS)

    Haines, R. F.

    1986-01-01

    The effects of stimulus duration and angular velocity on a subject's judgment of displacement threshold are examined. Twenty-six male subjects between 17-45 years with uncorrected 20:20 distance acuity and normal color perception and stereopsis studied a series of forced choice, paired comparison trials in which a long, thin, collimated horizontally oriented line moved downward through 12 angles ranging from 0.6-60 arcmin and judged which stimulus moved in each pair. The displacements were produced by 0.25, 0.5, 1, 2, and 4 sec stimulus duration and 2.5, 5, 10, and 15 deg/sec angular rates. Stimulus velocity, stimulus duration, mean threshold displacement, and mean confidence results are analyzed. It is observed that displacement judgment accuracy is increased with increasing stimulus duration. The data are compared with the results of Johnson and Leibowitz (1976) and Johnson and Scobey (1982), and good correlation with the Johnson and Leibowitz data is detected. The data reveal that threshold is based on a constant stimulus velocity over this range of durations and velocities. The data are applicable to the study of the final approach to landing of medium and large commercial jet aircraft.

  6. Crustal displacements due to continental water loading

    USGS Publications Warehouse

    Van Dam, T.; Wahr, J.; Milly, P.C.D.; Shmakin, A.B.; Blewitt, G.; Lavallee, D.; Larson, K.M.

    2001-01-01

    The effects of long-wavelength (> 100 km), seasonal variability in continental water storage on vertical crustal motions are assessed. The modeled vertical displacements (??rM) have root-mean-square (RMS) values for 1994-1998 as large as 8 mm, with ranges up to 30 mm, and are predominantly annual in character. Regional strains are on the order of 20 nanostrain for tilt and 5 nanostrain for horizontal deformation. We compare ??rM with observed Global Positioning System (GPS) heights (??rO) (which include adjustments to remove estimated effects of atmospheric pressure and annual tidal and non-tidal ocean loading) for 147 globally distributed sites. When the ??rO time series are adjusted by ??rM, their variances are reduced, on average, by an amount equal to the variance of the ??rM. Of the ??rO time series exhibiting a strong annual signal, more than half are found to have an annual harmonic that is in phase and of comparable amplitude with the annual harmonic in the ??rM. The ??rM time series exhibit long-period variations that could be mistaken for secular tectonic trends or post-glacial rebound when observed over a time span of a few years.

  7. Crustal Displacements Due to Continental Water Loading

    NASA Technical Reports Server (NTRS)

    vanDam, T.; Wahr, J.; Milly, P. C. D.; Shmakin, A. B.; Blewitt, G.; Lavallee, D.; Larson, K. M.

    2001-01-01

    The effects of long-wavelength (> 100 km), seasonal variability in continental water storage on vertical crustal motions are assessed. The modeled vertical displacements (delta-r(sub M)) have root-mean-square (RMS) values for 1994-1998 as large as 8 mm with ranges up to 30 mm, and are predominantly annual in character. Regional strains are on the order of 20 nanostrain for tilt and 5 nanostrain for horizontal deformation. We compare delta-r(sub M) with observed Global Positioning System (GPS) heights (delta-r(sub O)) (which include adjustments to remove estimated effects of atmospheric pressure and annual tidal and non-tidal ocean loading) for 147 globally distributed sites. When the delta-r(sub O) time series are adjusted by delta-r(sub M), their variances are reduced, on average, by an amount equal to the variance of the delta-r(sub M). Of the delta-r(sub O) time series exhibiting a strong annual signal, more than half are found to have an annual harmonic that is in phase and of comparable amplitude with the annual harmonic in the delta-r(sub M). The delta-r(sub M) time series exhibit long-period variations that could be mistaken for secular tectonic trends or post-glacial rebound when observed over a time span of a few years.

  8. Motional displacements in proteins incorporating dynamical diversity

    NASA Astrophysics Data System (ADS)

    Vural, Derya; Smith, Jeremy; Glyde, Henry

    The average mean square displacement (MSD), , of hydrogen H in proteins is measured using incoherent neutron scattering methods. The observed MSD shows a marked increase in magnitude at a temperature TD ~= 240 K. This is widely interpreted as a dynamical transition to large MSDs which make function possible in proteins. However, when the data is interpreted in terms of a single averaged MSD, the extracted depends on the neutron momentum transfer, ℏQ , used in the measurement. We have shown recently that this apparent dependence on Q arises because the dynamical diversity of the H in the protein is neglected[2]. We present models of the dynamical diversity of H in Lysosyme that when used in the analysis of simulated neutron data lead to consistent, Q independent values for the average MSD and for the diversity model.2. D. Vural and L. Hong, J. C. Smith and H. R. Glyde. Phys. Rev. E 91, 052705 (2015). Supported in part by Office of Basic Energy Sciences, USDOE, ER46680.

  9. Particle displacement tracking applied to air flows

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    1991-01-01

    Electronic Particle Image Velocimeter (PIV) techniques offer many advantages over conventional photographic PIV methods such as fast turn around times and simplified data reduction. A new all electronic PIV technique was developed which can measure high speed gas velocities. The Particle Displacement Tracking (PDT) technique employs a single cw laser, small seed particles (1 micron), and a single intensified, gated CCD array frame camera to provide a simple and fast method of obtaining two-dimensional velocity vector maps with unambiguous direction determination. Use of a single CCD camera eliminates registration difficulties encountered when multiple cameras are used to obtain velocity magnitude and direction information. An 80386 PC equipped with a large memory buffer frame-grabber board provides all of the data acquisition and data reduction operations. No array processors of other numerical processing hardware are required. Full video resolution (640x480 pixel) is maintained in the acquired images, providing high resolution video frames of the recorded particle images. The time between data acquisition to display of the velocity vector map is less than 40 sec. The new electronic PDT technique is demonstrated on an air nozzle flow with velocities less than 150 m/s.

  10. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays

    NASA Astrophysics Data System (ADS)

    Endres, Manuel; Bernien, Hannes; Keesling, Alexander; Levine, Harry; Anschuetz, Eric R.; Krajenbrink, Alexandre; Senko, Crystal; Vuletic, Vladan; Greiner, Markus; Lukin, Mikhail D.

    2016-11-01

    The realization of large-scale fully controllable quantum systems is an exciting frontier in modern physical science. We use atom-by-atom assembly to implement a platform for the deterministic preparation of regular one-dimensional arrays of individually controlled cold atoms. In our approach, a measurement and feedback procedure eliminates the entropy associated with probabilistic trap occupation and results in defect-free arrays of more than 50 atoms in less than 400 milliseconds. The technique is based on fast, real-time control of 100 optical tweezers, which we use to arrange atoms in desired geometric patterns and to maintain these configurations by replacing lost atoms with surplus atoms from a reservoir. This bottom-up approach may enable controlled engineering of scalable many-body systems for quantum information processing, quantum simulations, and precision measurements.

  11. Displacement of location in illusory line motion.

    PubMed

    Hubbard, Timothy L; Ruppel, Susan E

    2013-05-01

    Six experiments examined displacement in memory for the location of the line in illusory line motion (ILM; appearance or disappearance of a stationary cue is followed by appearance of a stationary line that is presented all at once, but the stationary line is perceived to "unfold" or "be drawn" from the end closest to the cue to the end most distant from the cue). If ILM was induced by having a single cue appear, then memory for the location of the line was displaced toward the cue, and displacement was larger if the line was closer to the cue. If ILM was induced by having one of two previously visible cues vanish, then memory for the location of the line was displaced away from the cue that vanished. In general, the magnitude of displacement increased and then decreased as retention interval increased from 50 to 250 ms and from 250 to 450 ms, respectively. Displacement of the line (a) is consistent with a combination of a spatial averaging of the locations of the cue and the line with a relatively weaker dynamic in the direction of illusory motion, (b) might be implemented in a spreading activation network similar to networks previously suggested to implement displacement resulting from implied or apparent motion, and (c) provides constraints and challenges for theories of ILM.

  12. Variable displacement alpha-type Stirling engine

    NASA Astrophysics Data System (ADS)

    Homutescu, V. M.; Bălănescu, D. T.; Panaite, C. E.; Atanasiu, M. V.

    2016-08-01

    The basic design and construction of an alpha-type Stirling engine with on load variable displacement is presented. The variable displacement is obtained through a planar quadrilateral linkage with one on load movable ground link. The physico-mathematical model used for analyzing the variable displacement alpha-type Stirling engine behavior is an isothermal model that takes into account the real movement of the pistons. Performances and power adjustment capabilities of such alpha-type Stirling engine are calculated and analyzed. An exemplification through the use of the numerical simulation was performed in this regard.

  13. Atomic research

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Connatser, Robert; Cothren, Bobby; Johnson, R. B.

    1993-01-01

    Work performed by the University of Alabama in Huntsville's (UAH) Center for Applied Optics (CAO) entitled Atomic Research is documented. Atomic oxygen (AO) effects on materials have long been a critical concern in designing spacecraft to withstand exposure to the Low Earth Orbit (LEO) environment. The objective of this research effort was to provide technical expertise in the design of instrumentation and experimental techniques for analyzing materials exposed to atomic oxygen in accelerated testing at NASA/MSFC. Such testing was required to answer fundamental questions concerning Space Station Freedom (SSF) candidate materials and materials exposed to atomic oxygen aboard the Long-Duration Exposure Facility (LDEF). The primary UAH task was to provide technical design, review, and analysis to MSFC in the development of a state-of-the-art 5eV atomic oxygen beam facility required to simulate the RAM-induced low earth orbit (LEO) AO environment. This development was to be accomplished primarily at NASA/MSFC. In support of this task, contamination effects and ultraviolet (UV) simulation testing was also to be carried out using NASA/MSFC facilities. Any materials analysis of LDEF samples was to be accomplished at UAH.

  14. PDT - PARTICLE DISPLACEMENT TRACKING SOFTWARE

    NASA Technical Reports Server (NTRS)

    Wernet, M. P.

    1994-01-01

    Particle Imaging Velocimetry (PIV) is a quantitative velocity measurement technique for measuring instantaneous planar cross sections of a flow field. The technique offers very high precision (1%) directionally resolved velocity vector estimates, but its use has been limited by high equipment costs and complexity of operation. Particle Displacement Tracking (PDT) is an all-electronic PIV data acquisition and reduction procedure which is simple, fast, and easily implemented. The procedure uses a low power, continuous wave laser and a Charged Coupled Device (CCD) camera to electronically record the particle images. A frame grabber board in a PC is used for data acquisition and reduction processing. PDT eliminates the need for photographic processing, system costs are moderately low, and reduced data are available within seconds of acquisition. The technique results in velocity estimate accuracies on the order of 5%. The software is fully menu-driven from the acquisition to the reduction and analysis of the data. Options are available to acquire a single image or 5- or 25-field series of images separated in time by multiples of 1/60 second. The user may process each image, specifying its boundaries to remove unwanted glare from the periphery and adjusting its background level to clearly resolve the particle images. Data reduction routines determine the particle image centroids and create time history files. PDT then identifies the velocity vectors which describe the particle movement in the flow field. Graphical data analysis routines are included which allow the user to graph the time history files and display the velocity vector maps, interpolated velocity vector grids, iso-velocity vector contours, and flow streamlines. The PDT data processing software is written in FORTRAN 77 and the data acquisition routine is written in C-Language for 80386-based IBM PC compatibles running MS-DOS v3.0 or higher. Machine requirements include 4 MB RAM (3 MB Extended), a single or

  15. Fault displacement hazard for strike-slip faults

    USGS Publications Warehouse

    Petersen, M.D.; Dawson, T.E.; Chen, R.; Cao, T.; Wills, C.J.; Schwartz, D.P.; Frankel, A.D.

    2011-01-01

    In this paper we present a methodology, data, and regression equations for calculating the fault rupture hazard at sites near steeply dipping, strike-slip faults. We collected and digitized on-fault and off-fault displacement data for 9 global strikeslip earthquakes ranging from moment magnitude M 6.5 to M 7.6 and supplemented these with displacements from 13 global earthquakes compiled byWesnousky (2008), who considers events up to M 7.9. Displacements on the primary fault fall off at the rupture ends and are often measured in meters, while displacements on secondary (offfault) or distributed faults may measure a few centimeters up to more than a meter and decay with distance from the rupture. Probability of earthquake rupture is less than 15% for cells 200 m??200 m and is less than 2% for 25 m??25 m cells at distances greater than 200mfrom the primary-fault rupture. Therefore, the hazard for off-fault ruptures is much lower than the hazard near the fault. Our data indicate that rupture displacements up to 35cm can be triggered on adjacent faults at distances out to 10kmor more from the primary-fault rupture. An example calculation shows that, for an active fault which has repeated large earthquakes every few hundred years, fault rupture hazard analysis should be an important consideration in the design of structures or lifelines that are located near the principal fault, within about 150 m of well-mapped active faults with a simple trace and within 300 m of faults with poorly defined or complex traces.

  16. Patterns of fault displacement and strain at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Morris, Alan P.; Ferrill, David A.; Sims, Darrell W.; Franklin, Nathan; Waiting, Deborah J.

    2004-09-01

    Yucca Mountain, Nevada, is the sole candidate site for underground disposal of high-level radioactive waste in the United States. The mountain is composed of Tertiary (12.8-11.6 Ma) volcanic tuff, cut by west-dipping normal faults that divide the mountain into north-trending, east-dipping cuestas. Geologic characterization of Yucca Mountain by the U.S. Department of Energy (DOE) has focused on mapping lithostratigraphic units, faults (including single plane, small-displacement surfaces of discontinuity, and large-displacement fault zones), and fractures (quasi-planar zones that have experienced loss of cohesion, including joints, partially mineralized joints, veins, and small-displacement faults). Faults and fractures are important to repository design because they affect seismic hazard, rockfall, and fluid transmissivity in the surrounding rock mass. Geologic maps and detailed studies of rock pavements and tunnel walls reveal that faults and fractures within Yucca Mountain are not uniform in orientation or intensity. We investigate two aspects of distributed deformation arising from fault displacement patterns at Yucca Mountain. First, fault-parallel strains (elongation parallel to cutoff lines where stratigraphic horizons intersect fault planes) develop as a result of lateral fault displacement gradients. Using existing data, we analyze the likely state of strain in fault blocks at Yucca Mountain. Second, fault-strike-perpendicular strains can develop where two normal faults propagate past each other. A component of the total strain is distributed into the surrounding rock to produce synthetic layer dip or a network of smaller faults and fractures. We find that small-scale faulting and fracturing at Yucca Mountain is variable and is strongly controlled by larger scale fault system architecture.

  17. Refugees and displaced persons. War, hunger, and public health.

    PubMed

    Toole, M J; Waldman, R J

    1993-08-04

    The number of refugees and internally displaced persons in need of protection and assistance has increased from 30 million in 1990 to more than 43 million today. War and civil strife have been largely responsible for this epidemic of mass migration that has affected almost every region of the world, including Europe. Since 1990, crude death rates (CDRs) during the early influx of refugees who crossed international borders have been somewhat lower than CDRs reported earlier among Cambodian and Ethiopian refugees. Nevertheless, CDRs among refugees arriving in Ethiopia, Kenya, Nepal, Malawi, and Zimbabwe since 1990 ranged from five to 12 times the baseline CDRs in the countries of origin. Among internally displaced populations in northern Iraq, Somalia, and Sudan, CDRs were extremely high, ranging from 12 to 25 times the baseline CDRs for the nondisplaced. Among both refugees and internally displaced persons, death rates among children less than 5 years of age were far higher than among older children and adults. In Bangladesh, the death rate in female Rohingya refugees was several times higher than in males. Preventable conditions such as diarrheal disease, measles, and acute respiratory infections, exacerbated often by malnutrition, caused most deaths. Although relief programs for refugees have improved since 1990, the situation among the internally displaced may have worsened. The international community should intervene earlier in the evolution of complex disasters involving civil war, human rights abuses, food shortages, and mass displacement. Relief programs need to be based on sound health and nutrition information and should focus on the provision of adequate shelter, food, water, sanitation, and public health programs that prevent mortality from diarrhea, measles, and other communicable diseases, especially among young children and women.

  18. Efficiency Improvements to the Displacement Based Multilevel Structural Optimization Algorithm

    NASA Technical Reports Server (NTRS)

    Plunkett, C. L.; Striz, A. G.; Sobieszczanski-Sobieski, J.

    2001-01-01

    Multilevel Structural Optimization (MSO) continues to be an area of research interest in engineering optimization. In the present project, the weight optimization of beams and trusses using Displacement based Multilevel Structural Optimization (DMSO), a member of the MSO set of methodologies, is investigated. In the DMSO approach, the optimization task is subdivided into a single system and multiple subsystems level optimizations. The system level optimization minimizes the load unbalance resulting from the use of displacement functions to approximate the structural displacements. The function coefficients are then the design variables. Alternately, the system level optimization can be solved using the displacements themselves as design variables, as was shown in previous research. Both approaches ensure that the calculated loads match the applied loads. In the subsystems level, the weight of the structure is minimized using the element dimensions as design variables. The approach is expected to be very efficient for large structures, since parallel computing can be utilized in the different levels of the problem. In this paper, the method is applied to a one-dimensional beam and a large three-dimensional truss. The beam was tested to study possible simplifications to the system level optimization. In previous research, polynomials were used to approximate the global nodal displacements. The number of coefficients of the polynomials equally matched the number of degrees of freedom of the problem. Here it was desired to see if it is possible to only match a subset of the degrees of freedom in the system level. This would lead to a simplification of the system level, with a resulting increase in overall efficiency. However, the methods tested for this type of system level simplification did not yield positive results. The large truss was utilized to test further improvements in the efficiency of DMSO. In previous work, parallel processing was applied to the

  19. Determination of the displacement energy of O, Si and Zr under electron beam irradiation

    SciTech Connect

    Edmondson, Philip D; Weber, William J; Namavar, Fereydoon; Zhang, Yanwen

    2012-01-01

    The response of nanocrystalline, stabilizer-free cubic zirconia thin films on a Si substrate to electron beam irradiation with energies of 4, 110 and 200 keV and fluences up to {approx}1.5 x 10{sup 22} e m{sup -2} has been studied to determine the displacement energies. The 110 and 200 keV irradiations were performed in situ using a transmission electron microscope; the 4 keV irradiations were performed ex situ using an electron gun. In all three irradiations, no structural modification of the zirconia was observed, despite the high fluxes and fluences. However the Si substrate on which the zirconia film was deposited was amorphized under the 200 keV electron irradiation. Examination of the electron-solid interactions reveals that the kinetic energy transfer from the 200 keV electrons to the silicon lattice is sufficient to cause atomic displacements, resulting in amorphization. The kinetic energy transfer from the 200 keV electrons to the oxygen sub-lattice of the zirconia may be sufficient to induce defect production, however, no evidence of defect production was observed. The displacement cross-section value of Zr was found to be {approx}400 times greater than that of O indicating that the O atoms are effectively screened from the electrons by the Zr atoms, and, therefore, the displacement of O is inefficient.

  20. Determination of the Displacement Energies of O, Si and Zr Under Electron Beam Irradiation

    SciTech Connect

    Edmondson, P. D.; Weber, William J.; Namavar, Fereydoon; Zhang, Yanwen

    2012-03-01

    The response of nanocrystalline, stabilizer-free cubic zirconia thin films on a Si substrate to electron beam irradiation with energies of 4, 110 and 200 keV and fluences up to ~1.5 x 10²²e m² has been studied to determine the displacement energies. The 110 and 200 keV irradiations were performed in situ using a transmission electron microscope; the 4 keV irradiations were performed ex situ using an electron gun. In all three irradiations, no structural modification of the zirconia was observed, despite the high fluxes and fluences. However the Si substrate on which the zirconia film was deposited was amorphized under the 200 keV electron irradiation. Examination of the electron–solid interactions reveals that the kinetic energy transfer from the 200 keV electrons to the silicon lattice is sufficient to cause atomic displacements, resulting in amorphization. The kinetic energy transfer from the 200 keV electrons to the oxygen sub-lattice of the zirconia may be sufficient to induce defect production, however, no evidence of defect production was observed. The displacement cross-section value of Zr was found to be ~400 times greater than that of O indicating that the O atoms are effectively screened from the electrons by the Zr atoms, and, therefore, the displacement of O is inefficient.

  1. Is Stereocilia Velocity or Displacement Feedback Used in the Cochlear Amplifier?

    NASA Astrophysics Data System (ADS)

    Lu, Shan; Mountain, David; Hubbard, Allyn

    2009-02-01

    Outer hair cells (OHC) play an important role in cochlear amplification. The OHC senses stereocilia motion and creates a force feedback to the organ of Corti. It is largely accepted that the stereocilia displacement drives the OHC apical conductance change, which, in turn, drives somatic motility. Recent research shows that the tension gated OHC current exhibits fast adaptation in response to stereocilia displacement. Such an adaptation process resembles a high-pass filter or differentiator, at least for the inward current. Since velocity is the derivative of displacement, fast adaptation may indicate that it is the stereocilia velocity, rather than displacement is the more important driver of the OHC apical conductance. We changed our multi-compartment, piezo-electro-mechanical model to sense stereocilia velocity rather than displacement. This new model can well match measured basilar membrane velocity and our own cochlear microphonic data.

  2. Atom Interferometry

    ScienceCinema

    Mark Kasevich

    2016-07-12

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton’s constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gryoscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be sued to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  3. Atom Interferometry

    SciTech Connect

    Kasevich, Mark

    2008-05-08

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton's constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gyroscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be used to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  4. Atom Interferometry

    SciTech Connect

    Mark Kasevich

    2008-05-07

    Atom de Broglie wave interferometry has emerged as a tool capable of addressing a diverse set of questions in gravitational and condensed matter physics, and as an enabling technology for advanced sensors in geodesy and navigation. This talk will review basic principles, then discuss recent applications and future directions. Scientific applications to be discussed include measurement of G (Newton’s constant), tests of the Equivalence Principle and post-Newtonian gravity, and study of the Kosterlitz-Thouless phase transition in layered superfluids. Technology applications include development of precision gryoscopes and gravity gradiometers. The talk will conclude with speculative remarks looking to the future: Can atom interference methods be sued to detect gravity waves? Can non-classical (entangled/squeezed state) atom sources lead to meaningful sensor performance improvements?

  5. Korean atomic bomb victims.

    PubMed

    Sasamoto, Yukuo

    2009-01-01

    After colonizing Korea, Japan invaded China, and subsequently initiated the Pacific War against the United States, Britain, and their allies. Towards the end of the war, U.S. warplanes dropped atomic bombs on Hiroshima and Nagasaki, which resulted in a large number of Koreans who lived in Hiroshima and Nagasaki suffering from the effects of the bombs. The objective of this paper is to examine the history of Korea atomic bomb victims who were caught in between the U.S., Japan, the Republic of Korea (South Korea) and the Democratic People's Republic of Korea (North Korea).

  6. Stepping Aside: Correlates of Displacement in Pedestrians.

    ERIC Educational Resources Information Center

    Willis, Frank N., Jr.; And Others

    1979-01-01

    Examines the effects of gender, age, race, group size, and other characteristics on spatial displacement in the general population. Considers the relative contributions of power, gallantry, and status in the determining of who yields to whom. (JMF)

  7. Displacement field measurement in the nanometer range

    NASA Astrophysics Data System (ADS)

    Surrel, Yves; Fournier, Nicolas

    1996-09-01

    The grid method is a classical tool for displacement measurement, which provides field data. This method has benefited very much from the phase-shifting technique in recent years. Two examples of applications of this method in the nanometer range are presented. The first one concerns the materials science: it is shown that microgrids observed by SEM can provide displacement field data with an accuracy of a few nanometers. The second one concerns the measurement of a rigid-body displacement. In this case, displacement data can be averaged over the whole field, drastically increasing the sensitivity. It is shown that a sensitivity of 7 nm can be achieved by using a coarse grid with 8 lines per mm. This sensitivity corresponds to 1/18000 of the grid pitch.

  8. Bucky gel actuator displacement: experiment and model

    NASA Astrophysics Data System (ADS)

    Ghamsari, A. K.; Jin, Y.; Zegeye, E.; Woldesenbet, E.

    2013-02-01

    Bucky gel actuator (BGA) is a dry electroactive nanocomposite which is driven with a few volts. BGA’s remarkable features make this tri-layered actuator a potential candidate for morphing applications. However, most of these applications would require a better understanding of the effective parameters that influence the BGA displacement. In this study, various sets of experiments were designed to investigate the effect of several parameters on the maximum lateral displacement of BGA. Two input parameters, voltage and frequency, and three material/design parameters, carbon nanotube type, thickness, and weight fraction of constituents were selected. A new thickness ratio term was also introduced to study the role of individual layers on BGA displacement. A model was established to predict BGA maximum displacement based on the effect of these parameters. This model showed good agreement with reported results from the literature. In addition, an important factor in the design of BGA-based devices, lifetime, was investigated.

  9. Probing neutrino mass with displaced vertices at the Fermilab Tevatron

    SciTech Connect

    Campos, F. de; Eboli, O.J.P.; Magro, M.B.; Porod, W.; Restrepo, D.; Valle, J.W.F.

    2005-04-01

    Supersymmetric extensions of the standard model exhibiting bilinear R-parity violation can generate naturally the observed neutrino mass spectrum as well as mixings. One interesting feature of these scenarios is that the lightest supersymmetric particle (LSP) is unstable, with several of its decay properties predicted in terms of neutrino mixing angles. A smoking gun of this model in colliders is the presence of displaced vertices due to LSP decays in large parts of the parameter space. In this work we focus on the simplest model of this type that comes from minimal supergravity with universal R-parity conserving soft breaking of supersymmetry augmented with bilinear R-parity breaking terms at the electroweak scale (RmSUGRA). We evaluate the potential of the Fermilab Tevatron to probe the RmSUGRA parameters through the analysis of events possessing two displaced vertices stemming from LSP decays. We show that requiring two displaced vertices in the events leads to a reach in m{sub 1/2} twice the one in the usual multilepton signals in a large fraction of the parameter space.

  10. Mapping out atom-wall interaction with atomic clocks.

    PubMed

    Derevianko, A; Obreshkov, B; Dzuba, V A

    2009-09-25

    We explore the feasibility of probing atom-wall interaction with atomic clocks based on atoms trapped in engineered optical lattices. Optical lattice is normal to the wall. By monitoring the wall-induced clock shift at individual wells of the lattice, one would measure the dependence of the atom-wall interaction on the atom-wall separation. We find that the induced clock shifts are large and observable at already experimentally demonstrated levels of accuracy. We show that this scheme may uniquely probe the long-range atom-wall interaction in all three qualitatively distinct regimes of the interaction: van der Waals (image-charge interaction), Casimir-Polder (QED vacuum fluctuations), and Lifshitz (thermal-bath fluctuations) regimes.

  11. Mapping Out Atom-Wall Interaction with Atomic Clocks

    SciTech Connect

    Derevianko, A.; Obreshkov, B.; Dzuba, V. A.

    2009-09-25

    We explore the feasibility of probing atom-wall interaction with atomic clocks based on atoms trapped in engineered optical lattices. Optical lattice is normal to the wall. By monitoring the wall-induced clock shift at individual wells of the lattice, one would measure the dependence of the atom-wall interaction on the atom-wall separation. We find that the induced clock shifts are large and observable at already experimentally demonstrated levels of accuracy. We show that this scheme may uniquely probe the long-range atom-wall interaction in all three qualitatively distinct regimes of the interaction: van der Waals (image-charge interaction), Casimir-Polder (QED vacuum fluctuations), and Lifshitz (thermal-bath fluctuations) regimes.

  12. Small-displacement measurements using high-order Hermite-Gauss modes

    SciTech Connect

    Sun, Hengxin; Liu, Kui; Liu, Zunlong; Guo, Pengliang; Zhang, Junxiang; Gao, Jiangrui

    2014-03-24

    We present a scheme for small-displacement measurements using high-order Hermite-Gauss modes and balanced homodyne detection. We demonstrate its use with experimental results of displacement measurements using fundamental transverse mode TEM{sub 00} and first order transverse mode TEM{sub 10} as signal modes. The results show a factor of 1.41 improvement in measurement precision with the TEM{sub 10} mode compared with that with the TEM{sub 00} mode. This scheme has potential applications in precision metrology, atomic force microscopy, and optical imaging.

  13. Monolithically integrated interferometer for optical displacement measurement

    NASA Astrophysics Data System (ADS)

    Hofstetter, Daniel; Zappe, Hans P.

    1996-01-01

    We discuss the fabrication of a monolithically integrated optical displacement sensors using III-V semiconductor technology. The device is configured as a Michelson interferometer and consists of a distributed Bragg reflector laser, a photodetector and waveguides forming a directional coupler. Using this interferometer, displacements in the 100 nm range could be measured at distances of up to 45 cm. We present fabrication, device results and characterization of the completed interferometer, problems, limitations and future applications will also be discussed.

  14. Recoil saturation of the self-energy in atomic systems

    SciTech Connect

    Manson, J.R.; Ritchie, R.H.

    1988-01-01

    Within the framework of the general self-energy problem for the interaction of a projectile with a many-body system, we consider the dispersion force between two atoms or between a charge and an atom. Since the Born-Oppenheimer approximation is not made, this is a useful approach for exhibiting non-adiabatic effects. We find compact expressions in terms of matrix elements of operators in the atomic displacement which are not limited by multipole expansions. 7 refs.

  15. Earthquake-induced soil displacements and their impact on rehabilitations

    PubMed Central

    KONAGAI, Kazuo

    2011-01-01

    A large earthquake can trigger long lasting geotechnical problems, which pose serious issues on both rehabilitations and land conservations. Therefore one of what required of us is to deduce as much hidden signs as possible from observable changes of landforms. Though serious, damage caused by the October 23rd 2004, Mid-Niigata Prefecture Earthquake has given us a rare opportunity to study the landform changes in mountainous terrain hit by this earthquake. An attempt was made to convert changes in elevation in Eulerian description for images obtained from remote-sensing technologies to Lagrangian displacements, because Lagrangian displacements can directly describe behaviors of soils, which are typically history-dependent. This paper documents some big pictures of earthquake-inflicted landform changes obtained through this attempt. PMID:21986310

  16. Displacement of Cl substituent in chlorofluorotoluene in corona discharge

    NASA Astrophysics Data System (ADS)

    Chae, Sang Youl; Lim, Manho; Lee, Sang Kuk

    2016-11-01

    The precursor 2-chloro-6-fluorotoluene can produce the 2-chloro-6-fluorobenzyl radical in corona discharge, together with the 2-fluorobenzyl radical which could be generated by the displacement of Cl with H of methyl group. In order to identify the reaction mechanism, two precursors, 2-chloro-6-fluorotoluene and 2-chloro-6-fluorobenzyl chloride were employed to observe the vibronic emission spectra from the corona discharge with a large amount of inert carrier gas He. By comparing the spectra observed, we are able to propose the displacement mechanism of Cl, in which methyl group is believed to play an important role in the process, which is discussed in terms of bond dissociation energies.

  17. Earthquake-induced soil displacements and their impact on rehabilitations.

    PubMed

    Konagai, Kazuo

    2011-01-01

    A large earthquake can trigger long lasting geotechnical problems, which pose serious issues on both rehabilitations and land conservations. Therefore one of what required of us is to deduce as much hidden signs as possible from observable changes of landforms. Though serious, damage caused by the October 23rd 2004, Mid-Niigata Prefecture Earthquake has given us a rare opportunity to study the landform changes in mountainous terrain hit by this earthquake. An attempt was made to convert changes in elevation in Eulerian description for images obtained from remote-sensing technologies to Lagrangian displacements, because Lagrangian displacements can directly describe behaviors of soils, which are typically history-dependent. This paper documents some big pictures of earthquake-inflicted landform changes obtained through this attempt.

  18. Displacement sensor for indoor machine calibrations.

    PubMed

    Mudassar, Asloob Ahmad; Butt, Saira

    2013-05-20

    This paper presents a simple displacement sensor for indoor machine calibrations. The sensor, which is placed in the path of a diverging laser beam, consists of two plane mirror pieces laterally displaced with the line joining their centers initially held perpendicular to the optical axis of the beam during the displacement of the sensor with one of the mirrors always traveling along the optical axis of the laser beam. The optical signals from the two mirrors are combined and a simple detector at the interference plane counts the fringes during the sensor displacement. The sensor could be mounted on the moving head of any mechanical machine, e.g., the lathe machine for displacement calibration. The device has been tested over a range of 10 cm beyond a distance of 150 cm from a diverging laser source giving an accuracy of 1.1015 μm. Theoretical modeling, simulation, and experimental results are presented which establish that the proposed sensor can be used as a promising displacement measuring device.

  19. Development and evolution of character displacement.

    PubMed

    Pfennig, David W; Pfennig, Karin S

    2012-05-01

    Character displacement occurs when competition for either resources or successful reproduction imposes divergent selection on interacting species, causing divergence in traits associated with resource use or reproduction. Here, we describe how character displacement can be mediated either by genetically canalized changes (i.e., changes that reflect allelic or genotype frequency changes) or by phenotypic plasticity. We also discuss how these two mechanisms influence the tempo of character displacement. Specifically, we suggest that, under some conditions, character displacement mediated by phenotypic plasticity might occur more rapidly than that mediated by genetically canalized changes. Finally, we describe how these two mechanisms may act together and determine character displacement's mode, such that it proceeds through an initial phase in which trait divergence is environmentally induced to a later phase in which divergence becomes genetically canalized. This plasticity-first hypothesis predicts that character displacement should be generally mediated by ancestral plasticity and that it will arise similarly in multiple, independently evolving populations. We conclude by highlighting future directions for research that would test these predictions.

  20. The evolution of fabric with displacement in natural brittle faults

    NASA Astrophysics Data System (ADS)

    Mittempergher, S.; Di Toro, G.; Gratier, J.; Aretusini, S.; Boullier-Bertrand, A.

    2011-12-01

    In experiments performed at room temperature on gouges, a characteristic clast size distribution (CSD) is produced with increasing strain, and shear localization is documented to begin after few millimetres of sliding. But in natural faults active at depth in the crust, mechanical processes are associated with fluid-rock interactions, which might control the deformation and strength recovery. We aim to investigate the microstructural, geochemical and mineralogical evolution of low-displacement faults with increasing shear strain. The faults (cataclasite- and pseudotachylyte-bearing) are hosted in tonalite and were active at 9-11 km and 250-300°C. The samples were collected on a large glacier-polished outcrop, where major faults (accommodating up to 4300 mm of displacement) exploit pre-existing magmatic joints and are connected by a network of secondary fractures and faults (accommodating up to 500 mm of displacement) breaking intact tonalite. We performed optical and cathodoluminescence (CL) microscope, Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS), Rietveld X-Ray Powder Diffraction and microprobe chemical analysis in deformation zones of secondary faults with various offsets in order to evaluate the transfer of chemical species between dissolution zones and protected zones. Image analysis techniques were applied on SEM-BSE and optical microscope images to compute the CSD in samples, which experienced an increasing amount of strain. The secondary fractures are up to 5 mm thick. Within the first 20 mm of displacement, shear localizes along Y and R1 surfaces and a cataclastic foliation develops. The CSD evolves from a fractal dimension D of 1.3 in fractures without visible displacement to values above 2 after the first 500 mm of displacement. Chemical maps and CL images indicate that the foliation in cataclasite results from the rotation and fragmentation of clasts, with dissolution of quartz and passive concentration of Ti oxides

  1. Modified Newmark method involving excess pore pressure to express unlimited landslide displacement

    NASA Astrophysics Data System (ADS)

    Fukuoka, H.; Tsukui, A.

    2012-12-01

    Newmark method is the most popular approach to assess the displacement of landslides induced by earthquakes using seismic acceleration, slope inclination, and friction parameters. However, this method always shows limited shear displacement no matter how the acceleration is large and duration is long. This is partly because it does not include any pore pressure, especially excess pore water pressure generated under long shear displacement. As shown by series of earthquake wave-form loading undrained ring shear tests by Disaster Prevention Research Institute of Kyoto University, grain crushing or soil skelton collapse can contribute to generation of high excess pore pressure and let the soil to reach liquefaction state ("Sliding surface liquefaction"). Many of unlimited landslide displacement have been revealed that this phenomena must be the key mechanism. In the test series of mixture of silica sands and dry-ice pellets (frozen carbon-dioxide), for studying the mechanism of the gasification of methane hydrates in the submarine landslides which likely to trigger large scale submarine landslides, authors have found linear relationship between log of excess pore pressure ratio (generated pore pressure / initial effective normal stress) and log of shear displacement. By embedding this relation into the Newmark method, unlimited shear displacement can appear under certain slope inclination and exaggerated acceleration. Authors show there is critical slope inclination for unlimited displacement when given acceleration waveform.

  2. A kilobyte rewritable atomic memory

    NASA Astrophysics Data System (ADS)

    Kalff, F. E.; Rebergen, M. P.; Fahrenfort, E.; Girovsky, J.; Toskovic, R.; Lado, J. L.; Fernández-Rossier, J.; Otte, A. F.

    2016-11-01

    The advent of devices based on single dopants, such as the single-atom transistor, the single-spin magnetometer and the single-atom memory, has motivated the quest for strategies that permit the control of matter with atomic precision. Manipulation of individual atoms by low-temperature scanning tunnelling microscopy provides ways to store data in atoms, encoded either into their charge state, magnetization state or lattice position. A clear challenge now is the controlled integration of these individual functional atoms into extended, scalable atomic circuits. Here, we present a robust digital atomic-scale memory of up to 1 kilobyte (8,000 bits) using an array of individual surface vacancies in a chlorine-terminated Cu(100) surface. The memory can be read and rewritten automatically by means of atomic-scale markers and offers an areal density of 502 terabits per square inch, outperforming state-of-the-art hard disk drives by three orders of magnitude. Furthermore, the chlorine vacancies are found to be stable at temperatures up to 77 K, offering the potential for expanding large-scale atomic assembly towards ambient conditions.

  3. Integrated optical displacement sensor based on asymmetric Mach-Zehnder interferometer chip

    NASA Astrophysics Data System (ADS)

    Zhao, Ning; Qian, Guang; Fu, Xing-Chang; Zhang, Li-Jiang; Hu, Wei; Li, Ruo-Zhou; Zhang, Tong

    2017-02-01

    Displacement sensor is one of the most important measuring instruments in many automated systems. We demonstrated an integrated optical displacement sensor based on an asymmetric Mach-Zehnder interferometer chip on a flexible substrate. The sensing chip was made of polymer materials and fabricated by lithography and lift-off techniques. Measured results show that the device has a loss of less than 5 dB and a potential sensitivity of about 0.105 rad/μm with quite a large space for promotion. The sensor has advantages of antielectromagnetic interference, high reliability and stability, simple preparing process, and low cost; it will occupy an important place in displacement sensors.

  4. Autonomous dynamic displacement estimation from data fusion of acceleration and intermittent displacement measurements

    NASA Astrophysics Data System (ADS)

    Kim, Junhee; Kim, Kiyoung; Sohn, Hoon

    2014-01-01

    Addressing the importance of displacement measurement of structural responses in the field of structural health monitoring, this paper presents an autonomous algorithm for dynamic displacement estimation from acceleration integration fused with displacement data intermittently measured. The presented acceleration integration algorithm of multi-rate Kalman filtering distinguishes itself from the past study in the literature by explicitly considering acceleration measurement bias. Furthermore, the algorithm is formulated by unique state definition of integration errors and error dynamics system modeling. To showcase performance of the algorithm, a series of laboratory dynamic experiments for measuring structural responses of acceleration and displacement are conducted. Improved results are demonstrated through comparison between the proposed and past study.

  5. A physical picture of atomic motions within the Dickerson DNA dodecamer in solution derived from joint ensemble refinement against NMR and large-angle X-ray scattering data.

    PubMed

    Schwieters, Charles D; Clore, G Marius

    2007-02-06

    The structure and dynamics of the Dickerson DNA dodecamer [5'd(CGCGAATTCGCG)2] in solution have been investigated by joint simulated annealing refinement against NMR and large-angle X-ray scattering data (extending from 0.25 to 3 A-1). The NMR data comprise an extensive set of hetero- and homonuclear residual dipolar coupling and 31P chemical shift anisotropy restraints in two alignment media, supplemented by NOE and 3J coupling data. The NMR and X-ray scattering data cannot be fully ascribed to a single structure representation, indicating the presence of anisotropic motions that impact the experimental observables in different ways. Refinement with ensemble sizes (Ne) of >or=2 to represent the atomic motions reconciles all the experimental data within measurement error. Cross validation against both the dipolar coupling and X-ray scattering data suggests that the optimal ensemble size required to account for the current data is 4. The resulting ensembles permit one to obtain a detailed view of the conformational space sampled by the dodecamer in solution and permit one to analyze fluctuations in helicoidal parameters, sugar puckers, and BI-BII backbone transitions and to obtain quantitative metrics of atomic motion such as generalized order parameters and thermal B factors. The calculated order parameters are in good agreement with experimental order parameters obtained from 13C relaxation measurements. Although DNA behaves as a relatively rigid rod with a persistence length of approximately 150 bp, dynamic conformational heterogeneity at the base pair level is functionally important since it readily permits optimization of intermolecular protein-DNA interactions.

  6. Applications of Displacement Transfer Functions to Deformed Shape Predictions of the GIII Swept-Wing Structure

    NASA Technical Reports Server (NTRS)

    Lung, Shun-Fat; Ko, William L.

    2016-01-01

    The displacement transfer functions (DTFs) were applied to the GIII swept wing for the deformed shape prediction. The calculated deformed shapes are very close to the correlated finite element results as well as the measured data. The convergence study showed that using 17 strain stations, the wing-tip displacement prediction error was 1.6 percent, and that there is no need to use a large number of strain stations for G-III wing shape predictions.

  7. Time Scaling of the Rates of Produced Fluids in Laboratory Displacements

    SciTech Connect

    Laroche, Catherine; Chen, Min; Yortsos, Yanis C.; Kamath, Jairam

    2001-02-27

    In this report, the use of an asymptotic method, based on the time scaling of the ratio of produced fluids, to infer the relative permeability exponent of the displaced phase near its residual saturation, for immiscible displacements in laboratory cores was proposed. Sufficiently large injection rates, the existence of a power law can be detected, and its exponent inferred, by plotting in an appropriate plot the ratio of the flow rates of the two fluids at the effluent for some time after breakthrough.

  8. Flow regimes during immiscible displacement

    DOE PAGES

    Armstrong, Ryan T.; Mcclure, James; Berrill, Mark A.; ...

    2017-02-01

    Fractional ow of immiscible phases occurs at the pore scale where grain surfaces and phases interfaces obstruct phase mobility. However, the larger scale behavior is described by a saturation-dependent phenomenological relationship called relative permeability. As a consequence, pore-scale parameters, such as phase topology and/ or geometry, and details of the flow regime cannot be directly related to Darcy-scale flow parameters. It is well understood that relative permeability is not a unique relationship of wetting-phase saturation and rather depends on the experimental conditions at which it is measured. Herein we use fast X-ray microcomputed tomography to image pore-scale phase arrangements duringmore » fractional flow and then forward simulate the flow regimes using the lattice-Boltzmann method to better understand the underlying pore-scale flow regimes and their influence on Darcy-scale parameters. We find that relative permeability is highly dependent on capillary number and that the Corey model fits the observed trends. At the pore scale, while phase topologies are continuously changing on the scale of individual pores, the Euler characteristic of the nonwetting phase (NWP) averaged over a sufficiently large field of view can describe the bulk topological characteristics; the Euler characteristic decreases with increasing capillary number resulting in an increase in relative permeability. Lastly, we quantify the fraction of NWP that flows through disconnected ganglion dynamics and demonstrate that this can be a significant fraction of the NWP flux for intermediate wetting-phase saturation. Furthermore, rate dependencies occur in our homogenous sample (without capillary end effect) and the underlying cause is attributed to ganglion flow that can significantly influence phase topology during the fractional flow of immiscible phases.« less

  9. Atomic arias

    NASA Astrophysics Data System (ADS)

    Crease, Robert P.

    2009-01-01

    The American composer John Adams uses opera to dramatize controversial current events. His 1987 work Nixon in China was about the landmark meeting in 1972 between US President Richard Nixon and Chairman Mao Zedong of China; The Death of Klinghoffer (1991) was a musical re-enactment of an incident in 1985 when Palestinian terrorists kidnapped and murdered a wheelchair-bound Jewish tourist on a cruise ship. Adams's latest opera, Doctor Atomic, is also tied to a controversial event: the first atomic-bomb test in Alamogordo, New Mexico, on 16 June 1945. The opera premièred in San Francisco in 2005, had a highly publicized debut at the Metropolitan Opera in New York in 2008, and will have another debut on 25 February - with essentially the same cast - at the English National Opera in London.

  10. Atomic rivals

    SciTech Connect

    Goldschmidt, B.

    1990-01-01

    This book is a memoir of rivalries among the Allies over the bomb, by a participant and observer. Nuclear proliferation began in the uneasy wartime collaboration of the United States, England, Canada, and Free France to produce the atom bomb. Through the changes of history, a young French chemist had a role in almost every act of this international drama. This memoir is based on Goldschmidt's own recollections, interviews with other leading figures, and 3,000 pages of newly declassified documents in Allied archives. From his own start as Marie Curie's lab assistant, Goldschmidt's career was closely intertwined with Frances complicated rise to membership in the nuclear club. As a refugee from the Nazis, he became part of the wartime nuclear energy project in Canada and found himself the only French scientist to work (although briefly) on the American atom bomb project.

  11. Ultra-Sensitive Magnetoresistive Displacement Sensing Device

    NASA Technical Reports Server (NTRS)

    Olivas, John D. (Inventor); Lairson, Bruce M. (Inventor); Ramesham, Rajeshuni (Inventor)

    2003-01-01

    An ultrasensitive displacement sensing device for use in accelerometers, pressure gauges, temperature transducers, and the like, comprises a sputter deposited, multilayer, magnetoresistive field sensor with a variable electrical resistance based on an imposed magnetic field. The device detects displacement by sensing changes in the local magnetic field about the magnetoresistive field sensor caused by the displacement of a hard magnetic film on a movable microstructure. The microstructure, which may be a cantilever, membrane, bridge, or other microelement, moves under the influence of an acceleration a known displacement predicted by the configuration and materials selected, and the resulting change in the electrical resistance of the MR sensor can be used to calculate the displacement. Using a micromachining approach, very thin silicon and silicon nitride membranes are fabricated in one preferred embodiment by means of anisotropic etching of silicon wafers. Other approaches include reactive ion etching of silicon on insulator (SOI), or Low Pressure Chemical Vapor Deposition of silicon nitride films over silicon substrates. The device is found to be improved with the use of giant magnetoresistive elements to detect changes in the local magnetic field.

  12. Quantification of the vocal folds’ dynamic displacements

    NASA Astrophysics Data System (ADS)

    del Socorro Hernández-Montes, María; Muñoz, Silvino; De La Torre, Manuel; Flores, Mauricio; Pérez, Carlos; Mendoza-Santoyo, Fernando

    2016-05-01

    Fast dynamic data acquisition techniques are required to investigate the motional behavior of the vocal folds (VFs) when they are subjected to a steady air-flow through the trachea. High-speed digital holographic interferometry (DHI) is a non-invasive full-field-of-view technique that has proved its usefulness to study rapid and non-repetitive object movements. Hence it is an ideal technique used here to measure VF displacements and vibration patterns at 2000 fps. Analyses from a set of 200 displacement images showed that VFs’ vibration cycles are established along their width (y) and length (x). Furthermore, the maximum deformation for the right and left VFs’ area may be quantified from these images, which in itself represents an important result in the characterization of this structure. At a controlled air pressure, VF displacements fall within the range ~100-1740 nm, with a calculated precision and accuracy that yields a variation coefficient of 1.91%. High-speed acquisition of full-field images of VFs and their displacement quantification are on their own significant data in the study of their functional and physiological behavior since voice quality and production depend on how they vibrate, i.e. their displacement amplitude and frequency. Additionally, the use of high speed DHI avoids prolonged examinations and represents a significant scientific and technological alternative contribution in advancing the knowledge and working mechanisms of these tissues.

  13. Fingering phenomena during grain-grain displacement

    NASA Astrophysics Data System (ADS)

    Mello, Nathália M. P.; Paiva, Humberto A.; Combe, G.; Atman, A. P. F.

    2017-04-01

    Spontaneous formation of fingered patterns during the displacement of dense granular assemblies was experimentally reported few years ago, in a radial Hele-Shaw cell. Here, by means of discrete element simulations, we have recovered the experimental findings and extended the original study to explore the control parameters space. In particular, using assemblies of grains with different geometries (monodisperse, bidisperse, or polydisperse), we measured the macroscopic stress tensor in the samples in order to confirm some conjectures proposed in analogy with Saffman-Taylor viscous fingering phenomena for immiscible fluids. Considering an axial setup which allows to control the discharge of grains and to follow the trajectory and the pressure gradient along the displacing interface, we have applied the Darcy law for laminar flow in fluids in order to measure an "effective viscosity" for each assembly combination, in an attempt to mimic variation of the viscosity ratio between the injected/displaced fluids in the Saffman-Taylor experiment. The results corroborate the analogy with the viscous fluids displacement, with the bidisperse assembly corresponding to the less viscous geometry. But, differently to fluid case, granular fingers only develop for a specific combination of displaced/injected geometries, and we have demonstrated that it is always related with the formation of a force chain network along the finger direction.

  14. Atomic physics

    SciTech Connect

    Livingston, A.E.; Kukla, K.; Cheng, S.

    1995-08-01

    In a collaboration with the Atomic Physics group at Argonne and the University of Toledo, the Atomic Physics group at the University of Notre Dame is measuring the fine structure transition energies in highly-charged lithium-like and helium-like ions using beam-foil spectroscopy. Precise measurements of 2s-2p transition energies in simple (few-electron) atomic systems provide stringent tests of several classes of current atomic- structure calculations. Analyses of measurements in helium-like Ar{sup 16+} have been completed, and the results submitted for publication. A current goal is to measure the 1s2s{sup 3}S{sub 1} - 1s2p{sup 3}P{sub 0} transition wavelength in helium-like Ni{sup 26+}. Measurements of the 1s2s{sup 2}S{sub 1/2} - 1s2p{sup 2}P{sub 1/2,3/2} transition wavelengths in lithium-like Kr{sup 33+} is planned. Wavelength and lifetime measurements in copper-like U{sup 63+} are also expected to be initiated. The group is also participating in measurements of forbidden transitions in helium-like ions. A measurement of the lifetime of the 1s2s{sup 3}S{sub 1} state in Kr{sup 34+} was published recently. In a collaboration including P. Mokler of GSI, Darmstadt, measurements have been made of the spectral distribution of the 2E1 decay continuum in helium-like Kr{sup 34+}. Initial results have been reported and further measurements are planned.

  15. Atomic Databases

    NASA Astrophysics Data System (ADS)

    Mendoza, Claudio

    2000-10-01

    Atomic and molecular data are required in a variety of fields ranging from the traditional astronomy, atmospherics and fusion research to fast growing technologies such as lasers, lighting, low-temperature plasmas, plasma assisted etching and radiotherapy. In this context, there are some research groups, both theoretical and experimental, scattered round the world that attend to most of this data demand, but the implementation of atomic databases has grown independently out of sheer necessity. In some cases the latter has been associated with the data production process or with data centers involved in data collection and evaluation; but sometimes it has been the result of individual initiatives that have been quite successful. In any case, the development and maintenance of atomic databases call for a number of skills and an entrepreneurial spirit that are not usually associated with most physics researchers. In the present report we present some of the highlights in this area in the past five years and discuss what we think are some of the main issues that have to be addressed.

  16. Energy storage possibilities of atomic hydrogen

    NASA Technical Reports Server (NTRS)

    Etters, R. D.; Dugan, J. V., Jr.; Palmer, R.

    1976-01-01

    The possibility of storing large amounts of energy in a free radical system such as atomic hydrogen is analyzed. Attention is focused on theoretical calculations of the ground state properties of spin-aligned atomic triplet hydrogen, deuterium, and tritium. The solid-liquid phase transition in atomic hydrogen is also examined.

  17. Displacements and stresses in bending of circular perforated plate

    NASA Astrophysics Data System (ADS)

    Atanasiu, C.; Sorohan, St.

    2016-08-01

    The flat plates, perforated by a large number of holes are widely used in the engineering, especially in the component of the process equipment. Strength calculations and experimental methods used in the actual literature for study perforated plates, do not present the problem in all its complexity for stress distribution and displacements. Research and doctoral theses in last decades, with methods characteristic of the respective periods were engaged either perforated plates considered infinite and requested the median plane or rarely, plate loaded normal to the median plane, with a small number of holes. In this work the stress distribution and displacement is presented for a circular plate perforated by 96 holes arranged in a grid of squares, simply supported on the outline and loaded through a central concentrated force or by uniformly distributed load. It conducted a numerical analysis by finite element method (FEM) with a proper meshing of the plate and an experimental study by holographic interferometry. Holographic interferometry method permits to measure, with high accuracy, extremely small displacements and comparing the results with those obtained by FEM becomes sustainable. Supplementary, an analysis of a non-perforated plate with the same dimensions and stiffness, similar loaded, was performed, determining the coefficient of stress concentration for a particular arrangement of holes.

  18. High speed displacement analysis using digital speckle correlation

    NASA Astrophysics Data System (ADS)

    Siebert, T.; Splitthof, K.; Becker, T.; Krupka, R.

    2006-06-01

    Digital speckle correlation techniques have already been successfully proven for accurate displacement analysis. With the use of two cameras, three dimensional measurements of contours and displacements can be carried out. The principle of this technique is pretty easy to understood and realized, opening a nearly unlimited range of applications. Rapid new developments in the field of digital imaging and computer technology, especially for very much dynamic applications, opens further applications for these measurement method up to high speed deformation and strain analysis, e.g. in the fields of, material testing, fracture mechanics, high speed testing, advanced materials and component testing. The dynamic range is combined with the capability to measure very large strains (up to more than 100%). The resolution of the deformation in space and time opens a wide range of applications for vibration analysis of objects. Since the system determines the absolute position and displacements of the object in space it is capable of measuring high amplitudes and even objects with rigid body movements, which is a big advantage against full field ESPI systems. The absolute resolution depends on the field of view and is scalable. Calibration of the optical setup is a crucial point which will be discussed in detail. Examples of the analysis of high speed harmonic vibration and transient events out of material research and industrial applications are presented. Results of measurement performed on a vibrating membrane and a tensile test sample are show typical features of the system.

  19. Forced displacement and women's security in Colombia.

    PubMed

    Meertens, Donny

    2010-04-01

    In the protracted Colombian conflict, assistance to internally displaced persons has developed in the context of contradictory political processes. The Colombian government's launching of a transitional justice process in the midst of armed conflict has generated a complex situation displaying both conflict and post-conflict characteristics. The progressive Constitutional Court rulings on internal displacement, in particular the gender-sensitive Auto 092, constitute an attempt to bring together humanitarian interventions and transitional justice measures in a rights-based framework. However, the national government is reluctant to adopt them fully and local realities still hamper their integrated implementation. Displaced women, therefore, remain in an especially vulnerable position. This paper argues that gender-sensitive humanitarian interventions must take into account all of these complexities of scale and political process in order to make legal frameworks more effective at the local level. In these contexts, interventions should pay particular attention to strategies that contribute to transforming pre-existing gender regimes.

  20. Simple and sensitive strain gauge displacement transducer

    NASA Astrophysics Data System (ADS)

    Ramana, Y. V.; Sarma, L. P.

    1981-09-01

    We describe a simple and sensitive strain gauge displacement transducer. It is based on the linear movement of a shaft (with two cantilevers and four strain gauges) in a tapered chamber, resulting in a change in resistance proportional to the cantilever deformation. The transducer with its Wheatstone full bridge configuration is calibrated against a mechanical dial indicator of 0.002 mm accuracy for both ac and dc voltage excitations. Its output is linear for measurements of full range displacement up to 25 mm. It has a sensitivity of ±0.0082 mm for ac excitation with a strain indicator whose resolution is ±1 μɛ. It has a dc full range sensitivity of 1.5 mV/V for excitation levels up to 5 V. It can have varied field and laboratory applications wherever displacements are precisely read, recorded, or monitored.

  1. Miscible, porous media displacements with density stratification.

    PubMed

    Riaz, Amir; Meiburg, Eckart

    2004-11-01

    High accuracy, three-dimensional numerical simulations of miscible displacements with gravity override, in both homogeneous and heterogeneous porous media, are discussed for the quarter five-spot configuration. The influence of viscous and gravitational effects on the overall displacement dynamics is described in terms of the vorticity variable. Density differences influence the flow primarily by establishing a narrow gravity layer, in which the effective Peclet number is enhanced due to the higher flow rate. Although this effect plays a dominant role in homogeneous flows, it is suppressed to some extent in heterogeneous displacements. This is a result of coupling between the viscous and permeability vorticity fields. When the viscous wavelength is much larger than the permeability wavelength, gravity override becomes more effective because coupling between the viscous and permeability vorticity fields is less pronounced. Buoyancy forces of a certain magnitude can lead to a pinch-off of the gravity layer, thereby slowing it down.

  2. Gas miscible displacement enhanced oil recovery: Technology status report

    SciTech Connect

    Not Available

    1986-10-01

    Gas miscible displacement enhanced oil recovery research is conducted by the US Department of Energy's Morgantown Energy Technology Center to advance the application of miscible carbon dioxide flooding. This research is an integral part of a multidisciplinary effort to improve the technology for producing additional oil from US resources. This report summarizes the problems of the technology and the 1986 results of the ongoing research that was conducted to solve those problems. Poor reservoir volumetric sweep efficiency is the major problem associated with gas flooding and all miscible displacements. This problem results from the channeling and viscous fingering that occur due to the large differences between viscosity or density of the displacing and displaced fluids (i.e., carbon dioxide and oil, respectively). Simple modeling and core flooding studies indicate that, because of differences in fluid viscosities, breakthrough can occur after only 30% of the total pore volume (PV) of the rock has been injected with gas, while field tests have shown breakthrough occurring much earlier. The differences in fluid densities lead to gravity segregation. The lower density carbon dioxide tends to override the residual fluids in the reservoir. This process would be considerably more efficient if a larger area of the reservoir could be contacted by the gas. Current research has focused on the mobility control, computer simulation, and reservoir heterogeneity studies. Three mobility control methods have been investigated: (1) the use of polymers for direct thickening of high-density carbon dioxide, (2) mobile ''foam-like dispersions'' of carbon dioxide and an aqueous surfactant, and (3) in situ deposition of chemical precipitates. 22 refs., 14 figs., 6 tabs.

  3. [Adaptation and mental-hygienic characteristics of internally displaced adolescents].

    PubMed

    Maksimović, Milos; Kocijancić, Radojka; Backović, Dusan; Ille, Tatjana; Paunović, Katarina

    2005-01-01

    The change in socio-economic status, drastic decrease in living standards, war, and the introduction of sanctions to our country were complicated in addition by a large number of internally displaced people from Kosovo, which culminated with the 1999 NATO bombing. The aim of this investigation was to estimate the influence of internal displacement on the adaptation and mental health of adolescents. The investigation was conducted on 238 adolescents, comprising a control group of 206 adolescents from Belgrade and 32 internally displaced adolescents from Kosovo. A specific questionnaire regarding habits, behaviour, and psychosomatic state was used, as well as the Cornell Medical Index and the Eysenck Personality Questionnaire. Internally displaced adolescents from Kosovo exhibited greater difficulties in adapting and had worse school records than adolescents from Belgrade, one year after the change in their location. Immediately after the NATO bombing, both groups reacted in the same way: they often talked about the events they had survived, they were afraid of the sounds of alarm sirens and of aeroplanes, and in addition had similar dreams (no statistical variation between the groups). Emotional disturbances, one year after the bombing, were not observed in 40.6% of adolescents from Kosovo, compared to the figure of 74.8% for adolescents from Belgrade. Adolescents from Belgrade consumed alcohol significantly more often: 75.7% compared to 56.3% for adolescents from Kosovo. In addition, 20.4% of adolescents from Belgrade consumed psychoactive substances compared to 6.3% of adolescents from Kosovo. There was no significant difference between the examined groups in the total scores on the scale for neuroticism. All in all, the girls from both examined groups displayed neurotic tendencies more frequently than the boys.

  4. Displacement sensors using soft magnetostrictive alloys

    NASA Astrophysics Data System (ADS)

    Hristoforou, E.; Reilly, R. E.

    1994-09-01

    We report results on the response of a family of displacement sensors, which are based on the magentostrictive delay line (MDL) technique, using current conductors orthogonal to the MDL. Such sensing technique is based on the change of the magnetic circuit at the acoustic stress point of origin due to the displacement of a soft magnetic material above it. Integrated arrays of sensors can be obtained due to the acoustic delay line technique and they can be used as tactile arrays, digitizers or devices for medical applications (gait analysis etc.), while absence of hysteresis and low cost of manufacturing make them competent in this sector of sensor market.

  5. Computing Displacements And Strains From Video Images

    NASA Technical Reports Server (NTRS)

    Russell, Samuel S.; Mcneill, Stephen R.; Lansing, Matthew D.

    1996-01-01

    Subpixel digital video image correlation (SDVIC) technique for measuring in-plane displacements on surfaces of objects under loads, without contact. Used for analyses of experimental research specimens or actual service structures of virtually any size or material. Only minimal preparation of test objects needed, and no need to isolate test objects from minor vibrations or fluctuating temperatures. Technique implemented by SDVIC software, producing color-graduated, full-field representations of in-plane displacements and partial derivatives with respect to position along both principal directions in each image plane. From representations, linear strains, shear strains, and rotation fields determined. Written in C language.

  6. An IPMC microgripper with integrated actuator and sensing for constant finger-tip displacement

    NASA Astrophysics Data System (ADS)

    Gonzalez, Carlos; Lumia, Ron

    2015-05-01

    Ionic polymer metal composite (IPMC) is a type of smart material that has gained the interest of many researchers due to its ability to achieve large displacements under small input voltages, usually less than 2.5 V. This has motivated the use of these materials in microsystems and systems in the millimeter scale, such as microgrippers. However, few of the control techniques developed thus far have considered the feasibility of using IPMCs in closed loop systems without the need of oversized external sensors. This paper presents a control scheme for a two-finger IPMC microgripper that accomplishes constant finger-tip displacements without external sensors. This scheme generates a displacement-dependent, time varying reference signal to obtain constant finger-tip displacements applied by a separate actuated IPMC. This actuator uses a PID controller tuned with a model-free approach, and is gain scheduled to span up to 1 mm finger-tip displacements. The microgripper achieves zero steady state error for finger-tip displacements on the tuned values of the PID controller. The gain scheduled PID controller is tested and results show zero steady state error to 0.25 mm displacements, and 15 and 20% steady state error when referenced to deflection of 0.45 and 0.75 mm, respectively. This shows that there is great confidence and validity of the control scheme, especially when tracking small reference deflections.

  7. A Workshop Guide for Post-Secondary Displaced Homemaker Programs.

    ERIC Educational Resources Information Center

    Dahlberg, Maurine

    Based on a survey of displaced homemakers and displaced homemaker advisory committee members in Texas and on a literature review, this guide was developed to help leaders of displaced homemaker programs conduct workshops for their clients. Following an introduction which explains the rationale for conducting workshops for displaced homemakers, the…

  8. 24 CFR 882.810 - Displacement, relocation, and acquisition.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... section. (c) Relocation assistance for displaced persons. A “displaced person” (defined in paragraph (g... displaced person must be advised of his or her rights under the Fair Housing Act (42 U.S.C. 3601-19) and, if... qualifies as a displaced person, or the amount of relocation assistance for which the person is...

  9. 24 CFR 92.353 - Displacement, relocation, and acquisition.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... assistance for displaced persons—(1) General. A displaced person (defined in paragraph (c)(2) of this section... U.S.C. 4201-4655) and 49 CFR part 24. A “displaced person” must be advised of his or her rights..., safe, and sanitary replacement dwellings not located in such areas. (2) Displaced Person. (i)...

  10. 24 CFR 941.207 - Displacement, relocation, and acquisition.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... paragraph (b)(1) of this section. (c) Relocation assistance for displaced persons. A “displaced person... CFR part 24. A “displaced person” shall be advised of his/her rights under the Fair Housing Act (42 U... qualifies as a “displaced person,” or the amount of relocation assistance for which the person is...

  11. Displacement Addition on Linking Extensional Fault Arrays in the Canyonlands Graben, Utah

    NASA Astrophysics Data System (ADS)

    Commins, D. C.; Gupta, S.; Cartwright, J. A.; Phillips, W. M.

    2003-12-01

    Studies of brittle fault populations over the past decade have revealed that large extensional faults grow by the lengthening, interaction and physical linkage of en echelon fault segments. However, the temporal evolution of displacement accumulation during segment interaction and linkage is difficult to unravel due to a lack of direct observation during each stage in the fault array development. The process of profile re-adjustment prevents reconstruction of the growth history of a fault from its final configuration, and as a result, several models for the growth trajectory of a fault array undergoing linkage are possible. Observational data with which to constrain the relative timing and mode of displacement accumulation during the linkage process are currently lacking. We use the deformation of late Pleistocene-Holocene stream systems by the growth of a active normal faults in The Grabens, Canyonlands National Park, Utah to constrain the mode of growth of fault arrays. Coupling fault displacement data with geomorphic analysis of deformed present-day and palaeo-streams, permits sequential reconstruction of both simple 2-segment fault arrays and complex multi-segment populations from their initial component segments to the present day displacement geometry. In particular, these data provide information on the relative rates of displacement addition. For example, the presence of waterfalls where streams cross fault scarps indicates abrupt rates of displacement accumulation which we can relate to the hard linkage process. The reconstruction of both three- and six-segment faults reveal common aspects of displacement distribution through time: (1) Displacement accumulation occurs almost entirely in the interaction and linkage phase. (2) Interaction between segments causes enhanced displacement addition in overlap zones. (3) Despite interaction in the soft-linkage stage, faults do not achieve a characteristic profile during this phase (4) Displacement accrues rapidly

  12. Oxygen Displacement in Cuprates under Ionic Liquid Field-Effect Gating.

    PubMed

    Dubuis, Guy; Yacoby, Yizhak; Zhou, Hua; He, Xi; Bollinger, Anthony T; Pavuna, Davor; Pindak, Ron; Božović, Ivan

    2016-08-31

    We studied structural changes in a 5 unit cell thick La1.96Sr0.04CuO4 film, epitaxially grown on a LaSrAlO4 substrate with a single unit cell buffer layer, when ultra-high electric fields were induced in the film by applying a gate voltage between the film (ground) and an ionic liquid in contact with it. Measuring the diffraction intensity along the substrate-defined Bragg rods and analyzing the results using a phase retrieval method we obtained the three-dimensional electron density in the film, buffer layer, and topmost atomic layers of the substrate under different applied gate voltages. The main structural observations were: (i) there were no structural changes when the voltage was negative, holes were injected into the film making it more metallic and screening the electric field; (ii) when the voltage was positive, the film was depleted of holes becoming more insulating, the electric field extended throughout the film, the partial surface monolayer became disordered, and equatorial oxygen atoms were displaced towards the surface; (iii) the changes in surface disorder and the oxygen displacements were both reversed when a negative voltage was applied; and (iv) the c-axis lattice constant of the film did not change in spite of the displacement of equatorial oxygen atoms.

  13. Simulation of neutron displacement damage in bipolar junction transistors using high-energy heavy ion beams.

    SciTech Connect

    Doyle, Barney Lee; Buller, Daniel L.; Hjalmarson, Harold Paul; Fleming, Robert M; Bielejec, Edward Salvador; Vizkelethy, Gyorgy

    2006-12-01

    Electronic components such as bipolar junction transistors (BJTs) are damaged when they are exposed to radiation and, as a result, their performance can significantly degrade. In certain environments the radiation consists of short, high flux pulses of neutrons. Electronics components have traditionally been tested against short neutron pulses in pulsed nuclear reactors. These reactors are becoming less and less available; many of them were shut down permanently in the past few years. Therefore, new methods using radiation sources other than pulsed nuclear reactors needed to be developed. Neutrons affect semiconductors such as Si by causing atomic displacements of Si atoms. The recoiled Si atom creates a collision cascade which leads to displacements in Si. Since heavy ions create similar cascades in Si we can use them to create similar damage to what neutrons create. This LDRD successfully developed a new technique using easily available particle accelerators to provide an alternative to pulsed nuclear reactors to study the displacement damage and subsequent transient annealing that occurs in various transistor devices and potentially qualify them against radiation effects caused by pulsed neutrons.

  14. Oxygen Displacement in Cuprates under IonicLiquid Field-Effect Gating

    SciTech Connect

    Dubuis, Guy; Yacoby, Yizhak; Zhou, Hua; He, Xi; Bollinger, Anthony T.; Pavuna, Davor; Pindak, Ron; Bozovic, Ivan

    2016-08-15

    We studied structural changes in a 5 unit cell thick La1.96Sr0.04CuO4 film, epitaxially grown on a LaSrAlO4 substrate with a single unit cell buffer layer, when ultra-high electric fields were induced in the film by applying a gate voltage between the film and an ionic liquid in contact with it. Measuring the diffraction intensity along the substrate-defined Bragg rods and analyzing the results using a phase retrieval method we obtained the three-dimensional electron density in the film, buffer layer, and topmost atomic layers of the substrate under different applied gate voltages. The main structural observations were: (i) there were no structural changes when the voltage was negative, holes were injected into the film making it more metallic and screening the electric field; (ii) when the voltage was positive, the film was depleted of holes becoming more insulating, the electric field extended throughout the film, the partial surface monolayer became disordered, and planar oxygen atoms were displaced towards the sample surface; (iii) the changes in surface disorder and the oxygen displacements were both reversed when a negative voltage was applied; and (iv) the c-axis lattice constant of the film did not change in spite of the displacement of planar oxygen atoms.

  15. Oxygen Displacement in Cuprates under IonicLiquid Field-Effect Gating

    DOE PAGES

    Dubuis, Guy; Yacoby, Yizhak; Zhou, Hua; ...

    2016-08-15

    We studied structural changes in a 5 unit cell thick La1.96Sr0.04CuO4 film, epitaxially grown on a LaSrAlO4 substrate with a single unit cell buffer layer, when ultra-high electric fields were induced in the film by applying a gate voltage between the film and an ionic liquid in contact with it. Measuring the diffraction intensity along the substrate-defined Bragg rods and analyzing the results using a phase retrieval method we obtained the three-dimensional electron density in the film, buffer layer, and topmost atomic layers of the substrate under different applied gate voltages. The main structural observations were: (i) there were nomore » structural changes when the voltage was negative, holes were injected into the film making it more metallic and screening the electric field; (ii) when the voltage was positive, the film was depleted of holes becoming more insulating, the electric field extended throughout the film, the partial surface monolayer became disordered, and planar oxygen atoms were displaced towards the sample surface; (iii) the changes in surface disorder and the oxygen displacements were both reversed when a negative voltage was applied; and (iv) the c-axis lattice constant of the film did not change in spite of the displacement of planar oxygen atoms.« less

  16. Oxygen Displacement in Cuprates under Ionic Liquid Field-Effect Gating

    NASA Astrophysics Data System (ADS)

    Dubuis, Guy; Yacoby, Yizhak; Zhou, Hua; He, Xi; Bollinger, Anthony T.; Pavuna, Davor; Pindak, Ron; Božović, Ivan

    2016-08-01

    We studied structural changes in a 5 unit cell thick La1.96Sr0.04CuO4 film, epitaxially grown on a LaSrAlO4 substrate with a single unit cell buffer layer, when ultra-high electric fields were induced in the film by applying a gate voltage between the film (ground) and an ionic liquid in contact with it. Measuring the diffraction intensity along the substrate-defined Bragg rods and analyzing the results using a phase retrieval method we obtained the three-dimensional electron density in the film, buffer layer, and topmost atomic layers of the substrate under different applied gate voltages. The main structural observations were: (i) there were no structural changes when the voltage was negative, holes were injected into the film making it more metallic and screening the electric field; (ii) when the voltage was positive, the film was depleted of holes becoming more insulating, the electric field extended throughout the film, the partial surface monolayer became disordered, and equatorial oxygen atoms were displaced towards the surface; (iii) the changes in surface disorder and the oxygen displacements were both reversed when a negative voltage was applied; and (iv) the c-axis lattice constant of the film did not change in spite of the displacement of equatorial oxygen atoms.

  17. Oxygen Displacement in Cuprates under Ionic Liquid Field-Effect Gating

    PubMed Central

    Dubuis, Guy; Yacoby, Yizhak; Zhou, Hua; He, Xi; Bollinger, Anthony T.; Pavuna, Davor; Pindak, Ron; Božović, Ivan

    2016-01-01

    We studied structural changes in a 5 unit cell thick La1.96Sr0.04CuO4 film, epitaxially grown on a LaSrAlO4 substrate with a single unit cell buffer layer, when ultra-high electric fields were induced in the film by applying a gate voltage between the film (ground) and an ionic liquid in contact with it. Measuring the diffraction intensity along the substrate-defined Bragg rods and analyzing the results using a phase retrieval method we obtained the three-dimensional electron density in the film, buffer layer, and topmost atomic layers of the substrate under different applied gate voltages. The main structural observations were: (i) there were no structural changes when the voltage was negative, holes were injected into the film making it more metallic and screening the electric field; (ii) when the voltage was positive, the film was depleted of holes becoming more insulating, the electric field extended throughout the film, the partial surface monolayer became disordered, and equatorial oxygen atoms were displaced towards the surface; (iii) the changes in surface disorder and the oxygen displacements were both reversed when a negative voltage was applied; and (iv) the c-axis lattice constant of the film did not change in spite of the displacement of equatorial oxygen atoms. PMID:27578237

  18. Quantum Electrodynamics of Atomic Resonances

    NASA Astrophysics Data System (ADS)

    Ballesteros, Miguel; Faupin, Jérémy; Fröhlich, Jürg; Schubnel, Baptiste

    2015-07-01

    A simple model of an atom interacting with the quantized electromagnetic field is studied. The atom has a finite mass m, finitely many excited states and an electric dipole moment, , where and is proportional to the elementary electric charge. The interaction of the atom with the radiation field is described with the help of the Ritz Hamiltonian, , where is the electric field, cut off at large frequencies. A mathematical study of the Lamb shift, the decay channels and the life times of the excited states of the atom is presented. It is rigorously proven that these quantities are analytic functions of the momentum of the atom and of the coupling constant , provided and and are sufficiently small. The proof relies on a somewhat novel inductive construction involving a sequence of `smooth Feshbach-Schur maps' applied to a complex dilatation of the original Hamiltonian, which yields an algorithm for the calculation of resonance energies that converges super-exponentially fast.

  19. Transferable aspherical atom model refinement of protein and DNA structures against ultrahigh-resolution X-ray data.

    PubMed

    Malinska, Maura; Dauter, Zbigniew

    2016-06-01

    In contrast to the independent-atom model (IAM), in which all atoms are assumed to be spherical and neutral, the transferable aspherical atom model (TAAM) takes into account the deformed valence charge density resulting from chemical bond formation and the presence of lone electron pairs. Both models can be used to refine small and large molecules, e.g. proteins and nucleic acids, against ultrahigh-resolution X-ray diffraction data. The University at Buffalo theoretical databank of aspherical pseudo-atoms has been used in the refinement of an oligopeptide, of Z-DNA hexamer and dodecamer duplexes, and of bovine trypsin. The application of the TAAM to these data improves the quality of the electron-density maps and the visibility of H atoms. It also lowers the conventional R factors and improves the atomic displacement parameters and the results of the Hirshfeld rigid-bond test. An additional advantage is that the transferred charge density allows the estimation of Coulombic interaction energy and electrostatic potential.

  20. Displacement Damage in Bipolar Linear Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Rax, B. G.; Johnston, A. H.; Miyahira, T.

    2000-01-01

    Although many different processes can be used to manufacture linear integrated circuits, the process that is used for most circuits is optimized for high voltage -- a total power supply voltage of about 40 V -- and low cost. This process, which has changed little during the last twenty years, uses lateral and substrate p-n-p transistors. These p-n-p transistors have very wide base regions, increasing their sensitivity to displacement damage from electrons and protons. Although displacement damage effects can be easily treated for individual transistors, the net effect on linear circuits can be far more complex because circuit operation often depends on the interaction of several internal transistors. Note also that some circuits are made with more advanced processes with much narrower base widths. Devices fabricated with these newer processes are not expected to be significantly affected by displacement damage for proton fluences below 1 x 10(exp 12) p/sq cm. This paper discusses displacement damage in linear integrated circuits with more complex failure modes than those exhibited by simpler devices, such as the LM111 comparator, where the dominant response mode is gain degradation of the input transistor. Some circuits fail catastrophically at much lower equivalent total dose levels compared to tests with gamma rays. The device works satisfactorily up to nearly 1 Mrad(Si) when it is irradiated with gamma rays, but fails catastrophically between 50 and 70 krad(Si) when it is irradiated with protons.

  1. Ko Displacement Theory for Structural Shape Predictions

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    2010-01-01

    The development of the Ko displacement theory for predictions of structure deformed shapes was motivated in 2003 by the Helios flying wing, which had a 247-ft (75-m) wing span with wingtip deflections reaching 40 ft (12 m). The Helios flying wing failed in midair in June 2003, creating the need to develop new technology to predict in-flight deformed shapes of unmanned aircraft wings for visual display before the ground-based pilots. Any types of strain sensors installed on a structure can only sense the surface strains, but are incapable to sense the overall deformed shapes of structures. After the invention of the Ko displacement theory, predictions of structure deformed shapes could be achieved by feeding the measured surface strains into the Ko displacement transfer functions for the calculations of out-of-plane deflections and cross sectional rotations at multiple locations for mapping out overall deformed shapes of the structures. The new Ko displacement theory combined with a strain-sensing system thus created a revolutionary new structure- shape-sensing technology.

  2. RECOVERY OF METAL USING ALUMINUM DISPLACEMENT

    EPA Science Inventory

    The removal of typical metals (Cu, Pb, Sn, Ni) from printed circuit and metal finishing waste streams was evaluated using displacement with aluminum. he metal is recovered as non-hazardous metal particles and can be recycled by smelting. n acceptable aluminum metal configuration ...

  3. Opening Doors for the Displaced Worker.

    ERIC Educational Resources Information Center

    Moore, Martha Norris

    2000-01-01

    Describes the many benefits now available to laid-off and displaced textile and apparel-related workers through the North American Free Trade Agreement's Transitional Adjustment Allowance (NAFTA-TAA), which allows them to attend college for the first time. Examines the effectiveness of the TAA program and concludes that there is room for…

  4. Retraining Displaced Workers--Barriers and Facilitators.

    ERIC Educational Resources Information Center

    Wolansky, William D.

    Although plant closings and layoffs have been happening for a long time, today's recessions, major changes in the structure of the economy, and a tight job market have combined to make plant closings a more serious problem. Workers are faced with unemployment from both traditional labor-displacing changes, such as the increasing use of robotics;…

  5. Job Displacement and the Rural Worker.

    ERIC Educational Resources Information Center

    Podgursky, Michael

    High rates of unemployment in rural areas poses questions as what education can do with the problem. This report examines the effects of rural American economies as they grow away from agriculture and toward dependence on manufacturing and service industries. Using data from the federal Bureau of Labor Statistics' Displaced Worker Survey, the…

  6. Positive displacement cylinder measures corrosive liquid volume

    NASA Technical Reports Server (NTRS)

    Mariman, R. A.; Vendl, C. J.

    1966-01-01

    Positive displacement cylinder accurately measures volumetric flow rates of corrosive liquids. The cylinder is compatible with corrosive liquids and handles flow rates from zero to 75 gpm at pressures to 900 psig with an accuracy of 0.25 per cent.

  7. Effect of aileron displacement on wing characteristics

    NASA Technical Reports Server (NTRS)

    Heald, R H

    1933-01-01

    The effect of aileron displacement on wing characteristics has been investigated for the Clark Y and the U.S.A. 27 wing sections equipped with rectangular ailerons. The airfoils, rectangular in plan, and having a 10 inch chord and 60 inch span, were mounted on a model fuselage.

  8. A Personal Appearance Program for Displaced Homemakers.

    ERIC Educational Resources Information Center

    Fiore, Ann Marie; De Long, Marilyn Revell

    1990-01-01

    A career counseling program evaluated the self-esteem of 28 displaced homemakers, then presented 3 sessions on the importance of personal appearance in hiring practices, wardrobe management, nonverbal communication, professional image, and self-concept. Analysis of participant evaluations indicated improved levels of control and confidence and…

  9. The Income Losses of Displaced Workers

    ERIC Educational Resources Information Center

    Hijzen, Alexander; Upward, Richard; Wright, Peter W.

    2010-01-01

    We use a new, matched worker-firm dataset for the United Kingdom to estimate the income loss resulting from firm closure and mass layoffs. We track workers for up to nine years after the displacement event, and the availability of predisplacement characteristics allows us to implement difference-in-differences estimators using propensity score…

  10. Atom Skimmers and Atom Lasers Utilizing Them

    NASA Technical Reports Server (NTRS)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  11. Chiral atomically thin films.

    PubMed

    Kim, Cheol-Joo; Sánchez-Castillo, A; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong

    2016-06-01

    Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm(-1)) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra.

  12. Chiral atomically thin films

    NASA Astrophysics Data System (ADS)

    Kim, Cheol-Joo; Sánchez-Castillo, A.; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong

    2016-06-01

    Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm-1) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra.

  13. Inversion of coeval shear and normal stress of Piton de la Fournaise flank displacement

    NASA Astrophysics Data System (ADS)

    Tridon, Marine; Cayol, Valérie; Froger, Jean-Luc; Augier, Aurélien; Bachèlery, Patrick

    2016-11-01

    The April 2007 eruption of Piton de la Fournaise was the biggest volcano eruptive crisis of the 20th and 21st centuries. Interferometric synthetic aperture radar (InSAR) captured a large coeruptive seaward displacement on the volcano's eastern flank, which continued for more than a year at a decreasing rate. Coeruptive uplift and posteruptive subsidence were also observed. While it is generally agreed that flank displacement is induced by fault slip, we suggest that this flank displacement might have been induced by a sheared sill, based on observations of sheared sills at Piton des Neiges. To test this hypothesis, we develop a new method to invert a quadrangular curved source submitted to simultaneous pressure and shear stress changes. This method, based on boundary elements, is applied to data acquired along six Envisat orbits covering a 14 month period subsequent to the April 2007 eruption. Posteruptive displacement is well explained by closure and slip of a large (5 km by 8 km) and shallow (500 m) trapezoidal fracture parallel to the flank and probably coincident with a lithological discontinuity. We investigate whether thermal contraction or degassing of a coeruptive sill can explain the displacement. Such a sill would have to be 10 times thicker than inferred from the coeruptive uplift and solidification time 10 times shorter ( 20 days) than the duration of the posteruptive subsidence (24 to 33 months). Instead, we propose that the posteruptive eastern flank displacement is due to the compaction and ongoing slow slip on a shallow detachment fault.

  14. Atomic structure of the sweet-tasting protein thaumatin I at pH 8.0 reveals the large disulfide-rich region in domain II to be sensitive to a pH change

    SciTech Connect

    Masuda, Tetsuya; Ohta, Keisuke; Mikami, Bunzo; Kitabatake, Naofumi; Tani, Fumito

    2012-03-02

    Highlights: Black-Right-Pointing-Pointer Structure of a recombinant thaumatin at pH 8.0 determined at a resolution of 1.0 A. Black-Right-Pointing-Pointer Substantial fluctuations of a loop in domain II was found in the structure at pH 8.0. Black-Right-Pointing-Pointer B-factors for Lys137, Lys163, and Lys187 were significantly affected by pH change. Black-Right-Pointing-Pointer An increase in mobility might play an important role in the heat-induced aggregation. -- Abstract: Thaumatin, an intensely sweet-tasting plant protein, elicits a sweet taste at 50 nM. Although the sweetness remains when thaumatin is heated at 80 Degree-Sign C for 4 h under acid conditions, it rapidly declines when heating at a pH above 6.5. To clarify the structural difference at high pH, the atomic structure of a recombinant thaumatin I at pH 8.0 was determined at a resolution of 1.0 A. Comparison to the crystal structure of thaumatin at pH 7.3 and 7.0 revealed the root-mean square deviation value of a C{alpha} atom to be substantially greater in the large disulfide-rich region of domain II, especially residues 154-164, suggesting that a loop region in domain II to be affected by solvent conditions. Furthermore, B-factors of Lys137, Lys163, and Lys187 were significantly affected by pH change, suggesting that a striking increase in the mobility of these lysine residues, which could facilitate a reaction with a free sulfhydryl residue produced via the {beta}-elimination of disulfide bonds by heating at a pH above 7.0. The increase in mobility of lysine residues as well as a loop region in domain II might play an important role in the heat-induced aggregation of thaumatin above pH 7.0.

  15. Magnetic measurements with atomic-plane resolution

    PubMed Central

    Rusz, Ján; Muto, Shunsuke; Spiegelberg, Jakob; Adam, Roman; Tatsumi, Kazuyoshi; Bürgler, Daniel E.; Oppeneer, Peter M.; Schneider, Claus M.

    2016-01-01

    Rapid development of magnetic nanotechnologies calls for experimental techniques capable of providing magnetic information with subnanometre spatial resolution. Available probes of magnetism either detect only surface properties, such as spin-polarized scanning tunnelling microscopy, magnetic force microscopy or spin-polarized low-energy electron microscopy, or they are bulk probes with limited spatial resolution or quantitativeness, such as X-ray magnetic circular dichroism or classical electron magnetic circular dichroism (EMCD). Atomic resolution EMCD methods have been proposed, although not yet experimentally realized. Here, we demonstrate an EMCD technique with an atomic size electron probe utilizing a probe-corrected scanning transmission electron microscope in its standard operation mode. The crucial element of the method is a ramp in the phase of the electron beam wavefunction, introduced by a controlled beam displacement. We detect EMCD signals with atomic-plane resolution, thereby bringing near-atomic resolution magnetic circular dichroism spectroscopy to hundreds of laboratories worldwide. PMID:27578421

  16. Magnetic measurements with atomic-plane resolution

    NASA Astrophysics Data System (ADS)

    Rusz, Ján; Muto, Shunsuke; Spiegelberg, Jakob; Adam, Roman; Tatsumi, Kazuyoshi; Bürgler, Daniel E.; Oppeneer, Peter M.; Schneider, Claus M.

    2016-08-01

    Rapid development of magnetic nanotechnologies calls for experimental techniques capable of providing magnetic information with subnanometre spatial resolution. Available probes of magnetism either detect only surface properties, such as spin-polarized scanning tunnelling microscopy, magnetic force microscopy or spin-polarized low-energy electron microscopy, or they are bulk probes with limited spatial resolution or quantitativeness, such as X-ray magnetic circular dichroism or classical electron magnetic circular dichroism (EMCD). Atomic resolution EMCD methods have been proposed, although not yet experimentally realized. Here, we demonstrate an EMCD technique with an atomic size electron probe utilizing a probe-corrected scanning transmission electron microscope in its standard operation mode. The crucial element of the method is a ramp in the phase of the electron beam wavefunction, introduced by a controlled beam displacement. We detect EMCD signals with atomic-plane resolution, thereby bringing near-atomic resolution magnetic circular dichroism spectroscopy to hundreds of laboratories worldwide.

  17. Small Displacement Coupled Analysis of Concrete Gravity Dam Foundations: Static and Dynamic Conditions

    NASA Astrophysics Data System (ADS)

    Farinha, Maria Luísa Braga; Azevedo, Nuno Monteiro; Candeias, Mariline

    2017-02-01

    The explicit formulation of a small displacement model for the coupled hydro-mechanical analysis of concrete gravity dam foundations based on joint finite elements is presented. The proposed coupled model requires a thorough pre-processing stage in order to ensure that the interaction between the various blocks which represent both the rock mass foundation and the dam is always edge to edge. The mechanical part of the model, though limited to small displacements, has the advantage of allowing an accurate representation of the stress distribution along the interfaces, such as rock mass joints. The hydraulic part and the mechanical part of the model are fully compatible. The coupled model is validated using a real case of a dam in operation, by comparison of the results with those obtained with a large displacement discrete model. It is shown that it is possible to assess the sliding stability of concrete gravity dams using small displacement models under both static and dynamic conditions.

  18. Application of dynamic displacement current for diagnostics of subnanosecond breakdowns in an inhomogeneous electric field

    NASA Astrophysics Data System (ADS)

    Shao, Tao; Tarasenko, Victor F.; Zhang, Cheng; Burachenko, Alexandr G.; Rybka, Dmitry V.; Kostyrya, Igor'D.; Lomaev, Mikhail I.; Baksht, Evgeni Kh.; Yan, Ping

    2013-05-01

    The breakdown of different air gaps at high overvoltages in an inhomogeneous electric field was investigated with a time resolution of up to 100 ps. Dynamic displacement current was used for diagnostics of ionization processes between the ionization wave front and a plane anode. It is demonstrated that during the generation of a supershort avalanche electron beam (SAEB) with amplitudes of ˜10 A and more, conductivity in the air gaps at the breakdown stage is ensured by the ionization wave, whose front propagates from the electrode of small curvature radius, and by the dynamic displacement current between the ionization wave front and the plane electrode. The amplitude of the dynamic displacement current measured by a current shunt is 100 times greater than the SAEB. It is shown that with small gaps and with a large cathode diameter, the amplitude of the dynamic displacement current during a subnanosecond rise time of applied pulse voltage can be higher than 4 kA.

  19. FPGA-based smart sensor for online displacement measurements using a heterodyne interferometer.

    PubMed

    Vera-Salas, Luis Alberto; Moreno-Tapia, Sandra Veronica; Garcia-Perez, Arturo; de Jesus Romero-Troncoso, Rene; Osornio-Rios, Roque Alfredo; Serroukh, Ibrahim; Cabal-Yepez, Eduardo

    2011-01-01

    The measurement of small displacements on the nanometric scale demands metrological systems of high accuracy and precision. In this context, interferometer-based displacement measurements have become the main tools used for traceable dimensional metrology. The different industrial applications in which small displacement measurements are employed requires the use of online measurements, high speed processes, open architecture control systems, as well as good adaptability to specific process conditions. The main contribution of this work is the development of a smart sensor for large displacement measurement based on phase measurement which achieves high accuracy and resolution, designed to be used with a commercial heterodyne interferometer. The system is based on a low-cost Field Programmable Gate Array (FPGA) allowing the integration of several functions in a single portable device. This system is optimal for high speed applications where online measurement is needed and the reconfigurability feature allows the addition of different modules for error compensation, as might be required by a specific application.

  20. Effect of Body Mass Index on Intrafraction Prostate Displacement Monitored by Real-Time Electromagnetic Tracking

    SciTech Connect

    Butler, Wayne M.; Morris, Mallory N.; Merrick, Gregory S.; Kurko, Brian S.; Murray, Brian C.

    2012-10-01

    Purpose: To evaluate, using real-time monitoring of implanted radiofrequency transponders, the intrafraction prostate displacement of patients as a function of body mass index (BMI). Methods and Materials: The motions of Beacon radiofrequency transponders (Calypso Medical Technologies, Seattle, WA) implanted in the prostate glands of 66 men were monitored throughout the course of intensity modulated radiation therapy. Data were acquired at 10 Hz from setup to the end of treatment, but only the 1.7 million data points with a 'beam on' tag were used in the analysis. There were 21 obese patients, with BMI {>=}30 and 45 nonobese patients in the study. Results: Mean displacements were least in the left-right lateral direction (0.56 {+-} 0.24 mm) and approximately twice that magnitude in the superior-inferior and anterior-posterior directions. The net vector displacement was larger still, 1.95 {+-} 0.47 mm. Stratified by BMI cohort, the mean displacements per patient in the 3 Cartesian axes as well as the net vector for patients with BMI {>=}30 were slightly less (<0.2 mm) but not significantly different than the corresponding values for patients with lower BMIs. As a surrogate for the magnitude of oscillatory noise, the standard deviation for displacements in all measured planes showed no significant differences in the prostate positional variability between the lower and higher BMI groups. Histograms of prostate displacements showed a lower frequency of large displacements in obese patients, and there were no significant differences in short-term and long-term velocity distributions. Conclusions: After patients were positioned accurately using implanted radiofrequency transponders, the intrafractional displacements in the lateral, superior-inferior, and anterior-posterior directions as well as the net vector displacements were smaller, but not significantly so, for obese men than for those with lower BMI.

  1. Environmental and project displacement of population in India. Part I: Development and deracination.

    PubMed

    Maloney, C

    1991-01-01

    Official development projects in India have displaced at least 20 million persons since Indian independence in 1947, and the majority have not been relocated in planned resettlement. India is in a race to implement development projects needed to support the growth of its population, which increased from 361 million in 1951 to 840 million in 1990. Through the 1960s and 1970s about 1/4 of these oustees were minimally resettled and the rest had to find their own way to get reestablished. There is no international consensus on the rights of internally displaced persons, but most countries compensate people. Agricultural labor and construction labor are the most common types of work of the landless oustees. 1,589 large dams built since independence ousted the largest number of people. Dams, reservoirs, and canals displaced 11,000,000 people; 2,750,000 were rehabilitated and 8,250,000 found their own way. Mines displaced 1,700,000; 450,000 were rehabilitated and 1,250,000 found their own way. Industries displaced 1,000,000; 300,000 were rehabilitated and 700,000 found their own way. Parks and sanctuaries displaced 600,000; 150,000 were rehabilitated and 450,000 relocated on their own. Other projects displacing people are forest preserves, wildlife sanctuaries, military installations, weapons testing grounds, nuclear installations, and railroads and roads. The World Bank requires compensation for people displaced by 12 dam projects it is funding in India: the underestimated count is 610,500 persons. The Pong Dam, a 130 m high gravel dam, under the western Himalayas ousted 30,330 families, about 167,000 people, but only 16,001 families were found eligible for compensation. The Subarnarekha Project in southern Bihar is displacing 10,000 families, about 55,000 people. The state government estimates that 35% of these will not settle in suggested relocation sites because land is not available.

  2. The use of a displacement device negatively affects the performance of dogs (Canis familiaris) in visible object displacement tasks

    PubMed Central

    Müller, Corsin A.; Riemer, Stefanie; Range, Friederike; Huber, Ludwig

    2014-01-01

    Visible and invisible displacement tasks have been used widely for comparative studies of animals’ understanding of object permanence, with evidence accumulating that some species can solve invisible displacement tasks and thus reach Piagetian stage 6 of object permanence. In contrast, dogs appear to rely on associative cues, such as the location of the displacement device, during invisible displacement tasks. It remains unclear, however, whether dogs, and other species that failed in invisible displacement tasks, do so due to their inability to form a mental representation of the target object, or simply due to the involvement of a more salient but potentially misleading associative cue, the displacement device. Here we show that the use of a displacement device impairs the performance of dogs also in visible displacement tasks: their search accuracy was significantly lower when a visible displacement was performed with a displacement device, and only two of initially 42 dogs passed the sham-baiting control conditions. The negative influence of the displacement device in visible displacement tasks may be explained by strong associative cues overriding explicit information about the target object’s location, reminiscent of an overshadowing effect, and/or object individuation errors as the target object is placed within the displacement device and moves along a spatiotemporally identical trajectory. Our data suggest that a comprehensive appraisal of a species’ performance in object permanence tasks should include visible displacement tasks with the same displacement device used in invisible displacements, which typically has not been done in the past. PMID:24611641

  3. Atomic-scale visualization of inertial dynamics.

    PubMed

    Lindenberg, A M; Larsson, J; Sokolowski-Tinten, K; Gaffney, K J; Blome, C; Synnergren, O; Sheppard, J; Caleman, C; Macphee, A G; Weinstein, D; Lowney, D P; Allison, T K; Matthews, T; Falcone, R W; Cavalieri, A L; Fritz, D M; Lee, S H; Bucksbaum, P H; Reis, D A; Rudati, J; Fuoss, P H; Kao, C C; Siddons, D P; Pahl, R; Als-Nielsen, J; Duesterer, S; Ischebeck, R; Schlarb, H; Schulte-Schrepping, H; Tschentscher, Th; Schneider, J; von der Linde, D; Hignette, O; Sette, F; Chapman, H N; Lee, R W; Hansen, T N; Techert, S; Wark, J S; Bergh, M; Huldt, G; van der Spoel, D; Timneanu, N; Hajdu, J; Akre, R A; Bong, E; Krejcik, P; Arthur, J; Brennan, S; Luening, K; Hastings, J B

    2005-04-15

    The motion of atoms on interatomic potential energy surfaces is fundamental to the dynamics of liquids and solids. An accelerator-based source of femtosecond x-ray pulses allowed us to follow directly atomic displacements on an optically modified energy landscape, leading eventually to the transition from crystalline solid to disordered liquid. We show that, to first order in time, the dynamics are inertial, and we place constraints on the shape and curvature of the transition-state potential energy surface. Our measurements point toward analogies between this nonequilibrium phase transition and the short-time dynamics intrinsic to equilibrium liquids.

  4. Forced and free displacement characterization of ionic polymer transducers

    NASA Astrophysics Data System (ADS)

    Akle, Barbar J.; Duncan, Andrew; Akle, Etienne; Wallmersperger, Thomas; Leo, Donald J.

    2009-03-01

    Ionic polymer transducers (IPT), sometimes referred to as artificial muscles, are known to generate a large bending strain and a moderate stress at low applied voltages (<5V). Recently Akle and Leo[1] reported extensional actuation in ionic polymer transducers. In this study, extensional IPTs are characterized under forced and free displacement boundary condition as a function of transducer architecture. The electrode thickness is varied from 10 μm up to 40 μm while three extensional actuators with Lithium, Cesium, and tetraethylammonium (TEA) mobile cations are characterized. Three fixtures are built in order to characterize the extensional actuation response. The first fixture measures the free displacement of an IPT sample sandwiched between two aluminum plates glued using the electrically conductive silver paste. In the second fixture a spring is compressed against the test sample with variable amounts to generate different levels of pre-stress and prevents the bending of the IPT. In the third fixture dead weights are placed on top of the sample in order to prevent bending. In the spring loaded fixture a thermocouple is placed in the proximity of the actuator and temperature is measured. The different transducers are characterized using a step voltage input and an alternating current (AC) sine wave input. The step input resulted in a logarithmic rise like displacement curve, while the low frequency (<0.1 Hz) AC excitation generated a sine wave displacement response with a strong first harmonic. The high frequency AC excitation generated a response similar to that of the step input. Comparing the measured temperature for step and AC response demonstrated that the sample is heating up when exited with a high frequency signal; which is leading to the expansion of the sample. Initial experimental results demonstrate a strong correlation between electrode architecture and the peak strain response. Strains on the order of 2% are observed with air stable ionic

  5. Hybrid atom-membrane optomechanics

    NASA Astrophysics Data System (ADS)

    Treutlein, Philipp

    We have realized a hybrid mechanical system in which ultracold atoms and a micromechanical membrane are coupled by radiation pressure forces. The atoms are trapped in an optical lattice, formed by retro-reflection of a laser beam from an optical cavity that contains the membrane as mechanical element. When we laser cool the atoms, we observe that the membrane is sympathetically cooled from ambient to millikelvin temperatures through its interaction with the atoms. Sympathetic cooling with ultracold atoms or ions has previously been used to cool other microscopic systems such as atoms of a different species or molecular ions up to the size of proteins. Here we use it to efficiently cool the fundamental vibrational mode of a macroscopic solid-state system, whose mass exceeds that of the atomic ensemble by ten orders of magnitude. Our hybrid system operates in a regime of large atom-membrane cooperativity. With technical improvements such as cryogenic pre-cooling of the membrane, it enables ground-state cooling and quantum control of mechanical oscillators in a regime where purely optomechanical techniques cannot reach the ground state. References: A. Jöckel, A. Faber, T. Kampschulte, M. Korppi, M. T. Rakher, and P. Treutlein, Sympathetic cooling of a membrane oscillator in a hybrid mechanical-atomic system, Nature Nanotechnology 10, 55 (2015). B. Vogell, T. Kampschulte, M. T. Rakher, A. Faber, P. Treutlein, K. Hammerer, and P. Zoller, Long distance coupling of a quantum mechanical oscillator to the internal states of an atomic ensemble, New J. Phys. 17, 043044 (2015). B. Vogell, K. Stannigel, P. Zoller, K. Hammerer, M. T. Rakher, M. Korppi, A. Jöckel, and P. Treutlein, Cavity-enhanced long-distance coupling of an atomic ensemble to a micromechanical membrane, Phys. Rev. A 87, 023816 (2013).

  6. High Atom Number in Microsized Atom Traps

    DTIC Science & Technology

    2015-12-14

    cooling of some atoms in atomic beam. We have reconfigured the apparatus for applying bichromatic forces transverse to the atomic beam, as it will be...apparatus for applying bichromatic forces transverse to the atomic beam, as it will be easier to extend this to two dimensions. Research to develop

  7. Systematic Effects in Atomic Fountain Clocks

    NASA Astrophysics Data System (ADS)

    Gibble, Kurt

    2016-06-01

    We describe recent advances in the accuracies of atomic fountain clocks. New rigorous treatments of the previously large systematic uncertainties, distributed cavity phase, microwave lensing, and background gas collisions, enabled these advances. We also discuss background gas collisions of optical lattice and ion clocks and derive the smooth transition of the microwave lensing frequency shift to photon recoil shifts for large atomic wave packets.

  8. Atomic magnetometer

    DOEpatents

    Schwindt, Peter [Albuquerque, NM; Johnson, Cort N [Albuquerque, NM

    2012-07-03

    An atomic magnetometer is disclosed which uses a pump light beam at a D1 or D2 transition of an alkali metal vapor to magnetically polarize the vapor in a heated cell, and a probe light beam at a different D2 or D1 transition to sense the magnetic field via a polarization rotation of the probe light beam. The pump and probe light beams are both directed along substantially the same optical path through an optical waveplate and through the heated cell to an optical filter which blocks the pump light beam while transmitting the probe light beam to one or more photodetectors which generate electrical signals to sense the magnetic field. The optical waveplate functions as a quarter waveplate to circularly polarize the pump light beam, and as a half waveplate to maintain the probe light beam linearly polarized.

  9. Scaling up digital circuit computation with DNA strand displacement cascades.

    PubMed

    Qian, Lulu; Winfree, Erik

    2011-06-03

    To construct sophisticated biochemical circuits from scratch, one needs to understand how simple the building blocks can be and how robustly such circuits can scale up. Using a simple DNA reaction mechanism based on a reversible strand displacement process, we experimentally demonstrated several digital logic circuits, culminating in a four-bit square-root circuit that comprises 130 DNA strands. These multilayer circuits include thresholding and catalysis within every logical operation to perform digital signal restoration, which enables fast and reliable function in large circuits with roughly constant switching time and linear signal propagation delays. The design naturally incorporates other crucial elements for large-scale circuitry, such as general debugging tools, parallel circuit preparation, and an abstraction hierarchy supported by an automated circuit compiler.

  10. Character displacement of Cercopithecini primate visual signals

    PubMed Central

    Allen, William L.; Stevens, Martin; Higham, James P.

    2014-01-01

    Animal visual signals have the potential to act as an isolating barrier to prevent interbreeding of populations through a role in species recognition. Within communities of competing species, species recognition signals are predicted to undergo character displacement, becoming more visually distinctive from each other, however this pattern has rarely been identified. Using computational face recognition algorithms to model primate face processing, we demonstrate that the face patterns of guenons (tribe: Cercopithecini) have evolved under selection to become more visually distinctive from those of other guenon species with whom they are sympatric. The relationship between the appearances of sympatric species suggests that distinguishing conspecifics from other guenon species has been a major driver of diversification in guenon face appearance. Visual signals that have undergone character displacement may have had an important role in the tribe’s radiation, keeping populations that became geographically separated reproductively isolated on secondary contact. PMID:24967517

  11. Wirelessly Interrogated Position or Displacement Sensors

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor, Bryant D.

    2007-01-01

    Two simple position or displacement sensors based on inductance-capacitance resonant circuits have been conceived. These sensors are both powered and interrogated without use of wires and without making contact with other objects. Instead, excitation and interrogation are accomplished by means of a magnetic-field-response recorder. Both of the present position or displacement sensors consist essentially of variable rectangular parallel-plate capacitors electrically connected in series with fixed inductors. Simple inductance-capacitance circuits of the type used in these sensors are inherently robust; their basic mode of operation does not depend on maintenance of specific environmental conditions. Hence, these sensors can be used under such harsh conditions as cryogenic temperatures, high pressures, and radioactivity.

  12. Charge-displacement analysis for excited states

    SciTech Connect

    Ronca, Enrico Tarantelli, Francesco; Pastore, Mariachiara Belpassi, Leonardo; De Angelis, Filippo; Angeli, Celestino; Cimiraglia, Renzo

    2014-02-07

    We extend the Charge-Displacement (CD) analysis, already successfully employed to describe the nature of intermolecular interactions [L. Belpassi et al., J. Am. Chem. Soc. 132, 13046 (2010)] and various types of controversial chemical bonds [L. Belpassi et al., J. Am. Chem. Soc. 130, 1048 (2008); N. Salvi et al., Chem. Eur. J. 16, 7231 (2010)], to study the charge fluxes accompanying electron excitations, and in particular the all-important charge-transfer (CT) phenomena. We demonstrate the usefulness of the new approach through applications to exemplary excitations in a series of molecules, encompassing various typical situations from valence, to Rydberg, to CT excitations. The CD functions defined along various spatial directions provide a detailed and insightful quantitative picture of the electron displacements taking place.

  13. Wireless Measurement of Rotation and Displacement Rate

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor, Bryant D.

    2007-01-01

    A magnetic field response sensor is designed to measure displacement or rotation rate without a physical connection to a power source, microprocessor, data acquisition equipment, or electrical circuitry. The sensor works with the magnetic field response recorder, which was described in Magnetic-Field-Response Measurement-Acquisition System, NASA Tech Briefs, Vol. 30, No. 6 (June 2006), page 28. These sensors are wirelessly powered and interrogated, and the measurement acquisition system and sensors are extremely lightweight.The response recorder uses oscillating magnetic fields to power the sensors. Once powered, the sensors respond with their own magnetic field. For displacement/ rotation measurements, the response recorder uses the sensor s response amplitude, which is dependent on the distance from the antenna. The recorder s antenna orientation and position are kept fixed, and the sampling period is constant.

  14. Wide-area scanner for high-speed atomic force microscopy.

    PubMed

    Watanabe, Hiroki; Uchihashi, Takayuki; Kobashi, Toshihide; Shibata, Mikihiro; Nishiyama, Jun; Yasuda, Ryohei; Ando, Toshio

    2013-05-01

    High-speed atomic force microscopy (HS-AFM) has recently been established. The dynamic processes and structural dynamics of protein molecules in action have been successfully visualized using HS-AFM. However, its maximum scan ranges in the X- and Y-directions have been limited to ~1 μm and ~4 μm, respectively, making it infeasible to observe the dynamics of much larger samples, including live cells. Here, we develop a wide-area scanner with a maximum XY scan range of ~46 × 46 μm(2) by magnifying the displacements of stack piezoelectric actuators using a leverage mechanism. Mechanical vibrations produced by fast displacement of the X-scanner are suppressed by a combination of feed-forward inverse compensation and the use of triangular scan signals with rounded vertices. As a result, the scan speed in the X-direction reaches 6.3 mm/s even for a scan size as large as ~40 μm. The nonlinearity of the X- and Y-piezoelectric actuators' displacements that arises from their hysteresis is eliminated by polynomial-approximation-based open-loop control. The interference between the X- and Y-scanners is also eliminated by the same technique. The usefulness of this wide-area scanner is demonstrated by video imaging of dynamic processes in live bacterial and eukaryotic cells.

  15. International Monetary Fund and aid displacement.

    PubMed

    Stuckler, David; Basu, Sanjay; McKee, Martin

    2011-01-01

    Several recent papers find evidence that global health aid is being diverted to reserves, education, military, or other sectors, and is displacing government spending. This is suggested to occur because ministers of finance have competing, possibly corrupt, priorities and deprive the health sector of resources. Studies have found that development assistance for health routed to governments has a negative impact on health spending and that similar assistance routed to private nongovernmental organizations has a positive impact. An alternative hypothesis is that World Bank and IMF macro-economic policies, which specifically advise governments to divert aid to reserves to cope with aid volatility and keep government spending low, could be causing the displacement of health aid. This article evaluates whether aid displacement was greater when countries undertook a new borrowing program from the IMF between 1996 and 2006. As found in existing studies, for each $1 of development assistance for health, about $0.37 is added to the health system. However, evaluating IMF-borrowing versus non-IMF-borrowing countries reveals that non-borrowers add about $0.45 whereas borrowers add less than $0.01 to the health system. On average, health system spending grew at about half the speed when countries were exposed to the IMF than when they were not. It is important to take account of the political economy of global health finance when interpreting data on financial flows.

  16. Character displacement and the origins of diversity

    PubMed Central

    Pfennig, David W.; Pfennig, Karin S.

    2012-01-01

    In The Origin of Species, Darwin proposed his ‘principle of divergence of character’ (a process now termed ‘character displacement’) to explain how new species arise and why they differ from one other phenotypically. Darwin maintained that the origin of species, and the evolution of differences between them, is ultimately caused by divergent selection acting to minimize competitive interactions between initially similar individuals, populations, and species. Here, we examine the empirical support for the various claims that constitute Darwin’s principle, specifically that: (1) competition promotes divergent trait evolution; (2) the strength of competitively mediated divergent selection increases with increasing phenotypic similarity between competitors; (3) divergence can occur within species; and (4) competitively mediated divergence can trigger speciation. We also explore aspects that Darwin failed to consider. In particular, we describe how: (1) divergence can arise from selection acting to lessen reproductive interactions; (2) divergence is fueled by the intersection of character displacement and sexual selection; and (3) phenotypic plasticity may play a key role in promoting character displacement. Generally, character displacement is well supported empirically, and it remains a vital explanation for how new species arise and diversify. PMID:21043778

  17. Simultaneous muscle force and displacement transducer

    NASA Technical Reports Server (NTRS)

    Feldstein, C.; Lewis, G. W.; Culler, V. H. (Inventor)

    1980-01-01

    A myocardial transducer for simultaneously measuring force and displacement within a very small area of myocardium is disclosed. The transducer comprised of an elongated body forked at one end to form an inverted Y shaped beam with each branch of the beam constituting a low compliant tine for penetrating the myocardium to a predetermined depth. Bonded to one of the low compliance tines is a small piezoresistive element for converting a force acting on the beam into an electrical signal. A third high compliant tine of the transducer, which measures displacement of the myocardium in a direction in line with the two low compliant tines, is of a length that just pierces the surface membrane. A small piezoresistive element is bonded to the third tine at its upper end where its bending is greatest. Displacement of the myocardium causes a deformation in curvature of the third tine, and the second small piezoresistive element bonded to the surface of its curved end converts its deformation into an electrical signal.

  18. Contactless sub-millimeter displacement measurements

    NASA Astrophysics Data System (ADS)

    Sliepen, Guus; Jägers, Aswin P. L.; Bettonvil, Felix C. M.; Hammerschlag, Robert H.

    2008-07-01

    Weather effects on foldable domes, as used at the DOT and GREGOR, are investigated, in particular the correlation between the wind field and the stresses caused to both metal framework and tent clothing. Camera systems measure contactless the displacement of several dome points. The stresses follow from the measured deformation pattern. The cameras placed near the dome floor do not disturb telescope operations. In the set-ups of DOT and GREGOR, these cameras are up to 8 meters away from the measured points and must be able to detect displacements of less than 0.1 mm. The cameras have a FireWire (IEEE1394) interface to eliminate the need for frame grabbers. Each camera captures 15 images of 640 × 480 pixels per second. All data is processed on-site in real-time. In order to get the best estimate for the displacement within the constraints of available processing power, all image processing is done in Fourier-space, with all convolution operations being pre-computed once. A sub-pixel estimate of the peak of the correlation function is made. This enables to process the images of four cameras using only one commodity PC with a dual-core processor, and achieve an effective sensitivity of up to 0.01 mm. The deformation measurements are well correlated to the simultaneous wind measurements. The results are of high interest to upscaling the dome design (ELTs and solar telescopes).

  19. Anterior condylar displacement: its diagnosis and treatment.

    PubMed

    Weinberg, L A

    1975-08-01

    A deflective slide in centric relation to centric occlusion does not necessarily mean anterior condylar displacement. Its diagnosis and treatment depend on the correlation of three factors: the direction and magnitude of the mandibular slide from centric relation to centric occlusion, the change in vertical dimension of occlusion during the slide, and the position of the condyles in the fossae when the teeth are in the maximum occlusion (centric occlusion). When the change in vertical dimension almost equals to amount of slide from the deflective contact in centric relation to maximum intercuspation, very little anterior condylar displacement would be expected. Conversely, with proportionately little change in vertical dimension, more anterior condylar translation is required for a given degree of anterior slide. Examples of each type of anterior slide were related to the TMJ radiographs of the condylar position. If the direction and magnitude of the deflective occlusal contact can be correlated with the TMJ radiographs, the centric relation is "functional,'' and the clinically retruded mandibular position should be used. When this correlation does not exist, the centric relation is "dysfunctional'' and the terminal hinge position (retruded mandibular position) should not be used for restorative or corrective procedures. Examples of anterior condylar displacement were given, including deviation, with a comparison of "before'' and "after'' TMJ radiographs.

  20. Character displacement promotes cooperation in bacterial biofilms.

    PubMed

    Brockhurst, Michael A; Hochberg, Michael E; Bell, Thomas; Buckling, Angus

    2006-10-24

    Resource competition within a group of cooperators is expected to decrease selection for cooperative behavior but can also result in diversifying selection for the use of different resources, which in turn could retard the breakdown of cooperation. Diverse groups are likely to be less susceptible to invasion by noncooperating social cheats: First, competition repression resulting from character displacement may provide less of a selective advantage to cheating; second, cheats may trade off the ability to exploit cooperators that specialize in one type of resource against cooperators that specialize in another ; third, diverse communities of any kind may have higher invasion resistance because there are fewer resources available for an invader to use . Furthermore, diverse groups are likely to be more productive than clonal groups if a wider range of total resources are being used . We addressed these issues by using the cooperative trait of biofilm formation in Pseudomonas fluorescens. Character displacement through resource competition evolved within biofilms; productivity increased with increasing character displacement, and diverse biofilms were less susceptible to invasion by cheats. These results demonstrate that diversification into different ecological niches can minimize selection against cooperation in the face of local resource competition.