Ab initio Potential Energy Surface for H-H2
NASA Technical Reports Server (NTRS)
Partridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene
1993-01-01
Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- (mu)E(sub h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(sub 0) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.
NASA Astrophysics Data System (ADS)
Förner, Wolfgang
1992-03-01
Ab initio investigations of the bond alternation in butadiene are presented. The atomic basis sets applied range from minimal to split valence plus polarization quality. With the latter one the Hartree-Fock limit for the bond alternation is reached. Correlation is considered on Møller-Plesset many-body perturbation theory of second order (MP2), linear coupled cluster doubles (L-CCD) and coupled cluster doubles (CCD) level. For the smaller basis sets it is shown that for the bond alternation π-π correlations are essential while the effects of σ-σ and σ-π correlations are, though large, nearly independent of bond alternation. On MP2 level the variation of σ-π correlation with bond alternation is surprisingly large. This is discussed as an artefact of MP2. Comparative Su-Schrieffer-Heeger (SSH) and Pariser-Parr-Pople (PPP) calculations show that these models in their usual parametrizations cannot reproduce the ab initio results.
Efficacy of the SU(3) scheme for ab initio large-scale calculations beyond the lightest nuclei
Dytrych, T.; Maris, P.; Launey, K. D.; ...
2016-06-22
We report on the computational characteristics of ab initio nuclear structure calculations in a symmetry-adapted no-core shell model (SA-NCSM) framework. We examine the computational complexity of the current implementation of the SA-NCSM approach, dubbed LSU3shell, by analyzing ab initio results for 6Li and 12C in large harmonic oscillator model spaces and SU3-selected subspaces. We demonstrate LSU3shell’s strong-scaling properties achieved with highly-parallel methods for computing the many-body matrix elements. Results compare favorably with complete model space calculations and significant memory savings are achieved in physically important applications. In particular, a well-chosen symmetry-adapted basis affords memory savings in calculations of states withmore » a fixed total angular momentum in large model spaces while exactly preserving translational invariance.« less
Efficacy of the SU(3) scheme for ab initio large-scale calculations beyond the lightest nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dytrych, T.; Maris, Pieter; Launey, K. D.
2016-06-09
We report on the computational characteristics of ab initio nuclear structure calculations in a symmetry-adapted no-core shell model (SA-NCSM) framework. We examine the computational complexity of the current implementation of the SA-NCSM approach, dubbed LSU3shell, by analyzing ab initio results for 6Li and 12C in large harmonic oscillator model spaces and SU(3)-selected subspaces. We demonstrate LSU3shell's strong-scaling properties achieved with highly-parallel methods for computing the many-body matrix elements. Results compare favorably with complete model space calculations and signi cant memory savings are achieved in physically important applications. In particular, a well-chosen symmetry-adapted basis a ords memory savings in calculations ofmore » states with a fixed total angular momentum in large model spaces while exactly preserving translational invariance.« less
Molecular Basis of 9G4 B Cell Autoreactivity in Human Systemic Lupus Erythematosus
Richardson, Christopher; Chida, Asiya Seema; Adlowitz, Diana; Silver, Lin; Fox, Erin; Jenks, Scott A.; Palmer, Elise; Wang, Youliang; Heimburg-Molinaro, Jamie; Li, Quan-Zhen; Mohan, Chandra; Cummings, Richard; Tipton, Christopher
2013-01-01
9G4+ IgG Abs expand in systemic lupus erythematosus (SLE) in a disease-specific fashion and react with different lupus Ags including B cell Ags and apoptotic cells. Their shared use of VH4-34 represents a unique system to understand the molecular basis of lupus autoreactivity. In this study, a large panel of recombinant 9G4+ mAbs from single naive and memory cells was generated and tested against B cells, apoptotic cells, and other Ags. Mutagenesis eliminated the framework-1 hydrophobic patch (HP) responsible for the 9G4 idiotype. The expression of the HP in unselected VH4-34 cells was assessed by deep sequencing. We found that 9G4 Abs recognize several Ags following two distinct structural patterns. B cell binding is dependent on the HP, whereas anti-nuclear Abs, apoptotic cells, and dsDNA binding are HP independent and correlate with positively charged H chain third CDR. The majority of mutated VH4-34 memory cells retain the HP, thereby suggesting selection by Ags that require this germline structure. Our findings show that the germline-encoded HP is compulsory for the anti–B cell reactivity largely associated with 9G4 Abs in SLE but is not required for reactivity against apoptotic cells, dsDNA, chromatin, anti-nuclear Abs, or cardiolipin. Given that the lupus memory compartment contains a majority of HP+ VH4-34 cells but decreased B cell reactivity, additional HP-dependent Ags must participate in the selection of this compartment. This study represents the first analysis, to our knowledge, of VH-restricted autoreactive B cells specifically expanded in SLE and provides the foundation to understand the antigenic forces at play in this disease. PMID:24108696
Ab Initio Potential Energy Surface for H-H2
NASA Technical Reports Server (NTRS)
Patridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene
1993-01-01
Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- 3 micro E(h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces (25-70 kcal/mol above the H-H2 asymptote) at small interatomic separations; the Boothroyd, Keogh, Martin, and Peterson (BKMP) potential energy surface is found to agree with results of the present calculations within the expected uncertainty (+/- 1 kcal/mol) of the fit. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(0)) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.
Ab initio study of the diatomic fluorides FeF, CoF, NiF, and CuF.
Koukounas, Constantine; Mavridis, Aristides
2008-11-06
The late-3d transition-metal diatomic fluorides MF = FeF, CoF, NiF, and CuF have been studied using variational multireference (MRCI) and coupled-cluster [RCCSD(T)] methods, combined with large to very large basis sets. We examined a total of 35 (2S+1)|Lambda| states, constructing as well 29 full potential energy curves through the MRCI method. All examined states are ionic, diabatically correlating to M(+)+F(-)((1)S). Notwithstanding the "eccentric" character of the 3d transition metals and the difficulties to accurately be described with all-electron ab initio methods, our results are, in general, in very good agreement with available experimental numbers.
Authorization basis requirements comparison report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brantley, W.M.
The TWRS Authorization Basis (AB) consists of a set of documents identified by TWRS management with the concurrence of DOE-RL. Upon implementation of the TWRS Basis for Interim Operation (BIO) and Technical Safety Requirements (TSRs), the AB list will be revised to include the BIO and TSRs. Some documents that currently form part of the AB will be removed from the list. This SD identifies each - requirement from those documents, and recommends a disposition for each to ensure that necessary requirements are retained when the AB is revised to incorporate the BIO and TSRs. This SD also identifies documentsmore » that will remain part of the AB after the BIO and TSRs are implemented. This document does not change the AB, but provides guidance for the preparation of change documentation.« less
NASA Astrophysics Data System (ADS)
Makhov, Dmitry V.; Symonds, Christopher; Fernandez-Alberti, Sebastian; Shalashilin, Dmitrii V.
2017-08-01
The Multiconfigurational Ehrenfest (MCE) method is a quantum dynamics technique which allows treatment of a large number of quantum nuclear degrees of freedom. This paper presents a review of MCE and its recent applications, providing a summary of the formalisms, including its ab initio direct dynamics versions and also giving a summary of recent results. Firstly, we describe the Multiconfigurational Ehrenfest version 2 (MCEv2) method and its applicability to direct dynamics and report new calculations which show that the approach converges to the exact result in model systems with tens of degrees of freedom. Secondly, we review previous ;on the fly; ab initio Multiple Cloning (AIMC-MCE) MCE dynamics results obtained for systems of a similar size, in which the calculations treat every electron and every nucleus of a polyatomic molecule on a fully quantum basis. We also review the Time Dependent Diabatic Basis (TDDB) version of the technique and give an example of its application. We summarise the details of the sampling techniques and interpolations used for calculation of the matrix elements, which make our approach efficient. Future directions of work are outlined.
Murase, Tomohiko; Eugenio, Luiz; Schorr, Melissa; Hussack, Greg; Tanha, Jamshid; Kitova, Elena N; Klassen, John S; Ng, Kenneth K S
2014-01-24
Clostridium difficile infection is a serious and highly prevalent nosocomial disease in which the two large, Rho-glucosylating toxins TcdA and TcdB are the main virulence factors. We report for the first time crystal structures revealing how neutralizing and non-neutralizing single-domain antibodies (sdAbs) recognize the receptor-binding domains (RBDs) of TcdA and TcdB. Surprisingly, the complexes formed by two neutralizing antibodies recognizing TcdA do not show direct interference with the previously identified carbohydrate-binding sites, suggesting that neutralization of toxin activity may be mediated by mechanisms distinct from steric blockage of receptor binding. A camelid sdAb complex also reveals the molecular structure of the TcdB RBD for the first time, facilitating the crystallization of a strongly negatively charged protein fragment that has resisted previous attempts at crystallization and structure determination. Electrospray ionization mass spectrometry measurements confirm the stoichiometries of sdAbs observed in the crystal structures. These studies indicate how key epitopes in the RBDs from TcdA and TcdB are recognized by sdAbs, providing molecular insights into toxin structure and function and providing for the first time a basis for the design of highly specific toxin-specific therapeutic and diagnostic agents.
Murase, Tomohiko; Eugenio, Luiz; Schorr, Melissa; Hussack, Greg; Tanha, Jamshid; Kitova, Elena N.; Klassen, John S.; Ng, Kenneth K. S.
2014-01-01
Clostridium difficile infection is a serious and highly prevalent nosocomial disease in which the two large, Rho-glucosylating toxins TcdA and TcdB are the main virulence factors. We report for the first time crystal structures revealing how neutralizing and non-neutralizing single-domain antibodies (sdAbs) recognize the receptor-binding domains (RBDs) of TcdA and TcdB. Surprisingly, the complexes formed by two neutralizing antibodies recognizing TcdA do not show direct interference with the previously identified carbohydrate-binding sites, suggesting that neutralization of toxin activity may be mediated by mechanisms distinct from steric blockage of receptor binding. A camelid sdAb complex also reveals the molecular structure of the TcdB RBD for the first time, facilitating the crystallization of a strongly negatively charged protein fragment that has resisted previous attempts at crystallization and structure determination. Electrospray ionization mass spectrometry measurements confirm the stoichiometries of sdAbs observed in the crystal structures. These studies indicate how key epitopes in the RBDs from TcdA and TcdB are recognized by sdAbs, providing molecular insights into toxin structure and function and providing for the first time a basis for the design of highly specific toxin-specific therapeutic and diagnostic agents. PMID:24311789
Li, Yumin; Francisco, Joseph S
2005-08-31
There is uncertainty in the mechanism for the hydrolysis of peroxyacetyl nitrate (PAN), and experimental attempts to detect products of the direct reaction have been unsuccessful. Ab initio calculations are used to examine the energetics of water-mediated decomposition of gas-phase PAN into acetic acid and peroxynitric acid. On the basis of ab initio calculations, an alternative reaction mechanism for the decomposition of PAN is proposed. The calculations indicate that the barrier for one water addition to PAN is large. However, including additional water molecules reveals a substantially lower energy route. The calculations suggest that the formation of PAN hydrate complexes are energetically favorable and stable. Additional waters are increasingly efficient at stabilizing hydrated PAN.
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Rice, Julia E.
1992-01-01
The equilibrium structures, harmonic vibrational frequencies, IR intensities, and relative energetics of HNO3 and its protonated form H2NO3+ were investigated using double-zeta plus polarization and triple-zeta plus polarization basis sets in conjunction with high-level ab initio methods. The latter include second-order Moller-Plesset perturbation theory, the single and double excitation coupled cluster (CCSD) methods, a perturbational estimate of the effects of connected triple excitations (CCSD(T)), and the self-consistent field. To determine accurate energy differences CCSD(T) energies were computed using large atomic natural orbital basis sets. Four different isomers of H2NO3+ were considered. The lowest energy form of protonated nitric acid was found to correspond to a complex between H2O and NO2+, which is consistent with earlier theoretical and experimental studies.
{ITALIC AB INITIO} Large-Basis no-Core Shell Model and its Application to Light Nuclei
NASA Astrophysics Data System (ADS)
Barrett, Bruce R.; Navratil, Petr; Ormand, W. E.; Vary, James P.
2002-01-01
We discuss the {ITALIC ab initio} No-Core Shell Model (NCSM). In this method the effective Hamiltonians are derived microscopically from realistic nucleon-nucleon (NN) potentials, such as the CD-Bonn and the Argonne AV18 NN potentials, as a function of the finite Harmonic Oscillator (HO) basis space. We present converged results, i.e. , up to 50 Ω and 18 Ω HO excitations, respectively, for the A=3 and 4 nucleon systems. Our results for these light systems are in agreement with results obtained by other exact methods. We also calculate properties of 6Li and 6He in model spaces up to 10 Ω and of 12C up to 6 Ω. Binding energies, rms radii, excitation spectra and electromagnetic properties are discussed. The favorable comparison with available data is a consequence of the underlying NN interaction rather than a phenomenological fit.
Tyuterev, Vladimir G; Kochanov, Roman V; Tashkun, Sergey A
2017-02-14
Ab initio dipole moment surfaces (DMSs) of the ozone molecule are computed using the MRCI-SD method with AVQZ, AV5Z, and VQZ-F12 basis sets on a dense grid of about 1950 geometrical configurations. The analytical DMS representation used for the fit of ab initio points provides better behavior for large nuclear displacements than that of previous studies. Various DMS models were derived and tested. Vibration-rotation line intensities of 16 O 3 were calculated from these ab initio surfaces by the variational method using two different potential functions determined in our previous works. For the first time, a very good agreement of first principle calculations with the experiment was obtained for the line-by-line intensities in rotationally resolved ozone spectra in a large far- and mid-infrared range. This includes high overtone and combination bands up to ΔV = 6. A particular challenge was a correct description of the B-type bands (even ΔV 3 values) that represented major difficulties for the previous ab initio investigations and for the empirical spectroscopic models. The major patterns of various B-type bands were correctly described without empirically adjusted dipole moment parameters. For the 10 μm range, which is of key importance for the atmospheric ozone retrievals, our ab initio intensity results are within the experimental error margins. The theoretical values for the strongest lines of the ν 3 band lie in general between two successive versions of HITRAN (HIgh-resolution molecular TRANsmission) empirical database that corresponded to most extended available sets of observations. The overall qualitative agreement in a large wavenumber range for rotationally resolved cold and hot ozone bands up to about 6000 cm -1 is achieved here for the first time. These calculations reveal that several weak bands are yet missing from available spectroscopic databases.
Ab Initio Density Fitting: Accuracy Assessment of Auxiliary Basis Sets from Cholesky Decompositions.
Boström, Jonas; Aquilante, Francesco; Pedersen, Thomas Bondo; Lindh, Roland
2009-06-09
The accuracy of auxiliary basis sets derived by Cholesky decompositions of the electron repulsion integrals is assessed in a series of benchmarks on total ground state energies and dipole moments of a large test set of molecules. The test set includes molecules composed of atoms from the first three rows of the periodic table as well as transition metals. The accuracy of the auxiliary basis sets are tested for the 6-31G**, correlation consistent, and atomic natural orbital basis sets at the Hartree-Fock, density functional theory, and second-order Møller-Plesset levels of theory. By decreasing the decomposition threshold, a hierarchy of auxiliary basis sets is obtained with accuracies ranging from that of standard auxiliary basis sets to that of conventional integral treatments.
Wang, Yimin; Bowman, Joel M; Kamarchik, Eugene
2016-03-21
We report full-dimensional, ab initio-based potentials and dipole moment surfaces for NaCl, NaF, Na(+)H2O, F(-)H2O, and Cl(-)H2O. The NaCl and NaF potentials are diabatic ones that dissociate to ions. These are obtained using spline fits to CCSD(T)/aug-cc-pV5Z energies. In addition, non-linear least square fits using the Born-Mayer-Huggins potential are presented, providing accurate parameters based strictly on the current ab initio energies. The long-range behavior of the NaCl and NaF potentials is shown to go, as expected, accurately to the point-charge Coulomb interaction. The three ion-H2O potentials are permutationally invariant fits to roughly 20,000 coupled cluster CCSD(T) energies (awCVTZ basis for Na(+) and aVTZ basis for Cl(-) and F(-)), over a large range of distances and H2O intramolecular configurations. These potentials are switched accurately in the long range to the analytical ion-dipole interactions, to improve computational efficiency. Dipole moment surfaces are fits to MP2 data; for the ion-ion cases, these are well described in the intermediate- and long-range by the simple point-charge expression. The performance of these new fits is examined by direct comparison to additional ab initio energies and dipole moments along various cuts. Equilibrium structures, harmonic frequencies, and electronic dissociation energies are also reported and compared to direct ab initio results. These indicate the high fidelity of the new PESs.
A new single-particle basis for nuclear many-body calculations
NASA Astrophysics Data System (ADS)
Puddu, G.
2017-10-01
Predominantly, harmonic oscillator single-particle wave functions are the preferred choice for a basis in ab initio nuclear many-body calculations. These wave-functions, although very convenient in order to evaluate the matrix elements of the interaction in the laboratory frame, have too fast a fall-off at large distances. In the past, as an alternative to the harmonic oscillator, other single-particle wave functions have been proposed. In this work, we propose a new single-particle basis, directly linked to nucleon-nucleon interaction. This new basis is orthonormal and complete, has the proper asymptotic behavior at large distances and does not contain the continuum which would pose severe convergence problems in nuclear many body calculations. We consider the newly proposed NNLO-opt nucleon-nucleon interaction, without any renormalization. We show that, unlike other bases, this single-particle representation has a computational cost similar to the harmonic oscillator basis with the same space truncation and it gives lower energies for 6He and 6Li.
Ab initio quantum chemical calculation of electron transfer matrix elements for large molecules
NASA Astrophysics Data System (ADS)
Zhang, Linda Yu; Friesner, Richard A.; Murphy, Robert B.
1997-07-01
Using a diabatic state formalism and pseudospectral numerical methods, we have developed an efficient ab initio quantum chemical approach to the calculation of electron transfer matrix elements for large molecules. The theory is developed at the Hartree-Fock level and validated by comparison with results in the literature for small systems. As an example of the power of the method, we calculate the electronic coupling between two bacteriochlorophyll molecules in various intermolecular geometries. Only a single self-consistent field (SCF) calculation on each of the monomers is needed to generate coupling matrix elements for all of the molecular pairs. The largest calculations performed, utilizing 1778 basis functions, required ˜14 h on an IBM 390 workstation. This is considerably less cpu time than would be necessitated with a supermolecule adiabatic state calculation and a conventional electronic structure code.
A global ab initio potential for HCN/HNC, exact vibrational energies, and comparison to experiment
NASA Technical Reports Server (NTRS)
Bentley, Joseph A.; Bowman, Joel M.; Gazdy, Bela; Lee, Timothy J.; Dateo, Christopher E.
1992-01-01
An ab initio (i.e., from first principles) calculation of vibrational energies of HCN and HNC is reported. The vibrational calculations were done with a new potential derived from a fit to 1124 ab initio electronic energies which were calculated using the highly accurate CCSD(T) coupled-cluster method in conjunction with a large atomic natural orbital basis set. The properties of this potential are presented, and the vibrational calculations are compared to experiment for 54 vibrational transitions, 39 of which are for zero total angular momentum, J = 0, and 15 of which are for J = 1. The level of agreement with experiment is unprecedented for a triatomic with two nonhydrogen atoms, and demonstrates the capability of the latest computational methods to give reliable predictions on a strongly bound triatomic molecule at very high levels of vibrational excitation.
NASA Astrophysics Data System (ADS)
de P. R. Moreira, Ibério; Dovesi, Roberto; Roetti, Carla; Saunders, Victor R.; Orlando, Roberto
2000-09-01
The ab initio periodic unrestricted Hartree-Fock method has been applied in the investigation of the ground-state structural, electronic, and magnetic properties of the rutile-type compounds MF2 (M=Mn, Fe, Co, and Ni). All electron Gaussian basis sets have been used. The systems turn out to be large band-gap antiferromagnetic insulators; the optimized geometrical parameters are in good agreement with experiment. The calculated most stable electronic state shows an antiferromagnetic order in agreement with that resulting from neutron scattering experiments. The magnetic coupling constants between nearest-neighbor magnetic ions along the [001], [111], and [100] (or [010]) directions have been calculated using several supercells. The resulting ab initio magnetic coupling constants are reasonably satisfactory when compared with available experimental data. The importance of the Jahn-Teller effect in FeF2 and CoF2 is also discussed.
Takahashi, M; Horiuchi, Y; Tezuka, T
2005-11-01
Our previous study showed that large keratohyaline granules (KHG) in molluscum contagiosum that stained with haematoxylin also reacted with anti-Ted-H-1 monoclonal antibody (mAb), but not with antifilaggrin mAb or antiloricrin polyclonal antibody (pAb). This finding indicated that the Ted-H-1 antigenic protein is a haematoxylin-stainable protein in KHG. To clarify the identity of the major component protein of the large KHG in solar keratosis, another disorder in which large KHG are observed. An enzyme immunohistochemical study was performed using antifilaggrin mAb, anti-Ted-H-1 mAb and antiloricrin pAb. Immunofluorescent double staining and immunoelectron microscopic analyses were performed using anti-Ted-H-1 mAb and antiloricrin pAb. Antifilaggrin mAb, anti-Ted-H-1 mAb and antiloricrin pAb reacted with normal KHG in nonlesional skin of solar keratosis, while only anti-Ted-H-1 mAb reacted with the large KHG in the lesions of solar keratosis. Antifilaggrin mAb did not react with large KHG. Antiloricrin pAb reacted with the cell membrane of the stratum granulosum, but not with large KHG. These findings suggest that the haematoxylin-stainable protein in the large KHG would be a Ted-H-1 antigen protein which was neither filaggrin nor loricrin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yimin, E-mail: yimin.wang@emory.edu; Bowman, Joel M., E-mail: jmbowma@emory.edu; Kamarchik, Eugene, E-mail: eugene.kamarchik@gmail.com
2016-03-21
We report full-dimensional, ab initio-based potentials and dipole moment surfaces for NaCl, NaF, Na{sup +}H{sub 2}O, F{sup −}H{sub 2}O, and Cl{sup −}H{sub 2}O. The NaCl and NaF potentials are diabatic ones that dissociate to ions. These are obtained using spline fits to CCSD(T)/aug-cc-pV5Z energies. In addition, non-linear least square fits using the Born-Mayer-Huggins potential are presented, providing accurate parameters based strictly on the current ab initio energies. The long-range behavior of the NaCl and NaF potentials is shown to go, as expected, accurately to the point-charge Coulomb interaction. The three ion-H{sub 2}O potentials are permutationally invariant fits to roughly 20 000more » coupled cluster CCSD(T) energies (awCVTZ basis for Na{sup +} and aVTZ basis for Cl{sup −} and F{sup −}), over a large range of distances and H{sub 2}O intramolecular configurations. These potentials are switched accurately in the long range to the analytical ion-dipole interactions, to improve computational efficiency. Dipole moment surfaces are fits to MP2 data; for the ion-ion cases, these are well described in the intermediate- and long-range by the simple point-charge expression. The performance of these new fits is examined by direct comparison to additional ab initio energies and dipole moments along various cuts. Equilibrium structures, harmonic frequencies, and electronic dissociation energies are also reported and compared to direct ab initio results. These indicate the high fidelity of the new PESs.« less
NASA Astrophysics Data System (ADS)
Senent, M. L.
2018-01-01
CCSD(T)-F12 theory in connection with extended basis sets is employed to determine the electronic ground state spectroscopic parameters of methylamine at low temperatures. The geometry, the rotational constants, all the fundamental frequencies, the dipole moment and its components, and the centrifugal distortion constants, are provided. The ground vibrational state rotational constants were found to be A0 = 103067.15 MHz, B0 = 22588.29 MHz, and C0 = 21710.50 MHz and the dipole moment to be 1.4071D. Fermi displacements of the vibrational bands are predicted. The low vibrational energy levels corresponding to the large amplitude motions are determine variationally using a flexible three-dimensional model depending on three variables: the HNH bending, the NH2 wagging and the CH3 torsional coordinates. The computed levels are compared with previous experimental and calculated energies. Methylamine parameters are very sensitive to the level of ab initio calculations.
NASA Technical Reports Server (NTRS)
Jackels, C. F.
1985-01-01
Ab initio quantum chemical techniques are used to investigate covalently-bonded and hydrogen-bonded species that may be important intermediates in the reaction of hydroxyl and hydroperoxyl radicals. Stable structures of both types are identified. Basis sets of polarized double zeta quality and large scale configuration interaction wave functions are utilized. Based on electronic energies, the covalently bonded HOOOH species is 26.4 kcal/mol more stable than the OH and HO2 radicals. Similarly, the hydrogen bonded HO---HO2 species has an electronic energy 4.7 kcal/mol below that of the component radicals, after correction is made for the basis set superposition error. The hydrogen bonded form is planar, possesses one relatively normal hydrogen bond, and has the lowest energy 3A' and 1A' states that are essentially degenerate. The 1A" and 3A" excited states produced by rotation of the unpaired OH electron into the molecular plane are very slightly bound.
High-level ab initio enthalpies of formation of 2,5-dimethylfuran, 2-methylfuran, and furan.
Feller, David; Simmie, John M
2012-11-29
A high-level ab initio thermochemical technique, known as the Feller-Petersen-Dixon method, is used to calculate the total atomization energies and hence the enthalpies of formation of 2,5-dimethylfuran, 2-methylfuran, and furan itself as a means of rationalizing significant discrepancies in the literature. In order to avoid extremely large standard coupled cluster theory calculations, the explicitly correlated CCSD(T)-F12b variation was used with basis sets up to cc-pVQZ-F12. After extrapolating to the complete basis set limit and applying corrections for core/valence, scalar relativistic, and higher order effects, the final Δ(f)H° (298.15 K) values, with the available experimental values in parentheses are furan -34.8 ± 3 (-34.7 ± 0.8), 2-methylfuran -80.3 ± 5 (-76.4 ± 1.2), and 2,5-dimethylfuran -124.6 ± 6 (-128.1 ± 1.1) kJ mol(-1). The theoretical results exhibit a compelling internal consistency.
NASA Astrophysics Data System (ADS)
Jaquet, Ralph
2013-09-01
A Lanczos algorithm with a non-direct product basis was used to compute energy levels of H+ 3, H2D+, D2H+, D+ 3, and T+ 3 with J values as large as 46, 53, 66, 66, and 81. The energy levels are based on a modified potential surface of M. Pavanello et al. that is better adapted to the ab initio energies near the dissociation limit.
A walk through the approximations of ab initio multiple spawning
NASA Astrophysics Data System (ADS)
Mignolet, Benoit; Curchod, Basile F. E.
2018-04-01
Full multiple spawning offers an in principle exact framework for excited-state dynamics, where nuclear wavefunctions in different electronic states are represented by a set of coupled trajectory basis functions that follow classical trajectories. The couplings between trajectory basis functions can be approximated to treat molecular systems, leading to the ab initio multiple spawning method which has been successfully employed to study the photochemistry and photophysics of several molecules. However, a detailed investigation of its approximations and their consequences is currently missing in the literature. In this work, we simulate the explicit photoexcitation and subsequent excited-state dynamics of a simple system, LiH, and we analyze (i) the effect of the ab initio multiple spawning approximations on different observables and (ii) the convergence of the ab initio multiple spawning results towards numerically exact quantum dynamics upon a progressive relaxation of these approximations. We show that, despite the crude character of the approximations underlying ab initio multiple spawning for this low-dimensional system, the qualitative excited-state dynamics is adequately captured, and affordable corrections can further be applied to ameliorate the coupling between trajectory basis functions.
A walk through the approximations of ab initio multiple spawning.
Mignolet, Benoit; Curchod, Basile F E
2018-04-07
Full multiple spawning offers an in principle exact framework for excited-state dynamics, where nuclear wavefunctions in different electronic states are represented by a set of coupled trajectory basis functions that follow classical trajectories. The couplings between trajectory basis functions can be approximated to treat molecular systems, leading to the ab initio multiple spawning method which has been successfully employed to study the photochemistry and photophysics of several molecules. However, a detailed investigation of its approximations and their consequences is currently missing in the literature. In this work, we simulate the explicit photoexcitation and subsequent excited-state dynamics of a simple system, LiH, and we analyze (i) the effect of the ab initio multiple spawning approximations on different observables and (ii) the convergence of the ab initio multiple spawning results towards numerically exact quantum dynamics upon a progressive relaxation of these approximations. We show that, despite the crude character of the approximations underlying ab initio multiple spawning for this low-dimensional system, the qualitative excited-state dynamics is adequately captured, and affordable corrections can further be applied to ameliorate the coupling between trajectory basis functions.
1993-01-01
The use of monoclonal antibodies (mAbs) directed to lipid A for the therapy of gram-negative sepsis is controversial. In an attempt to understand their biologic basis of action, we used a fluid-phase radioimmunoassay to measure binding between bacterial lipopolysaccharide (LPS) and two IgM mAbs directed to lipid A that are being evaluated for the treatment of gram-negative bacterial sepsis. Both antibodies bound 3H-LPS prepared from multiple strains of gram- negative bacteria when large excesses of antibody were used, although binding was modest and only slightly greater than control preparations. We also studied the ability of each anti-lipid A antibody to neutralize some of the biological effects of LPS in vitro. Despite large molar excesses, neither antibody neutralized LPS as assessed by the limulus lysate test, by a mitogenic assay for murine splenocytes, or by the production of cytokines interleukin (IL)-1, IL-6, or tumor necrosis factor from human monocytes in culture medium or in whole blood. Our experiments do not support the hypothesis that either of these anti- lipid A mAbs function by neutralizing the toxic effects of LPS. PMID:8418211
ElSawy, Karim M
2017-02-01
A large number of single-stranded RNA viruses assemble their capsid and their genomic material simultaneously. The RNA viral genome plays multiple roles in this process that are currently only partly understood. In this work, we investigated the thermodynamic basis of the role of viral RNA on the assembly of capsid proteins. The viral capsid of bacteriophage MS2 was considered as a case study. The MS2 virus capsid is composed of 60 AB and 30 CC protein dimers. We investigated the effect of RNA stem loop (the translational repressor TR) binding to the capsid dimers on the dimer-dimer relative association free energies. We found that TR binding results in destabilization of AB self-association compared with AB and CC association. This indicates that the association of the AB and CC dimers is the most likely assembly pathway for the MS2 virus, which explains the experimental observation of alternating patterns of AB and CC dimers in dominant assembly intermediates of the MS2 virus. The presence of viral RNA, therefore, dramatically channels virus assembly to a limited number of pathways, thereby enhancing the efficiency of virus self-assembly process. Interestingly, Thr59Ser and Thr45Ala mutations of the dimers, in the absence of RNA stem loops, lead to stabilization of AB self-association compared with the AB and CC associations, thereby channelling virus assembly towards a fivefold (AB) 5 pentamer intermediate, providing a testable hypothesis of our thermodynamic arguments.
NASA Astrophysics Data System (ADS)
Kuroki, Nahoko; Mori, Hirotoshi
2018-02-01
Effective fragment potential version 2 - molecular dynamics (EFP2-MD) simulations, where the EFP2 is a polarizable force field based on ab initio electronic structure calculations were applied to water-methanol binary mixture. Comparing EFP2s defined with (aug-)cc-pVXZ (X = D,T) basis sets, it was found that large sets are necessary to generate sufficiently accurate EFP2 for predicting mixture properties. It was shown that EFP2-MD could predict the excess molar volume. Since the computational cost of EFP2-MD are far less than ab initio MD, the results presented herein demonstrate that EFP2-MD is promising for predicting physicochemical properties of novel mixed solvents.
NASA Astrophysics Data System (ADS)
Langhoff, P. W.; Winstead, C. L.
Early studies of the electronically excited states of molecules by John A. Pople and coworkers employing ab initio single-excitation configuration interaction (SECI) calculations helped to simulate related applications of these methods to the partial-channel photoionization cross sections of polyatomic molecules. The Gaussian representations of molecular orbitals adopted by Pople and coworkers can describe SECI continuum states when sufficiently large basis sets are employed. Minimal-basis virtual Fock orbitals stabilized in the continuous portions of such SECI spectra are generally associated with strong photoionization resonances. The spectral attributes of these resonance orbitals are illustrated here by revisiting previously reported experimental and theoretical studies of molecular formaldehyde (H2CO) in combination with recently calculated continuum orbital amplitudes.
Genetic basis of Bartter syndrome in Korea.
Lee, Beom Hee; Cho, Hee Yeon; Lee, HyunKyung; Han, Kyoung Hee; Kang, Hee Gyung; Ha, Il Soo; Lee, Joo Hoon; Park, Young Seo; Shin, Jae Il; Lee, Dae-Yeol; Kim, Su-Yung; Choi, Yong; Cheong, Hae Il
2012-04-01
Bartter syndrome (BS) is clinically classified into antenatal or neonatal BS (aBS) and classic BS (cBS) as well as five subtypes based on the underlying mutant gene; SLC12A1 (BS I), KCNJ1 (BS II), CLCNKB (BS III), BSND (BS IV) and CASR (BS V). Clinico-genetic features of a nationwide cohort of 26 Korean children with BS were investigated. The clinical diagnosis was aBS in 8 (30.8%), cBS in 15 (57.7%) and mixed Bartter-Gitelman phenotype in 3 cases (11.5%). Five of eight patients with aBS and all 18 patients with either cBS or mixed Bartter-Gitelman phenotype had CLCNKB mutations. Among the 23 patients (46 alleles) with CLCNKB mutations, p.W610X and large deletions were detected in 25 (54.3%) and 10 (21.7%) alleles, respectively. There was no genotype-phenotype correlation in patients with CLCNKB mutations. Twenty-three (88.5%) of the 26 BS patients involved in this study had CLCNKB mutations. The p.W610X mutation and large deletion were two common types of mutations in CLCNKB. The clinical manifestations of BS III were heterogeneous without a genotype-phenotype correlation, typically manifesting cBS phenotype but also aBS or mixed Bartter-Gitelman phenotypes. The molecular diagnostic steps for patients with BS in our population should be designed taking these peculiar genotype distributions into consideration, and a new more clinically relevant classification including BS and Gitelman syndrome is required.
Hirshberg, Barak; Sagiv, Lior; Gerber, R Benny
2017-03-14
Algorithms for quantum molecular dynamics simulations that directly use ab initio methods have many potential applications. In this article, the ab initio classical separable potentials (AICSP) method is proposed as the basis for approximate algorithms of this type. The AICSP method assumes separability of the total time-dependent wave function of the nuclei and employs mean-field potentials that govern the dynamics of each degree of freedom. In the proposed approach, the mean-field potentials are determined by classical ab initio molecular dynamics simulations. The nuclear wave function can thus be propagated in time using the effective potentials generated "on the fly". As a test of the method for realistic systems, calculations of the stationary anharmonic frequencies of hydrogen stretching modes were carried out for several polyatomic systems, including three amino acids and the guanine-cytosine pair of nucleobases. Good agreement with experiments was found. The method scales very favorably with the number of vibrational modes and should be applicable for very large molecules, e.g., peptides. The method should also be applicable for properties such as vibrational line widths and line shapes. Work in these directions is underway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yaghlane, Saida Ben; Cotton, C. Eric; Francisco, Joseph S., E-mail: francisc@purdue.edu, E-mail: hochlaf@univ-mlv.fr
2013-11-07
Accurate ab initio computations of structural and spectroscopic parameters for the HPS/HSP molecules and corresponding cations and anions have been performed. For the electronic structure computations, standard and explicitly correlated coupled cluster techniques in conjunction with large basis sets have been adopted. In particular, we present equilibrium geometries, rotational constants, harmonic vibrational frequencies, adiabatic ionization energies, electron affinities, and, for the neutral species, singlet-triplet relative energies. Besides, the full-dimensional potential energy surfaces (PESs) for HPS{sup x} and HSP{sup x} (x = −1,0,1) systems have been generated at the standard coupled cluster level with a basis set of augmented quintuple-zeta quality.more » By applying perturbation theory to the calculated PESs, an extended set of spectroscopic constants, including τ, first-order centrifugal distortion and anharmonic vibrational constants has been obtained. In addition, the potentials have been used in a variational approach to deduce the whole pattern of vibrational levels up to 4000 cm{sup −1} above the minima of the corresponding PESs.« less
Ab Initio and Analytic Intermolecular Potentials for Ar-CF₄
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vayner, Grigoriy; Alexeev, Yuri; Wang, Jiangping
2006-03-09
Ab initio calculations at the CCSD(T) level of theory are performed to characterize the Ar + CF ₄ intermolecular potential. Extensive calculations, with and without a correction for basis set superposition error (BSSE), are performed with the cc-pVTZ basis set. Additional calculations are performed with other correlation consistent (cc) basis sets to extrapolate the Ar---CF₄potential energy minimum to the complete basis set (CBS) limit. Both the size of the basis set and BSSE have substantial effects on the Ar + CF₄ potential. Calculations with the cc-pVTZ basis set and without a BSSE correction, appear to give a good representation ofmore » the potential at the CBS limit and with a BSSE correction. In addition, MP2 theory is found to give potential energies in very good agreement with those determined by the much higher level CCSD(T) theory. Two analytic potential energy functions were determined for Ar + CF₄by fitting the cc-pVTZ calculations both with and without a BSSE correction. These analytic functions were written as a sum of two body potentials and excellent fits to the ab initio potentials were obtained by representing each two body interaction as a Buckingham potential.« less
Towards Accurate Ab Initio Predictions of the Spectrum of Methane
NASA Technical Reports Server (NTRS)
Schwenke, David W.; Kwak, Dochan (Technical Monitor)
2001-01-01
We have carried out extensive ab initio calculations of the electronic structure of methane, and these results are used to compute vibrational energy levels. We include basis set extrapolations, core-valence correlation, relativistic effects, and Born- Oppenheimer breakdown terms in our calculations. Our ab initio predictions of the lowest lying levels are superb.
London, Raquel E; Slagter, Heleen A
2015-12-01
Selection mechanisms that dynamically gate only relevant perceptual information for further processing and sustained representation in working memory are critical for goal-directed behavior. We examined whether this gating process can be modulated by anodal transcranial direct current stimulation (tDCS) over left dorsolateral pFC (DLPFC)--a region known to play a key role in working memory and conscious access. Specifically, we examined the effects of tDCS on the magnitude of the so-called "attentional blink" (AB), a deficit in identifying the second of two targets presented in rapid succession. Thirty-four participants performed a standard AB task before (baseline), during, and after 20 min of 1-mA anodal and cathodal tDCS in two separate sessions. On the basis of previous reports linking individual differences in AB magnitude to individual differences in DLPFC activity and on suggestions that effects of tDCS depend on baseline brain activity levels, we hypothesized that anodal tDCS over left DLPFC would modulate the magnitude of the AB as a function of individual baseline AB magnitude. Indeed, individual differences analyses revealed that anodal tDCS decreased the AB in participants with a large baseline AB but increased the AB in participants with a small baseline AB. This effect was only observed during (but not after) stimulation, was not found for cathodal tDCS, and could not be explained by regression to the mean. Notably, the effects of tDCS were not apparent at the group level, highlighting the importance of taking individual variability in performance into account when evaluating the effectiveness of tDCS. These findings support the idea that left DLPFC plays a critical role in the AB and in conscious access more generally. They are also in line with the notion that there is an optimal level of prefrontal activity for cognitive function, with both too little and too much activity hurting performance.
Ab initio calculation of one-nucleon halo states
NASA Astrophysics Data System (ADS)
Rodkin, D. M.; Tchuvil'sky, Yu M.
2018-02-01
We develop an approach to microscopic and ab initio description of clustered systems, states with halo nucleon and one-nucleon resonances. For these purposes a basis combining ordinary shell-model components and cluster-channel terms is built up. The transformation of clustered wave functions to the uniform Slater-determinant type is performed using the concept of cluster coefficients. The resulting basis of orthonormalized wave functions is used for calculating the eigenvalues and the eigenvectors of Hamiltonians built in the framework of ab initio approaches. Calculations of resonance and halo states of 5He, 9Be and 9B nuclei demonstrate that the approach is workable and labor-saving.
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.
1994-01-01
HCuCO is studied using a large Gaussian basis set at the coupled cluster singles and doubles level of theory, including a perturbational estimate of the connected triples (CCSD(T)). In contrast with CuCO, HCuCO is linear. The Cu-CO bond in HCuCO is significantly stronger than in CuCO. These differences between HCuCO and CuCO are discussed in terms of theCu-H bond polarizing the Cu 4s electron away from the CO.
Towards accurate ab initio predictions of the vibrational spectrum of methane
NASA Technical Reports Server (NTRS)
Schwenke, David W.
2002-01-01
We have carried out extensive ab initio calculations of the electronic structure of methane, and these results are used to compute vibrational energy levels. We include basis set extrapolations, core-valence correlation, relativistic effects, and Born-Oppenheimer breakdown terms in our calculations. Our ab initio predictions of the lowest lying levels are superb.
Durig, James R; Zheng, Chao
2007-11-01
Variable temperature (-105 to -150 degrees C) studies of the infrared spectra (3500-400 cm(-1)) of ethylisothiocyanate, CH(3)CH(2)NCS, dissolved in liquid krypton have been recorded. Additionally the infrared spectra of the gas and solid have been re-investigated. These spectroscopic data indicate a single conformer in all physical states with a large number of molecules in the gas phase at ambient temperature in excited states of the CN torsional mode which has a very low barrier to conformational interchange. To aid in the analyses of the vibrational and rotational spectra, ab initio calculations have been carried out by the perturbation method to the second order (MP2) with valence and core electron correlation using a variety of basis sets up to 6-311+G(2df,2pd). With the smaller basis sets up to 6-311+G(d,p) and cc-PVDZ, the cis conformer is indicated as a transition state with all larger basis sets the cis conformer is the only stable form. The predicted energy difference from these calculations between the cis form and the higher energy trans conformer is about 125 cm(-1) which represents essentially the barrier to internal rotation of the NCS group (rotation around NC axis). Density functional theory calculation by the B3LYP method with the same basis sets predicts this barrier to be about 25 cm(-1). By utilizing the previously reported microwave rotational constants with the structural parameters predicted by the ab initio MP2(full)/6-311+G(d,p) calculations, adjusted r(0) structural parameters have been obtained for the cis form. The determined heavy atom parameters are: r(NC)=1.196(5), r(CS)=1.579(5), r(CN)=1.439(5), r(CC)=1.519(5)A for the distances and angles of angleCCN=112.1(5), angleCNC=146.2(5), angleNCS=174.0(5) degrees . The centrifugal distortion constants, dipole moments, conformational stability, vibrational frequencies, infrared intensities and Raman activities have been predicted from ab initio calculations and compared to experimental quantities when available. These results are compared to the corresponding quantities of some similar molecules.
Linear electro-optic effect in semiconductors: Ab initio description of the electronic contribution
NASA Astrophysics Data System (ADS)
Prussel, Lucie; Véniard, Valérie
2018-05-01
We propose an ab initio framework to derive the electronic part of the second-order susceptibility tensor for the electro-optic effect in bulk semiconductors. We find a general expression for χ(2 ) evaluated within time-dependent density-functional theory, including explicitly the band-gap corrections at the level of the scissors approximation. Excitonic effects are accounted for, on the basis of a simple scalar approximation. We apply our formalism to the computation of the electro-optic susceptibilities for several semiconductors, such as GaAs, GaN, and SiC. Taking into account the ionic contribution according to the Faust-Henry coefficient, we obtain a good agreement with experimental results. Finally, using different types of strain to break centrosymmetry, we show that high electro-optic coefficients can be obtained in bulk silicon for a large range of frequencies.
NASA Technical Reports Server (NTRS)
Schwenke, David W.; Walch, Stephen P.; Taylor, Peter R.
1991-01-01
Extensive ab initio calculations on the ground state potential energy surface of H2 + H2O were performed using a large contracted Gaussian basis set and a high level of correlation treatment. An analytical representation of the potential energy surface was then obtained which reproduces the calculated energies with an overall root-mean-square error of only 0.64 mEh. The analytic representation explicitly includes all nine internal degrees of freedom and is also well behaved as the H2 dissociates; it thus can be used to study collision-induced dissociation or recombination of H2. The strategy used to minimize the number of energy calculations is discussed, as well as other advantages of the present method for determining the analytical representation.
Electron affinities of the alkali dimers - Na2, K2, and Rb2
NASA Technical Reports Server (NTRS)
Partridge, H.; Dixon, D. A.; Walch, S. P.; Bauschlicher, C. W., Jr.; Gole, J. L.
1983-01-01
Ab initio calculations on the ground states of the alkali dimers, Na2, K2, and Rb2, and their anions are reported. The calculations employ large Gaussian basis sets and account for nearly all of the valence correlation energy. The calculated atomic electron affinities are within 0.02 eV of experiment and the calculated adiabatic electron affinities for Na2, K2, and Rb2 are, respectively, 0.470, 0.512, and 0.513 eV.
An Accurate ab initio Quartic Force Field and Vibrational Frequencies for CH4 and Isotopomers
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Martin, Jan M. L.; Taylor, Peter R.
1995-01-01
A very accurate ab initio quartic force field for CH4 and its isotopomers is presented. The quartic force field was determined with the singles and doubles coupled-cluster procedure that includes a quasiperturbative estimate of the effects of connected triple excitations, CCSD(T), using the correlation consistent polarized valence triple zeta, cc-pVTZ, basis set. Improved quadratic force constants were evaluated with the correlation consistent polarized valence quadruple zeta, cc-pVQZ, basis set. Fundamental vibrational frequencies are determined using second-order perturbation theory anharmonic analyses. All fundamentals of CH4 and isotopomers for which accurate experimental values exist and for which there is not a large Fermi resonance, are predicted to within +/- 6 cm(exp -1). It is thus concluded that our predictions for the harmonic frequencies and the anharmonic constants are the most accurate estimates available. It is also shown that using cubic and quartic force constants determined with the correlation consistent polarized double zeta, cc-pVDZ, basis set in conjunction with the cc-pVQZ quadratic force constants and equilibrium geometry leads to accurate predictions for the fundamental vibrational frequencies of methane, suggesting that this approach may be a viable alternative for larger molecules. Using CCSD(T), core correlation is found to reduce the CH4 r(e), by 0.0015 A. Our best estimate for r, is 1.0862 +/- 0.0005 A.
Materials prediction via classification learning
Balachandran, Prasanna V.; Theiler, James; Rondinelli, James M.; ...
2015-08-25
In the paradigm of materials informatics for accelerated materials discovery, the choice of feature set (i.e. attributes that capture aspects of structure, chemistry and/or bonding) is critical. Ideally, the feature sets should provide a simple physical basis for extracting major structural and chemical trends and furthermore, enable rapid predictions of new material chemistries. Orbital radii calculated from model pseudopotential fits to spectroscopic data are potential candidates to satisfy these conditions. Although these radii (and their linear combinations) have been utilized in the past, their functional forms are largely justified with heuristic arguments. Here we show that machine learning methods naturallymore » uncover the functional forms that mimic most frequently used features in the literature, thereby providing a mathematical basis for feature set construction without a priori assumptions. We apply these principles to study two broad materials classes: (i) wide band gap AB compounds and (ii) rare earth-main group RM intermetallics. The AB compounds serve as a prototypical example to demonstrate our approach, whereas the RM intermetallics show how these concepts can be used to rapidly design new ductile materials. In conclusion, our predictive models indicate that ScCo, ScIr, and YCd should be ductile, whereas each was previously proposed to be brittle.« less
Materials Prediction via Classification Learning
Balachandran, Prasanna V.; Theiler, James; Rondinelli, James M.; Lookman, Turab
2015-01-01
In the paradigm of materials informatics for accelerated materials discovery, the choice of feature set (i.e. attributes that capture aspects of structure, chemistry and/or bonding) is critical. Ideally, the feature sets should provide a simple physical basis for extracting major structural and chemical trends and furthermore, enable rapid predictions of new material chemistries. Orbital radii calculated from model pseudopotential fits to spectroscopic data are potential candidates to satisfy these conditions. Although these radii (and their linear combinations) have been utilized in the past, their functional forms are largely justified with heuristic arguments. Here we show that machine learning methods naturally uncover the functional forms that mimic most frequently used features in the literature, thereby providing a mathematical basis for feature set construction without a priori assumptions. We apply these principles to study two broad materials classes: (i) wide band gap AB compounds and (ii) rare earth-main group RM intermetallics. The AB compounds serve as a prototypical example to demonstrate our approach, whereas the RM intermetallics show how these concepts can be used to rapidly design new ductile materials. Our predictive models indicate that ScCo, ScIr, and YCd should be ductile, whereas each was previously proposed to be brittle. PMID:26304800
De Boer, Rob J.; Perelson, Alan S.
2017-09-06
Many HIV-1-infected patients evolve broadly neutralizing antibodies (bnAbs). This evolutionary process typically takes several years and is poorly understood as selection taking place in germinal centers occurs on the basis of antibody affinity. B cells with the highest-affinity receptors tend to acquire the most antigen from the follicular dendritic cell (FDC) network and present the highest density of cognate peptides to follicular helper T (Tfh) cells, which provide survival signals to the B cell. bnAbs are therefore expected to evolve only when the B cell lineage evolving breadth is consistently capturing and presenting more peptides to Tfh cells than othermore » lineages of more specific B cells. Here we develop mathematical models of Tfh cells in germinal centers to explicitly define the mechanisms of selection in this complex evolutionary process. Our results suggest that broadly reactive B cells presenting a high density of peptides bound to major histocompatibility complex class II molecules (pMHC) are readily outcompeted by B cells responding to lineages of HIV-1 that transiently dominate the within host viral population. Conversely, if broadly reactive B cells acquire a large variety of several HIV-1 proteins from the FDC network and present a high diversity of several pMHC, they can be rescued by a large fraction of the Tfh cell repertoire in the germinal center. Under such circumstances the evolution of bnAbs is much more consistent. Increasing either the magnitude of the Tfh cell response or the breadth of the Tfh cell repertoire markedly facilitates the evolution of bnAbs. Because both the magnitude and breadth can be increased by vaccination with several HIV-1 proteins, this calls for experimental testing. Many HIV-infected patients slowly evolve antibodies that can neutralize a large variety of viruses. Such broadly neutralizing antibodies (bnAbs) could in the future become therapeutic agents. bnAbs appear very late, and patients are typically not protected by them. At the moment, we fail to understand why this takes so long and how the immune system selects for broadly neutralizing capacity. Typically, antibodies are selected based on affinity and not on breadth. We developed mathematical models to study two different mechanisms by which the immune system can select for broadly neutralizing capacity. One of these is based upon the repertoire of different follicular helper T (Tfh) cells in germinal centers. In conclusion, we suggest that broadly reactive B cells may interact with a larger fraction of this repertoire and demonstrate that this would select for bnAbs. Intriguingly, this suggests that broadening the Tfh cell repertoire by vaccination may speed up the evolution of bnAbs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Boer, Rob J.; Perelson, Alan S.
Many HIV-1-infected patients evolve broadly neutralizing antibodies (bnAbs). This evolutionary process typically takes several years and is poorly understood as selection taking place in germinal centers occurs on the basis of antibody affinity. B cells with the highest-affinity receptors tend to acquire the most antigen from the follicular dendritic cell (FDC) network and present the highest density of cognate peptides to follicular helper T (Tfh) cells, which provide survival signals to the B cell. bnAbs are therefore expected to evolve only when the B cell lineage evolving breadth is consistently capturing and presenting more peptides to Tfh cells than othermore » lineages of more specific B cells. Here we develop mathematical models of Tfh cells in germinal centers to explicitly define the mechanisms of selection in this complex evolutionary process. Our results suggest that broadly reactive B cells presenting a high density of peptides bound to major histocompatibility complex class II molecules (pMHC) are readily outcompeted by B cells responding to lineages of HIV-1 that transiently dominate the within host viral population. Conversely, if broadly reactive B cells acquire a large variety of several HIV-1 proteins from the FDC network and present a high diversity of several pMHC, they can be rescued by a large fraction of the Tfh cell repertoire in the germinal center. Under such circumstances the evolution of bnAbs is much more consistent. Increasing either the magnitude of the Tfh cell response or the breadth of the Tfh cell repertoire markedly facilitates the evolution of bnAbs. Because both the magnitude and breadth can be increased by vaccination with several HIV-1 proteins, this calls for experimental testing. Many HIV-infected patients slowly evolve antibodies that can neutralize a large variety of viruses. Such broadly neutralizing antibodies (bnAbs) could in the future become therapeutic agents. bnAbs appear very late, and patients are typically not protected by them. At the moment, we fail to understand why this takes so long and how the immune system selects for broadly neutralizing capacity. Typically, antibodies are selected based on affinity and not on breadth. We developed mathematical models to study two different mechanisms by which the immune system can select for broadly neutralizing capacity. One of these is based upon the repertoire of different follicular helper T (Tfh) cells in germinal centers. In conclusion, we suggest that broadly reactive B cells may interact with a larger fraction of this repertoire and demonstrate that this would select for bnAbs. Intriguingly, this suggests that broadening the Tfh cell repertoire by vaccination may speed up the evolution of bnAbs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makhov, Dmitry V.; Shalashilin, Dmitrii V.; Glover, William J.
We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as “cloning,” in analogy to the “spawning” procedure in AIMS. This synthesis of AIMS and MCEmore » allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, “trains,” as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.« less
Comparison of Measures of Vibration Affecting Occupants of Military Vehicles
1986-12-01
8217 ,, l I WES equipment 27. The WES equipment consisted of a battery operated absorbed power ( ABS -PW) meter with signal conditioning...West Germany. These will be referred to as the ISO ride meter and the ABS -PWR ridemeter, respectively. The first implemented the vibration measure...the ABS -PWR algorithms were used with each acceleration signal source (analog and digital) to provide a comprehensive basis for comparing the vibration
Tasinato, Nicola; Regini, Giorgia; Stoppa, Paolo; Pietropolli Charmet, Andrea; Gambi, Alberto
2012-06-07
Difluoromethane (CH(2)F(2), HFC-32) is a molecule used in refrigerant mixtures as a replacement of the more environmentally hazardous, ozone depleting, chlorofluorocarbons. On the other hand, presenting strong vibration-rotation bands in the 9 μm atmospheric window, it is a greenhouse gas which contributes to global warming. In the present work, the vibrational and ro-vibrational properties of CH(2)F(2), providing basic data for its atmospheric modeling, are studied in detail by coupling medium resolution Fourier transform infrared spectroscopy to high-level electronic structure ab initio calculations. Experimentally a full quantum assignment and accurate integrated absorption cross sections are obtained up to 5000 cm(-1). Ab initio calculations are carried out by using CCSD(T) theory and large basis sets of either the correlation consistent or atomic natural orbital hierarchies. By using vibrational perturbation theory to second order a complete set of vibrational and ro-vibrational parameters is derived from the ab initio quartic anharmonic force fields, which well compares with the spectroscopic constants retrieved experimentally. An excellent agreement between theory and experiment is achieved for vibrational energy levels and integrated absorption cross sections: transition frequencies up to four quanta of vibrational excitation are reproduced with a root mean square deviation (RMSD) of 7 cm(-1) while intensities are predicted within few km mol(-1) from the experiment. Basis set performances and core correlation effects are discussed throughout the paper. Particular attention is focused in the understanding of the anharmonic couplings which rule the vibrational dynamics of the |ν(1)>, |2ν(8)>, |2ν(2)> three levels interacting system. The reliability of the potential energy and dipole moment surfaces in reproducing the vibrational eigenvalues and intensities as well as in modeling the vibrational and ro-vibrational mixings over the whole 400-5000 cm(-1) region is also demonstrated by spectacular spectral simulations carried out by using the ro-vibrational Hamiltonian constants, and the relevant coupling terms, obtained from the perturbation treatment of the ab initio anharmonic force field. The present results suggest CH(2)F(2) as a prototype molecule to test ab initio calculations and theoretical models.
NASA Astrophysics Data System (ADS)
Tasinato, Nicola; Regini, Giorgia; Stoppa, Paolo; Charmet, Andrea Pietropolli; Gambi, Alberto
2012-06-01
Difluoromethane (CH2F2, HFC-32) is a molecule used in refrigerant mixtures as a replacement of the more environmentally hazardous, ozone depleting, chlorofluorocarbons. On the other hand, presenting strong vibration-rotation bands in the 9 μm atmospheric window, it is a greenhouse gas which contributes to global warming. In the present work, the vibrational and ro-vibrational properties of CH2F2, providing basic data for its atmospheric modeling, are studied in detail by coupling medium resolution Fourier transform infrared spectroscopy to high-level electronic structure ab initio calculations. Experimentally a full quantum assignment and accurate integrated absorption cross sections are obtained up to 5000 cm-1. Ab initio calculations are carried out by using CCSD(T) theory and large basis sets of either the correlation consistent or atomic natural orbital hierarchies. By using vibrational perturbation theory to second order a complete set of vibrational and ro-vibrational parameters is derived from the ab initio quartic anharmonic force fields, which well compares with the spectroscopic constants retrieved experimentally. An excellent agreement between theory and experiment is achieved for vibrational energy levels and integrated absorption cross sections: transition frequencies up to four quanta of vibrational excitation are reproduced with a root mean square deviation (RMSD) of 7 cm-1 while intensities are predicted within few km mol-1 from the experiment. Basis set performances and core correlation effects are discussed throughout the paper. Particular attention is focused in the understanding of the anharmonic couplings which rule the vibrational dynamics of the |ν1⟩, |2ν8⟩, |2ν2⟩ three levels interacting system. The reliability of the potential energy and dipole moment surfaces in reproducing the vibrational eigenvalues and intensities as well as in modeling the vibrational and ro-vibrational mixings over the whole 400-5000 cm-1 region is also demonstrated by spectacular spectral simulations carried out by using the ro-vibrational Hamiltonian constants, and the relevant coupling terms, obtained from the perturbation treatment of the ab initio anharmonic force field. The present results suggest CH2F2 as a prototype molecule to test ab initio calculations and theoretical models.
Mills, Jeffrey D; Ben-Nun, Michal; Rollin, Kyle; Bromley, Michael W J; Li, Jiabo; Hinde, Robert J; Winstead, Carl L; Sheehy, Jeffrey A; Boatz, Jerry A; Langhoff, Peter W
2016-08-25
Continuing attention has addressed incorportation of the electronically dynamical attributes of biomolecules in the largely static first-generation molecular-mechanical force fields commonly employed in molecular-dynamics simulations. We describe here a universal quantum-mechanical approach to calculations of the electronic energy surfaces of both small molecules and large aggregates on a common basis which can include such electronic attributes, and which also seems well-suited to adaptation in ab initio molecular-dynamics applications. In contrast to the more familiar orbital-product-based methodologies employed in traditional small-molecule computational quantum chemistry, the present approach is based on an "ex-post-facto" method in which Hamiltonian matrices are evaluated prior to wave function antisymmetrization, implemented here in the support of a Hilbert space of orthonormal products of many-electron atomic spectral eigenstates familiar from the van der Waals theory of long-range interactions. The general theory in its various forms incorporates the early semiempirical atoms- and diatomics-in-molecules approaches of Moffitt, Ellison, Tully, Kuntz, and others in a comprehensive mathematical setting, and generalizes the developments of Eisenschitz, London, Claverie, and others addressing electron permutation symmetry adaptation issues, completing these early attempts to treat van der Waals and chemical forces on a common basis. Exact expressions are obtained for molecular Hamiltonian matrices and for associated energy eigenvalues as sums of separate atomic and interaction-energy terms, similar in this respect to the forms of classical force fields. The latter representation is seen to also provide a long-missing general definition of the energies of individual atoms and of their interactions within molecules and matter free from subjective additional constraints. A computer code suite is described for calculations of the many-electron atomic eigenspectra and the pairwise-atomic Hamiltonian matrices required for practical applications. These matrices can be retained as functions of scalar atomic-pair separations and employed in assembling aggregate Hamiltonian matrices, with Wigner rotation matrices providing analytical representations of their angular degrees of freedom. In this way, ab initio potential energy surfaces are obtained in the complete absence of repeated evaluations and transformations of the one- and two-electron integrals at different molecular geometries required in most ab inito molecular calculations, with large Hamiltonian matrix assembly simplified and explicit diagonalizations avoided employing partitioning and Brillouin-Wigner or Rayleigh-Schrödinger perturbation theory. Illustrative applications of the important components of the formalism, selected aspects of the scaling of the approach, and aspects of "on-the-fly" interfaces with Monte Carlo and molecular-dynamics methods are described in anticipation of subsequent applications to biomolecules and other large aggregates.
Oshima, Yoko; Shimada, Hideaki; Yajima, Satoshi; Nanami, Tatsuki; Matsushita, Kazuyuki; Nomura, Fumio; Kainuma, Osamu; Takiguchi, Nobuhiro; Soda, Hiroaki; Ueda, Takeshi; Iizasa, Toshihiko; Yamamoto, Naoto; Yamamoto, Hiroshi; Nagata, Matsuo; Yokoi, Sana; Tagawa, Masatoshi; Ohtsuka, Seiko; Kuwajima, Akiko; Murakami, Akihiro; Kaneko, Hironori
2016-01-01
Although serum NY-ESO-1 antibodies (s-NY-ESO-1-Abs) have been reported in patients with esophageal carcinoma, this assay system has not been used to study a large series of patients with various other cancers. Serum samples of 1969 cancer patients [esophageal cancer (n = 172), lung cancer (n = 269), hepatocellular carcinoma (n = 91), prostate cancer (n = 358), gastric cancer (n = 313), colorectal cancer (n = 262), breast cancer (n = 365)] and 74 healthy individuals were analyzed using an originally developed enzyme-linked immunosorbent assay system for s-NY-ESO-1-Abs. The optical density cut-off value, determined as the mean plus three standard deviations for serum samples from the healthy controls, was fixed at 0.165. Conventional tumor markers were also evaluated in patients with esophageal carcinoma. The positive rate of s-NY-ESO-1-Abs in patients with esophageal cancer (31 %) was significantly higher than that in the other groups: patients with lung cancer (13 %), patients with hepatocellular carcinoma (11 %), patients with prostate cancer (10 %), patients with gastric cancer (10 %), patients with colorectal cancer (8 %), patients with breast cancer (7 %), and healthy controls (0 %). The positive rate of s-NY-ESO-1-Abs was comparable to that of serum p53 antibodies (33 %), squamous cell carcinoma antigen (36 %), carcinoembryonic antigen (26 %), and CYFRA 21-1 (18 %) and gradually increased with the tumor stage. The positive rate of s-NY-ESO-1-Abs was significantly higher in patients with esophageal cancer than in patients with the other types of cancers. On the basis of its high specificity and sensitivity, even in patients with stage I tumors, s-NY-ESO-1-Abs may be one of the first choices for esophageal cancer.
Carb-3 is the superior anti-CD15 monoclonal antibody for immunohistochemistry.
Røge, Rasmus; Nielsen, Søren; Vyberg, Mogens
2014-07-01
Immunohistochemical detection of CD15 is important in the diagnosis of Hodgkin lymphoma and may play a role in the classification of renal cell tumors (RCTs). In the NordiQC external quality assessment scheme, 4 CD15 tests, each with 71 to 121 participating laboratories, showed that 24% to 50% of the stains were insufficient. This was mainly because of very low primary antibody (Ab) concentration and insufficient heat-induced epitope retrieval, whereas the Ab clone performance seemed of little importance. The purpose of this study was to evaluate the performance of the most commonly used CD15 Abs on the basis of vendor-recommended and in-house optimized protocols. Multitissue blocks with 199 specimens including various malignant lymphomas, RCTs, and normal tissues were stained with 3 different concentrated (conc) CD15 Ab clones Carb-3, MMA, and BY87 according to predetermined in-house optimized protocols on 2 automated immunostaining platforms. Carb-3 and MMA were also applied in ready-to-use (RTU) formats utilized according to vendor protocols. Extension and intensity of stains was determined using the H-score method. Clone Carb-3-conc gave with an in-house optimized protocol the highest H-scores in Hodgkin lymphoma, RCTs, and normal kidney tissue. Clones Carb-3-RTU and MMA-conc gave slightly lower scores, whereas clones MMA-RTU and BY87-conc gave the lowest scores and a large proportion of false-negative reactions. For all concentrated Abs, in-house optimized protocols resulted in increased sensitivity and improved overall staining results compared with vendor-recommended protocols. The importance of Ab selection and protocol optimization in immunohistochemical laboratories is emphasized.
A coupled channel study of HN2 unimolecular decay based on a global ab initio potential surface
NASA Technical Reports Server (NTRS)
Koizumi, Hiroyasu; Schatz, George C.; Walch, Stephen P.
1991-01-01
The unimolecular decay lifetimes of several vibrational states of HN2 are determined on the basis of an accurate coupled channel dynamics study using a global analytical potential surface. The surface reproduces the ab initio points with an rms error of 0.08 kcal/mol for energies below 20 kcal/mol. Modifications to the potential that describe the effect of improving the basis set in the ab initio calculations are provided. Converged coupled channel calculations are performed for the ground rotational state of HN2 to determine the lifetimes of the lowest ten vibrational states. Only the ground vibrational state (000) and first excited bend (001) are found to have lifetimes longer than 1 ps. The lifetimes of these states are estimated at 3 x 10 to the -9th and 2 x 10 to the -10th s, respectively. Variation of these results with quality of the ab initio calculations is not more than a factor of 5.
Statistical error propagation in ab initio no-core full configuration calculations of light nuclei
Navarro Pérez, R.; Amaro, J. E.; Ruiz Arriola, E.; ...
2015-12-28
We propagate the statistical uncertainty of experimental N N scattering data into the binding energy of 3H and 4He. Here, we also study the sensitivity of the magnetic moment and proton radius of the 3 H to changes in the N N interaction. The calculations are made with the no-core full configuration method in a sufficiently large harmonic oscillator basis. For those light nuclei we obtain Δ E stat (3H) = 0.015 MeV and Δ E stat ( 4He) = 0.055 MeV .
Sánchez, Sergio; Díaz-Sánchez, Sandra; Martínez, Remigio; Llorente, María Teresa; Herrera-León, Silvia; Vidal, Dolors
2013-10-25
Subtilase cytotoxin (SubAB) is an AB5 toxin produced by Shiga toxin (Stx)-producing Escherichia coli (STEC) strains usually lacking the eae gene product intimin. Two allelic variants of SubAB encoding genes have been described: subAB1, located on a plasmid, and subAB2, located on a pathogenicity island (PAI) together with tia gene. While subAB1 has been reported to be more frequent among bovine strains, subAB2 has been mainly associated with strains from small ruminants. We investigated the presence of the two variants of subAB among 59 eae-negative STEC from large game animals (deer and wild boar) and their meat and meat products in order to assess the role of other species in the epidemiology of subAB-positive, eae-negative STEC. For this approach, the strains were PCR-screened for the presence of subAB, including the specific detection of both allelic variants, for the presence of saa, tia and sab, and for stx subtyping. Overall, subAB genes were detected in 71.2% of the strains: 84.1% of the strains from deer and 33.3% of the strains from wild boar. Most of them (97.6%) possessed subAB2 and most of these subAB2-positive strains (92.7%) were also positive for tia and negative for saa, suggesting the presence of the subAB2-harbouring PAI. Subtype stx2b was present in most of the strains (67.8%) and a statistically significant association could be established between subAB2 and stx2b. Our results suggest that large game animals, mainly deer, may represent an important animal reservoir of subAB2-positive, eae-negative STEC, and also highlight the risk of human infection posed by the consumption of large game meat and meat products. Copyright © 2013 Elsevier B.V. All rights reserved.
Applicability of PM3 to transphosphorylation reaction path: Toward designing a minimal ribozyme
NASA Technical Reports Server (NTRS)
Manchester, John I.; Shibata, Masayuki; Setlik, Robert F.; Ornstein, Rick L.; Rein, Robert
1993-01-01
A growing body of evidence shows that RNA can catalyze many of the reactions necessary both for replication of genetic material and the possible transition into the modern protein-based world. However, contemporary ribozymes are too large to have self-assembled from a prebiotic oligonucleotide pool. Still, it is likely that the major features of the earliest ribozymes have been preserved as molecular fossils in the catalytic RNA of today. Therefore, the search for a minimal ribozyme has been aimed at finding the necessary structural features of a modern ribozyme (Beaudry and Joyce, 1990). Both a three-dimensional model and quantum chemical calculations are required to quantitatively determine the effects of structural features of the ribozyme on the reaction it catalyzes. Using this model, quantum chemical calculations must be performed to determine quantitatively the effects of structural features on catalysis. Previous studies of the reaction path have been conducted at the ab initio level, but these methods are limited to small models due to enormous computational requirements. Semiempirical methods have been applied to large systems in the past; however, the accuracy of these methods depends largely on a simple model of the ribozyme-catalyzed reaction, or hydrolysis of phosphoric acid. We find that the results are qualitatively similar to ab initio results using large basis sets. Therefore, PM3 is suitable for studying the reaction path of the ribozyme-catalyzed reaction.
Milne, Marjorie E; Steward, Christopher; Firestone, Simon M; Long, Sam N; O'Brien, Terrence J; Moffat, Bradford A
2016-04-01
To develop representative MRI atlases of the canine brain and to evaluate 3 methods of atlas-based segmentation (ABS). 62 dogs without clinical signs of epilepsy and without MRI evidence of structural brain disease. The MRI scans from 44 dogs were used to develop 4 templates on the basis of brain shape (brachycephalic, mesaticephalic, dolichocephalic, and combined mesaticephalic and dolichocephalic). Atlas labels were generated by segmenting the brain, ventricular system, hippocampal formation, and caudate nuclei. The MRI scans from the remaining 18 dogs were used to evaluate 3 methods of ABS (manual brain extraction and application of a brain shape-specific template [A], automatic brain extraction and application of a brain shape-specific template [B], and manual brain extraction and application of a combined template [C]). The performance of each ABS method was compared by calculation of the Dice and Jaccard coefficients, with manual segmentation used as the gold standard. Method A had the highest mean Jaccard coefficient and was the most accurate ABS method assessed. Measures of overlap for ABS methods that used manual brain extraction (A and C) ranged from 0.75 to 0.95 and compared favorably with repeated measures of overlap for manual extraction, which ranged from 0.88 to 0.97. Atlas-based segmentation was an accurate and repeatable method for segmentation of canine brain structures. It could be performed more rapidly than manual segmentation, which should allow the application of computer-assisted volumetry to large data sets and clinical cases and facilitate neuroimaging research and disease diagnosis.
NASA Astrophysics Data System (ADS)
Bryce, Richard A.; Vincent, Mark A.; Malcolm, Nathaniel O. J.; Hillier, Ian H.; Burton, Neil A.
1998-08-01
A new hybrid quantum mechanical/molecular mechanical model of solvation is developed and used to describe the structure and dynamics of small fluoride/water clusters, using an ab initio wave function to model the ion and a fluctuating charge potential to model the waters. Appropriate parameters for the water-water and fluoride-water interactions are derived, with the fluoride anion being described by density functional theory and a large Gaussian basis. The role of solvent polarization in determining the structure and energetics of F(H2O)4- clusters is investigated, predicting a slightly greater stability of the interior compared to the surface structure, in agreement with ab initio studies. An extended Lagrangian treatment of the polarizable water, in which the water atomic charges fluctuate dynamically, is used to study the dynamics of F(H2O)4- cluster. A simulation using a fixed solvent charge distribution indicates principally interior, solvated states for the cluster. However, a preponderance of trisolvated configurations is observed using the polarizable model at 300 K, which involves only three direct fluoride-water hydrogen bonds. Ab initio calculations confirm this trisolvated species as a thermally accessible state at room temperature, in addition to the tetrasolvated interior and surface structures. Extension of this polarizable water model to fluoride clusters with five and six waters gave less satisfactory agreement with experimental energies and with ab initio geometries. However, our results do suggest that a quantitative model of solvent polarization is fundamental for an accurate understanding of the properties of anionic water clusters.
Cotton-Mouton effect and shielding polarizabilities of ethylene: An MCSCF study
NASA Astrophysics Data System (ADS)
Coriani, Sonia; Rizzo, Antonio; Ruud, Kenneth; Helgaker, Trygve
1997-03-01
The static hypermagnetizabilities and nuclear shielding polarizabilities of the carbon and hydrogen atoms of ethylene have been computed using multiconfigurational linear-response theory and a finite-field method, in a mixed analytical-numerical approach. Extended sets of magnetic-field-dependent basis functions have been employed in large MCSCF calculations, involving active spaces giving rise to a few million configurations in the finite-field perturbed symmetry. The convergence of the observables with respect to the extension of the basis set as well as the effect of electron correlation have been investigated. Whereas for the shielding polarizabilities we can compare with other published SCF results, the ab initio estimates for the static hypermagnetizabilities and the observable to which they are related - the Cotton-Mouton constant, - are presented for the first time.
Ab initio molecular simulations with numeric atom-centered orbitals
NASA Astrophysics Data System (ADS)
Blum, Volker; Gehrke, Ralf; Hanke, Felix; Havu, Paula; Havu, Ville; Ren, Xinguo; Reuter, Karsten; Scheffler, Matthias
2009-11-01
We describe a complete set of algorithms for ab initio molecular simulations based on numerically tabulated atom-centered orbitals (NAOs) to capture a wide range of molecular and materials properties from quantum-mechanical first principles. The full algorithmic framework described here is embodied in the Fritz Haber Institute "ab initio molecular simulations" (FHI-aims) computer program package. Its comprehensive description should be relevant to any other first-principles implementation based on NAOs. The focus here is on density-functional theory (DFT) in the local and semilocal (generalized gradient) approximations, but an extension to hybrid functionals, Hartree-Fock theory, and MP2/GW electron self-energies for total energies and excited states is possible within the same underlying algorithms. An all-electron/full-potential treatment that is both computationally efficient and accurate is achieved for periodic and cluster geometries on equal footing, including relaxation and ab initio molecular dynamics. We demonstrate the construction of transferable, hierarchical basis sets, allowing the calculation to range from qualitative tight-binding like accuracy to meV-level total energy convergence with the basis set. Since all basis functions are strictly localized, the otherwise computationally dominant grid-based operations scale as O(N) with system size N. Together with a scalar-relativistic treatment, the basis sets provide access to all elements from light to heavy. Both low-communication parallelization of all real-space grid based algorithms and a ScaLapack-based, customized handling of the linear algebra for all matrix operations are possible, guaranteeing efficient scaling (CPU time and memory) up to massively parallel computer systems with thousands of CPUs.
Preface: Introductory Remarks: Linear Scaling Methods
NASA Astrophysics Data System (ADS)
Bowler, D. R.; Fattebert, J.-L.; Gillan, M. J.; Haynes, P. D.; Skylaris, C.-K.
2008-07-01
It has been just over twenty years since the publication of the seminal paper on molecular dynamics with ab initio methods by Car and Parrinello [1], and the contribution of density functional theory (DFT) and the related techniques to physics, chemistry, materials science, earth science and biochemistry has been huge. Nevertheless, significant improvements are still being made to the performance of these standard techniques; recent work suggests that speed improvements of one or even two orders of magnitude are possible [2]. One of the areas where major progress has long been expected is in O(N), or linear scaling, DFT, in which the computer effort is proportional to the number of atoms. Linear scaling DFT methods have been in development for over ten years [3] but we are now in an exciting period where more and more research groups are working on these methods. Naturally there is a strong and continuing effort to improve the efficiency of the methods and to make them more robust. But there is also a growing ambition to apply them to challenging real-life problems. This special issue contains papers submitted following the CECAM Workshop 'Linear-scaling ab initio calculations: applications and future directions', held in Lyon from 3-6 September 2007. A noteworthy feature of the workshop is that it included a significant number of presentations involving real applications of O(N) methods, as well as work to extend O(N) methods into areas of greater accuracy (correlated wavefunction methods, quantum Monte Carlo, TDDFT) and large scale computer architectures. As well as explicitly linear scaling methods, the conference included presentations on techniques designed to accelerate and improve the efficiency of standard (that is non-linear-scaling) methods; this highlights the important question of crossover—that is, at what size of system does it become more efficient to use a linear-scaling method? As well as fundamental algorithmic questions, this brings up implementation questions relating to parallelization (particularly with multi-core processors starting to dominate the market) and inherent scaling and basis sets (in both normal and linear scaling codes). For now, the answer seems to lie between 100-1,000 atoms, though this depends on the type of simulation used among other factors. Basis sets are still a problematic question in the area of electronic structure calculations. The linear scaling community has largely split into two camps: those using relatively small basis sets based on local atomic-like functions (where systematic convergence to the full basis set limit is hard to achieve); and those that use necessarily larger basis sets which allow convergence systematically and therefore are the localised equivalent of plane waves. Related to basis sets is the study of Wannier functions, on which some linear scaling methods are based and which give a good point of contact with traditional techniques; they are particularly interesting for modelling unoccupied states with linear scaling methods. There are, of course, as many approaches to linear scaling solution for the density matrix as there are groups in the area, though there are various broad areas: McWeeny-based methods, fragment-based methods, recursion methods, and combinations of these. While many ideas have been in development for several years, there are still improvements emerging, as shown by the rich variety of the talks below. Applications using O(N) DFT methods are now starting to emerge, though they are still clearly not trivial. Once systems to be simulated cross the 10,000 atom barrier, only linear scaling methods can be applied, even with the most efficient standard techniques. One of the most challenging problems remaining, now that ab initio methods can be applied to large systems, is the long timescale problem. Although much of the work presented was concerned with improving the performance of the codes, and applying them to scientificallyimportant problems, there was another important theme: extending functionality. The search for greater accuracy has given an implementation of density functional designed to model van der Waals interactions accurately as well as local correlation, TDDFT and QMC and GW methods which, while not explicitly O(N), take advantage of localisation. All speakers at the workshop were invited to contribute to this issue, but not all were able to do this. Hence it is useful to give a complete list of the talks presented, with the names of the sessions; however, many talks fell within more than one area. This is an exciting time for linear scaling methods, which are already starting to contribute significantly to important scientific problems. Applications to nanostructures and biomolecules A DFT study on the structural stability of Ge 3D nanostructures on Si(001) using CONQUEST Tsuyoshi Miyazaki, D R Bowler, M J Gillan, T Otsuka and T Ohno Large scale electronic structure calculation theory and several applications Takeo Fujiwara and Takeo Hoshi ONETEP:Linear-scaling DFT with plane waves Chris-Kriton Skylaris, Peter D Haynes, Arash A Mostofi, Mike C Payne Maximally-localised Wannier functions as building blocks for large-scale electronic structure calculations Arash A Mostofi and Nicola Marzari A linear scaling three dimensional fragment method for ab initio calculations Lin-Wang Wang, Zhengji Zhao, Juan Meza Peta-scalable reactive Molecular dynamics simulation of mechanochemical processes Aiichiro Nakano, Rajiv K. Kalia, Ken-ichi Nomura, Fuyuki Shimojo and Priya Vashishta Recent developments and applications of the real-space multigrid (RMG) method Jerzy Bernholc, M Hodak, W Lu, and F Ribeiro Energy minimisation functionals and algorithms CONQUEST: A linear scaling DFT Code David R Bowler, Tsuyoshi Miyazaki, Antonio Torralba, Veronika Brazdova, Milica Todorovic, Takao Otsuka and Mike Gillan Kernel optimisation and the physical significance of optimised local orbitals in the ONETEP code Peter Haynes, Chris-Kriton Skylaris, Arash Mostofi and Mike Payne A miscellaneous overview of SIESTA algorithms Jose M Soler Wavelets as a basis set for electronic structure calculations and electrostatic problems Stefan Goedecker Wavelets as a basis set for linear scaling electronic structure calculationsMark Rayson O(N) Krylov subspace method for large-scale ab initio electronic structure calculations Taisuke Ozaki Linear scaling calculations with the divide-and-conquer approach and with non-orthogonal localized orbitals Weitao Yang Toward efficient wavefunction based linear scaling energy minimization Valery Weber Accurate O(N) first-principles DFT calculations using finite differences and confined orbitals Jean-Luc Fattebert Linear-scaling methods in dynamics simulations or beyond DFT and ground state properties An O(N) time-domain algorithm for TDDFT Guan Hua Chen Local correlation theory and electronic delocalization Joseph Subotnik Ab initio molecular dynamics with linear scaling: foundations and applications Eiji Tsuchida Towards a linear scaling Car-Parrinello-like approach to Born-Oppenheimer molecular dynamics Thomas Kühne, Michele Ceriotti, Matthias Krack and Michele Parrinello Partial linear scaling for quantum Monte Carlo calculations on condensed matter Mike Gillan Exact embedding of local defects in crystals using maximally localized Wannier functions Eric Cancès Faster GW calculations in larger model structures using ultralocalized nonorthogonal Wannier functions Paolo Umari Other approaches for linear-scaling, including methods formetals Partition-of-unity finite element method for large, accurate electronic-structure calculations of metals John E Pask and Natarajan Sukumar Semiclassical approach to density functional theory Kieron Burke Ab initio transport calculations in defected carbon nanotubes using O(N) techniques Blanca Biel, F J Garcia-Vidal, A Rubio and F Flores Large-scale calculations with the tight-binding (screened) KKR method Rudolf Zeller Acknowledgments We gratefully acknowledge funding for the workshop from the UK CCP9 network, CECAM and the ESF through the PsiK network. DRB, PDH and CKS are funded by the Royal Society. References [1] Car R and Parrinello M 1985 Phys. Rev. Lett. 55 2471 [2] Kühne T D, Krack M, Mohamed F R and Parrinello M 2007 Phys. Rev. Lett. 98 066401 [3] Goedecker S 1999 Rev. Mod. Phys. 71 1085
The HCO+-H2 van der Waals interaction: Potential energy and scattering
NASA Astrophysics Data System (ADS)
Massó, H.; Wiesenfeld, L.
2014-11-01
We compute the rigid-body, four-dimensional interaction potential between HCO+ and H2. The ab initio energies are obtained at the coupled-cluster single double triple level of theory, corrected for Basis Set Superposition Errors. The ab initio points are fit onto the spherical basis relevant for quantum scattering. We present elastic and rotationally inelastic coupled channels scattering between low lying rotational levels of HCO+ and para-/ortho-H2. Results are compared with similar earlier computations with He or isotropic para-H2 as the projectile. Computations agree with earlier pressure broadening measurements.
The HCO⁺-H₂ van der Waals interaction: potential energy and scattering.
Massó, H; Wiesenfeld, L
2014-11-14
We compute the rigid-body, four-dimensional interaction potential between HCO(+) and H2. The ab initio energies are obtained at the coupled-cluster single double triple level of theory, corrected for Basis Set Superposition Errors. The ab initio points are fit onto the spherical basis relevant for quantum scattering. We present elastic and rotationally inelastic coupled channels scattering between low lying rotational levels of HCO(+) and para-/ortho-H2. Results are compared with similar earlier computations with He or isotropic para-H2 as the projectile. Computations agree with earlier pressure broadening measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuzminskii, M.B.; Bagator'yants, A.A.; Kazanskii, V.B.
1986-08-01
The authors perform ab-initio calculations, by the SCF MO LCAO method, of the electronic and geometric structure of the systems CuCO /SUP n+/ (n=0, 1) and potential curves of CO, depending on the charge state of the copper, with variation of all geometric parameters. The calculations of open-shell electronic states were performed by the unrestricted SCF method in a minimal basis set (I, STO-3G for the C and O, and MINI-1' for the Cu) and in a valence two-exponential basis set (II, MIDI-1 for the C and O, and MIDI'2' for the Cu). The principal results from the calculation inmore » the more flexible basis II are presented and the agreement between the results obtained in the minimal basis I and these data is then analyzed qualitatively.« less
An operational multispectral scanner for bathymetric surveys - The ABS NORDA scanner
NASA Technical Reports Server (NTRS)
Haimbach, Stephen P.; Joy, Richard T.; Hickman, G. Daniel
1987-01-01
The Naval Ocean Research and Development Activity (NORDA) is developing the Airborne Bathymetric Survey (ABS) system, which will take shallow water depth soundings from a Navy P-3 aircraft. The system combines active and passive sensors to obtain optical measurements of water depth. The ABS NORDA Scanner is the systems passive multispectral scanner whose design goal is to provide 100 percent coverage of the seafloor, to depths of 20 m in average coastal waters. The ABS NORDA Scanner hardware and operational environment is discussed in detail. The optical model providing the basis for depth extraction is reviewed and the proposed data processing routine discussed.
Cuenca, José; Aleza, Pablo; Vicent, Antonio; Brunel, Dominique; Ollitrault, Patrick; Navarro, Luis
2013-01-01
Genetic analysis of phenotypical traits and marker-trait association in polyploid species is generally considered as a challenge. In the present work, different approaches were combined taking advantage of the particular genetic structures of 2n gametes resulting from second division restitution (SDR) to map a genome region linked to Alternaria brown spot (ABS) resistance in triploid citrus progeny. ABS in citrus is a serious disease caused by the tangerine pathotype of the fungus Alternaria alternata. This pathogen produces ACT-toxin, which induces necrotic lesions on fruit and young leaves, defoliation and fruit drop in susceptible genotypes. It is a strong concern for triploid breeding programs aiming to produce seedless mandarin cultivars. The monolocus dominant inheritance of susceptibility, proposed on the basis of diploid population studies, was corroborated in triploid progeny. Bulk segregant analysis coupled with genome scan using a large set of genetically mapped SNP markers and targeted genetic mapping by half tetrad analysis, using SSR and SNP markers, allowed locating a 3.3 Mb genomic region linked to ABS resistance near the centromere of chromosome III. Clusters of resistance genes were identified by gene ontology analysis of this genomic region. Some of these genes are good candidates to control the dominant susceptibility to the ACT-toxin. SSR and SNP markers were developed for efficient early marker-assisted selection of ABS resistant hybrids.
Cuenca, José; Aleza, Pablo; Vicent, Antonio; Brunel, Dominique; Ollitrault, Patrick; Navarro, Luis
2013-01-01
Genetic analysis of phenotypical traits and marker-trait association in polyploid species is generally considered as a challenge. In the present work, different approaches were combined taking advantage of the particular genetic structures of 2n gametes resulting from second division restitution (SDR) to map a genome region linked to Alternaria brown spot (ABS) resistance in triploid citrus progeny. ABS in citrus is a serious disease caused by the tangerine pathotype of the fungus Alternaria alternata. This pathogen produces ACT-toxin, which induces necrotic lesions on fruit and young leaves, defoliation and fruit drop in susceptible genotypes. It is a strong concern for triploid breeding programs aiming to produce seedless mandarin cultivars. The monolocus dominant inheritance of susceptibility, proposed on the basis of diploid population studies, was corroborated in triploid progeny. Bulk segregant analysis coupled with genome scan using a large set of genetically mapped SNP markers and targeted genetic mapping by half tetrad analysis, using SSR and SNP markers, allowed locating a 3.3 Mb genomic region linked to ABS resistance near the centromere of chromosome III. Clusters of resistance genes were identified by gene ontology analysis of this genomic region. Some of these genes are good candidates to control the dominant susceptibility to the ACT-toxin. SSR and SNP markers were developed for efficient early marker-assisted selection of ABS resistant hybrids. PMID:24116149
Hicar, Mark D; Chen, Xuemin; Kalams, Spyros A; Sojar, Hakimuddin; Landucci, Gary; Forthal, Donald N; Spearman, Paul; Crowe, James E
2016-02-01
Neutralizing antibodies (Abs) are thought to be a critical component of an appropriate HIV vaccine response. It has been proposed that Abs recognizing conformationally dependent quaternary epitopes on the HIV envelope (Env) trimer may be necessary to neutralize diverse HIV strains. A number of recently described broadly neutralizing monoclonal Abs (mAbs) recognize complex and quaternary epitopes. Generally, many such Abs exhibit extensive numbers of somatic mutations and unique structural characteristics. We sought to characterize the native antibody (Ab) response against circulating HIV focusing on such conformational responses, without a prior selection based on neutralization. Using a capture system based on VLPs incorporating cleaved envelope protein, we identified a selection of B cells that produce quaternary epitope targeting Abs (QtAbs). Similar to a number of broadly neutralizing Abs, the Ab genes encoding these QtAbs showed extensive numbers of somatic mutations. However, when expressed as recombinant molecules, these Abs failed to neutralize virus or mediate ADCVI activity. Molecular analysis showed unusually high numbers of mutations in the Ab heavy chain framework 3 region of the variable genes. The analysis suggests that large numbers of somatic mutations occur in Ab genes encoding HIV Abs in chronically infected individuals in a non-directed, stochastic, manner. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hydrogen Ordering in Hexagonal Intermetallic AB5 Type Compounds
NASA Astrophysics Data System (ADS)
Sikora, W.; Kuna, A.
2008-04-01
Intermetallic compounds AB5 type (A = rare-earth atoms, B = transition metal) are known to store reversibly large amounts of hydrogen and as that are discussed in this work. It was shown that the alloy cycling stability can be significantly improved by employing the so-called non-stoichiometric compounds AB5+x and that is why analysis of change of structure turned out to be interesting. A tendency for ordering of hydrogen atoms is one of the most intriguing problems for the unsaturated hydrides. The symmetry analysis method in the frame of the theory of space group and their representation gives opportunity to find all possible transformations of the parent structure. In this work symmetry analysis method was applied for AB5+x structure type (P6/mmm parent symmetry space group). There were investigated all possible ordering types and accompanying atom displacements in positions 1a, 2c, 3g (fully occupied in stoichiometric compounds AB5), in positions 2e, 6l (where atom B could appear in non-stoichiometric compounds) and also 4h, 6m, 6k, 12n, 12o, which could be partly occupied by hydrogen as a result of hydrides. An analysis was carried out of all possible structures of lower symmetry, following from P6/mmm for we k=(0, 0, 0). Also the way of getting the structure described by the P63mc space group with double cell along the z-axiswe k=(0, 0, 0.5), as it is suggested in the work of Latroche et al. is discussed by the symmetry analysis. The analysis was obtained by computer program MODY. The program calculates the so-called basis vectors of irreducible representations of a given symmetry group, which can be used for calculation of possible ordering modes.
Marcatili, Paolo; Ghiotto, Fabio; Tenca, Claudya; Chailyan, Anna; Mazzarello, Andrea N; Yan, Xiao-Jie; Colombo, Monica; Albesiano, Emilia; Bagnara, Davide; Cutrona, Giovanna; Morabito, Fortunato; Bruno, Silvia; Ferrarini, Manlio; Chiorazzi, Nicholas; Tramontano, Anna; Fais, Franco
2013-06-01
Ag selection has been suggested to play a role in chronic lymphocytic leukemia (CLL) pathogenesis, but no large-scale analysis has been performed so far on the structure of the Ag-binding sites (ABSs) of leukemic cell Igs. We sequenced both H and L chain V(D)J rearrangements from 366 CLL patients and modeled their three-dimensional structures. The resulting ABS structures were clustered into a small number of discrete sets, each containing ABSs with similar shapes and physicochemical properties. This structural classification correlates well with other known prognostic factors such as Ig mutation status and recurrent (stereotyped) receptors, but it shows a better prognostic value, at least in the case of one structural cluster for which clinical data were available. These findings suggest, for the first time, to our knowledge, on the basis of a structural analysis of the Ab-binding sites, that selection by a finite quota of antigenic structures operates on most CLL cases, whether mutated or unmutated.
NASA Astrophysics Data System (ADS)
Yao, Hui; Zhang, Chao; Li, Zhi-Jian; Nie, Yi-Hang; Niu, Peng-bin
2018-05-01
We theoretically investigate the thermoelectric properties in a tunneling-coupled parallel DQD-AB ring attached to one normal and one superconducting lead. The role of the intrinsic and extrinsic parameters in improving thermoelectric properties is discussed. The peak value of figure of merit near gap edges increases with the asymmetry parameter decreasing, particularly, when asymmetry parameter is less than 0.5, the figure of merit near gap edges rapidly rises. When the interdot coupling strengh is less than the superconducting gap the thermopower spectrum presents a single-platform structure. While when the interdot coupling strengh is larger than the gap, a double-platform structure appears in thermopower spectrum. Outside the gap the peak values of figure of merit might reach the order of 102. On the basis of optimizing internal parameters the thermoelectric conversion efficiency of the device can be further improved by appropriately matching the total magnetic flux and the flux difference between two subrings.
Ab initio study on the ground and low-lying states of BAlk (Alk = Li, Na, K) molecules.
Xiao, Ke-La; Yang, Chuan-Lu; Wang, Mei-Shan; Ma, Xiao-Guang; Liu, Wen-Wang
2014-10-02
The potential energy curves (PECs) and dipole moment functions of (1)Π, (3)Π, (1)Σ(+), and (3)Σ(+) states of BAlk (Alk = Li, Na, K) are calculated using multireference configuration interaction method and large all-electron basis sets. The effects of inner-shell correlation electron for BAlk are considered. The ro-vibrational energy levels are obtained by solving the Schrödinger equation of nuclear motion based on the ab initio PECs. The spectroscopic parameters are determined from the ro-vibrational levels with Dunham expansion. The PECs are fitted into analytical potential energy functions using the Morse long-range potential function. The dipole moment functions for the states of BAlk are presented. The transition dipole moments for (1)Σ(+) → (1)Π and (3)Σ(+) → (3)Π states of BAlk are obtained. The interactions between the outermost electron of Alk and B 2p electrons for (1)Π, (3)Π, (1)Σ(+), and (3)Σ(+) states are also analyzed, respectively.
Ab initio Potential-Energy Surfaces and Electron-Spin-Exchange Cross Sections for H-O2 Interactions
NASA Technical Reports Server (NTRS)
Stallcop, James R.; Partridge, Harry; Levin, Eugene
1996-01-01
Accurate quartet- and doublet-state potential-energy surfaces for the interaction of a hydrogen atom and an oxygen molecule in their ground states have been determined from an ab initio calculation using large-basis sets and the internally contracted multireference configuration interaction method. These potential surfaces have been used to calculate the H-O2 electron-spin-exchange cross section; the square root of the cross section (in a(sub 0)), not taking into account inelastic effects, can be obtained approximately from the expressions 2.390E(sup -1/6) and 5.266-0.708 log10(E) at low and high collision energies E (in E(sub h)), respectively. These functional forms, as well as the oscillatory structure of the cross section found at high energies, are expected from the nature of the interaction energy. The mean cross section (the cross section averaged over a Maxwellian velocity distribution) agrees reasonably well with the results of measurements.
The application of ab initio calculations to molecular spectroscopy
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.
1989-01-01
The state of the art in ab initio molecular structure calculations is reviewed with an emphasis on recent developments, such as full configuration-interaction benchmark calculations and atomic natural orbital basis sets. It is found that new developments in methodology, combined with improvements in computer hardware, are leading to unprecedented accuracy in solving problems in spectroscopy.
The application of ab initio calculations to molecular spectroscopy
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.
1989-01-01
The state of the art in ab initio molecular structure calculations is reviewed, with an emphasis on recent developments such as full configuration-interaction benchmark calculations and atomic natural orbital basis sets. It is shown that new developments in methodology combined with improvements in computer hardware are leading to unprecedented accuracy in solving problems in spectroscopy.
Electronic and spectroscopic characterizations of SNP isomers
NASA Astrophysics Data System (ADS)
Trabelsi, Tarek; Al Mogren, Muneerah Mogren; Hochlaf, Majdi; Francisco, Joseph S.
2018-02-01
High-level ab initio electronic structure calculations were performed to characterize SNP isomers. In addition to the known linear SNP, cyc-PSN, and linear SPN isomers, we identified a fourth isomer, linear PSN, which is located ˜2.4 eV above the linear SNP isomer. The low-lying singlet and triplet electronic states of the linear SNP and SPN isomers were investigated using a multi-reference configuration interaction method and large basis set. Several bound electronic states were identified. However, their upper rovibrational levels were predicted to pre-dissociate, leading to S + PN, P + NS products, and multi-step pathways were discovered. For the ground states, a set of spectroscopic parameters were derived using standard and explicitly correlated coupled-cluster methods in conjunction with augmented correlation-consistent basis sets extrapolated to the complete basis set limit. We also considered scalar and core-valence effects. For linear isomers, the rovibrational spectra were deduced after generation of their 3D-potential energy surfaces along the stretching and bending coordinates and variational treatments of the nuclear motions.
Interaction between methyl glyoxal and ascorbic acid: experimental and theoretical aspects
NASA Astrophysics Data System (ADS)
Banerjee, D.; Koll, A.; Filarowski, A.; Bhattacharyya, S. P.; Mukherjee, S.
2004-06-01
The absorption spectral change of methyl glyoxal (MG) due to the interaction with ascorbic acid (AA or Vitamin C) has been investigated using steady-state spectroscopic technique. A plausible explanation for the spectral change has been discussed on the basis of hydrogen bonding interaction between the two interacting species. The equilibrium constant for the complex formation due to hydrogen bonding interaction between MG and AA has been obtained from absorption spectral changes. Ab inito calculations with DFT B3LYP/6/31G (d,p) basis sets have been used to find out the molecular structure of the hydrogen bonded complex. The O⋯H distance found in the OH⋯O hydrogen bond turns out to be quite short (1.974 Å) which is in conformity with the large value of the equilibrium constant determined experimentally.
NASA Astrophysics Data System (ADS)
Bewicz, Anna; Musiał, Monika; Kucharski, Stanisław A.
2017-11-01
The equation-of-motion coupled-cluster method for electron affinity calculations has been used to study potential energy curves (PECs) for the Na+2 molecular ion. Although the studied molecule represents the open shell system the applied approach employs the closed shell Na+ 22 ion as the reference. In addition the Na+ 22 system dissociates into the closed shell fragments; hence, the restricted Hartree-Fock scheme can be used within the whole range of interatomic distances, from 2 to 45 Å. We used large basis set engaging 268 basis functions with all 21 electrons correlated. The relativistic effects are included via second-order Douglas-Kroll method. The computed PECs, spectroscopic molecular constants and vibrational energy levels agree well with experimental values if the latter are available or with other theoretical data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Yunfeng, E-mail: yfcai@math.pku.edu.cn; Department of Computer Science, University of California, Davis 95616; Bai, Zhaojun, E-mail: bai@cs.ucdavis.edu
2013-12-15
The iterative diagonalization of a sequence of large ill-conditioned generalized eigenvalue problems is a computational bottleneck in quantum mechanical methods employing a nonorthogonal basis for ab initio electronic structure calculations. We propose a hybrid preconditioning scheme to effectively combine global and locally accelerated preconditioners for rapid iterative diagonalization of such eigenvalue problems. In partition-of-unity finite-element (PUFE) pseudopotential density-functional calculations, employing a nonorthogonal basis, we show that the hybrid preconditioned block steepest descent method is a cost-effective eigensolver, outperforming current state-of-the-art global preconditioning schemes, and comparably efficient for the ill-conditioned generalized eigenvalue problems produced by PUFE as the locally optimal blockmore » preconditioned conjugate-gradient method for the well-conditioned standard eigenvalue problems produced by planewave methods.« less
Ramsland, Paul A.; Farrugia, William; Bradford, Tessa M.; Tan Sardjono, Caroline; Esparon, Sandra; Trist, Halina M.; Powell, Maree S.; Szee Tan, Peck; Cendron, Angela C.; Wines, Bruce D.; Scott, Andrew M.; Hogarth, P. Mark
2012-01-01
The interaction of Abs with their specific FcRs is of primary importance in host immune effector systems involved in infection and inflammation, and are the target for immune evasion by pathogens. FcγRIIa is a unique and the most widespread activating FcR in humans that through avid binding of immune complexes potently triggers inflammation. Polymorphisms of FcγRIIa (high responder/low responder [HR/LR]) are linked to susceptibility to infections, autoimmune diseases, and the efficacy of therapeutic Abs. In this article, we define the three-dimensional structure of the complex between the HR (arginine, R134) allele of FcγRIIa (FcγRIIa-HR) and the Fc region of a humanized IgG1 Ab, hu3S193. The structure suggests how the HR/LR polymorphism may influence FcγRIIa interactions with different IgG subclasses and glycoforms. In addition, mutagenesis defined the basis of the epitopes detected by FcR blocking mAbs specific for FcγRIIa (IV.3), FcγRIIb (X63-21), and a pan FcγRII Ab (8.7). The epitopes detected by these Abs are distinct, but all overlap with residues defined by crystallography to contact IgG. Finally, crystal structures of LR (histidine, H134) allele of FcγRIIa and FcγRIIa-HR reveal two distinct receptor dimers that may represent quaternary states on the cell surface. A model is presented whereby a dimer of FcγRIIa-HR binds Ag–Ab complexes in an arrangement that possibly occurs on the cell membrane as part of a larger signaling assembly. PMID:21856937
NASA Astrophysics Data System (ADS)
Vanicek, Jiri
2014-03-01
Rigorous quantum-mechanical calculations of coherent ultrafast electronic spectra remain difficult. I will present several approaches developed in our group that increase the efficiency and accuracy of such calculations: First, we justified the feasibility of evaluating time-resolved spectra of large systems by proving that the number of trajectories needed for convergence of the semiclassical dephasing representation/phase averaging is independent of dimensionality. Recently, we further accelerated this approximation with a cellular scheme employing inverse Weierstrass transform and optimal scaling of the cell size. The accuracy of potential energy surfaces was increased by combining the dephasing representation with accurate on-the-fly ab initio electronic structure calculations, including nonadiabatic and spin-orbit couplings. Finally, the inherent semiclassical approximation was removed in the exact quantum Gaussian dephasing representation, in which semiclassical trajectories are replaced by communicating frozen Gaussian basis functions evolving classically with an average Hamiltonian. Among other examples I will present an on-the-fly ab initio semiclassical dynamics calculation of the dispersed time-resolved stimulated emission spectrum of the 54-dimensional azulene. This research was supported by EPFL and by the Swiss National Science Foundation NCCR MUST (Molecular Ultrafast Science and Technology) and Grant No. 200021124936/1.
Dobes, Petr; Otyepka, Michal; Strnad, Miroslav; Hobza, Pavel
2006-05-24
The interaction between roscovitine and cyclin-dependent kinase 2 (cdk2) was investigated by performing correlated ab initio quantum-chemical calculations. The whole protein was fragmented into smaller systems consisting of one or a few amino acids, and the interaction energies of these fragments with roscovitine were determined by using the MP2 method with the extended aug-cc-pVDZ basis set. For selected complexes, the complete basis set limit MP2 interaction energies, as well as the coupled-cluster corrections with inclusion of single, double and noninteractive triples contributions [CCSD(T)], were also evaluated. The energies of interaction between roscovitine and small fragments and between roscovitine and substantial sections of protein (722 atoms) were also computed by using density-functional tight-binding methods covering dispersion energy (DFTB-D) and the Cornell empirical potential. Total stabilisation energy originates predominantly from dispersion energy and methods that do not account for the dispersion energy cannot, therefore, be recommended for the study of protein-inhibitor interactions. The Cornell empirical potential describes reasonably well the interaction between roscovitine and protein; therefore, this method can be applied in future thermodynamic calculations. A limited number of amino acid residues contribute significantly to the binding of roscovitine and cdk2, whereas a rather large number of amino acids make a negligible contribution.
Phylogenetic and environmental diversity of DsrAB-type dissimilatory (bi)sulfite reductases
Müller, Albert Leopold; Kjeldsen, Kasper Urup; Rattei, Thomas; Pester, Michael; Loy, Alexander
2015-01-01
The energy metabolism of essential microbial guilds in the biogeochemical sulfur cycle is based on a DsrAB-type dissimilatory (bi)sulfite reductase that either catalyzes the reduction of sulfite to sulfide during anaerobic respiration of sulfate, sulfite and organosulfonates, or acts in reverse during sulfur oxidation. Common use of dsrAB as a functional marker showed that dsrAB richness in many environments is dominated by novel sequence variants and collectively represents an extensive, largely uncharted sequence assemblage. Here, we established a comprehensive, manually curated dsrAB/DsrAB database and used it to categorize the known dsrAB diversity, reanalyze the evolutionary history of dsrAB and evaluate the coverage of published dsrAB-targeted primers. Based on a DsrAB consensus phylogeny, we introduce an operational classification system for environmental dsrAB sequences that integrates established taxonomic groups with operational taxonomic units (OTUs) at multiple phylogenetic levels, ranging from DsrAB enzyme families that reflect reductive or oxidative DsrAB types of bacterial or archaeal origin, superclusters, uncultured family-level lineages to species-level OTUs. Environmental dsrAB sequences constituted at least 13 stable family-level lineages without any cultivated representatives, suggesting that major taxa of sulfite/sulfate-reducing microorganisms have not yet been identified. Three of these uncultured lineages occur mainly in marine environments, while specific habitat preferences are not evident for members of the other 10 uncultured lineages. In summary, our publically available dsrAB/DsrAB database, the phylogenetic framework, the multilevel classification system and a set of recommended primers provide a necessary foundation for large-scale dsrAB ecology studies with next-generation sequencing methods. PMID:25343514
Paton, Robert S; Goodman, Jonathan M
2009-04-01
We have evaluated the performance of a set of widely used force fields by calculating the geometries and stabilization energies for a large collection of intermolecular complexes. These complexes are representative of a range of chemical and biological systems for which hydrogen bonding, electrostatic, and van der Waals interactions play important roles. Benchmark energies are taken from the high-level ab initio values in the JSCH-2005 and S22 data sets. All of the force fields underestimate stabilization resulting from hydrogen bonding, but the energetics of electrostatic and van der Waals interactions are described more accurately. OPLSAA gave a mean unsigned error of 2 kcal mol(-1) for all 165 complexes studied, and outperforms DFT calculations employing very large basis sets for the S22 complexes. The magnitude of hydrogen bonding interactions are severely underestimated by all of the force fields tested, which contributes significantly to the overall mean error; if complexes which are predominantly bound by hydrogen bonding interactions are discounted, the mean unsigned error of OPLSAA is reduced to 1 kcal mol(-1). For added clarity, web-based interactive displays of the results have been developed which allow comparisons of force field and ab initio geometries to be performed and the structures viewed and rotated in three dimensions.
Time Domain Aperture Antenna Study. Volume 1
1974-10-01
IS. KF.Y WORDS (Vo, wo em e•,.’*I aIdv ft # .ce.-y ws4 tdanti, &Ow W•Ai nw* Ab ) Antennas Tranalent Aperture Radiation t.•’t. hiNATIONAL TECHNICAL...aL3 Cora 4 la V%") AA C05 (11c) Substituting Eq. (11) into (8), and using Eq. (5) gives - Ab . c ~ ve Gv (12A) (12B The bracketed terms in Eq. (12) may...experimental data on an ab :;olute basis in thi.; report. S57 - CHAPTER 3 TRANSIENT RADIATION FROM A PARABOLOID 3.1 INTRODUC T ION This chapter is intended to
Accurate ab initio quartic force fields for borane and BeH2
NASA Technical Reports Server (NTRS)
Martin, J. M. L.; Lee, Timothy J.
1992-01-01
The quartic force fields of BH3 and BeH2 have been computed ab initio using an augmented coupled cluster (CCSD(T)) method and basis sets of spdf and spdfg quality. For BH3, the computed spectroscopic constants are in very good agreement with recent experimental data, and definitively confirm misassignments in some older work, in agreement with recent ab initio studies. Using the computed spectroscopic constants, the rovibrational partition function for both molecules has been constructed using a modified direct numerical summation algorithm, and JANAF-style thermochemical tables are presented.
Chao, Shih-Wei; Li, Arvin Huang-Te; Chao, Sheng D
2009-09-01
Intermolecular interaction energy data for the methane dimer have been calculated at a spectroscopic accuracy and employed to construct an ab initio potential energy surface (PES) for molecular dynamics (MD) simulations of fluid methane properties. The full potential curves of the methane dimer at 12 symmetric conformations were calculated by the supermolecule counterpoise-corrected second-order Møller-Plesset (MP2) perturbation theory. Single-point coupled cluster with single and double and perturbative triple excitations [CCSD(T)] calculations were also carried out to calibrate the MP2 potentials. We employed Pople's medium size basis sets [up to 6-311++G(3df, 3pd)] and Dunning's correlation consistent basis sets (cc-pVXZ and aug-cc-pVXZ, X = D, T, Q). For each conformer, the intermolecular carbon-carbon separation was sampled in a step 0.1 A for a range of 3-9 A, resulting in a total of 732 configuration points calculated. The MP2 binding curves display significant anisotropy with respect to the relative orientations of the dimer. The potential curves at the complete basis set (CBS) limit were estimated using well-established analytical extrapolation schemes. A 4-site potential model with sites located at the hydrogen atoms was used to fit the ab initio potential data. This model stems from a hydrogen-hydrogen repulsion mechanism to explain the stability of the dimer structure. MD simulations using the ab initio PES show quantitative agreements on both the atom-wise radial distribution functions and the self-diffusion coefficients over a wide range of experimental conditions. Copyright 2008 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeffrey D. Evanseck; Jeffry D. Madura
A 3-dimensional coal structural model for the Argonne Premium Coal Pocahontas No. 3 has been generated. The model was constructed based on the wealth of structural information available in the literature with the enhancement that the structural diversity within the structure was represented implicitly (for the first time) based on image analysis of HRTEM in combination with LDMS data. The complex and large structural model (>10,000 carbon atoms) will serve as a basis for examining the interaction of gases within this low volatile bituminous coal. Simulations are of interest to permit reasonable simulations of the host-guest interactions with regard tomore » carbon dioxide sequestration within coal and methane displacement from coal. The molecular structure will also prove useful in examining other coal related behavior such as solvent swelling, liquefaction and other properties. Molecular models of CO{sub 2} have been evaluated with water to analyze which classical molecular force-field parameters are the most reasonable to predict the interactions of CO{sub 2} with water. The comparison of the molecular force field models was for a single CO{sub 2}-H{sub 2}O complex and was compared against first principles quantum mechanical calculations. The interaction energies and the electrostatic interaction distances were used as criteria in the comparison. The ab initio calculations included Hartree-Fock, B3LYP, and Moeller-Plesset 2nd, 3rd, and 4th order perturbation theories with basis sets up to the aug-cc-pvtz basis set. The Steele model was the best literature model, when compared to the ab initio data, however, our new CO{sub 2} model reproduces the QM data significantly better than the Steele force-field model.« less
Passos, Helena; Dinis, Teresa B V; Cláudio, Ana Filipa M; Freire, Mara G; Coutinho, João A P
2018-05-23
Aqueous biphasic systems (ABS) composed of ionic liquids (ILs) and conventional salts have been largely investigated and successfully used in separation processes, for which the determination of the corresponding ternary phase diagrams is a prerequisite. However, due the large number of ILs that can be prepared and their high structural versatility, it is impossible to experimentally cover and characterize all possible combinations of ILs and salts that may form ABS. The development of tools for the prediction and design of IL-based ABS is thus a crucial requirement. Based on a large compilation of experimental data, a correlation describing the formation of IL-based ABS is shown here, based on the hydrogen-bonding interaction energies of ILs (EHB) obtained by the COnductor-like Screening MOdel for Real Solvents (COSMO-RS) and the molar entropy of hydration of the salt ions. The ability of the proposed model to predict the formation of novel IL-based ABS is further ascertained.
Dieterich, Johannes M; Werner, Hans-Joachim; Mata, Ricardo A; Metz, Sebastian; Thiel, Walter
2010-01-21
Energy and free energy barriers for acetaldehyde conversion in aldehyde oxidoreductase are determined for three reaction pathways using quantum mechanical/molecular mechanical (QM/MM) calculations on the solvated enzyme. Ab initio single-point QM/MM energies are obtained at the stationary points optimized at the DFT(B3LYP)/MM level. These ab initio calculations employ local correlation treatments [LMP2 and LCCSD(T0)] in combination with augmented triple- and quadruple-zeta basis sets, and the final coupled cluster results include MP2-based corrections for basis set incompleteness and for the domain approximation. Free energy perturbation (FEP) theory is used to generate free energy profiles at the DFT(B3LYP)/MM level for the most important reaction steps by sampling along the corresponding reaction paths using molecular dynamics. The ab initio and FEP QM/MM results are combined to derive improved estimates of the free energy barriers, which differ from the corresponding DFT(B3LYP)/MM energy barriers by about 3 kcal mol(-1). The present results confirm the qualitative mechanistic conclusions from a previous DFT(B3LYP)/MM study. Most favorable is a three-step Lewis base catalyzed mechanism with an initial proton transfer from the cofactor to the Glu869 residue, a subsequent nucleophilic attack that yields a tetrahedral intermediate (IM2), and a final rate-limiting hydride transfer. The competing metal center activated pathway has the same final step but needs to overcome a higher barrier in the initial step on the route to IM2. The concerted mechanism has the highest free energy barrier and can be ruled out. While confirming the qualitative mechanistic scenario proposed previously on the basis of DFT(B3LYP)/MM energy profiles, the present ab initio and FEP QM/MM calculations provide corrections to the barriers that are important when aiming at high accuracy.
Characterization of Na+ and Ca2+ Channels in Zebrafish Dorsal Root Ganglion Neurons
Won, Yu-Jin; Ono, Fumihito; Ikeda, Stephen R.
2012-01-01
Background Dorsal root ganglia (DRG) somata from rodents have provided an excellent model system to study ion channel properties and modulation using electrophysiological investigation. As in other vertebrates, zebrafish (Danio rerio) DRG are organized segmentally and possess peripheral axons that bifurcate into each body segment. However, the electrical properties of zebrafish DRG sensory neurons, as compared with their mammalian counterparts, are relatively unexplored because a preparation suitable for electrophysiological studies has not been available. Methodology/Principal Findings We show enzymatically dissociated DRG neurons from juvenile zebrafish expressing Isl2b-promoter driven EGFP were easily identified with fluorescence microscopy and amenable to conventional whole-cell patch-clamp studies. Two kinetically distinct TTX-sensitive Na+ currents (rapidly- and slowly-inactivating) were discovered. Rapidly-inactivating INa were preferentially expressed in relatively large neurons, while slowly-inactivating INa was more prevalent in smaller DRG neurons. RT-PCR analysis suggests zscn1aa/ab, zscn8aa/ab, zscn4ab and zscn5Laa are possible candidates for these INa components. Voltage-gated Ca2+ currents (ICa) were primarily (87%) comprised of a high-voltage activated component arising from ω-conotoxin GVIA-sensitive CaV2.2 (N-type) Ca2+ channels. A few DRG neurons (8%) displayed a miniscule low-voltage-activated component. ICa in zebrafish DRG neurons were modulated by neurotransmitters via either voltage-dependent or -independent G-protein signaling pathway with large cell-to-cell response variability. Conclusions/Significance Our present results indicate that, as in higher vertebrates, zebrafish DRG neurons are heterogeneous being composed of functionally distinct subpopulations that may correlate with different sensory modalities. These findings provide the first comparison of zebrafish and rodent DRG neuron electrical properties and thus provide a basis for future studies. PMID:22880050
Bemark, Mats; Bergqvist, Peter; Stensson, Anneli; Holmberg, Anna; Mattsson, Johan; Lycke, Nils Y
2011-02-01
Adjuvants have traditionally been appreciated for their immunoenhancing effects, whereas their impact on immunological memory has largely been neglected. In this paper, we have compared three mechanistically distinct adjuvants: aluminum salts (Alum), Ribi (monophosphoryl lipid A), and the cholera toxin A1 fusion protein CTA1-DD. Their influence on long-term memory development was dramatically different. Whereas a single immunization i.p. with 4-hydroxy-3-nitrophenyl acetyl (NP)-chicken γ-globulin and adjuvant stimulated serum anti-NP IgG titers that were comparable at 5 wk, CTA1-DD-adjuvanted responses were maintained for >16 mo with a half-life of anti-NP IgG ∼36 wk, but <15 wk after Ribi or Alum. A CTA1-DD dose-dependent increase in germinal center (GC) size and numbers was found, with >60% of splenic B cell follicles hosting GC at an optimal CTA1-DD dose. Roughly 7% of these GC were NP specific. This GC-promoting effect correlated well with the persistence of long-term plasma cells in the bone marrow and memory B cells in the spleen. CTA1-DD also facilitated increased somatic hypermutation and affinity maturation of NP-specific IgG Abs in a dose-dependent fashion, hence arguing that large GC not only promotes higher Ab titers but also high-quality Ab production. Adoptive transfer of splenic CD80(+), but not CD80(-), B cells, at 1 y after immunization demonstrated functional long-term anti-NP IgG and IgM memory cells. To our knowledge, this is the first report to specifically compare and document that adjuvants can differ considerably in their support of long-term immune responses. Differential effects on the GC reaction appear to be the basis for these differences.
Capyk, Jenna K; D'Angelo, Igor; Strynadka, Natalie C; Eltis, Lindsay D
2009-04-10
KshAB (3-Ketosteroid 9alpha-hydroxylase) is a two-component Rieske oxygenase (RO) in the cholesterol catabolic pathway of Mycobacterium tuberculosis. Although the enzyme has been implicated in pathogenesis, it has largely been characterized by bioinformatics and molecular genetics. Purified KshB, the reductase component, was a monomeric protein containing a plant-type [2Fe-2S] cluster and FAD. KshA, the oxygenase, was a homotrimer containing a Rieske [2Fe-2S] cluster and mononuclear ferrous iron. Of two potential substrates, reconstituted KshAB had twice the specificity for 1,4-androstadiene-3,17-dione as for 4-androstene-3,17-dione. The transformation of both substrates was well coupled to the consumption of O(2). Nevertheless, the reactivity of KshAB with O(2) was low in the presence of 1,4-androstadiene-3,17-dione, with a k(cat)/K(m)(O(2)) of 2450 +/- 80 m(-1) s(-1). The crystallographic structure of KshA, determined to 2.3A(,) revealed an overall fold and a head-to-tail subunit arrangement typical of ROs. The central fold of the catalytic domain lacks all insertions found in characterized ROs, consistent with a minimal and perhaps archetypical RO catalytic domain. The structure of KshA is further distinguished by a C-terminal helix, which stabilizes subunit interactions in the functional trimer. Finally, the substrate-binding pocket extends farther into KshA than in other ROs, consistent with the large steroid substrate, and the funnel accessing the active site is differently orientated. This study provides a solid basis for further studies of a key steroid-transforming enzyme of biotechnological and medical importance.
Capyk, Jenna K.; D'Angelo, Igor; Strynadka, Natalie C.; Eltis, Lindsay D.
2009-01-01
KshAB (3-Ketosteroid 9α-hydroxylase) is a two-component Rieske oxygenase (RO) in the cholesterol catabolic pathway of Mycobacterium tuberculosis. Although the enzyme has been implicated in pathogenesis, it has largely been characterized by bioinformatics and molecular genetics. Purified KshB, the reductase component, was a monomeric protein containing a plant-type [2Fe-2S] cluster and FAD. KshA, the oxygenase, was a homotrimer containing a Rieske [2Fe-2S] cluster and mononuclear ferrous iron. Of two potential substrates, reconstituted KshAB had twice the specificity for 1,4-androstadiene-3,17-dione as for 4-androstene-3,17-dione. The transformation of both substrates was well coupled to the consumption of O2. Nevertheless, the reactivity of KshAB with O2 was low in the presence of 1,4-androstadiene-3,17-dione, with a kcat/KmO2 of 2450 ± 80 m–1 s–1. The crystallographic structure of KshA, determined to 2.3Å, revealed an overall fold and a head-to-tail subunit arrangement typical of ROs. The central fold of the catalytic domain lacks all insertions found in characterized ROs, consistent with a minimal and perhaps archetypical RO catalytic domain. The structure of KshA is further distinguished by a C-terminal helix, which stabilizes subunit interactions in the functional trimer. Finally, the substrate-binding pocket extends farther into KshA than in other ROs, consistent with the large steroid substrate, and the funnel accessing the active site is differently orientated. This study provides a solid basis for further studies of a key steroid-transforming enzyme of biotechnological and medical importance. PMID:19234303
NASA Astrophysics Data System (ADS)
Dimitrova, Yordanka
2006-02-01
The vibrational characteristics (vibrational frequencies, infrared intensities and Raman activities) for the hydrogen-bonded system of Vitamin C ( L-ascorbic acid) with five water molecules have been predicted using ab initio SCF/6-31G(d, p) calculations and DFT (BLYP) calculations with 6-31G(d, p) and 6-31++G(d, p) basis sets. The changes in the vibrational characteristics from free monomers to a complex have been calculated. The ab initio and BLYP calculations show that the complexation between Vitamin C and five water molecules leads to large red shifts of the stretching vibrations for the monomer bonds involved in the hydrogen bonding and very strong increase in their IR intensity. The predicted frequency shifts for the stretching vibrations from Vitamin C taking part in the hydrogen bonding are up to -508 cm -1. The magnitude of the wavenumber shifts is indicative of relatively strong OH···H hydrogen-bonded interactions. In the same time the IR intensity and Raman activity of these vibrations increase upon complexation. The IR intensity increases dramatically (up to 12 times) and Raman activity increases up to three times. The ab initio and BLYP calculations show, that the symmetric OH vibrations of water molecules are more sensitive to the complexation. The hydrogen bonding leads to very large red shifts of these vibrations and very strong increase in their IR intensity. The asymmetric OH stretching vibrations of water, free from hydrogen bonding are less sensitive to the complexation than the hydrogen-bonded symmetric O sbnd H stretching vibrations. The increases of the IR intensities for these vibrations are lower and red shifts are negligible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jäger, Benjamin, E-mail: benjamin.jaeger@uni-rostock.de; Hellmann, Robert, E-mail: robert.hellmann@uni-rostock.de; Bich, Eckard
2016-03-21
A new reference krypton-krypton interatomic potential energy curve was developed by means of quantum-chemical ab initio calculations for 36 interatomic separations. Highly accurate values for the interaction energies at the complete basis set limit were obtained using the coupled-cluster method with single, double, and perturbative triple excitations as well as t-aug-cc-pV5Z and t-aug-cc-pV6Z basis sets including mid-bond functions, with the 6Z basis set being newly constructed for this study. Higher orders of coupled-cluster terms were considered in a successive scheme up to full quadruple excitations. Core-core and core-valence correlation effects were included. Furthermore, relativistic effects were studied not only atmore » a scalar relativistic level using second-order direct perturbation theory, but also utilizing full four-component and Gaunt-effect computations. An analytical pair potential function was fitted to the interaction energies, which is characterized by a depth of 200.88 K with an estimated standard uncertainty of 0.51 K. Thermophysical properties of low-density krypton were calculated for temperatures up to 5000 K. Second and third virial coefficients were obtained from statistical thermodynamics. Viscosity and thermal conductivity as well as the self-diffusion coefficient were computed using the kinetic theory of gases. The theoretical results are compared with experimental data and with results for other pair potential functions from the literature, especially with those calculated from the recently developed ab initio potential of Waldrop et al. [J. Chem. Phys. 142, 204307 (2015)]. Highly accurate experimental viscosity data indicate that both the present ab initio pair potential and the one of Waldrop et al. can be regarded as reference potentials, even though the quantum-chemical methods and basis sets differ. However, the uncertainties of the present potential and of the derived properties are estimated to be considerably lower.« less
Jäger, Benjamin; Hellmann, Robert; Bich, Eckard; Vogel, Eckhard
2016-03-21
A new reference krypton-krypton interatomic potential energy curve was developed by means of quantum-chemical ab initio calculations for 36 interatomic separations. Highly accurate values for the interaction energies at the complete basis set limit were obtained using the coupled-cluster method with single, double, and perturbative triple excitations as well as t-aug-cc-pV5Z and t-aug-cc-pV6Z basis sets including mid-bond functions, with the 6Z basis set being newly constructed for this study. Higher orders of coupled-cluster terms were considered in a successive scheme up to full quadruple excitations. Core-core and core-valence correlation effects were included. Furthermore, relativistic effects were studied not only at a scalar relativistic level using second-order direct perturbation theory, but also utilizing full four-component and Gaunt-effect computations. An analytical pair potential function was fitted to the interaction energies, which is characterized by a depth of 200.88 K with an estimated standard uncertainty of 0.51 K. Thermophysical properties of low-density krypton were calculated for temperatures up to 5000 K. Second and third virial coefficients were obtained from statistical thermodynamics. Viscosity and thermal conductivity as well as the self-diffusion coefficient were computed using the kinetic theory of gases. The theoretical results are compared with experimental data and with results for other pair potential functions from the literature, especially with those calculated from the recently developed ab initio potential of Waldrop et al. [J. Chem. Phys. 142, 204307 (2015)]. Highly accurate experimental viscosity data indicate that both the present ab initio pair potential and the one of Waldrop et al. can be regarded as reference potentials, even though the quantum-chemical methods and basis sets differ. However, the uncertainties of the present potential and of the derived properties are estimated to be considerably lower.
JBIR-23 and -24, novel anticancer agents from Streptomyces sp. AK-AB27.
Motohashi, Keiichiro; Hwang, Ji-Hwan; Sekido, Yoshitaka; Takagi, Motoki; Shin-ya, Kazuo
2009-01-15
The screening for active compounds against malignant pleural mesothelioma (MPM) cells produced by Streptomyces sp. AK-AB27 resulted in the isolation of two compounds with a dodecahydrodibenzo[b,d]furan skeleton named JBIR-23 (1) and -24 (2). Their structures were established on the basis of extensive NMR and MS analyses. Compounds 1 and 2 exhibited cytotoxic effects against several MPM cell lines.
Emerging surgical therapy in the treatment of glaucoma.
Nardi, Marco; Casini, Giamberto; Guidi, Gianluca; Figus, Michele
2015-01-01
There is general consensus that surgery gives a better intraocular pressure (IOP) control than medical therapy, but surgery may be affected by complications and failures, and for this reason nowadays, it is reserved to advanced or clearly progressive glaucoma. In recent years, there have been a lot of efforts to enhance safety and efficacy of conventional surgery as to find new techniques more safer and more effective. Actually, this is a field in rapid evolution, and we have a great number of innovative procedures, often working on complete different basis. These procedures are classified according to their mechanism of action and the type of surgical approach, in order to clearly understand of what we are speaking about. From a general point of view, surgical procedures may be divided in procedures that increase outflow and procedures that reduce aqueous production: most of these procedures can be performed with an ab externo or an ab interno approach. The ab interno approach has great advantages and enormous potential of development; probably, its diffusion will be facilitated by the development of new devices for angle visualization. Nevertheless, it is important to remember that actually none of the new procedures has been validated in large controlled clinical trials and none of the new procedures is indicated when IOP target is very low. © 2015 Elsevier B.V. All rights reserved.
Convergent immunological solutions to Argentine hemorrhagic fever virus neutralization.
Zeltina, Antra; Krumm, Stefanie A; Sahin, Mehmet; Struwe, Weston B; Harlos, Karl; Nunberg, Jack H; Crispin, Max; Pinschewer, Daniel D; Doores, Katie J; Bowden, Thomas A
2017-07-03
Transmission of hemorrhagic fever New World arenaviruses from their rodent reservoirs to human populations poses substantial public health and economic dangers. These zoonotic events are enabled by the specific interaction between the New World arenaviral attachment glycoprotein, GP1, and cell surface human transferrin receptor (hTfR1). Here, we present the structural basis for how a mouse-derived neutralizing antibody (nAb), OD01, disrupts this interaction by targeting the receptor-binding surface of the GP1 glycoprotein from Junín virus (JUNV), a hemorrhagic fever arenavirus endemic in central Argentina. Comparison of our structure with that of a previously reported nAb complex (JUNV GP1-GD01) reveals largely overlapping epitopes but highly distinct antibody-binding modes. Despite differences in GP1 recognition, we find that both antibodies present a key tyrosine residue, albeit on different chains, that inserts into a central pocket on JUNV GP1 and effectively mimics the contacts made by the host TfR1. These data provide a molecular-level description of how antibodies derived from different germline origins arrive at equivalent immunological solutions to virus neutralization.
Far-Infrared and Raman Spectra and The Ring-Twisting Potential Energy Function of 1,3-Cyclohexadiene
NASA Astrophysics Data System (ADS)
Autrey, Daniel; Choo, Jaebum; Laane, Jaan
2001-10-01
The nu19 (A2) ring-twisting vibration of 1,3-cyclohexadiene has been analyzed from the vapor-phase Raman and infrared spectra. The Raman spectrum shows nine ring-twisting transitions in the 116 - 199 cm-1 region. The far-infrared spectrum confirms five of these transitions, despite the fact that the vibration is infrared forbidden in the C2v (planar) approximation. Other Raman and infrared combination bands verify the assignments and provide information on the vibrational coupling. A coordinate dependent kinetic energy expansion for the ring-twisting motion was calculated, and this was used to determine the ring-twisting potential function, which has a barrier to planarity of 1132 cm-1 and energy minima corresponding to twisting angles of 9.1º and 30.1º. Ab initio calculations were also carried out using Moller-Plesset perturbation theory (MP2) with a large number of different basis sets. The various ab initio calculations gave barriers to planarity in the 1197 - 1593 cm-1 range and calculated vibrational frequencies in excellent agreement with the experimental values.
NASA Astrophysics Data System (ADS)
Wang, Lin; Yang, Minghui
2008-11-01
In this work we report an ab initio intermolecular potential energy surface and theoretical spectroscopic studies for Xe -H2O complex. The ab initio energies are calculated with CCSD(T) method and large basis sets (aug-cc-pVQZ for H and O and aug-cc-pVQZ-PP for Xe) augmented by a {3s3p2d2f1g} set of bond functions. This potential energy surface has a global minimum corresponding to a planar and nearly linear hydrogen bonded configuration with a well depth of 192.5cm-1 at intermolecular distance of 4.0Å, which is consistent with the previous determined potential by Wen and Jäger [J. Phys. Chem. A 110, 7560 (2006)]. The bound state calculations have been performed for the complex by approximating the water molecule as a rigid rotor. The theoretical rotational transition frequencies, isotopic shifts, nuclear quadrupole coupling constants, and structure parameters are in good agreement with the experimental observed values. The wavefunctions are analyzed to understand the dynamics of the ground and the first excited states.
Horenstein, Alberto L; Crivellin, Federico; Funaro, Ada; Said, Marcela; Malavasi, Fabio
2003-04-01
Murine monoclonal antibodies (mAb) from cell culture supernatants have been purified in order to acquire clinical grade for in vivo cancer treatment. The starting material was purified by high performance liquid chromatography (HPLC) systems ranging from the analytical scale process to a scaleup to 1 g per batch. Three columns (Protein A affinity chromatography with single-step elution, hydroxyapatite (HA) chromatography followed by linear gradient elution and endotoxin removing-gel chromatography), exploiting different properties of the mAb were applied. The final batches of antibody were subjected to a large panel of tests for the purpose of evaluating the efficacy of the downstream processing. The resulting data have allowed us to determine the maximum number of times the column can be used and to precisely and thoroughly characterize antibody integrity, specificity, and potency according to in-house reference standards. The optimized bioprocessing is rapid, efficient, and reproducible. Not less importantly, all the techniques applied are characterized by costs which are affordable to medium-sized laboratories. They represent the basis for implementing immunotherapeutic protocols transferable to clinical medicine.
Accurate prediction of bond dissociation energies of large n-alkanes using ONIOM-CCSD(T)/CBS methods
NASA Astrophysics Data System (ADS)
Wu, Junjun; Ning, Hongbo; Ma, Liuhao; Ren, Wei
2018-05-01
Accurate determination of the bond dissociation energies (BDEs) of large alkanes is desirable but practically impossible due to the expensive cost of high-level ab initio methods. We developed a two-layer ONIOM-CCSD(T)/CBS method which treats the high layer with CCSD(T) method and the low layer with DFT method, respectively. The accuracy of this method was validated by comparing the calculated BDEs of n-hexane with that obtained at the CCSD(T)-F12b/aug-cc-pVTZ level of theory. On this basis, the C-C BDEs of C6-C20 n-alkanes were calculated systematically using the ONIOM [CCSD(T)/CBS(D-T):M06-2x/6-311++G(d,p)] method, showing a good agreement with the data available in the literature.
Ab initio study of H + + H 2 collisions: Elastic/inelastic and charge transfer processes
NASA Astrophysics Data System (ADS)
Saieswari, A.; Kumar, Sanjay
2007-12-01
An ab initio full configuration interaction study has been undertaken to obtain the global potential energy surfaces for the ground and the first excited electronic state of the H + + H 2 system employing Dunning's cc-pVQZ basis set. Using the ab initio approach the corresponding quasi-diabatic potential energy surfaces and coupling potentials have been obtained. A time-independent quantum mechanical study has been also undertaken for both the inelastic and charge transfer processes at the experimental collision energy Ec.m. = 20.0 eV and the preliminary results show better agreement with the experimental data as compared to the earlier available theoretical studies.
The interaction of MnH(X 7Σ+) with He: Ab initio potential energy surface and bound states
NASA Astrophysics Data System (ADS)
Turpin, Florence; Halvick, Philippe; Stoecklin, Thierry
2010-06-01
The potential energy surface of the ground state of the He-MnH(X Σ7+) van der Waals complex is presented. Within the supermolecular approach of intermolecular energy calculations, a grid of ab initio points was computed at the multireference configuration interaction level using the aug-cc-pVQZ basis set for helium and hydrogen and the relativistic aug-cc-pVQZ-DK basis set for manganese. The potential energy surface was then fitted to a global analytical form which main features are discussed. As a first application of this potential energy surface, we present accurate calculations of bound energy levels of the H3e-MnH and H4e-MnH complexes.
The interaction of MnH(X 7Sigma+) with He: ab initio potential energy surface and bound states.
Turpin, Florence; Halvick, Philippe; Stoecklin, Thierry
2010-06-07
The potential energy surface of the ground state of the He-MnH(X (7)Sigma(+)) van der Waals complex is presented. Within the supermolecular approach of intermolecular energy calculations, a grid of ab initio points was computed at the multireference configuration interaction level using the aug-cc-pVQZ basis set for helium and hydrogen and the relativistic aug-cc-pVQZ-DK basis set for manganese. The potential energy surface was then fitted to a global analytical form which main features are discussed. As a first application of this potential energy surface, we present accurate calculations of bound energy levels of the (3)He-MnH and (4)He-MnH complexes.
Radosević, Nives; Vlahović-Palcevski, Vera; Benko, Ria; Peklar, Jure; Miskulin, Inka; Matuz, Maria; Papaioannidou, Paraskevi; Sabo, Ana; Palcevska-Koceska, Snezana
2009-08-01
A pilot study to assess patients' attitudes towards antimicrobials (ABs) in six European countries (Croatia, Former Yugoslav Republic of Macedonia (FYROM), Greece, Hungary, Slovenia and Serbia), as a step preceding educational intervention on the importance of patients' compliance with instructions on taking ABs and consequences of their inappropriate use. Patients' knowledge, emotions and behaviour regarding ABs were assessed using a structured questionnaire, constructed by a psychologist and intended for general population in six European countries. Questionnaires were filled out by individuals who visited pharmacies and general practitioners. A total of 838 questionnaires were filled in. Respondents from Slovenia showed the best knowledge about ABs, followed by Croatians. The highest willingness for self-medication reported respondents from FYROM. The most positive emotions about ABs were expressed by respondents in Greece and Hungary, and the most negative in Slovenia. All components of attitudes towards antibiotics were influenced by country and level of education. Behaviour regarding ABs complied with emotions and knowledge in all countries. The results of this study may lay a basis for conducting national public campaigns, as a step forward in education of patients on rational AB use. Copyright 2009 John Wiley & Sons, Ltd.
Individual Differences in Temporal Selective Attention as Reflected in Pupil Dilation.
Willems, Charlotte; Herdzin, Johannes; Martens, Sander
2015-01-01
Attention is restricted for the second of two targets when it is presented within 200-500 ms of the first target. This attentional blink (AB) phenomenon allows one to study the dynamics of temporal selective attention by varying the interval between the two targets (T1 and T2). Whereas the AB has long been considered as a robust and universal cognitive limitation, several studies have demonstrated that AB task performance greatly differs between individuals, with some individuals showing no AB whatsoever. Here, we studied these individual differences in AB task performance in relation to differences in attentional timing. Furthermore, we investigated whether AB magnitude is predictive for the amount of attention allocated to T1. For both these purposes pupil dilation was measured, and analyzed with our recently developed deconvolution method. We found that the dynamics of temporal attention in small versus large blinkers differ in a number of ways. Individuals with a relatively small AB magnitude seem better able to preserve temporal order information. In addition, they are quicker to allocate attention to both T1 and T2 than large blinkers. Although a popular explanation of the AB is that it is caused by an unnecessary overinvestment of attention allocated to T1, a more complex picture emerged from our data, suggesting that this may depend on whether one is a small or a large blinker. The use of pupil dilation deconvolution seems to be a powerful approach to study the temporal dynamics of attention, bringing us a step closer to understanding the elusive nature of the AB. We conclude that the timing of attention to targets may be more important than the amount of allocated attention in accounting for individual differences.
Oyeyemi, Victor B; Pavone, Michele; Carter, Emily A
2011-12-09
Quantum chemistry has become one of the most reliable tools for characterizing the thermochemical underpinnings of reactions, such as bond dissociation energies (BDEs). The accurate prediction of these particular properties (BDEs) are challenging for ab initio methods based on perturbative corrections or coupled cluster expansions of the single-determinant Hartree-Fock wave function: the processes of bond breaking and forming are inherently multi-configurational and require an accurate description of non-dynamical electron correlation. To this end, we present a systematic ab initio approach for computing BDEs that is based on three components: 1) multi-reference single and double excitation configuration interaction (MRSDCI) for the electronic energies; 2) a two-parameter scheme for extrapolating MRSDCI energies to the complete basis set limit; and 3) DFT-B3LYP calculations of minimum-energy structures and vibrational frequencies to account for zero point energy and thermal corrections. We validated our methodology against a set of reliable experimental BDE values of CC and CH bonds of hydrocarbons. The goal of chemical accuracy is achieved, on average, without applying any empirical corrections to the MRSDCI electronic energies. We then use this composite scheme to make predictions of BDEs in a large number of hydrocarbon molecules for which there are no experimental data, so as to provide needed thermochemical estimates for fuel molecules. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development and Testing of Recombinant Single Domain Antibodies
2010-12-31
critical insights to the basis of the sdAb-target interaction and sdAb properties. (a) Papers published in peer-reviewed journals (N/A for none) Structures...Library. Anal. Chem. 78:8245-55 List of papers submitted or published that acknowledge ARO support during this reporting period. List the papers ...including journal references, in the following categories: (b) Papers published in non-peer-reviewed journals or in conference proceedings (N/A for none
The Atacama B-Mode Search: CMB Polarimetry with Transition-Edge-Sensor Bolometers
NASA Astrophysics Data System (ADS)
Essinger-Hileman, T.; Appel, J. W.; Beal, J. A.; Cho, H. M.; Fowler, J.; Halpern, M.; Hasselfield, M.; Irwin, K. D.; Marriage, T. A.; Niemack, M. D.; Page, L.; Parker, L. P.; Pufu, S.; Staggs, S. T.; Stryzak, O.; Visnjic, C.; Yoon, K. W.; Zhao, Y.
2009-12-01
The Atacama B-mode Search (ABS) experiment is a 145 GHz polarimeter designed to measure the B-mode polarization of the Cosmic Microwave Background (CMB) at large angular scales. The ABS instrument will ship to the Atacama Desert of Chile fully tested and ready to observe in 2010. ABS will image large-angular-scale CMB polarization anisotropies onto a focal plane of 240 feedhorn-coupled, transition-edge sensor (TES) polarimeters, using a cryogenic crossed-Dragone design. The ABS detectors, which are fabricated at NIST, use orthomode transducers to couple orthogonal polarizations of incoming radiation onto separate TES bolometers. The incoming radiation is modulated by an ambient-temperature half-wave plate in front of the vacuum window at an aperture stop. Preliminary detector characterization indicates that the ABS detectors can achieve a sensitivity of 300 μK√s in the field. This paper describes the ABS optical design and detector readout scheme, including feedhorn design and performance, magnetic shielding, focal plane architecture, and cryogenic electronics.
NASA Astrophysics Data System (ADS)
Cremer, Dieter; Dorofeeva, Olga V.; Mastryukov, Vladimir S.
1981-09-01
Restricted Hartree—Fock calculations on 21 planar and puckered conformers of azetidine have been done employing a split valence basis augmented by d functions. Complete geometry optimizations have been performed for eight conformers. In this way the puckering potential of azetidine is explored over the range -40° < ø (puckering angle) < 40°, for both sp3 and sp2 hybridization of the nitrogen atom. In its equatorial form, azetidine is slightly more puckered than cyclobutane. This is because of a decrease of van der Waals' repulsion between H atoms. Charge effects lead to destabilization of the axial forms. There is only moderate coupling between puckering and methylene group rocking. Previously published electron diffraction (ED) data are reinvestigated using vibrational corrections and information from the ab initio calculations. On the basis of this MO constrained ED (MOCED) analysis a puckering angle φ = 35.1(1.8)° is found. Observed rg and re bond distances are compared with ab initio values.
Hierarchical Cluster Formation in Concentrated Monoclonal Antibody Formulations
NASA Astrophysics Data System (ADS)
Godfrin, P. Douglas; Zarzar, Jonathan; Zarraga, Isidro Dan; Porcar, Lionel; Falus, Peter; Wagner, Norman; Liu, Yun
Reversible cluster formation has been identified as an underlying cause of large solution viscosities observed in some concentrated monoclonal antibody (mAb) formulations. As high solution viscosity prevents the use of subcutaneous injection as a delivery method for some mAbs, a fundamental understanding of the interactions responsible for high viscosities in concentrated mAb solutions is of significant relevance to mAb applications in human health care as well as of intellectual interest. Here, we present a detailed investigation of a well-studied IgG1 based mAb to relate the short time dynamics and microstructure to significant viscosity changes over a range of pharmaceutically relevant physiochemical conditions. Using a combination of experimental techniques, it is found that upon adding Na2SO4, these antibodies dimerize in solution. Proteins form strongly bounded reversible dimers at dilute concentrations that, when concentrated, interact with each other to form loosely bounded, large, transient clusters. The combined effect of forming strongly bounded dimers and a large transient network is a significant increase in the solution viscosity. Strongly bounded, reversible dimers may exist in many IgG1 based mAb systems such that these results contribute to a more comprehensive understanding of the physical mechanisms producing high viscosities in concentrated protein solutions.
Dissecting linear and conformational epitopes on the native thyrotropin receptor.
Ando, Takao; Latif, Rauf; Daniel, Samira; Eguchi, Katsumi; Davies, Terry F
2004-11-01
The TSH receptor (TSHR) is the primary antigen in Graves' disease. In this condition, autoantibodies to the TSHR that have intrinsic thyroid-stimulating activity develop. We studied the epitopes on the native TSHR using polyclonal antisera and monoclonal antibodies (mAbs) derived from an Armenian hamster model of Graves' disease. Of 14 hamster mAbs analyzed, five were shown to bind to conformational epitopes including one mAb with potent thyroid-stimulating activity. Overlapping conformational epitopes were determined by cell-binding competition assays using fluorescently labeled mAbs. We identified two distinct conformational epitopes: epitope A for both stimulating and blocking mAbs and epitope B for only blocking mAbs. Examination of an additional three mouse-derived stimulating TSHR-mAbs also showed exclusive binding to epitope A. The remaining nine hamster-derived mAbs were neutral or low-affinity blocking antibodies that recognized linear epitopes within the TSHR cleaved region (residues 316-366) (epitope C). Serum from the immunized hamsters also recognized conformational epitopes A and B but, in addition, also contained high levels of TSHR-Abs interacting within the linear epitope C region. In summary, these studies indicated that the natively conformed TSHR had a restricted set of epitopes recognized by TSHR-mAbs and that the binding site for stimulating TSHR-Abs was highly conserved. However, high-affinity TSHR-blocking antibodies recognized two conformational epitopes, one of which was indistinguishable from the thyroid-stimulating epitope. Hence, TSHR-stimulating and blocking antibodies cannot be distinguished purely on the basis of their conformational epitope recognition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazante, Alexandre P., E-mail: abazante@chem.ufl.edu; Bartlett, Rodney J.; Davidson, E. R.
The benzene radical anion is studied with ab initio coupled-cluster theory in large basis sets. Unlike the usual assumption, we find that, at the level of theory investigated, the minimum energy geometry is non-planar with tetrahedral distortion at two opposite carbon atoms. The anion is well known for its instability to auto-ionization which poses computational challenges to determine its properties. Despite the importance of the benzene radical anion, the considerable attention it has received in the literature so far has failed to address the details of its structure and shape-resonance character at a high level of theory. Here, we examinemore » the dynamic Jahn-Teller effect and its impact on the anion potential energy surface. We find that a minimum energy geometry of C{sub 2} symmetry is located below one D{sub 2h} stationary point on a C{sub 2h} pseudo-rotation surface. The applicability of standard wave function methods to an unbound anion is assessed with the stabilization method. The isotropic hyperfine splitting constants (A{sub iso}) are computed and compared to data obtained from experimental electron spin resonance experiments. Satisfactory agreement with experiment is obtained with coupled-cluster theory and large basis sets such as cc-pCVQZ.« less
NASA Astrophysics Data System (ADS)
Palmer, Michael H.
1997-03-01
The relatively minor deviations from true tetrahedral geometry for molecules of type MX 2Y 2 where M is tetravalent, and X, Y are either H, Me or halogen are discussed, in the light of ab initio calculations of equilibrium geometry with a large (triple zeta valence + polarisation) basis, at both the SCF and MP2 levels. The results are compared with known experimental structural and dipole moment data; in most cases a very close correlation with experiment is found, with slight improvements in the MP2 data. The study is coupled with a localised orbital study of relevance to Bent's Rule.
NASA Astrophysics Data System (ADS)
Remko, Milan
Ab initio SCF and DFT methods were used to characterize the gas-phase complexes of selected carbonyl and silacarbonyl bases with Li+ , Na+ and Mg2+ . Geometries were optimized at the Hartree-Fock ab initio and Becke 3LYP DFT levels with the 6-31G* basis set. Frequency computations were performed at the RHF/6-31G* level of theory. Interaction energies of the cation-coordinated systems also were determined with the MP2/6-31G* method. The effect of extension of basis set (to the 6-31+ G* basis) on the computed properties of anion-metal cation complexes was investigated. Calculated energies of formation vary as Mg2+ > Li+ > Na+ . The Becke 3LYP DFT binding energies were comparable with those obtained at the correlated MP2 level and are in good agreement with available experimental data.
GAUSSIAN 76: An ab initio Molecular Orbital Program
DOE R&D Accomplishments Database
Binkley, J. S.; Whiteside, R.; Hariharan, P. C.; Seeger, R.; Hehre, W. J.; Lathan, W. A.; Newton, M. D.; Ditchfield, R.; Pople, J. A.
1978-01-01
Gaussian 76 is a general-purpose computer program for ab initio Hartree-Fock molecular orbital calculations. It can handle basis sets involving s, p and d-type Gaussian functions. Certain standard sets (STO-3G, 4-31G, 6-31G*, etc.) are stored internally for easy use. Closed shell (RHF) or unrestricted open shell (UHF) wave functions can be obtained. Facilities are provided for geometry optimization to potential minima and for limited potential surface scans.
Ab initio atomic recombination reaction energetics on model heat shield surfaces
NASA Technical Reports Server (NTRS)
Senese, Fredrick; Ake, Robert
1992-01-01
Ab initio quantum mechanical calculations on small hydration complexes involving the nitrate anion are reported. The self-consistent field method with accurate basis sets has been applied to compute completely optimized equilibrium geometries, vibrational frequencies, thermochemical parameters, and stable site labilities of complexes involving 1, 2, and 3 waters. The most stable geometries in the first hydration shell involve in-plane waters bridging pairs of nitrate oxygens with two equal and bent hydrogen bonds. A second extremely labile local minimum involves out-of-plane waters with a single hydrogen bond and lies about 2 kcal/mol higher. The potential in the region of the second minimum is extremely flat and qualitatively sensitive to changes in the basis set; it does not correspond to a true equilibrium structure.
Priyathilaka, Thanthrige Thiunuwan; Bathige, S D N K; Herath, H M L P B; Lee, Sukkyoung; Lee, Jehee
2017-10-01
Tetraspanins are a superfamily of transmembrane proteins involved in a diverse range of physiological processes including differentiation, adhesion, signal transduction, cell motility, and immune responses. In the present study, two tetraspanins, CD63 and tetraspanin 33 (TSPAN33) from disk abalone (AbCD63 and AbTSPAN33), were identified and characterized at the molecular level. The coding sequences for AbCD63 and AbTSPAN33 encoded polypeptides of 234 and 290 amino acids (aa) with predicted molecular mass of 25.3 and 32.5 kDa, respectively. The deduced AbCD63 and AbTSPAN33 protein sequences were also predicted to have a typical tetraspanin domain architecture, including four transmembrane domains (TM), short N- and C- terminal regions, a short intracellular loop, as well as a large and small extracellular loop. A characteristic CCG motif and cysteine residues, which are highly conserved across CD63 and TSPAN33 proteins of different species, were present in the large extracellular loop of both abalone tetraspanins. Phylogenetic analysis revealed that the AbCD63 and AbTSPAN33 clustered in the invertebrate subclade of tetraspanins, thus exhibiting a close relationship with tetraspanins of other mollusks. The AbCD63 and AbTSPAN33 mRNA transcripts were detected at early embryonic development stages of disk abalone with significantly higher amounts at the trochophore stage, suggesting the involvement of these proteins in embryonic development. Both AbCD63 and AbTSPAN33 were ubiquitously expressed in all the tissues of unchallenged abalones analyzed, with the highest expression levels found in hemocytes. Moreover, significant induction of AbCD63 and AbTSPAN33 mRNA expression was observed in immunologically important tissues, such as hemocytes and gills, upon stimulation with live bacteria (Vibrio parahaemolyticus and Listeria monocytogenes), virus (viral hemorrhagic septicemia virus), and two potent immune stimulators [polyinosinic:polycytidylic acid (poly I:C) and lipopolysaccharide (LPS)]. Collectively, these findings suggest that AbCD63 and AbTSPAN33 are involved in innate immune responses in disk abalone during pathogenic stress. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ab-initio atomic level stress and role of d-orbitals in CuZr, CuZn and CuY
NASA Astrophysics Data System (ADS)
Ojha, Madhusudan; Nicholson, Don M.; Egami, Takeshi
2015-03-01
Atomic level stress offers a new tool to characterize materials within the local approximation to density functional theory (DFT). Ab-initio atomic level stresses in B2 structures of CuZr, CuZn and CuY are calculated and results are explained on the basis of d-orbital contributions to Density of States (DOS). The overlap of d-orbital DOS plays an important role in the relative magnitude of atomic level stresses in these structures. The trends in atomic level stresses that we observed in these simple B2 structures are also seen in complex structures such as liquids, glasses and solid solutions. The stresses are however modified by the different coordination and relaxed separation distances in these complex structures. We used the Locally Self-Consistent Multiple Scattering (LSMS) code and Vienna Ab-initio Simulation Package (VASP) for ab-initio calculations.
NASA Technical Reports Server (NTRS)
Lee, Timothy J.
1989-01-01
HF, H2O, CN- and their hydrogen-bonded complexes were studied using state-of-the-art ab initio quantum mechanical methods. A large Gaussian one particle basis set consisting of triple zeta plus double polarization plus diffuse s and p functions (TZ2P + diffuse) was used. The theoretical methods employed include self consistent field, second order Moller-Plesset perturbation theory, singles and doubles configuration interaction theory and the singles and doubles coupled cluster approach. The FH-CN- and FH-NC- and H2O-CN-, H2O-NC- pairs of complexes are found to be essentially isoenergetic. The first pair of complexes are predicted to be bound by approx. 24 kcal/mole and the latter pair bound by approximately 15 kcal/mole. The ab initio binding energies are in good agreement with the experimental values. The two being shorter than the analogous C-N hydrogen bond. The infrared (IR) spectra of the two pairs of complexes are also very similar, though a severe perturbation of the potential energy surface by proton exchange means that the accurate prediction of the band center of the most intense IR mode requires a high level of electronic structure theory as well as a complete treatment of anharmonic effects. The bonding of anionic hydrogen-bonded complexes is discussed and contrasted with that of neutral hydrogen-bonded complexes.
Hettich, Michael; Lahoti, Jayashree; Prasad, Shruthi; Niedermann, Gabriele
2016-08-15
T cell-recruiting bispecific antibodies (bsAb) show promise in hematologic malignancies and are also being evaluated in solid tumors. In this study, we investigated whether T cell-recruiting bsAbs synergize with hypofractionated tumor radiotherapy (hRT) and/or blockade of the programmed death-1 (PD-1) immune checkpoint, both of which can increase tumor-infiltrating lymphocyte (TIL) numbers. Unexpectedly, large melanomas treated with hRT plus bsAb (AC133×CD3) relapsed faster than those treated with hRT alone, accompanied by massive TIL apoptosis. This fast relapse was delayed by the further addition of anti-PD-1. Mechanistic investigations revealed restimulation-induced cell death mediated by BIM and FAS as an additional cause of bsAb-mediated TIL depletion. In contrast, the double combination of hRT and anti-PD-1 strongly increased TIL numbers, and even very large tumors were completely eradicated. Our study reveals the risk that CD3-engaging bsAbs can induce apoptotic TIL depletion followed by rapid tumor regrowth, reminiscent of tolerance induction by CD3 mAb-mediated T-cell depletion, warranting caution in their use for the treatment of solid tumors. Our findings also argue that combining radiotherapy and anti-PD-1 can be quite potent, including against very large tumors. Cancer Res; 76(16); 4673-83. ©2016 AACR. ©2016 American Association for Cancer Research.
The study of molecular spectroscopy by ab initio methods
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.
1991-01-01
This review illustrates the potential of theory for solving spectroscopic problems. The accuracy of approximate techniques for including electron correlation have been calibrated by comparison with full configuration-interaction calculations. Examples of the application of ab initio calculations to vibrational, rotational, and electronic spectroscopy are given. It is shown that the state-averaged, complete active space self-consistent field, multireference configuration-interaction procedure provides a good approach for treating several electronic states accurately in a common molecular orbital basis.
NASA Astrophysics Data System (ADS)
Hamed, Samia; Rangel, Tonatiuh; Bruneval, Fabien; Neaton, Jeffrey B.
Quantitative understanding of charged and neutral excitations of organic molecules is critical in diverse areas of study that include astrophysics and the development of energy technologies that are clean and efficient. The recent use of local basis sets with ab initio many-body perturbation theory in the GW approximation and the Bethe-Saltpeter equation approach (BSE), methods traditionally applied to periodic condensed phases with a plane-wave basis, has opened the door to detailed study of such excitations for molecules, as well as accurate numerical benchmarks. Here, through a series of systematic benchmarks with a Gaussian basis, we report on the extent to which the predictive power and utility of this approach depend critically on interdependent underlying approximations and choices for molecules, including the mean-field starting point (eg optimally-tuned range separated hybrids, pure DFT functionals, and untuned hybrids), the GW scheme, and the Tamm Dancoff approximation. We demonstrate the effects of these choices in the context of Thiels' set while drawing analogies to linear-response time-dependent DFT and making comparisons to best theoretical estimates from higher-order wavefunction-based theories.
Thermophysical properties of krypton-helium gas mixtures from ab initio pair potentials
2017-01-01
A new potential energy curve for the krypton-helium atom pair was developed using supermolecular ab initio computations for 34 interatomic distances. Values for the interaction energies at the complete basis set limit were obtained from calculations with the coupled-cluster method with single, double, and perturbative triple excitations and correlation consistent basis sets up to sextuple-zeta quality augmented with mid-bond functions. Higher-order coupled-cluster excitations up to the full quadruple level were accounted for in a scheme of successive correction terms. Core-core and core-valence correlation effects were included. Relativistic corrections were considered not only at the scalar relativistic level but also using full four-component Dirac–Coulomb and Dirac–Coulomb–Gaunt calculations. The fitted analytical pair potential function is characterized by a well depth of 31.42 K with an estimated standard uncertainty of 0.08 K. Statistical thermodynamics was applied to compute the krypton-helium cross second virial coefficients. The results show a very good agreement with the best experimental data. Kinetic theory calculations based on classical and quantum-mechanical approaches for the underlying collision dynamics were utilized to compute the transport properties of krypton-helium mixtures in the dilute-gas limit for a large temperature range. The results were analyzed with respect to the orders of approximation of kinetic theory and compared with experimental data. Especially the data for the binary diffusion coefficient confirm the predictive quality of the new potential. Furthermore, inconsistencies between two empirical pair potential functions for the krypton-helium system from the literature could be resolved. PMID:28595411
Thermophysical properties of krypton-helium gas mixtures from ab initio pair potentials
NASA Astrophysics Data System (ADS)
Jäger, Benjamin; Bich, Eckard
2017-06-01
A new potential energy curve for the krypton-helium atom pair was developed using supermolecular ab initio computations for 34 interatomic distances. Values for the interaction energies at the complete basis set limit were obtained from calculations with the coupled-cluster method with single, double, and perturbative triple excitations and correlation consistent basis sets up to sextuple-zeta quality augmented with mid-bond functions. Higher-order coupled-cluster excitations up to the full quadruple level were accounted for in a scheme of successive correction terms. Core-core and core-valence correlation effects were included. Relativistic corrections were considered not only at the scalar relativistic level but also using full four-component Dirac-Coulomb and Dirac-Coulomb-Gaunt calculations. The fitted analytical pair potential function is characterized by a well depth of 31.42 K with an estimated standard uncertainty of 0.08 K. Statistical thermodynamics was applied to compute the krypton-helium cross second virial coefficients. The results show a very good agreement with the best experimental data. Kinetic theory calculations based on classical and quantum-mechanical approaches for the underlying collision dynamics were utilized to compute the transport properties of krypton-helium mixtures in the dilute-gas limit for a large temperature range. The results were analyzed with respect to the orders of approximation of kinetic theory and compared with experimental data. Especially the data for the binary diffusion coefficient confirm the predictive quality of the new potential. Furthermore, inconsistencies between two empirical pair potential functions for the krypton-helium system from the literature could be resolved.
Heavier alkali-metal monosulfides (KS, RbS, CsS, and FrS) and their cations.
Lee, Edmond P F; Wright, Timothy G
2005-10-08
The heavier alkali-metal monosulfides (KS, RbS, CsS, and FrS) have been studied by high-level ab initio calculations. The RCCSD(T) method has been employed, combined with large flexible valence basis sets. All-electron basis sets are used for potassium and sulfur, with effective core potentials being used for the other metals, describing the core electrons. Potential-energy curves are calculated for the lowest two neutral and cationic states: all neutral monosulfide species have a (2)Pi ground state, in contrast with the alkali-metal monoxide species, which undergo a change in the electronic ground state from (2)Pi to (2)Sigma(+) as the group is descended. In the cases of KS, RbS, and CsS, spin-orbit curves are also calculated. We also calculate potential-energy curves for the lowest (3)Sigma(-) and (3)Pi states of the cations. From the potential-energy curves, spectroscopic constants are derived, and for KS the spectroscopic results are compared to experimental spectroscopic values. Ionization energies, dissociation energies, and heats of formation are also calculated; for KS, we explore the effects of relativity and basis set extrapolation on these values.
{bold {ital Ab initio}} studies of the structural and electronic properties of solid cubane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richardson, S.L.; Martins, J.L.
1998-12-01
In this paper, we report {ital ab initio} calculation of the structural and electronic properties of solid cubane (s-C{sub 8}H{sub 8}) in the local-density approximation. By using an {ital ab initio} constant pressure extended molecular dynamics method with variable cell shape proposed by Wentzcovitch, Martins, and Price, we compute a lattice parameter {ital a} and a bond angle {alpha} for the rhombohedral Bravais lattice and compare it with experimental x-ray data. We obtain bond lengths for the mononuclear C{sub 8}H{sub 8} unit of basis atoms, as well as a density of states and heat of formation. {copyright} {ital 1998} {italmore » The American Physical Society}« less
Mehrotra nee Tandon, P; Lind, D S; Bear, H D; Susskind, B M
1992-08-01
Previously we reported that 10 mM ornithine (Orn) selectively inhibits the development of CD8+ CTL in MLC. Herein we show that induction by alpha-CD3 mAb of CD8+ killer cells which manifest antibody-redirected cytotoxicity (ARC) of FcR+ targets is not Orn sensitive. Orn resistance was independent of activation kinetics or alpha-CD3 mAb concentration. alpha-CD3 mAb added to the cytotoxicity assay did not reveal a cytolytic potential in CTL from an Orn-treated MLC when the target cells bore both the inducing alloantigen and FcR. Addition of alpha-CD3 mAb to MLC failed to overcome Orn inhibition of CTL and yet induced ARC activity in the same culture. Expression of mRNA for pore-forming proteins (PFP) and granzyme B was inhibited by Orn in CTL but not in ARC killer cells. Our results demonstrate differences in the T cell activation process stimulated by alloantigen or alpha-CD3 mAb.
On the impact of `smart tyres' on existing ABS/EBD control systems
NASA Astrophysics Data System (ADS)
Cheli, Federico; Leo, Elisbetta; Melzi, Stefano; Sabbioni, Edoardo
2010-12-01
The paper focuses on the possibility of enhancing the performances of the ABS (Antilock Braking System)/EBD (electronic braking distribution) control system by using the additional information provided by 'smart tyres' (i.e. tyres with embedded sensors and digital-computing capability). In particular, on the basis of previous works [Braghin et al., Future car active controls through the measurement of contact forces and patch features, Veh. Syst. Dyn. 44 (2006), pp. 3-13], the authors assumed that these components should be able to provide estimates for the normal loads acting on the four wheels and for the tyre-road friction coefficient. The benefits produced by the introduction of these additional channels into the existing ABS/EBD control logic were evaluated through simulations carried out with a validated 14 degrees of freedom (dofs) vehicle + ABS/EBD control logic numerical model. The performance of the ABS control system was evaluated through a series of braking manoeuvres on straight track focusing the attention on μ -jump conditions, while the performance of the EBD control system was assessed by means of braking manoeuvres carried out considering several weight distributions.
NASA Astrophysics Data System (ADS)
Nowek, Andrzej; Richardson, Rhonda; Babinec, Peter; Leszczyński, Jerzy
1997-12-01
The electronic structure and relative stability of the halogenated thiophosphorus compounds SPCl, SPF, and SPBr and their isomers ClSP, FSP, and BrSP were investigated using ab initio post-Hartree-Fock methods. Molecular geometries of all these structures together with the transition states between isomers, have been optimized at the SCF, MP2, and CCSD levels. Single-point CCSD(T) and MP4 calculations have been performed at the optimal CCSD and MP2 geometries. All calculations have been done using the standard 6-311G(2d) basis set. Harmonic vibrational frequencies and IR intensities for all species were calculated at the correlated levels, and they are in good agreement with the available data from matrix-isolated IR spectroscopy. Because the isomers ClSP, FSP, and BrSP have not yet been experimentally observed, we extended our study by calculating of equilibrium constants of isomerization using Eyring transition state theory, and we have found that at sufficiently high temperatures (≈ 1000 K) the equilibrium constants are large enough for the possible detection of these isomers.
Ab-Initio Description and Prediction of Properties of Carbon-Based and Other Non-Metallic Materials
NASA Technical Reports Server (NTRS)
Bagayoko, D.; Zhao, G. L.; Hasan, S.
2001-01-01
We have resolved the long-standing problem consisting of 30%-50% theoretical underestimates of the band gaps of non-metallic materials. We describe the Bagayoko, Zhao, and Williams (BZW) method that rigorously circumvents the basis-set and variational effect presumed to be a cause of these underestimates. We present ab-initio, computational results that are in agreement with experiment for diamond (C), silicon (Si), silicon carbides (3C-SiC and 4H-SiC), and other semiconductors (GaN, BaTiO3, AlN, ZnSe, ZnO). We illustrate the predictive capability of the BZW method in the case of the newly discovered cubic phase of silicon nitride (c-Si3N4) and of selected carbon nanotabes [(10,0), and (8,4)]. Our conclusion underscores the inescapable need for the BZW method in ab-initio calculations that employ a basis set in a variational approach. Current nanoscale trends amplify this need. We estimate that the potential impact of applications of the BZW method in advancing our understanding of nonmetallic materials, in informing experiment, and particularly in guiding device design and fabrication is simply priceless.
NASA Astrophysics Data System (ADS)
Huang, Jing; Zhou, Yanzi; Xie, Daiqian
2018-04-01
We report a new full-dimensional ab initio potential energy surface for the Ar-HF van der Waals complex at the level of coupled-cluster singles and doubles with noniterative inclusion of connected triples levels [CCSD(T)] using augmented correlation-consistent quintuple-zeta basis set (aV5Z) plus bond functions. Full counterpoise correction was employed to correct the basis-set superposition error. The hypersurface was fitted using artificial neural network method with a root mean square error of 0.1085 cm-1 for more than 8000 ab initio points. The complex was found to prefer a linear Ar-H-F equilibrium structure. The three-dimensional discrete variable representation method and the Lanczos propagation algorithm were then employed to calculate the rovibrational states without separating inter- and intra- molecular nuclear motions. The calculated vibrational energies of Ar-HF differ from the experiment values within about 1 cm-1 on the first four HF vibrational states, and the predicted pure rotational energies on (0000) and (1000) vibrational states are deviated from the observed value by about 1%, which shows the accuracy of our new PES.
Zheng, Xuehua; Rong, Xia; Feng, Ying; Sun, Xikui; Li, Liang; Wang, Qian; Wang, Min; Liu, Wenkuan; Li, Chufang; Yang, Yiyu; Zhou, Rong; Lu, Jiahai; Feng, Liqiang; Chen, Ling
2017-01-01
Re-emerging human adenovirus types 14 (Ad14) and 55 (Ad55) have caused severe respiratory diseases and even deaths during recent outbreaks. However, the seroprevalence of neutralizing antibodies (nAbs) in healthy adults, which may reflect previous circulation and help to predict potential outbreaks, remains unclear. In this study, we established micro-neutralizing (MN) assays on the basis of recombinant Ad14 and Ad55 reporter viruses, and we investigated serum nAbs in healthy blood donors from Southern China. We found that the overall seropositive rates were 24.8% and 22.4% for Ad14 and Ad55 nAbs, respectively. The seropositive rates were low in individuals younger than 20, and they gradually increased with age. Ad55-seropositive individuals tended to have high nAb titers (>1000), while low (72–200) and moderate (201–1000) nAb levels were frequently observed in Ad14-seropositive ones. Surprisingly, the seropositive rates and nAb levels were associated with the blood type but not the gender of the blood donors, with type AB individuals displaying higher seropositive rates and nAb levels. Interestingly, a significant positive correlation was observed between Ad14 and Ad55 seroprevalence, and higher titers of nAbs were detected in double-positive individuals compared to single-positive ones. These results clarified the human humoral immune responses against Ad14 and Ad55 and revealed a low level of herd immunity in some subpopulations, which emphasized the importance of monitoring these two highly virulent adenoviruses and reinforced the development of prophylactic vaccines. PMID:28588291
Herndon, Caroline N.; Shanthalingam, Sudarvili; Knowles, Donald P.; Call, Douglas R.; Srikumaran, Subramaniam
2011-01-01
Mannheimia haemolytica consistently causes fatal bronchopneumonia in bighorn sheep (BHS; Ovis canadensis) under natural and experimental conditions. Leukotoxin is the primary virulence factor of this organism. BHS are more susceptible to developing fatal pneumonia than the related species Ovis aries (domestic sheep [DS]). In BHS herds affected by pneumonia, lamb recruitment is severely impaired for years subsequent to an outbreak. We hypothesized that a lack of maternally derived antibodies (Abs) against M. haemolytica provides an immunologic basis for enhanced susceptibility of BH lambs to population-limiting pneumonia. Therefore, the objective of this study was to determine the titers of Abs directed against M. haemolytica in the sera of BH and domestic lambs at birth through 12 weeks of age. Results revealed that BH lambs had approximately 18-fold lower titers of Ab against surface antigens of M. haemolytica and approximately 20-fold lower titers of leukotoxin-neutralizing Abs than domestic lambs. The titers of leukotoxin-neutralizing Abs in the serum and colostrum samples of BH ewes were approximately 157- and 50-fold lower than those for domestic ewes, respectively. Comparatively, the higher titers of parainfluenza 3 virus-neutralizing Abs in the BH lambs ruled out the possibility that these BHS had an impaired ability to passively transfer Abs to their lambs. These results suggest that lower levels of leukotoxin-neutralizing Abs in the sera of BH ewes, and resultant low Ab titers in their lambs, may be a critical factor in the poor lamb recruitment in herds affected by pneumonia. PMID:21613459
Further theoretical insight into the reaction mechanism of the hepatitis C NS3/NS4A serine protease
NASA Astrophysics Data System (ADS)
Martínez-González, José Ángel; Rodríguez, Alex; Puyuelo, María Pilar; González, Miguel; Martínez, Rodrigo
2015-01-01
The main reactions of the hepatitis C virus NS3/NS4A serine protease are studied using the second-order Møller-Plesset ab initio method and rather large basis sets to correct the previously reported AM1/CHARMM22 potential energy surfaces. The reaction efficiencies measured for the different substrates are explained in terms of the tetrahedral intermediate formation step (the rate-limiting process). The energies of the barrier and the corresponding intermediate are so close that the possibility of a concerted mechanism is open (especially for the NS5A/5B substrate). This is in contrast to the suggested general reaction mechanism of serine proteases, where a two-step mechanism is postulated.
Rashev, Svetoslav; Moule, David C
2015-04-05
In this work we present a full 6D quartic potential energy surface (PES) for S0 thiophosgene in curvilinear symmetrized bond-angle coordinates. The PES was refined starting from an ab initio field derived from acc-pVTZ basis set with CCSD(T) corrections for electron correlation. In the present calculations we used our variational method that was recently tested on formaldehyde and some of its isotopomers, along with additional improvements. The lower experimentally known vibrational levels for 35Cl2CS were reproduced quite well in the calculations, which can be regarded as a test for the feasibility of the obtained quartic PES. Copyright © 2015 Elsevier B.V. All rights reserved.
Slagter, H A; van Wouwe, N C; Kanoff, K; Grasman, R P P P; Claassen, D O; van den Wildenberg, W P M; Wylie, S A
2016-10-01
The current study aimed to shed more light on the role of dopamine in temporal attention. To this end, we pharmacologically manipulated dopamine levels in a large sample of Parkinson's disease patients (n=63) while they performed an attentional blink (AB) task in which they had to identify two targets (T1 and T2) presented in close temporal proximity among distractors. We specifically examined 1) differences in the magnitude of the AB between unmedicated Parkinson patients, who have depleted levels of striatal dopamine, and healthy controls, and 2) effects of two dopaminergic medications (l-DOPA and dopamine agonists) on the AB in the Parkinson patients at the group level and as a function of individual baseline performance. In line with the notion that relatively low levels of striatal dopamine may impair target detection in general, Parkinson patients OFF medications displayed overall poor target perception compared to healthy controls. Moreover, as predicted, effects of dopaminergic medication on AB performance critically depended on individual baseline AB size, although this effect was only observed for l-DOPA. l-DOPA generally decreased the size of the AB in patients with a large baseline AB (i.e., OFF medications), while l-DOPA generally increased the AB in patients with a small baseline AB. These findings may support a role for dopamine in the AB and temporal attention, more generally and corroborate the notion that there is an optimum dopamine level for cognitive function. They also emphasize the need for more studies that examine the separate effects of DA agonists and l-DOPA on cognitive functioning. Copyright © 2016 Elsevier Ltd. All rights reserved.
Structural basis for the antibody neutralization of Herpes simplex virus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Cheng-Chung; Lin, Li-Ling; Academia Sinica, Taipei 115, Taiwan
2013-10-01
The gD–E317-Fab complex crystal revealed the conformational epitope of human mAb E317 on HSV gD, providing a molecular basis for understanding the viral neutralization mechanism. Glycoprotein D (gD) of Herpes simplex virus (HSV) binds to a host cell surface receptor, which is required to trigger membrane fusion for virion entry into the host cell. gD has become a validated anti-HSV target for therapeutic antibody development. The highly inhibitory human monoclonal antibody E317 (mAb E317) was previously raised against HSV gD for viral neutralization. To understand the structural basis of antibody neutralization, crystals of the gD ectodomain bound to the E317more » Fab domain were obtained. The structure of the complex reveals that E317 interacts with gD mainly through the heavy chain, which covers a large area for epitope recognition on gD, with a flexible N-terminal and C-terminal conformation. The epitope core structure maps to the external surface of gD, corresponding to the binding sites of two receptors, herpesvirus entry mediator (HVEM) and nectin-1, which mediate HSV infection. E317 directly recognizes the gD–nectin-1 interface and occludes the HVEM contact site of gD to block its binding to either receptor. The binding of E317 to gD also prohibits the formation of the N-terminal hairpin of gD for HVEM recognition. The major E317-binding site on gD overlaps with either the nectin-1-binding residues or the neutralizing antigenic sites identified thus far (Tyr38, Asp215, Arg222 and Phe223). The epitopes of gD for E317 binding are highly conserved between two types of human herpesvirus (HSV-1 and HSV-2). This study enables the virus-neutralizing epitopes to be correlated with the receptor-binding regions. The results further strengthen the previously demonstrated therapeutic and diagnostic potential of the E317 antibody.« less
Hilden, Ida; Lauritzen, Brian; Sørensen, Brit Binow; Clausen, Jes Thorn; Jespersgaard, Christina; Krogh, Berit Olsen; Bowler, Andrew Neil; Breinholt, Jens; Gruhler, Albrecht; Svensson, L Anders; Petersen, Helle Heibroch; Petersen, Lars Christian; Balling, Kristoffer W; Hansen, Lene; Hermit, Mette Brunsgaard; Egebjerg, Thomas; Friederichsen, Birgitte; Ezban, Mirella; Bjørn, Søren Erik
2012-06-14
Hemophilia is treated by IV replacement therapy with Factor VIII (FVIII) or Factor IX (FIX), either on demand to resolve bleeding, or as prophylaxis. Improved treatment may be provided by drugs designed for subcutaneous and less frequent administration with a reduced risk of inhibitor formation. Tissue factor pathway inhibitor (TFPI) down-regulates the initiation of coagulation by inhibition of Factor VIIa (FVIIa)/tissue factor/Factor Xa (FVIIa/TF/FXa). Blockage of TFPI inhibition may facilitate thrombin generation in a hemophilic setting. A high-affinity (K(D) = 25pM) mAb, mAb 2021, against TFPI was investigated. Binding of mAb 2021 to TFPI effectively prevented inhibition of FVIIa/TF/FXa and improved clot formation in hemophilia blood and plasma. The binding epitope on the Kunitz-type protease inhibitor domain 2 of TFPI was mapped by crystallography, and showed an extensive overlap with the FXa contact region highlighting a structural basis for its mechanism of action. In a rabbit hemophilia model, an intravenous or subcutaneous dose significantly reduced cuticle bleeding. mAb 2021 showed an effect comparable with that of rFVIIa. Cuticle bleeding in the model was reduced for at least 7 days by a single intravenous dose of mAb 2021. This study suggests that neutralization of TFPI by mAb 2021 may constitute a novel treatment option in hemophilia.
Ravisankar, Padmapriyadarshini; Lai, Yi-Ting; Sambrani, Nagraj; Tomoyasu, Yoshinori
2016-01-15
Morphological innovation is a fundamental process in evolution, yet its molecular basis is still elusive. Acquisition of elytra, highly modified beetle forewings, is an important innovation that has driven the successful radiation of beetles. Our RNAi screening for candidate genes has identified abrupt (ab) as a potential key player in elytron evolution. In this study, we performed a series of RNA interference (RNAi) experiments in both Tribolium and Drosophila to understand the contributions of ab to the evolution of beetle elytra. We found that (i) ab is essential for proper wing vein patterning both in Tribolium and Drosophila, (ii) ab has gained a novel function in determining the unique elytron shape in the beetle lineage, (iii) unlike Hippo and Insulin, other shape determining pathways, the shape determining function of ab is specific to the elytron and not required in the hindwing, (iv) ab has a previously undescribed role in the Notch signal-associated wing formation processes, which appears to be conserved between beetles and flies. These data suggest that ab has gained a new function during elytron evolution in beetles without compromising the conserved wing-related functions. Gaining a new function without losing evolutionarily conserved functions may be a key theme in the evolution of morphologically novel structures. Copyright © 2015 Elsevier Inc. All rights reserved.
Klimovskaia, Anna; Ganscha, Stefan; Claassen, Manfred
2016-12-01
Stochastic chemical reaction networks constitute a model class to quantitatively describe dynamics and cell-to-cell variability in biological systems. The topology of these networks typically is only partially characterized due to experimental limitations. Current approaches for refining network topology are based on the explicit enumeration of alternative topologies and are therefore restricted to small problem instances with almost complete knowledge. We propose the reactionet lasso, a computational procedure that derives a stepwise sparse regression approach on the basis of the Chemical Master Equation, enabling large-scale structure learning for reaction networks by implicitly accounting for billions of topology variants. We have assessed the structure learning capabilities of the reactionet lasso on synthetic data for the complete TRAIL induced apoptosis signaling cascade comprising 70 reactions. We find that the reactionet lasso is able to efficiently recover the structure of these reaction systems, ab initio, with high sensitivity and specificity. With only < 1% false discoveries, the reactionet lasso is able to recover 45% of all true reactions ab initio among > 6000 possible reactions and over 102000 network topologies. In conjunction with information rich single cell technologies such as single cell RNA sequencing or mass cytometry, the reactionet lasso will enable large-scale structure learning, particularly in areas with partial network structure knowledge, such as cancer biology, and thereby enable the detection of pathological alterations of reaction networks. We provide software to allow for wide applicability of the reactionet lasso.
High Yield Chemical Vapor Deposition Growth of High Quality Large-Area AB Stacked Bilayer Graphene
Liu, Lixin; Zhou, Hailong; Cheng, Rui; Yu, Woo Jong; Liu, Yuan; Chen, Yu; Shaw, Jonathan; Zhong, Xing; Huang, Yu; Duan, Xiangfeng
2012-01-01
Bernal stacked (AB stacked) bilayer graphene is of significant interest for functional electronic and photonic devices due to the feasibility to continuously tune its band gap with a vertical electrical field. Mechanical exfoliation can be used to produce AB stacked bilayer graphene flakes but typically with the sizes limited to a few micrometers. Chemical vapor deposition (CVD) has been recently explored for the synthesis of bilayer graphene but usually with limited coverage and a mixture of AB and randomly stacked structures. Herein we report a rational approach to produce large-area high quality AB stacked bilayer graphene. We show that the self-limiting effect of graphene growth on Cu foil can be broken by using a high H2/CH4 ratio in a low pressure CVD process to enable the continued growth of bilayer graphene. A high temperature and low pressure nucleation step is found to be critical for the formation of bilayer graphene nuclei with high AB stacking ratio. A rational design of a two-step CVD process is developed for the growth of bilayer graphene with high AB stacking ratio (up to 90 %) and high coverage (up to 99 %). The electrical transport studies demonstrated that devices made of the as-grown bilayer graphene exhibit typical characteristics of AB stacked bilayer graphene with the highest carrier mobility exceeding 4,000 cm2/V·s at room temperature, comparable to that of the exfoliated bilayer graphene. PMID:22906199
The torsional energy profile of 1,2-diphenylethane: an ab initio study
NASA Astrophysics Data System (ADS)
Ivanov, Petko M.
1997-08-01
Ab initio molecular orbital calculations were carried out for the antiperiplanar (ap), the synclinal (sc), phenyl/phenyl eclipsed (syn barrier), and phenyl/H eclipsed (ap/sc barrier) conformations of 1,2-diphenylethane, and the energy ordering of conformations thus obtained was compared with the torsional energy profile estimated with the MM2 and MM3 molecular mechanics force fields. The basis set effect on the results was studied at the restricted Hartree-Fock (RHF) self-consistent field (SCF) level of theory, and the electron correlation energies were corrected by the second-order (MP2) Møller-Plesset perturbation treatment using the 6-31G * basis set. The performance of a DFT model (Becke-style three-parameter hybrid method using the correlation functional of Lee, Yang and Parr, B3LYP) was also tested to assess relative energies of the conformations using two basis sets, 6-31G * and 6-311G **. The RHF and B3LYP results are qualitatively the same, while the MP2 calculations produced significant differences in the geometries and reversed the order of preference for the antiperiplanar and the synclinal conformations.
Large-scale exact diagonalizations reveal low-momentum scales of nuclei
NASA Astrophysics Data System (ADS)
Forssén, C.; Carlsson, B. D.; Johansson, H. T.; Sääf, D.; Bansal, A.; Hagen, G.; Papenbrock, T.
2018-03-01
Ab initio methods aim to solve the nuclear many-body problem with controlled approximations. Virtually exact numerical solutions for realistic interactions can only be obtained for certain special cases such as few-nucleon systems. Here we extend the reach of exact diagonalization methods to handle model spaces with dimension exceeding 1010 on a single compute node. This allows us to perform no-core shell model (NCSM) calculations for 6Li in model spaces up to Nmax=22 and to reveal the 4He+d halo structure of this nucleus. Still, the use of a finite harmonic-oscillator basis implies truncations in both infrared (IR) and ultraviolet (UV) length scales. These truncations impose finite-size corrections on observables computed in this basis. We perform IR extrapolations of energies and radii computed in the NCSM and with the coupled-cluster method at several fixed UV cutoffs. It is shown that this strategy enables information gain also from data that is not fully UV converged. IR extrapolations improve the accuracy of relevant bound-state observables for a range of UV cutoffs, thus making them profitable tools. We relate the momentum scale that governs the exponential IR convergence to the threshold energy for the first open decay channel. Using large-scale NCSM calculations we numerically verify this small-momentum scale of finite nuclei.
High order discretization techniques for real-space ab initio simulations
NASA Astrophysics Data System (ADS)
Anderson, Christopher R.
2018-03-01
In this paper, we present discretization techniques to address numerical problems that arise when constructing ab initio approximations that use real-space computational grids. We present techniques to accommodate the singular nature of idealized nuclear and idealized electronic potentials, and we demonstrate the utility of using high order accurate grid based approximations to Poisson's equation in unbounded domains. To demonstrate the accuracy of these techniques, we present results for a Full Configuration Interaction computation of the dissociation of H2 using a computed, configuration dependent, orbital basis set.
1989-03-16
nucleus robustus archistriatalis 1 1 1 nucleus reticularis gigantocellularis 1 3 3 nucleus reticularis lateralis 1 3 3 nucleus ... reticularis pontis caudalis 1 1 3 nucleus reticularis parvocellularis 1 1 2 nucleus rotundus 1 1 1 nucleus tractus solitarii 1 3 3 nucleus semilunaris...Structure a-bungarotoxin mAb 35 inAb 270 nucleus accumbens 1 1 1 nucleus basalis 1 1 1 nucleus cerebelli intermedium 2 3 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clouthier, Dennis J., E-mail: dclaser@uky.edu
2014-12-28
The F{sub 2}BO free radical is a known, although little studied, species but similar X{sub 2}BY (X = H, D, F; Y = O, S) molecules are largely unknown. High level ab initio methods have been used to predict the molecular structures, vibrational frequencies (in cm{sup −1}), and relative energies of the ground and first two excited electronic states of these free radicals, as an aid to their eventual spectroscopic identification. The chosen theoretical methods and basis sets were tested on F{sub 2}BO and found to give good agreement with the known experimental quantities. In particular, complete basis set extrapolationsmore » of coupled-cluster single and doubles with perturbative triple excitations/aug-cc-pVXZ (X = 3, 4, 5) energies gave excellent electronic term values, due to small changes in geometry between states and the lack of significant multireference character in the wavefunctions. The radicals are found to have planar C{sub 2v} geometries in the X{sup ~2}B{sub 2} ground state, the low-lying A{sup ~2}B{sub 1} first excited state, and the higher B{sup ~2}A{sub 1} state. Some of these radicals have very small ground state dipole moments hindering microwave measurements. Infrared studies in matrices or in the gas phase may be possible although the fundamentals of H{sub 2}BO and H{sub 2}BS are quite weak. The most promising method of identifying these species in the gas phase appears to be absorption or laser-induced fluorescence spectroscopy through the allowed B{sup ~}-X{sup ~} transitions which occur in the visible-near UV region of the electromagnetic spectrum. The ab initio results have been used to calculate the Franck-Condon profiles of the absorption and emission spectra, and the rotational structure of the B{sup ~}-X{sup ~}0{sub 0}{sup 0} bands has been simulated. The calculated single vibronic level emission spectra provide a unique, readily recognizable fingerprint of each particular radical, facilitating the experimental identification of new X{sub 2}BY species in the gas phase.« less
Tuberoso, Carlo Ignazio Giovanni; Jerković, Igor; Sarais, Giorgia; Congiu, Francesca; Marijanović, Zvonimir; Kuś, Piotr Marek
2014-02-15
CIE (Commission Internationale de l'Eclairage) L(*)Cab(*)h(ab)° color coordinates for 305 samples of 17 unifloral honeys types (asphodel, buckwheat, black locust, sweet chestnut, citrus, eucalyptus, Garland thorn, honeydew, heather, lime, mint, rapeseed, sage, strawberry tree, sulla flower, savory and thistle) from different geographic locations in Europe were spectrophotometrically assessed and statistically evaluated. Preliminary separation of unifloral honeys was obtained by means of L(*)-C(ab)(*) color coordination correlation. Hierarchical Cluster Analysis (HCA) revealed an expected segregation of the honeys types according to their chromatic characteristics. Principal Component Analysis (PCA) allowed to obtain a more defined distinction of the 17 unifloral honey types, particularly when using 3D graphics. CIE L(*)C(ab)(*)hab(*) color coordinates were useful for the identification of several honey types. The proposed method represents a simple and efficient procedure that can be used as a basis for the authentication of unifloral honeys worldwide. Copyright © 2013 Elsevier Ltd. All rights reserved.
A highly accurate ab initio potential energy surface for methane.
Owens, Alec; Yurchenko, Sergei N; Yachmenev, Andrey; Tennyson, Jonathan; Thiel, Walter
2016-09-14
A new nine-dimensional potential energy surface (PES) for methane has been generated using state-of-the-art ab initio theory. The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit and incorporates a range of higher-level additive energy corrections. These include core-valence electron correlation, higher-order coupled cluster terms beyond perturbative triples, scalar relativistic effects, and the diagonal Born-Oppenheimer correction. Sub-wavenumber accuracy is achieved for the majority of experimentally known vibrational energy levels with the four fundamentals of (12)CH4 reproduced with a root-mean-square error of 0.70 cm(-1). The computed ab initio equilibrium C-H bond length is in excellent agreement with previous values despite pure rotational energies displaying minor systematic errors as J (rotational excitation) increases. It is shown that these errors can be significantly reduced by adjusting the equilibrium geometry. The PES represents the most accurate ab initio surface to date and will serve as a good starting point for empirical refinement.
Nguyen, V Hung; Niquet, Y-M; Dollfus, P
2014-05-21
We report on a numerical study of the Aharonov-Bohm (AB) effect and parity selective tunneling in pn junctions based on rectangular graphene rings where the contacts and ring arms are all made of zigzag nanoribbons. We find that when applying a magnetic field to the ring, the AB interference can reverse the parity symmetry of incoming waves and hence can strongly modulate the parity selective transmission through the system. Therefore, the transmission between two states of different parity exhibits the AB oscillations with a π-phase shift, compared to the case of states of the same parity. On this basis, it is shown that interesting effects, such as giant (both positive and negative) magnetoresistance and strong negative differential conductance, can be achieved in this structure. Our study thus presents a new property of the AB interference in graphene nanorings, which could be helpful for further understanding the transport properties of graphene mesoscopic systems.
Kristensen, K E; Jacobsen, C S; Hansen, L H; Aamand, J; Morgan, J A W; Sternberg, C; Sørensen, S R
2006-09-01
To construct a luxAB-labelled Sphingomonas sp. strain SRS2 maintaining the ability to mineralize the herbicide isoproturon and usable for monitoring the survival and distribution of strain SRS2 on plant roots in laboratory systems. We inserted the mini-Tn5-luxAB marker into strain SRS2 using conjugational mating. In the transconjugant mutants luciferase was produced in varying levels. The mutants showed significant differences in their ability to degrade isoproturon. One luxAB-labelled mutant maintained the ability to mineralize isoproturon and was therefore selected for monitoring colonization of barley roots. We successfully constructed a genetically labelled isoproturon-mineralizing-strain SRS2 and demonstrated its ability to survive in soil and its colonization of rhizosphere. The construction of a luxAB-labelled strain SRS2 maintaining the degradative ability, provides a powerful tool for ecological studies serving as the basis for evaluating SRS2 as a bioremediation agent.
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.
1989-01-01
Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F + H2 yields HF + H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces.
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.
1988-01-01
Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F+H2 yields HF+H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces.
Datta-Mannan, Amita; Lu, Jirong; Witcher, Derrick R; Leung, Donmienne; Tang, Ying; Wroblewski, Victor J
2015-01-01
The application of protein engineering technologies toward successfully improving antibody pharmacokinetics has been challenging due to the multiplicity of biochemical factors that influence monoclonal antibody (mAb) disposition in vivo. Physiological factors including interactions with the neonatal Fc receptor (FcRn) and specific antigen binding properties of mAbs, along with biophysical properties of the mAbs themselves play a critical role. It has become evident that applying an integrated approach to understand the relative contribution of these factors is critical to rationally guide and apply engineering strategies to optimize mAb pharmacokinetics. The study presented here evaluated the influence of unintended non-specific interactions on the disposition of mAbs whose clearance rates are governed predominantly by either non-specific (FcRn) or target-mediated processes. The pharmacokinetics of 8 mAbs representing a diverse range of these properties was evaluated in cynomolgus monkeys. Results revealed complementarity-determining region (CDR) charge patch engineering to decrease charge-related non-specific binding can have a significant impact on improving the clearance. In contrast, the influence of enhanced in vitro FcRn binding was mixed, and related to both the strength of charge interaction and the general mechanism predominant in governing the clearance of the particular mAb. Overall, improved pharmacokinetics through enhanced FcRn interactions were apparent for a CDR charge-patch normalized mAb which was affected by non-specific clearance. The findings in this report are an important demonstration that mAb pharmacokinetics requires optimization on a case-by-case basis to improve the design of molecules with increased therapeutic application. PMID:26337808
Gu, Tao; Zhou, Chaoyang; Sørensen, Sebastian R.; Zhang, Ji; He, Jian; Yu, Peiwen; Li, Shunpeng
2013-01-01
The environmental fate of phenylurea herbicides has received considerable attention in recent decades. The microbial metabolism of N,N-dimethyl-substituted phenylurea herbicides can generally be initiated by mono-N-demethylation. In this study, the molecular basis for this process was revealed. The pdmAB genes in Sphingobium sp. strain YBL2 were shown to be responsible for the initial mono-N-demethylation of commonly used N,N-dimethyl-substituted phenylurea herbicides. PdmAB is the oxygenase component of a bacterial Rieske non-heme iron oxygenase (RO) system. The genes pdmAB, encoding the α subunit PdmA and the β subunit PdmB, are organized in a transposable element flanked by two direct repeats of an insertion element resembling ISRh1. Furthermore, this transposable element is highly conserved among phenylurea herbicide-degrading sphingomonads originating from different areas of the world. However, there was no evidence of a gene for an electron carrier (a ferredoxin or a reductase) located in the immediate vicinity of pdmAB. Without its cognate electron transport components, expression of PdmAB in Escherichia coli, Pseudomonas putida, and other sphingomonads resulted in a functional enzyme. Moreover, coexpression of a putative [3Fe-4S]-type ferredoxin from Sphingomonas sp. strain RW1 greatly enhanced the catalytic activity of PdmAB in E. coli. These data suggested that PdmAB has a low specificity for electron transport components and that its optimal ferredoxin may be the [3Fe-4S] type. PdmA exhibited low homology to the α subunits of previously characterized ROs (less than 37% identity) and did not cluster with the RO group involved in O- or N-demethylation reactions, indicating that PdmAB is a distinct bacterial RO N-demethylase. PMID:24123738
Developability assessment of clinical drug products with maximum absorbable doses.
Ding, Xuan; Rose, John P; Van Gelder, Jan
2012-05-10
Maximum absorbable dose refers to the maximum amount of an orally administered drug that can be absorbed in the gastrointestinal tract. Maximum absorbable dose, or D(abs), has proved to be an important parameter for quantifying the absorption potential of drug candidates. The purpose of this work is to validate the use of D(abs) in a developability assessment context, and to establish appropriate protocol and interpretation criteria for this application. Three methods for calculating D(abs) were compared by assessing how well the methods predicted the absorption limit for a set of real clinical candidates. D(abs) was calculated for these clinical candidates by means of a simple equation and two computer simulation programs, GastroPlus and an program developed at Eli Lilly and Company. Results from single dose escalation studies in Phase I clinical trials were analyzed to identify the maximum absorbable doses for these compounds. Compared to the clinical results, the equation and both simulation programs provide conservative estimates of D(abs), but in general D(abs) from the computer simulations are more accurate, which may find obvious advantage for the simulations in developability assessment. Computer simulations also revealed the complex behavior associated with absorption saturation and suggested in most cases that the D(abs) limit is not likely to be achieved in a typical clinical dose range. On the basis of the validation findings, an approach is proposed for assessing absorption potential, and best practices are discussed for the use of D(abs) estimates to inform clinical formulation development strategies. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Dateo, Christopher E.
1995-01-01
The HNO molecule is of interest in both combustion and atmospheric chemistry. For example, Guadagnini et al. have recently presented ab initio potential energy surfaces for the three lowest lying electronic states of HNO and then used these in examining several chemical reactions that take place in the combustion of nitrogen containing fuels and in the oxidation of atmospheric nitrogen. We have previously studied the ground state potential energy surface (i.e., stationary points along the HNO reversible reaction HON path), vibrational spectrum (using an accurate quartic force field), zero-point energy, and bonding of HNO using coupled-cluster ab initio methods. HNO is also very interesting because of the unique nature of its bonding characteristics. That is, the potential energy surface is very flat along the H-N bonding coordinate thereby giving unusual harmonic and fundamental vibrational frequencies, and the H-N bond energy is rather weak in comparison to other H-N bond energies. In fact, using experimental heats of formation for HNO, H, and NO, the H- bond energy is computed to be only 49.9 kcal/ mol (298 K). However, ab initio calculations of isodesmic reaction energies involving HNO, FNO, ClNO, and several other molecules have shown that there is an inconsistency in the experimental heats of formation of the XNO (X double bond H, F, and Cl) species. Hence the motivation for this study was to determine a very accurate (Delta)H(sub f, sup o) value for HNO using state-of-the-art ab initio methods. Based on many recent studies it is evident that the singles and doubles coupled-cluster method that includes a perturbational estimate of the effects of connected triple excitations, denoted CCSD(T), in conjunction with large one-particle basis sets should be reliable to better than +/- 0.8 kcal/mol for this quantity. The computational methodology is described in the next section followed by our results and discussion. Conclusions are presented in the final section.
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Dateo, Christopher E.
1995-01-01
The HNO molecule is of interest in both combustion and atmospheric chemistry. For example, Guadagnini et al. have recently presented ab initio potential energy surfaces for the three lowest lying electronic states of HNO and then used these in examining several chemical reactions that take place in the combustion of nitrogen containing fuels and in the oxidation of atmospheric nitrogen. We have previously studied the ground state potential energy surface (i.e., stationary points along the HNO rev. reaction HON path), vibrational spectrum (using an accurate quartic force field), zero-point energy, and bonding of HNO using coupled-cluster ab initio methods. HNO is also very interesting because of the unique nature of its bonding characteristics. That is, the potential energy surface is very flat along the H-N bonding coordinate thereby giving unusual harmonic and fundamental vibrational frequencies, and the H-N bond energy is rather weak in comparison to other H-N bond energies. In fact, using experimental heats of formation for HO, H, and NO, the H- bond energy is computed to be only 49.9 kcal/ mol (298 K). However, ab initio calculations of isodesmic reaction energies involving HNO, FNO, ClNO, and several other molecules have shown that there is an inconsistency in the experimental heats of formation of the XNO (X=H, F, and Cl) species. Hence the motivation for this study was to determine a very accurate(DELTA)H(sup o)(sub f) value for HNO using state of-the-art ab initio methods. Based on many recent studies it is evident that the singles and doubles coupled-cluster method that includes a perturbational estimate of the effects of connected triple excitations, denoted CCSD(T), in conjunction with large one-particle basis sets should be reliable to better than +0.8 kcal/mol for this quantity. The computational methodology is described in the next section followed by our results and discussion. Conclusions are presented in the final section.
Dutta, Sheetij; Dlugosz, Lisa S.; Drew, Damien R.; Ge, Xiopeng; Ababacar, Diouf; Rovira, Yazmin I.; Moch, J. Kathleen; Shi, Meng; Long, Carole A.; Foley, Michael; Beeson, James G.; Anders, Robin F.; Miura, Kazutoyo; Haynes, J. David; Batchelor, Adrian H.
2013-01-01
Malaria vaccine candidate Apical Membrane Antigen-1 (AMA1) induces protection, but only against parasite strains that are closely related to the vaccine. Overcoming the AMA1 diversity problem will require an understanding of the structural basis of cross-strain invasion inhibition. A vaccine containing four diverse allelic proteins 3D7, FVO, HB3 and W2mef (AMA1 Quadvax or QV) elicited polyclonal rabbit antibodies that similarly inhibited the invasion of four vaccine and 22 non-vaccine strains of P. falciparum. Comparing polyclonal anti-QV with antibodies against a strain-specific, monovalent, 3D7 AMA1 vaccine revealed that QV induced higher levels of broadly inhibitory antibodies which were associated with increased conserved face and domain-3 responses and reduced domain-2 response. Inhibitory monoclonal antibodies (mAb) raised against the QV reacted with a novel cross-reactive epitope at the rim of the hydrophobic trough on domain-1; this epitope mapped to the conserved face of AMA1 and it encompassed the 1e-loop. MAbs binding to the 1e-loop region (1B10, 4E8 and 4E11) were ∼10-fold more potent than previously characterized AMA1-inhibitory mAbs and a mode of action of these 1e-loop mAbs was the inhibition of AMA1 binding to its ligand RON2. Unlike the epitope of a previously characterized 3D7-specific mAb, 1F9, the 1e-loop inhibitory epitope was partially conserved across strains. Another novel mAb, 1E10, which bound to domain-3, was broadly inhibitory and it blocked the proteolytic processing of AMA1. By itself mAb 1E10 was weakly inhibitory but it synergized with a previously characterized, strain-transcending mAb, 4G2, which binds close to the hydrophobic trough on the conserved face and inhibits RON2 binding to AMA1. Novel inhibition susceptible regions and epitopes, identified here, can form the basis for improving the antigenic breadth and inhibitory response of AMA1 vaccines. Vaccination with a few diverse antigenic proteins could provide universal coverage by redirecting the immune response towards conserved epitopes. PMID:24385910
Theillet, François-Xavier; Frank, Martin; Vulliez-Le Normand, Brigitte; Simenel, Catherine; Hoos, Sylviane; Chaffotte, Alain; Bélot, Frédéric; Guerreiro, Catherine; Nato, Farida; Phalipon, Armelle; Mulard, Laurence A; Delepierre, Muriel
2011-12-01
Carbohydrates are likely to maintain significant conformational flexibility in antibody (Ab):carbohydrate complexes. As demonstrated herein for the protective monoclonal Ab (mAb) F22-4 recognizing the Shigella flexneri 2a O-antigen (O-Ag) and numerous synthetic oligosaccharide fragments thereof, the combination of molecular dynamics simulations and nuclear magnetic resonance saturation transfer difference experiments, supported by physicochemical analysis, allows us to determine the binding epitope and its various contributions to affinity without using any modified oligosaccharides. Moreover, the methods used provide insights into ligand flexibility in the complex, thus enabling a better understanding of the Ab affinities observed for a representative set of synthetic O-Ag fragments. Additionally, these complementary pieces of information give evidence to the ability of the studied mAb to recognize internal as well as terminal epitopes of its cognate polysaccharide antigen. Hence, we show that an appropriate combination of computational and experimental methods provides a basis to explore carbohydrate functional mimicry and receptor binding. The strategy may facilitate the design of either ligands or carbohydrate recognition domains, according to needed improvements of the natural carbohydrate:receptor properties. © The Author 2011. Published by Oxford University Press. All rights reserved.
Carbon Nanotube Chopped Fiber for Enhanced Properties in Additive Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menchhofer, Paul A.; Johnson, Joseph E.; Lindahl, John M.
2016-06-06
Nanocomp Technologies, Inc. is working with Oak Ridge National Laboratory to develop carbon nanotube (CNT) composite materials and evaluate their use in additive manufacturing (3D printing). The first phase demonstrated feasibility and improvements for carbon nanotube (CNT)- acrylonitrile butadiene styrene (ABS) composite filaments use in additive manufacturing, with potential future work centering on further improvements. By focusing the initial phase on standard processing methods (developed mainly for the incorporation of carbon fibers in ABS) and characterization techniques, a basis of knowledge for the incorporation of CNTs in ABS was learned. The ability to understand the various processing variables is criticalmore » to the successful development of these composites. From the degradation effects on ABS (caused by excessive temperatures), to the length of time the ABS is in the melt state, to the order of addition of constituents, and also to the many possible mixing approaches, a workable flow sequence that addresses each processing step is critical to the final material properties. Although this initial phase could not deal with each of these variables in-depth, a future study is recommended that will build on the lessons learned for this effort.« less
Occult exposure to asbestos in steel workers revealed by bronchoalveolar lavage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corhay, J.-L.; Delavignette, J.-P.; Bury, T.
To investigate the asbestos burden in a steelplant environment, we counted asbestos bodies (ABs) in the bronchoalveolar lavage fluid (BALF) of 65 steel workers who had retired during the previous 5 y. They had worked for at least 15 y in the same area of the plant (coke oven or blast furnace) as maintenance or production workers. On the basis of occupational anamnesis, 28 had occasional past professional exposure to asbestos; the remaining 37 workers denied any contact with asbestos. A total of 54 white-collar workers who had no occupational exposure to asbestos were included in the study as controls.more » An increased prevalence and concentration of ABs was found in the BALF of steel workers. Electron microscopy and EDAX analysis of AB from steel workers revealed that the core fibers were mainly amphiboles. More ABs were found in the BALF of maintenance workers than in production workers. However, the BALF from steel workers who denied any contact with asbestos revealed an increased AB burden v. controls. This demonstrates that steel workers may be subject to an occult exposure to amphiboles in the steelplant environment.« less
Neurological Autoantibody Prevalence in Epilepsy of Unknown Etiology.
Dubey, Divyanshu; Alqallaf, Abdulradha; Hays, Ryan; Freeman, Matthew; Chen, Kevin; Ding, Kan; Agostini, Mark; Vernino, Steven
2017-04-01
Autoimmune epilepsy is an underrecognized condition, and its true incidence is unknown. Identifying patients with an underlying autoimmune origin is critical because these patients' condition may remain refractory to conventional antiseizure medications but may respond to immunotherapy. To determine the prevalence of neurological autoantibodies (Abs) among adult patients with epilepsy of unknown etiology. Consecutive patients presenting to neurology services with new-onset epilepsy or established epilepsy of unknown etiology were identified. Serum samples were tested for autoimmune encephalitis Abs as well as thyroperoxidase (TPO) and glutamic acid decarboxylase 65 (GAD65) Abs. An antibody prevalence in epilepsy (APE) score based on clinical characteristics was assigned prospectively. Data were collected from June 1, 2015, to June 1, 2016. Presence of neurological Abs. A score based on clinical characteristics was assigned to estimate the probability of seropositivity prior to antibody test results. Good seizure outcome was estimated on the basis of significant reduction of seizure frequency at the first follow-up or seizure freedom. Of the 127 patients (68 males and 59 females) enrolled in the study, 15 were subsequently excluded after identification of an alternative diagnosis. Serum Abs suggesting a potential autoimmune etiology were detected in 39 (34.8%) cases. More than 1 Ab was detected in 7 patients (6.3%): 3 (2.7%) had TPO-Ab and voltage-gated potassium channel complex (VGKCc) Ab, 2 (1.8%) had GAD65-Ab and VGKCc-Ab, 1 had TPO-Ab and GAD65-Ab, and 1 had anti-Hu Ab and GAD65-Ab. Thirty-two patients (28.6%) had a single Ab marker. Among 112 patients included in the study, 15 (13.4%) had TPO-Ab, 14 (12.5%) had GAD65-Ab, 12 (10.7%) had VGKCc (4 of whom were positive for leucine-rich glioma-inactivated protein 1 [LGI1] Ab), and 4 (3.6%) had N-methyl-D-aspartate receptor (NMDAR) Ab. Even after excluding TPO-Ab and low-titer GAD65-Ab, Abs strongly suggesting an autoimmune cause of epilepsy were seen in 23 patients (20.5%). Certain clinical features, such as autonomic dysfunction, neuropsychiatric changes, viral prodrome, faciobrachial dystonic spells or facial dyskinesias, and mesial temporal sclerosis abnormality on magnetic resonance imaging, correlated with seropositivity. The APE score was a useful tool in predicting positive serologic findings. Patients who were Ab positive were more likely to have good seizure outcome than were patients with epilepsy of unknown etiology (15 of 23 [65.2%] vs 24 of 89 [27.0%]; odds ratio, 4.8; 95% CI, 1.8-12.9; P = .002). In patients who were seropositive, reduction in seizure frequency was associated with use of immunomodulatory therapy. Among adult patients with epilepsy of unknown etiology, a significant minority had detectable serum Abs suggesting an autoimmune etiology. Certain clinical features (encoded in the APE score) could be used to identify patients with the highest probability of harboring neurological Abs.
Structural and affinity studies of IgM polyreactive natural autoantibodies.
Diaw, L; Magnac, C; Pritsch, O; Buckle, M; Alzari, P M; Dighiero, G
1997-01-15
Natural polyreactive autoantibodies (NAA) are an important component of the normal B cell repertoire. One intriguing characteristic of these Abs is their binding to various dissimilar Ags. It has been generally assumed that these Abs bind the Ags with low affinity, and are encoded by germline genes. We have used surface plasmon resonance to determine binding of avidities, and conducted a structural analysis of five murine monoclonal natural autoantibodies displaying a typical polyreactive binding pattern against cytoskeleton Ags and DNA. We show that 1) all the five Abs bind the different Ags with kinetic constants similar to those observed for immune Abs; 2) they express a restricted set of V(H) and V(L) genes, since the same V(H) gene is expressed by three out of the five, and one particular Vkappa gene was expressed twice. In addition, a single D gene segment was used by three of the five Abs; and 3) they express, in most cases, genes in a close germline configuration. Our amino acid sequence and modeling studies show that the distribution of exposed side chains in the NAA paratopes is close to the general pattern observed in the complementarity-determining regions (CDRs) of variable domains from immune Abs. Although CDR3 regions of the heavy chain have been postulated to play a major role in determining polyreactivity on the basis of recombinatorial experiments, our results failed to show any distinctive particularity of this region in terms of length or charge when compared with classical immune Abs.
Fukuda, Masakazu; Watanabe, Atsushi; Hayasaka, Akira; Muraoka, Masaru; Hori, Yuji; Yamazaki, Tadao; Imaeda, Yoshimi; Koga, Akiko
2017-03-01
In this study, we investigated the concentration range in which self-association starts to form in humanized IgG monoclonal antibody (mAb) solutions. Furthermore, on the basis of the results, we developed a practical method of screening for low-viscosity antibody solutions by using small-angle X-ray scattering (SAXS) measurements utilizing small quantities of samples. With lower-viscosity mAb3, self-association was not detected in the range of 1-80mg/mL. With higher-viscosity mAb1, on the other hand, self-association was detected in the range of 10-20mg/mL and was clearly enhanced by a decrease in temperature. The viscosities of mAb solutions at 160, 180, and 200mg/mL at 25°C quantitatively correlated very well with the particle size parameters obtained by SAXS measurements of mAb solutions at 15mg/mL at 5°C. The quantity of mAb sample required for the SAXS measurements was only 0.15mg, which is about one-hundredth of that required for actual viscosity measurements at a high concentration, and such quantities could be available even at an early stage of development. In conclusion, the SAXS analysis method proposed in this study is a valuable tool for the development of concentrated mAb therapeutics with high manufacturability and high usability for subcutaneous injection. Copyright © 2016 Elsevier B.V. All rights reserved.
Ultra-deep Large Binocular Camera U-band Imaging of the GOODS-North Field: Depth Versus Resolution
NASA Astrophysics Data System (ADS)
Ashcraft, Teresa A.; Windhorst, Rogier A.; Jansen, Rolf A.; Cohen, Seth H.; Grazian, Andrea; Paris, Diego; Fontana, Adriano; Giallongo, Emanuele; Speziali, Roberto; Testa, Vincenzo; Boutsia, Konstantina; O’Connell, Robert W.; Rutkowski, Michael J.; Ryan, Russell E.; Scarlata, Claudia; Weiner, Benjamin
2018-06-01
We present a study of the trade-off between depth and resolution using a large number of U-band imaging observations in the GOODS-North field from the Large Binocular Camera (LBC) on the Large Binocular Telescope (LBT). Having acquired over 30 hr of data (315 images with 5–6 minutes exposures), we generated multiple image mosaics, starting with the best atmospheric seeing images (FWHM ≲ 0.″8), which constitute ∼10% of the total data set. For subsequent mosaics, we added in data with larger seeing values until the final, deepest mosaic included all images with FWHM ≲ 1.″8 (∼94% of the total data set). From the mosaics, we made object catalogs to compare the optimal-resolution, yet shallower image to the lower-resolution but deeper image. We show that the number counts for both images are ∼90% complete to U AB ≲ 26 mag. Fainter than U AB ∼ 27 mag, the object counts from the optimal-resolution image start to drop-off dramatically (90% between U AB = 27 and 28 mag), while the deepest image with better surface-brightness sensitivity ({μ }U{AB} ≲ 32 mag arcsec‑2) show a more gradual drop (10% between U AB ≃ 27 and 28 mag). For the brightest galaxies within the GOODS-N field, structure and clumpy features within the galaxies are more prominent in the optimal-resolution image compared to the deeper mosaics. We conclude that for studies of brighter galaxies and features within them, the optimal-resolution image should be used. However, to fully explore and understand the faintest objects, the deeper imaging with lower resolution are also required. Finally, we find—for 220 brighter galaxies with U AB ≲ 23 mag—only marginal differences in total flux between the optimal-resolution and lower-resolution light-profiles to {μ }U{AB} ≲ 32 mag arcsec‑2. In only 10% of the cases are the total-flux differences larger than 0.5 mag. This helps constrain how much flux can be missed from galaxy outskirts, which is important for studies of the Extragalactic Background Light. Based on data acquired using the Large Binocular Telescope (LBT).
Ab initio rate constants from hyperspherical quantum scattering: Application to H+C2H6 and H+CH3OH
NASA Astrophysics Data System (ADS)
Kerkeni, Boutheïna; Clary, David C.
2004-10-01
The dynamics and kinetics of the abstraction reactions of H atoms with ethane and methanol have been studied using a quantum mechanical procedure. Bonds being broken and formed are treated with explicit hyperspherical quantum dynamics. The ab initio potential energy surfaces for these reactions have been developed from a minimal number of grid points (average of 48 points) and are given by analytical functionals. All the degrees of freedom except the breaking and forming bonds are optimized using the second order perturbation theory method with a correlation consistent polarized valence triple zeta basis set. Single point energies are calculated on the optimized geometries with the coupled cluster theory and the same basis set. The reaction of H with C2H6 is endothermic by 1.5 kcal/mol and has a vibrationally adiabatic barrier of 12 kcal/mol. The reaction of H with CH3OH presents two reactive channels: the methoxy and the hydroxymethyl channels. The former is endothermic by 0.24 kcal/mol and has a vibrationally adiabatic barrier of 13.29 kcal/mol, the latter reaction is exothermic by 7.87 kcal/mol and has a vibrationally adiabatic barrier of 8.56 kcal/mol. We report state-to-state and state-selected cross sections together with state-to-state rate constants for the title reactions. Thermal rate constants for these reactions exhibit large quantum tunneling effects when compared to conventional transition state theory results. For H+CH3OH, it is found that the CH2OH product is the dominant channel, and that the CH3O channel contributes just 2% at 500 K. For both reactions, rate constants are in good agreement with some measurements.
Characterization of ammonia borane for chemical propulsion applications
NASA Astrophysics Data System (ADS)
Weismiller, Michael
Ammonia borane (NH3BH3; AB), which has a hydrogen content of 19.6% by weight, has been studied recently as a potential means of hydrogen storage for use in fuel cell applications. Its gaseous decomposition products have a very low molecular weight, which makes AB attractive in a propulsion application, since specific impulse is inversely related to the molecular weight of the products. AB also contains boron, which is a fuel of interest for solid propellants because of its high energy density per unit volume. Although boron particles are difficult to ignite due to their passivation layer, the boron molecularly bound in AB may react more readily. The concept of fuel depots in low-earth orbit has been proposed for use in deep space exploration. These would require propellants that are easily storable for long periods of time. AB is a solid at standard temperature and pressure and would not suffer from mass loss due to boil-off like cryogenic hydrogen. The goal of this work is to evaluate AB as a viable fuel in chemical propulsion. Many studies have examined AB decomposition at slow heating rates, but in a propellant, AB will experience rapid heating. Since heating rate has been shown to affect the thermolysis pathways in energetic materials, AB thermolysis was studied at high heating rates using molecular dynamics simulations with a ReaxFF reactive force field and experimental studies with a confined rapid thermolysis set-up using time-of-flight mass spectrometry and FTIR absorption spectroscopy diagnostics. Experimental results showed the formation of NH3, H2NBH2, H2, and at later times, c-(N3B3H6) in the gas phase, while polymer formation was observed in the condensed phase. Molecular dynamics simulations provided an atomistic description of the reactions which likely form these compounds. Another subject which required investigation was the reaction of AB in oxidizing environments, as there were no previous studies in the literature. Oxygen bond descriptions were added to the ReaxFF force field and molecular dynamics simulations were performed to identify important species and reactions in the AB oxidation. Since the thermodynamic properties of many of these species were unknown, density functional theory (DFT) calculations were performed in the Jaguear 7.8 program using the B3LYP functional and 6-311G**++ basis set to calculate enthalpy and entropy of formation, as well as specific heat as a function of temperature. These results were used to create a gas-phase chemical kinetic mechanism for AB combustion. New elementary reactions (57) were combined with those found in the literature for ammonia and boron oxidation, to form a mechanism of 201 reversible reactions. Results from a simple homogenous, constant pressure and energy calculation are presented in this work. The results show that H2NBH2 can be dehydrogenated via radical attack when temperatures are too low to overcome the hydrogen elimination barrier and pressures are low enough to allow sufficient radicals to form. Molecular dynamics calculations require very high pressures to facilitate reactions over a short simulation time, and show the formation of heavy B/N/H/O molecules, such as HNBOH and H2NB(OH)2. On the other hand, the chemical kinetics calculations at 1 atm show that if the HNBO molecule is further oxidized, the products will likely fission with B-N bond cleavage. The final objective towards the research goal was to study how AB can be effectively integrated into a propulsion application. AB was added to a paraffin wax binder to form a heterogeneous solid fuel matrix. Opposed-flow burner experiments were performed where a flow of gaseous oxygen was impinged on the solid fuel surface and regression rates were measured. Regression rates were shown to increase with small additions of AB, but the condensed phase product build-up at higher AB concentrations limited the solid fuel regression. Solid fuel grains with various amounts of AB were manufactured and tested in a lab scale hybrid rocket engine, where performance parameters such as thrust, chamber pressure, specific impulse (Isp) and characteristic exhaust velocity (C*), were measured. AB addition was shown to increase I sp and C*, but large additions were shown to reduce the overall thrust due to the hindrance of the solid fuel regression.
Chacko, Ann-Marie; Han, Jingyan; Greineder, Colin F; Zern, Blaine J; Mikitsh, John L; Nayak, Madhura; Menon, Divya; Johnston, Ian H; Poncz, Mortimer; Eckmann, David M; Davies, Peter F; Muzykantov, Vladimir R
2015-07-28
Nanocarriers (NCs) coated with antibodies (Abs) to extracellular epitopes of the transmembrane glycoprotein PECAM (platelet endothelial cell adhesion molecule-1/CD31) enable targeted drug delivery to vascular endothelial cells. Recent studies revealed that paired Abs directed to adjacent, yet distinct epitopes of PECAM stimulate each other's binding to endothelial cells in vitro and in vivo ("collaborative enhancement"). This phenomenon improves targeting of therapeutic fusion proteins, yet its potential role in targeting multivalent NCs has not been addressed. Herein, we studied the effects of Ab-mediated collaborative enhancement on multivalent NC spheres coated with PECAM Abs (Ab/NC, ∼180 nm diameter). We found that PECAM Abs do mutually enhance endothelial cell binding of Ab/NC coated by paired, but not "self" Ab. In vitro, collaborative enhancement of endothelial binding of Ab/NC by paired Abs is modulated by Ab/NC avidity, epitope selection, and flow. Cell fixation, but not blocking of endocytosis, obliterated collaborative enhancement of Ab/NC binding, indicating that the effect is mediated by molecular reorganization of PECAM molecules in the endothelial plasmalemma. The collaborative enhancement of Ab/NC binding was affirmed in vivo. Intravascular injection of paired Abs enhanced targeting of Ab/NC to pulmonary vasculature in mice by an order of magnitude. This stimulatory effect greatly exceeded enhancement of Ab targeting by paired Abs, indicating that '"collaborative enhancement"' effect is even more pronounced for relatively large multivalent carriers versus free Abs, likely due to more profound consequences of positive alteration of epitope accessibility. This phenomenon provides a potential paradigm for optimizing the endothelial-targeted nanocarrier delivery of therapeutic agents.
Wavelets in electronic structure calculations
NASA Astrophysics Data System (ADS)
Modisette, Jason Perry
1997-09-01
Ab initio calculations of the electronic structure of bulk materials and large clusters are not possible on today's computers using current techniques. The storage and diagonalization of the Hamiltonian matrix are the limiting factors in both memory and execution time. The scaling of both quantities with problem size can be reduced by using approximate diagonalization or direct minimization of the total energy with respect to the density matrix in conjunction with a localized basis. Wavelet basis members are much more localized than conventional bases such as Gaussians or numerical atomic orbitals. This localization leads to sparse matrices of the operators that arise in SCF multi-electron calculations. We have investigated the construction of the one-electron Hamiltonian, and also the effective one- electron Hamiltonians that appear in density-functional and Hartree-Fock theories. We develop efficient methods for the generation of the kinetic energy and potential matrices, the Hartree and exchange potentials, and the local exchange-correlation potential of the LDA. Test calculations are performed on one-electron problems with a variety of potentials in one and three dimensions.
An ab initio study of the C3(+) cation using multireference methods
NASA Technical Reports Server (NTRS)
Taylor, Peter R.; Martin, J. M. L.; Francois, J. P.; Gijbels, R.
1991-01-01
The energy difference between the linear 2 sigma(sup +, sub u) and cyclic 2B(sub 2) structures of C3(+) has been investigated using large (5s3p2d1f) basis sets and multireference electron correlation treatments, including complete active space self consistent fields (CASSCF), multireference configuration interaction (MRCI), and averaged coupled-pair functional (ACPF) methods, as well as the single-reference quadratic configuration interaction (QCISD(T)) method. Our best estimate, including a correction for basis set incompleteness, is that the linear form lies above the cyclic from by 5.2(+1.5 to -1.0) kcal/mol. The 2 sigma(sup +, sub u) state is probably not a transition state, but a local minimum. Reliable computation of the cyclic/linear energy difference in C3(+) is extremely demanding of the electron correlation treatment used: of the single-reference methods previously considered, CCSD(T) and QCISD(T) perform best. The MRCI + Q(0.01)/(4s2p1d) energy separation of 1.68 kcal/mol should provide a comparison standard for other electron correlation methods applied to this system.
Sancho-García, J C
2011-09-13
Highly accurate coupled-cluster (CC) calculations with large basis sets have been performed to study the binding energy of the (CH)12, (CH)16, (CH)20, and (CH)24 polyhedral hydrocarbons in two, cage-like and planar, forms. We also considered the effect of other minor contributions: core-correlation, relativistic corrections, and extrapolations to the limit of the full CC expansion. Thus, chemically accurate values could be obtained for these complicated systems. These nearly exact results are used to evaluate next the performance of main approximations (i.e., pure, hybrid, and double-hybrid methods) within density functional theory (DFT) in a systematic fashion. Some commonly used functionals, including the B3LYP model, are affected by large errors, and only those having reduced self-interaction error (SIE), which includes the last family of conjectured expressions (double hybrids), are able to achieve reasonable low deviations of 1-2 kcal/mol especially when an estimate for dispersion interactions is also added.
Restriction fragment length polymorphism of the human c-fms gene.
Xu, D Q; Guilhot, S; Galibert, F
1985-01-01
By using blot hybridization with a v-fms probe, a polymorphism for EcoRI, HindIII, and BamHI restriction endonuclease sites associated with the human c-fms locus was observed in a random adult population. This restriction fragment length polymorphism can be explained on the basis of the existence of two alleles, a and b, and is due to a short (congruent to 500 base pairs) deletion characteristic of allele a. The distribution in the analyzed population (48 unrelated individuals) is 23% heterozygotes ab, 75% homozygotes bb, and 2% homozygotes aa. Though the inheritance of this polymorphism follows a Mendelian pattern, the children from couples ab X bb are of the following genotype: 74% ab and 26% bb. These deviations from the expected frequencies of 50% suggest a selective pressure in favor of heterozygotes. Images PMID:2986142
West, Aaron C; Duchimaza-Heredia, Juan J; Gordon, Mark S; Ruedenberg, Klaus
2017-11-22
The quasi-atomic analysis of ab initio electronic wave functions in full valence spaces, which was developed in preceding papers, yields oriented quasi-atomic orbitals in terms of which the ab initio molecular wave function and energy can be expressed. These oriented quasi-atomic orbitals are the rigorous ab initio counterparts to the conceptual bond forming atomic hybrid orbitals of qualitative chemical reasoning. In the present work, the quasi-atomic orbitals are identified as bonding orbitals, lone pair orbitals, radical orbitals, vacant orbitals and orbitals with intermediate character. A program determines the bonding characteristics of all quasi-atomic orbitals in a molecule on the basis of their occupations, bond orders, kinetic bond orders, hybridizations and local symmetries. These data are collected in a record and provide the information for a comprehensive understanding of the synergism that generates the bonding structure that holds the molecule together. Applications to a series of molecules exhibit the complete bonding structures that are embedded in their ab initio wave functions. For the strong bonds in a molecule, the quasi-atomic orbitals provide quantitative ab initio amplifications of the Lewis dot symbols. Beyond characterizing strong bonds, the quasi-atomic analysis also yields an understanding of the weak interactions, such as vicinal, hyperconjugative and radical stabilizations, which can make substantial contributions to the molecular bonding structure.
Read, Thomas; Olkhov, Rouslan V; Williamson, E Diane; Shaw, Andrew M
2015-09-01
A unified approach to affinity screening for Fab and Fc interactions of an antibody for its antigen and FcγR receptor has been developed. An antigen array is used for the Fab affinity and cross-reactivity screening and protein A/G proxy is the FcγR receptor. The affinities are derived using a simple 1:1 binding model with a consistent error analysis. The association and dissociation kinetics are measured over optimised times for accurate determination. The Fab/Fc affinities are derived for ten antibodies: mAb-actin (mouse), pAb-BSA (sheep), pAb-collagen V (rabbit), pAb-CRP (goat), mAb-F1 (mouse), mAbs (mouse) 7.3, 12.3, 29.3, 36.3 and 46.3 raised against LcrV in Yersinia pestis. The rate of the dissociation of antigen-antibody complexes relates directly to their immunological function as does the Fc-FcγR complex and a new half-life plot has been defined with a Fab/Fc half-life range of 17-470 min. The upper half-life value points to surface avidity. Two antibodies that are protective as an immunotherapy define a Fab half-life >250 min and an Fc half-life >50 min as characteristics of ideal interactions which can form the basis of an antibody screen for immunotherapy.
Scattering on two Aharonov-Bohm vortices
NASA Astrophysics Data System (ADS)
Bogomolny, E.
2016-12-01
The problem of two Aharonov-Bohm (AB) vortices for the Helmholtz equation is examined in detail. It is demonstrated that the method proposed by Myers (1963 J. Math. Phys. 6 1839) for slit diffraction can be generalised to obtain an explicit solution for AB vortices. Due to the singular nature of AB interaction the Green function and scattering amplitude for two AB vortices obey a series of partial differential equations. Coefficients entering these equations, fulfil ordinary non-linear differential equations whose solutions can be obtained by solving the Painlevé III equation. The asymptotics of necessary functions for very large and very small vortex separations are calculated explicitly. Taken together, this means that the problem of two AB vortices is exactly solvable.
Exploring proton transfer in 1,2,3-triazole-triazolium dimer with ab initio method
NASA Astrophysics Data System (ADS)
Li, Ailin; Yan, Tianying; Shen, Panwen
Ab initio calculations are utilized to search for transition state structures for proton transfer in the 1,2,3-triazole-triazolium complexes on the basis of optimized dimers. The result suggests six transition state structures for single proton transfer in the complexes, most of which are coplanar. The energy barriers, between different stable and transition states structures with zero point energy (ZPE) corrections, show that proton transfer occurs at room temperature with coplanar configuration that has the lowest energy. The results clearly support that reorientation gives triazole flexibility for proton transfer.
HeI photoelectron spectroscopic studies on the electronic structure of alkyl nitrosamines
NASA Astrophysics Data System (ADS)
Jiang, Peng; Qian, Ximei; Li, Chunhui; Qiao, Chunhua; Wang, Dianxun
1997-10-01
HeI photoelectron spectroscopic (PES) studies on the electronic structure of alkyl nitrosamines R 2N 2O (R = CH 3-, CH 3CH 2-, and CH 3CH 2CH 2-) are reported. The assignment of the PES bands for this series of compounds has been made with the aid of the band shapes, the band intensity and ab initio SCF MO calculations based on the 631 ∗ G basis sets. Both PES experiment and the ab initio SCF MO calculations show that the detoxification ability of nitrosamine with longer alkyl chain is stronger.
NASA Astrophysics Data System (ADS)
Song, Bo; Waldrop, Jonathan M.; Wang, Xiaopo; Patkowski, Konrad
2018-01-01
We have developed a new krypton-krypton interaction-induced isotropic dipole polarizability curve based on high-level ab initio methods. The determination was carried out using the coupled-cluster singles and doubles plus perturbative triples method with very large basis sets up to augmented correlation-consistent sextuple zeta as well as the corrections for core-core and core-valence correlation and relativistic effects. The analytical function of polarizability and our recently constructed reference interatomic potential [J. M. Waldrop et al., J. Chem. Phys. 142, 204307 (2015)] were used to predict the thermophysical and electromagnetic properties of krypton gas. The second pressure, acoustic, and dielectric virial coefficients were computed for the temperature range of 116 K-5000 K using classical statistical mechanics supplemented with high-order quantum corrections. The virial coefficients calculated were compared with the generally less precise available experimental data as well as with values computed from other potentials in the literature {in particular, the recent highly accurate potential of Jäger et al. [J. Chem. Phys. 144, 114304 (2016)]}. The detailed examination in this work suggests that the present theoretical prediction can be applied as reference values in disciplines involving thermophysical and electromagnetic properties of krypton gas.
Gurarie, David; Karl, Stephan; Zimmerman, Peter A; King, Charles H; St Pierre, Timothy G; Davis, Timothy M E
2012-01-01
Agent-based modeling of Plasmodium falciparum infection offers an attractive alternative to the conventional Ross-Macdonald methodology, as it allows simulation of heterogeneous communities subjected to realistic transmission (inoculation patterns). We developed a new, agent based model that accounts for the essential in-host processes: parasite replication and its regulation by innate and adaptive immunity. The model also incorporates a simplified version of antigenic variation by Plasmodium falciparum. We calibrated the model using data from malaria-therapy (MT) studies, and developed a novel calibration procedure that accounts for a deterministic and a pseudo-random component in the observed parasite density patterns. Using the parasite density patterns of 122 MT patients, we generated a large number of calibrated parameters. The resulting data set served as a basis for constructing and simulating heterogeneous agent-based (AB) communities of MT-like hosts. We conducted several numerical experiments subjecting AB communities to realistic inoculation patterns reported from previous field studies, and compared the model output to the observed malaria prevalence in the field. There was overall consistency, supporting the potential of this agent-based methodology to represent transmission in realistic communities. Our approach represents a novel, convenient and versatile method to model Plasmodium falciparum infection.
Yoshioka, Akio; Fukuzawa, Kaori; Mochizuki, Yuji; Yamashita, Katsumi; Nakano, Tatsuya; Okiyama, Yoshio; Nobusawa, Eri; Nakajima, Katsuhisa; Tanaka, Shigenori
2011-09-01
Ab initio electronic-state calculations for influenza virus hemagglutinin (HA) trimer complexed with Fab antibody were performed on the basis of the fragment molecular orbital (FMO) method at the second and third-order Møller-Plesset (MP2 and MP3) perturbation levels. For the protein complex containing 2351 residues and 36,160 atoms, the inter-fragment interaction energies (IFIEs) were evaluated to illustrate the effective interactions between all the pairs of amino acid residues. By analyzing the calculated data on the IFIEs, we first discussed the interactions and their fluctuations between multiple domains contained in the trimer complex. Next, by combining the IFIE data between the Fab antibody and each residue in the HA antigen with experimental data on the hemadsorption activity of HA mutants, we proposed a protocol to predict probable mutations in HA. The proposed protocol based on the FMO-MP2.5 calculation can explain the historical facts concerning the actual mutations after the emergence of A/Hong Kong/1/68 influenza virus with subtype H3N2, and thus provides a useful methodology to enumerate those residue sites likely to mutate in the future. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruberti, M.; Averbukh, V.; Decleva, P.
2014-10-28
We present the first implementation of the ab initio many-body Green's function method, algebraic diagrammatic construction (ADC), in the B-spline single-electron basis. B-spline versions of the first order [ADC(1)] and second order [ADC(2)] schemes for the polarization propagator are developed and applied to the ab initio calculation of static (photoionization cross-sections) and dynamic (high-order harmonic generation spectra) quantities. We show that the cross-section features that pose a challenge for the Gaussian basis calculations, such as Cooper minima and high-energy tails, are found to be reproduced by the B-spline ADC in a very good agreement with the experiment. We also presentmore » the first dynamic B-spline ADC results, showing that the effect of the Cooper minimum on the high-order harmonic generation spectrum of Ar is correctly predicted by the time-dependent ADC calculation in the B-spline basis. The present development paves the way for the application of the B-spline ADC to both energy- and time-resolved theoretical studies of many-electron phenomena in atoms, molecules, and clusters.« less
Kumar Deb, Debojit; Sarkar, Biplab
2017-01-18
The torsional potential of OH and SH rotations in 2-hydroxy thiophenol is systematically studied using the MP2 ab initio method. The outcome of state-of-the-art calculations is used in the investigation of the structures and conformational preferences of 2-hydroxy thiophenol and aims at further interaction studies with a gas phase water molecule. SCS-MP2 and CCSD(T) complete basis set (CBS) limit interaction energies for these complexes are presented. The SCS-MP2/CBS limit is achieved using various two-point extrapolation methods with aug-cc-pVDZ and aug-cc-pVTZ basis sets. The CCSD(T) correction term is determined as the difference between CCSD(T) and SCS-MP2 interaction energies calculated using a smaller basis set. The effect of counterpoise correction on the extrapolation to the CBS limit is discussed. The performance of DFT based wB97XD, M06-2X and B3LYP-D3 functionals is tested against the benchmark energy from ab initio calculations. Hydrogen bond interactions are characterized by carrying out QTAIM, NCIPLOT, NBO and SAPT analyses.
Yoon, Byung-Hak; Lee, Jae Hyup; Na, Kyuheum; Ahn, Chihoon; Cho, Jongho; Ahn, Hyun Chan; Choi, Jungyoun; Oh, Hyosun; Kim, Byong Moon; Choe, Senyon
2018-01-01
The purpose of this study was to determine the effects of a single intravenous injection of a novel osteoinductive material, activin A/BMP-2 (AB204), to rodents on toxicity and their respiratory functions and central nervous system (CNS). A single intravenous injection of AB204 was given to Sprague–Dawley (SD) rats in doses of 0, 0.625, 2.5 and 10 mg/kg to observe the mortality rate, the general symptoms for 14 days. The experimental groups were also given 0.2, 0.4 and 0.8 mg/kg of AB204, respectively, and the respiration rate, the tidal volume and the minute volume were measured for 240 min. The experimental groups of imprinting control region (ICR) mice were given a single intravenous injection of 0.2, 0.4 and 0.8 mg/kg of AB204, respectively. Their body temperature was taken and general behaviors were observed to evaluate the effect of AB204 on the CNS for 240 min. The study on toxicity of a single intravenous injection found no death or abnormal symptoms, abnormal findings from autopsy, or abnormal body weight gain or loss in all the experimental groups. No abnormal variation associated with the test substance was observed in the respiration rate, the tidal volume, the minute volume, body temperature or the general behaviors. On the basis of these results, the approximate lethal dose of AB204 for a single intravenous injection exceeds 10 mg/kg for SD rats and a single intravenous injection of ≤0.8 mg/kg AB204 has no effect on their respiratory system for SD rat and no effect on their CNS for ICR mice. PMID:26446865
Yoon, Byung-Hak; Lee, Jae Hyup; Na, Kyuheum; Ahn, Chihoon; Cho, Jongho; Ahn, Hyun Chan; Choi, Jungyoun; Oh, Hyosun; Kim, Byong Moon; Choe, Senyon
2016-01-01
The purpose of this study was to determine the effects of a single intravenous injection of a novel osteoinductive material, activin A/BMP-2 (AB204), to rodents on toxicity and their respiratory functions and central nervous system (CNS). A single intravenous injection of AB204 was given to Sprague-Dawley (SD) rats in doses of 0, 0.625, 2.5 and 10 mg/kg to observe the mortality rate, the general symptoms for 14 days. The experimental groups were also given 0.2, 0.4 and 0.8 mg/kg of AB204, respectively, and the respiration rate, the tidal volume and the minute volume were measured for 240 min. The experimental groups of imprinting control region (ICR) mice were given a single intravenous injection of 0.2, 0.4 and 0.8 mg/kg of AB204, respectively. Their body temperature was taken and general behaviors were observed to evaluate the effect of AB204 on the CNS for 240 min. The study on toxicity of a single intravenous injection found no death or abnormal symptoms, abnormal findings from autopsy, or abnormal body weight gain or loss in all the experimental groups. No abnormal variation associated with the test substance was observed in the respiration rate, the tidal volume, the minute volume, body temperature or the general behaviors. On the basis of these results, the approximate lethal dose of AB204 for a single intravenous injection exceeds 10 mg/kg for SD rats and a single intravenous injection of ≤0.8 mg/kg AB204 has no effect on their respiratory system for SD rat and no effect on their CNS for ICR mice.
Gough, Gerald; Szapacs, Matthew; Shah, Tejash; Clements, Peter; Struble, Craig; Wilson, Robert
2018-02-01
Domain antibodies (dAb's) comprise the smallest functional unit of human IgG and can be targeted to a range of different soluble cytokine and receptor targets in the eye. In particular their small size may offer advantage for ocular tissue penetration and distribution. To investigate this we used a 13kDa tool molecule to undertake a preliminary short term ocular tissue distribution and pharmacokinetic study in the rabbit eye. The dAb was administered by the intravitreal or subconjunctival route or, as topical eye drops for up to five days and dAb concentrations measured in vitreous, aqueous, conjunctiva, choroid-RPE, retina, iris, sclera, and ciliary body. The observed elimination half-live of the dAb (~3 days) in vitreous showed a similar elimination rate to that of a much larger (∼50kDa) Fab fragment whilst the half-life following subconjunctival administration was ∼24 h and, after eye drop dosing the dAb was detectable in aqueous and conjunctiva. These preliminary data show that the intravitreal half-life of dAb's are similar to much larger antibody fragments, offering the potential to deliver significantly more drug to target on a molar basis with a single intravitreal injection potentially enabling dosing frequencies of once a month or less. Subconjunctival injection may provide short duration therapeutic levels of dAb to the anterior and posterior chamber whilst topical eye drop delivery of dAbs may be useful in front-of-eye disease. These data indicate that small domain antibodies may have utility in ophthalmology. Further studies are warranted. Copyright © 2017 Elsevier Ltd. All rights reserved.
Landais, Elise; Huang, Xiayu; Havenar-Daughton, Colin; Murrell, Ben; Price, Matt A.; Wickramasinghe, Lalinda; Ramos, Alejandra; Bian, Charoan B.; Simek, Melissa; Allen, Susan; Karita, Etienne; Kilembe, William; Lakhi, Shabir; Inambao, Mubiana; Kamali, Anatoli; Sanders, Eduard J.; Anzala, Omu; Edward, Vinodh; Bekker, Linda-Gail; Tang, Jianming; Gilmour, Jill; Kosakovsky-Pond, Sergei L.; Phung, Pham; Wrin, Terri; Crotty, Shane; Godzik, Adam; Poignard, Pascal
2016-01-01
Broadly neutralizing antibodies (bnAbs) are thought to be a critical component of a protective HIV vaccine. However, designing vaccines immunogens able to elicit bnAbs has proven unsuccessful to date. Understanding the correlates and immunological mechanisms leading to the development of bnAb responses during natural HIV infection is thus critical to the design of a protective vaccine. The IAVI Protocol C program investigates a large longitudinal cohort of primary HIV-1 infection in Eastern and South Africa. Development of neutralization was evaluated in 439 donors using a 6 cross-clade pseudo-virus panel predictive of neutralization breadth on larger panels. About 15% of individuals developed bnAb responses, essentially between year 2 and year 4 of infection. Statistical analyses revealed no influence of gender, age or geographical origin on the development of neutralization breadth. However, cross-clade neutralization strongly correlated with high viral load as well as with low CD4 T cell counts, subtype-C infection and HLA-A*03(-) genotype. A correlation with high overall plasma IgG levels and anti-Env IgG binding titers was also found. The latter appeared not associated with higher affinity, suggesting a greater diversity of the anti-Env responses in broad neutralizers. Broadly neutralizing activity targeting glycan-dependent epitopes, largely the N332-glycan epitope region, was detected in nearly half of the broad neutralizers while CD4bs and gp41-MPER bnAb responses were only detected in very few individuals. Together the findings suggest that both viral and host factors are critical for the development of bnAbs and that the HIV Env N332-glycan supersite may be a favorable target for vaccine design. PMID:26766578
Landais, Elise; Huang, Xiayu; Havenar-Daughton, Colin; Murrell, Ben; Price, Matt A; Wickramasinghe, Lalinda; Ramos, Alejandra; Bian, Charoan B; Simek, Melissa; Allen, Susan; Karita, Etienne; Kilembe, William; Lakhi, Shabir; Inambao, Mubiana; Kamali, Anatoli; Sanders, Eduard J; Anzala, Omu; Edward, Vinodh; Bekker, Linda-Gail; Tang, Jianming; Gilmour, Jill; Kosakovsky-Pond, Sergei L; Phung, Pham; Wrin, Terri; Crotty, Shane; Godzik, Adam; Poignard, Pascal
2016-01-01
Broadly neutralizing antibodies (bnAbs) are thought to be a critical component of a protective HIV vaccine. However, designing vaccines immunogens able to elicit bnAbs has proven unsuccessful to date. Understanding the correlates and immunological mechanisms leading to the development of bnAb responses during natural HIV infection is thus critical to the design of a protective vaccine. The IAVI Protocol C program investigates a large longitudinal cohort of primary HIV-1 infection in Eastern and South Africa. Development of neutralization was evaluated in 439 donors using a 6 cross-clade pseudo-virus panel predictive of neutralization breadth on larger panels. About 15% of individuals developed bnAb responses, essentially between year 2 and year 4 of infection. Statistical analyses revealed no influence of gender, age or geographical origin on the development of neutralization breadth. However, cross-clade neutralization strongly correlated with high viral load as well as with low CD4 T cell counts, subtype-C infection and HLA-A*03(-) genotype. A correlation with high overall plasma IgG levels and anti-Env IgG binding titers was also found. The latter appeared not associated with higher affinity, suggesting a greater diversity of the anti-Env responses in broad neutralizers. Broadly neutralizing activity targeting glycan-dependent epitopes, largely the N332-glycan epitope region, was detected in nearly half of the broad neutralizers while CD4bs and gp41-MPER bnAb responses were only detected in very few individuals. Together the findings suggest that both viral and host factors are critical for the development of bnAbs and that the HIV Env N332-glycan supersite may be a favorable target for vaccine design.
Oriented conjugation of single-domain antibodies and quantum dots.
Brazhnik, Kristina; Nabiev, Igor; Sukhanova, Alyona
2014-01-01
Nanoparticle-based biodetection routinely employs monoclonal antibodies (mAbs) for targeting. However, the large size of mAbs limits the number of ligands per nanoparticle and severely restricts the bioavailability and distribution of these probes in a sample. Furthermore, conventional conjugation techniques provide nanoprobes with irregular orientation of mAbs on the nanoparticle surface and often provoke mAb unfolding. Here, we describe a protocol for engineering a new generation of ultrasmall diagnostic nanoprobes through oriented conjugation of semiconductor quantum dots (QDs) with 13 kDa single-domain antibodies (sdAbs) derived from llama immunoglobulin G (IgG). The sdAbs are conjugated with QDs in a highly oriented manner via an additional cysteine residue specifically integrated into the sdAb C-terminus. The resultant nanoprobes are <12 nm in diameter, ten times smaller in volume compared to the known alternatives. They have been proved highly efficient in flow cytometry and immunuhistochemical diagnostics. This approach can be easily extended to other semiconductor and plasmonic nanoparticles.
NASA Astrophysics Data System (ADS)
Naruse, H.; Muto, T.
2017-12-01
Autostratigraphy is the stratigraphy that is generated by large-scale, deterministic autogenic processes of depositional systems, based on the full recognition of non-equilibrium behavior in response to steady external forcing. Recent experimental studies to explore the effects of basin water depth on the dynamics of distributary channels have brought a new geometrical scheme, here referred to as the grade index model, which is expected to make a significant step forward for development of the autostratigraphy of river deltas. Grade index (0 ≤ Gindex ≤1) is a dimensionless number that describes how close the alluvial river is to a graded state and is given as the ratio of subaerial allocation of the supplied sediment to both subaerial and subaqueous allocation of the sediment, in the form of a function of dimensionless basin water depth (h*). The grade index model for a particular geometrical setting suggests that as h* increase toward +∞, all of dimensionless magnitudes of delta progradation rate (Rpro*), alluvial aggradation rate (Ragg*), channel migration rate (Rmig*), avulsion frequency decrease toward 0, and all of dimensionless timescales of channel shifting (τs*), recurrence of channels (τr*), channel avulsion (τA*) increase toward +∞, and also that Rpro* = Ragg* = Rmig* = fA* = (τs*)-1 = (τr*)-1 = (τA* )-1 = Gindex. This grade index model, despite its simple structure, offers deep insight into the rationale of shoreline autoretreat, a typical large-scale, deterministic autogenic process that is realized by non-equilibrium response to steady base level rise. A simple geometrical modeling leads to a finding that Ppro* = (1 - Ab*) Gindex, where Ab* is a dimensionless form of the bottom surface of the deltaic deposit (Ab) given by dividing Ab with the square of autostratigraphic length scale (Λ). As the delta grows with base level rise, Ab progressively increases and then inevitably meets an event that Ab* exceeds 1 (i.e. Ab exceeds Λ2). We also find that Pagg* = A* + (1 - Ab*) Gindex, where A* is a dimensionless horizontal area of the deltaplain (A* = A/Λ2). At the moment of autodrowning, A* becomes 0, Ab* takes a positive value larger than one, h* is infinitely large, and thus and Gindex takes a value close to zero. Thus, shoreline autoretreat and autodrowning of the delta are closely related to grade index.
Dust around Mira variables: An analysis of IRAS LRS spectra
NASA Technical Reports Server (NTRS)
Slijkhuis, S.
1989-01-01
The spatial extent and spectral appearance of the thin dust shell around Mira variables is determined largely by the dust absorptivity, Q(sub abs)(lambda), and the dust condensation temperature T(sub cond). Both Q(sub abs)(lambda) and T(sub cond) are extracted from IRAS low-resolution spectra (LRS) spectra. In order to do this, the assumption that the ratio of total power in the 10 micron feature to that in the 20 micron feature should be equal to that measured in other amorphous silicates (e.g., synthesized amorphous Mg2SiO4). It was found that T(sub cond) decreases with decreasing strength of the 10 micron feature, from T(sub cond) = 1000 K to 500 K (estimated error 20 percent). A value for the near-infrared dust absorptivity could not be determined. Although this parameter strongly affects the condensation radius, it hardly affects the shape of the LRS spectrum (as long as the optically thin approximation is valid), because it scales the spatial distribution of the dust. Information on the magnitude of the near-infrared dust absorptivity may be deduced from the unique carbon star BM Gem. This star has a LRS spectrum with silicate features indication an inner dust shell temperature of at least 1000 K. However, on the basis of observations in the 1920s-30s one may infer an inner dust shell radius of at least 6x10(exp 12)m. To have this high temperature at such a large distance, the near-infrared absorptivity of the dust must be high.
The effect of sampling techniques used in the multiconfigurational Ehrenfest method
NASA Astrophysics Data System (ADS)
Symonds, C.; Kattirtzi, J. A.; Shalashilin, D. V.
2018-05-01
In this paper, we compare and contrast basis set sampling techniques recently developed for use in the ab initio multiple cloning method, a direct dynamics extension to the multiconfigurational Ehrenfest approach, used recently for the quantum simulation of ultrafast photochemistry. We demonstrate that simultaneous use of basis set cloning and basis function trains can produce results which are converged to the exact quantum result. To demonstrate this, we employ these sampling methods in simulations of quantum dynamics in the spin boson model with a broad range of parameters and compare the results to accurate benchmarks.
The effect of sampling techniques used in the multiconfigurational Ehrenfest method.
Symonds, C; Kattirtzi, J A; Shalashilin, D V
2018-05-14
In this paper, we compare and contrast basis set sampling techniques recently developed for use in the ab initio multiple cloning method, a direct dynamics extension to the multiconfigurational Ehrenfest approach, used recently for the quantum simulation of ultrafast photochemistry. We demonstrate that simultaneous use of basis set cloning and basis function trains can produce results which are converged to the exact quantum result. To demonstrate this, we employ these sampling methods in simulations of quantum dynamics in the spin boson model with a broad range of parameters and compare the results to accurate benchmarks.
76 FR 50881 - Required Scale Tests
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-17
... RIN 0580-AB10 Required Scale Tests AGENCY: Grain Inspection, Packers and Stockyards Administration... required scale tests. Those documents defined ``limited seasonal basis'' incorrectly. This document... 20, 2011 (76 FR 3485) and on April 4, 2011 (76 FR 18348), concerning required scale tests. Those...
Characterizing Atacama B-mode Search Detectors with a Half-Wave Plate
NASA Astrophysics Data System (ADS)
Simon, S. M.; Appel, J. W.; Campusano, L. E.; Choi, S. K.; Crowley, K. T.; Essinger-Hileman, T.; Gallardo, P.; Ho, S. P.; Kusaka, A.; Nati, F.; Palma, G. A.; Page, L. A.; Raghunathan, S.; Staggs, S. T.
2016-08-01
The Atacama B-Mode Search (ABS) instrument is a cryogenic (˜ 10 K) crossed-Dragone telescope located at an elevation of 5190 m in the Atacama Desert in Chile that observed for three seasons between February 2012 and October 2014. ABS observed the cosmic microwave background (CMB) at large angular scales (40<ℓ <500) to limit the B-mode polarization spectrum around the primordial B-mode peak from inflationary gravity waves at ℓ ˜ 100. The ABS focal plane consists of 480 transition-edge sensor (TES) bolometers. They are coupled to orthogonal polarizations from a planar ortho-mode transducer and observe at 145 GHz. ABS employs an ambient-temperature, rapidly rotating half-wave plate (HWP) to mitigate systematic effects and move the signal band away from atmospheric 1 / f noise, allowing for the recovery of large angular scales. We discuss how the signal at the second harmonic of the HWP rotation frequency can be used for data selection and for monitoring the detector responsivities.
Flyak, Andrew I; Shen, Xiaoli; Murin, Charles D; Turner, Hannah L; David, Joshua A; Fusco, Marnie L; Lampley, Rebecca; Kose, Nurgun; Ilinykh, Philipp A; Kuzmina, Natalia; Branchizio, Andre; King, Hannah; Brown, Leland; Bryan, Christopher; Davidson, Edgar; Doranz, Benjamin J; Slaughter, James C; Sapparapu, Gopal; Klages, Curtis; Ksiazek, Thomas G; Saphire, Erica Ollmann; Ward, Andrew B; Bukreyev, Alexander; Crowe, James E
2016-01-28
Recent studies have suggested that antibody-mediated protection against the Ebolaviruses may be achievable, but little is known about whether or not antibodies can confer cross-reactive protection against viruses belonging to diverse Ebolavirus species, such as Ebola virus (EBOV), Sudan virus (SUDV), and Bundibugyo virus (BDBV). We isolated a large panel of human monoclonal antibodies (mAbs) against BDBV glycoprotein (GP) using peripheral blood B cells from survivors of the 2007 BDBV outbreak in Uganda. We determined that a large proportion of mAbs with potent neutralizing activity against BDBV bind to the glycan cap and recognize diverse epitopes within this major antigenic site. We identified several glycan cap-specific mAbs that neutralized multiple ebolaviruses, including SUDV, and a cross-reactive mAb that completely protected guinea pigs from the lethal challenge with heterologous EBOV. Our results provide a roadmap to develop a single antibody-based treatment effective against multiple Ebolavirus infections. Copyright © 2016 Elsevier Inc. All rights reserved.
Flyak, Andrew I.; Shen, Xiaoli; Murin, Charles D.; Turner, Hannah L.; David, Joshua A.; Fusco, Marnie L.; Lampley, Rebecca; Kose, Nurgun; Ilinykh, Philipp A.; Kuzmina, Natalia; Branchizio, Andre; King, Hannah; Brown, Leland; Bryan, Christopher; Davidson, Edgar; Doranz, Benjamin J.; Slaughter, James C.; Sapparapu, Gopal; Klages, Curtis; Ksiazek, Thomas G.; Saphire, Erica Ollmann; Ward, Andrew B.; Bukreyev, Alexander; Crowe, James E.
2015-01-01
Summary Recent studies have suggested that antibody-mediated protection against the Ebolaviruses may be achievable, but little is known about whether or not antibodies can confer cross-reactive protection against viruses belonging to diverse Ebolavirus species, such as Ebola virus (EBOV), Sudan virus (SUDV) and Bundibugyo virus (BDBV). We isolated a large panel of human monoclonal antibodies (mAbs) against BDBV glycoprotein (GP) using peripheral blood B cells from survivors of the 2007 BDBV outbreak in Uganda. We determined that a large proportion of mAbs with potent neutralizing activity against BDBV bind to the glycan cap and recognize diverse epitopes within this major antigenic site. We identified several glycan cap-specific mAbs that neutralized multiple ebolaviruses including SUDV, and a cross-reactive mAb that completely protected guinea pigs from the lethal challenge with heterologous EBOV. Our results provide a roadmap to develop a single antibody-based treatment effective against multiple Ebolavirus infections. PMID:26806128
Enhancing antibody patent protection using epitope mapping information
Deng, Xiaoxiang; Storz, Ulrich; Doranz, Benjamin J.
2018-01-01
ABSTRACT As the $100B therapeutic monoclonal antibody (mAb) market continues to grow, developers of therapeutic mAbs increasingly face the need to strengthen patent protection of their products and enforce their patents in courts. In view of changes in the patent law landscape, patent applications are strategically using information on the precise binding sites of their mAbs, i.e., the epitopes, to support patent novelty, non-obviousness, subject matter, and a tightened written description requirement for broad genus antibody claims. Epitope data can also allow freedom-to-operate for second-generation mAbs by differentiation from patented first-generation mAbs. Numerous high profile court cases, including Amgen v. Sanofi over rival mAbs that block PCSK9 activity, have been centered on epitope mapping claims, highlighting the importance of epitopes in determining broad mAb patent rights. Based on these cases, epitope mapping claims must describe a sufficiently large number of mAbs that share an epitope, and each epitope must be described at amino acid resolution. Here, we review current best practices for the use of epitope information to overcome the increasing challenges of patenting mAbs, and how the quality, conformation, and resolution of epitope residue data can influence the breadth and strength of mAb patents. PMID:29120697
NASA Astrophysics Data System (ADS)
Zhang, Xiaolin; Mao, Mao; Yin, Yan; Wang, Bin
2018-01-01
This study numerically evaluates the effects of aerosol microphysics, including coated volume fraction of black carbon (BC), shell/core ratio, and size distribution, on the absorption enhancement (
NASA Astrophysics Data System (ADS)
Roy, Dipankar; Marianski, Mateusz; Maitra, Neepa T.; Dannenberg, J. J.
2012-10-01
We compare dispersion and induction interactions for noble gas dimers and for Ne, methane, and 2-butyne with HF and LiF using a variety of functionals (including some specifically parameterized to evaluate dispersion interactions) with ab initio methods including CCSD(T) and MP2. We see that inductive interactions tend to enhance dispersion and may be accompanied by charge-transfer. We show that the functionals do not generally follow the expected trends in interaction energies, basis set superposition errors (BSSE), and interaction distances as a function of basis set size. The functionals parameterized to treat dispersion interactions often overestimate these interactions, sometimes by quite a lot, when compared to higher level calculations. Which functionals work best depends upon the examples chosen. The B3LYP and X3LYP functionals, which do not describe pure dispersion interactions, appear to describe dispersion mixed with induction about as accurately as those parametrized to treat dispersion. We observed significant differences in high-level wavefunction calculations in a basis set larger than those used to generate the structures in many of the databases. We discuss the implications for highly parameterized functionals based on these databases, as well as the use of simple potential energy for fitting the parameters rather than experimentally determinable thermodynamic state functions that involve consideration of vibrational states.
Roy, Dipankar; Marianski, Mateusz; Maitra, Neepa T; Dannenberg, J J
2012-10-07
We compare dispersion and induction interactions for noble gas dimers and for Ne, methane, and 2-butyne with HF and LiF using a variety of functionals (including some specifically parameterized to evaluate dispersion interactions) with ab initio methods including CCSD(T) and MP2. We see that inductive interactions tend to enhance dispersion and may be accompanied by charge-transfer. We show that the functionals do not generally follow the expected trends in interaction energies, basis set superposition errors (BSSE), and interaction distances as a function of basis set size. The functionals parameterized to treat dispersion interactions often overestimate these interactions, sometimes by quite a lot, when compared to higher level calculations. Which functionals work best depends upon the examples chosen. The B3LYP and X3LYP functionals, which do not describe pure dispersion interactions, appear to describe dispersion mixed with induction about as accurately as those parametrized to treat dispersion. We observed significant differences in high-level wavefunction calculations in a basis set larger than those used to generate the structures in many of the databases. We discuss the implications for highly parameterized functionals based on these databases, as well as the use of simple potential energy for fitting the parameters rather than experimentally determinable thermodynamic state functions that involve consideration of vibrational states.
Roy, Dipankar; Marianski, Mateusz; Maitra, Neepa T.; Dannenberg, J. J.
2012-01-01
We compare dispersion and induction interactions for noble gas dimers and for Ne, methane, and 2-butyne with HF and LiF using a variety of functionals (including some specifically parameterized to evaluate dispersion interactions) with ab initio methods including CCSD(T) and MP2. We see that inductive interactions tend to enhance dispersion and may be accompanied by charge-transfer. We show that the functionals do not generally follow the expected trends in interaction energies, basis set superposition errors (BSSE), and interaction distances as a function of basis set size. The functionals parameterized to treat dispersion interactions often overestimate these interactions, sometimes by quite a lot, when compared to higher level calculations. Which functionals work best depends upon the examples chosen. The B3LYP and X3LYP functionals, which do not describe pure dispersion interactions, appear to describe dispersion mixed with induction about as accurately as those parametrized to treat dispersion. We observed significant differences in high-level wavefunction calculations in a basis set larger than those used to generate the structures in many of the databases. We discuss the implications for highly parameterized functionals based on these databases, as well as the use of simple potential energy for fitting the parameters rather than experimentally determinable thermodynamic state functions that involve consideration of vibrational states. PMID:23039587
NASA Astrophysics Data System (ADS)
Yockel, Scott; Mintz, Benjamin; Wilson, Angela K.
2004-07-01
Advanced ab initio [coupled cluster theory through quasiperturbative triple excitations (CCSD(T))] and density functional (B3LYP) computational chemistry approaches were used in combination with the standard and augmented correlation consistent polarized valence basis sets [cc-pVnZ and aug-cc-pVnZ, where n=D(2), T(3), Q(4), and 5] to investigate the energetic and structural properties of small molecules containing third-row (Ga-Kr) atoms. These molecules were taken from the Gaussian-2 (G2) extended test set for third-row atoms. Several different schemes were used to extrapolate the calculated energies to the complete basis set (CBS) limit for CCSD(T) and the Kohn-Sham (KS) limit for B3LYP. Zero point energy and spin orbital corrections were included in the results. Overall, CCSD(T) atomization energies, ionization energies, proton affinities, and electron affinities are in good agreement with experiment, within 1.1 kcal/mol when the CBS limit has been determined using a series of two basis sets of at least triple zeta quality. For B3LYP, the overall mean absolute deviation from experiment for the three properties and the series of molecules is more significant at the KS limit, within 2.3 and 2.6 kcal/mol for the cc-pVnZ and aug-cc-pVnZ basis set series, respectively.
Kurosawa, Gene; Kondo, Mariko; Kurosawa, Yoshikazu
2016-11-04
When the technology for constructing human antibody (Ab) libraries using a phage-display system was developed, many researchers in Ab-related fields anticipated that it would be widely applied to the development of pharmaceutical drugs against various diseases, including cancers. However, successful examples of such applications are very limited. Moreover, researchers who utilize phage-display technology now show divergent ways of thinking about phage Ab libraries. For example, there is debate about what should be the source of V H and V L genes for the construction of libraries to cover the whole repertoire of Abs present in the human body. In the immune system, the introduction of mutations into V genes followed by selection based on binding activity, termed Ab maturation, is required for the production of Abs exhibiting high affinity to the antigen (Ag). Therefore, introduction of mutations and selection are required for isolation of Abs with high affinity after isolation of clones from phage Ab libraries. We constructed a large human Ab library termed AIMS, developed a screening method termed ICOS, and succeeded in isolating many human monoclonal Abs (mAbs) that specifically and strongly bind to various tumor-associated Ags. Eight anti-EGFR mAbs were included, which we characterized. These mAbs showed various different activities against EGFR-expressing cancer cells. In this paper, we describe these data and discuss the possibility and necessity that the mAbs isolated from the AIMS library might be developed as therapeutic drugs against cancers without introduction of mutations. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Isolated lymphoid follicles are not IgA inductive sites for recombinant Salmonella
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hashizume, Tomomi; Momoi, Fumiki; Kurita-Ochiai, Tomoko
2007-08-24
In this study, we investigated whether isolated lymphoid follicles (ILF) play a role in the regulation of intestinal IgA antibody (Ab) responses. The transfer of wild type (WT) bone marrow (BM) to lymphotoxin-{alpha}-deficient (LT{alpha}{sup -/-}) mice resulted in the formation of mature ILF containing T cells, B cells, and FDC clusters in the absence of mesenteric lymph nodes and Peyer's patches. Although the ILF restored total IgA Abs in the intestine, antigen (Ag)-specific IgA responses were not induced after oral immunization with recombinant Salmonella expressing fragment C of tetanus toxin. Moreover, Ag-specific cell proliferation was not detected in the ILF.more » Interestingly, no IgA anti-LPS Abs were detected in the fecal extracts of LT{alpha}{sup -/-} mice reconstituted with WT BM. On the basis of these findings, ILF can be presumed to play a role in the production of IgA Abs, but lymphoid nodules are not inductive sites for the regulation of Ag-specific intestinal IgA responses to recombinant Salmonella.« less
NASA Astrophysics Data System (ADS)
Wang, Dehua
2014-09-01
The Aharonov-Bohm (AB) effect in the photodetachment microscopy of the H- ions in an electric field has been studied on the basis of the semiclassical theory. After the H- ion is irradiated by a laser light, they provide a coherent electron source. When the detached electron is accelerated by a uniform electric field, two trajectories of a detached electron which run from the source to the same point on the detector, will interfere with each other and lead to an interference pattern in the photodetachment microscopy. After the solenoid is electrified beside the H- ion, even though no Lorentz force acts on the electron outside the solenoid, the photodetachment microscopy interference pattern on the detector is changed with the variation in the magnetic flux enclosed by the solenoid. This is caused by the AB effect. Under certain conditions, the interference pattern reaches the macroscopic dimensions and could be observed in a direct AB effect experiment. Our study can provide some predictions for the future experimental study of the AB effect in the photodetachment microscopy of negative ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramsland, Paul A.; Farrugia, William; Bradford, Tessa M.
The interaction of Abs with their specific FcRs is of primary importance in host immune effector systems involved in infection and inflammation, and are the target for immune evasion by pathogens. Fc{gamma}RIIa is a unique and the most widespread activating FcR in humans that through avid binding of immune complexes potently triggers inflammation. Polymorphisms of Fc{gamma}RIIa (high responder/low responder [HR/LR]) are linked to susceptibility to infections, autoimmune diseases, and the efficacy of therapeutic Abs. In this article, we define the three-dimensional structure of the complex between the HR (arginine, R134) allele of Fc{gamma}RIIa (Fc{gamma}RIIa-HR) and the Fc region of amore » humanized IgG1 Ab, hu3S193. The structure suggests how the HR/LR polymorphism may influence Fc{gamma}RIIa interactions with different IgG subclasses and glycoforms. In addition, mutagenesis defined the basis of the epitopes detected by FcR blocking mAbs specific for Fc{gamma}RIIa (IV.3), Fc{gamma}RIIb (X63-21), and a pan Fc{gamma}RII Ab (8.7). The epitopes detected by these Abs are distinct, but all overlap with residues defined by crystallography to contact IgG. Finally, crystal structures of LR (histidine, H134) allele of Fc{gamma}RIIa and Fc{gamma}RIIa-HR reveal two distinct receptor dimers that may represent quaternary states on the cell surface. A model is presented whereby a dimer of Fc{gamma}RIIa-HR binds Ag-Ab complexes in an arrangement that possibly occurs on the cell membrane as part of a larger signaling assembly.« less
Yao, Jianxiu; Zhu, Yu-Cheng; Lu, Nanyan; Buschman, Lawrent L; Zhu, Kun Yan
2017-01-30
A microarray developed on the basis of 2895 unique transcripts from larval gut was used to compare gut gene expression profiles between a laboratory-selected Cry1Ab-resistant (R) strain and its isoline susceptible (S) strain of the European corn borer (Ostrinia nubilalis) after the larvae were fed the leaves of transgenic corn (MON810) expressing Cry1Ab or its non-transgenic isoline for 6 h. We revealed 398 gut genes differentially expressed (i.e., either up- or down-regulated genes with expression ratio ≥2.0) in S-strain, but only 264 gut genes differentially expressed in R-strain after being fed transgenic corn leaves. Although the percentages of down-regulated genes among the total number of differentially expressed genes (50% in S-strain and 45% in R-strain) were similar between the R- and S-strains, the expression ratios of down-regulated genes were much higher in S-strain than in R-strain. We revealed that 17 and 9 significantly up- or down-regulated gut genes from S and R-strain, respectively, including serine proteases and aminopeptidases. These genes may be associated with Cry1Ab toxicity by degradation, binding, and cellular defense. Overall, our study suggests enhanced adaptation of Cry1Ab-resistant larvae on transgenic Cry1Ab corn as revealed by lower number and lower ratios of differentially expressed genes in R-strain than in S-strain of O. nubilalis.
NASA Astrophysics Data System (ADS)
Oberhofer, Harald; Blumberger, Jochen
2010-12-01
We present a plane wave basis set implementation for the calculation of electronic coupling matrix elements of electron transfer reactions within the framework of constrained density functional theory (CDFT). Following the work of Wu and Van Voorhis [J. Chem. Phys. 125, 164105 (2006)], the diabatic wavefunctions are approximated by the Kohn-Sham determinants obtained from CDFT calculations, and the coupling matrix element calculated by an efficient integration scheme. Our results for intermolecular electron transfer in small systems agree very well with high-level ab initio calculations based on generalized Mulliken-Hush theory, and with previous local basis set CDFT calculations. The effect of thermal fluctuations on the coupling matrix element is demonstrated for intramolecular electron transfer in the tetrathiafulvalene-diquinone (Q-TTF-Q-) anion. Sampling the electronic coupling along density functional based molecular dynamics trajectories, we find that thermal fluctuations, in particular the slow bending motion of the molecule, can lead to changes in the instantaneous electron transfer rate by more than an order of magnitude. The thermal average, ( {< {| {H_ab } |^2 } > } )^{1/2} = 6.7 {mH}, is significantly higher than the value obtained for the minimum energy structure, | {H_ab } | = 3.8 {mH}. While CDFT in combination with generalized gradient approximation (GGA) functionals describes the intermolecular electron transfer in the studied systems well, exact exchange is required for Q-TTF-Q- in order to obtain coupling matrix elements in agreement with experiment (3.9 mH). The implementation presented opens up the possibility to compute electronic coupling matrix elements for extended systems where donor, acceptor, and the environment are treated at the quantum mechanical (QM) level.
Ab Initio and Analytic Intermolecular Potentials for Ar–CH3OH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tasic, Uros; Alexeev, Yuri; Vayner, Grigoriy
2006-09-20
Ab initio calculations at the CCSD(T)/aug-cc-pVTZ level of theory were used to characterize the Ar–CH₃y6tOH intermolecular potential energy surface (PES). Potential energy curves were calculated for four different Ar + CH₃OH orientations and used to derive an analytic function for the intermolecular PES. A sum of Ar–C, Ar–O, Ar–H(C), and Ar–H(O) two-body potentials gives an excellent fit to these potential energy curves up to 100 kcal mol¯¹, and adding an additional r¯¹n term to the Buckingham two-body potential results in only a minor improvement in the fit. Three Ar–CH₃OH van der Waals minima were found from the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ calculations. Themore » structure of the global minimum is in overall good agreement with experiment (X.-C. Tan, L. Sun and R. L. Kuczkowski, J. Mol. Spectrosc., 1995, 171, 248). It is T-shaped with the hydroxyl H-atom syn with respect to Ar. Extrapolated to the complete basis set (CBS) limit, the global minimum has a well depth of 0.72 kcal mol¯¹ with basis set superposition error (BSSE) correction. The aug-cc-pVTZ basis set gives a well depth only 0.10 kcal mol¯¹ smaller than this value. The well depths of the other two minima are within 0.16 kcal mol¯¹ of the global minimum. The analytic Ar–CH₃OH intermolecular potential also identifies these three minima as the only van der Waals minima and the structures predicted by the analytic potential are similar to the ab initio structures. The analytic potential identifies the same global minimum and the predicted well depths for the minima are within 0.05 kcal mol¯1 of the ab initio values. Combining this Ar–CH₃OH intermolecular potential with a potential for a OH-terminated alkylthiolate self-assembled monolayer surface (i.e., HO-SAM) provides a potential to model Ar + HO-SAM collisions.« less
Torsional anharmonicity in the conformational thermodynamics of flexible molecules
NASA Astrophysics Data System (ADS)
Miller, Thomas F., III; Clary, David C.
We present an algorithm for calculating the conformational thermodynamics of large, flexible molecules that combines ab initio electronic structure theory calculations with a torsional path integral Monte Carlo (TPIMC) simulation. The new algorithm overcomes the previous limitations of the TPIMC method by including the thermodynamic contributions of non-torsional vibrational modes and by affordably incorporating the ab initio calculation of conformer electronic energies, and it improves the conventional ab initio treatment of conformational thermodynamics by accounting for the anharmonicity of the torsional modes. Using previously published ab initio results and new TPIMC calculations, we apply the algorithm to the conformers of the adrenaline molecule.
Ribeiro, Douglas S
2017-06-01
This study presents computations of three energy related properties for 26 previously published multisite intermolecular potentials of methane: MM2, MM3, MM2en, MM3en, MM2mc, MM3mc, MM3envir, RMK, OPLS all-atom, MUB-2, AMBER, BOYD, Williams, Sheikh, MG, Tsuzuki, E2-Gay, E4-Gay, MP4exp-6(iii), MP4exp-6(iv), Rowley-A, Rowley-B, TraPPE-EH, Ouyang, CLC, and Chao and three united atom potentials: Saager-Fischer (SF), OPLS united atom, and HFD. The three properties analyzed are the second virial coefficients for 14 temperature points in the range of 110 to 623.15 K, the interaction energies for 12 orientations of the methane dimer as a function of distance followed by a comparison to three ab initio data sets and the cohesive energy of the aggregate of 512 methane molecules. The latter computed energies are correlated to latent heat of evaporation of 11 potentials and are proposed as surrogate approximate parameters for ΔH vap for the studied potentials. The 10 best performing potentials are selected by rms order in each one of the properties and three of them are found to be present simultaneously in the three sets: Tsuzuki, MM3mc, and MM2mc. On the basis of the cohesive energy of the aggregate, a quantitative measure of the anisotropy of the potentials is proposed. The results are discussed on the basis of anisotropy, nonadditivity and ability of the potentials to reproduce ab initio data. It is concluded that the nonadditivity of the pair potentials holds and the available ab initio data did not lead to pair potentials that are cohesive enough to reproduce accurately the second virial coefficients.
Hu, Wei; Lin, Lin; Yang, Chao
2015-12-21
With the help of our recently developed massively parallel DGDFT (Discontinuous Galerkin Density Functional Theory) methodology, we perform large-scale Kohn-Sham density functional theory calculations on phosphorene nanoribbons with armchair edges (ACPNRs) containing a few thousands to ten thousand atoms. The use of DGDFT allows us to systematically achieve a conventional plane wave basis set type of accuracy, but with a much smaller number (about 15) of adaptive local basis (ALB) functions per atom for this system. The relatively small number of degrees of freedom required to represent the Kohn-Sham Hamiltonian, together with the use of the pole expansion the selected inversion (PEXSI) technique that circumvents the need to diagonalize the Hamiltonian, results in a highly efficient and scalable computational scheme for analyzing the electronic structures of ACPNRs as well as their dynamics. The total wall clock time for calculating the electronic structures of large-scale ACPNRs containing 1080-10,800 atoms is only 10-25 s per self-consistent field (SCF) iteration, with accuracy fully comparable to that obtained from conventional planewave DFT calculations. For the ACPNR system, we observe that the DGDFT methodology can scale to 5000-50,000 processors. We use DGDFT based ab initio molecular dynamics (AIMD) calculations to study the thermodynamic stability of ACPNRs. Our calculations reveal that a 2 × 1 edge reconstruction appears in ACPNRs at room temperature.
Zheng, Guang Bin; Yoon, Byung-Hak; Lee, Jae Hyup
2017-10-01
Activin A/BMP-2 chimera (AB204) could promote bone healing more effectively than recombinant bone morphogenetic protein 2 (rhBMP-2) with much lower dose in a rodent model, but there is no report about the effectiveness of AB204 in a large animal model. The purpose of this study was to compare the osteogenesis and fusion rate between AB204 and rhBMP-2 using biphasic calcium phosphate (BCP) as a carrier in a beagle's posterolateral lumbar fusion model. This is a randomized control animal study. Seventeen male beagle dogs were included. Bilateral posterolateral fusion was performed at the L1-L2 and L4-L5 levels. Biphasic calcium phosphate (2 cc), rhBMP-2 (50 µg)+BCP (2 cc), or AB204 (50 µg)+BCP (2 cc) were implanted into the intertransverse space randomly. X-ray was performed at 4 and 8 weeks. After 8 weeks, the animals were sacrificed, and new bone formation and fusion rate were evaluated by manual palpation, computed tomography (CT), and undecalcified histology. The AB204 group showed significantly higher fusion rate (90%) than the rhBMP-2 group (15%) or the Osteon group (6.3%) by manual palpation. On x-ray and CT assessment, fusion rate and the volume of newly formed bone were also significantly higher in AB204 group than other groups. In contrast, more osteolysis was found in rhBMP-2 group (40%) than in AB204 group (10%) on CT study. In histologic results, new bone formation was sufficient between transverse processes in AB204 group, and obvious trabeculation and bone remodeling were observed. But in rhBMP-2 group, new bone formation was less than AB204 group and osteolysis was observed between the intertransverse spaces. A low dose of AB204 with BCP as a carrier significantly promotes the fusion rate in a large animal model when compared with the rhBMP-2. These findings demonstrate that AB204 could be an alternative to rhBMP-2 to improve fusion rate. Copyright © 2017 Elsevier Inc. All rights reserved.
Detection and analysis of tupaia hepatocytes via mAbs against tupaia serum albumin.
Liu, Xuan; Yuan, Lunzhi; Yuan, Quan; Zhang, Yali; Wu, Kun; Zhang, Tianying; Wu, Yong; Hou, Wangheng; Wang, Tengyun; Liu, Pingguo; Shih, James Wai Kuo; Cheng, Tong; Xia, Ningshao
2016-05-20
On the basis of its close phylogenetic relationship with primates, the development of Tupaia belangeri as an infection animal model and drug metabolism model could provide a new option for preclinical studies, especially in hepatitis virus research. As a replacement for primary human hepatocytes (PHHs), primary tupaia hepatocytes (PTHs) have been widely used. Similar to human serum albumin, tupaia serum albumin (TSA) is the most common liver synthesis protein and is an important biomarker for PTHs and liver function. However, no detection or quantitative method for TSA has been reported. In this study, mouse monoclonal antibodies (mAbs) 4G5 and 9H3 against TSA were developed to recognize PTHs, and they did not show cross-reactivity with serum albumin from common experimental animals, such as the mouse, rat, cow, rabbit, goat, monkey, and chicken. The two mAbs also exhibited good performance in fluorescence activated cell sorting (FACS) analysis and immunofluorescence (IF) detection of PTHs. A chemiluminescent enzyme immune assay method using the two mAbs, with a linear range from 96.89 pg/ml to 49,609.38 pg/ml, was developed for the quantitative detection of TSA. The mAbs and the CLEIA method provide useful tools for research on TSA and PTHs.
Trumm, Michael; Martínez, Yansel Omar Guerrero; Réal, Florent; Masella, Michel; Vallet, Valérie; Schimmelpfennig, Bernd
2012-01-28
In this work, we investigate the hydration of the halide ions fluoride, chloride, and bromide using classical molecular dynamics simulations at the 10 ns scale and based on a polarizable force-field approach, which treats explicitly the cooperative bond character of strong hydrogen bond networks. We have carried out a thorough analysis of the ab initio data at the MP2 or CCSD(T) level concerning anion/water clusters in gas phase to adjust the force-field parameters. In particular, we consider the anion static polarizabilities computed in gas phase using large atomic basis sets including additional diffuse functions. The information extracted from trajectories in solution shows well structured first hydration shells formed of 6.7, 7.0, and 7.6 water molecules at about 2.78 Å, 3.15 Å, and 3.36 Å for fluoride, chloride, and bromide, respectively. These results are in excellent agreement with the latest neutron- and x-ray diffraction studies. In addition, our model reproduces several other properties of halide ions in solution, such as diffusion coefficients, description of hydration processes, and exchange reactions. Moreover, it is also able to reproduce the electrostatic properties of the anions in solution (in terms of anion dipole moment) as reported by recent ab initio quantum simulations. All the results show the ability of the proposed model in predicting data, as well as the need of accounting explicitly for the cooperative character of strong hydrogen bonds to reproduce ab initio potential energy surfaces in a mean square sense and to build up a reliable force field. © 2012 American Institute of Physics
NASA Astrophysics Data System (ADS)
Łodyga, Wiesław; Makarewicz, Jan
2012-05-01
Geometries, anharmonic vibrations, and torsion-wagging (TW) multiplets of hydrazine and its deuterated species are studied using high-level ab initio methods employing the second-order Møller-Plesset perturbation theory (MP2) as well as the coupled cluster singles and doubles model including connected triple corrections, CCSD(T), in conjunction with extended basis sets containing diffuse and core functions. To describe the splitting patterns caused by tunneling in TW states, the 3D potential energy surface (PES) for the large-amplitude TW modes is constructed. Stationary points in the 3D PES, including equivalent local minima and saddle points are characterized. Using this 3D PES, a flexible Hamiltonian is built numerically and then employed to solve the vibrational problem for TW coupled motion. The calculated ground state rav structure is expected to be more reliable than the experimental one that has been determined using a simplified structural model. The calculated fundamental frequencies allowed resolution of the assignment problems discussed earlier in the literature. The determined energy barriers, including the contributions from the small-amplitude vibrations, to the tunneling of the symmetric and antisymmetric wagging mode of 1997 cm-1 and 3454 cm-1, respectively, are in reasonable agreement with the empirical estimates of 2072 cm-1 and 3312 cm-1, respectively [W. Łodyga et al. J. Mol. Spectrosc. 183, 374 (1997), 10.1006/jmsp.1997.7271]. However, the empirical torsion barrier of 934 cm-1 appears to be overestimated. The ab initio calculations yield two torsion barriers: cis and trans of 744 cm-1 and 2706 cm-1, respectively. The multiplets of the excited torsion states are predicted from the refined 3D PES.
Ranganathan, D; Haridas, V; Kurur, S; Nagaraj, R; Bikshapathy, E; Kunwar, A C; Sarma, A V; Vairamani, M
2000-01-28
A novel family of hairpin cyclic peptides has been designed on the basis of the use of norbornene units as the bridging ligands. The design is flexible with respect to the choice of an amino acid, the ring size, and the nature of the second bridging ligand as illustrated here with the preparation of a large number of norborneno cyclic peptides containing a variety of amino acids in ring sizes varying from 12- to 29-membered, with the choice of the second bridging ligand being a rigid norbornene (11, 13a,b), an adamantane unit (7a,b and 8), or a flexible cystine residue (4a,b and 10). The presence of built-in handles (as protected COOH groups) permits the attachment of a variety of subunits as shown here with the ligation of Leu-Leu, Val-Val, or Aib-Aib pendants in 4b, 7b, and 13b, respectively. This novel class of constrained cyclic peptides are demonstrated to adopt beta-sheet- or hairpin-like conformation as shown by (1)H NMR and CD spectra. Membrane ion-transport studies have shown that the norborneno cyclic peptides 4b and 7b containing Leu-Leu or Val-Val pendants symmetrically placed on the exterior of the ring show high efficiency and selectivity in the transport of specifically monovalent cations. This property can be attributed to the hairpin-like architecture induced by the norbornene unit since the bis-adamantano peptide 15 containing two pairs of Leu-Leu pendants on the exterior is able to transport both monovalent (Na(+), K(+)) and divalent (Mg(2+)/Ca(2+)) cations.
Is HO3 minimum cis or trans? An analytic full-dimensional ab initio isomerization path.
Varandas, A J C
2011-05-28
The minimum energy path for isomerization of HO(3) has been explored in detail using accurate high-level ab initio methods and techniques for extrapolation to the complete basis set limit. In agreement with other reports, the best estimates from both valence-only and all-electron single-reference methods here utilized predict the minimum of the cis-HO(3) isomer to be deeper than the trans-HO(3) one. They also show that the energy varies by less than 1 kcal mol(-1) or so over the full isomerization path. A similar result is found from valence-only multireference configuration interaction calculations with the size-extensive Davidson correction and a correlation consistent triple-zeta basis, which predict the energy difference between the two isomers to be of only Δ = -0.1 kcal mol(-1). However, single-point multireference calculations carried out at the optimum triple-zeta geometry with basis sets of the correlation consistent family but cardinal numbers up to X = 6 lead upon a dual-level extrapolation to the complete basis set limit of Δ = (0.12 ± 0.05) kcal mol(-1). In turn, extrapolations with the all-electron single-reference coupled-cluster method including the perturbative triples correction yield values of Δ = -0.19 and -0.03 kcal mol(-1) when done from triple-quadruple and quadruple-quintuple zeta pairs with two basis sets of increasing quality, namely cc-cpVXZ and aug-cc-pVXZ. Yet, if added a value of 0.25 kcal mol(-1) that accounts for the effect of triple and perturbative quadruple excitations with the VTZ basis set, one obtains a coupled cluster estimate of Δ = (0.14 ± 0.08) kcal mol(-1). It is then shown for the first time from systematic ab initio calculations that the trans-HO(3) isomer is more stable than the cis one, in agreement with the available experimental evidence. Inclusion of the best reported zero-point energy difference (0.382 kcal mol(-1)) from multireference configuration interaction calculations enhances further the relative stability to ΔE(ZPE) = (0.51 ± 0.08) kcal mol(-1). A scheme is also suggested to model the full-dimensional isomerization potential-energy surface using a quadratic expansion that is parametrically represented by a Fourier analysis in the torsion angle. The method illustrated at the raw and complete basis-set limit coupled-cluster levels can provide a valuable tool for a future analysis of the available (incomplete thus far) experimental rovibrational data. This journal is © the Owner Societies 2011
Leukocyte adhesion: High-speed cells with ABS.
van der Merwe, P A
1999-06-03
In order to decide where to exit blood vessels and enter tissues, leukocytes roll along endothelial surfaces. Recent studies suggest that an 'automatic braking system' (ABS), involving selectin cell-adhesion molecules, enables leukocytes to roll at a fairly constant velocity despite large variations in blood flow rate.
NASA Technical Reports Server (NTRS)
Sokalski, W. A.; Lai, J.; Luo, N.; Sun, S.; Shibata, M.; Ornstein, R.; Rein, R.
1991-01-01
The origin of torsional potentials in H3CSSCH3, H3CSSH, and HOOH and the anisotropy of the local charge distribution has been analyzed in terms of atomic multipoles calculated from the ab initio LCAO-MO-SCF wave function in the 6-31G* basis set. The results indicate that for longer -S-S-bonds the major contribution to these torsional barriers are electrostatic interactions of the atomic multipoles located on two atoms forming the rotated bond. This finding demonstrates the important role of electrostatic 1-2 interatomic interactions, usually neglected in conformational studies. It also opens the possibility to derive directly from accurate ab initio wave functions a simple nonempirical torsional potential involving atomic multipoles of two bonded atoms defining the torsional angle. For shorter -O-O- bonds, use of more precise models and inclusion of 1-3 interactions seems to be necessary.
PPL2ab neurons restore sexual responses in aged Drosophila males through dopamine.
Kuo, Shu-Yun; Wu, Chia-Lin; Hsieh, Min-Yen; Lin, Chen-Ta; Wen, Rong-Kun; Chen, Lien-Cheng; Chen, Yu-Hui; Yu, Yhu-Wei; Wang, Horng-Dar; Su, Yi-Ju; Lin, Chun-Ju; Yang, Cian-Yi; Guan, Hsien-Yu; Wang, Pei-Yu; Lan, Tsuo-Hung; Fu, Tsai-Feng
2015-06-30
Male sexual desire typically declines with ageing. However, our understanding of the neurobiological basis for this phenomenon is limited by our knowledge of the brain circuitry and neuronal pathways controlling male sexual desire. A number of studies across species suggest that dopamine (DA) affects sexual desire. Here we use genetic tools and behavioural assays to identify a novel subset of DA neurons that regulate age-associated male courtship activity in Drosophila. We find that increasing DA levels in a subset of cells in the PPL2ab neuronal cluster is necessary and sufficient for increased sustained courtship in both young and aged male flies. Our results indicate that preventing the age-related decline in DA levels in PPL2ab neurons alleviates diminished courtship behaviours in male Drosophila. These results may provide the foundation for deciphering the circuitry involved in sexual motivation in the male Drosophila brain.
NASA Astrophysics Data System (ADS)
Autrey, Daniel; Choo, Jaebum; Laane, Jaan
2000-10-01
The ring-twisting vibration of 1,3-cyclohexadiene has been studied using Raman and infrared spectroscopy of the molecule in the vapor phase. The Raman spectrum shows five ring-twisting transitions in the 150 - 200 cm-1 region. The far-infrared spectrum shows only two transitions for this vibration, which is infrared forbidden in the C_2v (planar) approximation. Three ring-twisting combination bands were also observed off a fundamental vibration at 926.1 cm-1. A coordinate dependent kinetic energy expansion for the ring-twisting motion was calculated, and this was used to determine the ring-twisting potential function. Ab initio calculations were performed using Moller-Plesset perturbation theory (MP2) using different basis sets. The barrier to planarity of 1150 cm-1 was determined from the spectroscopic data. The various ab initio calculations gave barriers to planarity in the 1197 - 1593 cm-1 range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trevisanutto, Paolo E.; Vignale, Giovanni, E-mail: vignaleg@missouri.edu
Ab initio electronic structure calculations of two-dimensional layered structures are typically performed using codes that were developed for three-dimensional structures, which are periodic in all three directions. The introduction of a periodicity in the third direction (perpendicular to the layer) is completely artificial and may lead in some cases to spurious results and to difficulties in treating the action of external fields. In this paper we develop a new approach, which is “native” to quasi-2D materials, making use of basis function that are periodic in the plane, but atomic-like in the perpendicular direction. We show how some of the basicmore » tools of ab initio electronic structure theory — density functional theory, GW approximation and Bethe-Salpeter equation — are implemented in the new basis. We argue that the new approach will be preferable to the conventional one in treating the peculiarities of layered materials, including the long range of the unscreened Coulomb interaction in insulators, and the effects of strain, corrugations, and external fields.« less
NASA Astrophysics Data System (ADS)
Georgieva, Miglena K.
2004-03-01
The structure of diazonium dicyanomethylide (diazodicyanomethane) +N 2-C(CN) 2-↔N 2C(CN) 2 has been studied on the basis of ab initio HF, MP2 and DFT BLYP force field calculations, as well as of literature IR spectra and X-ray diffraction structural data. The results have been compared with those obtained for a series of chemical relatives of the title compound, i.e. molecules, push-pull molecules, anions and zwitterions, containing α-dicyano or diazo fragments, and especially substituted ammonium dicyanomethylides and diazomethane +N 2-CH 2-↔N 2CH 2. It has been found on the basis of spectral, bond length, bond order and electric charge analyses that the diazonium (or carbanionic, left) canonical form is much more important for the title zwitterion, than the corresponding one for diazomethane. So, the title compound can be named (and considered as) both diazonium dicyanomethylide and dicyanodiazomethane.
Zhu, Xiaolei; Yarkony, David R
2016-01-28
We have recently introduced a diabatization scheme, which simultaneously fits and diabatizes adiabatic ab initio electronic wave functions, Zhu and Yarkony J. Chem. Phys. 140, 024112 (2014). The algorithm uses derivative couplings in the defining equations for the diabatic Hamiltonian, H(d), and fits all its matrix elements simultaneously to adiabatic state data. This procedure ultimately provides an accurate, quantifiably diabatic, representation of the adiabatic electronic structure data. However, optimizing the large number of nonlinear parameters in the basis functions and adjusting the number and kind of basis functions from which the fit is built, which provide the essential flexibility, has proved challenging. In this work, we introduce a procedure that combines adiabatic state and diabatic state data to efficiently optimize the nonlinear parameters and basis function expansion. Further, we consider using direct properties based diabatizations to initialize the fitting procedure. To address this issue, we introduce a systematic method for eliminating the debilitating (diabolical) singularities in the defining equations of properties based diabatizations. We exploit the observation that if approximate diabatic data are available, the commonly used approach of fitting each matrix element of H(d) individually provides a starting point (seed) from which convergence of the full H(d) construction algorithm is rapid. The optimization of nonlinear parameters and basis functions and the elimination of debilitating singularities are, respectively, illustrated using the 1,2,3,4(1)A states of phenol and the 1,2(1)A states of NH3, states which are coupled by conical intersections.
DARPA Ensemble-Based Modeling Large Graphs & Applications to Social Networks
2015-07-29
Fortunato, and D. Krioukov. How random are complex networks. Nature Communications , submitted (2015). http://arxiv.org/abs/1505.07503 [p2] I. Miklos...enterprise communication networks, PLOS One, 10(3), e0119446 (2015). http://arxiv.org/abs/1404.3708v3 [p21] A. Nyberg, T. Gross, and K.E. Bassler...using a radiation model based on temporal ranges. Nature Communications , 5, 5347 (2014) | http://arxiv.org/abs/1410.4849 [p28] L.A. Székely, H. Wang
Positivity of the universal pairing in 3 dimensions
NASA Astrophysics Data System (ADS)
Calegari, Danny; Freedman, Michael H.; Walker, Kevin
2010-01-01
Associated to a closed, oriented surface S is the complex vector space with basis the set of all compact, oriented 3 -manifolds which it bounds. Gluing along S defines a Hermitian pairing on this space with values in the complex vector space with basis all closed, oriented 3 -manifolds. The main result in this paper is that this pairing is positive, i.e. that the result of pairing a nonzero vector with itself is nonzero. This has bearing on the question of what kinds of topological information can be extracted in principle from unitary (2+1) -dimensional TQFTs. The proof involves the construction of a suitable complexity function c on all closed 3 -manifolds, satisfying a gluing axiom which we call the topological Cauchy-Schwarz inequality, namely that c(AB) le max(c(AA),c(BB)) for all A,B which bound S , with equality if and only if A=B . The complexity function c involves input from many aspects of 3 -manifold topology, and in the process of establishing its key properties we obtain a number of results of independent interest. For example, we show that when two finite-volume hyperbolic 3 -manifolds are glued along an incompressible acylindrical surface, the resulting hyperbolic 3 -manifold has minimal volume only when the gluing can be done along a totally geodesic surface; this generalizes a similar theorem for closed hyperbolic 3 -manifolds due to Agol-Storm-Thurston.
An optimum A-B scale of psychotherapist effectiveness.
Stephens, J H; Shaffer, J W; Zlotowitz, H I
1975-04-01
On the basis of the original Whitehorn-Betz data collected over a 16-year period, it is shown that all previously derived A-B scales of psychotherapist effectiveness using Strong Vocational Interest Blank (SVIB) items are deficient in terms of correlation with the original criterion and, frequently, in terms of reliability as well. The reasons for these deficiencies are discussed, and a new experimental A-B scale is formulated and tested for adequacy. This scale is shown to possess substantial internal consistency reliability and to have a high degree of correlation with the criterion even after the removal of possible contaminating factors such as use ofancillary teatments, differences in patient prognosis, and changing practices and interest over time. It is further shown that none of the A-B scales has any validity with respect to female therapists in the original data pool. Exploration of the factor-analytic structure of this new scale and two other widely used A-B measures in terms of the occupationa scales of the SVIB reveals differential loadings on four dimensions labeled verbal/comceptual vs. manual/practical, scientific vs. sales, social concern, and artistic vs. business-oriented. It is concluded that although male therapists' scores on the best of the A-B scales may , under certain circumstances,be related to short term judged improvement in patients treated, there is little evidence that high scoring therapists are more likey than low scoring ones to have a favorable, long range impact on diagnosed schizophrenics.
A new analytical potential energy surface for the singlet state of He{sub 2}H{sup +}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang Jingjuan; Zhang Qinggang; Yang Chuanlu
2012-03-07
The analytic potential energy surface (APES) for the exchange reaction of HeH{sup +} (X{sup 1}{Sigma}{sup +}) + He at the lowest singlet state 1{sup 1}A{sup /} has been built. The APES is expressed as Aguado-Paniagua function based on the many-body expansion. Using the adaptive non-linear least-squares algorithm, the APES is fitted from 15 682 ab initio energy points calculated with the multireference configuration interaction calculation with a large d-aug-cc-pV5Z basis set. To testify the new APES, we calculate the integral cross sections for He + H{sup +}He (v= 0, 1, 2, j= 0) {yields} HeH{sup +}+ He by means ofmore » quasi-classical trajectory and compare them with the previous result in literature.« less
Hendrickx, Marc F A; Clima, S; Chibotaru, L F; Ceulemans, A
2005-10-06
An ab initio multiconfigurational approach has been used to calculate the ligand-field spectrum and magnetic properties of the title cyano-bridged dinuclear molybdenum complex. The rather large magnetic coupling parameter J for a single cyano bridge, as derived experimentally for this complex by susceptibility measurements, is confirmed to a high degree of accuracy by our CASPT2 calculations. Its electronic structure is rationalized in terms of spin-spin coupling between the two constituent hexacyano-monomolybdate complexes. An in-depth analysis on the basis of Anderson's kinetic exchange theory provides a qualitative picture of the calculated CASSCF antiferromagnetic ground-state eigenvector in the Mo dimer. Dynamic electron correlations as incorporated into our first-principles calculations by means of the CASPT2 method are essential to obtain quantitative agreement between theory and experiment.
Ab initio multireference study of the BN molecule
NASA Technical Reports Server (NTRS)
Martin, J. M. L.; Lee, Timothy J.; Scuseria, Gustavo E.; Taylor, Peter R.
1992-01-01
The lowest 1Sigma(+) and 3Pi states of the BN molecule are studied using multireference configuration interaction (MRCI) and averaged coupled-pair functional (ACPF) methods and large atomic natural orbital (ANO) basis sets, as well as several coupled cluster methods. Our calculations strongly support a 3Pi ground state, but the a1Sigma(+) state lies only 381 +/- 100/cm higher. The a1Sigma(+) state wave function exhibits strong multireference character and, consequently, the predictions of the perturbationally-based single-reference CCSD(T) coupled cluster method are not as reliable in this case as the multireference results. The theoretical predictions for the spectroscopic constants of BN are in good agreement with experiment for the Chi3Pi state, but strongly suggest a misassignment of the fundamental vibrational frequency for the a1Sigma(+) state.
The molecular structure and conformation of tetrabromoformaldazine: ab initio and DFT calculations
NASA Astrophysics Data System (ADS)
Jeong, Myongho; Kwon, Younghi
2000-06-01
Ab initio and density functional theory methods are applied to investigate the molecular structure and conformational nature of tetrabromoformaldazine. The calculations including the effects of the electron correlation at the B3LYP and MP2 levels with the basis set 6-311+G(d) can reproduce the experimental geometrical parameters at the skew conformation. The N-N bond torsional angle φ calculated at the MP2/6-311+G(d) level is found to be closest to the observed angle. The scanning of the potential energy surface suggests that the anti-conformation is at a saddle point corresponding to the transition state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Charles; Penchoff, Deborah A.; Wilson, Angela K., E-mail: wilson@chemistry.msu.edu
2015-11-21
An effective approach for the determination of lanthanide energetics, as demonstrated by application to the third ionization energy (in the gas phase) for the first half of the lanthanide series, has been developed. This approach uses a combination of highly correlated and fully relativistic ab initio methods to accurately describe the electronic structure of heavy elements. Both scalar and fully relativistic methods are used to achieve an approach that is both computationally feasible and accurate. The impact of basis set choice and the number of electrons included in the correlation space has also been examined.
Combined electron beam imaging and ab initio modeling of T1 precipitates in Al-Li-Cu alloys
NASA Astrophysics Data System (ADS)
Dwyer, C.; Weyland, M.; Chang, L. Y.; Muddle, B. C.
2011-05-01
Among the many considerable challenges faced in developing a rational basis for advanced alloy design, establishing accurate atomistic models is one of the most fundamental. Here we demonstrate how advanced imaging techniques in a double-aberration-corrected transmission electron microscope, combined with ab initio modeling, have been used to determine the atomic structure of embedded 1 nm thick T1 precipitates in precipitation-hardened Al-Li-Cu aerospace alloys. The results provide an accurate determination of the controversial T1 structure, and demonstrate how next-generation techniques permit the characterization of embedded nanostructures in alloys and other nanostructured materials.
Ab initio study on electronically excited states of lithium isocyanide, LiNC
NASA Astrophysics Data System (ADS)
Yasumatsu, Hisato; Jeung, Gwang-Hi
2014-01-01
The electronically excited states of the lithium isocyanide molecule, LiNC, were studied by means of ab initio calculations. The bonding nature of LiNC up to ∼10 eV is discussed on the basis of the potential energy surfaces according to the interaction between the ion-pair and covalent states. The ion-pair states are described by Coulomb attractive interaction in the long distance range, while the covalent ones are almost repulsive or bound with a very shallow potential dent. These two states interact each other to form adiabatic potential energy surfaces with non-monotonic change in the potential energy with the internuclear distance.
Resubmission of Gap Analysis Workshop for Training for Reintegration of Surgical Skills
2011-10-01
the ABS, many other organizations do not have current reentry requirements but work with physicians on a case-by-case basis. Global competency...facs.org/education/ • Animal Labs • American Urological Association (AUA) Core Curriculum - http://www.auanet.org/eforms/ elearning /core
Shaffer, J Scott; Moore, Penny L; Kardar, Mehran; Chakraborty, Arup K
2016-10-24
Strategies to elicit Abs that can neutralize diverse strains of a highly mutable pathogen are likely to result in a potent vaccine. Broadly neutralizing Abs (bnAbs) against HIV have been isolated from patients, proving that the human immune system can evolve them. Using computer simulations and theory, we study immunization with diverse mixtures of variant antigens (Ags). Our results show that particular choices for the number of variant Ags and the mutational distances separating them maximize the probability of inducing bnAbs. The variant Ags represent potentially conflicting selection forces that can frustrate the Darwinian evolutionary process of affinity maturation. An intermediate level of frustration maximizes the chance of evolving bnAbs. A simple model makes vivid the origin of this principle of optimal frustration. Our results, combined with past studies, suggest that an appropriately chosen permutation of immunization with an optimally designed mixture (using the principles that we describe) and sequential immunization with variant Ags that are separated by relatively large mutational distances may best promote the evolution of bnAbs.
Shaffer, J. Scott; Moore, Penny L.; Kardar, Mehran; Chakraborty, Arup K.
2016-01-01
Strategies to elicit Abs that can neutralize diverse strains of a highly mutable pathogen are likely to result in a potent vaccine. Broadly neutralizing Abs (bnAbs) against HIV have been isolated from patients, proving that the human immune system can evolve them. Using computer simulations and theory, we study immunization with diverse mixtures of variant antigens (Ags). Our results show that particular choices for the number of variant Ags and the mutational distances separating them maximize the probability of inducing bnAbs. The variant Ags represent potentially conflicting selection forces that can frustrate the Darwinian evolutionary process of affinity maturation. An intermediate level of frustration maximizes the chance of evolving bnAbs. A simple model makes vivid the origin of this principle of optimal frustration. Our results, combined with past studies, suggest that an appropriately chosen permutation of immunization with an optimally designed mixture (using the principles that we describe) and sequential immunization with variant Ags that are separated by relatively large mutational distances may best promote the evolution of bnAbs. PMID:27791170
Kepler, Thomas B.; Liao, Hua-Xin; Alam, S. Munir; Bhaskarabhatla, Rekha; Zhang, Ruijun; Stewart, Shelley; Anasti, Kara; Kelsoe, Garnett; Parks, Robert; Lloyd, Krissey E.; Stolarchuk, Christina; Pritchett, Jamie; Solomon, Erika; Friberg, Emma; Morris, Lynn; Karim, Salim S. Abdool; Cohen, Myron S.; Walter, Emmanuel; Moody, M. Anthony; Wu, Xueling; Altae-Tran, Han R.; Georgiev, Ivelin S.; Kwong, Peter D.; Boyd, Scott D.; Fire, Andrew Z.; Mascola, John R.; Haynes, Barton F.
2014-01-01
Summary Induction of HIV-1 broad neutralizing antibodies (bnAbs) is a goal of HIV-1 vaccine development but has remained challenging partially due to unusual traits of bnAbs, including high somatic hypermutation (SHM) frequencies and in-frame insertions and deletions (indels). Here we examined the propensity and functional requirement for indels within HIV-1 bnAbs. High-throughput sequencing of the immunoglobulin (Ig) VHDJH genes in HIV-1 infected and uninfected individuals revealed that the indel frequency was elevated among HIV-1-infected subjects, with no unique properties attributable to bnAb-producing individuals. This increased indel occurrence depended only on the frequency of SHM point-mutations. Indel-encoded regions were generally proximal to antigen binding sites. Additionally, reconstruction of a HIV-1 CD4-binding site bnAb clonal lineage revealed that a large compound VHDJH indel was required for bnAb activity. Thus, vaccine development should focus on designing regimens targeted at sustained activation of bnAb lineages to achieve the required SHM and indel events. PMID:25211073
Fluorescence dye-based detection of mAb aggregates in CHO culture supernatants.
Paul, Albert Jesuran; Schwab, Karen; Prokoph, Nina; Haas, Elena; Handrick, René; Hesse, Friedemann
2015-06-01
Product yields, efficacy, and safety of monoclonal antibodies (mAbs) are reduced by the formation of higher molecular weight aggregates during upstream processing. In-process characterization of mAb aggregate formation is a challenge since there is a lack of a fast detection method to identify mAb aggregates in cell culture. In this work, we present a rapid method to characterize mAb aggregate-containing Chinese hamster ovary (CHO) cell culture supernatants. The fluorescence dyes thioflavin T (ThT) and 4-4-bis-1-phenylamino-8-naphthalene sulfonate (Bis-ANS) enabled the detection of soluble as well as large mAb aggregates. Partial least square (PLS) regression models were used to evaluate the linearity of the dye-based mAb aggregate detection in buffer down to a mAb aggregate concentration of 2.4 μg mL(-1). Furthermore, mAb aggregates were detected in bioprocess medium using Bis-ANS and ThT. Dye binding to aggregates was stable for 60 min, making the method robust and reliable. Finally, the developed method using 10 μmol L(-1) Bis-ANS enabled discrimination between CHO cell culture supernatants containing different levels of mAb aggregates. The method can be adapted for high-throughput screening, e.g., to screen for cell culture conditions influencing mAb product quality, and hence can contribute to the improvement of production processes of biopharmaceuticals in mammalian cell culture.
Tsukagoshi, Norihiko; Aono, Rikizo
2000-01-01
Growth of Escherichia coli is inhibited upon exposure to a large volume of a harmful solvent, and there is an inverse correlation between the degree of inhibition and the log POW of the solvent, where POW is the partition coefficient measured for the partition equilibrium established between the n-octanol and water phases. The AcrAB-TolC efflux pump system is involved in maintaining intrinsic solvent resistance. We inspected the solvent resistance of ΔacrAB and/or ΔtolC mutants in the presence of a large volume of solvent. Both mutants were hypersensitive to weakly harmful solvents, such as nonane (log POW = 5.5). The ΔtolC mutant was more sensitive to nonane than the ΔacrAB mutant. The solvent entered the E. coli cells rapidly. Entry of solvents with a log POW higher than 4.4 was retarded in the parent cells, and the intracellular levels of these solvents were maintained at low levels. The ΔtolC mutant accumulated n-nonane or decane (log POW = 6.0) more abundantly than the parent or the ΔacrAB mutant. The AcrAB-TolC complex likely extrudes solvents with a log POW in the range of 3.4 to 6.0 through a first-order reaction. The most favorable substrates for the efflux system were considered to be octane, heptane, and n-hexane. PMID:10940021
Comparative studies of the spectroscopy of CuCl2: DFT versus standard ab initio approaches
NASA Astrophysics Data System (ADS)
Ramírez-Solís, A.; Poteau, R.; Vela, A.; Daudey, J. P.
2005-04-01
The XΠg2-Σg +2, XΠg2-Δg2, XΠg2-Σu +2, XΠg2-Πu2 transitions on CuCl2 have been studied using several exchange-correlation functionals from the various types of density functional theory (DFT) approaches like local density approximation (LDA), generalized gradient approximation (GGA), hybrid and meta-GGA. The results are compared with the experience and with those coming from the most sophisticated nondynamic and dynamic electronic correlation treatments using the same relativistic effective core potentials and especially developed basis sets to study the electronic structure of the five lowest states and the corresponding vertical and adiabatic transition energies. The calculated transition energies for three of the hybrid functionals (B3LYP, B97-2, and PBE0) are in very good agreement with the benchmark ab initio results and experimental figures. All of the other functionals largely overestimate the XΠg2-Σg +2 and XΠg2-Δg2 transition energies, many of them even placing the Δg2 ligand field state above the charge transfer Πu2 and Σu +2 states. The relative weight of the Hartree-Fock exchange in the definition of the functional used appears to play a key role in the accurate description of the ΛSΣ density defined by the orientation of the 3d hole (σ, π, or δ) on Cu in the field of both chlorine atoms, but no simple connection of this weight with the quality of the spectra has been found. Mulliken charges and spin densities are carefully analyzed; a possible link between the extent of spin density on the metal for the XΠg2 state and the performance of the various functionals was observed, suggesting that those that lead to the largest values (close to 0.65) are the ones that best reproduce these four transitions. Most functionals lead to a remarkably low ionicity for the three ligand field states even for the best performing functionals, compared to the complete active space (SCF) (21, 14) ab initio values. These findings show that not only large variational ab initio calculations can produce reliable spectroscopic results for extremely complex systems where delicate electronic correlation effects have to be carefully dealt with. However, those functionals that were recently shown to perform best for a series of molecular properties [J. Chem. Phys. 121 3405 (2004)] are not the ones that produce the best transition energies for this complex case.
Wang, Shan; Tian, Yu; Zhang, Jing-Yi; Xu, Hui-Bo; Zhou, Ping; Wang, Min; Lu, Sen-Bao; Luo, Yun; Wang, Min; Sun, Gui-Bo; Xu, Xu-Dong; Sun, Xiao-Bo
2018-01-01
Calenduloside E (CE), a natural triterpenoid compound isolated from Aralia elata, can protect against ox-LDL-induced human umbilical vein endothelial cell (HUVEC) injury in our previous reports. However, the exact targets and mechanisms of CE remain elusive. For the sake of resolving this question, we designed and synthesized a clickable activity-based probe (CE-P), which could be utilized to fish the functional targets in HUVECs using a gel-based strategy. Based on the previous studies of the structure-activity relationship (SAR), we introduced an alkyne moiety at the C-28 carboxylic group of CE, which kept the protective and anti-apoptosis activity. Via proteomic approach, one of the potential proteins bound to CE-P was identified as Hsp90AB1, and further verification was performed by pure recombinant Hsp90AB1 and competitive assay. These results demonstrated that CE could bind to Hsp90AB1. We also found that CE could reverse the Hsp90AB1 decrease after ox-LDL treatment. To make our results more convincing, we performed SPR analysis and the affinity kinetic assay showed that CE/CE-P could bind to Hsp90AB1 in a dose-dependent manner. Taken together, our research showed CE could probably bind to Hsp90AB1 to protect the cell injury, which might provide the basis for the further exploration of its cardiovascular protective mechanisms. For the sake of resolving this question, we designed and synthesized a clickable activity-based probe (CE-P), which could be utilized to fish the functional targets in HUVECs using a gel-based strategy. PMID:29875664
Mequindox resistance and in vitro efficacy in animal-derived Escherichia coli strains.
He, Tao; Wang, Yang; Qian, Minyi; Wu, Congming
2015-06-12
This study investigated the in vitro efficacy of mequindox against enteropathogenic Escherichia coli (EPEC), and characterized the oqxAB genes as the main mequindox resistance determinant in E. coli strains of animal origin. A total of 1123 E. coli isolates were collected from domestic animals in China from the 1970s to 2013, and mequindox susceptibility was tested by broth microdilution. The percentage of E. coli isolates with increased mequindox MICs of ≥ 64 μg/ml showed a rising trend each year throughout the study period. Mequindox showed good bactericidal activity in vitro towards 20 EPEC strains, although it had a wide mutant selection window. All 1123 E. coli isolates were tested for the presence of the oqxAB genes, and the operon was detected in 322 isolates, which accounted for 94.4% (322/341) of isolates with increased MICs to mequindox (MIC ≥ 64 μg/ml). Of the isolates with mequindox MIC ≤ 32 μg/ml, 98.8% (773/782) were oqxAB negative. Polymerase chain reaction-based stability testing revealed that the IS26-oqxAB circular intermediate was present in 93.4% (309/331) of the oqxAB-positive strains, indicating that this IS26-flanked Tn6010 element was unstable and prone to excision via IS26-mediated recombination. Functional analysis of the oqxAB genes confirmed that this operon alone is sufficient to confer resistance or increased MICs to multiple antimicrobials, including mequindox. This is the first study to investigate the relationship between mequindox susceptibility and oqxAB genotype, and may provide the basis for establishing the resistance breakpoint for mequindox against E. coli. Copyright © 2015 Elsevier B.V. All rights reserved.
Shieh, H M; Bass, R T; Wang, B S; Corbett, M J; Buckwalter, B L
1995-04-01
In this study, the epitope of a murine PS-7.6 monoclonal antibody (mAb) which was raised against the recombinant porcine GH (pGH) and subsequently shown to enhance the growth-promoting activity of pGH in a hypophysectomized rat model, was mapped by the limited tryptic digestion of pGH. A pGH fragment corresponding to amino acid residues 70-95 was separated by reverse-phase HPLC and also immunoprecipitated by PS-7.6 mAb. This fragment was found in an RIA to compete with radiolabelled pGH for the binding of PS-7.6 mAb in a dose-dependent fashion. Several peptides covering this potential epitope region of pGH(70-95) were synthesized and assayed by competitive RIA. The results suggested that pGH(75-90) was the optimal sequence recognized by PS-7.6 mAb. Sequential alanine substitution of each residue of pGH(75-90) revealed that the side chains of Leu76, Ile83 and Leu87 were critical for binding to PS-7.6 mAb. Other residues could be replaced by alanine without substantially altering the binding affinity. The region of amino acids 75-95 comprises the C-terminal end of the second helix of pGH and the repeating pattern of i and i + 3 (i + 7) of the critical amino acids appears consistent with PS-7.6 mAb binding to the hydrophobic side of the helix. The sequence and the helical structure of the epitope of PS-7.6 mAb provide the basis for designing the effective peptide vaccines to enhance the growth performance of animals.
Richards, Thomas J.; Eggebeen, Aaron; Gibson, Kevin; Yousem, Samuel; Fuhrman, Carl; Gochuico, Bernadette R.; Fertig, Noreen; Oddis, Chester V.; Kaminski, Naftali; Rosas, Ivan O.; Ascherman, Dana P.
2009-01-01
Objectives Combining clinical, radiographic, functional, and serum protein biomarker assessment, this study defines the prevalence and clinical characteristics of ILD in a large cohort of patients possessing anti-Jo-1 antibodies. Methods Clinical records, pulmonary function testing, and imaging studies determined the existence of ILD in anti-Jo-1 antibody positive (anti-Jo-1 Ab+) individuals accumulated in the University of Pittsburgh Myositis Database from 1982–2007. Multiplex ELISA of serum inflammatory markers, cytokines, chemokines, and matrix metalloproteinases in different patient subgroups then permitted assessment of serum proteins associated with anti-Jo-1 Ab+ ILD. Results Among 90 anti-Jo-1 Ab+ individuals with sufficient clinical, radiographic, and/or pulmonary function data, 77 (86%) met criteria for ILD. While computerized tomography scans revealed a variety of patterns suggestive of underlying UIP or NSIP, review of histopathologic abnormalities in a subset (n=22) of individuals undergoing open lung biopsy demonstrated a preponderance of UIP and DAD. Multiplex ELISA yielded statistically significant associations between Jo-1 Ab+ ILD and elevated serum levels of CRP, CXCL9, and CXCL10 that distinguished this subgroup from IPF and anti-SRP Ab+ myositis. Recursive partitioning further demonstrated that combinations of these and other serum protein biomarkers can distinguish these subgroups with high sensitivity and specificity. Conclusion In this large cohort of anti-Jo-1 Ab+ individuals, the incidence of ILD approaches 90%. Multiplex ELISA demonstrates disease-specific associations between Jo-1 Ab+ ILD and serum levels of CRP as well as the IFN-γ-inducible chemokines CXCL9 and CXCL10, highlighting the potential of this approach to define biologically active molecules contributing to the pathogenesis of myositis-associated ILD. PMID:19565490
NASA Astrophysics Data System (ADS)
Simon, Sara Michelle
The LCDM model of the universe is supported by an abundance of astronomical observations, but it does not confirm a period of inflation in the early universe or explain the nature of dark energy and dark matter. The polarization of the cosmic microwave background (CMB) may hold the key to addressing these profound questions. If a period of inflation occurred in the early universe, it could have left a detectable odd-parity pattern called B-modes in the polarization of the CMB on large angular scales. Additionally, the CMB can be used to probe the structure of the universe on small angular scales through lensing and the detection of galaxy clusters and their motions via the Sunyaev-Zel'dovich effect, which can improve our understanding of neutrinos, dark matter, and dark energy. The Atacama B-mode Search (ABS) instrument was a cryogenic crossed-Dragone telescope located at an elevation of 5190m in the Atacama Desert in Chile that observed from February 2012 until October 2014. ABS searched on degree-angular scales for inflationary B-modes in the CMB and pioneered the use of a rapidly-rotating half-wave plate (HWP), which modulates the polarization of incoming light to permit the measurement of celestial polarization on large angular scales that would otherwise be obscured by 1/f noise from the atmosphere. Located next to ABS in the Atacama is the Atacama Cosmology Telescope (ACT), which is an off-axis Gregorian telescope. Its large 6m primary mirror facilitates measurements of the CMB on small angular scales. HWPs are baselined for use with the upgraded polarization-sensitive camera for ACT, called Advanced ACTPol, to extend observations of the polarized CMB to larger angular scales while also retaining sensitivity to small angular scales. The B-mode signal is extremely faint, and measuring it poses an instrumental challenge that requires the development of new technologies and well-characterized instruments. I will discuss the use of novel instrumentation and methods on the ABS telescope and Advanced ACTPol, the characterization of the ABS instrument, and the first two seasons of ABS data, including an overview of the data selection process.
Li, Y Q; Varandas, A J C
2010-09-16
An accurate single-sheeted double many-body expansion potential energy surface is reported for the title system which is suitable for dynamics and kinetics studies of the reactions of N(2D) + H2(X1Sigmag+) NH(a1Delta) + H(2S) and their isotopomeric variants. It is obtained by fitting ab initio energies calculated at the multireference configuration interaction level with the aug-cc-pVQZ basis set, after slightly correcting semiempirically the dynamical correlation using the double many-body expansion-scaled external correlation method. The function so obtained is compared in detail with a potential energy surface of the same family obtained by extrapolating the calculated raw energies to the complete basis set limit. The topographical features of the novel global potential energy surface are examined in detail and found to be in general good agreement with those calculated directly from the raw ab initio energies, as well as previous calculations available in the literature. The novel function has been built so as to become degenerate at linear geometries with the ground-state potential energy surface of A'' symmetry reported by our group, where both form a Renner-Teller pair.
Ab initio calculations for industrial materials engineering: successes and challenges.
Wimmer, Erich; Najafabadi, Reza; Young, George A; Ballard, Jake D; Angeliu, Thomas M; Vollmer, James; Chambers, James J; Niimi, Hiroaki; Shaw, Judy B; Freeman, Clive; Christensen, Mikael; Wolf, Walter; Saxe, Paul
2010-09-29
Computational materials science based on ab initio calculations has become an important partner to experiment. This is demonstrated here for the effect of impurities and alloying elements on the strength of a Zr twist grain boundary, the dissociative adsorption and diffusion of iodine on a zirconium surface, the diffusion of oxygen atoms in a Ni twist grain boundary and in bulk Ni, and the dependence of the work function of a TiN-HfO(2) junction on the replacement of N by O atoms. In all of these cases, computations provide atomic-scale understanding as well as quantitative materials property data of value to industrial research and development. There are two key challenges in applying ab initio calculations, namely a higher accuracy in the electronic energy and the efficient exploration of large parts of the configurational space. While progress in these areas is fueled by advances in computer hardware, innovative theoretical concepts combined with systematic large-scale computations will be needed to realize the full potential of ab initio calculations for industrial applications.
Magnetic and Electrical Transport Properties of Dirac Compound BaMnSb2*
NASA Astrophysics Data System (ADS)
Huang, Silu; Kim, Jisun; Shelton, William. A.; Plummer, Ward; Jin, Rongying
BaMnSb2 is a layered compound containing Sb square nets that is theoretically predicted to host Dirac fermions. We have carried out experimental investigations on electrical transport and magnetic properties of BaMnSb2 single crystals. Both in-plane (ρab) and c-axis (ρc) resistivities show metallic behavior with a small bump in ρc located near 40 K, while there is large anisotropy ρc / ρab ( 100 at 300 K) that increases with decreasing temperature to 1500 at 2 K. Interestingly, Shubnikov-de Hass (SdH) oscillations are observed for both ρab and ρc over a wide temperature and magnetic field range. Quantitative analysis indicates that large amplitude SdH oscillations result from nearly massless Dirac Fermions. Furthermore, our magnetic measurements indicate an A-type antiferromagnetic magnetic ordering below 286 K where ferromagnetic ordering is observed in the ab plane with antiferromagnetic coupling along the c direction. These results indicate that BaMnSb2 is a 2D magnetic Dirac material. This work is supported by NSF through Grant Number DMR-1504226.
Evaluation of Density Functionals and Basis Sets for Carbohydrates
USDA-ARS?s Scientific Manuscript database
Correlated ab initio wave function calculations using MP2/aug-cc-pVTZ model chemistry have been performed for three test sets of gas phase saccharide conformations to provide reference values for their relative energies. The test sets consist of 15 conformers of alpha and beta-D-allopyranose, 15 of ...
NASA Astrophysics Data System (ADS)
Maranzana, Andrea; Giordana, Anna; Indarto, Antonius; Tonachini, Glauco; Barone, Vincenzo; Causà, Mauro; Pavone, Michele
2013-12-01
Our purpose is to identify a computational level sufficiently dependable and affordable to assess trends in the interaction of a variety of radical or closed shell unsaturated hydro-carbons A adsorbed on soot platelet models B. These systems, of environmental interest, would unavoidably have rather large sizes, thus prompting to explore in this paper the performances of relatively low-level computational methods and compare them with higher-level reference results. To this end, the interaction of three complexes between non-polar species, vinyl radical, ethyne, or ethene (A) with benzene (B) is studied, since these species, involved themselves in growth processes of polycyclic aromatic hydrocarbons (PAHs) and soot particles, are small enough to allow high-level reference calculations of the interaction energy ΔEAB. Counterpoise-corrected interaction energies ΔEAB are used at all stages. (1) Density Functional Theory (DFT) unconstrained optimizations of the A-B complexes are carried out, using the B3LYP-D, ωB97X-D, and M06-2X functionals, with six basis sets: 6-31G(d), 6-311 (2d,p), and 6-311++G(3df,3pd); aug-cc-pVDZ and aug-cc-pVTZ; N07T. (2) Then, unconstrained optimizations by Møller-Plesset second order Perturbation Theory (MP2), with each basis set, allow subsequent single point Coupled Cluster Singles Doubles and perturbative estimate of the Triples energy computations with the same basis sets [CCSD(T)//MP2]. (3) Based on an additivity assumption of (i) the estimated MP2 energy at the complete basis set limit [EMP2/CBS] and (ii) the higher-order correlation energy effects in passing from MP2 to CCSD(T) at the aug-cc-pVTZ basis set, ΔECC-MP, a CCSD(T)/CBS estimate is obtained and taken as a computational energy reference. At DFT, variations in ΔEAB with basis set are not large for the title molecules, and the three functionals perform rather satisfactorily even with rather small basis sets [6-31G(d) and N07T], exhibiting deviation from the computational reference of less than 1 kcal mol-1. The zero-point vibrational energy corrected estimates Δ(EAB+ZPE), obtained with the three functionals and the 6-31G(d) and N07T basis sets, are compared with experimental D0 measures, when available. In particular, this comparison is finally extended to the naphthalene and coronene dimers and to three π-π associations of different PAHs (R, made by 10, 16, or 24 C atoms) and P (80 C atoms).
Maranzana, Andrea; Giordana, Anna; Indarto, Antonius; Tonachini, Glauco; Barone, Vincenzo; Causà, Mauro; Pavone, Michele
2013-12-28
Our purpose is to identify a computational level sufficiently dependable and affordable to assess trends in the interaction of a variety of radical or closed shell unsaturated hydro-carbons A adsorbed on soot platelet models B. These systems, of environmental interest, would unavoidably have rather large sizes, thus prompting to explore in this paper the performances of relatively low-level computational methods and compare them with higher-level reference results. To this end, the interaction of three complexes between non-polar species, vinyl radical, ethyne, or ethene (A) with benzene (B) is studied, since these species, involved themselves in growth processes of polycyclic aromatic hydrocarbons (PAHs) and soot particles, are small enough to allow high-level reference calculations of the interaction energy ΔEAB. Counterpoise-corrected interaction energies ΔEAB are used at all stages. (1) Density Functional Theory (DFT) unconstrained optimizations of the A-B complexes are carried out, using the B3LYP-D, ωB97X-D, and M06-2X functionals, with six basis sets: 6-31G(d), 6-311 (2d,p), and 6-311++G(3df,3pd); aug-cc-pVDZ and aug-cc-pVTZ; N07T. (2) Then, unconstrained optimizations by Møller-Plesset second order Perturbation Theory (MP2), with each basis set, allow subsequent single point Coupled Cluster Singles Doubles and perturbative estimate of the Triples energy computations with the same basis sets [CCSD(T)//MP2]. (3) Based on an additivity assumption of (i) the estimated MP2 energy at the complete basis set limit [EMP2/CBS] and (ii) the higher-order correlation energy effects in passing from MP2 to CCSD(T) at the aug-cc-pVTZ basis set, ΔECC-MP, a CCSD(T)/CBS estimate is obtained and taken as a computational energy reference. At DFT, variations in ΔEAB with basis set are not large for the title molecules, and the three functionals perform rather satisfactorily even with rather small basis sets [6-31G(d) and N07T], exhibiting deviation from the computational reference of less than 1 kcal mol(-1). The zero-point vibrational energy corrected estimates Δ(EAB+ZPE), obtained with the three functionals and the 6-31G(d) and N07T basis sets, are compared with experimental D0 measures, when available. In particular, this comparison is finally extended to the naphthalene and coronene dimers and to three π-π associations of different PAHs (R, made by 10, 16, or 24 C atoms) and P (80 C atoms).
Jurynczyk, Maciej; Probert, Fay; Yeo, Tianrong; Tackley, George; Claridge, Tim D W; Cavey, Ana; Woodhall, Mark R; Arora, Siddharth; Winkler, Torsten; Schiffer, Eric; Vincent, Angela; DeLuca, Gabriele; Sibson, Nicola R; Isabel Leite, M; Waters, Patrick; Anthony, Daniel C; Palace, Jacqueline
2017-12-06
The overlapping clinical features of relapsing remitting multiple sclerosis (RRMS), aquaporin-4 (AQP4)-antibody (Ab) neuromyelitis optica spectrum disorder (NMOSD), and myelin oligodendrocyte glycoprotein (MOG)-Ab disease mean that detection of disease specific serum antibodies is the gold standard in diagnostics. However, antibody levels are not prognostic and may become undetectable after treatment or during remission. Therefore, there is still a need to discover antibody-independent biomarkers. We sought to discover whether plasma metabolic profiling could provide biomarkers of these three diseases and explore if the metabolic differences are independent of antibody titre. Plasma samples from 108 patients (34 RRMS, 54 AQP4-Ab NMOSD, and 20 MOG-Ab disease) were analysed by nuclear magnetic resonance spectroscopy followed by lipoprotein profiling. Orthogonal partial-least squares discriminatory analysis (OPLS-DA) was used to identify significant differences in the plasma metabolite concentrations and produce models (mathematical algorithms) capable of identifying these diseases. In all instances, the models were highly discriminatory, with a distinct metabolite pattern identified for each disease. In addition, OPLS-DA identified AQP4-Ab NMOSD patient samples with low/undetectable antibody levels with an accuracy of 92%. The AQP4-Ab NMOSD metabolic profile was characterised by decreased levels of scyllo-inositol and small high density lipoprotein particles along with an increase in large low density lipoprotein particles relative to both RRMS and MOG-Ab disease. RRMS plasma exhibited increased histidine and glucose, along with decreased lactate, alanine, and large high density lipoproteins while MOG-Ab disease plasma was defined by increases in formate and leucine coupled with decreased myo-inositol. Despite overlap in clinical measures in these three diseases, the distinct plasma metabolic patterns support their distinct serological profiles and confirm that these conditions are indeed different at a molecular level. The metabolites identified provide a molecular signature of each condition which is independent of antibody titre and EDSS, with potential use for disease monitoring and diagnosis.
NASA Astrophysics Data System (ADS)
Chan, Ka Wai
The solvation and electronic structures of M+Ln, with M+ = Mg+ and Cat, L = H2O, CH 3OH and NH3, n=1-6 were investigated by ab initio calculations using G03 package and density functional theory based ab initio molecular dynamics (AIMD) simulations with projector augmented-wave (PAW) method and a planewave basis set using Vienna Ab initio Simulation Package (VASP). Furthermore, ab initio studies on the intracluster reactions of Mg+ and Ca+ ions with different solvent molecules, H2O, CH3OH and NH3, were also done using G03 package. Finally, the elimination of a H atom in Na(H2O)n was studied. Such studies on the interactions and reactivity in gas clusters can provide insights into their analogies existing in condense phase. Interactions of Mg+ and Ca+ ions in different solvent molecules, H2O, CH3OH and NH3, were calculated with B3LYP and MP2 methods with basis sets 6-31+g** and 6-311+g**. A systematic comparison on the structures and reactivities of these clusters should provide a better understanding on the interplay of the ion-solvent, solvent-solvent, and electron-solvent interactions. It can provide a better understanding on the structures and bonding of complexes having analogies to those existing in condense phase. For Mg+(CH3OH)n and Ca+(CH 3OH)n, both H-elimination from OH/CH bond and CH3-elimination were investigated. H-elimination from O---H bond becomes more accessible for large cluster due to the diffusion of electron density to O---H bond. Studies on the H-elimination in Mg+(NH3)n and H-elimination from C---H bond in Mg+(CH3OH) n show that the reaction barriers flatten above 20 kcal/mol as n reaches 4 and above. These calculation results prove that the source of loss of H atom in ground state Mg+(CH3OH)n should be through the O---H bond rather than through the C---H bond. Compared to Mg+(CH3OH)n, the reaction barriers for H-elimination in Mg+(NH3)n is much larger, which is in consistent with the experimental observation of little H-elimination for Mg+(NH3)n unless it's photo-excited. The examination of neutral Na(H2O)n clusters, n=4~15 for H-elimination was carried out. The reaction profile for H-elimination was obtained by energy minimization at constrained O---H distance which was successively increased. There was a general trend of decreasing reaction barrier, as the cluster size grows. In contrast to Mg+(H 2O)n, the expected switch-off of H-elimination as in Mg +(H2O)n cannot be observed.
Roy, Gargi; Martin, Tom; Barnes, Arnita; Wang, Jihong; Jimenez, Rod Brian; Rice, Megan; Li, Lina; Feng, Hui; Zhang, Shu; Chaerkady, Raghothama; Wu, Herren; Marelli, Marcello; Hatton, Diane; Zhu, Jie; Bowen, Michael A
2018-04-01
The conserved glycosylation site Asn 297 of a monoclonal antibody (mAb) can be decorated with a variety of sugars that can alter mAb pharmacokinetics and recruitment of effector proteins. Antibodies lacking the core fucose at Asn 297 (afucosylated mAbs) show enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) and increased efficacy. Here, we describe the development of a robust platform for the manufacture of afucosylated therapeutic mAbs by engineering a Chinese hamster ovary (CHO) host cell line to co-express a mAb with GDP-6-deoxy-D-lyxo-4-hexulose reductase (RMD), a prokaryotic enzyme that deflects an intermediate in the de novo synthesis of fucose to a dead-end product, resulting in the production of afucosylated mAb (GlymaxX™ Technology, ProBioGen). Expression of the mAb and RMD genes was coordinated by co-transfection of separate mAb and RMD vectors or use of an internal ribosome entry site (IRES) element to link the translation of RMD with either the glutamine synthase selection marker or the mAb light chain. The GS-IRES-RMD vector format was more suitable for the rapid generation of high yielding cell lines, secreting afucosylated mAb with titers exceeding 6.0 g/L. These cell lines maintained production of afucosylated mAb over 60 generations, ensuring their suitability for use in large-scale manufacturing. The afucosylated mAbs purified from these RMD-engineered cell lines showed increased binding in a CD16 cellular assay, demonstrating enhancement of ADCC compared to fucosylated control mAb. Furthermore, the afucosylation in these mAbs could be controlled by simple addition of L-fucose in the culture medium, thereby allowing the use of a single cell line for production of the same mAb in fucosylated and afucosylated formats for multiple therapeutic indications.
Nuyts, Valerie; Vanhooren, Hadewijch; Begyn, Sarah; Nackaerts, Kristiaan; Nemery, Benoit
2017-01-01
Asbestos bodies (AB) in bronchoalveolar lavage (BAL) can be detected by light microscopy and their concentration is indicative of past cumulative asbestos exposure. We assessed clinical and exposure characteristics, as well as possible time trends, among patients in whom AB had been quantified in BAL. BAL samples obtained from 578 participants between January 1997 and December 2014 were available for analysis. The processing of samples and the microscopic analysis were performed by a single expert and 76% of samples came from a single tertiary care hospital, allowing clinical and exposure data to be extracted from patient files. The study population (95% males) had a mean age of 62.5 (±12.4) years. AB were detected in 55.2% of the samples, giving a median concentration of 0.5 AB/mL (95th centile: 23.6 AB/mL; highest value: 164.5 AB/mL). The AB concentration exceeded 1 AB/mL in 39.4% and 5 AB/mL in 17.8%. A significant decrease from a geometric mean of 0.93 AB/mL in 1997 to 0.2 AB/mL in 2014 was apparent. High AB concentrations generally corresponded with occupations with (presumed) high asbestos exposure. AB concentrations were higher among patients with asbestosis and pleural plaques, when compared with other disease groups. Nevertheless, a substantial proportion of participants with likely exposure to asbestos did not exhibit high AB counts. This retrospective study of a large clinical population supports the value of counting AB in BAL as a complementary approach to assess past exposure to asbestos. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
GAS MOTION STUDY OF Ly{alpha} EMITTERS AT z {approx} 2 USING FUV AND OPTICAL SPECTRAL LINES {sup ,}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hashimoto, Takuya; Shimasaku, Kazuhiro; Nakajima, Kimihiko
2013-03-01
We present the results of Magellan/MMIRS and Keck/NIRSPEC spectroscopy for five Ly{alpha} emitters (LAEs) at z {approx_equal} 2.2 for which high-resolution FUV spectra from Magellan/MagE are available. We detect nebular emission lines including H{alpha} on the individual basis and low-ionization interstellar (LIS) absorption lines in a stacked FUV spectrum, and measure average offset velocities of the Ly{alpha} line, {Delta}v {sub Ly{alpha}}, and LIS absorption lines, {Delta}v {sub abs}, with respect to the systemic velocity defined by the nebular lines. For a sample of eight z {approx} 2-3 LAEs without active galactic nucleus from our study and the literature, we obtainmore » {Delta}v {sub Ly{alpha}} = 175 {+-} 35 km s{sup -1}, which is significantly smaller than that of Lyman-break Galaxies (LBGs), {Delta}v {sub Ly{alpha}} {approx_equal} 400 km s{sup -1}. The stacked FUV spectrum gives {Delta}v {sub abs} = -179 {+-} 73 km s{sup -1}, comparable to that of LBGs. These positive {Delta}v {sub Ly{alpha}} and negative {Delta}v {sub abs} suggest that LAEs also have outflows. In contrast to LBGs, however, the LAEs' {Delta}v {sub Ly{alpha}} is as small as |{Delta}v {sub abs}|, suggesting low neutral hydrogen column densities. Such a low column density with a small number of resonant scattering may cause the observed strong Ly{alpha} emission of LAEs. We find an anti-correlation between Ly{alpha} equivalent width (EW) and {Delta}v {sub Ly{alpha}} in a compilation of LAE and LBG samples. Although its physical origin is not clear, this anti-correlation result appears to challenge the hypothesis that a strong outflow, by means of a reduced number of resonant scattering, produces a large EW. If LAEs at z > 6 have similarly small {Delta}v {sub Ly{alpha}} values, constraints on the reionization history derived from the Ly{alpha} transmissivity may need to be revised.« less
Costa, Joana; Marani, Mariela M; Grazina, Liliana; Villa, Caterina; Meira, Liliana; Oliveira, M Beatriz P P; Leite, José R S A; Mafra, Isabel
2017-09-15
The introduction of genes isolated from different Bacillus thuringiensis strains to express Cry-type toxins in transgenic crops is a common strategy to confer insect resistance traits. This work intended to extensively in silico analyse Cry1A(b)16 protein for the identification of peptide markers for the biorecognition of transgenic crops. By combining two different strategies based on several bioinformatic tools for linear epitope prediction, a set of seven peptides was successfully selected as potential Cry1A(b)16 immunogens. For the prediction of conformational epitopes, Cry1A(b)16 models were built on the basis of three independent templates of homologue proteins of Cry1A(a) and Cry1A(c) using an integrated approach. PcH_736-746 and PcH_876-886 peptides were selected as the best candidates, being synthesised and used for the production of polyclonal antibodies. To the best of our knowledge, this is the first attempt of selecting and defining linear peptides as immunogenic markers of Cry1A(b)-type toxins in transgenic maize. Copyright © 2017 Elsevier Ltd. All rights reserved.
Anti-GD2 mAb and Vorinostat synergize in the treatment of neuroblastoma.
Kroesen, Michiel; Büll, Christian; Gielen, Paul R; Brok, Ingrid C; Armandari, Inna; Wassink, Melissa; Looman, Maaike W G; Boon, Louis; den Brok, Martijn H; Hoogerbrugge, Peter M; Adema, Gosse J
2016-06-01
Neuroblastoma (NBL) is a childhood malignancy of the sympathetic nervous system. For high-risk NBL patients, the mortality rate is still over 50%, despite intensive multimodal treatment. Anti-GD2 monoclonal antibody (mAB) in combination with systemic cytokine immunotherapy has shown clinical efficacy in high-risk NBL patients. Targeted therapy using histone deacetylase inhibitors (HDACi) is currently being explored in cancer treatment and already shows promising results. Using our recently developed transplantable TH-MYCN NBL model, we here report that the HDAC inhibitor Vorinostat synergizes with anti-GD2 mAb therapy in reducing NBL tumor growth. Further mechanistic studies uncovered multiple mechanisms for the observed synergy, including Vorinostat-induced specific NBL cell death and upregulation of the tumor antigen GD2 on the cell surface of surviving NBL cells. Moreover, Vorinostat created a permissive tumor microenvironment (TME) for tumor-directed mAb therapy by increasing macrophage effector cells expressing high levels of Fc-receptors (FcR) and decreasing the number and function of myeloid-derived suppressor cells (MDSC). Collectively, these data imply further testing of other epigenetic modulators with immunotherapy and provide a strong basis for clinical testing of anti-GD2 plus Vorinostat combination therapy in NBL patients.
Model Order Reduction Algorithm for Estimating the Absorption Spectrum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Beeumen, Roel; Williams-Young, David B.; Kasper, Joseph M.
The ab initio description of the spectral interior of the absorption spectrum poses both a theoretical and computational challenge for modern electronic structure theory. Due to the often spectrally dense character of this domain in the quantum propagator’s eigenspectrum for medium-to-large sized systems, traditional approaches based on the partial diagonalization of the propagator often encounter oscillatory and stagnating convergence. Electronic structure methods which solve the molecular response problem through the solution of spectrally shifted linear systems, such as the complex polarization propagator, offer an alternative approach which is agnostic to the underlying spectral density or domain location. This generality comesmore » at a seemingly high computational cost associated with solving a large linear system for each spectral shift in some discretization of the spectral domain of interest. In this work, we present a novel, adaptive solution to this high computational overhead based on model order reduction techniques via interpolation. Model order reduction reduces the computational complexity of mathematical models and is ubiquitous in the simulation of dynamical systems and control theory. The efficiency and effectiveness of the proposed algorithm in the ab initio prediction of X-ray absorption spectra is demonstrated using a test set of challenging water clusters which are spectrally dense in the neighborhood of the oxygen K-edge. On the basis of a single, user defined tolerance we automatically determine the order of the reduced models and approximate the absorption spectrum up to the given tolerance. We also illustrate that, for the systems studied, the automatically determined model order increases logarithmically with the problem dimension, compared to a linear increase of the number of eigenvalues within the energy window. Furthermore, we observed that the computational cost of the proposed algorithm only scales quadratically with respect to the problem dimension.« less
Martin, Danielle E; Robertson, Evan G; Morrison, Richard J S; Dobney, Bruce
2007-10-07
The S(1) <-- S(0) transitions of the gaseous (2-fluoroethyl)-benzene (FEB) and (2-chloroethyl)-benzene (CEB) have been investigated using a combination of two-color resonant two-photon ionization and UV-UV hole burning spectroscopy. Both anti and gauche conformers have been identified on the basis of rotational band contour analysis supported by ab initio calculations on the ground and electronically excited states. The gauche origin band of FEB at 37,673 cm(-1) is redshifted 50 cm(-1) relative to the corresponding anti origin, while CEB origin bands overlap at 37,646 cm(-1). Relative conformational stability and populations in the jet have been estimated for both molecules, based on the intensity ratio of S(1) <-- S(0) band origin transitions. These are compared with a range of related molecules with the structural motif PhCH(2)CH(2)X (X=CH(3),CH(2)CH(3),NH(2),OH,COOH,CCH,CN). Theory and experimental results for FEB and CEB show repulsive interactions between the halogen substituents and the pi cloud of the phenyl rings destabilizing the gauche conformers, but the preference for the anti conformers is relatively modest. The gauche conformer origins show very different hybrid character: FEB is largely b type, while CEB is an ac hybrid in keeping with theoretically computed TM "rotations" (theta(elec)) of -7 degrees and -56 degrees , respectively. This difference is attributed largely to rotation of the side chain in opposite directions about the C(1)C(alpha) bond. Spectra of FEB(H(2)O) and CEB(H(2)O) single water clusters show evidence of an anti conformation in the host molecule.
Anti-Ebola therapies based on monoclonal antibodies: Current state and challenges ahead
González-González, E; Alvarez, MM; Márquez-Ipiña, AR; Santiago, G Trujillo-de; Rodríguez-Martínez, LM; Annabi, N; Khademhosseini, A
2017-01-01
The 2014 Ebola outbreak, the largest recorded, took us largely unprepared, with no available vaccine or specific treatment. In this context, the World Health Organization (WHO) declared that the humanitarian use of experimental therapies against Ebola Virus (EBOV) is ethical. In particular, an experimental treatment consisting of a cocktail of three monoclonal antibodies (mAbs) produced in tobacco plants and specifically directed to the Ebola virus glycoprotein (GP) was tested in humans, apparently with good results. Several mAbs with high affinity to the GP have been described. This review discusses our current knowledge on this topic. Particular emphasis is devoted to those mAbs that have been assayed in animal models or humans as possible therapies against Ebola. Engineering aspects and challenges for the production of anti-Ebola mAbs are also briefly discussed; current platforms for the design and production of full-length mAbs are cumbersome and costly. PMID:26611830
Anti-Ebola therapies based on monoclonal antibodies: current state and challenges ahead.
González-González, Everardo; Alvarez, Mario Moisés; Márquez-Ipiña, Alan Roberto; Trujillo-de Santiago, Grissel; Rodríguez-Martínez, Luis Mario; Annabi, Nasim; Khademhosseini, Ali
2017-02-01
The 2014 Ebola outbreak, the largest recorded, took us largely unprepared, with no available vaccine or specific treatment. In this context, the World Health Organization declared that the humanitarian use of experimental therapies against Ebola Virus (EBOV) is ethical. In particular, an experimental treatment consisting of a cocktail of three monoclonal antibodies (mAbs) produced in tobacco plants and specifically directed to the EBOV glycoprotein (GP) was tested in humans, apparently with good results. Several mAbs with high affinity to the GP have been described. This review discusses our current knowledge on this topic. Particular emphasis is devoted to those mAbs that have been assayed in animal models or humans as possible therapies against Ebola. Engineering aspects and challenges for the production of anti-Ebola mAbs are also briefly discussed; current platforms for the design and production of full-length mAbs are cumbersome and costly.
NASA Astrophysics Data System (ADS)
Barabash, Sergey V.; Pramanik, Dipankar
2015-03-01
Development of low-leakage dielectrics for semiconductor industry, together with many other areas of academic and industrial research, increasingly rely upon ab initio tunneling and transport calculations. Complex band structure (CBS) is a powerful formalism to establish the nature of tunneling modes, providing both a deeper understanding and a guided optimization of materials, with practical applications ranging from screening candidate dielectrics for lowest ``ultimate leakage'' to identifying charge-neutrality levels and Fermi level pinning. We demonstrate that CBS is prone to a particular type of spurious ``phantom'' solution, previously deemed true but irrelevant because of a very fast decay. We demonstrate that (i) in complex materials, phantom modes may exhibit very slow decay (appearing as leading tunneling terms implying qualitative and huge quantitative errors), (ii) the phantom modes are spurious, (iii) unlike the pseudopotential ``ghost'' states, phantoms are an apparently unavoidable artifact of large numerical basis sets, (iv) a presumed increase in computational accuracy increases the number of phantoms, effectively corrupting the CBS results despite the higher accuracy achieved in resolving the true CBS modes and the real band structure, and (v) the phantom modes cannot be easily separated from the true CBS modes. We discuss implications for direct transport calculations. The strategy for dealing with the phantom states is discussed in the context of optimizing high-quality high- κ dielectric materials for decreased tunneling leakage.
Ab initio chemical kinetic study on Cl + ClO and related reverse processes.
Xu, Z F; Lin, M C
2010-11-04
The reaction of ClO with Cl and its related reverse processes have been studied theoretically by ab initio quantum chemical and statistical mechanical calculations. The geometric parameters of the reactants, products, and transition states are optimized by both UMPW1PW91 and unrestricted coupled-cluster single and double excitation (UCCSD) methods with the 6-311+G(3df) basis set. The potential energy surface has been further refined (with triple excitations, T) at the UCCSD(T)/6-311+G(3df) level of theory. The results show that Cl(2) and O ((3)P) can be produced by chlorine atom abstraction via a tight transition state, while ClOCl ((1)A(1)) and ClClO ((1)A') can be formed by barrierless association processes with exothermicities of 31.8 and 16.0 kcal/mol, respectively. In principle the O ((1)D) atom can be generated with a large endothermicity of 56.9 kcal/mol; on the other hand, its barrierless reaction with Cl(2) can readily form ClClO ((1)A'), which fragments rapidly to give ClO + Cl. The rate constants of both forward and reverse processes have been predicted at 150-2000 K by the microcanonical variational transition state theory (VTST)/Rice-Ramsperger-Kassel-Marcus (RRKM) theory. The predicted rate constants are in good agreement with available experimental data within reported errors.
Large-basis ab initio no-core shell model and its application to {sup 12}C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Navratil, P.; Vary, J. P.; Barrett, B. R.
2000-11-01
We present the framework for the ab initio no-core nuclear shell model and apply it to obtain properties of {sup 12}C. We derive two-body effective interactions microscopically for specific model spaces from the realistic CD-Bonn and the Argonne V8' nucleon-nucleon (NN) potentials. We then evaluate binding energies, excitation spectra, radii, and electromagnetic transitions in the 0{Dirac_h}{Omega}, 2{Dirac_h}{Omega}, and 4{Dirac_h}{Omega} model spaces for the positive-parity states and the 1{Dirac_h}{Omega}, 3{Dirac_h}{Omega}, and 5{Dirac_h}{Omega} model spaces for the negative-parity states. Dependence on the model-space size, on the harmonic-oscillator frequency, and on the type of the NN potential, used for the effective interaction derivation,more » are studied. In addition, electromagnetic and weak neutral elastic charge form factors are calculated in the impulse approximation. Sensitivity of the form-factor ratios to the strangeness one-body form-factor parameters and to the influence of isospin-symmetry violation is evaluated and discussed. Agreement between theory and experiment is favorable for many observables, while others require yet larger model spaces and/or three-body forces. The limitations of the present results are easily understood by virtue of the trends established and previous phenomenological results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Xiaolei, E-mail: virtualzx@gmail.com; Yarkony, David R., E-mail: yarkony@jhu.edu
2014-01-14
A recently reported algorithm for representing adiabatic states coupled by conical intersections using a quasi-diabatic state Hamiltonian in four and five atom systems is extended to treat nonadiabatic processes in considerably larger molecules. The method treats all internal degrees of freedom and uses electronic structure data from ab initio multireference configuration interaction wave functions with nuclear configuration selection based on quasi-classical surface hopping trajectories. The method is shown here to be able to treat ∼30 internal degrees of freedom including dissociative and large amplitude internal motion. Two procedures are introduced which are essential to the algorithm, a null space projectormore » which removes basis functions from the fitting process until they are needed and a partial diagonalization technique which allows for automated, but accurate, treatment of the vicinity of extended seams of conical intersections of two or more states. These procedures are described in detail. The method is illustrated using the photodissociaton of phenol, C{sub 6}H{sub 5}OH(X{sup ~1}A{sup ′}) + hv → C{sub 6}H{sub 5}OH(A{sup ~1}A{sup ′}, B{sup ~1}A{sup ′′}) → C{sub 6}H{sub 5}O(X{sup ~2}B{sub 1}, A{sup ~2}B{sub 2}) + H as a test case. Ab initio electronic structure data for the 1,2,3{sup 1}A states of phenol, which are coupled by conical intersections, are obtained from multireference first order configuration interaction wave functions. The design of bases to simultaneously treat large amplitude motion and dissociation is described, as is the ability of the fitting procedure to smooth the irregularities in the electronic energies attributable to the orbital changes that are inherent to nonadiabatic processes.« less
Incorporation of a non-human glycan mediates human susceptibility to a bacterial toxin
Byres, Emma; Paton, Adrienne W.; Paton, James C.; Löfling, Jonas C.; Smith, David F.; Wilce, Matthew C.J.; Talbot, Ursula M.; Chong, Damien C.; Yu, Hai; Huang, Shengshu; Chen, Xi; Varki, Nissi M.; Varki, Ajit; Rossjohn, Jamie; Beddoe, Travis
2009-01-01
AB5 toxins comprise an A subunit that corrupts essential eukaryotic cell functions, and pentameric B subunits that direct target cell uptake after binding surface glycans. Subtilase cytotoxin (SubAB) is an AB5 toxin secreted by Shiga toxigenic Escherichia coli (STEC)1, which causes serious gastrointestinal disease in humans2. SubAB causes haemolytic uraemic syndrome-like pathology in mice3 via SubA-mediated cleavage of BiP/GRP78, an essential endoplasmic reticulum chaperone4. Here we show that SubB has a strong preference for glycans terminating in the sialic acid N-glycolylneuraminic acid (Neu5Gc), a monosaccharide not synthesised in humans. Structures of SubB-Neu5Gc complexes revealed the basis for this specificity, and mutagenesis of key SubB residues abrogated in vitro glycan recognition, cell binding and cytotoxicity. SubAB specificity for Neu5Gc was confirmed using mouse tissues with a human-like deficiency of Neu5Gc and human cell lines fed with Neu5Gc. Despite human lack of Neu5Gc biosynthesis, assimilation of dietary Neu5Gc creates high-affinity receptors on human gut epithelia and kidney vasculature. This, together with the human lack of Neu5Gc-containing body fluid competitors, confers susceptibility to the gastrointestinal and systemic toxicities of SubAB. Ironically, foods rich in Neu5Gc are the most common source of STEC contamination. Thus a bacterial toxin’s receptor is generated by metabolic incorporation of an exogenous factor derived from food. PMID:18971931
Prospective evaluation of the Alere i Influenza A&B nucleic acid amplification versus Xpert Flu/RSV.
Nguyen Van, J C; Caméléna, F; Dahoun, M; Pilmis, B; Mizrahi, A; Lourtet, J; Behillil, S; Enouf, V; Le Monnier, A
2016-05-01
The rapid and accurate detection of influenza virus in respiratory specimens is required for optimal management of patients with acute respiratory infections. Because of the variability of the symptoms and the numerous other causes of influenza-like illness, the diagnosis of influenza cannot be made on the basis of clinical criteria alone. Thus, rapid influenza diagnostic tests have been developed such as the Alere i Influenza A&B isothermal nucleic acid assay. We prospectively evaluated the performance of the Alere i Influenza A&B assay in comparison with our routine Xpert Flu/RSV assay. Positive samples were subtyped according to the protocol from the National Influenza Center (Paris, France). A total of 96 respiratory nasal swab samples were analyzed: with both methods, 38 were positive and 56 were negative. Samples were prospectively collected from January 20 to April 8, 2015, from patient (86 adult and 10 pediatric patients) presenting with an influenza-like illness through the French influenza season. In comparison with the Xpert Flu/RSV assay, the overall sensitivity and specificity of the Alere i Influenza A&B assay were 95% and 100%, respectively. Our results indicate that the Alere i Influenza A&B assay has a good overall analytical performance and a high degree of concordance with the PCR-based Xpert Flu/RSV assay. The Alere i Influenza A&B isothermal nucleic acid amplification test is a powerful tool for influenza detection due to its high sensitivity and specificity as well as its ability to generate results within 15min. Copyright © 2016 Elsevier Inc. All rights reserved.
Lefkowith, J B; Di Valerio, R; Norris, J; Glick, G D; Alexander, A L; Jackson, L; Gilkeson, G S
1996-08-01
We recently produced a panel of seven glomerular-binding mAbs from a nephritic MRL-lpr mouse that bind to histones/nucleosomes (group I) or DNA (group II) adherent to glomerular basement membrane. To elucidate the molecular basis of their binding and ontogeny, we sequenced their variable (V) regions, analyzed the apparent somatic mutations, and predicted their three-dimensional structures. There were two clonally related sets (3 of 4 in group I, 3 of 3 in group II) both of the VHJ1558 family, and one mAb of the VH 7183 family. V region somatic mutations within clonally related sets had little effect on glomerular binding and did not appear to be selected for based on glomerular binding. The VH regions were most homologous with those from autoantibodies to histones, DNA, or IgG (i.e., rheumatoid factors), the Vkappa regions, with those from autoantibodies to small nuclear ribonucleoproteins (snRNP). The VH regions also exhibited an unusual VD junction (in the group I clonally related set) and an overall high content of charged amino acids (arginine, aspartic acid) in complementarity-determining regions (CDRs), particularly in CDR3. Molecular modeling studies suggested that the Fv regions of these mAbs converge to form a flat, open surface with a net positive charge. The CDR arginines in group I mAbs; appear to be located in Ag contact regions of the binding cleft. In sum, these data suggest that glomerulotropic mAbs are a highly restricted set of Abs with distinctive molecular features that may mediate their binding to glomeruli.
Atassi, M Z
2015-12-01
Intensive research in this laboratory over the last 19 years has aimed at understanding the molecular bases for immune recognition of botulinum neurotoxin, types A and B and the role of anti-toxin immune responses in defense against the toxin. Using 92 synthetic 19-residue peptides that overlapped by 5 residues and comprised an entire toxin (A or B) we determined the peptides' ability to bind anti-toxin Abs of human, mouse, horse and chicken. We also localized the epitopes recognized by Abs of cervical dystonia patients who developed immunoresistance to correlate toxin during treatment with BoNT/A or BoNT/B. For BoNT/A, patients' blocking Abs bound to 13 regions (5 on L and 8 on H subunit) on the surface and the response to each region was under separate MHC control. The responses were defined by the structure of the antigen and by the MHC of the host. The antigenic regions coincided or overlapped with synaptosomes (SNPS) binding regions. Antibody binding blocked the toxin's ability to bind to neuronal cells. In fact selected synthetic peptides were able to inhibit the toxin's action in vivo. A combination of three synthetic strong antigenic peptides detected blocking Abs in 88% of immunoresistant patients' sera. Administration of selected epitopes, pre-linked at their N(α) group to monomethoxyployethylene glycol, into mice with ongoing blocking anti-toxin Abs, reduced blocking Ab levels in the recipients. This may be suitable for clinical applications. Defined epitopes should also be valuable in synthetic vaccines design. Copyright © 2015 Elsevier Ltd. All rights reserved.
J-type Carbon Stars: A Dominant Source of 14 N-rich Presolar SiC Grains of Type AB
Liu, Nan; Stephan, Thomas; Boehnke, Patrick; ...
2017-07-21
Here, we report Mo isotopic data of 27 new presolar SiC grains, including 12 14N-rich AB ( 14N/ 15N > 440, AB2) and 15 mainstream (MS) grains, and their correlated Sr and Ba isotope ratios when available. Direct comparison of the data for the MS grains, which came from low-mass asymptotic giant branch (AGB) stars with large s-process isotope enhancements, with the AB2 grain data demonstrates that AB2 grains show near-solar isotopic compositions and lack s-process enhancements. The near-normal Sr, Mo, and Ba isotopic compositions of AB2 grains clearly exclude born-again AGB stars, where the intermediate neutron-capture process (i-process) takesmore » place, as their stellar source. On the other hand, low-mass CO novae and early R- and J-type carbon stars show 13C and 14N excesses but no s-process enhancements and are thus potential stellar sources of AB2 grains. And because both early R-type carbon stars and CO novae are rare objects, the abundant J-type carbon stars (10%–15% of all carbon stars) are thus likely to be a dominant source of AB2 grains.« less
J-type Carbon Stars: A Dominant Source of {sup 14}N-rich Presolar SiC Grains of Type AB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Nan; Nittler, Larry R.; Alexander, Conel M. O’D.
We report Mo isotopic data of 27 new presolar SiC grains, including 12 {sup 14}N-rich AB ({sup 14}N/{sup 15}N > 440, AB2) and 15 mainstream (MS) grains, and their correlated Sr and Ba isotope ratios when available. Direct comparison of the data for the MS grains, which came from low-mass asymptotic giant branch (AGB) stars with large s -process isotope enhancements, with the AB2 grain data demonstrates that AB2 grains show near-solar isotopic compositions and lack s -process enhancements. The near-normal Sr, Mo, and Ba isotopic compositions of AB2 grains clearly exclude born-again AGB stars, where the intermediate neutron-capture processmore » ( i -process) takes place, as their stellar source. On the other hand, low-mass CO novae and early R- and J-type carbon stars show {sup 13}C and {sup 14}N excesses but no s -process enhancements and are thus potential stellar sources of AB2 grains. Because both early R-type carbon stars and CO novae are rare objects, the abundant J-type carbon stars (10%–15% of all carbon stars) are thus likely to be a dominant source of AB2 grains.« less
J-type Carbon Stars: A Dominant Source of 14 N-rich Presolar SiC Grains of Type AB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Nan; Stephan, Thomas; Boehnke, Patrick
Here, we report Mo isotopic data of 27 new presolar SiC grains, including 12 14N-rich AB ( 14N/ 15N > 440, AB2) and 15 mainstream (MS) grains, and their correlated Sr and Ba isotope ratios when available. Direct comparison of the data for the MS grains, which came from low-mass asymptotic giant branch (AGB) stars with large s-process isotope enhancements, with the AB2 grain data demonstrates that AB2 grains show near-solar isotopic compositions and lack s-process enhancements. The near-normal Sr, Mo, and Ba isotopic compositions of AB2 grains clearly exclude born-again AGB stars, where the intermediate neutron-capture process (i-process) takesmore » place, as their stellar source. On the other hand, low-mass CO novae and early R- and J-type carbon stars show 13C and 14N excesses but no s-process enhancements and are thus potential stellar sources of AB2 grains. And because both early R-type carbon stars and CO novae are rare objects, the abundant J-type carbon stars (10%–15% of all carbon stars) are thus likely to be a dominant source of AB2 grains.« less
J-type Carbon Stars: A Dominant Source of 14 N-rich Presolar SiC Grains of Type AB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Nan; Stephan, Thomas; Boehnke, Patrick
We report Mo isotopic data of 27 new presolar SiC grains, including 12 N-14-rich AB (N-14/N-15 > 440, AB2) and 15 mainstream (MS) grains, and their correlated Sr and Ba isotope ratios when available. Direct comparison of the data for the MS grains, which came from low-mass asymptotic giant branch (AGB) stars with large s-process isotope enhancements, with the AB2 grain data demonstrates that AB2 grains show near-solar isotopic compositions and lack s-process enhancements. The near-normal Sr, Mo, and Ba isotopic compositions of AB2 grains clearly exclude born-again AGB stars, where the intermediate neutron-capture process (i-process) takes place, as theirmore » stellar source. On the other hand, low-mass CO novae and early R-and J-type carbon stars show C-13 and N-14 excesses but no s-process enhancements and are thus potential stellar sources of AB2 grains. Because both early R-type carbon stars and CO novae are rare objects, the abundant J-type carbon stars (10%-15% of all carbon stars) are thus likely to be a dominant source of AB2 grains.« less
Gopal, Chirranjeevi Balaji; Garcia-Melchor, Max; Lee, Sang Chul; ...
2017-05-18
Elastic strain is being increasingly employed to enhance the catalytic properties of mixed ion–electron conducting oxides. However, its effect on oxygen storage capacity is not well established. Here, we fabricate ultrathin, coherently strained films of CeO 2-δ between 5.6% biaxial compression and 2.1% tension. In situ ambient pressure X-ray photoelectron spectroscopy reveals up to a fourfold enhancement in equilibrium oxygen storage capacity under both compression and tension. This non-monotonic variation with strain departs from the conventional wisdom based on a chemical expansion dominated behaviour. Through depth profiling, film thickness variations and a coupled photoemission–thermodynamic analysis of space-charge effects, we showmore » that the enhanced reducibility is not dominated by interfacial effects. On the basis of ab initio calculations of oxygen vacancy formation incorporating defect interactions and vibrational contributions, we suggest that the non-monotonicity arises from the tetragonal distortion under large biaxial strain. Finally, these results may guide the rational engineering of multilayer and core–shell oxide nanomaterials.« less
NASA Astrophysics Data System (ADS)
Choi, Chu Hwan
2002-09-01
Ab initio chemistry has shown great promise in reproducing experimental results and in its predictive power. The many complicated computational models and methods seem impenetrable to an inexperienced scientist, and the reliability of the results is not easily interpreted. The application of midbond orbitals is used to determine a general method for use in calculating weak intermolecular interactions, especially those involving electron-deficient systems. Using the criteria of consistency, flexibility, accuracy and efficiency we propose a supermolecular method of calculation using the full counterpoise (CP) method of Boys and Bernardi, coupled with Moller-Plesset (MP) perturbation theory as an efficient electron-correlative method. We also advocate the use of the highly efficient and reliable correlation-consistent polarized valence basis sets of Dunning. To these basis sets, we add a general set of midbond orbitals and demonstrate greatly enhanced efficiency in the calculation. The H2-H2 dimer is taken as a benchmark test case for our method, and details of the computation are elaborated. Our method reproduces with great accuracy the dissociation energies of other previous theoretical studies. The added efficiency of extending the basis sets with conventional means is compared with the performance of our midbond-extended basis sets. The improvement found with midbond functions is notably superior in every case tested. Finally, a novel application of midbond functions to the BH5 complex is presented. The system is an unusual van der Waals complex. The interaction potential curves are presented for several standard basis sets and midbond-enhanced basis sets, as well as for two popular, alternative correlation methods. We report that MP theory appears to be superior to coupled-cluster (CC) in speed, while it is more stable than B3LYP, a widely-used density functional theory (DFT). Application of our general method yields excellent results for the midbond basis sets. Again they prove superior to conventional extended basis sets. Based on these results, we recommend our general approach as a highly efficient, accurate method for calculating weakly interacting systems.
A high-throughput shotgun mutagenesis approach to mapping B-cell antibody epitopes.
Davidson, Edgar; Doranz, Benjamin J
2014-09-01
Characterizing the binding sites of monoclonal antibodies (mAbs) on protein targets, their 'epitopes', can aid in the discovery and development of new therapeutics, diagnostics and vaccines. However, the speed of epitope mapping techniques has not kept pace with the increasingly large numbers of mAbs being isolated. Obtaining detailed epitope maps for functionally relevant antibodies can be challenging, particularly for conformational epitopes on structurally complex proteins. To enable rapid epitope mapping, we developed a high-throughput strategy, shotgun mutagenesis, that enables the identification of both linear and conformational epitopes in a fraction of the time required by conventional approaches. Shotgun mutagenesis epitope mapping is based on large-scale mutagenesis and rapid cellular testing of natively folded proteins. Hundreds of mutant plasmids are individually cloned, arrayed in 384-well microplates, expressed within human cells, and tested for mAb reactivity. Residues are identified as a component of a mAb epitope if their mutation (e.g. to alanine) does not support candidate mAb binding but does support that of other conformational mAbs or allows full protein function. Shotgun mutagenesis is particularly suited for studying structurally complex proteins because targets are expressed in their native form directly within human cells. Shotgun mutagenesis has been used to delineate hundreds of epitopes on a variety of proteins, including G protein-coupled receptor and viral envelope proteins. The epitopes mapped on dengue virus prM/E represent one of the largest collections of epitope information for any viral protein, and results are being used to design better vaccines and drugs. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Ho, Yen-Ching; Wang, Yi-Siang; Chao, Sheng D.
2017-08-01
Modeling fluid cycloalkanes with molecular dynamics simulations has proven to be a very challenging task partly because of lacking a reliable force field based on quantum chemistry calculations. In this paper, we construct an ab initio force field for fluid cyclopropane using the second-order Møller-Plesset perturbation theory. We consider 15 conformers of the cyclopropane dimer for the orientation sampling. Single-point energies at important geometries are calibrated by the coupled cluster with single, double, and perturbative triple excitation method. Dunning's correlation consistent basis sets (up to aug-cc-pVTZ) are used in extrapolating the interaction energies at the complete basis set limit. The force field parameters in a 9-site Lennard-Jones model are regressed by the calculated interaction energies without using empirical data. With this ab initio force field, we perform molecular dynamics simulations of fluid cyclopropane and calculate both the structural and dynamical properties. We compare the simulation results with those using an empirical force field and obtain a quantitative agreement for the detailed atom-wise radial distribution functions. The experimentally observed gross radial distribution function (extracted from the neutron scattering measurements) is well reproduced in our simulation. Moreover, the calculated self-diffusion coefficients and shear viscosities are in good agreement with the experimental data over a wide range of thermodynamic conditions. To the best of our knowledge, this is the first ab initio force field which is capable of competing with empirical force fields for simulating fluid cyclopropane.
NASA Astrophysics Data System (ADS)
Niazazari, Naser; Zatikyan, Ashkhen L.; Markarian, Shiraz A.
2013-06-01
The hydrogen bonding of 1:1 complexes formed between L-ascorbic acid (LAA) and dimethylsulfoxide (DMSO) has been studied by means of ab initio and density functional theory (DFT) calculations. Solutions of L-ascorbic acid (AA) in dimethylsulfoxide (DMSO) have been studied by means of both FT-IR (4000-220 cm-1) and FT-Raman spectroscopy. Ab initio Hartree-Fock (HF) and DFT methods have been used to determine the structure and energies of stable conformers of various types of L-AA/DMSO complexes in gas phase and solution. The basis sets 6-31++G∗∗ and 6-311+G∗ were used to describe the structure, energy, charges and vibrational frequencies of interacting complexes in the gas phase. The optimized geometric parameters and interaction energies for various complexes at different theories have been estimated. Binding energies have been corrected for basis set superposition error (BSSE) and harmonic vibrational frequencies of the structures have been calculated to obtain the stable forms of the complexes. The self-consistent reaction field (SCRF) has been used to calculate the effect of DMSO as the solvent on the geometry, energy and charges of complexes. The solvent effect has been studied using the Onsager models. It is shown that the polarity of the solvent plays an important role on the structures and relative stabilities of different complexes. The results obtained show that there is a satisfactory correlation between experimental and theoretical predictions.
Freire, Ricardo O; Rocha, Gerd B; Simas, Alfredo M
2006-03-01
lanthanide coordination compounds efficiently and accurately is central for the design of new ligands capable of forming stable and highly luminescent complexes. Accordingly, we present in this paper a report on the capability of various ab initio effective core potential calculations in reproducing the coordination polyhedron geometries of lanthanide complexes. Starting with all combinations of HF, B3LYP and MP2(Full) with STO-3G, 3-21G, 6-31G, 6-31G* and 6-31+G basis sets for [Eu(H2O)9]3+ and closing with more manageable calculations for the larger complexes, we computed the fully predicted ab initio geometries for a total of 80 calculations on 52 complexes of Sm(III), Eu(III), Gd(III), Tb(III), Dy(III), Ho(III), Er(III) and Tm(III), the largest containing 164 atoms. Our results indicate that RHF/STO-3G/ECP appears to be the most efficient model chemistry in terms of coordination polyhedron crystallographic geometry predictions from isolated lanthanide complex ion calculations. Moreover, both augmenting the basis set and/or including electron correlation generally enlarged the deviations and aggravated the quality of the predicted coordination polyhedron crystallographic geometry. Our results further indicate that Cosentino et al.'s suggestion of using RHF/3-21G/ECP geometries appears to be indeed a more robust, but not necessarily, more accurate recommendation to be adopted for the general lanthanide complex case. [Figure: see text].
Park, Yongjung; Park, Younhee; Joo, Shin Young; Park, Myoung Hee; Kim, Hyon-Suk
2011-11-01
We evaluated analytic performances of an automated treponemal test and compared this test with the Venereal Disease Research Laboratory test (VDRL) and fluorescent treponemal antibody absorption test (FTA-ABS). Precision performance of the Architect Syphilis TP assay (TP; Abbott Japan, Tokyo, Japan) was assessed, and 150 serum samples were assayed with the TP before and after heat inactivation to estimate the effect of heat inactivation. A total of 616 specimens were tested with the FTA-ABS and TP, and 400 were examined with the VDRL. The TP showed good precision performance with total imprecision of less than a 10% coefficient of variation. An excellent linear relationship between results before and after heat inactivation was observed (R(2) = 0.9961). The FTA-ABS and TP agreed well with a κ coefficient of 0.981. The concordance rate between the FTA-ABS and TP was the highest (99.0%), followed by the rates between FTA-ABS and VDRL (85.0%) and between TP and VDRL (83.8%). The automated TP assay may be adequate for screening for syphilis in a large volume of samples and can be an alternative to FTA-ABS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pham, Thi Nu; Ono, Shota; Ohno, Kaoru, E-mail: ohno@ynu.ac.jp
Doing ab initio molecular dynamics simulations, we demonstrate a possibility of hydrogenation of carbon monoxide producing methanol step by step. At first, the hydrogen atom reacts with the carbon monoxide molecule at the excited state forming the formyl radical. Formaldehyde was formed after adding one more hydrogen atom to the system. Finally, absorption of two hydrogen atoms to formaldehyde produces methanol molecule. This study is performed by using the all-electron mixed basis approach based on the time dependent density functional theory within the adiabatic local density approximation for an electronic ground-state configuration and the one-shot GW approximation for an electronicmore » excited state configuration.« less
NASA Astrophysics Data System (ADS)
Jeong, Myongho; Kwon, Younghi
2000-10-01
Ab initio and density functional theory methods are applied to investigate the molecular structures, intramolecular orbital interactions, and 19F and 77Se NMR chemical shifts of o-selenobenzyl fluoride derivatives, ArSeX ( Ar= C6H4CH2F; X= CN, Cl, Me) , at both RHF and B3LYP levels with the basis sets 6-311G ∗∗ and 6-311+G ∗∗. There are two stable rotational conformers for ArSeX. The energy differences between both conformers for each compound are small (within 2 kcal/mol) at various levels.
Generation of higher odd harmonics in a defective photonic crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramanujam, N. R., E-mail: wilsonpra@yahoo.co.in; Wilson, K. S. Joseph
2015-06-24
A photonic crystal (AB){sup 2}(DB)(AB){sup 2} with high refractive index medium as silicon and low refractive medium as air is considered. Using the transfer matrix method, the transmission properties as a function of wavelength with photonic band gaps has been obtained. We are able to demonstrate the generation of third, fifth, seventh and ninth harmonics in the present work. We show that if the air medium is removed in the defect, the defect modes are generated but not harmonics. It can be designed to have a frequency conversion, and have a potential for becoming the basis for the next generationmore » of optical devices.« less
NASA Astrophysics Data System (ADS)
Ji, Pengfei; Zhang, Yuwen
2016-03-01
On the basis of ab initio quantum mechanics (QM) calculation, the obtained electron heat capacity is implemented into energy equation of electron subsystem in two temperature model (TTM). Upon laser irradiation on the copper film, energy transfer from the electron subsystem to the lattice subsystem is modeled by including the electron-phonon coupling factor in molecular dynamics (MD) and TTM coupled simulation. The results show temperature and thermal melting difference between the QM-MD-TTM integrated simulation and pure MD-TTM coupled simulation. The successful construction of the QM-MD-TTM integrated simulation provides a general way that is accessible to other metals in laser heating.
Pérez, A.; Merino, M.; Rumbo-Feal, S.; Álvarez-Fraga, L.; Vallejo, J. A.; Beceiro, A.; Ohneck, E. J.; Mateos, J.; Fernández-Puente, P.; Actis, L. A.; Poza, M.; Bou, G.
2017-01-01
ABSTRACT Acinetobacter baumannii is a hospital-acquired pathogen that shows an extraordinary capacity to stay in the hospital environment. Adherence of the bacteria to eukaryotic cells or to abiotic surfaces is the first step for establishing an infection. The A. baumannii strain AbH12O-A2 showed an exceptional ability to adhere to A549 epithelial cells. The AbFhaB/FhaC 2-partner secretion (TPS) system involved in adhesion was discovered after the screening of the recently determined A. baumannii AbH12O-A2 strain genome (CP009534.1). The AbFhaB is a large exoprotein which transport to the bacterial surface is mediated by the AbFhaC protein. In the present study, the role of this TPS system in the AbH12O-A2 adherence phenotype was investigated. The functional inactivation of this 2-partner secretion system was addressed by analyzing the outer membrane vesicles (OMV) proteomic profile from the wild-type strain and its derivative mutant AbH12O-A2ΔfhaC demonstrating that AbFhaB is no longer detected in the absence of AbFhaC. Scanning electron microscopy (SEM) and adhesion experiments demonstrated that inactivation of the AbFhaB/FhaC system significantly decreases bacterial attachment to A549 alveolar epithelial cells. Moreover, it has been demonstrated that this 2-partner secretion system is involved in fibronectin-mediated adherence of the A. baumannii AbH12O-A2 isolate. Finally, we report that the AbFhaB/FhaC system is involved in virulence when tested using invertebrate and vertebrate hosts. These data suggest the potential role that this AbFhaB/FhaC secretion system could play in the pathobiology of A. baumannii. PMID:27858524
Pérez, A; Merino, M; Rumbo-Feal, S; Álvarez-Fraga, L; Vallejo, J A; Beceiro, A; Ohneck, E J; Mateos, J; Fernández-Puente, P; Actis, L A; Poza, M; Bou, G
2017-08-18
Acinetobacter baumannii is a hospital-acquired pathogen that shows an extraordinary capacity to stay in the hospital environment. Adherence of the bacteria to eukaryotic cells or to abiotic surfaces is the first step for establishing an infection. The A. baumannii strain AbH12O-A2 showed an exceptional ability to adhere to A549 epithelial cells. The AbFhaB/FhaC 2-partner secretion (TPS) system involved in adhesion was discovered after the screening of the recently determined A. baumannii AbH12O-A2 strain genome (CP009534.1). The AbFhaB is a large exoprotein which transport to the bacterial surface is mediated by the AbFhaC protein. In the present study, the role of this TPS system in the AbH12O-A2 adherence phenotype was investigated. The functional inactivation of this 2-partner secretion system was addressed by analyzing the outer membrane vesicles (OMV) proteomic profile from the wild-type strain and its derivative mutant AbH12O-A2ΔfhaC demonstrating that AbFhaB is no longer detected in the absence of AbFhaC. Scanning electron microscopy (SEM) and adhesion experiments demonstrated that inactivation of the AbFhaB/FhaC system significantly decreases bacterial attachment to A549 alveolar epithelial cells. Moreover, it has been demonstrated that this 2-partner secretion system is involved in fibronectin-mediated adherence of the A. baumannii AbH12O-A2 isolate. Finally, we report that the AbFhaB/FhaC system is involved in virulence when tested using invertebrate and vertebrate hosts. These data suggest the potential role that this AbFhaB/FhaC secretion system could play in the pathobiology of A. baumannii.
Vibrational spectroscopic study of fluticasone propionate
NASA Astrophysics Data System (ADS)
Ali, H. R. H.; Edwards, H. G. M.; Kendrick, J.; Scowen, I. J.
2009-03-01
Fluticasone propionate is a synthetic glucocorticoid with potent anti-inflammatory activity that has been used effectively in the treatment of chronic asthma. The present work reports a vibrational spectroscopic study of fluticasone propionate and gives proposed molecular assignments on the basis of ab initio calculations using BLYP density functional theory with a 6-31G* basis set and vibrational frequencies predicted within the quasi-harmonic approximation. Several spectral features and band intensities are explained. This study generated a library of information that can be employed to aid the process monitoring of fluticasone propionate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madito, M. J.; Bello, A.; Dangbegnon, J. K.
2016-01-07
A bilayer graphene film obtained on copper (Cu) foil is known to have a significant fraction of non-Bernal (AB) stacking and on copper/nickel (Cu/Ni) thin films is known to grow over a large-area with AB stacking. In this study, annealed Cu foils for graphene growth were doped with small concentrations of Ni to obtain dilute Cu(Ni) alloys in which the hydrocarbon decomposition rate of Cu will be enhanced by Ni during synthesis of large-area AB-stacked bilayer graphene using atmospheric pressure chemical vapour deposition. The Ni doped concentration and the Ni homogeneous distribution in Cu foil were confirmed with inductively coupledmore » plasma optical emission spectrometry and proton-induced X-ray emission. An electron backscatter diffraction map showed that Cu foils have a single (001) surface orientation which leads to a uniform growth rate on Cu surface in early stages of graphene growth and also leads to a uniform Ni surface concentration distribution through segregation kinetics. The increase in Ni surface concentration in foils was investigated with time-of-flight secondary ion mass spectrometry. The quality of graphene, the number of graphene layers, and the layers stacking order in synthesized bilayer graphene films were confirmed by Raman and electron diffraction measurements. A four point probe station was used to measure the sheet resistance of graphene films. As compared to Cu foil, the prepared dilute Cu(Ni) alloy demonstrated the good capability of growing large-area AB-stacked bilayer graphene film by increasing Ni content in Cu surface layer.« less
NASA Astrophysics Data System (ADS)
Madito, M. J.; Bello, A.; Dangbegnon, J. K.; Oliphant, C. J.; Jordaan, W. A.; Momodu, D. Y.; Masikhwa, T. M.; Barzegar, F.; Fabiane, M.; Manyala, N.
2016-01-01
A bilayer graphene film obtained on copper (Cu) foil is known to have a significant fraction of non-Bernal (AB) stacking and on copper/nickel (Cu/Ni) thin films is known to grow over a large-area with AB stacking. In this study, annealed Cu foils for graphene growth were doped with small concentrations of Ni to obtain dilute Cu(Ni) alloys in which the hydrocarbon decomposition rate of Cu will be enhanced by Ni during synthesis of large-area AB-stacked bilayer graphene using atmospheric pressure chemical vapour deposition. The Ni doped concentration and the Ni homogeneous distribution in Cu foil were confirmed with inductively coupled plasma optical emission spectrometry and proton-induced X-ray emission. An electron backscatter diffraction map showed that Cu foils have a single (001) surface orientation which leads to a uniform growth rate on Cu surface in early stages of graphene growth and also leads to a uniform Ni surface concentration distribution through segregation kinetics. The increase in Ni surface concentration in foils was investigated with time-of-flight secondary ion mass spectrometry. The quality of graphene, the number of graphene layers, and the layers stacking order in synthesized bilayer graphene films were confirmed by Raman and electron diffraction measurements. A four point probe station was used to measure the sheet resistance of graphene films. As compared to Cu foil, the prepared dilute Cu(Ni) alloy demonstrated the good capability of growing large-area AB-stacked bilayer graphene film by increasing Ni content in Cu surface layer.
Spontaneous spherical symmetry breaking in atomic confinement
NASA Astrophysics Data System (ADS)
Sveshnikov, Konstantin; Tolokonnikov, Andrey
2017-07-01
The effect of spontaneous breaking of initial SO(3) symmetry is shown to be possible for an H-like atom in the ground state, when it is confined in a spherical box under general boundary conditions of "not going out" through the box surface (i.e. third kind or Robin's ones), for a wide range of physically reasonable values of system parameters. The most novel and nontrivial result, which has not been reported previously, is that such an effect takes place not only for attractive, but also for repulsive interactions of atomic electrons with the cavity environment. Moreover, in the limit of a large box size R ≫ aB the regime of an atom, soaring over a plane with boundary condition of "not going out", is reproduced, rather than a spherically symmetric configuration, which would be expected on the basis of the initial SO(3) symmetry of the problem.
An adiabatic spectroscopic investigation of the CsRb system in ground and numerous excited states
NASA Astrophysics Data System (ADS)
Souissi, Hanen; Jellali, Soulef; Maha, Chaieb; Habli, Héla; Oujia, Brahim; Gadéa, Florent Xavier
2017-10-01
Via ab-initio approximations, we investigate the electronic and structural features of the CsRb molecule. Adiabatic potential energy curves of 261,3Σ+, 181,3Π and 61,3Δ electronic states with their derived spectroscopic constants as well as vibrational levels spacing have been carried out and well explained. Our approach is founded on an Effective Core Potential (ECP) describing the valence electrons of the system. Using a large Gaussian basis set, the full valence Configuration Interaction can be applied easily on the two-effective valence electrons of the CsRb system. Furthermore, a detailed analysis of the electric dipolar properties has been made through the investigation of both permanent and transition dipole moments (PDM and TDM). It is significant that the ionic character connected with electron transfer that is linked to Cs+ Rb- state has been clearly illustrated in the adiabatic permanent dipole moment.
NASA Astrophysics Data System (ADS)
Zanuttini, David; Blum, Ivan; Rigutti, Lorenzo; Vurpillot, François; Douady, Julie; Jacquet, Emmanuelle; Anglade, Pierre-Matthieu; Gervais, Benoit
2017-06-01
We investigate the dynamics of dicationic metal-oxide molecules under large electric-field conditions, on the basis of ab initio calculations coupled to molecular dynamics. Applied to the case of ZnO2 + in the field of atom probe tomography (APT), our simulation reveals the dissociation into three distinct exit channels. The proportions of these channels depend critically on the field strength and on the initial molecular orientation with respect to the field. For typical field strength used in APT experiments, an efficient dissociation channel leads to emission of neutral oxygen atoms, which escape detection. The calculated composition biases and their dependence on the field strength show remarkable consistency with recent APT experiments on ZnO crystals. Our work shows that bond breaking in strong static fields may lead to significant neutral atom production, and therefore to severe elemental composition biases in measurements.
Dou, Shuping; Virostko, John; Greiner, Dale L.; Powers, Alvin C.; Liu, Guozheng
2016-01-01
Quantitative prediction of in vivo behavior using an in vitro assay would dramatically accelerate pharmaceutical development. However, studies quantitatively correlating in vivo properties with in vitro assay results are rare because of the difficulty in quantitatively understanding the in vivo behavior of an agent. We now demonstrate such a correlation as a case study based on our quantitative understanding of the in vivo chemistry. In an ongoing pretargeting project, we designed a trifunctional antibody (Ab) that concomitantly carried a biotin and a DNA analogue (hereafter termed MORF). The biotin and the MORF were fused into one structure prior to conjugation to the Ab for the concomitant attachment. Because it was known that avidin-bound Ab molecules leave the circulation rapidly, this design would theoretically allow complete clearance by avidin. The clearability of the trifunctional Ab was determined by calculating the blood MORF concentration ratio of avidin-treated Ab to non-avidin-treated Ab using mice injected with these compounds. In theory, any compromised clearability should be due to the presence of impurities. In vitro, we measured the biotinylated percentage of the Ab-reacting (MORF-biotin)⊃-NH2 modifier, by addition of streptavidin to the radiolabeled (MORF-biotin)⊃-NH2 samples and subsequent high-performance liquid chromatography (HPLC) analysis. On the basis of our previous quantitative understanding, we predicted that the clearability of the Ab would be equal to the biotinylation percentage measured via HPLC. We validated this prediction within a 3% difference. In addition to the high avidin-induced clearability of the trifunctional Ab (up to ~95%) achieved by the design, we were able to predict the required quality of the (MORF-biotin)⊃-NH2 modifier for any given in vivo clearability. This approach may greatly reduce the steps and time currently required in pharmaceutical development in the process of synthesis, chemical analysis, in vitro cell study, and in vivo validation. PMID:26103429
On the effects of basis set truncation and electron correlation in conformers of 2-hydroxy-acetamide
NASA Astrophysics Data System (ADS)
Szarecka, A.; Day, G.; Grout, P. J.; Wilson, S.
Ab initio quantum chemical calculations have been used to study the differences in energy between two gas phase conformers of the 2-hydroxy-acetamide molecule that possess intramolecular hydrogen bonding. In particular, rotation around the central C-C bond has been considered as a factor determining the structure of the hydrogen bond and stabilization of the conformer. Energy calculations include full geometiy optimization using both the restricted matrix Hartree-Fock model and second-order many-body perturbation theory with a number of commonly used basis sets. The basis sets employed ranged from the minimal STO-3G set to [`]split-valence' sets up to 6-31 G. The effects of polarization functions were also studied. The results display a strong basis set dependence.
Exact exchange-correlation potentials of singlet two-electron systems
NASA Astrophysics Data System (ADS)
Ryabinkin, Ilya G.; Ospadov, Egor; Staroverov, Viktor N.
2017-10-01
We suggest a non-iterative analytic method for constructing the exchange-correlation potential, v XC ( r ) , of any singlet ground-state two-electron system. The method is based on a convenient formula for v XC ( r ) in terms of quantities determined only by the system's electronic wave function, exact or approximate, and is essentially different from the Kohn-Sham inversion technique. When applied to Gaussian-basis-set wave functions, the method yields finite-basis-set approximations to the corresponding basis-set-limit v XC ( r ) , whereas the Kohn-Sham inversion produces physically inappropriate (oscillatory and divergent) potentials. The effectiveness of the procedure is demonstrated by computing accurate exchange-correlation potentials of several two-electron systems (helium isoelectronic series, H2, H3 + ) using common ab initio methods and Gaussian basis sets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Xiaolei, E-mail: virtualzx@gmail.com; Yarkony, David R., E-mail: yarkony@jhu.edu
2016-01-28
We have recently introduced a diabatization scheme, which simultaneously fits and diabatizes adiabatic ab initio electronic wave functions, Zhu and Yarkony J. Chem. Phys. 140, 024112 (2014). The algorithm uses derivative couplings in the defining equations for the diabatic Hamiltonian, H{sup d}, and fits all its matrix elements simultaneously to adiabatic state data. This procedure ultimately provides an accurate, quantifiably diabatic, representation of the adiabatic electronic structure data. However, optimizing the large number of nonlinear parameters in the basis functions and adjusting the number and kind of basis functions from which the fit is built, which provide the essential flexibility,more » has proved challenging. In this work, we introduce a procedure that combines adiabatic state and diabatic state data to efficiently optimize the nonlinear parameters and basis function expansion. Further, we consider using direct properties based diabatizations to initialize the fitting procedure. To address this issue, we introduce a systematic method for eliminating the debilitating (diabolical) singularities in the defining equations of properties based diabatizations. We exploit the observation that if approximate diabatic data are available, the commonly used approach of fitting each matrix element of H{sup d} individually provides a starting point (seed) from which convergence of the full H{sup d} construction algorithm is rapid. The optimization of nonlinear parameters and basis functions and the elimination of debilitating singularities are, respectively, illustrated using the 1,2,3,4{sup 1}A states of phenol and the 1,2{sup 1}A states of NH{sub 3}, states which are coupled by conical intersections.« less
Production of human monoclonal antibody in eggs of chimeric chickens.
Zhu, Lei; van de Lavoir, Marie-Cecile; Albanese, Jenny; Beenhouwer, David O; Cardarelli, Pina M; Cuison, Severino; Deng, David F; Deshpande, Shrikant; Diamond, Jennifer H; Green, Lynae; Halk, Edward L; Heyer, Babette S; Kay, Robert M; Kerchner, Allyn; Leighton, Philip A; Mather, Christine M; Morrison, Sherie L; Nikolov, Zivko L; Passmore, David B; Pradas-Monne, Alicia; Preston, Benjamin T; Rangan, Vangipuram S; Shi, Mingxia; Srinivasan, Mohan; White, Steven G; Winters-Digiacinto, Peggy; Wong, Susan; Zhou, Wen; Etches, Robert J
2005-09-01
The tubular gland of the chicken oviduct is an attractive system for protein expression as large quantities of proteins are deposited in the egg, the production of eggs is easily scalable and good manufacturing practices for therapeutics from eggs have been established. Here we examined the ability of upstream and downstream DNA sequences of ovalbumin, a protein produced exclusively in very high quantities in chicken egg white, to drive tissue-specific expression of human mAb in chicken eggs. To accommodate these large regulatory regions, we established and transfected lines of chicken embryonic stem (cES) cells and formed chimeras that express mAb from cES cell-derived tubular gland cells. Eggs from high-grade chimeras contained up to 3 mg of mAb that possesses enhanced antibody-dependent cellular cytotoxicity (ADCC), nonantigenic glycosylation, acceptable half-life, excellent antigen recognition and good rates of internalization.
Kim, Hong-Man; Xu, Yongbin; Lee, Minho; Piao, Shunfu; Sim, Se-Hoon; Ha, Nam-Chul; Lee, Kangseok
2010-01-01
Tripartite efflux pumps found in Gram-negative bacteria are involved in antibiotic resistance and toxic-protein secretion. In this study, we show, using site-directed mutational analyses, that the conserved residues located in the tip region of the α-hairpin of the membrane fusion protein (MFP) AcrA play an essential role in the action of the tripartite efflux pump AcrAB-TolC. In addition, we provide in vivo functional data showing that both the length and the amino acid sequence of the α-hairpin of AcrA can be flexible for the formation of a functional AcrAB-TolC pump. Genetic-complementation experiments further indicated functional interrelationships between the AcrA hairpin tip region and the TolC aperture tip region. Our findings may offer a molecular basis for understanding the multidrug resistance of pathogenic bacteria. PMID:20581201
Beretta, Vanesa H; Bannoud, Florencia; Insani, Marina; Galmarini, Claudio R; Cavagnaro, Pablo F
2017-06-01
Onion pyruvate concentration is used as a predictor of flavor intensity and nutraceutical value. The protocol of Schwimmer and Weston (SW) (1961) is the most widespread methodology for estimating onion pyruvate. Anthon and Barret (AB) (2003) proposed modifications to this procedure. Here, we compared these spectrophotometry-based procedures for pyruvate analysis using a diverse collection of onion cultivars. The SW method always led to over-estimation of pyruvate levels in colored, but not in white onions, by up to 65%. Identification of light-absorbance interfering compounds was performed by spectrophotometry and HPLC analysis. Interference by quercetin and anthocyanins, jointly, accounted for more than 90% of the over-estimation of pyruvate. Pyruvate determinations according to AB significantly reduced absorbance interference from compounds other than pyruvate. This study provides evidence about the mechanistic basis underlying differences between the SW and AB methods for indirect assessment of onion flavor and nutraceutical value. Copyright © 2016 Elsevier Ltd. All rights reserved.
Touch responsiveness in zebrafish requires voltage-gated calcium channel 2.1b
Low, Sean E.; Woods, Ian G.; Lachance, Mathieu; Ryan, Joel; Saint-Amant, Louis
2012-01-01
The molecular and physiological basis of the touch-unresponsive zebrafish mutant fakir has remained elusive. Here we report that the fakir phenotype is caused by a missense mutation in the gene encoding voltage-gated calcium channel 2.1b (CACNA1Ab). Injection of RNA encoding wild-type CaV2.1 restores touch responsiveness in fakir mutants, whereas knockdown of CACNA1Ab via morpholino oligonucleotides recapitulates the fakir mutant phenotype. Fakir mutants display normal current-evoked synaptic communication at the neuromuscular junction but have attenuated touch-evoked activation of motor neurons. NMDA-evoked fictive swimming is not affected by the loss of CaV2.1b, suggesting that this channel is not required for motor pattern generation. These results, coupled with the expression of CACNA1Ab by sensory neurons, suggest that CaV2.1b channel activity is necessary for touch-evoked activation of the locomotor network in zebrafish. PMID:22490555
Molecular Symmetry in Ab Initio Calculations
NASA Astrophysics Data System (ADS)
Madhavan, P. V.; Written, J. L.
1987-05-01
A scheme is presented for the construction of the Fock matrix in LCAO-SCF calculations and for the transformation of basis integrals to LCAO-MO integrals that can utilize several symmetry unique lists of integrals corresponding to different symmetry groups. The algorithm is fully compatible with vector processing machines and is especially suited for parallel processing machines.
Ab initio calculation of infrared intensities for hydrogen peroxide
NASA Technical Reports Server (NTRS)
Rogers, J. D.; Hillman, J. J.
1982-01-01
Results of an ab initio SCF quantum mechanical study are used to derive estimates for the infrared intensities of the fundamental vibrations of hydrogen peroxide. Atomic polar tensors (APTs) were calculated on the basis of a 4-31G basis set, and used to derive absolute intensities for the vibrational transitions. Comparison of the APTs calculated for H2O2 with those previously obtained for H2O and CH3OH, and of the absolute intensities derived from the H2O2 APTs with those derived from APTs transferred from H2O and CH3OH, reveals the sets of values to differ by no more than a factor of two, supporting the validity of the theoretical calculation. Values of the infrared intensities obtained correspond to A1 = 14.5 km/mol, A2 = 0.91 km/mol, A3 = 0.058 km/mol, A4 = 123 km/mol, A5 = 46.2 km/mol, and A6 = 101 km/mol. Charge, charge flux and overlap contributions to the dipole moment derivatives are also computed.
Ab initio calculation of infrared intensities for hydrogen peroxide
NASA Astrophysics Data System (ADS)
Rogers, J. D.; Hillman, J. J.
1982-04-01
Results of an ab initio SCF quantum mechanical study are used to derive estimates for the infrared intensities of the fundamental vibrations of hydrogen peroxide. Atomic polar tensors (APTs) were calculated on the basis of a 4-31G basis set, and used to derive absolute intensities for the vibrational transitions. Comparison of the APTs calculated for H2O2 with those previously obtained for H2O and CH3OH, and of the absolute intensities derived from the H2O2 APTs with those derived from APTs transferred from H2O and CH3OH, reveals the sets of values to differ by no more than a factor of two, supporting the validity of the theoretical calculation. Values of the infrared intensities obtained correspond to A1 = 14.5 km/mol, A2 = 0.91 km/mol, A3 = 0.058 km/mol, A4 = 123 km/mol, A5 = 46.2 km/mol, and A6 = 101 km/mol. Charge, charge flux and overlap contributions to the dipole moment derivatives are also computed.
On the ab initio evaluation of Hubbard parameters. II. The κ-(BEDT-TTF)2Cu[N(CN)2]Br crystal
NASA Astrophysics Data System (ADS)
Fortunelli, Alessandro; Painelli, Anna
1997-05-01
A previously proposed approach for the ab initio evaluation of Hubbard parameters is applied to BEDT-TTF dimers. The dimers are positioned according to four geometries taken as the first neighbors from the experimental data on the κ-(BEDT-TTF)2Cu[N(CN)2]Br crystal. RHF-SCF, CAS-SCF and frozen-orbital calculations using the 6-31G** basis set are performed with different values of the total charge, allowing us to derive all the relevant parameters. It is found that the electronic structure of the BEDT-TTF planes is adequately described by the standard Extended Hubbard Model, with the off-diagonal electron-electron interaction terms (X and W) of negligible size. The derived parameters are in good agreement with available experimental data. Comparison with previous theoretical estimates shows that the t values compare well with those obtained from Extended Hückel Theory (whereas the minimal basis set estimates are completely unreliable). On the other hand, the Uaeff values exhibit an appreciable dependence on the chemical environment.
Ab initio molecular dynamics simulation of LiBr association in water
NASA Astrophysics Data System (ADS)
Izvekov, Sergei; Philpott, Michael R.
2000-12-01
A computationally economical scheme which unifies the density functional description of an ionic solute and the classical description of a solvent was developed. The density functional part of the scheme comprises Car-Parrinello and related formalisms. The substantial saving in the computer time is achieved by performing the ab initio molecular dynamics of the solute electronic structure in a relatively small basis set constructed from lowest energy Kohn-Sham orbitals calculated for a single anion in vacuum, instead of using plane wave basis. The methodology permits simulation of an ionic solution for longer time scales while keeping accuracy in the prediction of the solute electronic structure. As an example the association of the Li+-Br- ion-pair system in water is studied. The results of the combined molecular dynamics simulation are compared with that obtained from the classical simulation with ion-ion interaction described by the pair potential of Born-Huggins-Mayer type. The comparison reveals an important role played by the polarization of the Br- ion in the dynamics of ion pair association.
NASA Astrophysics Data System (ADS)
Crusius, Johann-Philipp; Hellmann, Robert; Castro-Palacio, Juan Carlos; Vesovic, Velisa
2018-06-01
A four-dimensional potential energy surface (PES) for the interaction between a rigid carbon dioxide molecule and a rigid nitrogen molecule was constructed based on quantum-chemical ab initio calculations up to the coupled-cluster level with single, double, and perturbative triple excitations. Interaction energies for a total of 1893 points on the PES were calculated using the counterpoise-corrected supermolecular approach and basis sets of up to quintuple-zeta quality with bond functions. The interaction energies were extrapolated to the complete basis set limit, and an analytical site-site potential function with seven sites for carbon dioxide and five sites for nitrogen was fitted to the interaction energies. The CO2—N2 cross second virial coefficient as well as the dilute gas shear viscosity, thermal conductivity, and binary diffusion coefficient of CO2—N2 mixtures were calculated for temperatures up to 2000 K to validate the PES and to provide reliable reference values for these important properties. The calculated values are in very good agreement with the best experimental data.
A Force Balanced Fragmentation Method for ab Initio Molecular Dynamic Simulation of Protein.
Xu, Mingyuan; Zhu, Tong; Zhang, John Z H
2018-01-01
A force balanced generalized molecular fractionation with conjugate caps (FB-GMFCC) method is proposed for ab initio molecular dynamic simulation of proteins. In this approach, the energy of the protein is computed by a linear combination of the QM energies of individual residues and molecular fragments that account for the two-body interaction of hydrogen bond between backbone peptides. The atomic forces on the caped H atoms were corrected to conserve the total force of the protein. Using this approach, ab initio molecular dynamic simulation of an Ace-(ALA) 9 -NME linear peptide showed the conservation of the total energy of the system throughout the simulation. Further a more robust 110 ps ab initio molecular dynamic simulation was performed for a protein with 56 residues and 862 atoms in explicit water. Compared with the classical force field, the ab initio molecular dynamic simulations gave better description of the geometry of peptide bonds. Although further development is still needed, the current approach is highly efficient, trivially parallel, and can be applied to ab initio molecular dynamic simulation study of large proteins.
The DEAD-box RNA helicase Ddx39ab is essential for myocyte and lens development in zebrafish.
Zhang, Linlin; Yang, Yuxi; Li, Beibei; Scott, Ian C; Lou, Xin
2018-04-23
RNA helicases from the DEAD-box family are found in almost all organisms and have important roles in RNA metabolism, including RNA synthesis, processing and degradation. The function and mechanism of action of most of these helicases in animal development and human disease remain largely unexplored. In a zebrafish mutagenesis screen to identify genes essential for heart development we identified a mutant that disrupts the gene encoding the RNA helicase DEAD-box 39ab ( ddx39ab ). Homozygous ddx39ab mutant embryos exhibit profound cardiac and trunk muscle dystrophy, along with lens abnormalities, caused by abrupt terminal differentiation of cardiomyocyte, myoblast and lens fiber cells. Loss of ddx39ab hindered splicing of mRNAs encoding epigenetic regulatory factors, including members of the KMT2 gene family, leading to misregulation of structural gene expression in cardiomyocyte, myoblast and lens fiber cells. Taken together, these results show that Ddx39ab plays an essential role in establishment of the proper epigenetic status during differentiation of multiple cell lineages. © 2018. Published by The Company of Biologists Ltd.
Williams, James A; Gui, Long; Hom, Nancy; Mileant, Alexander; Lee, Kelly K
2017-12-20
The neutralizing antibody (nAb) response against the influenza virus's hemagglutinin (HA) fusion glycoprotein is important for preventing viral infection, but we lack a comprehensive understanding of the mechanisms by which these antibodies act. Here we investigated the effect of nAb binding and the role of IgG bivalency on inhibition of HA function for nAbs targeting distinct HA epitopes. HC19 targets the receptor-binding pocket at HA's distal end, while FI6v3 binds primarily to the HA2 fusion subunit towards the base of the stalk. Surprisingly, HC19 inhibited HA's ability to induce lipid mixing by preventing structural rearrangement of HA under fusion activating conditions. These results suggest that nAbs such as HC19 not only act by blocking receptor binding, but also inhibit key late-stage HA conformational changes required for fusion. Intact HC19 IgG was also shown to crosslink separate virus particles, burying large proportions of HA within aggregates where they are blocked from interacting with target membranes; Fabs yielded no such aggregation and displayed weaker neutralization than IgG, emphasizing the impact of bivalency on the ability to neutralize virus. In contrast, the stem-targeting nAb FI6v3 did not aggregate particles. The Fab was significantly less effective than IgG in preventing both membrane disruption and fusion. We infer that inter-spike crosslinking within a given particle by FI6v3 IgG may be critical to its potent neutralization, as no significant neutralization occurred with Fabs. These results demonstrate that IgG bivalency enhances HA inhibition through functionally important modes not evident in pared down Fab-soluble HA structures. IMPORTANCE The influenza virus's hemagglutinin (HA) fusion glycoprotein mediates entry into target cells and is the primary antigenic target of neutralizing antibodies (nAbs). Our current structural understanding of mechanisms of Ab-mediated neutralization largely relies on high resolution characterization of antigen binding fragments (Fab) in complex with soluble, isolated antigen constructs by cryo-EM single particle reconstruction or X-ray crystallography. Interactions between full-length IgG and whole virions have not been well-characterized, and a gap remains in our understanding of how intact Abs neutralize virus and prevent infection. Using structural and biophysical approaches, we observed that Ab-mediated inhibition of HA function and neutralization of virus infectivity occurs by multiple coexisting mechanisms and is largely dependent on the specific epitope that is targeted and is highly dependent on the bivalent nature of IgG molecules. Copyright © 2017 American Society for Microbiology.
Edlund, Helena; Melin, Johanna; Parra-Guillen, Zinnia P; Kloft, Charlotte
2015-01-01
Monoclonal antibodies (mAbs) constitute a therapeutically and economically important drug class with increasing use in both adult and paediatric patients. The rather complex pharmacokinetic and pharmacodynamic properties of mAbs have been extensively reviewed in adults. In children, however, limited information is currently available. This paper aims to comprehensively review published pharmacokinetic and pharmacokinetic-pharmacodynamic studies of mAbs in children. The current status of mAbs in the USA and in Europe is outlined, including a critical discussion of the dosing strategies of approved mAbs. The pharmacokinetic properties of mAbs in children are exhaustively summarised along with comparisons to reports in adults: for each pharmacokinetic process, we discuss the general principles and mechanisms of the pharmacokinetic/pharmacodynamic characteristics of mAbs, as well as key growth and maturational processes in children that might impact these characteristics. Throughout this review, considerable knowledge gaps are identified, especially regarding children-specific properties that influence pharmacokinetics, pharmacodynamics and immunogenicity. Furthermore, the large heterogeneity in the presentation of pharmacokinetic/pharmacodynamic data limited clinical inferences in many aspects of paediatric mAb therapy. Overall, further studies are needed to fully understand the impact of body size and maturational changes on drug exposure and response. To maximise future knowledge gain, we propose a 'Guideline for Best Practice' on how to report pharmacokinetic and pharmacokinetic-pharmacodynamic results from mAb studies in children which also facilitates comparisons. Finally, we advocate the use of more sophisticated modelling strategies (population analysis, physiology-based approaches) to appropriately characterise pharmacokinetic-pharmacodynamic relationships of mAbs and, thus, allow for a more rational use of mAb in the paediatric population.
The effect of arginine glutamate on the stability of monoclonal antibodies in solution.
Kheddo, Priscilla; Tracka, Malgorzata; Armer, Jonathan; Dearman, Rebecca J; Uddin, Shahid; van der Walle, Christopher F; Golovanov, Alexander P
2014-10-01
Finding excipients which mitigate protein self-association and aggregation is an important task during formulation. Here, the effect of an equimolar mixture of l-Arg and l-Glu (Arg·Glu) on colloidal and conformational stability of four monoclonal antibodies (mAb1-mAb4) at different pH is explored, with the temperatures of the on-set of aggregation (Tagg) and unfolding (Tm1) measured by static light scattering and intrinsic fluorescence, respectively. Arg·Glu increased the Tagg of all four mAbs in concentration-dependent manner, especially as pH increased to neutral. Arg·Glu also increased Tm1 of the least thermally stable mAb3, but without similar direct effect on the Tm1 of other mAbs. Raising pH itself from 5 to 7 increased Tm1 for all four mAbs. Selected mAb formulations were assessed under accelerated stability conditions for the monomer fraction remaining in solution after storage. The aggregation of mAb3 was suppressed to a greater extent by Arg·Glu than by Arg·HCl. Furthermore, Arg·Glu suppressed the aggregation of mAb1 at neutral pH such that the fraction monomer was near to that at the more typical formulation pH of 5.5. We conclude that Arg·Glu can suppress mAb aggregation with increasing temperature/pH and, importantly, under accelerated stability conditions at weakly acidic to neutral pH. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Andreassen, Monica; Bøhn, Thomas; Wikmark, Odd-Gunnar; Bodin, Johanna; Traavik, Terje; Løvik, Martinus; Nygaard, Unni Cecilie
2016-05-04
In genetically modified (GM) crops there is a risk that the inserted genes may introduce new allergens and/or adjuvants into the food and feed chain. The MON810 maize, expressing the insecticidal Cry1Ab toxin, is grown in many countries worldwide. In animal models, intranasal and intraperitoneal immunisations with the purified Cry1Ab proteins have induced immune responses, and feeding trials with Cry1Ab-containing feed have revealed some altered immune responses. Previous investigations have primarily measured antibody responses to the protein, while investigations of clinical food allergy symptoms, or allergy promotion (adjuvant effect) associated with the Cry1Ab protein are largely missing. We aimed to investigate immunogenic, allergenic and adjuvant properties of purified Cry1Ab toxin (trypCry1Ab, i.e., trypsin activated Cry1Ab) in a mouse model of food allergy. Female C3H/HeJ mice were immunized by intragastric gavage of 10 μg purified, trypsin activated Cry1Ab toxin (trypCry1Ab) alone or together with the food allergen lupin. Cholera toxin was added as a positive control for adjuvant effect to break oral tolerance. Clinical symptoms (anaphylaxis) as well as humoral and cellular responses were assessed. In contrast to results from previous airway investigations, we observed no indication of immunogenic properties of trypCry1Ab protein after repeated intragastric exposures to one dose, with or without CT as adjuvant. Moreover, the results indicated that trypCry1Ab given by the intragastric route was not able to promote allergic responses or anaphylactic reactions against the co-administered allergen lupin at the given dose. The study suggests no immunogenic, allergenic or adjuvant capacity of the given dose of trypCry1Ab protein after intragastric exposure of prime aged mice.
Vega, Celina G.; Bok, Marina; Vlasova, Anastasia N.; Chattha, Kuldeep S.; Fernández, Fernando M.; Wigdorovitz, Andrés; Parreño, Viviana G.; Saif, Linda J.
2012-01-01
Group A Rotaviruses are the most common cause of severe, dehydrating diarrhea in children worldwide. The aim of the present work was to evaluate protection against rotavirus (RV) diarrhea conferred by the prophylactic administration of specific IgY antibodies (Ab) to gnotobiotic piglets experimentally inoculated with virulent Wa G1P[8] human rotavirus (HRV). Chicken egg yolk IgY Ab generated from Wa HRV hyperimmunized hens specifically recognized (ELISA) and neutralized Wa HRV in vitro. Supplementation of the RV Ab free cow milk diet with Wa HRV-specific egg yolk IgY Ab at a final ELISA Ab titer of 4096 (virus neutralization –VN- titer = 256) for 9 days conferred full protection against Wa HRV associated diarrhea and significantly reduced virus shedding. This protection was dose-dependent. The oral administration of semi-purified passive IgY Abs from chickens did not affect the isotype profile of the pig Ab secreting cell (ASC) responses to Wa HRV infection, but it was associated with significantly fewer numbers of HRV–specific IgA ASC in the duodenum. We further analyzed the pigś immune responses to the passive IgY treatment. The oral administration of IgY Abs induced IgG Ab responses to chicken IgY in serum and local IgA and IgG Ab responses to IgY in the intestinal contents of neonatal piglets in a dose dependent manner. To our knowledge, this is the first study to show that IgY Abs administered orally as a milk supplement passively protect neonatal pigs against an enteric viral pathogen (HRV). Piglets are an animal model with a gastrointestinal physiology and an immune system that closely mimic human infants. This strategy can be scaled-up to inexpensively produce large amounts of polyclonal IgY Abs from egg yolks to be applied as a preventive and therapeutic passive Ab treatment to control RV diarrhea. PMID:22880110
Makarewicz, Jan; Shirkov, Leonid
2016-05-28
The pyridine-Ar (PAr) van der Waals (vdW) complex is studied using a high level ab initio method. Its structure, binding energy, and intermolecular vibrational states are determined from the analytical potential energy surface constructed from interaction energy (IE) values computed at the coupled cluster level of theory with single, double, and perturbatively included triple excitations with the augmented correlation consistent polarized valence double-ζ (aug-cc-pVDZ) basis set complemented by midbond functions. The structure of the complex at its global minimum with Ar at a distance of 3.509 Å from the pyridine plane and shifted by 0.218 Å from the center of mass towards nitrogen agrees well with the corresponding equilibrium structure derived previously from the rotational spectrum of PAr. The PAr binding energy De of 392 cm(-1) is close to that of 387 cm(-1) calculated earlier at the same ab initio level for the prototypical benzene-Ar (BAr) complex. However, under an extension of the basis set, De for PAr becomes slightly lower than De for BAr. The ab initio vdW vibrational energy levels allow us to estimate the reliability of the methods for the determination of the vdW fundamentals from the rotational spectra. To disclose the character of the intermolecular interaction in PAr, the symmetry-adapted perturbation theory (SAPT) is employed for the analysis of different physical contributions to IE. It is found that SAPT components of IE can be approximately expressed in the binding region by only two of them: the exchange repulsion and dispersion energy. The total induction effect is negligible. The interrelations between various SAPT components found for PAr are fulfilled for a few other complexes involving aromatic molecules and Ar or Ne, which indicates that they are valid for all rare gas (Rg) atoms and aromatics.
Detwiler-Okabayashi, K; Schaper, M
1995-01-01
Groups of guinea pigs were exposed to the thermal decomposition products (TDP) released from acrylonitrile butadiene styrene (ABS), polypropylene-polyethylene copolymer (CP), polypropylene homopolymer (HP), or plasticized polyvinyl chloride (PVC). In single 50-min exposures to the TDP, guinea pigs exhibited sensory irritation, coughing, and airways constriction. Significant decreases in respiratory frequency (f) occurred during TDP exposure which were magnified during CO2 challenge conducted immediately post-exposure. For each resin, it was possible to demonstrate a linear relationship between the logarithm of heated mass and the percent decrease in f during CO2 challenge. From these relationships, the mass of each resin producing a 50% decrease in f during CO2 challenge (RD50 mass) was obtained. RD50 masses of 2744, 25.2, 16.0, and 6.7 g were obtained for ABS, CP, HP, and PVC, respectively. Thus, the relative potency of their TDP was PVC > CP approximately HP > ABS. Using the RD50 mass of each resin, guinea pigs were exposed to TDP for 50 min/day on 5 consecutive days. These repeated exposures also resulted in sensory irritation, coughing, and airways constriction. However, deaths occurred during exposures, and there was evidence of cumulative respiratory effects, and slower recoveries among survivors. Data obtained in guinea pigs were compared to a previous study with mice exposed to the TDP of the same four resins (Schaper et al. 1994). On the basis of heated mass, mice were 20-500 times more sensitive to the acute respiratory effects of TDP than guinea pigs. Thus, the exposure limits of 0.63, 0.11, 0.08, and 0.35 mg/m3 proposed by Schaper et al. (1994) on the basis of particulates released from ABS, CP, HP and PVC should prevent not only irritation, but also possible coughing, and airways constriction in workers.
Exner, Kai S; Over, Herbert
2017-05-16
Multielectron processes in electrochemistry require the stabilization of reaction intermediates (RI) at the electrode surface after every elementary reaction step. Accordingly, the bond strengths of these intermediates are important for assessing the catalytic performance of an electrode material. Current understanding of microscopic processes in modern electrocatalysis research is largely driven by theory, mostly based on ab initio thermodynamics considerations, where stable reaction intermediates at the electrode surface are identified, while the actual free energy barriers (or activation barriers) are ignored. This simple approach is popular in electrochemistry in that the researcher has a simple tool at hand in successfully searching for promising electrode materials. The ab initio TD approach allows for a rough but fast screening of the parameter space with low computational cost. However, ab initio thermodynamics is also frequently employed (often, even based on a single binding energy only) to comprehend on the activity and on the mechanism of an electrochemical reaction. The basic idea is that the activation barrier of an endergonic reaction step consists of a thermodynamic part and an additional kinetically determined barrier. Assuming that the activation barrier scales with thermodynamics (so-called Brønsted-Polanyi-Evans (BEP) relation) and the kinetic part of the barrier is small, ab initio thermodynamics may provide molecular insights into the electrochemical reaction kinetics. However, for many electrocatalytic reactions, these tacit assumptions are violated so that ab initio thermodynamics will lead to contradictions with both experimental data and ab initio kinetics. In this Account, we will discuss several electrochemical key reactions, including chlorine evolution (CER), oxygen evolution reaction (OER), and oxygen reduction (ORR), where ab initio kinetics data are available in order to critically compare the results with those derived from a simple ab initio thermodynamics treatment. We show that ab initio thermodynamics leads to erroneous conclusions about kinetic and mechanistic aspects for the CER over RuO 2 (110), while the kinetics of the OER over RuO 2 (110) and ORR over Pt(111) are reasonably well described. Microkinetics of an electrocatalyzed reaction is largely simplified by the quasi-equilibria of the RI preceding the rate-determining step (rds) with the reactants. Therefore, in ab initio kinetics the rate of an electrocatalyzed reaction is governed by the transition state (TS) with the highest free energy G rds # , defining also the rate-determining step (rds). Ab initio thermodynamics may be even more powerful, when using the highest free energy of an reaction intermediate G max (RI) rather than the highest free energy difference between consecutive reaction intermediates, ΔG loss , as a descriptor for the kinetics.
Feng, Ying; Sun, Xikui; Ye, Xianmiao; Feng, Yupeng; Wang, Jinlin; Zheng, Xuehua; Liu, Xinglong; Yi, Changhua; Hao, Mingli; Wang, Qian; Li, Feng; Xu, Wei; Li, Liang; Li, Chufang; Zhou, Rong; Chen, Ling; Feng, Liqiang
2018-05-01
Re-emerging human adenoviruses type 14 (HAdV14) and 55 (HAdV55) represent two highly virulent adenoviruses. The neutralizing antibody (nAb) responses elicited by infection or immunization remain largely unknown. Herein, we generated hexon-chimeric HAdV14 viruses harboring each single or entire hexon hyper-variable-regions (HVR) from HAdV55, and determined the neutralizing epitopes of human and mouse nAbs. In human sera, hexon-targeting nAbs are type-specific and mainly recognize HVR2, 5, and 7. Fiber-targeting nAbs are only detectable in sera cross-neutralizing HAdV14 and HAdV55 and contribute substantially to cross-neutralization. Penton-binding antibodies, however, show no significant neutralizing activities. In mice immunized with HAdV14 or HAdV55, a single immunization mainly elicited hexon-specific nAbs, which recognized HAdV14 HVR1, 2, and 7 and HAdV55 HVR1 and 2, respectively. After a booster immunization, cross-neutralizing fiber-specific nAbs became detectable. These results indicated that hexon elicits type-specific nAbs whereas fiber induces cross-neutralizing nAbs to HAdV14 and HAdV55, which are of significance in vaccine development. Copyright © 2018 Elsevier Inc. All rights reserved.
Jackson, Michael W; Gordon, Tom P
2010-09-30
We have recently postulated that functional autoantibodies (Abs) against L-type voltage-gated calcium channels (VGCCs) contribute to autonomic dysfunction in type 1 diabetes (T1D). Previous studies based on whole-organ assays have proven valuable in establishing the mechanism of anti-VGCC Ab activity, but are complex and unsuitable for screening large patient cohorts. In the current study, we used real-time dynamic monitoring of cell impedance to demonstrate that anti-VGCC Abs from patients with T1D inhibit the adherence of Rin A12 cells. The functional effect of the anti-VGCC Abs was mimicked by the dihydropyridine agonist, Bay K8644, and reversed by the antagonist, nicardipine, providing a pharmacological link to the whole-organ studies. IVIg neutralized the effect on cell adhesion of the anti-VGCC Abs, consistent with the presence of anti-idiotypic Abs in IVIg that may prevent the emergence of pathogenic Abs in healthy individuals. The cell impedance assay can be performed in a 96 well plate format, and represents a simple method for detecting the presence of anti-VGCC activity in patient immunoglobulin (IgG). The new cell assay should prove useful for further studies to determine the prevalence of the Ab and its association with symptoms of autonomic dysfunction in patients with T1D. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.
Rasmussen, Mark; Zhu, Jieqing; Aster, Richard H.
2012-01-01
Arginine-glycine-aspartic acid (RGD)–mimetic platelet inhibitors act by occupying the RGD recognition site of αIIb/β3 integrin (GPIIb/IIIa), thereby preventing the activated integrin from reacting with fibrinogen. Thrombocytopenia is a well-known side effect of treatment with this class of drugs and is caused by Abs, often naturally occurring, that recognize αIIb/β3 in a complex with the drug being administered. RGD peptide and RGD-mimetic drugs are known to induce epitopes (ligand-induced binding sites [LIBS]) in αIIb/β3 that are recognized by certain mAbs. It has been speculated, but not shown experimentally, that Abs from patients who develop thrombocytopenia when treated with an RGD-mimetic inhibitor similarly recognize LIBS determinants. We addressed this question by comparing the reactions of patient Abs and LIBS-specific mAbs against αIIb/β3 in a complex with RGD and RGD-mimetic drugs, and by examining the ability of selected non-LIBS mAbs to block binding of patient Abs to the liganded integrin. Findings made provide evidence that the patient Abs recognize subtle, drug-induced structural changes in the integrin head region that are clustered about the RGD recognition site. The target epitopes differ from classic LIBS determinants, however, both in their location and by virtue of being largely drug-specific. PMID:22490676
NASA Technical Reports Server (NTRS)
Allen, B. Danette; Alexandrov, Natalia
2016-01-01
Incremental approaches to air transportation system development inherit current architectural constraints, which, in turn, place hard bounds on system capacity, efficiency of performance, and complexity. To enable airspace operations of the future, a clean-slate (ab initio) airspace design(s) must be considered. This ab initio National Airspace System (NAS) must be capable of accommodating increased traffic density, a broader diversity of aircraft, and on-demand mobility. System and subsystem designs should scale to accommodate the inevitable demand for airspace services that include large numbers of autonomous Unmanned Aerial Vehicles and a paradigm shift in general aviation (e.g., personal air vehicles) in addition to more traditional aerial vehicles such as commercial jetliners and weather balloons. The complex and adaptive nature of ab initio designs for the future NAS requires new approaches to validation, adding a significant physical experimentation component to analytical and simulation tools. In addition to software modeling and simulation, the ability to exercise system solutions in a flight environment will be an essential aspect of validation. The NASA Langley Research Center (LaRC) Autonomy Incubator seeks to develop a flight simulation infrastructure for ab initio modeling and simulation that assumes no specific NAS architecture and models vehicle-to-vehicle behavior to examine interactions and emergent behaviors among hundreds of intelligent aerial agents exhibiting collaborative, cooperative, coordinative, selfish, and malicious behaviors. The air transportation system of the future will be a complex adaptive system (CAS) characterized by complex and sometimes unpredictable (or unpredicted) behaviors that result from temporal and spatial interactions among large numbers of participants. A CAS not only evolves with a changing environment and adapts to it, it is closely coupled to all systems that constitute the environment. Thus, the ecosystem that contains the system and other systems evolves with the CAS as well. The effects of the emerging adaptation and co-evolution are difficult to capture with only combined mathematical and computational experimentation. Therefore, an ab initio flight simulation environment must accommodate individual vehicles, groups of self-organizing vehicles, and large-scale infrastructure behavior. Inspired by Massively Multiplayer Online Role Playing Games (MMORPG) and Serious Gaming, the proposed ab initio simulation environment is similar to online gaming environments in which player participants interact with each other, affect their environment, and expect the simulation to persist and change regardless of any individual player's active participation.
Zheng, Xianhu; Kuang, Youyi; Lv, Weihua; Cao, Dingchen; Sun, Zhipeng; Sun, Xiaowen
2016-01-01
Muscle fat content is an important phenotypic trait in fish, as it affects the nutritional, technical and sensory qualities of flesh. To identify loci and candidate genes associated with muscle fat content and abdominal fat traits, we performed a genome-wide association study (GWAS) using the common carp 250 K SNP assay in a common carp F2 resource population. A total of 18 loci surpassing the genome-wide suggestive significance level were detected for 4 traits: fat content in dorsal muscle (MFdo), fat content in abdominal muscle (MFab), abdominal fat weight (AbFW), and AbFW as a percentage of eviscerated weight (AbFP). Among them, one SNP (carp089419) affecting both AbFW and AbFP reached the genome-wide significance level. Ten of those loci were harbored in or near known genes. Furthermore, relative expressions of 5 genes related to MFdo were compared using dorsal muscle samples with high and low phenotypic values. The results showed that 4 genes were differentially expressed between the high and low phenotypic groups. These genes are, therefore, prospective candidate genes for muscle fat content: ankyrin repeat domain 10a (ankrd10a), tetratricopeptide repeat, ankyrin repeat and coiled-coil containing 2 (tanc2), and four jointed box 1 (fjx1) and choline kinase alpha (chka). These results offer valuable insights into the complex genetic basis of fat metabolism and deposition. PMID:28030623
Qu, Chen; Bowman, Joel M
2018-05-17
We report quantum VSCF/VCI and ab initio molecular dynamics (AIMD) calculations of the IR spectra of (HCOOH) 2 and (DCOOH) 2 , using full-dimensional, ab initio potential energy and dipole moment surfaces (PES and DMS). These surfaces are fits, using permutationally invariant polynomials, to 13 475 ab initio CCSD(T)-F12a electronic energies and MP2 dipole moments. Here "AIMD" means using these ab initio potential and dipole moment surfaces in the MD calculations. The VSCF/VCI calculations use all (24) normal modes for coupling, with a four-mode representation of the potential. The quantum spectra align well with jet-cooled and room-temperature experimental spectra over the spectral range 600-3600 cm -1 . Analyses of the complex O-H and C-H stretch bands are made based on the mixing of the VSCF/VCI basis functions. The comparisons of the AIMD IR spectra with both experimental and VSCF/VCI ones provide tests of the accuracy of the AIMD approach. These indicate good accuracy for simple bands but not for the complex O-H stretch band, which is upshifted from experimental and VSCF/VCI bands by roughly 300 cm -1 . In addition to testing the AIMD approach, the PES, DMS, and VSCF/VCI calculations for formic acid dimer provide opportunities for testing other methods to represent high-dimensional data and other methods that perform postharmonic vibrational calculations.
Standardization of Epitopes for Human Chorionic Gonadotropin (hCG) Immunoassays.
Berger, Peter; Lapthorn, Adrian J
2016-01-01
hCG and its variants are markers for pregnancy tests, pregnancyrelated complications, trophoblastic diseases, pre-natal screening of Down's syndrome and doping controls. Strong demands are imposed on diagnostic methods by the dynamic changes in the absolute and relative levels of hCG protein backbone variants and glycosylation isoforms in serum and urine during development of pregnancy or the progression/remission of tumors. Observed differences in the results between commercial diagnostic immunoassays reflect the unequal molar recognition of the different metabolic hCG variants, in particular the hCG beta core fragment (hCGβcf), by the diagnostic antibodies (Abs), as their epitopes are not standardized, and the fact that suboptimal hCG standards are used. To rapidly characterize Abs by their epitope recognition and specificity to evaluate their suitability for diagnostic immunoassays a procedure of comparative epitope mapping has been developed using epitope-defined reference Abs. Comparative epitope mapping of diagnostic Abs will provide the basis for the standardization of diagnostic antigenic domains/epitopes and consequently for improved reliability of hCG measurements. Diagnostic first line assays likely consist of pairs of Abs that recognize specific epitopes at the top of the neighboring peptide loops 1 and 3 (Ł1+3) and the cystine knot (ck) of hCGβ, respectively. In future, significant improvements of reliability, robustness and comparability of the results of immunoassays for complex glycoproteins such as hCG will be achieved by the use (i) of standardized diagnostic Abs against welldefined epitopes and (ii) of the new International Standards for hCG and for five hCG variants established by WHO, that are calibrated in molar (SI) units.
Grosu, Horiana B; Casal, Roberto F; Morice, Rodolfo C; Nogueras-González, Graciela M; Eapen, Georgie A; Ost, David; Sarkiss, Mona G; Jimenez, Carlos A
2013-08-01
Regardless of its volume, hemoptysis is a concerning symptom. Mild hemoptysis and its significance in patients with solid malignancies has not been studied. We conducted a retrospective chart review of patients with solid malignancies who presented for evaluation of mild hemoptysis. In this population, we studied the impact of bronchoscopic findings and endobronchial therapies on overall survival and bleeding recurrence. Patients were categorized into four groups on the basis of the presence or absence of active bleeding and endobronchial disease at the time of initial bronchoscopy: active bleeding with endobronchial lesion (AB/EBL), active bleeding without endobronchial lesion (AB/no-EBL), absence of active bleeding but with endobronchial lesion (no-AB/EBL), and absence of active bleeding and endobronchial lesion (no-AB/no-EBL). Ninety-five of the 112 patients with solid malignancies and mild hemoptysis underwent bronchoscopies. There was a significantly lower median survival time for patients with bronchoscopic findings of active bleeding and endobronchial lesion compared with patients with no active bleeding and/or no endobronchial lesion (3.48 mo; 95% confidence interval [CI], 2.14-6.05). On a multivariate analysis, factors independently associated with improved survival were higher hemoglobin values (hazard ratio [HR], 0.78; 95% CI, 0.67-0.91) and cessation of hemoptysis without recurrence at 48 hours (HR, 0.43; 95% CI, 0.22-0.84). Variables independently associated with worse survival were disease stage (HR, 10.8; 95% CI, 2.53-46.08) and AB/EBL (HR, 3.20; 95% CI, 1.74-5.89). In patients with solid malignancies presenting with mild hemoptysis, bronchoscopic findings of AB/EBL are associated with decreased survival. Hemoptysis control without recurrence at 48 hours after endobronchial intervention may improve survival.
Streptomyces palmae sp. nov., isolated from oil palm (Elaeis guineensis) rhizosphere soil.
Sujarit, Kanaporn; Kudo, Takuji; Ohkuma, Moriya; Pathom-Aree, Wasu; Lumyong, Saisamorn
2016-10-01
Actinomycete strain CMU-AB204T was isolated from oil palm rhizosphere soil collected in Chiang Mai University (Chiang Mai, Thailand). Based on morphological and chemotaxonomic characteristics, the organism was considered to belong to the genus Streptomyces. Whole cell-wall hydrolysates consisted of ll-diaminopimelic acid, glucose, ribose and galactose. The predominant menaquinones were MK-9(H4), MK-9(H6), MK-9(H2) and MK-8(H4). The fatty acid profile contained iso-C15 : 0, iso-C16 : 0 and anteiso-C15 : 0 as major components. The principal phospholipids detected were phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylglycerol. The DNA G+C content of strain CMU-AB204T was 70.9 mol%. Based on 16S rRNA gene sequence similarity, strain CMU-AB204T was closely related to Streptomyces orinoci JCM 4546T (98.7 %), Streptomyces lilacinus NBRC 12884T (98.5 %), Streptomyces abikoensis CGMCC 4.1662T (98.5 %), Streptomyces griseocarneus JCM 4905T (98.4 %) and Streptomyces xinghaiensis JCM 16958T (98.3 %). Phylogenetic trees revealed that the new strain had a distinct taxonomic position from closely related type strains of the genus Streptomyces. Spiny to hairy spores clearly differentiated strain CMU-AB204T from the five most closely related Streptomyces species, which produced smooth spores. On the basis of evidence from this polyphasic study, it is proposed that strain CMU-AB204T represents a novel species of the genus Streptomyces, namely Streptomyces palmae sp. nov. The type strain is CMU-AB204T (=JCM 31289T=TBRC 1999T).
Peng, Haiyong; Nerreter, Thomas; Chang, Jing; Qi, Junpeng; Li, Xiuling; Karunadharma, Pabalu; Martinez, Gustavo J; Fallahi, Mohammad; Soden, Jo; Freeth, Jim; Beerli, Roger R; Grawunder, Ulf; Hudecek, Michael; Rader, Christoph
2017-09-15
Owing to their high affinities and specificities, rabbit monoclonal antibodies (mAbs) have demonstrated value and potential primarily as basic research and diagnostic reagents, but, in some cases, also as therapeutics. To accelerate access to rabbit mAbs bypassing immunization, we generated a large naïve rabbit antibody repertoire represented by a phage display library encompassing >10 billion independent antibodies in chimeric rabbit/human Fab format and validated it by next-generation sequencing. Panels of rabbit mAbs selected from this library against two emerging cancer targets, ROR1 and ROR2, revealed high diversity, affinity, and specificity. Moreover, ROR1- and ROR2-targeting rabbit mAbs demonstrated therapeutic utility as components of chimeric antigen receptor-engineered T cells, further corroborating the value of the naïve rabbit antibody library as a rich and virtually unlimited source of rabbit mAbs. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roggli, V.L.; Piantadosi, C.A.; Bell, D.Y.
1986-09-01
We studied the asbestos body (AB) content of bronchoalveolar lavage fluid from 20 patients with a history of occupational asbestos exposure, 31 patients with sarcoidosis and 5 patients with idiopathic pulmonary fibrosis. The cellular lavage pellet was digested in sodium hypochlorite and filtered onto Nuclepore filters for AB quantification by light microscopy. ABs were found in 15 of 20 asbestos-exposed individuals, 9 of 31 sarcoidosis cases and 2 of 5 patients with idiopathic pulmonary fibrosis. There was a statistically significant difference in the number of ABs per million cells recovered or per milliliter of recovered lavage fluid in the asbestos-exposedmore » group as compared to the other categories of chronic interstitial lung disease. The highest levels occurred in patients with asbestosis. Large numbers of asbestos bodies in the lavage fluid (greater than 1 AB/10(6) cells) were indicative of considerable occupational asbestos exposure, whereas occasional bodies were a nonspecific finding.« less
Radovich, Milan; Solzak, Jeffrey P; Hancock, Bradley A; Conces, Madison L; Atale, Rutuja; Porter, Ryan F; Zhu, Jin; Glasscock, Jarret; Kesler, Kenneth A; Badve, Sunil S; Schneider, Bryan P; Loehrer, Patrick J
2016-02-16
Thymomas are one of the most rarely diagnosed malignancies. To better understand its biology and to identify therapeutic targets, we performed next-generation RNA sequencing. The RNA was sequenced from 13 thymic malignancies and 3 normal thymus glands. Validation of microRNA expression was performed on a separate set of 35 thymic malignancies. For cell-based studies, a thymoma cell line was used. Hierarchical clustering revealed 100% concordance between gene expression clusters and WHO subtype. A substantial differentiator was a large microRNA cluster on chr19q13.42 that was significantly overexpressed in all A and AB tumours and whose expression was virtually absent in the other thymomas and normal tissues. Overexpression of this microRNA cluster activates the PI3K/AKT/mTOR pathway. Treatment of a thymoma AB cell line with a panel of PI3K/AKT/mTOR inhibitors resulted in marked reduction of cell viability. A large microRNA cluster on chr19q13.42 is a transcriptional hallmark of type A and AB thymomas. Furthermore, this cluster activates the PI3K pathway, suggesting the possible exploration of PI3K inhibitors in patients with these subtypes of tumour. This work has led to the initiation of a phase II clinical trial of PI3K inhibition in relapsed or refractory thymomas (http://clinicaltrials.gov/ct2/show/NCT02220855).
Radovich, Milan; Solzak, Jeffrey P; Hancock, Bradley A; Conces, Madison L; Atale, Rutuja; Porter, Ryan F; Zhu, Jin; Glasscock, Jarret; Kesler, Kenneth A; Badve, Sunil S; Schneider, Bryan P; Loehrer, Patrick J
2016-01-01
Background: Thymomas are one of the most rarely diagnosed malignancies. To better understand its biology and to identify therapeutic targets, we performed next-generation RNA sequencing. Methods: The RNA was sequenced from 13 thymic malignancies and 3 normal thymus glands. Validation of microRNA expression was performed on a separate set of 35 thymic malignancies. For cell-based studies, a thymoma cell line was used. Results: Hierarchical clustering revealed 100% concordance between gene expression clusters and WHO subtype. A substantial differentiator was a large microRNA cluster on chr19q13.42 that was significantly overexpressed in all A and AB tumours and whose expression was virtually absent in the other thymomas and normal tissues. Overexpression of this microRNA cluster activates the PI3K/AKT/mTOR pathway. Treatment of a thymoma AB cell line with a panel of PI3K/AKT/mTOR inhibitors resulted in marked reduction of cell viability. Conclusions: A large microRNA cluster on chr19q13.42 is a transcriptional hallmark of type A and AB thymomas. Furthermore, this cluster activates the PI3K pathway, suggesting the possible exploration of PI3K inhibitors in patients with these subtypes of tumour. This work has led to the initiation of a phase II clinical trial of PI3K inhibition in relapsed or refractory thymomas (http://clinicaltrials.gov/ct2/show/NCT02220855). PMID:26766736
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Feng; Fong, Rachel H.; Austin, Stephen K.
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes severe acute and chronic disease in humans. Although highly inhibitory murine and human monoclonal antibodies (mAbs) have been generated, the structural basis of their neutralizing activity remains poorly characterized. In this paper, we determined the cryo-EM structures of chikungunya virus-like particles complexed with antibody fragments (Fab) of two highly protective human mAbs, 4J21 and 5M16, that block virus fusion with host membranes. Both mAbs bind primarily to sites within the A and B domains, as well as to the B domain’s β-ribbon connector of the viral glycoprotein E2. The footprints ofmore » these antibodies on the viral surface were consistent with results from loss-of-binding studies using an alanine scanning mutagenesis-based epitope mapping approach. The Fab fragments stabilized the position of the B domain relative to the virus, particularly for the complex with 5M16. Finally, this finding is consistent with a mechanism of neutralization in which anti-CHIKV mAbs that bridge the A and B domains impede movement of the B domain away from the underlying fusion loop on the E1 glycoprotein and therefore block the requisite pH-dependent fusion of viral and host membranes.« less
Anti-GD2 mAb and Vorinostat synergize in the treatment of neuroblastoma
Kroesen, Michiel; Büll, Christian; Gielen, Paul R.; Brok, Ingrid C.; Armandari, Inna; Wassink, Melissa; Looman, Maaike W. G.; Boon, Louis; den Brok, Martijn H.; Hoogerbrugge, Peter M.; Adema, Gosse J.
2016-01-01
ABSTRACT Neuroblastoma (NBL) is a childhood malignancy of the sympathetic nervous system. For high-risk NBL patients, the mortality rate is still over 50%, despite intensive multimodal treatment. Anti-GD2 monoclonal antibody (mAB) in combination with systemic cytokine immunotherapy has shown clinical efficacy in high-risk NBL patients. Targeted therapy using histone deacetylase inhibitors (HDACi) is currently being explored in cancer treatment and already shows promising results. Using our recently developed transplantable TH-MYCN NBL model, we here report that the HDAC inhibitor Vorinostat synergizes with anti-GD2 mAb therapy in reducing NBL tumor growth. Further mechanistic studies uncovered multiple mechanisms for the observed synergy, including Vorinostat-induced specific NBL cell death and upregulation of the tumor antigen GD2 on the cell surface of surviving NBL cells. Moreover, Vorinostat created a permissive tumor microenvironment (TME) for tumor-directed mAb therapy by increasing macrophage effector cells expressing high levels of Fc-receptors (FcR) and decreasing the number and function of myeloid-derived suppressor cells (MDSC). Collectively, these data imply further testing of other epigenetic modulators with immunotherapy and provide a strong basis for clinical testing of anti-GD2 plus Vorinostat combination therapy in NBL patients. PMID:27471639
A Classical Trajectory Study of the Dissociation and Isomerization of C2H5
2013-01-01
modifications are possible but would be sensible only in the context of systematic ab initio calculations to provide the basis for such changes. As the... Ciudad , T.; Ramírez, R.; Schulte, J.; Böhm, M. C. Anharmonic Effects on the Structural and Vibrational Properties of the Ethyl Radical: A Path Integral
Conti, S.; Magliani, W.; Arseni, S.; Dieci, E.; Frazzi, R.; Salati, A.; Varaldo, P. E.; Polonelli, L.
2000-01-01
BACKGROUND: Monoclonal (mAbKT) and recombinant single-chain (scFvKT) anti-idiotypic antibodies were produced to represent the internal image of a yeast killer toxin (KT) characterized by a wide spectrum of antimicrobial activity, including gram-positive cocci. Pathogenic eukaryotic and prokaryotic microorganisms, such as Candida albicans, Pneumocystis carinii, and a multidrug-resistant strain of Mycobacterium tuberculosis, presenting specific, although yet undefined, KT-cell wall receptors (KTR), have proven to be killed in vitro by mAbKT and scFvKT. mAbKT and scFvKT exert a therapeutic effect in vivo in experimental models of candidiasis and pneumocystosis by mimicking the functional activity of protective antibodies naturally produced in humans against KTR of infecting microorganisms. The swelling tide of concern over increasing bacterial resistance to antibiotic drugs gives the impetus to develop new therapeutic compounds against microbial threat. Thus, the in vitro bactericidal activity of mAbKT and scFvKT against gram-positive, drug-resistant cocci of major epidemiological interest was investigated. MATERIALS AND METHODS: mAbKT and scFvKT generated by hybridoma and DNA recombinant technology from the spleen lymphocytes of mice immunized with a KT-neutralizing monoclonal antibody (mAb KT4) were used in a conventional colony forming unit (CFU) assay to determine, from a qualitative point of view, their bactericidal activity against Staphylococcus aureus, S. haemolyticus, Enterococcus faecalis, E. faecium, and Streptococcus pneumoniae strains. These bacterial strains are characterized by different patterns of resistance to antibiotics, including methicillin, vancomycin, and penicillin. RESULTS: According to the experimental conditions adopted, no bacterial isolate proved to be resistant to the activity of mAbKT and scFvKT. CONCLUSIONS: scFvKT exerted a microbicidal activity against multidrug resistant bacteria, which may represent the basis for the drug modeling of new antibiotics with broad antibacterial spectra to tackle the emergence of microbial resistance. PMID:10997342
NASA Astrophysics Data System (ADS)
Cukras, Janusz; Antušek, Andrej; Holka, Filip; Sadlej, Joanna
2009-06-01
Extensive ab initio calculations of static electric properties of molecular ions of general formula RgH + (Rg = He, Ne, Ar, Kr, Xe) involving the finite field method and coupled cluster CCSD(T) approach have been done. The relativistic effects were taken into account by Douglas-Kroll-Hess approximation. The numerical stability and reliability of calculated values have been tested using the systematic sequence of Dunning's cc-pVXZ-DK and ANO-RCC-VQZP basis sets. The influence of ZPE and pure vibrational contribution has been discussed. The component αzz has increasing trend in RgH + while the relativistic effect on αzz leads to a small increase of this molecular parameter.
NASA Astrophysics Data System (ADS)
Lique, François; Jiménez-Serra, Izaskun; Viti, Serena; Marinakis, Sarantos
2018-01-01
We present the first ab initio potential energy surfaces (PESs) for the PO(X2Π)-He van der Waals system. The PESs were obtained using the open-shell partially spin-restricted coupled cluster approach with single, double and perturbative triple excitations [UCCSD(T)]. The augmented correlation-consistent polarized valence triple-zeta (aug-cc-pVTZ) basis set was employed supplemented by mid-bond functions. Integral and differential cross sections for the rotational excitation in PO-He collisions were calculated using the new PES and compared with results in similar systems. Finally, our work presents the first hyperfine-resolved cross sections for this system that are needed for accurate modelling in astrophysical environments.
Barr, A J; Dube, B; Hensor, E M A; Kingsbury, S R; Peat, G; Bowes, M A; Conaghan, P G
2014-10-01
Radiographic measures of osteoarthritis (OA) are based upon two dimensional projection images. Active appearance modelling (AAM) of knee magnetic resonance imaging (MRI) enables accurate, 3D quantification of joint structures in large cohorts. This cross-sectional study explored the relationship between clinical characteristics, radiographic measures of OA and 3D bone area (tAB). Clinical data and baseline paired radiographic and MRI data, from the medial compartment of one knee of 2588 participants were obtained from the NIH Osteoarthritis Initiative (OAI). The medial femur (MF) and tibia (MT) tAB were calculated using AAM. 'OA-attributable' tAB (OA-tAB) was calculated using data from regression models of tAB of knees without OA. Associations between OA-tAB and radiographic measures of OA were investigated using linear regression. In univariable analyses, height, weight, and age in female knees without OA explained 43.1%, 32.1% and 0.1% of the MF tAB variance individually and 54.4% when included simultaneously in a multivariable model. Joint space width (JSW), osteophytes and sclerosis explained just 5.3%, 14.9% and 10.1% of the variance of MF OA-tAB individually and 17.4% when combined. Kellgren Lawrence (KL) grade explained approximately 20% of MF OA-tAB individually. Similar results were seen for MT OA-tAB. Height explained the majority of variance in tAB, confirming an allometric relationship between body and joint size. Radiographic measures of OA, derived from a single radiographic projection, accounted for only a small amount of variation in 3D knee OA-tAB. The additional structural information provided by 3D bone area may explain the lack of a substantive relationship with these radiographic OA measures. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammoudi-Triki, D.; Laboratoire de Biologie Cellulaire et Moleculaire, Faculte des Sciences Biologiques, Universite des Sciences et de la Technologie 'Houari Boumedienne' Bab Ezzouar, Alger, Algerie; Laboratoire de Recherche et de Developpement sur les Venins, Institut Pasteur d'Algerie, Algerie
2007-02-01
This paper reports the simultaneous determination of toxicokinetic and toxicodynamic properties of Androctonus australis hector venom, in the absence and presence of antivenom (F(ab'){sub 2} and Fab), in envenomed rats. After subcutaneous injection of the venom, toxins showed a complete absorption phase from the site of injection associated with a distribution into a large extravascular compartment. The injection of Fab and F(ab'){sub 2} induced the neutralization of venom antigens in the blood compartment, as well as the redistribution of venom components from the extravascular compartment to the blood compartment. Interestingly, F(ab'){sub 2} and Fab showed distinct efficiencies depending on theirmore » route of injection. F(ab'){sub 2} induced a faster venom neutralization and redistribution than Fab when injected intravenously. Fab was more effective than F(ab'){sub 2} by the intramuscular route. The hemodynamic effects of Aah venom were further investigated. Changes in mean arterial pressure and heart rate were observed in parallel with an upper airway obstruction. Fab was more effective than F(ab'){sub 2} for preventing early symptoms of envenomation, whatever their route of administration. Intraperitoneal injection of F(ab'){sub 2} and Fab was similar for the prevention of the delayed symptoms, even after a late administration. Fab was more effective than F(ab'){sub 2} in the inhibition of airway resistance, independent of the route and time of administration. These results show that the treatment for scorpion stings might be improved by the intravascular injection of a mixture of Fab and F(ab'){sub 2}. If antivenom cannot be administered intravenously, Fab might be an alternative as they are more effective than F(ab'){sub 2} when injected intramuscularly.« less
Is there a place for nutrition-sensitive agriculture?
Wambugu, Florence; Obukosia, Silas; Gaffney, Jim; Kamanga, Daniel; Che, Ping; Albertsen, Marc C; Zhao, Zuo-Yu; Ragland, Lonnetta; Yeye, Mary; Kimani, Esther; Aba, Daniel; Gidado, Rose; Solomon, B O; Njuguna, Michael
2015-11-01
The focus of the review paper is to discuss how biotechnological innovations are opening new frontiers to mitigate nutrition in key agricultural crops with potential for large-scale health impact to people in Africa. The general objective of the Africa Biofortified Sorghum (ABS) project is to develop and deploy sorghum with enhanced pro-vitamin A to farmers and end-users in Africa to alleviate vitamin A-related micronutrient deficiency diseases. To achieve this objective the project technology development team has developed several promising high pro-vitamin A sorghum events. ABS 203 events are so far the most advanced and well-characterised lead events with about 12 μg β-carotene/g tissue which would supply about 40-50 % of the daily recommended vitamin A at harvest. Through gene expression optimisation other events with higher amounts of pro-vitamin A, including ABS 214, ABS 235, ABS 239 with 25, 30-40, 40-50 μg β-carotene/g tissue, respectively, have been developed. ABS 239 would provide twice recommended pro-vitamin A at harvest, 50-90 % after 3 months storage and 13-45 % after 6 months storage for children. Preliminary results of introgression of ABS pro-vitamin A traits into local sorghum varieties in target countries Nigeria and Kenya show stable introgression of ABS vitamin A into local farmer-preferred sorghums varieties. ABS gene Intellectual Property Rights and Freedom to Operate have been donated for use royalty free for Africa. Prior to the focus on the current target countries, the project was implemented by fourteen institutions in Africa and the USA. For the next 5 years, the project will complete ABS product development, complete regulatory science data package and apply for product deregulation in target African countries.
Structural basis for the binding of the neutralizing antibody, 7D11, to the poxvirus L1 protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Hua-Poo; Golden, Joseph W.; Gittis, Apostolos G.
2007-11-25
Medical countermeasures to prevent or treat smallpox are needed due to the potential use of poxviruses as biological weapons. Safety concerns with the currently available smallpox vaccine indicate a need for research on alternative poxvirus vaccine strategies. Molecular vaccines involving the use of proteins and/or genes and recombinant antibodies are among the strategies under current investigation. The poxvirus L1 protein, encoded by the L1R open reading frame, is the target of neutralizing antibodies and has been successfully used as a component of both protein subunit and DNA vaccines. L1-specific monoclonal antibodies (e.g., mouse monoclonal antibody mAb-7D11, mAb-10F5) with potent neutralizingmore » activity bind L1 in a conformation-specific manner. This suggests that proper folding of the L1 protein used in molecular vaccines will affect the production of neutralizing antibodies and protection. Here, we co-crystallized the Fab fragment of mAb-7D11 with the L1 protein. The crystal structure of the complex between Fab-7D11 and L1 reveals the basis for the conformation-specific binding as recognition of a discontinuous epitope containing two loops that are held together by a disulfide bond. The structure of this important conformational epitope of L1 will contribute to the development of molecular poxvirus vaccines and also provides a novel target for anti-poxvirus drugs. In addition, the sequence and structure of Fab-7D11 will contribute to the development of L1-targeted immunotherapeutics.« less
Paula, Stefan; Tabet, Michael R; Keenan, Susan M; Welsh, William J; Ball, W James
2003-01-17
Successful immunotherapy of cocaine addiction and overdoses requires cocaine-binding antibodies with specific properties, such as high affinity and selectivity for cocaine. We have determined the affinities of two cocaine-binding murine monoclonal antibodies (mAb: clones 3P1A6 and MM0240PA) for cocaine and its metabolites by [3H]-radioligand binding assays. mAb 3P1A6 (K(d) = 0.22 nM) displayed a 50-fold higher affinity for cocaine than mAb MM0240PA (K(d) = 11 nM) and also had a greater specificity for cocaine. For the systematic exploration of both antibodies' binding specificities, we used a set of approximately 35 cocaine analogues as structural probes by determining their relative binding affinities (RBAs) using an enzyme-linked immunosorbent competition assay. Three-dimensional quantitative structure-activity relationship (3D-QSAR) models on the basis of comparative molecular field analysis (CoMFA) techniques correlated the binding data with structural features of the ligands. The analysis indicated that despite the mAbs' differing specificities for cocaine, the relative contributions of the steric (approximately 80%) and electrostatic (approximately 20%) field interactions to ligand-binding were similar. Generated three-dimensional CoMFA contour plots then located the specific regions about cocaine where the ligand/receptor interactions occurred. While the overall binding patterns of the two mAbs had many features in common, distinct differences were observed about the phenyl ring and the methylester group of cocaine. Furthermore, using previously published data, a 3D-QSAR model was developed for cocaine binding to the dopamine reuptake transporter (DAT) that was compared to the mAb models. Although the relative steric and electrostatic field contributions were similar to those of the mAbs, the DAT cocaine-binding site showed a preference for negatively charged ligands. Besides establishing molecular level insight into the interactions that govern cocaine binding specificity by biopolymers, the three-dimensional images obtained reflect the properties of the mAbs binding pockets and provide the initial information needed for the possible design of novel antibodies with properties optimized for immunotherapy. Copyright 2003 Elsevier Science Ltd.
Badrinarayanan, Anjana; Cisse, Ibrahim I.
2017-01-01
In bacteria, double-strand break (DSB) repair via homologous recombination is thought to be initiated through the bi-directional degradation and resection of DNA ends by a helicase-nuclease complex such as AddAB. The activity of AddAB has been well-studied in vitro, with translocation speeds between 400–2000 bp/s on linear DNA suggesting that a large section of DNA around a break site is processed for repair. However, the translocation rate and activity of AddAB in vivo is not known, and how AddAB is regulated to prevent excessive DNA degradation around a break site is unclear. To examine the functions and mechanistic regulation of AddAB inside bacterial cells, we developed a next-generation sequencing-based approach to assay DNA processing after a site-specific DSB was introduced on the chromosome of Caulobacter crescentus. Using this assay we determined the in vivo rates of DSB processing by AddAB and found that putative chi sites attenuate processing in a RecA-dependent manner. This RecA-mediated regulation of AddAB prevents the excessive loss of DNA around a break site, limiting the effects of DSB processing on transcription. In sum, our results, taken together with prior studies, support a mechanism for regulating AddAB that couples two key events of DSB repair–the attenuation of DNA-end processing and the initiation of homology search by RecA–thereby helping to ensure that genomic integrity is maintained during DSB repair. PMID:28489851
Vibrational spectroscopic study of terbutaline hemisulphate
NASA Astrophysics Data System (ADS)
Ali, H. R. H.; Edwards, H. G. M.; Kendrick, J.; Scowen, I. J.
2009-05-01
The Raman spectrum of terbutaline hemisulphate is reported for the first time, and molecular assignments are proposed on the basis of ab initio BLYP DFT calculations with a 6-31G* basis set and vibrational frequencies predicted within the quasi-harmonic approximation; these predictions compare favourably with the observed vibrational spectra. Comparison with previously published infrared data explains several spectral features. The results from this study provide data that can be used for the preparative process monitoring of terbutaline hemisulphate, an important β 2 agonist drug in various dosage forms and its interaction with excipients and other components.
Noel, Yves; D'arco, Philippe; Demichelis, Raffaella; Zicovich-Wilson, Claudio M; Dovesi, Roberto
2010-03-01
Nanotubes can be characterized by a very high point symmetry, comparable or even larger than the one of the most symmetric crystalline systems (cubic, 48 point symmetry operators). For example, N = 2n rototranslation symmetry operators connect the atoms of the (n,0) nanotubes. This symmetry is fully exploited in the CRYSTAL code. As a result, ab initio quantum mechanical large basis set calculations of carbon nanotubes containing more than 150 atoms in the unit cell become very cheap, because the irreducible part of the unit cell reduces to two atoms only. The nanotube symmetry is exploited at three levels in the present implementation. First, for the automatic generation of the nanotube structure (and then of the input file for the SCF calculation) starting from a two-dimensional structure (in the specific case, graphene). Second, the nanotube symmetry is used for the calculation of the mono- and bi-electronic integrals that enter into the Fock (Kohn-Sham) matrix definition. Only the irreducible wedge of the Fock matrix is computed, with a saving factor close to N. Finally, the symmetry is exploited for the diagonalization, where each irreducible representation is separately treated. When M atomic orbitals per carbon atom are used, the diagonalization computing time is close to Nt, where t is the time required for the diagonalization of each 2M x 2M matrix. The efficiency and accuracy of the computational scheme is documented. (c) 2009 Wiley Periodicals, Inc.
Wang, H B; Wang, Q; Dong, C; Yuan, L; Xu, F; Sun, L X
2008-03-19
This paper analyzes the characteristics of alloy compositions with large hydrogen storage capacities in Laves phase-related body-centered cubic (bcc) solid solution alloy systems using the cluster line approach. Since a dense-packed icosahedral cluster A(6)B(7) characterizes the local structure of AB(2) Laves phases, in an A-B-C ternary system, such as Ti-Cr (Mn, Fe)-V, where A-B forms AB(2) Laves phases while A-C and B-C tend to form solid solutions, a cluster line A(6)B(7)-C is constructed by linking A(6)B(7) to C. The alloy compositions with large hydrogen storage capacities are generally located near this line and are approximately expressed with the cluster-plus-glue-atom model. The cluster line alloys (Ti(6)Cr(7))(100-x)V(x) (x = 2.5-70 at.%) exhibit different structures and hence different hydrogen storage capacities with increasing V content. The alloys (Ti(6)Cr(7))(95)V(5) and Ti(30)Cr(40)V(30) with bcc solid solution structure satisfy the cluster-plus-glue-atom model.
Gu, Jiaping; Congdon, Erin E.; Sigurdsson, Einar M.
2013-01-01
Aggregated Tau proteins are hallmarks of Alzheimer disease and other tauopathies. Recent studies from our group and others have demonstrated that both active and passive immunizations reduce Tau pathology and prevent cognitive decline in transgenic mice. To determine the efficacy and safety of targeting the prominent 396/404 region, we developed two novel monoclonal antibodies (mAbs) with distinct binding profiles for phospho and non-phospho epitopes. The two mAbs significantly reduced hyperphosphorylated soluble Tau in long term brain slice cultures without apparent toxicity, suggesting the therapeutic importance of targeting the 396/404 region. In mechanistic studies, we found that neurons were the primary cell type that internalized the mAbs, whereas a small amount of mAbs was taken up by microglia cells. Within neurons, the two mAbs were highly colocalized with distinct pathological Tau markers, indicating their affinity toward different stages or forms of pathological Tau. Moreover, the mAbs were largely co-localized with endosomal/lysosomal markers, and partially co-localized with autophagy pathway markers. Additionally, the Fab fragments of the mAbs were able to enter neurons, but unlike the whole antibodies, the fragments were not specifically localized in pathological neurons. In summary, our Tau mAbs were safe and efficient to clear pathological Tau in a brain slice model. Fc-receptor-mediated endocytosis and the endosome/autophagosome/lysosome system are likely to have a critical role in antibody-mediated clearance of Tau pathology. PMID:24089520
Manna, Debashree; Kesharwani, Manoj K; Sylvetsky, Nitai; Martin, Jan M L
2017-07-11
Benchmark ab initio energies for BEGDB and WATER27 data sets have been re-examined at the MP2 and CCSD(T) levels with both conventional and explicitly correlated (F12) approaches. The basis set convergence of both conventional and explicitly correlated methods has been investigated in detail, both with and without counterpoise corrections. For the MP2 and CCSD-MP2 contributions, rapid basis set convergence observed with explicitly correlated methods is compared to conventional methods. However, conventional, orbital-based calculations are preferred for the calculation of the (T) term, since it does not benefit from F12. CCSD(F12*) converges somewhat faster with the basis set than CCSD-F12b for the CCSD-MP2 term. The performance of various DFT methods is also evaluated for the BEGDB data set, and results show that Head-Gordon's ωB97X-V and ωB97M-V functionals outperform all other DFT functionals. Counterpoise-corrected DSD-PBEP86 and raw DSD-PBEPBE-NL also perform well and are close to MP2 results. In the WATER27 data set, the anionic (deprotonated) water clusters exhibit unacceptably slow basis set convergence with the regular cc-pVnZ-F12 basis sets, which have only diffuse s and p functions. To overcome this, we have constructed modified basis sets, denoted aug-cc-pVnZ-F12 or aVnZ-F12, which have been augmented with diffuse functions on the higher angular momenta. The calculated final dissociation energies of BEGDB and WATER27 data sets are available in the Supporting Information. Our best calculated dissociation energies can be reproduced through n-body expansion, provided one pushes to the basis set and electron correlation limit for the two-body term; for the three-body term, post-MP2 contributions (particularly CCSD-MP2) are important for capturing the three-body dispersion effects. Terms beyond four-body can be adequately captured at the MP2-F12 level.
Hellweg, Stephanie; Schuster-Amft, Corina
2016-07-19
Agitation is frequently observed during early recovery after traumatic brain injury (TBI). Agitated behaviour often interferes with a goal-orientated rehabilitation and can be a substantial hindrance to therapy. Despite the relatively high occurance of agitation in TBI population there is no objective assessement in German (G) available. An existing scale with excellent psychometric properties is the "Agitated Behavior Scale (ABS)" developed by Corrigan in 1989. The aim of the study was to translate the Agitated Behavior Scale (ABS) into German (ABS-G) and investigate the inter- and intrarater reliability and internal consistency in patients with moderate to severe TBI. A formal nine-step translation and cross-cultural adaptation procedure (TCCA) was applied. Subsequently a prospective observational patient study was conducted. To examine the interrater reliability and internal consistency, two therapists rated 20 patients independently after a therapy session. This procedure was repeated twice on a weekly basis. The intrarater reliability was assessed through video recordings from three patients. Nine raters scored the demonstrated behaviour on the videotape with the ABS-G independently twice within one month. The inter- and intrarater reliability were evaluated with the Spearman rank correlation coefficient and the quadratic weighted kappa. The internal consistency was tested with Cronbach's alpha. Behaviour of 20 patients (18 males; mean age 41 ± 20.7; mean Functional Independence Measure (FIM) cognitive score on admission 7.1 ± 4.04; mean ABS-G score at first observation 17.3 ± 2.83) was assessed threefold. Interrater reliability yielded a correlation coefficient for ABS-G total score of all 60 paired observations of r s 0.845 and a weighted Kappa of 0.738. Intrarater reliability for ABS-G total score ranged between r s 0.719 and 0.953 and showed a weighted Kappa between 0.871 and 0.953. Cronbach's alpha indicated moderate internal consistency with 0.661. This study demonstrates that the ABS-G is a reliable instrument for evaluating agitation in patients with moderate to severe TBI. Hereby it would be possible to monitor agitation objectively and optimise the management of agitated patients according to international recommendations.
NASA Astrophysics Data System (ADS)
Moradian, Rostam; Behzad, Somayeh; Chegel, Raad
2008-11-01
By using ab initio density functional theory, the structural characterizations and electronic properties of two large-diameter (13, 13) and (14, 14) armchair silicon carbide nanotube (SiCNT) bundles are investigated. Full structural optimizations show that the cross sections of these large-diameter SiCNTs in the bundles have a nearly hexagonal shape. The effects of inter-tube coupling on the electronic dispersions of large-diameter SiCNT bundles are demonstrated. By comparing the band structures of the triangular lattices of (14, 14) SiCNTs with nearly hexagonal and circular cross sections we found that the polygonization of the tubes in the bundle leads to a further dispersion of the occupied bands and an increase in the bandgap by 0.18 eV.
Moradian, Rostam; Behzad, Somayeh; Chegel, Raad
2008-11-19
By using ab initio density functional theory, the structural characterizations and electronic properties of two large-diameter (13, 13) and (14, 14) armchair silicon carbide nanotube (SiCNT) bundles are investigated. Full structural optimizations show that the cross sections of these large-diameter SiCNTs in the bundles have a nearly hexagonal shape. The effects of inter-tube coupling on the electronic dispersions of large-diameter SiCNT bundles are demonstrated. By comparing the band structures of the triangular lattices of (14, 14) SiCNTs with nearly hexagonal and circular cross sections we found that the polygonization of the tubes in the bundle leads to a further dispersion of the occupied bands and an increase in the bandgap by 0.18 eV.
Spectroscopic and quantum chemical analysis of a natural product - Hayatin hydrochloride
NASA Astrophysics Data System (ADS)
Mishra, Rashmi; Srivastava, Anubha; Tandon, Poonam; Jain, Sudha
2015-08-01
Majority of drugs in use today are natural products, natural product mimics or semi synthetic derivatives. Therefore in recent times, focus on plant research has increased all over the world and large body of evidence has been collected to show immense potential of medicinal plants used in various traditional systems. Therefore, in the present communication to aid that research, structural and spectroscopic analysis of a natural product, an alkaloid Hayatin hydrochloride was performed. Both ab initio Hartree-Fock and density functional theory employing B3LYP with complete relaxation in the potential energy surface using 6-311G (d,p) basis set were used for the calculations. The vibrational frequencies were calculated and scaled values were compared with experimental FT-IR and micro-Raman spectra. The complete assignments were performed on the basis of potential energy distribution. The structure-activity relationship has also been interpreted by mapping electrostatic potential surface, which are valuable information for the quality control of medicines and drug-receptor interactions. Electronic properties have been analysed employing TD-DFT for both gaseous and solvent phase. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. Stability of the molecule arising from hyper conjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis.
Molecular Basis of Differential B-Pentamer Stability of Shiga Toxins 1 and 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conrady, Deborah G.; Flagler, Michael J.; Friedmann, David R.
2012-06-27
Escherichia coli strain O157:H7 is a major cause of food poisoning that can result in severe diarrhea and, in some cases, renal failure. The pathogenesis of E. coli O157:H7 is in large part due to the production of Shiga toxin (Stx), an AB{sub 5} toxin that consists of a ribosomal RNA-cleaving A-subunit surrounded by a pentamer of receptor-binding B subunits. There are two major isoforms, Stx1 and Stx2, which differ dramatically in potency despite having 57% sequence identity. Animal studies and epidemiological studies show Stx2 is associated with more severe disease. Although the molecular basis of this difference is unknown,more » data suggest it is associated with the B-subunit. Mass spectrometry studies have suggested differential B-pentamer stability between Stx1 and Stx2. We have examined the relative stability of the B-pentamers in solution. Analytical ultracentrifugation using purified B-subunits demonstrates that Stx2B, the more deadly isoform, shows decreased pentamer stability compared to Stx1B (EC{sub 50} = 2.3 {micro}M vs. EC{sub 50} = 0.043 {micro}M for Stx1B). X-ray crystal structures of Stx1B and Stx2B identified a glutamine in Stx2 (versus leucine in Stx1) within the otherwise strongly hydrophobic interface between B-subunits. Interchanging these residues switches the stability phenotype of the B-pentamers of Stx1 and Stx2, as demonstrated by analytical ultracentrifugation and circular dichroism. These studies demonstrate a profound difference in stability of the B-pentamers in Stx1 and Stx2, illustrate the mechanistic basis for this differential stability, and provide novel reagents to test the basis for differential pathogenicity of these toxins.« less
Rizzi, Matteo; Strandroth, Johan; Kullgren, Anders; Tingvall, Claes; Fildes, Brian
2015-01-01
This study set out to evaluate the effectiveness of motorcycle antilock braking systems (ABS) in reducing real-life crashes. Since the European Parliament has voted on legislation making ABS mandatory on all new motorcycles over 125 cc from 2016, the fitment rate in Europe is likely to increase in the coming years. Though previous research has focused on mostly large displacement motorcycles, this study used police reports from Spain (2006-2009), Italy (2009), and Sweden (2003-2012) in order to analyze a wide range of motorcycles, including scooters, and compare countries with different motorcycling habits. The statistical analysis used odds ratio calculations with an induced exposure approach. Previous research found that head-on crashes were the least ABS-affected crash type and was therefore used as the nonsensitive crash type for ABS in these calculations. The same motorcycle models, with and without ABS, were compared and the calculations were carried out for each country separately. Crashes involving only scooters were further analyzed. The effectiveness of motorcycle ABS in reducing injury crashes ranged from 24% (95% confidence interval [CI], 12-36) in Italy to 29% (95% CI, 20-38) in Spain, and 34% (95% CI, 16-52) in Sweden. The reductions in severe and fatal crashes were even greater, at 34% (95% CI, 24-44) in Spain and 42% (95% CI, 23-61) in Sweden. The overall reductions of crashes involving ABS-equipped scooters (at least 250 cc) were 27% (95% CI, 12-42) in Italy and 22% (95% CI, 2-42) in Spain. ABS on scooters with at least a 250 cc engine reduced severe and fatal crashes by 31% (95% CI, 12-50), based on Spanish data alone. At this stage, there is more than sufficient scientific-based evidence to support the implementation of ABS on all motorcycles, even light ones. Further research should aim at understanding the injury mitigating effects of motorcycle ABS, possibly in combination with combined braking systems.
Structural Basis for a Unique ATP Synthase Core Complex from Nanoarcheaum equitans*
Mohanty, Soumya; Jobichen, Chacko; Chichili, Vishnu Priyanka Reddy; Velázquez-Campoy, Adrián; Low, Boon Chuan; Hogue, Christopher W. V.; Sivaraman, J.
2015-01-01
ATP synthesis is a critical and universal life process carried out by ATP synthases. Whereas eukaryotic and prokaryotic ATP synthases are well characterized, archaeal ATP synthases are relatively poorly understood. The hyperthermophilic archaeal parasite, Nanoarcheaum equitans, lacks several subunits of the ATP synthase and is suspected to be energetically dependent on its host, Ignicoccus hospitalis. This suggests that this ATP synthase might be a rudimentary machine. Here, we report the crystal structures and biophysical studies of the regulatory subunit, NeqB, the apo-NeqAB, and NeqAB in complex with nucleotides, ADP, and adenylyl-imidodiphosphate (non-hydrolysable analog of ATP). NeqB is ∼20 amino acids shorter at its C terminus than its homologs, but this does not impede its binding with NeqA to form the complex. The heterodimeric NeqAB complex assumes a closed, rigid conformation irrespective of nucleotide binding; this differs from its homologs, which require conformational changes for catalytic activity. Thus, although N. equitans possesses an ATP synthase core A3B3 hexameric complex, it might not function as a bona fide ATP synthase. PMID:26370083
A new ab initio potential energy surface for the Ne-H 2 interaction
NASA Astrophysics Data System (ADS)
Lique, François
2009-03-01
A new accurate three-dimensional potential energy surface for the Ne-H 2 system, which explicitly takes into account the r-dependence of the H 2 vibration, was determined from ab initio calculations. It was obtained with the single and double excitation coupled-cluster method with noniterative perturbational treatment of triple excitation [CCSD(T)]. Calculations was been performed using the augmented correlation-consistent polarized quintuple zeta basis set (aug-cc-pV5Z) for the three atoms. We checked the accuracy of the present ab initio calculations. We have determined, using the new Ne-H 2 potential energy surface, differential cross-sections for the rotational excitation of the H 2 and D 2 molecules in collision with Ne and we have compared them with experimental results of Faubel et al. [M. Faubel, F.A. Gianturco, F. Ragnetti, L.Y. Rusin, F. Sondermann, U. Tappe, J.P. Toennies, J. Chem. Phys. 101 (1994) 8800]. The overall agreement confirms that the new potential energy surface can be used for the simulation of molecular collisions and/or molecular spectroscopy of the van der Waals complex Ne-H 2.
Tight-binding analysis of Si and GaAs ultrathin bodies with subatomic wave-function resolution
NASA Astrophysics Data System (ADS)
Tan, Yaohua P.; Povolotskyi, Michael; Kubis, Tillmann; Boykin, Timothy B.; Klimeck, Gerhard
2015-08-01
Empirical tight-binding (ETB) methods are widely used in atomistic device simulations. Traditional ways of generating the ETB parameters rely on direct fitting to bulk experiments or theoretical electronic bands. However, ETB calculations based on existing parameters lead to unphysical results in ultrasmall structures like the As-terminated GaAs ultrathin bodies (UTBs). In this work, it is shown that more transferable ETB parameters with a short interaction range can be obtained by a process of mapping ab initio bands and wave functions to ETB models. This process enables the calibration of not only the ETB energy bands but also the ETB wave functions with corresponding ab initio calculations. Based on the mapping process, ETB models of Si and GaAs are parameterized with respect to hybrid functional calculations. Highly localized ETB basis functions are obtained. Both the ETB energy bands and wave functions with subatomic resolution of UTBs show good agreement with the corresponding hybrid functional calculations. The ETB methods can then be used to explain realistically extended devices in nonequilibrium that cannot be tackled with ab initio methods.
NASA Astrophysics Data System (ADS)
Senthil kumar, J.; Jeyavijayan, S.; Arivazhagan, M.
2015-02-01
The vibrational spectral analysis is carried out using FT-Raman and FT-IR spectroscopy in the range 3500-50 cm-1 and 4000-400 cm-1, respectively, for 6-nitrochromone (6NC). The molecular structure, fundamental vibrational frequencies and intensity of the vibrational bands are interpreted with the aid of structure optimization and normal coordinates force field calculation based on ab initio HF and DFT gradient calculations employing the HF/6-311++G(d,p) and B3LYP/6-311++G(d,p) basis set. Stability of the molecule has been analyzed using NBO analysis. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. Thermodynamic properties like entropy, heat capacity, zero-point energy and Mulliken's charge analysis have been calculated for the 6NC. The complete assignments were performed on the basis of total energy distribution (TED) of the vibrational modes with scaled quantum mechanical (SQM) method. The MEP map shows the negative potential sites are on oxygen atoms as well as the positive potential sites are around the hydrogen atoms.
Li, Xiao-Hong; Li, Tong-Wei; Ju, Wei-Wei; Yong, Yong-Liang; Zhang, Xian-Zhou
2014-01-24
Quantum chemical calculations of geometries and vibrational wavenumbers of 3-nitroacetanilide (C8H8N2O3) in the ground state were carried out by using ab initio HF and density functional theory (DFT/B3LYP) methods with 6-31+G(*) basis set. The -311++G(**) basis set is also used for B3LYP level. The scaled harmonic vibrational frequencies have been compared with experimental FT-IR spectra. Theoretical vibrational spectra of the title compound were interpreted by means of potential energies distributions (PEDs) using MOLVIB program. The theoretical spectrograms for IR spectra of the title compound have been constructed. The shortening of C-H bond length and the elongation of N-H bond length suggest the existence of weak C-H⋯O and N-H⋯O hydrogen bonds, which is confirmed by the natural bond orbital analysis. In addition, the crystal structure obtained by molecular mechanics belongs to the P2(1) space group, with lattice parameters Z=4, a=14.9989 Å, b=4.0367 Å, c=12.9913 Å, ρ=0.998 g cm(-3). Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Xiao-Hong; Li, Tong-Wei; Ju, Wei-Wei; Yong, Yong-Liang; Zhang, Xian-Zhou
2014-01-01
Quantum chemical calculations of geometries and vibrational wavenumbers of 3-nitroacetanilide (C8H8N2O3) in the ground state were carried out by using ab initio HF and density functional theory (DFT/B3LYP) methods with 6-31+G* basis set. The -311++G** basis set is also used for B3LYP level. The scaled harmonic vibrational frequencies have been compared with experimental FT-IR spectra. Theoretical vibrational spectra of the title compound were interpreted by means of potential energies distributions (PEDs) using MOLVIB program. The theoretical spectrograms for IR spectra of the title compound have been constructed. The shortening of Csbnd H bond length and the elongation of Nsbnd H bond length suggest the existence of weak Csbnd H⋯O and Nsbnd H⋯O hydrogen bonds, which is confirmed by the natural bond orbital analysis. In addition, the crystal structure obtained by molecular mechanics belongs to the P21 space group, with lattice parameters Z = 4, a = 14.9989 Å, b = 4.0367 Å, c = 12.9913 Å, ρ = 0.998 g cm-3.
NASA Astrophysics Data System (ADS)
Titantah, John T.; Karttunen, Mikko
2016-05-01
Electronic and optical properties of silver clusters were calculated using two different ab initio approaches: (1) based on all-electron full-potential linearized-augmented plane-wave method and (2) local basis function pseudopotential approach. Agreement is found between the two methods for small and intermediate sized clusters for which the former method is limited due to its all-electron formulation. The latter, due to non-periodic boundary conditions, is the more natural approach to simulate small clusters. The effect of cluster size is then explored using the local basis function approach. We find that as the cluster size increases, the electronic structure undergoes a transition from molecular behavior to nanoparticle behavior at a cluster size of 140 atoms (diameter ~1.7 nm). Above this cluster size the step-like electronic structure, evident as several features in the imaginary part of the polarizability of all clusters smaller than Ag147, gives way to a dominant plasmon peak localized at wavelengths 350 nm ≤ λ ≤ 600 nm. It is, thus, at this length-scale that the conduction electrons' collective oscillations that are responsible for plasmonic resonances begin to dominate the opto-electronic properties of silver nanoclusters.
Microwave Spectra and AB Initio Studies of the Ne-Acetone Complex
NASA Astrophysics Data System (ADS)
Gao, Jiao; Thomas, Javix; Xu, Yunjie; Jäger, Wolfgang
2015-06-01
Microwave spectra of the neon-acetone van der Waals complex were measured using a cavity-based molecular beam Fourier-transform microwave spectrometer in the region from 5 to 18 GHz. Both 20Ne and 22Ne containing isotopologues were studied and both c- and weaker a-type rotational transitions were observed. The transitions are split into multiplets due to the internal rotation of two methyl groups in acetone. Electronic structure calculations were done at the MP2 level of theory with the 6-311++g (2d, p) basis set for all atoms and the internal rotation barrier height of the methyl groups was determined to be about 2.8 kJ/mol. The ab initio rotational constants were the basis for our spectroscopic searches, but the multiplet structures and floppiness of the complex made the quantum number assignment very difficult. The assignment was finally achieved with the aid of constructing closed frequency loops and predicting internal rotation splittings using the XIAM code. Analyses of the spectra yielded rotational and centrifugal distortion constants, as well as internal rotation parameters, which were interpreted in terms of structure and internal dynamics of the complex. H. Hartwig and H. Dreizler, Z. Naturforsch. A 51, 923 (1996).
Steininger, Christoph; Widhopf, George F.; Ghia, Emanuela M.; Morello, Christopher S.; Vanura, Katrina; Sanders, Rebecca; Spector, Deborah; Guiney, Don; Jäger, Ulrich
2012-01-01
Leukemia cells from patients with chronic lymphocytic leukemia (CLL) express a highly restricted immunoglobulin heavy variable chain (IGHV) repertoire, suggesting that a limited set of antigens reacts with leukemic cells. Here, we evaluated the reactivity of a panel of different CLL recombinant antibodies (rAbs) encoded by the most commonly expressed IGHV genes with a panel of selected viral and bacterial pathogens. Six different CLL rAbs encoded by IGHV1-69 or IGHV3-21, but not a CLL rAb encoded by IGHV4-39 genes, reacted with a single protein of human cytomegalovirus (CMV). The CMV protein was identified as the large structural phosphoprotein pUL32. In contrast, none of the CLL rAbs bound to any other structure of CMV, adenovirus serotype 2, Salmonella enterica serovar Typhimurium, or of cells used for propagation of these microorganisms. Monoclonal antibodies or humanized rAbs of irrelevant specificity to pUL32 did not react with any of the proteins present in the different lysates. Still, rAbs encoded by a germ line IGHV1-69 51p1 allele from CMV-seropositive and -negative adults also reacted with pUL32. The observed reactivity of multiple different CLL rAbs and natural antibodies from CMV-seronegative adults with pUL32 is consistent with the properties of a superantigen. PMID:22234695
Autoantibody Signaling in Pemphigus Vulgaris: Development of an Integrated Model
Sajda, Thomas; Sinha, Animesh A.
2018-01-01
Pemphigus vulgaris (PV) is an autoimmune skin blistering disease effecting both cutaneous and mucosal epithelia. Blister formation in PV is known to result from the binding of autoantibodies (autoAbs) to keratinocyte antigens. The primary antigenic targets of pathogenic autoAbs are known to be desmoglein 3, and to a lesser extent, desmoglein 1, cadherin family proteins that partially comprise the desmosome, a protein structure responsible for maintaining cell adhesion, although additional autoAbs, whose role in blister formation is still unclear, are also known to be present in PV patients. Nevertheless, there remain large gaps in knowledge concerning the precise mechanisms through which autoAb binding induces blister formation. Consequently, the primary therapeutic interventions for PV focus on systemic immunosuppression, whose side effects represent a significant health risk to patients. In an effort to identify novel, disease-specific therapeutic targets, a multitude of studies attempting to elucidate the pathogenic mechanisms downstream of autoAb binding, have led to significant advancements in the understanding of autoAb-mediated blister formation. Despite this enhanced characterization of disease processes, a satisfactory explanation of autoAb-induced acantholysis still does not exist. Here, we carefully review the literature investigating the pathogenic disease mechanisms in PV and, taking into account the full scope of results from these studies, provide a novel, comprehensive theory of blister formation in PV. PMID:29755451
Liao, Meng-Sheng; Huang, Ming-Ju; Watts, John D.
2011-01-01
Sixty-four (64) density functionals, ranging from GGA, meta-GGA, hybrid GGA to hybrid meta-GGA, were tested to evaluate the FeP(Im)-AB bonding energies (Ebond) in the heme model complexes FeP(Im)(AB) (P = porphine, Im = imidazole, AB = CO, NO, and O2). The results indicate that an accurate prediction of Ebond for the various ligands to heme is difficult with the DFT methods; usually a functional successful for one system does not perform equally well for the other system(s). Relatively satisfactory results for the various FeP(Im)-AB bonding energies are obtained with the meta-GGA funtionals BLAP3 and Bmτ1; they yield Ebond values of ca.1.1, 1.2, and 0.4 eV for AB = CO, NO, and O2, respectively, which are in reasonable agreement with experimental data (0.78 – 0.85 eV for CO, 0.99 eV for NO, and 0.44 – 0.53 eV for O2). The other functionals show more or less deficiency for one or two of the systems. The performances of the various functionals in describing the spin-state energetics of the five-coordinate FeP(Im) complex were also examined. PMID:22228914
An Ab Initio Study of the Low-Lying Doublet States of AgO and AgS
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R.
1990-01-01
Spectroscopic constants (D(sub o), r(sub e), mu(sub e), T(sub e)) are determined for the doublet states of AgO and AgS below approx. = 30000/cm. Large valence basis sets are employed in conjunction with relativistic effective core potentials (RECPs). Electron correlation is included using the modified coupled-pair functional (MCPF) and multireference configuration interaction (MRCI) methods. The A(sup 2)Sigma(sup +) - X(sup 2)Pi band system is found to occur in the near infrared (approx. = 9000/cm) and to be relatively weak with a radiative lifetime of 900 microns for A(sup 2)Sigma(sup +) (upsilon = 0). The weakly bound C(sup 2)Pi state (our notation), the upper state of the blue system, is found to require high levels of theoretical treatment to determine a quantitatively accurate potential. The red system is assigned as a transition from the C(sup 2)Pi state to the previously unobserved A(sup 2)Sigma(sup +) state. Several additional transitions are identified that should be detectable experimentally. A more limited study is performed for the vertical excitation spectrum of AgS. In addition, a detailed all-electron study of the X(sup 2)Pi and A(sup 2)Sigma(sup +) states of AgO is carried out using large atomic natural orbital (ANO) basis sets. Our best calculated D(sub o) value for AgO is significantly less than the experimental value, which suggests that there may be some systematic error in the experimental determination.
Characterization of the Atacama B-mode Search
NASA Astrophysics Data System (ADS)
Simon, S. M.; Raghunathan, S.; Appel, J. W.; Becker, D. T.; Campusano, L. E.; Cho, H. M.; Essinger-Hileman, T.; Ho, S. P.; Irwin, K. D.; Jarosik, N.; Kusaka, A.; Niemack, M. D.; Nixon, G. W.; Nolta, M. R.; Page, L. A.; Palma, G. A.; Parker, L. P.; Sievers, J. L.; Staggs, S. T.; Visnjic, K.
2014-07-01
The Atacama B-mode Search (ABS), which began observations in February of 2012, is a crossed-Dragone telescope located at an elevation of 5190 m in the Atacama Desert in Chile. ABS is searching for the B-mode polarization spectrum of the cosmic microwave background (CMB) at large angular scales from multipole moments of ` ~ 50 ~ 500, a range that includes the primor- dial B-mode peak from inflationary gravity waves at ~ 100. The ABS focal plane consists of 240 pixels sensitive to 145 GHz, each containing two transition-edge sensor bolometers coupled to orthogonal polarizations with a planar ortho-mode transducer. An ambient-temperature con- tinuously rotating half-wave plate and 4 K optics make the ABS instrument unique. We discuss the characterization of the detector spectral responses with a Fourier transform spectrometer and demonstrate that the pointing model is adequate. We also present measurements of the beam from point sources and compare them with simulations.
Investigations for Thermal and Electrical Conductivity of ABS-Graphene Blended Prototypes
Singh, Rupinder; Sandhu, Gurleen S.; Penna, Rosa; Farina, Ilenia
2017-01-01
The thermoplastic materials such as acrylonitrile-butadiene-styrene (ABS) and Nylon have large applications in three-dimensional printing of functional/non-functional prototypes. Usually these polymer-based prototypes are lacking in thermal and electrical conductivity. Graphene (Gr) has attracted impressive enthusiasm in the recent past due to its natural mechanical, thermal, and electrical properties. This paper presents the step by step procedure (as a case study) for development of an in-house ABS-Gr blended composite feedstock filament for fused deposition modelling (FDM) applications. The feedstock filament has been prepared by two different methods (mechanical and chemical mixing). For mechanical mixing, a twin screw extrusion (TSE) process has been used, and for chemical mixing, the composite of Gr in an ABS matrix has been set by chemical dissolution, followed by mechanical blending through TSE. Finally, the electrical and thermal conductivity of functional prototypes prepared from composite feedstock filaments have been optimized. PMID:28773244
Buryak, Ilya; Lokshtanov, Sergei; Vigasin, Andrey
2012-09-21
The present work aims at ab initio characterization of the integrated intensity temperature variation of collision-induced absorption (CIA) in N(2)-H(2)(D(2)). Global fits of potential energy surface (PES) and induced dipole moment surface (IDS) were made on the basis of CCSD(T) (coupled cluster with single and double and perturbative triple excitations) calculations with aug-cc-pV(T,Q)Z basis sets. Basis set superposition error correction and extrapolation to complete basis set (CBS) limit techniques were applied to both energy and dipole moment. Classical second cross virial coefficient calculations accounting for the first quantum correction were employed to prove the quality of the obtained PES. The CIA temperature dependence was found in satisfactory agreement with available experimental data.
NASA Astrophysics Data System (ADS)
Ha, T.-K.; Günthard, H. H.
1989-07-01
Structural parameters like bond length, bond angles, etc. and harmonic and anharmonic potential coefficients of molecules with internal rotation, inversion or puckering modes are generally assumed to vary with the large amplitude internal coordinates in a concerted manner (relaxation). Taking the coordinate vectors of the nuclear configuration of semirigid molecules with relaxation (SRMRs) as functions of relaxing structural parameters and finite amplitude internal coordinate, the isometric group of SRMRs is discussed and the irreducible representations of the latter are shown to classify into engendered and nonengendered ones. On this basis a concept of equivalent sets of nuclei SRMRs is introduced and an analytical expression is derived which defines the most general functional form of relaxation increments of all common types of structural parameters compatible with isometric symmetry. This formula is shown to be a close analog of an analytical expression defining the transformations induced by the isometric group of infinitesimal internal coordinates associated with typical structural parameters. Furthermore analogous formulae are given for the most general form of the relaxation of harmonic potential coefficients as a function of finite internal coordinates. The general relations are illustrated by ab initio calculations for 1,2-difluoroethane at the MP4/DZP//HF/4-31G* level for twelve values of the dihedral angle including complete structure optimization. The potential to internal rotation is found to be in essential agreement with experimentally derived data. For a complete set of ab initio structural parameters the associated relaxation increments are represented as Fourier series, which are shown to confirm the form predicted by the general formula and the isometric group of 1,2-difluoroethane. Depending on type of the structural parameters (bond length, bond angles, etc.), the associated relaxation increments appear to follow some simple rules. Similarly a complete set of harmonic potential coefficients derived from the ab initio calculations will be analyzed in terms of Fourier series and shown to conform to the symmetry requirements of the symmetry group. Relaxation of potential coefficients is found to amount to up to ≈5% for some types of diagonal and nondiagonal terms and to reflect certain "topological" rules similar to regularities of harmonic potential constants of quasi-rigid molecules found in empirical determinations of valence force fields.
NASA Astrophysics Data System (ADS)
Guest, Bernard; Horton, Brian K.; Axen, Gary J.; Hassanzadeh, Jamshid; McIntosh, William C.
2007-12-01
Oligocene-Miocene strata preserved in synclinal outcrop belts of the western Alborz Mountains record the onset of Arabia-Eurasia collision-related deformation in northern Iran. Two stratigraphic intervals, informally named the Gand Ab and Narijan units, represent a former basin system that existed in the Alborz. The Gand Ab unit is composed of marine lagoonal mudstones, fluvial and alluvial-fan clastic rocks, fossiliferous Rupelian to Burdigalian marine carbonates, and basalt flows yielding 40Ar/39Ar ages of 32.7 ± 0.3 and 32.9 ± 0.2 Ma. The Gand Ab unit is correlated with the Oligocene-lower Miocene Qom Formation of central Iran and is considered a product of thermal subsidence following Eocene extension. The Narijan unit unconformably overlies the Gand Ab unit and is composed of fluvial-lacustrine and alluvial fan sediments exhibiting contractional growth strata. We correlate the Narijan unit with the middle to upper Miocene Upper Red Formation of central Iran on the basis of lithofacies similarities, stratigraphic position, and an 8.74 ± 0.15 Ma microdiorite dike (40Ar/39Ar) that intruded the basal strata. Deformation timing is constrained by crosscutting relationships and independent thermochronological data. The Parachan thrust system along the eastern edge of the ancestral Taleghan-Alamut basin is cut by dikes dated at 8.74 ± 0.15 Ma to 6.68 ± 0.07 Ma (40Ar/39Ar). Subhorizontal gravels that unconformably overlie tightly folded and faulted Narijan strata are capped by 2.86 ± 0.83 Ma (40Ar/39Ar) andesitic lava flows. These relationships suggest that Alborz deformation had migrated southward into the Taleghan-Alamut basin by late Miocene time and shifted to its present location along the active range front by late Pliocene time. Data presented here demonstrate that shortening in the western Alborz Mountains had started by late middle Miocene time. This estimate is consistent with recent thermochronological results that place the onset of rapid exhumation in the western Alborz at ˜12 Ma. Moreover, nearly synchronous Miocene contraction in the Alborz, Zagros Mountains, Turkish-Iranian plateau, and Anatolia suggests that the Arabia-Eurasia collision affected a large region simultaneously, without a systematic outward progression of mountain building away from the collision zone.
NASA Astrophysics Data System (ADS)
Vondráček, M.; Cornils, L.; Minár, J.; Warmuth, J.; Michiardi, M.; Piamonteze, C.; Barreto, L.; Miwa, J. A.; Bianchi, M.; Hofmann, Ph.; Zhou, L.; Kamlapure, A.; Khajetoorians, A. A.; Wiesendanger, R.; Mi, J.-L.; Iversen, B.-B.; Mankovsky, S.; Borek, St.; Ebert, H.; Schüler, M.; Wehling, T.; Wiebe, J.; Honolka, J.
2016-10-01
We report on the quenching of single Ni adatom moments on Te-terminated Bi2Te2Se and Bi2Te3 topological insulator surfaces. The effect is noted as a missing x-ray magnetic circular dichroism for resonant L3 ,2 transitions into partially filled Ni 3 d states of theory-derived occupancy nd=9.2 . On the basis of a comparative study of Ni and Fe using scanning tunneling microscopy and ab initio calculations, we are able to relate the element specific moment formation to a local Stoner criterion. Our theory shows that while Fe adatoms form large spin moments of ms=2.54 μB with out-of-plane anisotropy due to a sufficiently large density of states at the Fermi energy, Ni remains well below an effective Stoner threshold for local moment formation. With the Fermi level remaining in the bulk band gap after adatom deposition, nonmagnetic Ni and preferentially out-of-plane oriented magnetic Fe with similar structural properties on Bi2Te2Se surfaces constitute a perfect platform to study the off-on effects of time-reversal symmetry breaking on topological surface states.
Chen, Monica F; Chui, Toco Y P; Alhadeff, Paula; Rosen, Richard B; Ritch, Robert; Dubra, Alfredo; Hood, Donald C
2015-01-08
To better understand the nature of glaucomatous damage of the macula, especially the structural changes seen between relatively healthy and clearly abnormal (AB) retinal regions, using an adaptive optics scanning light ophthalmoscope (AO-SLO). Adaptive optics SLO images and optical coherence tomography (OCT) vertical line scans were obtained on one eye of seven glaucoma patients, with relatively deep local arcuate defects on the 10-2 visual field test in one (six eyes) or both hemifields (one eye). Based on the OCT images, the retinal nerve fiber (RNF) layer was divided into two regions: (1) within normal limits (WNL), relative RNF layer thickness within mean control values ±2 SD; and (2) AB, relative thickness less than -2 SD value. As seen on AO-SLO, the pattern of AB RNF bundles near the border of the WNL and AB regions differed across eyes. There were normal-appearing bundles in the WNL region of all eyes and AB-appearing bundles near the border with the AB region. This region with AB bundles ranged in extent from a few bundles to the entire AB region in the case of one eye. All other eyes had a large AB region without bundles. However, in two of these eyes, a few bundles were seen within this region of otherwise missing bundles. The AO-SLO images revealed details of glaucomatous damage that are difficult, if not impossible, to see with current OCT technology. Adaptive optics SLO may prove useful in following progression in clinical trials, or in disease management, if AO-SLO becomes widely available and easy to use. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.
Strain, Katherine E; Lydy, Michael J
2015-08-01
Genetically engineered crops expressing insecticidal crystalline proteins derived from Bacillus thuringiensis (Bt), were commercialized almost two decades ago as a means to manage agricultural pests. The Bt proteins are highly specific and only lethal upon ingestion, limiting the scope of toxicity to target insects. However, concern of exposure to non-target organisms and negative public perceptions regarding Bt crops has caused controversy surrounding their use. The objective of this research was to monitor the fate and transport of a Bt protein, Cry1Ab, in a large-scale agricultural field containing maize expressing the Cry1Ab protein and a non-Bt near isoline, and in aquatic microcosms. The highest environmental concentrations of the Cry1Ab protein were found in runoff water and sediment, up to 130ngL(-1) and 143ngg(-1) dry weight, respectively, with the Cry1Ab protein detected in both Bt and non-Bt maize fields. As surface runoff and residual crop debris can transport Bt proteins to waterways adjacent to agricultural fields, a series of laboratory experiments were conducted to determine the potential fate of the Cry1Ab protein under different conditions. The results showed that sediment type and temperature can influence the degradation of the Cry1Ab protein in an aquatic system and that the Cry1Ab protein can persist for up to two months. Although Cry1Ab protein concentrations measured in the field soil indicate little exposure to terrestrial organisms, the consistent input of Bt-contaminated runoff and crop debris into agricultural waterways is relevant to understanding potential consequences to aquatic species. Copyright © 2015 Elsevier Ltd. All rights reserved.
Thermoelectric properties of Bi 2Sr 2Co 2O y thin films and single crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diao, Zhenyu; Lee, Ho Nyung; Chisholm, Matthew F.
Bi 2Sr 2Co 2O 9 exhibits a misfit-layered structure with good thermoelectric properties. We have investigated the thermoelectric properties of Bi 2Sr 2Co 2O y in both thin-film and single-crystal forms. Among thin films grown at different temperatures, we find that both the in-plane thermoelectric power (Sab) and electrical resistivity (ρab) vary in an opposite trend, i.e., Sab is high when ρab is small. This results in large power factor (S ab 2/ρab~5.5 μW/K 2 cm for the film grown at 700 °C), comparable to that for whiskers. For single crystals, the electrical resistivity shows metallic behavior in a largemore » temperature range, but has higher magnitude than that of films grown at 675 °C and 700 °C. The annealing of single crystals under Ar atmosphere leads to even higher resistivity while S ab is improved. Lastly, we discuss the thermoelectric performance of this material considering both oxygen concentration and phase purity.« less
Thermoelectric properties of Bi 2Sr 2Co 2O y thin films and single crystals
Diao, Zhenyu; Lee, Ho Nyung; Chisholm, Matthew F.; ...
2017-02-02
Bi 2Sr 2Co 2O 9 exhibits a misfit-layered structure with good thermoelectric properties. We have investigated the thermoelectric properties of Bi 2Sr 2Co 2O y in both thin-film and single-crystal forms. Among thin films grown at different temperatures, we find that both the in-plane thermoelectric power (Sab) and electrical resistivity (ρab) vary in an opposite trend, i.e., Sab is high when ρab is small. This results in large power factor (S ab 2/ρab~5.5 μW/K 2 cm for the film grown at 700 °C), comparable to that for whiskers. For single crystals, the electrical resistivity shows metallic behavior in a largemore » temperature range, but has higher magnitude than that of films grown at 675 °C and 700 °C. The annealing of single crystals under Ar atmosphere leads to even higher resistivity while S ab is improved. Lastly, we discuss the thermoelectric performance of this material considering both oxygen concentration and phase purity.« less
Role of Fc in Antibody-Mediated Protection from Ricin Toxin
Pincus, Seth. H.; Das, Anushka; Song, Kejing; Maresh, Grace A.; Corti, Miriam; Berry, Jody
2014-01-01
We have studied the role of the antibody (Ab) Fc region in mediating protection from ricin toxicity. We compared the in vitro and in vivo effects of intact Ig and of Fab fragments derived from two different neutralizing Ab preparations, one monoclonal, the other polyclonal. Consistent results were obtained from each, showing little difference between Ig and Fab in terms of antigen binding and in vitro neutralization, but with relatively large differences in protection of animals. We also studied whether importing Ab into the cell by Fc receptors enhanced the intracellular neutralization of ricin toxin. We found that the imported Ab was found in the ER and Golgi, a compartment traversed by ricin, as it traffics through the cell, but intracellular Ab did not contribute to the neutralization of ricin. These results indicate that the Fc region of antibody is important for in vivo protection, although the mechanism of enhanced protection by intact Ig does not appear to operate at the single cell level. When using xenogeneic antibodies, the diminished immunogenicity of Fab/F(ab’)2 preparations should be balanced against possible loss of protective efficacy. PMID:24811206
Zhou, Shulan; Li, Zheng; Xie, Daiqian; Lin, Shi Ying; Guo, Hua
2009-05-14
A global potential-energy surface for the first excited electronic state of NH(2)(A(2)A(')) has been constructed by three-dimensional cubic spline interpolation of more than 20,000 ab initio points, which were calculated at the multireference configuration-interaction level with the Davidson correction using the augmented correlation-consistent polarized valence quadruple-zeta basis set. The (J=0) vibrational energy levels for the ground (X(2)A(")) and excited (A(2)A(')) electronic states of NH(2) were calculated on our potential-energy surfaces with the diagonal Renner-Teller terms. The results show a good agreement with the experimental vibrational frequencies of NH(2) and its isotopomers.
Transcription factor Stat5a/b as a therapeutic target protein for prostate cancer
Liao, Zhiyong; Lutz, Jacqueline; Nevalainen, Marja T.
2009-01-01
Prostate cancer is the most common non-cutaneous cancer in Western males. The majority of prostate cancer fatalities are caused by development of castration-resistant growth and metastatic spread of the primary tumor. The average duration of the response of primary prostate cancer to hormonal ablation is less than 3 years, and 75% of prostate cancers in the United States progress to hormone-refractory disease. The existing pharmacological therapies for metastatic and/or hormone-refractory prostate cancer do not provide significant survival benefit. This review summarizes the importance of transcription factor Stat5 signaling in the pathogenesis of prostate cancer and discusses the molecular basis why inhibition of Stat5a/b could be used as a therapeutic strategy for prostate cancer. PMID:19914392
Rasul, Golam; Chen, Jonathan L; Prakash, G K Surya; Olah, George A
2009-06-18
The C(s) conformation of the tert-butyl cation 3 was established to be the preferred global energy minimum using a combination of ab initio, DFT, and CCSD(T) methodology with correlation-consistent basis sets. The potential energy surface of methyl rotation involving the C(3v), C(s), and C(3h) forms, however, in accord with previous studies, is quite flat. The computed IR absorptions of 3 indicate that it has the greatest degree of electron donation from C-H bonds into the C(+)-C bonds. The experimental (13)C NMR chemical shifts also agree very well with the experimental data.
FTIR, FT-Raman spectra and ab initio, DFT vibrational analysis of 2,4-dinitrophenylhydrazine.
Sundaraganesan, N; Ayyappan, S; Umamaheswari, H; Joshua, B Dominic
2007-01-01
The FTIR and FT-Raman spectra of 2,4-dinitrophenylhydrazine (2,4-DNPH) has been recorded in the region 4000-400 and 3500-50cm-1, respectively. The optimized geometry, frequency and intensity of the vibrational bands of 2,4-DNPH were obtained by the ab initio and density functional theory (DFT) levels of theory with complete relaxation in the potential energy surface using 6-31G(d,p) and 6-311G(d,p) basis sets. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FTIR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically constructed bar type spectrograms.
FTIR, FT-Raman spectra and ab initio, DFT vibrational analysis of 2,4-dinitrophenylhydrazine
NASA Astrophysics Data System (ADS)
Sundaraganesan, N.; Ayyappan, S.; Umamaheswari, H.; Dominic Joshua, B.
2007-01-01
The FTIR and FT-Raman spectra of 2,4-dinitrophenylhydrazine (2,4-DNPH) has been recorded in the region 4000-400 and 3500-50 cm -1, respectively. The optimized geometry, frequency and intensity of the vibrational bands of 2,4-DNPH were obtained by the ab initio and density functional theory (DFT) levels of theory with complete relaxation in the potential energy surface using 6-31G(d,p) and 6-311G(d,p) basis sets. The harmonic vibrational frequencies were calculated and the scaled values have been compared with experimental FTIR and FT-Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically constructed bar type spectrograms.
Comparative Analysis of Routing Algorithms for Computer Networks
1977-06-01
the ab ~l i tv of ~ to lower t h u(j+ l) - (j- ~- l ) objective funct ion upo n being included in the basis , but also - Rd Cost (‘P(j+ l ) ) is an...for exposi t ion of a s im i l a r proof . Steps 1 and 2 a n - b o o t s t r - ap p i n g successive diagonal and f i r s t o f f -d i agona l...An N x N ‘ next arc ’ m a t r : x , K = [x. ], ~ e s t ab l i shed , w h e r e x . - is the f i r s t arc on the c~~rr~~nt1] est imate of the
NASA Astrophysics Data System (ADS)
Sagdinc, Seda; Kandemirli, Fatma; Bayari, Sevgi Haman
2007-02-01
Sertraline hydrochloride is a highly potent and selective inhibitor of serotonin (5HT). It is a basic compound of pharmaceutical application for antidepressant treatment (brand name: Zoloft). Ab initio and density functional computations of the vibrational (IR) spectrum, the molecular geometry, the atomic charges and polarizabilities were carried out. The infrared spectrum of sertraline is recorded in the solid state. The observed IR wave numbers were analysed in light of the computed vibrational spectrum. On the basis of the comparison between calculated and experimental results and the comparison with related molecules, assignments of fundamental vibrational modes are examined. The X-ray geometry and experimental frequencies are compared with the results of our theoretical calculations.
Raman scattering tensors in thymine molecule from an ab initio MO calculation
NASA Astrophysics Data System (ADS)
Tsuboi, Masamichi; Kumakura, Akiko; Aida, Misako; Kaneko, Motohisa; Dupuis, Michel; Ushizawa, Koichi; Ueda, Toyotoshi
1997-03-01
Ab initio SCF MO calculations have been made of the thymine molecule for the permanent polarizability and the polarizability derivatives with respect to the normal coordinates. The latter correspond to the components of the Raman tensors, and each of these tensors was brought into a visualized form by a transformation of the tensor axes into the principal system. For a comparison with such computational findings, a polarized Raman spectroscopic measurement has been made of a single crystal of thymine with 488.0 nm excitation. For most of the in-plane vibrations, calculated tensors were found to be well correlated with the observed Raman scattering anisotropy. On the basis of such correlations, discussions are given as for the polarizability oscillations caused by the atomic displacements in the molecule.
An ab-initio study of the relative stability of the ggg and the gtg conformer in hexane
NASA Astrophysics Data System (ADS)
Koglin, Eckhard; Meier, Robert J.
1999-10-01
Earlier ab-initio work suggested, on the basis of MP2 level calculations, that the hexane ggg conformer is more stable than the gtg conformer. Because this is unexpected and if true might have a significant impact on force field parametrisations, we have applied Hartree-Fock and post-HF methods to evaluate the relative stability of these conformers. We find that at levels higher than MP2 the gtg conformer is more stable than the ggg conformer, in agreement with the conventional idea that each additional gauche bond causes a further decrease in stability of the conformer. DFT methods were also applied, but although DFT methods including gradient corrections show correct qualitative behaviour, quantitatively the relative energies are far off compared to the post-HF results.
Projected Hybrid Orbitals: A General QM/MM Method
2015-01-01
A projected hybrid orbital (PHO) method was described to model the covalent boundary in a hybrid quantum mechanical and molecular mechanical (QM/MM) system. The PHO approach can be used in ab initio wave function theory and in density functional theory with any basis set without introducing system-dependent parameters. In this method, a secondary basis set on the boundary atom is introduced to formulate a set of hybrid atomic orbtials. The primary basis set on the boundary atom used for the QM subsystem is projected onto the secondary basis to yield a representation that provides a good approximation to the electron-withdrawing power of the primary basis set to balance electronic interactions between QM and MM subsystems. The PHO method has been tested on a range of molecules and properties. Comparison with results obtained from QM calculations on the entire system shows that the present PHO method is a robust and balanced QM/MM scheme that preserves the structural and electronic properties of the QM region. PMID:25317748
NASA Astrophysics Data System (ADS)
Eggenberger, Rolf; Gerber, Stefan; Huber, Hanspeter; Searles, Debra; Welker, Marc
1992-08-01
The shear viscosity is calculated ab initio for the liquid and hypercritical state, i.e. a previously published potential for Ne 2, obtained from ab initio calculations including electron correlation, is used in classical equilibrium molecular dynamics simulations to obtain the shear viscosity from a Green-Kubo integral. The quality of the results is quite uniform over a large pressure range up to 1000 MPa and a wide temperature range from 26 to 600 K. In most cases the calculated shear viscosity deviates by less than 10% from the experimental value, in general the error being only a few percent.
Cell Culture Systems To Study Human Herpesvirus 6A/B Chromosomal Integration.
Gravel, Annie; Dubuc, Isabelle; Wallaschek, Nina; Gilbert-Girard, Shella; Collin, Vanessa; Hall-Sedlak, Ruth; Jerome, Keith R; Mori, Yasuko; Carbonneau, Julie; Boivin, Guy; Kaufer, Benedikt B; Flamand, Louis
2017-07-15
Human herpesviruses 6A/B (HHV-6A/B) can integrate their viral genomes in the telomeres of human chromosomes. The viral and cellular factors contributing to HHV-6A/B integration remain largely unknown, mostly due to the lack of efficient and reproducible cell culture models to study HHV-6A/B integration. In this study, we characterized the HHV-6A/B integration efficiencies in several human cell lines using two different approaches. First, after a short-term infection (5 h), cells were processed for single-cell cloning and analyzed for chromosomally integrated HHV-6A/B (ciHHV-6A/B). Second, cells were infected with HHV-6A/B and allowed to grow in bulk for 4 weeks or longer and then analyzed for the presence of ciHHV-6. Using quantitative PCR (qPCR), droplet digital PCR, and fluorescent in situ hybridization, we could demonstrate that HHV-6A/B integrated in most human cell lines tested, including telomerase-positive (HeLa, MCF-7, HCT-116, and HEK293T) and telomerase-negative cell lines (U2OS and GM847). Our results also indicate that inhibition of DNA replication, using phosphonoacetic acid, did not affect HHV-6A/B integration. Certain clones harboring ciHHV-6A/B spontaneously express viral genes and proteins. Treatment of cells with phorbol ester or histone deacetylase inhibitors triggered the expression of many viral genes, including U39 , U90 , and U100 , without the production of infectious virus, suggesting that the tested stimuli were not sufficient to trigger full reactivation. In summary, both integration models yielded comparable results and should enable the identification of viral and cellular factors contributing to HHV-6A/B integration and the screening of drugs influencing viral gene expression, as well as the release of infectious HHV-6A/B from the integrated state. IMPORTANCE The analysis and understanding of HHV-6A/B genome integration into host DNA is currently limited due to the lack of reproducible and efficient viral integration systems. In the present study, we describe two quantitative cell culture viral integration systems. These systems can be used to define cellular and viral factors that play a role in HHV-6A/B integration. Furthermore, these systems will allow us to decipher the conditions resulting in virus gene expression and excision of the integrated viral genome resulting in reactivation. Copyright © 2017 American Society for Microbiology.
NASA Technical Reports Server (NTRS)
Almloef, Jan; Deleeuw, Bradley J.; Taylor, Peter R.; Bauschlicher, Charles W., Jr.; Siegbahn, Per
1989-01-01
The requirements for very accurate ab initio quantum chemical prediction of dissociation energies are examined using a detailed investigation of the nitrogen molecule. Although agreement with experiment to within 1 kcal/mol is not achieved even with the most elaborate multireference CI (configuration interaction) wave functions and largest basis sets currently feasible, it is possible to obtain agreement to within about 2 kcal/mol, or 1 percent of the dissociation energy. At this level it is necessary to account for core-valence correlation effects and to include up to h-type functions in the basis. The effect of i-type functions, the use of different reference configuration spaces, and basis set superposition error were also investigated. After discussing these results, the remaining sources of error in our best calculations are examined.
Theoretical Basis for Anomalous Heat and ^4He in Deuterium-Metal Systems
NASA Astrophysics Data System (ADS)
Chubb, Scott; Chubb, Talbot
2000-03-01
Because electromagnetic (E.M.) forces have infinite range, reactions exist in which the degrees of freedom associated with nuclear- and atomic- scales are coupled. Although such non-separable reactions are possible in conventional D+D fusion, they rarely occur because the relevant E.M.-induced reaction (D+Darrow ^4He) violates the rules of energy-momentum conservation (EMC) at-a-point, except when a high momentum (HM) gamma ray is emitted. When D^+ and ^4He^+^+ occupy ion band states with low concentration, however, different forms of E.M. coupling become possible in which EMC is violated locally but conserved globally and D+Darrow ^4He reactions occur without HM particles(http: //www.aps.org/meet/CENT99/BAPS/abs/S9500.html). Using a generalized KKR-Multiple-Scattering theory, we have formulated Generalized Kadanoff-Baym Equations ( D.C. Langreth and J.W. Wilkins, Phys. Rev. B 6), 3189 (1972). that describe the associated non-local heat and ^4He release from the resulting coupling between nuclear interactions, D^+ and ^4He^+^+ ion band states, and electrons.
NASA Technical Reports Server (NTRS)
Schwenke, David; Naumenko, Olga; Bertseva, Elena; Campargue, Alain; Arnold, James O. (Technical Monitor)
2000-01-01
The HDO absorption spectrum has been recorded in the 13165 - 13500 cm(exp-1) spectral region by Intracavity Laser Absorption Spectroscopy. The spectrum (615 lines), dominated by the 2n2 + 3n3 and n1+3n3 bands was assigned and modeled leading to the derivation of 196 accurate energy levels of the (103) and (023) vibrational states. Finally, 150 of these levels have been reproduced by an effective Hamiltonian involving two vibrational dark states interacting with the (023) and ( 103) bright states. The rms deviation achieved by variation of 28 parameters is 0.05-1 cm, compared to an averaged experimental uncertainty of 0.007-1 cm, indicating the limit of validity of the effective Hamiltonian approach for HDO at high vibrational excitation. The predictions of previous ab initio calculations of the HDO spectrum were extensively used in the assignment process. The particular spectral region under consideration has been used to test and discuss the improvements of new ab initio calculations recently performed on the basis of the same potential energy surface but with an improved dipole moment surface. The improvements concern both the energy levels and the line intensities. In particular, the strong hybrid character of the n1+3n3 band is very well accounted for by the the new ab initio calculations.
Long, Feng; Fong, Rachel H.; Austin, Stephen K.; ...
2015-10-26
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes severe acute and chronic disease in humans. Although highly inhibitory murine and human monoclonal antibodies (mAbs) have been generated, the structural basis of their neutralizing activity remains poorly characterized. In this paper, we determined the cryo-EM structures of chikungunya virus-like particles complexed with antibody fragments (Fab) of two highly protective human mAbs, 4J21 and 5M16, that block virus fusion with host membranes. Both mAbs bind primarily to sites within the A and B domains, as well as to the B domain’s β-ribbon connector of the viral glycoprotein E2. The footprints ofmore » these antibodies on the viral surface were consistent with results from loss-of-binding studies using an alanine scanning mutagenesis-based epitope mapping approach. The Fab fragments stabilized the position of the B domain relative to the virus, particularly for the complex with 5M16. Finally, this finding is consistent with a mechanism of neutralization in which anti-CHIKV mAbs that bridge the A and B domains impede movement of the B domain away from the underlying fusion loop on the E1 glycoprotein and therefore block the requisite pH-dependent fusion of viral and host membranes.« less
Antibody recognition of a unique tumor-specific glycopeptide antigen
Brooks, Cory L.; Schietinger, Andrea; Borisova, Svetlana N.; Kufer, Peter; Okon, Mark; Hirama, Tomoko; MacKenzie, C. Roger; Wang, Lai-Xi; Schreiber, Hans; Evans, Stephen V.
2010-01-01
Aberrant glycosylation and the overexpression of certain carbohydrate moieties is a consistent feature of cancers, and tumor-associated oligosaccharides are actively investigated as targets for immunotherapy. One of the most common aberrations in glycosylation patterns is the presentation of a single O-linked N-acetylgalactosamine on a threonine or serine residue known as the “Tn antigen.” Whereas the ubiquitous nature of Tn antigens on cancers has made them a natural focus of vaccine research, such carbohydrate moieties are not always tumor-specific and have been observed on embryonic and nonmalignant adult tissue. Here we report the structural basis of binding of a complex of a monoclonal antibody (237mAb) with a truly tumor-specific glycopeptide containing the Tn antigen. In contrast to glycopeptide-specific antibodies in complex with simple peptides, 237mAb does not recognize a conformational epitope induced in the peptide by sugar substitution. Instead, 237mAb uses a pocket coded by germ-line genes to completely envelope the carbohydrate moiety itself while interacting with the peptide moiety in a shallow groove. Thus, 237mAb achieves its striking tumor specificity, with no observed physiological cross-reactivity to the unglycosylated peptide or the free glycan, by a combination of multiple weak but specific interactions to both the peptide and to the glycan portions of the antigen. PMID:20479270
An, Yarui; Jiang, Xiaoli; Bi, Wenji; Chen, Hua; Jin, Litong; Zhang, Shengping; Wang, Chuangui; Zhang, Wen
2012-02-15
A novel electrochemical immunosensor for sensitive detection of α-synuclein (α-SYN), a very important neuronal protein, has been developed based on dual signal amplification strategy. Herein, G4-polyamidoamine dendrimer-encapsulated Au nanoparticles (PAMAM-Au nanocomposites) were covalently bound on the poly-o-aminobenzoic acid (poly-o-ABA), which was initially electropolymerized on the electrode surface to perform abundant carboxyl groups. The formed immunosensor platform, PAMAM-Au, was proved to provide numerous amino groups to allow highly dense immobilization of antigen, and facilitate the improvement of electrochemical responses as well. Subsequently, the enhanced gold nanoparticle labels ({HRP-Ab(2)-GNPs}) were fabricated by immobilizing horseradish peroxidase-secondary antibody (HRP-Ab(2)) on the surface of gold nanoparticles (GNPs). After an immunoassay process, the {HRP-Ab(2)-GNPs} labels were introduced onto the electrode surface, and produced an electrocatalytic response by reduction of hydrogen peroxide (H(2)O(2)) in the presence of enzymatically oxidized thionine. On the basis of the dual signal amplification of PAMAM-Au and {HRP-Ab(2)-GNPs} labels, the designed immunosensor displayed an excellent analytical performance with high sensitivity and stability. This developed strategy was successfully proved as a simple, cost-effective method, and could be easily extended to other protein analysis schemes. Copyright © 2011 Elsevier B.V. All rights reserved.
Samarawickrama, Chameen; Samanta, Ayan; Liszka, Aneta; Fagerholm, Per; Buznyk, Oleksiy; Griffith, May; Allan, Bruce
2018-05-01
To describe the use of collagen-based alternatives to cyanoacrylate glue for the sealing of acute corneal perforations. A collagen analog comprising a collagen-like peptide conjugated to polyethylene glycol (CLP-PEG) and its chemical crosslinker were tested for biocompatibility. These CLP-PEG hydrogels, which are designed to act as a framework for corneal tissue regeneration, were then tested as potential fillers in ex vivo human corneas with surgically created full-thickness perforations. Bursting pressures were measured in each of 3 methods (n = 10 for each condition) of applying a seal: 1) cyanoacrylate glue with a polyethylene patch applied ab externo (gold standard); 2) a 100-μm thick collagen hydrogel patch applied ab interno, and 3) the same collagen hydrogel patch applied ab interno supplemented with CLP-PEG hydrogel molded in situ to fill the remaining corneal stromal defect. Cyanoacrylate gluing achieved a mean bursting pressure of 325.9 mm Hg, significantly higher than the ab interno patch alone (46.3 mm Hg) and the ab interno patch with the CLP-PEG filler (86.6 mm Hg). All experimental perforations were sealed effectively using 100 μm hydrogel sheets as an ab interno patch, whereas conventional ab externo patching with cyanoacrylate glue failed to provide a seal in 30% (3/10) cases. An ab interno patch system using CLP-PEG hydrogels designed to promote corneal tissue regeneration may be a viable alternative to conventional cyanoacrylate glue patching for the treatment of corneal perforation. Further experimentation and material refinement is required in advance of clinical trials.
Catera, Rosa; Hatzi, Katerina; Yan, Xiao-Jie; Zhang, Lu; Wang, Xiao Bo; Fales, Henry M.; Allen, Steven L.; Kolitz, Jonathan E.; Rai, Kanti R.; Chiorazzi, Nicholas
2008-01-01
Leukemic B lymphocytes of a large group of unrelated chronic lymphocytic leukemia (CLL) patients express an unmutated heavy chain immunoglobulin variable (V) region encoded by IGHV1-69, IGHD3-16, and IGHJ3 with nearly identical heavy and light chain complementarity-determining region 3 sequences. The likelihood that these patients developed CLL clones with identical antibody V regions randomly is highly improbable and suggests selection by a common antigen. Monoclonal antibodies (mAbs) from this stereotypic subset strongly bind cytoplasmic structures in HEp-2 cells. Therefore, HEp-2 cell extracts were immunoprecipitated with recombinant stereotypic subset-specific CLL mAbs, revealing a major protein band at approximately 225 kDa that was identified by mass spectrometry as nonmuscle myosin heavy chain IIA (MYHIIA). Reactivity of the stereotypic mAbs with MYHIIA was confirmed by Western blot and immunofluorescence colocalization with anti-MYHIIA antibody. Treatments that alter MYHIIA amounts and cytoplasmic localization resulted in a corresponding change in binding to these mAbs. The appearance of MYHIIA on the surface of cells undergoing stress or apoptosis suggests that CLL mAb may generally bind molecules exposed as a consequence of these events. Binding of CLL mAb to MYHIIA could promote the development, survival, and expansion of these leukemic cells. PMID:18812466
Vij, Rajesh; Lin, Zhonghua; Chiang, Nancy; Vernes, Jean-Michel; Storek, Kelly M; Park, Summer; Chan, Joyce; Meng, Y Gloria; Comps-Agrar, Laetitia; Luan, Peng; Lee, Sophia; Schneider, Kellen; Bevers, Jack; Zilberleyb, Inna; Tam, Christine; Koth, Christopher M; Xu, Min; Gill, Avinash; Auerbach, Marcy R; Smith, Peter A; Rutherford, Steven T; Nakamura, Gerald; Seshasayee, Dhaya; Payandeh, Jian; Koerber, James T
2018-05-08
Outer membrane proteins (OMPs) in Gram-negative bacteria are essential for a number of cellular functions including nutrient transport and drug efflux. Escherichia coli BamA is an essential component of the OMP β-barrel assembly machinery and a potential novel antibacterial target that has been proposed to undergo large (~15 Å) conformational changes. Here, we explored methods to isolate anti-BamA monoclonal antibodies (mAbs) that might alter the function of this OMP and ultimately lead to bacterial growth inhibition. We first optimized traditional immunization approaches but failed to identify mAbs that altered cell growth after screening >3000 hybridomas. We then developed a "targeted boost-and-sort" strategy that combines bacterial cell immunizations, purified BamA protein boosts, and single hybridoma cell sorting using amphipol-reconstituted BamA antigen. This unique workflow improves the discovery efficiency of FACS + mAbs by >600-fold and enabled the identification of rare anti-BamA mAbs with bacterial growth inhibitory activity in the presence of a truncated lipopolysaccharide layer. These mAbs represent novel tools for dissecting the BamA-mediated mechanism of β-barrel folding and our workflow establishes a new template for the efficient discovery of novel mAbs against other highly dynamic membrane proteins.
Hajdú, István; Flachner, Beáta; Bognár, Melinda; Végh, Barbara M; Dobi, Krisztina; Lőrincz, Zsolt; Lázár, József; Cseh, Sándor; Takács, László; Kurucz, István
2014-08-01
Monoclonal antibody proteomics uses nascent libraries or cloned (Plasmascan™, QuantiPlasma™) libraries of mAbs that react with individual epitopes of proteins in the human plasma. At the initial phase of library creation, cognate protein antigen and the epitope interacting with the antibodies are not known. Scouting for monoclonal antibodies (mAbs) with the best binding characteristics is of high importance for mAb based biomarker assay development. However, in the absence of the identity of the cognate antigen the task represents a challenge. We combined phage display, and surface plasmon resonance (Biacore) experiments to test whether specific phages and the respective mimotope peptides obtained from large scale studies are applicable to determine key features of antibodies for scouting. We show here that mAb captured phage-mimotope heterogeneity that is the diversity of the selected peptide sequences, is inversely correlated with an important binding descriptor; the off-rate of the antibodies and that represents clues for driving the selection of useful mAbs for biomarker assay development. Carefully chosen synthetic mimotope peptides are suitable for specificity testing in competitive assays using the target proteome, in our case the human plasma. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Haitao; Zhang, Yun; Huang, Zhigao; Tang, Zhongbin; Wang, Yanpei; Zhou, Huamin
2017-10-01
The objective of this paper is to accurately predict the rate/temperature-dependent deformation of a polycarbonate (PC) and acrylonitrile-butadiene-styrene (ABS) blend at low, moderate, and high strain rates for various temperatures. Four constitutive models have been employed to predict stress-strain responses of PC/ABS under these conditions, including the DSGZ model, the original Mulliken-Boyce (M-B) model, the modified M-B model, and an adiabatic model named the Wang model. To more accurately capture the large deformation of PC/ABS under the high strain rate loading, the original M-B model is modified by allowing for the evolution of the internal shear strength. All of the four constitutive models above have been implemented in the finite element software ABAQUS/Explicit. A comparison of prediction accuracies of the four constitutive models over a wide range of strain rates and temperatures has been presented. The modified M-B model is observed to be more accurate in predicting the deformation of PC/ABS at high strain rates for various temperatures than the original M-B model, and the Wang model is demonstrated to be the most accurate in simulating the deformation of PC/ABS at low, moderate, and high strain rates for various temperatures.
Efficient Ab initio Modeling of Random Multicomponent Alloys
Jiang, Chao; Uberuaga, Blas P.
2016-03-08
Here, we present in this Letter a novel small set of ordered structures (SSOS) method that allows extremely efficient ab initio modeling of random multi-component alloys. Using inverse II-III spinel oxides and equiatomic quinary bcc (so-called high entropy) alloys as examples, we also demonstrate that a SSOS can achieve the same accuracy as a large supercell or a well-converged cluster expansion, but with significantly reduced computational cost. In particular, because of this efficiency, a large number of quinary alloy compositions can be quickly screened, leading to the identification of several new possible high entropy alloy chemistries. Furthermore, the SSOS methodmore » developed here can be broadly useful for the rapid computational design of multi-component materials, especially those with a large number of alloying elements, a challenging problem for other approaches.« less
Peng, Jing; Wang, Qiong; Cheng, Xiaoling; Liu, Mengwen; Wang, Mei; Xin, Huawei
2018-04-25
We used the antibody grafting technology to prepare anti-hCG single-domain antibodies on the basis of antigen-binding peptide to simplify the single-domain antibody preparation process and improving the biochemical stability of peptide. By using a universal single-domain antibody backbone (cAbBCII10), CDR1 or CDR3 was replaced by the hCG-binding peptide, and the grafted antibody gene sequences were synthesized and cloned into the prokaryotic expression vector pET30a(+) in fusion with a C-terminal sfGFP gene, i.e. pET30a-(His6)-cAbBCII10-CDR1/hCGBP1-sfGFP and pET30a-(His6)-cAbBCII10-CDR3/hCGBP3-sfGFP. The recombinant plasmids were transformed into E. coli BL21(DE3), and the fusion proteins were induced by IPTG. Highly soluble recombinant fusion proteins were obtained and purified by Ni-NTA affinity column. SDS-PAGE confirmed the purified protein as the target protein. The antigen-antibody binding assay showed that both the CDR1 and CDR3 grafted antibodies have hCG-binding activities. While the titers of the two grafted antibodies were similar, the binding affinity of CDR3 grafted antibody was higher than that of CDR1 grafted protein (about 2-3 times). The grafted antibodies retained the relatively high biochemical stability of the single-domain antibody backbone and were relatively thermostable and alkaline tolerant. The obtained antibodies also had a relatively high antigen-binding specificity to hCG. This study provided a reliable experimental basis for further optimization of anti-hCG single domain antibody by antibody grafting technology using antigen-binding peptide.
An antibody that prevents serpin polymerisation acts by inducing a novel allosteric behaviour.
Motamedi-Shad, Neda; Jagger, Alistair M; Liedtke, Maximilian; Faull, Sarah V; Nanda, Arjun Scott; Salvadori, Enrico; Wort, Joshua L; Kay, Christopher W M; Heyer-Chauhan, Narinder; Miranda, Elena; Perez, Juan; Ordóñez, Adriana; Haq, Imran; Irving, James A; Lomas, David A
2016-10-01
Serpins are important regulators of proteolytic pathways with an antiprotease activity that involves a conformational transition from a metastable to a hyperstable state. Certain mutations permit the transition to occur in the absence of a protease; when associated with an intermolecular interaction, this yields linear polymers of hyperstable serpin molecules, which accumulate at the site of synthesis. This is the basis of many pathologies termed the serpinopathies. We have previously identified a monoclonal antibody (mAb4B12) that, in single-chain form, blocks α1-antitrypsin (α1-AT) polymerisation in cells. Here, we describe the structural basis for this activity. The mAb4B12 epitope was found to encompass residues Glu32, Glu39 and His43 on helix A and Leu306 on helix I. This is not a region typically associated with the serpin mechanism of conformational change, and correspondingly the epitope was present in all tested structural forms of the protein. Antibody binding rendered β-sheet A - on the opposite face of the molecule - more liable to adopt an 'open' state, mediated by changes distal to the breach region and proximal to helix F. The allosteric propagation of induced changes through the molecule was evidenced by an increased rate of peptide incorporation and destabilisation of a preformed serpin-enzyme complex following mAb4B12 binding. These data suggest that prematurely shifting the β-sheet A equilibrium towards the 'open' state out of sequence with other changes suppresses polymer formation. This work identifies a region potentially exploitable for a rational design of ligands that is able to dynamically influence α1-AT polymerisation. © 2016 The Author(s).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shirkov, Leonid; Makarewicz, Jan, E-mail: jama@amu.edu.pl
An ab initio intermolecular potential energy surface (PES) has been constructed for the benzene-krypton (BKr) van der Waals (vdW) complex. The interaction energy has been calculated at the coupled cluster level of theory with single, double, and perturbatively included triple excitations using different basis sets. As a result, a few analytical PESs of the complex have been determined. They allowed a prediction of the complex structure and its vibrational vdW states. The vibrational energy level pattern exhibits a distinct polyad structure. Comparison of the equilibrium structure, the dipole moment, and vibrational levels of BKr with their experimental counterparts has allowedmore » us to design an optimal basis set composed of a small Dunning’s basis set for the benzene monomer, a larger effective core potential adapted basis set for Kr and additional midbond functions. Such a basis set yields vibrational energy levels that agree very well with the experimental ones as well as with those calculated from the available empirical PES derived from the microwave spectra of the BKr complex. The basis proposed can be applied to larger complexes including Kr because of a reasonable computational cost and accurate results.« less
NASA Astrophysics Data System (ADS)
Sargent, Andrew Landman
Approximate molecular orbital and ab initio quantum chemical techniques are used to investigate the electronic structure, bonding and reactivity of several transition metal inorganic and organometallic complexes. Modest-sized basis sets are developed for the second-row transition metal atoms and are designed for use in geometry optimizations of inorganic and organometallic complexes incorporating these atoms. The basis sets produce optimized equilibrium geometries which are slightly better than those produced with standard 3-21G basis sets, and which are significantly better than those produced with effective core potential basis sets. Linear semibridging carbonyl ligands in heterobimetallic complexes which contain a coordinatively unsaturated late transition metal center are found to accept electron density from, rather than donate electron density to, these centers. Only when the secondary metal center is a coordinatively unsaturated early transition metal center does the semibridging ligand donate electron density to this center. Large holes in the d shell around the metal center are more prominent and prevalent in early than in late transition metal centers, and the importance of filling in these holes outweighs the importance of mitigating the charge imbalance due to the dative metal-metal interaction. Semibridging thiocarbonyl ligands are more effective donors of electron density than the carbonyl ligands since the occupied donor orbitals of pi symmetry are higher in energy. The stereoselectivity of H_2 addition to d^8 square-planar transition metal complexes is controlled by the interactions between the ligands in the plane of addition and the concentrations of electronic charge around the metal center as the complex evolves from a four-coordinate to a six-coordinate species. Electron -withdrawing ligands help stabilize the five-coordinate species while strong electron donor ligands contribute only to the destabilizing repulsive interactions. The relative thermodynamic stabilities of the final complexes can be predicted based on the relative orientations of the strongest sigma-donor ligands.
Frobell, R B; Wirth, W; Nevitt, M; Wyman, B T; Benichou, O; Dreher, D; Davies, R Y; Lee, J H; Baribaud, F; Gimona, A; Hudelmaier, M; Cotofana, S; Eckstein, F
2010-05-01
To assess the presence, location, type and size of denuded areas of subchondral bone (dAB) in the femorotibial joint, measured quantitatively with 3T MRI, in a large subset of OAI participants. One knee of 633 subjects (250 men, 383 women, aged 61.7+/-9.6 y) were studied, spanning all radiographic osteoarthritis (OA) stages. dABs were determined quantitatively using segmentations of coronal FLASHwe images, representing areas where the subchondral bone was not covered by cartilage. Post hoc visual examination of segmented images determined whether dABs represented full thickness cartilage loss or internal osteophyte. 7% Of the knees were Kellgren & Lawrence (KL) grade 0, 6% grade 1, 41% grade 2, 41% grade 3, and 5% grade 4. 39% Of the participants (48% of the men and 33% of the women) displayed dABs; 61% of the dABs represented internal osteophytes. 1/47 Participants with KL grade 0 displayed 'any' dAB whereas 29/32 of the KL grade 4 knees were affected. Even as early as KL grade 1, 29% of the participants showed dABs. There were significant relationships of dAB with increasing KL grades (P<0.001) and with ipsi-compartimental JSN (P< or =0.001). Internal osteophytes were more frequent laterally (mainly posterior tibia and internal femur) whereas full thickness cartilage loss was more frequent medially (mainly external tibia and femur). dABs occur already at earliest stages of radiographic OA (KL grades 1 and 2) and become more common (and larger) with increasing disease severity. Almost all KL grade 4 knees exhibited dABs, with cartilage loss being more frequent than internal osteophytes. Copyright 2010 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Almodarresiyeh, H. A.; Shahab, S. N.; Zelenkovsky, V. M.; Agabekov, V. E.
2014-03-01
The electronic structure and geometry of the synthesized azodye sodium 2-hydroxy-5-({2-methoxy-4[(4-sulfophenyl) diazenyl]phenyl}diazenyl)benzoate (M12) were calculated theoretically by an ab initio Hartree-Fock method in basis set 6-31G. The nature of absorption bands in the visible and near-UV spectral regions was interpreted.
Ab initio calculation of hyperfine splitting constants of molecules
NASA Astrophysics Data System (ADS)
Ohta, K.; Nakatsuji, H.; Hirao, K.; Yonezawa, T.
1980-08-01
Hyperfine splitting (hfs) constants of molecules, methyl, ethyl, vinyl, allyl, cyclopropyl, formyl, O3-, NH2, NO2, and NF2 radicals have been calculated by the pseudo-orbital (PO) theory, the unrestricted HF (UHF), projected UHF (PUHF) and single excitation (SE) CI theories. The pseudo-orbital (PO) theory is based on the symmetry-adapted-cluster (SAC) expansion proposed previously. Several contractions of the Gaussian basis sets of double-zeta accuracy have been examined. The UHF results were consistently too large to compare with experiments and the PUHF results were too small. For molecules studied here, the PO theory and SECI theory gave relatively close results. They were in fair agreement with experiments. The first-order spin-polarization self-consistency effect, which was shown to be important for atoms, is relatively small for the molecules. The present result also shows an importance of eliminating orbital-transformation dependence from conventional first-order perturbation calculations. The present calculations have explained well several important variations in the experimental hfs constants.
NASA Astrophysics Data System (ADS)
Gallup, G. A.; Gerratt, J.
1985-09-01
The van der Waals energy between the two parts of a system is a very small fraction of the total electronic energy. In such cases, calculations have been based on perturbation theory. However, such an approach involves certain difficulties. For this reason, van der Waals energies have also been directly calculated from total energies. But such a method has definite limitations as to the size of systems which can be treated, and recently ab initio calculations have been combined with damped semiempirical long-range dispersion potentials to treat larger systems. In this procedure, large basis set superposition errors occur, which must be removed by the counterpoise method. The present investigation is concerned with an approach which is intermediate between the previously considered procedures. The first step in the new approach involves a variational calculation based upon valence bond functions. The procedure includes also the optimization of excited orbitals, and an approximation of atomic integrals and Hamiltonian matrix elements.
New Angles on Standard Force Fields: Toward a General Approach for Treating Atomic-Level Anisotropy
Van Vleet, Mary J.; Misquitta, Alston J.; Schmidt, J. R.
2017-12-21
Nearly all standard force fields employ the “sum-of-spheres” approximation, which models intermolecular interactions purely in terms of interatomic distances. Nonetheless, atoms in molecules can have significantly nonspherical shapes, leading to interatomic interaction energies with strong orientation dependencies. Neglecting this “atomic-level anisotropy” can lead to significant errors in predicting interaction energies. Herein, we propose a simple, transferable, and computationally efficient model (MASTIFF) whereby atomic-level orientation dependence can be incorporated into ab initio intermolecular force fields. MASTIFF includes anisotropic exchange-repulsion, charge penetration, and dispersion effects, in conjunction with a standard treatment of anisotropic long-range (multipolar) electrostatics. To validate our approach, we benchmarkmore » MASTIFF against various sum-of-spheres models over a large library of intermolecular interactions between small organic molecules. MASTIFF achieves quantitative accuracy, with respect to both high-level electronic structure theory and experiment, thus showing promise as a basis for “next-generation” force field development.« less
New Angles on Standard Force Fields: Toward a General Approach for Treating Atomic-Level Anisotropy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Vleet, Mary J.; Misquitta, Alston J.; Schmidt, J. R.
Nearly all standard force fields employ the “sum-of-spheres” approximation, which models intermolecular interactions purely in terms of interatomic distances. Nonetheless, atoms in molecules can have significantly nonspherical shapes, leading to interatomic interaction energies with strong orientation dependencies. Neglecting this “atomic-level anisotropy” can lead to significant errors in predicting interaction energies. Herein, we propose a simple, transferable, and computationally efficient model (MASTIFF) whereby atomic-level orientation dependence can be incorporated into ab initio intermolecular force fields. MASTIFF includes anisotropic exchange-repulsion, charge penetration, and dispersion effects, in conjunction with a standard treatment of anisotropic long-range (multipolar) electrostatics. To validate our approach, we benchmarkmore » MASTIFF against various sum-of-spheres models over a large library of intermolecular interactions between small organic molecules. MASTIFF achieves quantitative accuracy, with respect to both high-level electronic structure theory and experiment, thus showing promise as a basis for “next-generation” force field development.« less
NASA Astrophysics Data System (ADS)
Ching, Wai-Yim; Rulis, Paul
2009-03-01
Over the last eight years, a large number of x-ray absorption near edge structure (XANES) and/or electron energy loss near edge structure (ELNES) spectroscopic calculations for complex oxides and nitrides have been performed using the supercell-OLCAO (orthogonalized linear combination of atomic orbitals) method, obtaining results in very good agreement with experiments. The method takes into account the core-hole effect and includes the dipole matrix elements calculated from ab initio wavefunctions. In this paper, we describe the method in considerable detail, emphasizing the special advantages of this method for large complex systems. Selected results are reviewed and several hitherto unpublished results are also presented. These include the Y K edge of Y ions segregated to the core of a Σ31 grain boundary in alumina, O K edges of water molecules, C K edges in different types of single walled carbon nanotubes, and the Co K edge in the cyanocobalamin (vitamin B12) molecule. On the basis of these results, it is argued that the interpretation of specific features of the calculated XANES/ELNES edges is not simple for complex material systems because of the delocalized nature of the conduction band states. The long-standing notion of the 'fingerprinting' technique for spectral interpretation of experimental data is not tenable. A better approach is to fully characterize the structure under study, using either crystalline data or accurate ab initio modeling. Comparison between calculated XANES/ELNES spectra and available measurements enables us to ascertain the validity of the modeled structure. For complex crystals or structures, it is necessary to use the weighted sum of the spectra from structurally nonequivalent sites for comparison with the measured data. Future application of the supercell-OLCAO method to complex biomolecular systems is also discussed.
Flener-Lovitt, Charity; Woon, David E; Dunning, Thom H; Girolami, Gregory S
2010-02-04
Density functional theory and ab initio methods have been used to calculate the structures and energies of minima and transition states for the reactions of methane coordinated to a transition metal. The reactions studied are reversible C-H bond activation of the coordinated methane ligand to form a transition metal methyl hydride complex and dissociation of the coordinated methane ligand. The reaction sequence can be summarized as L(x)M(CH(3))H <==> L(x)M(CH(4)) <==> L(x)M + CH(4), where L(x)M is the osmium-containing fragment (C(5)H(5))Os(R(2)PCH(2)PR(2))(+) and R is H or CH(3). Three-center metal-carbon-hydrogen interactions play an important role in this system. Both basis sets and functionals have been benchmarked in this work, including new correlation consistent basis sets for a third transition series element, osmium. Double zeta quality correlation consistent basis sets yield energies close to those from calculations with quadruple-zeta basis sets, with variations that are smaller than the differences between functionals. The energies of important species on the potential energy surface, calculated by using 10 DFT functionals, are compared both to experimental values and to CCSD(T) single point calculations. Kohn-Sham natural bond orbital descriptions are used to understand the differences between functionals. Older functionals favor electrostatic interactions over weak donor-acceptor interactions and, therefore, are not particularly well suited for describing systems--such as sigma-complexes--in which the latter are dominant. Newer kinetic and dispersion-corrected functionals such as MPW1K and M05-2X provide significantly better descriptions of the bonding interactions, as judged by their ability to predict energies closer to CCSD(T) values. Kohn-Sham and natural bond orbitals are used to differentiate between bonding descriptions. Our evaluations of these basis sets and DFT functionals lead us to recommend the use of dispersion corrected functionals in conjunction with double-zeta or larger basis sets with polarization functions for calculations involving weak interactions, such as those found in sigma-complexes with transition metals.
Cihan, Arzu Coleri; Cokmus, Cumhur; Koc, Melih; Ozcan, Birgul
2014-01-01
A novel thermophilic, Gram-stain-positive, facultatively anaerobic, endospore-forming, motile, rod-shaped bacterium, strain C161ab(T), was isolated from a soil sample collected near Kizildere, Saraykoy-Buharkent power plant in Denizli. The isolate could grow at temperatures between 35 and 70 °C (optimum 55 °C), at pH 6.5-9.0 (optimum pH 8.0-8.5) and with 0-2.5 % NaCl (optimum 0.5 %, w/v). The strain formed cream-coloured, circular colonies and tolerated up to 70 mM boron. Its DNA G+C content was 37.8 mol%. The peptidoglycan contained meso-diaminopimelic acid as the diagnostic diamino acid. Strain C161ab(T) contained menaquinones MK-7 (96 %) and MK-6 (4 %). The major cellular fatty acids were iso-branched fatty acids: iso-C15 : 0 (52.2 %) and iso-C17 : 0 (28.0 %,) with small amounts of C16 : 0 (7.4 %). Phylogenetic analysis based on the 16S rRNA gene revealed 94.6-96.8 % sequence similarity with all recognized species of the genus Anoxybacillus. Strain C161ab(T) showed the greatest sequence similarity to Anoxybacillus rupiensis DSM 17127(T) and Anoxybacillus voinovskiensis DSM 17075(T), both had 96.8 % similarity to strain C161ab(T), as well as to Anoxybacillus caldiproteolyticus DSM 15730(T) (96.6 %). DNA-DNA hybridization revealed low levels of relatedness with the closest relatives of strain C161ab(T), A. rupiensis (21.2 %) and A. voinovskiensis (16.5 %). On the basis of the results obtained from phenotypic, chemotaxonomic, genomic fingerprinting, phylogenetic and hybridization analyses, the isolate is proposed to represent a novel species, Anoxybacillus calidus sp. nov. (type strain C161ab(T) = DSM 25520(T) = NCIMB 14851(T)).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alnajjar, M.S.; Garrossian, M.S.; Autrey, S.T.
1992-08-20
Arrhenius rate expressions were determined for the abstraction of hydrogen atom from thiophenol and hexanethiol by the octanethiyl radical at 25-100 {degrees}C in nonane. Octanethiyl radicals were produced by steady-state photolysis of octyl thiobenzoate. Analysis of octyl disulfide and octanethiyl radical. For hexanethiol, log (k{sub abs}/K{sub t}{sup 1/2}) = (2.94 {plus_minus} 0.29) - (3.84 {plus_minus}0.41)/0, and for thiophenol, log (k{sub abs}/k{sub 5}{sup 1/2}) = (2.56 {plus_minus} 0.19) - (2.88 {plus_minus} 0.28)/0;0=2.3RT kcal/mol. Combining these expressions with the Smoluchowski expression for self-termination of octanethiyl in nonane, log (k{sub t}{sup 1/2}) = 5.96 - 1.335/0, which employs experimental diffusion coefficients of octanethiolmore » and a spin selection factor {sigma} = 1, yields, for thiophenol, log (k{sub abs}/M{sup {minus}1}s{sup {minus}1}) = (8.52 {plus_minus} 0.18) = (4.22 {plus_minus} 0.27)/0, and for hexanethiol, log (k{sub abs}/M{sup {minus}1} s{sup {minus}1}) = (8.90 {plus_minus} 0.29) = (5.18 {plus_minus} 0.41)/0 (errors are 2{sigma}). The rate of disappearance of octanethiyl/diphenylketyl radical pairs in SDS micelles, determined by nanosecond optical spectroscopy, was found to be unchanged in a 700-G magnetic field, providing evidence for rapid intersystem crossing of sulfur-centered radical pairs and support for the assignment of {sigma} = 1 above. Ab initio electronic structure calculations on the reaction HS{sup {lg_bullet}} + HSH {r_arrow} HSH + {sup {lg_bullet}}SH, performed at SCF and correlated levels, predict an activation barrier of {Delta}H{sub 298} {sup {double_dagger}}= 4.6 kcal/mol, in close agreement with the experimental barrier for the octanethiyl + hexanethiol reactions. 43 refs., 5 figs., 4 tabs.« less
Giansiracusa, Marcus J; Vonci, Michele; Van den Heuvel, Willem; Gable, Robert W; Moubaraki, Boujemaa; Murray, Keith S; Yu, Dehong; Mole, Richard A; Soncini, Alessandro; Boskovic, Colette
2016-06-06
Optimization of literature synthetic procedures has afforded, in moderate yield, homogeneous and crystalline samples of the five analogues Na11[{RE(OH2)}3CO3(PW9O34)2] (1-RE; RE = Y, Tb, Dy, Ho, and Er). Phase-transfer methods have allowed isolation of the mixed salts (Et4N)9Na2[{RE(OH2)}3CO3(PW9O34)2] (2-RE; RE = Y and Er). The isostructural polyanions in these compounds are comprised of a triangular arrangement of trivalent rare-earth ions bridged by a μ3-carbonate ligand and sandwiched between two trilacunary Keggin {PW9O34} polyoxometalate ligands. Alternating-current (ac) magnetic susceptibility studies of 1-Dy, 1-Er, and 2-Er reveal the onset of frequency dependence for the out-of-phase susceptibility in the presence of an applied magnetic field at the lowest measured temperatures. Inelastic neutron scattering (INS) spectra of 1-Ho and 1-Er exhibit transitions between the lowest-lying crystal-field (CF) split states of the respective J = 8 and (15)/2 ground-state spin-orbit multiplets of the Ho(III) and Er(III) ions. Complementary ab initio calculations performed for these two analogues allow excellent reproduction of the experimental magnetic susceptibility and low-temperature magnetization data and are in reasonable agreement with the experimental INS data. The ab initio calculations reveal that the slight difference in coordination environments of the three Ln(III) ions in each complex gives rise to differences in the CF splitting that are not insignificant. This theoretical result is consistent with the observation of multiple relaxation processes by ac magnetic susceptibility and the broadness of the measured INS peaks. The ab initio calculations also indicate substantial mixing of the MJ contributions to the CF split energy levels of each Ln(III) ion. Calculations indicate that the CF ground states of the Ho(III) centers in 1-Ho are predominantly comprised of contributions from small MJ, while those of the Er(III) centers in 1-Er are predominantly comprised of contributions from large MJ, giving rise to slow magnetic relaxation. Although no direct evidence for intramolecular RE···RE magnetic coupling is observed in either magnetic or INS studies, on the basis of the ab initio calculations, we find noncollinear magnetic axes in 1-Er that are coplanar with the erbium triangle and radially arranged with respect to the triangle's centroid; thus, we argue that the absence of magnetic coupling in this system arises from dipolar and antiferromagnetic superexchange interactions that cancel each other out.
Benterud, Torkil; Pankratov, Leonid; Solberg, Rønnaug; Bolstad, Nils; Skinningsrud, Anders; Baumbusch, Lars; Sandvik, Leiv; Saugstad, Ola Didrik
2015-01-01
Total tau (T-tau), phosphorylated tau (p-Tau) and Beta-Amyloid 1-42 (AB42) in Cerebrospinal Fluid (CSF) are useful biomarkers in neurodegenerative diseases. The aim of the study was to investigate the role of these and other CSF biomarkers (T-tau, p-Tau, AB42, S100B and NSE), during hypoxia-reoxygenation in a newborn pig model. Thirty newborn pigs were included in a study of moderate or severe hypoxia. The moderate hypoxia group (n = 12) was exposed to global hypoxia (8% O2) until Base excess (BE) reached -15 mmol/l. The pigs in the group exposed to severe hypoxia (n = 12) received 8% O2 until BE reached -20 mmol/l or mean Blood Pressure fell below 20 mm Hg, The control group (n = 6) was kept at room air. For all treatments, the CSF was collected at 9.5 hours after the intervention. The level of AB42 in CSF was significantly lower in the pigs exposed to severe hypoxia compared with the control group, 922(SD +/-445)pg/ml versus. 1290(SD +/-143) pg/ml (p<0.05), respectively. Further, a non-significant reduction of AB42 was observed in the group exposed to moderate hypoxia T-tau and p-Tau revealed no significant differences between the intervention groups and the control group, however a significantly higher level of S100B was seen in the CSF of pigs receiving hypoxia in comparison to the level in the control group. Further on, there was a moderate negative correlation between the levels of AB42 and S100B in CSF, as well as a moderate negative correlation between Lactate in blood at end of hypoxia and AB42 in CSF. This is the first study to our knowledge that demonstrated a significant drop in AB42 in CSF after neonatal hypoxia. Whether or not this has an etiological basis for adult neurodegenerative disorders needs to be studied with additional experiments and epidemiological studies. AB42 and S100B are significantly changed in neonatal pigs subjected to hypoxia compared to controls and thus may be valuable biomarkers of perinatal asphyxia.
Benterud, Torkil; Pankratov, Leonid; Solberg, Rønnaug; Bolstad, Nils; Skinningsrud, Anders; Baumbusch, Lars; Sandvik, Leiv; Saugstad, Ola Didrik
2015-01-01
Objective Total tau (T-tau), phosphorylated tau (p-Tau) and Beta-Amyloid 1–42 (AB42) in Cerebrospinal Fluid (CSF) are useful biomarkers in neurodegenerative diseases. The aim of the study was to investigate the role of these and other CSF biomarkers (T-tau, p-Tau, AB42, S100B and NSE), during hypoxia-reoxygenation in a newborn pig model. Design Thirty newborn pigs were included in a study of moderate or severe hypoxia. The moderate hypoxia group (n = 12) was exposed to global hypoxia (8% O2) until Base excess (BE) reached -15 mmol/l. The pigs in the group exposed to severe hypoxia (n = 12) received 8% O2 until BE reached -20 mmol/l or mean Blood Pressure fell below 20 mm Hg, The control group (n = 6) was kept at room air. For all treatments, the CSF was collected at 9.5 hours after the intervention. Results The level of AB42 in CSF was significantly lower in the pigs exposed to severe hypoxia compared with the control group, 922(SD +/-445)pg/ml versus. 1290(SD +/-143) pg/ml (p<0.05), respectively. Further, a non-significant reduction of AB42 was observed in the group exposed to moderate hypoxia T-tau and p-Tau revealed no significant differences between the intervention groups and the control group, however a significantly higher level of S100B was seen in the CSF of pigs receiving hypoxia in comparison to the level in the control group. Further on, there was a moderate negative correlation between the levels of AB42 and S100B in CSF, as well as a moderate negative correlation between Lactate in blood at end of hypoxia and AB42 in CSF. Interpretation This is the first study to our knowledge that demonstrated a significant drop in AB42 in CSF after neonatal hypoxia. Whether or not this has an etiological basis for adult neurodegenerative disorders needs to be studied with additional experiments and epidemiological studies. AB42 and S100B are significantly changed in neonatal pigs subjected to hypoxia compared to controls and thus may be valuable biomarkers of perinatal asphyxia. PMID:26501201
Blykers, Anneleen; Schoonooghe, Steve; Xavier, Catarina; D'hoe, Kevin; Laoui, Damya; D'Huyvetter, Matthias; Vaneycken, Ilse; Cleeren, Frederik; Bormans, Guy; Heemskerk, Johannes; Raes, Geert; De Baetselier, Patrick; Lahoutte, Tony; Devoogdt, Nick; Van Ginderachter, Jo A; Caveliers, Vicky
2015-08-01
Tumor-associated macrophages constitute a major component of the stroma of solid tumors, encompassing distinct subpopulations with different characteristics and functions. We aimed to identify M2-oriented tumor-supporting macrophages within the tumor microenvironment as indicators of cancer progression and prognosis, using PET imaging. This can be realized by designing (18)F-labeled camelid single-domain antibody fragments (sdAbs) specifically targeting the macrophage mannose receptor (MMR), which has been identified as an important biomarker on this cell population. Cross-reactive anti-MMR sdAbs were generated after immunization of an alpaca with the extracellular domains of both human and mouse MMR. The lead binder was chosen on the basis of comparisons of binding affinity and in vivo pharmacokinetics. The PET tracer (18)F-fluorobenzoate (FB)-anti-MMR sdAb was developed using the prosthetic group N-succinimidyl-4-(18)F-fluorobenzoate ((18)F-SFB), and its biodistribution, tumor-targeting potential, and specificity in terms of macrophage and MMR targeting were evaluated in mouse tumor models. Four sdAbs were selected after affinity screening, but only 2 were found to be cross-reactive for human and mouse MMR. The lead anti-MMR 3.49 sdAb, bearing an affinity of 12 and 1.8 nM for mouse and human MMR, respectively, was chosen for its favorable in vivo biodistribution profile and tumor-targeting capacity. (18)F-FB-anti-MMR 3.49 sdAb was synthesized with a 5%-10% radiochemical yield using an automated and optimized protocol. In vivo biodistribution analyses showed fast clearance via the kidneys and retention in MMR-expressing organs and tumor. The kidney retention of the fluorinated sdAb was 20-fold lower than a (99m)Tc-labeled counterpart. Compared with MMR- and C-C chemokine receptor 2-deficient mice, significantly higher uptake was observed in tumors grown in wild-type mice, demonstrating the specificity of the (18)F tracer for MMR and macrophages, respectively. Anti-MMR 3.49 was denoted as the lead cross-reactive MMR-targeting sdAb. (18)F radiosynthesis was optimized, providing an optimal probe for PET imaging of the tumor-promoting macrophage subpopulation in the tumor stroma. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Therapeutischer Einsatz monoklonaler Antikörper
NASA Astrophysics Data System (ADS)
Baron, D.
Three monoclonal antibodies (mAbs) have been approved for the treatment of transplant rejection, sepsis, and colorectal carcinoma. The breakthrough, however, has not yet been achieved, in contrast to diagnostic mabs. The general applicability for a large number of patients and long-term therapeutic success have not yet been proven. A complete cure by mAbs alone has been observed in only a few cases. In many cases conventional medications have to be administered in parallel. There are a number of inherent problems which reside in both the biochemistry of the antibodies and the biology of the patients. There is no doubt, however, that in 5-7 years mAbs will be used routinely to treat cases of rejection of transplanted organs, autoimmune diseases, infections and cancer.
Einstein coefficients and oscillator strengths for low lying state of CO molecules
NASA Astrophysics Data System (ADS)
Swer, S.; Syiemiong, A.; Ram, M.; Jha, A. K.; Saxena, A.
2018-04-01
Einstein Coefficients and Oscillator Strengths for different state of CO molecule have been calculated using LEROY'S LEVEL program and MOLCAS ab initio code. Using the wave function derived from Morse potential and transition dipole moment obtained from ab initio calculation, The potential energy functions were computed for these states using the spectroscopic constants. The Morse potential of these states and electronic transition dipole moment of the transition calculated in a recent ab initio study have been used in LEVEL program to produce transition dipole matrix element for a large number of bands. Einstein Coefficients have also been used to compute the radiative lifetimes of several vibrational levels and the calculated values are compared with other theoretical results and experimental values.
[Avian influenza virus infection in people occupied in poultry fields in Guangzhou city].
Liu, Yang; Lu, En-jie; Wang, Yu-lin; Di, Biao; Li, Tie-gang; Zhou, Yong; Yang, Li-li; Xu, Xiao-yin; Fu, Chuan-xi; Wang, Ming
2009-11-01
To conduct serological investigation on H5N1/H9N2/H7N7 infection among people occupied in poultry fields. Serum samples were collected from people working in live poultry and none-poultry retailing food markets, poultry wholesaling, large-scale poultry breading factories and in small-scale farms, wide birds breeding, swine slaughtering houses and from normal population. Antibodies of H5, H9 and H7 with hemagglutination inhibition and neutralization tests were tested and analyzed. Logistic regression and chi(2) test were used. Among 2881 samples, 4 were positive to H5-Ab (0.14%), 146 were positive to H9-Ab (5.07%) and the prevalence of H9 among people from live poultry retailing (14.96%) was the highest. Prevalence rates of H9 were as follows: 8.90% in people working in the large-scale poultry breading factories, 6.69% in the live poultry wholesaling business, 3.75% in the wide birds breeding, 2.40% in the swine slaughtering, 2.21% in the non-poultry retailing, 1.77% in the rural poultry farmers and 2.30% in normal population. None was positive to H7-Ab among 1926 poultry workers. The H5 prevalence among people was much lower than expected, but the H9 prevalence was higher. None of the populations tested was found positive to H7-Ab. There was a higher risk of AIV infection in live poultry retailing, wholesaling and large-scale breading businesses, with the risk of live poultry retailing the highest. The longer the service length was, the higher the risk existed.
Electron transport in extended carbon-nanotube/metal contacts: Ab initio based Green function method
NASA Astrophysics Data System (ADS)
Fediai, Artem; Ryndyk, Dmitry A.; Cuniberti, Gianaurelio
2015-04-01
We have developed a new method that is able to predict the electrical properties of the source and drain contacts in realistic carbon nanotube field effect transistors (CNTFETs). It is based on large-scale ab initio calculations combined with a Green function approach. For the first time, both internal and external parts of a realistic CNT-metal contact are taken into account at the ab initio level. We have developed the procedure allowing direct calculation of the self-energy for an extended contact. Within the method, it is possible to calculate the transmission coefficient through a contact of both finite and infinite length; the local density of states can be determined in both free and embedded CNT segments. We found perfect agreement with the experimental data for Pd and Al contacts. We have explained why CNTFETs with Pd electrodes are p -type FETs with ohmic contacts, which can carry current close to the ballistic limit (provided contact length is large enough), whereas in CNT-Al contacts transmission is suppressed to a significant extent, especially for holes.
Decohesion models informed by first-principles calculations: The ab initio tensile test
NASA Astrophysics Data System (ADS)
Enrique, Raúl A.; Van der Ven, Anton
2017-10-01
Extreme deformation and homogeneous fracture can be readily studied via ab initio methods by subjecting crystals to numerical "tensile tests", where the energy of locally stable crystal configurations corresponding to elongated and fractured states are evaluated by means of density functional method calculations. The information obtained can then be used to construct traction curves of cohesive zone models in order to address fracture at the macroscopic scale. In this work, we perform an in depth analysis of traction curves and how ab initio calculations must be interpreted to rigorously parameterize an atomic scale cohesive zone model, using crystalline Ag as an example. Our analysis of traction curves reveal the existence of two qualitatively distinct decohesion criteria: (i) an energy criterion whereby the released elastic energy equals the energy cost of creating two new surfaces and (ii) an instability criterion that occurs at a higher and size independent stress than that of the energy criterion. We find that increasing the size of the simulation cell renders parts of the traction curve inaccessible to ab initio calculations involving the uniform decohesion of the crystal. We also find that the separation distance below which a crack heals is not a material parameter as has been proposed in the past. Finally, we show that a large energy barrier separates the uniformly stressed crystal from the decohered crystal, resolving a paradox predicted by a scaling law based on the energy criterion that implies that large crystals will decohere under vanishingly small stresses. This work clarifies confusion in the literature as to how a cohesive zone model is to be parameterized with ab initio "tensile tests" in the presence of internal relaxations.
Gruden, Maja; Andjeklović, Ljubica; Jissy, Akkarapattiakal Kuriappan; Stepanović, Stepan; Zlatar, Matija; Cui, Qiang; Elstner, Marcus
2017-09-30
Density Functional Tight Binding (DFTB) models are two to three orders of magnitude faster than ab initio and Density Functional Theory (DFT) methods and therefore are particularly attractive in applications to large molecules and condensed phase systems. To establish the applicability of DFTB models to general chemical reactions, we conduct benchmark calculations for barrier heights and reaction energetics of organic molecules using existing databases and several new ones compiled in this study. Structures for the transition states and stable species have been fully optimized at the DFTB level, making it possible to characterize the reliability of DFTB models in a more thorough fashion compared to conducting single point energy calculations as done in previous benchmark studies. The encouraging results for the diverse sets of reactions studied here suggest that DFTB models, especially the most recent third-order version (DFTB3/3OB augmented with dispersion correction), in most cases provide satisfactory description of organic chemical reactions with accuracy almost comparable to popular DFT methods with large basis sets, although larger errors are also seen for certain cases. Therefore, DFTB models can be effective for mechanistic analysis (e.g., transition state search) of large (bio)molecules, especially when coupled with single point energy calculations at higher levels of theory. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Nested high-resolution large-eddy simulations in WRF to support wind power
NASA Astrophysics Data System (ADS)
Mirocha, J.; Kirkil, G.; Kosovic, B.; Lundquist, J. K.
2009-12-01
The WRF model’s grid nesting capability provides a potentially powerful framework for simulating flow over a wide range of scales. One such application is computation of realistic inflow boundary conditions for large eddy simulations (LES) by nesting LES domains within mesoscale domains. While nesting has been widely and successfully applied at GCM to mesoscale resolutions, the WRF model’s nesting behavior at the high-resolution (Δx < 1000m) end of the spectrum is less well understood. Nesting LES within msoscale domains can significantly improve turbulent flow prediction at the scale of a wind park, providing a basis for superior site characterization, or for improved simulation of turbulent inflows encountered by turbines. We investigate WRF’s grid nesting capability at high mesh resolutions using nested mesoscale and large-eddy simulations. We examine the spatial scales required for flow structures to equilibrate to the finer mesh as flow enters a nest, and how the process depends on several parameters, including grid resolution, turbulence subfilter stress models, relaxation zones at nest interfaces, flow velocities, surface roughnesses, terrain complexity and atmospheric stability. Guidance on appropriate domain sizes and turbulence models for LES in light of these results is provided This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 LLNL-ABS-416482
Teeguarden, Justin G.; Webb-Robertson, Bobbie-Jo; Waters, Katrina M.; Murray, Ashley R.; Kisin, Elena R.; Varnum, Susan M.; Jacobs, Jon M.; Pounds, Joel G.; Zanger, Richard C.; Shvedova, Anna A.
2011-01-01
Reflecting their exceptional potential to advance a range of biomedical, aeronautic, and other industrial products, carbon nanotube (CNT) production and the potential for human exposure to aerosolized CNTs are increasing. CNTs have toxicologically significant structural and chemical similarities to asbestos (AB) and have repeatedly been shown to cause pulmonary inflammation, granuloma formation, and fibrosis after inhalation/instillation/aspiration exposure in rodents, a pattern of effects similar to those observed following exposure to AB. To determine the degree to which responses to single-walled CNTs (SWCNT) and AB are similar or different, the pulmonary response of C57BL/6 mice to repeated exposures to SWCNTs, crocidolite AB, and ultrafine carbon black (UFCB) were compared using high-throughput global high performance liquid chromatography fourier transform ion cyclotron resonance mass spectrometry (HPLC-FTICR-MS) proteomics, histopathology, and bronchoalveolar lavage cytokine analyses. Mice were exposed to material suspensions (40 micrograms per mouse) twice a week for 3 weeks by pharyngeal aspiration. Histologically, the incidence and severity of inflammatory and fibrotic responses were greatest in mice treated with SWCNTs. SWCNT treatment affected the greatest changes in abundance of identified lung tissue proteins. The trend in number of proteins affected (SWCNT [376] > AB [231] > UFCB [184]) followed the potency of these materials in three biochemical assays of inflammation (cytokines). SWCNT treatment uniquely affected the abundance of 109 proteins, but these proteins largely represent cellular processes affected by AB treatment as well, further evidence of broad similarity in the tissue-level response to AB and SWCNTs. Two high-sensitivity markers of inflammation, one (S100a9) observed in humans exposed to AB, were found and may be promising biomarkers of human response to SWCNT exposure. PMID:21135415
Automation bias and verification complexity: a systematic review.
Lyell, David; Coiera, Enrico
2017-03-01
While potentially reducing decision errors, decision support systems can introduce new types of errors. Automation bias (AB) happens when users become overreliant on decision support, which reduces vigilance in information seeking and processing. Most research originates from the human factors literature, where the prevailing view is that AB occurs only in multitasking environments. This review seeks to compare the human factors and health care literature, focusing on the apparent association of AB with multitasking and task complexity. EMBASE, Medline, Compendex, Inspec, IEEE Xplore, Scopus, Web of Science, PsycINFO, and Business Source Premiere from 1983 to 2015. Evaluation studies where task execution was assisted by automation and resulted in errors were included. Participants needed to be able to verify automation correctness and perform the task manually. Tasks were identified and grouped. Task and automation type and presence of multitasking were noted. Each task was rated for its verification complexity. Of 890 papers identified, 40 met the inclusion criteria; 6 were in health care. Contrary to the prevailing human factors view, AB was found in single tasks, typically involving diagnosis rather than monitoring, and with high verification complexity. The literature is fragmented, with large discrepancies in how AB is reported. Few studies reported the statistical significance of AB compared to a control condition. AB appears to be associated with the degree of cognitive load experienced in decision tasks, and appears to not be uniquely associated with multitasking. Strategies to minimize AB might focus on cognitive load reduction. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Multiscale Quantum Mechanics/Molecular Mechanics Simulations with Neural Networks.
Shen, Lin; Wu, Jingheng; Yang, Weitao
2016-10-11
Molecular dynamics simulation with multiscale quantum mechanics/molecular mechanics (QM/MM) methods is a very powerful tool for understanding the mechanism of chemical and biological processes in solution or enzymes. However, its computational cost can be too high for many biochemical systems because of the large number of ab initio QM calculations. Semiempirical QM/MM simulations have much higher efficiency. Its accuracy can be improved with a correction to reach the ab initio QM/MM level. The computational cost on the ab initio calculation for the correction determines the efficiency. In this paper we developed a neural network method for QM/MM calculation as an extension of the neural-network representation reported by Behler and Parrinello. With this approach, the potential energy of any configuration along the reaction path for a given QM/MM system can be predicted at the ab initio QM/MM level based on the semiempirical QM/MM simulations. We further applied this method to three reactions in water to calculate the free energy changes. The free-energy profile obtained from the semiempirical QM/MM simulation is corrected to the ab initio QM/MM level with the potential energies predicted with the constructed neural network. The results are in excellent accordance with the reference data that are obtained from the ab initio QM/MM molecular dynamics simulation or corrected with direct ab initio QM/MM potential energies. Compared with the correction using direct ab initio QM/MM potential energies, our method shows a speed-up of 1 or 2 orders of magnitude. It demonstrates that the neural network method combined with the semiempirical QM/MM calculation can be an efficient and reliable strategy for chemical reaction simulations.
Steger, Doris; Wentrup, Cecilia; Braunegger, Christina; Deevong, Pinsurang; Hofer, Manuel; Richter, Andreas; Baranyi, Christian; Pester, Michael; Wagner, Michael; Loy, Alexander
2011-01-01
Peatlands of the Lehstenbach catchment (Germany) house as-yet-unidentified microorganisms with phylogenetically novel variants of the dissimilatory (bi)sulfite reductase genes dsrAB. These genes are characteristic of microorganisms that reduce sulfate, sulfite, or some organosulfonates for energy conservation but can also be present in anaerobic syntrophs. However, nothing is currently known regarding the abundance, community dynamics, and biogeography of these dsrAB-carrying microorganisms in peatlands. To tackle these issues, soils from a Lehstenbach catchment site (Schlöppnerbrunnen II fen) from different depths were sampled at three time points over a 6-year period to analyze the diversity and distribution of dsrAB-containing microorganisms by a newly developed functional gene microarray and quantitative PCR assays. Members of novel, uncultivated dsrAB lineages (approximately representing species-level groups) (i) dominated a temporally stable but spatially structured dsrAB community and (ii) represented “core” members (up to 1% to 1.7% relative abundance) of the autochthonous microbial community in this fen. In addition, denaturing gradient gel electrophoresis (DGGE)- and clone library-based comparisons of the dsrAB diversity in soils from a wet meadow, three bogs, and five fens of various geographic locations (distance of ∼1 to 400 km) identified that one Syntrophobacter-related and nine novel dsrAB lineages are widespread in low-sulfate peatlands. Signatures of biogeography in dsrB-based DGGE data were not correlated with geographic distance but could be explained largely by soil pH and wetland type, implying that the distribution of dsrAB-carrying microorganisms in wetlands on the scale of a few hundred kilometers is not limited by dispersal but determined by local environmental conditions. PMID:21169452
Makhov, Dmitry V.; Saita, Kenichiro; Martinez, Todd J.; ...
2014-12-11
In this study, we report a detailed computational simulation of the photodissociation of pyrrole using the ab initio Multiple Cloning (AIMC) method implemented within MOLPRO. The efficiency of the AIMC implementation, employing train basis sets, linear approximation for matrix elements, and Ehrenfest configuration cloning, allows us to accumulate significant statistics. We calculate and analyze the total kinetic energy release (TKER) spectrum and Velocity Map Imaging (VMI) of pyrrole and compare the results directly with experimental measurements. Both the TKER spectrum and the structure of the velocity map image (VMI) are well reproduced. Previously, it has been assumed that the isotropicmore » component of the VMI arises from long time statistical dissociation. Instead, our simulations suggest that ultrafast dynamics contributes significantly to both low and high energy portions of the TKER spectrum.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makhov, Dmitry V.; Saita, Kenichiro; Martinez, Todd J.
In this study, we report a detailed computational simulation of the photodissociation of pyrrole using the ab initio Multiple Cloning (AIMC) method implemented within MOLPRO. The efficiency of the AIMC implementation, employing train basis sets, linear approximation for matrix elements, and Ehrenfest configuration cloning, allows us to accumulate significant statistics. We calculate and analyze the total kinetic energy release (TKER) spectrum and Velocity Map Imaging (VMI) of pyrrole and compare the results directly with experimental measurements. Both the TKER spectrum and the structure of the velocity map image (VMI) are well reproduced. Previously, it has been assumed that the isotropicmore » component of the VMI arises from long time statistical dissociation. Instead, our simulations suggest that ultrafast dynamics contributes significantly to both low and high energy portions of the TKER spectrum.« less
A Bacteriophage-Related Chimeric Marine Virus Infecting Abalone
Zhuang, Jun; Cai, Guiqin; Lin, Qiying; Wu, Zujian; Xie, Lianhui
2010-01-01
Marine viruses shape microbial communities with the most genetic diversity in the sea by multiple genetic exchanges and infect multiple marine organisms. Here we provide proof from experimental infection that abalone shriveling syndrome-associated virus (AbSV) can cause abalone shriveling syndrome. This malady produces histological necrosis and abnormally modified macromolecules (hemocyanin and ferritin). The AbSV genome is a 34.952-kilobase circular double-stranded DNA, containing putative genes with similarity to bacteriophages, eukaryotic viruses, bacteria and endosymbionts. Of the 28 predicted open reading frames (ORFs), eight ORF-encoded proteins have identifiable functional homologues. The 4 ORF products correspond to a predicted terminase large subunit and an endonuclease in bacteriophage, and both an integrase and an exonuclease from bacteria. The other four proteins are homologous to an endosymbiont-derived helicase, primase, single-stranded binding (SSB) protein, and thymidylate kinase, individually. Additionally, AbSV exhibits a common gene arrangement similar to the majority of bacteriophages. Unique to AbSV, the viral genome also contains genes associated with bacterial outer membrane proteins and may lack the structural protein-encoding ORFs. Genomic characterization of AbSV indicates that it may represent a transitional form of microbial evolution from viruses to bacteria. PMID:21079776
Yang, Rong; Jain, Tushar; Lynaugh, Heather; Nobrega, R Paul; Lu, Xiaojun; Boland, Todd; Burnina, Irina; Sun, Tingwan; Caffry, Isabelle; Brown, Michael; Zhi, Xiaoyong; Lilov, Asparouh; Xu, Yingda
Susceptibility of methionine to oxidation is an important concern for chemical stability during the development of a monoclonal antibody (mAb) therapeutic. To minimize downstream risks, leading candidates are usually screened under forced oxidation conditions to identify oxidation-labile molecules. Here we report results of forced oxidation on a large set of in-house expressed and purified mAbs with variable region sequences corresponding to 121 clinical stage mAbs. These mAb samples were treated with 0.1% H 2 O 2 for 24 hours before enzymatic cleavage below the hinge, followed by reduction of inter-chain disulfide bonds for the detection of the light chain, Fab portion of heavy chain (Fd) and Fc by liquid chromatography-mass spectrometry. This high-throughput, middle-down approach allows detection of oxidation site(s) at the resolution of 3 distinct segments. The experimental oxidation data correlates well with theoretical predictions based on the solvent-accessible surface area of the methionine side-chains within these segments. These results validate the use of upstream computational modeling to predict mAb oxidation susceptibility at the sequence level.
Parallel Quantum Circuit in a Tunnel Junction
NASA Astrophysics Data System (ADS)
Faizy Namarvar, Omid; Dridi, Ghassen; Joachim, Christian
2016-07-01
Spectral analysis of 1 and 2-states per line quantum bus are normally sufficient to determine the effective Vab(N) electronic coupling between the emitter and receiver states through the bus as a function of the number N of parallel lines. When Vab(N) is difficult to determine, an Heisenberg-Rabi time dependent quantum exchange process must be triggered through the bus to capture the secular oscillation frequency Ωab(N) between those states. Two different linear and regimes are demonstrated for Ωab(N) as a function of N. When the initial preparation is replaced by coupling of the quantum bus to semi-infinite electrodes, the resulting quantum transduction process is not faithfully following the Ωab(N) variations. Because of the electronic transparency normalisation to unity and of the low pass filter character of this transduction, large Ωab(N) cannot be captured by the tunnel junction. The broadly used concept of electrical contact between a metallic nanopad and a molecular device must be better described as a quantum transduction process. At small coupling and when N is small enough not to compensate for this small coupling, an N2 power law is preserved for Ωab(N) and for Vab(N).
Parallel Quantum Circuit in a Tunnel Junction
Faizy Namarvar, Omid; Dridi, Ghassen; Joachim, Christian
2016-01-01
Spectral analysis of 1 and 2-states per line quantum bus are normally sufficient to determine the effective Vab(N) electronic coupling between the emitter and receiver states through the bus as a function of the number N of parallel lines. When Vab(N) is difficult to determine, an Heisenberg-Rabi time dependent quantum exchange process must be triggered through the bus to capture the secular oscillation frequency Ωab(N) between those states. Two different linear and regimes are demonstrated for Ωab(N) as a function of N. When the initial preparation is replaced by coupling of the quantum bus to semi-infinite electrodes, the resulting quantum transduction process is not faithfully following the Ωab(N) variations. Because of the electronic transparency normalisation to unity and of the low pass filter character of this transduction, large Ωab(N) cannot be captured by the tunnel junction. The broadly used concept of electrical contact between a metallic nanopad and a molecular device must be better described as a quantum transduction process. At small coupling and when N is small enough not to compensate for this small coupling, an N2 power law is preserved for Ωab(N) and for Vab(N). PMID:27453262
Parallel Quantum Circuit in a Tunnel Junction.
Faizy Namarvar, Omid; Dridi, Ghassen; Joachim, Christian
2016-07-25
Spectral analysis of 1 and 2-states per line quantum bus are normally sufficient to determine the effective Vab(N) electronic coupling between the emitter and receiver states through the bus as a function of the number N of parallel lines. When Vab(N) is difficult to determine, an Heisenberg-Rabi time dependent quantum exchange process must be triggered through the bus to capture the secular oscillation frequency Ωab(N) between those states. Two different linear and regimes are demonstrated for Ωab(N) as a function of N. When the initial preparation is replaced by coupling of the quantum bus to semi-infinite electrodes, the resulting quantum transduction process is not faithfully following the Ωab(N) variations. Because of the electronic transparency normalisation to unity and of the low pass filter character of this transduction, large Ωab(N) cannot be captured by the tunnel junction. The broadly used concept of electrical contact between a metallic nanopad and a molecular device must be better described as a quantum transduction process. At small coupling and when N is small enough not to compensate for this small coupling, an N(2) power law is preserved for Ωab(N) and for Vab(N).
Multiple time step integrators in ab initio molecular dynamics.
Luehr, Nathan; Markland, Thomas E; Martínez, Todd J
2014-02-28
Multiple time-scale algorithms exploit the natural separation of time-scales in chemical systems to greatly accelerate the efficiency of molecular dynamics simulations. Although the utility of these methods in systems where the interactions are described by empirical potentials is now well established, their application to ab initio molecular dynamics calculations has been limited by difficulties associated with splitting the ab initio potential into fast and slowly varying components. Here we present two schemes that enable efficient time-scale separation in ab initio calculations: one based on fragment decomposition and the other on range separation of the Coulomb operator in the electronic Hamiltonian. We demonstrate for both water clusters and a solvated hydroxide ion that multiple time-scale molecular dynamics allows for outer time steps of 2.5 fs, which are as large as those obtained when such schemes are applied to empirical potentials, while still allowing for bonds to be broken and reformed throughout the dynamics. This permits computational speedups of up to 4.4x, compared to standard Born-Oppenheimer ab initio molecular dynamics with a 0.5 fs time step, while maintaining the same energy conservation and accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
M Totrov; X Jiang; X Kong
2011-12-31
V3 loop is a major neutralizing determinant of the HIV-1 gp120. Using 3D structures of cholera toxin B subunit (CTB), complete V3 in the gp120 context, and V3 bound to a monoclonal antibody (mAb), we designed two V3-scaffold immunogen constructs (V3-CTB). The full-length V3-CTB presenting the complete V3 in a structural context mimicking gp120 was recognized by the large majority of our panel of 24 mAbs. The short V3-CTB presenting a V3 fragment in the conformation observed in the complex with the 447-52D Fab, exhibited high-affinity binding to this mAb. The immunogens were evaluated in rabbits using DNA-prime/protein-boost protocol. Boostingmore » with the full-length V3-CTB induced high anti-V3 titers in sera that potently neutralize multiple HIV virus strains. The short V3-CTB was ineffective. The results suggest that very narrow antigenic profile of an immunogen is associated with poor Ab response. An immunogen with broader antigenic activity elicits robust Ab response.« less
Kheddo, Priscilla; Cliff, Matthew J.; Uddin, Shahid; van der Walle, Christopher F.; Golovanov, Alexander P.
2016-01-01
ABSTRACT Assessing how excipients affect the self-association of monoclonal antibodies (mAbs) requires informative and direct in situ measurements for highly concentrated solutions, without sample dilution or perturbation. This study explores the application of solution nuclear magnetic resonance (NMR) spectroscopy for characterization of typical mAb behavior in formulations containing arginine glutamate. The data show that the analysis of signal intensities in 1D 1H NMR spectra, when compensated for changes in buffer viscosity, is invaluable for identifying conditions where protein-protein interactions are minimized. NMR-derived molecular translational diffusion rates for concentrated solutions are less useful than transverse relaxation rates as parameters defining optimal formulation. Furthermore, NMR reports on the solution viscosity and mAb aggregation during accelerated stability study assessment, generating data consistent with that acquired by size-exclusion chromatography. The methodology developed here offers NMR spectroscopy as a new tool providing complementary information useful to formulation development of mAbs and other large therapeutic proteins. PMID:27589351
Industrialization of mAb production technology The bioprocessing industry at a crossroads
2009-01-01
Manufacturing processes for therapeutic monoclonal antibodies (mAbs) have evolved tremendously since the first licensed mAb product in 1986. The rapid growth in product demand for mAbs triggered parallel efforts to increase production capacity through construction of large bulk manufacturing plants as well as improvements in cell culture processes to raise product titers. This combination has led to an excess of manufacturing capacity, and together with improvements in conventional purification technologies, promises nearly unlimited production capacity in the foreseeable future. The increase in titers has also led to a marked reduction in production costs, which could then become a relatively small fraction of sales price for future products which are sold at prices at or near current levels. The reduction of capacity and cost pressures for current state-of-the-art bulk production processes may shift the focus of process development efforts and have important implications for both plant design and product development strategies for both biopharmaceutical and contract manufacturing companies. PMID:20065641
Kheddo, Priscilla; Cliff, Matthew J; Uddin, Shahid; van der Walle, Christopher F; Golovanov, Alexander P
2016-10-01
Assessing how excipients affect the self-association of monoclonal antibodies (mAbs) requires informative and direct in situ measurements for highly concentrated solutions, without sample dilution or perturbation. This study explores the application of solution nuclear magnetic resonance (NMR) spectroscopy for characterization of typical mAb behavior in formulations containing arginine glutamate. The data show that the analysis of signal intensities in 1D 1 H NMR spectra, when compensated for changes in buffer viscosity, is invaluable for identifying conditions where protein-protein interactions are minimized. NMR-derived molecular translational diffusion rates for concentrated solutions are less useful than transverse relaxation rates as parameters defining optimal formulation. Furthermore, NMR reports on the solution viscosity and mAb aggregation during accelerated stability study assessment, generating data consistent with that acquired by size-exclusion chromatography. The methodology developed here offers NMR spectroscopy as a new tool providing complementary information useful to formulation development of mAbs and other large therapeutic proteins.
Huang, Ying; Chen, Shi-Yi; Deng, Feilong
2016-01-01
In silico analysis of DNA sequences is an important area of computational biology in the post-genomic era. Over the past two decades, computational approaches for ab initio prediction of gene structure from genome sequence alone have largely facilitated our understanding on a variety of biological questions. Although the computational prediction of protein-coding genes has already been well-established, we are also facing challenges to robustly find the non-coding RNA genes, such as miRNA and lncRNA. Two main aspects of ab initio gene prediction include the computed values for describing sequence features and used algorithm for training the discriminant function, and by which different combinations are employed into various bioinformatic tools. Herein, we briefly review these well-characterized sequence features in eukaryote genomes and applications to ab initio gene prediction. The main purpose of this article is to provide an overview to beginners who aim to develop the related bioinformatic tools.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Bo; PLA General Hospital Cancer Center and PLA Cancer Research Institute, PLA Postgraduate School of Medicine, 28 Fuxing Road, Beijing; Dai, Jianxin
Highlight: • We first report that anti-osteopontin mAb could protect osteoporosis in mice. • Anti-osteopontin mAb could promote the osteoclast apoptosis. • Targeting osteopontin might have therapeutic potentials for osteoporosis. - Abstract: Osteopontin (OPN) is abundant in mineralized tissues and has long been implicated in bone remodeling. However, the therapeutic effect of targeting OPN in bone loss diseases and the underlying molecular mechanism remain largely unknown. Here, we reported that anti-OPN mAb (23C3) could protect against ovariectomy-induced osteoporosis in mice, demonstrated by microcomputed tomography analysis and histopathology evaluation. In vitro assay showed that 23C3 mAb reduced osteoclasts (OCs)-mediated bone resorptionmore » through promotion of mature OC apoptosis. Thus, the study has important implications for understanding the role of OPN in OC bone resorption and survival, and OPN antagonists may have therapeutic potential for osteoporosis and other osteopenic diseases.« less
Density-matrix based determination of low-energy model Hamiltonians from ab initio wavefunctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Changlani, Hitesh J.; Zheng, Huihuo; Wagner, Lucas K.
2015-09-14
We propose a way of obtaining effective low energy Hubbard-like model Hamiltonians from ab initio quantum Monte Carlo calculations for molecular and extended systems. The Hamiltonian parameters are fit to best match the ab initio two-body density matrices and energies of the ground and excited states, and thus we refer to the method as ab initio density matrix based downfolding. For benzene (a finite system), we find good agreement with experimentally available energy gaps without using any experimental inputs. For graphene, a two dimensional solid (extended system) with periodic boundary conditions, we find the effective on-site Hubbard U{sup ∗}/t tomore » be 1.3 ± 0.2, comparable to a recent estimate based on the constrained random phase approximation. For molecules, such parameterizations enable calculation of excited states that are usually not accessible within ground state approaches. For solids, the effective Hamiltonian enables large-scale calculations using techniques designed for lattice models.« less
Curved-line search algorithm for ab initio atomic structure relaxation
NASA Astrophysics Data System (ADS)
Chen, Zhanghui; Li, Jingbo; Li, Shushen; Wang, Lin-Wang
2017-09-01
Ab initio atomic relaxations often take large numbers of steps and long times to converge, especially when the initial atomic configurations are far from the local minimum or there are curved and narrow valleys in the multidimensional potentials. An atomic relaxation method based on on-the-flight force learning and a corresponding curved-line search algorithm is presented to accelerate this process. Results demonstrate the superior performance of this method for metal and magnetic clusters when compared with the conventional conjugate-gradient method.
Ab initio calculations of potential energy curves of Hg/sub 2/ and TlHg
DOE Office of Scientific and Technical Information (OSTI.GOV)
Celestino, K.C.; Ermler, W.C.
1984-08-15
Potential energy curves for electronic states of Hg/sub 2/ and TlHg are presented and analyzed. They are derived using large scale configuration interaction procedures for the valence electrons, with the core electrons represented by ab initio relativistic effective potentials. The effect of spin-orbit coupling are investigated for the low-lying excimer states. It is determined that neither system possesses strongly bound electronic states for which transitions to the repulsive ground states are optically allowed.
NASA Astrophysics Data System (ADS)
Ching, W. Y.; Rulis, Paul; Ouyang, Lizhi; Misra, A.
2009-02-01
We report the results of a large-scale ab initio simulation of an intergranular glassy film (IGF) model in β-Si3N4. It is shown that the stress-strain behavior under uniaxial load in the model with prismatic surfaces and few defective bonds is very different from an earlier IGF model with basal planes. The results are explained by the fundamental electronic structure of the model.
Beers, Stephen A; French, Ruth R; Chan, H T Claude; Lim, Sean H; Jarrett, Timothy C; Vidal, Regina Mora; Wijayaweera, Sahan S; Dixon, Sandra V; Kim, Hyungjin; Cox, Kerry L; Kerr, Jonathan P; Johnston, David A; Johnson, Peter W M; Verbeek, J Sjef; Glennie, Martin J; Cragg, Mark S
2010-06-24
Rituximab, a monoclonal antibody that targets CD20 on B cells, is now central to the treatment of a variety of malignant and autoimmune disorders. Despite this success, a substantial proportion of B-cell lymphomas are unresponsive or develop resistance, hence more potent anti-CD20 monoclonal antibodies (mAbs) are continuously being sought. Here we demonstrate that type II (tositumomab-like) anti-CD20 mAbs are 5 times more potent than type I (rituximab-like) reagents in depleting human CD20 Tg B cells, despite both operating exclusively via activatory Fcgamma receptor-expressing macrophages. Much of this disparity in performance is attributable to type I mAb-mediated internalization of CD20 by B cells, leading to reduced macrophage recruitment and the degradation of CD20/mAb complexes, shortening mAb half-life. Importantly, human B cells from healthy donors and most cases of chronic lymphatic leukemia and mantle cell lymphoma, showed rapid CD20 internalization that paralleled that seen in the Tg mouse B cells, whereas most follicular lymphoma and diffuse large B-cell lymphoma cells were far more resistant to CD20 loss. We postulate that differences in CD20 modulation may play a central role in determining the relative efficacy of rituximab in treating these diseases and strengthen the case for focusing on type II anti-CD20 mAb in the clinic.
Heat shock factor 1 induces crystallin-αB to protect against cisplatin nephrotoxicity
Lou, Qiang; Hu, Yanzhong; Ma, Yuanfang
2016-01-01
Cisplatin, a wildly used chemotherapy drug, induces nephrotoxicity that is characterized by renal tubular cell apoptosis. In response to toxicity, tubular cells can activate cytoprotective mechanisms, such as the heat shock response. However, the role and regulation of the heat shock response in cisplatin-induced nephrotoxicity remain largely unclear. In the present study, we demonstrated the induction of heat shock factor (Hsf)1 and the small heat shock protein crystallin-αB (CryAB) during cisplatin nephrotoxicity in mice. Consistently, cisplatin induced Hsf1 and CryAB in a cultured renal proximal tubular cells (RPTCs). RPTCs underwent apoptosis during cisplatin treatment, which was increased when Hsf1 was knocked down. Transfection or restoration of Hsf1 into Hsf1 knockdown cells suppressed cisplatin-induced apoptosis, further supporting a cytoprotective role of Hsf1 and its associated heat shock response. Moreover, Hsf1 knockdown increased Bax translocation to mitochondria and cytochrome c release into the cytosol. In RPTCs, Hsf1 knockdown led to a specific downregulation of CryAB. Transfection of CryAB into Hsf1 knockdown cells diminished their sensitivity to cisplatin-induced apoptosis, suggesting that CryAB may be a key mediator of the cytoprotective effect of Hsf1. Taken together, these results demonstrate a heat shock response in cisplatin nephrotoxicity that is mediated by Hsf1 and CryAB to protect tubular cells against apoptosis. PMID:27194715
Raweerith, Rutai; Ratanabanangkoon, Kavi
2003-11-01
A combined process of caprylic acid (CA) precipitation and ion-exchange chromatography on SP-Sepharose was studied as a means to fractionate pepsin-digested horse antivenom F(ab')(2) antibody. In the CA precipitation, the optimal concentration for fractionation of F(ab')(2) from pepsin-digested horse plasma was 2%, in which 89.61% of F(ab')(2) antibody activity was recovered in the supernatant with 1.5-fold purification. A significant amount of pepsin was not precipitated and remained active under these conditions. An analytical cation exchanger Protein-Pak SP 8HR HPLC column was tested to establish optimal conditions for the effective separation of IgG, albumin, pepsin and CA from the F(ab')(2) product. From these results, the supernatant from CA precipitation of pepsin-digested plasma was subjected to a SP-Sepharose column chromatography using a linear salt gradient. With stepwise elution, a peak containing F(ab')(2) antibody could be obtained by elution with 0.25 M NaCl. The total recovery of antibody was 65.56% with 2.91-fold purification, which was higher than that achieved by ammonium sulfate precipitation. This process simultaneously and effectively removed residual pepsin, high molecular weight aggregates and CA in the final F(ab')(2) product, and should be suitable for large-scale fractionation of therapeutic equine antivenoms.
Connolly, Brian D.; Petry, Chris; Yadav, Sandeep; Demeule, Barthélemy; Ciaccio, Natalie; Moore, Jamie M.R.; Shire, Steven J.; Gokarn, Yatin R.
2012-01-01
Weak protein-protein interactions are thought to modulate the viscoelastic properties of concentrated antibody solutions. Predicting the viscoelastic behavior of concentrated antibodies from their dilute solution behavior is of significant interest and remains a challenge. Here, we show that the diffusion interaction parameter (kD), a component of the osmotic second virial coefficient (B2) that is amenable to high-throughput measurement in dilute solutions, correlates well with the viscosity of concentrated monoclonal antibody (mAb) solutions. We measured the kD of 29 different mAbs (IgG1 and IgG4) in four different solvent conditions (low and high ion normality) and found a linear dependence between kD and the exponential coefficient that describes the viscosity concentration profiles (|R| ≥ 0.9). Through experimentally measured effective charge measurements, under low ion normality where the electroviscous effect can dominate, we show that the mAb solution viscosity is poorly correlated with the mAb net charge (|R| ≤ 0.6). With this large data set, our results provide compelling evidence in support of weak intermolecular interactions, in contrast to the notion that the electroviscous effect is important in governing the viscoelastic behavior of concentrated mAb solutions. Our approach is particularly applicable as a screening tool for selecting mAbs with desirable viscosity properties early during lead candidate selection. PMID:22828333
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnapriyan, A.; Yang, P.; Niklasson, A. M. N.
New parametrizations for semiempirical density functional tight binding (DFTB) theory have been developed by the numerical optimization of adjustable parameters to minimize errors in the atomization energy and interatomic forces with respect to ab initio calculated data. Initial guesses for the radial dependences of the Slater- Koster bond integrals and overlap integrals were obtained from minimum basis density functional theory calculations. The radial dependences of the pair potentials and the bond and overlap integrals were represented by simple analytic functions. The adjustable parameters in these functions were optimized by simulated annealing and steepest descent algorithms to minimize the value ofmore » an objective function that quantifies the error between the DFTB model and ab initio calculated data. The accuracy and transferability of the resulting DFTB models for the C, H, N, and O system were assessed by comparing the predicted atomization energies and equilibrium molecular geometries of small molecules that were not included in the training data from DFTB to ab initio data. The DFTB models provide accurate predictions of the properties of hydrocarbons and more complex molecules containing C, H, N, and O.« less
Implicit attentional bias for facial emotion in dissociative seizures: Additional evidence.
Pick, Susannah; Mellers, John D C; Goldstein, Laura H
2018-03-01
This study sought to extend knowledge about the previously reported preconscious attentional bias (AB) for facial emotion in patients with dissociative seizures (DS) by exploring whether the finding could be replicated, while controlling for concurrent anxiety, depression, and potentially relevant cognitive impairments. Patients diagnosed with DS (n=38) were compared with healthy controls (n=43) on a pictorial emotional Stroop test, in which backwardly masked emotional faces (angry, happy, neutral) were processed implicitly. The group with DS displayed a significantly greater AB to facial emotion relative to controls; however, the bias was not specific to negative or positive emotions. The group effect could not be explained by performance on standardized cognitive tests or self-reported depression/anxiety. The study provides additional evidence of a disproportionate and automatic allocation of attention to facial affect in patients with DS, including both positive and negative facial expressions. Such a tendency could act as a predisposing factor for developing DS initially, or may contribute to triggering individuals' seizures on an ongoing basis. Psychological interventions such as Cognitive Behavioral Therapy (CBT) or AB modification might be suitable approaches to target this bias in clinical practice. Copyright © 2018 Elsevier Inc. All rights reserved.
Krishnapriyan, A.; Yang, P.; Niklasson, A. M. N.; ...
2017-10-17
New parametrizations for semiempirical density functional tight binding (DFTB) theory have been developed by the numerical optimization of adjustable parameters to minimize errors in the atomization energy and interatomic forces with respect to ab initio calculated data. Initial guesses for the radial dependences of the Slater- Koster bond integrals and overlap integrals were obtained from minimum basis density functional theory calculations. The radial dependences of the pair potentials and the bond and overlap integrals were represented by simple analytic functions. The adjustable parameters in these functions were optimized by simulated annealing and steepest descent algorithms to minimize the value ofmore » an objective function that quantifies the error between the DFTB model and ab initio calculated data. The accuracy and transferability of the resulting DFTB models for the C, H, N, and O system were assessed by comparing the predicted atomization energies and equilibrium molecular geometries of small molecules that were not included in the training data from DFTB to ab initio data. The DFTB models provide accurate predictions of the properties of hydrocarbons and more complex molecules containing C, H, N, and O.« less
Stark, Timo; Wollmann, Nadine; Wenker, Kerstin; Lösch, Sofie; Glabasnia, Arne; Hofmann, Thomas
2010-05-26
Aimed at investigating the concentrations and taste contribution of the oak-derived ellagitannins castalagin and vescalagin as well as their transformation products acutissimin A/B, epiacutissimin A/B, and beta-1-O-ethylvescalagin in red wine, a highly sensitive and accurate quantification method was developed on the basis of LC-MS/MS-MRM analysis with matrix calibration. Method validation showed good recovery rates ranging from 102.4 +/- 5.9% (vescalagin) to 113.7 +/- 15.2% (epiacutissimin A). In oak-matured wines, castalagin was found as the predominant ellagitannin, followed by beta-1-O-ethylvescalagin, whereas the flavano-C-ellagitannins (epi)acutissimin A/B were present in significantly lower amounts. In contrast to the high threshold concentration levels (600-1000 micromol/L) and the puckering astringent orosensation induced by flavan-3-ols, all of the ellagitannin derivatives were found to induce a smooth and velvety astringent oral sensation at rather low threshold concentrations ranging from 0.9 to 2.8 micromol/L. Dose/activity considerations demonstrated that, among all the ellagitannins investigated, castalagin exclusively exceeded its threshold concentration in various oak-matured wine samples.
USDA-ARS?s Scientific Manuscript database
An argument by analogy is presented as a logical basis from which the role of pharmaceuticals and pesticides can be viewed in terms of contributing to human health. We will argue that what is true for pharmaceuticals (A) is also true for pesticides (B) and that logically if A=B then B cannot be fal...
Zemskov, A M; Zemskov, V M; Vornovskiĭ, V A; Salomakhin, G G; Vysotskaia, A T
2000-01-01
On the basis of a considerable number of facts--the results of the immunological survey of 197 patients with purulent infections of soft tissues and 103 shigellosis patients--the character and manifestation of immunological disturbances were found to depend on the genetic markers of blood (antigens of the AB0 system) which proved to differ in different type of pathology in patients.
Non-expanded dispersion energies and damping functions for Ar 2 and Li 2
NASA Astrophysics Data System (ADS)
Knowles, Peter J.; Meath, William J.
1986-02-01
The non-expanded second-order dispersion energies and damping functions associated with the long-range dispersion energies varying as R-6, R-8and R-10 have been calculated for Ar 2 and Li 2 with the time-dependent Hartree-Fock method, using extended Gaussian basis sets. These results are used to discuss the difficulties associated with ab initio computations of these quantities.
2005-01-01
proteomic gel analyses. The research group has explored the use of chemodescriptors calculated using high-level ab initio quantum chemical basis sets...descriptors that characterize the entire proteomics map, local descriptors that characterize a subset of the proteins present in the gel, and spectrum...techniques for analyzing the full set of proteins present in a proteomics map. 14. SUBJECT TERMS 1S. NUMBER OF PAGES Topological indices
NASA Astrophysics Data System (ADS)
Wahnón, P.; Tablero, C.
2002-04-01
A metallic isolated band in the middle of the band gap of several III-V semiconductors has been predicted as photovoltaic materials with the possibility of providing substantially enhanced efficiencies. We have investigated the electronic band structures and lattice constants of GanAsmM and GanPmM with M=Sc, Ti, V, and Cr, to identify whether this isolated band is likely to exist by means of accurate calculations. For this task, we use the SIESTA program, an ab initio periodic density-functional method, fully self consistent in the local-density approximation. Norm-conserving, nonlocal pseudopotentials and confined linear combination of atomic orbitals have been used. We have carried out a case study of GanAsmTi and GanPmTi energy-band structure including analyses of the effect of the basis set, fine k-point mesh to ensure numerical convergence, structural parameters, and generalized gradient approximation for exchange and correlation corrections. We find the isolated intermediate band when one Ti atom replaces the position of one As (or P) atom in the crystal structure. For this kind of compound we show that the intermediate band relative position inside the band gap and width are sensitive to the dynamic relaxation of the crystal and the size of the basis set.
Taşal, Erol; Kumalar, Mustafa
2012-09-01
In this work, the experimental and theoretical spectra of 5-chloro-3-(2-(4-methylpiperazin-1-yl)-2-oxoethyl)benzo[d]thiazol-2(3H)-one molecule (abbreviated as 5CMOT) are studied. The molecular geometry and vibrational frequencies are calculated in the ground state of molecule using ab initio Hartree-Fock (HF) and Density Function Theory (DFT) methods with 6-311++G(d,p), 6-31G++(d,p), 6-31G(d,p), 6-31G(d) and 6-31G basis sets. Three staggered stable conformers were observed on the torsional potential energy surfaces. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes calculated. The comparison of the theoretical and experimental geometries of the title compound indicated that the X-ray parameters fairly well agree with the theoretically obtained values for the most stable conformer. The theoretical results showed an excellent agreement with the experimental values. The calculated HOMO and LUMO energies show that the charge transfer occurs within the molecule. Copyright © 2012 Elsevier B.V. All rights reserved.
Intracellular Crosslinking of Filoviral Nucleoproteins with Xintrabodies Restricts Viral Packaging
Darling, Tamarand Lee; Sherwood, Laura Jo; Hayhurst, Andrew
2017-01-01
Viruses assemble large macromolecular repeat structures that become part of the infectious particles or virions. Ribonucleocapsids (RNCs) of negative strand RNA viruses are a prime example where repetition of nucleoprotein (NP) along the genome creates a core polymeric helical scaffold that accommodates other nucleocapsid proteins including viral polymerase. The RNCs are transported through the cytosol for packaging into virions through association with viral matrix proteins at cell membranes. We hypothesized that RNC would be ideal targets for crosslinkers engineered to promote aberrant protein–protein interactions, thereby blocking their orderly transport and packaging. Previously, we had generated single-domain antibodies (sdAbs) against Filoviruses that have all targeted highly conserved C-terminal regions of NP known to be repetitively exposed along the length of the RNCs of Marburgvirus (MARV) and Ebolavirus (EBOV). Our crosslinker design consisted of dimeric sdAb expressed intracellularly, which we call Xintrabodies (X- for crosslinking). Electron microscopy of purified NP polymers incubated with purified sdAb constructs showed NP aggregation occurred in a genus-specific manner with dimeric and not monomeric sdAb. A virus-like particle (VLP) assay was used for initial evaluation where we found that dimeric sdAb inhibited NP incorporation into VP40-based VLPs whereas monomeric sdAb did not. Inhibition of NP packaging was genus specific. Confocal microscopy revealed dimeric sdAb was diffuse when expressed alone but focused on pools of NP when the two were coexpressed, while monomeric sdAb showed ambivalent partition. Infection of stable Vero cell lines expressing dimeric sdAb specific for either MARV or EBOV NP resulted in smaller plaques and reduced progeny of cognate virus relative to wild-type Vero cells. Though the impact was marginal at later time-points, the collective data suggest that viral replication can be reduced by crosslinking intracellular NP using relatively small amounts of dimeric sdAb to restrict NP packaging. The stoichiometry and ease of application of the approach would likely benefit from transitioning away from intracellular expression of crosslinking sdAb to exogenous delivery of antibody. By retuning sdAb specificity, the approach of crosslinking highly conserved regions of assembly critical proteins may well be applicable to inhibiting replication processes of a broad spectrum of viruses. PMID:29021793
Durante, Cosimo; Tognini, Sara; Montesano, Teresa; Orlandi, Fabio; Torlontano, Massimo; Puxeddu, Efisio; Attard, Marco; Costante, Giuseppe; Tumino, Salvatore; Meringolo, Domenico; Bruno, Rocco; Trulli, Fabiana; Toteda, Maria; Redler, Adriano; Ronga, Giuseppe; Filetti, Sebastiano; Monzani, Fabio
2014-07-01
The association between papillary thyroid cancer (PTC) and Hashimoto's thyroiditis is widely recognized, but less is known about the possible link between circulating anti-thyroglobulin antibody (TgAb) titers and PTC aggressiveness. To shed light on this issue, we retrospectively examined a large series of PTC patients with and without positive TgAb. Data on 220 TgAb-positive PTC patients (study cohort) were retrospectively collected in 10 hospital-based referral centers. All the patients had undergone near-total thyroidectomy with or without radioiodine remnant ablation. Tumor characteristics and long-term outcomes (follow-up range: 2.5-24.8 years) were compared with those recently reported in 1020 TgAb-negative PTC patients with similar demographic characteristics. We also assessed the impact on clinical outcome of early titer disappearance in the TgAb-positive group. At baseline, the study cohort (mean age 45.9 years, range 12.5-84.1 years; 85% female) had a significantly higher prevalence of high-risk patients (6.9% vs. 3.2%, p<0.05) and extrathyroidal tumor extension (28.2% vs. 24%; p<0.0001) than TgAb-negative controls. Study cohort patients were also more likely than controls to have persistent disease at the 1-year visit (13.6% vs. 7.0%, p=0.001) or recurrence during subsequent follow-up (5.8% vs. 1.4%, p=0.0001). At the final follow-up visit, the percentage of patients with either persistent or recurrent disease in the two cohorts was significantly different (6.4% of TgAb-positive patients vs. 1.7% in the TgAb-negative group, p<0.0001). At the 1-year visit, titer normalization was observed in 85 of the 220 TgAb-positive individuals. These patients had a significantly lower rate of persistent disease than those who were still TgAb positive (8.2% vs. 17.3%. p=0.05), and no relapses were observed among patients with no evidence of disease during subsequent follow-up. PTC patients with positive serum TgAb titer during the first year after primary treatment were more likely to have persistent/recurrent disease than those who were consistently TgAb-negative. Negative titers at 1 year may be associated with more favorable outcomes.
Premachandra, H K A; Wan, Qiang; Elvitigala, Don Anushka Sandaruwan; De Zoysa, Mahanama; Choi, Cheol Young; Whang, Ilson; Lee, Jehee
2012-12-01
Cystatins are a large family of cysteine proteinase inhibitors which are involved in diverse biological and pathological processes. In the present study, we identified a gene related to cystatin superfamily, AbCyt B, from disk abalone Haliotis discus discus by expressed sequence tag (EST) analysis and BAC library screening. The complete cDNA sequence of AbCyt B is comprised of 1967 nucleotides with a 306 bp open reading frame (ORF) encoding for 101 amino acids. The amino acid sequence consists of a single cystatin-like domain, which has a cysteine proteinase inhibitor signature, a conserved Gly in N-terminal region, QVVAG motif and a variant of PW motif. No signal peptide, disulfide bonds or carbohydrate side chains were identified. Analysis of deduced amino acid sequence revealed that AbCyt B shares up to 44.7% identity and 65.7% similarity with the cystatin B genes from other organisms. The genomic sequence of AbCyt B is approximately 8.4 Kb, consisting of three exons and two introns. Phylogenetic tree analysis showed that AbCyt B was closely related to the cystatin B from pacific oyster (Crassostrea gigas) under the family 1.Functional analysis of recombinant AbCyt B protein exhibited inhibitory activity against the papain, with almost 84% inhibition at a concentration of 3.5 μmol/L. In tissue expression analysis, AbCyt B transcripts were expressed abundantly in the hemocyte, gill, mantle, and digestive tract, while weakly in muscle, testis, and hepatopancreas. After the immune challenge with Vibrio parahemolyticus, the AbCyt B showed significant (P<0.05) up-regulation of relative mRNA expression in gill and hemocytes at 24 and 6 h of post infection, respectively. These results collectively suggest that AbCyst B is a potent inhibitor of cysteine proteinases and is also potentially involved in immune responses against invading bacterial pathogens in abalone. Copyright © 2012 Elsevier Ltd. All rights reserved.
Rapid polyclonal desensitization with antibodies to IgE and FcεRIα.
Khodoun, Marat V; Kucuk, Zeynep Yesim; Strait, Richard T; Krishnamurthy, Durga; Janek, Kevin; Lewkowich, Ian; Morris, Suzanne C; Finkelman, Fred D
2013-06-01
Rapid desensitization, a procedure in which persons allergic to an antigen are treated at short intervals with increasing doses of that antigen until they tolerate a large dose, is an effective, but risky, way to induce temporary tolerance. We wanted to determine whether this approach can be adapted to suppress all IgE-mediated allergies in mice by injecting serially increasing doses of monoclonal antibodies (mAbs) to IgE or FcεRIα. Active and passive models of antigen- and anti-IgE mAb-induced IgE-mediated anaphylaxis were used. Mice were desensitized with serially increasing doses of anti-IgE mAb, anti-FcεRIα mAb, or antigen. Development of shock (hypothermia), histamine and mast cell protease release, cytokine secretion, calcium flux, and changes in cell number and FcεRI and IgE expression were evaluated. Rapid desensitization with anti-IgE mAb suppressed IgE-mediated immediate hypersensitivity; however, some mice developed mild anaphylaxis during desensitization. Rapid desensitization with anti-FcεRIα mAb that only binds FcεRI that is not occupied by IgE suppressed both active and passive IgE-mediated anaphylaxis without inducing disease. It quickly, but temporarily, suppressed IgE-mediated anaphylaxis by decreasing mast cell signaling through FcεRI, then slowly induced longer lasting mast cell unresponsiveness by removing membrane FcεRI. Rapid desensitization with anti-FcεRIα mAb was safer and longer lasting than rapid desensitization with antigen. A rapid desensitization approach with anti-FcεRIα mAb safely desensitizes mice to IgE-mediated anaphylaxis by inducing mast cell anergy and later removing all mast cell IgE. Rapid desensitization with an anti-human FcεRIα mAb may be able to prevent human IgE-mediated anaphylaxis. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
Rapid polyclonal desensitization with antibodies to IgE and FcεRIα
Khodoun, Marat V.; Kucuk, Zeynep Yesim; Strait, Richard T.; Krishnamurthy, Durga; Janek, Kevin; Lewkowich, Ian; Morris, Suzanne C.; Finkelman, Fred D.
2013-01-01
Background Rapid desensitization,a procedure in which individuals allergic to an antigen are treated at short intervals with increasing doses of that antigen until they tolerate a large dose, is an effective, but risky way to induce temporary tolerance. Objective To determine whether this approach can be adapted to suppress all IgE-mediated in mice by injecting serially increasing doses of monoclonal antibodies (mAbs) to IgE or FcεRIα. Methods Active and passive models of antigen- and anti-IgE mAb-induced IgE-mediated anaphylaxis were used. Mice were desensitized with serially increasing doses of anti-IgE mAb, anti-FcεRIα mAb or antigen. Development of shock (hypothermia), histamine and mast cell protease release, cytokine secretion, calcium flux and changes in cell number and FcεRI and IgE expression were evaluated. Results Rapid desensitization with anti-IgE mAb suppressed IgE-mediated immediate hypersensitivity; however, some mice developed mild anaphylaxis during desensitization. Rapid desensitization with anti-FcεRIα mAb that only binds FcεRI that is not occupied by IgE suppressed both active and passive IgE-mediated anaphylaxis without inducing disease. It quickly, but temporarily, suppressed IgE-mediated anaphylaxis by decreasing mast cell signaling through FcεRI, then slowly slowlyinduced longer lasting mast cell unresponsiveness by removing membrane FcεRI. Rapid desensitization with anti-FcεRIα mAb was safer and longer-lasting than rapid desensitization with antigen. Conclusion A rapid desensitization approach with anti-FcεRIα mAb safely desensitizes mice to IgE-mediated anaphylaxis by inducing mast cell anergy and later, removing all mast cell IgE. Rapid desensitization with an anti-human FcεRIα mAb may be able to prevent human IgE-mediated anaphylaxis. PMID:23632296
NASA Astrophysics Data System (ADS)
Nabiev, I. R.
2017-01-01
Molecules recognizing biomarkers of diseases (monoclonal antibodies (monoABs)) are often too large for biomedical applications, and the conditions that are used to bind them with nanolabels lead to disordered orientation of monoABs with respect to the nanoparticle surface. Extremely small nanoprobes, designed via oriented conjugation of quantum dots (QDs) with single-domain antibodies (sdABs) derived from the immunoglobulin of llama and produced in the E. coli culture, have a hydrodynamic diameter less than 12 nm and contain equally oriented sdAB molecules on the surface of each QD. These nanoprobes exhibit excellent specificity and sensitivity in quantitative determination of a small number of cells expressing biomarkers. In addition, the higher diffusion coefficient of sdABs makes it possible to perform immunohistochemical analysis in bulk tissue, inaccessible for conventional monoABs. The necessary conditions for implementing high-quality immunofluorescence diagnostics are a high specificity of labeling and clear differences between the fluorescence of nanoprobes and the autofluorescence of tissues. Multiphoton micros-copy with excitation in the near-IR spectral range, which is remote from the range of tissue autofluorescence excitation, makes it possible to solve this problem and image deep layers in biological tissues. The two-photon absorption cross sections of CdSe/ZnS QDs conjugated with sdABs exceed the corresponding values for organic fluorophores by several orders of magnitude. These nanoprobes provide clear discrimination between the regions of tumor and normal tissues with a ratio of the sdAB fluorescence to the tissue autofluorescence upon two-photon excitation exceeding that in the case of single-photon excitation by a factor of more than 40. The data obtained indicate that the sdAB-QD conjugates used as labels provide the same, or even better, quality as the "gold standard" of immunohistochemical diagnostics. The developed nanoprobes are expected to find wide application in high-efficiency imaging of tumor and multiparameter diagnostics.
Liu, Yuan; Zhao, Jijun; Li, Fengyu; Chen, Zhongfang
2013-01-15
Accurate description of hydrogen-bonding energies between water molecules and van der Waals interactions between guest molecules and host water cages is crucial for study of methane hydrates (MHs). Using high-level ab initio MP2 and CCSD(T) results as the reference, we carefully assessed the performance of a variety of exchange-correlation functionals and various basis sets in describing the noncovalent interactions in MH. The functionals under investigation include the conventional GGA, meta-GGA, and hybrid functionals (PBE, PW91, TPSS, TPSSh, B3LYP, and X3LYP), long-range corrected functionals (ωB97X, ωB97, LC-ωPBE, CAM-B3LYP, and LC-TPSS), the newly developed Minnesota class functionals (M06-L, M06-HF, M06, and M06-2X), and the dispersion-corrected density functional theory (DFT) (DFT-D) methods (B97-D, ωB97X-D, PBE-TS, PBE-Grimme, and PW91-OBS). We found that the conventional functionals are not suitable for MH, notably, the widely used B3LYP functional even predicts repulsive interaction between CH(4) and (H(2)O)(6) cluster. M06-2X is the best among the M06-Class functionals. The ωB97X-D outperforms the other DFT-D methods and is recommended for accurate first-principles calculations of MH. B97-D is also acceptable as a compromise of computational cost and precision. Considering both accuracy and efficiency, B97-D, ωB97X-D, and M06-2X functional with 6-311++G(2d,2p) basis set without basis set superposition error (BSSE) correction are recommended. Though a fairly large basis set (e.g., aug-cc-pVTZ) and BSSE correction are necessary for a reliable MP2 calculation, DFT methods are less sensitive to the basis set and BSSE correction if the basis set is sufficient (e.g., 6-311++G(2d,2p)). These assessments provide useful guidance for choosing appropriate methodology of first-principles simulation of MH and related systems. © 2012 Wiley Periodicals, Inc. Copyright © 2012 Wiley Periodicals, Inc.
A Model for Predicting Thermoelectric Properties of Bi2Te3
NASA Technical Reports Server (NTRS)
Lee, Seungwon; VonAllmen, Paul
2009-01-01
A parameterized orthogonal tight-binding mathematical model of the quantum electronic structure of the bismuth telluride molecule has been devised for use in conjunction with a semiclassical transport model in predicting the thermoelectric properties of doped bismuth telluride. This model is expected to be useful in designing and analyzing Bi2Te3 thermoelectric devices, including ones that contain such nano - structures as quantum wells and wires. In addition, the understanding gained in the use of this model can be expected to lead to the development of better models that could be useful for developing other thermoelectric materials and devices having enhanced thermoelectric properties. Bi2Te3 is one of the best bulk thermoelectric materials and is widely used in commercial thermoelectric devices. Most prior theoretical studies of the thermoelectric properties of Bi2Te3 have involved either continuum models or ab-initio models. Continuum models are computationally very efficient, but do not account for atomic-level effects. Ab-initio models are atomistic by definition, but do not scale well in that computation times increase excessively with increasing numbers of atoms. The present tight-binding model bridges the gap between the well-scalable but non-atomistic continuum models and the atomistic but poorly scalable ab-initio models: The present tight-binding model is atomistic, yet also computationally efficient because of the reduced (relative to an ab-initio model) number of basis orbitals and flexible parameterization of the Hamiltonian.
Hildebrandt, Tom; Epstein, Elizabeth E.; Sysko, Robyn; Bux, Donald A.
2017-01-01
Background The type A/B classification model for alcohol use disorders (AUDs) has received considerable empirical support. However, few studies examine the underlying latent structure of this subtyping model, which has been challenged as a dichotomization of a single drinking severity dimension. Type B, relative to type A, alcoholics represent those with early age of onset, greater familial risk, and worse outcomes from alcohol use. Method We examined the latent structure of the type A/B model using categorical, dimensional, and factor mixture models in a mixed gender community treatment-seeking sample of adults with an AUD. Results Factor analytic models identified 2-factors (drinking severity/externalizing psychopathology and internalizing psychopathology) underlying the type A/B indicators. A factor mixture model with 2-dimensions and 3-classes emerged as the best overall fitting model. The classes reflected a type A class and two type B classes (B1 and B2) that differed on the respective level of drinking severity/externalizing pathology and internalizing pathology. Type B1 had a greater prevalence of women and more internalizing pathology and B2 had a greater prevalence of men and more drinking severity/externalizing pathology. The 2-factor, 3-class model also exhibited predictive validity by explaining significant variance in 12-month drinking and drug use outcomes. Conclusions The model identified in the current study may provide a basis for examining different sources of heterogeneity in the course and outcome of AUDs. PMID:28247423
The neurobiological basis of human aggression: A review on genetic and epigenetic mechanisms.
Waltes, Regina; Chiocchetti, Andreas G; Freitag, Christine M
2016-07-01
Aggression is an evolutionary conserved behavior present in most species including humans. Inadequate aggression can lead to long-term detrimental personal and societal effects. Here, we differentiate between proactive and reactive forms of aggression and review the genetic determinants of it. Heritability estimates of aggression in general vary between studies due to differing assessment instruments for aggressive behavior (AB) as well as age and gender of study participants. In addition, especially non-shared environmental factors shape AB. Current hypotheses suggest that environmental effects such as early life stress or chronic psychosocial risk factors (e.g., maltreatment) and variation in genes related to neuroendocrine, dopaminergic as well as serotonergic systems increase the risk to develop AB. In this review, we summarize the current knowledge of the genetics of human aggression based on twin studies, genetic association studies, animal models, and epigenetic analyses with the aim to differentiate between mechanisms associated with proactive or reactive aggression. We hypothesize that from a genetic perspective, the aminergic systems are likely to regulate both reactive and proactive aggression, whereas the endocrine pathways seem to be more involved in regulation of reactive aggression through modulation of impulsivity. Epigenetic studies on aggression have associated non-genetic risk factors with modifications of the stress response and the immune system. Finally, we point to the urgent need for further genome-wide analyses and the integration of genetic and epigenetic information to understand individual differences in reactive and proactive AB. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Turner, Walter E; Agarwal, Jay; Schaefer, Henry F
2015-12-03
The recent discovery of PN in the oxygen-rich shell of the supergiant star VY Canis Majoris points to the formation of several triatomic molecules involving oxygen, nitrogen, and phosphorus; these are also intriguing targets for main-group synthetic inorganic chemistry. In this research, high-level ab initio electronic structure computations were conducted on the potential circumstellar molecule OPN and several of its heavier group 15 and 16 congeners (SPN, SePN, TePN, OPP, OPAs, and OPSb). For each congener, four isomers were examined. Optimized geometries were obtained with coupled cluster theory [CCSD(T)] using large Dunning basis sets [aug-cc-pVQZ, aug-cc-pV(Q+d)Z, and aug-cc-pVQZ-PP], and relative energies were determined at the complete basis set limit of CCSDT(Q) from focal point analyses. The linear phosphorus-centered molecules were consistently the lowest in energy of the group 15 congeners by at least 6 kcal mol(-1), resulting from double-triple and single-double bond resonances within the molecule. The linear nitrogen-centered molecules were consistently the lowest in energy of the group 16 congeners by at least 5 kcal mol(-1), due to the electronegative central nitrogen atom encouraging electron delocalization throughout the molecule. For OPN, OPP, and SPN, anharmonic vibrational frequencies and vibrationally corrected rotational constants are predicted; good agreement with available experimental data is observed.
An ab initio study of the low-lying doublet states of AgO and AgS
NASA Astrophysics Data System (ADS)
Bauschlicher, Charles W.; Partridge, Harry; Langhoff, Stephen R.
1990-11-01
Spectroscopic constants ( Do, re, μ e, Te) are determined for the doublet states of AgO and AgS below ≈ 30000 cm -1. valence basis sets are employed in conjunction with relativistic effective core potentials (RECPs). Electron correlation is included using the modified coupled-pair functional (MCPF) and multireferenceconfiguration interaction (MRCI) methods. The A 2Σ +-X 2Π band system is found to occur in the near infrared ( ≈ 9000 cm -1) and to be relatively weak with a radiative lifetime of 900 μs for A 2Σ + (ν = 0). The weakly bound C 2Π state (our notation), the upper state of the blue system, is found to require high levels of theoretical treatment to determine a quantitatively accurate potential. The red system is assigned as a transition from the C 2Π state to the previously unobserved A 2Σ + state. Several additional transitions are identified that should be detectable experiment A more limited study is performed for the vertical excitation spectrum of AgS. In addition, a detailed all-electron study of the X 2Π and A 2Σ + states of AgO is carried out using large atomic natural orbital (ANO) basis sets. Our best calculated Do value for AgO is significantly less than the experimental value, which suggests that there may be some systematic error in the experimental determination.
Kadirvelraj, Renuka; Gonzalez-Outeiriño, Jorge; Foley, B Lachele; Beckham, Meredith L; Jennings, Harold J; Foote, Simon; Ford, Michael G; Woods, Robert J
2006-05-23
Bacterial surface capsular polysaccharides (CPS) that are similar in carbohydrate sequence may differ markedly in immunogenicity and antigenicity. The structural origin of these phenomena is poorly understood. Such a case is presented by the Gram-positive bacteria Streptococcus agalactiae (Group B Streptococcus; GBS) type III (GBSIII) and Streptococcus pneumoniae (Pn) type 14 (Pn14), which share closely related CPS sequences. Nevertheless, antibodies (Abs) against GBSIII rarely cross-react with the CPS from Pn14. To establish the origin for the variation in CPS antigenicity, models for the immune complexes of CPS fragments from GBSIII and Pn14, with the variable fragment (Fv) of a GBS-specific mAb (mAb 1B1), are presented. The complexes are generated through a combination of comparative Ab modeling and automated ligand docking, followed by explicitly solvated 10-ns molecular dynamics simulations. The relationship between carbohydrate sequence and antigenicity is further quantified through the computation of interaction energies using the Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) method, augmented by conformational entropy estimates. Despite the electrostatic differences between Pn14 and GBSIII CPS, analysis indicates that entropic penalties are primarily responsible for the loss of affinity of the highly flexible Pn14 CPS for mAb 1B1. The similarity of the solution conformation of the relatively rigid GBSIII CPS with that in the immune complex characterizes the previously undescribed 3D structure of the conformational epitope. The analysis provides a comprehensive interpretation for a large body of biochemical and immunological data related to Ab recognition of bacterial polysaccharides and should be applicable to other Ab-carbohydrate interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xinsheng, E-mail: xzhang@iavi.org; Molecular and Cellular Biology Program, State University of New York, Brooklyn, NY; Wallace, Olivia L.
Serum was analyzed from 146 healthy adult volunteers in eastern Africa to evaluate measles virus (MV) and canine distemper virus (CDV) neutralizing antibody (nAb) prevalence and potency. MV plaque reduction neutralization test (PRNT) results indicated that all sera were positive for MV nAbs. Furthermore, the 50% neutralizing dose (ND50) for the majority of sera corresponded to antibody titers induced by MV vaccination. CDV nAbs titers were low and generally were detected in sera with high MV nAb titers. A mutant CDV was generated that was less sensitive to neutralization by human serum. The mutant virus genome had 10 nucleotide substitutions,more » which coded for single amino acid substitutions in the fusion (F) and hemagglutinin (H) glycoproteins and two substitutions in the large polymerase (L) protein. The H substitution occurred in a conserved region involved in receptor interactions among morbilliviruses, implying that this region is a target for cross-reactive neutralizing antibodies. - Highlights: • Screened 146 serum samples for measles virus (MV) and canine distemper virus (CDV) neutralizing antibody (nAb). • MV nAb is prevalent in the sera. • CDV neutralizing activity is generally low or absent and when detected it is present in sera with high MV nAb titers. • A neutralization-resistant CDV mutant was isolated using human serum selection. • A mutation was identified in the receptor-binding region of CDV hemagglutinin protein that confers the neutralization resistance.« less
Thiéry, I.; Hamon, S.; Delécluse, A.; Orduz, S.
1998-01-01
The fragment containing the gene encoding the cytolytic Cyt1Ab1 protein from Bacillus thuringiensis subsp. medellin and its flanking sequences (I. Thiery, A. Delécluse, M. C. Tamayo, and S. Orduz, Appl. Environ. Microbiol. 63:468–473, 1997) was introduced into Bacillus sphaericus toxic strains 2362, 2297, and Iab872 by electroporation with the shuttle vector pMK3. Only small amounts of the protein were produced in recombinant strains 2362 and Iab872. The protein was detected in these strains only by Western blotting and immunodetection with antibody raised against Cyt1Ab1 protein. Large amounts of Cyt1Ab1 protein were produced in B. sphaericus recombinant strain 2297, and there was an additional crystal, other than that of the binary toxin, within the exosporium. The production of the Cyt1Ab1 protein in addition to the binary toxin did not increase the larvicidal activity of the B. sphaericus recombinant strain against susceptible mosquito populations of Culex pipiens or Aedes aegypti. However, it partially restored (10 to 20 times) susceptibility of the resistant mosquito populations of C. pipiens (SPHAE) and Culex quinquefasciatus (GeoR) to the binary toxin. The Cyt1Ab1 protein produced in recombinant B. thuringiensis SPL407(pcyt1Ab1) was synthesized in two types of crystal—one round and with various dense areas, surrounded by an envelope, and the other a regular cuboid crystal, very similar to that found in the B. sphaericus recombinant strain. PMID:9758818
A correlated ab initio study of linear carbon-chain radicals CnH (n = 2-7)
NASA Technical Reports Server (NTRS)
Woon, D. E.; Loew, G. H. (Principal Investigator)
1995-01-01
Linear carbon-chain radicals CnH for n = 2-7 have been studied with correlation consistent valence and core-valence basis sets and the coupled cluster method RCCSD(T). Equilibrium structures, rotational constants, and dipole moments are reported and compared with available experimental data. The ground state of the even-n series changes from 2 sigma+ to 2 pi as the chain is extended. For C4H, the 2 sigma+ state was found to lie only 72 cm-1 below the 2 pi state in the estimated complete basis set limit for valence correlation. The C2H- and C3H- anions have also been characterized.
A correlated ab initio study of the A2 pi <-- X2 sigma+ transition in MgCCH
NASA Technical Reports Server (NTRS)
Woon, D. E.
1997-01-01
The A2 pi <-- X2 sigma+ transition in MgCCH was studied with correlation consistent basis sets and single- and multireference correlation methods. The A2 pi excited state was characterized in detail; the x2 sigma+ ground state has been described elsewhere recently. The estimated complete basis set (CBS) limits for valence correlation, including zero-point energy corrections, are 22668, 23191, and 22795 for the RCCSD(T), MRCI, and MRCI + Q methods, respectively. A core-valence correction of +162 cm-1 shifts the RCCSD(T) value to 22830 cm-1, in good agreement with the experimental result of 22807 cm-1.
Siu, Chi-Kit; Liu, Zhi-Feng; Tse, John S
2002-09-11
We report computational studies on Al(+)(H(2)O)(n), and HAlOH(+)(H(2)O)(n-1), n = 6-14, by the density functional theory based ab initio molecular dynamics method, employing a planewave basis set with pseudopotentials, and also by conventional methods with Gaussian basis sets. The mechanism for the intracluster H(2) elimination reaction is explored. First, a new size-dependent insertion reaction for the transformation of Al(+)(H(2)O)(n), into HAlOH(+)(H(2)O)(n-1) is discovered for n > or = 8. This is because of the presence of a fairly stable six-water-ring structure in Al(+)(H(2)O)(n) with 12 members, including the Al(+). This structure promotes acidic dissociation and, for n > or = 8, leads to the insertion reaction. Gaussian based BPW91 and MP2 calculations with 6-31G* and 6-31G** basis sets confirmed the existence of such structures and located the transition structures for the insertion reaction. The calculated transition barrier is 10.0 kcal/mol for n = 9 and 7.1 kcal/mol for n = 8 at the MP2/6-31G** level, with zero-point energy corrections. Second, the experimentally observed size-dependent H(2) elimination reaction is related to the conformation of HAlOH(+)(H(2)O)(n-1), instead of Al(+)(H(2)O)(n). As n increases from 6 to 14, the structure of the HAlOH(+)(H(2)O)(n-1) cluster changes into a caged structure, with the Al-H bond buried inside, and protons produced in acidic dissociation could then travel through the H(2)O network to the vicinity of the Al-H bond and react with the hydride H to produce H(2). The structural transformation is completed at n = 13, coincident approximately with the onset of the H(2) elimination reaction. From constrained ab initio MD simulations, we estimated the free energy barrier for the H(2) elimination reaction to be 0.7 eV (16 kcal/mol) at n = 13, 1.5 eV (35 kcal/mol) at n = 12, and 4.5 eV (100 kcal/mol) at n = 8. The existence of transition structures for the H(2) elimination has also been verified by ab initio calculations at the MP2/6-31G** level. Finally, the switch-off of the H(2) elimination for n > 24 is explored and attributed to the diffusion of protons through enlarged hydrogen bonded H(2)O networks, which reduces the probability of finding a proton near the Al-H bond.
Roychoudhury, Pavitra; Makhsous, Negar; Hanson, Derek; Chase, Jill; Krueger, Gerhard; Xie, Hong; Huang, Meei-Li; Saunders, Lindsay; Ablashi, Dharam; Koelle, David M.; Cook, Linda; Jerome, Keith R.
2018-01-01
ABSTRACT Quantitative PCR is a diagnostic pillar for clinical virology testing, and reference materials are necessary for accurate, comparable quantitation between clinical laboratories. Accurate quantitation of human herpesvirus 6A/B (HHV-6A/B) is important for detection of viral reactivation and inherited chromosomally integrated HHV-6A/B in immunocompromised patients. Reference materials in clinical virology commonly consist of laboratory-adapted viral strains that may be affected by the culture process. We performed next-generation sequencing to make relative copy number measurements at single nucleotide resolution of eight candidate HHV-6A and seven HHV-6B reference strains and DNA materials from the HHV-6 Foundation and Advanced Biotechnologies Inc. Eleven of 17 (65%) HHV-6A/B candidate reference materials showed multiple copies of the origin of replication upstream of the U41 gene by next-generation sequencing. These large tandem repeats arose independently in culture-adapted HHV-6A and HHV-6B strains, measuring 1,254 bp and 983 bp, respectively. The average copy number measured was between 5 and 10 times the number of copies of the rest of the genome. We also report the first interspecies recombinant HHV-6A/B strain with a HHV-6A backbone and a >5.5-kb region from HHV-6B, from U41 to U43, that covered the origin tandem repeat. Specific HHV-6A reference strains demonstrated duplication of regions at U1/U2, U87, and U89, as well as deletion in the U12-to-U24 region and the U94/U95 genes. HHV-6A/B strains derived from cord blood mononuclear cells from different laboratories on different continents with fewer passages revealed no copy number differences throughout the viral genome. These data indicate that large origin tandem duplications are an adaptation of both HHV-6A and HHV-6B in culture and show interspecies recombination is possible within the Betaherpesvirinae. IMPORTANCE Anything in science that needs to be quantitated requires a standard unit of measurement. This includes viruses, for which quantitation increasingly determines definitions of pathology and guidelines for treatment. However, the act of making standard or reference material in virology can alter its very accuracy through genomic duplications, insertions, and rearrangements. We used deep sequencing to examine candidate reference strains for HHV-6, a ubiquitous human virus that can reactivate in the immunocompromised population and is integrated into the human genome in every cell of the body for 1% of people worldwide. We found large tandem repeats in the origin of replication for both HHV-6A and HHV-6B that are selected for in culture. We also found the first interspecies recombinant between HHV-6A and HHV-6B, a phenomenon that is well known in alphaherpesviruses but to date has not been seen in betaherpesviruses. These data critically inform HHV-6A/B biology and the standard selection process. PMID:29491155
A two-stage algorithm for Clostridium difficile including PCR: can we replace the toxin EIA?
Orendi, J M; Monnery, D J; Manzoor, S; Hawkey, P M
2012-01-01
A two step, three-test algorithm for Clostridium difficile infection (CDI) was reviewed. Stool samples were tested by enzyme immunoassays for C. difficile common antigen glutamate dehydrogenase (G) and toxin A/B (T). Samples with discordant results were tested by polymerase chain reaction detecting the toxin B gene (P). The algorithm quickly identified patients with detectable toxin A/B, whereas a large group of patients excreting toxigenic C. difficile but with toxin A/B production below detection level (G(+)T(-)P(+)) was identified separately. The average white blood cell count in patients with a G(+)T(+) result was higher than in those with a G(+)T(-)P(+) result. Copyright © 2011 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Hagiwara, Yohsuke; Tateno, Masaru
2010-10-20
We review the recent research on the functional mechanisms of biological macromolecules using theoretical methodologies coupled to ab initio quantum mechanical (QM) treatments of reaction centers in proteins and nucleic acids. Since in most cases such biological molecules are large, the computational costs of performing ab initio calculations for the entire structures are prohibitive. Instead, simulations that are jointed with molecular mechanics (MM) calculations are crucial to evaluate the long-range electrostatic interactions, which significantly affect the electronic structures of biological macromolecules. Thus, we focus our attention on the methodologies/schemes and applications of jointed QM/MM calculations, and discuss the critical issues to be elucidated in biological macromolecular systems. © 2010 IOP Publishing Ltd
Köster, Andreas; Spura, Thomas; Rutkai, Gábor; Kessler, Jan; Wiebeler, Hendrik; Vrabec, Jadran; Kühne, Thomas D
2016-07-15
The accuracy of water models derived from ab initio molecular dynamics simulations by means on an improved force-matching scheme is assessed for various thermodynamic, transport, and structural properties. It is found that although the resulting force-matched water models are typically less accurate than fully empirical force fields in predicting thermodynamic properties, they are nevertheless much more accurate than generally appreciated in reproducing the structure of liquid water and in fact superseding most of the commonly used empirical water models. This development demonstrates the feasibility to routinely parametrize computationally efficient yet predictive potential energy functions based on accurate ab initio molecular dynamics simulations for a large variety of different systems. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Guo, Jia-Xing; Wu, Shao-Yi; Kuang, Min-Quan; Peng, Li; Wu, Li-Na
2018-01-01
The local structures and spin Hamiltonian parameters are theoretically studied for Cu2+ in alkaline earth alumino borate (XAB, X = Mg, Ca and Sr) glasses by using the perturbation calculations for tetragonally elongated octahedral 3d9 groups. The [CuO6]10- groups are subject to the large relative tetragonal elongation ratios of 15.4%, 13.4% and 13.0% for MgAB, CaAB and SrAB glasses, respectively, arising from the Jahn-Teller effect. The decreasing cubic field parameter Dq, orbital reduction factor k and relative elongation ratio with the increase of the radius of alkaline earth ion X from Mg to Ca or Sr are analyzed for the studied systems in a uniform way.
NASA Astrophysics Data System (ADS)
Niemack, Michael; Appel, J.; Cho, H. M.; Essinger-Hileman, T.; Fowler, J.; Halpern, M.; Irwin, K. D.; Marriage, T. A.; Page, L.; Parker, L. P.; Pufu, S.; Staggs, S. T.; Visnjic, K.; Yoon, K. W.; Zhao, Y.
2009-12-01
The Atacama B-mode Seach (ABS) is a new experiment to test the prediction that inflation during the early universe resulted in stochastic gravitational waves. The predicted signature of these inflationary gravitational waves is the introduction of a B-mode, or curl, component into the primordial cosmic microwave background (CMB) polarization field, which is dominated by curl-free E-modes. ABS is designed to measure the CMB polarization on large angular scales over a wide frequency band centered at 145 GHz. ABS comprises a 60 cm diameter telescope in the crossed Mizuguchi-Dragone configuration, which illuminates a large focal plane of 200 feedhorns coupled to polarization sensitive bolometric detectors. The detectors are fabricated at NIST and include planar ortho-mode transducers, band defining filters, microstrip tranmission lines and two transition-edge sensors (TES) to provide measurements of the polarization and total power from each feed simultaneously. The telescope mirrors are cooled to 4 K to control systematic effects, and the bolometers are cooled to 0.3 K to achieve sufficiently high saturation power while maintaining low detector noise. The polarization signals are modulated by a 33 cm diameter rotating half-wave plate (HWP) in front of the telescope. The HWP limits the mirror illumination, resulting in 0.5 degree angular resolution over a 20 degree field of view. ABS will begin observing at a high-altitude site in the Atacama Desert, Chile in 2009.
Aghebati Maleki, Leili; Majidi, Jafar; Baradaran, Behzad; Abdolalizadeh, Jalal; Kazemi, Tohid; Aghebati Maleki, Ali; Sineh sepehr, Koushan
2013-01-01
Purpose: Monoclonal antibodies or specific antibodies are now an essential tool of biomedical research and are of great commercial and medical value. The purpose of this study was to produce large scale of monoclonal antibody against CD34 in order to diagnostic application in leukemia and purification of human hematopoietic stem/progenitor cells. Methods: For large scale production of monoclonal antibody, hybridoma cells that produce monoclonal antibody against human CD34 were injected into the peritoneum of the Balb/c mice which have previously been primed with 0.5 ml Pristane. 5 ml ascitic fluid was harvested from each mouse in two times. Evaluation of mAb titration was assessed by ELISA method. The ascitic fluid was examined for class and subclasses by ELISA mouse mAb isotyping Kit. mAb was purified from ascitic fluid by affinity chromatography on Protein A-Sepharose. Purity of monoclonal antibody was monitored by SDS -PAGE and the purified monoclonal antibody was conjugated with FITC. Results: Monoclonal antibodies with high specificity and sensitivity against human CD34 by hybridoma technology were prepared. The subclass of antibody was IgG1 and its light chain was kappa. Conclusion: The conjugated monoclonal antibody could be a useful tool for isolation, purification and characterization of human hematopoietic stem cells. PMID:24312838
miREE: miRNA recognition elements ensemble
2011-01-01
Background Computational methods for microRNA target prediction are a fundamental step to understand the miRNA role in gene regulation, a key process in molecular biology. In this paper we present miREE, a novel microRNA target prediction tool. miREE is an ensemble of two parts entailing complementary but integrated roles in the prediction. The Ab-Initio module leverages upon a genetic algorithmic approach to generate a set of candidate sites on the basis of their microRNA-mRNA duplex stability properties. Then, a Support Vector Machine (SVM) learning module evaluates the impact of microRNA recognition elements on the target gene. As a result the prediction takes into account information regarding both miRNA-target structural stability and accessibility. Results The proposed method significantly improves the state-of-the-art prediction tools in terms of accuracy with a better balance between specificity and sensitivity, as demonstrated by the experiments conducted on several large datasets across different species. miREE achieves this result by tackling two of the main challenges of current prediction tools: (1) The reduced number of false positives for the Ab-Initio part thanks to the integration of a machine learning module (2) the specificity of the machine learning part, obtained through an innovative technique for rich and representative negative records generation. The validation was conducted on experimental datasets where the miRNA:mRNA interactions had been obtained through (1) direct validation where even the binding site is provided, or through (2) indirect validation, based on gene expression variations obtained from high-throughput experiments where the specific interaction is not validated in detail and consequently the specific binding site is not provided. Conclusions The coupling of two parts: a sensitive Ab-Initio module and a selective machine learning part capable of recognizing the false positives, leads to an improved balance between sensitivity and specificity. miREE obtains a reasonable trade-off between filtering false positives and identifying targets. miREE tool is available online at http://didattica-online.polito.it/eda/miREE/ PMID:22115078
Charge Transfer Rate in Collisions of H + Ions with Si Atoms
NASA Astrophysics Data System (ADS)
Kimura, M.; Sannigrahi, A. B.; Gu, J. P.; Hirsch, G.; Buenker, R. J.; Shimamura, I.
1996-12-01
Charge transfer in Si(3P, 1D) + H+ collisions is studied theoretically by using a semiclassical molecular representation with six molecular channels for the triplet manifold and four channels for the singlet manifold at collision energies above 30 eV, and by using a fully quantum mechanical approach with two molecular channels for both triplet and singlet manifolds below 30 eV. The ab initio potential curves and nonadiabatic coupling matrix elements for the HSi+ system are obtained from multireference single- and double-excitation configuration interaction (MRD-CI) calculations employing a relatively large basis set. The present rate coefficients for charge transfer to Si+(4P) formation resulting from H+ + Si(3P) collisions are found to be large with values from 1 x 10-10 cm-3 s-1 at 1000 K to 1 x 10-8 cm-3 s-1 at 100,000 K. The rate coefficient for Si+(2P) formation, resulting from H+ + Si(3P) collisions, is found to be much smaller because of a larger energy defect from the initial state. These calculated rates are much larger than those reported by Baliunas & Butler, who estimated a value of 10-11 cm-3 s-1 in their coronal plasma study. The present result may be relevant to the description of the silicon ionization equilibrium.