Sample records for large basis sets

  1. Combination of large and small basis sets in electronic structure calculations on large systems

    NASA Astrophysics Data System (ADS)

    Røeggen, Inge; Gao, Bin

    2018-04-01

    Two basis sets—a large and a small one—are associated with each nucleus of the system. Each atom has its own separate one-electron basis comprising the large basis set of the atom in question and the small basis sets for the partner atoms in the complex. The perturbed atoms in molecules and solids model is at core of the approach since it allows for the definition of perturbed atoms in a system. It is argued that this basis set approach should be particularly useful for periodic systems. Test calculations are performed on one-dimensional arrays of H and Li atoms. The ground-state energy per atom in the linear H array is determined versus bond length.

  2. Approaching the basis set limit for DFT calculations using an environment-adapted minimal basis with perturbation theory: Formulation, proof of concept, and a pilot implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Yuezhi; Horn, Paul R.; Mardirossian, Narbe

    2016-07-28

    Recently developed density functionals have good accuracy for both thermochemistry (TC) and non-covalent interactions (NC) if very large atomic orbital basis sets are used. To approach the basis set limit with potentially lower computational cost, a new self-consistent field (SCF) scheme is presented that employs minimal adaptive basis (MAB) functions. The MAB functions are optimized on each atomic site by minimizing a surrogate function. High accuracy is obtained by applying a perturbative correction (PC) to the MAB calculation, similar to dual basis approaches. Compared to exact SCF results, using this MAB-SCF (PC) approach with the same large target basis set producesmore » <0.15 kcal/mol root-mean-square deviations for most of the tested TC datasets, and <0.1 kcal/mol for most of the NC datasets. The performance of density functionals near the basis set limit can be even better reproduced. With further improvement to its implementation, MAB-SCF (PC) is a promising lower-cost substitute for conventional large-basis calculations as a method to approach the basis set limit of modern density functionals.« less

  3. Basis sets for the calculation of core-electron binding energies

    NASA Astrophysics Data System (ADS)

    Hanson-Heine, Magnus W. D.; George, Michael W.; Besley, Nicholas A.

    2018-05-01

    Core-electron binding energies (CEBEs) computed within a Δ self-consistent field approach require large basis sets to achieve convergence with respect to the basis set limit. It is shown that supplementing a basis set with basis functions from the corresponding basis set for the element with the next highest nuclear charge (Z + 1) provides basis sets that give CEBEs close to the basis set limit. This simple procedure provides relatively small basis sets that are well suited for calculations where the description of a core-ionised state is important, such as time-dependent density functional theory calculations of X-ray emission spectroscopy.

  4. Accurate Methods for Large Molecular Systems (Preprint)

    DTIC Science & Technology

    2009-01-06

    tensor, EFP calculations are basis set dependent. The smallest recommended basis set is 6- 31++G( d , p )52 The dependence of the computational cost of...and second order perturbation theory (MP2) levels with the 6-31G( d , p ) basis set. Additional SFM tests are presented for a small set of alpha...helices using the 6-31++G( d , p ) basis set. The larger 6-311++G(3df,2p) basis set is employed for creating all EFPs used for non- bonded interactions, since

  5. On basis set superposition error corrected stabilization energies for large n-body clusters.

    PubMed

    Walczak, Katarzyna; Friedrich, Joachim; Dolg, Michael

    2011-10-07

    In this contribution, we propose an approximate basis set superposition error (BSSE) correction scheme for the site-site function counterpoise and for the Valiron-Mayer function counterpoise correction of second order to account for the basis set superposition error in clusters with a large number of subunits. The accuracy of the proposed scheme has been investigated for a water cluster series at the CCSD(T), CCSD, MP2, and self-consistent field levels of theory using Dunning's correlation consistent basis sets. The BSSE corrected stabilization energies for a series of water clusters are presented. A study regarding the possible savings with respect to computational resources has been carried out as well as a monitoring of the basis set dependence of the approximate BSSE corrections. © 2011 American Institute of Physics

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKemmish, Laura K., E-mail: laura.mckemmish@gmail.com; Research School of Chemistry, Australian National University, Canberra

    Algorithms for the efficient calculation of two-electron integrals in the newly developed mixed ramp-Gaussian basis sets are presented, alongside a Fortran90 implementation of these algorithms, RAMPITUP. These new basis sets have significant potential to (1) give some speed-up (estimated at up to 20% for large molecules in fully optimised code) to general-purpose Hartree-Fock (HF) and density functional theory quantum chemistry calculations, replacing all-Gaussian basis sets, and (2) give very large speed-ups for calculations of core-dependent properties, such as electron density at the nucleus, NMR parameters, relativistic corrections, and total energies, replacing the current use of Slater basis functions or verymore » large specialised all-Gaussian basis sets for these purposes. This initial implementation already demonstrates roughly 10% speed-ups in HF/R-31G calculations compared to HF/6-31G calculations for large linear molecules, demonstrating the promise of this methodology, particularly for the second application. As well as the reduction in the total primitive number in R-31G compared to 6-31G, this timing advantage can be attributed to the significant reduction in the number of mathematically complex intermediate integrals after modelling each ramp-Gaussian basis-function-pair as a sum of ramps on a single atomic centre.« less

  7. Midbond basis functions for weakly bound complexes

    NASA Astrophysics Data System (ADS)

    Shaw, Robert A.; Hill, J. Grant

    2018-06-01

    Weakly bound systems present a difficult problem for conventional atom-centred basis sets due to large separations, necessitating the use of large, computationally expensive bases. This can be remedied by placing a small number of functions in the region between molecules in the complex. We present compact sets of optimised midbond functions for a range of complexes involving noble gases, alkali metals and small molecules for use in high accuracy coupled -cluster calculations, along with a more robust procedure for their optimisation. It is shown that excellent results are possible with double-zeta quality orbital basis sets when a few midbond functions are added, improving both the interaction energy and the equilibrium bond lengths of a series of noble gas dimers by 47% and 8%, respectively. When used in conjunction with explicitly correlated methods, near complete basis set limit accuracy is readily achievable at a fraction of the cost that using a large basis would entail. General purpose auxiliary sets are developed to allow explicitly correlated midbond function studies to be carried out, making it feasible to perform very high accuracy calculations on weakly bound complexes.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papajak, Ewa; Truhlar, Donald G.

    We present sets of convergent, partially augmented basis set levels corresponding to subsets of the augmented “aug-cc-pV(n+d)Z” basis sets of Dunning and co-workers. We show that for many molecular properties a basis set fully augmented with diffuse functions is computationally expensive and almost always unnecessary. On the other hand, unaugmented cc-pV(n+d)Z basis sets are insufficient for many properties that require diffuse functions. Therefore, we propose using intermediate basis sets. We developed an efficient strategy for partial augmentation, and in this article, we test it and validate it. Sequentially deleting diffuse basis functions from the “aug” basis sets yields the “jul”,more » “jun”, “may”, “apr”, etc. basis sets. Tests of these basis sets for Møller-Plesset second-order perturbation theory (MP2) show the advantages of using these partially augmented basis sets and allow us to recommend which basis sets offer the best accuracy for a given number of basis functions for calculations on large systems. Similar truncations in the diffuse space can be performed for the aug-cc-pVxZ, aug-cc-pCVxZ, etc. basis sets.« less

  9. Simplified DFT methods for consistent structures and energies of large systems

    NASA Astrophysics Data System (ADS)

    Caldeweyher, Eike; Gerit Brandenburg, Jan

    2018-05-01

    Kohn–Sham density functional theory (DFT) is routinely used for the fast electronic structure computation of large systems and will most likely continue to be the method of choice for the generation of reliable geometries in the foreseeable future. Here, we present a hierarchy of simplified DFT methods designed for consistent structures and non-covalent interactions of large systems with particular focus on molecular crystals. The covered methods are a minimal basis set Hartree–Fock (HF-3c), a small basis set screened exchange hybrid functional (HSE-3c), and a generalized gradient approximated functional evaluated in a medium-sized basis set (B97-3c), all augmented with semi-classical correction potentials. We give an overview on the methods design, a comprehensive evaluation on established benchmark sets for geometries and lattice energies of molecular crystals, and highlight some realistic applications on large organic crystals with several hundreds of atoms in the primitive unit cell.

  10. Ab Initio Density Fitting: Accuracy Assessment of Auxiliary Basis Sets from Cholesky Decompositions.

    PubMed

    Boström, Jonas; Aquilante, Francesco; Pedersen, Thomas Bondo; Lindh, Roland

    2009-06-09

    The accuracy of auxiliary basis sets derived by Cholesky decompositions of the electron repulsion integrals is assessed in a series of benchmarks on total ground state energies and dipole moments of a large test set of molecules. The test set includes molecules composed of atoms from the first three rows of the periodic table as well as transition metals. The accuracy of the auxiliary basis sets are tested for the 6-31G**, correlation consistent, and atomic natural orbital basis sets at the Hartree-Fock, density functional theory, and second-order Møller-Plesset levels of theory. By decreasing the decomposition threshold, a hierarchy of auxiliary basis sets is obtained with accuracies ranging from that of standard auxiliary basis sets to that of conventional integral treatments.

  11. Comparison of fMRI analysis methods for heterogeneous BOLD responses in block design studies

    PubMed Central

    Bernal-Casas, David; Fang, Zhongnan; Lee, Jin Hyung

    2017-01-01

    A large number of fMRI studies have shown that the temporal dynamics of evoked BOLD responses can be highly heterogeneous. Failing to model heterogeneous responses in statistical analysis can lead to significant errors in signal detection and characterization and alter the neurobiological interpretation. However, to date it is not clear that, out of a large number of options, which methods are robust against variability in the temporal dynamics of BOLD responses in block-design studies. Here, we used rodent optogenetic fMRI data with heterogeneous BOLD responses and simulations guided by experimental data as a means to investigate different analysis methods’ performance against heterogeneous BOLD responses. Evaluations are carried out within the general linear model (GLM) framework and consist of standard basis sets as well as independent component analysis (ICA). Analyses show that, in the presence of heterogeneous BOLD responses, conventionally used GLM with a canonical basis set leads to considerable errors in the detection and characterization of BOLD responses. Our results suggest that the 3rd and 4th order gamma basis sets, the 7th to 9th order finite impulse response (FIR) basis sets, the 5th to 9th order B-spline basis sets, and the 2nd to 5th order Fourier basis sets are optimal for good balance between detection and characterization, while the 1st order Fourier basis set (coherence analysis) used in our earlier studies show good detection capability. ICA has mostly good detection and characterization capabilities, but detects a large volume of spurious activation with the control fMRI data. PMID:27993672

  12. Localized basis sets for unbound electrons in nanoelectronics.

    PubMed

    Soriano, D; Jacob, D; Palacios, J J

    2008-02-21

    It is shown how unbound electron wave functions can be expanded in a suitably chosen localized basis sets for any desired range of energies. In particular, we focus on the use of Gaussian basis sets, commonly used in first-principles codes. The possible usefulness of these basis sets in a first-principles description of field emission or scanning tunneling microscopy at large bias is illustrated by studying a simpler related phenomenon: The lifetime of an electron in a H atom subjected to a strong electric field.

  13. Correlation consistent valence basis sets for use with the Stuttgart-Dresden-Bonn relativistic effective core potentials: The atoms Ga-Kr and In-Xe

    NASA Astrophysics Data System (ADS)

    Martin, Jan M. L.; Sundermann, Andreas

    2001-02-01

    We propose large-core correlation-consistent (cc) pseudopotential basis sets for the heavy p-block elements Ga-Kr and In-Xe. The basis sets are of cc-pVTZ and cc-pVQZ quality, and have been optimized for use with the large-core (valence-electrons only) Stuttgart-Dresden-Bonn (SDB) relativistic pseudopotentials. Validation calculations on a variety of third-row and fourth-row diatomics suggest them to be comparable in quality to the all-electron cc-pVTZ and cc-pVQZ basis sets for lighter elements. Especially the SDB-cc-pVQZ basis set in conjunction with a core polarization potential (CPP) yields excellent agreement with experiment for compounds of the later heavy p-block elements. For accurate calculations on Ga (and, to a lesser extent, Ge) compounds, explicit treatment of 13 valence electrons appears to be desirable, while it seems inevitable for In compounds. For Ga and Ge, we propose correlation consistent basis sets extended for (3d) correlation. For accurate calculations on organometallic complexes of interest to homogenous catalysis, we recommend a combination of the standard cc-pVTZ basis set for first- and second-row elements, the presently derived SDB-cc-pVTZ basis set for heavier p-block elements, and for transition metals, the small-core [6s5p3d] Stuttgart-Dresden basis set-relativistic effective core potential combination supplemented by (2f1g) functions with exponents given in the Appendix to the present paper.

  14. Polarized atomic orbitals for self-consistent field electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Lee, Michael S.; Head-Gordon, Martin

    1997-12-01

    We present a new self-consistent field approach which, given a large "secondary" basis set of atomic orbitals, variationally optimizes molecular orbitals in terms of a small "primary" basis set of distorted atomic orbitals, which are simultaneously optimized. If the primary basis is taken as a minimal basis, the resulting functions are termed polarized atomic orbitals (PAO's) because they are valence (or core) atomic orbitals which have distorted or polarized in an optimal way for their molecular environment. The PAO's derive their flexibility from the fact that they are formed from atom-centered linear-combinations of the larger set of secondary atomic orbitals. The variational conditions satisfied by PAO's are defined, and an iterative method for performing a PAO-SCF calculation is introduced. We compare the PAO-SCF approach against full SCF calculations for the energies, dipoles, and molecular geometries of various molecules. The PAO's are potentially useful for studying large systems that are currently intractable with larger than minimal basis sets, as well as offering potential interpretative benefits relative to calculations in extended basis sets.

  15. Comparison of fMRI analysis methods for heterogeneous BOLD responses in block design studies.

    PubMed

    Liu, Jia; Duffy, Ben A; Bernal-Casas, David; Fang, Zhongnan; Lee, Jin Hyung

    2017-02-15

    A large number of fMRI studies have shown that the temporal dynamics of evoked BOLD responses can be highly heterogeneous. Failing to model heterogeneous responses in statistical analysis can lead to significant errors in signal detection and characterization and alter the neurobiological interpretation. However, to date it is not clear that, out of a large number of options, which methods are robust against variability in the temporal dynamics of BOLD responses in block-design studies. Here, we used rodent optogenetic fMRI data with heterogeneous BOLD responses and simulations guided by experimental data as a means to investigate different analysis methods' performance against heterogeneous BOLD responses. Evaluations are carried out within the general linear model (GLM) framework and consist of standard basis sets as well as independent component analysis (ICA). Analyses show that, in the presence of heterogeneous BOLD responses, conventionally used GLM with a canonical basis set leads to considerable errors in the detection and characterization of BOLD responses. Our results suggest that the 3rd and 4th order gamma basis sets, the 7th to 9th order finite impulse response (FIR) basis sets, the 5th to 9th order B-spline basis sets, and the 2nd to 5th order Fourier basis sets are optimal for good balance between detection and characterization, while the 1st order Fourier basis set (coherence analysis) used in our earlier studies show good detection capability. ICA has mostly good detection and characterization capabilities, but detects a large volume of spurious activation with the control fMRI data. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Perturbation corrections to Koopmans' theorem. V - A study with large basis sets

    NASA Technical Reports Server (NTRS)

    Chong, D. P.; Langhoff, S. R.

    1982-01-01

    The vertical ionization potentials of N2, F2 and H2O were calculated by perturbation corrections to Koopmans' theorem using six different basis sets. The largest set used includes several sets of polarization functions. Comparison is made with measured values and with results of computations using Green's functions.

  17. Effective empirical corrections for basis set superposition error in the def2-SVPD basis: gCP and DFT-C

    NASA Astrophysics Data System (ADS)

    Witte, Jonathon; Neaton, Jeffrey B.; Head-Gordon, Martin

    2017-06-01

    With the aim of mitigating the basis set error in density functional theory (DFT) calculations employing local basis sets, we herein develop two empirical corrections for basis set superposition error (BSSE) in the def2-SVPD basis, a basis which—when stripped of BSSE—is capable of providing near-complete-basis DFT results for non-covalent interactions. Specifically, we adapt the existing pairwise geometrical counterpoise (gCP) approach to the def2-SVPD basis, and we develop a beyond-pairwise approach, DFT-C, which we parameterize across a small set of intermolecular interactions. Both gCP and DFT-C are evaluated against the traditional Boys-Bernardi counterpoise correction across a set of 3402 non-covalent binding energies and isomerization energies. We find that the DFT-C method represents a significant improvement over gCP, particularly for non-covalently-interacting molecular clusters. Moreover, DFT-C is transferable among density functionals and can be combined with existing functionals—such as B97M-V—to recover large-basis results at a fraction of the cost.

  18. Communication: A novel implementation to compute MP2 correlation energies without basis set superposition errors and complete basis set extrapolation.

    PubMed

    Dixit, Anant; Claudot, Julien; Lebègue, Sébastien; Rocca, Dario

    2017-06-07

    By using a formulation based on the dynamical polarizability, we propose a novel implementation of second-order Møller-Plesset perturbation (MP2) theory within a plane wave (PW) basis set. Because of the intrinsic properties of PWs, this method is not affected by basis set superposition errors. Additionally, results are converged without relying on complete basis set extrapolation techniques; this is achieved by using the eigenvectors of the static polarizability as an auxiliary basis set to compactly and accurately represent the response functions involved in the MP2 equations. Summations over the large number of virtual states are avoided by using a formalism inspired by density functional perturbation theory, and the Lanczos algorithm is used to include dynamical effects. To demonstrate this method, applications to three weakly interacting dimers are presented.

  19. Kinetic balance and variational bounds failure in the solution of the Dirac equation in a finite Gaussian basis set

    NASA Technical Reports Server (NTRS)

    Dyall, Kenneth G.; Faegri, Knut, Jr.

    1990-01-01

    The paper investigates bounds failure in calculations using Gaussian basis sets for the solution of the one-electron Dirac equation for the 2p1/2 state of Hg(79+). It is shown that bounds failure indicates inadequacies in the basis set, both in terms of the exponent range and the number of functions. It is also shown that overrepresentation of the small component space may lead to unphysical results. It is concluded that it is important to use matched large and small component basis sets with an adequate size and exponent range.

  20. An expanded calibration study of the explicitly correlated CCSD(T)-F12b method using large basis set standard CCSD(T) atomization energies.

    PubMed

    Feller, David; Peterson, Kirk A

    2013-08-28

    The effectiveness of the recently developed, explicitly correlated coupled cluster method CCSD(T)-F12b is examined in terms of its ability to reproduce atomization energies derived from complete basis set extrapolations of standard CCSD(T). Most of the standard method findings were obtained with aug-cc-pV7Z or aug-cc-pV8Z basis sets. For a few homonuclear diatomic molecules it was possible to push the basis set to the aug-cc-pV9Z level. F12b calculations were performed with the cc-pVnZ-F12 (n = D, T, Q) basis set sequence and were also extrapolated to the basis set limit using a Schwenke-style, parameterized formula. A systematic bias was observed in the F12b method with the (VTZ-F12/VQZ-F12) basis set combination. This bias resulted in the underestimation of reference values associated with small molecules (valence correlation energies <0.5 E(h)) and an even larger overestimation of atomization energies for bigger systems. Consequently, caution should be exercised in the use of F12b for high accuracy studies. Root mean square and mean absolute deviation error metrics for this basis set combination were comparable to complete basis set values obtained with standard CCSD(T) and the aug-cc-pVDZ through aug-cc-pVQZ basis set sequence. However, the mean signed deviation was an order of magnitude larger. Problems partially due to basis set superposition error were identified with second row compounds which resulted in a weak performance for the smaller VDZ-F12/VTZ-F12 combination of basis sets.

  1. Accurate and balanced anisotropic Gaussian type orbital basis sets for atoms in strong magnetic fields.

    PubMed

    Zhu, Wuming; Trickey, S B

    2017-12-28

    In high magnetic field calculations, anisotropic Gaussian type orbital (AGTO) basis functions are capable of reconciling the competing demands of the spherically symmetric Coulombic interaction and cylindrical magnetic (B field) confinement. However, the best available a priori procedure for composing highly accurate AGTO sets for atoms in a strong B field [W. Zhu et al., Phys. Rev. A 90, 022504 (2014)] yields very large basis sets. Their size is problematical for use in any calculation with unfavorable computational cost scaling. Here we provide an alternative constructive procedure. It is based upon analysis of the underlying physics of atoms in B fields that allow identification of several principles for the construction of AGTO basis sets. Aided by numerical optimization and parameter fitting, followed by fine tuning of fitting parameters, we devise formulae for generating accurate AGTO basis sets in an arbitrary B field. For the hydrogen iso-electronic sequence, a set depends on B field strength, nuclear charge, and orbital quantum numbers. For multi-electron systems, the basis set formulae also include adjustment to account for orbital occupations. Tests of the new basis sets for atoms H through C (1 ≤ Z ≤ 6) and ions Li + , Be + , and B + , in a wide B field range (0 ≤ B ≤ 2000 a.u.), show an accuracy better than a few μhartree for single-electron systems and a few hundredths to a few mHs for multi-electron atoms. The relative errors are similar for different atoms and ions in a large B field range, from a few to a couple of tens of millionths, thereby confirming rather uniform accuracy across the nuclear charge Z and B field strength values. Residual basis set errors are two to three orders of magnitude smaller than the electronic correlation energies in multi-electron atoms, a signal of the usefulness of the new AGTO basis sets in correlated wavefunction or density functional calculations for atomic and molecular systems in an external strong B field.

  2. Accurate and balanced anisotropic Gaussian type orbital basis sets for atoms in strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Zhu, Wuming; Trickey, S. B.

    2017-12-01

    In high magnetic field calculations, anisotropic Gaussian type orbital (AGTO) basis functions are capable of reconciling the competing demands of the spherically symmetric Coulombic interaction and cylindrical magnetic (B field) confinement. However, the best available a priori procedure for composing highly accurate AGTO sets for atoms in a strong B field [W. Zhu et al., Phys. Rev. A 90, 022504 (2014)] yields very large basis sets. Their size is problematical for use in any calculation with unfavorable computational cost scaling. Here we provide an alternative constructive procedure. It is based upon analysis of the underlying physics of atoms in B fields that allow identification of several principles for the construction of AGTO basis sets. Aided by numerical optimization and parameter fitting, followed by fine tuning of fitting parameters, we devise formulae for generating accurate AGTO basis sets in an arbitrary B field. For the hydrogen iso-electronic sequence, a set depends on B field strength, nuclear charge, and orbital quantum numbers. For multi-electron systems, the basis set formulae also include adjustment to account for orbital occupations. Tests of the new basis sets for atoms H through C (1 ≤ Z ≤ 6) and ions Li+, Be+, and B+, in a wide B field range (0 ≤ B ≤ 2000 a.u.), show an accuracy better than a few μhartree for single-electron systems and a few hundredths to a few mHs for multi-electron atoms. The relative errors are similar for different atoms and ions in a large B field range, from a few to a couple of tens of millionths, thereby confirming rather uniform accuracy across the nuclear charge Z and B field strength values. Residual basis set errors are two to three orders of magnitude smaller than the electronic correlation energies in multi-electron atoms, a signal of the usefulness of the new AGTO basis sets in correlated wavefunction or density functional calculations for atomic and molecular systems in an external strong B field.

  3. Spin-orbit ZORA and four-component Dirac-Coulomb estimation of relativistic corrections to isotropic nuclear shieldings and chemical shifts of noble gas dimers.

    PubMed

    Jankowska, Marzena; Kupka, Teobald; Stobiński, Leszek; Faber, Rasmus; Lacerda, Evanildo G; Sauer, Stephan P A

    2016-02-05

    Hartree-Fock and density functional theory with the hybrid B3LYP and general gradient KT2 exchange-correlation functionals were used for nonrelativistic and relativistic nuclear magnetic shielding calculations of helium, neon, argon, krypton, and xenon dimers and free atoms. Relativistic corrections were calculated with the scalar and spin-orbit zeroth-order regular approximation Hamiltonian in combination with the large Slater-type basis set QZ4P as well as with the four-component Dirac-Coulomb Hamiltonian using Dyall's acv4z basis sets. The relativistic corrections to the nuclear magnetic shieldings and chemical shifts are combined with nonrelativistic coupled cluster singles and doubles with noniterative triple excitations [CCSD(T)] calculations using the very large polarization-consistent basis sets aug-pcSseg-4 for He, Ne and Ar, aug-pcSseg-3 for Kr, and the AQZP basis set for Xe. For the dimers also, zero-point vibrational (ZPV) corrections are obtained at the CCSD(T) level with the same basis sets were added. Best estimates of the dimer chemical shifts are generated from these nuclear magnetic shieldings and the relative importance of electron correlation, ZPV, and relativistic corrections for the shieldings and chemical shifts is analyzed. © 2015 Wiley Periodicals, Inc.

  4. A new parallel algorithm of MP2 energy calculations.

    PubMed

    Ishimura, Kazuya; Pulay, Peter; Nagase, Shigeru

    2006-03-01

    A new parallel algorithm has been developed for second-order Møller-Plesset perturbation theory (MP2) energy calculations. Its main projected applications are for large molecules, for instance, for the calculation of dispersion interaction. Tests on a moderate number of processors (2-16) show that the program has high CPU and parallel efficiency. Timings are presented for two relatively large molecules, taxol (C(47)H(51)NO(14)) and luciferin (C(11)H(8)N(2)O(3)S(2)), the former with the 6-31G* and 6-311G** basis sets (1,032 and 1,484 basis functions, 164 correlated orbitals), and the latter with the aug-cc-pVDZ and aug-cc-pVTZ basis sets (530 and 1,198 basis functions, 46 correlated orbitals). An MP2 energy calculation on C(130)H(10) (1,970 basis functions, 265 correlated orbitals) completed in less than 2 h on 128 processors.

  5. On the performance of large Gaussian basis sets for the computation of total atomization energies

    NASA Technical Reports Server (NTRS)

    Martin, J. M. L.

    1992-01-01

    The total atomization energies of a number of molecules have been computed using an augmented coupled-cluster method and (5s4p3d2f1g) and 4s3p2d1f) atomic natural orbital (ANO) basis sets, as well as the correlation consistent valence triple zeta plus polarization (cc-pVTZ) correlation consistent valence quadrupole zeta plus polarization (cc-pVQZ) basis sets. The performance of ANO and correlation consistent basis sets is comparable throughout, although the latter can result in significant CPU time savings. Whereas the inclusion of g functions has significant effects on the computed Sigma D(e) values, chemical accuracy is still not reached for molecules involving multiple bonds. A Gaussian-1 (G) type correction lowers the error, but not much beyond the accuracy of the G1 model itself. Using separate corrections for sigma bonds, pi bonds, and valence pairs brings down the mean absolute error to less than 1 kcal/mol for the spdf basis sets, and about 0.5 kcal/mol for the spdfg basis sets. Some conclusions on the success of the Gaussian-1 and Gaussian-2 models are drawn.

  6. Extrapolating MP2 and CCSD explicitly correlated correlation energies to the complete basis set limit with first and second row correlation consistent basis sets

    NASA Astrophysics Data System (ADS)

    Hill, J. Grant; Peterson, Kirk A.; Knizia, Gerald; Werner, Hans-Joachim

    2009-11-01

    Accurate extrapolation to the complete basis set (CBS) limit of valence correlation energies calculated with explicitly correlated MP2-F12 and CCSD(T)-F12b methods have been investigated using a Schwenke-style approach for molecules containing both first and second row atoms. Extrapolation coefficients that are optimal for molecular systems containing first row elements differ from those optimized for second row analogs, hence values optimized for a combined set of first and second row systems are also presented. The new coefficients are shown to produce excellent results in both Schwenke-style and equivalent power-law-based two-point CBS extrapolations, with the MP2-F12/cc-pV(D,T)Z-F12 extrapolations producing an average error of just 0.17 mEh with a maximum error of 0.49 for a collection of 23 small molecules. The use of larger basis sets, i.e., cc-pV(T,Q)Z-F12 and aug-cc-pV(Q,5)Z, in extrapolations of the MP2-F12 correlation energy leads to average errors that are smaller than the degree of confidence in the reference data (˜0.1 mEh). The latter were obtained through use of very large basis sets in MP2-F12 calculations on small molecules containing both first and second row elements. CBS limits obtained from optimized coefficients for conventional MP2 are only comparable to the accuracy of the MP2-F12/cc-pV(D,T)Z-F12 extrapolation when the aug-cc-pV(5+d)Z and aug-cc-pV(6+d)Z basis sets are used. The CCSD(T)-F12b correlation energy is extrapolated as two distinct parts: CCSD-F12b and (T). While the CCSD-F12b extrapolations with smaller basis sets are statistically less accurate than those of the MP2-F12 correlation energies, this is presumably due to the slower basis set convergence of the CCSD-F12b method compared to MP2-F12. The use of larger basis sets in the CCSD-F12b extrapolations produces correlation energies with accuracies exceeding the confidence in the reference data (also obtained in large basis set F12 calculations). It is demonstrated that the use of the 3C(D) Ansatz is preferred for MP2-F12 CBS extrapolations. Optimal values of the geminal Slater exponent are presented for the diagonal, fixed amplitude Ansatz in MP2-F12 calculations, and these are also recommended for CCSD-F12b calculations.

  7. A geometrical correction for the inter- and intra-molecular basis set superposition error in Hartree-Fock and density functional theory calculations for large systems

    NASA Astrophysics Data System (ADS)

    Kruse, Holger; Grimme, Stefan

    2012-04-01

    A semi-empirical counterpoise-type correction for basis set superposition error (BSSE) in molecular systems is presented. An atom pair-wise potential corrects for the inter- and intra-molecular BSSE in supermolecular Hartree-Fock (HF) or density functional theory (DFT) calculations. This geometrical counterpoise (gCP) denoted scheme depends only on the molecular geometry, i.e., no input from the electronic wave-function is required and hence is applicable to molecules with ten thousands of atoms. The four necessary parameters have been determined by a fit to standard Boys and Bernadi counterpoise corrections for Hobza's S66×8 set of non-covalently bound complexes (528 data points). The method's target are small basis sets (e.g., minimal, split-valence, 6-31G*), but reliable results are also obtained for larger triple-ζ sets. The intermolecular BSSE is calculated by gCP within a typical error of 10%-30% that proves sufficient in many practical applications. The approach is suggested as a quantitative correction in production work and can also be routinely applied to estimate the magnitude of the BSSE beforehand. The applicability for biomolecules as the primary target is tested for the crambin protein, where gCP removes intramolecular BSSE effectively and yields conformational energies comparable to def2-TZVP basis results. Good mutual agreement is also found with Jensen's ACP(4) scheme, estimating the intramolecular BSSE in the phenylalanine-glycine-phenylalanine tripeptide, for which also a relaxed rotational energy profile is presented. A variety of minimal and double-ζ basis sets combined with gCP and the dispersion corrections DFT-D3 and DFT-NL are successfully benchmarked on the S22 and S66 sets of non-covalent interactions. Outstanding performance with a mean absolute deviation (MAD) of 0.51 kcal/mol (0.38 kcal/mol after D3-refit) is obtained at the gCP-corrected HF-D3/(minimal basis) level for the S66 benchmark. The gCP-corrected B3LYP-D3/6-31G* model chemistry yields MAD=0.68 kcal/mol, which represents a huge improvement over plain B3LYP/6-31G* (MAD=2.3 kcal/mol). Application of gCP-corrected B97-D3 and HF-D3 on a set of large protein-ligand complexes prove the robustness of the method. Analytical gCP gradients make optimizations of large systems feasible with small basis sets, as demonstrated for the inter-ring distances of 9-helicene and most of the complexes in Hobza's S22 test set. The method is implemented in a freely available FORTRAN program obtainable from the author's website.

  8. Use of an auxiliary basis set to describe the polarization in the fragment molecular orbital method

    NASA Astrophysics Data System (ADS)

    Fedorov, Dmitri G.; Kitaura, Kazuo

    2014-03-01

    We developed a dual basis approach within the fragment molecular orbital formalism enabling efficient and accurate use of large basis sets. The method was tested on water clusters and polypeptides and applied to perform geometry optimization of chignolin (PDB: 1UAO) in solution at the level of DFT/6-31++G∗∗, obtaining a structure in agreement with experiment (RMSD of 0.4526 Å). The polarization in polypeptides is discussed with a comparison of the α-helix and β-strand.

  9. How to compute isomerization energies of organic molecules with quantum chemical methods.

    PubMed

    Grimme, Stefan; Steinmetz, Marc; Korth, Martin

    2007-03-16

    The reaction energies for 34 typical organic isomerizations including oxygen and nitrogen heteroatoms are investigated with modern quantum chemical methods that have the perspective of also being applicable to large systems. The experimental reaction enthalpies are corrected for vibrational and thermal effects, and the thus derived "experimental" reaction energies are compared to corresponding theoretical data. A series of standard AO basis sets in combination with second-order perturbation theory (MP2, SCS-MP2), conventional density functionals (e.g., PBE, TPSS, B3-LYP, MPW1K, BMK), and new perturbative functionals (B2-PLYP, mPW2-PLYP) are tested. In three cases, obvious errors of the experimental values could be detected, and accurate coupled-cluster [CCSD(T)] reference values have been used instead. It is found that only triple-zeta quality AO basis sets provide results close enough to the basis set limit and that sets like the popular 6-31G(d) should be avoided in accurate work. Augmentation of small basis sets with diffuse functions has a notable effect in B3-LYP calculations that is attributed to intramolecular basis set superposition error and covers basic deficiencies of the functional. The new methods based on perturbation theory (SCS-MP2, X2-PLYP) are found to be clearly superior to many other approaches; that is, they provide mean absolute deviations of less than 1.2 kcal mol-1 and only a few (<10%) outliers. The best performance in the group of conventional functionals is found for the highly parametrized BMK hybrid meta-GGA. Contrary to accepted opinion, hybrid density functionals offer no real advantage over simple GGAs. For reasonably large AO basis sets, results of poor quality are obtained with the popular B3-LYP functional that cannot be recommended for thermochemical applications in organic chemistry. The results of this study are complementary to often used benchmarks based on atomization energies and should guide chemists in their search for accurate and efficient computational thermochemistry methods.

  10. Density functional theory study of the interaction of vinyl radical, ethyne, and ethene with benzene, aimed to define an affordable computational level to investigate stability trends in large van der Waals complexes

    NASA Astrophysics Data System (ADS)

    Maranzana, Andrea; Giordana, Anna; Indarto, Antonius; Tonachini, Glauco; Barone, Vincenzo; Causà, Mauro; Pavone, Michele

    2013-12-01

    Our purpose is to identify a computational level sufficiently dependable and affordable to assess trends in the interaction of a variety of radical or closed shell unsaturated hydro-carbons A adsorbed on soot platelet models B. These systems, of environmental interest, would unavoidably have rather large sizes, thus prompting to explore in this paper the performances of relatively low-level computational methods and compare them with higher-level reference results. To this end, the interaction of three complexes between non-polar species, vinyl radical, ethyne, or ethene (A) with benzene (B) is studied, since these species, involved themselves in growth processes of polycyclic aromatic hydrocarbons (PAHs) and soot particles, are small enough to allow high-level reference calculations of the interaction energy ΔEAB. Counterpoise-corrected interaction energies ΔEAB are used at all stages. (1) Density Functional Theory (DFT) unconstrained optimizations of the A-B complexes are carried out, using the B3LYP-D, ωB97X-D, and M06-2X functionals, with six basis sets: 6-31G(d), 6-311 (2d,p), and 6-311++G(3df,3pd); aug-cc-pVDZ and aug-cc-pVTZ; N07T. (2) Then, unconstrained optimizations by Møller-Plesset second order Perturbation Theory (MP2), with each basis set, allow subsequent single point Coupled Cluster Singles Doubles and perturbative estimate of the Triples energy computations with the same basis sets [CCSD(T)//MP2]. (3) Based on an additivity assumption of (i) the estimated MP2 energy at the complete basis set limit [EMP2/CBS] and (ii) the higher-order correlation energy effects in passing from MP2 to CCSD(T) at the aug-cc-pVTZ basis set, ΔECC-MP, a CCSD(T)/CBS estimate is obtained and taken as a computational energy reference. At DFT, variations in ΔEAB with basis set are not large for the title molecules, and the three functionals perform rather satisfactorily even with rather small basis sets [6-31G(d) and N07T], exhibiting deviation from the computational reference of less than 1 kcal mol-1. The zero-point vibrational energy corrected estimates Δ(EAB+ZPE), obtained with the three functionals and the 6-31G(d) and N07T basis sets, are compared with experimental D0 measures, when available. In particular, this comparison is finally extended to the naphthalene and coronene dimers and to three π-π associations of different PAHs (R, made by 10, 16, or 24 C atoms) and P (80 C atoms).

  11. Density functional theory study of the interaction of vinyl radical, ethyne, and ethene with benzene, aimed to define an affordable computational level to investigate stability trends in large van der Waals complexes.

    PubMed

    Maranzana, Andrea; Giordana, Anna; Indarto, Antonius; Tonachini, Glauco; Barone, Vincenzo; Causà, Mauro; Pavone, Michele

    2013-12-28

    Our purpose is to identify a computational level sufficiently dependable and affordable to assess trends in the interaction of a variety of radical or closed shell unsaturated hydro-carbons A adsorbed on soot platelet models B. These systems, of environmental interest, would unavoidably have rather large sizes, thus prompting to explore in this paper the performances of relatively low-level computational methods and compare them with higher-level reference results. To this end, the interaction of three complexes between non-polar species, vinyl radical, ethyne, or ethene (A) with benzene (B) is studied, since these species, involved themselves in growth processes of polycyclic aromatic hydrocarbons (PAHs) and soot particles, are small enough to allow high-level reference calculations of the interaction energy ΔEAB. Counterpoise-corrected interaction energies ΔEAB are used at all stages. (1) Density Functional Theory (DFT) unconstrained optimizations of the A-B complexes are carried out, using the B3LYP-D, ωB97X-D, and M06-2X functionals, with six basis sets: 6-31G(d), 6-311 (2d,p), and 6-311++G(3df,3pd); aug-cc-pVDZ and aug-cc-pVTZ; N07T. (2) Then, unconstrained optimizations by Møller-Plesset second order Perturbation Theory (MP2), with each basis set, allow subsequent single point Coupled Cluster Singles Doubles and perturbative estimate of the Triples energy computations with the same basis sets [CCSD(T)//MP2]. (3) Based on an additivity assumption of (i) the estimated MP2 energy at the complete basis set limit [EMP2/CBS] and (ii) the higher-order correlation energy effects in passing from MP2 to CCSD(T) at the aug-cc-pVTZ basis set, ΔECC-MP, a CCSD(T)/CBS estimate is obtained and taken as a computational energy reference. At DFT, variations in ΔEAB with basis set are not large for the title molecules, and the three functionals perform rather satisfactorily even with rather small basis sets [6-31G(d) and N07T], exhibiting deviation from the computational reference of less than 1 kcal mol(-1). The zero-point vibrational energy corrected estimates Δ(EAB+ZPE), obtained with the three functionals and the 6-31G(d) and N07T basis sets, are compared with experimental D0 measures, when available. In particular, this comparison is finally extended to the naphthalene and coronene dimers and to three π-π associations of different PAHs (R, made by 10, 16, or 24 C atoms) and P (80 C atoms).

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, J. Grant, E-mail: grant.hill@sheffield.ac.uk, E-mail: kipeters@wsu.edu; Peterson, Kirk A., E-mail: grant.hill@sheffield.ac.uk, E-mail: kipeters@wsu.edu

    New correlation consistent basis sets, cc-pVnZ-PP-F12 (n = D, T, Q), for all the post-d main group elements Ga–Rn have been optimized for use in explicitly correlated F12 calculations. The new sets, which include not only orbital basis sets but also the matching auxiliary sets required for density fitting both conventional and F12 integrals, are designed for correlation of valence sp, as well as the outer-core d electrons. The basis sets are constructed for use with the previously published small-core relativistic pseudopotentials of the Stuttgart-Cologne variety. Benchmark explicitly correlated coupled-cluster singles and doubles with perturbative triples [CCSD(T)-F12b] calculations of themore » spectroscopic properties of numerous diatomic molecules involving 4p, 5p, and 6p elements have been carried out and compared to the analogous conventional CCSD(T) results. In general the F12 results obtained with a n-zeta F12 basis set were comparable to conventional aug-cc-pVxZ-PP or aug-cc-pwCVxZ-PP basis set calculations obtained with x = n + 1 or even x = n + 2. The new sets used in CCSD(T)-F12b calculations are particularly efficient at accurately recovering the large correlation effects of the outer-core d electrons.« less

  13. Characterizing and Understanding the Remarkably Slow Basis Set Convergence of Several Minnesota Density Functionals for Intermolecular Interaction Energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mardirossian, Narbe; Head-Gordon, Martin

    2013-08-22

    For a set of eight equilibrium intermolecular complexes, it is discovered in this paper that the basis set limit (BSL) cannot be reached by aug-cc-pV5Z for three of the Minnesota density functionals: M06-L, M06-HF, and M11-L. In addition, the M06 and M11 functionals exhibit substantial, but less severe, difficulties in reaching the BSL. By using successively finer grids, it is demonstrated that this issue is not related to the numerical integration of the exchange-correlation functional. In addition, it is shown that the difficulty in reaching the BSL is not a direct consequence of the structure of the augmented functions inmore » Dunning’s basis sets, since modified augmentation yields similar results. By using a very large custom basis set, the BSL appears to be reached for the HF dimer for all of the functionals. As a result, it is concluded that the difficulties faced by several of the Minnesota density functionals are related to an interplay between the form of these functionals and the structure of standard basis sets. It is speculated that the difficulty in reaching the basis set limit is related to the magnitude of the inhomogeneity correction factor (ICF) of the exchange functional. A simple modification of the M06-L exchange functional that systematically reduces the basis set superposition error (BSSE) for the HF dimer in the aug-cc-pVQZ basis set is presented, further supporting the speculation that the difficulty in reaching the BSL is caused by the magnitude of the exchange functional ICF. In conclusion, the BSSE is plotted with respect to the internuclear distance of the neon dimer for two of the examined functionals.« less

  14. Small Atomic Orbital Basis Set First‐Principles Quantum Chemical Methods for Large Molecular and Periodic Systems: A Critical Analysis of Error Sources

    PubMed Central

    Sure, Rebecca; Brandenburg, Jan Gerit

    2015-01-01

    Abstract In quantum chemical computations the combination of Hartree–Fock or a density functional theory (DFT) approximation with relatively small atomic orbital basis sets of double‐zeta quality is still widely used, for example, in the popular B3LYP/6‐31G* approach. In this Review, we critically analyze the two main sources of error in such computations, that is, the basis set superposition error on the one hand and the missing London dispersion interactions on the other. We review various strategies to correct those errors and present exemplary calculations on mainly noncovalently bound systems of widely varying size. Energies and geometries of small dimers, large supramolecular complexes, and molecular crystals are covered. We conclude that it is not justified to rely on fortunate error compensation, as the main inconsistencies can be cured by modern correction schemes which clearly outperform the plain mean‐field methods. PMID:27308221

  15. Asymptotic behavior and interpretation of virtual states: The effects of confinement and of basis sets

    NASA Astrophysics Data System (ADS)

    Boffi, Nicholas M.; Jain, Manish; Natan, Amir

    2016-02-01

    A real-space high order finite difference method is used to analyze the effect of spherical domain size on the Hartree-Fock (and density functional theory) virtual eigenstates. We show the domain size dependence of both positive and negative virtual eigenvalues of the Hartree-Fock equations for small molecules. We demonstrate that positive states behave like a particle in spherical well and show how they approach zero. For the negative eigenstates, we show that large domains are needed to get the correct eigenvalues. We compare our results to those of Gaussian basis sets and draw some conclusions for real-space, basis-sets, and plane-waves calculations.

  16. On the basis set convergence of electron–electron entanglement measures: helium-like systems

    PubMed Central

    Hofer, Thomas S.

    2013-01-01

    A systematic investigation of three different electron–electron entanglement measures, namely the von Neumann, the linear and the occupation number entropy at full configuration interaction level has been performed for the four helium-like systems hydride, helium, Li+ and Be2+ using a large number of different basis sets. The convergence behavior of the resulting energies and entropies revealed that the latter do in general not show the expected strictly monotonic increase upon increase of the one–electron basis. Overall, the three different entanglement measures show good agreement among each other, the largest deviations being observed for small basis sets. The data clearly demonstrates that it is important to consider the nature of the chemical system when investigating entanglement phenomena in the framework of Gaussian type basis sets: while in case of hydride the use of augmentation functions is crucial, the application of core functions greatly improves the accuracy in case of cationic systems such as Li+ and Be2+. In addition, numerical derivatives of the entanglement measures with respect to the nucleic charge have been determined, which proved to be a very sensitive probe of the convergence leading to qualitatively wrong results (i.e., the wrong sign) if too small basis sets are used. PMID:24790952

  17. On the basis set convergence of electron-electron entanglement measures: helium-like systems.

    PubMed

    Hofer, Thomas S

    2013-01-01

    A systematic investigation of three different electron-electron entanglement measures, namely the von Neumann, the linear and the occupation number entropy at full configuration interaction level has been performed for the four helium-like systems hydride, helium, Li(+) and Be(2+) using a large number of different basis sets. The convergence behavior of the resulting energies and entropies revealed that the latter do in general not show the expected strictly monotonic increase upon increase of the one-electron basis. Overall, the three different entanglement measures show good agreement among each other, the largest deviations being observed for small basis sets. The data clearly demonstrates that it is important to consider the nature of the chemical system when investigating entanglement phenomena in the framework of Gaussian type basis sets: while in case of hydride the use of augmentation functions is crucial, the application of core functions greatly improves the accuracy in case of cationic systems such as Li(+) and Be(2+). In addition, numerical derivatives of the entanglement measures with respect to the nucleic charge have been determined, which proved to be a very sensitive probe of the convergence leading to qualitatively wrong results (i.e., the wrong sign) if too small basis sets are used.

  18. Genetic basis of climatic adaptation in scots pine by bayesian quantitative trait locus analysis.

    PubMed Central

    Hurme, P; Sillanpää, M J; Arjas, E; Repo, T; Savolainen, O

    2000-01-01

    We examined the genetic basis of large adaptive differences in timing of bud set and frost hardiness between natural populations of Scots pine. As a mapping population, we considered an "open-pollinated backcross" progeny by collecting seeds of a single F(1) tree (cross between trees from southern and northern Finland) growing in southern Finland. Due to the special features of the design (no marker information available on grandparents or the father), we applied a Bayesian quantitative trait locus (QTL) mapping method developed previously for outcrossed offspring. We found four potential QTL for timing of bud set and seven for frost hardiness. Bayesian analyses detected more QTL than ANOVA for frost hardiness, but the opposite was true for bud set. These QTL included alleles with rather large effects, and additionally smaller QTL were supported. The largest QTL for bud set date accounted for about a fourth of the mean difference between populations. Thus, natural selection during adaptation has resulted in selection of at least some alleles of rather large effect. PMID:11063704

  19. Performance assessment of density functional methods with Gaussian and Slater basis sets using 7σ orbital momentum distributions of N2O

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Pang, Wenning; Duffy, Patrick

    2012-12-01

    Performance of a number of commonly used density functional methods in chemistry (B3LYP, Bhandh, BP86, PW91, VWN, LB94, PBe0, SAOP and X3LYP and the Hartree-Fock (HF) method) has been assessed using orbital momentum distributions of the 7σ orbital of nitrous oxide (NNO), which models electron behaviour in a chemically significant region. The density functional methods are combined with a number of Gaussian basis sets (Pople's 6-31G*, 6-311G**, DGauss TZVP and Dunning's aug-cc-pVTZ as well as even-tempered Slater basis sets, namely, et-DZPp, et-QZ3P, et-QZ+5P and et-pVQZ). Orbital momentum distributions of the 7σ orbital in the ground electronic state of NNO, which are obtained from a Fourier transform into momentum space from single point electronic calculations employing the above models, are compared with experimental measurement of the same orbital from electron momentum spectroscopy (EMS). The present study reveals information on performance of (a) the density functional methods, (b) Gaussian and Slater basis sets, (c) combinations of the density functional methods and basis sets, that is, the models, (d) orbital momentum distributions, rather than a group of specific molecular properties and (e) the entire region of chemical significance of the orbital. It is found that discrepancies of this orbital between the measured and the calculated occur in the small momentum region (i.e. large r region). In general, Slater basis sets achieve better overall performance than the Gaussian basis sets. Performance of the Gaussian basis sets varies noticeably when combining with different Vxc functionals, but Dunning's augcc-pVTZ basis set achieves the best performance for the momentum distributions of this orbital. The overall performance of the B3LYP and BP86 models is similar to newer models such as X3LYP and SAOP. The present study also demonstrates that the combinations of the density functional methods and the basis sets indeed make a difference in the quality of the calculated orbitals.

  20. A Comparison of the Behavior of Functional/Basis Set Combinations for Hydrogen-Bonding in the Water Dimer with Emphasis on Basis Set Superposition Error

    PubMed Central

    Plumley, Joshua A.; Dannenberg, J. J.

    2011-01-01

    We evaluate the performance of nine functionals (B3LYP, M05, M05-2X, M06, M06-2X, B2PLYP, B2PLYPD, X3LYP, B97D and MPWB1K) in combination with 16 basis sets ranging in complexity from 6-31G(d) to aug-cc-pV5Z for the calculation of the H-bonded water dimer with the goal of defining which combinations of functionals and basis sets provide a combination of economy and accuracy for H-bonded systems. We have compared the results to the best non-DFT molecular orbital calculations and to experimental results. Several of the smaller basis sets lead to qualitatively incorrect geometries when optimized on a normal potential energy surface (PES). This problem disappears when the optimization is performed on a counterpoise corrected PES. The calculated ΔE's with the largest basis sets vary from -4.42 (B97D) to -5.19 (B2PLYPD) kcal/mol for the different functionals. Small basis sets generally predict stronger interactions than the large ones. We found that, due to error compensation, the smaller basis sets gave the best results (in comparison to experimental and high level non-DFT MO calculations) when combined with a functional that predicts a weak interaction with the largest basis set. Since many applications are complex systems and require economical calculations, we suggest the following functional/basis set combinations in order of increasing complexity and cost: 1) D95(d,p) with B3LYP, B97D, M06 or MPWB1k; 2) 6-311G(d,p) with B3LYP; 3) D95++(d,p) with B3LYP, B97D or MPWB1K; 4)6-311++G(d,p) with B3LYP or B97D; and 5) aug-cc-pVDZ with M05-2X, M06-2X or X3LYP. PMID:21328398

  1. A comparison of the behavior of functional/basis set combinations for hydrogen-bonding in the water dimer with emphasis on basis set superposition error.

    PubMed

    Plumley, Joshua A; Dannenberg, J J

    2011-06-01

    We evaluate the performance of ten functionals (B3LYP, M05, M05-2X, M06, M06-2X, B2PLYP, B2PLYPD, X3LYP, B97D, and MPWB1K) in combination with 16 basis sets ranging in complexity from 6-31G(d) to aug-cc-pV5Z for the calculation of the H-bonded water dimer with the goal of defining which combinations of functionals and basis sets provide a combination of economy and accuracy for H-bonded systems. We have compared the results to the best non-density functional theory (non-DFT) molecular orbital (MO) calculations and to experimental results. Several of the smaller basis sets lead to qualitatively incorrect geometries when optimized on a normal potential energy surface (PES). This problem disappears when the optimization is performed on a counterpoise (CP) corrected PES. The calculated interaction energies (ΔEs) with the largest basis sets vary from -4.42 (B97D) to -5.19 (B2PLYPD) kcal/mol for the different functionals. Small basis sets generally predict stronger interactions than the large ones. We found that, because of error compensation, the smaller basis sets gave the best results (in comparison to experimental and high-level non-DFT MO calculations) when combined with a functional that predicts a weak interaction with the largest basis set. As many applications are complex systems and require economical calculations, we suggest the following functional/basis set combinations in order of increasing complexity and cost: (1) D95(d,p) with B3LYP, B97D, M06, or MPWB1k; (2) 6-311G(d,p) with B3LYP; (3) D95++(d,p) with B3LYP, B97D, or MPWB1K; (4) 6-311++G(d,p) with B3LYP or B97D; and (5) aug-cc-pVDZ with M05-2X, M06-2X, or X3LYP. Copyright © 2011 Wiley Periodicals, Inc.

  2. Cholesky-decomposed density MP2 with density fitting: Accurate MP2 and double-hybrid DFT energies for large systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurer, Simon A.; Clin, Lucien; Ochsenfeld, Christian, E-mail: christian.ochsenfeld@uni-muenchen.de

    2014-06-14

    Our recently developed QQR-type integral screening is introduced in our Cholesky-decomposed pseudo-densities Møller-Plesset perturbation theory of second order (CDD-MP2) method. We use the resolution-of-the-identity (RI) approximation in combination with efficient integral transformations employing sparse matrix multiplications. The RI-CDD-MP2 method shows an asymptotic cubic scaling behavior with system size and a small prefactor that results in an early crossover to conventional methods for both small and large basis sets. We also explore the use of local fitting approximations which allow to further reduce the scaling behavior for very large systems. The reliability of our method is demonstrated on test sets formore » interaction and reaction energies of medium sized systems and on a diverse selection from our own benchmark set for total energies of larger systems. Timings on DNA systems show that fast calculations for systems with more than 500 atoms are feasible using a single processor core. Parallelization extends the range of accessible system sizes on one computing node with multiple cores to more than 1000 atoms in a double-zeta basis and more than 500 atoms in a triple-zeta basis.« less

  3. Ab initio Potential Energy Surface for H-H2

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- (mu)E(sub h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(sub 0) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  4. Density functional theory calculations of the lowest energy quintet and triplet states of model hemes: role of functional, basis set, and zero-point energy corrections.

    PubMed

    Khvostichenko, Daria; Choi, Andrew; Boulatov, Roman

    2008-04-24

    We investigated the effect of several computational variables, including the choice of the basis set, application of symmetry constraints, and zero-point energy (ZPE) corrections, on the structural parameters and predicted ground electronic state of model 5-coordinate hemes (iron(II) porphines axially coordinated by a single imidazole or 2-methylimidazole). We studied the performance of B3LYP and B3PW91 with eight Pople-style basis sets (up to 6-311+G*) and B97-1, OLYP, and TPSS functionals with 6-31G and 6-31G* basis sets. Only hybrid functionals B3LYP, B3PW91, and B97-1 reproduced the quintet ground state of the model hemes. With a given functional, the choice of the basis set caused up to 2.7 kcal/mol variation of the quintet-triplet electronic energy gap (DeltaEel), in several cases, resulting in the inversion of the sign of DeltaEel. Single-point energy calculations with triple-zeta basis sets of the Pople (up to 6-311G++(2d,2p)), Ahlrichs (TZVP and TZVPP), and Dunning (cc-pVTZ) families showed the same trend. The zero-point energy of the quintet state was approximately 1 kcal/mol lower than that of the triplet, and accounting for ZPE corrections was crucial for establishing the ground state if the electronic energy of the triplet state was approximately 1 kcal/mol less than that of the quintet. Within a given model chemistry, effects of symmetry constraints and of a "tense" structure of the iron porphine fragment coordinated to 2-methylimidazole on DeltaEel were limited to 0.3 kcal/mol. For both model hemes the best agreement with crystallographic structural data was achieved with small 6-31G and 6-31G* basis sets. Deviation of the computed frequency of the Fe-Im stretching mode from the experimental value with the basis set decreased in the order: nonaugmented basis sets, basis sets with polarization functions, and basis sets with polarization and diffuse functions. Contraction of Pople-style basis sets (double-zeta or triple-zeta) affected the results insignificantly for iron(II) porphyrin coordinated with imidazole. Poor performance of a "locally dense" basis set with a large number of basis functions on the Fe center was observed in calculation of quintet-triplet gaps. Our results lead to a series of suggestions for density functional theory calculations of quintet-triplet energy gaps in ferrohemes with a single axial imidazole; these suggestions are potentially applicable for other transition-metal complexes.

  5. Sensitivity of the Properties of Ruthenium “Blue Dimer” to Method, Basis Set, and Continuum Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozkanlar, Abdullah; Clark, Aurora E.

    2012-05-23

    The ruthenium “blue dimer” [(bpy)2RuIIIOH2]2O4+ is best known as the first well-defined molecular catalyst for water oxidation. It has been subject to numerous computational studies primarily employing density functional theory. However, those studies have been limited in the functionals, basis sets, and continuum models employed. The controversy in the calculated electronic structure and the reaction energetics of this catalyst highlights the necessity of benchmark calculations that explore the role of density functionals, basis sets, and continuum models upon the essential features of blue-dimer reactivity. In this paper, we report Kohn-Sham complete basis set (KS-CBS) limit extrapolations of the electronic structuremore » of “blue dimer” using GGA (BPW91 and BP86), hybrid-GGA (B3LYP), and meta-GGA (M06-L) density functionals. The dependence of solvation free energy corrections on the different cavity types (UFF, UA0, UAHF, UAKS, Bondi, and Pauling) within polarizable and conductor-like polarizable continuum model has also been investigated. The most common basis sets of double-zeta quality are shown to yield results close to the KS-CBS limit; however, large variations are observed in the reaction energetics as a function of density functional and continuum cavity model employed.« less

  6. Affordable and accurate large-scale hybrid-functional calculations on GPU-accelerated supercomputers

    NASA Astrophysics Data System (ADS)

    Ratcliff, Laura E.; Degomme, A.; Flores-Livas, José A.; Goedecker, Stefan; Genovese, Luigi

    2018-03-01

    Performing high accuracy hybrid functional calculations for condensed matter systems containing a large number of atoms is at present computationally very demanding or even out of reach if high quality basis sets are used. We present a highly optimized multiple graphics processing unit implementation of the exact exchange operator which allows one to perform fast hybrid functional density-functional theory (DFT) calculations with systematic basis sets without additional approximations for up to a thousand atoms. With this method hybrid DFT calculations of high quality become accessible on state-of-the-art supercomputers within a time-to-solution that is of the same order of magnitude as traditional semilocal-GGA functionals. The method is implemented in a portable open-source library.

  7. Exploring biorthonormal transformations of pair-correlation functions in atomic structure variational calculations

    NASA Astrophysics Data System (ADS)

    Verdebout, S.; Jönsson, P.; Gaigalas, G.; Godefroid, M.; Froese Fischer, C.

    2010-04-01

    Multiconfiguration expansions frequently target valence correlation and correlation between valence electrons and the outermost core electrons. Correlation within the core is often neglected. A large orbital basis is needed to saturate both the valence and core-valence correlation effects. This in turn leads to huge numbers of configuration state functions (CSFs), many of which are unimportant. To avoid the problems inherent to the use of a single common orthonormal orbital basis for all correlation effects in the multiconfiguration Hartree-Fock (MCHF) method, we propose to optimize independent MCHF pair-correlation functions (PCFs), bringing their own orthonormal one-electron basis. Each PCF is generated by allowing single- and double-excitations from a multireference (MR) function. This computational scheme has the advantage of using targeted and optimally localized orbital sets for each PCF. These pair-correlation functions are coupled together and with each component of the MR space through a low dimension generalized eigenvalue problem. Nonorthogonal orbital sets being involved, the interaction and overlap matrices are built using biorthonormal transformation of the coupled basis sets followed by a counter-transformation of the PCF expansions. Applied to the ground state of beryllium, the new method gives total energies that are lower than the ones from traditional complete active space (CAS)-MCHF calculations using large orbital active sets. It is fair to say that we now have the possibility to account for, in a balanced way, correlation deep down in the atomic core in variational calculations.

  8. Highly correlated configuration interaction calculations on water with large orbital bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almora-Díaz, César X., E-mail: xalmora@fisica.unam.mx

    2014-05-14

    A priori selected configuration interaction (SCI) with truncation energy error [C. F. Bunge, J. Chem. Phys. 125, 014107 (2006)] and CI by parts [C. F. Bunge and R. Carbó-Dorca, J. Chem. Phys. 125, 014108 (2006)] are used to approximate the total nonrelativistic electronic ground state energy of water at fixed experimental geometry with CI up to sextuple excitations. Correlation-consistent polarized core-valence basis sets (cc-pCVnZ) up to sextuple zeta and augmented correlation-consistent polarized core-valence basis sets (aug-cc-pCVnZ) up to quintuple zeta quality are employed. Truncation energy errors range between less than 1 μhartree, and 100 μhartree for the largest orbital set. Coupledmore » cluster CCSD and CCSD(T) calculations are also obtained for comparison. Our best upper bound, −76.4343 hartree, obtained by SCI with up to sextuple excitations with a cc-pCV6Z basis recovers more than 98.8% of the correlation energy of the system, and it is only about 3 kcal/mol above the “experimental” value. Despite that the present energy upper bounds are far below all previous ones, comparatively large dispersion errors in the determination of the extrapolated energies to the complete basis set do not allow to determine a reliable estimation of the full CI energy with an accuracy better than 0.6 mhartree (0.4 kcal/mol)« less

  9. SAR matrices: automated extraction of information-rich SAR tables from large compound data sets.

    PubMed

    Wassermann, Anne Mai; Haebel, Peter; Weskamp, Nils; Bajorath, Jürgen

    2012-07-23

    We introduce the SAR matrix data structure that is designed to elucidate SAR patterns produced by groups of structurally related active compounds, which are extracted from large data sets. SAR matrices are systematically generated and sorted on the basis of SAR information content. Matrix generation is computationally efficient and enables processing of large compound sets. The matrix format is reminiscent of SAR tables, and SAR patterns revealed by different categories of matrices are easily interpretable. The structural organization underlying matrix formation is more flexible than standard R-group decomposition schemes. Hence, the resulting matrices capture SAR information in a comprehensive manner.

  10. A machine learning approach for efficient uncertainty quantification using multiscale methods

    NASA Astrophysics Data System (ADS)

    Chan, Shing; Elsheikh, Ahmed H.

    2018-02-01

    Several multiscale methods account for sub-grid scale features using coarse scale basis functions. For example, in the Multiscale Finite Volume method the coarse scale basis functions are obtained by solving a set of local problems over dual-grid cells. We introduce a data-driven approach for the estimation of these coarse scale basis functions. Specifically, we employ a neural network predictor fitted using a set of solution samples from which it learns to generate subsequent basis functions at a lower computational cost than solving the local problems. The computational advantage of this approach is realized for uncertainty quantification tasks where a large number of realizations has to be evaluated. We attribute the ability to learn these basis functions to the modularity of the local problems and the redundancy of the permeability patches between samples. The proposed method is evaluated on elliptic problems yielding very promising results.

  11. CCSDT calculations of molecular equilibrium geometries

    NASA Astrophysics Data System (ADS)

    Halkier, Asger; Jørgensen, Poul; Gauss, Jürgen; Helgaker, Trygve

    1997-08-01

    CCSDT equilibrium geometries of CO, CH 2, F 2, HF, H 2O and N 2 have been calculated using the correlation-consistent cc-pVXZ basis sets. Similar calculations have been performed for SCF, CCSD and CCSD(T). In general, bond lengths decrease when improving the basis set and increase when improving the N-electron treatment. CCSD(T) provides an excellent approximation to CCSDT for bond lengths as the largest difference between CCSDT and CCSD(T) is 0.06 pm. At the CCSDT/cc-pVQZ level, basis set deficiencies, neglect of higher-order excitations, and incomplete treatment of core-correlation all give rise to errors of a few tenths of a pm, but to a large extent, these errors cancel. The CCSDT/cc-pVQZ bond lengths deviate on average only by 0.11 pm from experiment.

  12. General contraction of Gaussian basis sets. II - Atomic natural orbitals and the calculation of atomic and molecular properties

    NASA Technical Reports Server (NTRS)

    Almlof, Jan; Taylor, Peter R.

    1990-01-01

    A recently proposed scheme for using natural orbitals from atomic configuration interaction wave functions as a basis set for linear combination of atomic orbitals (LCAO) calculations is extended for the calculation of molecular properties. For one-electron properties like multipole moments, which are determined largely by the outermost regions of the molecular wave function, it is necessary to increase the flexibility of the basis in these regions. This is most easily done by uncontracting the outermost Gaussian primitives, and/or by adding diffuse primitives. A similar approach can be employed for the calculation of polarizabilities. Properties which are not dominated by the long-range part of the wave function, such as spectroscopic constants or electric field gradients at the nucleus, can generally be treated satisfactorily with the original atomic natural orbital sets.

  13. Exploration of the genetic and biological basis of feed efficiency in mid-lactation Holstein dairy cows

    USDA-ARS?s Scientific Manuscript database

    The purpose of this study was to characterize the genetic basis underlying variation in feed efficiency in mid-lactation Holstein dairy cows. A genome-wide association study was performed for residual feed intake (RFI) and related traits using a large data set, consisting of nearly 5,000 cows. It wa...

  14. Computational studies of metal-metal and metal-ligand interactions

    NASA Technical Reports Server (NTRS)

    Barnes, Leslie A.

    1992-01-01

    The geometric structure of Cr(CO)6 is optimized at the modified coupled-pair functional (MCPF), single and double excitation coupled-cluster (CCSD) and CCSD(T) levels of theory (including a perturbational estimate for connected triple excitations), and the force constants for the totally symmetric representation are determined. The geometry of Cr(CO)5 is partially optimized at the MCPF, CCSD and CCSD(T) levels of theory. Comparison with experimental data shows that the CCSD(T) method gives the best results for the structures and force constants, and that remaining errors are probably due to deficiencies in the one-particle basis sets used for CO. A detailed comparison of the properties of free CO is therefore given, at both the MCPF and CCSD/CCSD(T) levels of treatment, using a variety of basis sets. With very large one-particle basis sets, the SSCD(T) method gives excellent results for the bond distance, dipole moment and harmonic frequency of free CO. The total binding energies of Cr(CO)6 and Cr(CO)5 are also determined at the MCPF, CCSD and CCSD(T) levels of theory. The CCSD(T) method gives a much larger total binding energy than either the MCPF or CCSD methods. An analysis of the basis set superposition error (BSSE) at the MCPF level of treatment points out limitations in the one-particle basis used here and in a previous study. Calculations using larger basis sets reduced the BSSE, but the total binding energy of Cr(CO)6 is still significantly smaller than the experimental value, although the first CO bond dissociation energy of Cr(CO)6 is well described. An investigation of 3s3p correlation reveals only a small effect. The remaining discrepancy between the experimental and theoretical total binding energy of Cr(CO)6 is probably due to limitations in the one-particle basis, rather than limitations in the correlation treatment. In particular an additional d function and an f function on each C and O are needed to obtain quantitative results. This is underscored by the fact that even using a very large primitive se (1042 primitive functions contracted to 300 basis functions), the superposition error for the total binding energy of Cr(CO)6 is 22 kcal/mol at the MCPF level of treatment.

  15. Effect of 3-D viscoelastic structure on post-seismic relaxation from the 2004 M = 9.2 Sumatra earthquake

    USGS Publications Warehouse

    Pollitz, F.; Banerjee, P.; Grijalva, K.; Nagarajan, B.; Burgmann, R.

    2008-01-01

    The 2004 M=9.2 Sumatra-Andaman earthquake profoundly altered the state of stress in a large volume surrounding the ???1400 km long rupture. Induced mantle flow fields and coupled surface deformation are sensitive to the 3-D rheology structure. To predict the post-seismic motions from this earthquake, relaxation of a 3-D spherical viscoelastic earth model is simulated using the theory of coupled normal modes. The quasi-static deformation basis set and solution on the 3-D model is constructed using: a spherically stratified viscoelastic earth model with a linear stress-strain relation; an aspherical perturbation in viscoelastic structure; a 'static'mode basis set consisting of Earth's spheroidal and toroidal free oscillations; a "viscoelastic" mode basis set; and interaction kernels that describe the coupling among viscoelastic and static modes. Application to the 2004 Sumatra-Andaman earthquake illustrates the profound modification of the post-seismic flow field at depth by a slab structure and similarly large effects on the near-field post-seismic deformation field at Earth's surface. Comparison with post-seismic GPS observations illustrates the extent to which viscoelastic relaxation contributes to the regional post-seismic deformation. ?? Journal compilation ?? 2008 RAS.

  16. Reinforcement Learning with Orthonormal Basis Adaptation Based on Activity-Oriented Index Allocation

    NASA Astrophysics Data System (ADS)

    Satoh, Hideki

    An orthonormal basis adaptation method for function approximation was developed and applied to reinforcement learning with multi-dimensional continuous state space. First, a basis used for linear function approximation of a control function is set to an orthonormal basis. Next, basis elements with small activities are replaced with other candidate elements as learning progresses. As this replacement is repeated, the number of basis elements with large activities increases. Example chaos control problems for multiple logistic maps were solved, demonstrating that the method for adapting an orthonormal basis can modify a basis while holding the orthonormality in accordance with changes in the environment to improve the performance of reinforcement learning and to eliminate the adverse effects of redundant noisy states.

  17. Electronic and spectroscopic characterizations of SNP isomers

    NASA Astrophysics Data System (ADS)

    Trabelsi, Tarek; Al Mogren, Muneerah Mogren; Hochlaf, Majdi; Francisco, Joseph S.

    2018-02-01

    High-level ab initio electronic structure calculations were performed to characterize SNP isomers. In addition to the known linear SNP, cyc-PSN, and linear SPN isomers, we identified a fourth isomer, linear PSN, which is located ˜2.4 eV above the linear SNP isomer. The low-lying singlet and triplet electronic states of the linear SNP and SPN isomers were investigated using a multi-reference configuration interaction method and large basis set. Several bound electronic states were identified. However, their upper rovibrational levels were predicted to pre-dissociate, leading to S + PN, P + NS products, and multi-step pathways were discovered. For the ground states, a set of spectroscopic parameters were derived using standard and explicitly correlated coupled-cluster methods in conjunction with augmented correlation-consistent basis sets extrapolated to the complete basis set limit. We also considered scalar and core-valence effects. For linear isomers, the rovibrational spectra were deduced after generation of their 3D-potential energy surfaces along the stretching and bending coordinates and variational treatments of the nuclear motions.

  18. General contraction of Gaussian basis sets. Part 2: Atomic natural orbitals and the calculation of atomic and molecular properties

    NASA Technical Reports Server (NTRS)

    Almloef, Jan; Taylor, Peter R.

    1989-01-01

    A recently proposed scheme for using natural orbitals from atomic configuration interaction (CI) wave functions as a basis set for linear combination of atomic orbitals (LCAO) calculations is extended for the calculation of molecular properties. For one-electron properties like multipole moments, which are determined largely by the outermost regions of the molecular wave function, it is necessary to increase the flexibility of the basis in these regions. This is most easily done by uncontracting the outmost Gaussian primitives, and/or by adding diffuse primitives. A similar approach can be employed for the calculation of polarizabilities. Properties which are not dominated by the long-range part of the wave function, such as spectroscopic constants or electric field gradients at the nucleus, can generally be treated satisfactorily with the original atomic natural orbital (ANO) sets.

  19. Promoting Positive Social Behavior in Physical Education

    ERIC Educational Resources Information Center

    Balderson, Daniel; Sharpe, Tom

    2004-01-01

    An ongoing challenge that both classroom and physical education teachers face on a daily basis is how to organize and manage large groups of students. This is particularly true in many urban settings where classrooms and gymnasiums are typically understaffed and/or under equipped. Educators in these settings often struggle with how to minimize…

  20. Spectral properties of minimal-basis-set orbitals: Implications for molecular electronic continuum states

    NASA Astrophysics Data System (ADS)

    Langhoff, P. W.; Winstead, C. L.

    Early studies of the electronically excited states of molecules by John A. Pople and coworkers employing ab initio single-excitation configuration interaction (SECI) calculations helped to simulate related applications of these methods to the partial-channel photoionization cross sections of polyatomic molecules. The Gaussian representations of molecular orbitals adopted by Pople and coworkers can describe SECI continuum states when sufficiently large basis sets are employed. Minimal-basis virtual Fock orbitals stabilized in the continuous portions of such SECI spectra are generally associated with strong photoionization resonances. The spectral attributes of these resonance orbitals are illustrated here by revisiting previously reported experimental and theoretical studies of molecular formaldehyde (H2CO) in combination with recently calculated continuum orbital amplitudes.

  1. Consistent structures and interactions by density functional theory with small atomic orbital basis sets.

    PubMed

    Grimme, Stefan; Brandenburg, Jan Gerit; Bannwarth, Christoph; Hansen, Andreas

    2015-08-07

    A density functional theory (DFT) based composite electronic structure approach is proposed to efficiently compute structures and interaction energies in large chemical systems. It is based on the well-known and numerically robust Perdew-Burke-Ernzerhoff (PBE) generalized-gradient-approximation in a modified global hybrid functional with a relatively large amount of non-local Fock-exchange. The orbitals are expanded in Ahlrichs-type valence-double zeta atomic orbital (AO) Gaussian basis sets, which are available for many elements. In order to correct for the basis set superposition error (BSSE) and to account for the important long-range London dispersion effects, our well-established atom-pairwise potentials are used. In the design of the new method, particular attention has been paid to an accurate description of structural parameters in various covalent and non-covalent bonding situations as well as in periodic systems. Together with the recently proposed three-fold corrected (3c) Hartree-Fock method, the new composite scheme (termed PBEh-3c) represents the next member in a hierarchy of "low-cost" electronic structure approaches. They are mainly free of BSSE and account for most interactions in a physically sound and asymptotically correct manner. PBEh-3c yields good results for thermochemical properties in the huge GMTKN30 energy database. Furthermore, the method shows excellent performance for non-covalent interaction energies in small and large complexes. For evaluating its performance on equilibrium structures, a new compilation of standard test sets is suggested. These consist of small (light) molecules, partially flexible, medium-sized organic molecules, molecules comprising heavy main group elements, larger systems with long bonds, 3d-transition metal systems, non-covalently bound complexes (S22 and S66×8 sets), and peptide conformations. For these sets, overall deviations from accurate reference data are smaller than for various other tested DFT methods and reach that of triple-zeta AO basis set second-order perturbation theory (MP2/TZ) level at a tiny fraction of computational effort. Periodic calculations conducted for molecular crystals to test structures (including cell volumes) and sublimation enthalpies indicate very good accuracy competitive to computationally more involved plane-wave based calculations. PBEh-3c can be applied routinely to several hundreds of atoms on a single processor and it is suggested as a robust "high-speed" computational tool in theoretical chemistry and physics.

  2. A Mine of Information: Can Sports Analytics Provide Wisdom From Your Data?

    PubMed

    Passfield, Louis; Hopker, James G

    2017-08-01

    This paper explores the notion that the availability and analysis of large data sets have the capacity to improve practice and change the nature of science in the sport and exercise setting. The increasing use of data and information technology in sport is giving rise to this change. Web sites hold large data repositories, and the development of wearable technology, mobile phone applications, and related instruments for monitoring physical activity, training, and competition provide large data sets of extensive and detailed measurements. Innovative approaches conceived to more fully exploit these large data sets could provide a basis for more objective evaluation of coaching strategies and new approaches to how science is conducted. An emerging discipline, sports analytics, could help overcome some of the challenges involved in obtaining knowledge and wisdom from these large data sets. Examples of where large data sets have been analyzed, to evaluate the career development of elite cyclists and to characterize and optimize the training load of well-trained runners, are discussed. Careful verification of large data sets is time consuming and imperative before useful conclusions can be drawn. Consequently, it is recommended that prospective studies be preferred over retrospective analyses of data. It is concluded that rigorous analysis of large data sets could enhance our knowledge in the sport and exercise sciences, inform competitive strategies, and allow innovative new research and findings.

  3. Analytical energy gradients for explicitly correlated wave functions. I. Explicitly correlated second-order Møller-Plesset perturbation theory

    NASA Astrophysics Data System (ADS)

    Győrffy, Werner; Knizia, Gerald; Werner, Hans-Joachim

    2017-12-01

    We present the theory and algorithms for computing analytical energy gradients for explicitly correlated second-order Møller-Plesset perturbation theory (MP2-F12). The main difficulty in F12 gradient theory arises from the large number of two-electron integrals for which effective two-body density matrices and integral derivatives need to be calculated. For efficiency, the density fitting approximation is used for evaluating all two-electron integrals and their derivatives. The accuracies of various previously proposed MP2-F12 approximations [3C, 3C(HY1), 3*C(HY1), and 3*A] are demonstrated by computing equilibrium geometries for a set of molecules containing first- and second-row elements, using double-ζ to quintuple-ζ basis sets. Generally, the convergence of the bond lengths and angles with respect to the basis set size is strongly improved by the F12 treatment, and augmented triple-ζ basis sets are sufficient to closely approach the basis set limit. The results obtained with the different approximations differ only very slightly. This paper is the first step towards analytical gradients for coupled-cluster singles and doubles with perturbative treatment of triple excitations, which will be presented in the second part of this series.

  4. Imaging of the outer valence orbitals of CO by electron momentum spectroscopy — Comparison with high level MRSD-CI and DFT calculations

    NASA Astrophysics Data System (ADS)

    Fan, X. W.; Chen, X. J.; Zhou, S. J.; Zheng, Y.; Brion, C. E.; Frey, R.; Davidson, E. R.

    1997-09-01

    A newly constructed energy dispersive multichannel electron momentum spectrometer has been used to image the electron density of the outer valence orbitals of CO with high precision. Binding energy spectra are obtained at a coincidence energy resolution of 1.2 eV fwhm. The measured electron density profiles in momentum space for the outer valence orbitals of CO are compared with cross sections calculated using SCF wavefunctions with basis sets of varying complexity up to near-Hartree-Fock limit in quality. The effects of correlation and electronic relaxation on the calculated momentum profiles are investigated using large MRSD-CI calculations of the full ion-neutral overlap distributions, as well as large basis set DFT calculations with local and non-local (gradient corrected) functionals.

  5. A partitioned correlation function interaction approach for describing electron correlation in atoms

    NASA Astrophysics Data System (ADS)

    Verdebout, S.; Rynkun, P.; Jönsson, P.; Gaigalas, G.; Froese Fischer, C.; Godefroid, M.

    2013-04-01

    The traditional multiconfiguration Hartree-Fock (MCHF) and configuration interaction (CI) methods are based on a single orthonormal orbital basis. For atoms with many closed core shells, or complicated shell structures, a large orbital basis is needed to saturate the different electron correlation effects such as valence, core-valence and correlation within the core shells. The large orbital basis leads to massive configuration state function (CSF) expansions that are difficult to handle, even on large computer systems. We show that it is possible to relax the orthonormality restriction on the orbital basis and break down the originally very large calculations into a series of smaller calculations that can be run in parallel. Each calculation determines a partitioned correlation function (PCF) that accounts for a specific correlation effect. The PCFs are built on optimally localized orbital sets and are added to a zero-order multireference (MR) function to form a total wave function. The expansion coefficients of the PCFs are determined from a low dimensional generalized eigenvalue problem. The interaction and overlap matrices are computed using a biorthonormal transformation technique (Verdebout et al 2010 J. Phys. B: At. Mol. Phys. 43 074017). The new method, called partitioned correlation function interaction (PCFI), converges rapidly with respect to the orbital basis and gives total energies that are lower than the ones from ordinary MCHF and CI calculations. The PCFI method is also very flexible when it comes to targeting different electron correlation effects. Focusing our attention on neutral lithium, we show that by dedicating a PCF to the single excitations from the core, spin- and orbital-polarization effects can be captured very efficiently, leading to highly improved convergence patterns for hyperfine parameters compared with MCHF calculations based on a single orthogonal radial orbital basis. By collecting separately optimized PCFs to correct the MR function, the variational degrees of freedom in the relative mixing coefficients of the CSFs building the PCFs are inhibited. The constraints on the mixing coefficients lead to small off-sets in computed properties such as hyperfine structure, isotope shift and transition rates, with respect to the correct values. By (partially) deconstraining the mixing coefficients one converges to the correct limits and keeps the tremendous advantage of improved convergence rates that comes from the use of several orbital sets. Reducing ultimately each PCF to a single CSF with its own orbital basis leads to a non-orthogonal CI approach. Various perspectives of the new method are given.

  6. The basis function approach for modeling autocorrelation in ecological data

    USGS Publications Warehouse

    Hefley, Trevor J.; Broms, Kristin M.; Brost, Brian M.; Buderman, Frances E.; Kay, Shannon L.; Scharf, Henry; Tipton, John; Williams, Perry J.; Hooten, Mevin B.

    2017-01-01

    Analyzing ecological data often requires modeling the autocorrelation created by spatial and temporal processes. Many seemingly disparate statistical methods used to account for autocorrelation can be expressed as regression models that include basis functions. Basis functions also enable ecologists to modify a wide range of existing ecological models in order to account for autocorrelation, which can improve inference and predictive accuracy. Furthermore, understanding the properties of basis functions is essential for evaluating the fit of spatial or time-series models, detecting a hidden form of collinearity, and analyzing large data sets. We present important concepts and properties related to basis functions and illustrate several tools and techniques ecologists can use when modeling autocorrelation in ecological data.

  7. An unbiased Hessian representation for Monte Carlo PDFs.

    PubMed

    Carrazza, Stefano; Forte, Stefano; Kassabov, Zahari; Latorre, José Ignacio; Rojo, Juan

    We develop a methodology for the construction of a Hessian representation of Monte Carlo sets of parton distributions, based on the use of a subset of the Monte Carlo PDF replicas as an unbiased linear basis, and of a genetic algorithm for the determination of the optimal basis. We validate the methodology by first showing that it faithfully reproduces a native Monte Carlo PDF set (NNPDF3.0), and then, that if applied to Hessian PDF set (MMHT14) which was transformed into a Monte Carlo set, it gives back the starting PDFs with minimal information loss. We then show that, when applied to a large Monte Carlo PDF set obtained as combination of several underlying sets, the methodology leads to a Hessian representation in terms of a rather smaller set of parameters (MC-H PDFs), thereby providing an alternative implementation of the recently suggested Meta-PDF idea and a Hessian version of the recently suggested PDF compression algorithm (CMC-PDFs). The mc2hessian conversion code is made publicly available together with (through LHAPDF6) a Hessian representations of the NNPDF3.0 set, and the MC-H PDF set.

  8. Theoretical study on the dissociation energies, ionization potentials and electron affinities of three perfluoroalkyl iodides

    NASA Astrophysics Data System (ADS)

    Cheng, Li; Shen, Zuochun; Lu, Jianye; Gao, Huide; Lü, Zhiwei

    2005-11-01

    Dissociation energies, ionization potentials and electron affinities of three perfluoroalkyl iodides, CF 3I, C 2F 5I, and i-C 3F 7I are calculated accurately with B3LYP, MP n ( n = 2-4), QCISD, QCISD(T), CCSD, and CCSD(T) methods. Calculations are performed by using large-core correlation-consistent pseudopotential basis set (SDB-aug-cc-pVTZ) for iodine atom. In all energy calculations, the zero point vibration energy is corrected. And the basis set superposition error is corrected by counterpoise method in the calculation of dissociation energy. Theoretical results are compared with the experimental values.

  9. Heats of NF(sub n) (n= 1-3) and NF(sub n)(+)(n = 1-3)

    NASA Technical Reports Server (NTRS)

    Ricca, Alessandra; Arnold, James (Technical Monitor)

    1998-01-01

    Accurate heats of formation are computed for NF(sub n) and NF(sub n)(+), for n = 1-3. The geometries and the vibrational frequencies are determined at the B3LYP level of theory. The energetics are determined at the CCSD(T) level of theory. Basis set limit values are obtained by extrapolation. In those cases where the CCSD(T) calculations become prohibitively large, the basis set extrapolation is performed at the MP2 level. The temperature dependence of the heat of formation, heat capacity, and entropy are computed for the temperature range 300 to 4000 K and fit to a polynomial.

  10. Geminal embedding scheme for optimal atomic basis set construction in correlated calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorella, S., E-mail: sorella@sissa.it; Devaux, N.; Dagrada, M., E-mail: mario.dagrada@impmc.upmc.fr

    2015-12-28

    We introduce an efficient method to construct optimal and system adaptive basis sets for use in electronic structure and quantum Monte Carlo calculations. The method is based on an embedding scheme in which a reference atom is singled out from its environment, while the entire system (atom and environment) is described by a Slater determinant or its antisymmetrized geminal power (AGP) extension. The embedding procedure described here allows for the systematic and consistent contraction of the primitive basis set into geminal embedded orbitals (GEOs), with a dramatic reduction of the number of variational parameters necessary to represent the many-body wavemore » function, for a chosen target accuracy. Within the variational Monte Carlo method, the Slater or AGP part is determined by a variational minimization of the energy of the whole system in presence of a flexible and accurate Jastrow factor, representing most of the dynamical electronic correlation. The resulting GEO basis set opens the way for a fully controlled optimization of many-body wave functions in electronic structure calculation of bulk materials, namely, containing a large number of electrons and atoms. We present applications on the water molecule, the volume collapse transition in cerium, and the high-pressure liquid hydrogen.« less

  11. Third-Order Incremental Dual-Basis Set Zero-Buffer Approach: An Accurate and Efficient Way To Obtain CCSD and CCSD(T) Energies.

    PubMed

    Zhang, Jun; Dolg, Michael

    2013-07-09

    An efficient way to obtain accurate CCSD and CCSD(T) energies for large systems, i.e., the third-order incremental dual-basis set zero-buffer approach (inc3-db-B0), has been developed and tested. This approach combines the powerful incremental scheme with the dual-basis set method, and along with the new proposed K-means clustering (KM) method and zero-buffer (B0) approximation, can obtain very accurate absolute and relative energies efficiently. We tested the approach for 10 systems of different chemical nature, i.e., intermolecular interactions including hydrogen bonding, dispersion interaction, and halogen bonding; an intramolecular rearrangement reaction; aliphatic and conjugated hydrocarbon chains; three compact covalent molecules; and a water cluster. The results show that the errors for relative energies are <1.94 kJ/mol (or 0.46 kcal/mol), for absolute energies of <0.0026 hartree. By parallelization, our approach can be applied to molecules of more than 30 atoms and more than 100 correlated electrons with high-quality basis set such as cc-pVDZ or cc-pVTZ, saving computational cost by a factor of more than 10-20, compared to traditional implementation. The physical reasons of the success of the inc3-db-B0 approach are also analyzed.

  12. Diffusion Forecasting Model with Basis Functions from QR-Decomposition

    NASA Astrophysics Data System (ADS)

    Harlim, John; Yang, Haizhao

    2018-06-01

    The diffusion forecasting is a nonparametric approach that provably solves the Fokker-Planck PDE corresponding to Itô diffusion without knowing the underlying equation. The key idea of this method is to approximate the solution of the Fokker-Planck equation with a discrete representation of the shift (Koopman) operator on a set of basis functions generated via the diffusion maps algorithm. While the choice of these basis functions is provably optimal under appropriate conditions, computing these basis functions is quite expensive since it requires the eigendecomposition of an N× N diffusion matrix, where N denotes the data size and could be very large. For large-scale forecasting problems, only a few leading eigenvectors are computationally achievable. To overcome this computational bottleneck, a new set of basis functions constructed by orthonormalizing selected columns of the diffusion matrix and its leading eigenvectors is proposed. This computation can be carried out efficiently via the unpivoted Householder QR factorization. The efficiency and effectiveness of the proposed algorithm will be shown in both deterministically chaotic and stochastic dynamical systems; in the former case, the superiority of the proposed basis functions over purely eigenvectors is significant, while in the latter case forecasting accuracy is improved relative to using a purely small number of eigenvectors. Supporting arguments will be provided on three- and six-dimensional chaotic ODEs, a three-dimensional SDE that mimics turbulent systems, and also on the two spatial modes associated with the boreal winter Madden-Julian Oscillation obtained from applying the Nonlinear Laplacian Spectral Analysis on the measured Outgoing Longwave Radiation.

  13. Diffusion Forecasting Model with Basis Functions from QR-Decomposition

    NASA Astrophysics Data System (ADS)

    Harlim, John; Yang, Haizhao

    2017-12-01

    The diffusion forecasting is a nonparametric approach that provably solves the Fokker-Planck PDE corresponding to Itô diffusion without knowing the underlying equation. The key idea of this method is to approximate the solution of the Fokker-Planck equation with a discrete representation of the shift (Koopman) operator on a set of basis functions generated via the diffusion maps algorithm. While the choice of these basis functions is provably optimal under appropriate conditions, computing these basis functions is quite expensive since it requires the eigendecomposition of an N× N diffusion matrix, where N denotes the data size and could be very large. For large-scale forecasting problems, only a few leading eigenvectors are computationally achievable. To overcome this computational bottleneck, a new set of basis functions constructed by orthonormalizing selected columns of the diffusion matrix and its leading eigenvectors is proposed. This computation can be carried out efficiently via the unpivoted Householder QR factorization. The efficiency and effectiveness of the proposed algorithm will be shown in both deterministically chaotic and stochastic dynamical systems; in the former case, the superiority of the proposed basis functions over purely eigenvectors is significant, while in the latter case forecasting accuracy is improved relative to using a purely small number of eigenvectors. Supporting arguments will be provided on three- and six-dimensional chaotic ODEs, a three-dimensional SDE that mimics turbulent systems, and also on the two spatial modes associated with the boreal winter Madden-Julian Oscillation obtained from applying the Nonlinear Laplacian Spectral Analysis on the measured Outgoing Longwave Radiation.

  14. Large-scale quantum transport calculations for electronic devices with over ten thousand atoms

    NASA Astrophysics Data System (ADS)

    Lu, Wenchang; Lu, Yan; Xiao, Zhongcan; Hodak, Miro; Briggs, Emil; Bernholc, Jerry

    The non-equilibrium Green's function method (NEGF) has been implemented in our massively parallel DFT software, the real space multigrid (RMG) code suite. Our implementation employs multi-level parallelization strategies and fully utilizes both multi-core CPUs and GPU accelerators. Since the cost of the calculations increases dramatically with the number of orbitals, an optimal basis set is crucial for including a large number of atoms in the ``active device'' part of the simulations. In our implementation, the localized orbitals are separately optimized for each principal layer of the device region, in order to obtain an accurate and optimal basis set. As a large example, we calculated the transmission characteristics of a Si nanowire p-n junction. The nanowire is along (110) direction in order to minimize the number dangling bonds that are saturated by H atoms. Its diameter is 3 nm. The length of 24 nm is necessary because of the long-range screening length in Si. Our calculations clearly show the I-V characteristics of a diode, i.e., the current increases exponentially with forward bias and is near zero with backward bias. Other examples will also be presented, including three-terminal transistors and large sensor structures.

  15. Comparison of localized basis and plane-wave basis for density-functional calculations of organic molecules on metals

    NASA Astrophysics Data System (ADS)

    Lee, Kyuho; Yu, Jaejun; Morikawa, Yoshitada

    2007-01-01

    Localized pseudoatomic orbitals (PAOs) are mainly optimized and tested for the strong chemical bonds within molecules and solids with their proven accuracy and efficiency, but are prone to significant basis set superposition error (BSSE) for weakly interacting systems. Here we test the accuracy of PAO basis in comparison with the BSSE-free plane-wave basis for the physisorption of pentacene molecule on Au (001) by calculating the binding energy, adsorption height, and energy level alignment. We show that both the large cutoff radius for localized PAOs and the counter-poise correction for BSSE are necessary to obtain well-converged physical properties. Thereby obtained results are as accurate as the plane-wave basis results. The comparison with experiment is given as well.

  16. The basis function approach for modeling autocorrelation in ecological data.

    PubMed

    Hefley, Trevor J; Broms, Kristin M; Brost, Brian M; Buderman, Frances E; Kay, Shannon L; Scharf, Henry R; Tipton, John R; Williams, Perry J; Hooten, Mevin B

    2017-03-01

    Analyzing ecological data often requires modeling the autocorrelation created by spatial and temporal processes. Many seemingly disparate statistical methods used to account for autocorrelation can be expressed as regression models that include basis functions. Basis functions also enable ecologists to modify a wide range of existing ecological models in order to account for autocorrelation, which can improve inference and predictive accuracy. Furthermore, understanding the properties of basis functions is essential for evaluating the fit of spatial or time-series models, detecting a hidden form of collinearity, and analyzing large data sets. We present important concepts and properties related to basis functions and illustrate several tools and techniques ecologists can use when modeling autocorrelation in ecological data. © 2016 by the Ecological Society of America.

  17. Ab Initio Potential Energy Surface for H-H2

    NASA Technical Reports Server (NTRS)

    Patridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- 3 micro E(h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces (25-70 kcal/mol above the H-H2 asymptote) at small interatomic separations; the Boothroyd, Keogh, Martin, and Peterson (BKMP) potential energy surface is found to agree with results of the present calculations within the expected uncertainty (+/- 1 kcal/mol) of the fit. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(0)) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  18. An efficient implementation of semi-numerical computation of the Hartree-Fock exchange on the Intel Phi processor

    NASA Astrophysics Data System (ADS)

    Liu, Fenglai; Kong, Jing

    2018-07-01

    Unique technical challenges and their solutions for implementing semi-numerical Hartree-Fock exchange on the Phil Processor are discussed, especially concerning the single- instruction-multiple-data type of processing and small cache size. Benchmark calculations on a series of buckyball molecules with various Gaussian basis sets on a Phi processor and a six-core CPU show that the Phi processor provides as much as 12 times of speedup with large basis sets compared with the conventional four-center electron repulsion integration approach performed on the CPU. The accuracy of the semi-numerical scheme is also evaluated and found to be comparable to that of the resolution-of-identity approach.

  19. Numerical experiments on short-term meteorological effects on solar variability

    NASA Technical Reports Server (NTRS)

    Somerville, R. C. J.; Hansen, J. E.; Stone, P. H.; Quirk, W. J.; Lacis, A. A.

    1975-01-01

    A set of numerical experiments was conducted to test the short-range sensitivity of a large atmospheric general circulation model to changes in solar constant and ozone amount. On the basis of the results of 12-day sets of integrations with very large variations in these parameters, it is concluded that realistic variations would produce insignificant meteorological effects. Any causal relationships between solar variability and weather, for time scales of two weeks or less, rely upon changes in parameters other than solar constant or ozone amounts, or upon mechanisms not yet incorporated in the model.

  20. Quantitative estimation of time-variable earthquake hazard by using fuzzy set theory

    NASA Astrophysics Data System (ADS)

    Deyi, Feng; Ichikawa, M.

    1989-11-01

    In this paper, the various methods of fuzzy set theory, called fuzzy mathematics, have been applied to the quantitative estimation of the time-variable earthquake hazard. The results obtained consist of the following. (1) Quantitative estimation of the earthquake hazard on the basis of seismicity data. By using some methods of fuzzy mathematics, seismicity patterns before large earthquakes can be studied more clearly and more quantitatively, highly active periods in a given region and quiet periods of seismic activity before large earthquakes can be recognized, similarities in temporal variation of seismic activity and seismic gaps can be examined and, on the other hand, the time-variable earthquake hazard can be assessed directly on the basis of a series of statistical indices of seismicity. Two methods of fuzzy clustering analysis, the method of fuzzy similarity, and the direct method of fuzzy pattern recognition, have been studied is particular. One method of fuzzy clustering analysis is based on fuzzy netting, and another is based on the fuzzy equivalent relation. (2) Quantitative estimation of the earthquake hazard on the basis of observational data for different precursors. The direct method of fuzzy pattern recognition has been applied to research on earthquake precursors of different kinds. On the basis of the temporal and spatial characteristics of recognized precursors, earthquake hazards in different terms can be estimated. This paper mainly deals with medium-short-term precursors observed in Japan and China.

  1. Estimating the CCSD basis-set limit energy from small basis sets: basis-set extrapolations vs additivity schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spackman, Peter R.; Karton, Amir, E-mail: amir.karton@uwa.edu.au

    Coupled cluster calculations with all single and double excitations (CCSD) converge exceedingly slowly with the size of the one-particle basis set. We assess the performance of a number of approaches for obtaining CCSD correlation energies close to the complete basis-set limit in conjunction with relatively small DZ and TZ basis sets. These include global and system-dependent extrapolations based on the A + B/L{sup α} two-point extrapolation formula, and the well-known additivity approach that uses an MP2-based basis-set-correction term. We show that the basis set convergence rate can change dramatically between different systems(e.g.it is slower for molecules with polar bonds and/ormore » second-row elements). The system-dependent basis-set extrapolation scheme, in which unique basis-set extrapolation exponents for each system are obtained from lower-cost MP2 calculations, significantly accelerates the basis-set convergence relative to the global extrapolations. Nevertheless, we find that the simple MP2-based basis-set additivity scheme outperforms the extrapolation approaches. For example, the following root-mean-squared deviations are obtained for the 140 basis-set limit CCSD atomization energies in the W4-11 database: 9.1 (global extrapolation), 3.7 (system-dependent extrapolation), and 2.4 (additivity scheme) kJ mol{sup –1}. The CCSD energy in these approximations is obtained from basis sets of up to TZ quality and the latter two approaches require additional MP2 calculations with basis sets of up to QZ quality. We also assess the performance of the basis-set extrapolations and additivity schemes for a set of 20 basis-set limit CCSD atomization energies of larger molecules including amino acids, DNA/RNA bases, aromatic compounds, and platonic hydrocarbon cages. We obtain the following RMSDs for the above methods: 10.2 (global extrapolation), 5.7 (system-dependent extrapolation), and 2.9 (additivity scheme) kJ mol{sup –1}.« less

  2. Estimating the CCSD basis-set limit energy from small basis sets: basis-set extrapolations vs additivity schemes

    NASA Astrophysics Data System (ADS)

    Spackman, Peter R.; Karton, Amir

    2015-05-01

    Coupled cluster calculations with all single and double excitations (CCSD) converge exceedingly slowly with the size of the one-particle basis set. We assess the performance of a number of approaches for obtaining CCSD correlation energies close to the complete basis-set limit in conjunction with relatively small DZ and TZ basis sets. These include global and system-dependent extrapolations based on the A + B/Lα two-point extrapolation formula, and the well-known additivity approach that uses an MP2-based basis-set-correction term. We show that the basis set convergence rate can change dramatically between different systems(e.g.it is slower for molecules with polar bonds and/or second-row elements). The system-dependent basis-set extrapolation scheme, in which unique basis-set extrapolation exponents for each system are obtained from lower-cost MP2 calculations, significantly accelerates the basis-set convergence relative to the global extrapolations. Nevertheless, we find that the simple MP2-based basis-set additivity scheme outperforms the extrapolation approaches. For example, the following root-mean-squared deviations are obtained for the 140 basis-set limit CCSD atomization energies in the W4-11 database: 9.1 (global extrapolation), 3.7 (system-dependent extrapolation), and 2.4 (additivity scheme) kJ mol-1. The CCSD energy in these approximations is obtained from basis sets of up to TZ quality and the latter two approaches require additional MP2 calculations with basis sets of up to QZ quality. We also assess the performance of the basis-set extrapolations and additivity schemes for a set of 20 basis-set limit CCSD atomization energies of larger molecules including amino acids, DNA/RNA bases, aromatic compounds, and platonic hydrocarbon cages. We obtain the following RMSDs for the above methods: 10.2 (global extrapolation), 5.7 (system-dependent extrapolation), and 2.9 (additivity scheme) kJ mol-1.

  3. Basis set and electron correlation effects on the polarizability and second hyperpolarizability of model open-shell π-conjugated systems

    NASA Astrophysics Data System (ADS)

    Champagne, Benoı̂t; Botek, Edith; Nakano, Masayoshi; Nitta, Tomoshige; Yamaguchi, Kizashi

    2005-03-01

    The basis set and electron correlation effects on the static polarizability (α) and second hyperpolarizability (γ) are investigated ab initio for two model open-shell π-conjugated systems, the C5H7 radical and the C6H8 radical cation in their doublet state. Basis set investigations evidence that the linear and nonlinear responses of the radical cation necessitate the use of a less extended basis set than its neutral analog. Indeed, double-zeta-type basis sets supplemented by a set of d polarization functions but no diffuse functions already provide accurate (hyper)polarizabilities for C6H8 whereas diffuse functions are compulsory for C5H7, in particular, p diffuse functions. In addition to the 6-31G*+pd basis set, basis sets resulting from removing not necessary diffuse functions from the augmented correlation consistent polarized valence double zeta basis set have been shown to provide (hyper)polarizability values of similar quality as more extended basis sets such as augmented correlation consistent polarized valence triple zeta and doubly augmented correlation consistent polarized valence double zeta. Using the selected atomic basis sets, the (hyper)polarizabilities of these two model compounds are calculated at different levels of approximation in order to assess the impact of including electron correlation. As a function of the method of calculation antiparallel and parallel variations have been demonstrated for α and γ of the two model compounds, respectively. For the polarizability, the unrestricted Hartree-Fock and unrestricted second-order Møller-Plesset methods bracket the reference value obtained at the unrestricted coupled cluster singles and doubles with a perturbative inclusion of the triples level whereas the projected unrestricted second-order Møller-Plesset results are in much closer agreement with the unrestricted coupled cluster singles and doubles with a perturbative inclusion of the triples values than the projected unrestricted Hartree-Fock results. Moreover, the differences between the restricted open-shell Hartree-Fock and restricted open-shell second-order Møller-Plesset methods are small. In what concerns the second hyperpolarizability, the unrestricted Hartree-Fock and unrestricted second-order Møller-Plesset values remain of similar quality while using spin-projected schemes fails for the charged system but performs nicely for the neutral one. The restricted open-shell schemes, and especially the restricted open-shell second-order Møller-Plesset method, provide for both compounds γ values close to the results obtained at the unrestricted coupled cluster level including singles and doubles with a perturbative inclusion of the triples. Thus, to obtain well-converged α and γ values at low-order electron correlation levels, the removal of spin contamination is a necessary but not a sufficient condition. Density-functional theory calculations of α and γ have also been carried out using several exchange-correlation functionals. Those employing hybrid exchange-correlation functionals have been shown to reproduce fairly well the reference coupled cluster polarizability and second hyperpolarizability values. In addition, inclusion of Hartree-Fock exchange is of major importance for determining accurate polarizability whereas for the second hyperpolarizability the gradient corrections are large.

  4. Chebyshev polynomial filtered subspace iteration in the discontinuous Galerkin method for large-scale electronic structure calculations

    DOE PAGES

    Banerjee, Amartya S.; Lin, Lin; Hu, Wei; ...

    2016-10-21

    The Discontinuous Galerkin (DG) electronic structure method employs an adaptive local basis (ALB) set to solve the Kohn-Sham equations of density functional theory in a discontinuous Galerkin framework. The adaptive local basis is generated on-the-fly to capture the local material physics and can systematically attain chemical accuracy with only a few tens of degrees of freedom per atom. A central issue for large-scale calculations, however, is the computation of the electron density (and subsequently, ground state properties) from the discretized Hamiltonian in an efficient and scalable manner. We show in this work how Chebyshev polynomial filtered subspace iteration (CheFSI) canmore » be used to address this issue and push the envelope in large-scale materials simulations in a discontinuous Galerkin framework. We describe how the subspace filtering steps can be performed in an efficient and scalable manner using a two-dimensional parallelization scheme, thanks to the orthogonality of the DG basis set and block-sparse structure of the DG Hamiltonian matrix. The on-the-fly nature of the ALB functions requires additional care in carrying out the subspace iterations. We demonstrate the parallel scalability of the DG-CheFSI approach in calculations of large-scale twodimensional graphene sheets and bulk three-dimensional lithium-ion electrolyte systems. In conclusion, employing 55 296 computational cores, the time per self-consistent field iteration for a sample of the bulk 3D electrolyte containing 8586 atoms is 90 s, and the time for a graphene sheet containing 11 520 atoms is 75 s.« less

  5. Estimating the intrinsic limit of the Feller-Peterson-Dixon composite approach when applied to adiabatic ionization potentials in atoms and small molecules

    NASA Astrophysics Data System (ADS)

    Feller, David

    2017-07-01

    Benchmark adiabatic ionization potentials were obtained with the Feller-Peterson-Dixon (FPD) theoretical method for a collection of 48 atoms and small molecules. In previous studies, the FPD method demonstrated an ability to predict atomization energies (heats of formation) and electron affinities well within a 95% confidence level of ±1 kcal/mol. Large 1-particle expansions involving correlation consistent basis sets (up to aug-cc-pV8Z in many cases and aug-cc-pV9Z for some atoms) were chosen for the valence CCSD(T) starting point calculations. Despite their cost, these large basis sets were chosen in order to help minimize the residual basis set truncation error and reduce dependence on approximate basis set limit extrapolation formulas. The complementary n-particle expansion included higher order CCSDT, CCSDTQ, or CCSDTQ5 (coupled cluster theory with iterative triple, quadruple, and quintuple excitations) corrections. For all of the chemical systems examined here, it was also possible to either perform explicit full configuration interaction (CI) calculations or to otherwise estimate the full CI limit. Additionally, corrections associated with core/valence correlation, scalar relativity, anharmonic zero point vibrational energies, non-adiabatic effects, and other minor factors were considered. The root mean square deviation with respect to experiment for the ionization potentials was 0.21 kcal/mol (0.009 eV). The corresponding level of agreement for molecular enthalpies of formation was 0.37 kcal/mol and for electron affinities 0.20 kcal/mol. Similar good agreement with experiment was found in the case of molecular structures and harmonic frequencies. Overall, the combination of energetic, structural, and vibrational data (655 comparisons) reflects the consistent ability of the FPD method to achieve close agreement with experiment for small molecules using the level of theory applied in this study.

  6. On the origin independence of the Verdet tensor†

    NASA Astrophysics Data System (ADS)

    Caputo, M. C.; Coriani, S.; Pelloni, S.; Lazzeretti, P.

    2013-07-01

    The condition for invariance under a translation of the coordinate system of the Verdet tensor and the Verdet constant, calculated via quantum chemical methods using gaugeless basis sets, is expressed by a vanishing sum rule involving a third-rank polar tensor. The sum rule is, in principle, satisfied only in the ideal case of optimal variational electronic wavefunctions. In general, it is not fulfilled in non-variational calculations and variational calculations allowing for the algebraic approximation, but it can be satisfied for reasons of molecular symmetry. Group-theoretical procedures have been used to determine (i) the total number of non-vanishing components and (ii) the unique components of both the polar tensor appearing in the sum rule and the axial Verdet tensor, for a series of symmetry groups. Test calculations at the random-phase approximation level of accuracy for water, hydrogen peroxide and ammonia molecules, using basis sets of increasing quality, show a smooth convergence to zero of the sum rule. Verdet tensor components calculated for the same molecules converge to limit values, estimated via large basis sets of gaugeless Gaussian functions and London orbitals.

  7. Structure and energetics of InN and GaN dimers

    NASA Astrophysics Data System (ADS)

    Šimová, Lucia; Tzeli, Demeter; Urban, Miroslav; Černušák, Ivan; Theodorakopoulos, Giannoula; Petsalakis, Ioannis D.

    2008-06-01

    Large-scale mapping of various dimers of indium nitride and gallium nitride in singlet and triplet electronic states is reported. Second-order perturbation theory with Møller-Plesset partitioning of the Hamiltonian (MP2) and coupled-cluster with single and double excitations corrected for the triple excitations (CCSD(T)) are used for the geometry determinations and evaluation of excitation and dissociation energies. For gallium and nitrogen we have used the singly augmented correlation-consistent triple-zeta basis set (aug-cc-pVTZ), for indium we have used the aug-cc-pVTZ-pseudopotential basis set. The dissociation energies are corrected for basis set superposition error (BBSE) including geometrical relaxation of the monomers. We compare and discuss the similarities and dissimilarities in the structural patterns and energetics of both groups of isomers, including the effect of the BSSE. Our computations show that there are not only different ground states for In 2N 2 and Ga 2N 2 but also different numbers of stable stationary points on their potential energy surface. We compare our results with the molecular data published so far for these systems.

  8. The Pariser-Parr-Pople model for trans-polyenes. I. Ab initio and semiempirical study of the bond alternation in trans-butadiene

    NASA Astrophysics Data System (ADS)

    Förner, Wolfgang

    1992-03-01

    Ab initio investigations of the bond alternation in butadiene are presented. The atomic basis sets applied range from minimal to split valence plus polarization quality. With the latter one the Hartree-Fock limit for the bond alternation is reached. Correlation is considered on Møller-Plesset many-body perturbation theory of second order (MP2), linear coupled cluster doubles (L-CCD) and coupled cluster doubles (CCD) level. For the smaller basis sets it is shown that for the bond alternation π-π correlations are essential while the effects of σ-σ and σ-π correlations are, though large, nearly independent of bond alternation. On MP2 level the variation of σ-π correlation with bond alternation is surprisingly large. This is discussed as an artefact of MP2. Comparative Su-Schrieffer-Heeger (SSH) and Pariser-Parr-Pople (PPP) calculations show that these models in their usual parametrizations cannot reproduce the ab initio results.

  9. Vibrationally averaged dipole moments of methane and benzene isotopologues.

    PubMed

    Arapiraca, A F C; Mohallem, J R

    2016-04-14

    DFT-B3LYP post-Born-Oppenheimer (finite-nuclear-mass-correction (FNMC)) calculations of vibrationally averaged isotopic dipole moments of methane and benzene, which compare well with experimental values, are reported. For methane, in addition to the principal vibrational contribution to the molecular asymmetry, FNMC accounts for the surprisingly large Born-Oppenheimer error of about 34% to the dipole moments. This unexpected result is explained in terms of concurrent electronic and vibrational contributions. The calculated dipole moment of C6H3D3 is about twice as large as the measured dipole moment of C6H5D. Computational progress is advanced concerning applications to larger systems and the choice of appropriate basis sets. The simpler procedure of performing vibrational averaging on the Born-Oppenheimer level and then adding the FNMC contribution evaluated at the equilibrium distance is shown to be appropriate. Also, the basis set choice is made by heuristic analysis of the physical behavior of the systems, instead of by comparison with experiments.

  10. Molecular Properties by Quantum Monte Carlo: An Investigation on the Role of the Wave Function Ansatz and the Basis Set in the Water Molecule

    PubMed Central

    Zen, Andrea; Luo, Ye; Sorella, Sandro; Guidoni, Leonardo

    2014-01-01

    Quantum Monte Carlo methods are accurate and promising many body techniques for electronic structure calculations which, in the last years, are encountering a growing interest thanks to their favorable scaling with the system size and their efficient parallelization, particularly suited for the modern high performance computing facilities. The ansatz of the wave function and its variational flexibility are crucial points for both the accurate description of molecular properties and the capabilities of the method to tackle large systems. In this paper, we extensively analyze, using different variational ansatzes, several properties of the water molecule, namely, the total energy, the dipole and quadrupole momenta, the ionization and atomization energies, the equilibrium configuration, and the harmonic and fundamental frequencies of vibration. The investigation mainly focuses on variational Monte Carlo calculations, although several lattice regularized diffusion Monte Carlo calculations are also reported. Through a systematic study, we provide a useful guide to the choice of the wave function, the pseudopotential, and the basis set for QMC calculations. We also introduce a new method for the computation of forces with finite variance on open systems and a new strategy for the definition of the atomic orbitals involved in the Jastrow-Antisymmetrised Geminal power wave function, in order to drastically reduce the number of variational parameters. This scheme significantly improves the efficiency of QMC energy minimization in case of large basis sets. PMID:24526929

  11. Correlation consistent basis sets for the atoms In–Xe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahler, Andrew; Wilson, Angela K., E-mail: akwilson@unt.edu

    In this work, the correlation consistent family of Gaussian basis sets has been expanded to include all-electron basis sets for In–Xe. The methodology for developing these basis sets is described, and several examples of the performance and utility of the new sets have been provided. Dissociation energies and bond lengths for both homonuclear and heteronuclear diatomics demonstrate the systematic convergence behavior with respect to increasing basis set quality expected by the family of correlation consistent basis sets in describing molecular properties. Comparison with recently developed correlation consistent sets designed for use with the Douglas-Kroll Hamiltonian is provided.

  12. Intramolecular BSSE and dispersion affect the structure of a dipeptide conformer

    NASA Astrophysics Data System (ADS)

    Hameed, Rabia; Khan, Afsar; van Mourik, Tanja

    2018-05-01

    B3LYP and MP2 calculations with the commonly-used 6-31+G(d) basis set predict qualitatively different structures for the Tyr-Gly conformer book1, which is the most stable conformer identified in a previous study. The structures differ mainly in the ψtyr Ramachandran angle (138° in the B3LYP structure and 120° in the MP2 structure). The causes for the discrepant structures are attributed to missing dispersion in the B3LYP calculations and large intramolecular BSSE in the MP2 calculations. The correct ψtyr value is estimated to be 130°. The MP2/6-31+G(d) profile identified an additional conformer, not present on the B3LYP surface, with a ψtyr value of 96° and a more folded structure. This minimum is, however, likely an artefact of large intramolecular BSSE values. We recommend the use of basis sets of at least quadruple-zeta quality in density functional theory (DFT), DFTaugmented with an empirical dispersion term (DFT-D) and second-order Møller-Plesset perturbation theory (MP2 ) calculations in cases where intramolecular BSSE is expected to be large.

  13. Cooperative Roles of Charge Transfer and Dispersion Terms in Hydrogen-Bonded Networks of (H2O)n, n = 6, 11, and 16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwata, Suehiro; Bandyopadhyay, Pradipta; Xantheas, Sotiris S.

    The perturbation expansion based on the locally-projected molecular orbital (LPMO PT) was applied to the study of the hydrogenbonded networks of water clusters with up to 16 molecules. Utilizing the local nature of the occupied and excited MOs on each monomer, the chargetransfer and dispersion terms are evaluated for every pair of molecules. The two terms are strongly correlated with each other for the hydrogen-bonded pairs. The strength of the hydrogen bonds in the clusters is further classified by the types of the hydrogen donor and acceptor water molecules. The relative energies evaluated with th LPMO PT among the isomersmore » of (H2O)6, (H2O)11, and (H2O)16 agree very well with those obtained from CCSD(T) calculations with large basis sets. The binding energy of the LPMO PT is approximately free of the basis set superposition errors caused both by the orbital basis inconsistency and by the configuration basis inconsistency.« less

  14. Confined One Dimensional Harmonic Oscillator as a Two-Mode System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gueorguiev, V G; Rau, A P; Draayer, J P

    2005-07-11

    The one-dimensional harmonic oscillator in a box problem is possibly the simplest example of a two-mode system. This system has two exactly solvable limits, the harmonic oscillator and a particle in a (one-dimensional) box. Each of the two limits has a characteristic spectral structure describing the two different excitation modes of the system. Near each of these limits, one can use perturbation theory to achieve an accurate description of the eigenstates. Away from the exact limits, however, one has to carry out a matrix diagonalization because the basis-state mixing that occurs is typically too large to be reproduced in anymore » other way. An alternative to casting the problem in terms of one or the other basis set consists of using an ''oblique'' basis that uses both sets. Through a study of this alternative in this one-dimensional problem, we are able to illustrate practical solutions and infer the applicability of the concept for more complex systems, such as in the study of complex nuclei where oblique-basis calculations have been successful.« less

  15. Mapped grid methods for long-range molecules and cold collisions

    NASA Astrophysics Data System (ADS)

    Willner, K.; Dulieu, O.; Masnou-Seeuws, F.

    2004-01-01

    The paper discusses ways of improving the accuracy of numerical calculations for vibrational levels of diatomic molecules close to the dissociation limit or for ultracold collisions, in the framework of a grid representation. In order to avoid the implementation of very large grids, Kokoouline et al. [J. Chem. Phys. 110, 9865 (1999)] have proposed a mapping procedure through introduction of an adaptive coordinate x subjected to the variation of the local de Broglie wavelength as a function of the internuclear distance R. Some unphysical levels ("ghosts") then appear in the vibrational series computed via a mapped Fourier grid representation. In the present work the choice of the basis set is reexamined, and two alternative expansions are discussed: Sine functions and Hardy functions. It is shown that use of a basis set with fixed nodes at both grid ends is efficient to eliminate "ghost" solutions. It is further shown that the Hamiltonian matrix in the sine basis can be calculated very accurately by using an auxiliary basis of cosine functions, overcoming the problems arising from numerical calculation of the Jacobian J(x) of the R→x coordinate transformation.

  16. Crustal dynamics project data analysis, 1988: VLBI geodetic results, 1979 - 1987

    NASA Technical Reports Server (NTRS)

    Ma, C.; Ryan, J. W.; Caprette, D.

    1989-01-01

    The results obtained by the Goddard VLBI (very long base interferometry) Data Analysis Team from the analysis of 712 Mark 3 VLBI geodetic data sets acquired from fixed and mobile observing sites through the end of 1987 are reported. A large solution, GLB401, was used to obtain earth rotation parameters and site velocities. A second large solution, GLB405, was used to obtain baseline evolutions. Radio source positions were estimated globally while nutation offsets were estimated from each data set. Site positions are tabulated on a yearly basis from 1979 through 1988. The results include 55 sites and 270 baselines.

  17. The structure and energetics of Cr(CO)6 and Cr(CO)5

    NASA Technical Reports Server (NTRS)

    Barnes, Leslie A.; Liu, Bowen; Lindh, Roland

    1992-01-01

    The geometric structure of Cr(CO)6 is optimized at the modified coupled pair functional (MCPF), single and double excitation coupled-cluster (CCSD) and CCSD(T) levels of theory (including a perturbational estimate for connected triple excitations), and the force constants for the totally symmetric representation are determined. The geometry of Cr(CO)5 is partially optimized at the MCPF, CCSD, and CCSD(T) levels of theory. Comparison with experimental data shows that the CCSD(T) method gives the best results for the structures and force constants, and that remaining errors are probably due to deficiencies in the one-particle basis sets used for CO. The total binding energies of Cr(CO)6 and Cr(CO)5 are also determined at the MCPF, CCSD, and CCSD(T) levels of theory. The CCSD(T) method gives a much larger total binding energy than either the MCPF or CCSD methods. An analysis of the basis set superposition error (BSSE) at the MCPF level of treatment points out limitations in the one-particle basis used. Calculations using larger basis sets reduce the BSSE, but the total binding energy of Cr(CO)6 is still significantly smaller than the experimental value, although the first CO bond dissociation energy of Cr(CO)6 is well described. An investigation of 3s3p correlation reveals only a small effect. In the largest basis set, the total CO binding energy of Cr(CO)6 is estimated to be 140 kcal/mol at the CCSD(T) level of theory, or about 86 percent of the experimental value. The remaining discrepancy between the experimental and theoretical value is probably due to limitations in the one-particle basis, rather than limitations in the correlation treatment. In particular an additional d function and an f function on each C and O are needed to obtain quantitative results. This is underscored by the fact that even using a very large primitive set (1042 primitive functions contracted to 300 basis functions), the superposition error for the total binding energy of Cr(CO)6 is 22 kcal/mol at the MCPF level of treatment.

  18. Appropriate description of intermolecular interactions in the methane hydrates: an assessment of DFT methods.

    PubMed

    Liu, Yuan; Zhao, Jijun; Li, Fengyu; Chen, Zhongfang

    2013-01-15

    Accurate description of hydrogen-bonding energies between water molecules and van der Waals interactions between guest molecules and host water cages is crucial for study of methane hydrates (MHs). Using high-level ab initio MP2 and CCSD(T) results as the reference, we carefully assessed the performance of a variety of exchange-correlation functionals and various basis sets in describing the noncovalent interactions in MH. The functionals under investigation include the conventional GGA, meta-GGA, and hybrid functionals (PBE, PW91, TPSS, TPSSh, B3LYP, and X3LYP), long-range corrected functionals (ωB97X, ωB97, LC-ωPBE, CAM-B3LYP, and LC-TPSS), the newly developed Minnesota class functionals (M06-L, M06-HF, M06, and M06-2X), and the dispersion-corrected density functional theory (DFT) (DFT-D) methods (B97-D, ωB97X-D, PBE-TS, PBE-Grimme, and PW91-OBS). We found that the conventional functionals are not suitable for MH, notably, the widely used B3LYP functional even predicts repulsive interaction between CH(4) and (H(2)O)(6) cluster. M06-2X is the best among the M06-Class functionals. The ωB97X-D outperforms the other DFT-D methods and is recommended for accurate first-principles calculations of MH. B97-D is also acceptable as a compromise of computational cost and precision. Considering both accuracy and efficiency, B97-D, ωB97X-D, and M06-2X functional with 6-311++G(2d,2p) basis set without basis set superposition error (BSSE) correction are recommended. Though a fairly large basis set (e.g., aug-cc-pVTZ) and BSSE correction are necessary for a reliable MP2 calculation, DFT methods are less sensitive to the basis set and BSSE correction if the basis set is sufficient (e.g., 6-311++G(2d,2p)). These assessments provide useful guidance for choosing appropriate methodology of first-principles simulation of MH and related systems. © 2012 Wiley Periodicals, Inc. Copyright © 2012 Wiley Periodicals, Inc.

  19. Large-scale diversity of slope fishes: pattern inconsistency between multiple diversity indices.

    PubMed

    Gaertner, Jean-Claude; Maiorano, Porzia; Mérigot, Bastien; Colloca, Francesco; Politou, Chrissi-Yianna; Gil De Sola, Luis; Bertrand, Jacques A; Murenu, Matteo; Durbec, Jean-Pierre; Kallianiotis, Argyris; Mannini, Alessandro

    2013-01-01

    Large-scale studies focused on the diversity of continental slope ecosystems are still rare, usually restricted to a limited number of diversity indices and mainly based on the empirical comparison of heterogeneous local data sets. In contrast, we investigate large-scale fish diversity on the basis of multiple diversity indices and using 1454 standardized trawl hauls collected throughout the upper and middle slope of the whole northern Mediterranean Sea (36°3'- 45°7' N; 5°3'W - 28°E). We have analyzed (1) the empirical relationships between a set of 11 diversity indices in order to assess their degree of complementarity/redundancy and (2) the consistency of spatial patterns exhibited by each of the complementary groups of indices. Regarding species richness, our results contrasted both the traditional view based on the hump-shaped theory for bathymetric pattern and the commonly-admitted hypothesis of a large-scale decreasing trend correlated with a similar gradient of primary production in the Mediterranean Sea. More generally, we found that the components of slope fish diversity we analyzed did not always show a consistent pattern of distribution according either to depth or to spatial areas, suggesting that they are not driven by the same factors. These results, which stress the need to extend the number of indices traditionally considered in diversity monitoring networks, could provide a basis for rethinking not only the methodological approach used in monitoring systems, but also the definition of priority zones for protection. Finally, our results call into question the feasibility of properly investigating large-scale diversity patterns using a widespread approach in ecology, which is based on the compilation of pre-existing heterogeneous and disparate data sets, in particular when focusing on indices that are very sensitive to sampling design standardization, such as species richness.

  20. How to select basis sets and computational methods for carbohydrate modeling

    USDA-ARS?s Scientific Manuscript database

    In the last decade there have been significant improvements in computer hardware but also in development of quantum mechanical methods. This makes it more feasible to study large carbohydrate molecules via quantum mechanical methods whereas in the past studies of carbohydrates were restricted to em...

  1. An Individualized Reading Program.

    ERIC Educational Resources Information Center

    Davis, Nancy B.

    The operating procedures of a university reading and study skills center for completely individualized reading instruction are described. The program is offered as a student service (no fee) on a voluntary, noncredit basis. A prepared set of instructional tapes is used whereby students can largely serve themselves, proceeding at their own rates,…

  2. Push it to the limit: Characterizing the convergence of common sequences of basis sets for intermolecular interactions as described by density functional theory

    NASA Astrophysics Data System (ADS)

    Witte, Jonathon; Neaton, Jeffrey B.; Head-Gordon, Martin

    2016-05-01

    With the aim of systematically characterizing the convergence of common families of basis sets such that general recommendations for basis sets can be made, we have tested a wide variety of basis sets against complete-basis binding energies across the S22 set of intermolecular interactions—noncovalent interactions of small and medium-sized molecules consisting of first- and second-row atoms—with three distinct density functional approximations: SPW92, a form of local-density approximation; B3LYP, a global hybrid generalized gradient approximation; and B97M-V, a meta-generalized gradient approximation with nonlocal correlation. We have found that it is remarkably difficult to reach the basis set limit; for the methods and systems examined, the most complete basis is Jensen's pc-4. The Dunning correlation-consistent sequence of basis sets converges slowly relative to the Jensen sequence. The Karlsruhe basis sets are quite cost effective, particularly when a correction for basis set superposition error is applied: counterpoise-corrected def2-SVPD binding energies are better than corresponding energies computed in comparably sized Dunning and Jensen bases, and on par with uncorrected results in basis sets 3-4 times larger. These trends are exhibited regardless of the level of density functional approximation employed. A sense of the magnitude of the intrinsic incompleteness error of each basis set not only provides a foundation for guiding basis set choice in future studies but also facilitates quantitative comparison of existing studies on similar types of systems.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimme, Stefan, E-mail: grimme@thch.uni-bonn.de; Brandenburg, Jan Gerit; Bannwarth, Christoph

    A density functional theory (DFT) based composite electronic structure approach is proposed to efficiently compute structures and interaction energies in large chemical systems. It is based on the well-known and numerically robust Perdew-Burke-Ernzerhoff (PBE) generalized-gradient-approximation in a modified global hybrid functional with a relatively large amount of non-local Fock-exchange. The orbitals are expanded in Ahlrichs-type valence-double zeta atomic orbital (AO) Gaussian basis sets, which are available for many elements. In order to correct for the basis set superposition error (BSSE) and to account for the important long-range London dispersion effects, our well-established atom-pairwise potentials are used. In the design ofmore » the new method, particular attention has been paid to an accurate description of structural parameters in various covalent and non-covalent bonding situations as well as in periodic systems. Together with the recently proposed three-fold corrected (3c) Hartree-Fock method, the new composite scheme (termed PBEh-3c) represents the next member in a hierarchy of “low-cost” electronic structure approaches. They are mainly free of BSSE and account for most interactions in a physically sound and asymptotically correct manner. PBEh-3c yields good results for thermochemical properties in the huge GMTKN30 energy database. Furthermore, the method shows excellent performance for non-covalent interaction energies in small and large complexes. For evaluating its performance on equilibrium structures, a new compilation of standard test sets is suggested. These consist of small (light) molecules, partially flexible, medium-sized organic molecules, molecules comprising heavy main group elements, larger systems with long bonds, 3d-transition metal systems, non-covalently bound complexes (S22 and S66×8 sets), and peptide conformations. For these sets, overall deviations from accurate reference data are smaller than for various other tested DFT methods and reach that of triple-zeta AO basis set second-order perturbation theory (MP2/TZ) level at a tiny fraction of computational effort. Periodic calculations conducted for molecular crystals to test structures (including cell volumes) and sublimation enthalpies indicate very good accuracy competitive to computationally more involved plane-wave based calculations. PBEh-3c can be applied routinely to several hundreds of atoms on a single processor and it is suggested as a robust “high-speed” computational tool in theoretical chemistry and physics.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witte, Jonathon; Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720; Neaton, Jeffrey B.

    With the aim of systematically characterizing the convergence of common families of basis sets such that general recommendations for basis sets can be made, we have tested a wide variety of basis sets against complete-basis binding energies across the S22 set of intermolecular interactions—noncovalent interactions of small and medium-sized molecules consisting of first- and second-row atoms—with three distinct density functional approximations: SPW92, a form of local-density approximation; B3LYP, a global hybrid generalized gradient approximation; and B97M-V, a meta-generalized gradient approximation with nonlocal correlation. We have found that it is remarkably difficult to reach the basis set limit; for the methodsmore » and systems examined, the most complete basis is Jensen’s pc-4. The Dunning correlation-consistent sequence of basis sets converges slowly relative to the Jensen sequence. The Karlsruhe basis sets are quite cost effective, particularly when a correction for basis set superposition error is applied: counterpoise-corrected def2-SVPD binding energies are better than corresponding energies computed in comparably sized Dunning and Jensen bases, and on par with uncorrected results in basis sets 3-4 times larger. These trends are exhibited regardless of the level of density functional approximation employed. A sense of the magnitude of the intrinsic incompleteness error of each basis set not only provides a foundation for guiding basis set choice in future studies but also facilitates quantitative comparison of existing studies on similar types of systems.« less

  5. Accuracy of Lagrange-sinc functions as a basis set for electronic structure calculations of atoms and molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Sunghwan; Hong, Kwangwoo; Kim, Jaewook

    2015-03-07

    We developed a self-consistent field program based on Kohn-Sham density functional theory using Lagrange-sinc functions as a basis set and examined its numerical accuracy for atoms and molecules through comparison with the results of Gaussian basis sets. The result of the Kohn-Sham inversion formula from the Lagrange-sinc basis set manifests that the pseudopotential method is essential for cost-effective calculations. The Lagrange-sinc basis set shows faster convergence of the kinetic and correlation energies of benzene as its size increases than the finite difference method does, though both share the same uniform grid. Using a scaling factor smaller than or equal tomore » 0.226 bohr and pseudopotentials with nonlinear core correction, its accuracy for the atomization energies of the G2-1 set is comparable to all-electron complete basis set limits (mean absolute deviation ≤1 kcal/mol). The same basis set also shows small mean absolute deviations in the ionization energies, electron affinities, and static polarizabilities of atoms in the G2-1 set. In particular, the Lagrange-sinc basis set shows high accuracy with rapid convergence in describing density or orbital changes by an external electric field. Moreover, the Lagrange-sinc basis set can readily improve its accuracy toward a complete basis set limit by simply decreasing the scaling factor regardless of systems.« less

  6. Optimization of selected molecular orbitals in group basis sets.

    PubMed

    Ferenczy, György G; Adams, William H

    2009-04-07

    We derive a local basis equation which may be used to determine the orbitals of a group of electrons in a system when the orbitals of that group are represented by a group basis set, i.e., not the basis set one would normally use but a subset suited to a specific electronic group. The group orbitals determined by the local basis equation minimize the energy of a system when a group basis set is used and the orbitals of other groups are frozen. In contrast, under the constraint of a group basis set, the group orbitals satisfying the Huzinaga equation do not minimize the energy. In a test of the local basis equation on HCl, the group basis set included only 12 of the 21 functions in a basis set one might ordinarily use, but the calculated active orbital energies were within 0.001 hartree of the values obtained by solving the Hartree-Fock-Roothaan (HFR) equation using all 21 basis functions. The total energy found was just 0.003 hartree higher than the HFR value. The errors with the group basis set approximation to the Huzinaga equation were larger by over two orders of magnitude. Similar results were obtained for PCl(3) with the group basis approximation. Retaining more basis functions allows an even higher accuracy as shown by the perfect reproduction of the HFR energy of HCl with 16 out of 21 basis functions in the valence basis set. When the core basis set was also truncated then no additional error was introduced in the calculations performed for HCl with various basis sets. The same calculations with fixed core orbitals taken from isolated heavy atoms added a small error of about 10(-4) hartree. This offers a practical way to calculate wave functions with predetermined fixed core and reduced base valence orbitals at reduced computational costs. The local basis equation can also be used to combine the above approximations with the assignment of local basis sets to groups of localized valence molecular orbitals and to derive a priori localized orbitals. An appropriately chosen localization and basis set assignment allowed a reproduction of the energy of n-hexane with an error of 10(-5) hartree, while the energy difference between its two conformers was reproduced with a similar accuracy for several combinations of localizations and basis set assignments. These calculations include localized orbitals extending to 4-5 heavy atoms and thus they require to solve reduced dimension secular equations. The dimensions are not expected to increase with increasing system size and thus the local basis equation may find use in linear scaling electronic structure calculations.

  7. Complete anatomy of {overline B_d} to {overline {text{K}}^{{*0}}} (→ Kπ) ℓ + ℓ - and its angular distribution

    NASA Astrophysics Data System (ADS)

    Matias, J.; Mescia, F.; Ramon, M.; Virto, J.

    2012-04-01

    We present a complete and optimal set of observables for the exclusive 4-body overline B meson decay {overline B_d} to {overline {text{K}}^{{*0}}} (→ Kπ) ℓ + ℓ -in the low dilepton mass region, that contains a maximal number of clean observables. This basis of observables is built in a systematic way. We show that all the previously defined observables and any observable that one can construct, can be expressed as a function of this basis. This set of observables contains all the information that can be extracted from the angular distribution in the cleanest possible way. We provide explicit expressions for the full and the uniangular distributions in terms of this basis. The conclusions presented here can be easily extended to the large- q 2 region. We study the sensitivity of the observables to right-handed currents and scalars. Finally, we present for the first time all the symmetries of the full distribution including massive terms and scalar contributions.

  8. Construction of the Fock Matrix on a Grid-Based Molecular Orbital Basis Using GPGPUs.

    PubMed

    Losilla, Sergio A; Watson, Mark A; Aspuru-Guzik, Alán; Sundholm, Dage

    2015-05-12

    We present a GPGPU implementation of the construction of the Fock matrix in the molecular orbital basis using the fully numerical, grid-based bubbles representation. For a test set of molecules containing up to 90 electrons, the total Hartree-Fock energies obtained from reference GTO-based calculations are reproduced within 10(-4) Eh to 10(-8) Eh for most of the molecules studied. Despite the very large number of arithmetic operations involved, the high performance obtained made the calculations possible on a single Nvidia Tesla K40 GPGPU card.

  9. Cotton-Mouton effect and shielding polarizabilities of ethylene: An MCSCF study

    NASA Astrophysics Data System (ADS)

    Coriani, Sonia; Rizzo, Antonio; Ruud, Kenneth; Helgaker, Trygve

    1997-03-01

    The static hypermagnetizabilities and nuclear shielding polarizabilities of the carbon and hydrogen atoms of ethylene have been computed using multiconfigurational linear-response theory and a finite-field method, in a mixed analytical-numerical approach. Extended sets of magnetic-field-dependent basis functions have been employed in large MCSCF calculations, involving active spaces giving rise to a few million configurations in the finite-field perturbed symmetry. The convergence of the observables with respect to the extension of the basis set as well as the effect of electron correlation have been investigated. Whereas for the shielding polarizabilities we can compare with other published SCF results, the ab initio estimates for the static hypermagnetizabilities and the observable to which they are related - the Cotton-Mouton constant, - are presented for the first time.

  10. Open-Ended Recursive Approach for the Calculation of Multiphoton Absorption Matrix Elements

    PubMed Central

    2015-01-01

    We present an implementation of single residues for response functions to arbitrary order using a recursive approach. Explicit expressions in terms of density-matrix-based response theory for the single residues of the linear, quadratic, cubic, and quartic response functions are also presented. These residues correspond to one-, two-, three- and four-photon transition matrix elements. The newly developed code is used to calculate the one-, two-, three- and four-photon absorption cross sections of para-nitroaniline and para-nitroaminostilbene, making this the first treatment of four-photon absorption in the framework of response theory. We find that the calculated multiphoton absorption cross sections are not very sensitive to the size of the basis set as long as a reasonably large basis set with diffuse functions is used. The choice of exchange–correlation functional, however, significantly affects the calculated cross sections of both charge-transfer transitions and other transitions, in particular, for the larger para-nitroaminostilbene molecule. We therefore recommend the use of a range-separated exchange–correlation functional in combination with the augmented correlation-consistent double-ζ basis set aug-cc-pVDZ for the calculation of multiphoton absorption properties. PMID:25821415

  11. Heavier alkali-metal monosulfides (KS, RbS, CsS, and FrS) and their cations.

    PubMed

    Lee, Edmond P F; Wright, Timothy G

    2005-10-08

    The heavier alkali-metal monosulfides (KS, RbS, CsS, and FrS) have been studied by high-level ab initio calculations. The RCCSD(T) method has been employed, combined with large flexible valence basis sets. All-electron basis sets are used for potassium and sulfur, with effective core potentials being used for the other metals, describing the core electrons. Potential-energy curves are calculated for the lowest two neutral and cationic states: all neutral monosulfide species have a (2)Pi ground state, in contrast with the alkali-metal monoxide species, which undergo a change in the electronic ground state from (2)Pi to (2)Sigma(+) as the group is descended. In the cases of KS, RbS, and CsS, spin-orbit curves are also calculated. We also calculate potential-energy curves for the lowest (3)Sigma(-) and (3)Pi states of the cations. From the potential-energy curves, spectroscopic constants are derived, and for KS the spectroscopic results are compared to experimental spectroscopic values. Ionization energies, dissociation energies, and heats of formation are also calculated; for KS, we explore the effects of relativity and basis set extrapolation on these values.

  12. Approaching the theoretical limit in periodic local MP2 calculations with atomic-orbital basis sets: the case of LiH.

    PubMed

    Usvyat, Denis; Civalleri, Bartolomeo; Maschio, Lorenzo; Dovesi, Roberto; Pisani, Cesare; Schütz, Martin

    2011-06-07

    The atomic orbital basis set limit is approached in periodic correlated calculations for solid LiH. The valence correlation energy is evaluated at the level of the local periodic second order Møller-Plesset perturbation theory (MP2), using basis sets of progressively increasing size, and also employing "bond"-centered basis functions in addition to the standard atom-centered ones. Extended basis sets, which contain linear dependencies, are processed only at the MP2 stage via a dual basis set scheme. The local approximation (domain) error has been consistently eliminated by expanding the orbital excitation domains. As a final result, it is demonstrated that the complete basis set limit can be reached for both HF and local MP2 periodic calculations, and a general scheme is outlined for the definition of high-quality atomic-orbital basis sets for solids. © 2011 American Institute of Physics

  13. Large-Scale Computation of Nuclear Magnetic Resonance Shifts for Paramagnetic Solids Using CP2K.

    PubMed

    Mondal, Arobendo; Gaultois, Michael W; Pell, Andrew J; Iannuzzi, Marcella; Grey, Clare P; Hutter, Jürg; Kaupp, Martin

    2018-01-09

    Large-scale computations of nuclear magnetic resonance (NMR) shifts for extended paramagnetic solids (pNMR) are reported using the highly efficient Gaussian-augmented plane-wave implementation of the CP2K code. Combining hyperfine couplings obtained with hybrid functionals with g-tensors and orbital shieldings computed using gradient-corrected functionals, contact, pseudocontact, and orbital-shift contributions to pNMR shifts are accessible. Due to the efficient and highly parallel performance of CP2K, a wide variety of materials with large unit cells can be studied with extended Gaussian basis sets. Validation of various approaches for the different contributions to pNMR shifts is done first for molecules in a large supercell in comparison with typical quantum-chemical codes. This is then extended to a detailed study of g-tensors for extended solid transition-metal fluorides and for a series of complex lithium vanadium phosphates. Finally, lithium pNMR shifts are computed for Li 3 V 2 (PO 4 ) 3 , for which detailed experimental data are available. This has allowed an in-depth study of different approaches (e.g., full periodic versus incremental cluster computations of g-tensors and different functionals and basis sets for hyperfine computations) as well as a thorough analysis of the different contributions to the pNMR shifts. This study paves the way for a more-widespread computational treatment of NMR shifts for paramagnetic materials.

  14. Electronic Structure and Bonding in Transition Metal Inorganic and Organometallic Complexes: New Basis Sets, Linear Semibridging Carbonyls and Thiocarbonyls, and Oxidative Addition of Molecular Hydrogen to Square - Iridium Complexes.

    NASA Astrophysics Data System (ADS)

    Sargent, Andrew Landman

    Approximate molecular orbital and ab initio quantum chemical techniques are used to investigate the electronic structure, bonding and reactivity of several transition metal inorganic and organometallic complexes. Modest-sized basis sets are developed for the second-row transition metal atoms and are designed for use in geometry optimizations of inorganic and organometallic complexes incorporating these atoms. The basis sets produce optimized equilibrium geometries which are slightly better than those produced with standard 3-21G basis sets, and which are significantly better than those produced with effective core potential basis sets. Linear semibridging carbonyl ligands in heterobimetallic complexes which contain a coordinatively unsaturated late transition metal center are found to accept electron density from, rather than donate electron density to, these centers. Only when the secondary metal center is a coordinatively unsaturated early transition metal center does the semibridging ligand donate electron density to this center. Large holes in the d shell around the metal center are more prominent and prevalent in early than in late transition metal centers, and the importance of filling in these holes outweighs the importance of mitigating the charge imbalance due to the dative metal-metal interaction. Semibridging thiocarbonyl ligands are more effective donors of electron density than the carbonyl ligands since the occupied donor orbitals of pi symmetry are higher in energy. The stereoselectivity of H_2 addition to d^8 square-planar transition metal complexes is controlled by the interactions between the ligands in the plane of addition and the concentrations of electronic charge around the metal center as the complex evolves from a four-coordinate to a six-coordinate species. Electron -withdrawing ligands help stabilize the five-coordinate species while strong electron donor ligands contribute only to the destabilizing repulsive interactions. The relative thermodynamic stabilities of the final complexes can be predicted based on the relative orientations of the strongest sigma-donor ligands.

  15. The Calculation of Accurate Harmonic Frequencies of Large Molecules: The Polycyclic Aromatic Hydrocarbons, a Case Study

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Arnold, James O. (Technical Monitor)

    1996-01-01

    The vibrational frequencies and infrared intensities of naphthalene neutral and cation are studied at the self-consistent-field (SCF), second-order Moller-Plesset (MP2), and density functional theory (DFT) levels using a variety of one-particle basis sets. Very accurate frequencies can be obtained at the DFT level in conjunction with large basis sets if they are scaled with two factors, one for the C-H stretches and a second for all other modes. We also find remarkably good agreement at the B3LYP/4-31G level using only one scale factor. Unlike the neutral PAHs where all methods do reasonably well for the intensities, only the DFT results are accurate for the PAH cations. The failure of the SCF and MP2 methods is caused by symmetry breaking and an inability to describe charge delocalization. We present several interesting cases of symmetry breaking in this study. An assessment is made as to whether an ensemble of PAH neutrals or cations could account for the unidentified infrared bands observed in many astronomical sources.

  16. Breaking the bottleneck: Use of molecular tailoring approach for the estimation of binding energies at MP2/CBS limit for large water clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Gurmeet; Nandi, Apurba; Gadre, Shridhar R., E-mail: gadre@iitk.ac.in

    2016-03-14

    A pragmatic method based on the molecular tailoring approach (MTA) for estimating the complete basis set (CBS) limit at Møller-Plesset second order perturbation (MP2) theory accurately for large molecular clusters with limited computational resources is developed. It is applied to water clusters, (H{sub 2}O){sub n} (n = 7, 8, 10, 16, 17, and 25) optimized employing aug-cc-pVDZ (aVDZ) basis-set. Binding energies (BEs) of these clusters are estimated at the MP2/aug-cc-pVNZ (aVNZ) [N = T, Q, and 5 (whenever possible)] levels of theory employing grafted MTA (GMTA) methodology and are found to lie within 0.2 kcal/mol of the corresponding full calculationmore » MP2 BE, wherever available. The results are extrapolated to CBS limit using a three point formula. The GMTA-MP2 calculations are feasible on off-the-shelf hardware and show around 50%–65% saving of computational time. The methodology has a potential for application to molecular clusters containing ∼100 atoms.« less

  17. The calculation of accurate harmonic frequencies of large molecules: the polycyclic aromatic hydrocarbons, a case study

    NASA Astrophysics Data System (ADS)

    Bauschlicher, Charles W.; Langhoff, Stephen R.

    1997-07-01

    The vibrational frequencies and infrared intensities of naphthalene neutral and cation are studied at the self-consistent-field (SCF), second-order Møller-Plesset (MP2), and density functional theory (DFT) levels using a variety of one-particle basis sets. Very accurate frequencies can be obtained at the DFT level in conjunction with large basis sets if they are scaled with two factors, one for the C-H stretches and a second for all other modes. We also find remarkably good agreement at the B3LYP/4-31G level using only one scale factor. Unlike the neutral polycyclic aromatic hydrocarbons (PAHs) where all methods do reasonably well for the intensities, only the DFT results are accurate for the PAH cations. The failure of the SCF and MP2 methods is caused by symmetry breaking and an inability to describe charge delocalization. We present several interesting cases of symmetry breaking in this study. An assessment is made as to whether an ensemble of PAH neutrals or cations could account for the unidentified infrared bands observed in many astronomical sources.

  18. Vibrationally averaged dipole moments of methane and benzene isotopologues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arapiraca, A. F. C.; Centro Federal de Educação Tecnológica de Minas Gerais, Coordenação de Ciências, CEFET-MG, Campus I, 30.421-169 Belo Horizonte, MG; Mohallem, J. R., E-mail: rachid@fisica.ufmg.br

    DFT-B3LYP post-Born-Oppenheimer (finite-nuclear-mass-correction (FNMC)) calculations of vibrationally averaged isotopic dipole moments of methane and benzene, which compare well with experimental values, are reported. For methane, in addition to the principal vibrational contribution to the molecular asymmetry, FNMC accounts for the surprisingly large Born-Oppenheimer error of about 34% to the dipole moments. This unexpected result is explained in terms of concurrent electronic and vibrational contributions. The calculated dipole moment of C{sub 6}H{sub 3}D{sub 3} is about twice as large as the measured dipole moment of C{sub 6}H{sub 5}D. Computational progress is advanced concerning applications to larger systems and the choice ofmore » appropriate basis sets. The simpler procedure of performing vibrational averaging on the Born-Oppenheimer level and then adding the FNMC contribution evaluated at the equilibrium distance is shown to be appropriate. Also, the basis set choice is made by heuristic analysis of the physical behavior of the systems, instead of by comparison with experiments.« less

  19. Exploring metabolic pathways in genome-scale networks via generating flux modes.

    PubMed

    Rezola, A; de Figueiredo, L F; Brock, M; Pey, J; Podhorski, A; Wittmann, C; Schuster, S; Bockmayr, A; Planes, F J

    2011-02-15

    The reconstruction of metabolic networks at the genome scale has allowed the analysis of metabolic pathways at an unprecedented level of complexity. Elementary flux modes (EFMs) are an appropriate concept for such analysis. However, their number grows in a combinatorial fashion as the size of the metabolic network increases, which renders the application of EFMs approach to large metabolic networks difficult. Novel methods are expected to deal with such complexity. In this article, we present a novel optimization-based method for determining a minimal generating set of EFMs, i.e. a convex basis. We show that a subset of elements of this convex basis can be effectively computed even in large metabolic networks. Our method was applied to examine the structure of pathways producing lysine in Escherichia coli. We obtained a more varied and informative set of pathways in comparison with existing methods. In addition, an alternative pathway to produce lysine was identified using a detour via propionyl-CoA, which shows the predictive power of our novel approach. The source code in C++ is available upon request.

  20. Optimized auxiliary basis sets for density fitted post-Hartree-Fock calculations of lanthanide containing molecules

    NASA Astrophysics Data System (ADS)

    Chmela, Jiří; Harding, Michael E.

    2018-06-01

    Optimised auxiliary basis sets for lanthanide atoms (Ce to Lu) for four basis sets of the Karlsruhe error-balanced segmented contracted def2 - series (SVP, TZVP, TZVPP and QZVPP) are reported. These auxiliary basis sets enable the use of the resolution-of-the-identity (RI) approximation in post Hartree-Fock methods - as for example, second-order perturbation theory (MP2) and coupled cluster (CC) theory. The auxiliary basis sets are tested on an enlarged set of about a hundred molecules where the test criterion is the size of the RI error in MP2 calculations. Our tests also show that the same auxiliary basis sets can be used together with different effective core potentials. With these auxiliary basis set calculations of MP2 and CC quality can now be performed efficiently on medium-sized molecules containing lanthanides.

  1. Field data analysis of boar semen quality.

    PubMed

    Broekhuijse, M L W J; Feitsma, H; Gadella, B M

    2011-09-01

    This contribution provides an overview of approaches to correlate sow fertility data with boar semen quality characteristics. Large data sets of fertility data and ejaculate data are more suitable to analyse effects of semen quality characteristics on field fertility. Variation in fertility in sows is large. The effect of semen factors is relatively small and therefore impossible to find in smaller data sets. Large data sets allow for statistical corrections on both sow- and boar-related parameters. Remaining sow fertility variation can then be assigned to semen quality parameters, which is of huge interest to AI (artificial insemination) companies. Previous studies of Varkens KI Nederland to find the contribution to field fertility of (i) the number of sperm cells in an insemination dose, (ii) the sperm motility and morphological defects and (iii) the age of semen at the moment of insemination are discussed in context of the possibility to apply such knowledge to select boars on the basis of their sperm parameters for AI purposes. © 2011 Blackwell Verlag GmbH.

  2. Analysis of Hydrogen Atom Abstraction from Ethylbenzene by an FeVO(TAML) Complex.

    PubMed

    Shen, Longzhu Q; Kundu, Soumen; Collins, Terrence J; Bominaar, Emile L

    2017-04-17

    It was shown previously (Chem. Eur. J. 2015, 21, 1803) that the rate of hydrogen atom abstraction, k, from ethylbenzene (EB) by TAML complex [Fe V (O)B*] - (1) in acetonitrile exhibits a large kinetic isotope effect (KIE ∼ 26) in the experimental range 233-243 K. The extrapolated tangents of ln(k/T) vs T -1 plots for EB-d 10 and EB gave a large, negative intercept difference, Int(EB) - Int(EB-d 10 ) = -34.5 J mol -1 K -1 for T -1 → 0, which is shown to be exclusively due to an isotopic mass effect on tunneling. A decomposition of the apparent activation barrier in terms of electronic, ZPE, thermal enthalpic, tunneling, and entropic contributions is presented. Tunneling corrections to ΔH ⧧ and ΔS ⧧ are estimated to be large. The DFT prediction, using functional B3LYP and basis set 6-311G, for the electronic contribution is significantly smaller than suggested by experiment. However, the agreement improves after correction for the basis set superposition error in the interaction between EB and 1. The kinetic model employed has been used to predict rate constants outside the experimental temperature range, which enabled us to compare the reactivity of 1 with those of other hydrogen abstracting complexes.

  3. Multipole moments in the effective fragment potential method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertoni, Colleen; Slipchenko, Lyudmila V.; Misquitta, Alston J.

    In the effective fragment potential (EFP) method the Coulomb potential is represented using a set of multipole moments generated by the distributed multipole analysis (DMA) method. Misquitta, Stone, and Fazeli recently developed a basis space-iterated stockholder atom (BS-ISA) method to generate multipole moments. This study assesses the accuracy of the EFP interaction energies using sets of multipole moments generated from the BS-ISA method, and from several versions of the DMA method (such as analytic and numeric grid-based), with varying basis sets. Both methods lead to reasonable results, although using certain implementations of the DMA method can result in large errors.more » With respect to the CCSD(T)/CBS interaction energies, the mean unsigned error (MUE) of the EFP method for the S22 data set using BS-ISA–generated multipole moments and DMA-generated multipole moments (using a small basis set and the analytic DMA procedure) is 0.78 and 0.72 kcal/mol, respectively. Here, the MUE accuracy is on the same order as MP2 and SCS-MP2. The MUEs are lower than in a previous study benchmarking the EFP method without the EFP charge transfer term, demonstrating that the charge transfer term increases the accuracy of the EFP method. Regardless of the multipole moment method used, it is likely that much of the error is due to an insufficient short-range electrostatic term (i.e., charge penetration term), as shown by comparisons with symmetry-adapted perturbation theory.« less

  4. Multipole moments in the effective fragment potential method

    DOE PAGES

    Bertoni, Colleen; Slipchenko, Lyudmila V.; Misquitta, Alston J.; ...

    2017-02-17

    In the effective fragment potential (EFP) method the Coulomb potential is represented using a set of multipole moments generated by the distributed multipole analysis (DMA) method. Misquitta, Stone, and Fazeli recently developed a basis space-iterated stockholder atom (BS-ISA) method to generate multipole moments. This study assesses the accuracy of the EFP interaction energies using sets of multipole moments generated from the BS-ISA method, and from several versions of the DMA method (such as analytic and numeric grid-based), with varying basis sets. Both methods lead to reasonable results, although using certain implementations of the DMA method can result in large errors.more » With respect to the CCSD(T)/CBS interaction energies, the mean unsigned error (MUE) of the EFP method for the S22 data set using BS-ISA–generated multipole moments and DMA-generated multipole moments (using a small basis set and the analytic DMA procedure) is 0.78 and 0.72 kcal/mol, respectively. Here, the MUE accuracy is on the same order as MP2 and SCS-MP2. The MUEs are lower than in a previous study benchmarking the EFP method without the EFP charge transfer term, demonstrating that the charge transfer term increases the accuracy of the EFP method. Regardless of the multipole moment method used, it is likely that much of the error is due to an insufficient short-range electrostatic term (i.e., charge penetration term), as shown by comparisons with symmetry-adapted perturbation theory.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossi, Tuomas P., E-mail: tuomas.rossi@alumni.aalto.fi; Sakko, Arto; Puska, Martti J.

    We present an approach for generating local numerical basis sets of improving accuracy for first-principles nanoplasmonics simulations within time-dependent density functional theory. The method is demonstrated for copper, silver, and gold nanoparticles that are of experimental interest but computationally demanding due to the semi-core d-electrons that affect their plasmonic response. The basis sets are constructed by augmenting numerical atomic orbital basis sets by truncated Gaussian-type orbitals generated by the completeness-optimization scheme, which is applied to the photoabsorption spectra of homoatomic metal atom dimers. We obtain basis sets of improving accuracy up to the complete basis set limit and demonstrate thatmore » the performance of the basis sets transfers to simulations of larger nanoparticles and nanoalloys as well as to calculations with various exchange-correlation functionals. This work promotes the use of the local basis set approach of controllable accuracy in first-principles nanoplasmonics simulations and beyond.« less

  6. Photometric geodesy of main-belt asteroids. I - Lightcurves of 26 large, rapid rotators

    NASA Technical Reports Server (NTRS)

    Weidenschilling, S. J.; Chapman, C. R.; Davis, D. R.; Greenberg, R.; Levy, D. H.

    1987-01-01

    A 'photometric geodesy' program is selected on the basis of light-curve data from five years' observations of large, rapidly rotating asteroids, where the observing protocol was designed to obtain precise, absolute photometry at a wide variety of orbital longitudes and phase angles. A total of 257 complete or partial light-curves are obtained for 26 asteroids; the data set will allow the future determination of pole positions and shapes, as well as to constrain the geophysical traits of these bodies.

  7. Imaging of the internal structure of comet 67P/Churyumov-Gerasimenko from radiotomography CONSERT Data (Rosetta Mission) through a full 3D regularized inversion of the Helmholtz equations on functional spaces

    NASA Astrophysics Data System (ADS)

    Barriot, Jean-Pierre; Serafini, Jonathan; Sichoix, Lydie; Benna, Mehdi; Kofman, Wlodek; Herique, Alain

    We investigate the inverse problem of imaging the internal structure of comet 67P/ Churyumov-Gerasimenko from radiotomography CONSERT data by using a coupled regularized inversion of the Helmholtz equations. A first set of Helmholtz equations, written w.r.t a basis of 3D Hankel functions describes the wave propagation outside the comet at large distances, a second set of Helmholtz equations, written w.r.t. a basis of 3D Zernike functions describes the wave propagation throughout the comet with avariable permittivity. Both sets are connected by continuity equations over a sphere that surrounds the comet. This approach, derived from GPS water vapor tomography of the atmosphere,will permit a full 3D inversion of the internal structure of the comet, contrary to traditional approaches that use a discretization of space at a fraction of the radiowave wavelength.

  8. Highly efficient implementation of pseudospectral time-dependent density-functional theory for the calculation of excitation energies of large molecules.

    PubMed

    Cao, Yixiang; Hughes, Thomas; Giesen, Dave; Halls, Mathew D; Goldberg, Alexander; Vadicherla, Tati Reddy; Sastry, Madhavi; Patel, Bhargav; Sherman, Woody; Weisman, Andrew L; Friesner, Richard A

    2016-06-15

    We have developed and implemented pseudospectral time-dependent density-functional theory (TDDFT) in the quantum mechanics package Jaguar to calculate restricted singlet and restricted triplet, as well as unrestricted excitation energies with either full linear response (FLR) or the Tamm-Dancoff approximation (TDA) with the pseudospectral length scales, pseudospectral atomic corrections, and pseudospectral multigrid strategy included in the implementations to improve the chemical accuracy and to speed the pseudospectral calculations. The calculations based on pseudospectral time-dependent density-functional theory with full linear response (PS-FLR-TDDFT) and within the Tamm-Dancoff approximation (PS-TDA-TDDFT) for G2 set molecules using B3LYP/6-31G*(*) show mean and maximum absolute deviations of 0.0015 eV and 0.0081 eV, 0.0007 eV and 0.0064 eV, 0.0004 eV and 0.0022 eV for restricted singlet excitation energies, restricted triplet excitation energies, and unrestricted excitation energies, respectively; compared with the results calculated from the conventional spectral method. The application of PS-FLR-TDDFT to OLED molecules and organic dyes, as well as the comparisons for results calculated from PS-FLR-TDDFT and best estimations demonstrate that the accuracy of both PS-FLR-TDDFT and PS-TDA-TDDFT. Calculations for a set of medium-sized molecules, including Cn fullerenes and nanotubes, using the B3LYP functional and 6-31G(**) basis set show PS-TDA-TDDFT provides 19- to 34-fold speedups for Cn fullerenes with 450-1470 basis functions, 11- to 32-fold speedups for nanotubes with 660-3180 basis functions, and 9- to 16-fold speedups for organic molecules with 540-1340 basis functions compared to fully analytic calculations without sacrificing chemical accuracy. The calculations on a set of larger molecules, including the antibiotic drug Ramoplanin, the 46-residue crambin protein, fullerenes up to C540 and nanotubes up to 14×(6,6), using the B3LYP functional and 6-31G(**) basis set with up to 8100 basis functions show that PS-FLR-TDDFT CPU time scales as N(2.05) with the number of basis functions. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Quantum Dynamics with Short-Time Trajectories and Minimal Adaptive Basis Sets.

    PubMed

    Saller, Maximilian A C; Habershon, Scott

    2017-07-11

    Methods for solving the time-dependent Schrödinger equation via basis set expansion of the wave function can generally be categorized as having either static (time-independent) or dynamic (time-dependent) basis functions. We have recently introduced an alternative simulation approach which represents a middle road between these two extremes, employing dynamic (classical-like) trajectories to create a static basis set of Gaussian wavepackets in regions of phase-space relevant to future propagation of the wave function [J. Chem. Theory Comput., 11, 8 (2015)]. Here, we propose and test a modification of our methodology which aims to reduce the size of basis sets generated in our original scheme. In particular, we employ short-time classical trajectories to continuously generate new basis functions for short-time quantum propagation of the wave function; to avoid the continued growth of the basis set describing the time-dependent wave function, we employ Matching Pursuit to periodically minimize the number of basis functions required to accurately describe the wave function. Overall, this approach generates a basis set which is adapted to evolution of the wave function while also being as small as possible. In applications to challenging benchmark problems, namely a 4-dimensional model of photoexcited pyrazine and three different double-well tunnelling problems, we find that our new scheme enables accurate wave function propagation with basis sets which are around an order-of-magnitude smaller than our original trajectory-guided basis set methodology, highlighting the benefits of adaptive strategies for wave function propagation.

  10. Polarization functions for the modified m6-31G basis sets for atoms Ga through Kr.

    PubMed

    Mitin, Alexander V

    2013-09-05

    The 2df polarization functions for the modified m6-31G basis sets of the third-row atoms Ga through Kr (Int J Quantum Chem, 2007, 107, 3028; Int J. Quantum Chem, 2009, 109, 1158) are proposed. The performances of the m6-31G, m6-31G(d,p), and m6-31G(2df,p) basis sets were examined in molecular calculations carried out by the density functional theory (DFT) method with B3LYP hybrid functional, Møller-Plesset perturbation theory of the second order (MP2), quadratic configuration interaction method with single and double substitutions and were compared with those for the known 6-31G basis sets as well as with the other similar 641 and 6-311G basis sets with and without polarization functions. Obtained results have shown that the performances of the m6-31G, m6-31G(d,p), and m6-31G(2df,p) basis sets are better in comparison with the performances of the known 6-31G, 6-31G(d,p) and 6-31G(2df,p) basis sets. These improvements are mainly reached due to better approximations of different electrons belonging to the different atomic shells in the modified basis sets. Applicability of the modified basis sets in thermochemical calculations is also discussed. © 2013 Wiley Periodicals, Inc.

  11. Security of quantum key distribution with iterative sifting

    NASA Astrophysics Data System (ADS)

    Tamaki, Kiyoshi; Lo, Hoi-Kwong; Mizutani, Akihiro; Kato, Go; Lim, Charles Ci Wen; Azuma, Koji; Curty, Marcos

    2018-01-01

    Several quantum key distribution (QKD) protocols employ iterative sifting. After each quantum transmission round, Alice and Bob disclose part of their setting information (including their basis choices) for the detected signals. This quantum phase then ends when the basis dependent termination conditions are met, i.e., the numbers of detected signals per basis exceed certain pre-agreed threshold values. Recently, however, Pfister et al (2016 New J. Phys. 18 053001) showed that the basis dependent termination condition makes QKD insecure, especially in the finite key regime, and they suggested to disclose all the setting information after finishing the quantum phase. However, this protocol has two main drawbacks: it requires that Alice possesses a large memory, and she also needs to have some a priori knowledge about the transmission rate of the quantum channel. Here we solve these two problems by introducing a basis-independent termination condition to the iterative sifting in the finite key regime. The use of this condition, in combination with Azuma’s inequality, provides a precise estimation on the amount of privacy amplification that needs to be applied, thus leading to the security of QKD protocols, including the loss-tolerant protocol (Tamaki et al 2014 Phys. Rev. A 90 052314), with iterative sifting. Our analysis indicates that to announce the basis information after each quantum transmission round does not compromise the key generation rate of the loss-tolerant protocol. Our result allows the implementation of wider classes of classical post-processing techniques in QKD with quantified security.

  12. Indicators for the automated analysis of drug prescribing quality.

    PubMed

    Coste, J; Séné, B; Milstein, C; Bouée, S; Venot, A

    1998-01-01

    Irrational and inconsistent drug prescription has considerable impact on morbidity, mortality, health service utilization, and community burden. However, few studies have addressed the methodology of processing the information contained in these drug orders used to study the quality of drug prescriptions and prescriber behavior. We present a comprehensive set of quantitative indicators for the quality of drug prescriptions which can be derived from a drug order. These indicators were constructed using explicit a priori criteria which were previously validated on the basis of scientific data. Automatic computation is straightforward, using a relational database system, such that large sets of prescriptions can be processed with minimal human effort. We illustrate the feasibility and value of this approach by using a large set of 23,000 prescriptions for several diseases, selected from a nationally representative prescriptions database. Our study may result in direct and wide applications in the epidemiology of medical practice and in quality control procedures.

  13. The research on electronic commerce security payment system based on set protocol

    NASA Astrophysics Data System (ADS)

    Guo, Hongliang

    2012-04-01

    With the rapid development of network technology, online transactions have become more and more common. In this paper, we firstly introduce the principle and the basic principal and technical foundation of SET, and then we analyze the progress of designing a system in the foundation of the procedure of the electronic business based on SET. On this basis, we design a system of the Payment System for Electronic Business. It will not only take on crucial realism signification for large-scale, medium-sized and mini-type corporations, but also provide guide meaning with programmer and design-developer to realize Electronic Commerce (EC).

  14. Fast and accurate 3D tensor calculation of the Fock operator in a general basis

    NASA Astrophysics Data System (ADS)

    Khoromskaia, V.; Andrae, D.; Khoromskij, B. N.

    2012-11-01

    The present paper contributes to the construction of a “black-box” 3D solver for the Hartree-Fock equation by the grid-based tensor-structured methods. It focuses on the calculation of the Galerkin matrices for the Laplace and the nuclear potential operators by tensor operations using the generic set of basis functions with low separation rank, discretized on a fine N×N×N Cartesian grid. We prove the Ch2 error estimate in terms of mesh parameter, h=O(1/N), that allows to gain a guaranteed accuracy of the core Hamiltonian part in the Fock operator as h→0. However, the commonly used problem adapted basis functions have low regularity yielding a considerable increase of the constant C, hence, demanding a rather large grid-size N of about several tens of thousands to ensure the high resolution. Modern tensor-formatted arithmetics of complexity O(N), or even O(logN), practically relaxes the limitations on the grid-size. Our tensor-based approach allows to improve significantly the standard basis sets in quantum chemistry by including simple combinations of Slater-type, local finite element and other basis functions. Numerical experiments for moderate size organic molecules show efficiency and accuracy of grid-based calculations to the core Hamiltonian in the range of grid parameter N3˜1015.

  15. Large-Scale Diversity of Slope Fishes: Pattern Inconsistency between Multiple Diversity Indices

    PubMed Central

    Gaertner, Jean-Claude; Colloca, Francesco; Politou, Chrissi-Yianna; Gil De Sola, Luis; Bertrand, Jacques A.; Murenu, Matteo; Durbec, Jean-Pierre; Kallianiotis, Argyris; Mannini, Alessandro

    2013-01-01

    Large-scale studies focused on the diversity of continental slope ecosystems are still rare, usually restricted to a limited number of diversity indices and mainly based on the empirical comparison of heterogeneous local data sets. In contrast, we investigate large-scale fish diversity on the basis of multiple diversity indices and using 1454 standardized trawl hauls collected throughout the upper and middle slope of the whole northern Mediterranean Sea (36°3′- 45°7′ N; 5°3′W - 28°E). We have analyzed (1) the empirical relationships between a set of 11 diversity indices in order to assess their degree of complementarity/redundancy and (2) the consistency of spatial patterns exhibited by each of the complementary groups of indices. Regarding species richness, our results contrasted both the traditional view based on the hump-shaped theory for bathymetric pattern and the commonly-admitted hypothesis of a large-scale decreasing trend correlated with a similar gradient of primary production in the Mediterranean Sea. More generally, we found that the components of slope fish diversity we analyzed did not always show a consistent pattern of distribution according either to depth or to spatial areas, suggesting that they are not driven by the same factors. These results, which stress the need to extend the number of indices traditionally considered in diversity monitoring networks, could provide a basis for rethinking not only the methodological approach used in monitoring systems, but also the definition of priority zones for protection. Finally, our results call into question the feasibility of properly investigating large-scale diversity patterns using a widespread approach in ecology, which is based on the compilation of pre-existing heterogeneous and disparate data sets, in particular when focusing on indices that are very sensitive to sampling design standardization, such as species richness. PMID:23843962

  16. Simple and efficient LCAO basis sets for the diffuse states in carbon nanostructures.

    PubMed

    Papior, Nick R; Calogero, Gaetano; Brandbyge, Mads

    2018-06-27

    We present a simple way to describe the lowest unoccupied diffuse states in carbon nanostructures in density functional theory calculations using a minimal LCAO (linear combination of atomic orbitals) basis set. By comparing plane wave basis calculations, we show how these states can be captured by adding long-range orbitals to the standard LCAO basis sets for the extreme cases of planar sp 2 (graphene) and curved carbon (C 60 ). In particular, using Bessel functions with a long range as additional basis functions retain a minimal basis size. This provides a smaller and simpler atom-centered basis set compared to the standard pseudo-atomic orbitals (PAOs) with multiple polarization orbitals or by adding non-atom-centered states to the basis.

  17. Simple and efficient LCAO basis sets for the diffuse states in carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Papior, Nick R.; Calogero, Gaetano; Brandbyge, Mads

    2018-06-01

    We present a simple way to describe the lowest unoccupied diffuse states in carbon nanostructures in density functional theory calculations using a minimal LCAO (linear combination of atomic orbitals) basis set. By comparing plane wave basis calculations, we show how these states can be captured by adding long-range orbitals to the standard LCAO basis sets for the extreme cases of planar sp 2 (graphene) and curved carbon (C60). In particular, using Bessel functions with a long range as additional basis functions retain a minimal basis size. This provides a smaller and simpler atom-centered basis set compared to the standard pseudo-atomic orbitals (PAOs) with multiple polarization orbitals or by adding non-atom-centered states to the basis.

  18. A multiscale numerical study into the cascade of kinetic energy leading to severe local storms

    NASA Technical Reports Server (NTRS)

    Paine, D. A.; Kaplan, M. L.

    1977-01-01

    The cascade of kinetic energy from macro- through mesoscales is studied on the basis of a nested grid system used to solve a set of nonlinear differential equations. The kinetic energy cascade and the concentration of vorticity through the hydrodynamic spectrum provide a means for predicting the location and intensity of severe weather from large-scale data sets. A mechanism described by the surface pressure tendency equation proves to be important in explaining how initial middle-tropospheric mass-momentum imbalances alter the low-level pressure field.

  19. Estimating precise metallicity and stellar mass evolution of galaxies

    NASA Astrophysics Data System (ADS)

    Mosby, Gregory

    2018-01-01

    The evolution of galaxies can be conveniently broken down into the evolution of their contents. The changing dust, gas, and stellar content in addition to the changing dark matter potential and periodic feedback from a super-massive blackhole are some of the key ingredients. We focus on the stellar content that can be observed, as the stars reflect information about the galaxy when they were formed. We approximate the stellar content and star formation histories of unresolved galaxies using stellar population modeling. Though simplistic, this approach allows us to reconstruct the star formation histories of galaxies that can be used to test models of galaxy formation and evolution. These models, however, suffer from degeneracies at large lookback times (t > 1 Gyr) as red, low luminosity stars begin to dominate a galaxy’s spectrum. Additionally, degeneracies between stellar populations at different ages and metallicities often make stellar population modeling less precise. The machine learning technique diffusion k-means has been shown to increase the precision in stellar population modeling using a mono-metallicity basis set. However, as galaxies evolve, we expect the metallicity of stellar populations to vary. We use diffusion k-means to generate a multi-metallicity basis set to estimate the stellar mass and chemical evolution of unresolved galaxies. Two basis sets are formed from the Bruzual & Charlot 2003 and MILES stellar population models. We then compare the accuracy and precision of these models in recovering complete (stellar mass and metallicity) histories of mock data. Similarities in the groupings of stellar population spectra in the diffusion maps for each metallicity hint at fundamental age transitions common to both basis sets that can be used to identify stellar populations in a given age range.

  20. B97-3c: A revised low-cost variant of the B97-D density functional method

    NASA Astrophysics Data System (ADS)

    Brandenburg, Jan Gerit; Bannwarth, Christoph; Hansen, Andreas; Grimme, Stefan

    2018-02-01

    A revised version of the well-established B97-D density functional approximation with general applicability for chemical properties of large systems is proposed. Like B97-D, it is based on Becke's power-series ansatz from 1997 and is explicitly parametrized by including the standard D3 semi-classical dispersion correction. The orbitals are expanded in a modified valence triple-zeta Gaussian basis set, which is available for all elements up to Rn. Remaining basis set errors are mostly absorbed in the modified B97 parametrization, while an established atom-pairwise short-range potential is applied to correct for the systematically too long bonds of main group elements which are typical for most semi-local density functionals. The new composite scheme (termed B97-3c) completes the hierarchy of "low-cost" electronic structure methods, which are all mainly free of basis set superposition error and account for most interactions in a physically sound and asymptotically correct manner. B97-3c yields excellent molecular and condensed phase geometries, similar to most hybrid functionals evaluated in a larger basis set expansion. Results on the comprehensive GMTKN55 energy database demonstrate its good performance for main group thermochemistry, kinetics, and non-covalent interactions, when compared to functionals of the same class. This also transfers to metal-organic reactions, which is a major area of applicability for semi-local functionals. B97-3c can be routinely applied to hundreds of atoms on a single processor and we suggest it as a robust computational tool, in particular, for more strongly correlated systems where our previously published "3c" schemes might be problematic.

  1. Derivation of a formula for the resonance integral for a nonorthogonal basis set

    PubMed Central

    Yim, Yung-Chang; Eyring, Henry

    1981-01-01

    In a self-consistent field calculation, a formula for the off-diagonal matrix elements of the core Hamiltonian is derived for a nonorthogonal basis set by a polyatomic approach. A set of parameters is then introduced for the repulsion integral formula of Mataga-Nishimoto to fit the experimental data. The matrix elements computed for the nonorthogonal basis set in the π-electron approximation are transformed to those for an orthogonal basis set by the Löwdin symmetrical orthogonalization. PMID:16593009

  2. Leadership and priority setting: the perspective of hospital CEOs.

    PubMed

    Reeleder, David; Goel, Vivek; Singer, Peter A; Martin, Douglas K

    2006-11-01

    The role of leadership in health care priority setting remains largely unexplored. While the management leadership literature has grown rapidly, the growing literature on priority setting in health care has looked in other directions to improve priority setting practices--to health economics and ethical approaches. Consequently, potential for improvement in hospital priority setting practices may be overlooked. A qualitative study involving interviews with 46 Ontario hospital CEOs was done to describe the role of leadership in priority setting through the perspective of hospital leaders. For the first time, we report a framework of leadership domains including vision, alignment, relationships, values and process to facilitate priority setting practices in health services' organizations. We believe this fledgling framework forms the basis for the sharing of good leadership practices for health reform. It also provides a leadership guide for decision makers to improve the quality of their leadership, and in so doing, we believe, the fairness of their priority setting.

  3. QSAR Classification of ToxCast and Tox21 Chemicals on the Basis of Estrogen Receptor Assays (FutureToxII)

    EPA Science Inventory

    The ToxCast and Tox21 programs have tested ~8,200 chemicals in a broad screening panel of in vitro high-throughput screening (HTS) assays for estrogen receptor (ER) agonist and antagonist activity. The present work uses this large in vitro data set to develop in silico QSAR model...

  4. Complexity Reduction in Large Quantum Systems: Fragment Identification and Population Analysis via a Local Optimized Minimal Basis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohr, Stephan; Masella, Michel; Ratcliff, Laura E.

    We present, within Kohn-Sham Density Functional Theory calculations, a quantitative method to identify and assess the partitioning of a large quantum mechanical system into fragments. We then introduce a simple and efficient formalism (which can be written as generalization of other well-known population analyses) to extract, from first principles, electrostatic multipoles for these fragments. The corresponding fragment multipoles can in this way be seen as reliable (pseudo-) observables. By applying our formalism within the code BigDFT, we show that the usage of a minimal set of in-situ optimized basis functions is of utmost importance for having at the same timemore » a proper fragment definition and an accurate description of the electronic structure. With this approach it becomes possible to simplify the modeling of environmental fragments by a set of multipoles, without notable loss of precision in the description of the active quantum mechanical region. Furthermore, this leads to a considerable reduction of the degrees of freedom by an effective coarsegraining approach, eventually also paving the way towards efficient QM/QM and QM/MM methods coupling together different levels of accuracy.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazante, Alexandre P., E-mail: abazante@chem.ufl.edu; Bartlett, Rodney J.; Davidson, E. R.

    The benzene radical anion is studied with ab initio coupled-cluster theory in large basis sets. Unlike the usual assumption, we find that, at the level of theory investigated, the minimum energy geometry is non-planar with tetrahedral distortion at two opposite carbon atoms. The anion is well known for its instability to auto-ionization which poses computational challenges to determine its properties. Despite the importance of the benzene radical anion, the considerable attention it has received in the literature so far has failed to address the details of its structure and shape-resonance character at a high level of theory. Here, we examinemore » the dynamic Jahn-Teller effect and its impact on the anion potential energy surface. We find that a minimum energy geometry of C{sub 2} symmetry is located below one D{sub 2h} stationary point on a C{sub 2h} pseudo-rotation surface. The applicability of standard wave function methods to an unbound anion is assessed with the stabilization method. The isotropic hyperfine splitting constants (A{sub iso}) are computed and compared to data obtained from experimental electron spin resonance experiments. Satisfactory agreement with experiment is obtained with coupled-cluster theory and large basis sets such as cc-pCVQZ.« less

  6. Complexity Reduction in Large Quantum Systems: Fragment Identification and Population Analysis via a Local Optimized Minimal Basis

    DOE PAGES

    Mohr, Stephan; Masella, Michel; Ratcliff, Laura E.; ...

    2017-07-21

    We present, within Kohn-Sham Density Functional Theory calculations, a quantitative method to identify and assess the partitioning of a large quantum mechanical system into fragments. We then introduce a simple and efficient formalism (which can be written as generalization of other well-known population analyses) to extract, from first principles, electrostatic multipoles for these fragments. The corresponding fragment multipoles can in this way be seen as reliable (pseudo-) observables. By applying our formalism within the code BigDFT, we show that the usage of a minimal set of in-situ optimized basis functions is of utmost importance for having at the same timemore » a proper fragment definition and an accurate description of the electronic structure. With this approach it becomes possible to simplify the modeling of environmental fragments by a set of multipoles, without notable loss of precision in the description of the active quantum mechanical region. Furthermore, this leads to a considerable reduction of the degrees of freedom by an effective coarsegraining approach, eventually also paving the way towards efficient QM/QM and QM/MM methods coupling together different levels of accuracy.« less

  7. Ab initio study of the molecular structure and vibrational spectrum of nitric acid and its protonated forms

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Rice, Julia E.

    1992-01-01

    The equilibrium structures, harmonic vibrational frequencies, IR intensities, and relative energetics of HNO3 and its protonated form H2NO3+ were investigated using double-zeta plus polarization and triple-zeta plus polarization basis sets in conjunction with high-level ab initio methods. The latter include second-order Moller-Plesset perturbation theory, the single and double excitation coupled cluster (CCSD) methods, a perturbational estimate of the effects of connected triple excitations (CCSD(T)), and the self-consistent field. To determine accurate energy differences CCSD(T) energies were computed using large atomic natural orbital basis sets. Four different isomers of H2NO3+ were considered. The lowest energy form of protonated nitric acid was found to correspond to a complex between H2O and NO2+, which is consistent with earlier theoretical and experimental studies.

  8. Factorization in large-scale many-body calculations

    DOE PAGES

    Johnson, Calvin W.; Ormand, W. Erich; Krastev, Plamen G.

    2013-08-07

    One approach for solving interacting many-fermion systems is the configuration-interaction method, also sometimes called the interacting shell model, where one finds eigenvalues of the Hamiltonian in a many-body basis of Slater determinants (antisymmetrized products of single-particle wavefunctions). The resulting Hamiltonian matrix is typically very sparse, but for large systems the nonzero matrix elements can nonetheless require terabytes or more of storage. An alternate algorithm, applicable to a broad class of systems with symmetry, in our case rotational invariance, is to exactly factorize both the basis and the interaction using additive/multiplicative quantum numbers; such an algorithm recreates the many-body matrix elementsmore » on the fly and can reduce the storage requirements by an order of magnitude or more. Here, we discuss factorization in general and introduce a novel, generalized factorization method, essentially a ‘double-factorization’ which speeds up basis generation and set-up of required arrays. Although we emphasize techniques, we also place factorization in the context of a specific (unpublished) configuration-interaction code, BIGSTICK, which runs both on serial and parallel machines, and discuss the savings in memory due to factorization.« less

  9. Approximations to complete basis set-extrapolated, highly correlated non-covalent interaction energies.

    PubMed

    Mackie, Iain D; DiLabio, Gino A

    2011-10-07

    The first-principles calculation of non-covalent (particularly dispersion) interactions between molecules is a considerable challenge. In this work we studied the binding energies for ten small non-covalently bonded dimers with several combinations of correlation methods (MP2, coupled-cluster single double, coupled-cluster single double (triple) (CCSD(T))), correlation-consistent basis sets (aug-cc-pVXZ, X = D, T, Q), two-point complete basis set energy extrapolations, and counterpoise corrections. For this work, complete basis set results were estimated from averaged counterpoise and non-counterpoise-corrected CCSD(T) binding energies obtained from extrapolations with aug-cc-pVQZ and aug-cc-pVTZ basis sets. It is demonstrated that, in almost all cases, binding energies converge more rapidly to the basis set limit by averaging the counterpoise and non-counterpoise corrected values than by using either counterpoise or non-counterpoise methods alone. Examination of the effect of basis set size and electron correlation shows that the triples contribution to the CCSD(T) binding energies is fairly constant with the basis set size, with a slight underestimation with CCSD(T)∕aug-cc-pVDZ compared to the value at the (estimated) complete basis set limit, and that contributions to the binding energies obtained by MP2 generally overestimate the analogous CCSD(T) contributions. Taking these factors together, we conclude that the binding energies for non-covalently bonded systems can be accurately determined using a composite method that combines CCSD(T)∕aug-cc-pVDZ with energy corrections obtained using basis set extrapolated MP2 (utilizing aug-cc-pVQZ and aug-cc-pVTZ basis sets), if all of the components are obtained by averaging the counterpoise and non-counterpoise energies. With such an approach, binding energies for the set of ten dimers are predicted with a mean absolute deviation of 0.02 kcal/mol, a maximum absolute deviation of 0.05 kcal/mol, and a mean percent absolute deviation of only 1.7%, relative to the (estimated) complete basis set CCSD(T) results. Use of this composite approach to an additional set of eight dimers gave binding energies to within 1% of previously published high-level data. It is also shown that binding within parallel and parallel-crossed conformations of naphthalene dimer is predicted by the composite approach to be 9% greater than that previously reported in the literature. The ability of some recently developed dispersion-corrected density-functional theory methods to predict the binding energies of the set of ten small dimers was also examined. © 2011 American Institute of Physics

  10. Document Set Differentiability Analyzer v. 0.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osborn, Thor D.

    Software is a JMP Scripting Language (JSL) script designed to evaluate the differentiability of a set of documents that exhibit some conceptual commonalities but are expected to describe substantially different – thus differentiable – categories. The script imports the document set, a subset of which may be partitioned into an additions pool. The bulk of the documents form a basis pool. Text analysis is applied to the basis pool to extract a mathematical representation of its conceptual content, referred to as the document concept space. A bootstrapping approach is applied to that mathematical representation in order to generate a representationmore » of a large population of randomly designed documents that could be written within the concept space, notably without actually writing the text of those documents.The Kolmogorov-Smirnov test is applied to determine whether the basis pool document set exhibits superior differentiation relative to the randomly designed virtual documents produced by bootstrapping. If an additions pool exists, the documents are incrementally added to the basis pool, choosing the best differentiated remaining document at each step. In this manner the impact of additional categories to overall document set differentiability may be assessed.The software was developed to assess the differentiability of job description document sets. Differentiability is key to meaningful categorization. Poor job differentiation may have economic, ethical, and/or legal implications for an organization. Job categories are used in the assignment of market-based salaries; consequently, poor differentiation of job duties may set the stage for legal challenges if very similar jobs pay differently depending on title, a circumstance that also invites economic waste.The software can be applied to ensure job description set differentiability, reducing legal, economic, and ethical risks to an organization and its people. The extraction of the conceptual space to a mathematical representation enables identification of exceedingly similar documents. In the event of redundancy, two jobs may be collapsed into one. If in the judgment of the subject matter experts the jobs are truly different, the conceptual similarities are highlighted, inviting inclusion of appropriate descriptive content to explicitly characterize those differences. When additional job categories may be needed as the organization changes, the software enables evaluation of proposed additions to ensure that the resulting document set remains adequately differentiated.« less

  11. Hybrid Grid and Basis Set Approach to Quantum Chemistry DMRG

    NASA Astrophysics Data System (ADS)

    Stoudenmire, Edwin Miles; White, Steven

    We present a new approach for using DMRG for quantum chemistry that combines the advantages of a basis set with that of a grid approximation. Because DMRG scales linearly for quasi-one-dimensional systems, it is feasible to approximate the continuum with a fine grid in one direction while using a standard basis set approach for the transverse directions. Compared to standard basis set methods, we reach larger systems and achieve better scaling when approaching the basis set limit. The flexibility and reduced costs of our approach even make it feasible to incoporate advanced DMRG techniques such as simulating real-time dynamics. Supported by the Simons Collaboration on the Many-Electron Problem.

  12. Performance of an Optimally Tuned Range-Separated Hybrid Functional for 0-0 Electronic Excitation Energies.

    PubMed

    Jacquemin, Denis; Moore, Barry; Planchat, Aurélien; Adamo, Carlo; Autschbach, Jochen

    2014-04-08

    Using a set of 40 conjugated molecules, we assess the performance of an "optimally tuned" range-separated hybrid functional in reproducing the experimental 0-0 energies. The selected protocol accounts for the impact of solvation using a corrected linear-response continuum approach and vibrational corrections through calculations of the zero-point energies of both ground and excited-states and provides basis set converged data thanks to the systematic use of diffuse-containing atomic basis sets at all computational steps. It turns out that an optimally tuned long-range corrected hybrid form of the Perdew-Burke-Ernzerhof functional, LC-PBE*, delivers both the smallest mean absolute error (0.20 eV) and standard deviation (0.15 eV) of all tested approaches, while the obtained correlation (0.93) is large but remains slightly smaller than its M06-2X counterpart (0.95). In addition, the efficiency of two other recently developed exchange-correlation functionals, namely SOGGA11-X and ωB97X-D, has been determined in order to allow more complete comparisons with previously published data.

  13. Ab initio structural and spectroscopic study of HPS{sup x} and HSP{sup x} (x = 0,+1,−1) in the gas phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yaghlane, Saida Ben; Cotton, C. Eric; Francisco, Joseph S., E-mail: francisc@purdue.edu, E-mail: hochlaf@univ-mlv.fr

    2013-11-07

    Accurate ab initio computations of structural and spectroscopic parameters for the HPS/HSP molecules and corresponding cations and anions have been performed. For the electronic structure computations, standard and explicitly correlated coupled cluster techniques in conjunction with large basis sets have been adopted. In particular, we present equilibrium geometries, rotational constants, harmonic vibrational frequencies, adiabatic ionization energies, electron affinities, and, for the neutral species, singlet-triplet relative energies. Besides, the full-dimensional potential energy surfaces (PESs) for HPS{sup x} and HSP{sup x} (x = −1,0,1) systems have been generated at the standard coupled cluster level with a basis set of augmented quintuple-zeta quality.more » By applying perturbation theory to the calculated PESs, an extended set of spectroscopic constants, including τ, first-order centrifugal distortion and anharmonic vibrational constants has been obtained. In addition, the potentials have been used in a variational approach to deduce the whole pattern of vibrational levels up to 4000 cm{sup −1} above the minima of the corresponding PESs.« less

  14. Large Cancer Drug Trial Helps Move Precision Medicine Toward the Mainstream | Poster

    Cancer.gov

    A landmark cancer drug trial is helping set the stage for moving precision medicine into the mainstream of clinical practice, according to a new study. The study, reported in the Journal of Molecular Diagnostics, validates a procedure used in the drug trial that identifies the unique genetic mutations in a patient’s tumor, which is then used as the basis for selecting targeted

  15. [Tyramine and serotonin syndromes. Pharmacological, medical and legal remarks].

    PubMed

    Toro-Martínez, Esteban

    2005-01-01

    The tyramine syndrome and the serotonin syndrome are a complex of signs and symptoms that are thought to be largely attributable to drug - drug interactions or drug - food interactions that enhances norepinephrine o serotonin activity. This article reviews: pharmacological basis of those syndromes; clinical features; forbidden foods, drug-drug interactions, and treatment options. Finally a set of legal recommendations are proposed to avoid liability litigations.

  16. An Accurate ab initio Quartic Force Field and Vibrational Frequencies for CH4 and Isotopomers

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Martin, Jan M. L.; Taylor, Peter R.

    1995-01-01

    A very accurate ab initio quartic force field for CH4 and its isotopomers is presented. The quartic force field was determined with the singles and doubles coupled-cluster procedure that includes a quasiperturbative estimate of the effects of connected triple excitations, CCSD(T), using the correlation consistent polarized valence triple zeta, cc-pVTZ, basis set. Improved quadratic force constants were evaluated with the correlation consistent polarized valence quadruple zeta, cc-pVQZ, basis set. Fundamental vibrational frequencies are determined using second-order perturbation theory anharmonic analyses. All fundamentals of CH4 and isotopomers for which accurate experimental values exist and for which there is not a large Fermi resonance, are predicted to within +/- 6 cm(exp -1). It is thus concluded that our predictions for the harmonic frequencies and the anharmonic constants are the most accurate estimates available. It is also shown that using cubic and quartic force constants determined with the correlation consistent polarized double zeta, cc-pVDZ, basis set in conjunction with the cc-pVQZ quadratic force constants and equilibrium geometry leads to accurate predictions for the fundamental vibrational frequencies of methane, suggesting that this approach may be a viable alternative for larger molecules. Using CCSD(T), core correlation is found to reduce the CH4 r(e), by 0.0015 A. Our best estimate for r, is 1.0862 +/- 0.0005 A.

  17. Near Hartree-Fock quality GTO basis sets for the second-row atoms

    NASA Technical Reports Server (NTRS)

    Partridge, Harry

    1987-01-01

    Energy optimized, near Hartree-Fock quality Gaussian basis sets ranging in size from (17s12p) to (20s15p) are presented for the ground states of the second-row atoms for Na(2P), Na(+), Na(-), Mg(3P), P(-), S(-), and Cl(-). In addition, optimized supplementary functions are given for the ground state basis sets to describe the negative ions, and the excited Na(2P) and Mg(3P) atomic states. The ratios of successive orbital exponents describing the inner part of the 1s and 2p orbitals are found to be nearly independent of both nuclear charge and basis set size. This provides a method of obtaining good starting estimates for other basis set optimizations.

  18. Relativistic Prolapse-Free Gaussian Basis Sets of Quadruple-ζ Quality: (aug-)RPF-4Z. III. The f-Block Elements.

    PubMed

    Teodoro, Tiago Quevedo; Visscher, Lucas; da Silva, Albérico Borges Ferreira; Haiduke, Roberto Luiz Andrade

    2017-03-14

    The f-block elements are addressed in this third part of a series of prolapse-free basis sets of quadruple-ζ quality (RPF-4Z). Relativistic adapted Gaussian basis sets (RAGBSs) are used as primitive sets of functions while correlating/polarization (C/P) functions are chosen by analyzing energy lowerings upon basis set increments in Dirac-Coulomb multireference configuration interaction calculations with single and double excitations of the valence spinors. These function exponents are obtained by applying the RAGBS parameters in a polynomial expression. Moreover, through the choice of C/P characteristic exponents from functions of lower angular momentum spaces, a reduction in the computational demand is attained in relativistic calculations based on the kinetic balance condition. The present study thus complements the RPF-4Z sets for the whole periodic table (Z ≤ 118). The sets are available as Supporting Information and can also be found at http://basis-sets.iqsc.usp.br .

  19. Model's sparse representation based on reduced mixed GMsFE basis methods

    NASA Astrophysics Data System (ADS)

    Jiang, Lijian; Li, Qiuqi

    2017-06-01

    In this paper, we propose a model's sparse representation based on reduced mixed generalized multiscale finite element (GMsFE) basis methods for elliptic PDEs with random inputs. A typical application for the elliptic PDEs is the flow in heterogeneous random porous media. Mixed generalized multiscale finite element method (GMsFEM) is one of the accurate and efficient approaches to solve the flow problem in a coarse grid and obtain the velocity with local mass conservation. When the inputs of the PDEs are parameterized by the random variables, the GMsFE basis functions usually depend on the random parameters. This leads to a large number degree of freedoms for the mixed GMsFEM and substantially impacts on the computation efficiency. In order to overcome the difficulty, we develop reduced mixed GMsFE basis methods such that the multiscale basis functions are independent of the random parameters and span a low-dimensional space. To this end, a greedy algorithm is used to find a set of optimal samples from a training set scattered in the parameter space. Reduced mixed GMsFE basis functions are constructed based on the optimal samples using two optimal sampling strategies: basis-oriented cross-validation and proper orthogonal decomposition. Although the dimension of the space spanned by the reduced mixed GMsFE basis functions is much smaller than the dimension of the original full order model, the online computation still depends on the number of coarse degree of freedoms. To significantly improve the online computation, we integrate the reduced mixed GMsFE basis methods with sparse tensor approximation and obtain a sparse representation for the model's outputs. The sparse representation is very efficient for evaluating the model's outputs for many instances of parameters. To illustrate the efficacy of the proposed methods, we present a few numerical examples for elliptic PDEs with multiscale and random inputs. In particular, a two-phase flow model in random porous media is simulated by the proposed sparse representation method.

  20. Comparing fixed and variable-width Gaussian networks.

    PubMed

    Kůrková, Věra; Kainen, Paul C

    2014-09-01

    The role of width of Gaussians in two types of computational models is investigated: Gaussian radial-basis-functions (RBFs) where both widths and centers vary and Gaussian kernel networks which have fixed widths but varying centers. The effect of width on functional equivalence, universal approximation property, and form of norms in reproducing kernel Hilbert spaces (RKHS) is explored. It is proven that if two Gaussian RBF networks have the same input-output functions, then they must have the same numbers of units with the same centers and widths. Further, it is shown that while sets of input-output functions of Gaussian kernel networks with two different widths are disjoint, each such set is large enough to be a universal approximator. Embedding of RKHSs induced by "flatter" Gaussians into RKHSs induced by "sharper" Gaussians is described and growth of the ratios of norms on these spaces with increasing input dimension is estimated. Finally, large sets of argminima of error functionals in sets of input-output functions of Gaussian RBFs are described. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Dynamical basis sets for algebraic variational calculations in quantum-mechanical scattering theory

    NASA Technical Reports Server (NTRS)

    Sun, Yan; Kouri, Donald J.; Truhlar, Donald G.; Schwenke, David W.

    1990-01-01

    New basis sets are proposed for linear algebraic variational calculations of transition amplitudes in quantum-mechanical scattering problems. These basis sets are hybrids of those that yield the Kohn variational principle (KVP) and those that yield the generalized Newton variational principle (GNVP) when substituted in Schlessinger's stationary expression for the T operator. Trial calculations show that efficiencies almost as great as that of the GNVP and much greater than the KVP can be obtained, even for basis sets with the majority of the members independent of energy.

  2. Green's function multiple-scattering theory with a truncated basis set: An augmented-KKR formalism

    NASA Astrophysics Data System (ADS)

    Alam, Aftab; Khan, Suffian N.; Smirnov, A. V.; Nicholson, D. M.; Johnson, Duane D.

    2014-11-01

    The Korringa-Kohn-Rostoker (KKR) Green's function, multiple-scattering theory is an efficient site-centered, electronic-structure technique for addressing an assembly of N scatterers. Wave functions are expanded in a spherical-wave basis on each scattering center and indexed up to a maximum orbital and azimuthal number Lmax=(l,mmax), while scattering matrices, which determine spectral properties, are truncated at Lt r=(l,mt r) where phase shifts δl >ltr are negligible. Historically, Lmax is set equal to Lt r, which is correct for large enough Lmax but not computationally expedient; a better procedure retains higher-order (free-electron and single-site) contributions for Lmax>Lt r with δl >ltr set to zero [X.-G. Zhang and W. H. Butler, Phys. Rev. B 46, 7433 (1992), 10.1103/PhysRevB.46.7433]. We present a numerically efficient and accurate augmented-KKR Green's function formalism that solves the KKR equations by exact matrix inversion [R3 process with rank N (ltr+1 ) 2 ] and includes higher-L contributions via linear algebra [R2 process with rank N (lmax+1) 2 ]. The augmented-KKR approach yields properly normalized wave functions, numerically cheaper basis-set convergence, and a total charge density and electron count that agrees with Lloyd's formula. We apply our formalism to fcc Cu, bcc Fe, and L 1 0 CoPt and present the numerical results for accuracy and for the convergence of the total energies, Fermi energies, and magnetic moments versus Lmax for a given Lt r.

  3. Green's function multiple-scattering theory with a truncated basis set: An augmented-KKR formalism

    DOE PAGES

    Alam, Aftab; Khan, Suffian N.; Smirnov, A. V.; ...

    2014-11-04

    Korringa-Kohn-Rostoker (KKR) Green's function, multiple-scattering theory is an ecient sitecentered, electronic-structure technique for addressing an assembly of N scatterers. Wave-functions are expanded in a spherical-wave basis on each scattering center and indexed up to a maximum orbital and azimuthal number L max = (l,m) max, while scattering matrices, which determine spectral properties, are truncated at L tr = (l,m) tr where phase shifts δl>l tr are negligible. Historically, L max is set equal to L tr, which is correct for large enough L max but not computationally expedient; a better procedure retains higher-order (free-electron and single-site) contributions for L maxmore » > L tr with δl>l tr set to zero [Zhang and Butler, Phys. Rev. B 46, 7433]. We present a numerically ecient and accurate augmented-KKR Green's function formalism that solves the KKR equations by exact matrix inversion [R 3 process with rank N(l tr + 1) 2] and includes higher-L contributions via linear algebra [R 2 process with rank N(l max +1) 2]. Augmented-KKR approach yields properly normalized wave-functions, numerically cheaper basis-set convergence, and a total charge density and electron count that agrees with Lloyd's formula. We apply our formalism to fcc Cu, bcc Fe and L1 0 CoPt, and present the numerical results for accuracy and for the convergence of the total energies, Fermi energies, and magnetic moments versus L max for a given L tr.« less

  4. Fast Steerable Principal Component Analysis

    PubMed Central

    Zhao, Zhizhen; Shkolnisky, Yoel; Singer, Amit

    2016-01-01

    Cryo-electron microscopy nowadays often requires the analysis of hundreds of thousands of 2-D images as large as a few hundred pixels in each direction. Here, we introduce an algorithm that efficiently and accurately performs principal component analysis (PCA) for a large set of 2-D images, and, for each image, the set of its uniform rotations in the plane and their reflections. For a dataset consisting of n images of size L × L pixels, the computational complexity of our algorithm is O(nL3 + L4), while existing algorithms take O(nL4). The new algorithm computes the expansion coefficients of the images in a Fourier–Bessel basis efficiently using the nonuniform fast Fourier transform. We compare the accuracy and efficiency of the new algorithm with traditional PCA and existing algorithms for steerable PCA. PMID:27570801

  5. A Novel Consensus-Based Particle Swarm Optimization-Assisted Trust-Tech Methodology for Large-Scale Global Optimization.

    PubMed

    Zhang, Yong-Feng; Chiang, Hsiao-Dong

    2017-09-01

    A novel three-stage methodology, termed the "consensus-based particle swarm optimization (PSO)-assisted Trust-Tech methodology," to find global optimal solutions for nonlinear optimization problems is presented. It is composed of Trust-Tech methods, consensus-based PSO, and local optimization methods that are integrated to compute a set of high-quality local optimal solutions that can contain the global optimal solution. The proposed methodology compares very favorably with several recently developed PSO algorithms based on a set of small-dimension benchmark optimization problems and 20 large-dimension test functions from the CEC 2010 competition. The analytical basis for the proposed methodology is also provided. Experimental results demonstrate that the proposed methodology can rapidly obtain high-quality optimal solutions that can contain the global optimal solution. The scalability of the proposed methodology is promising.

  6. High quality Gaussian basis sets for fourth-row atoms

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Faegri, Knut, Jr.

    1992-01-01

    Energy optimized Gaussian basis sets of triple-zeta quality for the atoms Rb-Xe have been derived. Two series of basis sets are developed: (24s 16p 10d) and (26s 16p 10d) sets which were expanded to 13d and 19p functions as the 4d and 5p shells become occupied. For the atoms lighter than Cd, the (24s 16p 10d) sets with triple-zeta valence distributions are higher in energy than the corresponding double-zeta distribution. To ensure a triple-zeta distribution and a global energy minimum, the (26s 16p 10d) sets were derived. Total atomic energies from the largest basis sets are between 198 and 284 (mu)E(sub H) above the numerical Hartree-Fock energies.

  7. Alignment and phasing of deployable telescopes

    NASA Technical Reports Server (NTRS)

    Woolf, N. J.; Ulich, B. L.

    1983-01-01

    The experiences in coaligning and phasing the Multi-Mirror Telescope (MMT), together with studies in setting up radio telescopes, are presented. These experiences are discussed, and on the basis they furnish, schemes are suggested for coaligning and phasing four large future telescopes with complex primary mirror systems. These telescopes are MT2, a 15-m-equivalent MMT, the University of California Ten Meter Telescope, the 10 m sub-mm wave telescope of the University of Arizona and the Max Planck Institute for Radioastronomy, and the Large Deployable Reflector, a future space telescope for far-IR and sub-mm waves.

  8. Recent developments in VSD imaging of small neuronal networks

    PubMed Central

    Hill, Evan S.; Bruno, Angela M.

    2014-01-01

    Voltage-sensitive dye (VSD) imaging is a powerful technique that can provide, in single experiments, a large-scale view of network activity unobtainable with traditional sharp electrode recording methods. Here we review recent work using VSDs to study small networks and highlight several results from this approach. Topics covered include circuit mapping, network multifunctionality, the network basis of decision making, and the presence of variably participating neurons in networks. Analytical tools being developed and applied to large-scale VSD imaging data sets are discussed, and the future prospects for this exciting field are considered. PMID:25225295

  9. Ordering of the O-O stretching vibrational frequencies in ozone

    NASA Technical Reports Server (NTRS)

    Scuseria, Gustavo E.; Lee, Timothy J.; Scheiner, Andrew C.; Schaefer, Henry F., III

    1989-01-01

    The ordering of nu1 and nu3 for O3 is incorrectly predicted by most theoretical methods, including some very high level methods. The first systematic electron correlation method based on one-reference configuration to solve this problem is the coupled cluster single and double excitation method. However, a relatively large basis set, triple zeta plus double polarization is required. Comparison with other theoretical methods is made.

  10. Biological Effects of Short, High-Level Exposure to Gases: Sulfur Dioxide.

    DTIC Science & Technology

    1980-05-01

    irritation and moist rales, bilaterally and anteriorly over the large bronchi. One-half of the subjects exposed to sulfur dioxide at concentrations of... burns . The pharyngeal mucosa was hyperemic but without ulceration . These men had decreased breath sounds, diffuse rales and rhonchi, with essentially...workplace have limited appli- cation in the military setting; the basis for their selection is the protection of chronically exposed workers against

  11. Relativistic well-tempered Gaussian basis sets for helium through mercury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okada, S.; Matsuoka, O.

    1989-10-01

    Exponent parameters of the nonrelativistically optimized well-tempered Gaussian basis sets of Huzinaga and Klobukowski have been employed for Dirac--Fock--Roothaan calculations without their reoptimization. For light atoms He (atomic number {ital Z}=2)--Rh ({ital Z}=45), the number of exponent parameters used has been the same as the nonrelativistic basis sets and for heavier atoms Pd ({ital Z}=46)--Hg({ital Z}=80), two 2{ital p} (and three 3{ital d}) Gaussian basis functions have been augmented. The scheme of kinetic energy balance and the uniformly charged sphere model of atomic nuclei have been adopted. The qualities of the calculated basis sets are close to the Dirac--Fock limit.

  12. On the validity of the basis set superposition error and complete basis set limit extrapolations for the binding energy of the formic acid dimer

    NASA Astrophysics Data System (ADS)

    Miliordos, Evangelos; Xantheas, Sotiris S.

    2015-03-01

    We report the variation of the binding energy of the Formic Acid Dimer with the size of the basis set at the Coupled Cluster with iterative Singles, Doubles and perturbatively connected Triple replacements [CCSD(T)] level of theory, estimate the Complete Basis Set (CBS) limit, and examine the validity of the Basis Set Superposition Error (BSSE)-correction for this quantity that was previously challenged by Kalescky, Kraka, and Cremer (KKC) [J. Chem. Phys. 140, 084315 (2014)]. Our results indicate that the BSSE correction, including terms that account for the substantial geometry change of the monomers due to the formation of two strong hydrogen bonds in the dimer, is indeed valid for obtaining accurate estimates for the binding energy of this system as it exhibits the expected decrease with increasing basis set size. We attribute the discrepancy between our current results and those of KKC to their use of a valence basis set in conjunction with the correlation of all electrons (i.e., including the 1s of C and O). We further show that the use of a core-valence set in conjunction with all electron correlation converges faster to the CBS limit as the BSSE correction is less than half than the valence electron/valence basis set case. The uncorrected and BSSE-corrected binding energies were found to produce the same (within 0.1 kcal/mol) CBS limits. We obtain CCSD(T)/CBS best estimates for De = - 16.1 ± 0.1 kcal/mol and for D0 = - 14.3 ± 0.1 kcal/mol, the later in excellent agreement with the experimental value of -14.22 ± 0.12 kcal/mol.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miliordos, Evangelos; Aprà, Edoardo; Xantheas, Sotiris S.

    We establish a new estimate for the binding energy between two benzene molecules in the parallel-displaced (PD) conformation by systematically converging (i) the intra- and intermolecular geometry at the minimum, (ii) the expansion of the orbital basis set, and (iii) the level of electron correlation. The calculations were performed at the second-order Møller–Plesset perturbation (MP2) and the coupled cluster including singles, doubles, and a perturbative estimate of triples replacement [CCSD(T)] levels of electronic structure theory. At both levels of theory, by including results corrected for basis set superposition error (BSSE), we have estimated the complete basis set (CBS) limit bymore » employing the family of Dunning’s correlation-consistent polarized valence basis sets. The largest MP2 calculation was performed with the cc-pV6Z basis set (2772 basis functions), whereas the largest CCSD(T) calculation was with the cc-pV5Z basis set (1752 basis functions). The cluster geometries were optimized with basis sets up to quadruple-ζ quality, observing that both its intra- and intermolecular parts have practically converged with the triple-ζ quality sets. The use of converged geometries was found to play an important role for obtaining accurate estimates for the CBS limits. Our results demonstrate that the binding energies with the families of the plain (cc-pVnZ) and augmented (aug-cc-pVnZ) sets converge [within <0.01 kcal/mol for MP2 and <0.15 kcal/mol for CCSD(T)] to the same CBS limit. In addition, the average of the uncorrected and BSSE-corrected binding energies was found to converge to the same CBS limit much faster than either of the two constituents (uncorrected or BSSE-corrected binding energies). Due to the fact that the family of augmented basis sets (especially for the larger sets) causes serious linear dependency problems, the plain basis sets (for which no linear dependencies were found) are deemed as a more efficient and straightforward path for obtaining an accurate CBS limit. We considered extrapolations of the uncorrected (ΔE) and BSSE-corrected (ΔE cp) binding energies, their average value (ΔE ave), as well as the average of the latter over the plain and augmented sets (Δ~E ave) with the cardinal number of the basis set n. Our best estimate of the CCSD(T)/CBS limit for the π–π binding energy in the PD benzene dimer is D e = -2.65 ± 0.02 kcal/mol. The best CCSD(T)/cc-pV5Z calculated value is -2.62 kcal/mol, just 0.03 kcal/mol away from the CBS limit. For comparison, the MP2/CBS limit estimate is -5.00 ± 0.01 kcal/mol, demonstrating a 90% overbinding with respect to CCSD(T). Finally, the spin-component-scaled (SCS) MP2 variant was found to closely reproduce the CCSD(T) results for each basis set, while scaled opposite spin (SOS) MP2 yielded results that are too low when compared to CCSD(T).« less

  14. Atomization Energies of SO and SO2; Basis Set Extrapolation Revisted

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Ricca, Alessandra; Arnold, James (Technical Monitor)

    1998-01-01

    The addition of tight functions to sulphur and extrapolation to the complete basis set limit are required to obtain accurate atomization energies. Six different extrapolation procedures are tried. The best atomization energies come from the series of basis sets that yield the most consistent results for all extrapolation techniques. In the variable alpha approach, alpha values larger than 4.5 or smaller than 3, appear to suggest that the extrapolation may not be reliable. It does not appear possible to determine a reliable basis set series using only the triple and quadruple zeta based sets. The scalar relativistic effects reduce the atomization of SO and SO2 by 0.34 and 0.81 kcal/mol, respectively, and clearly must be accounted for if a highly accurate atomization energy is to be computed. The magnitude of the core-valence (CV) contribution to the atomization is affected by missing diffuse valence functions. The CV contribution is much more stable if basis set superposition errors are accounted for. A similar study of SF, SF(+), and SF6 shows that the best family of basis sets varies with the nature of the S bonding.

  15. Calculating Interaction Energies Using First Principle Theories: Consideration of Basis Set Superposition Error and Fragment Relaxation

    ERIC Educational Resources Information Center

    Bowen, J. Philip; Sorensen, Jennifer B.; Kirschner, Karl N.

    2007-01-01

    The analysis explains the basis set superposition error (BSSE) and fragment relaxation involved in calculating the interaction energies using various first principle theories. Interacting the correlated fragment and increasing the size of the basis set can help in decreasing the BSSE to a great extent.

  16. Flap-lag-torsional dynamics of extensional and inextensional rotor blades in hover and in forward flight

    NASA Technical Reports Server (NTRS)

    Dasilva, C.

    1982-01-01

    The reduction of the O(cu epsilon) integro differential equations to ordinary differential equations using a set of orthogonal functions is described. Attention was focused on the hover flight condition. The set of Galerkin integrals that appear in the reduced equations was evaluated by making use of nonrotating beam modes. Although a large amount of computer time was needed to accomplish this task, the Galerkin integrals so evaluated were stored on tape on a permanent basis. Several of the coefficients were also obtained in closed form in order to check the accuracy of the numerical computations. The equilibrium solution to the set of 3n equations obtained was determined as the solution to a minimization problem.

  17. The effect of diffuse basis functions on valence bond structural weights

    NASA Astrophysics Data System (ADS)

    Galbraith, John Morrison; James, Andrew M.; Nemes, Coleen T.

    2014-03-01

    Structural weights and bond dissociation energies have been determined for H-F, H-X, and F-X molecules (-X = -OH, -NH2, and -CH3) at the valence bond self-consistent field (VBSCF) and breathing orbital valence bond (BOVB) levels of theory with the aug-cc-pVDZ and 6-31++G(d,p) basis sets. At the BOVB level, the aug-cc-pVDZ basis set yields a counterintuitive ordering of ionic structural weights when the initial heavy atom s-type basis functions are included. For H-F, H-OH, and F-X, the ordering follows chemical intuition when these basis functions are not included. These counterintuitive weights are shown to be a result of the diffuse polarisation function on one VB fragment being spatially located, in part, on the other VB fragment. Except in the case of F-CH3, this problem is corrected with the 6-31++G(d,p) basis set. The initial heavy atom s-type functions are shown to make an important contribution to the VB orbitals and bond dissociation energies and, therefore, should not be excluded. It is recommended to not use diffuse basis sets in valence bond calculations unless absolutely necessary. If diffuse basis sets are needed, the 6-31++G(d,p) basis set should be used with caution and the structural weights checked against VBSCF values which have been shown to follow the expected ordering in all cases.

  18. Accurate potential energy, dipole moment curves, and lifetimes of vibrational states of heteronuclear alkali dimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedorov, Dmitry A.; Varganov, Sergey A., E-mail: svarganov@unr.edu; Derevianko, Andrei

    2014-05-14

    We calculate the potential energy curves, the permanent dipole moment curves, and the lifetimes of the ground and excited vibrational states of the heteronuclear alkali dimers XY (X, Y = Li, Na, K, Rb, Cs) in the X{sup 1}Σ{sup +} electronic state using the coupled cluster with singles doubles and triples method. All-electron quadruple-ζ basis sets with additional core functions are used for Li and Na, and small-core relativistic effective core potentials with quadruple-ζ quality basis sets are used for K, Rb, and Cs. The inclusion of the coupled cluster non-perturbative triple excitations is shown to be crucial for obtainingmore » the accurate potential energy curves. A large one-electron basis set with additional core functions is needed for the accurate prediction of permanent dipole moments. The dissociation energies are overestimated by only 14 cm{sup −1} for LiNa and by no more than 114 cm{sup −1} for the other molecules. The discrepancies between the experimental and calculated harmonic vibrational frequencies are less than 1.7 cm{sup −1}, and the discrepancies for the anharmonic correction are less than 0.1 cm{sup −1}. We show that correlation between atomic electronegativity differences and permanent dipole moment of heteronuclear alkali dimers is not perfect. To obtain the vibrational energies and wave functions the vibrational Schrödinger equation is solved with the B-spline basis set method. The transition dipole moments between all vibrational states, the Einstein coefficients, and the lifetimes of the vibrational states are calculated. We analyze the decay rates of the vibrational states in terms of spontaneous emission, and stimulated emission and absorption induced by black body radiation. In all studied heteronuclear alkali dimers the ground vibrational states have much longer lifetimes than any excited states.« less

  19. A clustering-based graph Laplacian framework for value function approximation in reinforcement learning.

    PubMed

    Xu, Xin; Huang, Zhenhua; Graves, Daniel; Pedrycz, Witold

    2014-12-01

    In order to deal with the sequential decision problems with large or continuous state spaces, feature representation and function approximation have been a major research topic in reinforcement learning (RL). In this paper, a clustering-based graph Laplacian framework is presented for feature representation and value function approximation (VFA) in RL. By making use of clustering-based techniques, that is, K-means clustering or fuzzy C-means clustering, a graph Laplacian is constructed by subsampling in Markov decision processes (MDPs) with continuous state spaces. The basis functions for VFA can be automatically generated from spectral analysis of the graph Laplacian. The clustering-based graph Laplacian is integrated with a class of approximation policy iteration algorithms called representation policy iteration (RPI) for RL in MDPs with continuous state spaces. Simulation and experimental results show that, compared with previous RPI methods, the proposed approach needs fewer sample points to compute an efficient set of basis functions and the learning control performance can be improved for a variety of parameter settings.

  20. An ab initio investigation of possible intermediates in the reaction of the hydroxyl and hydroperoxyl radicals

    NASA Technical Reports Server (NTRS)

    Jackels, C. F.

    1985-01-01

    Ab initio quantum chemical techniques are used to investigate covalently-bonded and hydrogen-bonded species that may be important intermediates in the reaction of hydroxyl and hydroperoxyl radicals. Stable structures of both types are identified. Basis sets of polarized double zeta quality and large scale configuration interaction wave functions are utilized. Based on electronic energies, the covalently bonded HOOOH species is 26.4 kcal/mol more stable than the OH and HO2 radicals. Similarly, the hydrogen bonded HO---HO2 species has an electronic energy 4.7 kcal/mol below that of the component radicals, after correction is made for the basis set superposition error. The hydrogen bonded form is planar, possesses one relatively normal hydrogen bond, and has the lowest energy 3A' and 1A' states that are essentially degenerate. The 1A" and 3A" excited states produced by rotation of the unpaired OH electron into the molecular plane are very slightly bound.

  1. High-level ab initio enthalpies of formation of 2,5-dimethylfuran, 2-methylfuran, and furan.

    PubMed

    Feller, David; Simmie, John M

    2012-11-29

    A high-level ab initio thermochemical technique, known as the Feller-Petersen-Dixon method, is used to calculate the total atomization energies and hence the enthalpies of formation of 2,5-dimethylfuran, 2-methylfuran, and furan itself as a means of rationalizing significant discrepancies in the literature. In order to avoid extremely large standard coupled cluster theory calculations, the explicitly correlated CCSD(T)-F12b variation was used with basis sets up to cc-pVQZ-F12. After extrapolating to the complete basis set limit and applying corrections for core/valence, scalar relativistic, and higher order effects, the final Δ(f)H° (298.15 K) values, with the available experimental values in parentheses are furan -34.8 ± 3 (-34.7 ± 0.8), 2-methylfuran -80.3 ± 5 (-76.4 ± 1.2), and 2,5-dimethylfuran -124.6 ± 6 (-128.1 ± 1.1) kJ mol(-1). The theoretical results exhibit a compelling internal consistency.

  2. Nonlinear optical properties of curcumin: solvatochromism-based approach and computational study

    NASA Astrophysics Data System (ADS)

    Margar, Sachin N.; Sekar, Nagaiyan

    2016-06-01

    Nonlinear optical (NLO) properties of curcumin were studied using solvatochromic method and density functional theory (DFT). DFT calculations were performed to determine the static first hyperpolarisability (βο) and its related properties (μ, α0,Δα, β, ?) for curcumin, using B3LYP functional with 6-31G (d), 6-311+G (d) and 6-311+G (d,p) basis sets at the ground-state and excited-state geometries and with CAM-B3LYP using 6-311+G (d,p) basis sets at the ground-state geometry in different solvent environments. In polar solvent environment, the values are slightly lower as compared to the non-polar solvent environments. The results obtained are correlated with the polarisability parameter αCT, first hyperpolarisability parameter βCT and the solvatochromic descriptor of γSDobtained by the solvatochromic method. The static first hyperpolarisability (βο) and its related properties were compared with urea and dibenzoylmethane (β-diketonate) and it is observed that curcumin shows very large values for first hyperpolarisability and its components.

  3. Rapid calculation of accurate atomic charges for proteins via the electronegativity equalization method.

    PubMed

    Ionescu, Crina-Maria; Geidl, Stanislav; Svobodová Vařeková, Radka; Koča, Jaroslav

    2013-10-28

    We focused on the parametrization and evaluation of empirical models for fast and accurate calculation of conformationally dependent atomic charges in proteins. The models were based on the electronegativity equalization method (EEM), and the parametrization procedure was tailored to proteins. We used large protein fragments as reference structures and fitted the EEM model parameters using atomic charges computed by three population analyses (Mulliken, Natural, iterative Hirshfeld), at the Hartree-Fock level with two basis sets (6-31G*, 6-31G**) and in two environments (gas phase, implicit solvation). We parametrized and successfully validated 24 EEM models. When tested on insulin and ubiquitin, all models reproduced quantum mechanics level charges well and were consistent with respect to population analysis and basis set. Specifically, the models showed on average a correlation of 0.961, RMSD 0.097 e, and average absolute error per atom 0.072 e. The EEM models can be used with the freely available EEM implementation EEM_SOLVER.

  4. Second-order perturbation theory with a density matrix renormalization group self-consistent field reference function: theory and application to the study of chromium dimer.

    PubMed

    Kurashige, Yuki; Yanai, Takeshi

    2011-09-07

    We present a second-order perturbation theory based on a density matrix renormalization group self-consistent field (DMRG-SCF) reference function. The method reproduces the solution of the complete active space with second-order perturbation theory (CASPT2) when the DMRG reference function is represented by a sufficiently large number of renormalized many-body basis, thereby being named DMRG-CASPT2 method. The DMRG-SCF is able to describe non-dynamical correlation with large active space that is insurmountable to the conventional CASSCF method, while the second-order perturbation theory provides an efficient description of dynamical correlation effects. The capability of our implementation is demonstrated for an application to the potential energy curve of the chromium dimer, which is one of the most demanding multireference systems that require best electronic structure treatment for non-dynamical and dynamical correlation as well as large basis sets. The DMRG-CASPT2/cc-pwCV5Z calculations were performed with a large (3d double-shell) active space consisting of 28 orbitals. Our approach using large-size DMRG reference addressed the problems of why the dissociation energy is largely overestimated by CASPT2 with the small active space consisting of 12 orbitals (3d4s), and also is oversensitive to the choice of the zeroth-order Hamiltonian. © 2011 American Institute of Physics

  5. Validity and validation of expert (Q)SAR systems.

    PubMed

    Hulzebos, E; Sijm, D; Traas, T; Posthumus, R; Maslankiewicz, L

    2005-08-01

    At a recent workshop in Setubal (Portugal) principles were drafted to assess the suitability of (quantitative) structure-activity relationships ((Q)SARs) for assessing the hazards and risks of chemicals. In the present study we applied some of the Setubal principles to test the validity of three (Q)SAR expert systems and validate the results. These principles include a mechanistic basis, the availability of a training set and validation. ECOSAR, BIOWIN and DEREK for Windows have a mechanistic or empirical basis. ECOSAR has a training set for each QSAR. For half of the structural fragments the number of chemicals in the training set is >4. Based on structural fragments and log Kow, ECOSAR uses linear regression to predict ecotoxicity. Validating ECOSAR for three 'valid' classes results in predictivity of > or = 64%. BIOWIN uses (non-)linear regressions to predict the probability of biodegradability based on fragments and molecular weight. It has a large training set and predicts non-ready biodegradability well. DEREK for Windows predictions are supported by a mechanistic rationale and literature references. The structural alerts in this program have been developed with a training set of positive and negative toxicity data. However, to support the prediction only a limited number of chemicals in the training set is presented to the user. DEREK for Windows predicts effects by 'if-then' reasoning. The program predicts best for mutagenicity and carcinogenicity. Each structural fragment in ECOSAR and DEREK for Windows needs to be evaluated and validated separately.

  6. Crustal Dynamics Project data analysis, 1990

    NASA Technical Reports Server (NTRS)

    Caprette, D. S.; Ma, C.; Ryan, J. W.

    1990-01-01

    The Goddard Very Long Baseline Interferometry (VLBI) group reports the results of analyzing 1073 Mark 3 data sets acquired from fixed and mobile observing sites through the end of 1989 and available to the Crustal Dynamics Project. Two large solutions, GLB656 and GLB657, were used to establish a VLBI reference frame with an origin coincident with the ITRF89. Another large solution, GLB658, was used to obtain Earth rotation parameters, nutation offsets, and global source positions. Site velocities were obtained from another large solution, GLB659. A fifth large solution, GLB660, was used to obtain baseline evolution. Site positions are tabulated on a yearly basis from 1979 through 1992. Site velocities are presented in both Cartesian and topocentric coordinates. The results include 76 sources, 80 sites, and 422 baselines.

  7. On the effects of basis set truncation and electron correlation in conformers of 2-hydroxy-acetamide

    NASA Astrophysics Data System (ADS)

    Szarecka, A.; Day, G.; Grout, P. J.; Wilson, S.

    Ab initio quantum chemical calculations have been used to study the differences in energy between two gas phase conformers of the 2-hydroxy-acetamide molecule that possess intramolecular hydrogen bonding. In particular, rotation around the central C-C bond has been considered as a factor determining the structure of the hydrogen bond and stabilization of the conformer. Energy calculations include full geometiy optimization using both the restricted matrix Hartree-Fock model and second-order many-body perturbation theory with a number of commonly used basis sets. The basis sets employed ranged from the minimal STO-3G set to [`]split-valence' sets up to 6-31 G. The effects of polarization functions were also studied. The results display a strong basis set dependence.

  8. On the optimization of Gaussian basis sets

    NASA Astrophysics Data System (ADS)

    Petersson, George A.; Zhong, Shijun; Montgomery, John A.; Frisch, Michael J.

    2003-01-01

    A new procedure for the optimization of the exponents, αj, of Gaussian basis functions, Ylm(ϑ,φ)rle-αjr2, is proposed and evaluated. The direct optimization of the exponents is hindered by the very strong coupling between these nonlinear variational parameters. However, expansion of the logarithms of the exponents in the orthonormal Legendre polynomials, Pk, of the index, j: ln αj=∑k=0kmaxAkPk((2j-2)/(Nprim-1)-1), yields a new set of well-conditioned parameters, Ak, and a complete sequence of well-conditioned exponent optimizations proceeding from the even-tempered basis set (kmax=1) to a fully optimized basis set (kmax=Nprim-1). The error relative to the exact numerical self-consistent field limit for a six-term expansion is consistently no more than 25% larger than the error for the completely optimized basis set. Thus, there is no need to optimize more than six well-conditioned variational parameters, even for the largest sets of Gaussian primitives.

  9. Materials prediction via classification learning

    DOE PAGES

    Balachandran, Prasanna V.; Theiler, James; Rondinelli, James M.; ...

    2015-08-25

    In the paradigm of materials informatics for accelerated materials discovery, the choice of feature set (i.e. attributes that capture aspects of structure, chemistry and/or bonding) is critical. Ideally, the feature sets should provide a simple physical basis for extracting major structural and chemical trends and furthermore, enable rapid predictions of new material chemistries. Orbital radii calculated from model pseudopotential fits to spectroscopic data are potential candidates to satisfy these conditions. Although these radii (and their linear combinations) have been utilized in the past, their functional forms are largely justified with heuristic arguments. Here we show that machine learning methods naturallymore » uncover the functional forms that mimic most frequently used features in the literature, thereby providing a mathematical basis for feature set construction without a priori assumptions. We apply these principles to study two broad materials classes: (i) wide band gap AB compounds and (ii) rare earth-main group RM intermetallics. The AB compounds serve as a prototypical example to demonstrate our approach, whereas the RM intermetallics show how these concepts can be used to rapidly design new ductile materials. In conclusion, our predictive models indicate that ScCo, ScIr, and YCd should be ductile, whereas each was previously proposed to be brittle.« less

  10. Materials Prediction via Classification Learning

    PubMed Central

    Balachandran, Prasanna V.; Theiler, James; Rondinelli, James M.; Lookman, Turab

    2015-01-01

    In the paradigm of materials informatics for accelerated materials discovery, the choice of feature set (i.e. attributes that capture aspects of structure, chemistry and/or bonding) is critical. Ideally, the feature sets should provide a simple physical basis for extracting major structural and chemical trends and furthermore, enable rapid predictions of new material chemistries. Orbital radii calculated from model pseudopotential fits to spectroscopic data are potential candidates to satisfy these conditions. Although these radii (and their linear combinations) have been utilized in the past, their functional forms are largely justified with heuristic arguments. Here we show that machine learning methods naturally uncover the functional forms that mimic most frequently used features in the literature, thereby providing a mathematical basis for feature set construction without a priori assumptions. We apply these principles to study two broad materials classes: (i) wide band gap AB compounds and (ii) rare earth-main group RM intermetallics. The AB compounds serve as a prototypical example to demonstrate our approach, whereas the RM intermetallics show how these concepts can be used to rapidly design new ductile materials. Our predictive models indicate that ScCo, ScIr, and YCd should be ductile, whereas each was previously proposed to be brittle. PMID:26304800

  11. Developing a data dictionary for the irish nursing minimum dataset.

    PubMed

    Henry, Pamela; Mac Neela, Pádraig; Clinton, Gerard; Scott, Anne; Treacy, Pearl; Butler, Michelle; Hyde, Abbey; Morris, Roisin; Irving, Kate; Byrne, Anne

    2006-01-01

    One of the challenges in health care in Ireland is the relatively slow acceptance of standardised clinical information systems. Yet the national Irish health reform programme indicates that an Electronic Health Care Record (EHCR) will be implemented on a phased basis. [3-5]. While nursing has a key role in ensuring the quality and comparability of health information, the so- called 'invisibility' of some nursing activities makes this a challenging aim to achieve [3-5]. Any integrated health care system requires the adoption of uniform standards for electronic data exchange [1-2]. One of the pre-requisites for uniform standards is the composition of a data dictionary. Inadequate definition of data elements in a particular dataset hinders the development of an integrated data depository or electronic health care record (EHCR). This paper outlines how work on the data dictionary for the Irish Nursing Minimum Dataset (INMDS) has addressed this issue. Data set elements were devised on the basis of a large scale empirical research programme. ISO 18104, the reference terminology for nursing [6], was used to cross-map the data set elements with semantic domains, categories and links and data set items were dissected.

  12. Density Functional O(N) Calculations

    NASA Astrophysics Data System (ADS)

    Ordejón, Pablo

    1998-03-01

    We have developed a scheme for performing Density Functional Theory calculations with O(N) scaling.(P. Ordejón, E. Artacho and J. M. Soler, Phys. Rev. B, 53), 10441 (1996) The method uses arbitrarily flexible and complete Atomic Orbitals (AO) basis sets. This gives a wide range of choice, from extremely fast calculations with minimal basis sets, to greatly accurate calculations with complete sets. The size-efficiency of AO bases, together with the O(N) scaling of the algorithm, allow the application of the method to systems with many hundreds of atoms, in single processor workstations. I will present the SIESTA code,(D. Sanchez-Portal, P. Ordejón, E. Artacho and J. M. Soler, Int. J. Quantum Chem., 65), 453 (1997) in which the method is implemented, with several LDA, LSD and GGA functionals available, and using norm-conserving, non-local pseudopotentials (in the Kleinman-Bylander form) to eliminate the core electrons. The calculation of static properties such as energies, forces, pressure, stress and magnetic moments, as well as molecular dynamics (MD) simulations capabilities (including variable cell shape, constant temperature and constant pressure MD) are fully implemented. I will also show examples of the accuracy of the method, and applications to large-scale materials and biomolecular systems.

  13. Systematic theoretical study of non-nuclear electron density maxima in some diatomic molecules.

    PubMed

    Terrabuio, Luiz A; Teodoro, Tiago Q; Rachid, Marina G; Haiduke, Roberto L A

    2013-10-10

    First, exploratory calculations were performed to investigate the presence of non-nuclear maxima (NNMs) in ground-state electron densities of homonuclear diatomic molecules from hydrogen up to calcium at their equilibrium geometries. In a second stage, only for the cases in which these features were previously detected, a rigorous analysis was carried out by several combinations of theoretical methods and basis sets in order to ensure that they are not only calculation artifacts. Our best results support that Li2, B2, C2, and P2 are molecules that possess true NNMs. A NNM was found in values obtained from the largest basis sets for Na2, but it disappeared at the experimental geometry because optimized bond lengths are significantly inaccurate for this case (deviations of 0.10 Å). Two of these maxima are also observed in Si2 with CCSD and large basis sets, but they are no longer detected as core-valence correlation or multiconfigurational wave functions are taken into account. Therefore, the NNMs in Si2 can be considered unphysical features due to an incomplete treatment of electron correlation. Finally, we show that a NNM is encountered in LiNa, representing the first discovery of such electron density maxima in a heteronuclear diatomic system at its equilibrium geometry, to our knowledge. Some results for LiNa, found in variations in internuclear distances, suggest that molecular electric moments, such as dipole and quadrupole, are sensitive to the presence of NNMs.

  14. JPRS Report, China.

    DTIC Science & Technology

    1991-11-19

    grew 253 percent, net assets grew 87 vigorous debates among economists a few years ago, has percent, fixed assets grew 155 percent, and average been...although enterprises. they only account for 2.7 percent of all industrial enter- prises, they possess two-thirds of all fixed assess, account If we are to...large- ther fiscal problems are handled on an ad-hoc basis. A and medium-sized enterprises do not appear strong fixed base number in contracts sets taxes

  15. Neural network post-processing of grayscale optical correlator

    NASA Technical Reports Server (NTRS)

    Lu, Thomas T; Hughlett, Casey L.; Zhoua, Hanying; Chao, Tien-Hsin; Hanan, Jay C.

    2005-01-01

    In this paper we present the use of a radial basis function neural network (RBFNN) as a post-processor to assist the optical correlator to identify the objects and to reject false alarms. Image plane features near the correlation peaks are extracted and fed to the neural network for analysis. The approach is capable of handling large number of object variations and filter sets. Preliminary experimental results are presented and the performance is analyzed.

  16. CLOUD PEAK CONTIGUOUS, ROCK CREEK, PINEY CREEK, AND LITTLE GOOSE ROADLESS AREAS, WYOMING.

    USGS Publications Warehouse

    Segerstrom, Kenneth; Brown, Don S.

    1984-01-01

    On the basis of mineral surveys, study areas surrounding the Cloud Peak Primitive Area in northern Wyoming offer little promise for the occurrence of mineral or energy resources. The geologic setting precludes the existence of deposits of organic fuels. Nonmetallic commodities, such as feldspar, limestone, building stone, clay, sand, and gravel are present, but these materials are readily available nearby in large quantities in more accessible areas.

  17. The application of midbond basis sets in efficient and accurate ab initio calculations on electron-deficient systems

    NASA Astrophysics Data System (ADS)

    Choi, Chu Hwan

    2002-09-01

    Ab initio chemistry has shown great promise in reproducing experimental results and in its predictive power. The many complicated computational models and methods seem impenetrable to an inexperienced scientist, and the reliability of the results is not easily interpreted. The application of midbond orbitals is used to determine a general method for use in calculating weak intermolecular interactions, especially those involving electron-deficient systems. Using the criteria of consistency, flexibility, accuracy and efficiency we propose a supermolecular method of calculation using the full counterpoise (CP) method of Boys and Bernardi, coupled with Moller-Plesset (MP) perturbation theory as an efficient electron-correlative method. We also advocate the use of the highly efficient and reliable correlation-consistent polarized valence basis sets of Dunning. To these basis sets, we add a general set of midbond orbitals and demonstrate greatly enhanced efficiency in the calculation. The H2-H2 dimer is taken as a benchmark test case for our method, and details of the computation are elaborated. Our method reproduces with great accuracy the dissociation energies of other previous theoretical studies. The added efficiency of extending the basis sets with conventional means is compared with the performance of our midbond-extended basis sets. The improvement found with midbond functions is notably superior in every case tested. Finally, a novel application of midbond functions to the BH5 complex is presented. The system is an unusual van der Waals complex. The interaction potential curves are presented for several standard basis sets and midbond-enhanced basis sets, as well as for two popular, alternative correlation methods. We report that MP theory appears to be superior to coupled-cluster (CC) in speed, while it is more stable than B3LYP, a widely-used density functional theory (DFT). Application of our general method yields excellent results for the midbond basis sets. Again they prove superior to conventional extended basis sets. Based on these results, we recommend our general approach as a highly efficient, accurate method for calculating weakly interacting systems.

  18. Basis set limit and systematic errors in local-orbital based all-electron DFT

    NASA Astrophysics Data System (ADS)

    Blum, Volker; Behler, Jörg; Gehrke, Ralf; Reuter, Karsten; Scheffler, Matthias

    2006-03-01

    With the advent of efficient integration schemes,^1,2 numeric atom-centered orbitals (NAO's) are an attractive basis choice in practical density functional theory (DFT) calculations of nanostructured systems (surfaces, clusters, molecules). Though all-electron, the efficiency of practical implementations promises to be on par with the best plane-wave pseudopotential codes, while having a noticeably higher accuracy if required: Minimal-sized effective tight-binding like calculations and chemically accurate all-electron calculations are both possible within the same framework; non-periodic and periodic systems can be treated on equal footing; and the localized nature of the basis allows in principle for O(N)-like scaling. However, converging an observable with respect to the basis set is less straightforward than with competing systematic basis choices (e.g., plane waves). We here investigate the basis set limit of optimized NAO basis sets in all-electron calculations, using as examples small molecules and clusters (N2, Cu2, Cu4, Cu10). meV-level total energy convergence is possible using <=50 basis functions per atom in all cases. We also find a clear correlation between the errors which arise from underconverged basis sets, and the system geometry (interatomic distance). ^1 B. Delley, J. Chem. Phys. 92, 508 (1990), ^2 J.M. Soler et al., J. Phys.: Condens. Matter 14, 2745 (2002).

  19. Basis set construction for molecular electronic structure theory: natural orbital and Gauss-Slater basis for smooth pseudopotentials.

    PubMed

    Petruzielo, F R; Toulouse, Julien; Umrigar, C J

    2011-02-14

    A simple yet general method for constructing basis sets for molecular electronic structure calculations is presented. These basis sets consist of atomic natural orbitals from a multiconfigurational self-consistent field calculation supplemented with primitive functions, chosen such that the asymptotics are appropriate for the potential of the system. Primitives are optimized for the homonuclear diatomic molecule to produce a balanced basis set. Two general features that facilitate this basis construction are demonstrated. First, weak coupling exists between the optimal exponents of primitives with different angular momenta. Second, the optimal primitive exponents for a chosen system depend weakly on the particular level of theory employed for optimization. The explicit case considered here is a basis set appropriate for the Burkatzki-Filippi-Dolg pseudopotentials. Since these pseudopotentials are finite at nuclei and have a Coulomb tail, the recently proposed Gauss-Slater functions are the appropriate primitives. Double- and triple-zeta bases are developed for elements hydrogen through argon. These new bases offer significant gains over the corresponding Burkatzki-Filippi-Dolg bases at various levels of theory. Using a Gaussian expansion of the basis functions, these bases can be employed in any electronic structure method. Quantum Monte Carlo provides an added benefit: expansions are unnecessary since the integrals are evaluated numerically.

  20. Auxiliary basis sets for density-fitting second-order Møller-Plesset perturbation theory: weighted core-valence correlation consistent basis sets for the 4d elements Y-Pd.

    PubMed

    Hill, J Grant

    2013-09-30

    Auxiliary basis sets (ABS) specifically matched to the cc-pwCVnZ-PP and aug-cc-pwCVnZ-PP orbital basis sets (OBS) have been developed and optimized for the 4d elements Y-Pd at the second-order Møller-Plesset perturbation theory level. Calculation of the core-valence electron correlation energies for small to medium sized transition metal complexes demonstrates that the error due to the use of these new sets in density fitting is three to four orders of magnitude smaller than that due to the OBS incompleteness, and hence is considered negligible. Utilizing the ABSs in the resolution-of-the-identity component of explicitly correlated calculations is also investigated, where it is shown that i-type functions are important to produce well-controlled errors in both integrals and correlation energy. Benchmarking at the explicitly correlated coupled cluster with single, double, and perturbative triple excitations level indicates impressive convergence with respect to basis set size for the spectroscopic constants of 4d monofluorides; explicitly correlated double-ζ calculations produce results close to conventional quadruple-ζ, and triple-ζ is within chemical accuracy of the complete basis set limit. Copyright © 2013 Wiley Periodicals, Inc.

  1. Adaptive local basis set for Kohn–Sham density functional theory in a discontinuous Galerkin framework II: Force, vibration, and molecular dynamics calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Gaigong; Lin, Lin, E-mail: linlin@math.berkeley.edu; Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

    Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynmanmore » forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Since the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H{sub 2} and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.« less

  2. Adaptive local basis set for Kohn–Sham density functional theory in a discontinuous Galerkin framework II: Force, vibration, and molecular dynamics calculations

    DOE PAGES

    Zhang, Gaigong; Lin, Lin; Hu, Wei; ...

    2017-01-27

    Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynmanmore » forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Sin ce the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H 2 and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.« less

  3. Adaptive local basis set for Kohn–Sham density functional theory in a discontinuous Galerkin framework II: Force, vibration, and molecular dynamics calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Gaigong; Lin, Lin; Hu, Wei

    Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn–Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann–Feynmanmore » forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Sin ce the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann–Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H 2 and liquid Al–Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.« less

  4. Adaptive local basis set for Kohn-Sham density functional theory in a discontinuous Galerkin framework II: Force, vibration, and molecular dynamics calculations

    NASA Astrophysics Data System (ADS)

    Zhang, Gaigong; Lin, Lin; Hu, Wei; Yang, Chao; Pask, John E.

    2017-04-01

    Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn-Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann-Feynman forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Since the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann-Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H2 and liquid Al-Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.

  5. The IAB Iron-Meteorite Complex: A Group, Five Subgroups, Numerous Grouplets, Closely Related, Mainly Formed by Crystal Segregation in Rapidly Cooling Melts

    NASA Technical Reports Server (NTRS)

    Wasson, J. T.; Kallemeyn, G. W.

    2002-01-01

    We present new data or iron meteorites that are members of group IAB or are closely related to this large group, and we have also reevaluated some of our earlier data for these irons. In the past it was not possible to distinguish IAB and IIICD irons on the basis of their positions on element-Ni diagrams. We now find that plotting, the new and revised data yields six sets of compact fields on element-Au diagrams, each set corresponding to a compositional group. The largest set includes the majority (approximately equal to 70) of irons previously designated IA: We christened this set the IAB main group. The remaining five sets we designate subgroups within the IAB complex. Three of these subgroups have Au contents similar to the main group, and form parallel trends in most element-Ni diagrams. The groups originally designated IIIC and IIID are two of these subgroups: they are now well resolved from each other and from the main group. The other low-Au subgroup has Ni contents just above the main group. Two other IAB subgroups have appreciably higher Au contents than the main group and show weaker compositional links to it. We have named these five subgroups on the basis of their Au and Ni contents. The three subgroups having Au contents similar to the main group are the low-Au (L) subgroups the two others the high-Au (H) subgroups. The Ni contents are designated high (H), medium (M), or low (L). Thus the old group IIID is now the sLH subgroup. the old group IIIC is the sLM subgroup. In addition, eight irons assigned to two grouplets plot between sLL and sLM on most element-Au diagrams. A large number (27) of related irons plot outside these compact fields but nonetheless appear to be sufficiently related to also be included in the IAB complex.

  6. Benchmark of Ab Initio Bethe-Salpeter Equation Approach with Numeric Atom-Centered Orbitals

    NASA Astrophysics Data System (ADS)

    Liu, Chi; Kloppenburg, Jan; Kanai, Yosuke; Blum, Volker

    The Bethe-Salpeter equation (BSE) approach based on the GW approximation has been shown to be successful for optical spectra prediction of solids and recently also for small molecules. We here present an all-electron implementation of the BSE using numeric atom-centered orbital (NAO) basis sets. In this work, we present benchmark of BSE implemented in FHI-aims for low-lying excitation energies for a set of small organic molecules, the well-known Thiel's set. The difference between our implementation (using an analytic continuation of the GW self-energy on the real axis) and the results generated by a fully frequency dependent GW treatment on the real axis is on the order of 0.07 eV for the benchmark molecular set. We study the convergence behavior to the complete basis set limit for excitation spectra, using a group of valence correlation consistent NAO basis sets (NAO-VCC-nZ), as well as for standard NAO basis sets for ground state DFT with extended augmentation functions (NAO+aug). The BSE results and convergence behavior are compared to linear-response time-dependent DFT, where excellent numerical convergence is shown for NAO+aug basis sets.

  7. Benchmarking Atomic Data for Astrophysics: Be-like Ions between B II and Ne VII

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Chen, Zhan Bin; Zhang, Chun Yu; Si, Ran; Jönsson, Per; Hartman, Henrik; Gu, Ming Feng; Chen, Chong Yang; Yan, Jun

    2018-02-01

    Large-scale self-consistent multiconfiguration Dirac–Hartree–Fock and relativistic configuration interaction calculations are reported for the n≤slant 6 levels in Be-like ions from B II to Ne VII. Effects from electron correlation are taken into account by means of large expansions in terms of a basis of configuration state functions, and a complete and accurate data set of excitation energies; lifetimes; wavelengths; electric dipole, magnetic dipole, electric quadrupole, and magnetic quadrupole line strengths; transition rates; and oscillator strengths for these levels is provided for each ion. Comparisons are made with available experimental and theoretical results. The uncertainty of excitation energies is assessed to be 0.01% on average, which makes it possible to find and rule out misidentifications and aid new line identifications involving high-lying levels in astrophysical spectra. The complete data set is also useful for modeling and diagnosing astrophysical plasmas.

  8. Matching by linear programming and successive convexification.

    PubMed

    Jiang, Hao; Drew, Mark S; Li, Ze-Nian

    2007-06-01

    We present a novel convex programming scheme to solve matching problems, focusing on the challenging problem of matching in a large search range and with cluttered background. Matching is formulated as metric labeling with L1 regularization terms, for which we propose a novel linear programming relaxation method and an efficient successive convexification implementation. The unique feature of the proposed relaxation scheme is that a much smaller set of basis labels is used to represent the original label space. This greatly reduces the size of the searching space. A successive convexification scheme solves the labeling problem in a coarse to fine manner. Importantly, the original cost function is reconvexified at each stage, in the new focus region only, and the focus region is updated so as to refine the searching result. This makes the method well-suited for large label set matching. Experiments demonstrate successful applications of the proposed matching scheme in object detection, motion estimation, and tracking.

  9. Dissociative recombination of the ground state of N2(+)

    NASA Technical Reports Server (NTRS)

    Guberman, Steven L.

    1991-01-01

    Large-scale calculations of the dissociative recombination cross sections and rates for the v = 0 level of the N2(+) ground state are reported, and the important role played by vibrationally excited Rydberg states lying both below and above the v = 0 level of the ion is demonstrated. The large-scale electronic wave function calculations were done using triple zeta plus polarization nuclear-centered-valence Gaussian basis sets. The electronic widths were obtained using smaller wave functions, and the cross sections were calculated on the basis of the multichannel quantum defect theory. The DR rate is calculated at 1.6 x 10 to the -7th x (Te/300) to the -0.37 cu cm/sec for Te in the range of 100 to 1000 K, and is found to be in excellent agreement with prior microwave afterglow experiments but in disagreement with recent merged beam results. It is inferred that the dominant mechanism for DR imparts sufficient energy to the product atoms to allow for escape from the Martian atmosphere.

  10. Ab Initio and Analytic Intermolecular Potentials for Ar-CF₄

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vayner, Grigoriy; Alexeev, Yuri; Wang, Jiangping

    2006-03-09

    Ab initio calculations at the CCSD(T) level of theory are performed to characterize the Ar + CF ₄ intermolecular potential. Extensive calculations, with and without a correction for basis set superposition error (BSSE), are performed with the cc-pVTZ basis set. Additional calculations are performed with other correlation consistent (cc) basis sets to extrapolate the Ar---CF₄potential energy minimum to the complete basis set (CBS) limit. Both the size of the basis set and BSSE have substantial effects on the Ar + CF₄ potential. Calculations with the cc-pVTZ basis set and without a BSSE correction, appear to give a good representation ofmore » the potential at the CBS limit and with a BSSE correction. In addition, MP2 theory is found to give potential energies in very good agreement with those determined by the much higher level CCSD(T) theory. Two analytic potential energy functions were determined for Ar + CF₄by fitting the cc-pVTZ calculations both with and without a BSSE correction. These analytic functions were written as a sum of two body potentials and excellent fits to the ab initio potentials were obtained by representing each two body interaction as a Buckingham potential.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirkov, Leonid; Makarewicz, Jan, E-mail: jama@amu.edu.pl

    An ab initio intermolecular potential energy surface (PES) has been constructed for the benzene-krypton (BKr) van der Waals (vdW) complex. The interaction energy has been calculated at the coupled cluster level of theory with single, double, and perturbatively included triple excitations using different basis sets. As a result, a few analytical PESs of the complex have been determined. They allowed a prediction of the complex structure and its vibrational vdW states. The vibrational energy level pattern exhibits a distinct polyad structure. Comparison of the equilibrium structure, the dipole moment, and vibrational levels of BKr with their experimental counterparts has allowedmore » us to design an optimal basis set composed of a small Dunning’s basis set for the benzene monomer, a larger effective core potential adapted basis set for Kr and additional midbond functions. Such a basis set yields vibrational energy levels that agree very well with the experimental ones as well as with those calculated from the available empirical PES derived from the microwave spectra of the BKr complex. The basis proposed can be applied to larger complexes including Kr because of a reasonable computational cost and accurate results.« less

  12. Benchmarking of London Dispersion-Accounting Density Functional Theory Methods on Very Large Molecular Complexes.

    PubMed

    Risthaus, Tobias; Grimme, Stefan

    2013-03-12

    A new test set (S12L) containing 12 supramolecular noncovalently bound complexes is presented and used to evaluate seven different methods to account for dispersion in DFT (DFT-D3, DFT-D2, DFT-NL, XDM, dDsC, TS-vdW, M06-L) at different basis set levels against experimental, back-corrected reference energies. This allows conclusions about the performance of each method in an explorative research setting on "real-life" problems. Most DFT methods show satisfactory performance but, due to the largeness of the complexes, almost always require an explicit correction for the nonadditive Axilrod-Teller-Muto three-body dispersion interaction to get accurate results. The necessity of using a method capable of accounting for dispersion is clearly demonstrated in that the two-body dispersion contributions are on the order of 20-150% of the total interaction energy. MP2 and some variants thereof are shown to be insufficient for this while a few tested D3-corrected semiempirical MO methods perform reasonably well. Overall, we suggest the use of this benchmark set as a "sanity check" against overfitting to too small molecular cases.

  13. A Portable Computer System for Auditing Quality of Ambulatory Care

    PubMed Central

    McCoy, J. Michael; Dunn, Earl V.; Borgiel, Alexander E.

    1987-01-01

    Prior efforts to effectively and efficiently audit quality of ambulatory care based on comprehensive process criteria have been limited largely by the complexity and cost of data abstraction and management. Over the years, several demonstration projects have generated large sets of process criteria and mapping systems for evaluating quality of care, but these paper-based approaches have been impractical to implement on a routine basis. Recognizing that portable microcomputers could solve many of the technical problems in abstracting data from medical records, we built upon previously described criteria and developed a microcomputer-based abstracting system that facilitates reliable and cost-effective data abstraction.

  14. Endohedral fullerenes contaning transition-metal clusters

    NASA Astrophysics Data System (ADS)

    Bhusal, Shusil; Basurto, Luis; Zope, Rajendra; Baruah, Tunna

    We report detailed investigation of structural, electronic, and spectroscopic properties of VSc2N-containing fullerenes in the size range C68 - C96. First, the candidate structures of the ground state are obtained using a systematic approach in which a large number of isomers of endohedral fullerenes were screened for their energetic stability. Stability of some of the most promising isomers were further studied using density functional theory at the all-electron level using large polarized Gaussian basis sets. The effect of the V doping is examined on the structure, spin states and the magnetic properties of the endohedral fullerenes. De-SC0002168, NSF-DMR 125302, DE-SC0006818.

  15. 42 CFR 415.170 - Conditions for payment on a fee schedule basis for physician services in a teaching setting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... physician services in a teaching setting. 415.170 Section 415.170 Public Health CENTERS FOR MEDICARE... BY PHYSICIANS IN PROVIDERS, SUPERVISING PHYSICIANS IN TEACHING SETTINGS, AND RESIDENTS IN CERTAIN SETTINGS Physician Services in Teaching Settings § 415.170 Conditions for payment on a fee schedule basis...

  16. UHF (Ultra-High-Frequency) Propagation in Vegetative Media.

    DTIC Science & Technology

    1980-04-01

    Y V /ik) where k = 2A/X is the wave number and the asterisk indicates complex conjugate. In order to obtain useful results for average values that are...easy to make an accurate estimation of the expected effects under one set of conditions on the basis of experimental observa- tions carried out under... systems propagating horizontally through vegetation. The large quantity A-13 of measured data demonstrates the complex effects upon path loss of irregu

  17. An ab initio study of HCuCO

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.

    1994-01-01

    HCuCO is studied using a large Gaussian basis set at the coupled cluster singles and doubles level of theory, including a perturbational estimate of the connected triples (CCSD(T)). In contrast with CuCO, HCuCO is linear. The Cu-CO bond in HCuCO is significantly stronger than in CuCO. These differences between HCuCO and CuCO are discussed in terms of theCu-H bond polarizing the Cu 4s electron away from the CO.

  18. Theoretical studies of the potential surface for the F - H2 greater than HF + H reaction

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Walch, Stephen, P.; Langhoff, Stephen R.; Taylor, Peter R.; Jaffe, Richard L.

    1987-01-01

    The F + H2 yields HF + H potential energy hypersurface was studied in the saddle point and entrance channel regions. Using a large (5s 5p 3d 2f 1g/4s 3p 2d) atomic natural orbital basis set, a classical barrier height of 1.86 kcal/mole was obtained at the CASSCF/multireference CI level (MRCI) after correcting for basis set superposition error and including a Davidson correction (+Q) for higher excitations. Based upon an analysis of the computed results, the true classical barrier is estimated to be about 1.4 kcal/mole. The location of the bottleneck on the lowest vibrationally adiabatic potential curve was also computed and the translational energy threshold determined from a one-dimensional tunneling calculation. Using the difference between the calculated and experimental threshold to adjust the classical barrier height on the computed surface yields a classical barrier in the range of 1.0 to 1.5 kcal/mole. Combining the results of the direct estimates of the classical barrier height with the empirical values obtained from the approximation calculations of the dynamical threshold, it is predicted that the true classical barrier height is 1.4 + or - 0.4 kcal/mole. Arguments are presented in favor of including the relatively large +Q correction obtained when nine electrons are correlated at the CASSCF/MRCI level.

  19. Projected Hybrid Orbitals: A General QM/MM Method

    PubMed Central

    2015-01-01

    A projected hybrid orbital (PHO) method was described to model the covalent boundary in a hybrid quantum mechanical and molecular mechanical (QM/MM) system. The PHO approach can be used in ab initio wave function theory and in density functional theory with any basis set without introducing system-dependent parameters. In this method, a secondary basis set on the boundary atom is introduced to formulate a set of hybrid atomic orbtials. The primary basis set on the boundary atom used for the QM subsystem is projected onto the secondary basis to yield a representation that provides a good approximation to the electron-withdrawing power of the primary basis set to balance electronic interactions between QM and MM subsystems. The PHO method has been tested on a range of molecules and properties. Comparison with results obtained from QM calculations on the entire system shows that the present PHO method is a robust and balanced QM/MM scheme that preserves the structural and electronic properties of the QM region. PMID:25317748

  20. An exact variational method to calculate rovibrational spectra of polyatomic molecules with large amplitude motion

    NASA Astrophysics Data System (ADS)

    Yu, Hua-Gen

    2016-08-01

    We report a new full-dimensional variational algorithm to calculate rovibrational spectra of polyatomic molecules using an exact quantum mechanical Hamiltonian. The rovibrational Hamiltonian of system is derived in a set of orthogonal polyspherical coordinates in the body-fixed frame. It is expressed in an explicitly Hermitian form. The Hamiltonian has a universal formulation regardless of the choice of orthogonal polyspherical coordinates and the number of atoms in molecule, which is suitable for developing a general program to study the spectra of many polyatomic systems. An efficient coupled-state approach is also proposed to solve the eigenvalue problem of the Hamiltonian using a multi-layer Lanczos iterative diagonalization approach via a set of direct product basis set in three coordinate groups: radial coordinates, angular variables, and overall rotational angles. A simple set of symmetric top rotational functions is used for the overall rotation whereas a potential-optimized discrete variable representation method is employed in radial coordinates. A set of contracted vibrationally diabatic basis functions is adopted in internal angular variables. Those diabatic functions are first computed using a neural network iterative diagonalization method based on a reduced-dimension Hamiltonian but only once. The final rovibrational energies are computed using a modified Lanczos method for a given total angular momentum J, which is usually fast. Two numerical applications to CH4 and H2CO are given, together with a comparison with previous results.

  1. Discovering transnosological molecular basis of human brain diseases using biclustering analysis of integrated gene expression data.

    PubMed

    Cha, Kihoon; Hwang, Taeho; Oh, Kimin; Yi, Gwan-Su

    2015-01-01

    It has been reported that several brain diseases can be treated as transnosological manner implicating possible common molecular basis under those diseases. However, molecular level commonality among those brain diseases has been largely unexplored. Gene expression analyses of human brain have been used to find genes associated with brain diseases but most of those studies were restricted either to an individual disease or to a couple of diseases. In addition, identifying significant genes in such brain diseases mostly failed when it used typical methods depending on differentially expressed genes. In this study, we used a correlation-based biclustering approach to find coexpressed gene sets in five neurodegenerative diseases and three psychiatric disorders. By using biclustering analysis, we could efficiently and fairly identified various gene sets expressed specifically in both single and multiple brain diseases. We could find 4,307 gene sets correlatively expressed in multiple brain diseases and 3,409 gene sets exclusively specified in individual brain diseases. The function enrichment analysis of those gene sets showed many new possible functional bases as well as neurological processes that are common or specific for those eight diseases. This study introduces possible common molecular bases for several brain diseases, which open the opportunity to clarify the transnosological perspective assumed in brain diseases. It also showed the advantages of correlation-based biclustering analysis and accompanying function enrichment analysis for gene expression data in this type of investigation.

  2. Discovering transnosological molecular basis of human brain diseases using biclustering analysis of integrated gene expression data

    PubMed Central

    2015-01-01

    Background It has been reported that several brain diseases can be treated as transnosological manner implicating possible common molecular basis under those diseases. However, molecular level commonality among those brain diseases has been largely unexplored. Gene expression analyses of human brain have been used to find genes associated with brain diseases but most of those studies were restricted either to an individual disease or to a couple of diseases. In addition, identifying significant genes in such brain diseases mostly failed when it used typical methods depending on differentially expressed genes. Results In this study, we used a correlation-based biclustering approach to find coexpressed gene sets in five neurodegenerative diseases and three psychiatric disorders. By using biclustering analysis, we could efficiently and fairly identified various gene sets expressed specifically in both single and multiple brain diseases. We could find 4,307 gene sets correlatively expressed in multiple brain diseases and 3,409 gene sets exclusively specified in individual brain diseases. The function enrichment analysis of those gene sets showed many new possible functional bases as well as neurological processes that are common or specific for those eight diseases. Conclusions This study introduces possible common molecular bases for several brain diseases, which open the opportunity to clarify the transnosological perspective assumed in brain diseases. It also showed the advantages of correlation-based biclustering analysis and accompanying function enrichment analysis for gene expression data in this type of investigation. PMID:26043779

  3. An exact variational method to calculate rovibrational spectra of polyatomic molecules with large amplitude motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Hua-Gen, E-mail: hgy@bnl.gov

    We report a new full-dimensional variational algorithm to calculate rovibrational spectra of polyatomic molecules using an exact quantum mechanical Hamiltonian. The rovibrational Hamiltonian of system is derived in a set of orthogonal polyspherical coordinates in the body-fixed frame. It is expressed in an explicitly Hermitian form. The Hamiltonian has a universal formulation regardless of the choice of orthogonal polyspherical coordinates and the number of atoms in molecule, which is suitable for developing a general program to study the spectra of many polyatomic systems. An efficient coupled-state approach is also proposed to solve the eigenvalue problem of the Hamiltonian using amore » multi-layer Lanczos iterative diagonalization approach via a set of direct product basis set in three coordinate groups: radial coordinates, angular variables, and overall rotational angles. A simple set of symmetric top rotational functions is used for the overall rotation whereas a potential-optimized discrete variable representation method is employed in radial coordinates. A set of contracted vibrationally diabatic basis functions is adopted in internal angular variables. Those diabatic functions are first computed using a neural network iterative diagonalization method based on a reduced-dimension Hamiltonian but only once. The final rovibrational energies are computed using a modified Lanczos method for a given total angular momentum J, which is usually fast. Two numerical applications to CH{sub 4} and H{sub 2}CO are given, together with a comparison with previous results.« less

  4. A novel Gaussian-Sinc mixed basis set for electronic structure calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jerke, Jonathan L.; Lee, Young; Tymczak, C. J.

    2015-08-14

    A Gaussian-Sinc basis set methodology is presented for the calculation of the electronic structure of atoms and molecules at the Hartree–Fock level of theory. This methodology has several advantages over previous methods. The all-electron electronic structure in a Gaussian-Sinc mixed basis spans both the “localized” and “delocalized” regions. A basis set for each region is combined to make a new basis methodology—a lattice of orthonormal sinc functions is used to represent the “delocalized” regions and the atom-centered Gaussian functions are used to represent the “localized” regions to any desired accuracy. For this mixed basis, all the Coulomb integrals are definablemore » and can be computed in a dimensional separated methodology. Additionally, the Sinc basis is translationally invariant, which allows for the Coulomb singularity to be placed anywhere including on lattice sites. Finally, boundary conditions are always satisfied with this basis. To demonstrate the utility of this method, we calculated the ground state Hartree–Fock energies for atoms up to neon, the diatomic systems H{sub 2}, O{sub 2}, and N{sub 2}, and the multi-atom system benzene. Together, it is shown that the Gaussian-Sinc mixed basis set is a flexible and accurate method for solving the electronic structure of atomic and molecular species.« less

  5. SSMNG Software Service Manager: A Scalable Building Blocks Architecture for PUS Services & FDIR Management

    NASA Astrophysics Data System (ADS)

    Lisio, Giovanni; Candia, Sante; Campolo, Giovanni; Pascucci, Dario

    2011-08-01

    Thales Alenia Space Italy has carried out the definition of a configurable (on mission basis) PUS ECSS-E_70- 41A see [3] Centralised Services Layer, characterised by:- a mission-independent set of 'classes' implementing the services logic.- a mission-dependent set of configuration data and selection flags.The software components belonging to this layer implement the PUS standard services ECSS-E_70-41A and a set of mission-specific services. The design of this layer has been performed by separating the services mechanisms (mission-independent execution logic) from the services configuration information (mission-dependent data). Once instantiated for a specific mission, the PUS Centralised Services Layer offers a large set of capabilities available to the CSCI's Applications Layer. This paper describes the building blocks PUS architectural solution developed by Thales Alenia Space Italy, emphasizing the mechanisms which allow easy configuration of the Scalable PUS library to fulfill the requirements of different missions. This paper also focus the Thales Alenia Space solution to automatically generate the mission-specific "PUS Services" flight software based on mission specific requirements. Building the PUS services mechanisms, which are configurable on mission basis is part of the PRIMA (Multipurpose Spacecraft Bus ) 'missionisation' process improvement. PRIMA Platform Avionics Software (ASW) is continuously evolving to improve modularity and standardization of interfaces and of SW components (see references in [1]).

  6. Conventional and Explicitly Correlated ab Initio Benchmark Study on Water Clusters: Revision of the BEGDB and WATER27 Data Sets.

    PubMed

    Manna, Debashree; Kesharwani, Manoj K; Sylvetsky, Nitai; Martin, Jan M L

    2017-07-11

    Benchmark ab initio energies for BEGDB and WATER27 data sets have been re-examined at the MP2 and CCSD(T) levels with both conventional and explicitly correlated (F12) approaches. The basis set convergence of both conventional and explicitly correlated methods has been investigated in detail, both with and without counterpoise corrections. For the MP2 and CCSD-MP2 contributions, rapid basis set convergence observed with explicitly correlated methods is compared to conventional methods. However, conventional, orbital-based calculations are preferred for the calculation of the (T) term, since it does not benefit from F12. CCSD(F12*) converges somewhat faster with the basis set than CCSD-F12b for the CCSD-MP2 term. The performance of various DFT methods is also evaluated for the BEGDB data set, and results show that Head-Gordon's ωB97X-V and ωB97M-V functionals outperform all other DFT functionals. Counterpoise-corrected DSD-PBEP86 and raw DSD-PBEPBE-NL also perform well and are close to MP2 results. In the WATER27 data set, the anionic (deprotonated) water clusters exhibit unacceptably slow basis set convergence with the regular cc-pVnZ-F12 basis sets, which have only diffuse s and p functions. To overcome this, we have constructed modified basis sets, denoted aug-cc-pVnZ-F12 or aVnZ-F12, which have been augmented with diffuse functions on the higher angular momenta. The calculated final dissociation energies of BEGDB and WATER27 data sets are available in the Supporting Information. Our best calculated dissociation energies can be reproduced through n-body expansion, provided one pushes to the basis set and electron correlation limit for the two-body term; for the three-body term, post-MP2 contributions (particularly CCSD-MP2) are important for capturing the three-body dispersion effects. Terms beyond four-body can be adequately captured at the MP2-F12 level.

  7. On the Use of a Mixed Gaussian/Finite-Element Basis Set for the Calculation of Rydberg States

    NASA Technical Reports Server (NTRS)

    Thuemmel, Helmar T.; Langhoff, Stephen (Technical Monitor)

    1996-01-01

    Configuration-interaction studies are reported for the Rydberg states of the helium atom using mixed Gaussian/finite-element (GTO/FE) one particle basis sets. Standard Gaussian valence basis sets are employed, like those, used extensively in quantum chemistry calculations. It is shown that the term values for high-lying Rydberg states of the helium atom can be obtained accurately (within 1 cm -1), even for a small GTO set, by augmenting the n-particle space with configurations, where orthonormalized interpolation polynomials are singly occupied.

  8. Graph theory and the Virasoro master equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obers, N.A.J.

    1991-04-01

    A brief history of affine Lie algebra, the Virasoro algebra and its culmination in the Virasoro master equations is given. By studying ansaetze of the master equation, we obtain exact solutions and gain insight in the structure of large slices of affine-Virasoro space. We find an isomorphism between the constructions in the ansatz SO(n){sub diag}, which is a set of unitary, generically irrational affine-Virasoro constructions on SO(n), and the unlabelled graphs, while, conversely, a group-theoretic and conformal field-theoretic identification is obtained for every graph of graph theory. We also define a class of magic'' Lie group bases in which themore » Virasoro master equation admits a simple metric ansatz (gmetric), whose structure is visible in the high-level expansion. When a magic basis is real on compact g, the corresponding g{sub metric} is a large system of unitary, generically irrational conformal field theories. Examples in this class include the graph-theory ansatz SO(n){sub diag} in the Cartesian basis of SO(n), and the ansatz SU(n){sub metric} in the Pauli-like basis of SU(n). Finally, we define the sine-area graphs'' of SU(n), which label the conformal field theories of SU(n){sub metric}, and we note that, in similar fashion, each magic basis of g defines a generalized graph theory on g which labels the conformal field theories of g{sub metric}. 24 figs., 4 tabs.« less

  9. A new model for the calculation and prediction of solar proton fluences

    NASA Technical Reports Server (NTRS)

    Feynman, Joan; Gabriel, Stephen B.

    1990-01-01

    A new predictive engineering model for the energy greater than 10 MeV and greater than 30 MeV solar proton environment at earth is reviewed. The data used are from observations made from 1956 through 1985. In this data set, the distinction between 'ordinary events' and 'anomalously large events' that was required in earlier models disappeared. This permitted the use of statistical analysis methods developed for ordinary events on the entire data set. The greater than 10-MeV fluences with the new model are about twice those expected on the basis of earlier models. At energies greater than 30 MeV, the old and new models agree.

  10. The calculations of small molecular conformation energy differences by density functional method

    NASA Astrophysics Data System (ADS)

    Topol, I. A.; Burt, S. K.

    1993-03-01

    The differences in the conformational energies for the gauche (G) and trans(T) conformers of 1,2-difluoroethane and for myo-and scyllo-conformer of inositol have been calculated by local density functional method (LDF approximation) with geometry optimization using different sets of calculation parameters. It is shown that in the contrast to Hartree—Fock methods, density functional calculations reproduce the correct sign and value of the gauche effect for 1,2-difluoroethane and energy difference for both conformers of inositol. The results of normal vibrational analysis for1,2-difluoroethane showed that harmonic frequencies calculated in LDF approximation agree with experimental data with the accuracy typical for scaled large basis set Hartree—Fock calculations.

  11. A new basis set for molecular bending degrees of freedom.

    PubMed

    Jutier, Laurent

    2010-07-21

    We present a new basis set as an alternative to Legendre polynomials for the variational treatment of bending vibrational degrees of freedom in order to highly reduce the number of basis functions. This basis set is inspired from the harmonic oscillator eigenfunctions but is defined for a bending angle in the range theta in [0:pi]. The aim is to bring the basis functions closer to the final (ro)vibronic wave functions nature. Our methodology is extended to complicated potential energy surfaces, such as quasilinearity or multiequilibrium geometries, by using several free parameters in the basis functions. These parameters allow several density maxima, linear or not, around which the basis functions will be mainly located. Divergences at linearity in integral computations are resolved as generalized Legendre polynomials. All integral computations required for the evaluation of molecular Hamiltonian matrix elements are given for both discrete variable representation and finite basis representation. Convergence tests for the low energy vibronic states of HCCH(++), HCCH(+), and HCCS are presented.

  12. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory.

    PubMed

    Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J; Lopata, Kenneth

    2016-09-07

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.

  13. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sissay, Adonay; Abanador, Paul; Mauger, François

    2016-09-07

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagatingmore » the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.« less

  14. An Alternate Set of Basis Functions for the Electromagnetic Solution of Arbitrarily-Shaped, Three-Dimensional, Closed, Conducting Bodies Using Method of Moments

    NASA Technical Reports Server (NTRS)

    Mackenzie, Anne I.; Baginski, Michael E.; Rao, Sadasiva M.

    2008-01-01

    In this work, we present an alternate set of basis functions, each defined over a pair of planar triangular patches, for the method of moments solution of electromagnetic scattering and radiation problems associated with arbitrarily-shaped, closed, conducting surfaces. The present basis functions are point-wise orthogonal to the pulse basis functions previously defined. The prime motivation to develop the present set of basis functions is to utilize them for the electromagnetic solution of dielectric bodies using a surface integral equation formulation which involves both electric and magnetic cur- rents. However, in the present work, only the conducting body solution is presented and compared with other data.

  15. The electron affinities of C{sub 3}O and C{sub 4}O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rienstra-Kiracofe, J.C.; Ellison, G.B.; Hoffman, B.C.

    The authors predict the adiabatic electron affinities of C{sub 3}O and C{sub 4}O based on electronic structure calculations, using a large triple-{zeta} basis set with polarization and diffuse functions (TZ2Pf+diff) with the SCF, CCSD, and CCSD(T) methods as well as with the aug-cc-pVDZ and aug-cc-pVTZ basis sets. The results imply electron affinities for C{sub 3}O and C{sub 4}O; EA(C{sub 3}O) = 0.93 eV {+-} 0.10 and EA(C{sub 4}O) = 2.99 {+-} 0.10. The EA(C{sub 3}O) is 0.41 eV lower than the experimental value of 1.34 {+-} 0.15 eV, while the EA(C{sub 4}O) is 0.94 eV higher than the experimental valuemore » of 2.05 {+-} 0.15 eV. Optimized geometries for all species at each level of theory are given, and harmonic vibrational frequencies are reported at the SCF/TZ2Pf+diff and CCSD/aug-cc-pVDZ levels.« less

  16. Estimation of Radiative Efficiency of Chemicals with Potentially Significant Global Warming Potential.

    PubMed

    Betowski, Don; Bevington, Charles; Allison, Thomas C

    2016-01-19

    Halogenated chemical substances are used in a broad array of applications, and new chemical substances are continually being developed and introduced into commerce. While recent research has considerably increased our understanding of the global warming potentials (GWPs) of multiple individual chemical substances, this research inevitably lags behind the development of new chemical substances. There are currently over 200 substances known to have high GWP. Evaluation of schemes to estimate radiative efficiency (RE) based on computational chemistry are useful where no measured IR spectrum is available. This study assesses the reliability of values of RE calculated using computational chemistry techniques for 235 chemical substances against the best available values. Computed vibrational frequency data is used to estimate RE values using several Pinnock-type models, and reasonable agreement with reported values is found. Significant improvement is obtained through scaling of both vibrational frequencies and intensities. The effect of varying the computational method and basis set used to calculate the frequency data is discussed. It is found that the vibrational intensities have a strong dependence on basis set and are largely responsible for differences in computed RE values.

  17. Periodic boundary conditions for QM/MM calculations: Ewald summation for extended Gaussian basis sets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holden, Zachary C.; Richard, Ryan M.; Herbert, John M., E-mail: herbert@chemistry.ohio-state.edu

    2013-12-28

    An implementation of Ewald summation for use in mixed quantum mechanics/molecular mechanics (QM/MM) calculations is presented, which builds upon previous work by others that was limited to semi-empirical electronic structure for the QM region. Unlike previous work, our implementation describes the wave function's periodic images using “ChElPG” atomic charges, which are determined by fitting to the QM electrostatic potential evaluated on a real-space grid. This implementation is stable even for large Gaussian basis sets with diffuse exponents, and is thus appropriate when the QM region is described by a correlated wave function. Derivatives of the ChElPG charges with respect tomore » the QM density matrix are a potentially serious bottleneck in this approach, so we introduce a ChElPG algorithm based on atom-centered Lebedev grids. The ChElPG charges thus obtained exhibit good rotational invariance even for sparse grids, enabling significant cost savings. Detailed analysis of the optimal choice of user-selected Ewald parameters, as well as timing breakdowns, is presented.« less

  18. An ab initio study of the C3(+) cation using multireference methods

    NASA Technical Reports Server (NTRS)

    Taylor, Peter R.; Martin, J. M. L.; Francois, J. P.; Gijbels, R.

    1991-01-01

    The energy difference between the linear 2 sigma(sup +, sub u) and cyclic 2B(sub 2) structures of C3(+) has been investigated using large (5s3p2d1f) basis sets and multireference electron correlation treatments, including complete active space self consistent fields (CASSCF), multireference configuration interaction (MRCI), and averaged coupled-pair functional (ACPF) methods, as well as the single-reference quadratic configuration interaction (QCISD(T)) method. Our best estimate, including a correction for basis set incompleteness, is that the linear form lies above the cyclic from by 5.2(+1.5 to -1.0) kcal/mol. The 2 sigma(sup +, sub u) state is probably not a transition state, but a local minimum. Reliable computation of the cyclic/linear energy difference in C3(+) is extremely demanding of the electron correlation treatment used: of the single-reference methods previously considered, CCSD(T) and QCISD(T) perform best. The MRCI + Q(0.01)/(4s2p1d) energy separation of 1.68 kcal/mol should provide a comparison standard for other electron correlation methods applied to this system.

  19. Electron affinities of the alkali dimers - Na2, K2, and Rb2

    NASA Technical Reports Server (NTRS)

    Partridge, H.; Dixon, D. A.; Walch, S. P.; Bauschlicher, C. W., Jr.; Gole, J. L.

    1983-01-01

    Ab initio calculations on the ground states of the alkali dimers, Na2, K2, and Rb2, and their anions are reported. The calculations employ large Gaussian basis sets and account for nearly all of the valence correlation energy. The calculated atomic electron affinities are within 0.02 eV of experiment and the calculated adiabatic electron affinities for Na2, K2, and Rb2 are, respectively, 0.470, 0.512, and 0.513 eV.

  20. A generalized geologic map of Mars.

    NASA Technical Reports Server (NTRS)

    Carr, M. H.; Masursky, H.; Saunders, R. S.

    1973-01-01

    A geologic map of Mars has been constructed largely on the basis of photographic evidence. Four classes of units are recognized: (1) primitive cratered terrain, (2) sparsely cratered volcanic eolian plains, (3) circular radially symmetric volcanic constructs such as shield volcanoes, domes, and craters, and (4) tectonic erosional units such as chaotic and channel deposits. Grabens are the main structural features; compressional and strike slip features are almost completely absent. Most grabens are part of a set radial to the main volcanic area, Tharsis.

  1. Optical modeling of stratopheric aerosols - Present status

    NASA Technical Reports Server (NTRS)

    Rosen, J. M.; Hofmann, D. J.

    1986-01-01

    A stratospheric aerosol optical model is developed which is based on a size distribution conforming to direct measurements. Additional constraints are consistent with large data sets of independently measured macroscopic aerosol properties such as mass and backscatter. The period under study covers background as well as highly disturbed volcanic conditions and an altitude interval ranging from the tropopause to about 30 km. The predictions of the model are used to form a basis for interpreting and intercomparing several diverse types of stratospheric aerosol measurement.

  2. Predicting the Underwater Sound of Moderate and Heavy Rainfall from Laboratory Measurements of Radiation from Single Large Raindrops

    DTIC Science & Technology

    1992-03-01

    Elementary Linear Algebra with Applications, pp. 301- 323, John Wiley and Sons Inc., 1987. Atlas, D., and Ulbrich, C. E. W., "The Physical Basis for...vector drd In this case, the linear system is said to be inconsistent ( Anton and Rorres, 1987). In contrast, for an underdetermined system (where the...ocean acoustical tomography and seismology. In simplest terms, the general linear inverse problem consists of fimding the desired solution to a set of m

  3. Survey-Guided Development: Data Based Organizational Change

    DTIC Science & Technology

    1975-06-01

    are largely environmentally determined, these experiences ":npact," and as they do so, move from the II 28 more existential surface level to the more...8217 personal values with those humanistic values which he believes are held by top managers today--form the major basis, in Bennis’ view, for the change...as "society." If they are, it is because we adhere to a set of humanistic values and define society’s "work" at least in part in these terms. It is

  4. Correction of energy-dependent systematic errors in dual-energy X-ray CT using a basis material coefficients transformation method

    NASA Astrophysics Data System (ADS)

    Goh, K. L.; Liew, S. C.; Hasegawa, B. H.

    1997-12-01

    Computer simulation results from our previous studies showed that energy dependent systematic errors exist in the values of attenuation coefficient synthesized using the basis material decomposition technique with acrylic and aluminum as the basis materials, especially when a high atomic number element (e.g., iodine from radiographic contrast media) was present in the body. The errors were reduced when a basis set was chosen from materials mimicking those found in the phantom. In the present study, we employed a basis material coefficients transformation method to correct for the energy-dependent systematic errors. In this method, the basis material coefficients were first reconstructed using the conventional basis materials (acrylic and aluminum) as the calibration basis set. The coefficients were then numerically transformed to those for a more desirable set materials. The transformation was done at the energies of the low and high energy windows of the X-ray spectrum. With this correction method using acrylic and an iodine-water mixture as our desired basis set, computer simulation results showed that accuracy of better than 2% could be achieved even when iodine was present in the body at a concentration as high as 10% by mass. Simulation work had also been carried out on a more inhomogeneous 2D thorax phantom of the 3D MCAT phantom. The results of the accuracy of quantitation were presented here.

  5. The Population Structure and Diversity of Eggplant from Asia and the Mediterranean Basin

    PubMed Central

    Cericola, Fabio; Portis, Ezio; Toppino, Laura; Barchi, Lorenzo; Acciarri, Nazareno; Ciriaci, Tommaso; Sala, Tea; Rotino, Giuseppe Leonardo; Lanteri, Sergio

    2013-01-01

    A collection of 238 eggplant breeding lines, heritage varieties and selections within local landraces provenanced from Asia and the Mediterranean Basin was phenotyped with respect to key plant and fruit traits, and genotyped using 24 microsatellite loci distributed uniformly throughout the genome. STRUCTURE analysis based on the genotypic data identified two major sub-groups, which to a large extent mirrored the provenance of the entries. With the goal to identify true-breeding types, 38 of the entries were discarded on the basis of microsatellite-based residual heterozygosity, along with a further nine which were not phenotypically uniform. The remaining 191 entries were scored for a set of 19 fruit and plant traits in a replicated experimental field trial. The phenotypic data were subjected to principal component and hierarchical principal component analyses, allowing three major morphological groups to be identified. All three morphological groups were represented in both the “Occidental” and the “Oriental” germplasm, so the correlation between the phenotypic and the genotypic data sets was quite weak. The relevance of these results for evolutionary studies and the further improvement of eggplant are discussed. The population structure of the core set of germplasm shows that it can be used as a basis for an association mapping approach. PMID:24040032

  6. The population structure and diversity of eggplant from Asia and the Mediterranean Basin.

    PubMed

    Cericola, Fabio; Portis, Ezio; Toppino, Laura; Barchi, Lorenzo; Acciarri, Nazareno; Ciriaci, Tommaso; Sala, Tea; Rotino, Giuseppe Leonardo; Lanteri, Sergio

    2013-01-01

    A collection of 238 eggplant breeding lines, heritage varieties and selections within local landraces provenanced from Asia and the Mediterranean Basin was phenotyped with respect to key plant and fruit traits, and genotyped using 24 microsatellite loci distributed uniformly throughout the genome. STRUCTURE analysis based on the genotypic data identified two major sub-groups, which to a large extent mirrored the provenance of the entries. With the goal to identify true-breeding types, 38 of the entries were discarded on the basis of microsatellite-based residual heterozygosity, along with a further nine which were not phenotypically uniform. The remaining 191 entries were scored for a set of 19 fruit and plant traits in a replicated experimental field trial. The phenotypic data were subjected to principal component and hierarchical principal component analyses, allowing three major morphological groups to be identified. All three morphological groups were represented in both the "Occidental" and the "Oriental" germplasm, so the correlation between the phenotypic and the genotypic data sets was quite weak. The relevance of these results for evolutionary studies and the further improvement of eggplant are discussed. The population structure of the core set of germplasm shows that it can be used as a basis for an association mapping approach.

  7. Dispersion corrected hartree-fock and density functional theory for organic crystal structure prediction.

    PubMed

    Brandenburg, Jan Gerit; Grimme, Stefan

    2014-01-01

    We present and evaluate dispersion corrected Hartree-Fock (HF) and Density Functional Theory (DFT) based quantum chemical methods for organic crystal structure prediction. The necessity of correcting for missing long-range electron correlation, also known as van der Waals (vdW) interaction, is pointed out and some methodological issues such as inclusion of three-body dispersion terms are discussed. One of the most efficient and widely used methods is the semi-classical dispersion correction D3. Its applicability for the calculation of sublimation energies is investigated for the benchmark set X23 consisting of 23 small organic crystals. For PBE-D3 the mean absolute deviation (MAD) is below the estimated experimental uncertainty of 1.3 kcal/mol. For two larger π-systems, the equilibrium crystal geometry is investigated and very good agreement with experimental data is found. Since these calculations are carried out with huge plane-wave basis sets they are rather time consuming and routinely applicable only to systems with less than about 200 atoms in the unit cell. Aiming at crystal structure prediction, which involves screening of many structures, a pre-sorting with faster methods is mandatory. Small, atom-centered basis sets can speed up the computation significantly but they suffer greatly from basis set errors. We present the recently developed geometrical counterpoise correction gCP. It is a fast semi-empirical method which corrects for most of the inter- and intramolecular basis set superposition error. For HF calculations with nearly minimal basis sets, we additionally correct for short-range basis incompleteness. We combine all three terms in the HF-3c denoted scheme which performs very well for the X23 sublimation energies with an MAD of only 1.5 kcal/mol, which is close to the huge basis set DFT-D3 result.

  8. Point Set Denoising Using Bootstrap-Based Radial Basis Function.

    PubMed

    Liew, Khang Jie; Ramli, Ahmad; Abd Majid, Ahmad

    2016-01-01

    This paper examines the application of a bootstrap test error estimation of radial basis functions, specifically thin-plate spline fitting, in surface smoothing. The presence of noisy data is a common issue of the point set model that is generated from 3D scanning devices, and hence, point set denoising is one of the main concerns in point set modelling. Bootstrap test error estimation, which is applied when searching for the smoothing parameters of radial basis functions, is revisited. The main contribution of this paper is a smoothing algorithm that relies on a bootstrap-based radial basis function. The proposed method incorporates a k-nearest neighbour search and then projects the point set to the approximated thin-plate spline surface. Therefore, the denoising process is achieved, and the features are well preserved. A comparison of the proposed method with other smoothing methods is also carried out in this study.

  9. Classification of high-resolution multi-swath hyperspectral data using Landsat 8 surface reflectance data as a calibration target and a novel histogram based unsupervised classification technique to determine natural classes from biophysically relevant fit parameters

    NASA Astrophysics Data System (ADS)

    McCann, C.; Repasky, K. S.; Morin, M.; Lawrence, R. L.; Powell, S. L.

    2016-12-01

    Compact, cost-effective, flight-based hyperspectral imaging systems can provide scientifically relevant data over large areas for a variety of applications such as ecosystem studies, precision agriculture, and land management. To fully realize this capability, unsupervised classification techniques based on radiometrically-calibrated data that cluster based on biophysical similarity rather than simply spectral similarity are needed. An automated technique to produce high-resolution, large-area, radiometrically-calibrated hyperspectral data sets based on the Landsat surface reflectance data product as a calibration target was developed and applied to three subsequent years of data covering approximately 1850 hectares. The radiometrically-calibrated data allows inter-comparison of the temporal series. Advantages of the radiometric calibration technique include the need for minimal site access, no ancillary instrumentation, and automated processing. Fitting the reflectance spectra of each pixel using a set of biophysically relevant basis functions reduces the data from 80 spectral bands to 9 parameters providing noise reduction and data compression. Examination of histograms of these parameters allows for determination of natural splitting into biophysical similar clusters. This method creates clusters that are similar in terms of biophysical parameters, not simply spectral proximity. Furthermore, this method can be applied to other data sets, such as urban scenes, by developing other physically meaningful basis functions. The ability to use hyperspectral imaging for a variety of important applications requires the development of data processing techniques that can be automated. The radiometric-calibration combined with the histogram based unsupervised classification technique presented here provide one potential avenue for managing big-data associated with hyperspectral imaging.

  10. Towards quantum chemistry on a quantum computer.

    PubMed

    Lanyon, B P; Whitfield, J D; Gillett, G G; Goggin, M E; Almeida, M P; Kassal, I; Biamonte, J D; Mohseni, M; Powell, B J; Barbieri, M; Aspuru-Guzik, A; White, A G

    2010-02-01

    Exact first-principles calculations of molecular properties are currently intractable because their computational cost grows exponentially with both the number of atoms and basis set size. A solution is to move to a radically different model of computing by building a quantum computer, which is a device that uses quantum systems themselves to store and process data. Here we report the application of the latest photonic quantum computer technology to calculate properties of the smallest molecular system: the hydrogen molecule in a minimal basis. We calculate the complete energy spectrum to 20 bits of precision and discuss how the technique can be expanded to solve large-scale chemical problems that lie beyond the reach of modern supercomputers. These results represent an early practical step toward a powerful tool with a broad range of quantum-chemical applications.

  11. Communication: Practical and rigorous reduction of the many-electron quantum mechanical Coulomb problem to O(N{sup 2/3}) storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pederson, Mark R., E-mail: mark.pederson@science.doe.gov

    2015-04-14

    It is tacitly accepted that, for practical basis sets consisting of N functions, solution of the two-electron Coulomb problem in quantum mechanics requires storage of O(N{sup 4}) integrals in the small N limit. For localized functions, in the large N limit, or for planewaves, due to closure, the storage can be reduced to O(N{sup 2}) integrals. Here, it is shown that the storage can be further reduced to O(N{sup 2/3}) for separable basis functions. A practical algorithm, that uses standard one-dimensional Gaussian-quadrature sums, is demonstrated. The resulting algorithm allows for the simultaneous storage, or fast reconstruction, of any two-electron Coulombmore » integral required for a many-electron calculation on processors with limited memory and disk space. For example, for calculations involving a basis of 9171 planewaves, the memory required to effectively store all Coulomb integrals decreases from 2.8 Gbytes to less than 2.4 Mbytes.« less

  12. Communication: practical and rigorous reduction of the many-electron quantum mechanical Coulomb problem to O(N(2/3)) storage.

    PubMed

    Pederson, Mark R

    2015-04-14

    It is tacitly accepted that, for practical basis sets consisting of N functions, solution of the two-electron Coulomb problem in quantum mechanics requires storage of O(N(4)) integrals in the small N limit. For localized functions, in the large N limit, or for planewaves, due to closure, the storage can be reduced to O(N(2)) integrals. Here, it is shown that the storage can be further reduced to O(N(2/3)) for separable basis functions. A practical algorithm, that uses standard one-dimensional Gaussian-quadrature sums, is demonstrated. The resulting algorithm allows for the simultaneous storage, or fast reconstruction, of any two-electron Coulomb integral required for a many-electron calculation on processors with limited memory and disk space. For example, for calculations involving a basis of 9171 planewaves, the memory required to effectively store all Coulomb integrals decreases from 2.8 Gbytes to less than 2.4 Mbytes.

  13. Computational study of the electronic spectra of the rare gas fluorohydrides HRgF (Rg = Ar, Kr, Xe, Rn)

    NASA Astrophysics Data System (ADS)

    van Hoeve, Miriam D.; Klobukowski, Mariusz

    2018-03-01

    Simulation of the electronic spectra of HRgF (Rg = Ar, Kr, Xe, Rn) was carried out using the time-dependent density functional method, with the CAMB3LYP functional and several basis sets augmented with even-tempered diffuse functions. A full spectral assignment for the HRgF systems was done. The effect of the rare gas matrix on the HRgF (Rg = Ar and Kr) spectra was investigated and it was found that the matrix blue-shifted the spectra. Scalar relativistic effects on the spectra were also studied and it was found that while the excitation energies of HArF and HKrF were insignificantly affected by relativistic effects, most of the excitation energies of HXeF and HRnF were red-shifted. Spin-orbit coupling was found to significantly affect excitation energies in HRnF. Analysis of performance of the model core potential basis set relative to all-electron (AE) basis sets showed that the former basis set increased computational efficiency and gave results similar to those obtained with the AE basis set.

  14. Ab initio study of the diatomic fluorides FeF, CoF, NiF, and CuF.

    PubMed

    Koukounas, Constantine; Mavridis, Aristides

    2008-11-06

    The late-3d transition-metal diatomic fluorides MF = FeF, CoF, NiF, and CuF have been studied using variational multireference (MRCI) and coupled-cluster [RCCSD(T)] methods, combined with large to very large basis sets. We examined a total of 35 (2S+1)|Lambda| states, constructing as well 29 full potential energy curves through the MRCI method. All examined states are ionic, diabatically correlating to M(+)+F(-)((1)S). Notwithstanding the "eccentric" character of the 3d transition metals and the difficulties to accurately be described with all-electron ab initio methods, our results are, in general, in very good agreement with available experimental numbers.

  15. Møller-Plesset perturbation energies and distances for HeC(20) extrapolated to the complete basis set limit.

    PubMed

    Varandas, A J C

    2009-02-01

    The potential energy surface for the C(20)-He interaction is extrapolated for three representative cuts to the complete basis set limit using second-order Møller-Plesset perturbation calculations with correlation consistent basis sets up to the doubly augmented variety. The results both with and without counterpoise correction show consistency with each other, supporting that extrapolation without such a correction provides a reliable scheme to elude the basis-set-superposition error. Converged attributes are obtained for the C(20)-He interaction, which are used to predict the fullerene dimer ones. Time requirements show that the method can be drastically more economical than the counterpoise procedure and even competitive with Kohn-Sham density functional theory for the title system.

  16. Exact exchange-correlation potentials of singlet two-electron systems

    NASA Astrophysics Data System (ADS)

    Ryabinkin, Ilya G.; Ospadov, Egor; Staroverov, Viktor N.

    2017-10-01

    We suggest a non-iterative analytic method for constructing the exchange-correlation potential, v XC ( r ) , of any singlet ground-state two-electron system. The method is based on a convenient formula for v XC ( r ) in terms of quantities determined only by the system's electronic wave function, exact or approximate, and is essentially different from the Kohn-Sham inversion technique. When applied to Gaussian-basis-set wave functions, the method yields finite-basis-set approximations to the corresponding basis-set-limit v XC ( r ) , whereas the Kohn-Sham inversion produces physically inappropriate (oscillatory and divergent) potentials. The effectiveness of the procedure is demonstrated by computing accurate exchange-correlation potentials of several two-electron systems (helium isoelectronic series, H2, H3 + ) using common ab initio methods and Gaussian basis sets.

  17. Optimization of Turbine Blade Design for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Shyy, Wei

    1998-01-01

    To facilitate design optimization of turbine blade shape for reusable launching vehicles, appropriate techniques need to be developed to process and estimate the characteristics of the design variables and the response of the output with respect to the variations of the design variables. The purpose of this report is to offer insight into developing appropriate techniques for supporting such design and optimization needs. Neural network and polynomial-based techniques are applied to process aerodynamic data obtained from computational simulations for flows around a two-dimensional airfoil and a generic three- dimensional wing/blade. For the two-dimensional airfoil, a two-layered radial-basis network is designed and trained. The performances of two different design functions for radial-basis networks, one based on the accuracy requirement, whereas the other one based on the limit on the network size. While the number of neurons needed to satisfactorily reproduce the information depends on the size of the data, the neural network technique is shown to be more accurate for large data set (up to 765 simulations have been used) than the polynomial-based response surface method. For the three-dimensional wing/blade case, smaller aerodynamic data sets (between 9 to 25 simulations) are considered, and both the neural network and the polynomial-based response surface techniques improve their performance as the data size increases. It is found while the relative performance of two different network types, a radial-basis network and a back-propagation network, depends on the number of input data, the number of iterations required for radial-basis network is less than that for the back-propagation network.

  18. Correlation consistent basis sets for actinides. I. The Th and U atoms.

    PubMed

    Peterson, Kirk A

    2015-02-21

    New correlation consistent basis sets based on both pseudopotential (PP) and all-electron Douglas-Kroll-Hess (DKH) Hamiltonians have been developed from double- to quadruple-zeta quality for the actinide atoms thorium and uranium. Sets for valence electron correlation (5f6s6p6d), cc - pV nZ - PP and cc - pV nZ - DK3, as well as outer-core correlation (valence + 5s5p5d), cc - pwCV nZ - PP and cc - pwCV nZ - DK3, are reported (n = D, T, Q). The -PP sets are constructed in conjunction with small-core, 60-electron PPs, while the -DK3 sets utilized the 3rd-order Douglas-Kroll-Hess scalar relativistic Hamiltonian. Both series of basis sets show systematic convergence towards the complete basis set limit, both at the Hartree-Fock and correlated levels of theory, making them amenable to standard basis set extrapolation techniques. To assess the utility of the new basis sets, extensive coupled cluster composite thermochemistry calculations of ThFn (n = 2 - 4), ThO2, and UFn (n = 4 - 6) have been carried out. After accurately accounting for valence and outer-core correlation, spin-orbit coupling, and even Lamb shift effects, the final 298 K atomization enthalpies of ThF4, ThF3, ThF2, and ThO2 are all within their experimental uncertainties. Bond dissociation energies of ThF4 and ThF3, as well as UF6 and UF5, were similarly accurate. The derived enthalpies of formation for these species also showed a very satisfactory agreement with experiment, demonstrating that the new basis sets allow for the use of accurate composite schemes just as in molecular systems composed only of lighter atoms. The differences between the PP and DK3 approaches were found to increase with the change in formal oxidation state on the actinide atom, approaching 5-6 kcal/mol for the atomization enthalpies of ThF4 and ThO2. The DKH3 atomization energy of ThO2 was calculated to be smaller than the DKH2 value by ∼1 kcal/mol.

  19. Orbital-Dependent Density Functionals for Chemical Catalysis

    DTIC Science & Technology

    2014-10-17

    noncollinear density functional theory to show that the low-spin state of Mn3 in a model of the oxygen -evolving complex of photosystem II avoids...DK, which denotes the cc-pV5Z-DK basis set for 3d metals and hydrogen and the ma-cc- pV5Z-DK basis set for oxygen ) and to nonrelativistic all...cc-pV5Z basis set for oxygen ). As compared to NCBS-DK results, all ECP calculations perform worse than def2-TZVP all-electron relativistic

  20. Electric dipole moment of diatomic molecules by configuration interaction. IV.

    NASA Technical Reports Server (NTRS)

    Green, S.

    1972-01-01

    The theory of basis set dependence in configuration interaction calculations is discussed, taking into account a perturbation model which is valid for small changes in the self-consistent field orbitals. It is found that basis set corrections are essentially additive through first order. It is shown that an error found in a previously published dipole moment calculation by Green (1972) for the metastable first excited state of CO was indeed due to an inadequate basis set as claimed.

  1. A fresh look at the photoelectron spectrum of bromobenzene: A third-order non-Dyson electron propagator study.

    PubMed

    Schneider, M; Soshnikov, D Yu; Holland, D M P; Powis, I; Antonsson, E; Patanen, M; Nicolas, C; Miron, C; Wormit, M; Dreuw, A; Trofimov, A B

    2015-10-14

    The valence-shell ionization spectrum of bromobenzene, as a representative halogen substituted aromatic, was studied using the non-Dyson third-order algebraic-diagrammatic construction [nD-ADC(3)] approximation for the electron propagator. This method, also referred to as IP-ADC(3), was implemented as a part of the Q-Chem program and enables large-scale calculations of the ionization spectra, where the computational effort scales as n(5) with respect to the number of molecular orbitals n. The IP-ADC(3) scheme is ideally suited for investigating low-lying ionization transitions, so fresh insight could be gained into the cationic state manifold of bromobenzene. In particular, the present IP-ADC(3) calculations with the cc-pVTZ basis reveal a whole class of low-lying low-intensity two-hole-one-particle (2h-1p) doublet and quartet states, which are relevant to various photoionization processes. The good qualitative agreement between the theoretical spectral profile for the valence-shell ionization transitions generated with the smaller cc-pVDZ basis set and the experimental photoelectron spectrum measured at a photon energy of 80 eV on the PLÉIADES beamline at the Soleil synchrotron radiation source allowed all the main features to be assigned. Some theoretical aspects of the ionization energy calculations concerning the use of various approximation schemes and basis sets are discussed.

  2. Excited states from quantum Monte Carlo in the basis of Slater determinants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humeniuk, Alexander; Mitrić, Roland, E-mail: roland.mitric@uni-wuerzburg.de

    2014-11-21

    Building on the full configuration interaction quantum Monte Carlo (FCIQMC) algorithm introduced recently by Booth et al. [J. Chem. Phys. 131, 054106 (2009)] to compute the ground state of correlated many-electron systems, an extension to the computation of excited states (exFCIQMC) is presented. The Hilbert space is divided into a large part consisting of pure Slater determinants and a much smaller orthogonal part (the size of which is controlled by a cut-off threshold), from which the lowest eigenstates can be removed efficiently. In this way, the quantum Monte Carlo algorithm is restricted to the orthogonal complement of the lower excitedmore » states and projects out the next highest excited state. Starting from the ground state, higher excited states can be found one after the other. The Schrödinger equation in imaginary time is solved by the same population dynamics as in the ground state algorithm with modified probabilities and matrix elements, for which working formulae are provided. As a proof of principle, the method is applied to lithium hydride in the 3-21G basis set and to the helium dimer in the aug-cc-pVDZ basis set. It is shown to give the correct electronic structure for all bond lengths. Much more testing will be required before the applicability of this method to electron correlation problems of interesting size can be assessed.« less

  3. A fresh look at the photoelectron spectrum of bromobenzene: A third-order non-Dyson electron propagator study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, M.; Wormit, M.; Dreuw, A.

    2015-10-14

    The valence-shell ionization spectrum of bromobenzene, as a representative halogen substituted aromatic, was studied using the non-Dyson third-order algebraic-diagrammatic construction [nD-ADC(3)] approximation for the electron propagator. This method, also referred to as IP-ADC(3), was implemented as a part of the Q-Chem program and enables large-scale calculations of the ionization spectra, where the computational effort scales as n{sup 5} with respect to the number of molecular orbitals n. The IP-ADC(3) scheme is ideally suited for investigating low-lying ionization transitions, so fresh insight could be gained into the cationic state manifold of bromobenzene. In particular, the present IP-ADC(3) calculations with the cc-pVTZmore » basis reveal a whole class of low-lying low-intensity two-hole-one-particle (2h-1p) doublet and quartet states, which are relevant to various photoionization processes. The good qualitative agreement between the theoretical spectral profile for the valence-shell ionization transitions generated with the smaller cc-pVDZ basis set and the experimental photoelectron spectrum measured at a photon energy of 80 eV on the PLÉIADES beamline at the Soleil synchrotron radiation source allowed all the main features to be assigned. Some theoretical aspects of the ionization energy calculations concerning the use of various approximation schemes and basis sets are discussed.« less

  4. New Basis Functions for the Electromagnetic Solution of Arbitrarily-shaped, Three Dimensional Conducting Bodies Using Method of Moments

    NASA Technical Reports Server (NTRS)

    Mackenzie, Anne I.; Baginski, Michael E.; Rao, Sadasiva M.

    2007-01-01

    In this work, we present a new set of basis functions, de ned over a pair of planar triangular patches, for the solution of electromagnetic scattering and radiation problems associated with arbitrarily-shaped surfaces using the method of moments solution procedure. The basis functions are constant over the function subdomain and resemble pulse functions for one and two dimensional problems. Further, another set of basis functions, point-wise orthogonal to the first set, is also de ned over the same function space. The primary objective of developing these basis functions is to utilize them for the electromagnetic solution involving conducting, dielectric, and composite bodies. However, in the present work, only the conducting body solution is presented and compared with other data.

  5. New Basis Functions for the Electromagnetic Solution of Arbitrarily-shaped, Three Dimensional Conducting Bodies using Method of Moments

    NASA Technical Reports Server (NTRS)

    Mackenzie, Anne I.; Baginski, Michael E.; Rao, Sadasiva M.

    2008-01-01

    In this work, we present a new set of basis functions, defined over a pair of planar triangular patches, for the solution of electromagnetic scattering and radiation problems associated with arbitrarily-shaped surfaces using the method of moments solution procedure. The basis functions are constant over the function subdomain and resemble pulse functions for one and two dimensional problems. Further, another set of basis functions, point-wise orthogonal to the first set, is also defined over the same function space. The primary objective of developing these basis functions is to utilize them for the electromagnetic solution involving conducting, dielectric, and composite bodies. However, in the present work, only the conducting body solution is presented and compared with other data.

  6. Habitat and environment of islands: primary and supplemental island sets

    USGS Publications Warehouse

    Matalas, Nicholas C.; Grossling, Bernardo F.

    2002-01-01

    The original intent of the study was to develop a first-order synopsis of island hydrology with an integrated geologic basis on a global scale. As the study progressed, the aim was broadened to provide a framework for subsequent assessments on large regional or global scales of island resources and impacts on those resources that are derived from global changes. Fundamental to the study was the development of a comprehensive framework?a wide range of parameters that describe a set of 'saltwater' islands sufficiently large to Characterize the spatial distribution of the world?s islands; Account for all major archipelagos; Account for almost all oceanically isolated islands, and Account collectively for a very large proportion of the total area of the world?s islands whereby additional islands would only marginally contribute to the representativeness and accountability of the island set. The comprehensive framework, which is referred to as the ?Primary Island Set,? is built on 122 parameters that describe 1,000 islands. To complement the investigations based on the Primary Island Set, two supplemental island sets, Set A?Other Islands (not in the Primary Island Set) and Set B?Lagoonal Atolls, are included in the study. The Primary Island Set, together with the Supplemental Island Sets A and B, provides a framework that can be used in various scientific disciplines for their island-based studies on broad regional or global scales. The study uses an informal, coherent, geophysical organization of the islands that belong to the three island sets. The organization is in the form of a global island chain, which is a particular sequential ordering of the islands referred to as the 'Alisida.' The Alisida was developed through a trial-and-error procedure by seeking to strike a balance between 'minimizing the length of the global chain' and 'maximizing the chain?s geophysical coherence.' The fact that an objective function cannot be minimized and maximized simultaneously indicates that the Alisida is not unique. Global island chains other than the Alisida may better serve disciplines other than those of hydrology and geology.

  7. Demonstrating a new framework for the comparison of environmental impacts from small- and large-scale hydropower and wind power projects.

    PubMed

    Bakken, Tor Haakon; Aase, Anne Guri; Hagen, Dagmar; Sundt, Håkon; Barton, David N; Lujala, Päivi

    2014-07-01

    Climate change and the needed reductions in the use of fossil fuels call for the development of renewable energy sources. However, renewable energy production, such as hydropower (both small- and large-scale) and wind power have adverse impacts on the local environment by causing reductions in biodiversity and loss of habitats and species. This paper compares the environmental impacts of many small-scale hydropower plants with a few large-scale hydropower projects and one wind power farm, based on the same set of environmental parameters; land occupation, reduction in wilderness areas (INON), visibility and impacts on red-listed species. Our basis for comparison was similar energy volumes produced, without considering the quality of the energy services provided. The results show that small-scale hydropower performs less favourably in all parameters except land occupation. The land occupation of large hydropower and wind power is in the range of 45-50 m(2)/MWh, which is more than two times larger than the small-scale hydropower, where the large land occupation for large hydropower is explained by the extent of the reservoirs. On all the three other parameters small-scale hydropower performs more than two times worse than both large hydropower and wind power. Wind power compares similarly to large-scale hydropower regarding land occupation, much better on the reduction in INON areas, and in the same range regarding red-listed species. Our results demonstrate that the selected four parameters provide a basis for further development of a fair and consistent comparison of impacts between the analysed renewable technologies. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Atomic Cholesky decompositions: a route to unbiased auxiliary basis sets for density fitting approximation with tunable accuracy and efficiency.

    PubMed

    Aquilante, Francesco; Gagliardi, Laura; Pedersen, Thomas Bondo; Lindh, Roland

    2009-04-21

    Cholesky decomposition of the atomic two-electron integral matrix has recently been proposed as a procedure for automated generation of auxiliary basis sets for the density fitting approximation [F. Aquilante et al., J. Chem. Phys. 127, 114107 (2007)]. In order to increase computational performance while maintaining accuracy, we propose here to reduce the number of primitive Gaussian functions of the contracted auxiliary basis functions by means of a second Cholesky decomposition. Test calculations show that this procedure is most beneficial in conjunction with highly contracted atomic orbital basis sets such as atomic natural orbitals, and that the error resulting from the second decomposition is negligible. We also demonstrate theoretically as well as computationally that the locality of the fitting coefficients can be controlled by means of the decomposition threshold even with the long-ranged Coulomb metric. Cholesky decomposition-based auxiliary basis sets are thus ideally suited for local density fitting approximations.

  9. Atomic Cholesky decompositions: A route to unbiased auxiliary basis sets for density fitting approximation with tunable accuracy and efficiency

    NASA Astrophysics Data System (ADS)

    Aquilante, Francesco; Gagliardi, Laura; Pedersen, Thomas Bondo; Lindh, Roland

    2009-04-01

    Cholesky decomposition of the atomic two-electron integral matrix has recently been proposed as a procedure for automated generation of auxiliary basis sets for the density fitting approximation [F. Aquilante et al., J. Chem. Phys. 127, 114107 (2007)]. In order to increase computational performance while maintaining accuracy, we propose here to reduce the number of primitive Gaussian functions of the contracted auxiliary basis functions by means of a second Cholesky decomposition. Test calculations show that this procedure is most beneficial in conjunction with highly contracted atomic orbital basis sets such as atomic natural orbitals, and that the error resulting from the second decomposition is negligible. We also demonstrate theoretically as well as computationally that the locality of the fitting coefficients can be controlled by means of the decomposition threshold even with the long-ranged Coulomb metric. Cholesky decomposition-based auxiliary basis sets are thus ideally suited for local density fitting approximations.

  10. Preface: Introductory Remarks: Linear Scaling Methods

    NASA Astrophysics Data System (ADS)

    Bowler, D. R.; Fattebert, J.-L.; Gillan, M. J.; Haynes, P. D.; Skylaris, C.-K.

    2008-07-01

    It has been just over twenty years since the publication of the seminal paper on molecular dynamics with ab initio methods by Car and Parrinello [1], and the contribution of density functional theory (DFT) and the related techniques to physics, chemistry, materials science, earth science and biochemistry has been huge. Nevertheless, significant improvements are still being made to the performance of these standard techniques; recent work suggests that speed improvements of one or even two orders of magnitude are possible [2]. One of the areas where major progress has long been expected is in O(N), or linear scaling, DFT, in which the computer effort is proportional to the number of atoms. Linear scaling DFT methods have been in development for over ten years [3] but we are now in an exciting period where more and more research groups are working on these methods. Naturally there is a strong and continuing effort to improve the efficiency of the methods and to make them more robust. But there is also a growing ambition to apply them to challenging real-life problems. This special issue contains papers submitted following the CECAM Workshop 'Linear-scaling ab initio calculations: applications and future directions', held in Lyon from 3-6 September 2007. A noteworthy feature of the workshop is that it included a significant number of presentations involving real applications of O(N) methods, as well as work to extend O(N) methods into areas of greater accuracy (correlated wavefunction methods, quantum Monte Carlo, TDDFT) and large scale computer architectures. As well as explicitly linear scaling methods, the conference included presentations on techniques designed to accelerate and improve the efficiency of standard (that is non-linear-scaling) methods; this highlights the important question of crossover—that is, at what size of system does it become more efficient to use a linear-scaling method? As well as fundamental algorithmic questions, this brings up implementation questions relating to parallelization (particularly with multi-core processors starting to dominate the market) and inherent scaling and basis sets (in both normal and linear scaling codes). For now, the answer seems to lie between 100-1,000 atoms, though this depends on the type of simulation used among other factors. Basis sets are still a problematic question in the area of electronic structure calculations. The linear scaling community has largely split into two camps: those using relatively small basis sets based on local atomic-like functions (where systematic convergence to the full basis set limit is hard to achieve); and those that use necessarily larger basis sets which allow convergence systematically and therefore are the localised equivalent of plane waves. Related to basis sets is the study of Wannier functions, on which some linear scaling methods are based and which give a good point of contact with traditional techniques; they are particularly interesting for modelling unoccupied states with linear scaling methods. There are, of course, as many approaches to linear scaling solution for the density matrix as there are groups in the area, though there are various broad areas: McWeeny-based methods, fragment-based methods, recursion methods, and combinations of these. While many ideas have been in development for several years, there are still improvements emerging, as shown by the rich variety of the talks below. Applications using O(N) DFT methods are now starting to emerge, though they are still clearly not trivial. Once systems to be simulated cross the 10,000 atom barrier, only linear scaling methods can be applied, even with the most efficient standard techniques. One of the most challenging problems remaining, now that ab initio methods can be applied to large systems, is the long timescale problem. Although much of the work presented was concerned with improving the performance of the codes, and applying them to scientificallyimportant problems, there was another important theme: extending functionality. The search for greater accuracy has given an implementation of density functional designed to model van der Waals interactions accurately as well as local correlation, TDDFT and QMC and GW methods which, while not explicitly O(N), take advantage of localisation. All speakers at the workshop were invited to contribute to this issue, but not all were able to do this. Hence it is useful to give a complete list of the talks presented, with the names of the sessions; however, many talks fell within more than one area. This is an exciting time for linear scaling methods, which are already starting to contribute significantly to important scientific problems. Applications to nanostructures and biomolecules A DFT study on the structural stability of Ge 3D nanostructures on Si(001) using CONQUEST Tsuyoshi Miyazaki, D R Bowler, M J Gillan, T Otsuka and T Ohno Large scale electronic structure calculation theory and several applications Takeo Fujiwara and Takeo Hoshi ONETEP:Linear-scaling DFT with plane waves Chris-Kriton Skylaris, Peter D Haynes, Arash A Mostofi, Mike C Payne Maximally-localised Wannier functions as building blocks for large-scale electronic structure calculations Arash A Mostofi and Nicola Marzari A linear scaling three dimensional fragment method for ab initio calculations Lin-Wang Wang, Zhengji Zhao, Juan Meza Peta-scalable reactive Molecular dynamics simulation of mechanochemical processes Aiichiro Nakano, Rajiv K. Kalia, Ken-ichi Nomura, Fuyuki Shimojo and Priya Vashishta Recent developments and applications of the real-space multigrid (RMG) method Jerzy Bernholc, M Hodak, W Lu, and F Ribeiro Energy minimisation functionals and algorithms CONQUEST: A linear scaling DFT Code David R Bowler, Tsuyoshi Miyazaki, Antonio Torralba, Veronika Brazdova, Milica Todorovic, Takao Otsuka and Mike Gillan Kernel optimisation and the physical significance of optimised local orbitals in the ONETEP code Peter Haynes, Chris-Kriton Skylaris, Arash Mostofi and Mike Payne A miscellaneous overview of SIESTA algorithms Jose M Soler Wavelets as a basis set for electronic structure calculations and electrostatic problems Stefan Goedecker Wavelets as a basis set for linear scaling electronic structure calculationsMark Rayson O(N) Krylov subspace method for large-scale ab initio electronic structure calculations Taisuke Ozaki Linear scaling calculations with the divide-and-conquer approach and with non-orthogonal localized orbitals Weitao Yang Toward efficient wavefunction based linear scaling energy minimization Valery Weber Accurate O(N) first-principles DFT calculations using finite differences and confined orbitals Jean-Luc Fattebert Linear-scaling methods in dynamics simulations or beyond DFT and ground state properties An O(N) time-domain algorithm for TDDFT Guan Hua Chen Local correlation theory and electronic delocalization Joseph Subotnik Ab initio molecular dynamics with linear scaling: foundations and applications Eiji Tsuchida Towards a linear scaling Car-Parrinello-like approach to Born-Oppenheimer molecular dynamics Thomas Kühne, Michele Ceriotti, Matthias Krack and Michele Parrinello Partial linear scaling for quantum Monte Carlo calculations on condensed matter Mike Gillan Exact embedding of local defects in crystals using maximally localized Wannier functions Eric Cancès Faster GW calculations in larger model structures using ultralocalized nonorthogonal Wannier functions Paolo Umari Other approaches for linear-scaling, including methods formetals Partition-of-unity finite element method for large, accurate electronic-structure calculations of metals John E Pask and Natarajan Sukumar Semiclassical approach to density functional theory Kieron Burke Ab initio transport calculations in defected carbon nanotubes using O(N) techniques Blanca Biel, F J Garcia-Vidal, A Rubio and F Flores Large-scale calculations with the tight-binding (screened) KKR method Rudolf Zeller Acknowledgments We gratefully acknowledge funding for the workshop from the UK CCP9 network, CECAM and the ESF through the PsiK network. DRB, PDH and CKS are funded by the Royal Society. References [1] Car R and Parrinello M 1985 Phys. Rev. Lett. 55 2471 [2] Kühne T D, Krack M, Mohamed F R and Parrinello M 2007 Phys. Rev. Lett. 98 066401 [3] Goedecker S 1999 Rev. Mod. Phys. 71 1085

  11. Optimization and analysis of large chemical kinetic mechanisms using the solution mapping method - Combustion of methane

    NASA Technical Reports Server (NTRS)

    Frenklach, Michael; Wang, Hai; Rabinowitz, Martin J.

    1992-01-01

    A method of systematic optimization, solution mapping, as applied to a large-scale dynamic model is presented. The basis of the technique is parameterization of model responses in terms of model parameters by simple algebraic expressions. These expressions are obtained by computer experiments arranged in a factorial design. The developed parameterized responses are then used in a joint multiparameter multidata-set optimization. A brief review of the mathematical background of the technique is given. The concept of active parameters is discussed. The technique is applied to determine an optimum set of parameters for a methane combustion mechanism. Five independent responses - comprising ignition delay times, pre-ignition methyl radical concentration profiles, and laminar premixed flame velocities - were optimized with respect to thirteen reaction rate parameters. The numerical predictions of the optimized model are compared to those computed with several recent literature mechanisms. The utility of the solution mapping technique in situations where the optimum is not unique is also demonstrated.

  12. Mining algorithm for association rules in big data based on Hadoop

    NASA Astrophysics Data System (ADS)

    Fu, Chunhua; Wang, Xiaojing; Zhang, Lijun; Qiao, Liying

    2018-04-01

    In order to solve the problem that the traditional association rules mining algorithm has been unable to meet the mining needs of large amount of data in the aspect of efficiency and scalability, take FP-Growth as an example, the algorithm is realized in the parallelization based on Hadoop framework and Map Reduce model. On the basis, it is improved using the transaction reduce method for further enhancement of the algorithm's mining efficiency. The experiment, which consists of verification of parallel mining results, comparison on efficiency between serials and parallel, variable relationship between mining time and node number and between mining time and data amount, is carried out in the mining results and efficiency by Hadoop clustering. Experiments show that the paralleled FP-Growth algorithm implemented is able to accurately mine frequent item sets, with a better performance and scalability. It can be better to meet the requirements of big data mining and efficiently mine frequent item sets and association rules from large dataset.

  13. Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc-Zn

    NASA Astrophysics Data System (ADS)

    Balabanov, Nikolai B.; Peterson, Kirk A.

    2005-08-01

    Sequences of basis sets that systematically converge towards the complete basis set (CBS) limit have been developed for the first-row transition metal elements Sc-Zn. Two families of basis sets, nonrelativistic and Douglas-Kroll-Hess (-DK) relativistic, are presented that range in quality from triple-ζ to quintuple-ζ. Separate sets are developed for the description of valence (3d4s) electron correlation (cc-pVnZ and cc-pVnZ-DK; n =T,Q, 5) and valence plus outer-core (3s3p3d4s) correlation (cc-pwCVnZ and cc-pwCVnZ-DK; n =T,Q, 5), as well as these sets augmented by additional diffuse functions for the description of negative ions and weak interactions (aug-cc-pVnZ and aug-cc-pVnZ-DK). Extensive benchmark calculations at the coupled cluster level of theory are presented for atomic excitation energies, ionization potentials, and electron affinities, as well as molecular calculations on selected hydrides (TiH, MnH, CuH) and other diatomics (TiF, Cu2). In addition to observing systematic convergence towards the CBS limits, both 3s3p electron correlation and scalar relativity are calculated to strongly impact many of the atomic and molecular properties investigated for these first-row transition metal species.

  14. Gaussian basis sets for use in correlated molecular calculations. XI. Pseudopotential-based and all-electron relativistic basis sets for alkali metal (K-Fr) and alkaline earth (Ca-Ra) elements

    NASA Astrophysics Data System (ADS)

    Hill, J. Grant; Peterson, Kirk A.

    2017-12-01

    New correlation consistent basis sets based on pseudopotential (PP) Hamiltonians have been developed from double- to quintuple-zeta quality for the late alkali (K-Fr) and alkaline earth (Ca-Ra) metals. These are accompanied by new all-electron basis sets of double- to quadruple-zeta quality that have been contracted for use with both Douglas-Kroll-Hess (DKH) and eXact 2-Component (X2C) scalar relativistic Hamiltonians. Sets for valence correlation (ms), cc-pVnZ-PP and cc-pVnZ-(DK,DK3/X2C), in addition to outer-core correlation [valence + (m-1)sp], cc-p(w)CVnZ-PP and cc-pwCVnZ-(DK,DK3/X2C), are reported. The -PP sets have been developed for use with small-core PPs [I. S. Lim et al., J. Chem. Phys. 122, 104103 (2005) and I. S. Lim et al., J. Chem. Phys. 124, 034107 (2006)], while the all-electron sets utilized second-order DKH Hamiltonians for 4s and 5s elements and third-order DKH for 6s and 7s. The accuracy of the basis sets is assessed through benchmark calculations at the coupled-cluster level of theory for both atomic and molecular properties. Not surprisingly, it is found that outer-core correlation is vital for accurate calculation of the thermodynamic and spectroscopic properties of diatomic molecules containing these elements.

  15. Ab initio calculation of reaction energies. III. Basis set dependence of relative energies on the FH2 and H2CO potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Frisch, Michael J.; Binkley, J. Stephen; Schaefer, Henry F., III

    1984-08-01

    The relative energies of the stationary points on the FH2 and H2CO nuclear potential energy surfaces relevant to the hydrogen atom abstraction, H2 elimination and 1,2-hydrogen shift reactions have been examined using fourth-order Møller-Plesset perturbation theory and a variety of basis sets. The theoretical absolute zero activation energy for the F+H2→FH+H reaction is in better agreement with experiment than previous theoretical studies, and part of the disagreement between earlier theoretical calculations and experiment is found to result from the use of assumed rather than calculated zero-point vibrational energies. The fourth-order reaction energy for the elimination of hydrogen from formaldehyde is within 2 kcal mol-1 of the experimental value using the largest basis set considered. The qualitative features of the H2CO surface are unchanged by expansion of the basis set beyond the polarized triple-zeta level, but diffuse functions and several sets of polarization functions are found to be necessary for quantitative accuracy in predicted reaction and activation energies. Basis sets and levels of perturbation theory which represent good compromises between computational efficiency and accuracy are recommended.

  16. Calculations of molecular multipole electric moments of a series of exo-insaturated four-membered heterocycles, Y = CCH2CH2X

    NASA Astrophysics Data System (ADS)

    Romero, Angel H.

    2017-10-01

    The influence of ring puckering angle on the multipole moments of sixteen four-membered heterocycles (1-16) was theoretically estimated using MP2 and different DFTs in combination with the 6-31+G(d,p) basis set. To obtain an accurate evaluation, CCSD/cc-pVDZ level and, the MP2 and PBE1PBE methods in combination with the aug-cc-pVDZ and aug-cc-pVTZ basis sets were performed on the planar geometries of 1-16. In general, the DFT and MP2 approaches provided an identical dependence of the electrical properties with the puckering angle for 1-16. Quantitatively, the quality of the level of theory and basis sets affects significant the predictions of the multipole moments, in particular for the heterocycles containing C=O and C=S bonds. Convergence basis sets within the MP2 and PBE1PBE approximations are reached in the dipole moment calculations when the aug-cc-pVTZ basis set is used, while the quadrupole and octupole moment computations require a larger basis set than aug-cc-pVTZ. On the other hand, the multipole moments showed a strong dependence with the molecular geometry and the nature of the carbon-heteroatom bonds. Specifically, the C-X bond determines the behavior of the μ(ϕ), θ(ϕ) and Ώ(ϕ) functions, while the C=Y bond plays an important role in the magnitude of the studied properties.

  17. A new proton fluence model for E greater than 10 MeV

    NASA Technical Reports Server (NTRS)

    Feynman, Joan; Armstrong, T. P.; Dao-Gibner, L.; Silverman, S.

    1988-01-01

    Researchers describe a new engineering model for the fluence of protons with energies greater than 10 MeV. The data set used is a combination of observations made primarily from the Earth's surface between 1956 and 1963 and observations made from spacecraft in the vicinity of Earth between 1963 and 1985. With this data set we find that the distinction between ordinary proton events and anomalously large proton events made in earlier work disappears. The greater than 10 MeV fluences at 1 AU calculated with the new model are about twice those expected on the basis of models now in use. In contrast to earlier models, results do not depend critically on the fluence from any one event.

  18. Fast 3D Surface Extraction 2 pages (including abstract)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sewell, Christopher Meyer; Patchett, John M.; Ahrens, James P.

    Ocean scientists searching for isosurfaces and/or thresholds of interest in high resolution 3D datasets required a tedious and time-consuming interactive exploration experience. PISTON research and development activities are enabling ocean scientists to rapidly and interactively explore isosurfaces and thresholds in their large data sets using a simple slider with real time calculation and visualization of these features. Ocean Scientists can now visualize more features in less time, helping them gain a better understanding of the high resolution data sets they work with on a daily basis. Isosurface timings (512{sup 3} grid): VTK 7.7 s, Parallel VTK (48-core) 1.3 s, PISTONmore » OpenMP (48-core) 0.2 s, PISTON CUDA (Quadro 6000) 0.1 s.« less

  19. Applicability of effective fragment potential version 2 - Molecular dynamics (EFP2-MD) simulations for predicting excess properties of mixed solvents

    NASA Astrophysics Data System (ADS)

    Kuroki, Nahoko; Mori, Hirotoshi

    2018-02-01

    Effective fragment potential version 2 - molecular dynamics (EFP2-MD) simulations, where the EFP2 is a polarizable force field based on ab initio electronic structure calculations were applied to water-methanol binary mixture. Comparing EFP2s defined with (aug-)cc-pVXZ (X = D,T) basis sets, it was found that large sets are necessary to generate sufficiently accurate EFP2 for predicting mixture properties. It was shown that EFP2-MD could predict the excess molar volume. Since the computational cost of EFP2-MD are far less than ab initio MD, the results presented herein demonstrate that EFP2-MD is promising for predicting physicochemical properties of novel mixed solvents.

  20. New image analysis of large food particles can discriminate experimentally suppressed mastication.

    PubMed

    Sugimoto, K; Iegami, C M; Iida, S; Naito, M; Tamaki, R; Minagi, S

    2012-06-01

    Objective parameters that could provide a basis for food texture selection for elderly or dysphagic patients have not been established. We, therefore, aimed to develop a precise method of measuring large particles (>2 mm in diameter) in a bolus and an analytical method to provide a scientific rationale for food selection under masticatory dysfunction conditions. We developed a new illumination system to evaluate the ability of twenty female participants (mean age, 23·4 ± 4·3 years) to masticate carrots, peanuts and beef with full, half and one quarter of the number of masticatory strokes. We also evaluated mastication under suppressed force, regulated by 20% electromyographic of the masseter muscle. The intercept and inclination of the regression line for the distribution of large particles were adopted as coefficients for the discrimination of masticatory efficiency. Single set of coefficient thresholds of 0·10 for the intercept and 1·62 for the inclination showed excellent discrimination of masticatory conditions for all three test foods with high specificity and sensitivity. These results suggested that our method of analysing the distribution of particles >2 mm in diameter might provide the basis for the appropriate selection of food texture for masticatory dysfunction patients from the standpoint of comminution. © 2012 Blackwell Publishing Ltd.

  1. Characterizing multi-scale self-similar behavior and non-statistical properties of fluctuations in financial time series

    NASA Astrophysics Data System (ADS)

    Ghosh, Sayantan; Manimaran, P.; Panigrahi, Prasanta K.

    2011-11-01

    We make use of wavelet transform to study the multi-scale, self-similar behavior and deviations thereof, in the stock prices of large companies, belonging to different economic sectors. The stock market returns exhibit multi-fractal characteristics, with some of the companies showing deviations at small and large scales. The fact that, the wavelets belonging to the Daubechies’ (Db) basis enables one to isolate local polynomial trends of different degrees, plays the key role in isolating fluctuations at different scales. One of the primary motivations of this work is to study the emergence of the k-3 behavior [X. Gabaix, P. Gopikrishnan, V. Plerou, H. Stanley, A theory of power law distributions in financial market fluctuations, Nature 423 (2003) 267-270] of the fluctuations starting with high frequency fluctuations. We make use of Db4 and Db6 basis sets to respectively isolate local linear and quadratic trends at different scales in order to study the statistical characteristics of these financial time series. The fluctuations reveal fat tail non-Gaussian behavior, unstable periodic modulations, at finer scales, from which the characteristic k-3 power law behavior emerges at sufficiently large scales. We further identify stable periodic behavior through the continuous Morlet wavelet.

  2. Graph theory and the Virasoro master equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obers, N.A.J.

    1991-01-01

    A brief history of affine Lie algebra, the Virasoro algebra and its culmination in the Virasoro master equation is given. By studying ansaetze of the master equation, the author obtains exact solutions and gains insight in the structure of large slices of affine-Virasoro space. He finds an isomorphism between the constructions in the ansatz SO(n){sub diag}, which is a set of unitary, generically irrational affine-Virasoro constructions on SO(n), and the unlabeled graphs of order n. On the one hand, the conformal constructions, are classified by the graphs, while, conversely, a group-theoretic and conformal field-theoretic identification is obtained for every graphmore » of graph theory. He also defines a class of magic Lie group bases in which the Virasoro master equation admits a simple metric ansatz {l brace}g{sub metric}{r brace}, whose structure is visible in the high-level expansion. When a magic basis is real on compact g, the corresponding g{sub metric} is a large system of unitary, generically irrational conformal field theories. Examples in this class include the graph-theory ansatz SO(n){sub diag} in the Cartesian basis of SO(n), and the ansatz SU(n){sub metric} in the Pauli-like basis of SU(n). Finally, he defines the sine-area graphs' of SU(n), which label the conformal field theories of SU(n){sub metric}, and he notes that, in similar fashion, each magic basis of g defines a generalized graph theory on g which labels the conformal field theories of g{sub metric}.« less

  3. The search for the genetic basis of hypertension.

    PubMed

    Yagil, Yoram; Yagil, Chana

    2005-03-01

    This review surveys the literature on the search for the genetic basis of hypertension during the 10 months since November 2003. The goals set forth by this search are defined and the highlights of the work accomplished are provided. The search for the genetic basis of hypertension is ongoing, generating an abundance of new data. These data consist of a large number of candidate genes, association of previously known and novel candidate genes with various facets of hypertension, detection of new quantitative trait loci and identification of genes that mediate susceptibility to hypertension. The renin-zangiotensin-aldosterone system continues to dominate the interest of investigators. Other gene systems are also emerging but a single-gene system cannot be singled out beyond the renin-angiotensin-aldosterone system and the data are mostly sporadic and do not reflect a guided or coordinated effort to resolve unanswered issues. The notion that hypertension is polygenic is reinforced, yet few data are provided as to the actual number of genes involved, gene-gene interaction or gene-environment interaction. Advanced biotechnological tools involving transcriptomics and proteomics are underused. Research on the genetic basis of hypertension has generated over the past year a large number of candidate genes and tied them to various aspects of hypertension. How these genes fit into the complex pathophysiological network that induces hypertension remains unclear. The task of putting together these genes into a cohesive framework still lies ahead, but promises to enlighten us as to the true nature of hypertension, the pathogenic mechanisms involved and improved therapeutic and preventive measures.

  4. Extended polarization in 3rd order SCC-DFTB from chemical potential equilization

    PubMed Central

    Kaminski, Steve; Giese, Timothy J.; Gaus, Michael; York, Darrin M.; Elstner, Marcus

    2012-01-01

    In this work we augment the approximate density functional method SCC-DFTB (DFTB3) with the chemical potential equilization (CPE) approach in order to improve the performance for molecular electronic polarizabilities. The CPE method, originally implemented for NDDO type methods by Giese and York, has been shown to emend minimal basis methods wrt response properties significantly, and has been applied to SCC-DFTB recently. CPE allows to overcome this inherent limitation of minimal basis methods by supplying an additional response density. The systematic underestimation is thereby corrected quantitatively without the need to extend the atomic orbital basis, i.e. without increasing the overall computational cost significantly. Especially the dependency of polarizability as a function of molecular charge state was significantly improved from the CPE extension of DFTB3. The empirical parameters introduced by the CPE approach were optimized for 172 organic molecules in order to match the results from density functional methods (DFT) methods using large basis sets. However, the first order derivatives of molecular polarizabilities, as e.g. required to compute Raman activities, are not improved by the current CPE implementation, i.e. Raman spectra are not improved. PMID:22894819

  5. Straightening the Hierarchical Staircase for Basis Set Extrapolations: A Low-Cost Approach to High-Accuracy Computational Chemistry

    NASA Astrophysics Data System (ADS)

    Varandas, António J. C.

    2018-04-01

    Because the one-electron basis set limit is difficult to reach in correlated post-Hartree-Fock ab initio calculations, the low-cost route of using methods that extrapolate to the estimated basis set limit attracts immediate interest. The situation is somewhat more satisfactory at the Hartree-Fock level because numerical calculation of the energy is often affordable at nearly converged basis set levels. Still, extrapolation schemes for the Hartree-Fock energy are addressed here, although the focus is on the more slowly convergent and computationally demanding correlation energy. Because they are frequently based on the gold-standard coupled-cluster theory with single, double, and perturbative triple excitations [CCSD(T)], correlated calculations are often affordable only with the smallest basis sets, and hence single-level extrapolations from one raw energy could attain maximum usefulness. This possibility is examined. Whenever possible, this review uses raw data from second-order Møller-Plesset perturbation theory, as well as CCSD, CCSD(T), and multireference configuration interaction methods. Inescapably, the emphasis is on work done by the author's research group. Certain issues in need of further research or review are pinpointed.

  6. A Discrete Constraint for Entropy Conservation and Sound Waves in Cloud-Resolving Modeling

    NASA Technical Reports Server (NTRS)

    Zeng, Xi-Ping; Tao, Wei-Kuo; Simpson, Joanne

    2003-01-01

    Ideal cloud-resolving models contain little-accumulative errors. When their domain is so large that synoptic large-scale circulations are accommodated, they can be used for the simulation of the interaction between convective clouds and the large-scale circulations. This paper sets up a framework for the models, using moist entropy as a prognostic variable and employing conservative numerical schemes. The models possess no accumulative errors of thermodynamic variables when they comply with a discrete constraint on entropy conservation and sound waves. Alternatively speaking, the discrete constraint is related to the correct representation of the large-scale convergence and advection of moist entropy. Since air density is involved in entropy conservation and sound waves, the challenge is how to compute sound waves efficiently under the constraint. To address the challenge, a compensation method is introduced on the basis of a reference isothermal atmosphere whose governing equations are solved analytically. Stability analysis and numerical experiments show that the method allows the models to integrate efficiently with a large time step.

  7. Coupling of Large Amplitude Inversion with Other States

    NASA Astrophysics Data System (ADS)

    Pearson, John; Yu, Shanshan

    2016-06-01

    The coupling of a large amplitude motion with a small amplitude vibration remains one of the least well characterized problems in molecular physics. Molecular inversion poses a few unique and not intuitively obvious challenges to the large amplitude motion problem. In spite of several decades of theoretical work numerous challenges in calculation of transition frequencies and more importantly intensities persist. The most challenging aspect of this problem is that the inversion coordinate is a unique function of the overall vibrational state including both the large and small amplitude modes. As a result, the r-axis system and the meaning of the K-quantum number in the rotational basis set are unique to each vibrational state of large or small amplitude motion. This unfortunate reality has profound consequences to calculation of intensities and the coupling of nearly degenerate vibrational states. The case of NH3 inversion and inversion through a plane of symmetry in alcohols will be examined to find a general path forward.

  8. Improving intermolecular interactions in DFTB3 using extended polarization from chemical-potential equalization

    PubMed Central

    Christensen, Anders S.; Elstner, Marcus; Cui, Qiang

    2015-01-01

    Semi-empirical quantum mechanical methods traditionally expand the electron density in a minimal, valence-only electron basis set. The minimal-basis approximation causes molecular polarization to be underestimated, and hence intermolecular interaction energies are also underestimated, especially for intermolecular interactions involving charged species. In this work, the third-order self-consistent charge density functional tight-binding method (DFTB3) is augmented with an auxiliary response density using the chemical-potential equalization (CPE) method and an empirical dispersion correction (D3). The parameters in the CPE and D3 models are fitted to high-level CCSD(T) reference interaction energies for a broad range of chemical species, as well as dipole moments calculated at the DFT level; the impact of including polarizabilities of molecules in the parameterization is also considered. Parameters for the elements H, C, N, O, and S are presented. The Root Mean Square Deviation (RMSD) interaction energy is improved from 6.07 kcal/mol to 1.49 kcal/mol for interactions with one charged species, whereas the RMSD is improved from 5.60 kcal/mol to 1.73 for a set of 9 salt bridges, compared to uncorrected DFTB3. For large water clusters and complexes that are dominated by dispersion interactions, the already satisfactory performance of the DFTB3-D3 model is retained; polarizabilities of neutral molecules are also notably improved. Overall, the CPE extension of DFTB3-D3 provides a more balanced description of different types of non-covalent interactions than Neglect of Diatomic Differential Overlap type of semi-empirical methods (e.g., PM6-D3H4) and PBE-D3 with modest basis sets. PMID:26328834

  9. Improving intermolecular interactions in DFTB3 using extended polarization from chemical-potential equalization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, Anders S., E-mail: andersx@chem.wisc.edu, E-mail: cui@chem.wisc.edu; Cui, Qiang, E-mail: andersx@chem.wisc.edu, E-mail: cui@chem.wisc.edu; Elstner, Marcus

    Semi-empirical quantum mechanical methods traditionally expand the electron density in a minimal, valence-only electron basis set. The minimal-basis approximation causes molecular polarization to be underestimated, and hence intermolecular interaction energies are also underestimated, especially for intermolecular interactions involving charged species. In this work, the third-order self-consistent charge density functional tight-binding method (DFTB3) is augmented with an auxiliary response density using the chemical-potential equalization (CPE) method and an empirical dispersion correction (D3). The parameters in the CPE and D3 models are fitted to high-level CCSD(T) reference interaction energies for a broad range of chemical species, as well as dipole moments calculatedmore » at the DFT level; the impact of including polarizabilities of molecules in the parameterization is also considered. Parameters for the elements H, C, N, O, and S are presented. The Root Mean Square Deviation (RMSD) interaction energy is improved from 6.07 kcal/mol to 1.49 kcal/mol for interactions with one charged species, whereas the RMSD is improved from 5.60 kcal/mol to 1.73 for a set of 9 salt bridges, compared to uncorrected DFTB3. For large water clusters and complexes that are dominated by dispersion interactions, the already satisfactory performance of the DFTB3-D3 model is retained; polarizabilities of neutral molecules are also notably improved. Overall, the CPE extension of DFTB3-D3 provides a more balanced description of different types of non-covalent interactions than Neglect of Diatomic Differential Overlap type of semi-empirical methods (e.g., PM6-D3H4) and PBE-D3 with modest basis sets.« less

  10. Explicit hydration of ammonium ion by correlated methods employing molecular tailoring approach

    NASA Astrophysics Data System (ADS)

    Singh, Gurmeet; Verma, Rahul; Wagle, Swapnil; Gadre, Shridhar R.

    2017-11-01

    Explicit hydration studies of ions require accurate estimation of interaction energies. This work explores the explicit hydration of the ammonium ion (NH4+) employing Møller-Plesset second order (MP2) perturbation theory, an accurate yet relatively less expensive correlated method. Several initial geometries of NH4+(H2O)n (n = 4 to 13) clusters are subjected to MP2 level geometry optimisation with correlation consistent aug-cc-pVDZ (aVDZ) basis set. For large clusters (viz. n > 8), molecular tailoring approach (MTA) is used for single point energy evaluation at MP2/aVTZ level for the estimation of MP2 level binding energies (BEs) at complete basis set (CBS) limit. The minimal nature of the clusters upto n ≤ 8 is confirmed by performing vibrational frequency calculations at MP2/aVDZ level of theory, whereas for larger clusters (9 ≤ n ≤ 13) such calculations are effected via grafted MTA (GMTA) method. The zero point energy (ZPE) corrections are done for all the isomers lying within 1 kcal/mol of the lowest energy one. The resulting frequencies in N-H region (2900-3500 cm-1) and in O-H stretching region (3300-3900 cm-1) are in found to be in excellent agreement with the available experimental findings for 4 ≤ n ≤ 13. Furthermore, GMTA is also applied for calculating the BEs of these clusters at coupled cluster singles and doubles with perturbative triples (CCSD(T)) level of theory with aVDZ basis set. This work thus represents an art of the possible on contemporary multi-core computers for studying explicit molecular hydration at correlated level theories.

  11. The electronic structure of vanadium monochloride cation (VCl+): Tackling the complexities of transition metal species

    NASA Astrophysics Data System (ADS)

    DeYonker, Nathan J.; Halfen, DeWayne T.; Allen, Wesley D.; Ziurys, Lucy M.

    2014-11-01

    Six electronic states (X 4Σ-, A 4Π, B 4Δ, 2Φ, 2Δ, 2Σ+) of the vanadium monochloride cation (VCl+) are described using large basis set coupled cluster theory. For the two lowest quartet states (X 4Σ- and A 4Π), a focal point analysis (FPA) approach was used that conjoined a correlation-consistent family of basis sets up to aug-cc-pwCV5Z-DK with high-order coupled cluster theory through pentuple (CCSDTQP) excitations. FPA adiabatic excitation energies (T0) and spectroscopic constants (re, r0, Be, B0, bar De, He, ωe, v0, αe, ωexe) were extrapolated to the valence complete basis set Douglas-Kroll (DK) aug-cc-pV∞Z-DK CCSDT level of theory, and additional treatments accounted for higher-order valence electron correlation, core correlation, and spin-orbit coupling. Due to the delicate interplay between dynamical and static electronic correlation, single reference coupled cluster theory is able to provide the correct ground electronic state (X 4Σ-), while multireference configuration interaction theory cannot. Perturbations from the first- and second-order spin orbit coupling of low-lying states with quartet spin multiplicity reveal an immensely complex rotational spectrum relative to the isovalent species VO, VS, and TiCl. Computational data on the doublet manifold suggest that the lowest-lying doublet state (2Γ) has a Te of ˜11 200 cm-1. Overall, this study shows that laboratory and theoretical rotational spectroscopists must work more closely in tandem to better understand the bonding and structure of molecules containing transition metals.

  12. Quantum Mechanical Calculations of Monoxides of Silicon Carbide Molecules

    DTIC Science & Technology

    2003-03-01

    Data for CO Final Energy Charge Mult Basis Set (hart) EA (eV) ZPE (hart) EA (eV) w/ ZPE 0 1 DVZ -112.6850703739 2.02121 -1 2 DVZ...Energy Charge Mult Basis Set (hart) EA (eV) ZPE (hart) EA (eV) w/ ZPE 0 1 DVZ -363.7341927429 0.617643 -1 2 DVZ -363.7114852831 0 3 DVZ...Input Geometry Output Geometry Basis Set Final Energy (hart) EA (eV) ZPE (hart) EA (eV) w/ ZPE -1 2 O-C-Si Linear O-C-Si Linear DZV -401.5363

  13. Relativistic well-tempered Gaussian basis sets for helium through mercury. Breit interaction included

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okada, S.; Shinada, M.; Matsuoka, O.

    1990-10-01

    A systematic calculation of new relativistic Gaussian basis sets is reported. The new basis sets are similar to the previously reported ones (J. Chem. Phys. {bold 91}, 4193 (1989)), but, in the calculation, the Breit interaction has been explicitly included besides the Dirac--Coulomb Hamiltonian. They have been adopted for the calculation of the self-consistent field effect on the Breit interaction energies and are expected to be useful for the studies on higher-order effects such as the electron correlations and other quantum electrodynamical effects.

  14. Parallel Douglas-Kroll Energy and Gradients in NWChem. Estimating Scalar Relativistic Effects Using Douglas-Kroll Contracted Basis Sets.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Jong, Wibe A.; Harrison, Robert J.; Dixon, David A.

    A parallel implementation of the spin-free one-electron Douglas-Kroll(-Hess) Hamiltonian (DKH) in NWChem is discussed. An efficient and accurate method to calculate DKH gradients is introduced. It is shown that the use of standard (non-relativistic) contracted basis set can produce erroneous results for elements beyond the first row elements. The generation of DKH contracted cc-pVXZ (X = D, T, Q, 5) basis sets for H, He, B - Ne, Al - Ar, and Ga - Br will be discussed.

  15. On the Usage of Locally Dense Basis Sets in the Calculation of NMR Indirect Nuclear Spin-Spin Coupling Constants

    NASA Astrophysics Data System (ADS)

    Sanchez, Marina; Provasi, Patricio F.; Aucar, Gustavo A.; Sauer, Stephan P. A.

    Locally dense basis sets (

  16. Perceived climate in physical activity settings.

    PubMed

    Gill, Diane L; Morrow, Ronald G; Collins, Karen E; Lucey, Allison B; Schultz, Allison M

    2010-01-01

    This study focused on the perceived climate for LGBT youth and other minority groups in physical activity settings. A large sample of undergraduates and a selected sample including student teachers/interns and a campus Pride group completed a school climate survey and rated the climate in three physical activity settings (physical education, organized sport, exercise). Overall, school climate survey results paralleled the results with national samples revealing high levels of homophobic remarks and low levels of intervention. Physical activity climate ratings were mid-range, but multivariate analysis of variation test (MANOVA) revealed clear differences with all settings rated more inclusive for racial/ethnic minorities and most exclusive for gays/lesbians and people with disabilities. The results are in line with national surveys and research suggesting sexual orientation and physical characteristics are often the basis for harassment and exclusion in sport and physical activity. The current results also indicate that future physical activity professionals recognize exclusion, suggesting they could benefit from programs that move beyond awareness to skills and strategies for creating more inclusive programs.

  17. Neural-net-based image matching

    NASA Astrophysics Data System (ADS)

    Jerebko, Anna K.; Barabanov, Nikita E.; Luciv, Vadim R.; Allinson, Nigel M.

    2000-04-01

    The paper describes a neural-based method for matching spatially distorted image sets. The matching of partially overlapping images is important in many applications-- integrating information from images formed from different spectral ranges, detecting changes in a scene and identifying objects of differing orientations and sizes. Our approach consists of extracting contour features from both images, describing the contour curves as sets of line segments, comparing these sets, determining the corresponding curves and their common reference points, calculating the image-to-image co-ordinate transformation parameters on the basis of the most successful variant of the derived curve relationships. The main steps are performed by custom neural networks. The algorithms describe in this paper have been successfully tested on a large set of images of the same terrain taken in different spectral ranges, at different seasons and rotated by various angles. In general, this experimental verification indicates that the proposed method for image fusion allows the robust detection of similar objects in noisy, distorted scenes where traditional approaches often fail.

  18. Interaction between methyl glyoxal and ascorbic acid: experimental and theoretical aspects

    NASA Astrophysics Data System (ADS)

    Banerjee, D.; Koll, A.; Filarowski, A.; Bhattacharyya, S. P.; Mukherjee, S.

    2004-06-01

    The absorption spectral change of methyl glyoxal (MG) due to the interaction with ascorbic acid (AA or Vitamin C) has been investigated using steady-state spectroscopic technique. A plausible explanation for the spectral change has been discussed on the basis of hydrogen bonding interaction between the two interacting species. The equilibrium constant for the complex formation due to hydrogen bonding interaction between MG and AA has been obtained from absorption spectral changes. Ab inito calculations with DFT B3LYP/6/31G (d,p) basis sets have been used to find out the molecular structure of the hydrogen bonded complex. The O⋯H distance found in the OH⋯O hydrogen bond turns out to be quite short (1.974 Å) which is in conformity with the large value of the equilibrium constant determined experimentally.

  19. Potential energy curves of the Na2+ molecular ion from all-electron ab initio relativistic calculations

    NASA Astrophysics Data System (ADS)

    Bewicz, Anna; Musiał, Monika; Kucharski, Stanisław A.

    2017-11-01

    The equation-of-motion coupled-cluster method for electron affinity calculations has been used to study potential energy curves (PECs) for the Na+2 molecular ion. Although the studied molecule represents the open shell system the applied approach employs the closed shell Na+ 22 ion as the reference. In addition the Na+ 22 system dissociates into the closed shell fragments; hence, the restricted Hartree-Fock scheme can be used within the whole range of interatomic distances, from 2 to 45 Å. We used large basis set engaging 268 basis functions with all 21 electrons correlated. The relativistic effects are included via second-order Douglas-Kroll method. The computed PECs, spectroscopic molecular constants and vibrational energy levels agree well with experimental values if the latter are available or with other theoretical data.

  20. Near Hartree-Fock quality GTO basis sets for the first- and third-row atoms

    NASA Technical Reports Server (NTRS)

    Partridge, Harry

    1989-01-01

    Energy-optimized Gaussian-type-orbital (GTO) basis sets of accuracy approaching that of numerical Hartree-Fock computations are compiled for the elements of the first and third rows of the periodic table. The methods employed in calculating the sets are explained; the applicability of the sets to electronic-structure calculations is discussed; and the results are presented in tables and briefly characterized.

  1. Computational tests of quantum chemical models for excited and ionized states of molecules with phosphorus and sulfur atoms.

    PubMed

    Hahn, David K; RaghuVeer, Krishans; Ortiz, J V

    2014-05-15

    Time-dependent density functional theory (TD-DFT) and electron propagator theory (EPT) are used to calculate the electronic transition energies and ionization energies, respectively, of species containing phosphorus or sulfur. The accuracy of TD-DFT and EPT, in conjunction with various basis sets, is assessed with data from gas-phase spectroscopy. TD-DFT is tested using 11 prominent exchange-correlation functionals on a set of 37 vertical and 19 adiabatic transitions. For vertical transitions, TD-CAM-B3LYP calculations performed with the MG3S basis set are lowest in overall error, having a mean absolute deviation from experiment of 0.22 eV, or 0.23 eV over valence transitions and 0.21 eV over Rydberg transitions. Using a larger basis set, aug-pc3, improves accuracy over the valence transitions via hybrid functionals, but improved accuracy over the Rydberg transitions is only obtained via the BMK functional. For adiabatic transitions, all hybrid functionals paired with the MG3S basis set perform well, and B98 is best, with a mean absolute deviation from experiment of 0.09 eV. The testing of EPT used the Outer Valence Green's Function (OVGF) approximation and the Partial Third Order (P3) approximation on 37 vertical first ionization energies. It is found that OVGF outperforms P3 when basis sets of at least triple-ζ quality in the polarization functions are used. The largest basis set used in this study, aug-pc3, obtained the best mean absolute error from both methods -0.08 eV for OVGF and 0.18 eV for P3. The OVGF/6-31+G(2df,p) level of theory is particularly cost-effective, yielding a mean absolute error of 0.11 eV.

  2. No need for external orthogonality in subsystem density-functional theory.

    PubMed

    Unsleber, Jan P; Neugebauer, Johannes; Jacob, Christoph R

    2016-08-03

    Recent reports on the necessity of using externally orthogonal orbitals in subsystem density-functional theory (SDFT) [Annu. Rep. Comput. Chem., 8, 2012, 53; J. Phys. Chem. A, 118, 2014, 9182] are re-investigated. We show that in the basis-set limit, supermolecular Kohn-Sham-DFT (KS-DFT) densities can exactly be represented as a sum of subsystem densities, even if the subsystem orbitals are not externally orthogonal. This is illustrated using both an analytical example and in basis-set free numerical calculations for an atomic test case. We further show that even with finite basis sets, SDFT calculations using accurate reconstructed potentials can closely approach the supermolecular KS-DFT density, and that the deviations between SDFT and KS-DFT decrease as the basis-set limit is approached. Our results demonstrate that formally, there is no need to enforce external orthogonality in SDFT, even though this might be a useful strategy when developing projection-based DFT embedding schemes.

  3. Open-ended recursive calculation of single residues of response functions for perturbation-dependent basis sets.

    PubMed

    Friese, Daniel H; Ringholm, Magnus; Gao, Bin; Ruud, Kenneth

    2015-10-13

    We present theory, implementation, and applications of a recursive scheme for the calculation of single residues of response functions that can treat perturbations that affect the basis set. This scheme enables the calculation of nonlinear light absorption properties to arbitrary order for other perturbations than an electric field. We apply this scheme for the first treatment of two-photon circular dichroism (TPCD) using London orbitals at the Hartree-Fock level of theory. In general, TPCD calculations suffer from the problem of origin dependence, which has so far been solved by using the velocity gauge for the electric dipole operator. This work now enables comparison of results from London orbital and velocity gauge based TPCD calculations. We find that the results from the two approaches both exhibit strong basis set dependence but that they are very similar with respect to their basis set convergence.

  4. Core-core and core-valence correlation

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1988-01-01

    The effect of (1s) core correlation on properties and energy separations was analyzed using full configuration-interaction (FCI) calculations. The Be 1 S - 1 P, the C 3 P - 5 S and CH+ 1 Sigma + or - 1 Pi separations, and CH+ spectroscopic constants, dipole moment and 1 Sigma + - 1 Pi transition dipole moment were studied. The results of the FCI calculations are compared to those obtained using approximate methods. In addition, the generation of atomic natural orbital (ANO) basis sets, as a method for contracting a primitive basis set for both valence and core correlation, is discussed. When both core-core and core-valence correlation are included in the calculation, no suitable truncated CI approach consistently reproduces the FCI, and contraction of the basis set is very difficult. If the (nearly constant) core-core correlation is eliminated, and only the core-valence correlation is included, CASSCF/MRCI approached reproduce the FCI results and basis set contraction is significantly easier.

  5. Numerical judgments by chimpanzees (Pan troglodytes) in a token economy.

    PubMed

    Beran, Michael J; Evans, Theodore A; Hoyle, Daniel

    2011-04-01

    We presented four chimpanzees with a series of tasks that involved comparing two token sets or comparing a token set to a quantity of food. Selected tokens could be exchanged for food items on a one-to-one basis. Chimpanzees successfully selected the larger numerical set for comparisons of 1 to 5 items when both sets were visible and when sets were presented through one-by-one addition of tokens into two opaque containers. Two of four chimpanzees used the number of tokens and food items to guide responding in all conditions, rather than relying on token color, size, total amount, or duration of set presentation. These results demonstrate that judgments of simultaneous and sequential sets of stimuli are made by some chimpanzees on the basis of the numerousness of sets rather than other non-numerical dimensions. The tokens were treated as equivalent to food items on the basis of their numerousness, and the chimpanzees maximized reward by choosing the larger number of items in all situations.

  6. An Efficient Method to Evaluate Intermolecular Interaction Energies in Large Systems Using Overlapping Multicenter ONIOM and the Fragment Molecular Orbital Method

    PubMed Central

    Asada, Naoya; Fedorov, Dmitri G.; Kitaura, Kazuo; Nakanishi, Isao; Merz, Kenneth M.

    2012-01-01

    We propose an approach based on the overlapping multicenter ONIOM to evaluate intermolecular interaction energies in large systems and demonstrate its accuracy on several representative systems in the complete basis set limit at the MP2 and CCSD(T) level of theory. In the application to the intermolecular interaction energy between insulin dimer and 4′-hydroxyacetanilide at the MP2/CBS level, we use the fragment molecular orbital method for the calculation of the entire complex assigned to the lowest layer in three-layer ONIOM. The developed method is shown to be efficient and accurate in the evaluation of the protein-ligand interaction energies. PMID:23050059

  7. Correlation consistent basis sets for actinides. I. The Th and U atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Kirk A., E-mail: kipeters@wsu.edu

    New correlation consistent basis sets based on both pseudopotential (PP) and all-electron Douglas-Kroll-Hess (DKH) Hamiltonians have been developed from double- to quadruple-zeta quality for the actinide atoms thorium and uranium. Sets for valence electron correlation (5f6s6p6d), cc − pV nZ − PP and cc − pV nZ − DK3, as well as outer-core correlation (valence + 5s5p5d), cc − pwCV nZ − PP and cc − pwCV nZ − DK3, are reported (n = D, T, Q). The -PP sets are constructed in conjunction with small-core, 60-electron PPs, while the -DK3 sets utilized the 3rd-order Douglas-Kroll-Hess scalar relativistic Hamiltonian. Bothmore » series of basis sets show systematic convergence towards the complete basis set limit, both at the Hartree-Fock and correlated levels of theory, making them amenable to standard basis set extrapolation techniques. To assess the utility of the new basis sets, extensive coupled cluster composite thermochemistry calculations of ThF{sub n} (n = 2 − 4), ThO{sub 2}, and UF{sub n} (n = 4 − 6) have been carried out. After accurately accounting for valence and outer-core correlation, spin-orbit coupling, and even Lamb shift effects, the final 298 K atomization enthalpies of ThF{sub 4}, ThF{sub 3}, ThF{sub 2}, and ThO{sub 2} are all within their experimental uncertainties. Bond dissociation energies of ThF{sub 4} and ThF{sub 3}, as well as UF{sub 6} and UF{sub 5}, were similarly accurate. The derived enthalpies of formation for these species also showed a very satisfactory agreement with experiment, demonstrating that the new basis sets allow for the use of accurate composite schemes just as in molecular systems composed only of lighter atoms. The differences between the PP and DK3 approaches were found to increase with the change in formal oxidation state on the actinide atom, approaching 5-6 kcal/mol for the atomization enthalpies of ThF{sub 4} and ThO{sub 2}. The DKH3 atomization energy of ThO{sub 2} was calculated to be smaller than the DKH2 value by ∼1 kcal/mol.« less

  8. Segmented all-electron Gaussian basis sets of double and triple zeta qualities for Fr, Ra, and Ac

    NASA Astrophysics Data System (ADS)

    Campos, C. T.; de Oliveira, A. Z.; Ferreira, I. B.; Jorge, F. E.; Martins, L. S. C.

    2017-05-01

    Segmented all-electron basis sets of valence double and triple zeta qualities plus polarization functions for the elements Fr, Ra, and Ac are generated using non-relativistic and Douglas-Kroll-Hess (DKH) Hamiltonians. The sets are augmented with diffuse functions with the purpose to describe appropriately the electrons far from the nuclei. At the DKH-B3LYP level, first atomic ionization energies and bond lengths, dissociation energies, and polarizabilities of a sample of diatomics are calculated. Comparison with theoretical and experimental data available in the literature is carried out. It is verified that despite the small sizes of the basis sets, they are yet reliable.

  9. Rational Density Functional Selection Using Game Theory.

    PubMed

    McAnanama-Brereton, Suzanne; Waller, Mark P

    2018-01-22

    Theoretical chemistry has a paradox of choice due to the availability of a myriad of density functionals and basis sets. Traditionally, a particular density functional is chosen on the basis of the level of user expertise (i.e., subjective experiences). Herein we circumvent the user-centric selection procedure by describing a novel approach for objectively selecting a particular functional for a given application. We achieve this by employing game theory to identify optimal functional/basis set combinations. A three-player (accuracy, complexity, and similarity) game is devised, through which Nash equilibrium solutions can be obtained. This approach has the advantage that results can be systematically improved by enlarging the underlying knowledge base, and the deterministic selection procedure mathematically justifies the density functional and basis set selections.

  10. Assessment of multireference approaches to explicitly correlated full configuration interaction quantum Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kersten, J. A. F., E-mail: jennifer.kersten@cantab.net; Alavi, Ali, E-mail: a.alavi@fkf.mpg.de; Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart

    2016-08-07

    The Full Configuration Interaction Quantum Monte Carlo (FCIQMC) method has proved able to provide near-exact solutions to the electronic Schrödinger equation within a finite orbital basis set, without relying on an expansion about a reference state. However, a drawback to the approach is that being based on an expansion of Slater determinants, the FCIQMC method suffers from a basis set incompleteness error that decays very slowly with the size of the employed single particle basis. The FCIQMC results obtained in a small basis set can be improved significantly with explicitly correlated techniques. Here, we present a study that assesses andmore » compares two contrasting “universal” explicitly correlated approaches that fit into the FCIQMC framework: the [2]{sub R12} method of Kong and Valeev [J. Chem. Phys. 135, 214105 (2011)] and the explicitly correlated canonical transcorrelation approach of Yanai and Shiozaki [J. Chem. Phys. 136, 084107 (2012)]. The former is an a posteriori internally contracted perturbative approach, while the latter transforms the Hamiltonian prior to the FCIQMC simulation. These comparisons are made across the 55 molecules of the G1 standard set. We found that both methods consistently reduce the basis set incompleteness, for accurate atomization energies in small basis sets, reducing the error from 28 mE{sub h} to 3-4 mE{sub h}. While many of the conclusions hold in general for any combination of multireference approaches with these methodologies, we also consider FCIQMC-specific advantages of each approach.« less

  11. Structure alerts for carcinogenicity, and the Salmonella assay system: a novel insight through the chemical relational databases technology.

    PubMed

    Benigni, Romualdo; Bossa, Cecilia

    2008-01-01

    In the past decades, chemical carcinogenicity has been the object of mechanistic studies that have been translated into valuable experimental (e.g., the Salmonella assays system) and theoretical (e.g., compilations of structure alerts for chemical carcinogenicity) models. These findings remain the basis of the science and regulation of mutagens and carcinogens. Recent advances in the organization and treatment of large databases consisting of both biological and chemical information nowadays allows for a much easier and more refined view of data. This paper reviews recent analyses on the predictive performance of various lists of structure alerts, including a new compilation of alerts that combines previous work in an optimized form for computer implementation. The revised compilation is part of the Toxtree 1.50 software (freely available from the European Chemicals Bureau website). The use of structural alerts for the chemical biological profiling of a large database of Salmonella mutagenicity results is also reported. Together with being a repository of the science on the chemical biological interactions at the basis of chemical carcinogenicity, the SAs have a crucial role in practical applications for risk assessment, for: (a) description of sets of chemicals; (b) preliminary hazard characterization; (c) formation of categories for e.g., regulatory purposes; (d) generation of subsets of congeneric chemicals to be analyzed subsequently with QSAR methods; (e) priority setting. An important aspect of SAs as predictive toxicity tools is that they derive directly from mechanistic knowledge. The crucial role of mechanistic knowledge in the process of applying (Q)SAR considerations to risk assessment should be strongly emphasized. Mechanistic knowledge provides a ground for interaction and dialogue between model developers, toxicologists and regulators, and permits the integration of the (Q)SAR results into a wider regulatory framework, where different types of evidence and data concur or complement each other as a basis for making decisions and taking actions.

  12. Understanding the many-body expansion for large systems. III. Critical role of four-body terms, counterpoise corrections, and cutoffs.

    PubMed

    Liu, Kuan-Yu; Herbert, John M

    2017-10-28

    Papers I and II in this series [R. M. Richard et al., J. Chem. Phys. 141, 014108 (2014); K. U. Lao et al., ibid. 144, 164105 (2016)] have attempted to shed light on precision and accuracy issues affecting the many-body expansion (MBE), which only manifest in larger systems and thus have received scant attention in the literature. Many-body counterpoise (CP) corrections are shown to accelerate convergence of the MBE, which otherwise suffers from a mismatch between how basis-set superposition error affects subsystem versus supersystem calculations. In water clusters ranging in size up to (H 2 O) 37 , four-body terms prove necessary to achieve accurate results for both total interaction energies and relative isomer energies, but the sheer number of tetramers makes the use of cutoff schemes essential. To predict relative energies of (H 2 O) 20 isomers, two approximations based on a lower level of theory are introduced and an ONIOM-type procedure is found to be very well converged with respect to the appropriate MBE benchmark, namely, a CP-corrected supersystem calculation at the same level of theory. Results using an energy-based cutoff scheme suggest that if reasonable approximations to the subsystem energies are available (based on classical multipoles, say), then the number of requisite subsystem calculations can be reduced even more dramatically than when distance-based thresholds are employed. The end result is several accurate four-body methods that do not require charge embedding, and which are stable in large basis sets such as aug-cc-pVTZ that have sometimes proven problematic for fragment-based quantum chemistry methods. Even with aggressive thresholding, however, the four-body approach at the self-consistent field level still requires roughly ten times more processors to outmatch the performance of the corresponding supersystem calculation, in test cases involving 1500-1800 basis functions.

  13. Understanding the many-body expansion for large systems. III. Critical role of four-body terms, counterpoise corrections, and cutoffs

    NASA Astrophysics Data System (ADS)

    Liu, Kuan-Yu; Herbert, John M.

    2017-10-01

    Papers I and II in this series [R. M. Richard et al., J. Chem. Phys. 141, 014108 (2014); K. U. Lao et al., ibid. 144, 164105 (2016)] have attempted to shed light on precision and accuracy issues affecting the many-body expansion (MBE), which only manifest in larger systems and thus have received scant attention in the literature. Many-body counterpoise (CP) corrections are shown to accelerate convergence of the MBE, which otherwise suffers from a mismatch between how basis-set superposition error affects subsystem versus supersystem calculations. In water clusters ranging in size up to (H2O)37, four-body terms prove necessary to achieve accurate results for both total interaction energies and relative isomer energies, but the sheer number of tetramers makes the use of cutoff schemes essential. To predict relative energies of (H2O)20 isomers, two approximations based on a lower level of theory are introduced and an ONIOM-type procedure is found to be very well converged with respect to the appropriate MBE benchmark, namely, a CP-corrected supersystem calculation at the same level of theory. Results using an energy-based cutoff scheme suggest that if reasonable approximations to the subsystem energies are available (based on classical multipoles, say), then the number of requisite subsystem calculations can be reduced even more dramatically than when distance-based thresholds are employed. The end result is several accurate four-body methods that do not require charge embedding, and which are stable in large basis sets such as aug-cc-pVTZ that have sometimes proven problematic for fragment-based quantum chemistry methods. Even with aggressive thresholding, however, the four-body approach at the self-consistent field level still requires roughly ten times more processors to outmatch the performance of the corresponding supersystem calculation, in test cases involving 1500-1800 basis functions.

  14. Detailed Wave Function Analysis for Multireference Methods: Implementation in the Molcas Program Package and Applications to Tetracene.

    PubMed

    Plasser, Felix; Mewes, Stefanie A; Dreuw, Andreas; González, Leticia

    2017-11-14

    High-level multireference computations on electronically excited and charged states of tetracene are performed, and the results are analyzed using an extensive wave function analysis toolbox that has been newly implemented in the Molcas program package. Aside from verifying the strong effect of dynamic correlation, this study reveals an unexpected critical influence of the atomic orbital basis set. It is shown that different polarized double-ζ basis sets produce significantly different results for energies, densities, and overall wave functions, with the best performance obtained for the atomic natural orbital (ANO) basis set by Pierloot et al. Strikingly, the ANO basis set not only reproduces the energies but also performs exceptionally well in terms of describing the diffuseness of the different states and of their attachment/detachment densities. This study, thus, not only underlines the fact that diffuse basis functions are needed for an accurate description of the electronic wave functions but also shows that, at least for the present example, it is enough to include them implicitly in the contraction scheme.

  15. Hydrologic effects of floodwater-retarding structures on Garza-Little Elm Reservoir, Texas

    USGS Publications Warehouse

    Gilbert, Clarence R.; Sauer, Stanley P.

    1970-01-01

    "Firm"- or "critical"-yield studies were made of the large reservoir on the basis of two sets of conditions : with floodwater-retarding structures in the drainage basin, and without such structures. Results of the firm-yield studies indicated that with full development, annual firm yield would be initially reduced by 10 percent. After 30 or more years, when the permanent pools of the floodwaterretarding reservoirs would be mostly filled with sediment, the firm yield would be almost the same with or without the upstream development.

  16. On the Bonding in Fe2(CO)9

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.

    1986-01-01

    The bonding in Fe2(CO)9 is analyzed using an self consistend field (SCF) wave function for a large basis set. There is no direct Fe-Fe metal-metal bond. The bridging CO's hold the two Fe(CO)3 fragments together by a sigma donation into the empty Fe-Fe d pi orbital and metal donation from the d pi* orbital into the CO 2pi* orbital. The bonding of the terminal CO is similar to that in Ni(CO)4 and the equatorial groups in Fe(CO)5.

  17. Minimax rational approximation of the Fermi-Dirac distribution.

    PubMed

    Moussa, Jonathan E

    2016-10-28

    Accurate rational approximations of the Fermi-Dirac distribution are a useful component in many numerical algorithms for electronic structure calculations. The best known approximations use O(log(βΔ)log(ϵ -1 )) poles to achieve an error tolerance ϵ at temperature β -1 over an energy interval Δ. We apply minimax approximation to reduce the number of poles by a factor of four and replace Δ with Δ occ , the occupied energy interval. This is particularly beneficial when Δ ≫ Δ occ , such as in electronic structure calculations that use a large basis set.

  18. Accurate multireference calculations of the electronic structure of TiF 2 and TiCl 2

    NASA Astrophysics Data System (ADS)

    Vogel, M.; Wenzel, W.

    2005-09-01

    We report a systematic study of the electronic structure of two members of the transition metal dihalide family, TiF 2 and TiCl 2. Using the configuration interaction method in large basis sets we investigated the lowest 15 states of TiF 2 and TiCl 2. We report bond lengths, frequencies and dissociation energies of both molecules. For TiF 2 we found a near degeneracy of the ground and the first excited state with a possible breakdown of the Born-Oppenheimer approximation.

  19. NMR shieldings from density functional perturbation theory: GIPAW versus all-electron calculations

    NASA Astrophysics Data System (ADS)

    de Wijs, G. A.; Laskowski, R.; Blaha, P.; Havenith, R. W. A.; Kresse, G.; Marsman, M.

    2017-02-01

    We present a benchmark of the density functional linear response calculation of NMR shieldings within the gauge-including projector-augmented-wave method against all-electron augmented-plane-wave+local-orbital and uncontracted Gaussian basis set results for NMR shieldings in molecular and solid state systems. In general, excellent agreement between the aforementioned methods is obtained. Scalar relativistic effects are shown to be quite large for nuclei in molecules in the deshielded limit. The small component makes up a substantial part of the relativistic corrections.

  20. NMR shieldings from density functional perturbation theory: GIPAW versus all-electron calculations.

    PubMed

    de Wijs, G A; Laskowski, R; Blaha, P; Havenith, R W A; Kresse, G; Marsman, M

    2017-02-14

    We present a benchmark of the density functional linear response calculation of NMR shieldings within the gauge-including projector-augmented-wave method against all-electron augmented-plane-wave+local-orbital and uncontracted Gaussian basis set results for NMR shieldings in molecular and solid state systems. In general, excellent agreement between the aforementioned methods is obtained. Scalar relativistic effects are shown to be quite large for nuclei in molecules in the deshielded limit. The small component makes up a substantial part of the relativistic corrections.

  1. Minimax rational approximation of the Fermi-Dirac distribution

    NASA Astrophysics Data System (ADS)

    Moussa, Jonathan E.

    2016-10-01

    Accurate rational approximations of the Fermi-Dirac distribution are a useful component in many numerical algorithms for electronic structure calculations. The best known approximations use O(log(βΔ)log(ɛ-1)) poles to achieve an error tolerance ɛ at temperature β-1 over an energy interval Δ. We apply minimax approximation to reduce the number of poles by a factor of four and replace Δ with Δocc, the occupied energy interval. This is particularly beneficial when Δ ≫ Δocc, such as in electronic structure calculations that use a large basis set.

  2. Unusual structures of MgF5- superhalogen anion

    NASA Astrophysics Data System (ADS)

    Anusiewicz, Iwona; Skurski, Piotr

    2007-05-01

    The vertical electron detachment energies (VDE) of three MgF5- anions were calculated at the outer valence Green function level with the 6-311 + G(3df) basis sets. This species was found to form unusual geometrical structures each of which corresponds to an anionic state exhibiting superhalogen nature. The global minimum structure was described as a system in which two central magnesium atoms are linked via symmetrical triangle formed by three fluorine atoms. Extremely large electron binding energies of these anions (exceeding 8.5 eV in all cases) were predicted and discussed.

  3. Accurate Methods for Large Molecular Systems (Postprint)

    DTIC Science & Technology

    2009-01-06

    D S A FB , C A o n Se pt em be r 23 , 2 00 9 | h ttp :// pu bs .a cs .o rg P ub lic at io n D at e (W eb ): A pr il 15 , 2 00 9 | d oi...r 23 , 2 00 9 | h ttp :// pu bs .a cs .o rg P ub lic at io n D at e (W eb ): A pr il 15 , 2 00 9 | d oi : 1 0. 10 21 /jp 81 15 19 x As noted...basis set is 6-31++G( d ,

  4. A numerical method for solving systems of linear ordinary differential equations with rapidly oscillating solutions

    NASA Technical Reports Server (NTRS)

    Bernstein, Ira B.; Brookshaw, Leigh; Fox, Peter A.

    1992-01-01

    The present numerical method for accurate and efficient solution of systems of linear equations proceeds by numerically developing a set of basis solutions characterized by slowly varying dependent variables. The solutions thus obtained are shown to have a computational overhead largely independent of the small size of the scale length which characterizes the solutions; in many cases, the technique obviates series solutions near singular points, and its known sources of error can be easily controlled without a substantial increase in computational time.

  5. Estimation of Radiative Efficiency of Chemicals with Potentially Significant Global Warming Potential

    EPA Pesticide Factsheets

    The set of commercially available chemical substances in commerce that may have significant global warming potential (GWP) is not well defined. Although there are currently over 200 chemicals with high GWP reported by the Intergovernmental Panel on Climate Change, World Meteorological Organization, or Environmental Protection Agency, there may be hundreds of additional chemicals that may also have significant GWP. Evaluation of various approaches to estimate radiative efficiency (RE) and atmospheric lifetime will help to refine GWP estimates for compounds where no measured IR spectrum is available. This study compares values of RE calculated using computational chemistry techniques for 235 chemical compounds against the best available values. It is important to assess the reliability of the underlying computational methods for computing RE to understand the sources of deviations from the best available values. Computed vibrational frequency data is used to estimate RE values using several Pinnock-type models. The values derived using these models are found to be in reasonable agreement with reported RE values (though significant improvement is obtained through scaling). The effect of varying the computational method and basis set used to calculate the frequency data is also discussed. It is found that the vibrational intensities have a strong dependence on basis set and are largely responsible for differences in computed values of RE in this study. Deviations of

  6. Sparse Gaussian elimination with controlled fill-in on a shared memory multiprocessor

    NASA Technical Reports Server (NTRS)

    Alaghband, Gita; Jordan, Harry F.

    1989-01-01

    It is shown that in sparse matrices arising from electronic circuits, it is possible to do computations on many diagonal elements simultaneously. A technique for obtaining an ordered compatible set directly from the ordered incompatible table is given. The ordering is based on the Markowitz number of the pivot candidates. This technique generates a set of compatible pivots with the property of generating few fills. A novel heuristic algorithm is presented that combines the idea of an order-compatible set with a limited binary tree search to generate several sets of compatible pivots in linear time. An elimination set for reducing the matrix is generated and selected on the basis of a minimum Markowitz sum number. The parallel pivoting technique presented is a stepwise algorithm and can be applied to any submatrix of the original matrix. Thus, it is not a preordering of the sparse matrix and is applied dynamically as the decomposition proceeds. Parameters are suggested to obtain a balance between parallelism and fill-ins. Results of applying the proposed algorithms on several large application matrices using the HEP multiprocessor (Kowalik, 1985) are presented and analyzed.

  7. Gravel Transport Measured With Bedload Traps in Mountain Streams: Field Data Sets to be Published

    NASA Astrophysics Data System (ADS)

    Bunte, K.; Swingle, K. W.; Abt, S. R.; Ettema, R.; Cenderelli, D. A.

    2017-12-01

    Direct, accurate measurements of coarse bedload transport exist for only a few streams worldwide, because the task is laborious and requires a suitable device. However, sets of accurate field data would be useful for reference with unsampled sites and as a basis for model developments. The authors have carefully measured gravel transport and are compiling their data sets for publication. To ensure accurate measurements of gravel bedload in wadeable flow, the designed instrument consisted of an unflared aluminum frame (0.3 x 0.2 m) large enough for entry of cobbles. The attached 1 m or longer net with a 4 mm mesh held large bedload volumes. The frame was strapped onto a ground plate anchored onto the channel bed. This setup avoided involuntary sampler particle pick-up and enabled long sampling times, integrating over fluctuating transport. Beveled plates and frames facilitated easy particle entry. Accelerating flow over smooth plates compensated for deceleration within the net. Spacing multiple frames by 1 m enabled sampling much of the stream width. Long deployment, and storage of sampled bedload away from the frame's entrance, were attributes of traps rather than samplers; hence the name "bedload traps". The authors measured gravel transport with 4-6 bedload traps per cross-section at 10 mountain streams in CO, WY, and OR, accumulating 14 data sets (>1,350 samples). In 10 data sets, measurements covered much of the snowmelt high-flow season yielding 50-200 samples. Measurement time was typically 1 hour but ranged from 3 minutes to 3 hours, depending on transport intensity. Measuring back-to-back provided 6 to 10 samples over a 6 to 10-hour field day. Bedload transport was also measured with a 3-inch Helley-Smith sampler. The data set provides fractional (0.5 phi) transport rates in terms of particle mass and number for each bedload trap in the cross-section, the largest particle size, as well as total cross-sectional gravel transport rates. Ancillary field data include stage, discharge, long-term flow records if available, surface and subsurface sediment sizes, as well as longitudinal and cross-sectional site surveys. Besides transport relations, incipient motion conditions, hysteresis, and lateral variation, the data provide a reliable modeling basis to test insights and hypotheses regarding bedload transport.

  8. Coupled Segmentation of Nuclear and Membrane-bound Macromolecules through Voting and Multiphase Level Set

    PubMed Central

    Wen, Quan

    2014-01-01

    Membrane-bound macromolecules play an important role in tissue architecture and cell-cell communication, and is regulated by almost one-third of the genome. At the optical scale, one group of membrane proteins expresses themselves as linear structures along the cell surface boundaries, while others are sequestered; and this paper targets the former group. Segmentation of these membrane proteins on a cell-by-cell basis enables the quantitative assessment of localization for comparative analysis. However, such membrane proteins typically lack continuity, and their intensity distributions are often very heterogeneous; moreover, nuclei can form large clump, which further impedes the quantification of membrane signals on a cell-by-cell basis. To tackle these problems, we introduce a three-step process to (i) regularize the membrane signal through iterative tangential voting, (ii) constrain the location of surface proteins by nuclear features, where clumps of nuclei are segmented through a delaunay triangulation approach, and (iii) assign membrane-bound macromolecules to individual cells through an application of multi-phase geodesic level-set. We have validated our method using both synthetic data and a dataset of 200 images, and are able to demonstrate the efficacy of our approach with superior performance. PMID:25530633

  9. Neural network approach to quantum-chemistry data: accurate prediction of density functional theory energies.

    PubMed

    Balabin, Roman M; Lomakina, Ekaterina I

    2009-08-21

    Artificial neural network (ANN) approach has been applied to estimate the density functional theory (DFT) energy with large basis set using lower-level energy values and molecular descriptors. A total of 208 different molecules were used for the ANN training, cross validation, and testing by applying BLYP, B3LYP, and BMK density functionals. Hartree-Fock results were reported for comparison. Furthermore, constitutional molecular descriptor (CD) and quantum-chemical molecular descriptor (QD) were used for building the calibration model. The neural network structure optimization, leading to four to five hidden neurons, was also carried out. The usage of several low-level energy values was found to greatly reduce the prediction error. An expected error, mean absolute deviation, for ANN approximation to DFT energies was 0.6+/-0.2 kcal mol(-1). In addition, the comparison of the different density functionals with the basis sets and the comparison of multiple linear regression results were also provided. The CDs were found to overcome limitation of the QD. Furthermore, the effective ANN model for DFT/6-311G(3df,3pd) and DFT/6-311G(2df,2pd) energy estimation was developed, and the benchmark results were provided.

  10. Comparison of some dispersion-corrected and traditional functionals as applied to peptides and conformations of cyclohexane derivatives

    NASA Astrophysics Data System (ADS)

    Marianski, Mateusz; Asensio, Amparo; Dannenberg, J. J.

    2012-07-01

    We compare the energetic and structural properties of fully optimized α-helical and antiparallel β-sheet polyalanines and the energetic differences between axial and equatorial conformations of three cyclohexane derivatives (methyl, fluoro, and chloro) as calculated using several functionals designed to treat dispersion (B97-D, ωB97x-D, M06, M06L, and M06-2X) with other traditional functionals not specifically parametrized to treat dispersion (B3LYP, X3LYP, and PBE1PBE) and with experimental results. Those functionals developed to treat dispersion significantly overestimate interaction enthalpies of folding for the α-helix and predict unreasonable structures that contain Ramachandran ϕ and ψ and C = O…N H-bonding angles that are out of the bounds of databases compiled the β-sheets. These structures are consistent with overestimation of the interaction energies. For the cyclohexanes, these functionals overestimate the stabilities of the axial conformation, especially when used with smaller basis sets. Their performance improves when the basis set is improved from D95** to aug-cc-pVTZ (which would not be possible with systems as large as the peptides).

  11. Comparison of some dispersion-corrected and traditional functionals as applied to peptides and conformations of cyclohexane derivatives

    PubMed Central

    Marianski, Mateusz; Asensio, Amparo; Dannenberg, J. J.

    2012-01-01

    We compare the energetic and structural properties of fully optimized α-helical and antiparallel β-sheet polyalanines and the energetic differences between axial and equatorial conformations of three cyclohexane derivatives (methyl, fluoro, and chloro) as calculated using several functionals designed to treat dispersion (B97-D, ωB97x-D, M06, M06L, and M06-2X) with other traditional functionals not specifically parametrized to treat dispersion (B3LYP, X3LYP, and PBE1PBE) and with experimental results. Those functionals developed to treat dispersion significantly overestimate interaction enthalpies of folding for the α-helix and predict unreasonable structures that contain Ramachandran ϕ and ψ and C = O…N H-bonding angles that are out of the bounds of databases compiled the β-sheets. These structures are consistent with overestimation of the interaction energies. For the cyclohexanes, these functionals overestimate the stabilities of the axial conformation, especially when used with smaller basis sets. Their performance improves when the basis set is improved from D95** to aug-cc-pVTZ (which would not be possible with systems as large as the peptides). PMID:22852599

  12. Comparison of some dispersion-corrected and traditional functionals as applied to peptides and conformations of cyclohexane derivatives.

    PubMed

    Marianski, Mateusz; Asensio, Amparo; Dannenberg, J J

    2012-07-28

    We compare the energetic and structural properties of fully optimized α-helical and antiparallel β-sheet polyalanines and the energetic differences between axial and equatorial conformations of three cyclohexane derivatives (methyl, fluoro, and chloro) as calculated using several functionals designed to treat dispersion (B97-D, ωB97x-D, M06, M06L, and M06-2X) with other traditional functionals not specifically parametrized to treat dispersion (B3LYP, X3LYP, and PBE1PBE) and with experimental results. Those functionals developed to treat dispersion significantly overestimate interaction enthalpies of folding for the α-helix and predict unreasonable structures that contain Ramachandran φ and ψ and C = O...N H-bonding angles that are out of the bounds of databases compiled the β-sheets. These structures are consistent with overestimation of the interaction energies. For the cyclohexanes, these functionals overestimate the stabilities of the axial conformation, especially when used with smaller basis sets. Their performance improves when the basis set is improved from D95∗∗ to aug-cc-pVTZ (which would not be possible with systems as large as the peptides).

  13. The molecular gradient using the divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation theory: The DEC-RI-MP2 gradient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bykov, Dmytro; Kristensen, Kasper; Kjærgaard, Thomas

    We report an implementation of the molecular gradient using the divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation theory (DEC-RI-MP2). The new DEC-RI-MP2 gradient method combines the precision control as well as the linear-scaling and massively parallel features of the DEC scheme with efficient evaluations of the gradient contributions using the RI approximation. We further demonstrate that the DEC-RI-MP2 gradient method is capable of calculating molecular gradients for very large molecular systems. A test set of supramolecular complexes containing up to 158 atoms and 1960 contracted basis functions has been employed to demonstrate the general applicability of the DEC-RI-MP2 methodmore » and to analyze the errors of the DEC approximation. Moreover, the test set contains molecules of complicated electronic structures and is thus deliberately chosen to stress test the DEC-RI-MP2 gradient implementation. Additionally, as a showcase example the full molecular gradient for insulin (787 atoms and 7604 contracted basis functions) has been evaluated.« less

  14. The ecological future of the North American bison: Conceiving long-term, large-scale conservation of a species

    USGS Publications Warehouse

    Sanderson, E.W.; Redford, Kent; Weber, Bill; Aune, K.; Baldes, Dick; Berger, J.; Carter, Dave; Curtin, C.; Derr, James N.; Dobrott, S.J.; Fearn, Eva; Fleener, Craig; Forrest, Steven C.; Gerlach, Craig; Gates, C. Cormack; Gross, J.E.; Gogan, P.; Grassel, Shaun M.; Hilty, Jodi A.; Jensen, Marv; Kunkel, Kyran; Lammers, Duane; List, R.; Minkowski, Karen; Olson, Tom; Pague, Chris; Robertson, Paul B.; Stephenson, Bob

    2008-01-01

    Many wide-ranging mammal species have experienced significant declines over the last 200 years; restoring these species will require long-term, large-scale recovery efforts. We highlight 5 attributes of a recent range-wide vision-setting exercise for ecological recovery of the North American bison (Bison bison) that are broadly applicable to other species and restoration targets. The result of the exercise, the “Vermejo Statement” on bison restoration, is explicitly (1) large scale, (2) long term, (3) inclusive, (4) fulfilling of different values, and (5) ambitious. It reads, in part, “Over the next century, the ecological recovery of the North American bison will occur when multiple large herds move freely across extensive landscapes within all major habitats of their historic range, interacting in ecologically significant ways with the fullest possible set of other native species, and inspiring, sustaining and connecting human cultures.” We refined the vision into a scorecard that illustrates how individual bison herds can contribute to the vision. We also developed a set of maps and analyzed the current and potential future distributions of bison on the basis of expert assessment. Although more than 500,000 bison exist in North America today, we estimated they occupy <1% of their historical range and in no place express the full range of ecological and social values of previous times. By formulating an inclusive, affirmative, and specific vision through consultation with a wide range of stakeholders, we hope to provide a foundation for conservation of bison, and other wide-ranging species, over the next 100 years.

  15. Convergence of third order correlation energy in atoms and molecules.

    PubMed

    Kahn, Kalju; Granovsky, Alex A; Noga, Jozef

    2007-01-30

    We have investigated the convergence of third order correlation energy within the hierarchies of correlation consistent basis sets for helium, neon, and water, and for three stationary points of hydrogen peroxide. This analysis confirms that singlet pair energies converge much slower than triplet pair energies. In addition, singlet pair energies with (aug)-cc-pVDZ and (aug)-cc-pVTZ basis sets do not follow a converging trend and energies with three basis sets larger than aug-cc-pVTZ are generally required for reliable extrapolations of third order correlation energies, making so the explicitly correlated R12 calculations preferable.

  16. Application of the dual-kinetic-balance sets in the relativistic many-body problem of atomic structure

    NASA Astrophysics Data System (ADS)

    Beloy, Kyle; Derevianko, Andrei

    2008-09-01

    The dual-kinetic-balance (DKB) finite basis set method for solving the Dirac equation for hydrogen-like ions [V.M. Shabaev et al., Phys. Rev. Lett. 93 (2004) 130405] is extended to problems with a non-local spherically-symmetric Dirac-Hartree-Fock potential. We implement the DKB method using B-spline basis sets and compare its performance with the widely-employed approach of Notre Dame (ND) group [W.R. Johnson, S.A. Blundell, J. Sapirstein, Phys. Rev. A 37 (1988) 307-315]. We compare the performance of the ND and DKB methods by computing various properties of Cs atom: energies, hyperfine integrals, the parity-non-conserving amplitude of the 6s-7s transition, and the second-order many-body correction to the removal energy of the valence electrons. We find that for a comparable size of the basis set the accuracy of both methods is similar for matrix elements accumulated far from the nuclear region. However, for atomic properties determined by small distances, the DKB method outperforms the ND approach. In addition, we present a strategy for optimizing the size of the basis sets by choosing progressively smaller number of basis functions for increasingly higher partial waves. This strategy exploits suppression of contributions of high partial waves to typical many-body correlation corrections.

  17. Comparison of one-particle basis set extrapolation to explicitly correlated methods for the calculation of accurate quartic force fields, vibrational frequencies, and spectroscopic constants: Application to H2O, N2H+, NO2+, and C2H2

    NASA Astrophysics Data System (ADS)

    Huang, Xinchuan; Valeev, Edward F.; Lee, Timothy J.

    2010-12-01

    One-particle basis set extrapolation is compared with one of the new R12 methods for computing highly accurate quartic force fields (QFFs) and spectroscopic data, including molecular structures, rotational constants, and vibrational frequencies for the H2O, N2H+, NO2+, and C2H2 molecules. In general, agreement between the spectroscopic data computed from the best R12 and basis set extrapolation methods is very good with the exception of a few parameters for N2H+ where it is concluded that basis set extrapolation is still preferred. The differences for H2O and NO2+ are small and it is concluded that the QFFs from both approaches are more or less equivalent in accuracy. For C2H2, however, a known one-particle basis set deficiency for C-C multiple bonds significantly degrades the quality of results obtained from basis set extrapolation and in this case the R12 approach is clearly preferred over one-particle basis set extrapolation. The R12 approach used in the present study was modified in order to obtain high precision electronic energies, which are needed when computing a QFF. We also investigated including core-correlation explicitly in the R12 calculations, but conclude that current approaches are lacking. Hence core-correlation is computed as a correction using conventional methods. Considering the results for all four molecules, it is concluded that R12 methods will soon replace basis set extrapolation approaches for high accuracy electronic structure applications such as computing QFFs and spectroscopic data for comparison to high-resolution laboratory or astronomical observations, provided one uses a robust R12 method as we have done here. The specific R12 method used in the present study, CCSD(T)R12, incorporated a reformulation of one intermediate matrix in order to attain machine precision in the electronic energies. Final QFFs for N2H+ and NO2+ were computed, including basis set extrapolation, core-correlation, scalar relativity, and higher-order correlation and then used to compute highly accurate spectroscopic data for all isotopologues. Agreement with high-resolution experiment for 14N2H+ and 14N2D+ was excellent, but for 14N16O2+ agreement for the two stretching fundamentals is outside the expected residual uncertainty in the theoretical values, and it is concluded that there is an error in the experimental quantities. It is hoped that the highly accurate spectroscopic data presented for the minor isotopologues of N2H+ and NO2+ will be useful in the interpretation of future laboratory or astronomical observations.

  18. Assessment of protein set coherence using functional annotations

    PubMed Central

    Chagoyen, Monica; Carazo, Jose M; Pascual-Montano, Alberto

    2008-01-01

    Background Analysis of large-scale experimental datasets frequently produces one or more sets of proteins that are subsequently mined for functional interpretation and validation. To this end, a number of computational methods have been devised that rely on the analysis of functional annotations. Although current methods provide valuable information (e.g. significantly enriched annotations, pairwise functional similarities), they do not specifically measure the degree of homogeneity of a protein set. Results In this work we present a method that scores the degree of functional homogeneity, or coherence, of a set of proteins on the basis of the global similarity of their functional annotations. The method uses statistical hypothesis testing to assess the significance of the set in the context of the functional space of a reference set. As such, it can be used as a first step in the validation of sets expected to be homogeneous prior to further functional interpretation. Conclusion We evaluate our method by analysing known biologically relevant sets as well as random ones. The known relevant sets comprise macromolecular complexes, cellular components and pathways described for Saccharomyces cerevisiae, which are mostly significantly coherent. Finally, we illustrate the usefulness of our approach for validating 'functional modules' obtained from computational analysis of protein-protein interaction networks. Matlab code and supplementary data are available at PMID:18937846

  19. Toward a W4-F12 approach: Can explicitly correlated and orbital-based ab initio CCSD(T) limits be reconciled?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sylvetsky, Nitai, E-mail: gershom@weizmann.ac.il; Martin, Jan M. L., E-mail: gershom@weizmann.ac.il; Peterson, Kirk A., E-mail: kipeters@wsu.edu

    2016-06-07

    In the context of high-accuracy computational thermochemistry, the valence coupled cluster with all singles and doubles (CCSD) correlation component of molecular atomization energies presents the most severe basis set convergence problem, followed by the (T) component. In the present paper, we make a detailed comparison, for an expanded version of the W4-11 thermochemistry benchmark, between, on the one hand, orbital-based CCSD/AV{5,6}Z + d and CCSD/ACV{5,6}Z extrapolation, and on the other hand CCSD-F12b calculations with cc-pVQZ-F12 and cc-pV5Z-F12 basis sets. This latter basis set, now available for H–He, B–Ne, and Al–Ar, is shown to be very close to the basis setmore » limit. Apparent differences (which can reach 0.35 kcal/mol for systems like CCl{sub 4}) between orbital-based and CCSD-F12b basis set limits disappear if basis sets with additional radial flexibility, such as ACV{5,6}Z, are used for the orbital calculation. Counterpoise calculations reveal that, while total atomization energies with V5Z-F12 basis sets are nearly free of BSSE, orbital calculations have significant BSSE even with AV(6 + d)Z basis sets, leading to non-negligible differences between raw and counterpoise-corrected extrapolated limits. This latter problem is greatly reduced by switching to ACV{5,6}Z core-valence basis sets, or simply adding an additional zeta to just the valence orbitals. Previous reports that all-electron approaches like HEAT (high-accuracy extrapolated ab-initio thermochemistry) lead to different CCSD(T) limits than “valence limit + CV correction” approaches like Feller-Peterson-Dixon and Weizmann-4 (W4) theory can be rationalized in terms of the greater radial flexibility of core-valence basis sets. For (T) corrections, conventional CCSD(T)/AV{Q,5}Z + d calculations are found to be superior to scaled or extrapolated CCSD(T)-F12b calculations of similar cost. For a W4-F12 protocol, we recommend obtaining the Hartree-Fock and valence CCSD components from CCSD-F12b/cc-pV{Q,5}Z-F12 calculations, but the (T) component from conventional CCSD(T)/aug’-cc-pV{Q,5}Z + d calculations using Schwenke’s extrapolation; post-CCSD(T), core-valence, and relativistic corrections are to be obtained as in the original W4 theory. W4-F12 is found to agree slightly better than W4 with ATcT (active thermochemical tables) data, at a substantial saving in computation time and especially I/O overhead. A W4-F12 calculation on benzene is presented as a proof of concept.« less

  20. Electronegativity equalization method: parameterization and validation for organic molecules using the Merz-Kollman-Singh charge distribution scheme.

    PubMed

    Jirousková, Zuzana; Vareková, Radka Svobodová; Vanek, Jakub; Koca, Jaroslav

    2009-05-01

    The electronegativity equalization method (EEM) was developed by Mortier et al. as a semiempirical method based on the density-functional theory. After parameterization, in which EEM parameters A(i), B(i), and adjusting factor kappa are obtained, this approach can be used for calculation of average electronegativity and charge distribution in a molecule. The aim of this work is to perform the EEM parameterization using the Merz-Kollman-Singh (MK) charge distribution scheme obtained from B3LYP/6-31G* and HF/6-31G* calculations. To achieve this goal, we selected a set of 380 organic molecules from the Cambridge Structural Database (CSD) and used the methodology, which was recently successfully applied to EEM parameterization to calculate the HF/STO-3G Mulliken charges on large sets of molecules. In the case of B3LYP/6-31G* MK charges, we have improved the EEM parameters for already parameterized elements, specifically C, H, N, O, and F. Moreover, EEM parameters for S, Br, Cl, and Zn, which have not as yet been parameterized for this level of theory and basis set, we also developed. In the case of HF/6-31G* MK charges, we have developed the EEM parameters for C, H, N, O, S, Br, Cl, F, and Zn that have not been parameterized for this level of theory and basis set so far. The obtained EEM parameters were verified by a previously developed validation procedure and used for the charge calculation on a different set of 116 organic molecules from the CSD. The calculated EEM charges are in a very good agreement with the quantum mechanically obtained ab initio charges. 2008 Wiley Periodicals, Inc.

  1. A converged calculation of the energy barrier to internal rotation in the ethylene-sulfur dioxide dimer

    NASA Astrophysics Data System (ADS)

    Resende, Stella M.; De Almeida, Wagner B.; van Duijneveldt-van de Rijdt, Jeanne G. C. M.; van Duijneveldt, Frans B.

    2001-08-01

    Geometrical parameters for the equilibrium (MIN) and lowest saddle-point (TS) geometries of the C2H4⋯SO2 dimer, and the corresponding binding energies, were calculated using the Hartree-Fock and correlated levels of ab initio theory, in basis sets ranging from the D95(d,p) double-zeta basis set to the aug-cc-pVQZ correlation consistent basis set. An assessment of the effect of the basis set superposition error (BSSE) on these results was made. The dissociation energy from the lowest vibrational state was estimated to be 705±100 cm-1 at the basis set limit, which is well within the range expected from experiment. The barrier to internal rotation was found to be 53±5 cm-1, slightly higher than the (revised) experimental result of 43 cm-1, probably due to zero-point vibrational effects. Our results clearly show that, in direct contrast with recent ideas, the BSSE correction affects differentially the MIN and TS binding energies and so has to be included in the calculation of small energy barriers such as that in the C2H4⋯SO2 dimer. Previous reports of positive MP2 frozen-core binding energies for this complex in basis D95(d,p) are confirmed. The anomalies are shown to be an artifact arising from an incorrect removal of virtual orbitals by the default frozen-core option in the GAUSSIAN program.

  2. Hyperfine coupling constants of the nitrogen and phosphorus atoms: A challenge for exact-exchange density-functional and post-Hartree-Fock methods

    NASA Astrophysics Data System (ADS)

    Kaupp, Martin; Arbuznikov, Alexei V.; Heßelmann, Andreas; Görling, Andreas

    2010-05-01

    The isotropic hyperfine coupling constants of the free N(S4) and P(S4) atoms have been evaluated with high-level post-Hartree-Fock and density-functional methods. The phosphorus hyperfine coupling presents a significant challenge to both types of methods. With large basis sets, MP2 and coupled-cluster singles and doubles calculations give much too small values for the phosphorus atom. Triple excitations are needed in coupled-cluster calculations to achieve reasonable agreement with experiment. None of the standard density functionals reproduce even the correct sign of this hyperfine coupling. Similarly, the computed hyperfine couplings depend crucially on the self-consistent treatment in exact-exchange density-functional theory within the optimized effective potential (OEP) method. Well-balanced auxiliary and orbital basis sets are needed for basis-expansion exact-exchange-only OEP approaches to come close to Hartree-Fock or numerical OEP data. Results from the localized Hartree-Fock and Krieger-Li-Iafrate approximations deviate notably from exact OEP data in spite of very similar total energies. Of the functionals tested, only full exact-exchange methods augmented by a correlation functional gave at least the correct sign of the P(S4) hyperfine coupling but with too low absolute values. The subtle interplay between the spin-polarization contributions of the different core shells has been analyzed, and the influence of even very small changes in the exchange-correlation potential could be identified.

  3. Representation matters: quantitative behavioral variation in wild worm strains

    NASA Astrophysics Data System (ADS)

    Brown, Andre

    Natural genetic variation in populations is the basis of genome-wide association studies, an approach that has been applied in large studies of humans to study the genetic architecture of complex traits including disease risk. Of course, the traits you choose to measure determine which associated genes you discover (or miss). In large-scale human studies, the measured traits are usually taken as a given during the association step because they are expensive to collect and standardize. Working with the nematode worm C. elegans, we do not have the same constraints. In this talk I will describe how large-scale imaging of worm behavior allows us to develop alternative representations of behavior that vary differently across wild populations. The alternative representations yield novel traits that can be used for genome-wide association studies and may reveal basic properties of the genotype-phenotype map that are obscured if only a small set of fixed traits are used.

  4. Integrative Analysis Reveals an Outcome-associated and Targetable Pattern of p53 and Cell Cycle Deregulation in Diffuse Large B-cell Lymphoma

    PubMed Central

    Monti, Stefano; Chapuy, Bjoern; Takeyama, Kunihiko; Rodig, Scott J; Hao, Yangsheng; Yeda, Kelly T.; Inguilizian, Haig; Mermel, Craig; Curie, Treeve; Dogan, Ahmed; Kutok, Jeffery L; Beroukim, Rameen; Neuberg, Donna; Habermann, Thomas; Getz, Gad; Kung, Andrew L; Golub, Todd R; Shipp, Margaret A

    2013-01-01

    Summary Diffuse large B-cell lymphoma (DLBCL) is a clinically and biologically heterogeneous disease with a high proliferation rate. By integrating copy number data with transcriptional profiles and performing pathway analysis in primary DLBCLs, we identified a comprehensive set of copy number alterations (CNAs) that decreased p53 activity and perturbed cell cycle regulation. Primary tumors either had multiple complementary alterations of p53 and cell cycle components or largely lacked these lesions. DLBCLs with p53 and cell cycle pathway CNAs had decreased abundance of p53 target transcripts and increased expression of E2F target genes and the Ki67 proliferation marker. CNAs of the CDKN2A-TP53-RB-E2F axis provide a structural basis for increased proliferation in DLBCL, predict outcome with current therapy and suggest targeted treatment approaches. PMID:22975378

  5. Research on sub-surface damage and its stress deformation in the process of large aperture and high diameter-to-thickness ratio TMT M3MP

    NASA Astrophysics Data System (ADS)

    Hu, Hai-xiang; Qi, Erhui; Cole, Glen; Hu, Hai-fei; Luo, Xiao; Zhang, Xue-jun

    2016-10-01

    Large flat mirrors play important roles in large aperture telescopes. However, they also introduce unpredictable problems. The surface errors created during manufacturing, testing, and supporting are all combined during measurement, thus making understanding difficult for diagnosis and treatment. Examining a high diameter-to-thickness ratio flat mirror, TMT M3MP, and its unexpected deformation during processing, we proposed a strain model of subsurface damage to explain the observed phenomenon. We designed a set of experiment, and checked the validity of our diagnosis. On that basis, we theoretical predicted the trend of this strain and its scale effect on Zerodur®, and checked the validity on another piece experimentally. This work guided the grinding-polishing process of M3MP, and will be used as reference for M3M processing as well.

  6. Random sampling of elementary flux modes in large-scale metabolic networks.

    PubMed

    Machado, Daniel; Soons, Zita; Patil, Kiran Raosaheb; Ferreira, Eugénio C; Rocha, Isabel

    2012-09-15

    The description of a metabolic network in terms of elementary (flux) modes (EMs) provides an important framework for metabolic pathway analysis. However, their application to large networks has been hampered by the combinatorial explosion in the number of modes. In this work, we develop a method for generating random samples of EMs without computing the whole set. Our algorithm is an adaptation of the canonical basis approach, where we add an additional filtering step which, at each iteration, selects a random subset of the new combinations of modes. In order to obtain an unbiased sample, all candidates are assigned the same probability of getting selected. This approach avoids the exponential growth of the number of modes during computation, thus generating a random sample of the complete set of EMs within reasonable time. We generated samples of different sizes for a metabolic network of Escherichia coli, and observed that they preserve several properties of the full EM set. It is also shown that EM sampling can be used for rational strain design. A well distributed sample, that is representative of the complete set of EMs, should be suitable to most EM-based methods for analysis and optimization of metabolic networks. Source code for a cross-platform implementation in Python is freely available at http://code.google.com/p/emsampler. dmachado@deb.uminho.pt Supplementary data are available at Bioinformatics online.

  7. Enhancement of chest radiographs using eigenimage processing

    NASA Astrophysics Data System (ADS)

    Bones, Philip J.; Butler, Anthony P. H.; Hurrell, Michael

    2006-08-01

    Frontal chest radiographs ("chest X-rays") are routinely used by medical personnel to assess patients for a wide range of suspected disorders. Often large numbers of images need to be analyzed. Furthermore, at times the images need to analyzed ("reported") when no radiological expert is available. A system which enhances the images in such a way that abnormalities are more obvious is likely to reduce the chance that an abnormality goes unnoticed. The authors previously reported the use of principal components analysis to derive a basis set of eigenimages from a training set made up of images from normal subjects. The work is here extended to investigate how best to emphasize the abnormalities in chest radiographs. Results are also reported for various forms of image normalizing transformations used in performing the eigenimage processing.

  8. Toolpack mathematical software development environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osterweil, L.

    1982-07-21

    The purpose of this research project was to produce a well integrated set of tools for the support of numerical computation. The project entailed the specification, design and implementation of both a diversity of tools and an innovative tool integration mechanism. This large configuration of tightly integrated tools comprises an environment for numerical software development, and has been named Toolpack/IST (Integrated System of Tools). Following the creation of this environment in prototype form, the environment software was readied for widespread distribution by transitioning it to a development organization for systematization, documentation and distribution. It is expected that public release ofmore » Toolpack/IST will begin imminently and will provide a basis for evaluation of the innovative software approaches taken as well as a uniform set of development tools for the numerical software community.« less

  9. Conformational stability, structural parameters and vibrational assignment from variable temperature infrared spectra of krypton solutions and ab initio calculations of ethylisothiocyanate.

    PubMed

    Durig, James R; Zheng, Chao

    2007-11-01

    Variable temperature (-105 to -150 degrees C) studies of the infrared spectra (3500-400 cm(-1)) of ethylisothiocyanate, CH(3)CH(2)NCS, dissolved in liquid krypton have been recorded. Additionally the infrared spectra of the gas and solid have been re-investigated. These spectroscopic data indicate a single conformer in all physical states with a large number of molecules in the gas phase at ambient temperature in excited states of the CN torsional mode which has a very low barrier to conformational interchange. To aid in the analyses of the vibrational and rotational spectra, ab initio calculations have been carried out by the perturbation method to the second order (MP2) with valence and core electron correlation using a variety of basis sets up to 6-311+G(2df,2pd). With the smaller basis sets up to 6-311+G(d,p) and cc-PVDZ, the cis conformer is indicated as a transition state with all larger basis sets the cis conformer is the only stable form. The predicted energy difference from these calculations between the cis form and the higher energy trans conformer is about 125 cm(-1) which represents essentially the barrier to internal rotation of the NCS group (rotation around NC axis). Density functional theory calculation by the B3LYP method with the same basis sets predicts this barrier to be about 25 cm(-1). By utilizing the previously reported microwave rotational constants with the structural parameters predicted by the ab initio MP2(full)/6-311+G(d,p) calculations, adjusted r(0) structural parameters have been obtained for the cis form. The determined heavy atom parameters are: r(NC)=1.196(5), r(CS)=1.579(5), r(CN)=1.439(5), r(CC)=1.519(5)A for the distances and angles of angleCCN=112.1(5), angleCNC=146.2(5), angleNCS=174.0(5) degrees . The centrifugal distortion constants, dipole moments, conformational stability, vibrational frequencies, infrared intensities and Raman activities have been predicted from ab initio calculations and compared to experimental quantities when available. These results are compared to the corresponding quantities of some similar molecules.

  10. Using diffusion k-means for simple stellar population modeling of low S/N quasar host galaxy spectra

    NASA Astrophysics Data System (ADS)

    Mosby, Gregory; Tremonti, Christina A.; Hooper, Eric; Wolf, Marsha J.; Sheinis, Andrew; Richards, Joseph

    2016-01-01

    Quasar host galaxies (QHGs) represent a unique stage in galaxy evolution that can provide a glimpse into the relationship between an active supermassive black hole (SMBH) and its host galaxy. However, observing the hosts of high luminosity, unobscured quasars in the optical is complicated by the large ratio of quasar to host galaxy light. One strategy in optical spectroscopy is to use offset longslit observations of the host galaxy. This method allows the centers of QHGs to be analyzed apart from other regions of their host galaxies. But light from the accreting black hole's point spread function still enters the host galaxy observations, and where the contrast between the host and intervening quasar light is favorable, the host galaxy is faint, producing low signal-to-noise (S/N) data. This stymies traditional stellar population methods that might rely on high S/N features in galaxy spectra to recover key galaxy properties like its star formation history (SFH). In response to this challenge, we have developed a method of stellar population modeling using diffusion k-means (DFK) that can recover SFHs from rest frame optical data with S/N ~ 5 Å^-1. Specifically, we use DFK to cultivate a reduced stellar population basis set. This DFK basis set of four broad age bins is able to recover a range of SFHs. With an analytic description of the seeing, we can use this DFK basis set to simultaneously model the SFHs and the intervening quasar light of QHGs as well. We compare the results of this method with previous techniques using synthetic data and find that our new method has a clear advantage in recovering SFHs from QHGs. On average, the DFK basis set is just as accurate and decisively more precise. This new technique could be used to analyze other low S/N galaxy spectra like those from higher redshift or integral field spectroscopy surveys.This material is based upon work supported by the National Science Foundation under grant no. DGE -0718123 and the Advanced Opportunity fellowship program at the University of Wisconsin-Madison. This research was performed using the computer resources and assistance of the UW-Madison Center For High Throughput Computing (CHTC) in the Department of Computer Sciences.

  11. An up-to-date quality-controlled surface mass balance data set for the 90°-180°E Antarctica sector and 1950-2005 period

    NASA Astrophysics Data System (ADS)

    Magand, O.; Genthon, C.; Fily, M.; Krinner, G.; Picard, G.; Frezzotti, M.; Ekaykin, A. A.

    2007-06-01

    On the basis of thousands of surface mass balance (SMB) field measurements over the entire Antarctic ice sheet it is currently estimated that more than 2 Gt of ice accumulate each year at the surface of Antarctica. However, these estimates suffer from large uncertainties. Various problems affect Antarctic SMB measurements, in particular, limited or unwarranted spatial and temporal representativeness, measurement inaccuracy, and lack of quality control. We define quality criteria on the basis of (1) an up-to-date review and quality rating of the various SMB measurement methods and (2) essential information (location, dates of measurements, time period covered by the SMB values, and primary data sources) related to each SMB data. We apply these criteria to available SMB values from Queen Mary to Victoria lands (90°-180°E Antarctic sector) from the early 1950s to present. This results in a new set of observed SMB values for the 1950-2005 time period with strong reduction in density and coverage but also expectedly reduced inaccuracies and uncertainties compared to other compilations. The quality-controlled SMB data set also contains new results from recent field campaigns (International Trans-Antarctic Scientific Expedition (ITASE), Russian Antarctic Expedition (RAE), and Australian National Antarctic Research Expeditions (ANARE) projects) which comply with the defined quality criteria. A comparative evaluation of climate model results against the quality-controlled updated SMB data set and other widely used ones illustrates that such Antarctic SMB studies are significantly affected by the quality of field SMB values used as reference.

  12. Using relational databases for improved sequence similarity searching and large-scale genomic analyses.

    PubMed

    Mackey, Aaron J; Pearson, William R

    2004-10-01

    Relational databases are designed to integrate diverse types of information and manage large sets of search results, greatly simplifying genome-scale analyses. Relational databases are essential for management and analysis of large-scale sequence analyses, and can also be used to improve the statistical significance of similarity searches by focusing on subsets of sequence libraries most likely to contain homologs. This unit describes using relational databases to improve the efficiency of sequence similarity searching and to demonstrate various large-scale genomic analyses of homology-related data. This unit describes the installation and use of a simple protein sequence database, seqdb_demo, which is used as a basis for the other protocols. These include basic use of the database to generate a novel sequence library subset, how to extend and use seqdb_demo for the storage of sequence similarity search results and making use of various kinds of stored search results to address aspects of comparative genomic analysis.

  13. Accurate quantum chemical calculations

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1989-01-01

    An important goal of quantum chemical calculations is to provide an understanding of chemical bonding and molecular electronic structure. A second goal, the prediction of energy differences to chemical accuracy, has been much harder to attain. First, the computational resources required to achieve such accuracy are very large, and second, it is not straightforward to demonstrate that an apparently accurate result, in terms of agreement with experiment, does not result from a cancellation of errors. Recent advances in electronic structure methodology, coupled with the power of vector supercomputers, have made it possible to solve a number of electronic structure problems exactly using the full configuration interaction (FCI) method within a subspace of the complete Hilbert space. These exact results can be used to benchmark approximate techniques that are applicable to a wider range of chemical and physical problems. The methodology of many-electron quantum chemistry is reviewed. Methods are considered in detail for performing FCI calculations. The application of FCI methods to several three-electron problems in molecular physics are discussed. A number of benchmark applications of FCI wave functions are described. Atomic basis sets and the development of improved methods for handling very large basis sets are discussed: these are then applied to a number of chemical and spectroscopic problems; to transition metals; and to problems involving potential energy surfaces. Although the experiences described give considerable grounds for optimism about the general ability to perform accurate calculations, there are several problems that have proved less tractable, at least with current computer resources, and these and possible solutions are discussed.

  14. An Ab Initio Study of the Low-Lying Doublet States of AgO and AgS

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R.

    1990-01-01

    Spectroscopic constants (D(sub o), r(sub e), mu(sub e), T(sub e)) are determined for the doublet states of AgO and AgS below approx. = 30000/cm. Large valence basis sets are employed in conjunction with relativistic effective core potentials (RECPs). Electron correlation is included using the modified coupled-pair functional (MCPF) and multireference configuration interaction (MRCI) methods. The A(sup 2)Sigma(sup +) - X(sup 2)Pi band system is found to occur in the near infrared (approx. = 9000/cm) and to be relatively weak with a radiative lifetime of 900 microns for A(sup 2)Sigma(sup +) (upsilon = 0). The weakly bound C(sup 2)Pi state (our notation), the upper state of the blue system, is found to require high levels of theoretical treatment to determine a quantitatively accurate potential. The red system is assigned as a transition from the C(sup 2)Pi state to the previously unobserved A(sup 2)Sigma(sup +) state. Several additional transitions are identified that should be detectable experimentally. A more limited study is performed for the vertical excitation spectrum of AgS. In addition, a detailed all-electron study of the X(sup 2)Pi and A(sup 2)Sigma(sup +) states of AgO is carried out using large atomic natural orbital (ANO) basis sets. Our best calculated D(sub o) value for AgO is significantly less than the experimental value, which suggests that there may be some systematic error in the experimental determination.

  15. QUADRATIC SERENDIPITY FINITE ELEMENTS ON POLYGONS USING GENERALIZED BARYCENTRIC COORDINATES.

    PubMed

    Rand, Alexander; Gillette, Andrew; Bajaj, Chandrajit

    2014-01-01

    We introduce a finite element construction for use on the class of convex, planar polygons and show it obtains a quadratic error convergence estimate. On a convex n -gon, our construction produces 2 n basis functions, associated in a Lagrange-like fashion to each vertex and each edge midpoint, by transforming and combining a set of n ( n + 1)/2 basis functions known to obtain quadratic convergence. The technique broadens the scope of the so-called 'serendipity' elements, previously studied only for quadrilateral and regular hexahedral meshes, by employing the theory of generalized barycentric coordinates. Uniform a priori error estimates are established over the class of convex quadrilaterals with bounded aspect ratio as well as over the class of convex planar polygons satisfying additional shape regularity conditions to exclude large interior angles and short edges. Numerical evidence is provided on a trapezoidal quadrilateral mesh, previously not amenable to serendipity constructions, and applications to adaptive meshing are discussed.

  16. Stereochemical analysis of (+)-limonene using theoretical and experimental NMR and chiroptical data

    NASA Astrophysics Data System (ADS)

    Reinscheid, F.; Reinscheid, U. M.

    2016-02-01

    Using limonene as test molecule, the success and the limitations of three chiroptical methods (optical rotatory dispersion (ORD), electronic and vibrational circular dichroism, ECD and VCD) could be demonstrated. At quite low levels of theory (mpw1pw91/cc-pvdz, IEFPCM (integral equation formalism polarizable continuum model)) the experimental ORD values differ by less than 10 units from the calculated values. The modelling in the condensed phase still represents a challenge so that experimental NMR data were used to test for aggregation and solvent-solute interactions. After establishing a reasonable structural model, only the ECD spectra prediction showed a decisive dependence on the basis set: only augmented (in the case of Dunning's basis sets) or diffuse (in the case of Pople's basis sets) basis sets predicted the position and shape of the ECD bands correctly. Based on these result we propose a procedure to assign the absolute configuration (AC) of an unknown compound using the comparison between experimental and calculated chiroptical data.

  17. First-principles investigation on Rydberg and resonance excitations: A case study of the firefly luciferin anion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noguchi, Yoshifumi, E-mail: y.noguchi@issp.u-tokyo.ac.jp; Hiyama, Miyabi; Akiyama, Hidefumi

    2014-07-28

    The optical properties of an isolated firefly luciferin anion are investigated by using first-principles calculations, employing the many-body perturbation theory to take into account the excitonic effect. The calculated photoabsorption spectra are compared with the results obtained using the time-dependent density functional theory (TDDFT) employing the localized atomic orbital (AO) basis sets and a recent experiment in vacuum. The present method well reproduces the line shape at the photon energy corresponding to the Rydberg and resonance excitations but overestimates the peak positions by about 0.5 eV. However, the TDDFT-calculated positions of some peaks are closer to those of the experiment.more » We also investigate the basis set dependency in describing the free electron states above vacuum level and the excitons involving the transitions to the free electron states and conclude that AO-only basis sets are inaccurate for free electron states and the use of a plane wave basis set is required.« less

  18. Quantum Chemical Evaluation of the Astrochemical Significance of Reactions between S Atom and Acetylene or Ethylene

    NASA Technical Reports Server (NTRS)

    Woon, David E.

    2007-01-01

    Addition-elimination reactions of S atom in its P-3 ground state with acetylene (C2H2) and ethylene (C2H4) were characterized with both molecular orbital and density functional theory calculations employing correlation consistent basis sets in order to assess the likelihood either reaction might play a general role in astrochemistry or a specific role in the formation of S2 (X (sup 3 SIGMA (sub g) (sup -)) via a mechanism proposed by Saxena and Misra (Mon. Not. R. Astron. Soc. 1995, 272, 89). The acetylene and ethylene reactions proceed through C2H2S ((sup 3)A")) and C2H4S ((sup 3)A")) intermediates, respectively, to yield HCCS ((sup 2)II)) and C2H3S ((sup 2)A')). Substantial barriers were found in the exit channels for every combination of method and basis set considered in this work, which effectively precludes hydrogen elimination pathways for both S + C2H2 and S + C2H4 in the ultracold interstellar medium where only very modest barriers can be surmounted and processes without barriers tend to predominate. However, if one or both intermediates is formed and stabilized efficiently under cometary or dense interstellar cloud conditions, they could serve as temporary reservoirs for S atom and participate in reactions such as S + C2H2S (right arrow) S2 = C2H2 or S + C2H4S (right arrow) S2 + C2H4. For formation and stabilization to be efficient, the reaction must possess a barrier height small enough to be surmountable at low temperatures yet large enough to prevent redissociation to reactants. Barrier heights computed with B3LYP and large basis sets are very low, but more rigorous QCISD(T) and RCCSD(T) results indicate that the barrier heights are closer to 3-4 kcal/mol. The calculations therefore indicate that S + C2H2 or S + C2H4 could contribute to the formation of S2 in comets and may serve as a means to gauge coma temperature. The energetics of the ethylene reaction are more favorable.

  19. Basis set study of classical rotor lattice dynamics.

    PubMed

    Witkoskie, James B; Wu, Jianlan; Cao, Jianshu

    2004-03-22

    The reorientational relaxation of molecular systems is important in many phenomenon and applications. In this paper, we explore the reorientational relaxation of a model Brownian rotor lattice system with short range interactions in both the high and low temperature regimes. In this study, we use a basis set expansion to capture collective motions of the system. The single particle basis set is used in the high temperature regime, while the spin wave basis is used in the low temperature regime. The equations of motion derived in this approach are analogous to the generalized Langevin equation, but the equations render flexibility by allowing nonequilibrium initial conditions. This calculation shows that the choice of projection operators in the generalized Langevin equation (GLE) approach corresponds to defining a specific inner-product space, and this inner-product space should be chosen to reveal the important physics of the problem. The basis set approach corresponds to an inner-product and projection operator that maintain the orthogonality of the spherical harmonics and provide a convenient platform for analyzing GLE expansions. The results compare favorably with numerical simulations, and the formalism is easily extended to more complex systems. (c) 2004 American Institute of Physics

  20. A new neuroinformatics approach to personalized medicine in neurology: The Virtual Brain

    PubMed Central

    Falcon, Maria I.; Jirsa, Viktor; Solodkin, Ana

    2017-01-01

    Purpose of review An exciting advance in the field of neuroimaging is the acquisition and processing of very large data sets (so called ‘big data’), permitting large-scale inferences that foster a greater understanding of brain function in health and disease. Yet what we are clearly lacking are quantitative integrative tools to translate this understanding to the individual level to lay the basis for personalized medicine. Recent findings Here we address this challenge through a review on how the relatively new field of neuroinformatics modeling has the capacity to track brain network function at different levels of inquiry, from microscopic to macroscopic and from the localized to the distributed. In this context, we introduce a new and unique multiscale approach, The Virtual Brain (TVB), that effectively models individualized brain activity, linking large-scale (macroscopic) brain dynamics with biophysical parameters at the microscopic level. We also show how TVB modeling provides unique biological interpretable data in epilepsy and stroke. Summary These results establish the basis for a deliberate integration of computational biology and neuroscience into clinical approaches for elucidating cellular mechanisms of disease. In the future, this can provide the means to create a collection of disease-specific models that can be applied on the individual level to personalize therapeutic interventions. Video abstract http://links.lww.com/CONR/A41 PMID:27224088

  1. Theoretical study of the XP3 (X = Al, B, Ga) clusters

    NASA Astrophysics Data System (ADS)

    Ueno, Leonardo T.; Lopes, Cinara; Malaspina, Thaciana; Roberto-Neto, Orlando; Canuto, Sylvio; Machado, Francisco B. C.

    2012-05-01

    The lowest singlet and triplet states of AlP3, GaP3 and BP3 molecules with Cs, C2v and C3v symmetries were characterized using the B3LYP functional and the aug-cc-pVTZ and aug-cc-pVQZ correlated consistent basis sets. Geometrical parameters and vibrational frequencies were calculated and compared to existent experimental and theoretical data. Relative energies were obtained with single point CCSD(T) calculations using the aug-cc-pVTZ, aug-cc-pVQZ and aug-cc-pV5Z basis sets, and then extrapolating to the complete basis set (CBS) limit.

  2. Steerable Principal Components for Space-Frequency Localized Images*

    PubMed Central

    Landa, Boris; Shkolnisky, Yoel

    2017-01-01

    As modern scientific image datasets typically consist of a large number of images of high resolution, devising methods for their accurate and efficient processing is a central research task. In this paper, we consider the problem of obtaining the steerable principal components of a dataset, a procedure termed “steerable PCA” (steerable principal component analysis). The output of the procedure is the set of orthonormal basis functions which best approximate the images in the dataset and all of their planar rotations. To derive such basis functions, we first expand the images in an appropriate basis, for which the steerable PCA reduces to the eigen-decomposition of a block-diagonal matrix. If we assume that the images are well localized in space and frequency, then such an appropriate basis is the prolate spheroidal wave functions (PSWFs). We derive a fast method for computing the PSWFs expansion coefficients from the images' equally spaced samples, via a specialized quadrature integration scheme, and show that the number of required quadrature nodes is similar to the number of pixels in each image. We then establish that our PSWF-based steerable PCA is both faster and more accurate then existing methods, and more importantly, provides us with rigorous error bounds on the entire procedure. PMID:29081879

  3. Land cover/use classification of Cairns, Queensland, Australia: A remote sensing study involving the conjunctive use of the airborne imaging spectrometer, the large format camera and the thematic mapper simulator

    NASA Technical Reports Server (NTRS)

    Heric, Matthew; Cox, William; Gordon, Daniel K.

    1987-01-01

    In an attempt to improve the land cover/use classification accuracy obtainable from remotely sensed multispectral imagery, Airborne Imaging Spectrometer-1 (AIS-1) images were analyzed in conjunction with Thematic Mapper Simulator (NS001) Large Format Camera color infrared photography and black and white aerial photography. Specific portions of the combined data set were registered and used for classification. Following this procedure, the resulting derived data was tested using an overall accuracy assessment method. Precise photogrammetric 2D-3D-2D geometric modeling techniques is not the basis for this study. Instead, the discussion exposes resultant spectral findings from the image-to-image registrations. Problems associated with the AIS-1 TMS integration are considered, and useful applications of the imagery combination are presented. More advanced methodologies for imagery integration are needed if multisystem data sets are to be utilized fully. Nevertheless, research, described herein, provides a formulation for future Earth Observation Station related multisensor studies.

  4. Comment on “Rethinking first-principles electron transport theories with projection operators: The problems caused by partitioning the basis set” [J. Chem. Phys. 139, 114104 (2013)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandbyge, Mads, E-mail: mads.brandbyge@nanotech.dtu.dk

    2014-05-07

    In a recent paper Reuter and Harrison [J. Chem. Phys. 139, 114104 (2013)] question the widely used mean-field electron transport theories, which employ nonorthogonal localized basis sets. They claim these can violate an “implicit decoupling assumption,” leading to wrong results for the current, different from what would be obtained by using an orthogonal basis, and dividing surfaces defined in real-space. We argue that this assumption is not required to be fulfilled to get exact results. We show how the current/transmission calculated by the standard Greens function method is independent of whether or not the chosen basis set is nonorthogonal, andmore » that the current for a given basis set is consistent with divisions in real space. The ambiguity known from charge population analysis for nonorthogonal bases does not carry over to calculations of charge flux.« less

  5. Reducing Information Overload in Large Seismic Data Sets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HAMPTON,JEFFERY W.; YOUNG,CHRISTOPHER J.; MERCHANT,BION J.

    2000-08-02

    Event catalogs for seismic data can become very large. Furthermore, as researchers collect multiple catalogs and reconcile them into a single catalog that is stored in a relational database, the reconciled set becomes even larger. The sheer number of these events makes searching for relevant events to compare with events of interest problematic. Information overload in this form can lead to the data sets being under-utilized and/or used incorrectly or inconsistently. Thus, efforts have been initiated to research techniques and strategies for helping researchers to make better use of large data sets. In this paper, the authors present their effortsmore » to do so in two ways: (1) the Event Search Engine, which is a waveform correlation tool and (2) some content analysis tools, which area combination of custom-built and commercial off-the-shelf tools for accessing, managing, and querying seismic data stored in a relational database. The current Event Search Engine is based on a hierarchical clustering tool known as the dendrogram tool, which is written as a MatSeis graphical user interface. The dendrogram tool allows the user to build dendrogram diagrams for a set of waveforms by controlling phase windowing, down-sampling, filtering, enveloping, and the clustering method (e.g. single linkage, complete linkage, flexible method). It also allows the clustering to be based on two or more stations simultaneously, which is important to bridge gaps in the sparsely recorded event sets anticipated in such a large reconciled event set. Current efforts are focusing on tools to help the researcher winnow the clusters defined using the dendrogram tool down to the minimum optimal identification set. This will become critical as the number of reference events in the reconciled event set continually grows. The dendrogram tool is part of the MatSeis analysis package, which is available on the Nuclear Explosion Monitoring Research and Engineering Program Web Site. As part of the research into how to winnow the reference events in these large reconciled event sets, additional database query approaches have been developed to provide windows into these datasets. These custom built content analysis tools help identify dataset characteristics that can potentially aid in providing a basis for comparing similar reference events in these large reconciled event sets. Once these characteristics can be identified, algorithms can be developed to create and add to the reduced set of events used by the Event Search Engine. These content analysis tools have already been useful in providing information on station coverage of the referenced events and basic statistical, information on events in the research datasets. The tools can also provide researchers with a quick way to find interesting and useful events within the research datasets. The tools could also be used as a means to review reference event datasets as part of a dataset delivery verification process. There has also been an effort to explore the usefulness of commercially available web-based software to help with this problem. The advantages of using off-the-shelf software applications, such as Oracle's WebDB, to manipulate, customize and manage research data are being investigated. These types of applications are being examined to provide access to large integrated data sets for regional seismic research in Asia. All of these software tools would provide the researcher with unprecedented power without having to learn the intricacies and complexities of relational database systems.« less

  6. Camera memory study for large space telescope. [charge coupled devices

    NASA Technical Reports Server (NTRS)

    Hoffman, C. P.; Brewer, J. E.; Brager, E. A.; Farnsworth, D. L.

    1975-01-01

    Specifications were developed for a memory system to be used as the storage media for camera detectors on the large space telescope (LST) satellite. Detectors with limited internal storage time such as intensities charge coupled devices and silicon intensified targets are implied. The general characteristics are reported of different approaches to the memory system with comparisons made within the guidelines set forth for the LST application. Priority ordering of comparisons is on the basis of cost, reliability, power, and physical characteristics. Specific rationales are provided for the rejection of unsuitable memory technologies. A recommended technology was selected and used to establish specifications for a breadboard memory. Procurement scheduling is provided for delivery of system breadboards in 1976, prototypes in 1978, and space qualified units in 1980.

  7. Mn@Si14+: a singlet fullerene-like endohedrally doped silicon cluster.

    PubMed

    Ngan, Vu Thi; Pierloot, Kristine; Nguyen, Minh Tho

    2013-04-21

    The electronic structure of Mn@Si14(+) is determined using DFT and CASPT2/CASSCF(14,15) computations with large basis sets. The endohedrally Mn-doped Si cationic cluster has a D3h fullerene-like structure featuring a closed-shell singlet ground state with a singlet-triplet gap of ~1 eV. A strong stabilizing interaction occurs between the 3d(Mn) and the 2D-shell(Si14) orbitals, and a large amount of charge is transferred from the Si14 cage to the Mn dopant. The 3d(Mn) orbitals are filled by encapsulation, and the magnetic moment of Mn is completely quenched. Full occupation of [2S, 2P, 2D] shell orbitals by 18 delocalized electrons confers the doped Mn@Si14(+) cluster a spherically aromatic character.

  8. Gaussian polarizable-ion tight binding.

    PubMed

    Boleininger, Max; Guilbert, Anne Ay; Horsfield, Andrew P

    2016-10-14

    To interpret ultrafast dynamics experiments on large molecules, computer simulation is required due to the complex response to the laser field. We present a method capable of efficiently computing the static electronic response of large systems to external electric fields. This is achieved by extending the density-functional tight binding method to include larger basis sets and by multipole expansion of the charge density into electrostatically interacting Gaussian distributions. Polarizabilities for a range of hydrocarbon molecules are computed for a multipole expansion up to quadrupole order, giving excellent agreement with experimental values, with average errors similar to those from density functional theory, but at a small fraction of the cost. We apply the model in conjunction with the polarizable-point-dipoles model to estimate the internal fields in amorphous poly(3-hexylthiophene-2,5-diyl).

  9. Gaussian polarizable-ion tight binding

    NASA Astrophysics Data System (ADS)

    Boleininger, Max; Guilbert, Anne AY; Horsfield, Andrew P.

    2016-10-01

    To interpret ultrafast dynamics experiments on large molecules, computer simulation is required due to the complex response to the laser field. We present a method capable of efficiently computing the static electronic response of large systems to external electric fields. This is achieved by extending the density-functional tight binding method to include larger basis sets and by multipole expansion of the charge density into electrostatically interacting Gaussian distributions. Polarizabilities for a range of hydrocarbon molecules are computed for a multipole expansion up to quadrupole order, giving excellent agreement with experimental values, with average errors similar to those from density functional theory, but at a small fraction of the cost. We apply the model in conjunction with the polarizable-point-dipoles model to estimate the internal fields in amorphous poly(3-hexylthiophene-2,5-diyl).

  10. Some considerations about Gaussian basis sets for electric property calculations

    NASA Astrophysics Data System (ADS)

    Arruda, Priscilla M.; Canal Neto, A.; Jorge, F. E.

    Recently, segmented contracted basis sets of double, triple, and quadruple zeta valence quality plus polarization functions (XZP, X = D, T, and Q, respectively) for the atoms from H to Ar were reported. In this work, with the objective of having a better description of polarizabilities, the QZP set was augmented with diffuse (s and p symmetries) and polarization (p, d, f, and g symmetries) functions that were chosen to maximize the mean dipole polarizability at the UHF and UMP2 levels, respectively. At the HF and B3LYP levels of theory, electric dipole moment and static polarizability for a sample of molecules were evaluated. Comparison with experimental data and results obtained with a similar size basis set, whose diffuse functions were optimized for the ground state energy of the anion, was done.

  11. Comparative analysis and visualization of multiple collinear genomes

    PubMed Central

    2012-01-01

    Background Genome browsers are a common tool used by biologists to visualize genomic features including genes, polymorphisms, and many others. However, existing genome browsers and visualization tools are not well-suited to perform meaningful comparative analysis among a large number of genomes. With the increasing quantity and availability of genomic data, there is an increased burden to provide useful visualization and analysis tools for comparison of multiple collinear genomes such as the large panels of model organisms which are the basis for much of the current genetic research. Results We have developed a novel web-based tool for visualizing and analyzing multiple collinear genomes. Our tool illustrates genome-sequence similarity through a mosaic of intervals representing local phylogeny, subspecific origin, and haplotype identity. Comparative analysis is facilitated through reordering and clustering of tracks, which can vary throughout the genome. In addition, we provide local phylogenetic trees as an alternate visualization to assess local variations. Conclusions Unlike previous genome browsers and viewers, ours allows for simultaneous and comparative analysis. Our browser provides intuitive selection and interactive navigation about features of interest. Dynamic visualizations adjust to scale and data content making analysis at variable resolutions and of multiple data sets more informative. We demonstrate our genome browser for an extensive set of genomic data sets composed of almost 200 distinct mouse laboratory strains. PMID:22536897

  12. Hydrogen bonding and pi-stacking: how reliable are force fields? A critical evaluation of force field descriptions of nonbonded interactions.

    PubMed

    Paton, Robert S; Goodman, Jonathan M

    2009-04-01

    We have evaluated the performance of a set of widely used force fields by calculating the geometries and stabilization energies for a large collection of intermolecular complexes. These complexes are representative of a range of chemical and biological systems for which hydrogen bonding, electrostatic, and van der Waals interactions play important roles. Benchmark energies are taken from the high-level ab initio values in the JSCH-2005 and S22 data sets. All of the force fields underestimate stabilization resulting from hydrogen bonding, but the energetics of electrostatic and van der Waals interactions are described more accurately. OPLSAA gave a mean unsigned error of 2 kcal mol(-1) for all 165 complexes studied, and outperforms DFT calculations employing very large basis sets for the S22 complexes. The magnitude of hydrogen bonding interactions are severely underestimated by all of the force fields tested, which contributes significantly to the overall mean error; if complexes which are predominantly bound by hydrogen bonding interactions are discounted, the mean unsigned error of OPLSAA is reduced to 1 kcal mol(-1). For added clarity, web-based interactive displays of the results have been developed which allow comparisons of force field and ab initio geometries to be performed and the structures viewed and rotated in three dimensions.

  13. A Simplified Approach to the Basis Functions of Symmetry Operations and Terms of Metal Complexes in an Octahedral Field with d[superscript 1] to d[superscript 9] Configurations

    ERIC Educational Resources Information Center

    Lee, Liangshiu

    2010-01-01

    The basis sets for symmetry operations of d[superscript 1] to d[superscript 9] complexes in an octahedral field and the resulting terms are derived for the ground states and spin-allowed excited states. The basis sets are of fundamental importance in group theory. This work addresses such a fundamental issue, and the results are pedagogically…

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makhov, Dmitry V.; Shalashilin, Dmitrii V.; Glover, William J.

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as “cloning,” in analogy to the “spawning” procedure in AIMS. This synthesis of AIMS and MCEmore » allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, “trains,” as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.« less

  15. Incorporating scenario-based simulation into a hospital nursing education program.

    PubMed

    Nagle, Beth M; McHale, Jeanne M; Alexander, Gail A; French, Brian M

    2009-01-01

    Nurse educators are challenged to provide meaningful and effective learning opportunities for both new and experienced nurses. Simulation as a teaching and learning methodology is being embraced by nursing in academic and practice settings to provide innovative educational experiences to assess and develop clinical competency, promote teamwork, and improve care processes. This article provides an overview of the historical basis for using simulation in education, simulation methodologies, and perceived advantages and disadvantages. It also provides a description of the integration of scenario-based programs using a full-scale patient simulator into nursing education programming at a large academic medical center.

  16. The Calculation of Accurate Metal-Ligand Bond Energies

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W.; Partridge, Harry, III; Ricca, Alessandra; Arnold, James O. (Technical Monitor)

    1997-01-01

    The optimization of the geometry and calculation of zero-point energies are carried out at the B3LYP level of theory. The bond energies are determined at this level, as well as at the CCSD(T) level using very large basis sets. The successive OH bond energies to the first row transition metal cations are reported. For most systems there has been an experimental determination of the first OH. In general, the CCSD(T) values are in good agreement with experiment. The bonding changes from mostly covalent for the early metals to mostly electrostatic for the late transition metal systems.

  17. A Study of the X(sup 2) Sigma(sup +) and A(sup 2) Pi States of MgAr(sup +) and MgKr(sup +)

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The ground (sup 2)Sigma(sup +) and lowest excited (sup 2)Pi states of MgAr(sup +) and MgKr(sup +) are studied using the singles and doubles configuration interaction (SDCI) approach, in conjunction with large basis sets. The effect of Mg core correlation and core polarization are accounted for using the core-polarization potential (CPP) approach. Franck-Condon factors, oscillator strengths, radiative lifetimes, dissociation energies, bond lengths, and excitation energies are reported. The computed results are in good agreement with the available experimental data.

  18. Electronic structure and static dipole polarizability of C60@C240

    NASA Astrophysics Data System (ADS)

    Zope, Rajendra R.

    2008-04-01

    The electronic structure of C60@C240 and its first-order response to a static electric field is studied by an all-electron density functional theory calculation using large polarized Gaussian basis sets. Our results show that the outer C240 shell almost completely shields the inner C60 as inferred from the practically identical values of dipole polarizability of the C60@C240 onion (449 Å3) and that of the isolated C240 fullerene (441 Å3). The C60@C240 is thus a near-perfect Faraday cage.

  19. Minimax rational approximation of the Fermi-Dirac distribution

    DOE PAGES

    Moussa, Jonathan E.

    2016-10-27

    Accurate rational approximations of the Fermi-Dirac distribution are a useful component in many numerical algorithms for electronic structure calculations. The best known approximations use O(log(βΔ)log(ϵ –1)) poles to achieve an error tolerance ϵ at temperature β –1 over an energy interval Δ. We apply minimax approximation to reduce the number of poles by a factor of four and replace Δ with Δ occ, the occupied energy interval. Furthermore, this is particularly beneficial when Δ >> Δ occ, such as in electronic structure calculations that use a large basis set.

  20. Self-consistent implementation of meta-GGA functionals for the ONETEP linear-scaling electronic structure package.

    PubMed

    Womack, James C; Mardirossian, Narbe; Head-Gordon, Martin; Skylaris, Chris-Kriton

    2016-11-28

    Accurate and computationally efficient exchange-correlation functionals are critical to the successful application of linear-scaling density functional theory (DFT). Local and semi-local functionals of the density are naturally compatible with linear-scaling approaches, having a general form which assumes the locality of electronic interactions and which can be efficiently evaluated by numerical quadrature. Presently, the most sophisticated and flexible semi-local functionals are members of the meta-generalized-gradient approximation (meta-GGA) family, and depend upon the kinetic energy density, τ, in addition to the charge density and its gradient. In order to extend the theoretical and computational advantages of τ-dependent meta-GGA functionals to large-scale DFT calculations on thousands of atoms, we have implemented support for τ-dependent meta-GGA functionals in the ONETEP program. In this paper we lay out the theoretical innovations necessary to implement τ-dependent meta-GGA functionals within ONETEP's linear-scaling formalism. We present expressions for the gradient of the τ-dependent exchange-correlation energy, necessary for direct energy minimization. We also derive the forms of the τ-dependent exchange-correlation potential and kinetic energy density in terms of the strictly localized, self-consistently optimized orbitals used by ONETEP. To validate the numerical accuracy of our self-consistent meta-GGA implementation, we performed calculations using the B97M-V and PKZB meta-GGAs on a variety of small molecules. Using only a minimal basis set of self-consistently optimized local orbitals, we obtain energies in excellent agreement with large basis set calculations performed using other codes. Finally, to establish the linear-scaling computational cost and applicability of our approach to large-scale calculations, we present the outcome of self-consistent meta-GGA calculations on amyloid fibrils of increasing size, up to tens of thousands of atoms.

  1. Self-consistent implementation of meta-GGA functionals for the ONETEP linear-scaling electronic structure package

    NASA Astrophysics Data System (ADS)

    Womack, James C.; Mardirossian, Narbe; Head-Gordon, Martin; Skylaris, Chris-Kriton

    2016-11-01

    Accurate and computationally efficient exchange-correlation functionals are critical to the successful application of linear-scaling density functional theory (DFT). Local and semi-local functionals of the density are naturally compatible with linear-scaling approaches, having a general form which assumes the locality of electronic interactions and which can be efficiently evaluated by numerical quadrature. Presently, the most sophisticated and flexible semi-local functionals are members of the meta-generalized-gradient approximation (meta-GGA) family, and depend upon the kinetic energy density, τ, in addition to the charge density and its gradient. In order to extend the theoretical and computational advantages of τ-dependent meta-GGA functionals to large-scale DFT calculations on thousands of atoms, we have implemented support for τ-dependent meta-GGA functionals in the ONETEP program. In this paper we lay out the theoretical innovations necessary to implement τ-dependent meta-GGA functionals within ONETEP's linear-scaling formalism. We present expressions for the gradient of the τ-dependent exchange-correlation energy, necessary for direct energy minimization. We also derive the forms of the τ-dependent exchange-correlation potential and kinetic energy density in terms of the strictly localized, self-consistently optimized orbitals used by ONETEP. To validate the numerical accuracy of our self-consistent meta-GGA implementation, we performed calculations using the B97M-V and PKZB meta-GGAs on a variety of small molecules. Using only a minimal basis set of self-consistently optimized local orbitals, we obtain energies in excellent agreement with large basis set calculations performed using other codes. Finally, to establish the linear-scaling computational cost and applicability of our approach to large-scale calculations, we present the outcome of self-consistent meta-GGA calculations on amyloid fibrils of increasing size, up to tens of thousands of atoms.

  2. Accurate bond energies of hydrocarbons from complete basis set extrapolated multi-reference singles and doubles configuration interaction.

    PubMed

    Oyeyemi, Victor B; Pavone, Michele; Carter, Emily A

    2011-12-09

    Quantum chemistry has become one of the most reliable tools for characterizing the thermochemical underpinnings of reactions, such as bond dissociation energies (BDEs). The accurate prediction of these particular properties (BDEs) are challenging for ab initio methods based on perturbative corrections or coupled cluster expansions of the single-determinant Hartree-Fock wave function: the processes of bond breaking and forming are inherently multi-configurational and require an accurate description of non-dynamical electron correlation. To this end, we present a systematic ab initio approach for computing BDEs that is based on three components: 1) multi-reference single and double excitation configuration interaction (MRSDCI) for the electronic energies; 2) a two-parameter scheme for extrapolating MRSDCI energies to the complete basis set limit; and 3) DFT-B3LYP calculations of minimum-energy structures and vibrational frequencies to account for zero point energy and thermal corrections. We validated our methodology against a set of reliable experimental BDE values of CC and CH bonds of hydrocarbons. The goal of chemical accuracy is achieved, on average, without applying any empirical corrections to the MRSDCI electronic energies. We then use this composite scheme to make predictions of BDEs in a large number of hydrocarbon molecules for which there are no experimental data, so as to provide needed thermochemical estimates for fuel molecules. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, Aftab; Khan, Suffian N.; Smirnov, A. V.

    Korringa-Kohn-Rostoker (KKR) Green's function, multiple-scattering theory is an ecient sitecentered, electronic-structure technique for addressing an assembly of N scatterers. Wave-functions are expanded in a spherical-wave basis on each scattering center and indexed up to a maximum orbital and azimuthal number L max = (l,m) max, while scattering matrices, which determine spectral properties, are truncated at L tr = (l,m) tr where phase shifts δl>l tr are negligible. Historically, L max is set equal to L tr, which is correct for large enough L max but not computationally expedient; a better procedure retains higher-order (free-electron and single-site) contributions for L maxmore » > L tr with δl>l tr set to zero [Zhang and Butler, Phys. Rev. B 46, 7433]. We present a numerically ecient and accurate augmented-KKR Green's function formalism that solves the KKR equations by exact matrix inversion [R 3 process with rank N(l tr + 1) 2] and includes higher-L contributions via linear algebra [R 2 process with rank N(l max +1) 2]. Augmented-KKR approach yields properly normalized wave-functions, numerically cheaper basis-set convergence, and a total charge density and electron count that agrees with Lloyd's formula. We apply our formalism to fcc Cu, bcc Fe and L1 0 CoPt, and present the numerical results for accuracy and for the convergence of the total energies, Fermi energies, and magnetic moments versus L max for a given L tr.« less

  4. From plane waves to local Gaussians for the simulation of correlated periodic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booth, George H., E-mail: george.booth@kcl.ac.uk; Tsatsoulis, Theodoros; Grüneis, Andreas, E-mail: a.grueneis@fkf.mpg.de

    2016-08-28

    We present a simple, robust, and black-box approach to the implementation and use of local, periodic, atom-centered Gaussian basis functions within a plane wave code, in a computationally efficient manner. The procedure outlined is based on the representation of the Gaussians within a finite bandwidth by their underlying plane wave coefficients. The core region is handled within the projected augment wave framework, by pseudizing the Gaussian functions within a cutoff radius around each nucleus, smoothing the functions so that they are faithfully represented by a plane wave basis with only moderate kinetic energy cutoff. To mitigate the effects of themore » basis set superposition error and incompleteness at the mean-field level introduced by the Gaussian basis, we also propose a hybrid approach, whereby the complete occupied space is first converged within a large plane wave basis, and the Gaussian basis used to construct a complementary virtual space for the application of correlated methods. We demonstrate that these pseudized Gaussians yield compact and systematically improvable spaces with an accuracy comparable to their non-pseudized Gaussian counterparts. A key advantage of the described method is its ability to efficiently capture and describe electronic correlation effects of weakly bound and low-dimensional systems, where plane waves are not sufficiently compact or able to be truncated without unphysical artifacts. We investigate the accuracy of the pseudized Gaussians for the water dimer interaction, neon solid, and water adsorption on a LiH surface, at the level of second-order Møller–Plesset perturbation theory.« less

  5. Two-component relativistic coupled-cluster methods using mean-field spin-orbit integrals

    NASA Astrophysics Data System (ADS)

    Liu, Junzi; Shen, Yue; Asthana, Ayush; Cheng, Lan

    2018-01-01

    A novel implementation of the two-component spin-orbit (SO) coupled-cluster singles and doubles (CCSD) method and the CCSD augmented with the perturbative inclusion of triple excitations [CCSD(T)] method using mean-field SO integrals is reported. The new formulation of SO-CCSD(T) features an atomic-orbital-based algorithm for the particle-particle ladder term in the CCSD equation, which not only removes the computational bottleneck associated with the large molecular-orbital integral file but also accelerates the evaluation of the particle-particle ladder term by around a factor of 4 by taking advantage of the spin-free nature of the instantaneous electron-electron Coulomb interaction. Benchmark calculations of the SO splittings for the thallium atom and a set of diatomic 2Π radicals as well as of the bond lengths and harmonic frequencies for a set of closed-shell diatomic molecules are presented. The basis-set and core-correlation effects in the calculations of these properties have been carefully analyzed.

  6. Exact solution for the hydrogen atom confined by a dielectric continuum and the correct basis set to study many-electron atoms under similar confinements

    NASA Astrophysics Data System (ADS)

    Martínez-Sánchez, Michael-Adán; Aquino, Norberto; Vargas, Rubicelia; Garza, Jorge

    2017-12-01

    The Schrödinger equation associated to the hydrogen atom confined by a dielectric continuum is solved exactly and suggests the appropriate basis set to be used when an atom is immersed in a dielectric continuum. Exact results show that this kind of confinement spread the electron density, which is confirmed through the Shannon entropy. The basis set suggested by the exact results is similar to Slater type orbitals and it was applied on two-electron atoms, where the H- ion ejects one electron for moderate confinements for distances much larger than those commonly used to generate cavities in solvent models.

  7. Molecular and Phenotypic Characterization of Phialemonium and Lecythophora Isolates from Clinical Samples▿

    PubMed Central

    Perdomo, H.; Sutton, D. A.; García, D.; Fothergill, A. W.; Gené, J.; Cano, J.; Summerbell, R. C.; Rinaldi, M. G.; Guarro, J.

    2011-01-01

    Several members of the fungal genera Phialemonium and Lecythophora are occasional agents of severe human and animal infections. These species are difficult to identify, and relatively little is known about their frequency in the clinical setting. The objective of this study was to characterize morphologically and molecularly, on the basis of the analysis of large-subunit ribosomal DNA sequences, a set of 68 clinical isolates presumed to belong to these genera. A total of 59 isolates were determined to be Phialemonium species (n = 32) or a related Cephalotheca species (n = 6) or Lecythophora species (n = 20) or a related Coniochaeta species (n = 1). Nine isolates identified to be Acremonium spp. or Phaeoacremonium spp. were excluded from further study. The most common species were Phialemonium obovatum and Phialemonium curvatum, followed by Lecythophora hoffmannii, Cephalotheca foveolata, and Lecythophora mutabilis. PMID:21270235

  8. CCSD(T) potential energy and induced dipole surfaces for N2–H2(D2): retrieval of the collision-induced absorption integrated intensities in the regions of the fundamental and first overtone vibrational transitions.

    PubMed

    Buryak, Ilya; Lokshtanov, Sergei; Vigasin, Andrey

    2012-09-21

    The present work aims at ab initio characterization of the integrated intensity temperature variation of collision-induced absorption (CIA) in N(2)-H(2)(D(2)). Global fits of potential energy surface (PES) and induced dipole moment surface (IDS) were made on the basis of CCSD(T) (coupled cluster with single and double and perturbative triple excitations) calculations with aug-cc-pV(T,Q)Z basis sets. Basis set superposition error correction and extrapolation to complete basis set (CBS) limit techniques were applied to both energy and dipole moment. Classical second cross virial coefficient calculations accounting for the first quantum correction were employed to prove the quality of the obtained PES. The CIA temperature dependence was found in satisfactory agreement with available experimental data.

  9. Fragment approach to constrained density functional theory calculations using Daubechies wavelets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratcliff, Laura E.; Genovese, Luigi; Mohr, Stephan

    2015-06-21

    In a recent paper, we presented a linear scaling Kohn-Sham density functional theory (DFT) code based on Daubechies wavelets, where a minimal set of localized support functions are optimized in situ and therefore adapted to the chemical properties of the molecular system. Thanks to the systematically controllable accuracy of the underlying basis set, this approach is able to provide an optimal contracted basis for a given system: accuracies for ground state energies and atomic forces are of the same quality as an uncontracted, cubic scaling approach. This basis set offers, by construction, a natural subset where the density matrix ofmore » the system can be projected. In this paper, we demonstrate the flexibility of this minimal basis formalism in providing a basis set that can be reused as-is, i.e., without reoptimization, for charge-constrained DFT calculations within a fragment approach. Support functions, represented in the underlying wavelet grid, of the template fragments are roto-translated with high numerical precision to the required positions and used as projectors for the charge weight function. We demonstrate the interest of this approach to express highly precise and efficient calculations for preparing diabatic states and for the computational setup of systems in complex environments.« less

  10. Narrowing the error in electron correlation calculations by basis set re-hierarchization and use of the unified singlet and triplet electron-pair extrapolation scheme: Application to a test set of 106 systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varandas, A. J. C., E-mail: varandas@uc.pt; Departamento de Física, Universidade Federal do Espírito Santo, 29075-910 Vitória; Pansini, F. N. N.

    2014-12-14

    A method previously suggested to calculate the correlation energy at the complete one-electron basis set limit by reassignment of the basis hierarchical numbers and use of the unified singlet- and triplet-pair extrapolation scheme is applied to a test set of 106 systems, some with up to 48 electrons. The approach is utilized to obtain extrapolated correlation energies from raw values calculated with second-order Møller-Plesset perturbation theory and the coupled-cluster singles and doubles excitations method, some of the latter also with the perturbative triples corrections. The calculated correlation energies have also been used to predict atomization energies within an additive scheme.more » Good agreement is obtained with the best available estimates even when the (d, t) pair of hierarchical numbers is utilized to perform the extrapolations. This conceivably justifies that there is no strong reason to exclude double-zeta energies in extrapolations, especially if the basis is calibrated to comply with the theoretical model.« less

  11. The convergence of complete active space self-consistent-field configuration interaction including all single and double excitation energies to the complete basis set limit

    NASA Astrophysics Data System (ADS)

    Petersson, George A.; Malick, David K.; Frisch, Michael J.; Braunstein, Matthew

    2006-07-01

    Examination of the convergence of full valence complete active space self-consistent-field configuration interaction including all single and double excitation (CASSCF-CISD) energies with expansion of the one-electron basis set reveals a pattern very similar to the convergence of single determinant energies. Calculations on the lowest four singlet states and the lowest four triplet states of N2 with the sequence of n-tuple-ζ augmented polarized (nZaP) basis sets (n =2, 3, 4, 5, and 6) are used to establish the complete basis set limits. Full configuration-interaction (CI) and core electron contributions must be included for very accurate potential energy surfaces. However, a simple extrapolation scheme that has no adjustable parameters and requires nothing more demanding than CAS(10e -,8orb)-CISD/3ZaP calculations gives the Re, ωe, ωeXe, Te, and De for these eight states with rms errors of 0.0006Å, 4.43cm-1, 0.35cm-1, 0.063eV, and 0.018eV, respectively.

  12. 48 CFR 25.504-4 - Group award basis.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Group award basis. 25.504... SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Evaluating Foreign Offers-Supply Contracts 25.504-4 Group award basis... a group basis. Assume the Buy American Act applies and the acquisition cannot be set aside for small...

  13. 48 CFR 25.504-4 - Group award basis.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Group award basis. 25.504... SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Evaluating Foreign Offers-Supply Contracts 25.504-4 Group award basis... a group basis. Assume the Buy American Act applies and the acquisition cannot be set aside for small...

  14. 48 CFR 25.504-4 - Group award basis.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Group award basis. 25.504... SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Evaluating Foreign Offers-Supply Contracts 25.504-4 Group award basis... a group basis. Assume the Buy American statute applies and the acquisition cannot be set aside for...

  15. 48 CFR 25.504-4 - Group award basis.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Group award basis. 25.504... SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Evaluating Foreign Offers-Supply Contracts 25.504-4 Group award basis... a group basis. Assume the Buy American Act applies and the acquisition cannot be set aside for small...

  16. 48 CFR 25.504-4 - Group award basis.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Group award basis. 25.504... SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Evaluating Foreign Offers-Supply Contracts 25.504-4 Group award basis... a group basis. Assume the Buy American Act applies and the acquisition cannot be set aside for small...

  17. Useful lower limits to polarization contributions to intermolecular interactions using a minimal basis of localized orthogonal orbitals: theory and analysis of the water dimer.

    PubMed

    Azar, R Julian; Horn, Paul Richard; Sundstrom, Eric Jon; Head-Gordon, Martin

    2013-02-28

    The problem of describing the energy-lowering associated with polarization of interacting molecules is considered in the overlapping regime for self-consistent field wavefunctions. The existing approach of solving for absolutely localized molecular orbital (ALMO) coefficients that are block-diagonal in the fragments is shown based on formal grounds and practical calculations to often overestimate the strength of polarization effects. A new approach using a minimal basis of polarized orthogonal local MOs (polMOs) is developed as an alternative. The polMO basis is minimal in the sense that one polarization function is provided for each unpolarized orbital that is occupied; such an approach is exact in second-order perturbation theory. Based on formal grounds and practical calculations, the polMO approach is shown to underestimate the strength of polarization effects. In contrast to the ALMO method, however, the polMO approach yields results that are very stable to improvements in the underlying AO basis expansion. Combining the ALMO and polMO approaches allows an estimate of the range of energy-lowering due to polarization. Extensive numerical calculations on the water dimer using a large range of basis sets with Hartree-Fock theory and a variety of different density functionals illustrate the key considerations. Results are also presented for the polarization-dominated Na(+)CH4 complex. Implications for energy decomposition analysis of intermolecular interactions are discussed.

  18. Image reconstruction in higher dimensions: myocardial perfusion imaging of tracer dynamics with cardiac motion due to deformation and respiration

    DOE PAGES

    Shrestha, Uttam M.; Seo, Youngho; Botvinick, Elias H.; ...

    2015-10-09

    Myocardial perfusion imaging (MPI) using slow rotating large field of view cameras requires spatiotemporal reconstruction of dynamically acquired data to capture the time variation of the radiotracer concentration. In vivo, MPI contains additional degrees of freedom involving unavoidable motion of the heart due to quasiperiodic beating and the effects of respiration, which can severely degrade the quality of the images. This work develops a technique for a single photon emission computed tomography (SPECT) that reconstructs the distribution of the radiotracer concentration in the myocardium using a tensor product of different sets of basis functions that approximately describe the spatiotemporal variationmore » of the radiotracer concentration and the motion of the heart. In this study the temporal B-spline basis functions are chosen to reflect the dynamics of the radiotracer, while the intrinsic deformation and the extrinsic motion of the heart are described by a product of a discrete set of Gaussian basis functions. Reconstruction results are presented showing the dynamics of the tracer in the myocardium as it deforms due to cardiac beating, and is displaced due to respiratory motion. We find these results are compared with the conventional 4D-spatiotemporal reconstruction method that models only the temporal changes of the tracer activity. The higher dimensional reconstruction method proposed here improves bias, yet the signal-to-noise ratio (SNR) decreases slightly due to redistribution of the counts over the cardiac-respiratory gates. Finally, there is a trade-off between the number of gates and the number of projections per gate to achieve high contrast images.« less

  19. Image reconstruction in higher dimensions: myocardial perfusion imaging of tracer dynamics with cardiac motion due to deformation and respiration

    NASA Astrophysics Data System (ADS)

    Shrestha, Uttam M.; Seo, Youngho; Botvinick, Elias H.; Gullberg, Grant T.

    2015-11-01

    Myocardial perfusion imaging (MPI) using slow rotating large field of view cameras requires spatiotemporal reconstruction of dynamically acquired data to capture the time variation of the radiotracer concentration. In vivo, MPI contains additional degrees of freedom involving unavoidable motion of the heart due to quasiperiodic beating and the effects of respiration, which can severely degrade the quality of the images. This work develops a technique for a single photon emission computed tomography (SPECT) that reconstructs the distribution of the radiotracer concentration in the myocardium using a tensor product of different sets of basis functions that approximately describe the spatiotemporal variation of the radiotracer concentration and the motion of the heart. In this study the temporal B-spline basis functions are chosen to reflect the dynamics of the radiotracer, while the intrinsic deformation and the extrinsic motion of the heart are described by a product of a discrete set of Gaussian basis functions. Reconstruction results are presented showing the dynamics of the tracer in the myocardium as it deforms due to cardiac beating, and is displaced due to respiratory motion. These results are compared with the conventional 4D-spatiotemporal reconstruction method that models only the temporal changes of the tracer activity. The higher dimensional reconstruction method proposed here improves bias, yet the signal-to-noise ratio (SNR) decreases slightly due to redistribution of the counts over the cardiac-respiratory gates. Additionally, there is a trade-off between the number of gates and the number of projections per gate to achieve high contrast images.

  20. Image reconstruction in higher dimensions: myocardial perfusion imaging of tracer dynamics with cardiac motion due to deformation and respiration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrestha, Uttam M.; Seo, Youngho; Botvinick, Elias H.

    Myocardial perfusion imaging (MPI) using slow rotating large field of view cameras requires spatiotemporal reconstruction of dynamically acquired data to capture the time variation of the radiotracer concentration. In vivo, MPI contains additional degrees of freedom involving unavoidable motion of the heart due to quasiperiodic beating and the effects of respiration, which can severely degrade the quality of the images. This work develops a technique for a single photon emission computed tomography (SPECT) that reconstructs the distribution of the radiotracer concentration in the myocardium using a tensor product of different sets of basis functions that approximately describe the spatiotemporal variationmore » of the radiotracer concentration and the motion of the heart. In this study the temporal B-spline basis functions are chosen to reflect the dynamics of the radiotracer, while the intrinsic deformation and the extrinsic motion of the heart are described by a product of a discrete set of Gaussian basis functions. Reconstruction results are presented showing the dynamics of the tracer in the myocardium as it deforms due to cardiac beating, and is displaced due to respiratory motion. We find these results are compared with the conventional 4D-spatiotemporal reconstruction method that models only the temporal changes of the tracer activity. The higher dimensional reconstruction method proposed here improves bias, yet the signal-to-noise ratio (SNR) decreases slightly due to redistribution of the counts over the cardiac-respiratory gates. Finally, there is a trade-off between the number of gates and the number of projections per gate to achieve high contrast images.« less

  1. Image reconstruction in higher dimensions: myocardial perfusion imaging of tracer dynamics with cardiac motion due to deformation and respiration.

    PubMed

    Shrestha, Uttam M; Seo, Youngho; Botvinick, Elias H; Gullberg, Grant T

    2015-11-07

    Myocardial perfusion imaging (MPI) using slow rotating large field of view cameras requires spatiotemporal reconstruction of dynamically acquired data to capture the time variation of the radiotracer concentration. In vivo, MPI contains additional degrees of freedom involving unavoidable motion of the heart due to quasiperiodic beating and the effects of respiration, which can severely degrade the quality of the images. This work develops a technique for a single photon emission computed tomography (SPECT) that reconstructs the distribution of the radiotracer concentration in the myocardium using a tensor product of different sets of basis functions that approximately describe the spatiotemporal variation of the radiotracer concentration and the motion of the heart. In this study the temporal B-spline basis functions are chosen to reflect the dynamics of the radiotracer, while the intrinsic deformation and the extrinsic motion of the heart are described by a product of a discrete set of Gaussian basis functions. Reconstruction results are presented showing the dynamics of the tracer in the myocardium as it deforms due to cardiac beating, and is displaced due to respiratory motion. These results are compared with the conventional 4D-spatiotemporal reconstruction method that models only the temporal changes of the tracer activity. The higher dimensional reconstruction method proposed here improves bias, yet the signal-to-noise ratio (SNR) decreases slightly due to redistribution of the counts over the cardiac-respiratory gates. Additionally, there is a trade-off between the number of gates and the number of projections per gate to achieve high contrast images.

  2. SIEST-A-RT: a study of vacancy diffusion in crystalline silicon using a local-basis first-principle (SIESTA) activation technique (ART).

    NASA Astrophysics Data System (ADS)

    El Mellouhi, Fedwa; Mousseau, Normand; Ordejón, Pablo

    2003-03-01

    We report on a first-principle study of vacancy-induced self-diffusion in crystalline silicon. Our simulations are performed on supercells containing 63 and 215 atoms. We generate the diffusion paths using the activation-relaxation technique (ART) [1], which can sample efficiently the energy landscape of complex systems. The forces and energy are evaluated using SIESTA [2], a selfconsistent density functional method using standard norm-conserving pseudopotentials and a flexible numerical linear combination of atomic orbitals basis set. Combining these two methods allows us to identify diffusion paths that would not be reachable with this degree of accuracy, using other methods. After a full relaxation of the neutral vacancy, we proceed to search for local diffusion paths. We identify various mechanisms like the formation of the four fold coordinated defect, and the recombination of dangling bonds by WWW process. The diffusion of the vacancy proceeds by hops to first nearest neighbor with an energy barrier of 0.69 eV. This work is funded in part by NSERC and NATEQ. NM is a Cottrell Scholar of the Research Corporation. [1] G. T. Barkema and N. Mousseau, Event-based relaxation of continuous disordered systems, Phys. Rev. Lett. 77, 4358 (1996); N. Mousseau and G. T. Barkema, Traveling through potential energy landscapes of disordered materials: ART, Phys. Rev. E 57, 2419 (1998). [2] Density functional method for very large systems with LCAO basis sets D. Sánchez-Portal, P. Ordejón, E. Artacho and J. M. Soler, Int. J. Quant. Chem. 65, 453 (1997).

  3. Accurate Gaussian basis sets for atomic and molecular calculations obtained from the generator coordinate method with polynomial discretization.

    PubMed

    Celeste, Ricardo; Maringolo, Milena P; Comar, Moacyr; Viana, Rommel B; Guimarães, Amanda R; Haiduke, Roberto L A; da Silva, Albérico B F

    2015-10-01

    Accurate Gaussian basis sets for atoms from H to Ba were obtained by means of the generator coordinate Hartree-Fock (GCHF) method based on a polynomial expansion to discretize the Griffin-Wheeler-Hartree-Fock equations (GWHF). The discretization of the GWHF equations in this procedure is based on a mesh of points not equally distributed in contrast with the original GCHF method. The results of atomic Hartree-Fock energies demonstrate the capability of these polynomial expansions in designing compact and accurate basis sets to be used in molecular calculations and the maximum error found when compared to numerical values is only 0.788 mHartree for indium. Some test calculations with the B3LYP exchange-correlation functional for N2, F2, CO, NO, HF, and HCN show that total energies within 1.0 to 2.4 mHartree compared to the cc-pV5Z basis sets are attained with our contracted bases with a much smaller number of polarization functions (2p1d and 2d1f for hydrogen and heavier atoms, respectively). Other molecular calculations performed here are also in very good accordance with experimental and cc-pV5Z results. The most important point to be mentioned here is that our generator coordinate basis sets required only a tiny fraction of the computational time when compared to B3LYP/cc-pV5Z calculations.

  4. An accurate, compact and computationally efficient representation of orbitals for quantum Monte Carlo calculations

    NASA Astrophysics Data System (ADS)

    Luo, Ye; Esler, Kenneth; Kent, Paul; Shulenburger, Luke

    Quantum Monte Carlo (QMC) calculations of giant molecules, surface and defect properties of solids have been feasible recently due to drastically expanding computational resources. However, with the most computationally efficient basis set, B-splines, these calculations are severely restricted by the memory capacity of compute nodes. The B-spline coefficients are shared on a node but not distributed among nodes, to ensure fast evaluation. A hybrid representation which incorporates atomic orbitals near the ions and B-spline ones in the interstitial regions offers a more accurate and less memory demanding description of the orbitals because they are naturally more atomic like near ions and much smoother in between, thus allowing coarser B-spline grids. We will demonstrate the advantage of hybrid representation over pure B-spline and Gaussian basis sets and also show significant speed-up like computing the non-local pseudopotentials with our new scheme. Moreover, we discuss a new algorithm for atomic orbital initialization which used to require an extra workflow step taking a few days. With this work, the highly efficient hybrid representation paves the way to simulate large size even in-homogeneous systems using QMC. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Computational Materials Sciences Program.

  5. Evolutionary optimization of radial basis function classifiers for data mining applications.

    PubMed

    Buchtala, Oliver; Klimek, Manuel; Sick, Bernhard

    2005-10-01

    In many data mining applications that address classification problems, feature and model selection are considered as key tasks. That is, appropriate input features of the classifier must be selected from a given (and often large) set of possible features and structure parameters of the classifier must be adapted with respect to these features and a given data set. This paper describes an evolutionary algorithm (EA) that performs feature and model selection simultaneously for radial basis function (RBF) classifiers. In order to reduce the optimization effort, various techniques are integrated that accelerate and improve the EA significantly: hybrid training of RBF networks, lazy evaluation, consideration of soft constraints by means of penalty terms, and temperature-based adaptive control of the EA. The feasibility and the benefits of the approach are demonstrated by means of four data mining problems: intrusion detection in computer networks, biometric signature verification, customer acquisition with direct marketing methods, and optimization of chemical production processes. It is shown that, compared to earlier EA-based RBF optimization techniques, the runtime is reduced by up to 99% while error rates are lowered by up to 86%, depending on the application. The algorithm is independent of specific applications so that many ideas and solutions can be transferred to other classifier paradigms.

  6. QuickMap: a public tool for large-scale gene therapy vector insertion site mapping and analysis.

    PubMed

    Appelt, J-U; Giordano, F A; Ecker, M; Roeder, I; Grund, N; Hotz-Wagenblatt, A; Opelz, G; Zeller, W J; Allgayer, H; Fruehauf, S; Laufs, S

    2009-07-01

    Several events of insertional mutagenesis in pre-clinical and clinical gene therapy studies have created intense interest in assessing the genomic insertion profiles of gene therapy vectors. For the construction of such profiles, vector-flanking sequences detected by inverse PCR, linear amplification-mediated-PCR or ligation-mediated-PCR need to be mapped to the host cell's genome and compared to a reference set. Although remarkable progress has been achieved in mapping gene therapy vector insertion sites, public reference sets are lacking, as are the possibilities to quickly detect non-random patterns in experimental data. We developed a tool termed QuickMap, which uniformly maps and analyzes human and murine vector-flanking sequences within seconds (available at www.gtsg.org). Besides information about hits in chromosomes and fragile sites, QuickMap automatically determines insertion frequencies in +/- 250 kb adjacency to genes, cancer genes, pseudogenes, transcription factor and (post-transcriptional) miRNA binding sites, CpG islands and repetitive elements (short interspersed nuclear elements (SINE), long interspersed nuclear elements (LINE), Type II elements and LTR elements). Additionally, all experimental frequencies are compared with the data obtained from a reference set, containing 1 000 000 random integrations ('random set'). Thus, for the first time a tool allowing high-throughput profiling of gene therapy vector insertion sites is available. It provides a basis for large-scale insertion site analyses, which is now urgently needed to discover novel gene therapy vectors with 'safe' insertion profiles.

  7. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials

    NASA Astrophysics Data System (ADS)

    Thompson, A. P.; Swiler, L. P.; Trott, C. R.; Foiles, S. M.; Tucker, G. J.

    2015-03-01

    We present a new interatomic potential for solids and liquids called Spectral Neighbor Analysis Potential (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected onto a basis of hyperspherical harmonics in four dimensions. The bispectrum components are the same bond-orientational order parameters employed by the GAP potential [1]. The SNAP potential, unlike GAP, assumes a linear relationship between atom energy and bispectrum components. The linear SNAP coefficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. We demonstrate that a previously unnoticed symmetry property can be exploited to reduce the computational cost of the force calculations by more than one order of magnitude. We present results for a SNAP potential for tantalum, showing that it accurately reproduces a range of commonly calculated properties of both the crystalline solid and the liquid phases. In addition, unlike simpler existing potentials, SNAP correctly predicts the energy barrier for screw dislocation migration in BCC tantalum.

  8. Flat bases of invariant polynomials and P-matrices of E{sub 7} and E{sub 8}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talamini, Vittorino

    2010-02-15

    Let G be a compact group of linear transformations of a Euclidean space V. The G-invariant C{sup {infinity}} functions can be expressed as C{sup {infinity}} functions of a finite basic set of G-invariant homogeneous polynomials, sometimes called an integrity basis. The mathematical description of the orbit space V/G depends on the integrity basis too: it is realized through polynomial equations and inequalities expressing rank and positive semidefiniteness conditions of the P-matrix, a real symmetric matrix determined by the integrity basis. The choice of the basic set of G-invariant homogeneous polynomials forming an integrity basis is not unique, so it ismore » not unique the mathematical description of the orbit space too. If G is an irreducible finite reflection group, Saito et al. [Commun. Algebra 8, 373 (1980)] characterized some special basic sets of G-invariant homogeneous polynomials that they called flat. They also found explicitly the flat basic sets of invariant homogeneous polynomials of all the irreducible finite reflection groups except of the two largest groups E{sub 7} and E{sub 8}. In this paper the flat basic sets of invariant homogeneous polynomials of E{sub 7} and E{sub 8} and the corresponding P-matrices are determined explicitly. Using the results here reported one is able to determine easily the P-matrices corresponding to any other integrity basis of E{sub 7} or E{sub 8}. From the P-matrices one may then write down the equations and inequalities defining the orbit spaces of E{sub 7} and E{sub 8} relatively to a flat basis or to any other integrity basis. The results here obtained may be employed concretely to study analytically the symmetry breaking in all theories where the symmetry group is one of the finite reflection groups E{sub 7} and E{sub 8} or one of the Lie groups E{sub 7} and E{sub 8} in their adjoint representations.« less

  9. Spectroscopic properties of Arx-Zn and Arx-Ag+ (x = 1,2) van der Waals complexes

    NASA Astrophysics Data System (ADS)

    Oyedepo, Gbenga A.; Peterson, Charles; Schoendorff, George; Wilson, Angela K.

    2013-03-01

    Potential energy curves have been constructed using coupled cluster with singles, doubles, and perturbative triple excitations (CCSD(T)) in combination with all-electron and pseudopotential-based multiply augmented correlation consistent basis sets [m-aug-cc-pV(n + d)Z; m = singly, doubly, triply, n = D,T,Q,5]. The effect of basis set superposition error on the spectroscopic properties of Ar-Zn, Ar2-Zn, Ar-Ag+, and Ar2-Ag+ van der Waals complexes was examined. The diffuse functions of the doubly and triply augmented basis sets have been constructed using the even-tempered expansion. The a posteriori counterpoise scheme of Boys and Bernardi and its generalized variant by Valiron and Mayer has been utilized to correct for basis set superposition error (BSSE) in the calculated spectroscopic properties for diatomic and triatomic species. It is found that even at the extrapolated complete basis set limit for the energetic properties, the pseudopotential-based calculations still suffer from significant BSSE effects unlike the all-electron basis sets. This indicates that the quality of the approximations used in the design of pseudopotentials could have major impact on a seemingly valence-exclusive effect like BSSE. We confirm the experimentally determined equilibrium internuclear distance (re), binding energy (De), harmonic vibrational frequency (ωe), and C1Π ← X1Σ transition energy for ArZn and also predict the spectroscopic properties for the low-lying excited states of linear Ar2-Zn (X1Σg, 3Πg, 1Πg), Ar-Ag+ (X1Σ, 3Σ, 3Π, 3Δ, 1Σ, 1Π, 1Δ), and Ar2-Ag+ (X1Σg, 3Σg, 3Πg, 3Δg, 1Σg, 1Πg, 1Δg) complexes, using the CCSD(T) and MR-CISD + Q methods, to aid in their experimental characterizations.

  10. A projection-free method for representing plane-wave DFT results in an atom-centered basis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunnington, Benjamin D.; Schmidt, J. R., E-mail: schmidt@chem.wisc.edu

    2015-09-14

    Plane wave density functional theory (DFT) is a powerful tool for gaining accurate, atomic level insight into bulk and surface structures. Yet, the delocalized nature of the plane wave basis set hinders the application of many powerful post-computation analysis approaches, many of which rely on localized atom-centered basis sets. Traditionally, this gap has been bridged via projection-based techniques from a plane wave to atom-centered basis. We instead propose an alternative projection-free approach utilizing direct calculation of matrix elements of the converged plane wave DFT Hamiltonian in an atom-centered basis. This projection-free approach yields a number of compelling advantages, including strictmore » orthonormality of the resulting bands without artificial band mixing and access to the Hamiltonian matrix elements, while faithfully preserving the underlying DFT band structure. The resulting atomic orbital representation of the Kohn-Sham wavefunction and Hamiltonian provides a gateway to a wide variety of analysis approaches. We demonstrate the utility of the approach for a diverse set of chemical systems and example analysis approaches.« less

  11. System Learning via Exploratory Data Analysis: Seeing Both the Forest and the Trees

    NASA Astrophysics Data System (ADS)

    Habash Krause, L.

    2014-12-01

    As the amount of observational Earth and Space Science data grows, so does the need for learning and employing data analysis techniques that can extract meaningful information from those data. Space-based and ground-based data sources from all over the world are used to inform Earth and Space environment models. However, with such a large amount of data comes a need to organize those data in a way such that trends within the data are easily discernible. This can be tricky due to the interaction between physical processes that lead to partial correlation of variables or multiple interacting sources of causality. With the suite of Exploratory Data Analysis (EDA) data mining codes available at MSFC, we have the capability to analyze large, complex data sets and quantitatively identify fundamentally independent effects from consequential or derived effects. We have used these techniques to examine the accuracy of ionospheric climate models with respect to trends in ionospheric parameters and space weather effects. In particular, these codes have been used to 1) Provide summary "at-a-glance" surveys of large data sets through categorization and/or evolution over time to identify trends, distribution shapes, and outliers, 2) Discern the underlying "latent" variables which share common sources of causality, and 3) Establish a new set of basis vectors by computing Empirical Orthogonal Functions (EOFs) which represent the maximum amount of variance for each principal component. Some of these techniques are easily implemented in the classroom using standard MATLAB functions, some of the more advanced applications require the statistical toolbox, and applications to unique situations require more sophisiticated levels of programming. This paper will present an overview of the range of tools available and how they might be used for a variety of time series Earth and Space Science data sets. Examples of feature recognition from both 1D and 2D (e.g. imagery) time series data sets will be presented.

  12. Complexes and saddle point structures, vibrational frequencies and relative energies of intermediates for CH2Br + HBr «-» CH3Br + Br

    NASA Astrophysics Data System (ADS)

    Espinosa-Garcia, J.

    Ab initio molecular orbital theory was used to study parts of the reaction between the CH2Br radical and the HBr molecule, and two possibilities were analysed: attack on the hydrogen and attack on the bromine of the HBr molecule. Optimized geometries and harmonic vibrational frequencies were calculated at the second-order Moller-Plesset perturbation theory levels, and comparison with available experimental data was favourable. Then single-point calculations were performed at several higher levels of calculation. In the attack on the hydrogen of HBr, two stationary points were located on the direct hydrogen abstraction reaction path: a very weak hydrogen bonded complex of reactants, C···HBr, close to the reactants, followed by the saddle point (SP). The effects of level of calculation (method + basis set), spin projection, zeropoint energy, thermal corrections (298K), spin-orbit coupling and basis set superposition error (BSSE) on the energy changes were analysed. Taking the reaction enthalpy (298K) as reference, agreement with experiment was obtained only when high correlation energy and large basis sets were used. It was concluded that at room temperature (i.e., with zero-point energy and thermal corrections), when the BSSE was included, the complex disappears and the activation enthalpy (298K) ranges from 0.8kcal mol-1 to 1.4kcal mol-1 above the reactants, depending on the level of calculation. It was concluded also that this result is the balance of a complicated interplay of many factors, which are affected by uncertainties in the theoretical calculations. Finally, another possible complex (X complex), which involves the alkyl radical being attracted to the halogen end of HBr (C···BrH), was explored also. It was concluded that this X complex does not exist at room temperature.

  13. Hyperpolarizability of H 2O revisited: accurate estimate of the basis set limit and the size of electron correlation effects

    NASA Astrophysics Data System (ADS)

    Maroulis, George

    1998-06-01

    A large (18s 13p 8d 5f / 12s 7p 3d 2f) basis set consisting of 256 uncontracted gaussian-type functions is expected to yield values near the Hartree-Fock limit for the static hyperpolarizability of H 2O: βzxx=-9.40, βzyy=-1.35, βzzz=-7.71 and β¯=-11.07 for βαβγ ( e3a03Eh-2) and γxxxx=569, γyyyy=1422, γzzzz=907, γxxyy=338, γyyzz=389, γzzxx=287 and γ¯=985 for γαβγδ ( e4a04Eh-3) at the experimental equilibrium geometry (with z as the C 2 axis, molecule on the xz plane). The respective electron correlation corrections obtained with the single, double and perturbatively linked triple excitations coupled-cluster method and a [9s 6p 6d 3f / 6s 4p 2d 1f] basis set are βzxx=-0.45, βzyy=-4.19, βzzz=-6.09, β¯=-6.44 and γxxxx=267, γyyyy=1228, γzzzz=574, γxxyy=295, γyyzz=322, γzzxx=152, γ¯=721 . For the static limit we propose β¯=-17.5±0.3 e3a03Eh-2 and γ¯=(171±6)×10 1e4a04Eh-3, in near agreement with the experimental findings of β¯=-19.2±0.9 e3a03Eh-2 and γ¯=1800±150 e4a04Eh-3 deduced from EFISH measurements at 1064 nm by Kaatz et al. [P. Kaatz, E.A. Donley, D.P. Shelton, J. Chem. Phys. 108 (1998) 849].

  14. 51V solid-state NMR and density functional theory studies of vanadium environments in V(V)O2 dipicolinic acid complexes

    NASA Astrophysics Data System (ADS)

    Bolte, Stephanie E.; Ooms, Kristopher J.; Polenova, Tatyana; Baruah, Bharat; Crans, Debbie C.; Smee, Jason J.

    2008-02-01

    V51 solid-state NMR and density functional theory (DFT) investigations are reported for a series of pentacoordinate dioxovanadium(V)-dipicolinate [V(V )O2-dipicolinate] and heptacoordinate aquahydroxylamidooxovanadium(V)-dipicolinate [V(V)O-dipicolinate] complexes. These compounds are of interest because of their potency as phosphatase inhibitors as well as their insulin enhancing properties and potential for the treatment of diabetes. Experimental solid-state NMR results show that the electric field gradient tensors in the V(V )O2-dipicolinate derivatives are affected significantly by substitution on the dipicolinate ring and range from 5.8to8.3MHz. The chemical shift anisotropies show less dramatic variations with respect to the ligand changes and range between -550 and -600ppm. To gain insights on the origins of the NMR parameters, DFT calculations were conducted for an extensive series of the V(V )O2- and V(V)O-dipicolinate complexes. To assess the level of theory required for the accurate calculation of the V51 NMR parameters, different functionals, basis sets, and structural models were explored in the DFT study. It is shown that the original x-ray crystallographic geometries, including all counterions and solvation water molecules within 5Å of the vanadium, lead to the most accurate results. The choice of the functional and the basis set at a high level of theory has a relatively minor impact on the outcome of the chemical shift anisotropy calculations; however, the use of large basis sets is necessary for accurate calculations of the quadrupole coupling constants for several compounds of the V(V )O2 series. These studies demonstrate that even though the vanadium compounds under investigations exhibit distorted trigonal bipyramidal coordination geometry, they have a "perfect" trigonal bipyramidal electronic environment. This observation could potentially explain why vanadate and vanadium(V) adducts are often recognized as potent transition state analogs.

  15. The electronic structure of vanadium monochloride cation (VCl{sup +}): Tackling the complexities of transition metal species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeYonker, Nathan J., E-mail: ndyonker@memphis.edu; Halfen, DeWayne T.; Ziurys, Lucy M.

    Six electronic states (X {sup 4}Σ{sup −}, A {sup 4}Π, B {sup 4}Δ, {sup 2}Φ, {sup 2}Δ, {sup 2}Σ{sup +}) of the vanadium monochloride cation (VCl{sup +}) are described using large basis set coupled cluster theory. For the two lowest quartet states (X {sup 4}Σ{sup −} and A {sup 4}Π), a focal point analysis (FPA) approach was used that conjoined a correlation-consistent family of basis sets up to aug-cc-pwCV5Z-DK with high-order coupled cluster theory through pentuple (CCSDTQP) excitations. FPA adiabatic excitation energies (T{sub 0}) and spectroscopic constants (r{sub e}, r{sub 0}, B{sub e}, B{sub 0}, D{sup ¯}{sub e}, H{sub e},more » ω{sub e}, v{sub 0}, α{sub e}, ω{sub e}x{sub e}) were extrapolated to the valence complete basis set Douglas-Kroll (DK) aug-cc-pV∞Z-DK CCSDT level of theory, and additional treatments accounted for higher-order valence electron correlation, core correlation, and spin-orbit coupling. Due to the delicate interplay between dynamical and static electronic correlation, single reference coupled cluster theory is able to provide the correct ground electronic state (X {sup 4}Σ{sup −}), while multireference configuration interaction theory cannot. Perturbations from the first- and second-order spin orbit coupling of low-lying states with quartet spin multiplicity reveal an immensely complex rotational spectrum relative to the isovalent species VO, VS, and TiCl. Computational data on the doublet manifold suggest that the lowest-lying doublet state ({sup 2}Γ) has a T{sub e} of ∼11 200 cm{sup −1}. Overall, this study shows that laboratory and theoretical rotational spectroscopists must work more closely in tandem to better understand the bonding and structure of molecules containing transition metals.« less

  16. The basis of clinical tribalism, hierarchy and stereotyping: a laboratory-controlled teamwork experiment

    PubMed Central

    Braithwaite, Jeffrey; Clay-Williams, Robyn; Vecellio, Elia; Marks, Danielle; Hooper, Tamara; Westbrook, Mary; Westbrook, Johanna; Blakely, Brette; Ludlow, Kristiana

    2016-01-01

    Objectives To examine the basis of multidisciplinary teamwork. In real-world healthcare settings, clinicians often cluster in profession-based tribal silos, form hierarchies and exhibit stereotypical behaviours. It is not clear whether these social structures are more a product of inherent characteristics of the individuals or groups comprising the professions, or attributable to a greater extent to workplace factors. Setting Controlled laboratory environment with well-appointed, quiet rooms and video and audio equipment. Participants Clinical professionals (n=133) divided into 35 groups of doctors, nurses and allied health professions, or mixed professions. Interventions Participants engaged in one of three team tasks, and their performance was video-recorded and assessed. Primary and secondary measures Primary: teamwork performance. Secondary, pre-experimental: a bank of personality questionnaires designed to assess participants’ individual differences. Postexperimental: the 16-item Mayo High Performance Teamwork Scale (MHPTS) to measure teamwork skills; this was self-assessed by participants and also by external raters. In addition, external, arm's length blinded observations of the videotapes were conducted. Results At baseline, there were few significant differences between the professions in collective orientation, most of the personality factors, Machiavellianism and conservatism. Teams generally functioned well, with effective relationships, and exhibited little by way of discernible tribal or hierarchical behaviours, and no obvious differences between groups (F (3, 31)=0.94, p=0.43). Conclusions Once clinicians are taken out of the workplace and put in controlled settings, tribalism, hierarchical and stereotype behaviours largely dissolve. It is unwise therefore to attribute these factors to fundamental sociological or psychological differences between individuals in the professions, or aggregated group differences. Workplace cultures are more likely to be influential in shaping such behaviours. The results underscore the importance of culture and context in improvement activities. Future initiatives should factor in culture and context as well as individuals’ or professions’ characteristics as the basis for inducing more lateral teamwork or better interprofessional collaboration. PMID:27473955

  17. Orthonormal vector polynomials in a unit circle, Part I: Basis set derived from gradients of Zernike polynomials.

    PubMed

    Zhao, Chunyu; Burge, James H

    2007-12-24

    Zernike polynomials provide a well known, orthogonal set of scalar functions over a circular domain, and are commonly used to represent wavefront phase or surface irregularity. A related set of orthogonal functions is given here which represent vector quantities, such as mapping distortion or wavefront gradient. These functions are generated from gradients of Zernike polynomials, made orthonormal using the Gram- Schmidt technique. This set provides a complete basis for representing vector fields that can be defined as a gradient of some scalar function. It is then efficient to transform from the coefficients of the vector functions to the scalar Zernike polynomials that represent the function whose gradient was fit. These new vector functions have immediate application for fitting data from a Shack-Hartmann wavefront sensor or for fitting mapping distortion for optical testing. A subsequent paper gives an additional set of vector functions consisting only of rotational terms with zero divergence. The two sets together provide a complete basis that can represent all vector distributions in a circular domain.

  18. Fast Electron Correlation Methods for Molecular Clusters without Basis Set Superposition Errors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamiya, Muneaki; Hirata, So; Valiev, Marat

    2008-02-19

    Two critical extensions to our fast, accurate, and easy-to-implement binary or ternary interaction method for weakly-interacting molecular clusters [Hirata et al. Mol. Phys. 103, 2255 (2005)] have been proposed, implemented, and applied to water hexamers, hydrogen fluoride chains and rings, and neutral and zwitterionic glycine–water clusters with an excellent result for an initial performance assessment. Our original method included up to two- or three-body Coulomb, exchange, and correlation energies exactly and higher-order Coulomb energies in the dipole–dipole approximation. In this work, the dipole moments are replaced by atom-centered point charges determined so that they reproduce the electrostatic potentials of themore » cluster subunits as closely as possible and also self-consistently with one another in the cluster environment. They have been shown to lead to dramatic improvement in the description of short-range electrostatic potentials not only of large, charge-separated subunits like zwitterionic glycine but also of small subunits. Furthermore, basis set superposition errors (BSSE) known to plague direct evaluation of weak interactions have been eliminated by com-bining the Valiron–Mayer function counterpoise (VMFC) correction with our binary or ternary interaction method in an economical fashion (quadratic scaling n2 with respect to the number of subunits n when n is small and linear scaling when n is large). A new variant of VMFC has also been proposed in which three-body and all higher-order Coulomb effects on BSSE are estimated approximately. The BSSE-corrected ternary interaction method with atom-centered point charges reproduces the VMFC-corrected results of conventional electron correlation calculations within 0.1 kcal/mol. The proposed method is significantly more accurate and also efficient than conventional correlation methods uncorrected of BSSE.« less

  19. Employing general fit-bases for construction of potential energy surfaces with an adaptive density-guided approach

    NASA Astrophysics Data System (ADS)

    Klinting, Emil Lund; Thomsen, Bo; Godtliebsen, Ian Heide; Christiansen, Ove

    2018-02-01

    We present an approach to treat sets of general fit-basis functions in a single uniform framework, where the functional form is supplied on input, i.e., the use of different functions does not require new code to be written. The fit-basis functions can be used to carry out linear fits to the grid of single points, which are generated with an adaptive density-guided approach (ADGA). A non-linear conjugate gradient method is used to optimize non-linear parameters if such are present in the fit-basis functions. This means that a set of fit-basis functions with the same inherent shape as the potential cuts can be requested and no other choices with regards to the fit-basis functions need to be taken. The general fit-basis framework is explored in relation to anharmonic potentials for model systems, diatomic molecules, water, and imidazole. The behaviour and performance of Morse and double-well fit-basis functions are compared to that of polynomial fit-basis functions for unsymmetrical single-minimum and symmetrical double-well potentials. Furthermore, calculations for water and imidazole were carried out using both normal coordinates and hybrid optimized and localized coordinates (HOLCs). Our results suggest that choosing a suitable set of fit-basis functions can improve the stability of the fitting routine and the overall efficiency of potential construction by lowering the number of single point calculations required for the ADGA. It is possible to reduce the number of terms in the potential by choosing the Morse and double-well fit-basis functions. These effects are substantial for normal coordinates but become even more pronounced if HOLCs are used.

  20. Identifiability of conservative linear mechanical systems. [applied to large flexible spacecraft structures

    NASA Technical Reports Server (NTRS)

    Sirlin, S. W.; Longman, R. W.; Juang, J. N.

    1985-01-01

    With a sufficiently great number of sensors and actuators, any finite dimensional dynamic system is identifiable on the basis of input-output data. It is presently indicated that, for conservative nongyroscopic linear mechanical systems, the number of sensors and actuators required for identifiability is very large, where 'identifiability' is understood as a unique determination of the mass and stiffness matrices. The required number of sensors and actuators drops by a factor of two, given a relaxation of the identifiability criterion so that identification can fail only if the system parameters being identified lie in a set of measure zero. When the mass matrix is known a priori, this additional information does not significantly affect the requirements for guaranteed identifiability, though the number of parameters to be determined is reduced by a factor of two.

  1. A practical radial basis function equalizer.

    PubMed

    Lee, J; Beach, C; Tepedelenlioglu, N

    1999-01-01

    A radial basis function (RBF) equalizer design process has been developed in which the number of basis function centers used is substantially fewer than conventionally required. The reduction of centers is accomplished in two-steps. First an algorithm is used to select a reduced set of centers that lie close to the decision boundary. Then the centers in this reduced set are grouped, and an average position is chosen to represent each group. Channel order and delay, which are determining factors in setting the initial number of centers, are estimated from regression analysis. In simulation studies, an RBF equalizer with more than 2000-to-1 reduction in centers performed as well as the RBF equalizer without reduction in centers, and better than a conventional linear equalizer.

  2. The Topological Basis Realization for Six Qubits and the Corresponding Heisenberg Spin -{1/2} Chain Model

    NASA Astrophysics Data System (ADS)

    Yang, Qi; Cao, Yue; Chen, Shiyin; Teng, Yue; Meng, Yanli; Wang, Gangcheng; Sun, Chunfang; Xue, Kang

    2018-03-01

    In this paper, we construct a new set of orthonormal topological basis states for six qubits with the topological single loop d = 2. By acting on the subspace, we get a new five-dimensional (5D) reduced matrix. In addition, it is shown that the Heisenberg XXX spin-1/2 chain of six qubits can be constructed from the Temperley-Lieb algebra (TLA) generator, both the energy ground state and the spin singlet states of the system can be described by the set of topological basis states.

  3. The Topological Basis Realization for Six Qubits and the Corresponding Heisenberg Spin-1/2 Chain Model

    NASA Astrophysics Data System (ADS)

    Yang, Qi; Cao, Yue; Chen, Shiyin; Teng, Yue; Meng, Yanli; Wang, Gangcheng; Sun, Chunfang; Xue, Kang

    2018-06-01

    In this paper, we construct a new set of orthonormal topological basis states for six qubits with the topological single loop d = 2. By acting on the subspace, we get a new five-dimensional (5 D) reduced matrix. In addition, it is shown that the Heisenberg XXX spin-1/2 chain of six qubits can be constructed from the Temperley-Lieb algebra (TLA) generator, both the energy ground state and the spin singlet states of the system can be described by the set of topological basis states.

  4. Earth Structure, Ice Mass Changes, and the Local Dynamic Geoid

    NASA Astrophysics Data System (ADS)

    Harig, C.; Simons, F. J.

    2014-12-01

    Spherical Slepian localization functions are a useful method for studying regional mass changes observed by satellite gravimetry. By projecting data onto a sparse basis set, the local field can be estimated more easily than with the full spherical harmonic basis. We have used this method previously to estimate the ice mass change in Greenland from GRACE data, and it can also be applied to other planetary problems such as global magnetic fields. Earth's static geoid, in contrast to the time-variable field, is in large part related to the internal density and rheological structure of the Earth. Past studies have used dynamic geoid kernels to relate this density structure and the internal deformation it induces to the surface geopotential at large scales. These now classical studies of the eighties and nineties were able to estimate the mantle's radial rheological profile, placing constraints on the ratio between upper and lower mantle viscosity. By combining these two methods, spherical Slepian localization and dynamic geoid kernels, we have created local dynamic geoid kernels which are sensitive only to density variations within an area of interest. With these kernels we can estimate the approximate local radial rheological structure that best explains the locally observed geoid on a regional basis. First-order differences of the regional mantle viscosity structure are accessible to this technique. In this contribution we present our latest, as yet unpublished results on the geographical and temporal pattern of ice mass changes in Antarctica over the past decade, and we introduce a new approach to extract regional information about the internal structure of the Earth from the static global gravity field. Both sets of results are linked in terms of the relevant physics, but also in being developed from the marriage of Slepian functions and geoid kernels. We make predictions on the utility of our approach to derive fully three-dimensional rheological Earth models, to be used for corrections for glacio-isostatic adjustment, as necessary for the interpretation of time-variable gravity observations in terms of ice sheet mass-balance studies.

  5. Analysis of global land surface albedo climatology and spatial-temporal variation during 1981-2010 from multiple satellite products

    NASA Astrophysics Data System (ADS)

    He, Tao; Liang, Shunlin; Song, Dan-Xia

    2014-09-01

    For several decades, long-term time series data sets of multiple global land surface albedo products have been generated from satellite observations. These data sets have been used as one of the key variables in climate change studies. This study aims to assess the surface albedo climatology and to analyze long-term albedo changes, from nine satellite-based data sets for the period 1981-2010, on a global basis. Results show that climatological surface albedo data sets derived from satellite observations can be used to validate, calibrate, and further improve surface albedo simulations and parameterizations in current climate models. However, the albedo products derived from the International Satellite Cloud Climatology Project and the Global Energy and Water Exchanges Project have large seasonal biases. At latitudes higher than 50°, the maximal difference in winter zonal albedo ranges from 0.1 to 0.4 among the nine satellite data sets. Satellite-based albedo data sets agree relatively well during the summer at high latitudes, with a standard deviation of 0.04 for the 70°-80° zone in both hemispheres. The fine-resolution (0.05°) data sets agree well with each other for all the land cover types in middle to low latitudes; however, large spread was identified for their albedos at middle to high latitudes over land covers with mixed snow and sparse vegetation. By analyzing the time series of satellite-based albedo products over the past three decades, albedo of the Northern Hemisphere was found to be decreasing in July, likely due to the shrinking snow cover. Meanwhile, albedo in January was found to be increasing, likely because of the expansion of snow cover in northern winter. However, to improve the albedo estimation at high latitudes, and ultimately the climate models used for long-term climate change studies, a still better understanding of differences between satellite-based albedo data sets is required.

  6. The w-effect in interferometric imaging: from a fast sparse measurement operator to superresolution

    NASA Astrophysics Data System (ADS)

    Dabbech, A.; Wolz, L.; Pratley, L.; McEwen, J. D.; Wiaux, Y.

    2017-11-01

    Modern radio telescopes, such as the Square Kilometre Array, will probe the radio sky over large fields of view, which results in large w-modulations of the sky image. This effect complicates the relationship between the measured visibilities and the image under scrutiny. In algorithmic terms, it gives rise to massive memory and computational time requirements. Yet, it can be a blessing in terms of reconstruction quality of the sky image. In recent years, several works have shown that large w-modulations promote the spread spectrum effect. Within the compressive sensing framework, this effect increases the incoherence between the sensing basis and the sparsity basis of the signal to be recovered, leading to better estimation of the sky image. In this article, we revisit the w-projection approach using convex optimization in realistic settings, where the measurement operator couples the w-terms in Fourier and the de-gridding kernels. We provide sparse, thus fast, models of the Fourier part of the measurement operator through adaptive sparsification procedures. Consequently, memory requirements and computational cost are significantly alleviated at the expense of introducing errors on the radio interferometric data model. We present a first investigation of the impact of the sparse variants of the measurement operator on the image reconstruction quality. We finally analyse the interesting superresolution potential associated with the spread spectrum effect of the w-modulation, and showcase it through simulations. Our c++ code is available online on GitHub.

  7. Clutter and target discrimination in forward-looking ground penetrating radar using sparse structured basis pursuits

    NASA Astrophysics Data System (ADS)

    Camilo, Joseph A.; Malof, Jordan M.; Torrione, Peter A.; Collins, Leslie M.; Morton, Kenneth D.

    2015-05-01

    Forward-looking ground penetrating radar (FLGPR) is a remote sensing modality that has recently been investigated for buried threat detection. FLGPR offers greater standoff than other downward-looking modalities such as electromagnetic induction and downward-looking GPR, but it suffers from high false alarm rates due to surface and ground clutter. A stepped frequency FLGPR system consists of multiple radars with varying polarizations and bands, each of which interacts differently with subsurface materials and therefore might potentially be able to discriminate clutter from true buried targets. However, it is unclear which combinations of bands and polarizations would be most useful for discrimination or how to fuse them. This work applies sparse structured basis pursuit, a supervised statistical model which searches for sets of bands that are collectively effective for discriminating clutter from targets. The algorithm works by trying to minimize the number of selected items in a dictionary of signals; in this case the separate bands and polarizations make up the dictionary elements. A structured basis pursuit algorithm is employed to gather groups of modes together in collections to eliminate whole polarizations or sensors. The approach is applied to a large collection of FLGPR data for data around emplaced target and non-target clutter. The results show that a sparse structure basis pursuits outperforms a conventional CFAR anomaly detector while also pruning out unnecessary bands of the FLGPR sensor.

  8. Genetic Basis of Haloperidol Resistance in Saccharomyces cerevisiae Is Complex and Dose Dependent

    PubMed Central

    Wang, Xin; Kruglyak, Leonid

    2014-01-01

    The genetic basis of most heritable traits is complex. Inhibitory compounds and their effects in model organisms have been used in many studies to gain insights into the genetic architecture underlying quantitative traits. However, the differential effect of compound concentration has not been studied in detail. In this study, we used a large segregant panel from a cross between two genetically divergent yeast strains, BY4724 (a laboratory strain) and RM11_1a (a vineyard strain), to study the genetic basis of variation in response to different doses of a drug. Linkage analysis revealed that the genetic architecture of resistance to the small-molecule therapeutic drug haloperidol is highly dose-dependent. Some of the loci identified had effects only at low doses of haloperidol, while other loci had effects primarily at higher concentrations of the drug. We show that a major QTL affecting resistance across all concentrations of haloperidol is caused by polymorphisms in SWH1, a homologue of human oxysterol binding protein. We identify a complex set of interactions among the alleles of the genes SWH1, MKT1, and IRA2 that are most pronounced at a haloperidol dose of 200 µM and are only observed when the remainder of the genome is of the RM background. Our results provide further insight into the genetic basis of drug resistance. PMID:25521586

  9. Mapping face categorization in the human ventral occipitotemporal cortex with direct neural intracranial recordings.

    PubMed

    Rossion, Bruno; Jacques, Corentin; Jonas, Jacques

    2018-02-26

    The neural basis of face categorization has been widely investigated with functional magnetic resonance imaging (fMRI), identifying a set of face-selective local regions in the ventral occipitotemporal cortex (VOTC). However, indirect recording of neural activity with fMRI is associated with large fluctuations of signal across regions, often underestimating face-selective responses in the anterior VOTC. While direct recording of neural activity with subdural grids of electrodes (electrocorticography, ECoG) or depth electrodes (stereotactic electroencephalography, SEEG) offers a unique opportunity to fill this gap in knowledge, these studies rather reveal widely distributed face-selective responses. Moreover, intracranial recordings are complicated by interindividual variability in neuroanatomy, ambiguity in definition, and quantification of responses of interest, as well as limited access to sulci with ECoG. Here, we propose to combine SEEG in large samples of individuals with fast periodic visual stimulation to objectively define, quantify, and characterize face categorization across the whole VOTC. This approach reconciles the wide distribution of neural face categorization responses with their (right) hemispheric and regional specialization, and reveals several face-selective regions in anterior VOTC sulci. We outline the challenges of this research program to understand the neural basis of face categorization and high-level visual recognition in general. © 2018 New York Academy of Sciences.

  10. On the BV formalism of open superstring field theory in the large Hilbert space

    NASA Astrophysics Data System (ADS)

    Matsunaga, Hiroaki; Nomura, Mitsuru

    2018-05-01

    We construct several BV master actions for open superstring field theory in the large Hilbert space. First, we show that a naive use of the conventional BV approach breaks down at the third order of the antifield number expansion, although it enables us to define a simple "string antibracket" taking the Darboux form as spacetime antibrackets. This fact implies that in the large Hilbert space, "string fields-antifields" should be reassembled to obtain master actions in a simple manner. We determine the assembly of the string anti-fields on the basis of Berkovits' constrained BV approach, and give solutions to the master equation defined by Dirac antibrackets on the constrained string field-antifield space. It is expected that partial gauge-fixing enables us to relate superstring field theories based on the large and small Hilbert spaces directly: reassembling string fields-antifields is rather natural from this point of view. Finally, inspired by these results, we revisit the conventional BV approach and construct a BV master action based on the minimal set of string fields-antifields.

  11. The two-electron atomic systems. S-states

    NASA Astrophysics Data System (ADS)

    Liverts, Evgeny Z.; Barnea, Nir

    2010-01-01

    A simple Mathematica program for computing the S-state energies and wave functions of two-electron (helium-like) atoms (ions) is presented. The well-known method of projecting the Schrödinger equation onto the finite subspace of basis functions was applied. The basis functions are composed of the exponentials combined with integer powers of the simplest perimetric coordinates. No special subroutines were used, only built-in objects supported by Mathematica. The accuracy of results and computation time depend on the basis size. The precise energy values of 7-8 significant figures along with the corresponding wave functions can be computed on a single processor within a few minutes. The resultant wave functions have a simple analytical form consisting of elementary functions, that enables one to calculate the expectation values of arbitrary physical operators without any difficulties. Program summaryProgram title: TwoElAtom-S Catalogue identifier: AEFK_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFK_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 10 185 No. of bytes in distributed program, including test data, etc.: 495 164 Distribution format: tar.gz Programming language: Mathematica 6.0; 7.0 Computer: Any PC Operating system: Any which supports Mathematica; tested under Microsoft Windows XP and Linux SUSE 11.0 RAM:⩾10 bytes Classification: 2.1, 2.2, 2.7, 2.9 Nature of problem: The Schrödinger equation for atoms (ions) with more than one electron has not been solved analytically. Approximate methods must be applied in order to obtain the wave functions or other physical attributes from quantum mechanical calculations. Solution method: The S-wave function is expanded into a triple basis set in three perimetric coordinates. Method of projecting the two-electron Schrödinger equation (for atoms/ions) onto a subspace of the basis functions enables one to obtain the set of homogeneous linear equations F.C=0 for the coefficients C of the above expansion. The roots of equation det(F)=0 yield the bound energies. Restrictions: First, the too large length of expansion (basis size) takes the too large computation time giving no perceptible improvement in accuracy. Second, the order of polynomial Ω (input parameter) in the wave function expansion enables one to calculate the excited nS-states up to n=Ω+1 inclusive. Additional comments: The CPC Program Library includes "A program to calculate the eigenfunctions of the random phase approximation for two electron systems" (AAJD). It should be emphasized that this fortran code realizes a very rough approximation describing only the averaged electron density of the two electron systems. It does not characterize the properties of the individual electrons and has a number of input parameters including the Roothaan orbitals. Running time: ˜10 minutes (depends on basis size and computer speed)

  12. Dimensional analysis using toric ideals: primitive invariants.

    PubMed

    Atherton, Mark A; Bates, Ronald A; Wynn, Henry P

    2014-01-01

    Classical dimensional analysis in its original form starts by expressing the units for derived quantities, such as force, in terms of power products of basic units [Formula: see text] etc. This suggests the use of toric ideal theory from algebraic geometry. Within this the Graver basis provides a unique primitive basis in a well-defined sense, which typically has more terms than the standard Buckingham approach. Some textbook examples are revisited and the full set of primitive invariants found. First, a worked example based on convection is introduced to recall the Buckingham method, but using computer algebra to obtain an integer [Formula: see text] matrix from the initial integer [Formula: see text] matrix holding the exponents for the derived quantities. The [Formula: see text] matrix defines the dimensionless variables. But, rather than this integer linear algebra approach it is shown how, by staying with the power product representation, the full set of invariants (dimensionless groups) is obtained directly from the toric ideal defined by [Formula: see text]. One candidate for the set of invariants is a simple basis of the toric ideal. This, although larger than the rank of [Formula: see text], is typically not unique. However, the alternative Graver basis is unique and defines a maximal set of invariants, which are primitive in a simple sense. In addition to the running example four examples are taken from: a windmill, convection, electrodynamics and the hydrogen atom. The method reveals some named invariants. A selection of computer algebra packages is used to show the considerable ease with which both a simple basis and a Graver basis can be found.

  13. 42 CFR 457.700 - Basis, scope, and applicability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Strategic Planning, Reporting, and Evaluation § 457.700 Basis, scope, and applicability. (a) Statutory basis... strategic planning, reports, and program budgets; and (2) Section 2108 of the Act, which sets forth... strategic planning, monitoring, reporting and evaluation under title XXI. (c) Applicability. The...

  14. 42 CFR 457.700 - Basis, scope, and applicability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Strategic Planning, Reporting, and Evaluation § 457.700 Basis, scope, and applicability. (a) Statutory basis... strategic planning, reports, and program budgets; and (2) Section 2108 of the Act, which sets forth... strategic planning, monitoring, reporting and evaluation under title XXI. (c) Applicability. The...

  15. 50 CFR 403.04 - Determinations and hearings under section 109(c) of the MMPA.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... management program the state must provide for a process, consistent with section 109(c) of the Act, to... must include the elements set forth below. (b) Basis, purpose, and scope. The process set forth in this... made solely on the basis of the record developed at the hearing. The state agency in making its final...

  16. Organizing the HIV vaccine development effort.

    PubMed

    Voronin, Yegor; Snow, William

    2013-09-01

    To describe and compare the diverse organizational structures and funding mechanisms applied to advance HIV preventive vaccine research and development and to help explain and inform evolving infrastructures and collaborative funding models. On the basis of models that have been tried, improved or abandoned over three decades, the field seems to have settled into a relatively stable set of diverse initiatives, each with its own organizational signature. At the same time, this set of organizations is forging cross-organizational collaborations, which promise to acquire newly emergent beneficial properties. Strong motivation to expedite HIV vaccine R&D has driven a diversity of customized and inventive organizational approaches, largely government and foundation funded. Although no one approach has proven a panacea, the field has evolved into a constellation of often overlapping organizations that complement or reinforce one another. The Global HIV Vaccine Enterprise, a responsive, rapidly evolving loose infrastructure, is an innovative collaboration to catalyze that evolution.

  17. Quantum-chemistry based calibration of the alkali metal cation series (Li(+)-Cs(+)) for large-scale polarizable molecular mechanics/dynamics simulations.

    PubMed

    Dudev, Todor; Devereux, Mike; Meuwly, Markus; Lim, Carmay; Piquemal, Jean-Philip; Gresh, Nohad

    2015-02-15

    The alkali metal cations in the series Li(+)-Cs(+) act as major partners in a diversity of biological processes and in bioinorganic chemistry. In this article, we present the results of their calibration in the context of the SIBFA polarizable molecular mechanics/dynamics procedure. It relies on quantum-chemistry (QC) energy-decomposition analyses of their monoligated complexes with representative O-, N-, S-, and Se- ligands, performed with the aug-cc-pVTZ(-f) basis set at the Hartree-Fock level. Close agreement with QC is obtained for each individual contribution, even though the calibration involves only a limited set of cation-specific parameters. This agreement is preserved in tests on polyligated complexes with four and six O- ligands, water and formamide, indicating the transferability of the procedure. Preliminary extensions to density functional theory calculations are reported. © 2014 Wiley Periodicals, Inc.

  18. An Autograding (Student) Problem Management System for the Compeuwtir Ilittur8

    NASA Technical Reports Server (NTRS)

    Kohne, Glenn S.

    1996-01-01

    In order to develop analysis skills necessary in engineering disciplines, students need practice solving problems using specified analytical techniques. Unless homework is collected and graded, students tend not to spend much time or effort in performing it. Teachers do not, realistically, have the time to grade large numbers of homework problems on a regular basis. This paper presents and makes available a miracle cure. The Autograding Problem Management System (APMS) provides a discipline-independent mechanism for teachers to create (quickly and easily) sets of homework problems. The APMS system provides CRT and/or printed summaries of the graded student responses. This presentation will demonstrate both the speed and the drag-and-drop simplicity of using the APMS to create self-grading homework problem sets comprised of traditional types of problems and of problems which would not be possible without the use of computers.

  19. Time Domain Propagation of Quantum and Classical Systems using a Wavelet Basis Set Method

    NASA Astrophysics Data System (ADS)

    Lombardini, Richard; Nowara, Ewa; Johnson, Bruce

    2015-03-01

    The use of an orthogonal wavelet basis set (Optimized Maximum-N Generalized Coiflets) to effectively model physical systems in the time domain, in particular the electromagnetic (EM) pulse and quantum mechanical (QM) wavefunction, is examined in this work. Although past research has demonstrated the benefits of wavelet basis sets to handle computationally expensive problems due to their multiresolution properties, the overlapping supports of neighboring wavelet basis functions poses problems when dealing with boundary conditions, especially with material interfaces in the EM case. Specifically, this talk addresses this issue using the idea of derivative matching creating fictitious grid points (T.A. Driscoll and B. Fornberg), but replaces the latter element with fictitious wavelet projections in conjunction with wavelet reconstruction filters. Two-dimensional (2D) systems are analyzed, EM pulse incident on silver cylinders and the QM electron wave packet circling the proton in a hydrogen atom system (reduced to 2D), and the new wavelet method is compared to the popular finite-difference time-domain technique.

  20. [Can ICF core sets be helpful in preparing a social-medical expert report due to incapacity to work?--a first proposal].

    PubMed

    Kirschneck, M; Legner, R; Armbrust, W; Nowak, D; Cieza, A

    2015-04-01

    Social-medical expert reports from the German statutory pension insurance are essential for the German statutory pension regulatory authority to decide whether to grant services regarding participation as well as retirement pensions due to incapacity to work.The objective of this investigation is to determine whether the ICF Core Sets and other international approaches, such as the EUMASS Core Sets or ICF Core Set for vocational rehabilitation cover the content of the social-medical expert reports as well as to propose an approach how the ICF can be economically used by the social medicine practitioner when writing a social-medical expert report. A retrospective quantitative study design was used to translate a total of 294 social-medical expert reports from patients with low back pain (LBP) or chronic widespread pain (CWP) into the language of the ICF (linking) by 2 independent health professionals and compare the results with the ICF Core Sets for specific health conditions and other international approaches. The content of social-medical expert reports was largely reflected by the condition specific brief ICF Core Sets, brief ICF Core Sets for vocational rehabilitation and EUMASS Core Sets. The weighted Kappa statistic for the agreement between the 2 health professionals who translated the expert reports were in CWP 0.69 with a bootstrapped confidence interval of 0.67-0.71 and in LBP 0.73 (0.71-0.74). The analyses show that the content of social-medical expert reports varies enormously. A combination of a condition specific brief ICF Core Set as well as vocational rehabilitation and EUMASS ICF Core Sets as well as all ICF-categories from the expert reports that were named at least in 50% of it can largely provide a basis for preparing expert reports. Within the scope of implementation the need for a specific ICF Core Set for expert reports of the German statutory pension insurance should be further analyzed and discussed. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Method of Implementing Digital Phase-Locked Loops

    NASA Technical Reports Server (NTRS)

    Stephens, Scott A. (Inventor); Thomas, J. Brooks (Inventor)

    1997-01-01

    In a new formulation for digital phase-locked loops, loop-filter constants are determined from loop roots that can each be selectively placed in the s-plane on the basis of a new set of parameters, each with simple and direct physical meaning in terms of loop noise bandwidth, root-specific decay rate, and root-specific damping. Loops of first to fourth order are treated in the continuous-update approximation (B(sub L)T approaches 0) and in a discrete-update formulation with arbitrary B(sub L)T. Deficiencies of the continuous-update approximation in large-B(sub L)T applications are avoided in the new discrete-update formulation.

  2. The genetic basis of gout.

    PubMed

    Merriman, Tony R; Choi, Hyon K; Dalbeth, Nicola

    2014-05-01

    Gout results from deposition of monosodium urate (MSU) crystals. Elevated serum urate concentrations (hyperuricemia) are not sufficient for the development of disease. Genome-wide association studies (GWAS) have identified 28 loci controlling serum urate levels. The largest genetic effects are seen in genes involved in the renal excretion of uric acid, with others being involved in glycolysis. Whereas much is understood about the genetic control of serum urate levels, little is known about the genetic control of inflammatory responses to MSU crystals. Extending knowledge in this area depends on recruitment of large, clinically ascertained gout sample sets suitable for GWAS. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Theoretical study of the A prime 5Sigma(+)g and C double prime 5Pi u states of N2 - Implications for the N2 afterglow

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.; Schwenke, David W.

    1988-01-01

    Theoretical spectroscopic constants are reported for the A prime 5Sigma(+)g and C double prime 5Pi u states of N2 based on CASSCF/MRCI calculations using large ANO Gaussian basis sets. The calculated A prime Sigma(+)g potential differs qualitatively from previous calculations in that the inner well is significantly deeper (De = 3450/cm). This deeper well provides considerable support for the suggestion of Berkowitz et al. (1956) that A prime 5Sigma(+)g is the primary precursor state involved in the yellow Lewis-Rayleigh afterglow of N2.

  4. Intense source of slow positrons

    NASA Astrophysics Data System (ADS)

    Perez, P.; Rosowsky, A.

    2004-10-01

    We describe a novel design for an intense source of slow positrons based on pair production with a beam of electrons from a 10 MeV accelerator hitting a thin target at a low incidence angle. The positrons are collected with a set of coils adapted to the large production angle. The collection system is designed to inject the positrons into a Greaves-Surko trap (Phys. Rev. A 46 (1992) 5696). Such a source could be the basis for a series of experiments in fundamental and applied research and would also be a prototype source for industrial applications, which concern the field of defect characterization in the nanometer scale.

  5. Intelligent Support System of Steel Technical Preparation in an Arc Furnace: Functional Scheme of Interactive Builder of the Multi Objective Optimization Problem

    NASA Astrophysics Data System (ADS)

    Logunova, O. S.; Sibileva, N. S.

    2017-12-01

    The purpose of the study is to increase the efficiency of the steelmaking process in large capacity arc furnace on the basis of implementation a new decision-making system about the composition of charge materials. The authors proposed an interactive builder for the formation of the optimization problem, taking into account the requirements of the customer, normative documents and stocks of charge materials in the warehouse. To implement the interactive builder, the sets of deterministic and stochastic model components are developed, as well as a list of preferences of criteria and constraints.

  6. Crustal dynamics project data analysis, 1991: VLBI geodetic results, 1979 - 1990

    NASA Technical Reports Server (NTRS)

    Ma, C.; Ryan, J. W.; Caprette, D. S.

    1992-01-01

    The Goddard VLBI group reports the results of analyzing 1412 Mark II data sets acquired from fixed and mobile observing sites through the end of 1990 and available to the Crustal Dynamics Project. Three large solutions were used to obtain Earth rotation parameters, nutation offsets, global source positions, site velocities, and baseline evolution. Site positions are tabulated on a yearly basis from 1979 through 1992. Site velocities are presented in both geocentric Cartesian coordinates and topocentric coordinates. Baseline evolution is plotted for 175 baselines. Rates are computed for earth rotation and nutation parameters. Included are 104 sources, 88 fixed stations and mobile sites, and 688 baselines.

  7. Structures of Human Pumilio with Noncognate RNAs Reveal Molecular Mechanisms for Binding Promiscuity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta,Y.; Nair, D.; Wharton, R.

    2008-01-01

    Pumilio is a founder member of the evolutionarily conserved Puf family of RNA-binding proteins that control a number of physiological processes in eukaryotes. A structure of human Pumilio (hPum) Puf domain bound to a Drosophila regulatory sequence showed that each Puf repeat recognizes a single nucleotide. Puf domains in general bind promiscuously to a large set of degenerate sequences, but the structural basis for this promiscuity has been unclear. Here, we describe the structures of hPum Puf domain complexed to two noncognate RNAs, CycBreverse and Puf5. In each complex, one of the nucleotides is ejected from the binding surface, inmore » effect, acting as a 'spacer.' The complexes also reveal the plasticity of several Puf repeats, which recognize noncanonical nucleotides. Together, these complexes provide a molecular basis for recognition of degenerate binding sites, which significantly increases the number of mRNAs targeted for regulation by Puf proteins in vivo.« less

  8. Host genetic determinants of microbiota-dependent nutrition revealed by genome-wide analysis of Drosophila melanogaster

    PubMed Central

    Dobson, Adam J.; Chaston, John M.; Newell, Peter D.; Donahue, Leanne; Hermann, Sara L.; Sannino, David R.; Westmiller, Stephanie; Wong, Adam C.-N.; Clark, Andrew G.; Lazzaro, Brian P.; Douglas, Angela E.

    2015-01-01

    Animals bear communities of gut microorganisms with substantial effects on animal nutrition, but the host genetic basis of these effects is unknown. Here, we use Drosophila to demonstrate substantial among-genotype variation in the effects of eliminating the gut microbiota on five host nutritional indices (weight, and protein, lipid, glucose and glycogen contents); this includes variation in both the magnitude and direction of microbiota-dependent effects. Genome-wide associations to identify the genetic basis of the microbiota-dependent variation reveal polymorphisms in largely non-overlapping sets of genes associated with variation in the nutritional traits, including strong representation of conserved genes functioning in signaling. Key genes identified by the GWA study are validated by loss-of-function mutations that altered microbiota-dependent nutritional effects. We conclude that the microbiota interacts with the animal at multiple points in the signaling and regulatory networks that determine animal nutrition. These interactions with the microbiota are likely conserved across animals, including humans. PMID:25692519

  9. The structure and energetics of the HCN → HNC transition state

    NASA Astrophysics Data System (ADS)

    Lee, Timothy J.; Rendell, Alistair P.

    1991-03-01

    The optimum geometries and quadratic force constants of HCN, HNC and the transition state connecting them have been determined at the single and double excitation coupled-cluster (CCSD) and CCSD(T) levels of theory. Energy differences were evaluated using the CCSD and CCSD(T) methods in conjunction with large atomic natural orbital basis sets containing g-type basis functions on the heavy atoms and f-type functions on hydrogen. The most reliable structure obtained for the transition state has bond distances of 1.194, 1.188 and 1.389 Å for rCN, rCH and rNH, respectively. Including a correction for zero-point vibrational energies, the transition state is predicted to be 44.6 ± 1.0 kcal/mol above the HCN isomer, while HNC is predicted to be 14.4 ± 1.0 kcal/mol above HCN. The latter value is in excellent agreement with the most recent experimental determination (14.8 ± 2.0 kcal/mol).

  10. Nursing Routine Data as a Basis for Association Analysis in the Domain of Nursing Knowledge

    PubMed Central

    Sellemann, Björn; Stausberg, Jürgen; Hübner, Ursula

    2012-01-01

    This paper describes the data mining method of association analysis within the framework of Knowledge Discovery in Databases (KDD) with the aim to identify standard patterns of nursing care. The approach is application-oriented and used on nursing routine data of the method LEP nursing 2. The increasing use of information technology in hospitals, especially of nursing information systems, requires the storage of large data sets, which hitherto have not always been analyzed adequately. Three association analyses for the days of admission, surgery and discharge, have been performed. The results of almost 1.5 million generated association rules indicate that it is valid to apply association analysis to nursing routine data. All rules are semantically trivial, since they reflect existing knowledge from the domain of nursing. This may be due either to the method LEP Nursing 2, or to the nursing activities themselves. Nonetheless, association analysis may in future become a useful analytical tool on the basis of structured nursing routine data. PMID:24199122

  11. QUADRATIC SERENDIPITY FINITE ELEMENTS ON POLYGONS USING GENERALIZED BARYCENTRIC COORDINATES

    PubMed Central

    RAND, ALEXANDER; GILLETTE, ANDREW; BAJAJ, CHANDRAJIT

    2013-01-01

    We introduce a finite element construction for use on the class of convex, planar polygons and show it obtains a quadratic error convergence estimate. On a convex n-gon, our construction produces 2n basis functions, associated in a Lagrange-like fashion to each vertex and each edge midpoint, by transforming and combining a set of n(n + 1)/2 basis functions known to obtain quadratic convergence. The technique broadens the scope of the so-called ‘serendipity’ elements, previously studied only for quadrilateral and regular hexahedral meshes, by employing the theory of generalized barycentric coordinates. Uniform a priori error estimates are established over the class of convex quadrilaterals with bounded aspect ratio as well as over the class of convex planar polygons satisfying additional shape regularity conditions to exclude large interior angles and short edges. Numerical evidence is provided on a trapezoidal quadrilateral mesh, previously not amenable to serendipity constructions, and applications to adaptive meshing are discussed. PMID:25301974

  12. Identifying Attributes of CO2 Leakage Zones in Shallow Aquifers Using a Parametric Level Set Method

    NASA Astrophysics Data System (ADS)

    Sun, A. Y.; Islam, A.; Wheeler, M.

    2016-12-01

    Leakage through abandoned wells and geologic faults poses the greatest risk to CO2 storage permanence. For shallow aquifers, secondary CO2 plumes emanating from the leak zones may go undetected for a sustained period of time and has the greatest potential to cause large-scale and long-term environmental impacts. Identification of the attributes of leak zones, including their shape, location, and strength, is required for proper environmental risk assessment. This study applies a parametric level set (PaLS) method to characterize the leakage zone. Level set methods are appealing for tracking topological changes and recovering unknown shapes of objects. However, level set evolution using the conventional level set methods is challenging. In PaLS, the level set function is approximated using a weighted sum of basis functions and the level set evolution problem is replaced by an optimization problem. The efficacy of PaLS is demonstrated through recovering the source zone created by CO2 leakage into a carbonate aquifer. Our results show that PaLS is a robust source identification method that can recover the approximate source locations in the presence of measurement errors, model parameter uncertainty, and inaccurate initial guesses of source flux strengths. The PaLS inversion framework introduced in this work is generic and can be adapted for any reactive transport model by switching the pre- and post-processing routines.

  13. Kohn-Sham potentials from electron densities using a matrix representation within finite atomic orbital basis sets

    NASA Astrophysics Data System (ADS)

    Zhang, Xing; Carter, Emily A.

    2018-01-01

    We revisit the static response function-based Kohn-Sham (KS) inversion procedure for determining the KS effective potential that corresponds to a given target electron density within finite atomic orbital basis sets. Instead of expanding the potential in an auxiliary basis set, we directly update the potential in its matrix representation. Through numerical examples, we show that the reconstructed density rapidly converges to the target density. Preliminary results are presented to illustrate the possibility of obtaining a local potential in real space from the optimized potential in its matrix representation. We have further applied this matrix-based KS inversion approach to density functional embedding theory. A proof-of-concept study of a solvated proton transfer reaction demonstrates the method's promise.

  14. Interactions of C+(2PJ) with rare gas atoms: incipient chemical interactions, potentials and transport coefficients

    NASA Astrophysics Data System (ADS)

    Tuttle, William D.; Thorington, Rebecca L.; Viehland, Larry A.; Breckenridge, W. H.; Wright, Timothy G.

    2018-03-01

    Accurate interatomic potentials were calculated for the interaction of a singly charged carbon cation, C+, with a single rare gas atom, RG (RG = Ne-Xe). The RCCSD(T) method and basis sets of quadruple-ζ and quintuple-ζ quality were employed; each interaction energy was counterpoise corrected and extrapolated to the basis set limit. The lowest C+(2P) electronic term of the carbon cation was considered, and the interatomic potentials calculated for the diatomic terms that arise from these: 2Π and 2Σ+. Additionally, the interatomic potentials for the respective spin-orbit levels were calculated, and the effect on the spectroscopic parameters was examined. In doing this, anomalously large spin-orbit splittings for RG = Ar-Xe were found, and this was investigated using multi-reference configuration interaction calculations. The latter indicated a small amount of RG → C+ electron transfer and this was used to rationalize the observations. This is taken as evidence of an incipient chemical interaction, which was also examined via contour plots, Birge-Sponer plots and various population analyses across the C+-RG series (RG = He-Xe), with the latter showing unexpected results. Trends in several spectroscopic parameters were examined as a function of the increasing atomic number of the RG atom. Finally, each set of RCCSD(T) potentials was employed, including spin-orbit coupling to calculate the transport coefficients for C+ in RG, and the results were compared with the limited available data. This article is part of the theme issue `Modern theoretical chemistry'.

  15. Progress with modeling activity landscapes in drug discovery.

    PubMed

    Vogt, Martin

    2018-04-19

    Activity landscapes (ALs) are representations and models of compound data sets annotated with a target-specific activity. In contrast to quantitative structure-activity relationship (QSAR) models, ALs aim at characterizing structure-activity relationships (SARs) on a large-scale level encompassing all active compounds for specific targets. The popularity of AL modeling has grown substantially with the public availability of large activity-annotated compound data sets. AL modeling crucially depends on molecular representations and similarity metrics used to assess structural similarity. Areas covered: The concepts of AL modeling are introduced and its basis in quantitatively assessing molecular similarity is discussed. The different types of AL modeling approaches are introduced. AL designs can broadly be divided into three categories: compound-pair based, dimensionality reduction, and network approaches. Recent developments for each of these categories are discussed focusing on the application of mathematical, statistical, and machine learning tools for AL modeling. AL modeling using chemical space networks is covered in more detail. Expert opinion: AL modeling has remained a largely descriptive approach for the analysis of SARs. Beyond mere visualization, the application of analytical tools from statistics, machine learning and network theory has aided in the sophistication of AL designs and provides a step forward in transforming ALs from descriptive to predictive tools. To this end, optimizing representations that encode activity relevant features of molecules might prove to be a crucial step.

  16. Benchmarking density functional tight binding models for barrier heights and reaction energetics of organic molecules.

    PubMed

    Gruden, Maja; Andjeklović, Ljubica; Jissy, Akkarapattiakal Kuriappan; Stepanović, Stepan; Zlatar, Matija; Cui, Qiang; Elstner, Marcus

    2017-09-30

    Density Functional Tight Binding (DFTB) models are two to three orders of magnitude faster than ab initio and Density Functional Theory (DFT) methods and therefore are particularly attractive in applications to large molecules and condensed phase systems. To establish the applicability of DFTB models to general chemical reactions, we conduct benchmark calculations for barrier heights and reaction energetics of organic molecules using existing databases and several new ones compiled in this study. Structures for the transition states and stable species have been fully optimized at the DFTB level, making it possible to characterize the reliability of DFTB models in a more thorough fashion compared to conducting single point energy calculations as done in previous benchmark studies. The encouraging results for the diverse sets of reactions studied here suggest that DFTB models, especially the most recent third-order version (DFTB3/3OB augmented with dispersion correction), in most cases provide satisfactory description of organic chemical reactions with accuracy almost comparable to popular DFT methods with large basis sets, although larger errors are also seen for certain cases. Therefore, DFTB models can be effective for mechanistic analysis (e.g., transition state search) of large (bio)molecules, especially when coupled with single point energy calculations at higher levels of theory. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. High-Throughput Screening Using iPSC-Derived Neuronal Progenitors to Identify Compounds Counteracting Epigenetic Gene Silencing in Fragile X Syndrome.

    PubMed

    Kaufmann, Markus; Schuffenhauer, Ansgar; Fruh, Isabelle; Klein, Jessica; Thiemeyer, Anke; Rigo, Pierre; Gomez-Mancilla, Baltazar; Heidinger-Millot, Valerie; Bouwmeester, Tewis; Schopfer, Ulrich; Mueller, Matthias; Fodor, Barna D; Cobos-Correa, Amanda

    2015-10-01

    Fragile X syndrome (FXS) is the most common form of inherited mental retardation, and it is caused in most of cases by epigenetic silencing of the Fmr1 gene. Today, no specific therapy exists for FXS, and current treatments are only directed to improve behavioral symptoms. Neuronal progenitors derived from FXS patient induced pluripotent stem cells (iPSCs) represent a unique model to study the disease and develop assays for large-scale drug discovery screens since they conserve the Fmr1 gene silenced within the disease context. We have established a high-content imaging assay to run a large-scale phenotypic screen aimed to identify compounds that reactivate the silenced Fmr1 gene. A set of 50,000 compounds was tested, including modulators of several epigenetic targets. We describe an integrated drug discovery model comprising iPSC generation, culture scale-up, and quality control and screening with a very sensitive high-content imaging assay assisted by single-cell image analysis and multiparametric data analysis based on machine learning algorithms. The screening identified several compounds that induced a weak expression of fragile X mental retardation protein (FMRP) and thus sets the basis for further large-scale screens to find candidate drugs or targets tackling the underlying mechanism of FXS with potential for therapeutic intervention. © 2015 Society for Laboratory Automation and Screening.

  18. hEIDI: An Intuitive Application Tool To Organize and Treat Large-Scale Proteomics Data.

    PubMed

    Hesse, Anne-Marie; Dupierris, Véronique; Adam, Claire; Court, Magali; Barthe, Damien; Emadali, Anouk; Masselon, Christophe; Ferro, Myriam; Bruley, Christophe

    2016-10-07

    Advances in high-throughput proteomics have led to a rapid increase in the number, size, and complexity of the associated data sets. Managing and extracting reliable information from such large series of data sets require the use of dedicated software organized in a consistent pipeline to reduce, validate, exploit, and ultimately export data. The compilation of multiple mass-spectrometry-based identification and quantification results obtained in the context of a large-scale project represents a real challenge for developers of bioinformatics solutions. In response to this challenge, we developed a dedicated software suite called hEIDI to manage and combine both identifications and semiquantitative data related to multiple LC-MS/MS analyses. This paper describes how, through a user-friendly interface, hEIDI can be used to compile analyses and retrieve lists of nonredundant protein groups. Moreover, hEIDI allows direct comparison of series of analyses, on the basis of protein groups, while ensuring consistent protein inference and also computing spectral counts. hEIDI ensures that validated results are compliant with MIAPE guidelines as all information related to samples and results is stored in appropriate databases. Thanks to the database structure, validated results generated within hEIDI can be easily exported in the PRIDE XML format for subsequent publication. hEIDI can be downloaded from http://biodev.extra.cea.fr/docs/heidi .

  19. Heterogeneity of chronic graft-versus-host disease biomarkers: association with CXCL10 and CXCR3+ NK cells

    PubMed Central

    Kariminia, Amina; Holtan, Shernan G.; Ivison, Sabine; Rozmus, Jacob; Hebert, Marie-Josée; Martin, Paul J.; Lee, Stephanie J.; Wolff, Daniel; Subrt, Peter; Abdossamadi, Sayeh; Sung, Susanna; Storek, Jan; Levings, Megan; Aljurf, Mahmoud; Arora, Mukta; Cutler, Corey; Gallagher, Geneviève; Kuruvilla, John; Lipton, Jeff; Nevill, Thomas J.; Newell, Laura F.; Panzarella, Tony; Pidala, Joseph; Popradi, Gizelle; Szwajcer, David; Tay, Jason; Toze, Cynthia L.; Walker, Irwin; Couban, Stephen; Storer, Barry E.

    2016-01-01

    Chronic graft-versus-host disease (cGVHD) remains one of the most significant long-term complications after allogeneic blood and marrow transplantation. Diagnostic biomarkers for cGVHD are needed for early diagnosis and may guide identification of prognostic markers. No cGVHD biomarker has yet been validated for use in clinical practice. We evaluated both previously known markers and performed discovery-based analysis for cGVHD biomarkers in a 2 independent test sets (total of 36 cases ≤1 month from diagnosis and 31 time-matched controls with no cGVHD). On the basis of these results, 11 markers were selected and evaluated in 2 independent replication cohorts (total of 134 cGVHD cases and 154 controls). cGVHD cases and controls were evaluated for several clinical covariates, and their impact on biomarkers was identified by univariate analysis. The 2 replications sets were relatively disparate in the biomarkers they replicated. Only sBAFF and, most consistently, CXCL10 were identified as significant in both replication sets. Other markers identified as significant in only 1 replication set included intercellular adhesion molecule 1 (ICAM-1), anti-LG3, aminopeptidase N, CXCL9, endothelin-1, and gelsolin. Multivariate analysis found that all covariates evaluated affected interpretation of the biomarkers. CXCL10 had an increased significance in combination with anti-LG3 and CXCL9, or inversely with CXCR3+CD56bright natural killer (NK) cells. There was significant heterogeneity of cGVHD biomarkers in a large comprehensive evaluation of cGVHD biomarkers impacted by several covariates. Only CXCL10 strongly correlated in both replication sets. Future analyses for plasma cGVHD biomarkers will need to be performed on very large patient groups with consideration of multiple covariates. PMID:27020088

  20. The effect of sampling techniques used in the multiconfigurational Ehrenfest method

    NASA Astrophysics Data System (ADS)

    Symonds, C.; Kattirtzi, J. A.; Shalashilin, D. V.

    2018-05-01

    In this paper, we compare and contrast basis set sampling techniques recently developed for use in the ab initio multiple cloning method, a direct dynamics extension to the multiconfigurational Ehrenfest approach, used recently for the quantum simulation of ultrafast photochemistry. We demonstrate that simultaneous use of basis set cloning and basis function trains can produce results which are converged to the exact quantum result. To demonstrate this, we employ these sampling methods in simulations of quantum dynamics in the spin boson model with a broad range of parameters and compare the results to accurate benchmarks.

  1. The effect of sampling techniques used in the multiconfigurational Ehrenfest method.

    PubMed

    Symonds, C; Kattirtzi, J A; Shalashilin, D V

    2018-05-14

    In this paper, we compare and contrast basis set sampling techniques recently developed for use in the ab initio multiple cloning method, a direct dynamics extension to the multiconfigurational Ehrenfest approach, used recently for the quantum simulation of ultrafast photochemistry. We demonstrate that simultaneous use of basis set cloning and basis function trains can produce results which are converged to the exact quantum result. To demonstrate this, we employ these sampling methods in simulations of quantum dynamics in the spin boson model with a broad range of parameters and compare the results to accurate benchmarks.

  2. Accurate energetics of small molecules containing third-row atoms Ga-Kr: A comparison of advanced ab initio and density functional theory

    NASA Astrophysics Data System (ADS)

    Yockel, Scott; Mintz, Benjamin; Wilson, Angela K.

    2004-07-01

    Advanced ab initio [coupled cluster theory through quasiperturbative triple excitations (CCSD(T))] and density functional (B3LYP) computational chemistry approaches were used in combination with the standard and augmented correlation consistent polarized valence basis sets [cc-pVnZ and aug-cc-pVnZ, where n=D(2), T(3), Q(4), and 5] to investigate the energetic and structural properties of small molecules containing third-row (Ga-Kr) atoms. These molecules were taken from the Gaussian-2 (G2) extended test set for third-row atoms. Several different schemes were used to extrapolate the calculated energies to the complete basis set (CBS) limit for CCSD(T) and the Kohn-Sham (KS) limit for B3LYP. Zero point energy and spin orbital corrections were included in the results. Overall, CCSD(T) atomization energies, ionization energies, proton affinities, and electron affinities are in good agreement with experiment, within 1.1 kcal/mol when the CBS limit has been determined using a series of two basis sets of at least triple zeta quality. For B3LYP, the overall mean absolute deviation from experiment for the three properties and the series of molecules is more significant at the KS limit, within 2.3 and 2.6 kcal/mol for the cc-pVnZ and aug-cc-pVnZ basis set series, respectively.

  3. Optimization of metabolite basis sets prior to quantitation in magnetic resonance spectroscopy: an approach based on quantum mechanics

    NASA Astrophysics Data System (ADS)

    Lazariev, A.; Allouche, A.-R.; Aubert-Frécon, M.; Fauvelle, F.; Piotto, M.; Elbayed, K.; Namer, I.-J.; van Ormondt, D.; Graveron-Demilly, D.

    2011-11-01

    High-resolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR) is playing an increasingly important role for diagnosis. This technique enables setting up metabolite profiles of ex vivo pathological and healthy tissue. The need to monitor diseases and pharmaceutical follow-up requires an automatic quantitation of HRMAS 1H signals. However, for several metabolites, the values of chemical shifts of proton groups may slightly differ according to the micro-environment in the tissue or cells, in particular to its pH. This hampers the accurate estimation of the metabolite concentrations mainly when using quantitation algorithms based on a metabolite basis set: the metabolite fingerprints are not correct anymore. In this work, we propose an accurate method coupling quantum mechanical simulations and quantitation algorithms to handle basis-set changes. The proposed algorithm automatically corrects mismatches between the signals of the simulated basis set and the signal under analysis by maximizing the normalized cross-correlation between the mentioned signals. Optimized chemical shift values of the metabolites are obtained. This method, QM-QUEST, provides more robust fitting while limiting user involvement and respects the correct fingerprints of metabolites. Its efficiency is demonstrated by accurately quantitating 33 signals from tissue samples of human brains with oligodendroglioma, obtained at 11.7 tesla. The corresponding chemical shift changes of several metabolites within the series are also analyzed.

  4. Efficient method for computing the maximum-likelihood quantum state from measurements with additive Gaussian noise.

    PubMed

    Smolin, John A; Gambetta, Jay M; Smith, Graeme

    2012-02-17

    We provide an efficient method for computing the maximum-likelihood mixed quantum state (with density matrix ρ) given a set of measurement outcomes in a complete orthonormal operator basis subject to Gaussian noise. Our method works by first changing basis yielding a candidate density matrix μ which may have nonphysical (negative) eigenvalues, and then finding the nearest physical state under the 2-norm. Our algorithm takes at worst O(d(4)) for the basis change plus O(d(3)) for finding ρ where d is the dimension of the quantum state. In the special case where the measurement basis is strings of Pauli operators, the basis change takes only O(d(3)) as well. The workhorse of the algorithm is a new linear-time method for finding the closest probability distribution (in Euclidean distance) to a set of real numbers summing to one.

  5. On the efficiency of treating singularities in triatomic variational vibrational computations. The vibrational states of H(+)3 up to dissociation.

    PubMed

    Szidarovszky, Tamás; Császár, Attila G; Czakó, Gábor

    2010-08-01

    Several techniques of varying efficiency are investigated, which treat all singularities present in the triatomic vibrational kinetic energy operator given in orthogonal internal coordinates of the two distances-one angle type. The strategies are based on the use of a direct-product basis built from one-dimensional discrete variable representation (DVR) bases corresponding to the two distances and orthogonal Legendre polynomials, or the corresponding Legendre-DVR basis, corresponding to the angle. The use of Legendre functions ensures the efficient treatment of the angular singularity. Matrix elements of the singular radial operators are calculated employing DVRs using the quadrature approximation as well as special DVRs satisfying the boundary conditions and thus allowing for the use of exact DVR expressions. Potential optimized (PO) radial DVRs, based on one-dimensional Hamiltonians with potentials obtained by fixing or relaxing the two non-active coordinates, are also studied. The numerical calculations employed Hermite-DVR, spherical-oscillator-DVR, and Bessel-DVR bases as the primitive radial functions. A new analytical formula is given for the determination of the matrix elements of the singular radial operator using the Bessel-DVR basis. The usually claimed failure of the quadrature approximation in certain singular integrals is revisited in one and three dimensions. It is shown that as long as no potential optimization is carried out the quadrature approximation works almost as well as the exact DVR expressions. If wave functions with finite amplitude at the boundary are to be computed, the basis sets need to meet the required boundary conditions. The present numerical results also confirm that PO-DVRs should be constructed employing relaxed potentials and PO-DVRs can be useful for optimizing quadrature points for calculations applying large coordinate intervals and describing large-amplitude motions. The utility and efficiency of the different algorithms is demonstrated by the computation of converged near-dissociation vibrational energy levels for the H molecular ion.

  6. Pilot climate data system: A state-of-the-art capability in scientific data management

    NASA Technical Reports Server (NTRS)

    Smith, P. H.; Treinish, L. A.; Novak, L. V.

    1983-01-01

    The Pilot Climate Data System (PCDS) was developed by the Information Management Branch of NASA's Goddard Space Flight Center to manage a large collection of climate-related data of interest to the research community. The PCDS now provides uniform data catalogs, inventories, access methods, graphical displays and statistical calculations for selected NASA and non-NASA data sets. Data manipulation capabilities were developed to permit researchers to easily combine or compare data. The current capabilities of the PCDS include many tools for the statistical survey of climate data. A climate researcher can examine any data set of interest via flexible utilities to create a variety of two- and three-dimensional displays, including vector plots, scatter diagrams, histograms, contour plots, surface diagrams and pseudo-color images. The graphics and statistics subsystems employ an intermediate data storage format which is data-set independent. Outside of the graphics system there exist other utilities to select, filter, list, compress, and calculate time-averages and variances for any data of interest. The PCDS now fully supports approximately twenty different data sets and is being used on a trial basis by several different in-house research grounds.

  7. Use of Molecular Modeling to Determine the Interaction and Competition of Gases within Coal for Carbon Dioxide Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffrey D. Evanseck; Jeffry D. Madura

    A 3-dimensional coal structural model for the Argonne Premium Coal Pocahontas No. 3 has been generated. The model was constructed based on the wealth of structural information available in the literature with the enhancement that the structural diversity within the structure was represented implicitly (for the first time) based on image analysis of HRTEM in combination with LDMS data. The complex and large structural model (>10,000 carbon atoms) will serve as a basis for examining the interaction of gases within this low volatile bituminous coal. Simulations are of interest to permit reasonable simulations of the host-guest interactions with regard tomore » carbon dioxide sequestration within coal and methane displacement from coal. The molecular structure will also prove useful in examining other coal related behavior such as solvent swelling, liquefaction and other properties. Molecular models of CO{sub 2} have been evaluated with water to analyze which classical molecular force-field parameters are the most reasonable to predict the interactions of CO{sub 2} with water. The comparison of the molecular force field models was for a single CO{sub 2}-H{sub 2}O complex and was compared against first principles quantum mechanical calculations. The interaction energies and the electrostatic interaction distances were used as criteria in the comparison. The ab initio calculations included Hartree-Fock, B3LYP, and Moeller-Plesset 2nd, 3rd, and 4th order perturbation theories with basis sets up to the aug-cc-pvtz basis set. The Steele model was the best literature model, when compared to the ab initio data, however, our new CO{sub 2} model reproduces the QM data significantly better than the Steele force-field model.« less

  8. Cone photoreceptor sensitivities and unique hue chromatic responses: correlation and causation imply the physiological basis of unique hues.

    PubMed

    Pridmore, Ralph W

    2013-01-01

    This paper relates major functions at the start and end of the color vision process. The process starts with three cone photoreceptors transducing light into electrical responses. Cone sensitivities were once expected to be Red Green Blue color matching functions (to mix colors) but microspectrometry proved otherwise: they instead peak in yellowish, greenish, and blueish hues. These physiological functions are an enigma, unmatched with any set of psychophysical (behavioral) functions. The end-result of the visual process is color sensation, whose essential percepts are unique (or pure) hues red, yellow, green, blue. Unique hues cannot be described by other hues, but can describe all other hues, e.g., that hue is reddish-blue. They are carried by four opponent chromatic response curves but the literature does not specify whether each curve represents a range of hues or only one hue (a unique) over its wavelength range. Here the latter is demonstrated, confirming that opponent chromatic responses define, and may be termed, unique hue chromatic responses. These psychophysical functions also are an enigma, unmatched with any physiological functions or basis. Here both enigmas are solved by demonstrating the three cone sensitivity curves and the three spectral chromatic response curves are almost identical sets (Pearson correlation coefficients r from 0.95-1.0) in peak wavelengths, curve shapes, math functions, and curve crossover wavelengths, though previously unrecognized due to presentation of curves in different formats, e.g., log, linear. (Red chromatic response curve is largely nonspectral and thus derives from two cones.) Close correlation combined with deterministic causation implies cones are the physiological basis of unique hues. This match of three physiological and three psychophysical functions is unique in color vision.

  9. Cone Photoreceptor Sensitivities and Unique Hue Chromatic Responses: Correlation and Causation Imply the Physiological Basis of Unique Hues

    PubMed Central

    Pridmore, Ralph W.

    2013-01-01

    This paper relates major functions at the start and end of the color vision process. The process starts with three cone photoreceptors transducing light into electrical responses. Cone sensitivities were once expected to be Red Green Blue color matching functions (to mix colors) but microspectrometry proved otherwise: they instead peak in yellowish, greenish, and blueish hues. These physiological functions are an enigma, unmatched with any set of psychophysical (behavioral) functions. The end-result of the visual process is color sensation, whose essential percepts are unique (or pure) hues red, yellow, green, blue. Unique hues cannot be described by other hues, but can describe all other hues, e.g., that hue is reddish-blue. They are carried by four opponent chromatic response curves but the literature does not specify whether each curve represents a range of hues or only one hue (a unique) over its wavelength range. Here the latter is demonstrated, confirming that opponent chromatic responses define, and may be termed, unique hue chromatic responses. These psychophysical functions also are an enigma, unmatched with any physiological functions or basis. Here both enigmas are solved by demonstrating the three cone sensitivity curves and the three spectral chromatic response curves are almost identical sets (Pearson correlation coefficients r from 0.95–1.0) in peak wavelengths, curve shapes, math functions, and curve crossover wavelengths, though previously unrecognized due to presentation of curves in different formats, e.g., log, linear. (Red chromatic response curve is largely nonspectral and thus derives from two cones.) Close correlation combined with deterministic causation implies cones are the physiological basis of unique hues. This match of three physiological and three psychophysical functions is unique in color vision. PMID:24204755

  10. The 129Xe nuclear shielding surfaces for Xe interacting with linear molecules CO2, N2, and CO

    NASA Astrophysics Data System (ADS)

    de Dios, Angel C.; Jameson, Cynthia J.

    1997-09-01

    We have calculated the intermolecular nuclear magnetic shielding surfaces for 129Xe in the systems Xe-CO2, Xe-N2, and Xe-CO using a gauge-invariant ab initio method at the coupled Hartree-Fock level with gauge-including atomic orbitals (GIAO). Implementation of a large basis set (240 basis functions) on the Xe gives very small counterpoise corrections which indicates that the basis set superposition errors in the calculated shielding values are negligible. These are the first intermolecular shielding surfaces for Xe-molecule systems. The surfaces are highly anisotropic and can be described adequately by a sum of inverse even powers of the distance with explicit angle dependence in the coefficients expressed by Legendre polynomials P2n(cos θ), n=0-3, for Xe-CO2 and Xe-N2. The Xe-CO shielding surface is well described by a similar functional form, except that Pn(cos θ), n=0-4 were used. When averaged over the anisotropic potential function these shielding surfaces provide the second virial coefficient of the nuclear magnetic resonance (NMR) chemical shift observed in gas mixtures. The energies from the self-consistent field (SCF) calculations were used to construct potential surfaces, using a damped dispersion form. These potential functions are compared with existing potentials in their predictions of the second virial coefficients of NMR shielding, the pressure virial coefficients, the density coefficient of the mean-square torque from infrared absorption, and the rotational constants and other average properties of the van der Waals complexes. Average properties of the van der Waals complexes were obtained by quantum diffusion Monte Carlo solutions of the vibrational motion using the various potentials and compared with experiment.

  11. Slater-type geminals in explicitly-correlated perturbation theory: application to n-alkanols and analysis of errors and basis-set requirements.

    PubMed

    Höfener, Sebastian; Bischoff, Florian A; Glöss, Andreas; Klopper, Wim

    2008-06-21

    In the recent years, Slater-type geminals (STGs) have been used with great success to expand the first-order wave function in an explicitly-correlated perturbation theory. The present work reports on this theory's implementation in the framework of the Turbomole suite of programs. A formalism is presented for evaluating all of the necessary molecular two-electron integrals by means of the Obara-Saika recurrence relations, which can be applied when the STG is expressed as a linear combination of a small number (n) of Gaussians (STG-nG geminal basis). In the Turbomole implementation of the theory, density fitting is employed and a complementary auxiliary basis set (CABS) is used for the resolution-of-the-identity (RI) approximation of explicitly-correlated theory. By virtue of this RI approximation, the calculation of molecular three- and four-electron integrals is avoided. An approximation is invoked to avoid the two-electron integrals over the commutator between the operators of kinetic energy and the STG. This approximation consists of computing commutators between matrices in place of operators. Integrals over commutators between operators would have occurred if the theory had been formulated and implemented as proposed originally. The new implementation in Turbomole was tested by performing a series of calculations on rotational conformers of the alkanols n-propanol through n-pentanol. Basis-set requirements concerning the orbital basis, the auxiliary basis set for density fitting and the CABS were investigated. Furthermore, various (constrained) optimizations of the amplitudes of the explicitly-correlated double excitations were studied. These amplitudes can be optimized in orbital-variant and orbital-invariant manners, or they can be kept fixed at the values governed by the rational generator approach, that is, by the electron cusp conditions. Electron-correlation effects beyond the level of second-order perturbation theory were accounted for by conventional coupled-cluster calculations with single, double and perturbative triple excitations [CCSD(T)]. The explicitly-correlated perturbation theory results were combined with CCSD(T) results and compared with literature data obtained by basis-set extrapolation.

  12. A DFT and ab initio benchmarking study of metal-alkane interactions and the activation of carbon-hydrogen bonds.

    PubMed

    Flener-Lovitt, Charity; Woon, David E; Dunning, Thom H; Girolami, Gregory S

    2010-02-04

    Density functional theory and ab initio methods have been used to calculate the structures and energies of minima and transition states for the reactions of methane coordinated to a transition metal. The reactions studied are reversible C-H bond activation of the coordinated methane ligand to form a transition metal methyl hydride complex and dissociation of the coordinated methane ligand. The reaction sequence can be summarized as L(x)M(CH(3))H <==> L(x)M(CH(4)) <==> L(x)M + CH(4), where L(x)M is the osmium-containing fragment (C(5)H(5))Os(R(2)PCH(2)PR(2))(+) and R is H or CH(3). Three-center metal-carbon-hydrogen interactions play an important role in this system. Both basis sets and functionals have been benchmarked in this work, including new correlation consistent basis sets for a third transition series element, osmium. Double zeta quality correlation consistent basis sets yield energies close to those from calculations with quadruple-zeta basis sets, with variations that are smaller than the differences between functionals. The energies of important species on the potential energy surface, calculated by using 10 DFT functionals, are compared both to experimental values and to CCSD(T) single point calculations. Kohn-Sham natural bond orbital descriptions are used to understand the differences between functionals. Older functionals favor electrostatic interactions over weak donor-acceptor interactions and, therefore, are not particularly well suited for describing systems--such as sigma-complexes--in which the latter are dominant. Newer kinetic and dispersion-corrected functionals such as MPW1K and M05-2X provide significantly better descriptions of the bonding interactions, as judged by their ability to predict energies closer to CCSD(T) values. Kohn-Sham and natural bond orbitals are used to differentiate between bonding descriptions. Our evaluations of these basis sets and DFT functionals lead us to recommend the use of dispersion corrected functionals in conjunction with double-zeta or larger basis sets with polarization functions for calculations involving weak interactions, such as those found in sigma-complexes with transition metals.

  13. 47 CFR 4.1 - Scope, basis and purpose.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Scope, basis and purpose. 4.1 Section 4.1 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL DISRUPTIONS TO COMMUNICATIONS General § 4.1 Scope, basis and purpose. In this part, the Federal Communications Commission is setting forth requirements...

  14. 47 CFR 4.1 - Scope, basis and purpose.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Scope, basis and purpose. 4.1 Section 4.1 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL DISRUPTIONS TO COMMUNICATIONS General § 4.1 Scope, basis and purpose. In this part, the Federal Communications Commission is setting forth requirements...

  15. An efficient and near linear scaling pair natural orbital based local coupled cluster method.

    PubMed

    Riplinger, Christoph; Neese, Frank

    2013-01-21

    In previous publications, it was shown that an efficient local coupled cluster method with single- and double excitations can be based on the concept of pair natural orbitals (PNOs) [F. Neese, A. Hansen, and D. G. Liakos, J. Chem. Phys. 131, 064103 (2009)]. The resulting local pair natural orbital-coupled-cluster single double (LPNO-CCSD) method has since been proven to be highly reliable and efficient. For large molecules, the number of amplitudes to be determined is reduced by a factor of 10(5)-10(6) relative to a canonical CCSD calculation on the same system with the same basis set. In the original method, the PNOs were expanded in the set of canonical virtual orbitals and single excitations were not truncated. This led to a number of fifth order scaling steps that eventually rendered the method computationally expensive for large molecules (e.g., >100 atoms). In the present work, these limitations are overcome by a complete redesign of the LPNO-CCSD method. The new method is based on the combination of the concepts of PNOs and projected atomic orbitals (PAOs). Thus, each PNO is expanded in a set of PAOs that in turn belong to a given electron pair specific domain. In this way, it is possible to fully exploit locality while maintaining the extremely high compactness of the original LPNO-CCSD wavefunction. No terms are dropped from the CCSD equations and domains are chosen conservatively. The correlation energy loss due to the domains remains below <0.05%, which implies typically 15-20 but occasionally up to 30 atoms per domain on average. The new method has been given the acronym DLPNO-CCSD ("domain based LPNO-CCSD"). The method is nearly linear scaling with respect to system size. The original LPNO-CCSD method had three adjustable truncation thresholds that were chosen conservatively and do not need to be changed for actual applications. In the present treatment, no additional truncation parameters have been introduced. Any additional truncation is performed on the basis of the three original thresholds. There are no real-space cutoffs. Single excitations are truncated using singles-specific natural orbitals. Pairs are prescreened according to a multipole expansion of a pair correlation energy estimate based on local orbital specific virtual orbitals (LOSVs). Like its LPNO-CCSD predecessor, the method is completely of black box character and does not require any user adjustments. It is shown here that DLPNO-CCSD is as accurate as LPNO-CCSD while leading to computational savings exceeding one order of magnitude for larger systems. The largest calculations reported here featured >8800 basis functions and >450 atoms. In all larger test calculations done so far, the LPNO-CCSD step took less time than the preceding Hartree-Fock calculation, provided no approximations have been introduced in the latter. Thus, based on the present development reliable CCSD calculations on large molecules with unprecedented efficiency and accuracy are realized.

  16. Rapid insights from remote sensing in the geosciences

    NASA Astrophysics Data System (ADS)

    Plaza, Antonio

    2015-03-01

    The growing availability of capacity computing for atomistic materials modeling has encouraged the use of high-accuracy computationally intensive interatomic potentials, such as SNAP. These potentials also happen to scale well on petascale computing platforms. SNAP has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected on to a basis of hyperspherical harmonics in four dimensions. The computational cost per atom is much greater than that of simpler potentials such as Lennard-Jones or EAM, while the communication cost remains modest. We discuss a variety of strategies for implementing SNAP in the LAMMPS molecular dynamics package. We present scaling results obtained running SNAP on three different classes of machine: a conventional Intel Xeon CPU cluster; the Titan GPU-based system; and the combined Sequoia and Vulcan BlueGene/Q. The growing availability of capacity computing for atomistic materials modeling has encouraged the use of high-accuracy computationally intensive interatomic potentials, such as SNAP. These potentials also happen to scale well on petascale computing platforms. SNAP has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected on to a basis of hyperspherical harmonics in four dimensions. The computational cost per atom is much greater than that of simpler potentials such as Lennard-Jones or EAM, while the communication cost remains modest. We discuss a variety of strategies for implementing SNAP in the LAMMPS molecular dynamics package. We present scaling results obtained running SNAP on three different classes of machine: a conventional Intel Xeon CPU cluster; the Titan GPU-based system; and the combined Sequoia and Vulcan BlueGene/Q. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Dept. of Energy's National Nuclear Security Admin. under Contract DE-AC04-94AL85000.

  17. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Aidan P.; Swiler, Laura P.; Trott, Christian R.

    2015-03-15

    Here, we present a new interatomic potential for solids and liquids called Spectral Neighbor Analysis Potential (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected onto a basis of hyperspherical harmonics in four dimensions. The bispectrum components are the same bond-orientational order parameters employed by the GAP potential [1].more » The SNAP potential, unlike GAP, assumes a linear relationship between atom energy and bispectrum components. The linear SNAP coefficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. We demonstrate that a previously unnoticed symmetry property can be exploited to reduce the computational cost of the force calculations by more than one order of magnitude. We present results for a SNAP potential for tantalum, showing that it accurately reproduces a range of commonly calculated properties of both the crystalline solid and the liquid phases. In addition, unlike simpler existing potentials, SNAP correctly predicts the energy barrier for screw dislocation migration in BCC tantalum.« less

  18. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, A.P., E-mail: athomps@sandia.gov; Swiler, L.P., E-mail: lpswile@sandia.gov; Trott, C.R., E-mail: crtrott@sandia.gov

    2015-03-15

    We present a new interatomic potential for solids and liquids called Spectral Neighbor Analysis Potential (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected onto a basis of hyperspherical harmonics in four dimensions. The bispectrum components are the same bond-orientational order parameters employed by the GAP potential [1]. Themore » SNAP potential, unlike GAP, assumes a linear relationship between atom energy and bispectrum components. The linear SNAP coefficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. We demonstrate that a previously unnoticed symmetry property can be exploited to reduce the computational cost of the force calculations by more than one order of magnitude. We present results for a SNAP potential for tantalum, showing that it accurately reproduces a range of commonly calculated properties of both the crystalline solid and the liquid phases. In addition, unlike simpler existing potentials, SNAP correctly predicts the energy barrier for screw dislocation migration in BCC tantalum.« less

  19. Physics Mining of Multi-Source Data Sets

    NASA Technical Reports Server (NTRS)

    Helly, John; Karimabadi, Homa; Sipes, Tamara

    2012-01-01

    Powerful new parallel data mining algorithms can produce diagnostic and prognostic numerical models and analyses from observational data. These techniques yield higher-resolution measures than ever before of environmental parameters by fusing synoptic imagery and time-series measurements. These techniques are general and relevant to observational data, including raster, vector, and scalar, and can be applied in all Earth- and environmental science domains. Because they can be highly automated and are parallel, they scale to large spatial domains and are well suited to change and gap detection. This makes it possible to analyze spatial and temporal gaps in information, and facilitates within-mission replanning to optimize the allocation of observational resources. The basis of the innovation is the extension of a recently developed set of algorithms packaged into MineTool to multi-variate time-series data. MineTool is unique in that it automates the various steps of the data mining process, thus making it amenable to autonomous analysis of large data sets. Unlike techniques such as Artificial Neural Nets, which yield a blackbox solution, MineTool's outcome is always an analytical model in parametric form that expresses the output in terms of the input variables. This has the advantage that the derived equation can then be used to gain insight into the physical relevance and relative importance of the parameters and coefficients in the model. This is referred to as physics-mining of data. The capabilities of MineTool are extended to include both supervised and unsupervised algorithms, handle multi-type data sets, and parallelize it.

  20. A major locus controls local adaptation and adaptive life history variation in a perennial plant.

    PubMed

    Wang, Jing; Ding, Jihua; Tan, Biyue; Robinson, Kathryn M; Michelson, Ingrid H; Johansson, Anna; Nystedt, Björn; Scofield, Douglas G; Nilsson, Ove; Jansson, Stefan; Street, Nathaniel R; Ingvarsson, Pär K

    2018-06-04

    The initiation of growth cessation and dormancy represent critical life-history trade-offs between survival and growth and have important fitness effects in perennial plants. Such adaptive life-history traits often show strong local adaptation along environmental gradients but, despite their importance, the genetic architecture of these traits remains poorly understood. We integrate whole genome re-sequencing with environmental and phenotypic data from common garden experiments to investigate the genomic basis of local adaptation across a latitudinal gradient in European aspen (Populus tremula). A single genomic region containing the PtFT2 gene mediates local adaptation in the timing of bud set and explains 65% of the observed genetic variation in bud set. This locus is the likely target of a recent selective sweep that originated right before or during colonization of northern Scandinavia following the last glaciation. Field and greenhouse experiments confirm that variation in PtFT2 gene expression affects the phenotypic variation in bud set that we observe in wild natural populations. Our results reveal a major effect locus that determines the timing of bud set and that has facilitated rapid adaptation to shorter growing seasons and colder climates in European aspen. The discovery of a single locus explaining a substantial fraction of the variation in a key life-history trait is remarkable, given that such traits are generally considered to be highly polygenic. These findings provide a dramatic illustration of how loci of large-effect for adaptive traits can arise and be maintained over large geographical scales in natural populations.

  1. SureChEMBL: a large-scale, chemically annotated patent document database.

    PubMed

    Papadatos, George; Davies, Mark; Dedman, Nathan; Chambers, Jon; Gaulton, Anna; Siddle, James; Koks, Richard; Irvine, Sean A; Pettersson, Joe; Goncharoff, Nicko; Hersey, Anne; Overington, John P

    2016-01-04

    SureChEMBL is a publicly available large-scale resource containing compounds extracted from the full text, images and attachments of patent documents. The data are extracted from the patent literature according to an automated text and image-mining pipeline on a daily basis. SureChEMBL provides access to a previously unavailable, open and timely set of annotated compound-patent associations, complemented with sophisticated combined structure and keyword-based search capabilities against the compound repository and patent document corpus; given the wealth of knowledge hidden in patent documents, analysis of SureChEMBL data has immediate applications in drug discovery, medicinal chemistry and other commercial areas of chemical science. Currently, the database contains 17 million compounds extracted from 14 million patent documents. Access is available through a dedicated web-based interface and data downloads at: https://www.surechembl.org/. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. The large amplitude motions of methylamine from the perspective of the highly correlated ab initio methods

    NASA Astrophysics Data System (ADS)

    Senent, M. L.

    2018-01-01

    CCSD(T)-F12 theory in connection with extended basis sets is employed to determine the electronic ground state spectroscopic parameters of methylamine at low temperatures. The geometry, the rotational constants, all the fundamental frequencies, the dipole moment and its components, and the centrifugal distortion constants, are provided. The ground vibrational state rotational constants were found to be A0 = 103067.15 MHz, B0 = 22588.29 MHz, and C0 = 21710.50 MHz and the dipole moment to be 1.4071D. Fermi displacements of the vibrational bands are predicted. The low vibrational energy levels corresponding to the large amplitude motions are determine variationally using a flexible three-dimensional model depending on three variables: the HNH bending, the NH2 wagging and the CH3 torsional coordinates. The computed levels are compared with previous experimental and calculated energies. Methylamine parameters are very sensitive to the level of ab initio calculations.

  3. Hybrid baryons in QCD

    DOE PAGES

    Dudek, Jozef J.; Edwards, Robert G.

    2012-03-21

    In this study, we present the first comprehensive study of hybrid baryons using lattice QCD methods. Using a large basis of composite QCD interpolating fields we extract an extensive spectrum of baryon states and isolate those of hybrid character using their relatively large overlap onto operators which sample gluonic excitations. We consider the spectrum of Nucleon and Delta states at several quark masses finding a set of positive parity hybrid baryons with quantum numbersmore » $$N_{1/2^+},\\,N_{1/2^+},\\,N_{3/2^+},\\, N_{3/2^+},\\,N_{5/2^+},\\,$$ and $$\\Delta_{1/2^+},\\, \\Delta_{3/2^+}$$ at an energy scale above the first band of `conventional' excited positive parity baryons. This pattern of states is compatible with a color octet gluonic excitation having $$J^{P}=1^{+}$$ as previously reported in the hybrid meson sector and with a comparable energy scale for the excitation, suggesting a common bound-state construction for hybrid mesons and baryons.« less

  4. The topological requirements for robust perfect adaptation in networks of any size.

    PubMed

    Araujo, Robyn P; Liotta, Lance A

    2018-05-01

    Robustness, and the ability to function and thrive amid changing and unfavorable environments, is a fundamental requirement for living systems. Until now it has been an open question how large and complex biological networks can exhibit robust behaviors, such as perfect adaptation to a variable stimulus, since complexity is generally associated with fragility. Here we report that all networks that exhibit robust perfect adaptation (RPA) to a persistent change in stimulus are decomposable into well-defined modules, of which there exist two distinct classes. These two modular classes represent a topological basis for all RPA-capable networks, and generate the full set of topological realizations of the internal model principle for RPA in complex, self-organizing, evolvable bionetworks. This unexpected result supports the notion that evolutionary processes are empowered by simple and scalable modular design principles that promote robust performance no matter how large or complex the underlying networks become.

  5. SureChEMBL: a large-scale, chemically annotated patent document database

    PubMed Central

    Papadatos, George; Davies, Mark; Dedman, Nathan; Chambers, Jon; Gaulton, Anna; Siddle, James; Koks, Richard; Irvine, Sean A.; Pettersson, Joe; Goncharoff, Nicko; Hersey, Anne; Overington, John P.

    2016-01-01

    SureChEMBL is a publicly available large-scale resource containing compounds extracted from the full text, images and attachments of patent documents. The data are extracted from the patent literature according to an automated text and image-mining pipeline on a daily basis. SureChEMBL provides access to a previously unavailable, open and timely set of annotated compound-patent associations, complemented with sophisticated combined structure and keyword-based search capabilities against the compound repository and patent document corpus; given the wealth of knowledge hidden in patent documents, analysis of SureChEMBL data has immediate applications in drug discovery, medicinal chemistry and other commercial areas of chemical science. Currently, the database contains 17 million compounds extracted from 14 million patent documents. Access is available through a dedicated web-based interface and data downloads at: https://www.surechembl.org/. PMID:26582922

  6. Assimilating data into open ocean tidal models

    NASA Astrophysics Data System (ADS)

    Kivman, Gennady A.

    The problem of deriving tidal fields from observations by reason of incompleteness and imperfectness of every data set practically available has an infinitely large number of allowable solutions fitting the data within measurement errors and hence can be treated as ill-posed. Therefore, interpolating the data always relies on some a priori assumptions concerning the tides, which provide a rule of sampling or, in other words, a regularization of the ill-posed problem. Data assimilation procedures used in large scale tide modeling are viewed in a common mathematical framework as such regularizations. It is shown that they all (basis functions expansion, parameter estimation, nudging, objective analysis, general inversion, and extended general inversion), including those (objective analysis and general inversion) originally formulated in stochastic terms, may be considered as utilizations of one of the three general methods suggested by the theory of ill-posed problems. The problem of grid refinement critical for inverse methods and nudging is discussed.

  7. Influence of single particle orbital sets and configuration selection on multideterminant wavefunctions in quantum Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clay, Raymond C.; Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550; Morales, Miguel A., E-mail: moralessilva2@llnl.gov

    2015-06-21

    Multideterminant wavefunctions, while having a long history in quantum chemistry, are increasingly being used in highly accurate quantum Monte Carlo calculations. Since the accuracy of QMC is ultimately limited by the quality of the trial wavefunction, multi-Slater determinants wavefunctions offer an attractive alternative to Slater-Jastrow and more sophisticated wavefunction ansatz for several reasons. They can be efficiently calculated, straightforwardly optimized, and systematically improved by increasing the number of included determinants. In spite of their potential, however, the convergence properties of multi-Slater determinant wavefunctions with respect to orbital set choice and excited determinant selection are poorly understood, which hinders the applicationmore » of these wavefunctions to large systems and solids. In this paper, by performing QMC calculations on the equilibrium and stretched carbon dimer, we find that convergence of the recovered correlation energy with respect to number of determinants can depend quite strongly on basis set and determinant selection methods, especially where there is strong correlation. We demonstrate that properly chosen orbital sets and determinant selection techniques from quantum chemistry methods can dramatically reduce the required number of determinants (and thus the computational cost) to reach a given accuracy, which we argue shows clear need for an automatic QMC-only method for selecting determinants and generating optimal orbital sets.« less

  8. First-principle modelling of forsterite surface properties: Accuracy of methods and basis sets.

    PubMed

    Demichelis, Raffaella; Bruno, Marco; Massaro, Francesco R; Prencipe, Mauro; De La Pierre, Marco; Nestola, Fabrizio

    2015-07-15

    The seven main crystal surfaces of forsterite (Mg2 SiO4 ) were modeled using various Gaussian-type basis sets, and several formulations for the exchange-correlation functional within the density functional theory (DFT). The recently developed pob-TZVP basis set provides the best results for all properties that are strongly dependent on the accuracy of the wavefunction. Convergence on the structure and on the basis set superposition error-corrected surface energy can be reached also with poorer basis sets. The effect of adopting different DFT functionals was assessed. All functionals give the same stability order for the various surfaces. Surfaces do not exhibit any major structural differences when optimized with different functionals, except for higher energy orientations where major rearrangements occur around the Mg sites at the surface or subsurface. When dispersions are not accounted for, all functionals provide similar surface energies. The inclusion of empirical dispersions raises the energy of all surfaces by a nearly systematic value proportional to the scaling factor s of the dispersion formulation. An estimation for the surface energy is provided through adopting C6 coefficients that are more suitable than the standard ones to describe O-O interactions in minerals. A 2 × 2 supercell of the most stable surface (010) was optimized. No surface reconstruction was observed. The resulting structure and surface energy show no difference with respect to those obtained when using the primitive cell. This result validates the (010) surface model here adopted, that will serve as a reference for future studies on adsorption and reactivity of water and carbon dioxide at this interface. © 2015 Wiley Periodicals, Inc.

  9. Alternative formulation of explicitly correlated third-order Møller-Plesset perturbation theory

    NASA Astrophysics Data System (ADS)

    Ohnishi, Yu-ya; Ten-no, Seiichiro

    2013-09-01

    The second-order wave operator in the explicitly correlated wave function theory has been newly defined as an extension of the conventional s- and p-wave (SP) ansatz (also referred to as the FIXED amplitude ansatz) based on the linked-diagram theorem. The newly defined second-order wave operator has been applied to the calculation of the F12 correction to the third-order many-body perturbation (MP3) energy. In addition to this new wave operator, the F12 correction with the conventional first-order wave operator has been derived and calculated. Among three components of the MP3 correlation energy, the particle ladder contribution, which has shown the slowest convergence with respect to the basis set size, is fairly ameliorated by employing these F12 corrections. Both the newly defined and conventional formalisms of the F12 corrections exhibit a similar recovery of over 90% of the complete basis set limit of the particle ladder contribution of the MP3 correlation energy with a triple-zeta quality basis set for the neon atom, while the amount is about 75% without the F12 correction. The corrections to the ring term are small but the corrected energy has shown similar recovery as the particle ladder term. The hole ladder term has shown a rapid convergence even without the F12 corrections. Owing to these balanced recoveries, the deviation of the total MP3 correlation energy from the complete basis set limit has been calculated to be about 1 kcal/mol with the triple-zeta quality basis set, which is more than five times smaller than the error without the F12 correction.

  10. Scaled Quantum Mechanical scale factors for vibrational calculations using alternate polarized and augmented basis sets with the B3LYP density functional calculation model

    NASA Astrophysics Data System (ADS)

    Legler, C. R.; Brown, N. R.; Dunbar, R. A.; Harness, M. D.; Nguyen, K.; Oyewole, O.; Collier, W. B.

    2015-06-01

    The Scaled Quantum Mechanical (SQM) method of scaling calculated force constants to predict theoretically calculated vibrational frequencies is expanded to include a broad array of polarized and augmented basis sets based on the split valence 6-31G and 6-311G basis sets with the B3LYP density functional. Pulay's original choice of a single polarized 6-31G(d) basis coupled with a B3LYP functional remains the most computationally economical choice for scaled frequency calculations. But it can be improved upon with additional polarization functions and added diffuse functions for complex molecular systems. The new scale factors for the B3LYP density functional and the 6-31G, 6-31G(d), 6-31G(d,p), 6-31G+(d,p), 6-31G++(d,p), 6-311G, 6-311G(d), 6-311G(d,p), 6-311G+(d,p), 6-311G++(d,p), 6-311G(2d,p), 6-311G++(2d,p), 6-311G++(df,p) basis sets are shown. The double d polarized models did not perform as well and the source of the decreased accuracy was investigated. An alternate system of generating internal coordinates that uses the out-of plane wagging coordinate whenever it is possible; makes vibrational assignments via potential energy distributions more meaningful. Automated software to produce SQM scaled vibrational calculations from different molecular orbital packages is presented.

  11. New interplanetary proton fluence model

    NASA Technical Reports Server (NTRS)

    Feynman, Joan; Armstrong, T. P.; Dao-Gibner, L.; Silverman, S.

    1990-01-01

    A new predictive engineering model for the interplanetary fluence of protons with above 10 MeV and above 30 MeV is described. The data set used is a combination of observations made from the earth's surface and from above the atmosphere between 1956 and 1963 and observations made from spacecraft in the vicinity of earth between 1963 and 1985. The data cover a time period three times as long as the period used in earlier models. With the use of this data set the distinction between 'ordinary proton events' and 'anomalously large events' made in earlier work disappears. This permitted the use of statistical analysis methods developed for 'ordinary events' on the entire data set. The greater than 10 MeV fluences at 1 AU calculated with the new model are about twice those expected on the basis of models now in use. At energies above 30 MeV, the old and new models agree. In contrast to earlier models, the results do not depend critically on the fluence from any one event and are independent of sunspot number. Mission probability curves derived from the fluence distribution are presented.

  12. Arctic Sea ice studies with passive microwave satellite observations

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.

    1988-01-01

    The objectives of this research are: (1) to improve sea ice concentration determinations from passive microwave space observations; (2) to study the role of Arctic polynyas in the production of sea ice and the associated salinization of Arctic shelf water; and (3) to study large scale sea ice variability in the polar oceans. The strategy is to analyze existing data sets and data acquired from both the DMSP SSM/I and recently completed aircraft underflights. Special attention will be given the high resolution 85.5 GHz SSM/I channels for application to thin ice algorithms and processes studies. Analysis of aircraft and satellite data sets is expected to provide a basis for determining the potential of the SSM/I high frequency channels for improving sea ice algorithms and for investigating oceanic processes. Improved sea ice algorithms will aid the study of Arctic coastal polynyas which in turn will provide a better understanding of the role of these polynyas in maintaining the Arctic watermass structure. Analysis of satellite and archived meteorological data sets will provide improved estimates of annual, seasonal and shorter-term sea ice variability.

  13. Quantum chemical modeling of enzymatic reactions: the case of histone lysine methyltransferase.

    PubMed

    Georgieva, Polina; Himo, Fahmi

    2010-06-01

    Quantum chemical cluster models of enzyme active sites are today an important and powerful tool in the study of various aspects of enzymatic reactivity. This methodology has been applied to a wide spectrum of reactions and many important mechanistic problems have been solved. Herein, we report a systematic study of the reaction mechanism of the histone lysine methyltransferase (HKMT) SET7/9 enzyme, which catalyzes the methylation of the N-terminal histone tail of the chromatin structure. In this study, HKMT SET7/9 serves as a representative case to examine the modeling approach for the important class of methyl transfer enzymes. Active site models of different sizes are used to evaluate the methodology. In particular, the dependence of the calculated energies on the model size, the influence of the dielectric medium, and the particular choice of the dielectric constant are discussed. In addition, we examine the validity of some technical aspects, such as geometry optimization in solvent or with a large basis set, and the use of different density functional methods. Copyright 2010 Wiley Periodicals, Inc.

  14. Roothaan's approach to solve the Hartree-Fock equations for atoms confined by soft walls: Basis set with correct asymptotic behavior.

    PubMed

    Rodriguez-Bautista, Mariano; Díaz-García, Cecilia; Navarrete-López, Alejandra M; Vargas, Rubicelia; Garza, Jorge

    2015-07-21

    In this report, we use a new basis set for Hartree-Fock calculations related to many-electron atoms confined by soft walls. One- and two-electron integrals were programmed in a code based in parallel programming techniques. The results obtained with this proposal for hydrogen and helium atoms were contrasted with other proposals to study just one and two electron confined atoms, where we have reproduced or improved the results previously reported. Usually, an atom enclosed by hard walls has been used as a model to study confinement effects on orbital energies, the main conclusion reached by this model is that orbital energies always go up when the confinement radius is reduced. However, such an observation is not necessarily valid for atoms confined by penetrable walls. The main reason behind this result is that for atoms with large polarizability, like beryllium or potassium, external orbitals are delocalized when the confinement is imposed and consequently, the internal orbitals behave as if they were in an ionized atom. Naturally, the shell structure of these atoms is modified drastically when they are confined. The delocalization was an argument proposed for atoms confined by hard walls, but it was never verified. In this work, the confinement imposed by soft walls allows to analyze the delocalization concept in many-electron atoms.

  15. Benchmark CCSD(T) and DFT study of binding energies in Be7 - 12: in search of reliable DFT functional for beryllium clusters

    NASA Astrophysics Data System (ADS)

    Labanc, Daniel; Šulka, Martin; Pitoňák, Michal; Černušák, Ivan; Urban, Miroslav; Neogrády, Pavel

    2018-05-01

    We present a computational study of the stability of small homonuclear beryllium clusters Be7 - 12 in singlet electronic states. Our predictions are based on highly correlated CCSD(T) coupled cluster calculations. Basis set convergence towards the complete basis set limit as well as the role of the 1s core electron correlation are carefully examined. Our CCSD(T) data for binding energies of Be7 - 12 clusters serve as a benchmark for performance assessment of several density functional theory (DFT) methods frequently used in beryllium cluster chemistry. We observe that, from Be10 clusters on, the deviation from CCSD(T) benchmarks is stable with respect to size, and fluctuating within 0.02 eV error bar for most examined functionals. This opens up the possibility of scaling the DFT binding energies for large Be clusters using CCSD(T) benchmark values for smaller clusters. We also tried to find analogies between the performance of DFT functionals for Be clusters and for the valence-isoelectronic Mg clusters investigated recently in Truhlar's group. We conclude that it is difficult to find DFT functionals that perform reasonably well for both beryllium and magnesium clusters. Out of 12 functionals examined, only the M06-2X functional gives reasonably accurate and balanced binding energies for both Be and Mg clusters.

  16. Roothaan’s approach to solve the Hartree-Fock equations for atoms confined by soft walls: Basis set with correct asymptotic behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez-Bautista, Mariano; Díaz-García, Cecilia; Navarrete-López, Alejandra M.

    2015-07-21

    In this report, we use a new basis set for Hartree-Fock calculations related to many-electron atoms confined by soft walls. One- and two-electron integrals were programmed in a code based in parallel programming techniques. The results obtained with this proposal for hydrogen and helium atoms were contrasted with other proposals to study just one and two electron confined atoms, where we have reproduced or improved the results previously reported. Usually, an atom enclosed by hard walls has been used as a model to study confinement effects on orbital energies, the main conclusion reached by this model is that orbital energiesmore » always go up when the confinement radius is reduced. However, such an observation is not necessarily valid for atoms confined by penetrable walls. The main reason behind this result is that for atoms with large polarizability, like beryllium or potassium, external orbitals are delocalized when the confinement is imposed and consequently, the internal orbitals behave as if they were in an ionized atom. Naturally, the shell structure of these atoms is modified drastically when they are confined. The delocalization was an argument proposed for atoms confined by hard walls, but it was never verified. In this work, the confinement imposed by soft walls allows to analyze the delocalization concept in many-electron atoms.« less

  17. Structures, Bonding, and Energetics of Potential Triatomic Circumstellar Molecules Containing Group 15 and 16 Elements.

    PubMed

    Turner, Walter E; Agarwal, Jay; Schaefer, Henry F

    2015-12-03

    The recent discovery of PN in the oxygen-rich shell of the supergiant star VY Canis Majoris points to the formation of several triatomic molecules involving oxygen, nitrogen, and phosphorus; these are also intriguing targets for main-group synthetic inorganic chemistry. In this research, high-level ab initio electronic structure computations were conducted on the potential circumstellar molecule OPN and several of its heavier group 15 and 16 congeners (SPN, SePN, TePN, OPP, OPAs, and OPSb). For each congener, four isomers were examined. Optimized geometries were obtained with coupled cluster theory [CCSD(T)] using large Dunning basis sets [aug-cc-pVQZ, aug-cc-pV(Q+d)Z, and aug-cc-pVQZ-PP], and relative energies were determined at the complete basis set limit of CCSDT(Q) from focal point analyses. The linear phosphorus-centered molecules were consistently the lowest in energy of the group 15 congeners by at least 6 kcal mol(-1), resulting from double-triple and single-double bond resonances within the molecule. The linear nitrogen-centered molecules were consistently the lowest in energy of the group 16 congeners by at least 5 kcal mol(-1), due to the electronegative central nitrogen atom encouraging electron delocalization throughout the molecule. For OPN, OPP, and SPN, anharmonic vibrational frequencies and vibrationally corrected rotational constants are predicted; good agreement with available experimental data is observed.

  18. An ab initio study of the low-lying doublet states of AgO and AgS

    NASA Astrophysics Data System (ADS)

    Bauschlicher, Charles W.; Partridge, Harry; Langhoff, Stephen R.

    1990-11-01

    Spectroscopic constants ( Do, re, μ e, Te) are determined for the doublet states of AgO and AgS below ≈ 30000 cm -1. valence basis sets are employed in conjunction with relativistic effective core potentials (RECPs). Electron correlation is included using the modified coupled-pair functional (MCPF) and multireferenceconfiguration interaction (MRCI) methods. The A 2Σ +-X 2Π band system is found to occur in the near infrared ( ≈ 9000 cm -1) and to be relatively weak with a radiative lifetime of 900 μs for A 2Σ + (ν = 0). The weakly bound C 2Π state (our notation), the upper state of the blue system, is found to require high levels of theoretical treatment to determine a quantitatively accurate potential. The red system is assigned as a transition from the C 2Π state to the previously unobserved A 2Σ + state. Several additional transitions are identified that should be detectable experiment A more limited study is performed for the vertical excitation spectrum of AgS. In addition, a detailed all-electron study of the X 2Π and A 2Σ + states of AgO is carried out using large atomic natural orbital (ANO) basis sets. Our best calculated Do value for AgO is significantly less than the experimental value, which suggests that there may be some systematic error in the experimental determination.

  19. Thermodynamic properties of arsenic compounds and the heat of formation of the As atom from high level electronic structure calculations.

    PubMed

    Feller, David; Vasiliu, Monica; Grant, Daniel J; Dixon, David A

    2011-12-29

    Structures, vibrational frequencies, atomization energies at 0 K, and heats of formation at 0 and 298 K are predicted for the compounds As(2), AsH, AsH(2), AsH(3), AsF, AsF(2), and AsF(3) from frozen core coupled cluster theory calculations performed with large correlation consistent basis sets, up through augmented sextuple zeta quality. The coupled cluster calculations involved up through quadruple excitations. For As(2) and the hydrides, it was also possible to examine the impact of full configuration interaction on some of the properties. In addition, adjustments were incorporated to account for extrapolation to the frozen core complete basis set limit, core/valence correlation, scalar relativistic effects, the diagonal Born-Oppenheimer correction, and atomic spin orbit corrections. Based on our best theoretical D(0)(As(2)) and the experimental heat of formation of As(2), we propose a revised 0 K arsenic atomic heat of formation of 68.86 ± 0.8 kcal/mol. While generally good agreement was found between theory and experiment, the heat of formation of AsF(3) was an exception. Our best estimate is more than 7 kcal/mol more negative than the single available experimental value, which argues for a re-examination of that measurement. © 2011 American Chemical Society

  20. How widely applicable is river basin management? An analysis of wastewater management in an arid transboundary case.

    PubMed

    Dombrowsky, Ines; Almog, Ram; Becker, Nir; Feitelson, Eran; Klawitter, Simone; Lindemann, Stefan; Mutlak, Natalie

    2010-05-01

    The basin scale has been promoted universally as the optimal management unit that allows for the internalization of all external effects caused by multiple water uses. However, the basin scale has been put forward largely on the basis of experience in temperate zones. Hence whether the basin scale is the best scale for management in other settings remains questionable. To address these questions this paper analyzes the economic viability and the political feasibility of alternative management options in the Kidron/Wadi Nar region. The Kidron/Wadi Nar is a small basin in which wastewater from eastern Jerusalem flows through the desert to the Dead Sea. Various options for managing these wastewater flows were analyzed ex ante on the basis of both a cost benefit and a multi-criteria analysis. The paper finds that due to economies of scale, a pure basin approach is not desirable from a physical and economic perspective. Furthermore, in terms of political feasibility, it seems that the option which prompts the fewest objections from influential stakeholder groups in the two entities under the current asymmetrical political setting is not a basin solution either, but a two plant solution based on an outsourcing arrangement. These findings imply that the river basin management approach can not be considered the best management approach for the arid transboundary case at hand, and hence is not unequivocally universally applicable.

Top