Sample records for large charge density

  1. On the equilibrium charge density at tilt grain boundaries

    NASA Astrophysics Data System (ADS)

    Srikant, V.; Clarke, D. R.

    1998-05-01

    The equilibrium charge density and free energy of tilt grain boundaries as a function of their misorientation is computed using a Monte Carlo simulation that takes into account both the electrostatic and configurational energies associated with charges at the grain boundary. The computed equilibrium charge density increases with the grain-boundary angle and approaches a saturation value. The equilibrium charge density at large-angle grain boundaries compares well with experimental values for large-angle tilt boundaries in GaAs. The computed grain-boundary electrostatic energy is in agreement with the analytical solution to a one-dimensional Poisson equation at high donor densities but indicates that the analytical solution overestimates the electrostatic energy at lower donor densities.

  2. Simulation of Space Charge Dynamic in Polyethylene Under DC Continuous Electrical Stress

    NASA Astrophysics Data System (ADS)

    Boukhari, Hamed; Rogti, Fatiha

    2016-10-01

    The space charge dynamic plays a very important role in the aging and breakdown of polymeric insulation materials under high voltage. This is due to the intensification of the local electric field and the attendant chemical-mechanical effects in the vicinity around the trapped charge. In this paper, we have investigated the space charge dynamic in low-density polyethylene under high direct-current voltage, which is evaluated by experimental conditions. The evaluation is on the basis of simulation using a bipolar charge transport model consisting of charge injection, transports, trapping, detrapping, and recombination phenomena. The theoretical formulation of the physical problem is based on the Poisson, the continuity, and the transport equations. Numerical results provide temporal and local distributions of the electric field, the space charge density for the different kinds of charges (net charge density, mobile and trapped of electron density, mobile hole density), conduction and displacement current densities, and the external current. The result shows the appearance of the negative packet-like space charge with a large amount of the bulk under the dc electric field of 100 kV/mm, and the induced distortion of the electric field is largely near to the anode, about 39% higher than the initial electric field applied.

  3. Charged plate in asymmetric electrolytes: One-loop renormalization of surface charge density and Debye length due to ionic correlations.

    PubMed

    Ding, Mingnan; Lu, Bing-Sui; Xing, Xiangjun

    2016-10-01

    Self-consistent field theory (SCFT) is used to study the mean potential near a charged plate inside a m:-n electrolyte. A perturbation series is developed in terms of g=4πκb, where band1/κ are Bjerrum length and bare Debye length, respectively. To the zeroth order, we obtain the nonlinear Poisson-Boltzmann theory. For asymmetric electrolytes (m≠n), the first order (one-loop) correction to mean potential contains a secular term, which indicates the breakdown of the regular perturbation method. Using a renormalizaton group transformation, we remove the secular term and obtain a globally well-behaved one-loop approximation with a renormalized Debye length and a renormalized surface charge density. Furthermore, we find that if the counterions are multivalent, the surface charge density is renormalized substantially downwards and may undergo a change of sign, if the bare surface charge density is sufficiently large. Our results agrees with large MC simulation even when the density of electrolytes is relatively high.

  4. Experimental verification of gain drop due to general ion recombination for a carbon-ion pencil beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tansho, Ryohei, E-mail: r-tansho@nirs.go.jp; Furukawa, Takuji; Hara, Yousuke

    Purpose: Accurate dose measurement in radiotherapy is critically dependent on correction for gain drop, which is the difference of the measured current from the ideal saturation current due to general ion recombination. Although a correction method based on the Boag theory has been employed, the theory assumes that ionized charge density in an ionization chamber (IC) is spatially uniform throughout the irradiation volume. For particle pencil beam scanning, however, the charge density is not uniform, because the fluence distribution of a pencil beam is not uniform. The aim of this study was to verify the effect of the nonuniformity ofmore » ionized charge density on the gain drop due to general ion recombination. Methods: The authors measured the saturation curve, namely, the applied voltage versus measured current, using a large plane-parallel IC and 24-channel parallel-plate IC with concentric electrodes. To verify the effect of the nonuniform ionized charge density on the measured saturation curve, the authors calculated the saturation curve using a method which takes into account the nonuniform ionized charge density and compared it with the measured saturation curves. Results: Measurement values of the different saturation curves in the different channels of the concentric electrodes differed and were consistent with the calculated values. The saturation curves measured by the large plane-parallel IC were also consistent with the calculation results, including the estimation error of beam size and of setup misalignment. Although the impact of the nonuniform ionized charge density on the gain drop was clinically negligible with the conventional beam intensity, it was expected that the impact would increase with higher ionized charge density. Conclusions: For pencil beam scanning, the assumption of the conventional Boag theory is not valid. Furthermore, the nonuniform ionized charge density affects the prediction accuracy of gain drop when the ionized charge density is increased by a higher dose rate and/or lower beam size.« less

  5. Extremely large nonsaturating magnetoresistance and ultrahigh mobility due to topological surface states in the metallic Bi2Te3 topological insulator

    NASA Astrophysics Data System (ADS)

    Shrestha, K.; Chou, M.; Graf, D.; Yang, H. D.; Lorenz, B.; Chu, C. W.

    2017-05-01

    Weak antilocalization (WAL) effects in Bi2Te3 single crystals have been investigated at high and low bulk charge-carrier concentrations. At low charge-carrier density the WAL curves scale with the normal component of the magnetic field, demonstrating the dominance of topological surface states in magnetoconductivity. At high charge-carrier density the WAL curves scale with neither the applied field nor its normal component, implying a mixture of bulk and surface conduction. WAL due to topological surface states shows no dependence on the nature (electrons or holes) of the bulk charge carriers. The observations of an extremely large nonsaturating magnetoresistance and ultrahigh mobility in the samples with lower carrier density further support the presence of surface states. The physical parameters characterizing the WAL effects are calculated using the Hikami-Larkin-Nagaoka formula. At high charge-carrier concentrations, there is a greater number of conduction channels and a decrease in the phase coherence length compared to low charge-carrier concentrations. The extremely large magnetoresistance and high mobility of topological insulators have great technological value and can be exploited in magnetoelectric sensors and memory devices.

  6. Nonequilibrium response of an electron-mediated charge density wave ordered material to a large dc electric field

    NASA Astrophysics Data System (ADS)

    Matveev, O. P.; Shvaika, A. M.; Devereaux, T. P.; Freericks, J. K.

    2016-01-01

    Using the Kadanoff-Baym-Keldysh formalism, we employ nonequilibrium dynamical mean-field theory to exactly solve for the nonlinear response of an electron-mediated charge-density-wave-ordered material. We examine both the dc current and the order parameter of the conduction electrons as the ordered system is driven by the electric field. Although the formalism we develop applies to all models, for concreteness, we examine the charge-density-wave phase of the Falicov-Kimball model, which displays a number of anomalous behaviors including the appearance of subgap density of states as the temperature increases. These subgap states should have a significant impact on transport properties, particularly the nonlinear response of the system to a large dc electric field.

  7. Energy storage device with large charge separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holme, Timothy P.; Prinz, Friedrich B.; Iancu, Andrei T.

    High density energy storage in semiconductor devices is provided. There are two main aspects of the present approach. The first aspect is to provide high density energy storage in semiconductor devices based on formation of a plasma in the semiconductor. The second aspect is to provide high density energy storage based on charge separation in a p-n junction.

  8. Energy storage device with large charge separation

    DOEpatents

    Holme, Timothy P.; Prinz, Friedrich B.; Iancu, Andrei

    2016-04-12

    High density energy storage in semiconductor devices is provided. There are two main aspects of the present approach. The first aspect is to provide high density energy storage in semiconductor devices based on formation of a plasma in the semiconductor. The second aspect is to provide high density energy storage based on charge separation in a p-n junction.

  9. WSN-Based Space Charge Density Measurement System

    PubMed Central

    Deng, Dawei; Yuan, Haiwen; Lv, Jianxun; Ju, Yong

    2017-01-01

    It is generally acknowledged that high voltage direct current (HVDC) transmission line endures the drawback of large area, because of which the utilization of cable for space charge density monitoring system is of inconvenience. Compared with the traditional communication network, wireless sensor network (WSN) shows advantages in small volume, high flexibility and strong self-organization, thereby presenting great potential in solving the problem. Additionally, WSN is more suitable for the construction of distributed space charge density monitoring system as it has longer distance and higher mobility. A distributed wireless system is designed for collecting and monitoring the space charge density under HVDC transmission lines, which has been widely applied in both Chinese state grid HVDC test base and power transmission projects. Experimental results of the measuring system demonstrated its adaptability in the complex electromagnetic environment under the transmission lines and the ability in realizing accurate, flexible, and stable demands for the measurement of space charge density. PMID:28052105

  10. WSN-Based Space Charge Density Measurement System.

    PubMed

    Deng, Dawei; Yuan, Haiwen; Lv, Jianxun; Ju, Yong

    2017-01-01

    It is generally acknowledged that high voltage direct current (HVDC) transmission line endures the drawback of large area, because of which the utilization of cable for space charge density monitoring system is of inconvenience. Compared with the traditional communication network, wireless sensor network (WSN) shows advantages in small volume, high flexibility and strong self-organization, thereby presenting great potential in solving the problem. Additionally, WSN is more suitable for the construction of distributed space charge density monitoring system as it has longer distance and higher mobility. A distributed wireless system is designed for collecting and monitoring the space charge density under HVDC transmission lines, which has been widely applied in both Chinese state grid HVDC test base and power transmission projects. Experimental results of the measuring system demonstrated its adaptability in the complex electromagnetic environment under the transmission lines and the ability in realizing accurate, flexible, and stable demands for the measurement of space charge density.

  11. Genesis of charge orders in high temperature superconductors

    PubMed Central

    Tu, Wei-Lin; Lee, Ting-Kuo

    2016-01-01

    One of the most puzzling facts about cuprate high-temperature superconductors in the lightly doped regime is the coexistence of uniform superconductivity and/or antiferromagnetism with many low-energy charge-ordered states in a unidirectional charge density wave or a bidirectional checkerboard structure. Recent experiments have discovered that these charge density waves exhibit different symmetries in their intra-unit-cell form factors for different cuprate families. Using a renormalized mean-field theory for a well-known, strongly correlated model of cuprates, we obtain a number of charge-ordered states with nearly degenerate energies without invoking special features of the Fermi surface. All of these self-consistent solutions have a pair density wave intertwined with a charge density wave and sometimes a spin density wave. Most of these states vanish in the underdoped regime, except for one with a large d-form factor that vanishes at approximately 19% doping of the holes, as reported by experiments. Furthermore, these states could be modified to have a global superconducting order, with a nodal-like density of states at low energy. PMID:26732076

  12. SEMICONDUCTOR TECHNOLOGY: Influence of nitrogen dose on the charge density of nitrogen-implanted buried oxide in SOI wafers

    NASA Astrophysics Data System (ADS)

    Zhongshan, Zheng; Zhongli, Liu; Ning, Li; Guohua, Li; Enxia, Zhang

    2010-02-01

    To harden silicon-on-insulator (SOI) wafers fabricated using separation by implanted oxygen (SIMOX) to total-dose irradiation, the technique of nitrogen implantation into the buried oxide (BOX) layer of SIMOX wafers can be used. However, in this work, it has been found that all the nitrogen-implanted BOX layers reveal greater initial positive charge densities, which increased with increasing nitrogen implantation dose. Also, the results indicate that excessively large nitrogen implantation dose reduced the radiation tolerance of BOX for its high initial positive charge density. The bigger initial positive charge densities can be ascribed to the accumulation of implanted nitrogen near the Si-BOX interface after annealing. On the other hand, in our work, it has also been observed that, unlike nitrogen-implanted BOX, all the fluorine-implanted BOX layers show a negative charge density. To obtain the initial charge densities of the BOX layers, the tested samples were fabricated with a metal-BOX-silicon (MBS) structure based on SIMOX wafers for high-frequency capacitance-voltage (C-V) analysis.

  13. Space and surface charge behavior analysis of charge-eliminated polymer films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oda, Tetsuji; Takashima, Kazunori; Ichiyama, Shinichiro

    1995-12-31

    Charge behavior of corona-charged or charge eliminated polymer films being dipped in the city water were studied. They were polytetrafluoroethylene (PTFE teflon{trademark}), polypropylene (PP), low density or high density polyethylene (LDPE or HDPE) thin films which are as grown (native) or plasma-processed. The plasma processing at low pressure was tested as antistatic processing. Charge elimination was done by being dipped in alcohol or city water. TSDC analysis and surface charge profile measurement were done for both charged and charge eliminated polymer films. Surface charge density of plasma processed polymer films just after corona charging is roughly the same as thatmore » of an original film. There is little difference between surface charge density profile of a native film and that of a plasma processed film. A large hetero current peak of TSDC was observed at room temperature for a processed film. It was found that the hetero peak disappears after charge elimination process. A pressure pulse wave method by using a pulse-driven piezoelectric PVDF polymer film as a piezoelectric actuator was newly developed to observe real space charge distribution. A little difference of internal space charge distribution between the plasma processed film and the native one after corona charging is found.« less

  14. Dimensional Crossover of Charge-Density Wave Correlations in the Cuprates

    NASA Astrophysics Data System (ADS)

    Caplan, Yosef; Orgad, Dror

    2017-09-01

    Short-range charge-density wave correlations are ubiquitous in underdoped cuprates. They are largely confined to the copper-oxygen planes and typically oscillate out of phase from one unit cell to the next in the c direction. Recently, it was found that a considerably longer-range charge-density wave order develops in YBa2 Cu3 O6 +x above a sharply defined crossover magnetic field. This order is more three-dimensional and is in-phase along the c axis. Here, we show that such behavior is a consequence of the conflicting ordering tendencies induced by the disorder potential and the Coulomb interaction, where the magnetic field acts to tip the scales from the former to the latter. We base our conclusion on analytic large-N analysis and Monte Carlo simulations of a nonlinear sigma model of competing superconducting and charge-density wave orders. Our results are in agreement with the observed phenomenology in the cuprates, and we discuss their implications to other members of this family, which have not been measured yet at high magnetic fields.

  15. Aggregation of flexible polyelectrolytes: Phase diagram and dynamics.

    PubMed

    Tom, Anvy Moly; Rajesh, R; Vemparala, Satyavani

    2017-10-14

    Similarly charged polymers in solution, known as polyelectrolytes, are known to form aggregated structures in the presence of oppositely charged counterions. Understanding the dependence of the equilibrium phases and the dynamics of the process of aggregation on parameters such as backbone flexibility and charge density of such polymers is crucial for insights into various biological processes which involve biological polyelectrolytes such as protein, DNA, etc. Here, we use large-scale coarse-grained molecular dynamics simulations to obtain the phase diagram of the aggregated structures of flexible charged polymers and characterize the morphology of the aggregates as well as the aggregation dynamics, in the presence of trivalent counterions. Three different phases are observed depending on the charge density: no aggregation, a finite bundle phase where multiple small aggregates coexist with a large aggregate and a fully phase separated phase. We show that the flexibility of the polymer backbone causes strong entanglement between charged polymers leading to additional time scales in the aggregation process. Such slowing down of the aggregation dynamics results in the exponent, characterizing the power law decay of the number of aggregates with time, to be dependent on the charge density of the polymers. These results are contrary to those obtained for rigid polyelectrolytes, emphasizing the role of backbone flexibility.

  16. Charge Injection Capacity of TiN Electrodes for an Extended Voltage Range

    PubMed Central

    Patan, Mustafa; Shah, Tosha; Sahin, Mesut

    2011-01-01

    Many applications of neural stimulation demand a high current density from the electrodes used for stimulus delivery. New materials have been searched that can provide such large current and charge densities where the traditional noble metal and capacitor electrodes are inadequate. Titanium nitride, which has been used in cardiac pacemaker leads for many years, is one of these materials recently considered for neural stimulation. In this short report, we investigated the charge injection capacity of TiN electrodes for an extended range of cathodic voltages. The injected charge increased first slowly as a function of the electrode voltage, and then at a faster rate beyond −1.6 V. The maximum charge was 4.45 mC/cm2 (n=6) for a cathodic voltage peak of −3.0 V and a bias voltage of −0.8 V. There was no evidence of bubble generation under microscopic observation. The unrecoverable charges remained under 7% of the total injected charge for the largest cathodic voltage tested. These large values of charge injection capacity and relatively small unrecoverable charges warrant further investigation of the charge injection mechanism in TiN interfaces at this extended range of electrode voltages. PMID:17946870

  17. Novel Approach to Evaluation of Charging on Semiconductor Surface by Noncontact, Electrode-Free Capacitance/Voltage Measurement

    NASA Astrophysics Data System (ADS)

    Hirae, Sadao; Kohno, Motohiro; Okada, Hiroshi; Matsubara, Hideaki; Nakatani, Ikuyoshi; Kusuda, Tatsufumi; Sakai, Takamasa

    1994-04-01

    This paper describes a novel approach to the quantitative characterization of semiconductor surface charging caused by plasma exposures and ion implantations. The problems in conventional evaluation of charging are also discussed. Following the discussions above, the necessity of unified criteria is suggested for efficient development of systems or processes without charging damage. Hence, the charging saturation voltage between a top oxide surface and substrate, V s, and the charging density per unit area per second, ρ0, should be taken as criteria of charging behavior, which effectively represent the charging characteristics of both processes. The unified criteria can be obtained from the exposure time dependence of a net charging density on the thick field oxide. In order to determine V s and ρ0, the analysis using the C-V curve measured in a noncontact method with the metal-air-insulator-semiconductor (MAIS) technique is employed. The total space-charge density in oxide and its centroid can be determined at the same time by analyzing the flat-band voltage (V fb) of the MAIS capacitor as a function of the air gap. The net charge density can be obtained by analyzing the difference between the total space-charge density in oxide before and after charging. Finally, it is shown that charge damage of the large area metal-oxide-semiconductor (MOS) capacitor can be estimated from both V s and ρ0 which are obtained from results for a thick field oxide implanted with As+ and exposed to oxygen plasma.

  18. Time-dependent transition density matrix for visualizing charge-transfer excitations in photoexcited organic donor-acceptor systems

    NASA Astrophysics Data System (ADS)

    Li, Yonghui; Ullrich, Carsten

    2013-03-01

    The time-dependent transition density matrix (TDM) is a useful tool to visualize and interpret the induced charges and electron-hole coherences of excitonic processes in large molecules. Combined with time-dependent density functional theory on a real-space grid (as implemented in the octopus code), the TDM is a computationally viable visualization tool for optical excitation processes in molecules. It provides real-time maps of particles and holes which gives information on excitations, in particular those that have charge-transfer character, that cannot be obtained from the density alone. Some illustration of the TDM and comparison with standard density difference plots will be shown for photoexcited organic donor-acceptor molecules. This work is supported by NSF Grant DMR-1005651

  19. Tunnel field-effect transistor charge-trapping memory with steep subthreshold slope and large memory window

    NASA Astrophysics Data System (ADS)

    Kino, Hisashi; Fukushima, Takafumi; Tanaka, Tetsu

    2018-04-01

    Charge-trapping memory requires the increase of bit density per cell and a larger memory window for lower-power operation. A tunnel field-effect transistor (TFET) can achieve to increase the bit density per cell owing to its steep subthreshold slope. In addition, a TFET structure has an asymmetric structure, which is promising for achieving a larger memory window. A TFET with the N-type gate shows a higher electric field between the P-type source and the N-type gate edge than the conventional FET structure. This high electric field enables large amounts of charges to be injected into the charge storage layer. In this study, we fabricated silicon-oxide-nitride-oxide-semiconductor (SONOS) memory devices with the TFET structure and observed a steep subthreshold slope and a larger memory window.

  20. Temperature Dependence of Electric Transport in Few-layer Graphene under Large Charge Doping Induced by Electrochemical Gating

    PubMed Central

    Gonnelli, R. S.; Paolucci, F.; Piatti, E.; Sharda, Kanudha; Sola, A.; Tortello, M.; Nair, Jijeesh R.; Gerbaldi, C.; Bruna, M.; Borini, S.

    2015-01-01

    The temperature dependence of electric transport properties of single-layer and few-layer graphene at large charge doping is of great interest both for the study of the scattering processes dominating the conductivity at different temperatures and in view of the theoretically predicted possibility to reach the superconducting state in such extreme conditions. Here we present the results obtained in 3-, 4- and 5-layer graphene devices down to 3.5 K, where a large surface charge density up to about 6.8·1014 cm−2 has been reached by employing a novel polymer electrolyte solution for the electrochemical gating. In contrast with recent results obtained in single-layer graphene, the temperature dependence of the sheet resistance between 20 K and 280 K shows a low-temperature dominance of a T2 component – that can be associated with electron-electron scattering – and, at about 100 K, a crossover to the classic electron-phonon regime. Unexpectedly, this crossover does not show any dependence on the induced charge density, i.e. on the large tuning of the Fermi energy. PMID:25906088

  1. Efficient mixing scheme for self-consistent all-electron charge density

    NASA Astrophysics Data System (ADS)

    Shishidou, Tatsuya; Weinert, Michael

    2015-03-01

    In standard ab initio density-functional theory calculations, the charge density ρ is gradually updated using the ``input'' and ``output'' densities of the current and previous iteration steps. To accelerate the convergence, Pulay mixing has been widely used with great success. It expresses an ``optimal'' input density ρopt and its ``residual'' Ropt by a linear combination of the densities of the iteration sequences. In large-scale metallic systems, however, the long range nature of Coulomb interaction often causes the ``charge sloshing'' phenomenon and significantly impacts the convergence. Two treatments, represented in reciprocal space, are known to suppress the sloshing: (i) the inverse Kerker metric for Pulay optimization and (ii) Kerker-type preconditioning in mixing Ropt. In all-electron methods, where the charge density does not have a converging Fourier representation, treatments equivalent or similar to (i) and (ii) have not been described so far. In this work, we show that, by going through the calculation of Hartree potential, one can accomplish the procedures (i) and (ii) without entering the reciprocal space. Test calculations are done with a FLAPW method.

  2. Oil Contact Angles in a Water-Decane-Silicon Dioxide System: Effects of Surface Charge

    NASA Astrophysics Data System (ADS)

    Xu, Shijing; Wang, Jingyao; Wu, Jiazhong; Liu, Qingjie; Sun, Chengzhen; Bai, Bofeng

    2018-04-01

    Oil wettability in the water-oil-rock systems is very sensitive to the evolution of surface charges on the rock surfaces induced by the adsorption of ions and other chemical agents in water flooding. Through a set of large-scale molecular dynamics simulations, we reveal the effects of surface charge on the oil contact angles in an ideal water-decane-silicon dioxide system. The results show that the contact angles of oil nano-droplets have a great dependence on the surface charges. As the surface charge density exceeds a critical value of 0.992 e/nm2, the contact angle reaches up to 78.8° and the water-wet state is very apparent. The variation of contact angles can be confirmed from the number density distributions of oil molecules. With increasing the surface charge density, the adsorption of oil molecules weakens and the contact areas between nano-droplets and silicon dioxide surface are reduced. In addition, the number density distributions, RDF distributions, and molecular orientations indicate that the oil molecules are adsorbed on the silicon dioxide surface layer-by-layer with an orientation parallel to the surface. However, the layered structure of oil molecules near the silicon dioxide surface becomes more and more obscure at higher surface charge densities.

  3. Oil Contact Angles in a Water-Decane-Silicon Dioxide System: Effects of Surface Charge.

    PubMed

    Xu, Shijing; Wang, Jingyao; Wu, Jiazhong; Liu, Qingjie; Sun, Chengzhen; Bai, Bofeng

    2018-04-19

    Oil wettability in the water-oil-rock systems is very sensitive to the evolution of surface charges on the rock surfaces induced by the adsorption of ions and other chemical agents in water flooding. Through a set of large-scale molecular dynamics simulations, we reveal the effects of surface charge on the oil contact angles in an ideal water-decane-silicon dioxide system. The results show that the contact angles of oil nano-droplets have a great dependence on the surface charges. As the surface charge density exceeds a critical value of 0.992 e/nm 2 , the contact angle reaches up to 78.8° and the water-wet state is very apparent. The variation of contact angles can be confirmed from the number density distributions of oil molecules. With increasing the surface charge density, the adsorption of oil molecules weakens and the contact areas between nano-droplets and silicon dioxide surface are reduced. In addition, the number density distributions, RDF distributions, and molecular orientations indicate that the oil molecules are adsorbed on the silicon dioxide surface layer-by-layer with an orientation parallel to the surface. However, the layered structure of oil molecules near the silicon dioxide surface becomes more and more obscure at higher surface charge densities.

  4. Characteristics of spacecraft charging in low Earth orbit

    NASA Astrophysics Data System (ADS)

    Anderson, Phillip C.

    2012-07-01

    It has been found that the DMSP spacecraft at 840 km can charge to very large negative voltages (up to -2000 V) when encountering intense precipitating electron events (auroral arcs). We present an 11-year study of over 1600 charging events, defined as when the spacecraft charged to levels exceeding 100 V negative during an auroral crossing. The occurrence frequency of events was highly correlated with the 11-year solar cycle with the largest number of events occurring during solar minimum. This was due to the requirement that the background thermal plasma density be low, at most 104 cm-3. During solar maximum, the plasma density is typically well above that level due to the solar EUV ionizing radiation, and although the occurrence frequency of auroral arcs is considerably greater than at solar minimum, the occurrence of high-level charging is minimal. As a result of this study, we produced a model spectrum for precipitating electrons that can be used as a specification for the low-altitude auroral charging environment. There are implications from this study on a number of LEO satellite programs, including the International Space Station, which does enter the auroral zone, particularly during geomagnetic activity when the auroral boundary can penetrate to very low latitudes. The plasma density in the ISS orbit is usually well above the minimum required density for charging. However, in the wake of the ISS, the plasma density can be 2 orders of magnitude or more lower than the background density and thus conditions are ripe for charging.

  5. Entropic effects in the electric double layer of model colloids with size-asymmetric monovalent ions

    NASA Astrophysics Data System (ADS)

    Guerrero-García, Guillermo Iván; González-Tovar, Enrique; Olvera de la Cruz, Mónica

    2011-08-01

    The structure of the electric double layer of charged nanoparticles and colloids in monovalent salts is crucial to determine their thermodynamics, solubility, and polyion adsorption. In this work, we explore the double layer structure and the possibility of charge reversal in relation to the size of both counterions and coions. We examine systems with various size-ratios between counterions and coions (ion size asymmetries) as well as different total ion volume fractions. Using Monte Carlo simulations and integral equations of a primitive-model electric double layer, we determine the highest charge neutralization and electrostatic screening near the electrified surface. Specifically, for two binary monovalent electrolytes with the same counterion properties but differing only in the coion's size surrounding a charged nanoparticle, the one with largest coion size is found to have the largest charge neutralization and screening. That is, in size-asymmetric double layers with a given counterion's size the excluded volume of the coions dictates the adsorption of the ionic charge close to the colloidal surface for monovalent salts. Furthermore, we demonstrate that charge reversal can occur at low surface charge densities, given a large enough total ion concentration, for systems of monovalent salts in a wide range of ion size asymmetries. In addition, we find a non-monotonic behavior for the corresponding maximum charge reversal, as a function of the colloidal bare charge. We also find that the reversal effect disappears for binary salts with large-size counterions and small-size coions at high surface charge densities. Lastly, we observe a good agreement between results from both Monte Carlo simulations and the integral equation theory across different colloidal charge densities and 1:1-elec-trolytes with different ion sizes.

  6. How ions affect the structure of water.

    PubMed

    Hribar, Barbara; Southall, Noel T; Vlachy, Vojko; Dill, Ken A

    2002-10-16

    We model ion solvation in water. We use the MB model of water, a simple two-dimensional statistical mechanical model in which waters are represented as Lennard-Jones disks having Gaussian hydrogen-bonding arms. We introduce a charge dipole into MB waters. We perform (NPT) Monte Carlo simulations to explore how water molecules are organized around ions and around nonpolar solutes in salt solutions. The model gives good qualitative agreement with experiments, including Jones-Dole viscosity B coefficients, Samoilov and Hirata ion hydration activation energies, ion solvation thermodynamics, and Setschenow coefficients for Hofmeister series ions, which describe the salt concentration dependence of the solubilities of hydrophobic solutes. The two main ideas captured here are (1) that charge densities govern the interactions of ions with water, and (2) that a balance of forces determines water structure: electrostatics (water's dipole interacting with ions) and hydrogen bonding (water interacting with neighboring waters). Small ions (kosmotropes) have high charge densities so they cause strong electrostatic ordering of nearby waters, breaking hydrogen bonds. In contrast, large ions (chaotropes) have low charge densities, and surrounding water molecules are largely hydrogen bonded.

  7. Spacecraft Charging in Low Temperature Environments

    NASA Technical Reports Server (NTRS)

    Parker, Linda N.

    2007-01-01

    Spacecraft charging in plasma and radiation environments is a temperature dependent phenomenon due to the reduction of electrical conductivity in dielectric materials at low temperatures. Charging time constants are proportional to l/conductivity may become very large (on the order of days to years) at low temperatures and accumulation of charge densities in insulators in charging environments traditionally considered benign at ambient temperatures may be sufficient to produce charge densities and electric fields of concern in insulators at low temperatures. Low temperature charging is of interest because a number of spacecraft-primarily infrared astronomy and microwave cosmology observatories-are currently being design, built, and or operated at very cold temperatures on the order of 40K to 100K. This paper reviews the temperature dependence of spacecraft charging processes and material parameters important to charging as a function of temperature with an emphasis on low temperatures regimes.

  8. Charged anisotropic matter with linear or nonlinear equation of state

    NASA Astrophysics Data System (ADS)

    Varela, Victor; Rahaman, Farook; Ray, Saibal; Chakraborty, Koushik; Kalam, Mehedi

    2010-08-01

    Ivanov pointed out substantial analytical difficulties associated with self-gravitating, static, isotropic fluid spheres when pressure explicitly depends on matter density. Simplifications achieved with the introduction of electric charge were noticed as well. We deal with self-gravitating, charged, anisotropic fluids and get even more flexibility in solving the Einstein-Maxwell equations. In order to discuss analytical solutions we extend Krori and Barua’s method to include pressure anisotropy and linear or nonlinear equations of state. The field equations are reduced to a system of three algebraic equations for the anisotropic pressures as well as matter and electrostatic energy densities. Attention is paid to compact sources characterized by positive matter density and positive radial pressure. Arising solutions satisfy the energy conditions of general relativity. Spheres with vanishing net charge contain fluid elements with unbounded proper charge density located at the fluid-vacuum interface. Notably the electric force acting on these fluid elements is finite, although the acting electric field is zero. Net charges can be huge (1019C) and maximum electric field intensities are very large (1023-1024statvolt/cm) even in the case of zero net charge. Inward-directed fluid forces caused by pressure anisotropy may allow equilibrium configurations with larger net charges and electric field intensities than those found in studies of charged isotropic fluids. Links of these results with charged strange quark stars as well as models of dark matter including massive charged particles are highlighted. The van der Waals equation of state leading to matter densities constrained by cubic polynomial equations is briefly considered. The fundamental question of stability is left open.

  9. Symmetric supercapacitor: Sulphurized graphene and ionic liquid.

    PubMed

    Shaikh, Jasmin S; Shaikh, Navajsharif S; Kharade, Rohini; Beknalkar, Sonali A; Patil, Jyoti V; Suryawanshi, Mahesh P; Kanjanaboos, Pongsakorn; Hong, Chang Kook; Kim, Jin Hyeok; Patil, Pramod S

    2018-10-01

    Symmetric supercapacitor is advanced over simple supercapacitor device due to their stability over a large potential window and high energy density. Graphene is a desired candidate for supercapacitor application since it has a high surface area, good electronic conductivity and high electro chemical stability. There is a pragmatic use of ionic liquid electrolyte for supercapacitor due to its stability over a large potential window, good ionic conductivity and eco-friendly nature. For high performance supercapacitor, the interaction between ionic liquid electrolyte and graphene are crucial for better charge transportation. In respect of this, a three-dimensional (3D) nanoporous honeycomb shaped sulfur embedded graphene (S-graphene) has been synthesized by simple chemical method. Here, the fabrication of high performance symmetric supercapacitor is done by using S-graphene as an electrode and [BMIM-PF 6 ] as an electrolyte. The particular architecture of S-graphene benefited to reduce the ion diffusion resistance, providing the large surface area for charge transportation and efficient charge storage. The S-graphene and ionic liquid-based symmetric supercapacitor device showed the large potential window of 3.2 V with high energy density 124 Wh kg -1 at 0.2 A g -1 constant applied current density. Furthermore, this device shows good cycling performance (stability) with a capacitive retention of 95% over 20,000 cycles at a higher current density of 2 A g -1 . Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Electrolyte solutions at curved electrodes. I. Mesoscopic approach

    NASA Astrophysics Data System (ADS)

    Reindl, Andreas; Bier, Markus; Dietrich, S.

    2017-04-01

    Within the Poisson-Boltzmann approach, electrolytes in contact with planar, spherical, and cylindrical electrodes are analyzed systematically. The dependences of their capacitance C on the surface charge density σ and the ionic strength I are examined as a function of the wall curvature. The surface charge density has a strong effect on the capacitance for small curvatures, whereas for large curvatures the behavior becomes independent of σ. An expansion for small curvatures gives rise to capacitance coefficients which depend only on a single parameter, allowing for a convenient analysis. The universal behavior at large curvatures can be captured by an analytic expression.

  11. A simulation study of radial expansion of an electron beam injected into an ionospheric plasma

    NASA Technical Reports Server (NTRS)

    Koga, J.; Lin, C. S.

    1994-01-01

    Injections of nonrelativistic electron beams from a finite equipotential conductor into an ionospheric plasma have been simulated using a two-dimensional electrostatic particle code. The purpose of the study is to survey the simulation parameters for understanding the dependence of beam radius on physical variables. The conductor is charged to a high potential when the background plasma density is less than the beam density. Beam electrons attracted by the charged conductor are decelerated to zero velocity near the stagnation point, which is at a few Debye lengths from the conductor. The simulations suggest that the beam electrons at the stagnation point receive a large transverse kick and the beam expands radially thereafter. The buildup of beam electrons at the stagnation point produces a large electrostatic force responsible for the transverse kick. However, for the weak charging cases where the background plasma density is larger than the beam density, the radial expansion mechanism is different; the beam plasma instability is found to be responsible for the radial expansion. The simulations show that the electron beam radius for high spacecraft charging cases is of the order of the beam gyroradius, defined as the beam velocity divided by the gyrofrequency. In the weak charging cases, the beam radius is only a fraction of the beam gyroradius. The parameter survey indicates that the beam radius increases with beam density and decreases with magnetic field and beam velocity. The beam radius normalized by the beam gyroradius is found to scale according to the ratio of the beam electron Debye length to the ambient electron Debye length. The parameter dependence deduced would be useful for interpreting the beam radius and beam density of electron beam injection experiments conducted from rockets and the space shuttle.

  12. Electrostatic attraction between overall neutral surfaces.

    PubMed

    Adar, Ram M; Andelman, David; Diamant, Haim

    2016-08-01

    Two overall neutral surfaces with positively and negatively charged domains ("patches") have been shown in recent experiments to exhibit long-range attraction when immersed in an ionic solution. Motivated by the experiments, we calculate analytically the osmotic pressure between such surfaces within the Poisson-Boltzmann framework, using a variational principle for the surface-averaged free energy. The electrostatic potential, calculated beyond the linear Debye-Hückel theory, yields an overall attraction at large intersurface separations, over a wide range of the system's controlled length scales. In particular, the attraction is stronger and occurs at smaller separations for surface patches of larger size and charge density. In this large patch limit, we find that the attraction-repulsion crossover separation is inversely proportional to the square of the patch-charge density and to the Debye screening length.

  13. Graphene-Based Ultra-Light Batteries for Aircraft

    NASA Technical Reports Server (NTRS)

    Calle, Carlos I.; Kaner, Richard B.

    2014-01-01

    Develop a graphene-based ultracapacitor prototype that is flexible, thin, lightweight, durable, low cost, and safe and that will demonstrate the feasibility for use in aircraft center dot These graphene-based devices store charge on graphene sheets and take advantage of the large accessible surface area of graphene (2,600 m2/g) to increase the electrical energy that can be stored. center dot The proposed devices should have the electrical storage capacity of thin-film-ion batteries but with much shorter charge/discharge cycle times as well as longer lives center dot The proposed devices will be carbon-based and so will not have the same issues with flammability or toxicity as the standard lithium-based storage cells There are two main established methods for the storage and delivery of electrical energy: center dot Batteries - Store energy with electrochemical reactions - High energy densities - Slow charge/discharge cycles - Used in applications requiring large amounts of energy ? aircraft center dot Electrochemical capacitors - Store energy in electrochemical double layers - Fast charge/discharge cycles - Low energy densities - Used in electronics devices - Large capacitors are used in truck engine cranking

  14. Excited State Charge Transfer reaction with dual emission from 5-(4-dimethylamino-phenyl)-penta-2,4-dienenitrile: Spectral measurement and theoretical density functional theory calculation

    NASA Astrophysics Data System (ADS)

    Jana, Sankar; Dalapati, Sasanka; Ghosh, Shalini; Kar, Samiran; Guchhait, Nikhil

    2011-07-01

    The excited state intramolecular charge transfer process in donor-chromophore-acceptor system 5-(4-dimethylamino-phenyl)-penta-2,4-dienenitrile (DMAPPDN) has been investigated by steady state absorption and emission spectroscopy in combination with Density Functional Theory (DFT) calculations. This flexible donor acceptor molecule DMAPPDN shows dual fluorescence corresponding to emission from locally excited and charge transfer state in polar solvent. Large solvatochromic emission shift, effect of variation of pH and HOMO-LUMO molecular orbital pictures support excited state intramolecular charge transfer process. The experimental findings have been correlated with the calculated structure and potential energy surfaces based on the Twisted Intramolecular Charge Transfer (TICT) model obtained at DFT level using B3LYP functional and 6-31+G( d, p) basis set. The theoretical potential energy surfaces for the excited states have been generated in vacuo and acetonitrile solvent using Time Dependent Density Functional Theory (TDDFT) and Time Dependent Density Functional Theory Polarized Continuum Model (TDDFT-PCM) method, respectively. All the theoretical results show well agreement with the experimental observations.

  15. On the correct interpretation of the low voltage regime in intrinsic single-carrier devices.

    PubMed

    Röhr, Jason A; Kirchartz, Thomas; Nelson, Jenny

    2017-05-24

    We discuss the approach of determining the charge-carrier density of a single-carrier device by combining Ohm's law and the Mott-Gurney law. We show that this approach is seldom valid, due to the fact that whenever Ohm's law is applicable the Mott-Gurney law is usually not, and vice versa. We do this using a numerical drift-diffusion solver to calculate the current density-voltage curves and the charge-carrier density, with increasing doping concentration. As this doping concentration is increased to very large values, using Ohm's law becomes a sensible way of measuring the product of mobility and doping density in the sample. However, in the high-doping limit, the current is no longer governed by space-charge and it will no longer be possible to determine the charge-carrier mobility using the Mott-Gurney law. This leaves the value for the mobility as an unknown in the mobility-doping density product in Ohm's law. We also show that, when the charge-carrier mobility for an intrinsic semiconductor is known in advance, the carrier density is underestimated up to many orders of magnitude if Ohm's law is used. We finally seek to establish a window of conditions where the two methods can be combined to yield reasonable results.

  16. Depth profile of halide anions under highly charged biological membrane

    NASA Astrophysics Data System (ADS)

    Sung, Woongmo; Wang, Wenjie; Lee, Jonggwan; Vaknin, David; Kim, Doseok

    2015-03-01

    Halide ion (Cl- and I-) distribution under a cationic Langmuir monolayer consisting of 1,2-dipalmitoyl-3 trimethylammonium-propane (DPTAP) molecules was investigated by vibrational sum-frequency generation (VSFG) and X-ray spectroscopy. From VSFG spectra, it was observed that large halide anions (I-) screen surface charge more efficiently so that interfacial water alignment becomes more randomized. On the other hand, number density of ions directly measured by X-ray fluorescence spectroscopy at grazing incidence angle reveals that the ion densities within 6 ~ 8 nm are the same for both I- and Cl-. Since the observed ion densities in both cases are almost equal to the charge density of the DPTAP monolayer, we propose that larger halide anions are attracted closer to the surface making direct binding with the charged headgroups of the molecules in the monolayer, accomplishing charge neutrality in short distance. This direct adsorption of anions also disturbs the monolayer structure both in terms of the conformation of alkyl chains and the vertical configuration of the monolayer, with iodine having the stronger effect. Our study shows that the length scale that ions neutralize a charged interface varies significantly and specifically even between monovalent ions.

  17. Validation of ISS Floating Potential Measurement Unit Electron Densities and Temperatures

    NASA Technical Reports Server (NTRS)

    Coffey, Victoria N.; Minow, Joseph I.; Parker, Linda N.; Bui, Them; Wright, Kenneth, Jr.; Koontz, Steven L.; Schneider, T.; Vaughn, J.; Craven, P.

    2007-01-01

    Validation of the Floating Potential Measurement Unit (FPMU) electron density and temperature measurements is an important step in the process of evaluating International Space Station spacecraft charging issues .including vehicle arcing and hazards to crew during extravehicular activities. The highest potentials observed on Space Station are due to the combined VxB effects on a large spacecraft and the collection of ionospheric electron and ion currents by the 160 V US solar array modules. Ionospheric electron environments are needed for input to the ISS spacecraft charging models used to predict the severity and frequency of occurrence of ISS charging hazards. Validation of these charging models requires comparing their predictions with measured FPMU values. Of course, the FPMU measurements themselves must also be validated independently for use in manned flight safety work. This presentation compares electron density and temperatures derived from the FPMU Langmuir probes and Plasma Impedance Probe against the independent density and temperature measurements from ultraviolet imagers, ground based incoherent scatter radar, and ionosonde sites.

  18. Phase stability in the two-dimensional anisotropic boson Hubbard Hamiltonian

    DOE PAGES

    Ying, T.; Batrouni, G. G.; Rousseau, V. G.; ...

    2013-05-15

    The two dimensional square lattice hard-core boson Hubbard model with near neighbor interactions has a ‘checkerboard’ charge density wave insulating phase at half-filling and sufficiently large intersite repulsion. When doped, rather than forming a supersolid phase in which long range charge density wave correlations coexist with a condensation of superfluid defects, the system instead phase separates. However, it is known that there are other lattice geometries and interaction patterns for which such coexistence takes place. In this paper we explore the possibility that anisotropic hopping or anisotropic near neighbor repulsion might similarly stabilize the square lattice supersolid. Lastly, by consideringmore » the charge density wave structure factor and superfluid density for different ratios of interaction strength and hybridization in the ˆx and ˆy directions, we conclude that phase separation still occurs.« less

  19. Estimate of size distribution of charged MSPs measured in situ in winter during the WADIS-2 sounding rocket campaign

    NASA Astrophysics Data System (ADS)

    Asmus, Heiner; Staszak, Tristan; Strelnikov, Boris; Lübken, Franz-Josef; Friedrich, Martin; Rapp, Markus

    2017-08-01

    We present results of in situ measurements of mesosphere-lower thermosphere dusty-plasma densities including electrons, positive ions and charged aerosols conducted during the WADIS-2 sounding rocket campaign. The neutral air density was also measured, allowing for robust derivation of turbulence energy dissipation rates. A unique feature of these measurements is that they were done in a true common volume and with high spatial resolution. This allows for a reliable derivation of mean sizes and a size distribution function for the charged meteor smoke particles (MSPs). The mean particle radius derived from Schmidt numbers obtained from electron density fluctuations was ˜ 0.56 nm. We assumed a lognormal size distribution of the charged meteor smoke particles and derived the distribution width of 1.66 based on in situ-measured densities of different plasma constituents. We found that layers of enhanced meteor smoke particles' density measured by the particle detector coincide with enhanced Schmidt numbers obtained from the electron and neutral density fluctuations. Thus, we found that large particles with sizes > 1 nm were stratified in layers of ˜ 1 km thickness and lying some kilometers apart from each other.

  20. Ionic fluids with r-6 pair interactions have power-law electrostatic screening

    NASA Astrophysics Data System (ADS)

    Kjellander, Roland; Forsberg, Björn

    2005-06-01

    The decay behaviour of radial distribution functions for large distances r is investigated for classical Coulomb fluids where the ions interact with an r-6 potential (e.g. a dispersion interaction) in addition to the Coulombic and the short-range repulsive potentials (e.g. a hard core). The pair distributions and the density-density (NN), charge-density (QN) and charge-charge (QQ) correlation functions are investigated analytically and by Monte Carlo simulations. It is found that the NN correlation function ultimately decays like r-6 for large r, just as it does for fluids of electroneutral particles interacting with an r-6 potential. The prefactor is proportional to the squared compressibility in both cases. The QN correlations decay in general like r-8 and the QQ correlations like r-10 in the ionic fluid. The average charge density around an ion decays generally like r-8 and the average electrostatic potential like r-6. This behaviour is in stark contrast to the decay behaviour for classical Coulomb fluids in the absence of the r-6 potential, where all these functions decay exponentially for large r. The power-law decays are, however, the same as for quantum Coulomb fluids. This indicates that the inclusion of the dispersion interaction as an effective r-6 interaction potential in classical systems yields the same decay behaviour for the pair correlations as in quantum ionic systems. An exceptional case is the completely symmetric binary electrolyte for which only the NN correlation has a power-law decay but not the QQ correlations. These features are shown by an analysis of the bridge function.

  1. Understanding the conformational flexibility and electrostatic properties of curcumin in the active site of rhAChE via molecular docking, molecular dynamics, and charge density analysis.

    PubMed

    Saravanan, Kandasamy; Kalaiarasi, Chinnasamy; Kumaradhas, Poomani

    2017-12-01

    Acetylcholinesterase (AChE) is an important enzyme responsible for Alzheimer's disease, as per report, keto-enol form of curcumin inhibits this enzyme. The present study aims to understand the binding mechanism of keto-enol curcumin with the recombinant human Acetylcholinesterase (rhAChE) from its conformational flexibility, intermolecular interactions, charge density distribution, and the electrostatic properties at the active site of rhAChE. To accomplish this, a molecular docking analysis of curcumin with the rhAChE was performed, which gives the structure and conformation of curcumin in the active site of rhAChE. Further, the charge density distribution and the electrostatic properties of curcumin molecule (lifted from the active site of rhAChE) were determined from the high level density functional theory (DFT) calculations coupled with the charge density analysis. On the other hand, the curcumin molecule was optimized (gas phase) using DFT method and further, the structure and charge density analysis were also carried out. On comparing the conformation, charge density distribution and the electrostatic potential of the active site form of curcumin with the corresponding gas phase form reveals that the above said properties are significantly altered when curcumin is present in the active site of rhAChE. The conformational stability and the interaction of curcumin in the active site are also studied using molecular dynamics simulation, which shows a large variation in the conformational geometry of curcumin as well as the intermolecular interactions.

  2. Ion distributions, exclusion coefficients, and separation factors of electrolytes in a charged cylindrical nanopore: a partially perturbative density functional theory study.

    PubMed

    Peng, Bo; Yu, Yang-Xin

    2009-10-07

    The structural and thermodynamic properties for charge symmetric and asymmetric electrolytes as well as mixed electrolyte system inside a charged cylindrical nanopore are investigated using a partially perturbative density functional theory. The electrolytes are treated in the restricted primitive model and the internal surface of the cylindrical nanopore is considered to have a uniform charge density. The proposed theory is directly applicable to the arbitrary mixed electrolyte solution containing ions with the equal diameter and different valences. Large amount of simulation data for ion density distributions, separation factors, and exclusion coefficients are used to determine the range of validity of the partially perturbative density functional theory for monovalent and multivalent counterion systems. The proposed theory is found to be in good agreement with the simulations for both mono- and multivalent counterion systems. In contrast, the classical Poisson-Boltzmann equation only provides reasonable descriptions of monovalent counterion system at low bulk density, and is qualitatively and quantitatively wrong in the prediction for the multivalent counterion systems due to its neglect of the strong interionic correlations in these systems. The proposed density functional theory has also been applied to an electrolyte absorbed into a pore that is a model of the filter of a physiological calcium channel.

  3. Fractional Fourier transform of Lorentz-Gauss vortex beams

    NASA Astrophysics Data System (ADS)

    Zhou, GuoQuan; Wang, XiaoGang; Chu, XiuXiang

    2013-08-01

    An analytical expression for a Lorentz-Gauss vortex beam passing through a fractional Fourier transform (FRFT) system is derived. The influences of the order of the FRFT and the topological charge on the normalized intensity distribution, the phase distribution, and the orbital angular momentum density of a Lorentz-Gauss vortex beam in the FRFT plane are examined. The order of the FRFT controls the beam spot size, the orientation of the beam spot, the spiral direction of the phase distribution, the spatial orientation of the two peaks in the orbital angular momentum density distribution, and the magnitude of the orbital angular momentum density. The increase of the topological charge not only results in the dark-hollow region becoming large, but also brings about detail changes in the beam profile. The spatial orientation of the two peaks in the orbital angular momentum density distribution and the phase distribution also depend on the topological charge.

  4. Numerical Investigation of a Cascaded Longitudinal Space-Charge Amplifier at the Fermilab's Advanced Superconducting Test Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halavanau, A.; Piot, P.

    2015-06-01

    In a cascaded longitudinal space-charge amplifier (LSCA), initial density noise in a relativistic e-beam is amplified via the interplay of longitudinal space charge forces and properly located dispersive sections. This type of amplification process was shown to potentially result in large final density modulations [1] compatible with the production of broadband electromagnetic radiation. The technique was recently demonstrated in the optical domain [2]. In this paper we investigate, via numerical simulations, the performances of a cascaded LSCA beamline at the Fermilab’s Advanced Superconducting Test Accelerator (ASTA). We especially explore the properties of the produced broadband radiation. Our studies have beenmore » conducted with a grid-less three-dimensional space-charge algorithm.« less

  5. Exactly solvable model of the two-dimensional electrical double layer.

    PubMed

    Samaj, L; Bajnok, Z

    2005-12-01

    We consider equilibrium statistical mechanics of a simplified model for the ideal conductor electrode in an interface contact with a classical semi-infinite electrolyte, modeled by the two-dimensional Coulomb gas of pointlike unit charges in the stability-against-collapse regime of reduced inverse temperatures 0< or = beta < 2. If there is a potential difference between the bulk interior of the electrolyte and the grounded electrode, the electrolyte region close to the electrode (known as the electrical double layer) carries some nonzero surface charge density. The model is mappable onto an integrable semi-infinite sine-Gordon theory with Dirichlet boundary conditions. The exact form-factor and boundary state information gained from the mapping provide asymptotic forms of the charge and number density profiles of electrolyte particles at large distances from the interface. The result for the asymptotic behavior of the induced electric potential, related to the charge density via the Poisson equation, confirms the validity of the concept of renormalized charge and the corresponding saturation hypothesis. It is documented on the nonperturbative result for the asymptotic density profile at a strictly nonzero beta that the Debye-Hückel beta-->0 limit is a delicate issue.

  6. Central charge from adiabatic transport of cusp singularities in the quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Can, Tankut

    2017-04-01

    We study quantum Hall (QH) states on a punctured Riemann sphere. We compute the Berry curvature under adiabatic motion in the moduli space in the large N limit. The Berry curvature is shown to be finite in the large N limit and controlled by the conformal dimension of the cusp singularity, a local property of the mean density. Utilizing exact sum rules obtained from a Ward identity, we show that for the Laughlin wave function, the dimension of a cusp singularity is given by the central charge, a robust geometric response coefficient in the QHE. Thus, adiabatic transport of curvature singularities can be used to determine the central charge of QH states. We also consider the effects of threaded fluxes and spin-deformed wave functions. Finally, we give a closed expression for all moments of the mean density in the integer QH state on a punctured disk.

  7. Holographic entanglement entropy of a 1 + 1 dimensional p-wave superconductor

    NASA Astrophysics Data System (ADS)

    Das, Sumit R.; Fujita, Mitsutoshi; Kim, Bom Soo

    2017-09-01

    We examine the behavior of entanglement entropy S A EE of a subsystem A in a fully backreacted holographic model of a 1 + 1 dimensional p wave superconductor across the phase transition. For a given temperature, the system goes to a superconducting phase beyond a critical value of the charge density. The entanglement entropy, considered as a function of the charge density at a given temperature, has a cusp at the critical point. In addition, we find that there are three different behaviors in the condensed phase, depending on the subsystem size. For a subsystem size l smaller than a critical size l c1, S A EE continues to increase as a function of the charge density as we cross the phase transition. When l lies between l c1 and another critical size l c2 the entanglement entropy displays a non-monotonic behavior, while for l > l c2 it decreases monotonically. At large charge densities S A EE appears to saturate. The non-monotonic behavior leads to a novel phase diagram for this system.

  8. High-energy lithium-ion hybrid supercapacitors composed of hierarchical urchin-like WO3/C anodes and MOF-derived polyhedral hollow carbon cathodes.

    PubMed

    Xu, Juan; Li, Yuanyuan; Wang, Lei; Cai, Qifa; Li, Qingwei; Gao, Biao; Zhang, Xuming; Huo, Kaifu; Chu, Paul K

    2016-09-22

    A lithium-ion hybrid supercapacitor (Li-HSC) comprising a Li-ion battery type anode and an electrochemical double layer capacitance (EDLC) type cathode has attracted much interest because it accomplishes a large energy density without compromising the power density. In this work, hierarchical carbon coated WO 3 (WO 3 /C) with a unique mesoporous structure and metal-organic framework derived nitrogen-doped carbon hollow polyhedra (MOF-NC) are prepared and adopted as the anode and the cathode for Li-HSCs. The hierarchical mesoporous WO 3 /C microspheres assembled by radially oriented WO 3 /C nanorods along the (001) plane enable effective Li + insertion, thus exhibit high capacity, excellent rate performance and a long cycling life due to their high Li + conductivity, electronic conductivity and structural robustness. The WO 3 /C structure shows a reversible specific capacity of 508 mA h g -1 at a 0.1 C rate (1 C = 696 mA h g -1 ) after 160 discharging-charging cycles with excellent rate capability. The MOF-NC achieved the specific capacity of 269.9 F g -1 at a current density of 0.2 A g -1 . At a high current density of 6 A g -1 , 92.4% of the initial capacity could be retained after 2000 discharging-charging cycles, suggesting excellent cycle stability. The Li-HSC comprising a WO 3 /C anode and a MOF-NC cathode boasts a large energy density of 159.97 W h kg -1 at a power density of 173.6 W kg -1 and 88.3% of the capacity is retained at a current density of 5 A g -1 after 3000 charging-discharging cycles, which are better than those previously reported for Li-HSCs. The high energy and power densities of the Li-HSCs of WO 3 /C//MOF-NC render large potential in energy storage.

  9. Theory of hydrodynamic transport in fluctuating electronic charge density wave states

    NASA Astrophysics Data System (ADS)

    Delacrétaz, Luca V.; Goutéraux, Blaise; Hartnoll, Sean A.; Karlsson, Anna

    2017-11-01

    We describe the collective hydrodynamic motion of an incommensurate charge density wave state in a clean electronic system. Our description simultaneously incorporates the effects of both pinning due to weak disorder and also phase relaxation due to proliferating dislocations. We show that the interplay between these two phenomena has important consequences for charge and momentum transport. For instance, it can lead to metal-insulator transitions. We furthermore identify signatures of fluctuating density waves in frequency and spatially resolved conductivities. Phase disordering is well known to lead to a large viscosity. We derive a precise formula for the phase relaxation rate in terms of the viscosity in the dislocation cores. We thereby determine the viscosity of the superconducting state of BSCCO from the observed melting dynamics of Abrikosov lattices and show that the result is consistent with dissipation into Bogoliubov quasiparticles.

  10. Altering surface charge nonuniformity on individual colloidal particles.

    PubMed

    Feick, Jason D; Chukwumah, Nkiru; Noel, Alexandra E; Velegol, Darrell

    2004-04-13

    Charge nonuniformity (sigmazeta) was altered on individual polystyrene latex particles and measured using the novel experimental technique of rotational electrophoresis. It has recently been shown that unaltered sulfated latices often have significant charge nonuniformity (sigmazeta = 100 mV) on individual particles. Here it is shown that anionic polyelectrolytes and surfactants reduce the native charge nonuniformity on negatively charged particles by 80% (sigmazeta = 20 mV), even while leaving the average surface charge density almost unchanged. Reduction of charge uniformity occurs as large domains of nonuniformity are minimized, giving a more random distribution of charge on individual particle surfaces. Targeted reduction of charge nonuniformity opens new opportunities for the dispersion of nanoparticles and the oriented assembly of particles.

  11. Atomistic simulation on charge mobility of amorphous tris(8-hydroxyquinoline) aluminum (Alq3): origin of Poole-Frenkel-type behavior.

    PubMed

    Nagata, Yuki; Lennartz, Christian

    2008-07-21

    The atomistic simulation of charge transfer process for an amorphous Alq(3) system is reported. By employing electrostatic potential charges, we calculate site energies and find that the standard deviation of site energy distribution is about twice as large as predicted in previous research. The charge mobility is calculated via the Miller-Abrahams formalism and the master equation approach. We find that the wide site energy distribution governs Poole-Frenkel-type behavior of charge mobility against electric field, while the spatially correlated site energy is not a dominant mechanism of Poole-Frenkel behavior in the range from 2x10(5) to 1.4x10(6) V/cm. Also we reveal that randomly meshed connectivities are, in principle, required to account for the Poole-Frenkel mechanism. Charge carriers find a zigzag pathway at low electric field, while they find a straight pathway along electric field when a high electric field is applied. In the space-charge-limited current scheme, the charge-carrier density increases with electric field strength so that the nonlinear behavior of charge mobility is enhanced through the strong charge-carrier density dependence of charge mobility.

  12. Self-consistent calculations for the electronic structure of a vacancy in copper. A solution of the embedding problem

    NASA Astrophysics Data System (ADS)

    Zeller, R.; Braspenning, P. J.

    1982-06-01

    The charge density and the local density of states for a vacancy in Cu and for the first shell of Cu neighbours are calculated by the KKR-Green's function technique. The muffin-tin potentials for the vacancy and the neighbour shell atoms are determined self-consistently in the local density approximation of density functional theory. By the use of the proper host Green's function the embedding of this cluster of 13 perturbed muffin-tins into the infinite array of bulk Cu muffin-tin potentials is described rigorously, thus representing a solution of the embedding problem. The calculations demonstrate a rather large charge transfer of 1.1 electrons from the first neighbour shell to the vacancy.

  13. General analytic results for nonlinear waves and solitons in molecular clouds

    NASA Technical Reports Server (NTRS)

    Adams, Fred C.; Fatuzzo, Marco; Watkins, Richard

    1994-01-01

    We study nonlinear wave phenomena in self-gravitating fluid systems, with a particular emphasis on applications to molecular clouds. This paper presents analytical results for one spatial dimension. We show that a large class of physical systems can be described by theories with a 'charge density' q(rho); this quantity replaces the density on the right-hand side of the Poisson equation for the gravitational potential. We use this formulation to prove general results about nonlinear wave motions in self-gravitating systems. We show that in order for stationary waves to exist, the total charge (the integral of the charge density over the wave profile) must vanish. This 'no-charge' property for solitary waves is related to the capability of a system to be stable to gravitational perturbations for arbitrarily long wavelengths. We find necessary and sufficient conditions on the charge density for the existence of solitary waves and stationary waves. We study nonlinear wave motions for Jeans-type theories (where q(rho) = rho-rho(sub 0)) and find that nonlinear waves of large amplitude are confined to a rather narrow range of wavelengths. We also study wave motions for molecular clouds threaded by magnetic fields and show how the allowed range of wavelengths is affected by the field strength. Since the gravitational force in one spatial dimension does not fall off with distance, we consider two classes of models with more realistic gravity: Yukawa potentials and a pseudo two-dimensional treatment. We study the allowed types of wave behavior for these models. Finally, we discuss the implications of this work for molecular cloud structure. We argue that molecular clouds can support a wide variety of wave motions and suggest that stationary waves (such as those considered in this paper) may have already been observed.

  14. Bunch Length Measurements Using CTR at the AWA with Comparison to Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neveu, N.; Spentzouris, L.; Halavanau, A.

    In this paper we present electron bunch length measurements at the Argonne Wakefield Accelerator (AWA) photoinjector facility. The AWA accelerator has a large dynamic charge density range, with electron beam charge varying between 0.1 nC - 100 nC, and laser spot size diameter at the cathode between 0.1 mm - 18 mm. The bunch length measurements were taken at different charge densities using a metallic screen and a Michelson interferometer to perform autocorrelation scans of the corresponding coherent transition radiation (CTR). A liquid helium-cooled 4K bolometer was used to register the interferometer signal. The experimental results are compared with OPAL-Tmore » numerical simulations.« less

  15. Efficiently accounting for ion correlations in electrokinetic nanofluidic devices using density functional theory.

    PubMed

    Gillespie, Dirk; Khair, Aditya S; Bardhan, Jaydeep P; Pennathur, Sumita

    2011-07-15

    The electrokinetic behavior of nanofluidic devices is dominated by the electrical double layers at the device walls. Therefore, accurate, predictive models of double layers are essential for device design and optimization. In this paper, we demonstrate that density functional theory (DFT) of electrolytes is an accurate and computationally efficient method for computing finite ion size effects and the resulting ion-ion correlations that are neglected in classical double layer theories such as Poisson-Boltzmann. Because DFT is derived from liquid-theory thermodynamic principles, it is ideal for nanofluidic systems with small spatial dimensions, high surface charge densities, high ion concentrations, and/or large ions. Ion-ion correlations are expected to be important in these regimes, leading to nonlinear phenomena such as charge inversion, wherein more counterions adsorb at the wall than is necessary to neutralize its surface charge, leading to a second layer of co-ions. We show that DFT, unlike other theories that do not include ion-ion correlations, can predict charge inversion and other nonlinear phenomena that lead to qualitatively different current densities and ion velocities for both pressure-driven and electro-osmotic flows. We therefore propose that DFT can be a valuable modeling and design tool for nanofluidic devices as they become smaller and more highly charged. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Aerosols: The key to understanding Titan's lower ionosphere

    NASA Astrophysics Data System (ADS)

    Molina-Cuberos, G. J.; Cardnell, S.; García-Collado, A. J.; Witasse, O.; López-Moreno, J. J.

    2018-04-01

    The Permittivity Wave and Altimetry system on board the Huygens probe observed an ionospheric hidden layer at a much lower altitude than the main ionosphere during its descent through the atmosphere of Titan, the largest satellite of Saturn. Previous studies predicted a similar ionospheric layer. However, neither previous nor post-Huygens theoretical models have been able to reproduce the measurements of the electrical conductivity and charge densities reported by the Mutual Impedance (MI) and Relaxation Probe (RP) sensors. The measurements were made from an altitude of 140 km down to the ground and show a maximum of charge densities of ≈ 2 ×109 m-3 positive ions and ≈ 450 ×106 m-3 electrons at approximately 65 km. Such a large difference between positive and negative charge densities has not yet been understood. Here, by making use of electron and ion capture processes in to aerosols, we are able to model both electron and positive ion number densities and to reconcile experimental data and model results.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sim, Eunji; Kim, Min-Cheol; Burke, Kieron

    We investigate dissociation of diatomic molecules using standard density functional theory (DFT) and density-corrected density functional theory (DC-DFT) compared with CCSD(T) results as reference. The results show the difference between the HOMO values of dissociated atomic species often can be used as an indicator whether DFT would predict the correct dissociation limit. DFT predicts incorrect dissociation limits and charge distribution in molecules or molecular ions when the fragments have large HOMO differences, while DC-DFT and CCSD(T) do not. The criteria for large HOMO difference is about 2 ∼ 4 eV.

  18. Doubly charged coronene clusters—Much smaller than previously observed

    NASA Astrophysics Data System (ADS)

    Mahmoodi-Darian, Masoomeh; Raggl, Stefan; Renzler, Michael; Goulart, Marcelo; Huber, Stefan E.; Mauracher, Andreas; Scheier, Paul; Echt, Olof

    2018-05-01

    The smallest doubly charged coronene cluster ions reported so far, Cor152+, were produced by charge exchange between bare coronene clusters and He2+ [H. A. B. Johansson et al., Phys. Rev. A 84, 043201 (2011)]. These dications are at least five times larger than the estimated Rayleigh limit, i.e., the size at which the activation barrier for charge separation vanishes. Such a large discrepancy is unheard of for doubly charged atomic or molecular clusters. Here we report the mass spectrometric observation of doubly charged coronene trimers, produced by electron ionization of helium nanodroplets doped with coronene. The observation implies that Cor32+ features a non-zero fission barrier too large to overcome under the present experimental conditions. The height of the barriers for the dimer and trimer has been estimated by means of density functional theory calculations. A sizeable barrier for the trimer has been revealed in agreement with the experimental findings.

  19. Effects of Different Manufacturing Processes on TEMPO-Oxidized Carboxylated Cellulose Nanofiber Performance as Binder for Flexible Lithium-Ion Batteries.

    PubMed

    Lu, Huiran; Guccini, Valentina; Kim, Hyeyun; Salazar-Alvarez, German; Lindbergh, Göran; Cornell, Ann

    2017-11-01

    Carboxylated cellulose nanofibers (CNF) prepared using the TEMPO-route are good binders of electrode components in flexible lithium-ion batteries (LIB). However, the different parameters employed for the defibrillation of CNF such as charge density and degree of homogenization affect its properties when used as binder. This work presents a systematic study of CNF prepared with different surface charge densities and varying degrees of homogenization and their performance as binder for flexible LiFePO 4 electrodes. The results show that the CNF with high charge density had shorter fiber lengths compared with those of CNF with low charge density, as observed with atomic force microscopy. Also, CNF processed with a large number of passes in the homogenizer showed a better fiber dispersibility, as observed from rheological measurements. The electrodes fabricated with highly charged CNF exhibited the best mechanical and electrochemical properties. The CNF at the highest charge density (1550 μmol g -1 ) and lowest degree of homogenization (3 + 3 passes in the homogenizer) achieved the overall best performance, including a high Young's modulus of approximately 311 MPa and a good rate capability with a stable specific capacity of 116 mAh g -1 even up to 1 C. This work allows a better understanding of the influence of the processing parameters of CNF on their performance as binder for flexible electrodes. The results also contribute to the understanding of the optimal processing parameters of CNF to fabricate other materials, e.g., membranes or separators.

  20. Charge-regularized swelling kinetics of polyelectrolyte gels: Elasticity and diffusion

    NASA Astrophysics Data System (ADS)

    Sen, Swati; Kundagrami, Arindam

    2017-11-01

    We apply a recently developed method [S. Sen and A. Kundagrami, J. Chem. Phys. 143, 224904 (2015)], using a phenomenological expression of osmotic stress, as a function of polymer and charge densities, hydrophobicity, and network elasticity for the swelling of spherical polyelectrolyte (PE) gels with fixed and variable charges in a salt-free solvent. This expression of stress is used in the equation of motion of swelling kinetics of spherical PE gels to numerically calculate the spatial profiles for the polymer and free ion densities at different time steps and the time evolution of the size of the gel. We compare the profiles of the same variables obtained from the classical linear theory of elasticity and quantitatively estimate the bulk modulus of the PE gel. Further, we obtain an analytical expression of the elastic modulus from the linearized expression of stress (in the small deformation limit). We find that the estimated bulk modulus of the PE gel decreases with the increase of its effective charge for a fixed degree of deformation during swelling. Finally, we match the gel-front locations with the experimental data, taken from the measurements of charged reversible addition-fragmentation chain transfer gels to show an increase in gel-size with charge and also match the same for PNIPAM (uncharged) and imidazolium-based (charged) minigels, which specifically confirms the decrease of the gel modulus value with the increase of the charge. The agreement between experimental and theoretical results confirms general diffusive behaviour for swelling of PE gels with a decreasing bulk modulus with increasing degree of ionization (charge). The new formalism captures large deformations as well with a significant variation of charge content of the gel. It is found that PE gels with large deformation but same initial size swell faster with a higher charge.

  1. Compact Q-balls and Q-shells in a scalar electrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arodz, H.; Lis, J.

    2009-02-15

    We investigate spherically symmetric nontopological solitons in electrodynamics with a scalar field self-interaction U{approx}|{psi}| taken from the complex signum-Gordon model. We find Q-balls for small absolute values of the total electric charge Q, and Q-shells when |Q| is large enough. In both cases the charge density exactly vanishes outside certain compact regions in the three-dimensional space. The dependence of the total energy E of small Q-balls on the total electric charge has the form E{approx}|Q|{sup 5/6}, while in the case of very large Q-shells, E{approx}|Q|{sup 7/6}.

  2. Low intrinsic carrier density LSMO/Alq3/AlOx/Co organic spintronic devices

    NASA Astrophysics Data System (ADS)

    Riminucci, Alberto; Graziosi, Patrizio; Calbucci, Marco; Cecchini, Raimondo; Prezioso, Mirko; Borgatti, Francesco; Bergenti, Ilaria; Dediu, Valentin Alek

    2018-04-01

    The understanding of spin injection and transport in organic spintronic devices is still incomplete, with some experiments showing magnetoresistance and others not detecting it. We have investigated the transport properties of a large number of tris-(8-hydroxyquinoline)aluminum-based organic spintronic devices with an electrical resistance greater than 5 MΩ that did not show magnetoresistance. Their transport properties could be described satisfactorily by known models for organic semiconductors. At high voltages (>2 V), the results followed the model of space charge limited current with a Poole-Frenkel mobility. At low voltages (˜0.1 V), that are those at which the spin valve behavior is usually observed, the charge transport was modelled by nearest neighbor hopping in intra-gap impurity levels, with a charge carrier density of n0 = (1.44 ± 0.21) × 1015 cm-3 at room temperature. Such a low carrier density can explain why no magnetoresistance was observed.

  3. The plasma environment, charge state, and currents of Saturn's C and D rings

    NASA Technical Reports Server (NTRS)

    Wilson, G. R.

    1991-01-01

    The charge state and associated currents of Saturn's C an D rings are studied by modeling the flow of ionospheric plasma from the mid- to low-latitude ionosphere to the vicinity of the rings. It is found that the plasma density near the C and D rings, at a given radial location, will experience a one to two order of magnitude diurnal variation. The surface charge density (SCD) of these rings can show significant radial and azimuthal variations due mainly to variation in the plasma density. The SCD also depends on structural features of the rings such as thickness and the nature of the particle size distribution. The associated azimuthal currents carried by these rings also show large diurnal variations resulting in field-aligned currents which close in the ionosphere. The resulting ionospheric electric field will probably not produce a significant amount of plasma convection in the topside ionosphere and inner plasmasphere.

  4. Nanoscale measurement of Nernst effect in two-dimensional charge density wave material 1T-TaS 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Stephen M.; Luican-Mayer, Adina; Bhattacharya, Anand

    Advances in nanoscale material characterization on two-dimensional van der Waals layered materials primarily involve their optical and electronic properties. The thermal properties of these materials are harder to access due to the difficulty of thermal measurements at the nanoscale. In this work, we create a nanoscale magnetothermal device platform to access the basic out-of-plane magnetothermal transport properties of ultrathin van der Waals materials. Specifically, the Nernst effect in the charge density wave transition metal dichalcogenide 1T-TaS 2 is examined on nano-thin flakes in a patterned device structure. It is revealed that near the commensurate charge density wave (CCDW) to nearlymore » commensurate charge density wave (NCCDW) phase transition, the polarity of the Nernst effect changes. Since the Nernst effect is especially sensitive to changes in the Fermi surface, this suggests that large changes are occurring in the out-of-plane electronic structure of 1T-TaS 2, which are otherwise unresolved in just in-plane electronic transport measurements. This may signal a coherent evolution of out-of-plane stacking in the CCDW! NCCDW transition.« less

  5. Estimation of Nanodiamond Surface Charge Density from Zeta Potential and Molecular Dynamics Simulations.

    PubMed

    Ge, Zhenpeng; Wang, Yi

    2017-04-20

    Molecular dynamics simulations of nanoparticles (NPs) are increasingly used to study their interactions with various biological macromolecules. Such simulations generally require detailed knowledge of the surface composition of the NP under investigation. Even for some well-characterized nanoparticles, however, this knowledge is not always available. An example is nanodiamond, a nanoscale diamond particle with surface dominated by oxygen-containing functional groups. In this work, we explore using the harmonic restraint method developed by Venable et al., to estimate the surface charge density (σ) of nanodiamonds. Based on the Gouy-Chapman theory, we convert the experimentally determined zeta potential of a nanodiamond to an effective charge density (σ eff ), and then use the latter to estimate σ via molecular dynamics simulations. Through scanning a series of nanodiamond models, we show that the above method provides a straightforward protocol to determine the surface charge density of relatively large (> ∼100 nm) NPs. Overall, our results suggest that despite certain limitation, the above protocol can be readily employed to guide the model construction for MD simulations, which is particularly useful when only limited experimental information on the NP surface composition is available to a modeler.

  6. Open-Circuit Voltage Losses in Selenium-Substituted Organic Photovoltaic Devices from Increased Density of Charge-Transfer States

    DOE PAGES

    Sulas, Dana B.; Yao, Kai; Intemann, Jeremy J.; ...

    2015-09-12

    Using an analysis based on Marcus theory, we characterize losses in open-circuit voltage (V OC) due to changes in charge-transfer state energy, electronic coupling, and spatial density of charge-transfer states in a series of polymer/fullerene solar cells. Here, we use a series of indacenodithiophene polymers and their selenium-substituted analogs as electron donor materials and fullerenes as the acceptors. By combining device measurements and spectroscopic studies (including subgap photocurrent, electroluminescence, and, importantly, time-resolved photoluminescence of the charge-transfer state) we are able to isolate the values for electronic coupling and the density of charge-transfer states (NCT), rather than the more commonly measuredmore » product of these values. We find values for NCT that are surprisingly large (~4.5 × 10 21–6.2 × 10 22 cm -3), and we find that a significant increase in N CT upon selenium substitution in donor polymers correlates with lower VOC for bulk heterojunction photovoltaic devices. The increase in N CT upon selenium substitution is also consistent with nanoscale morphological characterization. Using transmission electron microscopy, selected area electron diffraction, and grazing incidence wide-angle X-ray scattering, we find evidence of more intermixed polymer and fullerene domains in the selenophene blends, which have higher densities of polymer/fullerene interfacial charge-transfer states. Our results provide an important step toward understanding the spatial nature of charge-transfer states and their effect on the open-circuit voltage of polymer/fullerene solar cells« less

  7. Directional Dependence of Hydrogen Bonds: a Density-based Energy Decomposition Analysis and Its Implications on Force Field Development

    PubMed Central

    Lu, Zhenyu; Zhou, Nengjie; Wu, Qin; Zhang, Yingkai

    2011-01-01

    One well-known shortcoming of widely-used biomolecular force fields is the description of the directional dependence of hydrogen bonding (HB). Here we aim to better understand the origin of this difficulty and thus provide some guidance for further force field development. Our theoretical approaches center on a novel density-based energy decomposition analysis (DEDA) method [J. Chem. Phys., 131, 164112 (2009)], in which the frozen density energy is variationally determined through constrained search. This unique and most significant feature of DEDA enables us to find that the frozen density interaction term is the key factor in determining the HB orientation, while the sum of polarization and charge-transfer components shows very little HB directional dependence. This new insight suggests that the difficulty for current non-polarizable force fields to describe the HB directional dependence is not due to the lack of explicit polarization or charge-transfer terms. Using the DEDA results as reference, we further demonstrate that the main failure coming from the atomic point charge model can be overcome largely by introducing extra charge sites or higher order multipole moments. Among all the electrostatic models explored, the smeared charge distributed multipole model (up to quadrupole), which also takes account of charge penetration effects, gives the best agreement with the corresponding DEDA results. Meanwhile, our results indicate that the van der Waals interaction term needs to be further improved to better model directional hydrogen bonding. PMID:22267958

  8. Possible origin of nonlinear conductivity and large dielectric constant in the commensurate charge-density-wave phase of 1 T -TaS2

    NASA Astrophysics Data System (ADS)

    Ma, Yongchang; Hou, Yanhui; Lu, Cuimin; Li, Lijun; Petrovic, Cedomir

    2018-05-01

    The electric field dependence of the dielectric properties and the nonlinear conductance of 1 T -TaS2 below 50 K has been investigated. A large dielectric constant of about 104 is obtained up to 107 Hz, which cannot be attributed to hopping of the localized carriers alone, the collective excitations of the commensurate charge-density-wave must be another contributor. The dielectric spectra disperse slightly in our measured temperature and frequency range. At a moderate dc bias field, the real part of the dielectric constant ɛ1(ω ) decreases. We propose that the separation of bound soliton-antisoliton pairs may be a contributor to the reduction of ɛ1(ω ) and the accompanying nonlinear conductivity with increasing dc bias.

  9. Molecular dynamics investigation of the ionic liquid/enzyme interface: application to engineering enzyme surface charge.

    PubMed

    Burney, Patrick R; Nordwald, Erik M; Hickman, Katie; Kaar, Joel L; Pfaendtner, Jim

    2015-04-01

    Molecular simulations of the enzymes Candida rugosa lipase and Bos taurus α-chymotrypsin in aqueous ionic liquids 1-butyl-3-methylimidazolium chloride and 1-ethyl-3-methylimidazolium ethyl sulfate were used to study the change in enzyme-solvent interactions induced by modification of the enzyme surface charge. The enzymes were altered by randomly mutating lysine surface residues to glutamate, effectively decreasing the net surface charge by two for each mutation. These mutations resemble succinylation of the enzyme by chemical modification, which has been shown to enhance the stability of both enzymes in ILs. After establishing that the enzymes were stable on the simulated time scales, we focused the analysis on the organization of the ionic liquid substituents about the enzyme surface. Calculated solvent charge densities show that for both enzymes and in both solvents that changing positively charged residues to negative charge does indeed increase the charge density of the solvent near the enzyme surface. The radial distribution of IL constituents with respect to the enzyme reveals decreased interactions with the anion are prevalent in the modified systems when compared to the wild type, which is largely accompanied by an increase in cation contact. Additionally, the radial dependence of the charge density and ion distribution indicates that the effect of altering enzyme charge is confined to short range (≤1 nm) ordering of the IL. Ultimately, these results, which are consistent with that from prior experiments, provide molecular insight into the effect of enzyme surface charge on enzyme stability in ILs. © 2015 Wiley Periodicals, Inc.

  10. Two-leg ladder systems with dipole–dipole Fermion interactions

    NASA Astrophysics Data System (ADS)

    Mosadeq, Hamid; Asgari, Reza

    2018-05-01

    The ground-state phase diagram of a two-leg fermionic dipolar ladder with inter-site interactions is studied using density matrix renormalization group (DMRG) techniques. We use a state-of-the-art implementation of the DMRG algorithm and finite size scaling to simulate large system sizes with high accuracy. We also consider two different model systems and explore stable phases in half and quarter filling factors. We find that in the half filling, the charge and spin gaps emerge in a finite value of the dipole–dipole and on-site interactions. In the quarter filling case, s-wave superconducting state, charge density wave, homogenous insulating and phase separation phases occur depend on the interaction values. Moreover, in the dipole–dipole interaction, the D-Mott phase emerges when the hopping terms along the chain and rung are the same, whereas, this phase has been only proposed for the anisotropic Hubbard model. In the half filling case, on the other hand, there is either charge-density wave or charged Mott order phase depends on the orientation of the dipole moments of the particles with respect to the ladder geometry.

  11. Boundary conditions for the solution of the three-dimensional Poisson equation in open metallic enclosures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Debabrata; Singh, Gaurav; Kumar, Raghwendra

    2015-09-15

    Numerical solution of the Poisson equation in metallic enclosures, open at one or more ends, is important in many practical situations, such as high power microwave or photo-cathode devices. It requires imposition of a suitable boundary condition at the open end. In this paper, methods for solving the Poisson equation are investigated for various charge densities and aspect ratios of the open ends. It is found that a mixture of second order and third order local asymptotic boundary conditions is best suited for large aspect ratios, while a proposed non-local matching method, based on the solution of the Laplace equation,more » scores well when the aspect ratio is near unity for all charge density variations, including ones where the centre of charge is close to an open end or the charge density is non-localized. The two methods complement each other and can be used in electrostatic calculations where the computational domain needs to be terminated at the open boundaries of the metallic enclosure.« less

  12. Universal Disorder in Organic Semiconductors Due to Fluctuations in Space Charge

    NASA Astrophysics Data System (ADS)

    Wu, Tzu-Cheng

    This thesis concerns the study of charge transport in organic semiconductors. These materials are widely used as thin-film photoconductors in copiers and laser printers, and for their electroluminescent properties in organic light-emitting diodes. Much contemporary research is directed towards improving the efficiency of organic photovoltaic devices, which is limited to a large extent by the spatial and energetic disorder that hinders the charge mobility. One contribution to energetic disorder arises from the strong Coulomb interactions between injected charges with one another, but to date this has been largely ignored. We present a mean-field model for the effect of mutual interactions between injected charges hopping from site to site in an organic semiconductor. Our starting point is a modified Fröhlich Hamiltonian in which the charge is linearly coupled to the amplitudes of a wide band of dispersionless plasma modes having a Lorentzian distribution of frequencies. We show that in most applications of interest the hopping rates are fast enough while the plasma frequencies are low enough that random thermal fluctuations in the plasma density give rise to an energetically disordered landscape that is effectively stationary for many thousands of hops. Moreover, the distribution of site energies is Gaussian, and the energy-energy correlation function decays inversely with distance; as such, it can be argued that this disorder contributes to the Poole-Frenkel field dependence seen in a wide variety of experiments. Remarkably, the energetic disorder is universal; although it is caused by the fluctuations in the charge density, it is independent of the charge concentration.

  13. A new class of non-topological solitons

    NASA Technical Reports Server (NTRS)

    Frieman, Joshua A.; Lynn, Bryan W.

    1989-01-01

    A class of non-topological solitons was constructed in renormalizable scalar field theories with nonlinear self-interactions. For large charge Q, the soliton mass increases linearly with Q, i.e., the soliton mass density is approximately independent of charge. Such objects could be naturally produced in a phase transition in the early universe or in the decay of superconducting cosmic strings.

  14. N/Z influence on the level density parameter

    NASA Astrophysics Data System (ADS)

    Ademard, G.; Augey, L.; Borderie, B.; Le Neindre, N.; Marini, P.; Rivet, M.-F.; Twarog, T.

    2015-04-01

    A completely exclusive experiment was performed by the INDRA collaboration to study the isospin dependence of the level density parameter. Over a large N/Z range, the fusion-evaporation charged products of 34,36,40Ar+58,60,64Ni reactions were measured and identified both in charge and mass by coupling INDRA and VAMOS spectrometer. Preliminary results obtained by combining data of both detectors are presented for the 36Ar+58Ni at 13.3 A MeV. The analysis method of relevant observables for such an ambitious investigation are discussed and the progress of the data analysis are reviewed.

  15. Finite-size effects in simulations of electrolyte solutions under periodic boundary conditions

    NASA Astrophysics Data System (ADS)

    Thompson, Jeffrey; Sanchez, Isaac

    The equilibrium properties of charged systems with periodic boundary conditions may exhibit pronounced system-size dependence due to the long range of the Coulomb force. As shown by others, the leading-order finite-size correction to the Coulomb energy of a charged fluid confined to a periodic box of volume V may be derived from sum rules satisfied by the charge-charge correlations in the thermodynamic limit V -> ∞ . In classical systems, the relevant sum rule is the Stillinger-Lovett second-moment (or perfect screening) condition. This constraint implies that for large V, periodicity induces a negative bias of -kB T(2 V) - 1 in the total Coulomb energy density of a homogeneous classical charged fluid of given density and temperature. We present a careful study of the impact of such finite-size effects on the calculation of solute chemical potentials from explicit-solvent molecular simulations of aqueous electrolyte solutions. National Science Foundation Graduate Research Fellowship Program, Grant No. DGE-1610403.

  16. Charge Dynamics in near-Surface, Variable-Density Ensembles of Nitrogen-Vacancy Centers in Diamond.

    PubMed

    Dhomkar, Siddharth; Jayakumar, Harishankar; Zangara, Pablo R; Meriles, Carlos A

    2018-06-13

    Although the spin properties of superficial shallow nitrogen-vacancy (NV) centers have been the subject of extensive scrutiny, considerably less attention has been devoted to studying the dynamics of NV charge conversion near the diamond surface. Using multicolor confocal microscopy, here we show that near-surface point defects arising from high-density ion implantation dramatically increase the ionization and recombination rates of shallow NVs compared to those in bulk diamond. Further, we find that these rates grow linearly, not quadratically, with laser intensity, indicative of single-photon processes enabled by NV state mixing with other defect states. Accompanying these findings, we observe NV ionization and recombination in the dark, likely the result of charge transfer to neighboring traps. Despite the altered charge dynamics, we show that one can imprint rewritable, long-lasting patterns of charged-initialized, near-surface NVs over large areas, an ability that could be exploited for electrochemical biosensing or to optically store digital data sets with subdiffraction resolution.

  17. High charge-discharge performance of Pb{sub 0.98}La{sub 0.02}(Zr{sub 0.35}Sn{sub 0.55}Ti{sub 0.10}){sub 0.995}O{sub 3} antiferroelectric ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Chenhong; University of the Chinese Academy of Sciences, Beijing 100049; Liu, Zhen

    2016-08-21

    The energy storage performance and charge-discharge properties of Pb{sub 0.98}La{sub 0.02}(Zr{sub 0.35}Sn{sub 0.55}Ti{sub 0.10}){sub 0.995}O{sub 3} (PLZST) antiferroelectric ceramics were investigated through directly measuring the hysteresis loops and pulse discharge current-time curves. The energy density only varies 0.2% per degree from 25 °C to 85 °C, and the energy efficiency maintains at about 90%. Furthermore, an approximate calculating model of maximum power density p{sub max} was established for the discharge process. Under a relatively high working electric field (8.2 kV/mm), this ceramics possess a greatly enhanced power density of 18 MW/cm{sup 3}. Moreover, the pulse power properties did not show degradation until 1500 timesmore » of charge-discharge cycling. The large released energy density, high energy efficiency, good temperature stability, greatly enhanced power density, and excellent fatigue endurance combined together make this PLZST ceramics an ideal candidate for pulse power applications.« less

  18. Space-charge-limited currents for cathodes with electric field enhanced geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Dingguo, E-mail: laidingguo@nint.ac.cn; Qiu, Mengtong; Xu, Qifu

    This paper presents the approximate analytic solutions of current density for annulus and circle cathodes. The current densities of annulus and circle cathodes are derived approximately from first principles, which are in agreement with simulation results. The large scaling laws can predict current densities of high current vacuum diodes including annulus and circle cathodes in practical applications. In order to discuss the relationship between current density and electric field on cathode surface, the existing analytical solutions of currents for concentric cylinder and sphere diodes are fitted from existing solutions relating with electric field enhancement factors. It is found that themore » space-charge-limited current density for the cathode with electric-field enhanced geometry can be written in a general form of J = g(β{sub E}){sup 2}J{sub 0}, where J{sub 0} is the classical (1D) Child-Langmuir current density, β{sub E} is the electric field enhancement factor, and g is the geometrical correction factor depending on the cathode geometry.« less

  19. Optimization of cellulose nanocrystal length and surface charge density through phosphoric acid hydrolysis

    NASA Astrophysics Data System (ADS)

    Vanderfleet, Oriana M.; Osorio, Daniel A.; Cranston, Emily D.

    2017-12-01

    Cellulose nanocrystals (CNCs) are emerging nanomaterials with a large range of potential applications. CNCs are typically produced through acid hydrolysis with sulfuric acid; however, phosphoric acid has the advantage of generating CNCs with higher thermal stability. This paper presents a design of experiments approach to optimize the hydrolysis of CNCs from cotton with phosphoric acid. Hydrolysis time, temperature and acid concentration were varied across nine experiments and a linear least-squares regression analysis was applied to understand the effects of these parameters on CNC properties. In all but one case, rod-shaped nanoparticles with a high degree of crystallinity and thermal stability were produced. A statistical model was generated to predict CNC length, and trends in phosphate content and zeta potential were elucidated. The CNC length could be tuned over a relatively large range (238-475 nm) and the polydispersity could be narrowed most effectively by increasing the hydrolysis temperature and acid concentration. The CNC phosphate content was most affected by hydrolysis temperature and time; however, the charge density and colloidal stability were considered low compared with sulfuric acid hydrolysed CNCs. This study provides insight into weak acid hydrolysis and proposes `design rules' for CNCs with improved size uniformity and charge density. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.

  20. Describing long-range charge-separation processes with subsystem density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solovyeva, Alisa; Neugebauer, Johannes, E-mail: j.neugebauer@uni-muenster.de; Pavanello, Michele, E-mail: m.pavanello@rutgers.edu

    2014-04-28

    Long-range charge-transfer processes in extended systems are difficult to describe with quantum chemical methods. In particular, cost-effective (non-hybrid) approximations within time-dependent density functional theory (DFT) are not applicable unless special precautions are taken. Here, we show that the efficient subsystem DFT can be employed as a constrained DFT variant to describe the energetics of long-range charge-separation processes. A formal analysis of the energy components in subsystem DFT for such excitation energies is presented, which demonstrates that both the distance dependence and the long-range limit are correctly described. In addition, electronic couplings for these processes as needed for rate constants inmore » Marcus theory can be obtained from this method. It is shown that the electronic structure of charge-separated states constructed by a positively charged subsystem interacting with a negatively charged one is difficult to converge — charge leaking from the negative subsystem to the positive one can occur. This problem is related to the delocalization error in DFT and can be overcome with asymptotically correct exchange–correlation (XC) potentials or XC potentials including a sufficiently large amount of exact exchange. We also outline an approximate way to obtain charge-transfer couplings between locally excited and charge-separated states.« less

  1. Spacecraft Charging Hazards In Low-earth Orbit

    NASA Astrophysics Data System (ADS)

    Anderson, P. C.

    The space environment in low-Earth orbit (LEO) has until recently been considered quite benign to high levels of spacecraft charging. However, it has been found that the DMSP spacecraft at 840 km can charge to very large negative voltages (up to - 2000 V) when encountering intense precipitating electron events (auroral arcs) while traversing the auroral zone. The occurrence frequency of charging events, defined as when the spacecraft charged to levels exceeding 100 V negative, was highly correlated with the 11-year solar cycle with the largest number of events occurring during solar minimum. This was due to the requirement that the background thermal plasma den- sity be low, at most 104 cm-2. During solar maximum, the plasma density is typically well above that level due to the solar EUV ionizing radiation, and although the oc- currence frequency of auroral arcs is considerably greater than at solar minimum, the occurrence of high-level charging is minimal. Indeed, of the over 1200 events found during the most recent solar cycle, none occurred during the last solar maximum. This has implications to a number of LEO satellite programs, including the International Space Station (ISS). The plasma density in the ISS orbit, at a much lower altitude than DMSP, is well above that at 840 km and rarely below 104 cm-2. However, in the wake of the ISS, the plasma density can be 2 orders of magnitude or more lower than the background density and thus conditions are ripe for significant charging effects. With an inclination of 51.6 degrees, the ISS does enter the auroral zone, particularly during geomagnetic storms and substorms when the auroral boundary can penetrate to very low latitudes. This has significant implications for EVA operations in the ISS wake.

  2. A density functional theory study on the thermodynamic and dynamic properties of anthraquinone analogue cathode materials for rechargeable lithium ion batteries.

    PubMed

    Yang, Shu-Jing; Qin, Xiao-Ya; He, Rongxing; Shen, Wei; Li, Ming; Zhao, Liu-Bin

    2017-05-21

    Organic redox compounds have become the emerging electrode materials for rechargeable lithium ion batteries. The high electrochemical performance provides organic electrode materials with great opportunities to be applied in electric energy storage devices. Among the different types of organic materials, conjugated carbonyl compounds are the most promising type at present, because only they can simultaneously achieve, high energy density, high cycling stability, and high power density. In this research, a series of heteroatom substituted anthraquinone (AQ) derivatives were designed theoretically so that the high theoretical capacity of AQ remained. The discharge and charge mechanism as well as the thermodynamic and dynamic properties of AQ and its derivatives were investigated using first-principles density functional theory. Using heteroatom substitution, both the thermodynamic and dynamic properties of AQ as cathode materials could be largely improved. Among these conjugated carboxyl compounds, BDOZD and BDIOZD with a simultaneously high theoretical capacity and high working potential exhibit the largest energy density of about 780 W h kg -1 , which is 41% larger than that of AQ. The PQD with the smallest value of λ gives the largest charge transfer rate constant, which is about four times as large as the prototype molecule, AQ. The most interesting finding is that the lithium ion transfer plays a very important role in influencing both the discharge potential and electrochemical charge transfer rate. The present study illustrates that theoretical calculations provide a highly effective way to discover potential materials for use with rechargeable lithium ion batteries.

  3. POx/Al2O3 stacks: Highly effective surface passivation of crystalline silicon with a large positive fixed charge

    NASA Astrophysics Data System (ADS)

    Black, Lachlan E.; Kessels, W. M. M. Erwin

    2018-05-01

    Thin-film stacks of phosphorus oxide (POx) and aluminium oxide (Al2O3) are shown to provide highly effective passivation of crystalline silicon (c-Si) surfaces. Surface recombination velocities as low as 1.7 cm s-1 and saturation current densities J0s as low as 3.3 fA cm-2 are obtained on n-type (100) c-Si surfaces passivated by 6 nm/14 nm thick POx/Al2O3 stacks deposited in an atomic layer deposition system and annealed at 450 °C. This excellent passivation can be attributed in part to an unusually large positive fixed charge density of up to 4.7 × 1012 cm-2, which makes such stacks especially suitable for passivation of n-type Si surfaces.

  4. Polyelectrolyte assisted charge titration spectrometry: Applications to latex and oxide nanoparticles.

    PubMed

    Mousseau, F; Vitorazi, L; Herrmann, L; Mornet, S; Berret, J-F

    2016-08-01

    The electrostatic charge density of particles is of paramount importance for the control of the dispersion stability. Conventional methods use potentiometric, conductometric or turbidity titration but require large amount of samples. Here we report a simple and cost-effective method called polyelectrolyte assisted charge titration spectrometry or PACTS. The technique takes advantage of the propensity of oppositely charged polymers and particles to assemble upon mixing, leading to aggregation or phase separation. The mixed dispersions exhibit a maximum in light scattering as a function of the volumetric ratio X, and the peak position XMax is linked to the particle charge density according to σ∼D0XMax where D0 is the particle diameter. The PACTS is successfully applied to organic latex, aluminum and silicon oxide particles of positive or negative charge using poly(diallyldimethylammonium chloride) and poly(sodium 4-styrenesulfonate). The protocol is also optimized with respect to important parameters such as pH and concentration, and to the polyelectrolyte molecular weight. The advantages of the PACTS technique are that it requires minute amounts of sample and that it is suitable to a broad variety of charged nano-objects. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Self-assembled virus-membrane complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Lihua; Liang, Hongjun; Angelini, Thomas

    Anionic polyelectrolytes and cationic lipid membranes can self-assemble into lamellar structures ranging from alternating layers of membranes and polyelectrolytes to 'missing layer' superlattice structures. We show that these structural differences can be understood in terms of the surface-charge-density mismatch between the polyelectrolyte and membrane components by examining complexes between cationic membranes and highly charged M13 viruses, a system that allowed us to vary the polyelectrolyte diameter independently of the charge density. Such virus-membrane complexes have pore sizes that are about ten times larger in area than DNA-membrane complexes, and can be used to package and organize large functional molecules; correlatedmore » arrays of Ru(bpy){sub 3}{sup 2+} macroionic dyes have been directly observed within the virus-membrane complexes using an electron-density reconstruction. These observations elucidate fundamental design rules for rational control of self-assembled polyelectrolyte-membrane structures, which have applications ranging from non-viral gene therapy to biomolecular templates for nanofabrication.« less

  6. Spin Funneling for Enhanced Spin Injection into Ferromagnets

    PubMed Central

    Sayed, Shehrin; Diep, Vinh Q.; Camsari, Kerem Yunus; Datta, Supriyo

    2016-01-01

    It is well-established that high spin-orbit coupling (SOC) materials convert a charge current density into a spin current density which can be used to switch a magnet efficiently and there is increasing interest in identifying materials with large spin Hall angle for lower switching current. Using experimentally benchmarked models, we show that composite structures can be designed using existing spin Hall materials such that the effective spin Hall angle is larger by an order of magnitude. The basic idea is to funnel spins from a large area of spin Hall material into a small area of ferromagnet using a normal metal with large spin diffusion length and low resistivity like Cu or Al. We show that this approach is increasingly effective as magnets get smaller. We avoid unwanted charge current shunting by the low resistive NM layer utilizing the newly discovered phenomenon of pure spin conduction in ferromagnetic insulators via magnon diffusion. We provide a spin circuit model for magnon diffusion in FMI that is benchmarked against recent experiments and theory. PMID:27374496

  7. Spin Funneling for Enhanced Spin Injection into Ferromagnets

    NASA Astrophysics Data System (ADS)

    Sayed, Shehrin; Diep, Vinh Q.; Camsari, Kerem Yunus; Datta, Supriyo

    2016-07-01

    It is well-established that high spin-orbit coupling (SOC) materials convert a charge current density into a spin current density which can be used to switch a magnet efficiently and there is increasing interest in identifying materials with large spin Hall angle for lower switching current. Using experimentally benchmarked models, we show that composite structures can be designed using existing spin Hall materials such that the effective spin Hall angle is larger by an order of magnitude. The basic idea is to funnel spins from a large area of spin Hall material into a small area of ferromagnet using a normal metal with large spin diffusion length and low resistivity like Cu or Al. We show that this approach is increasingly effective as magnets get smaller. We avoid unwanted charge current shunting by the low resistive NM layer utilizing the newly discovered phenomenon of pure spin conduction in ferromagnetic insulators via magnon diffusion. We provide a spin circuit model for magnon diffusion in FMI that is benchmarked against recent experiments and theory.

  8. Fluctuations and instabilities of a holographic metal

    NASA Astrophysics Data System (ADS)

    Jokela, Niko; Järvinen, Matti; Lippert, Matthew

    2013-02-01

    We analyze the quasinormal modes of the D2-D8' model of 2+1-dimensional, strongly-coupled, charged fermions in a background magnetic field and at non-zero density. The model is known to include a quantum Hall phase with integer filling fraction. As expected, we find a hydrodynamical diffusion mode at small momentum and the nonzero-temperature holographic zero sound, which becomes massive above a critical magnetic field. We confirm the previously-known thermodynamic instability. In addition, we discover an instability at low temperature, large mass, and in a charge density and magnetic field range near the quantum Hall phase to an inhomogeneous striped phase.

  9. Communications: Complete description of re-entrant phase behavior in a charge variable colloidal model system.

    PubMed

    Wette, Patrick; Klassen, Ina; Holland-Moritz, Dirk; Herlach, Dieter M; Schöpe, Hans Joachim; Lorenz, Nina; Reiber, Holger; Palberg, Thomas; Roth, Stephan V

    2010-04-07

    In titration experiments with NaOH, we have determined the full phase diagram of charged colloidal spheres in dependence on the particle density n, the particle effective charge Z(eff) and the concentration of screening electrolyte c using microscopy, light and ultrasmall angle x-ray scattering (USAXS). For sufficiently large n, the system crystallizes upon increasing Z(eff) at constant c and melts upon increasing c at only slightly altered Z(eff). In contrast to earlier work, equilibrium phase boundaries are consistent with a universal melting line prediction from computer simulation, if the elasticity effective charge is used. This charge accounts for both counterion condensation and many-body effects.

  10. Currents Induced by Injected Charge in Junction Detectors

    PubMed Central

    Gaubas, Eugenijus; Ceponis, Tomas; Kalesinskas, Vidas

    2013-01-01

    The problem of drifting charge-induced currents is considered in order to predict the pulsed operational characteristics in photo- and particle-detectors with a junction controlled active area. The direct analysis of the field changes induced by drifting charge in the abrupt junction devices with a plane-parallel geometry of finite area electrodes is presented. The problem is solved using the one-dimensional approach. The models of the formation of the induced pulsed currents have been analyzed for the regimes of partial and full depletion. The obtained solutions for the current density contain expressions of a velocity field dependence on the applied voltage, location of the injected surface charge domain and carrier capture parameters. The drift component of this current coincides with Ramo's expression. It has been illustrated, that the synchronous action of carrier drift, trapping, generation and diffusion can lead to a vast variety of possible current pulse waveforms. Experimental illustrations of the current pulse variations determined by either the rather small or large carrier density within the photo-injected charge domain are presented, based on a study of Si detectors. PMID:24036586

  11. Measuring particle charge in an rf dusty plasma

    NASA Astrophysics Data System (ADS)

    Fung, Jerome; Liu, Bin; Goree, John; Nosenko, Vladimir

    2004-11-01

    A dusty plasma is an ionized gas containing micron-size particles of solid matter. A particle gains a large negative charge by collecting electrons and ions from the plasma. In a gas discharge, particles can be levitated by the sheath electric field above a horizontal planar electrode. Most dusty plasma experiments require a knowledge of the particle charge, which is a key parameter for all interactions with other particles and the plasma electric field. Several methods have been developed in the literature to measure the charge. The vertical resonance method uses Langmuir probe measurements of the ion density and video camera measurements of the amplitude of vertical particle oscillations, which are excited by modulating the rf voltage. Here, we report a new method that is a variation of the vertical resonance method. It uses the plasma potential and particle height, which can be measured more accurately than the ion density. We tested this method and compared the resulting charge to values obtained using the original resonance method as well as sound speed methods. Work supported by an NSF REU grant, NASA and DOE.

  12. Dielectric and vibrational properties of amino acids

    NASA Astrophysics Data System (ADS)

    Tulip, P. R.; Clark, S. J.

    2004-09-01

    We calculate polarizability tensors and normal mode frequencies for the amino acids alanine, leucine, isoleucine, and valine using density functional perturbation theory implemented within the plane wave pseudopotential framework. It is found that the behavior of the electron density under external fields depends to a large extent on the geometrical structure of the molecule in question, rather than simply on the constituent functional groups. The normal modes are able to help distinguish between the different types of intramolecular hydrogen bonding present, and help to explain why leucine is found in the zwitterionic form for the gaseous phase. Calculated IR spectra show a marked difference between those obtained for zwitterionic and nonzwitterionic molecules. These differences can be attributed to the different chemical and hydrogen bonds present. Effective dynamical charges are calculated, and compared to atomic charges obtained from Mulliken population analysis. It is found that disagreement exists, largely due to the differing origins of these quantities.

  13. Low-temperature study of neutral and charged excitons in the large-area monolayer WS2

    NASA Astrophysics Data System (ADS)

    Gu, Hong; Chen, Le; Lu, Youming; Tian, Feifei; Zhang, Zhiqiang; Xu, Ke; Wu, Jing; Divakar Botcha, V.; Li, Kuilong; Liu, Xinke

    2018-06-01

    We present a low-temperature optical study of the large-area monolayer WS2 grown by chemical vapor deposition (CVD). Power-dependent photoluminescence (PL) measurements were conducted, and temperature-dependent PL spectra were measured in the range of 3 to 300 K. With the comparative PL bands obtained, a stronger trion emission in the edge region was detected to be the key difference. Sulfur vacancies (SVs) were observed to increase in density along the growth direction and found to be the main source of the large population of local charge carriers. The monolayer WS2 exhibited an upper bound for the trion binding energy of 18 meV in the edge region.

  14. Accurately tuning the charge on giant polyoxometalate type Keplerates through stoichiometric interaction with cationic surfactants.

    PubMed

    Kistler, Melissa L; Patel, Komal G; Liu, Tianbo

    2009-07-07

    We report an approach of exploring the interaction between cationic surfactants and a type of structurally well-defined, spherical "Keplerate" polyoxometalate (POM) macroanionic molecular clusters, {Mo72V30}, in aqueous solution. The effectiveness of the interaction can be determined by monitoring the size change of the "blackberry" supramolecular structures formed by the self-assembly of {Mo72V30} macroions, which is determined by the effective charge density on the macroions. Long-chain surfactants (CTAB and CTAT) can interact with {Mo72V30} macroions stoichiometrically and lower their charge density. Consequently, the blackberry size decreases continuously with increasing surfactant concentration in solution. On the other hand, for short-chain surfactants (e.g., OTAB), a larger fraction of surfactants exist as discrete chains in solution and do not strongly interact with the macroions. This approach shows that a controllable amount of suitable surfactants can accurately tune the charge on large molecular clusters.

  15. Modeling of Optical Waveguide Poling and Thermally Stimulated Discharge (TSD) Charge and Current Densities for Guest/Host Electro Optic Polymers

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Ashley, Paul R.; Abushagur, Mustafa

    2004-01-01

    A charge density and current density model of a waveguide system has been developed to explore the effects of electric field electrode poling. An optical waveguide may be modeled during poling by considering the dielectric charge distribution, polarization charge distribution, and conduction charge generated by the poling field. These charge distributions are the source of poling current densities. The model shows that boundary charge current density and polarization current density are the major source of currents measured during poling and thermally stimulated discharge These charge distributions provide insight into the poling mechanisms and are directly related to E(sub A), and, alpha(sub r). Initial comparisons with experimental data show excellent correlation to the model results.

  16. Scaling of Device Variability and Subthreshold Swing in Ballistic Carbon Nanotube Transistors

    NASA Astrophysics Data System (ADS)

    Cao, Qing; Tersoff, Jerry; Han, Shu-Jen; Penumatcha, Ashish V.

    2015-08-01

    In field-effect transistors, the inherent randomness of dopants and other charges is a major cause of device-to-device variability. For a quasi-one-dimensional device such as carbon nanotube transistors, even a single charge can drastically change the performance, making this a critical issue for their adoption as a practical technology. Here we calculate the effect of the random charges at the gate-oxide surface in ballistic carbon nanotube transistors, finding good agreement with the variability statistics in recent experiments. A combination of experimental and simulation results further reveals that these random charges are also a major factor limiting the subthreshold swing for nanotube transistors fabricated on thin gate dielectrics. We then establish that the scaling of the nanotube device uniformity with the gate dielectric, fixed-charge density, and device dimension is qualitatively different from conventional silicon transistors, reflecting the very different device physics of a ballistic transistor with a quasi-one-dimensional channel. The combination of gate-oxide scaling and improved control of fixed-charge density should provide the uniformity needed for large-scale integration of such novel one-dimensional transistors even at extremely scaled device dimensions.

  17. Fragmentation network of doubly charged methionine: Interpretation using graph theory

    NASA Astrophysics Data System (ADS)

    Ha, D. T.; Yamazaki, K.; Wang, Y.; Alcamí, M.; Maeda, S.; Kono, H.; Martín, F.; Kukk, E.

    2016-09-01

    The fragmentation of doubly charged gas-phase methionine (HO2CCH(NH2)CH2CH2SCH3) is systematically studied using the self-consistent charge density functional tight-binding molecular dynamics (MD) simulation method. We applied graph theory to analyze the large number of the calculated MD trajectories, which appears to be a highly effective and convenient means of extracting versatile information from the large data. The present theoretical results strongly concur with the earlier studied experimental ones. Essentially, the dication dissociates into acidic group CO2H and basic group C4NSH10. The former may carry a single or no charge and stays intact in most cases, whereas the latter may hold either a single or a double charge and tends to dissociate into smaller fragments. The decay of the basic group is observed to follow the Arrhenius law. The dissociation pathways to CO2H and C4NSH10 and subsequent fragmentations are also supported by ab initio calculations.

  18. Dynamics of electrical double layer formation in room-temperature ionic liquids under constant-current charging conditions

    NASA Astrophysics Data System (ADS)

    Jiang, Xikai; Huang, Jingsong; Zhao, Hui; Sumpter, Bobby G.; Qiao, Rui

    2014-07-01

    We report detailed simulation results on the formation dynamics of an electrical double layer (EDL) inside an electrochemical cell featuring room-temperature ionic liquids (RTILs) enclosed between two planar electrodes. Under relatively small charging currents, the evolution of cell potential from molecular dynamics (MD) simulations during charging can be suitably predicted by the Landau-Ginzburg-type continuum model proposed recently (Bazant et al 2011 Phys. Rev. Lett. 106 046102). Under very large charging currents, the cell potential from MD simulations shows pronounced oscillation during the initial stage of charging, a feature not captured by the continuum model. Such oscillation originates from the sequential growth of the ionic space charge layers near the electrode surface. This allows the evolution of EDLs in RTILs with time, an atomistic process difficult to visualize experimentally, to be studied by analyzing the cell potential under constant-current charging conditions. While the continuum model cannot predict the potential oscillation under such far-from-equilibrium charging conditions, it can nevertheless qualitatively capture the growth of cell potential during the later stage of charging. Improving the continuum model by introducing frequency-dependent dielectric constant and density-dependent ion diffusion coefficients may help to further extend the applicability of the model. The evolution of ion density profiles is also compared between the MD and the continuum model, showing good agreement.

  19. Dynamics of electrical double layer formation in room-temperature ionic liquids under constant-current charging conditions.

    PubMed

    Jiang, Xikai; Huang, Jingsong; Zhao, Hui; Sumpter, Bobby G; Qiao, Rui

    2014-07-16

    We report detailed simulation results on the formation dynamics of an electrical double layer (EDL) inside an electrochemical cell featuring room-temperature ionic liquids (RTILs) enclosed between two planar electrodes. Under relatively small charging currents, the evolution of cell potential from molecular dynamics (MD) simulations during charging can be suitably predicted by the Landau-Ginzburg-type continuum model proposed recently (Bazant et al 2011 Phys. Rev. Lett. 106 046102). Under very large charging currents, the cell potential from MD simulations shows pronounced oscillation during the initial stage of charging, a feature not captured by the continuum model. Such oscillation originates from the sequential growth of the ionic space charge layers near the electrode surface. This allows the evolution of EDLs in RTILs with time, an atomistic process difficult to visualize experimentally, to be studied by analyzing the cell potential under constant-current charging conditions. While the continuum model cannot predict the potential oscillation under such far-from-equilibrium charging conditions, it can nevertheless qualitatively capture the growth of cell potential during the later stage of charging. Improving the continuum model by introducing frequency-dependent dielectric constant and density-dependent ion diffusion coefficients may help to further extend the applicability of the model. The evolution of ion density profiles is also compared between the MD and the continuum model, showing good agreement.

  20. Limitations of threshold voltage engineering of AlGaN/GaN heterostructures by dielectric interface charge density and manipulation by oxygen plasma surface treatments

    NASA Astrophysics Data System (ADS)

    Lükens, G.; Yacoub, H.; Kalisch, H.; Vescan, A.

    2016-05-01

    The interface charge density between the gate dielectric and an AlGaN/GaN heterostructure has a significant impact on the absolute value and stability of the threshold voltage Vth of metal-insulator-semiconductor (MIS) heterostructure field effect transistor. It is shown that a dry-etching step (as typically necessary for normally off devices engineered by gate-recessing) before the Al2O3 gate dielectric deposition introduces a high positive interface charge density. Its origin is most likely donor-type trap states shifting Vth to large negative values, which is detrimental for normally off devices. We investigate the influence of oxygen plasma annealing techniques of the dry-etched AlGaN/GaN surface by capacitance-voltage measurements and demonstrate that the positive interface charge density can be effectively compensated. Furthermore, only a low Vth hysteresis is observable making this approach suitable for threshold voltage engineering. Analysis of the electrostatics in the investigated MIS structures reveals that the maximum Vth shift to positive voltages achievable is fundamentally limited by the onset of accumulation of holes at the dielectric/barrier interface. In the case of the Al2O3/Al0.26Ga0.74N/GaN material system, this maximum threshold voltage shift is limited to 2.3 V.

  1. Chemical Vapor-Deposited Hexagonal Boron Nitride as a Scalable Template for High-Performance Organic Field-Effect Transistors

    DOE PAGES

    Lee, Tae Hoon; Kim, Kwanpyo; Kim, Gwangwoo; ...

    2017-02-27

    Organic field-effect transistors have attracted much attention because of their potential use in low-cost, large-area, flexible electronics. High-performance organic transistors require a low density of grain boundaries in their organic films and a decrease in the charge trap density at the semiconductor–dielectric interface for efficient charge transport. In this respect, the role of the dielectric material is crucial because it primarily determines the growth of the film and the interfacial trap density. Here, we demonstrate the use of chemical vapor-deposited hexagonal boron nitride (CVD h-BN) as a scalable growth template/dielectric for high-performance organic field-effect transistors. The field-effect transistors based onmore » C60 films grown on single-layer CVD h-BN exhibit an average mobility of 1.7 cm 2 V –1 s –1 and a maximal mobility of 2.9 cm 2 V –1 s –1 with on/off ratios of 10 7. The structural and morphology analysis shows that the epitaxial, two-dimensional growth of C 60 on CVD h-BN is mainly responsible for the superior charge transport behavior. In conclusion, we believe that CVD h-BN can serve as a growth template for various organic semiconductors, allowing the development of large-area, high-performance flexible electronics.« less

  2. Chemical Vapor-Deposited Hexagonal Boron Nitride as a Scalable Template for High-Performance Organic Field-Effect Transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Tae Hoon; Kim, Kwanpyo; Kim, Gwangwoo

    Organic field-effect transistors have attracted much attention because of their potential use in low-cost, large-area, flexible electronics. High-performance organic transistors require a low density of grain boundaries in their organic films and a decrease in the charge trap density at the semiconductor–dielectric interface for efficient charge transport. In this respect, the role of the dielectric material is crucial because it primarily determines the growth of the film and the interfacial trap density. Here, we demonstrate the use of chemical vapor-deposited hexagonal boron nitride (CVD h-BN) as a scalable growth template/dielectric for high-performance organic field-effect transistors. The field-effect transistors based onmore » C60 films grown on single-layer CVD h-BN exhibit an average mobility of 1.7 cm 2 V –1 s –1 and a maximal mobility of 2.9 cm 2 V –1 s –1 with on/off ratios of 10 7. The structural and morphology analysis shows that the epitaxial, two-dimensional growth of C 60 on CVD h-BN is mainly responsible for the superior charge transport behavior. In conclusion, we believe that CVD h-BN can serve as a growth template for various organic semiconductors, allowing the development of large-area, high-performance flexible electronics.« less

  3. Large Modulation of Charge Carrier Mobility in Doped Nanoporous Organic Transistors.

    PubMed

    Zhang, Fengjiao; Dai, Xiaojuan; Zhu, Weikun; Chung, Hyunjoong; Diao, Ying

    2017-07-01

    Molecular doping of organic electronics has shown promise to sensitively modulate important device metrics. One critical challenge is the disruption of structure order upon doping of highly crystalline organic semiconductors, which significantly reduces the charge carrier mobility. This paper demonstrates a new method to achieve large modulation of charge carrier mobility via channel doping without disrupting the molecular ordering. Central to the method is the introduction of nanopores into the organic semiconductor thin films via a simple and robust templated meniscus-guided coating method. Using this method, the charge carrier mobility of C 8 -benzothieno[3,2-b]benzothiophene transistors is boosted by almost sevenfold. This paper further demonstrates enhanced electron transport by close to an order of magnitude in a diketopyrrolopyrrole-based donor-acceptor polymer. Combining spectroscopic measurements, density functional theory calculations, and electrical characterizations, the doping mechanism is identified as partial-charge-transfer induced trap filling. The nanopores serve to enhance the dopant/organic semiconductor charge transfer reaction by exposing the π-electrons to the pore wall. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Large Modulation of Charge Carrier Mobility in Doped Nanoporous Organic Transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fengjiao; Dai, Xiaojuan; Zhu, Weikun

    Molecular doping of organic electronics has shown promise to sensitively modulate important device metrics. One critical challenge is the disruption of structure order upon doping of highly crystalline organic semiconductors, which significantly reduces the charge carrier mobility. This paper demonstrates a new method to achieve large modulation of charge carrier mobility via channel doping without disrupting the molecular ordering. Central to the method is the introduction of nanopores into the organic semiconductor thin films via a simple and robust templated meniscus-guided coating method. Using this method, the charge carrier mobility of C8-benzothieno[3,2-b]benzothiophene transistors is boosted by almost sevenfold. This papermore » further demonstrates enhanced electron transport by close to an order of magnitude in a diketopyrrolopyrrole-based donor–acceptor polymer. Combining spectroscopic measurements, density functional theory calculations, and electrical characterizations, the doping mechanism is identified as partial-charge-transfer induced trap filling. The nanopores serve to enhance the dopant/organic semiconductor charge transfer reaction by exposing the π-electrons to the pore wall.« less

  5. A tunable electron beam source using trapping of electrons in a density down-ramp in laser wakefield acceleration.

    PubMed

    Ekerfelt, Henrik; Hansson, Martin; Gallardo González, Isabel; Davoine, Xavier; Lundh, Olle

    2017-09-25

    One challenge in the development of laser wakefield accelerators is to demonstrate sufficient control and reproducibility of the parameters of the generated bunches of accelerated electrons. Here we report on a numerical study, where we demonstrate that trapping using density down-ramps allows for tuning of several electron bunch parameters by varying the properties of the density down-ramp. We show that the electron bunch length is determined by the difference in density before and after the ramp. Furthermore, the transverse emittance of the bunch is controlled by the steepness of the ramp. Finally, the amount of trapped charge depends both on the density difference and on the steepness of the ramp. We emphasize that both parameters of the density ramp are feasible to vary experimentally. We therefore conclude that this tunable electron accelerator makes it suitable for a wide range of applications, from those requiring short pulse length and low emittance, such as the free-electron lasers, to those requiring high-charge, large-emittance bunches to maximize betatron X-ray generation.

  6. Time and voltage dependences of nanoscale dielectric constant modulation on indium tin oxide films

    NASA Astrophysics Data System (ADS)

    Li, Liang; Hao, Haoyue; Zhao, Hua

    2017-01-01

    The modulation of indium tin oxide (ITO) films through surface charge accumulation plays an important role in many different applications. In order to elaborately study the modulation, we measured the dielectric constant of the modulated layer through examining the excitation of surface plasmon polaritons. Charges were pumped on the surfaces of ITO films through applying high voltage in appropriate directions. Experiments unveiled that the dielectric constant of the modulated layer had large variation along with the nanoscale charge accumulation. Corresponding numerical results were worked out through combining Drude model and Mayadas-Shatzkes model. Based on the above results, we deduced the time and voltage dependences of accumulated charge density, which revealed a long-time charge accumulation process.

  7. Quantum linear magnetoresistance in NbTe2

    NASA Astrophysics Data System (ADS)

    Chen, Hongxiang; Li, Zhilin; Fan, Xiao; Guo, Liwei; Chen, Xiaolong

    2018-07-01

    NbTe2 is a quasi-2D layered semimetal with charge density wave ground state showing a distorted-1T structure at room temperature. Here we report the anisotropic magneto-transport properties of NbTe2. An anomalous linear magnetoresistance up to 30% at 3 K in 9 T was observed, which can be well explained by a quantum linear magnetoresistance model. Our results reveal that a large quasi-2D Fermi surface and small Fermi pockets with linearly dispersive bands coexist in NbTe2. The comparison with the isostructural TaTe2 provides more information about the band structure evolution with charge density wave transitions in NbTe2 and TaTe2.

  8. Statistics of excitations in the electron glass model

    NASA Astrophysics Data System (ADS)

    Palassini, Matteo

    2011-03-01

    We study the statistics of elementary excitations in the classical electron glass model of localized electrons interacting via the unscreened Coulomb interaction in the presence of disorder. We reconsider the long-standing puzzle of the exponential suppression of the single-particle density of states near the Fermi level, by measuring accurately the density of states of charged and electron-hole pair excitations via finite temperature Monte Carlo simulation and zero-temperature relaxation. We also investigate the statistics of large charge rearrangements after a perturbation of the system, which may shed some light on the slow relaxation and glassy phenomena recently observed in a variety of Anderson insulators. In collaboration with Martin Goethe.

  9. Optimization of power and energy densities in supercapacitors

    NASA Astrophysics Data System (ADS)

    Robinson, David B.

    Supercapacitors use nanoporous electrodes to store large amounts of charge on their high surface areas, and use the ions in electrolytes to carry charge into the pores. Their high power density makes them a potentially useful complement to batteries. However, ion transport through long, narrow channels still limits power and efficiency in these devices. Proper design can mitigate this. Current collector geometry must also be considered once this is done. Here, De Levie's model for porous electrodes is applied to quantitatively predict device performance and to propose optimal device designs for given specifications. Effects unique to nanoscale pores are considered, including that pores may not have enough salt to fully charge. Supercapacitors are of value for electric vehicles, portable electronics, and power conditioning in electrical grids with distributed renewable sources, and that value will increase as new device fabrication methods are developed and proper design accommodates those improvements. Example design outlines for vehicle applications are proposed and compared.

  10. Influence of Coulomb interaction of tunable shapes on the collective transport of ultradilute two-dimensional holes.

    PubMed

    Huang, Jian; Pfeiffer, L N; West, K W

    2014-01-24

    In high quality updoped GaAs field-effect transistors, the two-dimensional charge carrier concentrations can be tuned to very low values similar to the density of electrons on helium surfaces. An important interaction effect, screening of the Coulomb interaction by the gate, rises as a result of the large charge spacing comparable to the distance between the channel and the gate. Based on the results of the temperature (T) dependence of the resistivity from measuring four different samples, a power-law characteristic is found for charge densities ≤2×10(9)  cm(-2). Moreover, the exponent exhibits a universal dependence on a single dimensionless parameter, the ratio between the mean carrier separation and the distance to the metallic gate that screens the Coulomb interaction. Thus, the electronic properties are tuned through varying the shape of the interaction potential.

  11. Current-voltage characteristics influenced by the nanochannel diameter and surface charge density in a fluidic field-effect-transistor.

    PubMed

    Singh, Kunwar Pal; Guo, Chunlei

    2017-06-21

    The nanochannel diameter and surface charge density have a significant impact on current-voltage characteristics in a nanofluidic transistor. We have simulated the effect of the channel diameter and surface charge density on current-voltage characteristics of a fluidic nanochannel with positive surface charge on its walls and a gate electrode on its surface. Anion depletion/enrichment leads to a decrease/increase in ion current with gate potential. The ion current tends to increase linearly with gate potential for narrow channels at high surface charge densities and narrow channels are more effective to control the ion current at high surface charge densities. The current-voltage characteristics are highly nonlinear for wide channels at low surface charge densities and they show different regions of current change with gate potential. The ion current decreases with gate potential after attaining a peak value for wide channels at low values of surface charge densities. At low surface charge densities, the ion current can be controlled by a narrow range of gate potentials for wide channels. The current change with source drain voltage shows ohmic, limiting and overlimiting regions.

  12. Beam energy dependence of pseudorapidity distributions of charged particles produced in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Basu, Sumit; Nayak, Tapan K.; Datta, Kaustuv

    2016-06-01

    Heavy-ion collisions at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory and the Large Hadron Collider at CERN probe matter at extreme conditions of temperature and energy density. Most of the global properties of the collisions can be extracted from the measurements of charged-particle multiplicity and pseudorapidity (η ) distributions. We have shown that the available experimental data on beam energy and centrality dependence of η distributions in heavy-ion (Au +Au or Pb +Pb ) collisions from √{sNN}=7.7 GeV to 2.76 TeV are reasonably well described by the AMPT model, which is used for further exploration. The nature of the η distributions has been described by a double Gaussian function using a set of fit parameters, which exhibit a regular pattern as a function of beam energy. By extrapolating the parameters to a higher energy of √{sNN}=5.02 TeV, we have obtained the charged-particle multiplicity densities, η distributions, and energy densities for various centralities. Incidentally, these results match well with some of the recently published data by the ALICE Collaboration.

  13. Electric Double Layer Composed of an Antagonistic Salt in an Aqueous Mixture: Local Charge Separation and Surface Phase Transition

    NASA Astrophysics Data System (ADS)

    Yabunaka, Shunsuke; Onuki, Akira

    2017-09-01

    We examine an electric double layer containing an antagonistic salt in an aqueous mixture, where the cations are small and hydrophilic but the anions are large and hydrophobic. In this situation, a strong coupling arises between the charge density and the solvent composition. As a result, the anions are trapped in an oil-rich adsorption layer on a hydrophobic wall. We then vary the surface charge density σ on the wall. For σ >0 the anions remain accumulated, but for σ <0 the cations are attracted to the wall with increasing |σ |. Furthermore, the electric potential drop Ψ (σ ) is nonmonotonic when the solvent interaction parameter χ (T ) exceeds a critical value χc determined by the composition and the ion density in the bulk. This leads to a first-order phase transition between two kinds of electric double layers with different σ and common Ψ . In equilibrium such two-layer regions can coexist. The steric effect due to finite ion sizes is crucial in these phenomena.

  14. Charge transfer in iridate-manganite superlattices

    DOE PAGES

    Okamoto, Satoshi; Nichols, John; Sohn, Changhee; ...

    2017-03-03

    Charge transfer in superlattices consisting of SrIrOmore » $$_3$$ and SrMnO$$_3$$ is investigated using density functional theory. Despite the nearly identical work function and non-polar interfaces between SrIrO$$_3$$ and SrMnO$$_3$$, rather large charge transfer was experimentally reported between them. Our results provide a qualitative understanding to such experimental reports. We further develop a microscopic model that captures the mechanism behind this phenomenon. This leads to unique strain dependence of such charge transfer in iridate-manganite superlattices. The predicted behavior is consistently verified by experiment. Lastly, our work thus demonstrates a new route to control electronic states in non-polar oxide heterostructures.« less

  15. Development of an abort gap monitor for the large hadroncollider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beche, J.-F.; Byrd, J.; De Santis, S.

    2004-07-01

    The Large Hadron Collider (LHC), presently under construction at CERN, requires monitoring the parasitic charge in the 3.3ms long gap in the machine fill structure. This gap, referred to as the abort gap, corresponds to the raise time of the abort kickers magnets. Any circulating particle present in the abort gap at the time of the kickers firing is lost inside the ring, rather than in the beam dump, and can potentially damage a number of the LHC components. CERN specifications indicate a linear density of 6 x 106 protons over a 100 ns interval as the maximum charge safelymore » allowed to accumulate in the abort gap at 7 TeV. We present a study of an abort gap monitor, based on a photomultiplier tube with a gated microchannel plate, which would allow for detecting such low charge densities by monitoring the synchrotron radiation emitted in the dedicated diagnostics port. We show results of beam test experiments at the Advanced Light Source (ALS) using a Hamamatsu 5961U MCP-PMT, which indicate that such an instrument has the required sensitivity to meet LHC specifications.« less

  16. Some modification of cellulose nanocrystals for functional Pickering emulsions

    PubMed Central

    Saidane, Dorra; Perrin, Emilie; Cherhal, Fanch; Guellec, Florian

    2016-01-01

    Cellulose nanocrystals (CNCs) are negatively charged colloidal particles well known to form highly stable surfactant-free Pickering emulsions. These particles can vary in surface charge density depending on their preparation by acid hydrolysis or applying post-treatments. CNCs with three different surface charge densities were prepared corresponding to 0.08, 0.16 and 0.64 e nm−2, respectively. Post-treatment might also increase the surface charge density. The well-known TEMPO-mediated oxidation substitutes C6-hydroxyl groups by C6-carboxyl groups on the surface. We report that these different modified CNCs lead to stable oil-in-water emulsions. TEMPO-oxidized CNC might be the basis of further modifications. It is shown that they can, for example, lead to hydrophobic CNCs with a simple method using quaternary ammonium salts that allow producing inverse water-in-oil emulsions. Different from CNC modification before emulsification, modification can be carried out on the droplets after emulsification. This way allows preparing functional capsules according to the layer-by-layer process. As a result, it is demonstrated here the large range of use of these biobased rod-like nanoparticles, extending therefore their potential use to highly sophisticated formulations. This article is part of the themed issue ‘Soft interfacial materials: from fundamentals to formulation’. PMID:27298429

  17. Counter-ions at single charged wall: Sum rules.

    PubMed

    Samaj, Ladislav

    2013-09-01

    For inhomogeneous classical Coulomb fluids in thermal equilibrium, like the jellium or the two-component Coulomb gas, there exists a variety of exact sum rules which relate the particle one-body and two-body densities. The necessary condition for these sum rules is that the Coulomb fluid possesses good screening properties, i.e. the particle correlation functions or the averaged charge inhomogeneity, say close to a wall, exhibit a short-range (usually exponential) decay. In this work, we study equilibrium statistical mechanics of an electric double layer with counter-ions only, i.e. a globally neutral system of equally charged point-like particles in the vicinity of a plain hard wall carrying a fixed uniform surface charge density of opposite sign. At large distances from the wall, the one-body and two-body counter-ion densities go to zero slowly according to the inverse-power law. In spite of the absence of screening, all known sum rules are shown to hold for two exactly solvable cases of the present system: in the weak-coupling Poisson-Boltzmann limit (in any spatial dimension larger than one) and at a special free-fermion coupling constant in two dimensions. This fact indicates an extended validity of the sum rules and provides a consistency check for reasonable theoretical approaches.

  18. Thermal emission from large area chemical vapor deposited graphene devices

    NASA Astrophysics Data System (ADS)

    Luxmoore, I. J.; Adlem, C.; Poole, T.; Lawton, L. M.; Mahlmeister, N. H.; Nash, G. R.

    2013-09-01

    The spatial variation of thermal emission from large area graphene grown by chemical vapor deposition, transferred onto SiO2/Si substrates and fabricated into field effect transistor structures, has been investigated using infra-red microscopy. A peak in thermal emission occurs, the position of which can be altered by reversal of the current direction. The experimental results are compared with a one dimensional finite element model, which accounts for Joule heating and electrostatic effects, and it is found that the thermal emission is governed by the charge distribution in the graphene and maximum Joule heating occurs at the point of minimum charge density.

  19. Large-Area Atomic Layers of the Charge-Density-Wave Conductor TiSe2.

    PubMed

    Wang, Hong; Chen, Yu; Duchamp, Martial; Zeng, Qingsheng; Wang, Xuewen; Tsang, Siu Hon; Li, Hongling; Jing, Lin; Yu, Ting; Teo, Edwin Hang Tong; Liu, Zheng

    2018-02-01

    Layered transition metal (Ti, Ta, Nb, etc.) dichalcogenides are important prototypes for the study of the collective charge density wave (CDW). Reducing the system dimensionality is expected to lead to novel properties, as exemplified by the discovery of enhanced CDW order in ultrathin TiSe 2 . However, the syntheses of monolayer and large-area 2D CDW conductors can currently only be achieved by molecular beam epitaxy under ultrahigh vacuum. This study reports the growth of monolayer crystals and up to 5 × 10 5 µm 2 large films of the typical 2D CDW conductor-TiSe 2 -by ambient-pressure chemical vapor deposition. Atomic resolution scanning transmission electron microscopy indicates the as-grown samples are highly crystalline 1T-phase TiSe 2 . Variable-temperature Raman spectroscopy shows a CDW phase transition temperature of 212.5 K in few layer TiSe 2 , indicative of high crystal quality. This work not only allows the exploration of many-body state of TiSe 2 in 2D limit but also offers the possibility of utilizing large-area TiSe 2 in ultrathin electronic devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Modulating the fixed charge density in silicon nitride films while monitoring the surface recombination velocity by photoluminescence imaging

    NASA Astrophysics Data System (ADS)

    Bazilchuk, Molly; Haug, Halvard; Marstein, Erik Stensrud

    2015-04-01

    Several important semiconductor devices such as solar cells and photodetectors may be fabricated based on surface inversion layer junctions induced by fixed charge in a dielectric layer. Inversion layer junctions can easily be fabricated by depositing layers with a high density of fixed charge on a semiconducting substrate. Increasing the fixed charge improves such devices; for instance, the efficiency of a solar cell can be substantially increased by reducing the surface recombination velocity, which is a function of the fixed charge density. Methods for increasing the charge density are therefore of interest. In this work, the fixed charge density in silicon nitride layers deposited by plasma enhanced chemical vapor deposition is increased to very high values above 1 × 1013 cm-2 after the application of an external voltage to a gate electrode. The effect of the fixed charge density on the surface recombination velocity was experimentally observed using the combination of capacitance-voltage characterization and photoluminescence imaging, showing a significant reduction in the surface recombination velocity for increasing charge density. The surface recombination velocity vs. charge density data was analyzed using a numerical device model, which indicated the presence of a sub-surface damage region formed during deposition of the layers. Finally, we have demonstrated that the aluminum electrodes used for charge injection may be chemically removed in phosphoric acid without loss of the underlying charge. The injected charge was shown to be stable for a prolonged time period, leading us to propose charge injection in silicon nitride films by application of soaking voltage as a viable method for fabricating inversion layer devices.

  1. Fabrication and characterization of controllable grain boundary arrays in solution-processed small molecule organic semiconductor films

    NASA Astrophysics Data System (ADS)

    Wo, Songtao; Headrick, Randall L.; Anthony, John E.

    2012-04-01

    We have produced solution-processed thin films of 6,13-bis(tri-isopropyl-silylethynyl) pentacene with grain sizes from a few micrometers up to millimeter scale by lateral crystallization from a rectangular stylus. Grains are oriented along the crystallization direction, and the grain size transverse to the crystallization direction depends inversely on the writing speed, hence forming a regular array of oriented grain boundaries with controllable spacing. We utilize these controllable arrays to systematically study the role of large-angle grain boundaries in carrier transport and charge trapping in thin film transistors. The effective mobility scales with the grain size, leading to an estimate of the potential drop at individual large-angle grain boundaries of more than 1 volt. This result indicates that the structure of grain boundaries is not molecularly abrupt, which may be a general feature of solution-processed small molecule organic semiconductor thin films, where relatively high energy grain boundaries are typically formed. Transient measurements after switching from positive to negative gate bias or between large and small negative gate bias reveal reversible charge trapping, with time constants on the order of 10 s and trap densities that are correlated with grain boundary density. We suggest that charge diffusion along grain boundaries and other defects is the rate-determining mechanism of the reversible trapping.

  2. Method for Estimating the Charge Density Distribution on a Dielectric Surface.

    PubMed

    Nakashima, Takuya; Suhara, Hiroyuki; Murata, Hidekazu; Shimoyama, Hiroshi

    2017-06-01

    High-quality color output from digital photocopiers and laser printers is in strong demand, motivating attempts to achieve fine dot reproducibility and stability. The resolution of a digital photocopier depends on the charge density distribution on the organic photoconductor surface; however, directly measuring the charge density distribution is impossible. In this study, we propose a new electron optical instrument that can rapidly measure the electrostatic latent image on an organic photoconductor surface, which is a dielectric surface, as well as a novel method to quantitatively estimate the charge density distribution on a dielectric surface by combining experimental data obtained from the apparatus via a computer simulation. In the computer simulation, an improved three-dimensional boundary charge density method (BCM) is used for electric field analysis in the vicinity of the dielectric material with a charge density distribution. This method enables us to estimate the profile and quantity of the charge density distribution on a dielectric surface with a resolution of the order of microns. Furthermore, the surface potential on the dielectric surface can be immediately calculated using the obtained charge density. This method enables the relation between the charge pattern on the organic photoconductor surface and toner particle behavior to be studied; an understanding regarding the same may lead to the development of a new generation of higher resolution photocopiers.

  3. Interfacial characteristics and leakage current transfer mechanisms in organometal trihalide perovskite gate-controlled devices via doping of PCBM

    NASA Astrophysics Data System (ADS)

    Wang, Yucheng; Zhang, Yuming; Liu, Yintao; Pang, Tiqiang; Hu, Ziyang; Zhu, Yuejin; Luan, Suzhen; Jia, Renxu

    2017-11-01

    Two types of perovskite (with and without doping of PCBM) based metal-oxide-semiconductor (MOS) gate-controlled devices were fabricated and characterized. The study of the interfacial characteristics and charge transfer mechanisms by doping of PCBM were analyzed by material and electrical measurements. Doping of PCBM does not affect the size and crystallinity of perovskite films, but has an impact on carrier extraction in perovskite MOS devices. The electrical hysteresis observed in capacitance-voltage and current-voltage measurements can be alleviated by doping of PCBM. Experimental results demonstrate that extremely low trap densities are found for the perovskite device without doping, while the doped sample leads to higher density of interface state. Three mechanisms including Ohm’s law, trap-filled-limit (TFL) emission, and child’s law were used to analyze possible charge transfer mechanisms. Ohm’s law mechanism is well suitable for charge transfer of both the perovskite MOS devices under light condition at large voltage, while TFL emission well addresses the behavior of charge transfer under dark at small voltage. This change of charge transfer mechanism is attributed to the impact of the ion drift within perovskites.

  4. Charge Separation and Recombination at Polymer-Fullerene Heterojunctions: Delocalization and Hybridization Effects.

    PubMed

    D'Avino, Gabriele; Muccioli, Luca; Olivier, Yoann; Beljonne, David

    2016-02-04

    We address charge separation and recombination in polymer/fullerene solar cells with a multiscale modeling built from accurate atomistic inputs and accounting for disorder, interface electrostatics and genuine quantum effects on equal footings. Our results show that bound localized charge transfer states at the interface coexist with a large majority of thermally accessible delocalized space-separated states that can be also reached by direct photoexcitation, thanks to their strong hybridization with singlet polymer excitons. These findings reconcile the recent experimental reports of ultrafast exciton separation ("hot" process) with the evidence that high quantum yields do not require excess electronic or vibrational energy ("cold" process), and show that delocalization, by shifting the density of charge transfer states toward larger effective electron-hole radii, may reduce energy losses through charge recombination.

  5. Complexation of ferric oxide particles with pectins of different charge density.

    PubMed

    Milkova, Viktoria; Kamburova, Kamelia; Petkanchin, Ivana; Radeva, Tsetska

    2008-09-02

    The effect of polyelectrolyte charge density on the electrical properties and stability of suspensions of oppositely charged oxide particles is followed by means of electro-optics and electrophoresis. Variations in the electro-optical effect and the electrophoretic mobility are examined at conditions where fully ionized pectins of different charge density adsorb onto particles with ionizable surfaces. The charge neutralization point coincides with the maximum of particle aggregation in all suspensions. We find that the concentration of polyelectrolyte, needed to neutralize the particle charge, decreases with increasing charge density of the pectin. The most highly charged pectin presents an exception to this order, which is explained with a reduction of the effective charge density of this pectin due to condensation of counterions. The presence of condensed counterions, remaining bound to the pectin during its adsorption on the particle surface, is proved by investigation of the frequency behavior of the electro-optical effect at charge reversal of the particle surface.

  6. Charge Transport Properties in Disordered Organic Semiconductor as a Function of Charge Density: Monte Carlo Simulation

    NASA Astrophysics Data System (ADS)

    Shukri, Seyfan Kelil

    2017-01-01

    We have done Kinetic Monte Carlo (KMC) simulations to investigate the effect of charge carrier density on the electrical conductivity and carrier mobility in disordered organic semiconductors using a lattice model. The density of state (DOS) of the system are considered to be Gaussian and exponential. Our simulations reveal that the mobility of the charge carrier increases with charge carrier density for both DOSs. In contrast, the mobility of charge carriers decreases as the disorder increases. In addition the shape of the DOS has a significance effect on the charge transport properties as a function of density which are clearly seen. On the other hand, for the same distribution width and at low carrier density, the change occurred on the conductivity and mobility for a Gaussian DOS is more pronounced than that for the exponential DOS.

  7. A method to estimate statistical errors of properties derived from charge-density modelling

    PubMed Central

    Lecomte, Claude

    2018-01-01

    Estimating uncertainties of property values derived from a charge-density model is not straightforward. A methodology, based on calculation of sample standard deviations (SSD) of properties using randomly deviating charge-density models, is proposed with the MoPro software. The parameter shifts applied in the deviating models are generated in order to respect the variance–covariance matrix issued from the least-squares refinement. This ‘SSD methodology’ procedure can be applied to estimate uncertainties of any property related to a charge-density model obtained by least-squares fitting. This includes topological properties such as critical point coordinates, electron density, Laplacian and ellipticity at critical points and charges integrated over atomic basins. Errors on electrostatic potentials and interaction energies are also available now through this procedure. The method is exemplified with the charge density of compound (E)-5-phenylpent-1-enylboronic acid, refined at 0.45 Å resolution. The procedure is implemented in the freely available MoPro program dedicated to charge-density refinement and modelling. PMID:29724964

  8. Enhanced charging capability of lithium metal batteries based on lithium bis(trifluoromethanesulfonyl)imide-lithium bis(oxalato)borate dual-salt electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, Hongfa; Shi, Pengcheng; Bhattacharya, Priyanka

    2016-06-01

    Rechargeable lithium (Li) metal batteries with conventional LiPF6-carbonate electrolytes have been reported to fail quickly at charging current densities of about 1.0 mA cm-2 and above. In this work, we demonstrate the rapid charging capability of the Li||LiNi0.8Co0.15Al0.05O2 (NCA) cells enabled by a dual-salt electrolyte of LiTFSI-LiBOB in a carbonate solvent mixture. It is found that the thickness of solid electrolyte interphase (SEI) layer on Li metal anode largely increases with increasing charging current density. However, the cells using the LiTFSI-LiBOB dual-salt electrolyte significantly outperforms those using the LiPF6 electrolyte at high charging current densities. At the charging current densitymore » of 1.50 mA cm-2, the Li||NCA cells with the dual-salt electrolyte can still deliver a discharge capacity of 131 mAh g-1 and a capacity retention of 80% after 100 cycles, while those with the LiPF6 electrolyte start to show fast capacity fading after the 30th cycle and only exhibit a low capacity of 25 mAh g-1 and a low retention of 15% after 100 cycles. The reasons for the good chargeability and cycling stability of the cells using LiTFSI-LiBOB dual-salt electrolyte can be attributed to the good film-formation ability of the electrolyte on lithium metal anode and the highly conductive nature of the sulfur-rich interphase layer.« less

  9. Theory of the interface between a classical plasma and a hard wall

    NASA Astrophysics Data System (ADS)

    Ballone, P.; Pastore, G.; Tosi, M. P.

    1983-09-01

    The interfacial density profile of a classical one-component plasma confined by a hard wall is studied in planar and spherical geometries. The approach adapts to interfacial problems a modified hypernetted-chain approximation developed by Lado and by Rosenfeld and Ashcroft for the bulk structure of simple liquids. The specific new aim is to embody selfconsistently into the theory a contact theorem, fixing the plasma density at the wall through an equilibrium condition which involves the electrical potential drop across the interface and the bulk pressure. The theory is brought into fully quantitative contact with computer simulation data for a plasma confined in a spherical cavity of large but finite radius. The interfacial potential at the point of zero charge is accurately reproduced by suitably combining the contact theorem with relevant bulk properties in a simple, approximate representation of the interfacial charge density profile.

  10. Theory of the interface between a classical plasma and a hard wall

    NASA Astrophysics Data System (ADS)

    Ballone, P.; Pastore, G.; Tosi, M. P.

    1984-12-01

    The interfacial density profile of a classical one-component plasma confined by a hard wall is studied in planar and spherical geometries. The approach adapts to interfacial problems a modified hypernetted-chain approximation developed by Lado and by Rosenfeld and Ashcroft for the bulk structure of simple liquids. The specific new aim is to embody self-consistently into the theory a “contact theorem”, fixing the plasma density at the wall through an equilibrium condition which involves the electrical potential drop across the interface and the bulk pressure. The theory is brought into fully quantitative contact with computer simulation data for a plasma confined in a spherical cavity of large but finite radius. It is also shown that the interfacial potential at the point of zero charge is accurately reproduced by suitably combining the contact theorem with relevant bulk properties in a simple, approximate representation of the interfacial charge density profile.

  11. Insight into the microscopic structure of an AdS black hole from a thermodynamical phase transition.

    PubMed

    Wei, Shao-Wen; Liu, Yu-Xiao

    2015-09-11

    Comparing with an ordinary thermodynamic system, we investigate the possible microscopic structure of a charged anti-de Sitter black hole completely from the thermodynamic viewpoint. The number density of the black hole molecules is introduced to measure the microscopic degrees of freedom of the black hole. We found that the number density suffers a sudden change accompanied by a latent heat when the black hole system crosses the small-large black hole coexistence curve, while when the system passes the critical point, it encounters a second-order phase transition with a vanishing latent heat due to the continuous change of the number density. Moreover, the thermodynamic scalar curvature suggests that there is a weak attractive interaction between two black hole molecules. These phenomena might cast new insight into the underlying microscopic structure of a charged anti-de Sitter black hole.

  12. High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode

    NASA Astrophysics Data System (ADS)

    Luan, Feng; Wang, Gongming; Ling, Yichuan; Lu, Xihong; Wang, Hanyu; Tong, Yexiang; Liu, Xiao-Xia; Li, Yat

    2013-08-01

    Here we demonstrate a high energy density asymmetric supercapacitor with nickel oxide nanoflake arrays as the cathode and reduced graphene oxide as the anode. Nickel oxide nanoflake arrays were synthesized on a flexible carbon cloth substrate using a seed-mediated hydrothermal method. The reduced graphene oxide sheets were deposited on three-dimensional (3D) nickel foam by hydrothermal treatment of nickel foam in graphene oxide solution. The nanostructured electrodes provide a large effective surface area. The asymmetric supercapacitor device operates with a voltage of 1.7 V and achieved a remarkable areal capacitance of 248 mF cm-2 (specific capacitance of 50 F g-1) at a charge/discharge current density of 1 mA cm-2 and a maximum energy density of 39.9 W h kg-1 (based on the total mass of active materials of 5.0 mg). Furthermore, the device showed an excellent charge/discharge cycling performance in 1.0 M KOH electrolyte at a current density of 5 mA cm-2, with a capacitance retention of 95% after 3000 cycles.

  13. High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode.

    PubMed

    Luan, Feng; Wang, Gongming; Ling, Yichuan; Lu, Xihong; Wang, Hanyu; Tong, Yexiang; Liu, Xiao-Xia; Li, Yat

    2013-09-07

    Here we demonstrate a high energy density asymmetric supercapacitor with nickel oxide nanoflake arrays as the cathode and reduced graphene oxide as the anode. Nickel oxide nanoflake arrays were synthesized on a flexible carbon cloth substrate using a seed-mediated hydrothermal method. The reduced graphene oxide sheets were deposited on three-dimensional (3D) nickel foam by hydrothermal treatment of nickel foam in graphene oxide solution. The nanostructured electrodes provide a large effective surface area. The asymmetric supercapacitor device operates with a voltage of 1.7 V and achieved a remarkable areal capacitance of 248 mF cm(-2) (specific capacitance of 50 F g(-1)) at a charge/discharge current density of 1 mA cm(-2) and a maximum energy density of 39.9 W h kg(-1) (based on the total mass of active materials of 5.0 mg). Furthermore, the device showed an excellent charge/discharge cycling performance in 1.0 M KOH electrolyte at a current density of 5 mA cm(-2), with a capacitance retention of 95% after 3000 cycles.

  14. Emission current from a single micropoint of explosive emission cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ping; Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an 710024; Sun, Jun

    Explosive emission cathodes (EECs) are widely used due to their large current. There has been much research on the explosive electron emission mechanism demonstrating that a current density of 10{sup 8}–10{sup 9 }A/cm{sup 2} is necessary for a micropoint to explode in several nanoseconds and the micropoint size is in micron-scale according to the observation of the cathode surface. This paper, however, makes an effort to research the current density and the micropoint size in another way which considers the space charge screening effect. Our model demonstrates that the relativistic effect is insignificant for the micropoint emission due to the smallmore » size of the micropoint and uncovers that the micron-scale size is an intrinsic demand for the micropoint to reach a space charge limited current density of 10{sup 8}–10{sup 9 }A/cm{sup 2}. Meanwhile, our analysis shows that as the voltage increases, the micropoint emission will turn from a field limited state to a space charge limited state, which makes the steady-state micropoint current density independent of the cathode work function and much less dependent on the electric field and the field enhancement factor than that predicted by the Fowler-Nordheim formula.« less

  15. Helium escape from the Earth's atmosphere - The charge exchange mechanism revisited

    NASA Technical Reports Server (NTRS)

    Lie-Svendsen, O.; Rees, M. H.; Stamnes, K.

    1992-01-01

    We have studied the escape of neutral helium from the terrestrial atmosphere through exothermic charge exchange reactions between He(+) ions and the major atmospheric constituents N2, O2 and O. Elastic collisions with the neutral background particles were treated quantitatively using a recently developed kinetic theory approach. An interhemispheric plasma transport model was employed to provide a global distribution of He(+) ions as a function of altitude, latitude and local solar time and for different levels of solar ionization. Combining these ion densities with neutral densities from an MSIS model and best estimates for the reaction rate coefficients of the charge exchange reactions, we computed the global distribution of the neutral He escape flux. The escape rates show large diurnal and latitudinal variations, while the global average does not vary by more than a factor of three over a solar cycle. We find that this escape mechanism is potentially important for the overall balance of helium in the Earth's atmosphere. However, more accurate values for the reaction rate coefficients of the charge exchange reactions are required to make a definitive assessment of its importance.

  16. Counterintuitive electron localisation from density-functional theory with polarisable solvent models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale, Stephen G., E-mail: sdale@ucmerced.edu; Johnson, Erin R., E-mail: erin.johnson@dal.ca

    2015-11-14

    Exploration of the solvated electron phenomena using density-functional theory (DFT) generally results in prediction of a localised electron within an induced solvent cavity. However, it is well known that DFT favours highly delocalised charges, rendering the localisation of a solvated electron unexpected. We explore the origins of this counterintuitive behaviour using a model Kevan-structure system. When a polarisable-continuum solvent model is included, it forces electron localisation by introducing a strong energetic bias that favours integer charges. This results in the formation of a large energetic barrier for charge-hopping and can cause the self-consistent field to become trapped in local minimamore » thus converging to stable solutions that are higher in energy than the ground electronic state. Finally, since the bias towards integer charges is caused by the polarisable continuum, these findings will also apply to other classical polarisation corrections, as in combined quantum mechanics and molecular mechanics (QM/MM) methods. The implications for systems beyond the solvated electron, including cationic DNA bases, are discussed.« less

  17. Molecular Effects on Coacervate-Driven Block Copolymer Self Assembly

    NASA Astrophysics Data System (ADS)

    Lytle, Tyer; Radhakrishna, Mithun; Sing, Charles

    Two oppositely charged polymers can undergo associative phase separation in a salt solution in a process known as \\x98complex coacervation. Recent work has used this as a motif to control the self-assembly behavior of a mixture of oppositely-charged block copolymers which form nanoscale structures. The materials formed from these complex coacervate-block copolymers (BCPs) have potential use as drug delivery systems, gels, and sensors. We have developed a hybrid Monte Carlo-Single Chain in a Mean Field (MC-SCMF) simulation method that is able to determine morphological phase diagrams for BCPs. This technique is an efficient way to calculate morphological phase diagrams and provides a clear link between molecular level features and self-assembly behaviors. Morphological phase diagrams showing the effects of polymer concentration, salt concentration, chain length, and charge-block fraction at large charge densities on self-assembly behavior have been determined. An unexpected phase transition from disorder to hexagonal packing at large salt concentrations has been observed for charge-block fractions equal to and larger than 0.5. This is attributed to the salt filling space stabilizing the morphology of the BCP.

  18. Theoretical characterization and design of small molecule donor material containing naphthodithiophene central unit for efficient organic solar cells.

    PubMed

    Duan, Yu-Ai; Geng, Yun; Li, Hai-Bin; Jin, Jun-Ling; Wu, Yong; Su, Zhong-Min

    2013-07-15

    To seek for high-performance small molecule donor materials used in heterojunction solar cell, six acceptor-donor-acceptor small molecules based on naphtho[2,3-b:6,7-b']dithiophene (NDT) units with different acceptor units were designed and characterized using density functional theory and time-dependent density functional theory. Their geometries, electronic structures, photophysical, and charge transport properties have been scrutinized comparing with the reported donor material NDT(TDPP)2 (TDPP  =  thiophene-capped diketopyrrolopyrrole). The open circuit voltage (V(oc)), energetic driving force(ΔE(L-L)), and exciton binding energy (E(b)) were also provided to give an elementary understanding on their cell performance. The results reveal that the frontier molecular orbitals of 3-7 match well with the acceptor material PC61 BM, and compounds 3-5 were found to exhibit the comparable performances to 1 and show promising potential in organic solar cells. In particular, comparing with 1, system 7 with naphthobisthiadiazole acceptor unit displays broader absorption spectrum, higher V(oc), lower E(b), and similar carrier mobility. An in-depth insight into the nature of the involved excited states based on transition density matrix and charge density difference indicates that all S1 states are mainly intramolecular charge transfer states with the charge transfer from central NDT unit to bilateral acceptor units, and also imply that the exciton of 7 can be dissociated easily due to its large extent of the charge transfer. In a word, 7 maybe superior to 1 and may act as a promising donor candidate for organic solar cell. Copyright © 2013 Wiley Periodicals, Inc.

  19. Carrier mobility and scattering lifetime in electric double-layer gated few-layer graphene

    NASA Astrophysics Data System (ADS)

    Piatti, E.; Galasso, S.; Tortello, M.; Nair, J. R.; Gerbaldi, C.; Bruna, M.; Borini, S.; Daghero, D.; Gonnelli, R. S.

    2017-02-01

    We fabricate electric double-layer field-effect transistor (EDL-FET) devices on mechanically exfoliated few-layer graphene. We exploit the large capacitance of a polymeric electrolyte to study the transport properties of three, four and five-layer samples under a large induced surface charge density both above and below the glass transition temperature of the polymer. We find that the carrier mobility shows a strong asymmetry between the hole and electron doping regime. We then employ ab initio density functional theory (DFT) calculations to determine the average scattering lifetime from the experimental data. We explain its peculiar dependence on the carrier density in terms of the specific properties of the electrolyte we used in our experiments.

  20. Flocculation of Clay Colloids Induced by Model Polyelectrolytes: Effects of Relative Charge Density and Size.

    PubMed

    Sakhawoth, Yasine; Michot, Laurent J; Levitz, Pierre; Malikova, Natalie

    2017-10-06

    Flocculation and its tuning are of utmost importance in the optimization of several industrial protocols in areas such as purification of waste water and civil engineering. Herein, we studied the polyelectrolyte-induced flocculation of clay colloids on a model system consisting of purified clay colloids of well-defined size fractions and ionene polyelectrolytes presenting regular and tunable chain charge density. To characterize ionene-induced clay flocculation, we turned to the combination of light absorbance (turbidity) and ζ-potential measurements, as well as adsorption isotherms. Our model system allowed us to identify the exact ratio of positive and negative charges in clay-ionene mixtures, the (c+/c-) ratio. For all samples studied, the onset of efficient flocculation occurred consistently at c+/c- ratios significantly below 1, which indicated the formation of highly ionene-deficient aggregates. At the same time, the ζ-potential measurements indicated an apparent zero charge on such aggregates. Thus, the ζ-potential values could not provide the stoichiometry inside the clay-ionene aggregates. The early onset of flocculation in clay-ionene mixtures is reminiscent of the behavior of multivalent salts and contrasts that of monovalent salts, for which a large excess amount of ions is necessary to achieve flocculation. Clear differences in the flocculation behavior are visible as a function of the ionene charge density, which governs the conformation of the ionene chains on the clay surface. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Determinant quantum Monte Carlo study of the two-dimensional single-band Hubbard-Holstein model

    DOE PAGES

    Johnston, S.; Nowadnick, E. A.; Kung, Y. F.; ...

    2013-06-24

    Here, we performed numerical studies of the Hubbard-Holstein model in two dimensions using determinant quantum Monte Carlo (DQMC). We also present details of the method, emphasizing the treatment of the lattice degrees of freedom, and then study the filling and behavior of the fermion sign as a function of model parameters. We find a region of parameter space with large Holstein coupling where the fermion sign recovers despite large values of the Hubbard interaction. This indicates that studies of correlated polarons at finite carrier concentrations are likely accessible to DQMC simulations. We then restrict ourselves to the half-filled model andmore » examine the evolution of the antiferromagnetic structure factor, other metrics for antiferromagnetic and charge-density-wave order, and energetics of the electronic and lattice degrees of freedom as a function of electron-phonon coupling. From this we find further evidence for a competition between charge-density-wave and antiferromagnetic order at half- filling.« less

  2. Unique magnetic and thermoelectric properties of chemically functionalized narrow carbon polymers.

    PubMed

    Zberecki, K; Wierzbicki, M; Swirkowicz, R; Barnaś, J

    2017-02-01

    We analyze magnetic, transport and thermoelectric properties of narrow carbon polymers, which are chemically functionalized with nitroxide groups. Numerical calculations of the electronic band structure and the corresponding transmission function are based on density functional theory. Transport and thermoelectric parameters are calculated in the linear response regime, with particular interest in charge and spin thermopowers (charge and spin Seebeck effects). Such nanoribbons are shown to have thermoelectric properties described by large thermoelectric efficiency, which makes these materials promising from the application point of view.

  3. Extension of the self-consistent-charge density-functional tight-binding method: third-order expansion of the density functional theory total energy and introduction of a modified effective coulomb interaction.

    PubMed

    Yang, Yang; Yu, Haibo; York, Darrin; Cui, Qiang; Elstner, Marcus

    2007-10-25

    The standard self-consistent-charge density-functional-tight-binding (SCC-DFTB) method (Phys. Rev. B 1998, 58, 7260) is derived by a second-order expansion of the density functional theory total energy expression, followed by an approximation of the charge density fluctuations by charge monopoles and an effective damped Coulomb interaction between the atomic net charges. The central assumptions behind this effective charge-charge interaction are the inverse relation of atomic size and chemical hardness and the use of a fixed chemical hardness parameter independent of the atomic charge state. While these approximations seem to be unproblematic for many covalently bound systems, they are quantitatively insufficient for hydrogen-bonding interactions and (anionic) molecules with localized net charges. Here, we present an extension of the SCC-DFTB method to incorporate third-order terms in the charge density fluctuations, leading to chemical hardness parameters that are dependent on the atomic charge state and a modification of the Coulomb scaling to improve the electrostatic treatment within the second-order terms. These modifications lead to a significant improvement in the description of hydrogen-bonding interactions and proton affinities of biologically relevant molecules.

  4. Plasma devices to guide and collimate a high density of MeV electrons.

    PubMed

    Kodama, R; Sentoku, Y; Chen, Z L; Kumar, G R; Hatchett, S P; Toyama, Y; Cowan, T E; Freeman, R R; Fuchs, J; Izawa, Y; Key, M H; Kitagawa, Y; Kondo, K; Matsuoka, T; Nakamura, H; Nakatsutsumi, M; Norreys, P A; Norimatsu, T; Snavely, R A; Stephens, R B; Tampo, M; Tanaka, K A; Yabuuchi, T

    2004-12-23

    The development of ultra-intense lasers has facilitated new studies in laboratory astrophysics and high-density nuclear science, including laser fusion. Such research relies on the efficient generation of enormous numbers of high-energy charged particles. For example, laser-matter interactions at petawatt (10(15) W) power levels can create pulses of MeV electrons with current densities as large as 10(12) A cm(-2). However, the divergence of these particle beams usually reduces the current density to a few times 10(6) A cm(-2) at distances of the order of centimetres from the source. The invention of devices that can direct such intense, pulsed energetic beams will revolutionize their applications. Here we report high-conductivity devices consisting of transient plasmas that increase the energy density of MeV electrons generated in laser-matter interactions by more than one order of magnitude. A plasma fibre created on a hollow-cone target guides and collimates electrons in a manner akin to the control of light by an optical fibre and collimator. Such plasma devices hold promise for applications using high energy-density particles and should trigger growth in charged particle optics.

  5. Charging/discharging behavior and mechanism of silicon quantum dots embedded in amorphous silicon carbide films

    NASA Astrophysics Data System (ADS)

    Wen, Xixing; Zeng, Xiangbin; Zheng, Wenjun; Liao, Wugang; Feng, Feng

    2015-01-01

    The charging/discharging behavior of Si quantum dots (QDs) embedded in amorphous silicon carbide (a-SiCx) was investigated based on the Al/insulating layer/Si QDs embedded in a-SiCx/SiO2/p-Si (metal-insulator-quantum dots-oxide-silicon) multilayer structure by capacitance-voltage (C-V) and conductance-voltage (G-V) measurements. Transmission electron microscopy and Raman scattering spectroscopy measurements reveal the microstructure and distribution of Si QDs. The occurrence and shift of conductance peaks indicate the carrier transfer and the charging/discharging behavior of Si QDs. The multilayer structure shows a large memory window of 5.2 eV at ±8 V sweeping voltage. Analysis of the C-V and G-V results allows a quantification of the Coulomb charging energy and the trapped charge density associated with the charging/discharging behavior. It is found that the memory window is related to the size effect, and Si QDs with large size or low Coulomb charging energy can trap two or more electrons by changing the charging voltage. Meanwhile, the estimated lower potential barrier height between Si QD and a-SiCx, and the lower Coulomb charging energy of Si QDs could enhance the charging and discharging effect of Si QDs and lead to an enlarged memory window. Further studies of the charging/discharging mechanism of Si QDs embedded in a-SiCx can promote the application of Si QDs in low-power consumption semiconductor memory devices.

  6. Ambipolar nature of dimethyl benzo difuran (DMBDF) molecule: A charge transport study

    NASA Astrophysics Data System (ADS)

    Sahoo, Smruti Ranjan; Sahu, Sridhar

    2017-05-01

    We describe a theoretical study of the charge transport properties of the organic dimethyl benzo difuran (DMBDF) molecule based on density functional theory (DFT). Reorganization energy, ionization potential (IP), electron affinity (EA), energy gaps, transfer integral (t) and charge mobility (μ) has been studied to depict the transport properties in the conjugated organic molecules. We computed, large homo transfer integral and IP value leading to high hole mobility (4.46 cm2/V sec). However, the electron reorganization energy (0.34 eV) and the electron mobility of 1.62 cm2/V sec, infers that the DMBDF organic molecule bears an ambipolar character.

  7. Theoretical study on naphthobischalcogenadiazole conjugated polymer systems and C61 derivative as organic photovoltaic semiconductors

    NASA Astrophysics Data System (ADS)

    Fujita, Takehiro; Matsui, Toru; Sumita, Masato; Imamura, Yutaka; Morihashi, Kenji

    2018-02-01

    We investigated the charge-transfer reactions of solar cells including a quaterthiophene copolymer with naphtho-bis-thiadiazole (PNTz4T) and naphtho-bis-oxadiazole (PNOz4T) using constrained density functional theory (CDFT). According to our calculations, the high electron-transfer rate results in a highly efficient solar cell, and the stable charge-transfer state results in low energy loss. Our computations imply that the following three factors are crucial to improve the performance of semiconducting polymers: (i) large structural changes following charge-transfer, (ii) narrow band gap, and (iii) spatially delocalized lowest unoccupied molecular orbital (LUMO) of the ground state.

  8. Charge storage in oxygen deficient phases of TiO2: defect Physics without defects.

    PubMed

    Padilha, A C M; Raebiger, H; Rocha, A R; Dalpian, G M

    2016-07-01

    Defects in semiconductors can exhibit multiple charge states, which can be used for charge storage applications. Here we consider such charge storage in a series of oxygen deficient phases of TiO2, known as Magnéli phases. These Magnéli phases (TinO2n-1) present well-defined crystalline structures, i.e., their deviation from stoichiometry is accommodated by changes in space group as opposed to point defects. We show that these phases exhibit intermediate bands with an electronic quadruple donor transitions akin to interstitial Ti defect levels in rutile TiO2. Thus, the Magnéli phases behave as if they contained a very large pseudo-defect density: ½ per formula unit TinO2n-1. Depending on the Fermi Energy the whole material will become charged. These crystals are natural charge storage materials with a storage capacity that rivals the best known supercapacitors.

  9. Using magnetic charge to understand soft-magnetic materials

    NASA Astrophysics Data System (ADS)

    Arrott, Anthony S.; Templeton, Terry L.

    2018-04-01

    This is an overview of what the Landau-Lifshitz-Gilbert equations are doing in soft-magnetic materials with dimensions large compared to the exchange length. The surface magnetic charges try to cancel applied magnetic fields inside the soft magnetic material. The exchange energy tries to reach a minimum while meeting the boundary conditions set by the magnetic charges by using magnetization patterns that have a curl but no divergence. It can almost do this, but it still pays to add some divergence to further lower the exchange energy. There are then both positively and negatively charged regions in the bulk. The unlike charges attract one another, but do not annihilate because they are paid for by the reduction in exchange energy. The micromagnetics of soft magnetic materials is about how those charges rearrange themselves. The topology of magnetic charge distributions presents challenges for mathematicians. No one guessed that they like to form helical patterns of extended multiples of charge density.

  10. A charged membrane paradigm at large D

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Sayantani; Mandlik, Mangesh; Minwalla, Shiraz; Thakur, Somyadip

    2016-04-01

    We study the effective dynamics of black hole horizons in Einstein-Maxwell theory in a large number of spacetime dimensions D. We demonstrate that horizon dynamics may be recast as a well posed initial value problem for the motion of a codimension one non gravitational membrane moving in flat space. The dynamical degrees of freedom of this membrane are its shape, charge density and a divergence free velocity field. We determine the equations that govern membrane dynamics at leading order in the large D expansion. Our derivation of the membrane equations assumes that the solution preserves an SO( D - p - 2) isometry with p held fixed as D is taken to infinity. However we are able to cast our final membrane equations into a completely geometric form that makes no reference to this symmetry algebra.

  11. Multiconfiguration Pair-Density Functional Theory Outperforms Kohn-Sham Density Functional Theory and Multireference Perturbation Theory for Ground-State and Excited-State Charge Transfer.

    PubMed

    Ghosh, Soumen; Sonnenberger, Andrew L; Hoyer, Chad E; Truhlar, Donald G; Gagliardi, Laura

    2015-08-11

    The correct description of charge transfer in ground and excited states is very important for molecular interactions, photochemistry, electrochemistry, and charge transport, but it is very challenging for Kohn-Sham (KS) density functional theory (DFT). KS-DFT exchange-correlation functionals without nonlocal exchange fail to describe both ground- and excited-state charge transfer properly. We have recently proposed a theory called multiconfiguration pair-density functional theory (MC-PDFT), which is based on a combination of multiconfiguration wave function theory with a new type of density functional called an on-top density functional. Here we have used MC-PDFT to study challenging ground- and excited-state charge-transfer processes by using on-top density functionals obtained by translating KS exchange-correlation functionals. For ground-state charge transfer, MC-PDFT performs better than either the PBE exchange-correlation functional or CASPT2 wave function theory. For excited-state charge transfer, MC-PDFT (unlike KS-DFT) shows qualitatively correct behavior at long-range with great improvement in predicted excitation energies.

  12. Dissimilarities of reduced density matrices and eigenstate thermalization hypothesis

    NASA Astrophysics Data System (ADS)

    He, Song; Lin, Feng-Li; Zhang, Jia-ju

    2017-12-01

    We calculate various quantities that characterize the dissimilarity of reduced density matrices for a short interval of length ℓ in a two-dimensional (2D) large central charge conformal field theory (CFT). These quantities include the Rényi entropy, entanglement entropy, relative entropy, Jensen-Shannon divergence, as well as the Schatten 2-norm and 4-norm. We adopt the method of operator product expansion of twist operators, and calculate the short interval expansion of these quantities up to order of ℓ9 for the contributions from the vacuum conformal family. The formal forms of these dissimilarity measures and the derived Fisher information metric from contributions of general operators are also given. As an application of the results, we use these dissimilarity measures to compare the excited and thermal states, and examine the eigenstate thermalization hypothesis (ETH) by showing how they behave in high temperature limit. This would help to understand how ETH in 2D CFT can be defined more precisely. We discuss the possibility that all the dissimilarity measures considered here vanish when comparing the reduced density matrices of an excited state and a generalized Gibbs ensemble thermal state. We also discuss ETH for a microcanonical ensemble thermal state in a 2D large central charge CFT, and find that it is approximately satisfied for a small subsystem and violated for a large subsystem.

  13. Charge-density study on layered oxyarsenides (LaO)MAs (M = Mn, Fe, Ni, Zn)

    NASA Astrophysics Data System (ADS)

    Takase, Kouichi; Hiramoto, Shozo; Fukushima, Tetsuya; Sato, Kazunori; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2017-12-01

    Using synchrotron X-ray powder diffraction, we investigate the charge-density distributions of the layered oxypnictides (LaO)MnAs, (LaO)FeAs, (LaO)NiAs, and (LaO)ZnAs, which are an antiferromagnetic semiconductor, a parent material of an iron-based superconductor, a low-temperature superconductor, and a non-magnetic semiconductor, respectively. For the metallic samples, clear charge densities are observed in both the transition-metal pnictide layers and the rare-earth-oxide layers. However, in the semiconducting samples, there is no finite charge density between the transition-metal element and As. These differences in charge density reflect differences in physical properties. First-principles calculations using density functional theory reproduce the experimental results reasonably well.

  14. Solution processed molecular floating gate for flexible flash memories

    NASA Astrophysics Data System (ADS)

    Zhou, Ye; Han, Su-Ting; Yan, Yan; Huang, Long-Biao; Zhou, Li; Huang, Jing; Roy, V. A. L.

    2013-10-01

    Solution processed fullerene (C60) molecular floating gate layer has been employed in low voltage nonvolatile memory device on flexible substrates. We systematically studied the charge trapping mechanism of the fullerene floating gate for both p-type pentacene and n-type copper hexadecafluorophthalocyanine (F16CuPc) semiconductor in a transistor based flash memory architecture. The devices based on pentacene as semiconductor exhibited both hole and electron trapping ability, whereas devices with F16CuPc trapped electrons alone due to abundant electron density. All the devices exhibited large memory window, long charge retention time, good endurance property and excellent flexibility. The obtained results have great potential for application in large area flexible electronic devices.

  15. Role of space charges on light-induced effects in nematic liquid crystals doped by methyl red.

    PubMed

    Lucchetti, L; Simoni, F

    2014-03-01

    We show that both the extraordinarily large nonlinear response and the light-induced permanent reorientation in liquid crystals doped by the azo dye methyl red originates from the same phenomenon of modification of the charge density on the irradiated surface. The demonstration is done by applying ac voltage to the samples, showing that in this case no permanent anchoring is possible. The measurements confirm the role of photoisomerization that gives a transient contribution to the actual reorientation process only in the high dose regime. This result allows us to draw a picture for light-induced effects that might be applied to a large class of compounds.

  16. Solution processed molecular floating gate for flexible flash memories

    PubMed Central

    Zhou, Ye; Han, Su-Ting; Yan, Yan; Huang, Long-Biao; Zhou, Li; Huang, Jing; Roy, V. A. L.

    2013-01-01

    Solution processed fullerene (C60) molecular floating gate layer has been employed in low voltage nonvolatile memory device on flexible substrates. We systematically studied the charge trapping mechanism of the fullerene floating gate for both p-type pentacene and n-type copper hexadecafluorophthalocyanine (F16CuPc) semiconductor in a transistor based flash memory architecture. The devices based on pentacene as semiconductor exhibited both hole and electron trapping ability, whereas devices with F16CuPc trapped electrons alone due to abundant electron density. All the devices exhibited large memory window, long charge retention time, good endurance property and excellent flexibility. The obtained results have great potential for application in large area flexible electronic devices. PMID:24172758

  17. Development and Application of a Wireless Sensor for Space Charge Density Measurement in an Ultra-High-Voltage, Direct-Current Environment

    PubMed Central

    Xin, Encheng; Ju, Yong; Yuan, Haiwen

    2016-01-01

    A space charge density wireless measurement system based on the idea of distributed measurement is proposed for collecting and monitoring the space charge density in an ultra-high-voltage direct-current (UHVDC) environment. The proposed system architecture is composed of a number of wireless nodes connected with space charge density sensors and a base station. The space charge density sensor based on atmospheric ion counter method is elaborated and developed, and the ARM microprocessor and Zigbee radio frequency module are applied. The wireless network communication quality and the relationship between energy consumption and transmission distance in the complicated electromagnetic environment is tested. Based on the experimental results, the proposed measurement system demonstrates that it can adapt to the complex electromagnetic environment under the UHVDC transmission lines and can accurately measure the space charge density. PMID:27775627

  18. Development and Application of a Wireless Sensor for Space Charge Density Measurement in an Ultra-High-Voltage, Direct-Current Environment.

    PubMed

    Xin, Encheng; Ju, Yong; Yuan, Haiwen

    2016-10-20

    A space charge density wireless measurement system based on the idea of distributed measurement is proposed for collecting and monitoring the space charge density in an ultra-high-voltage direct-current (UHVDC) environment. The proposed system architecture is composed of a number of wireless nodes connected with space charge density sensors and a base station. The space charge density sensor based on atmospheric ion counter method is elaborated and developed, and the ARM microprocessor and Zigbee radio frequency module are applied. The wireless network communication quality and the relationship between energy consumption and transmission distance in the complicated electromagnetic environment is tested. Based on the experimental results, the proposed measurement system demonstrates that it can adapt to the complex electromagnetic environment under the UHVDC transmission lines and can accurately measure the space charge density.

  19. In-line charge-trapping characterization of dielectrics for sub-0.5-um CMOS technologies

    NASA Astrophysics Data System (ADS)

    Roy, Pradip K.; Chacon, Carlos M.; Ma, Yi; Horner, Gregory

    1997-09-01

    The advent of ultra-large and giga-scale-integration (ULSI/GSI) has placed considerable emphasis on the development of new gate oxides and interlevel dielectrics capable of meeting strict performance and reliability requirements. The costs and demands associated with ULSI fabrication have in turn fueled the need for cost-effective, rapid and accurate in-line characterization techniques for evaluating dielectric quality. The use of non-contact surface photovoltage characterization techniques provides cost-effective rapid feedback on dielectric quality, reducing costs through the reutilization of control wafers and the elimination of processing time. This technology has been applied to characterize most of the relevant C-V parameters, including flatband voltage (Vfb), density of interface traps (Dit), mobile charge density (Qm), oxide thickness (Tox), oxide resistivity (pox) and total charge (Qtot) for gate and interlevel (ILO) oxides. A novel method of measuring tunneling voltage by this technique on various gate oxides is discussed. For ILO, PECVD and high density plasma dielectrics, surface voltage maps are also presented. Measurements of near-surface silicon quality are described, including minority carrier generation lifetime, and examples of their application in diagnosing manufacturing problems.

  20. Log-rise of the resistivity in the holographic Kondo model

    NASA Astrophysics Data System (ADS)

    Padhi, Bikash; Tiwari, Apoorv; Setty, Chandan; Phillips, Philip W.

    2018-03-01

    We study a single-channel Kondo effect using a recently developed [1-4] holographic large-N technique. In order to obtain resistivity of this model, we introduce a probe field. The gravity dual of a localized fermionic impurity in 1 +1 -dimensional host matter is constructed by embedding a localized two-dimensional Anti-de Sitter (AdS2 )-brane in the bulk of three-dimensional AdS3 . This helps us construct an impurity charge density which acts as a source to the bulk equation of motion of the probe gauge field. The functional form of the charge density is obtained independently by solving the equations of motion for the fields confined to the AdS2 -brane. The asymptotic solution of the probe field is dictated by the impurity charge density, which in turn affects the current-current correlation functions and hence the resistivity. Our choice of parameters tunes the near-boundary impurity current to be marginal, resulting in a log T behavior in the UV resistivity, as is expected for the Kondo problem. The resistivity at the IR fixed point turns out to be zero, signaling a complete screening of the impurity.

  1. Quantification of surface charge density and its effect on boundary slip.

    PubMed

    Jing, Dalei; Bhushan, Bharat

    2013-06-11

    Reduction of fluid drag is important in the micro-/nanofluidic systems. Surface charge and boundary slip can affect the fluid drag, and surface charge is also believed to affect boundary slip. The quantification of surface charge and boundary slip at a solid-liquid interface has been widely studied, but there is a lack of understanding of the effect of surface charge on boundary slip. In this paper, the surface charge density of borosilicate glass and octadecyltrichlorosilane (OTS) surfaces immersed in saline solutions with two ionic concentrations and deionized (DI) water with different pH values and electric field values is quantified by fitting experimental atomic force microscopy (AFM) electrostatic force data using a theoretical model relating the surface charge density and electrostatic force. Results show that pH and electric field can affect the surface charge density of glass and OTS surfaces immersed in saline solutions and DI water. The mechanisms of the effect of pH and electric field on the surface charge density are discussed. The slip length of the OTS surface immersed in saline solutions with two ionic concentrations and DI water with different pH values and electric field values is measured, and their effects on the slip length are analyzed from the point of surface charge. Results show that a larger absolute value of surface charge density leads to a smaller slip length for the OTS surface.

  2. Transfer of electrical space charge from corona between ground and thundercloud: Measurements and modeling

    NASA Technical Reports Server (NTRS)

    Soula, Serge

    1994-01-01

    The evolution of the vertical electric field profile deduced from simultaneous field measurements at several levels below a thundercloud shows the development of a space charge layer at least up to 600 m. The average charge density in the whole layer from 0 m to 600 m can reach about 1 nC m(exp -3). The ions are generated at the ground by corona effect and the production rate is evaluated with a new method from the comparison of field evolutions at the ground and at altitude after a lightning flash. The modeling of the relevant processes shows tht ground corona accounts for the observed field evolutions and that the aerosol particles concentration has a very large effect on the evolution of corona ions. However, with a realistic value for this concentration a large amount of ground corona ions reach the level of 600 m.

  3. Light-front representation of chiral dynamics in peripheral transverse densities

    DOE PAGES

    Granados, Carlos G.; Weiss, Christian

    2015-07-31

    The nucleon's electromagnetic form factors are expressed in terms of the transverse densities of charge and magnetization at fixed light-front time. At peripheral transverse distances b = O(M_pi^{-1}) the densities are governed by chiral dynamics and can be calculated model-independently using chiral effective field theory (EFT). We represent the leading-order chiral EFT results for the peripheral transverse densities as overlap integrals of chiral light-front wave functions, describing the transition of the initial nucleon to soft pion-nucleon intermediate states and back. The new representation (a) explains the parametric order of the peripheral transverse densities; (b) establishes an inequality between the spin-independentmore » and -dependent densities; (c) exposes the role of pion orbital angular momentum in chiral dynamics; (d) reveals a large left-right asymmetry of the current in a transversely polarized nucleon and suggests a simple interpretation. The light-front representation enables a first-quantized, quantum-mechanical view of chiral dynamics that is fully relativistic and exactly equivalent to the second-quantized, field-theoretical formulation. It relates the charge and magnetization densities measured in low-energy elastic scattering to the generalized parton distributions probed in peripheral high-energy scattering processes. The method can be applied to nucleon form factors of other operators, e.g. the energy-momentum tensor.« less

  4. Fabrication of highly ordered polyaniline nanocone on pristine graphene for high-performance supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Song, Ningning; Wang, Wucong; Wu, Yue; Xiao, Ding; Zhao, Yaping

    2018-04-01

    The hybrids of pristine graphene with polyaniline were synthesized by in situ polymerizations for making a high-performance supercapacitor. The formed high-ordered PANI nanocones were vertically aligned on the graphene sheets. The length of the PANI nanocones increased with the concentration of aniline monomer. The specific capacitance of the hybrids electrode in the three-electrode system was measured as high as 481 F/g at a current density of 0.1 A/g, and its stability remained 87% after constant charge-discharge 10000 cycles at a current density of 1 A/g. This outstanding performance is attributed to the coupling effects of the pristine graphene and the hierarchical structure of the PANI possessing high specific surface area. The unique structure of the PANI provided more charge transmission pathways and fast charge-transfer speed of electrons to the pristine graphene because of its large specific area exposed to the electrolyte. The hybrid is expected to have potential applications in supercapacitor electrodes.

  5. Charging of mesospheric particles - Implications for electron density and particle coagulation

    NASA Technical Reports Server (NTRS)

    Jensen, Eric J.; Thomas, Gary E.

    1991-01-01

    The relationship between N(e) and mesospheric aerosols near the mesopause is studied. The full distribution of charges on mesospheric aerosols is calculated, including dust and ice particles with radii ranging from 1 to 400 nm. The N(e) and ion density N(i) are obtained and ionization height profiles are calculated. The effects of dust and ice particles on N(e) and N(i) are studied for a wide range of assumed conditions. The results indicate that aerosol concentrations associated with visible polar mesospheric clouds are unlikely to cause a severe N(e) depletion. The pronounced 'bite-out' of N(e) at about 87 km in the summertime may be caused by a large concentration of small ice particles in a narrow cold layer near the mesosphere. Net negative charge on mesospheric aerosols may severely inihibit coagulation, so that mesospheric dust would not grow significantly. A higher supersaturation with respect to water vapor would be needed for heterogeneous nucleation of ice crystals.

  6. Structural instability in polyacene: A projector quantum Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Srinivasan, Bhargavi; Ramasesha, S.

    1998-04-01

    We have studied polyacene within the Hubbard model to explore the effect of electron correlations on the Peierls' instability in a system marginally away from one dimension. We employ the projector quantum Monte Carlo method to obtain ground-state estimates of the energy and various correlation functions. We find strong similarities between polyacene and polyacetylene which can be rationalized from the real-space valence-bond arguments of Mazumdar and Dixit. Electron correlations tend to enhance the Peierls' instability in polyacene. This enhancement appears to attain a maximum at U/t~3.0, and the maximum shifts to larger values when the alternation parameter is increased. The system shows no tendency to destroy the imposed bond-alternation pattern, as evidenced by the bond-bond correlations. The cis distortion is seen to be favored over the trans distortion. The spin-spin correlations show that undistorted polyacene is susceptible to a spin-density-wave distortion for large interaction strength. The charge-charge correlations indicate the absence of a charge-density-wave distortion for the parameters studied.

  7. The human peripheral subunit-binding domain folds rapidly while overcoming repulsive Coulomb forces

    PubMed Central

    Arbely, Eyal; Neuweiler, Hannes; Sharpe, Timothy D; Johnson, Christopher M; Fersht, Alan R

    2010-01-01

    Peripheral subunit binding domains (PSBDs) are integral parts of large multienzyme complexes involved in carbohydrate metabolism. PSBDs facilitate shuttling of prosthetic groups between different catalytic subunits. Their protein surface is characterized by a high density of positive charges required for binding to subunits within the complex. Here, we investigated folding thermodynamics and kinetics of the human PSBD (HSBD) using circular dichroism and tryptophan fluorescence experiments. HSBD was only marginally stable under physiological solvent conditions but folded within microseconds via a barrier-limited apparent two-state transition, analogous to its bacterial homologues. The high positive surface-charge density of HSBD leads to repulsive Coulomb forces that modulate protein stability and folding kinetics, and appear to even induce native-state movement. The electrostatic strain was alleviated at high solution-ionic-strength by Debye-Hückel screening. Differences in ionic-strength dependent characteristics among PSBD homologues could be explained by differences in their surface charge distributions. The findings highlight the trade-off between protein function and stability during protein evolution. PMID:20662005

  8. On contribution of known atomic partial charges of protein backbone in electrostatic potential density maps.

    PubMed

    Wang, Jimin

    2017-06-01

    Partial charges of atoms in a molecule and electrostatic potential (ESP) density for that molecule are known to bear a strong correlation. In order to generate a set of point-field force field parameters for molecular dynamics, Kollman and coworkers have extracted atomic partial charges for each of all 20 amino acids using restrained partial charge-fitting procedures from theoretical ESP density obtained from condensed-state quantum mechanics. The magnitude of atomic partial charges for neutral peptide backbone they have obtained is similar to that of partial atomic charges for ionized carboxylate side chain atoms. In this study, the effect of these known atomic partial charges on ESP is examined using computer simulations and compared with the experimental ESP density recently obtained for proteins using electron microscopy. It is found that the observed ESP density maps are most consistent with the simulations that include atomic partial charges of protein backbone. Therefore, atomic partial charges are integral part of atomic properties in protein molecules and should be included in model refinement. © 2017 The Protein Society.

  9. Harvesting the decay energy of 26Al to drive lightning discharge in protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Johansen, Anders; Okuzumi, Satoshi

    2018-01-01

    Chondrules in primitive meteorites likely formed by recrystallisation of dust aggregates that were flash-heated to nearly complete melting. Chondrules may represent the building blocks of rocky planetesimals and protoplanets in the inner regions of protoplanetary discs, but the source of ubiquitous thermal processing of their dust aggregate precursors remains elusive. Here we demonstrate that escape of positrons released in the decay of the short-lived radionuclide 26Al leads to a large-scale charging of dense pebble structures, resulting in neutralisation by lightning discharge and flash-heating of dust and pebbles. This charging mechanism is similar to a nuclear battery where a radioactive source charges a capacitor. We show that the nuclear battery effect operates in circumplanetesimal pebble discs. The extremely high pebble densities in such discs are consistent with conditions during chondrule heating inferred from the high abundance of sodium within chondrules. The sedimented mid-plane layer of the protoplanetary disc may also be prone to charging by the emission of positrons, if the mass density of small dust there is at least an order of magnitude above the gas density. Our results imply that the decay energy of 26Al can be harvested to drive intense lightning activity in protoplanetary discs. The total energy stored in positron emission is comparable to the energy needed to melt all solids in the protoplanetary disc. The efficiency of transferring the positron energy to the electric field nevertheless depends on the relatively unknown distribution and scale-dependence of pebble density gradients in circumplanetesimal pebble discs and in the protoplanetary disc mid-plane layer.

  10. Parameterization of In-Cloud Aerosol Scavenging Due To Atmospheric Ionization: 2. Effects of Varying Particle Density

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Tinsley, Brian A.

    2018-03-01

    Simulations and parameterization of collision rate coefficients for aerosol particles with 3 μm radius droplets have been extended to a range of particle densities up to 2,000 kg m-3 for midtropospheric ( 5 km) conditions (540 hPa, -17°C). The increasing weight has no effect on collisions for particle radii less than 0.2 μm, but for greater radii the weight effect becomes significant and usually decreases the collision rate coefficient. When increasing size and density of particles make the fall speed of the particle relative to undisturbed air approach to that of the droplet, the effect of the particle falling away in the stagnation region ahead of the droplet becomes important, and the probability of frontside collisions can decrease to zero. Collisions on the rear side of the droplet can be enhanced as particle weight increases, and for this the weight effect tends to increase the rate coefficients. For charges on the droplet and for large particles with density ρ < 1,000 kg m-3 the predominant effect increases in rate coefficient due to the short-range attractive image electric force. With density ρ above about 1,000 kg m-3, the stagnation region prevents particles moving close to the droplet and reduces the effect of these short-range forces. Together with previous work, it is now possible to obtain collision rate coefficients for realistic combinations of droplet charge, particle charge, droplet radius, particle radius, particle density, and relative humidity in clouds. The parameterization allows rapid access to these values for use in cloud models.

  11. Superior supercapacitors based on nitrogen and sulfur co-doped hierarchical porous carbon: Excellent rate capability and cycle stability

    NASA Astrophysics Data System (ADS)

    Zhang, Deyi; Han, Mei; Wang, Bing; Li, Yubing; Lei, Longyan; Wang, Kunjie; Wang, Yi; Zhang, Liang; Feng, Huixia

    2017-08-01

    Vastly improving the charge storage capability of supercapacitors without sacrificing their high power density and cycle performance would bring bright application prospect. Herein, we report a nitrogen and sulfur co-doped hierarchical porous carbon (NSHPC) with very superior capacitance performance fabricated by KOH activation of nitrogen and sulfur co-doped ordered mesoporous carbon (NSOMC). A high electrochemical double-layer (EDL) capacitance of 351 F g-1 was observed for the reported NSHPC electrodes, and the capacitance remains at 288 F g-1 even under a large current density of 20 A g-1. Besides the high specific capacitance and outstanding rate capability, symmetrical supercapacitor cell based on the NSHPC electrodes also exhibits an excellent cycling performance with 95.61% capacitance retention after 5000 times charge/discharge cycles. The large surface area caused by KOH activation (2056 m2 g-1) and high utilized surface area owing to the ideal micro/mesopores ratio (2.88), large micropores diameter (1.38 nm) and short opened micropores structure as well as the enhanced surface wettability induced by N and S heteroatoms doping and improved conductivity induced by KOH activation was found to be responsible for the very superior capacitance performance.

  12. Oxidation catalysis by polyoxometalates fundamental electron-transfer phenomena

    Treesearch

    Yurii V. Geletii; Rajai H. Atalla; Alan J. Bailey; Laurent Delannoy; Craig L. Hill; Ira A. Weinstock

    2002-01-01

    Early transition-metal oxygen-anion clusters (polyoxometalates, POMs) are a large and rapidly growing class of versatile and tunable oxidation catalysts. All key molecular properties of these clusters (composition, size, shape, charge density, reduction potential, solubility, etc.) can be systematically altered, and the clusters themselves can serve as tunable ligands...

  13. Lattice QCD at finite temperature and density from Taylor expansion

    NASA Astrophysics Data System (ADS)

    Steinbrecher, Patrick

    2017-01-01

    In the first part, I present an overview of recent Lattice QCD simulations at finite temperature and density. In particular, we discuss fluctuations of conserved charges: baryon number, electric charge and strangeness. These can be obtained from Taylor expanding the QCD pressure as a function of corresponding chemical potentials. Our simulations were performed using quark masses corresponding to physical pion mass of about 140 MeV and allow a direct comparison to experimental data from ultra-relativistic heavy ion beams at hadron colliders such as the Relativistic Heavy Ion Collider at Brookhaven National Laboratory and the Large Hadron Collider at CERN. In the second part, we discuss computational challenges for current and future exascale Lattice simulations with a focus on new silicon developments from Intel and NVIDIA.

  14. Metal-chelate dye-controlled organization of Cd32S14(SPh)40(4-) nanoclusters into three-dimensional molecular and covalent open architecture.

    PubMed

    Zheng, Nanfeng; Lu, Haiwei; Bu, Xianhui; Feng, Pingyun

    2006-04-12

    Chalcogenide II-VI nanoclusters are usually prepared as isolated clusters and have defied numerous efforts to join them into covalent open-framework architecture with conventional templating methods such as protonated amines or inorganic cations commonly used to direct the formation of porous frameworks. Herein, we report the first templated synthesis of II-VI covalent superlattices from large II-VI tetrahedral clusters (i.e., [Cd32S14(SPh)38]2-). Our method takes advantage of low charge density of metal-chelate dyes that is a unique match with three-dimensional II-VI semiconductor frameworks in charge density, surface hydrophilicity-hydrophobicity, and spatial organization. In addition, metal-chelate dyes also serve to tune the optical properties of resulting dye semiconductor composite materials.

  15. Gaussian polarizable-ion tight binding.

    PubMed

    Boleininger, Max; Guilbert, Anne Ay; Horsfield, Andrew P

    2016-10-14

    To interpret ultrafast dynamics experiments on large molecules, computer simulation is required due to the complex response to the laser field. We present a method capable of efficiently computing the static electronic response of large systems to external electric fields. This is achieved by extending the density-functional tight binding method to include larger basis sets and by multipole expansion of the charge density into electrostatically interacting Gaussian distributions. Polarizabilities for a range of hydrocarbon molecules are computed for a multipole expansion up to quadrupole order, giving excellent agreement with experimental values, with average errors similar to those from density functional theory, but at a small fraction of the cost. We apply the model in conjunction with the polarizable-point-dipoles model to estimate the internal fields in amorphous poly(3-hexylthiophene-2,5-diyl).

  16. Gaussian polarizable-ion tight binding

    NASA Astrophysics Data System (ADS)

    Boleininger, Max; Guilbert, Anne AY; Horsfield, Andrew P.

    2016-10-01

    To interpret ultrafast dynamics experiments on large molecules, computer simulation is required due to the complex response to the laser field. We present a method capable of efficiently computing the static electronic response of large systems to external electric fields. This is achieved by extending the density-functional tight binding method to include larger basis sets and by multipole expansion of the charge density into electrostatically interacting Gaussian distributions. Polarizabilities for a range of hydrocarbon molecules are computed for a multipole expansion up to quadrupole order, giving excellent agreement with experimental values, with average errors similar to those from density functional theory, but at a small fraction of the cost. We apply the model in conjunction with the polarizable-point-dipoles model to estimate the internal fields in amorphous poly(3-hexylthiophene-2,5-diyl).

  17. The Expanded Large Scale Gap Test

    DTIC Science & Technology

    1987-03-01

    NSWC TR 86-32 DTIC THE EXPANDED LARGE SCALE GAP TEST BY T. P. LIDDIARD D. PRICE RESEARCH AND TECHNOLOGY DEPARTMENT ’ ~MARCH 1987 Ap~proved for public...arises, to reduce the spread in the LSGT 50% gap value.) The worst charges, such as those with the highest or lowest densities, the largest re-pressed...Arlington, VA 22217 PE 62314N INS3A 1 RJ14E31 7R4TBK 11 TITLE (Include Security CIlmsilficatiorn The Expanded Large Scale Gap Test . 12. PEIRSONAL AUTHOR() T

  18. Charge density on thin straight wire, revisited

    NASA Astrophysics Data System (ADS)

    Jackson, J. D.

    2000-09-01

    The question of the equilibrium linear charge density on a charged straight conducting "wire" of finite length as its cross-sectional dimension becomes vanishingly small relative to the length is revisited in our didactic presentation. We first consider the wire as the limit of a prolate spheroidal conductor with semi-minor axis a and semi-major axis c when a/c<<1. We then treat an azimuthally symmetric straight conductor of length 2c and variable radius r(z) whose scale is defined by a parameter a. A procedure is developed to find the linear charge density λ(z) as an expansion in powers of 1/Λ, where Λ≡ln(4c2/a2), beginning with a uniform line charge density λ0. We show, for this rather general wire, that in the limit Λ>>1 the linear charge density becomes essentially uniform, but that the tiny nonuniformity (of order 1/Λ) is sufficient to produce a tangential electric field (of order Λ0) that cancels the zeroth-order field that naively seems to belie equilibrium. We specialize to a right circular cylinder and obtain the linear charge density explicitly, correct to order 1/Λ2 inclusive, and also the capacitance of a long isolated charged cylinder, a result anticipated in the published literature 37 years ago. The results for the cylinder are compared with published numerical computations. The second-order correction to the charge density is calculated numerically for a sampling of other shapes to show that the details of the distribution for finite 1/Λ vary with the shape, even though density becomes constant in the limit Λ→∞. We give a second method of finding the charge distribution on the cylinder, one that approximates the charge density by a finite polynomial in z2 and requires the solution of a coupled set of linear algebraic equations. Perhaps the most striking general observation is that the approach to uniformity as a/c→0 is extremely slow.

  19. Determination of the surface charge density and temperature dependence of purple membrane by electric force microscopy.

    PubMed

    Du, Huiwen; Li, Denghua; Wang, Yibing; Wang, Chenxuan; Zhang, Dongdong; Yang, Yan-lian; Wang, Chen

    2013-08-29

    We report here the measurement of the temperature-dependent surface charge density of purple membrane (PM) by using electrostatic force microscopy (EFM). The surface charge density was measured to be 3.4 × 10(5) e/cm(2) at room temperature and reaches the minimum at around 52 °C. The initial decrease of the surface charge density could be attributed to the reduced dipole alignment because of the thermally induced protein mobility in PM. The increase of charge density at higher temperature could be ascribed to the weakened interaction between proteins and the lipids, which leads to the exposure of the charged amino acids. This work could be a benefit to the direct assessment of the structural stability and electric properties of biological membranes at the nanoscale.

  20. Symmetry-broken states in a system of interacting bosons on a two-leg ladder with a uniform Abelian gauge field

    NASA Astrophysics Data System (ADS)

    Greschner, S.; Piraud, M.; Heidrich-Meisner, F.; McCulloch, I. P.; Schollwöck, U.; Vekua, T.

    2016-12-01

    We study the quantum phases of bosons with repulsive contact interactions on a two-leg ladder in the presence of a uniform Abelian gauge field. The model realizes many interesting states, including Meissner phases, vortex fluids, vortex lattices, charge density waves, and the biased-ladder phase. Our work focuses on the subset of these states that breaks a discrete symmetry. We use density matrix renormalization group simulations to demonstrate the existence of three vortex-lattice states at different vortex densities and we characterize the phase transitions from these phases into neighboring states. Furthermore, we provide an intuitive explanation of the chiral-current reversal effect that is tied to some of these vortex lattices. We also study a charge-density-wave state that exists at 1/4 particle filling at large interaction strengths and flux values close to half a flux quantum. By changing the system parameters, this state can transition into a completely gapped vortex-lattice Mott-insulating state. We elucidate the stability of these phases against nearest-neighbor interactions on the rungs of the ladder relevant for experimental realizations with a synthetic lattice dimension. A charge-density-wave state at 1/3 particle filling can be stabilized for flux values close to half a flux quantum and for very strong on-site interactions in the presence of strong repulsion on the rungs. Finally, we analytically describe the emergence of these phases in the low-density regime, and, in particular, we obtain the boundaries of the biased-ladder phase, i.e., the phase that features a density imbalance between the legs. We make contact with recent quantum-gas experiments that realized related models and discuss signatures of these quantum states in experimentally accessible observables.

  1. Effect of Siloxane Ring Strain and Cation Charge Density on the Formation of Coordinately Unsaturated Metal Sites on Silica: Insights from Density Functional Theory (DFT) Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Ujjal; Zhang, Guanghui; Hu, Bo

    2015-10-28

    Amorphous silica (SiO 2) is commonly used as a support in heterogeneous catalysis. However, due to the structural disorder and temperature induced change of surface morphology, the structures of silica supported metal catalysts are difficult to determine. Most studies are primarily focused on understanding the interactions of different types of surface hydroxyl groups with metal ions. In comparison, the effect of siloxane ring size on the structure of silica supported metal catalysts and how it affects catalytic activity is poorly understood. Here, we have used density functional theory calculations to understand the effect of siloxane ring strain on structure andmore » activity of different monomeric Lewis acid metal sites on silica. In particular, we have found that large siloxane rings favor strong dative bonding interaction between metal ion and surface hydroxyls, leading to the formation of high-coordinate metal sites. In comparison, metal-silanol interaction is weak in small siloxane rings, resulting in low-coordinate metal sites. The physical origin of this size dependence is associated with siloxane ring strain, and, a correlation between metal-silanol interaction energy and ring strain energy has been observed. In addition to ring strain, the strength of the metal-silanol interaction also depends on the positive charge density of the cations. In fact, a correlation also exists between metal-silanol interaction energy and charge density of several first-row transition and post-transition metals. The theoretical results are compared with the EXAFS data of monomeric Zn(II) and Ga(III) ions grafted on silica. In conclusion, the molecular level insights of how metal ion coordination on silica depends on siloxane ring strain and cation charge density will be useful in the synthesis of new catalysts.« less

  2. MnO2/carbon nanowalls composite electrode for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Hassan, Sameh; Suzuki, Masaaki; Mori, Shinsuke; El-Moneim, Ahmed Abd

    2014-03-01

    Amorphous MnO2/carbon nanowalls composite films are developed for the supercapacitor applications. Synthesis of carbon nanowalls template is performed by plasma-enhanced chemical vapor deposition in a CO/H2 microwave discharge system. A well dispersion of amorphous MnO2 domains throughout carbon nanowalls template is obtained by potentiostatic anodic deposition technique. Carbon nanowalls enable to improve the capacitive behavior and rate capability of MnO2, a specific capacitance of 851 F g-1 at a current density of 1 mA cm-2 and charge transfer resistance of 1.02 Ω are obtained. MnO2/carbon nanowalls composite film exhibits energy density of 118 wh kg-1, power density of 783 wh kg-1, and capacitance retention of 92% after long cycle life of 2000 cycles by charging and discharging at 3 mA cm-2. The high density of atomic scale graphitic edges and large surface area of carbon nanowalls in conjunction with the presence of amorphous MnO2 domains facilitate rapid electron and ion transport and hence offering the potential of the improved capacitive behavior.

  3. Polarization Catastrophe Contributing to Rotation and Tornadic Motion in Cumulo-Nimbus Clouds

    NASA Astrophysics Data System (ADS)

    Handel, P. H.

    2007-05-01

    When the concentration of sub-micron ice particles in a cloud exceeds 2.5E21 per cubic cm, divided by the squared average number of water molecules per crystallite, the polarization catastrophe occurs. Then all ice crystallites nucleated on aerosol dust particles align their dipole moments in the same direction, and a large polarization vector field is generated in the cloud. Often this vector field has a radial component directed away from the vertical axis of the cloud. It is induced by the pre-existing electric field caused by the charged screening layers at the cloud surface, the screening shell of the cloud. The presence of a vertical component of the magnetic field of the earth creates a density of linear momentum G=DxB in the azimuthal direction, where D=eE+P is the electric displacement vector and e is the vacuum permittivity. This linear momentum density yields an angular momentum density vector directed upward in the nordic hemisphere, if the polarization vector points away from the vertical axis of the cloud. When the cloud becomes colloidally unstable, the crystallites grow beyond the size limit at which they still could carry a large ferroelectric saturation dipole moment, and the polarization vector quickly disappears. Then the cloud begins to rotate with an angular momentum that has the same direction. Due to the large average number of water molecules in a crystallite, the polarization catastrophe (PC) is present in practically all clouds, and is compensated by masking charges. In cumulo-nimbus (thunder-) clouds the collapse of the PC is rapid, and the masking charges lead to lightning, and in the upper atmosphere also to sprites, elves, and blue jets. In stratus clouds, however, the collapse is slow, and only leads to reverse polarity in dissipating clouds (minus on the bottom), as compared with growing clouds (plus on the bottom, because of the excess polarization charge). References: P.H. Handel: "Polarization Catastrophe Theory of Cloud Electricity", J. Geophysical Research 90, 5857-5863 (1985). P.H. Handel and P.B. James: "Polarization Catastrophe Model of Static Electrification and Spokes in the B-Ring of Saturn", Geophys. Res. Lett. 10, 1-4 (1983).

  4. Effect of surface charge density on the affinity of oxide nanoparticles for the vapor-water interface.

    PubMed

    Brown, Matthew A; Duyckaerts, Nicolas; Redondo, Amaia Beloqui; Jordan, Inga; Nolting, Frithjof; Kleibert, Armin; Ammann, Markus; Wörner, Hans Jakob; van Bokhoven, Jeroen A; Abbas, Zareen

    2013-04-23

    Using in-situ X-ray photoelectron spectroscopy at the vapor-water interface, the affinity of nanometer-sized silica colloids to adsorb at the interface is shown to depend on colloid surface charge density. In aqueous suspensions at pH 10 corrected Debye-Hückel theory for surface complexation calculations predict that smaller silica colloids have increased negative surface charge density that originates from enhanced screening of deprotonated silanol groups (≡Si-O(-)) by counterions in the condensed ion layer. The increased negative surface charge density results in an electrostatic repulsion from the vapor-water interface that is seen to a lesser extent for larger particles that have a reduced charge density in the XPS measurements. We compare the results and interpretation of the in-situ XPS and corrected Debye-Hückel theory for surface complexation calculations with traditional surface tension measurements. Our results show that controlling the surface charge density of colloid particles can regulate their adsorption to the interface between two dielectrics.

  5. [Topography structure and flocculation mechanism of polymeric phosphate ferric sulfate (PPFS)].

    PubMed

    Zheng, Huai-li; Zhang, Hui-qin; Jiang, Shao-jie; Li, Fang; Jiao, Shi-jun; Fang, Hui-li

    2011-05-01

    Characteristics of polymeric phosphate ferric sulfate (PPFS) were investigated using FTIR (Fourier transform infrared spectrometer), XRD (X-ray diffraction) and SEM (scanning electron microscope) in the present study. The formed PPFS structure and morphology were stereo meshwork, which was clustered and close to coral reef, synthesis of high charge density, bioactive polyhydroxy and mixed polynuclear complex PPFS. The results showed that charge neutralization of PPFS had not played a decisive role in the coagulation beaker test and the zeta potential proved that PPFS was largely affected by bridging and netting sweep. Therefore, the coagulation mechanisms of PPFS were mainly composed of charge neutralization, adsorption bridging and netting sweep mechanisms.

  6. Electronic structure and charge transfer excited states of endohedral fullerene containing electron donoracceptor complexes utilized in organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Amerikheirabadi, Fatemeh

    Organic Donor-Acceptor complexes form the main component of the organic photovoltaic devices (OPVs). The open circuit voltage of OPVs is directly related to the charge transfer excited state energies of these complexes. Currently a large number of different molecular complexes are being tested for their efficiency in photovoltaic devices. In this work, density functional theory as implemented in the NRLMOL code is used to investigate the electronic structure and related properties of these donor-acceptor complexes. The charge transfer excitation energies are calculated using the perturbative delta self-consistent field method recently developed in our group as the standard time dependent density functional approaches fail to accurately provide them. The model photovoltaics systems analyzed are as follows: Sc3N C 80--ZnTPP, Y3 N C80-- ZnTPP and Sc3 N C80-- ZnPc. In addition, a thorough analysis of the isolated donor and acceptor molecules is also provided. The studied acceptors are chosen from a class of fullerenes named trimetallic nitride endohedral fullerenes. These molecules have shown to possess advantages as acceptors such as long lifetimes of the charge-separated states.

  7. On contribution of known atomic partial charges of protein backbone in electrostatic potential density maps

    PubMed Central

    2017-01-01

    Abstract Partial charges of atoms in a molecule and electrostatic potential (ESP) density for that molecule are known to bear a strong correlation. In order to generate a set of point‐field force field parameters for molecular dynamics, Kollman and coworkers have extracted atomic partial charges for each of all 20 amino acids using restrained partial charge‐fitting procedures from theoretical ESP density obtained from condensed‐state quantum mechanics. The magnitude of atomic partial charges for neutral peptide backbone they have obtained is similar to that of partial atomic charges for ionized carboxylate side chain atoms. In this study, the effect of these known atomic partial charges on ESP is examined using computer simulations and compared with the experimental ESP density recently obtained for proteins using electron microscopy. It is found that the observed ESP density maps are most consistent with the simulations that include atomic partial charges of protein backbone. Therefore, atomic partial charges are integral part of atomic properties in protein molecules and should be included in model refinement. PMID:28370507

  8. pH Reversible Encapsulation of Oppositely Charged Colloids Mediated by Polyelectrolytes

    PubMed Central

    2017-01-01

    We report the first example of reversible encapsulation of micron-sized particles by oppositely charged submicron smaller colloids. The reversibility of this encapsulation process is regulated by pH-responsive poly(acrylic acid) (PAA) present in solution. The competitive adsorption between the small colloids and the poly(acrylic acid) on the surface of the large colloids plays a key role in the encapsulation behavior of the system. pH offers an experimental knob to tune the electrostatic interactions between the two oppositely charged particle species via regulation of the charge density of the poly(acrylic acid). This results in an increased surface coverage of the large colloids by the smaller colloids when decreasing pH. Furthermore, the poly(acrylic acid) also acts as a steric barrier limiting the strength of the attractive forces between the oppositely charged particle species, thereby enabling detachment of the smaller colloids. Finally, based on the pH tunability of the encapsulation behavior and the ability of the small colloids to detach, reversible encapsulation is achieved by cycling pH in the presence of the PAA polyelectrolytes. The role of polyelectrolytes revealed in this work provides a new and facile strategy to control heteroaggregation behavior between oppositely charged colloids, paving the way to prepare sophisticated hierarchical assemblies. PMID:28419800

  9. Long-range interaction between heterogeneously charged membranes.

    PubMed

    Jho, Y S; Brewster, R; Safran, S A; Pincus, P A

    2011-04-19

    Despite their neutrality, surfaces or membranes with equal amounts of positive and negative charge can exhibit long-range electrostatic interactions if the surface charge is heterogeneous; this can happen when the surface charges form finite-size domain structures. These domains can be formed in lipid membranes where the balance of the different ranges of strong but short-ranged hydrophobic interactions and longer-ranged electrostatic repulsion result in a finite, stable domain size. If the domain size is large enough, oppositely charged domains in two opposing surfaces or membranes can be strongly correlated by the electrostatic interactions; these correlations give rise to an attractive interaction of the two membranes or surfaces over separations on the order of the domain size. We use numerical simulations to demonstrate the existence of strong attractions at separations of tens of nanometers. Large line tensions result in larger domains but also increase the charge density within the domain. This promotes correlations and, as a result, increases the intermembrane attraction. On the other hand, increasing the salt concentration increases both the domain size and degree of domain anticorrelation, but the interactions are ultimately reduced due to increased screening. The result is a decrease in the net attraction as salt concentration is increased. © 2011 American Chemical Society

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granados, Carlos; Weiss, Christian

    The nucleon's peripheral transverse charge and magnetization densities are computed in chiral effective field theory. The densities are represented in first-quantized form, as overlap integrals of chiral light-front wave functions describing the transition of the nucleon to soft pion-nucleon intermediate states. The orbital motion of the pion causes a large left-right asymmetry in a transversely polarized nucleon. As a result, the effect attests to the relativistic nature of chiral dynamics [pion momenta k = O(M π)] and could be observed in form factor measurements at low momentum transfer.

  11. Conference Proceedings of Applied Computational Electromagnetics (2nd) Held at Monterey, California on 18-20 March 1986

    DTIC Science & Technology

    1986-03-01

    only accurate to 10 percent when it began to diverge . This illustrates one of the caveats for using the BMI technique : convergence is not guaranteed...for a surface equates the divergence of surface current density at a point to the time rate of reduction of surface charge density. If a large scale...field at the point of reflection resolved into the components which permit the use of the reflection dyad, R. A(s) is the divergence coefficient which

  12. Intramolecular Charge Transfer States in the Condensed Phase

    NASA Astrophysics Data System (ADS)

    Williams, C. F.; Herbert, J. M.

    2009-06-01

    Time-Dependent Density Functional Theory (TDDFT) with long range corrected functionals can give accurate results for the energies of electronically excited states involving Intramolecular Charge Transfer (ICT) in large molecules. If this is combined with a Molecular Mechanics (MM) representation of the surrounding solvent this technique can be used to interpret the results of condensed phase UV-Vis Spectroscopy. Often the MM region is represented by a set of point charges, however this means that the solvent cannot repolarize to adapt to the new charge distribution as a result of ICT and so the excitation energies to ICT states are overestimated. To solve this problem an algorithm that interfaces TDDFT with the polarizable force-field AMOEBA is presented; the effect of solvation on charge transfer in species such as 4,4'dimethylaminobenzonitrile (DMABN) is discussed. M.A. Rohrdanz, K.M. Martins, and J.M. Herbert, J. Chem. Phys. 130 034107 (2008).

  13. Ambipolar surface state thermoelectric power of topological insulator Bi2Se3.

    PubMed

    Kim, Dohun; Syers, Paul; Butch, Nicholas P; Paglione, Johnpierre; Fuhrer, Michael S

    2014-01-01

    We measure gate-tuned thermoelectric power of mechanically exfoliated Bi2Se3 thin films in the topological insulator regime. The sign of the thermoelectric power changes across the charge neutrality point as the majority carrier type switches from electron to hole, consistent with the ambipolar electric field effect observed in conductivity and Hall effect measurements. Near the charge neutrality point and at low temperatures, the gate-dependent thermoelectric power follows the semiclassical Mott relation using the expected surface state density of states but is larger than expected at high electron doping, possibly reflecting a large density of states in the bulk gap. The thermoelectric power factor shows significant enhancement near the electron-hole puddle carrier density ∼0.5 × 10(12) cm(-2) per surface at all temperatures. Together with the expected reduction of lattice thermal conductivity in low-dimensional structures, the results demonstrate that nanostructuring and Fermi level tuning of three-dimensional topological insulators can be promising routes to realize efficient thermoelectric devices.

  14. Thermal treatment effects on charge storage performance of graphene-based materials for supercapacitors.

    PubMed

    Zhang, Hongxin; Bhat, Vinay V; Gallego, Nidia C; Contescu, Cristian I

    2012-06-27

    Graphene materials were synthesized by reduction of exfoliated graphite oxide and then thermally treated in nitrogen to improve the surface area and their electrochemical performance as electrical double-layer capacitor electrodes. The structural and surface properties of the prepared reduced graphite oxide (RGO) were investigated using atomic force microscopy, scanning electron microscopy, Raman spectra, X-ray diffraction pattern analysis, and nitrogen adsorption/desorption studies. RGO forms a continuous network of crumpled sheets, which consist of large amounts of few-layer and single-layer graphenes. Electrochemical studies were conducted by cyclic voltammetry, impedance spectroscopy, and galvanostatic charge-discharge measurements. The modified RGO materials showed enhanced electrochemical performance, with maximum specific capacitance of 96 F/g, energy density of 12.8 Wh/kg, and power density of 160 kW/kg. These results demonstrate that thermal treatment of RGO at selected conditions is a convenient and efficient method for improving its specific capacitance, energy, and power density.

  15. Analysis of rapid increase in the plasma density during the ramp-up phase in a radio frequency negative ion source by large-scale particle simulation

    NASA Astrophysics Data System (ADS)

    Yasumoto, M.; Ohta, M.; Kawamura, Y.; Hatayama, A.

    2014-02-01

    Numerical simulations become useful for the developing RF-ICP (Radio Frequency Inductively Coupled Plasma) negative ion sources. We are developing and parallelizing a two-dimensional three velocity electromagnetic Particle-In-Cell code. The result shows rapid increase in the electron density during the density ramp-up phase. A radial electric field due to the space charge is produced with increase in the electron density and the electron transport in the radial direction is suppressed. As a result, electrons stay for a long period in the region where the inductive electric field is strong, and this leads efficient electron acceleration and a rapid increasing of the electron density.

  16. Mitigating chromatic effects for the transverse focusing of intense charged particle beams

    NASA Astrophysics Data System (ADS)

    Mitrani, James; Kaganovich, Igor; Davidson, Ronald

    2013-09-01

    A final focusing scheme designed to minimize chromatic effects is discussed. Solenoids are often used for transverse focusing in accelerator systems that require a charged particle beam with a small focal spot and/or large energy density A sufficiently large spread in axial momentum will reduce the effectiveness of transverse focusing, and result in chromatic effects on the final focal spot. Placing a weaker solenoid upstream of a stronger final focusing solenoid (FFS) mitigates chromatic effects on transverse beam focusing. J.M. Mitrani et al., Nucl. Inst. Meth. Phys. Res. A (2013) http://dx.doi.org/10.1016/j.nima.2013.05.09 This work was supported by DOE contract DE-AC02-09CH11466.

  17. Self-Optimized Biological Channels in Facilitating the Transmembrane Movement of Charged Molecules

    PubMed Central

    Huyen, V. T. N.; Lap, Vu Cong; Nguyen, V. Lien

    2016-01-01

    We consider an anisotropically two-dimensional diffusion of a charged molecule (particle) through a large biological channel under an external voltage. The channel is modeled as a cylinder of three structure parameters: radius, length, and surface density of negative charges located at the channel interior-lining. These charges induce inside the channel a potential that plays a key role in controlling the particle current through the channel. It was shown that to facilitate the transmembrane particle movement the channel should be reasonably self-optimized so that its potential coincides with the resonant one, resulting in a large particle current across the channel. Observed facilitation appears to be an intrinsic property of biological channels, regardless of the external voltage or the particle concentration gradient. This facilitation is very selective in the sense that a channel of definite structure parameters can facilitate the transmembrane movement of only particles of proper valence at corresponding temperatures. Calculations also show that the modeled channel is nonohmic with the ion conductance which exhibits a resonance at the same channel potential as that identified in the current. PMID:27022394

  18. Charge transport kinetics in a robust radical-substituted polymer/nanocarbon composite electrode

    NASA Astrophysics Data System (ADS)

    Sato, Kan; Oyaizu, Kenichi; Nishide, Hiroyuki

    We have reported a series of organic radical-substituted polymers as new-type charge storage and transport materials which could be used for energy related devices such as batteries and solar cells. Redox-active radical moieties introduced to the non-conjugated polymer backbones enable the rapid electron transfer among the adjacent radical sites, and thus large diffusive flux of electrical charge at a bulk scale. Here we present the elucidated charge transport kinetics in a radical polymer/single-walled carbon nanotube (SWNT) composite electrode. The synergetic effect of electrical conduction by a three-dimensional SWNT network and electron self-exchange reaction by radical polymers contributed to the 105-fold (per 1 g of added SWNT) boosting of electrochemical reactions and exceptionally large current density (greater than 1 A/cm2) as a rechargeable electrode. A totally organic-based secondary battery with a submicron thickness was fabricated to demonstrate the splendid electrochemical performances. Grants-in-Aid for Scientific Research (No. 24225003, 15J00888) and the Leading Graduate Program in Science and Engineering, from the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT).

  19. Electron dynamics inside a vacuum tube diode through linear differential equations

    NASA Astrophysics Data System (ADS)

    González, Gabriel; Orozco, Fco. Javier González; Orozco

    2014-04-01

    In this paper we analyze the motion of charged particles in a vacuum tube diode by solving linear differential equations. Our analysis is based on expressing the volume charge density as a function of the current density and coordinates only, i.e. ρ=ρ(J,z), while in the usual scheme the volume charge density is expressed as a function of the current density and electrostatic potential, i.e. ρ=ρ(J,V). We show that, in the case of slow varying charge density, the space-charge-limited current is reduced up to 50%. Our approach gives the well-known behavior of the classical current density proportional to the three-halves power of the bias potential and inversely proportional to the square of the gap distance between electrodes, and does not require the solution of the nonlinear differential equation normally associated with the Child-Langmuir formulation.

  20. One Way to Design a Valence-Skip Compound.

    PubMed

    Hase, I; Yanagisawa, T; Kawashima, K

    2017-12-01

    Valence-skip compound is a good candidate with high T c and low anisotropy because it has a large attractive interaction at the site of valence-skip atom. However, it is not easy to synthesize such compound because of (i) the instability of the skipping valence state, (ii) the competing charge order, and (iii) that formal valence may not be true in some compounds. In the present study, we show several examples of the valence-skip compounds and discuss how we can design them by first principles calculations. Furthermore, we calculated the electronic structure of a promising candidate of valence skipping compound RbTlCl 3 from first principles. We confirmed that the charge-density wave (CDW) is formed in this compound, and the Tl atoms in two crystallographic different sites take the valence Tl 1+ and Tl 3+ . Structure optimization study reveals that this CDW is stable at the ambient pressure, while this CDW gap can be collapsed when we apply pressure with several gigapascals. In this metallic phase, we can expect a large charge fluctuation and a large electron-phonon interaction.

  1. In-flight calibration of mesospheric rocket plasma probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Havnes, Ove; University Studies Svalbard; Hartquist, Thomas W.

    Many effects and factors can influence the efficiency of a rocket plasma probe. These include payload charging, solar illumination, rocket payload orientation and rotation, and dust impact induced secondary charge production. As a consequence, considerable uncertainties can arise in the determination of the effective cross sections of plasma probes and measured electron and ion densities. We present a new method for calibrating mesospheric rocket plasma probes and obtaining reliable measurements of plasma densities. This method can be used if a payload also carries a probe for measuring the dust charge density. It is based on that a dust probe's effectivemore » cross section for measuring the charged component of dust normally is nearly equal to its geometric cross section, and it involves the comparison of variations in the dust charge density measured with the dust detector to the corresponding current variations measured with the electron and/or ion probes. In cases in which the dust charge density is significantly smaller than the electron density, the relation between plasma and dust charge density variations can be simplified and used to infer the effective cross sections of the plasma probes. We illustrate the utility of the method by analysing the data from a specific rocket flight of a payload containing both dust and electron probes.« less

  2. In-flight calibration of mesospheric rocket plasma probes.

    PubMed

    Havnes, Ove; Hartquist, Thomas W; Kassa, Meseret; Morfill, Gregor E

    2011-07-01

    Many effects and factors can influence the efficiency of a rocket plasma probe. These include payload charging, solar illumination, rocket payload orientation and rotation, and dust impact induced secondary charge production. As a consequence, considerable uncertainties can arise in the determination of the effective cross sections of plasma probes and measured electron and ion densities. We present a new method for calibrating mesospheric rocket plasma probes and obtaining reliable measurements of plasma densities. This method can be used if a payload also carries a probe for measuring the dust charge density. It is based on that a dust probe's effective cross section for measuring the charged component of dust normally is nearly equal to its geometric cross section, and it involves the comparison of variations in the dust charge density measured with the dust detector to the corresponding current variations measured with the electron and/or ion probes. In cases in which the dust charge density is significantly smaller than the electron density, the relation between plasma and dust charge density variations can be simplified and used to infer the effective cross sections of the plasma probes. We illustrate the utility of the method by analysing the data from a specific rocket flight of a payload containing both dust and electron probes.

  3. Collective Temperature Anisotropy Instabilities in Intense Charged Particle Beams

    NASA Astrophysics Data System (ADS)

    Startsev, Edward

    2006-10-01

    Periodic focusing accelerators, transport systems and storage rings have a wide range of applications ranging from basic scientific research in high energy and nuclear physics, to applications such as ion-beam-driven high energy density physics and fusion, and spallation neutron sources. Of particular importance at the high beam currents and charge densities of practical interest, are the effects of the intense self fields produced by the beam space charge and current on determining the detailed equilibrium, stability and transport properties. Charged particle beams confined by external focusing fields represent an example of nonneutral plasma. A characteristic feature of such plasmas is the non-uniformity of the equilibrium density profiles and the nonlinearity of the self fields, which makes detailed analytical investigation very difficult. The development and application of advanced numerical tools such as eigenmode codes [1] and Monte-Carlo particle simulation methods [2] are often the only tractable approach to understand the underlying physics of different instabilities familiar in electrically neutral plasmas which may cause a degradation in beam quality. Two such instabilities are the electrostatic Harris instability [2] and the electromagnetic Weibel instability [1], both driven by a large temperature anisotropy which develops naturally in accelerators. The beam acceleration causes a large reduction in the longitudinal temperature and provides the free energy to drive collective temperature anisotropy instabilities. Such instabilities may lead to an increase in the longitudinal velocity spread, which will make focusing the beam difficult, and may impose a limit on the beam luminosity and the minimum spot size achievable in focusing experiments. This paper reviews recent advances in the theory and simulation of collective instabilities in intense charged particle beams caused by temperature anisotropy. We also describe new simulation tools that have been developed to study these instabilities. The results of the investigations that identify the instability growth rates, levels of saturations, and conditions for quiescent beam propagation will also be discussed. [1] E.A. Startsev and R.C. Davidson, Phys.Plasmas 10, 4829 (2003). [2] E.A. Startsev, R.C. Davidson and H. Qin, Phys.Rev. ST Accel. Beams 8,124201 (2005).

  4. Electrical Transfer Function and Poling Mechanisms for Nonlinear Optical Polymer Modulators

    NASA Technical Reports Server (NTRS)

    Watson, Michael Dale

    2004-01-01

    Electro-Optic Polymers hold great promise in increased electro-optic coefficients as compared to their inorganic corollaries. Many researchers have focused on quantum chemistry to describe how the dipoles respond to temperature and electric fields. Much work has also been done for single layer films to confirm these results. For optical applications, waveguide structures are utilized to guide the optical waves in 3 layer stacks. Electrode poling is the only practical poling method for these structures. This research takes an electrical engineering approach to develop poling models and electrical and optical transfer functions of the waveguide structure. The key aspect of the poling model is the large boundary charge density deposited during the poling process. The boundary charge density also has a large effect on the electrical transfer function which is used to explain the transient response of the system. These models are experimentally verified. Exploratory experiment design is used to study poling parameters including time, temperature, and voltage. These studies verify the poling conditions for CLDX/APC and CLDZ/APEC guest host electro optic polymer films in waveguide stacks predicted by the theoretical developments.

  5. Solid-state supercapacitors with rationally designed heterogeneous electrodes fabricated by large area spray processing for wearable energy storage applications.

    PubMed

    Huang, Chun; Zhang, Jin; Young, Neil P; Snaith, Henry J; Grant, Patrick S

    2016-05-10

    Supercapacitors are in demand for short-term electrical charge and discharge applications. Unlike conventional supercapacitors, solid-state versions have no liquid electrolyte and do not require robust, rigid packaging for containment. Consequently they can be thinner, lighter and more flexible. However, solid-state supercapacitors suffer from lower power density and where new materials have been developed to improve performance, there remains a gap between promising laboratory results that usually require nano-structured materials and fine-scale processing approaches, and current manufacturing technology that operates at large scale. We demonstrate a new, scalable capability to produce discrete, multi-layered electrodes with a different material and/or morphology in each layer, and where each layer plays a different, critical role in enhancing the dynamics of charge/discharge. This layered structure allows efficient utilisation of each material and enables conservative use of hard-to-obtain materials. The layered electrode shows amongst the highest combinations of energy and power densities for solid-state supercapacitors. Our functional design and spray manufacturing approach to heterogeneous electrodes provide a new way forward for improved energy storage devices.

  6. Poisson-Boltzmann theory of the charge-induced adsorption of semi-flexible polyelectrolytes.

    PubMed

    Ubbink, Job; Khokhlov, Alexei R

    2004-03-15

    A model is suggested for the structure of an adsorbed layer of a highly charged semi-flexible polyelectrolyte on a weakly charged surface of opposite charge sign. The adsorbed phase is thin, owing to the effective reversal of the charge sign of the surface upon adsorption, and ordered, owing to the high surface density of polyelectrolyte strands caused by the generally strong binding between polyelectrolyte and surface. The Poisson-Boltzmann equation for the electrostatic interaction between the array of adsorbed polyelectrolytes and the charged surface is solved for a cylindrical geometry, both numerically, using a finite element method, and analytically within the weak curvature limit under the assumption of excess monovalent salt. For small separations, repulsive surface polarization and counterion osmotic pressure effects dominate over the electrostatic attraction and the resulting electrostatic interaction curve shows a minimum at nonzero separations on the Angstrom scale. The equilibrium density of the adsorbed phase is obtained by minimizing the total free energy under the condition of equality of chemical potential and osmotic pressure of the polyelectrolyte in solution and in the adsorbed phase. For a wide range of ionic conditions and charge densities of the charged surface, the interstrand separation as predicted by the Poisson-Boltzmann model and the analytical theory closely agree. For low to moderate charge densities of the adsorbing surface, the interstrand spacing decreases as a function of the charge density of the charged surface. Above about 0.1 M excess monovalent salt, it is only weakly dependent on the ionic strength. At high charge densities of the adsorbing surface, the interstrand spacing increases with increasing ionic strength, in line with the experiments by Fang and Yang [J. Phys. Chem. B 101, 441 (1997)]. (c) 2004 American Institute of Physics.

  7. Charged systems in bulk and at interfaces

    NASA Astrophysics Data System (ADS)

    Moreira, André Guérin

    2001-05-01

    One of the rules-of-thumb of colloid and surface physics is that most surfaces are charged when in contact with a solvent, usually water. This is the case, for instance, in charge-stabilized colloidal suspensions, where the surface of the colloidal particles are charged (usually with a charge of hundreds to thousands of e, the elementary charge), monolayers of ionic surfactants sitting at an air-water interface (where the water-loving head groups become charged by releasing counterions), or bilayers containing charged phospholipids (as cell membranes). In this work, we look at some model-systems that, although being a simplified version of reality, are expected to capture some of the physical properties of real charged systems (colloids and electrolytes). We initially study the simple double layer, composed by a charged wall in the presence of its counterions. The charges at the wall are smeared out and the dielectric constant is the same everywhere. The Poisson-Boltzmann (PB) approach gives asymptotically exact counterion density profiles around charged objects in the weak-coupling limit of systems with low-valent counterions, surfaces with low charge density and high temperature (or small Bjerrum length). Using Monte Carlo simulations, we obtain the profiles around the charged wall and compare it with both Poisson-Boltzmann (in the low coupling limit) and the novel strong coupling (SC) theory in the opposite limit of high couplings. In the latter limit, the simulations show that the SC leads in fact to asymptotically correct density profiles. We also compare the Monte Carlo data with previously calculated corrections to the Poisson-Boltzmann theory. We also discuss in detail the methods used to perform the computer simulations. After studying the simple double layer in detail, we introduce a dielectric jump at the charged wall and investigate its effect on the counterion density distribution. As we will show, the Poisson-Boltzmann description of the double layer remains a good approximation at low coupling values, while the strong coupling theory is shown to lead to the correct density profiles close to the wall (and at all couplings). For very large couplings, only systems where the difference between the dielectric constants of the wall and of the solvent is small are shown to be well described by SC. Another experimentally relevant modification to the simple double layer is to make the charges at the plane discrete. The counterions are still assumed to be point-like, but we constraint the distance of approach between ions in the plane and counterions to a minimum distance D. The ratio between D and the distance between neighboring ions in the plane is, as we will see, one of the important quantities in determining the influence of the discrete nature of the charges at the wall over the density profiles. Another parameter that plays an important role, as in the previous case, is the coupling as we will demonstrate, systems with higher coupling are more subject to discretization effects than systems with low coupling parameter. After studying the isolated double layer, we look at the interaction between two double layers. The system is composed by two equally charged walls at distance d, with the counterions confined between them. The charge at the walls is smeared out and the dielectric constant is the same everywhere. Using Monte-Carlo simulations we obtain the inter-plate pressure in the global parameter space, and the pressure is shown to be negative (attraction) at certain conditions. The simulations also show that the equilibrium plate separation (where the pressure changes from attractive to repulsive) exhibits a novel unbinding transition. We compare the Monte Carlo results with the strong-coupling theory, which is shown to describe well the bound states of systems with moderate and high couplings. The regime where the two walls are very close to each other is also shown to be well described by the SC theory. Finally, Using a field-theoretic approach, we derive the exact low-density ("virial") expansion of a binary mixture of positively and negatively charged hard spheres (two-component hard-core plasma, TCPHC). The free energy obtained is valid for systems where the diameters d_+ and d_- and the charge valences q_+ and q_- of positive and negative ions are unconstrained, i.e., the same expression can be used to treat dilute salt solutions (where typically d_+ ~ d_- and q_+ ~ q_-) as well as colloidal suspensions (where the difference in size and valence between macroions and counterions can be very large). We also discuss some applications of our results. Eine der Faustregeln der Kolloid- und Oberflächenphysik ist, dass die meisten Oberflächen geladen sind, wenn sie mit einem Lösungsmittel, normalerweise Wasser, in Kontakt treten. Dies ist zum Beispiel bei ladungsstabilisierten Kolloidalen Suspensionen der Fall, bei denen die Oberfläche der Kolloidteilchen geladen ist (gewöhnlich mit einer Ladung von mehreren Hunderttausend Elementarladungen), oder bei Monoschichten ionischer Tenside, die auf einer Luft-Wasser Grenzfläche sitzen (wobei die wasserliebenden Kopfgruppen durch die Freisetzung von Gegenionen geladen werden), sowie bei Doppelschichten, die geladene phospholipide enthalten (wie Zellmembranen). In dieser Arbeit betrachten wir einige Modellsysteme, die zwar eine vereinfachte Fassung der Realität darstellen, von denen wir aber dennoch erwarten koennen, dass wir mit ihrer Hilfe einige physikalische Eigenschaften realer geladener Systeme (Kolloide und Elektrolyte) einfangen können.

  8. Effect of beach management policies on recreational water quality.

    PubMed

    Kelly, Elizabeth A; Feng, Zhixuan; Gidley, Maribeth L; Sinigalliano, Christopher D; Kumar, Naresh; Donahue, Allison G; Reniers, Adrianus J H M; Solo-Gabriele, Helena M

    2018-04-15

    When beach water monitoring programs identify poor water quality, the causes are frequently unknown. We hypothesize that management policies play an important role in the frequency of fecal indicator bacteria (FIB) exceedances (enterococci and fecal coliform) at recreational beaches. To test this hypothesis we implemented an innovative approach utilizing large amounts of monitoring data (n > 150,000 measurements per FIB) to determine associations between the frequency of contaminant exceedances and beach management practices. The large FIB database was augmented with results from a survey designed to assess management policies for 316 beaches throughout the state of Florida. The FIB and survey data were analyzed using t-tests, ANOVA, factor analysis, and linear regression. Results show that beach geomorphology (beach type) was highly associated with exceedance of regulatory standards. Low enterococci exceedances were associated with open coast beaches (n = 211) that have sparse human densities, no homeless populations, low densities of dogs and birds, bird management policies, low densities of seaweed, beach renourishment, charge access fees, employ lifeguards, without nearby marinas, and those that manage storm water. Factor analysis and a linear regression confirmed beach type as the predominant factor with secondary influences from grooming activities (including seaweed densities and beach renourishment) and beach access (including charging fees, employing lifeguards, and without nearby marinas). Our results were observable primarily because of the very large public FIB database available for analyses; similar approaches can be adopted at other beaches. The findings of this research have important policy implications because the selected beach management practices that were associated with low levels of FIB can be implemented in other parts of the US and around the world to improve recreational beach water quality. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Native defects in Tl 6SI 4: Density functional calculations

    DOE PAGES

    Shi, Hongliang; Du, Mao -Hua

    2015-05-05

    In this study, Tl 6SI 4 is a promising room-temperature semiconductor radiation detection material. Here, we report density functional calculations of native defects and dielectric properties of Tl 6SI 4. Formation energies and defect levels of native point defects and defect complexes are calculated. Donor-acceptor defect complexes are shown to be abundant in Tl 6SI 4. High resistivity can be obtained by Fermi level pinning by native donor and acceptor defects. Deep donors that are detrimental to electron transport are identified and methods to mitigate such problem are discussed. Furthermore, we show that mixed ionic-covalent character of Tl 6SI 4more » gives rise to enhanced Born effective charges and large static dielectric constant, which provides effective screening of charged defects and impurities.« less

  10. Charge Structure and Counterion Distribution in Hexagonal DNA Liquid Crystal

    PubMed Central

    Dai, Liang; Mu, Yuguang; Nordenskiöld, Lars; Lapp, Alain; van der Maarel, Johan R. C.

    2007-01-01

    A hexagonal liquid crystal of DNA fragments (double-stranded, 150 basepairs) with tetramethylammonium (TMA) counterions was investigated with small angle neutron scattering (SANS). We obtained the structure factors pertaining to the DNA and counterion density correlations with contrast matching in the water. Molecular dynamics (MD) computer simulation of a hexagonal assembly of nine DNA molecules showed that the inter-DNA distance fluctuates with a correlation time around 2 ns and a standard deviation of 8.5% of the interaxial spacing. The MD simulation also showed a minimal effect of the fluctuations in inter-DNA distance on the radial counterion density profile and significant penetration of the grooves by TMA. The radial density profile of the counterions was also obtained from a Monte Carlo (MC) computer simulation of a hexagonal array of charged rods with fixed interaxial spacing. Strong ordering of the counterions between the DNA molecules and the absence of charge fluctuations at longer wavelengths was shown by the SANS number and charge structure factors. The DNA-counterion and counterion structure factors are interpreted with the correlation functions derived from the Poisson-Boltzmann equation, MD, and MC simulation. Best agreement is observed between the experimental structure factors and the prediction based on the Poisson-Boltzmann equation and/or MC simulation. The SANS results show that TMA is too large to penetrate the grooves to a significant extent, in contrast to what is shown by MD simulation. PMID:17098791

  11. On the nature of the {SO2-4}/{Ag(111) } and {SO2-4}/{Au(111) } surface bonding

    NASA Astrophysics Data System (ADS)

    Patrito, E. M.; Olivera, P. Paredes; Sellers, Harrell

    1997-05-01

    The nature of sulfate-Ag(111) and sulfate-Au(111) surface bonding has been investigated at the SCF + MP2 level of theory. Convergence of binding energy with cluster size is investigated and, unlike neutral adsorbates, large clusters are required in order to obtain reliable binding energies. In the most stable adsorption mode, sulfate binds to the surface via three oxygen atoms (C 3v symmetry) with a binding energy of 159.3 kcal/mol on Ag(111) and 143.9 kcal/mol on Au(111). The geometry of adsorbed sulfate was optimized at the SCF level. While the bond length between sulfur and the oxygens coordinated to the surface increases, the sulfur-uncoordinated oxygen bond length decreases. This weakening and strengthening of the bonds, respectively, is consistent with bond order conservation in adsorbates on metal surfaces. Although a charge transfer of 0.4 electrons towards the metal is observed, the adsorbate remains very much sulfate-like. The molecular orbital analysis indicates that there is also some charge back-donation towards unoccupied orbitals of sulfate. This results in an increased electron density around sulfur as revealed in the electron density difference maps. Analysis of the Laplacian of the charge density of free sulfate provides a suitable framework to understand the nature of the different charge transfer processes and allows us to establish some similarities with the CO- and SO 2-metal bondings.

  12. Mechanisms of boron diffusion in silicon and germanium

    NASA Astrophysics Data System (ADS)

    Mirabella, S.; De Salvador, D.; Napolitani, E.; Bruno, E.; Priolo, F.

    2013-01-01

    B migration in Si and Ge matrices raised a vast attention because of its influence on the production of confined, highly p-doped regions, as required by the miniaturization trend. In this scenario, the diffusion of B atoms can take place under severe conditions, often concomitant, such as very large concentration gradients, non-equilibrium point defect density, amorphous-crystalline transition, extrinsic doping level, co-doping, B clusters formation and dissolution, ultra-short high-temperature annealing. In this paper, we review a large amount of experimental work and present our current understanding of the B diffusion mechanism, disentangling concomitant effects and describing the underlying physics. Whatever the matrix, B migration in amorphous (α-) or crystalline (c-) Si, or c-Ge is revealed to be an indirect process, activated by point defects of the hosting medium. In α-Si in the 450-650 °C range, B diffusivity is 5 orders of magnitude higher than in c-Si, with a transient longer than the typical amorphous relaxation time. A quick B precipitation is also evidenced for concentrations larger than 2 × 1020 B/cm3. B migration in α-Si occurs with the creation of a metastable mobile B, jumping between adjacent sites, stimulated by dangling bonds of α-Si whose density is enhanced by B itself (larger B density causes higher B diffusivity). Similar activation energies for migration of B atoms (3.0 eV) and of dangling bonds (2.6 eV) have been extracted. In c-Si, B diffusion is largely affected by the Fermi level position, occurring through the interaction between the negatively charged substitutional B and a self-interstitial (I) in the neutral or doubly positively charged state, if under intrinsic or extrinsic (p-type doping) conditions, respectively. After charge exchanges, the migrating, uncharged BI pair is formed. Under high n-type doping conditions, B diffusion occurs also through the negatively charged BI pair, even if the migration is depressed by Coulomb pairing with n-type dopants. The interplay between B clustering and migration is also modeled, since B diffusion is greatly affected by precipitation. Small (below 1 nm) and relatively large (5-10 nm in size) BI clusters have been identified with different energy barriers for thermal dissolution (3.6 or 4.8 eV, respectively). In c-Ge, B motion is by far less evident than in c-Si, even if the migration mechanism is revealed to be similarly assisted by Is. If Is density is increased well above the equilibrium (as during ion irradiation), B diffusion occurs up to quite large extents and also at relatively low temperatures, disclosing the underlying mechanism. The lower B diffusivity and the larger activation barrier (4.65 eV, rather than 3.45 eV in c-Si) can be explained by the intrinsic shortage of Is in Ge and by their large formation energy. B diffusion can be strongly enhanced with a proper point defect engineering, as achieved with embedded GeO2 nanoclusters, causing at 650 °C a large Is supersaturation. These aspects of B diffusion are presented and discussed, modeling the key role of point defects in the two different matrices.

  13. The Nature of the Intramolecular Charge Transfer State in Peridinin

    PubMed Central

    Wagner, Nicole L.; Greco, Jordan A.; Enriquez, Miriam M.; Frank, Harry A.; Birge, Robert R.

    2013-01-01

    Experimental and theoretical evidence is presented that supports the theory that the intramolecular charge transfer (ICT) state of peridinin is an evolved state formed via excited-state bond-order reversal and solvent reorganization in polar media. The ICT state evolves in <100 fs and is characterized by a large dipole moment (∼35 D). The charge transfer character involves a shift of electron density within the polyene chain, and it does not involve participation of molecular orbitals localized in either of the β-rings. Charge is moved from the allenic side of the polyene into the furanic ring region and is accompanied by bond-order reversal in the central portion of the polyene chain. The electronic properties of the ICT state are generated via mixing of the “11Bu+” ionic state and the lowest-lying “21Ag–” covalent state. The resulting ICT state is primarily 1Bu+-like in character and exhibits not only a large oscillator strength but an unusually large doubly excited character. In most solvents, two populations exist in equilibrium, one with a lowest-lying ICT ionic state and a second with a lowest-lying “21Ag–” covalent state. The two populations are separated by a small barrier associated with solvent relaxation and cavity formation. PMID:23528091

  14. Charge density dependent mobility of organic hole-transporters and mesoporous TiO₂ determined by transient mobility spectroscopy: implications to dye-sensitized and organic solar cells.

    PubMed

    Leijtens, Tomas; Lim, Jongchul; Teuscher, Joël; Park, Taiho; Snaith, Henry J

    2013-06-18

    Transient mobility spectroscopy (TMS) is presented as a new tool to probe the charge carrier mobility of commonly employed organic and inorganic semiconductors over the relevant range of charge densities. The charge density dependence of the mobility of semiconductors used in hybrid and organic photovoltaics gives new insights into charge transport phenomena in solid state dye sensitized solar cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Numerical Simulations of Flow Separation Control in Low-Pressure Turbines using Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Suzen, Y. B.; Huang, P. G.; Ashpis, D. E.

    2007-01-01

    A recently introduced phenomenological model to simulate flow control applications using plasma actuators has been further developed and improved in order to expand its use to complicated actuator geometries. The new modeling approach eliminates the requirement of an empirical charge density distribution shape by using the embedded electrode as a source for the charge density. The resulting model is validated against a flat plate experiment with quiescent environment. The modeling approach incorporates the effect of the plasma actuators on the external flow into Navier Stokes computations as a body force vector which is obtained as a product of the net charge density and the electric field. The model solves the Maxwell equation to obtain the electric field due to the applied AC voltage at the electrodes and an additional equation for the charge density distribution representing the plasma density. The new modeling approach solves the charge density equation in the computational domain assuming the embedded electrode as a source therefore automatically generating a charge density distribution on the surface exposed to the flow similar to that observed in the experiments without explicitly specifying an empirical distribution. The model is validated against a flat plate experiment with quiescent environment.

  16. Electronic Coupling Calculations for Bridge-Mediated Charge Transfer Using Constrained Density Functional Theory (CDFT) and Effective Hamiltonian Approaches at the Density Functional Theory (DFT) and Fragment-Orbital Density Functional Tight Binding (FODFTB) Level

    DOE PAGES

    Gillet, Natacha; Berstis, Laura; Wu, Xiaojing; ...

    2016-09-09

    In this paper, four methods to calculate charge transfer integrals in the context of bridge-mediated electron transfer are tested. These methods are based on density functional theory (DFT). We consider two perturbative Green's function effective Hamiltonian methods (first, at the DFT level of theory, using localized molecular orbitals; second, applying a tight-binding DFT approach, using fragment orbitals) and two constrained DFT implementations with either plane-wave or local basis sets. To assess the performance of the methods for through-bond (TB)-dominated or through-space (TS)-dominated transfer, different sets of molecules are considered. For through-bond electron transfer (ET), several molecules that were originally synthesizedmore » by Paddon-Row and co-workers for the deduction of electronic coupling values from photoemission and electron transmission spectroscopies, are analyzed. The tested methodologies prove to be successful in reproducing experimental data, the exponential distance decay constant and the superbridge effects arising from interference among ET pathways. For through-space ET, dedicated p-stacked systems with heterocyclopentadiene molecules were created and analyzed on the basis of electronic coupling dependence on donor-acceptor distance, structure of the bridge, and ET barrier height. The inexpensive fragment-orbital density functional tight binding (FODFTB) method gives similar results to constrained density functional theory (CDFT) and both reproduce the expected exponential decay of the coupling with donor-acceptor distances and the number of bridging units. Finally, these four approaches appear to give reliable results for both TB and TS ET and present a good alternative to expensive ab initio methodologies for large systems involving long-range charge transfers.« less

  17. Electronic Coupling Calculations for Bridge-Mediated Charge Transfer Using Constrained Density Functional Theory (CDFT) and Effective Hamiltonian Approaches at the Density Functional Theory (DFT) and Fragment-Orbital Density Functional Tight Binding (FODFTB) Level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillet, Natacha; Berstis, Laura; Wu, Xiaojing

    In this paper, four methods to calculate charge transfer integrals in the context of bridge-mediated electron transfer are tested. These methods are based on density functional theory (DFT). We consider two perturbative Green's function effective Hamiltonian methods (first, at the DFT level of theory, using localized molecular orbitals; second, applying a tight-binding DFT approach, using fragment orbitals) and two constrained DFT implementations with either plane-wave or local basis sets. To assess the performance of the methods for through-bond (TB)-dominated or through-space (TS)-dominated transfer, different sets of molecules are considered. For through-bond electron transfer (ET), several molecules that were originally synthesizedmore » by Paddon-Row and co-workers for the deduction of electronic coupling values from photoemission and electron transmission spectroscopies, are analyzed. The tested methodologies prove to be successful in reproducing experimental data, the exponential distance decay constant and the superbridge effects arising from interference among ET pathways. For through-space ET, dedicated p-stacked systems with heterocyclopentadiene molecules were created and analyzed on the basis of electronic coupling dependence on donor-acceptor distance, structure of the bridge, and ET barrier height. The inexpensive fragment-orbital density functional tight binding (FODFTB) method gives similar results to constrained density functional theory (CDFT) and both reproduce the expected exponential decay of the coupling with donor-acceptor distances and the number of bridging units. Finally, these four approaches appear to give reliable results for both TB and TS ET and present a good alternative to expensive ab initio methodologies for large systems involving long-range charge transfers.« less

  18. Electronic Coupling Calculations for Bridge-Mediated Charge Transfer Using Constrained Density Functional Theory (CDFT) and Effective Hamiltonian Approaches at the Density Functional Theory (DFT) and Fragment-Orbital Density Functional Tight Binding (FODFTB) Level.

    PubMed

    Gillet, Natacha; Berstis, Laura; Wu, Xiaojing; Gajdos, Fruzsina; Heck, Alexander; de la Lande, Aurélien; Blumberger, Jochen; Elstner, Marcus

    2016-10-11

    In this article, four methods to calculate charge transfer integrals in the context of bridge-mediated electron transfer are tested. These methods are based on density functional theory (DFT). We consider two perturbative Green's function effective Hamiltonian methods (first, at the DFT level of theory, using localized molecular orbitals; second, applying a tight-binding DFT approach, using fragment orbitals) and two constrained DFT implementations with either plane-wave or local basis sets. To assess the performance of the methods for through-bond (TB)-dominated or through-space (TS)-dominated transfer, different sets of molecules are considered. For through-bond electron transfer (ET), several molecules that were originally synthesized by Paddon-Row and co-workers for the deduction of electronic coupling values from photoemission and electron transmission spectroscopies, are analyzed. The tested methodologies prove to be successful in reproducing experimental data, the exponential distance decay constant and the superbridge effects arising from interference among ET pathways. For through-space ET, dedicated π-stacked systems with heterocyclopentadiene molecules were created and analyzed on the basis of electronic coupling dependence on donor-acceptor distance, structure of the bridge, and ET barrier height. The inexpensive fragment-orbital density functional tight binding (FODFTB) method gives similar results to constrained density functional theory (CDFT) and both reproduce the expected exponential decay of the coupling with donor-acceptor distances and the number of bridging units. These four approaches appear to give reliable results for both TB and TS ET and present a good alternative to expensive ab initio methodologies for large systems involving long-range charge transfers.

  19. Continuum modeling of charging process and piezoelectricity of ferroelectrets

    NASA Astrophysics Data System (ADS)

    Xu, Bai-Xiang; von Seggern, Heinz; Zhukov, Sergey; Gross, Dietmar

    2013-09-01

    Ferroelectrets in the form of electrically charged micro-porous foams exhibit a very large longitudinal piezoelectric coefficient d33. The structure has hence received wide application interests as sensors particularly in acoustic devices. During charging process, electrical breakdown (Paschen breakdown) takes place in the air pores of the foam and introduces free charge pairs. These charges are separated by electrostatic forces and relocated at the interfaces between the polymer and the electrically broken-down medium, where they are trapped quasistatically. The development of this trapped charge density along the interfaces is key for enabling the piezoelectricity of ferroelectrets. In this article, an internal variable based continuum model is proposed to calculate the charge density development at the interfaces, whereas a Maxwell stress based electromechanical model is used for the bulk behavior, i.e., of the polymer and of the medium where the Paschen breakdown takes place. In the modeling, the electrostatic forces between the separated charge pairs are included, as well as the influence of deformation of the solid layers. The material models are implemented in a nonlinear finite element scheme, which allows a detailed analysis of different geometries. A ferroelectret unit with porous expanded polytetrafluoroethylene (ePTFE) surrounded by fluorinated ethylene propylene is studied first. The simulated hysteresis curves of charge density at the surfaces and the calculated longitudinal piezoelectric constant are in good agreement with experimental results. Simulations show a strong dependency of the interface charge development and thus the remnant charges on the thicknesses of the layers and the permittivity of the materials. According to the calculated relation between d33 and the Young's modulus of ePTFE, the value of the Young's modulus of ePTFE is identified to be around 0.75 MPa, which lies well in the predicted range of 0.45 to 0.80 MPa, determined from the dielectric resonance spectra in the work of Zhang et al. [X. Q. Zhang et al., J. Appl. Phys. 108, 064113 (2010)]. To show the potential of the models, it is also applied to simulation of ferroelectrets with a lens shape. The results indicate that the electrical breakdown happens in a sequential manner, and the local piezoelectric coefficient varies with position. Thereby, the middle point on the surface exhibits the maximum d33. The simulation results obtained by the proposed models will provide insight for device optimization.

  20. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory.

    PubMed

    Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J; Lopata, Kenneth

    2016-09-07

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.

  1. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sissay, Adonay; Abanador, Paul; Mauger, François

    2016-09-07

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagatingmore » the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.« less

  2. Mesoporous nanocrystalline film architecture for capacitive storage devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunn, Bruce S.; Tolbert, Sarah H.; Wang, John

    A mesoporous, nanocrystalline, metal oxide construct particularly suited for capacitive energy storage that has an architecture with short diffusion path lengths and large surface areas and a method for production are provided. Energy density is substantially increased without compromising the capacitive charge storage kinetics and electrode demonstrates long term cycling stability. Charge storage devices with electrodes using the construct can use three different charge storage mechanisms immersed in an electrolyte: (1) cations can be stored in a thin double layer at the electrode/electrolyte interface (non-faradaic mechanism); (2) cations can interact with the bulk of an electroactive material which then undergoesmore » a redox reaction or phase change, as in conventional batteries (faradaic mechanism); or (3) cations can electrochemically adsorb onto the surface of a material through charge transfer processes (faradaic mechanism).« less

  3. Ultrafast large-amplitude relocation of electronic charge in ionic crystals

    PubMed Central

    Zamponi, Flavio; Rothhardt, Philip; Stingl, Johannes; Woerner, Michael; Elsaesser, Thomas

    2012-01-01

    The interplay of vibrational motion and electronic charge relocation in an ionic hydrogen-bonded crystal is mapped by X-ray powder diffraction with a 100 fs time resolution. Photoexcitation of the prototype material KH2PO4 induces coherent low-frequency motions of the PO4 tetrahedra in the electronically excited state of the crystal while the average atomic positions remain unchanged. Time-dependent maps of electron density derived from the diffraction data demonstrate an oscillatory relocation of electronic charge with a spatial amplitude two orders of magnitude larger than the underlying vibrational lattice motions. Coherent longitudinal optical and tranverse optical phonon motions that dephase on a time scale of several picoseconds, drive the charge relocation, similar to a soft (transverse optical) mode driven phase transition between the ferro- and paraelectric phase of KH2PO4. PMID:22431621

  4. Methodology for extraction of space charge density profiles at nanoscale from Kelvin probe force microscopy measurements.

    PubMed

    Villeneuve-Faure, C; Boudou, L; Makasheva, K; Teyssedre, G

    2017-12-15

    To understand the physical phenomena occurring at metal/dielectric interfaces, determination of the charge density profile at nanoscale is crucial. To deal with this issue, charges were injected applying a DC voltage on lateral Al-electrodes embedded in a SiN x thin dielectric layer. The surface potential induced by the injected charges was probed by Kelvin probe force microscopy (KPFM). It was found that the KPFM frequency mode is a better adapted method to probe accurately the charge profile. To extract the charge density profile from the surface potential two numerical approaches based on the solution to Poisson's equation for electrostatics were investigated: the second derivative model method, already reported in the literature, and a new 2D method based on the finite element method (FEM). Results highlight that the FEM is more robust to noise or artifacts in the case of a non-flat initial surface potential. Moreover, according to theoretical study the FEM appears to be a good candidate for determining charge density in dielectric films with thicknesses in the range from 10 nm to 10 μm. By applying this method, the charge density profile was determined at nanoscale, highlighting that the charge cloud remains close to the interface.

  5. Methodology for extraction of space charge density profiles at nanoscale from Kelvin probe force microscopy measurements

    NASA Astrophysics Data System (ADS)

    Villeneuve-Faure, C.; Boudou, L.; Makasheva, K.; Teyssedre, G.

    2017-12-01

    To understand the physical phenomena occurring at metal/dielectric interfaces, determination of the charge density profile at nanoscale is crucial. To deal with this issue, charges were injected applying a DC voltage on lateral Al-electrodes embedded in a SiN x thin dielectric layer. The surface potential induced by the injected charges was probed by Kelvin probe force microscopy (KPFM). It was found that the KPFM frequency mode is a better adapted method to probe accurately the charge profile. To extract the charge density profile from the surface potential two numerical approaches based on the solution to Poisson’s equation for electrostatics were investigated: the second derivative model method, already reported in the literature, and a new 2D method based on the finite element method (FEM). Results highlight that the FEM is more robust to noise or artifacts in the case of a non-flat initial surface potential. Moreover, according to theoretical study the FEM appears to be a good candidate for determining charge density in dielectric films with thicknesses in the range from 10 nm to 10 μm. By applying this method, the charge density profile was determined at nanoscale, highlighting that the charge cloud remains close to the interface.

  6. Redox control of ferrocene-based complexes with systematically extended π-conjugated connectors: switchable and tailorable second order nonlinear optics.

    PubMed

    Wang, Wen-Yong; Ma, Na-Na; Sun, Shi-Ling; Qiu, Yong-Qing

    2014-03-14

    The studies of geometrical structures, thermal stabilities, redox properties, nonlinear responses and optoelectronic properties have been carried out on a series of novel ferrocenyl (Fc) chromophores with the view of assessing their switchable and tailorable second order nonlinear optics (NLO). The use of a constant Fc donor and a 4,4'-bipyridinium acceptor and varied conjugated bridges makes it possible to systematically determine the contribution of organic connectors to chromophore nonlinear optical activities. The structures reveal that both the reduction reactions and organic connectors have a significant influence on 4,4'-bipyridinium. The potential energy surface maps along with plots of reduced density gradient mirror the thermal stabilities of the Fc-based chromophores. The first and second reductions take place preferentially at the 4,4'-bipyridinium moieties. Significantly, the reduction processes result in the molecular switches with large NLO contrast varying from zero or very small to a large value. Moreover, time-dependent density functional theory results indicate that the absorption peaks are mainly attributed to Fc to 4,4'-bipyridinium charge transfer and the mixture of intramolecular charge transfer within the two respective 4,4'-bipyridinium moieties coupled with interlayer charge transfer between the two 4,4'-bipyridinium moieties. This provides us with comprehensive information on the effect of organic connectors on the NLO properties.

  7. Effect of curvature squared corrections to gravitational action on viscosity-to-entropy ratio of the dual gauge theory

    NASA Astrophysics Data System (ADS)

    Petrov, Pavel

    In this thesis we study the properties of strongly-coupled large-N conformal field theories (CFT's) using AdS/CFT correspondence. Chapter 1 serves as an introduction. In Chapter 2 we study the shear viscosity of strongly-coupled large-N conformal field theories. We find that it is affected by R2 corrections to the AdS action and present an example of 4D theory in which the the conjectured universal lower bound on viscosity-to-entropy ratio η/s > 1/4π is violated by 1/N corrections. This fact proves that there is no universal lower bound of 1/4π on viscosity-to-entropy ratio and may be relevant for the studies of QCD quark-gluon plasma for which this ratio is experimentally found to be close to 1/4π. In Chapter 3 we study the formation of the electron star in 4D AdS space. We show that in a gravity theory with charged fermions a layer of charged fermion fluid may form at a finite distance from the charged black hole. We show that these “electron stars” are candidate gravity duals for strongly interacting fermion systems at finite density and finite temperature. Entropy density for such systems scales as s ˜ T2/z at low temperatures as expected from IR criticality of electron stars solutions.

  8. Charge density distribution and the electrostatic moments of CTPB in the active site of p300 enzyme: a DFT and charge density study.

    PubMed

    Devipriya, B; Kumaradhas, P

    2013-10-21

    A molecular docking and charge density analysis have been carried out to understand the conformational change, charge distribution and electrostatic properties of N-(4-chloro-3-trifluoromethyl-phenyl)-2-ethoxy-6-pentadecyl-benzamide (CTPB) in the active site of p300. The nearest neighbors, shortest intermolecular contacts between CTPB-p300 and the lowest binding energy of CTPB have been analyzed from the docking analysis. Further, a charge density analysis has been carried out for the molecule in gas phase and for the corresponding molecule lifted from the active site of p300. Due to the intermolecular interaction between CTPB and the amino acids of active site, the conformation of the CTPB has been significantly altered (particularly the pentadecyl chain). CTPB forms strong interaction with the amino acid residues Tyr1397 and Trp1436 at the distance 2.12 and 2.72Å, respectively. However, the long pentadecyl alkyl chain of CTPB produces a barrier and reducing the chance of forming hydrogen bonding with p300. The electron density ρbcp(r) of the polar bonds (C-O, C-N, C-F and C-Cl) of CTPB are increased when it present in the active site. The dipole moment of CTPB in the active site is significantly less (5.73D) when compared with the gas phase (8.16D) form. In the gas phase structure, a large region of negative electrostatic potential (ESP) is found at the vicinity of O(2) and CF3 group, which is less around the O(1) atom. Whereas, in the active site, the negative ESP around the CF3 group is decreased and increased at the O(1) and O(2)-atoms. The ESP modifications of CTPB in the active site are mainly attributed to the effect of intermolecular interaction. The gas phase and active site study insights the molecular flexibility and the electrostatic properties of CTPB in the active site. © 2013 Elsevier Ltd. All rights reserved.

  9. Ignitor with stable low-energy thermite igniting system

    DOEpatents

    Kelly, Michael D.; Munger, Alan C.

    1991-02-05

    A stable compact low-energy igniting system in an ignitor utilizes two components, an initiating charge and an output charge. The initiating charge is a thermite in ultra-fine powder form compacted to 50-70% of theoretical maximum density and disposed in a cavity of a header of the ignitor adjacent to an electrical ignition device, or bridgewire, mounted in the header cavity. The initiating charge is ignitable by operation of the ignition device in a hot-wire mode. The output charge is a thermite in high-density consoladated form compacted to 90-99% of theoretical maximum density and disposed adjacent to the initiating charge on an opposite end thereof from the electrical ignition device and ignitable by the initiating charge. A sleeve is provided for mounting the output charge to the ignitor header with the initiating charge confined therebetween in the cavity.

  10. Formation and stability of water-soluble, molecular polyelectrolyte complexes: effects of charge density, mixing ratio, and polyelectrolyte concentration.

    PubMed

    Shovsky, Alexander; Varga, Imre; Makuska, Ricardas; Claesson, Per M

    2009-06-02

    The formation of complexes with stoichiometric (1:1) as well as nonstoichiometric (2:1) and (1:2) compositions between oppositely charged synthetic polyelectrolytes carrying strong ionic groups and significantly different molecular weights is reported in this contribution. Poly(sodium styrenesulfonate) (NaPSS) was used as polyanion, and a range of copolymers with various molar ratios of the poly(methacryloxyethyltrimethylammonium) chloride, poly(METAC), and the nonionic poly(ethylene oxide) ether methacrylate, poly(PEO45MEMA), were used as polycations. Formation and stability of PECs have been investigated by dynamic and static light scattering (LS), turbidity, and electrophoretic mobility measurements as a function of polyelectrolyte solution concentration, charge density of the cationic polyelectrolyte, and mixing ratio. The data obtained demonstrate that in the absence of PEO45 side chains the 100% charged polymer (polyMETAC) formed insoluble PECs with PSS that precipitate from solution when exact stoichiometry is achieved. In nonstoichiometric complexes (1:2) and (2:1) large colloidally stable aggregates were formed. The presence of even a relatively small amount of PEO45 side chains (25%) in the cationic copolymer was sufficient for preventing precipitation of the formed stoichiometric and nonstoichiometric complexes. These PEC's are sterically stabilized by the PEO45 chains. By further increasing the PEO45 side-chain content (50 and 75%) of the cationic copolymer, small, water-soluble molecular complexes could be formed. The data suggest that PSS molecules and the charged backbone of the cationic brush form a compact core, and with sufficiently high PEO45 chain density (above 25%) molecular complexes are formed that are stable over prolonged times.

  11. An Analytical Planning Model to Estimate the Optimal Density of Charging Stations for Electric Vehicles.

    PubMed

    Ahn, Yongjun; Yeo, Hwasoo

    2015-01-01

    The charging infrastructure location problem is becoming more significant due to the extensive adoption of electric vehicles. Efficient charging station planning can solve deeply rooted problems, such as driving-range anxiety and the stagnation of new electric vehicle consumers. In the initial stage of introducing electric vehicles, the allocation of charging stations is difficult to determine due to the uncertainty of candidate sites and unidentified charging demands, which are determined by diverse variables. This paper introduces the Estimating the Required Density of EV Charging (ERDEC) stations model, which is an analytical approach to estimating the optimal density of charging stations for certain urban areas, which are subsequently aggregated to city level planning. The optimal charging station's density is derived to minimize the total cost. A numerical study is conducted to obtain the correlations among the various parameters in the proposed model, such as regional parameters, technological parameters and coefficient factors. To investigate the effect of technological advances, the corresponding changes in the optimal density and total cost are also examined by various combinations of technological parameters. Daejeon city in South Korea is selected for the case study to examine the applicability of the model to real-world problems. With real taxi trajectory data, the optimal density map of charging stations is generated. These results can provide the optimal number of chargers for driving without driving-range anxiety. In the initial planning phase of installing charging infrastructure, the proposed model can be applied to a relatively extensive area to encourage the usage of electric vehicles, especially areas that lack information, such as exact candidate sites for charging stations and other data related with electric vehicles. The methods and results of this paper can serve as a planning guideline to facilitate the extensive adoption of electric vehicles.

  12. Unity quantum yield of photogenerated charges and band-like transport in quantum-dot solids.

    PubMed

    Talgorn, Elise; Gao, Yunan; Aerts, Michiel; Kunneman, Lucas T; Schins, Juleon M; Savenije, T J; van Huis, Marijn A; van der Zant, Herre S J; Houtepen, Arjan J; Siebbeles, Laurens D A

    2011-09-25

    Solid films of colloidal quantum dots show promise in the manufacture of photodetectors and solar cells. These devices require high yields of photogenerated charges and high carrier mobilities, which are difficult to achieve in quantum-dot films owing to a strong electron-hole interaction and quantum confinement. Here, we show that the quantum yield of photogenerated charges in strongly coupled PbSe quantum-dot films is unity over a large temperature range. At high photoexcitation density, a transition takes place from hopping between localized states to band-like transport. These strongly coupled quantum-dot films have electrical properties that approach those of crystalline bulk semiconductors, while retaining the size tunability and cheap processing properties of colloidal quantum dots.

  13. Calculation of the spin-polarized electronic structure of an interstitial iron impurity in silicon

    NASA Astrophysics Data System (ADS)

    Katayama-Yoshida, H.; Zunger, Alex

    1985-06-01

    We apply our self-consistent, all-electron, spin-polarized Green's-function method within an impurity-centered, dynamic basis set to study the interstitial iron impurity in silicon. We use two different formulations of the interelectron interactions: the local-spin-density (LSD) formalism and the self-interaction-corrected (SIC) local-spin-density (SIC-LSD) formalism. We find that the SIC-LSD approach is needed to obtain the correct high-spin ground state of Si:Fe+. We propose a quantitative explanation to the observed donor ionization energy and the high-spin ground states for Si:Fe+ within the SIC-LSD approach. For both Si:Fe0 and Si:Fe+, this approach leads to a hyperfine field, contact spin density, and ionization energy in better agreement with experiments than the simple LSD approach. The apparent dichotomy between the covalently delocalized nature of Si:Fe as suggested on the one hand by its reduced hyperfine field (relative to the free atom) and extended spin density and by the occurrence of two closely spaced, stable charge states (within 0.4 eV) and on the other hand by the atomically localized picture (suggested, for example, by the stability of a high-spin, ground-state configuration) is resolved. We find a large reduction in the hyperfine field and contact spin density due to the covalent hybridization between the impurity 3d orbitals and the tails of the delocalized sp3 hybrid orbitals of the surrounding silicon atoms. Using the calculated results, we discuss (i) the underlying mechanism for the stability and plurality of charged states, (ii) the covalent reduction in the hyperfine field, (iii) the remarkable constancy of the impurity Mössbauer isomer shift for different charged states, (iv) comparison with the multiple charged states in ionic crystals, and (v) some related speculation about the mechanism of (Fe2+/Fe3+) oxidation-reduction ionizations in heme proteins and electron-transporting biological systems.

  14. Robust statistical reconstruction for charged particle tomography

    DOEpatents

    Schultz, Larry Joe; Klimenko, Alexei Vasilievich; Fraser, Andrew Mcleod; Morris, Christopher; Orum, John Christopher; Borozdin, Konstantin N; Sossong, Michael James; Hengartner, Nicolas W

    2013-10-08

    Systems and methods for charged particle detection including statistical reconstruction of object volume scattering density profiles from charged particle tomographic data to determine the probability distribution of charged particle scattering using a statistical multiple scattering model and determine a substantially maximum likelihood estimate of object volume scattering density using expectation maximization (ML/EM) algorithm to reconstruct the object volume scattering density. The presence of and/or type of object occupying the volume of interest can be identified from the reconstructed volume scattering density profile. The charged particle tomographic data can be cosmic ray muon tomographic data from a muon tracker for scanning packages, containers, vehicles or cargo. The method can be implemented using a computer program which is executable on a computer.

  15. Charge Density Quantification of Polyelectrolyte Polysaccharides by Conductometric Titration: An Analytical Chemistry Experiment

    ERIC Educational Resources Information Center

    Farris, Stefano; Mora, Luigi; Capretti, Giorgio; Piergiovanni, Luciano

    2012-01-01

    An easy analytical method for determination of the charge density of polyelectrolytes, including polysaccharides and other biopolymers, is presented. The basic principles of conductometric titration, which is used in the pulp and paper industry as well as in colloid and interface science, were adapted to quantify the charge densities of a…

  16. The role of surface charge density in cationic liposome-promoted dendritic cell maturation and vaccine-induced immune responses

    NASA Astrophysics Data System (ADS)

    Ma, Yifan; Zhuang, Yan; Xie, Xiaofang; Wang, Ce; Wang, Fei; Zhou, Dongmei; Zeng, Jianqiang; Cai, Lintao

    2011-05-01

    Cationic liposomes have emerged as a novel adjuvant and antigen delivery system to enhance vaccine efficacy. However, the role of surface charge density in cationic liposome-regulated immune responses has not yet been elucidated. In the present study, we prepared a series of DOTAP/DOPC cationic liposomes with different surface densities by incorporating varying amounts of DOPC (a neutral lipid) into DOTAP (a cationic lipid). The results showed that DOTAP/DOPC cationic liposome-regulated immune responses relied on the surface charge density, and might occur through ROS signaling. The liposomes with a relatively high charge density, such as DOTAP/DOPC 5 : 0 and 4 : 1 liposomes, potently enhanced dendritic cell maturation, ROS generaion, antigen uptake, as well as the production of OVA-specific IgG2a and IFN-γ. In contrast, low-charge liposomes, such as DOTAP/DOPC 1 : 4 liposome, failed to promote immune responses even at high concentrations, confirming that the immunoregulatory effect of cationic liposomes is mostly attributable to their surface charge density. Moreover, the DOTAP/DOPC 1 : 4 liposome suppressed anti-OVA antibody responses in vivo. Overall, maintaining an appropriate surface charge is crucial for optimizing the adjuvant effect of cationic liposomes and enhancing the efficacy of liposome-based vaccines.

  17. Dental plaque microcosm response to bonding agents containing quaternary ammonium methacrylates with different chain lengths and charge densities

    PubMed Central

    Zhou, Han; Li, Fang; Weir, Michael D.; Xu, Hockin H.K.

    2013-01-01

    Objectives Antibacterial bonding agents are promising to combat bacteria and caries at tooth-restoration margins. The objectives of this study were to incorporate new quaternary ammonium methacrylates (QAMs) to bonding agent and determine the effects of alkyl chain length (CL) and quaternary amine charge density on dental plaque microcosm bacteria response for the first time. Methods Six QAMs were synthesized with CL = 3, 6, 9, 12, 16, 18. Each QAM was incorporated into Scotchbond Multi-purpose (SBMP). To determine the charge density effect, dimethylaminododecyl methacrylate (DMAHDM, CL = 16) was mixed into SBMP at mass fraction = 0%, 2.5%, 5%, 7.5%, 10%. Charge density was measured using a fluorescein dye method. Dental plaque microcosm using saliva from ten donors was tested. Bacteria were inoculated on resins. Early-attachment was tested at 4 hours. Biofilm colony-forming units (CFU) were measured at 2 days. Results Incorporating QAMs into SBMP reduced bacteria early-attachment. Microcosm biofilm CFU for CL = 16 was 4 log lower than SBMP control. Charge density of bonding agent increased with DMAHDM content. Bacteria early-attachment decreased with increasing charge density. Biofilm CFU at 10% DMAHDM was reduced by 4 log. The killing effect was similarly-strong against total microorganisms, total streptococci, and mutans streptococci. Conclusions Increasing alkyl chain length and charge density of bonding agent was shown for the first time to decrease microcosm bacteria attachment and reduce biofilm CFU by 4 orders of magnitude. Novel antibacterial resins with tailored chain length and charge density are promising for wide applications in bonding, cements, sealants and composites to inhibit biofilms and caries. PMID:23948394

  18. Dental plaque microcosm response to bonding agents containing quaternary ammonium methacrylates with different chain lengths and charge densities.

    PubMed

    Zhou, Han; Li, Fang; Weir, Michael D; Xu, Hockin H K

    2013-11-01

    Antibacterial bonding agents are promising to combat bacteria and caries at tooth-restoration margins. The objectives of this study were to incorporate new quaternary ammonium methacrylates (QAMs) to bonding agent and determine the effects of alkyl chain length (CL) and quaternary amine charge density on dental plaque microcosm bacteria response for the first time. Six QAMs were synthesized with CL=3, 6, 9, 12, 16, 18. Each QAM was incorporated into Scotchbond multi-purpose (SBMP). To determine the charge density effect, dimethylaminododecyl methacrylate (DMAHDM, CL=16) was mixed into SBMP at mass fraction=0%, 2.5%, 5%, 7.5%, 10%. Charge density was measured using a fluorescein dye method. Dental plaque microcosm using saliva from ten donors was tested. Bacteria were inoculated on resins. Early-attachment was tested at 4h. Biofilm colony-forming units (CFU) were measured at 2 days. Incorporating QAMs into SBMP reduced bacteria early-attachment. Microcosm biofilm CFU for CL=16 was 4 log lower than SBMP control. Charge density of bonding agent increased with DMAHDM content. Bacteria early-attachment decreased with increasing charge density. Biofilm CFU at 10% DMAHDM was reduced by 4 log. The killing effect was similarly-strong against total microorganisms, total streptococci, and mutans streptococci. Increasing alkyl chain length and charge density of bonding agent was shown for the first time to decrease microcosm bacteria attachment and reduce biofilm CFU by 4 orders of magnitude. Novel antibacterial resins with tailored chain length and charge density are promising for wide applications in bonding, cements, sealants and composites to inhibit biofilms and caries. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy

    PubMed Central

    Klausen, Lasse Hyldgaard; Fuhs, Thomas; Dong, Mingdong

    2016-01-01

    Local surface charge density of lipid membranes influences membrane–protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far been capable of mapping surface charge densities under physiologically relevant conditions. Here, we use a scanning nanopipette setup (scanning ion-conductance microscope) combined with a novel algorithm to investigate the surface conductivity near supported lipid bilayers, and we present a new approach, quantitative surface conductivity microscopy (QSCM), capable of mapping surface charge density with high-quantitative precision and nanoscale resolution. The method is validated through an extensive theoretical analysis of the ionic current at the nanopipette tip, and we demonstrate the capacity of QSCM by mapping the surface charge density of model cationic, anionic and zwitterionic lipids with results accurately matching theoretical values. PMID:27561322

  20. Observation of a Charge Density Wave Incommensuration Near the Superconducting Dome in Cu x TiSe 2

    DOE PAGES

    Kogar, A.; de la Pena, G. A.; Lee, Sangjun; ...

    2017-01-11

    X-ray diffraction was employed to study the evolution of the charge density wave (CDW) in Cu xTiSe 2 as a function of copper intercalation in order to clarify the relationship between the CDW and superconductivity. In this paper, the results show a CDW incommensuration arising at an intercalation value coincident with the onset of superconductivity at around x = 0.055(5) . Additionally, it was found that the charge density wave persists to higher intercalant concentrations than previously assumed, demonstrating that the CDW does not terminate inside the superconducting dome. A charge density wave peak was observed in samples up tomore » x = 0.091(6) , the highest copper concentration examined in this study. Lastly, the phase diagram established in this work suggests that charge density wave incommensuration may play a role in the formation of the superconducting state.« less

  1. Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy

    NASA Astrophysics Data System (ADS)

    Klausen, Lasse Hyldgaard; Fuhs, Thomas; Dong, Mingdong

    2016-08-01

    Local surface charge density of lipid membranes influences membrane-protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far been capable of mapping surface charge densities under physiologically relevant conditions. Here, we use a scanning nanopipette setup (scanning ion-conductance microscope) combined with a novel algorithm to investigate the surface conductivity near supported lipid bilayers, and we present a new approach, quantitative surface conductivity microscopy (QSCM), capable of mapping surface charge density with high-quantitative precision and nanoscale resolution. The method is validated through an extensive theoretical analysis of the ionic current at the nanopipette tip, and we demonstrate the capacity of QSCM by mapping the surface charge density of model cationic, anionic and zwitterionic lipids with results accurately matching theoretical values.

  2. Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy.

    PubMed

    Klausen, Lasse Hyldgaard; Fuhs, Thomas; Dong, Mingdong

    2016-08-26

    Local surface charge density of lipid membranes influences membrane-protein interactions leading to distinct functions in all living cells, and it is a vital parameter in understanding membrane-binding mechanisms, liposome design and drug delivery. Despite the significance, no method has so far been capable of mapping surface charge densities under physiologically relevant conditions. Here, we use a scanning nanopipette setup (scanning ion-conductance microscope) combined with a novel algorithm to investigate the surface conductivity near supported lipid bilayers, and we present a new approach, quantitative surface conductivity microscopy (QSCM), capable of mapping surface charge density with high-quantitative precision and nanoscale resolution. The method is validated through an extensive theoretical analysis of the ionic current at the nanopipette tip, and we demonstrate the capacity of QSCM by mapping the surface charge density of model cationic, anionic and zwitterionic lipids with results accurately matching theoretical values.

  3. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    DOEpatents

    Lasche, George P.

    1988-01-01

    A high-power-density laser or charged-particle-beam fusion reactor system maximizes the directed kinetic energy imparted to a large mass of liquid lithium by a centrally located fusion target. A fusion target is embedded in a large mass of lithium, of sufficient radius to act as a tritium breeding blanket, and provided with ports for the access of beam energy to implode the target. The directed kinetic energy is converted directly to electricity with high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the system maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall are several orders of magnitude less than is typical of other fusion reactor systems.

  4. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    DOEpatents

    Lasche, G.P.

    1987-02-20

    A high-power-density-laser or charged-particle-beam fusion reactor system maximizes the directed kinetic energy imparted to a large mass of liquid lithium by a centrally located fusion target. A fusion target is embedded in a large mass of lithium, of sufficient radius to act as a tritium breeding blanket, and provided with ports for the access of beam energy to implode the target. The directed kinetic energy is converted directly to electricity with high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the system maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall are several orders of magnitude less than is typical of other fusion reactor systems. 25 figs.

  5. High-temperature charge density wave correlations in La1.875Ba0.125CuO4 without spin–charge locking

    PubMed Central

    Lorenzana, J.; Seibold, G.; Peng, Y. Y.; Amorese, A.; Yakhou-Harris, F.; Kummer, K.; Brookes, N. B.; Konik, R. M.; Thampy, V.; Gu, G. D.; Ghiringhelli, G.; Braicovich, L.

    2017-01-01

    Although all superconducting cuprates display charge-ordering tendencies, their low-temperature properties are distinct, impeding efforts to understand the phenomena within a single conceptual framework. While some systems exhibit stripes of charge and spin, with a locked periodicity, others host charge density waves (CDWs) without any obviously related spin order. Here we use resonant inelastic X-ray scattering to follow the evolution of charge correlations in the canonical stripe-ordered cuprate La1.875Ba0.125CuO4 across its ordering transition. We find that high-temperature charge correlations are unlocked from the wavevector of the spin correlations, signaling analogies to CDW phases in various other cuprates. This indicates that stripe order at low temperatures is stabilized by the coupling of otherwise independent charge and spin density waves, with important implications for the relation between charge and spin correlations in the cuprates. PMID:29114049

  6. Molecular simulation study of feruloyl esterase adsorption on charged surfaces: effects of surface charge density and ionic strength.

    PubMed

    Liu, Jie; Peng, Chunwang; Yu, Gaobo; Zhou, Jian

    2015-10-06

    The surrounding conditions, such as surface charge density and ionic strength, play an important role in enzyme adsorption. The adsorption of a nonmodular type-A feruloyl esterase from Aspergillus niger (AnFaeA) on charged surfaces was investigated by parallel tempering Monte Carlo (PTMC) and all-atom molecular dynamics (AAMD) simulations at different surface charge densities (±0.05 and ±0.16 C·m(-2)) and ionic strengths (0.007 and 0.154 M). The adsorption energy, orientation, and conformational changes were analyzed. Simulation results show that whether AnFaeA can adsorb onto a charged surface is mainly controlled by electrostatic interactions between AnFaeA and the charged surface. The electrostatic interactions between AnFaeA and charged surfaces are weakened when the ionic strength increases. The positively charged surface at low surface charge density and high ionic strength conditions can maximize the utilization of the immobilized AnFaeA. The counterion layer plays a key role in the adsorption of AnFaeA on the negatively charged COOH-SAM. The native conformation of AnFaeA is well preserved under all of these conditions. The results of this work can be used for the controlled immobilization of AnFaeA.

  7. Electronic properties of doped and defective NiO: A quantum Monte Carlo study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Hyeondeok; Luo, Ye; Ganesh, Panchapakesan

    NiO is a canonical Mott (or charge-transfer) insulator and as such is notoriously difficult to describe using density functional theory (DFT) based electronic structure methods. Doped Mott insulators such as NiO are of interest for various applications but rigorous theoretical descriptions are lacking. Here, we use quantum Monte Carlo methods, which very accurately include electron-electron interactions, to examine energetics, charge- and spin-structures of NiO with various point defects, such as vacancies or substitutional doping with potassium. The formation energy of a potassium dopant is significantly lower than for a Ni vacancy, making potassium an attractive monovalent dopant for NiO. Wemore » compare our results with DFT results that include an on-site Hubbard U (DFT+U) to account for correlations and find relatively large discrepancies for defect formation energies as well as for charge and spin redistributions in the presence of point defects. Finally, it is unlikely that single-parameter fixes of DFT may be able to obtain accurate accounts of anything but a single parameter, e.g., band gap; responses that, maybe in addition to the band gap, depend in subtle and complex ways on ground state properties, such as charge and spin densities, are likely to contain quantitative and qualitative errors.« less

  8. Evaluation and Comparison of Three Types of Spray Dried Coprocessed Excipient Avicel® for Direct Compression

    PubMed Central

    Solný, Tomaš

    2018-01-01

    As coprocessed excipients (CPE) gain a lot of focus recently, this article compares three commercially available CPE of Avicel brand, namely, CE 15, DG, and HFE 102. Comparison is based on measured physical properties of coprocessed mixtures, respectively, flow properties, pycnometric density, mean particle size, specific surface area, moisture content, hygroscopicity, solubility, pH leaching, electrostatic charge, SEM images, and DSC. Tablets were made employing three pressure sets. Viscoelastic properties and ejection force were assessed during compression, as well as pycnometric density, mass uniformity, height, tensile strength, friability, disintegration, and wetting times. Avicel CE 15 is of mid-range flow properties, contains mid-size and nonspherical particles, and has high hygroscopicity, growing negative charge, best lubricity, lowest tensile strength, and mid-long disintegration times. Avicel DG possesses the worst flow properties, small asymmetrical particles, lowest hygroscopicity, stable charge, intermediate lubricity, and tensile strength and exhibits fast disintegration of tablets. Finally, Avicel HFE 102 has the best flow properties, large symmetrical particles, and middle hygroscopicity and its charge fluctuates throughout blending. It also exhibits inferior lubricity, the highest tensile strength, and slow disintegration of tablets. Generally, it is impossible to select the best CPE, as their different properties fit versatile needs of countless manufacturers and final products. PMID:29850496

  9. Electronic properties of doped and defective NiO: A quantum Monte Carlo study

    DOE PAGES

    Shin, Hyeondeok; Luo, Ye; Ganesh, Panchapakesan; ...

    2017-12-28

    NiO is a canonical Mott (or charge-transfer) insulator and as such is notoriously difficult to describe using density functional theory (DFT) based electronic structure methods. Doped Mott insulators such as NiO are of interest for various applications but rigorous theoretical descriptions are lacking. Here, we use quantum Monte Carlo methods, which very accurately include electron-electron interactions, to examine energetics, charge- and spin-structures of NiO with various point defects, such as vacancies or substitutional doping with potassium. The formation energy of a potassium dopant is significantly lower than for a Ni vacancy, making potassium an attractive monovalent dopant for NiO. Wemore » compare our results with DFT results that include an on-site Hubbard U (DFT+U) to account for correlations and find relatively large discrepancies for defect formation energies as well as for charge and spin redistributions in the presence of point defects. Finally, it is unlikely that single-parameter fixes of DFT may be able to obtain accurate accounts of anything but a single parameter, e.g., band gap; responses that, maybe in addition to the band gap, depend in subtle and complex ways on ground state properties, such as charge and spin densities, are likely to contain quantitative and qualitative errors.« less

  10. Dynamical and electronic properties of rare-earth aluminides

    NASA Astrophysics Data System (ADS)

    Sharma, Ramesh; Sharma, Yamini

    2018-04-01

    Rare-earth dialuminides belong to a large family of compounds that stabilize in cubic MgCu2 structure. A large number of these compounds are superconducting, amongst these YAl2, LaAl2 and LuAl2 have been chosen as reference materials for studying 4f-electron systems. In order to understand the role of the RE atoms, we have applied the FPLAPW and PAW methods within the density functional theory (DFT). Our results show that the contribution of RE atoms is dominant in both electronic structure and phonon dispersion. The anomalous behavior of superconducting LaAl2 is well explained from an analysis of the electron localization function (ELF), Bader charge analysis, density of electronic states as well as the dynamical phonon vibrational modes. The interaction of phonon modes contributed by low frequency vibrations of La atoms with the high density La 5d-states at EF in LaAl2 lead to strong electron-phonon coupling.

  11. Density of Trap States and Auger-mediated Electron Trapping in CdTe Quantum-Dot Solids.

    PubMed

    Boehme, Simon C; Azpiroz, Jon Mikel; Aulin, Yaroslav V; Grozema, Ferdinand C; Vanmaekelbergh, Daniël; Siebbeles, Laurens D A; Infante, Ivan; Houtepen, Arjan J

    2015-05-13

    Charge trapping is an ubiquitous process in colloidal quantum-dot solids and a major limitation to the efficiency of quantum dot based devices such as solar cells, LEDs, and thermoelectrics. Although empirical approaches led to a reduction of trapping and thereby efficiency enhancements, the exact chemical nature of the trapping mechanism remains largely unidentified. In this study, we determine the density of trap states in CdTe quantum-dot solids both experimentally, using a combination of electrochemical control of the Fermi level with ultrafast transient absorption and time-resolved photoluminescence spectroscopy, and theoretically, via density functional theory calculations. We find a high density of very efficient electron traps centered ∼0.42 eV above the valence band. Electrochemical filling of these traps increases the electron lifetime and the photoluminescence quantum yield by more than an order of magnitude. The trapping rate constant for holes is an order of magnitude lower that for electrons. These observations can be explained by Auger-mediated electron trapping. From density functional theory calculations we infer that the traps are formed by dicoordinated Te atoms at the quantum dot surface. The combination of our unique experimental determination of the density of trap states with the theoretical modeling of the quantum dot surface allows us to identify the trapping mechanism and chemical reaction at play during charge trapping in these quantum dots.

  12. Chirality and orbital order in charge density waves

    NASA Astrophysics Data System (ADS)

    van Wezel, Jasper

    2011-12-01

    Helical arrangements of spins are common among magnetic materials. The first material to harbor a corkscrew pattern of charge density, on the other hand, was discovered only very recently. The nature of the order parameter is of key relevance, since rotating a magnetic vector around any propagation vector trivially yields a helical pattern. In contrast, the purely scalar charge density cannot straightforwardly support a chiral state. Here we use a Landau order parameter analysis to resolve this paradox, and show that the chiral charge order may be understood as a form of orbital ordering. We discuss the microscopic mechanism driving the transition and show it to be of a general form, thus allowing for a broad class of materials to display this novel type of orbital-ordered chiral charge density wave.

  13. Use of cationic polymers to reduce pathogen levels during dairy manure separation.

    PubMed

    Liu, Zong; Carroll, Zachary S; Long, Sharon C; Gunasekaran, Sundaram; Runge, Troy

    2016-01-15

    Various separation technologies are used to deal with the enormous amounts of animal waste that large livestock operations generate. When the recycled waste stream is land applied, it is essential to lower the pathogen load to safeguard the health of livestock and humans. We investigated whether cationic polymers, used as a flocculent in the solid/liquid separation process, could reduce the pathogen indicator load in the animal waste stream. The effects of low charge density cationic polyacrylamide (CPAM) and high charge density cationic polydicyandiamide (PDCD) were investigated. Results demonstrated that CPAM was more effective than PDCD for manure coagulation and flocculation, while PDCD was more effective than CPAM in reducing the pathogen indicator loads. However, their combined use, CPAM followed by PDCD, resulted in both improved solids separation and pathogen indicator reduction. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Vestigial nematicity from spin and/or charge order in the cuprates

    DOE PAGES

    Nie, Laimei; Maharaj, Akash V.; Fradkin, Eduardo; ...

    2017-08-01

    Nematic order has manifested itself in a variety of materials in the cuprate family. We propose an effective field theory of a layered system with incommensurate, intertwined spin- and charge-density wave (SDW and CDW) orders, each of which consists of two components related by C4 rotations. Using a variational method (which is exact in a large N limit), we study the development of nematicity from partially melting those density waves by either increasing temperature or adding quenched disorder. As temperature decreases we first find a transition to a nematic phase, but depending on the range of parameters (e.g. doping concentration)more » the strongest fluctuations associated with this phase reflect either proximate SDW or CDW order. We also discuss the changes in parameters that can account for the differences in the SDW-CDW interplay between the (214) family and the other hole-doped cuprates.« less

  15. Theory of charge density wave depinning by electromechanical effect

    NASA Astrophysics Data System (ADS)

    Quémerais, P.

    2017-03-01

    We discuss the first theory for the depinning of low-dimensional, incommensurate, charge density waves (CDWs) in the strong electron-phonon (e-p) regime. Arguing that most real CDWs systems invariably develop a gigantic dielectric constant (GDC) at very low frequencies, we propose an electromechanical mechanism which is based on a local field effect. At zero electric field and large enough e-p coupling the structures are naturally pinned by the lattice due to its discreteness, and develop modulation functions which are characterized by discontinuities. When the electric field is turned on, we show that it exists a finite threshold value for the electric field above which the discontinuities of the modulation functions vanish due to CDW deformation. The CDW is then free to move. The signature of this pinning/depinning transition as a function of the increasing electric field can be directly observed in the phonon spectrum by using inelastic neutrons or X-rays experiments.

  16. High-resolution angle-resolved photoemission study of electronic structure and charge-density wave formation in HoTe3

    NASA Astrophysics Data System (ADS)

    Liu, Guodong; Wang, Chenlu; Zhang, Yan; Hu, Bingfeng; Mou, Daixiang; Yu, Li; Zhao, Lin; Zhou, Xingjiang; Wang, Nanlin; Chen, Chuangtian; Xu, Zuyan

    We performed high-resolution angle-resolved photoemission spectroscopy (ARPES) measurement on high quality crystal of HoTe3, an intriguing quasi-two-dimensional rare-earth-element tritelluride charge-density-wave (CDW) compound. The main features of the electronic structure in this compound are established by employing a quasi-CW laser (7eV) and a helium discharging lamp (21.22 eV) as excitation light sources. It reveals many bands back folded according to the CDW periodicity and two incommensurate CDW gaps created by perpendicular Fermi surface (FS) nesting vectors. A large gap is found to open in well nested regions of the Fermi surface sheets, whereas other Fermi surface sections with poor nesting remain ungapped. In particular, some peculiar features are identified by using our ultra-high resolution and bulk sensitive laser-ARPES.

  17. Charge properties and bacterial contact-killing of hyperbranched polyurea-polyethyleneimine coatings with various degrees of alkylation

    NASA Astrophysics Data System (ADS)

    Roest, Steven; van der Mei, Henny C.; Loontjens, Ton J. A.; Busscher, Henk J.

    2015-11-01

    Coatings of immobilized-quaternary-ammonium-ions (QUAT) uniquely kill adhering bacteria upon contact. QUAT-coatings require a minimal cationic-charge surface density for effective contact-killing of adhering bacteria of around 1014 cm-2. Quaternization of nitrogen is generally achieved through alkylation. Here, we investigate the contribution of additional alkylation with methyl-iodide to the cationic-charge density of hexyl-bromide alkylated, hyperbranched polyurea-polyethyleneimine coatings measuring charge density with fluorescein staining. X-ray-photoelectron-spectroscopy was used to determine the at.% alkylated-nitrogen. Also streaming potentials, water contact-angles and bacterial contact-killing were measured. Cationic-charge density increased with methyl-iodide alkylation times up to 18 h, accompanied by an increase in the at.% alkylated-nitrogen. Zeta-potentials became more negative upon alkylation as a result of shielding of cationiccharges by hydrophobic alkyl-chains. Contact-killing of Gram-positive Staphylococci only occurred when the cationic-charge density exceeded 1016 cm-2 and was carried by alkylated-nitrogen (electron-binding energy 401.3 eV). Gram-negative Escherichia coli was not killed upon contact with the coatings. There with this study reveals that cationic-charge density is neither appropriate nor sufficient to determine the ability of QUAT-coatings to kill adhering bacteria. Alternatively, the at.% of alkylated-nitrogen at 401.3 eV is proposed, as it reflects both cationic-charge and its carrier. The at.% N401.3 eV should be above 0.45 at.% for Gram-positive bacterial contact-killing.

  18. Semiclassics, Goldstone bosons and CFT data

    NASA Astrophysics Data System (ADS)

    Monin, A.; Pirtskhalava, D.; Rattazzi, R.; Seibold, F. K.

    2017-06-01

    Hellerman et al. (arXiv:1505.01537) have shown that in a generic CFT the spectrum of operators carrying a large U(1) charge can be analyzed semiclassically in an expansion in inverse powers of the charge. The key is the operator state correspondence by which such operators are associated with a finite density superfluid phase for the theory quantized on the cylinder. The dynamics is dominated by the corresponding Goldstone hydrodynamic mode and the derivative expansion coincides with the inverse charge expansion. We illustrate and further clarify this situation by first considering simple quantum mechanical analogues. We then systematize the approach by employing the coset construction for non-linearly realized space-time symmetries. Focussing on CFT3 we illustrate the case of higher rank and non-abelian groups and the computation of higher point functions. Three point function coefficients turn out to satisfy universal scaling laws and correlations as the charge and spin are varied.

  19. Current Flow and Pair Creation at Low Altitude in Rotation-Powered Pulsars' Force-Free Magnetospheres: Space Charge Limited Flow

    NASA Technical Reports Server (NTRS)

    Timokhin, A. N.; Arons, J.

    2013-01-01

    We report the results of an investigation of particle acceleration and electron-positron plasma generation at low altitude in the polar magnetic flux tubes of rotation-powered pulsars, when the stellar surface is free to emit whatever charges and currents are demanded by the force-free magnetosphere. We apply a new 1D hybrid plasma simulation code to the dynamical problem, using Particle-in-Cell methods for the dynamics of the charged particles, including a determination of the collective electrostatic fluctuations in the plasma, combined with a Monte Carlo treatment of the high-energy gamma-rays that mediate the formation of the electron-positron pairs.We assume the electric current flowing through the pair creation zone is fixed by the much higher inductance magnetosphere, and adopt the results of force-free magnetosphere models to provide the currents which must be carried by the accelerator. The models are spatially one dimensional, and designed to explore the physics, although of practical relevance to young, high-voltage pulsars. We observe novel behaviour (a) When the current density j is less than the Goldreich-Julian value (0 < j/j(sub GJ) < 1), space charge limited acceleration of the current carrying beam is mild, with the full Goldreich-Julian charge density comprising the charge densities of the beam and a cloud of electrically trapped particles with the same sign of charge as the beam. The voltage drops are of the order of mc(sup 2)/e, and pair creation is absent. (b) When the current density exceeds the Goldreich-Julian value (j/j(sub GJ) > 1), the system develops high voltage drops (TV or greater), causing emission of curvature gamma-rays and intense bursts of pair creation. The bursts exhibit limit cycle behaviour, with characteristic time-scales somewhat longer than the relativistic fly-by time over distances comparable to the polar cap diameter (microseconds). (c) In return current regions, where j/j(sub GJ) < 0, the system develops similar bursts of pair creation. These discharges are similar to those encountered in previous calculations by Timokhin of pair creation when the surface has a high work function and cannot freely emit charge. In cases (b) and (c), the intermittently generated pairs allow the system to simultaneously carry the magnetospherically prescribed currents and adjust the charge density and average electric field to force-free conditions. We also elucidate the conditions for pair creating beam flow to be steady (stationary with small fluctuations in the rotating frame), finding that such steady flows can occupy only a small fraction of the current density parameter space exhibited by the force-free magnetospheric model. The generic polar flow dynamics and pair creation are strongly time dependent. The model has an essential difference from almost all previous quantitative studies, in that we sought the accelerating voltage (with pair creation, when the voltage drops are sufficiently large; without, when they are small) as a function of the applied current.

  20. Dominant source of disorder in graphene: charged impurities or ripples?

    NASA Astrophysics Data System (ADS)

    Fan, Zheyong; Uppstu, Andreas; Harju, Ari

    2017-06-01

    Experimentally produced graphene sheets exhibit a wide range of mobility values. Both extrinsic charged impurities and intrinsic ripples (corrugations) have been suggested to induce long-range disorder in graphene and could be a candidate for the dominant source of disorder. Here, using large-scale molecular dynamics and quantum transport simulations, we find that the hopping disorder and the gauge and scalar potentials induced by the ripples are short-ranged, in strong contrast with predictions by continuous models, and the transport fingerprints of the ripple disorder are very different from those of charged impurities. We conclude that charged impurities are the dominant source of disorder in most graphene samples, whereas scattering by ripples is mainly relevant in the high carrier density limit of ultraclean graphene samples (with a charged impurity concentration less than about 10 ppm) at room and higher temperatures. Our finding is valuable to theoretical modelling of transport properties of not only graphene, but also other two-dimensional materials, as the thermal ripples are universal.

  1. Femtosecond x rays link melting of charge-density wave correlations and light-enhanced coherent transport in YB a 2 C u 3 O 6.6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Först, M.; Frano, A.; Kaiser, S.

    2014-11-17

    In this study, we use femtosecond resonant soft x-ray diffraction to measure the optically stimulated ultrafast changes of charge density wave correlations in underdoped YBa₂Cu₃O₆.₆. We find that when coherent interlayer transport is enhanced by optical excitation of the apical oxygen distortions, at least 50% of the in-plane charge density wave order is melted. These results indicate that charge ordering and superconductivity may be competing up to the charge ordering transition temperature, with the latter becoming a hidden phase that is accessible only by nonlinear phonon excitation.

  2. Polymeric and Molecular Materials for Advanced Organic Electronics

    DTIC Science & Technology

    2011-07-25

    printable variants. All have excellent dielectric and insulating properties, a remarkable ability to minimize trapped charge between thin film transistor... trapped charge density, and hence the corresponding OTFT device performance. Under this program we first discovered that OTFT performance is...deep, high- density charge traps must be overcome for efficient FET operation, it has been postulated that in most OFETs, shallow lower-density (~10

  3. Child-Langmuir flow in a planar diode filled with charged dust impurities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang Xiaoyan; Institut fuer Theoretische Physik IV, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, D-44870 Bochum; Shukla, Padma Kant

    The Child-Langmuir (CL) flow in a planar diode in the presence of stationary charged dust particles is studied. The limiting electron current density and other diode properties, such as the electrostatic potential, the electron flow speed, and the electron number density, are calculated analytically. A comparison of the results with the case without dust impurities reveals that the diode parameters mentioned above decrease with the increase of the dust charge density. Furthermore, it is found that the classical scaling of D{sup -2} (the gap spacing D) for the CL current density remains exactly valid, while the scaling of V{sup 3/2}more » (the applied gap voltage V) can be a good approximation for low applied gap voltage and for low dust charge density.« less

  4. NSTAR Ion Thruster Plume Impact Assessments

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Pencil, Eric J.; Rawlin, Vincent K.; Kussmaul, Michael; Oden, Katessha

    1995-01-01

    Tests were performed to establish 30-cm ion thruster plume impacts, including plume characterizations via near and farfield ion current measurements, contamination, and sputtering assessments. Current density measurements show that 95% of the beam was enclosed within a 22 deg half-angle and that the thrust vector shifted by less than 0.3 deg during throttling from 2.3 to 0.5 kW. The beam flatness parameter was found to be 0.47, and the ratio of doubly charged to singly charged ion current density decreased from 15% at 2.3 kW to 5% at 0.5 kW. Quartz sample erosion measurements showed that the samples eroded at a rate of between 11 and 13 pm/khr at 25 deg from the thruster axis, and that the rate dropped by a factor of four at 40 deg. Good agreement was obtained between extrapolated current densities and those calculated from tantalum target erosion measurements. Quartz crystal microbalance and witness plate measurements showed that ion beam sputtering of the tank resulted in a facility material backflux rate of -10 A/hr in a large space simulation chamber.

  5. X-ray Study of the Electric Double Layer at the n-Hexane/Nanocolloidal Silica Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tikhonov,A.

    The spatial structure of the transition region between an insulator and an electrolyte solution was studied with x-ray scattering. The electron-density profile across the n-hexane/silica sol interface (solutions with 5, 7, and 12 nm colloidal particles) agrees with the theory of the electrical double layer and shows separation of positive and negative charges. The interface consists of three layers, i.e., a compact layer of Na{sup +}, a loose monolayer of nanocolloidal particles as part of a thick diffuse layer, and a low-density layer sandwiched between them. Its structure is described by a model in which the potential gradient at themore » interface reflects the difference in the potentials of 'image forces' between the cationic Na{sup +} and anionic nanoparticles and the specific adsorption of surface charge. The density of water in the large electric field ({approx}10{sup 9}-10{sup 10} V/m) of the transition region and the layering of silica in the diffuse layer is discussed.« less

  6. Enhanced energy density and thermal conductivity in poly(fluorovinylidene-co-hexafluoropropylene) nanocomposites incorporated with boron nitride nanosheets exfoliated under assistance of hyperbranched polyethylene.

    PubMed

    Ye, Huijian; Lu, Tiemei; Xu, Chunfeng; Zhong, Mingqiang; Xu, Lixin

    2018-03-02

    Polymer dielectric film with a large dielectric constant, high energy density and enhanced thermal conductivity are of significance for the development of impulse capacitors. However, the fabrication of polymer dielectrics combining high energy density and thermal conductivity is still a challenge at the moment. Here we demonstrate the facile exfoliation of hexagonal boron nitride nanosheets (BNNSs) in common organic solvents under sonication with the assistance of hyperbranched polyethylene (HBPE). The noncovalent CH-π interactions between the nanosheets and HBPE ensure the dispersion of BNNSs in organic solvents with high concentrations, because of the highly branched chain structure of HBPE. Subsequently, the resultant BNNSs with a few defects are distributed uniformly in the poly(fluorovinylidene-co-hexafluoropropylene) (P(VDF-HFP)) nanocomposite films prepared via simple solution casting. The BNNS/P(VDF-HFP) nanocomposite exhibits outstanding dielectric properties, high energy density and high thermal conductivity. The dielectric constant of the 0.5 wt% nanocomposite film is 35.5 at 100 Hz with an energy density of 5.6 J cm -3 at 325 MV m -1 and a high charge-discharge efficiency of 79% due to the depression of the charge injection and chemical species ionization in a high field. Moreover, a thermal conductivity of 1.0 wt% nanocomposite film reaches 0.91 W·m -1  · K -1 , which is 3.13 times higher than that of the fluoropolymer matrix. With dipole accumulation and orientation in the interfacial zone, lightweight, flexible BNNS/P(VDF-HFP) nanocomposite films with high charge-discharge performance and thermal conductivity, exhibit promising applications in relatively high-temperature electronics and energy storage devices.

  7. Enhanced energy density and thermal conductivity in poly(fluorovinylidene-co-hexafluoropropylene) nanocomposites incorporated with boron nitride nanosheets exfoliated under assistance of hyperbranched polyethylene

    NASA Astrophysics Data System (ADS)

    Ye, Huijian; Lu, Tiemei; Xu, Chunfeng; Zhong, Mingqiang; Xu, Lixin

    2018-03-01

    Polymer dielectric film with a large dielectric constant, high energy density and enhanced thermal conductivity are of significance for the development of impulse capacitors. However, the fabrication of polymer dielectrics combining high energy density and thermal conductivity is still a challenge at the moment. Here we demonstrate the facile exfoliation of hexagonal boron nitride nanosheets (BNNSs) in common organic solvents under sonication with the assistance of hyperbranched polyethylene (HBPE). The noncovalent CH-π interactions between the nanosheets and HBPE ensure the dispersion of BNNSs in organic solvents with high concentrations, because of the highly branched chain structure of HBPE. Subsequently, the resultant BNNSs with a few defects are distributed uniformly in the poly(fluorovinylidene-co-hexafluoropropylene) (P(VDF-HFP)) nanocomposite films prepared via simple solution casting. The BNNS/P(VDF-HFP) nanocomposite exhibits outstanding dielectric properties, high energy density and high thermal conductivity. The dielectric constant of the 0.5 wt% nanocomposite film is 35.5 at 100 Hz with an energy density of 5.6 J cm-3 at 325 MV m-1 and a high charge-discharge efficiency of 79% due to the depression of the charge injection and chemical species ionization in a high field. Moreover, a thermal conductivity of 1.0 wt% nanocomposite film reaches 0.91 W·m-1 · K-1, which is 3.13 times higher than that of the fluoropolymer matrix. With dipole accumulation and orientation in the interfacial zone, lightweight, flexible BNNS/P(VDF-HFP) nanocomposite films with high charge-discharge performance and thermal conductivity, exhibit promising applications in relatively high-temperature electronics and energy storage devices.

  8. The doping effect on the catalytic activity of graphene for oxygen evolution reaction in a lithium-air battery: a first-principles study.

    PubMed

    Ren, Xiaodong; Wang, Beizhou; Zhu, Jinzhen; Liu, Jianjun; Zhang, Wenqing; Wen, Zhaoyin

    2015-06-14

    A lithium-air battery as an energy storage technology can be used in electric vehicles due to its large energy density. However, its poor rate capability, low power density and large overpotential problems limit its practical usage. In this paper, the first-principles thermodynamic calculations were performed to study the catalytic activity of X-doped graphene (X = B, N, Al, Si, and P) materials as potential cathodes to enhance charge reactions in a lithium-air battery. Among these materials, P-doped graphene exhibits the highest catalytic activity in reducing the charge voltage by 0.25 V, while B-doped graphene has the highest catalytic activity in decreasing the oxygen evolution barrier by 0.12 eV. By combining these two catalytic effects, B,P-codoped graphene was demonstrated to have an enhanced catalytic activity in reducing the O2 evolution barrier by 0.70 eV and the charge voltage by 0.13 V. B-doped graphene interacts with Li2O2 by Li-sited adsorption in which the electron-withdrawing center can enhance charge transfer from Li2O2 to the substrate, facilitating reduction of O2 evolution barrier. In contrast, X-doped graphene (X = N, Al, Si, and P) prefers O-sited adsorption toward Li2O2, forming a X-O2(2-)···Li(+) interface structure between X-O2(2-) and the rich Li(+) layer. The active structure of X-O2(2-) can weaken the surrounding Li-O2 bonds and significantly reduce Li(+) desorption energy at the interface. Our investigation is helpful in developing a novel catalyst to enhance oxygen evolution reaction (OER) in Li-air batteries.

  9. The surprisingly transparent sQGP at LHC

    NASA Astrophysics Data System (ADS)

    Horowitz, W. A.; Gyulassy, Miklos

    2011-12-01

    We present parameter-free predictions of the nuclear modification factor, RAAπ(p,s), of high p pions produced in Pb + Pb collisions at s=2.76 and 5.5 ATeV based on the WHDG/DGLV (radiative + elastic + geometric fluctuation) jet energy loss model. The initial quark gluon plasma (QGP) density at LHC is constrained from a rigorous statistical analysis of PHENIX/RHIC π quenching data at s=0.2 ATeV and the charged particle multiplicity at ALICE/LHC at 2.76 ATeV. Our perturbative QCD tomographic theory predicts significant differences between jet quenching at RHIC and LHC energies, which are qualitatively consistent with the p-dependence and normalization—within the large systematic uncertainty—of the first charged hadron nuclear modification factor, RAAch, data measured by ALICE. However, our constrained prediction of the central to peripheral pion modification, Rcpπ(p), for which large systematic uncertainties associated with unmeasured p + p reference data cancel, is found to be over-quenched relative to the charged hadron ALICE Rcpch data in the range 5

  10. Loading capacity and interaction of DNA binding on catanionic vesicles with different cationic surfactants.

    PubMed

    Xu, Lu; Chen, Jingfei; Feng, Lei; Dong, Shuli; Hao, Jingcheng

    2014-12-07

    Cationic and anionic (catanionic) vesicles were constructed from the mixtures of sodium laurate (SL) and alkyltrimethylammonium bromide (CnTAB, n = 12, 14, and 16) and were used to control the loading capacity of DNA. The binding saturation point (BSP) of DNA to catanionic vesicles increases with the chain length of cationic surfactants, which is at 1.0, 1.3 and 1.5 for CnTAB with n = 12, 14, and 16, respectively. Our measurements showed that the loading capacity and affinity of DNA can be controlled by catanionic vesicles. It increases with the chain length of cationic surfactants. Because of a large reduction in surface charge density, catanionic vesicles are prone to undergo re-aggregation or fusion with the addition of DNA. DNA molecules can still maintain original coil state during the interaction with catanionic CnTAL vesicles. (1)H NMR data reveals that the obvious dissociation of anionic ions, L(-), from catanionic C14TAL vesicles is due to the interaction with DNA; however, this phenomenon cannot be observed in C12TAB-SL vesicles. Agarose gel electrophoresis (AGE) results demonstrate that the electrostatic interaction between the two oppositely charged cationic and anionic surfactants is stronger than that between DNA and cationic surfactant, CnTAB (n = 12, 14, and 16). Not only is the dissociation of L(-) simply determined by the charge competition, but it also depends largely on the variations in the surface charge density as well as the cationic and anionic surfactant competing ability in geometry configuration of catanionic vesicles. The complicated interaction between DNA and catanionic vesicles induces the deformation of cationic vesicles. Our results should provide clear guidance for choosing more proper vectors for DNA delivery and gene therapy in cell experiments.

  11. Correlation Between the Extent of Catalytic Activity and Charge Density of Montmorillonites

    PubMed Central

    Steudel, Annett; Emmerich, Katja; Lagaly, Gerhard; Schuhmann, Rainer

    2010-01-01

    Abstract The clay mineral montmorillonite is a member of the phyllosilicate group of minerals, which has been detected on martian soil. Montmorillonite catalyzes the condensation of activated monomers to form RNA-like oligomers. Extent of catalysis, that is, the yield of oligomers, and the length of the longest oligomer formed in these reactions widely varies with the source of montmorillonite (i.e., the locality where the mineral is mined). This study was undertaken to establish whether there exists a correlation between the extent of catalytic property and the charge density of montmorillonites. Charge density was determined by saturating the montmorillonites with alkyl ammonium cations that contained increasing lengths of alkyl chains, [CH3-(CH2)n-NH3]+, where n = 3–16 and 18, and then measuring d(001), interlayer spacing of the resulting montmorillonite-alkyl ammonium-montmorillonite complex by X-ray diffractometry (XRD). Results demonstrate that catalytic activity of montmorillonites with lower charge density is superior to that of higher charge density montmorillonite. They produce longer oligomers that contain 9 to 10 monomer units, while montmorillonite with high charge density catalyzes the formation of oligomers that contain only 4 monomer units. The charge density of montmorillonites can also be calculated from the chemical composition if elemental analysis data of the pure mineral are available. In the next mission to Mars, CheMin (Chemistry and Mineralogy), a combined X-ray diffraction/X-ray fluorescence instrument, will provide information on the mineralogical and elemental analysis of the samples. Possible significance of these results for planning the future missions to Mars for the search of organic compounds and extinct or extant life is discussed. Key Words: Mars—Origin of life—Montmorillonite—Mineral catalysis—Layer charge density—X–ray diffractometry. Astrobiology 10, 743–749. PMID:20854214

  12. Kapton charging characteristics: Effects of material thickness and electron-energy distribution

    NASA Technical Reports Server (NTRS)

    Williamson, W. S.; Dulgeroff, C. R.; Hymann, J.; Viswanathan, R.

    1985-01-01

    Charging characteristics of polyimide (Kapton) of varying thicknesses under irradiation by a very-low-curent-density electron beam, with the back surface of the sample grounded are reported. These charging characteristics are in good agreement with a simple analytical model which predicts that in thin samples at low current density, sample surface potential is limited by conduction leakage through the bulk material. The charging of Kapton in a low-current-density electron beam in which the beam energy was modulated to simulate Maxwellian and biMaxwellian distribution functions is measured.

  13. Enhanced coherent oscillations in the superconducting state of underdoped YB a 2 C u 3 O 6 + x induced via ultrafast terahertz excitation

    DOE PAGES

    Dakovski, Georgi L.; Lee, Wei -Sheng; Hawthorn, David G.; ...

    2015-06-24

    We utilize intense, single-cycle terahertz pulses to induce collective excitations in the charge-density-wave-ordered underdoped cuprate YBa 2Cu 3O 6+x. These excitations manifest themselves as pronounced coherent oscillations of the optical reflectivity in the transient state, accompanied by minimal incoherent quasiparticle relaxation dynamics. The oscillations occur at frequencies consistent with soft phonon energies associated with the charge-density-wave, but vanish above the superconducting transition temperature rather than that at the charge-density-wave transition. These results indicate an intimate relationship of the terahertz excitation with the underlying charge-density-wave and the superconducting condensate itself.

  14. Long-range correction for tight-binding TD-DFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humeniuk, Alexander; Mitrić, Roland, E-mail: roland.mitric@uni-wuerzburg.de

    2015-10-07

    We present two improvements to the tight-binding approximation of time-dependent density functional theory (TD-DFTB): First, we add an exact Hartree-Fock exchange term, which is switched on at large distances, to the ground state Hamiltonian and similarly to the coupling matrix that enters the linear response equations for the calculation of excited electronic states. We show that the excitation energies of charge transfer states are improved relative to the standard approach without the long-range correction by testing the method on a set of molecules from the database in Peach et al. [J. Chem. Phys. 128, 044118 (2008)] which are known tomore » exhibit problematic charge transfer states. The degree of spatial overlap between occupied and virtual orbitals indicates where TD-DFTB and long-range corrected TD-DFTB (lc-TD-DFTB) can be expected to produce large errors. Second, we improve the calculation of oscillator strengths. The transition dipoles are obtained from Slater Koster files for the dipole matrix elements between valence orbitals. In particular, excitations localized on a single atom, which appear dark when using Mulliken transition charges, acquire a more realistic oscillator strength in this way. These extensions pave the way for using lc-TD-DFTB to describe the electronic structure of large chromophoric polymers, where uncorrected TD-DFTB fails to describe the high degree of conjugation and produces spurious low-lying charge transfer states.« less

  15. SEPAC data analysis in support of the environmental interaction program

    NASA Technical Reports Server (NTRS)

    Lin, Chin S.

    1990-01-01

    Injections of nonrelativistic electron beams from an isolated equipotential conductor into a uniform background of plasma and neutral gas were simulated using a two dimensional electrostatic particle code. The ionization effects of spacecraft charging are examined by including interactions of electrons with neutral gas. The simulations show that the conductor charging potential decreases with increasing neutral background density due to the production of secondary electrons near the conductor surface. In the spacecraft wake, the background electrons accelerated towards the charged space craft produced an enhancement of secondary electrons and ions. Simulations run for longer times indicate that the spacecraft potential is further reduced and short wavelength beam-plasma oscillations appear. The results are applied to explain the space craft charging potential measured during the SEPAC experiments from Spacelab 1. A second paper is presented in which a two dimensional electrostatic particle code was used to study the beam radial expansion of a nonrelativistic electron beam injected from an isolated equipotential conductor into a background plasma. The simulations indicate that the beam radius is generally proportional to the beam electron gyroradius when the conductor is charged to a large potential. The simulations also suggest that the charge buildup at the beam stagnation point causes the beam radial expansion. From a survey of the simulation results, it is found that the ratio of the beam radius to the beam electron gyroradius increases with the square root of beam density and decreases inversely with beam injection velocity. This dependence is explained in terms of the ratio of the beam electron Debye length to the ambient electron Debye length. These results are most applicable to the SEPAC electron beam injection experiments from Spacelab 1, where high charging potential was observed.

  16. Spacecraft-charging mitigation of a high-power electron beam emitted by a magnetospheric spacecraft: Simple theoretical model for the transient of the spacecraft potential

    DOE PAGES

    Castello, Federico Lucco; Delzanno, Gian Luca; Borovsky, Joseph E.; ...

    2018-05-29

    A spacecraft-charging mitigation scheme necessary for the operation of a high-power electron beam in the low-density magnetosphere is analyzed. The scheme is based on a plasma contactor, i.e. a high-density charge-neutral plasma emitted prior to and during beam emission, and its ability to emit high ion currents without strong space-charge limitations. A simple theoretical model for the transient of the spacecraft potential and contactor expansion during beam emission is presented. The model focuses on the contactor ion dynamics and is valid in the limit when the ion contactor current is equal to the beam current. The model is found inmore » very good agreement with Particle-In-Cell simulations over a large parametric study that varies the initial expansion time of the contactor, the contactor current and the ion mass. The model highlights the physics of the spacecraft-charging mitigation scheme, indicating that the most important part of the dynamics is the evolution of the outermost ion front which is pushed away by the charge accumulated in the system by the beam. The model can be also used to estimate the long-time evolution of the spacecraft potential. For a short contactor expansion (0.3 or 0.6 ms Helium plasma or 0.8 ms Argon plasma, both with 1 mA current) it yields a peak spacecraft potential of the order of 1-3 kV. This implies that a 1-mA relativistic electron beam would be easily emitted by the spacecraft.« less

  17. Spacecraft-charging mitigation of a high-power electron beam emitted by a magnetospheric spacecraft: Simple theoretical model for the transient of the spacecraft potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castello, Federico Lucco; Delzanno, Gian Luca; Borovsky, Joseph E.

    A spacecraft-charging mitigation scheme necessary for the operation of a high-power electron beam in the low-density magnetosphere is analyzed. The scheme is based on a plasma contactor, i.e. a high-density charge-neutral plasma emitted prior to and during beam emission, and its ability to emit high ion currents without strong space-charge limitations. A simple theoretical model for the transient of the spacecraft potential and contactor expansion during beam emission is presented. The model focuses on the contactor ion dynamics and is valid in the limit when the ion contactor current is equal to the beam current. The model is found inmore » very good agreement with Particle-In-Cell simulations over a large parametric study that varies the initial expansion time of the contactor, the contactor current and the ion mass. The model highlights the physics of the spacecraft-charging mitigation scheme, indicating that the most important part of the dynamics is the evolution of the outermost ion front which is pushed away by the charge accumulated in the system by the beam. The model can be also used to estimate the long-time evolution of the spacecraft potential. For a short contactor expansion (0.3 or 0.6 ms Helium plasma or 0.8 ms Argon plasma, both with 1 mA current) it yields a peak spacecraft potential of the order of 1-3 kV. This implies that a 1-mA relativistic electron beam would be easily emitted by the spacecraft.« less

  18. Exploring charge density analysis in crystals at high pressure: data collection, data analysis and advanced modelling.

    PubMed

    Casati, Nicola; Genoni, Alessandro; Meyer, Benjamin; Krawczuk, Anna; Macchi, Piero

    2017-08-01

    The possibility to determine electron-density distribution in crystals has been an enormous breakthrough, stimulated by a favourable combination of equipment for X-ray and neutron diffraction at low temperature, by the development of simplified, though accurate, electron-density models refined from the experimental data and by the progress in charge density analysis often in combination with theoretical work. Many years after the first successful charge density determination and analysis, scientists face new challenges, for example: (i) determination of the finer details of the electron-density distribution in the atomic cores, (ii) simultaneous refinement of electron charge and spin density or (iii) measuring crystals under perturbation. In this context, the possibility of obtaining experimental charge density at high pressure has recently been demonstrated [Casati et al. (2016). Nat. Commun. 7, 10901]. This paper reports on the necessities and pitfalls of this new challenge, focusing on the species syn-1,6:8,13-biscarbonyl[14]annulene. The experimental requirements, the expected data quality and data corrections are discussed in detail, including warnings about possible shortcomings. At the same time, new modelling techniques are proposed, which could enable specific information to be extracted, from the limited and less accurate observations, like the degree of localization of double bonds, which is fundamental to the scientific case under examination.

  19. Symmetry energy III: Isovector skins

    NASA Astrophysics Data System (ADS)

    Danielewicz, Paweł; Singh, Pardeep; Lee, Jenny

    2017-02-01

    Isoscalar density is a sum of neutron and proton densities and isovector is a normalized difference. Here, we report the experimental evidence for the displacement of the isovector and isoscalar surfaces in nuclei, by ∼ 0.9 fm from each other. We analyze data on quasielastic (QE) charge exchange (p,n) reactions, concurrently with proton and neutron elastic scattering data for the same target nuclei, following the concepts of the isoscalar and isovector potentials combined into Lane optical potential. The elastic data largely probe the geometry of the isoscalar potential and the (p,n) data largely probe a relation between the geometries of the isovector and isoscalar potentials. The targets include 48Ca, 90Zr, 120Sn and 208Pb and projectile incident energy values span the range of (10-50) MeV. In our fit to elastic and QE charge-exchange data, we allow the values of isoscalar and isovector radii, diffusivities and overall potential normalizations to float away from those in the popular Koning and Delaroche parametrization. We find that the best-fit isovector radii are consistently larger than isoscalar and the best-fit isovector surfaces are steeper. Upon identifying the displacement of the potential surfaces with the displacement of the surfaces for the densities in the Skyrme-Hartree-Fock calculations, and by supplementing the results with those from analyzing excitation energies to isobaric analog states in the past, we arrive at the slope and value of the symmetry energy at normal density of 70 < L < 101 MeV and 33.5 < aaV < 36.4 MeV, respectively.

  20. An Analytical Planning Model to Estimate the Optimal Density of Charging Stations for Electric Vehicles

    PubMed Central

    Ahn, Yongjun; Yeo, Hwasoo

    2015-01-01

    The charging infrastructure location problem is becoming more significant due to the extensive adoption of electric vehicles. Efficient charging station planning can solve deeply rooted problems, such as driving-range anxiety and the stagnation of new electric vehicle consumers. In the initial stage of introducing electric vehicles, the allocation of charging stations is difficult to determine due to the uncertainty of candidate sites and unidentified charging demands, which are determined by diverse variables. This paper introduces the Estimating the Required Density of EV Charging (ERDEC) stations model, which is an analytical approach to estimating the optimal density of charging stations for certain urban areas, which are subsequently aggregated to city level planning. The optimal charging station’s density is derived to minimize the total cost. A numerical study is conducted to obtain the correlations among the various parameters in the proposed model, such as regional parameters, technological parameters and coefficient factors. To investigate the effect of technological advances, the corresponding changes in the optimal density and total cost are also examined by various combinations of technological parameters. Daejeon city in South Korea is selected for the case study to examine the applicability of the model to real-world problems. With real taxi trajectory data, the optimal density map of charging stations is generated. These results can provide the optimal number of chargers for driving without driving-range anxiety. In the initial planning phase of installing charging infrastructure, the proposed model can be applied to a relatively extensive area to encourage the usage of electric vehicles, especially areas that lack information, such as exact candidate sites for charging stations and other data related with electric vehicles. The methods and results of this paper can serve as a planning guideline to facilitate the extensive adoption of electric vehicles. PMID:26575845

  1. Tuning electronic transport in epitaxial graphene-based van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chuan; Li, Jun; de La Barrera, Sergio C.; Eichfeld, Sarah M.; Nie, Yifan; Addou, Rafik; Mende, Patrick C.; Wallace, Robert M.; Cho, Kyeongjae; Feenstra, Randall M.; Robinson, Joshua A.

    2016-04-01

    Two-dimensional tungsten diselenide (WSe2) has been used as a component in atomically thin photovoltaic devices, field effect transistors, and tunneling diodes in tandem with graphene. In some applications it is necessary to achieve efficient charge transport across the interface of layered WSe2-graphene, a semiconductor to semimetal junction with a van der Waals (vdW) gap. In such cases, band alignment engineering is required to ensure a low-resistance, ohmic contact. In this work, we investigate the impact of graphene electronic properties on the transport at the WSe2-graphene interface. Electrical transport measurements reveal a lower resistance between WSe2 and fully hydrogenated epitaxial graphene (EGFH) compared to WSe2 grown on partially hydrogenated epitaxial graphene (EGPH). Using low-energy electron microscopy and reflectivity on these samples, we extract the work function difference between the WSe2 and graphene and employ a charge transfer model to determine the WSe2 carrier density in both cases. The results indicate that WSe2-EGFH displays ohmic behavior at small biases due to a large hole density in the WSe2, whereas WSe2-EGPH forms a Schottky barrier junction.Two-dimensional tungsten diselenide (WSe2) has been used as a component in atomically thin photovoltaic devices, field effect transistors, and tunneling diodes in tandem with graphene. In some applications it is necessary to achieve efficient charge transport across the interface of layered WSe2-graphene, a semiconductor to semimetal junction with a van der Waals (vdW) gap. In such cases, band alignment engineering is required to ensure a low-resistance, ohmic contact. In this work, we investigate the impact of graphene electronic properties on the transport at the WSe2-graphene interface. Electrical transport measurements reveal a lower resistance between WSe2 and fully hydrogenated epitaxial graphene (EGFH) compared to WSe2 grown on partially hydrogenated epitaxial graphene (EGPH). Using low-energy electron microscopy and reflectivity on these samples, we extract the work function difference between the WSe2 and graphene and employ a charge transfer model to determine the WSe2 carrier density in both cases. The results indicate that WSe2-EGFH displays ohmic behavior at small biases due to a large hole density in the WSe2, whereas WSe2-EGPH forms a Schottky barrier junction. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01902a

  2. Graphene-based supercapacitors in the parallel-plate electrode configuration: ionic liquids versus organic electrolytes.

    PubMed

    Shim, Youngseon; Kim, Hyung J; Jung, Younjoon

    2012-01-01

    Supercapacitors with two single-sheet graphene electrodes in the parallel plate geometry are studied via molecular dynamics (MD) computer simulations. Pure 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI+BF4-) and a 1.1 M solution of EMI+BF4- in acetonitrile are considered as prototypes of room-temperature ionic liquids (RTILs) and organic electrolytes. Electrolyte structure, charge density and associated electric potential are investigated by varying the charges and separation of the two electrodes. Multiple charge layers formed in the electrolytes in the vicinity of the electrodes are found to screen the electrode surface charge almost completely. As a result, the supercapacitors show nearly an ideal electric double layer behavior, i.e., the electric potential exhibits essentially a plateau behavior in the entire electrolyte region except for sharp changes in screening zones very close to the electrodes. Due to its small size and large charge separation, BF4- is considerably more efficient in shielding electrode charges than EMI+. In the case of the acetonitrile solution, acetonitrile also plays an important role by aligning its dipoles near the electrodes; however, the overall screening mainly arises from ions. Because of the disparity of shielding efficiency between cations and anions, the capacitance of the positively-charged anode is significantly larger than that of the negatively-charged cathode. Therefore, the total cell capacitance in the parallel plate configuration is primarily governed by the cathode. Ion conductivity obtained via the Green-Kubo (GK) method is found to be largely independent of the electrode surface charge. Interestingly, EMI+BF4- shows higher GK ion conductivity than the 1.1 M acetonitrile solution between two parallel plate electrodes.

  3. Measurements of high energy loss rates of fast highly charged U ions channeled in thin silicon crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, C.; Chevallier, M.; Dauvergne, D.

    2011-07-01

    The results of two channeling experiments show that highly charged heavy ions at moderate velocities (v<

  4. Solid-state supercapacitors with rationally designed heterogeneous electrodes fabricated by large area spray processing for wearable energy storage applications

    PubMed Central

    Huang, Chun; Zhang, Jin; Young, Neil P.; Snaith, Henry J.; Grant, Patrick S.

    2016-01-01

    Supercapacitors are in demand for short-term electrical charge and discharge applications. Unlike conventional supercapacitors, solid-state versions have no liquid electrolyte and do not require robust, rigid packaging for containment. Consequently they can be thinner, lighter and more flexible. However, solid-state supercapacitors suffer from lower power density and where new materials have been developed to improve performance, there remains a gap between promising laboratory results that usually require nano-structured materials and fine-scale processing approaches, and current manufacturing technology that operates at large scale. We demonstrate a new, scalable capability to produce discrete, multi-layered electrodes with a different material and/or morphology in each layer, and where each layer plays a different, critical role in enhancing the dynamics of charge/discharge. This layered structure allows efficient utilisation of each material and enables conservative use of hard-to-obtain materials. The layered electrode shows amongst the highest combinations of energy and power densities for solid-state supercapacitors. Our functional design and spray manufacturing approach to heterogeneous electrodes provide a new way forward for improved energy storage devices. PMID:27161379

  5. GW-BSE approach on S1 vertical transition energy of large charge transfer compounds: A performance assessment.

    PubMed

    Ziaei, Vafa; Bredow, Thomas

    2016-11-07

    In this work, we apply many-body perturbation theory (MBPT) on large critical charge transfer (CT) complexes to assess its performance on the S 1 excitation energy. Since the S 1 energy of CT compounds is heavily dependent on the Hartree-Fock (HF) exchange fraction in the reference density functional, MBPT opens a new way for reliable prediction of CT S 1 energy without explicit knowledge of suitable amount of HF-exchange, in contrary to the time-dependent density functional theory (TD-DFT), where depending on various functionals, large errors can arise. Thus, simply by starting from a (semi-)local reference functional and performing update of Kohn-Sham (KS) energies in the Green's function G while keeping dynamical screened interaction (W(ω)) frozen to the mean-field level, we obtain impressingly highly accurate S 1 energy at slightly higher computational cost in comparison to TD-DFT. However, this energy-only updating mechanism in G fails to work if the initial guess contains a fraction or 100% HF-exchange, and hence considerably inaccurate S 1 energy is predicted. Furthermore, eigenvalue updating both in G and W(ω) overshoots the S 1 energy due to enhanced underscreening of W(ω), independent of the (hybrid-)DFT starting orbitals. A full energy-update on top of HF orbitals even further overestimates the S 1 energy. An additional update of KS wave functions within the Quasi-Particle Self-Consistent GW (QSGW) deteriorates results, in stark contrast to the good results obtained from QSGW for periodic systems. For the sake of transferability, we further present data of small critical non-charge transfer systems, confirming the outcomes of the CT-systems.

  6. High-temperature charge density wave correlations in La 1.875Ba 0.125CuO 4 without spin–charge locking

    DOE PAGES

    Miao, H.; Lorenzana, J.; Seibold, G.; ...

    2017-11-07

    Although all superconducting cuprates display charge-ordering tendencies, their low-temperature properties are distinct, impeding efforts to understand the phenomena within a single conceptual framework. While some systems exhibit stripes of charge and spin, with a locked periodicity, others host charge density waves (CDWs) without any obviously related spin order. Here we use resonant inelastic X-ray scattering to follow the evolution of charge correlations in the canonical stripe-ordered cuprate La 1.875Ba 0.125CuO 4 across its ordering transition. We find that high-temperature charge correlations are unlocked from the wavevector of the spin correlations, signaling analogies to CDW phases in various other cuprates. Thismore » indicates that stripe order at low temperatures is stabilized by the coupling of otherwise independent charge and spin density waves, with important implications for the relation between charge and spin correlations in the cuprates.« less

  7. High-temperature charge density wave correlations in La 1.875Ba 0.125CuO 4 without spin–charge locking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, H.; Lorenzana, J.; Seibold, G.

    Although all superconducting cuprates display charge-ordering tendencies, their low-temperature properties are distinct, impeding efforts to understand the phenomena within a single conceptual framework. While some systems exhibit stripes of charge and spin, with a locked periodicity, others host charge density waves (CDWs) without any obviously related spin order. Here we use resonant inelastic X-ray scattering to follow the evolution of charge correlations in the canonical stripe-ordered cuprate La 1.875Ba 0.125CuO 4 across its ordering transition. We find that high-temperature charge correlations are unlocked from the wavevector of the spin correlations, signaling analogies to CDW phases in various other cuprates. Thismore » indicates that stripe order at low temperatures is stabilized by the coupling of otherwise independent charge and spin density waves, with important implications for the relation between charge and spin correlations in the cuprates.« less

  8. Emergence of charge density waves and a pseudogap in single-layer TiTe2.

    PubMed

    Chen, P; Pai, Woei Wu; Chan, Y-H; Takayama, A; Xu, C-Z; Karn, A; Hasegawa, S; Chou, M Y; Mo, S-K; Fedorov, A-V; Chiang, T-C

    2017-09-11

    Two-dimensional materials constitute a promising platform for developing nanoscale devices and systems. Their physical properties can be very different from those of the corresponding three-dimensional materials because of extreme quantum confinement and dimensional reduction. Here we report a study of TiTe 2 from the single-layer to the bulk limit. Using angle-resolved photoemission spectroscopy and scanning tunneling microscopy and spectroscopy, we observed the emergence of a (2 × 2) charge density wave order in single-layer TiTe 2 with a transition temperature of 92 ± 3 K. Also observed was a pseudogap of about 28 meV at the Fermi level at 4.2 K. Surprisingly, no charge density wave transitions were observed in two-layer and multi-layer TiTe 2 , despite the quasi-two-dimensional nature of the material in the bulk. The unique charge density wave phenomenon in the single layer raises intriguing questions that challenge the prevailing thinking about the mechanisms of charge density wave formation.Due to reduced dimensionality, the properties of 2D materials are often different from their 3D counterparts. Here, the authors identify the emergence of a unique charge density wave (CDW) order in monolayer TiTe 2 that challenges the current understanding of CDW formation.

  9. Density-functional theory of spherical electric double layers and zeta potentials of colloidal particles in restricted-primitive-model electrolyte solutions.

    PubMed

    Yu, Yang-Xin; Wu, Jianzhong; Gao, Guang-Hua

    2004-04-15

    A density-functional theory is proposed to describe the density profiles of small ions around an isolated colloidal particle in the framework of the restricted primitive model where the small ions have uniform size and the solvent is represented by a dielectric continuum. The excess Helmholtz energy functional is derived from a modified fundamental measure theory for the hard-sphere repulsion and a quadratic functional Taylor expansion for the electrostatic interactions. The theoretical predictions are in good agreement with the results from Monte Carlo simulations and from previous investigations using integral-equation theory for the ionic density profiles and the zeta potentials of spherical particles at a variety of solution conditions. Like the integral-equation approaches, the density-functional theory is able to capture the oscillatory density profiles of small ions and the charge inversion (overcharging) phenomena for particles with elevated charge density. In particular, our density-functional theory predicts the formation of a second counterion layer near the surface of highly charged spherical particle. Conversely, the nonlinear Poisson-Boltzmann theory and its variations are unable to represent the oscillatory behavior of small ion distributions and charge inversion. Finally, our density-functional theory predicts charge inversion even in a 1:1 electrolyte solution as long as the salt concentration is sufficiently high. (c) 2004 American Institute of Physics.

  10. Effects of low charge injection densities on corrosion responses of pulsed 316LVM stainless steel electrodes.

    PubMed

    Riedy, L W; Walter, J S

    1996-06-01

    The safe charge injection density for pulsing of 316LVM electrodes has been reported to be 40 microC/cm2. However, only 20 microC/cm2 is available for nonfaradic charge transfer and double layer charge injection. Therefore, we evaluated long term pulsing at 20 microC/cm2 with capacitor coupling.

  11. Nanostructured pseudocapacitive materials decorated 3D graphene foam electrodes for next generation supercapacitors.

    PubMed

    Patil, Umakant; Lee, Su Chan; Kulkarni, Sachin; Sohn, Ji Soo; Nam, Min Sik; Han, Suhyun; Jun, Seong Chan

    2015-04-28

    Nowadays, advancement in performance of proficient multifarious electrode materials lies conclusively at the core of research concerning energy storage devices. To accomplish superior capacitance performance the requirements of high capacity, better cyclic stability and good rate capability can be expected from integration of electrochemical double layer capacitor based carbonaceous materials (high power density) and pseudocapacitive based metal hydroxides/oxides or conducting polymers (high energy density). The envisioned three dimensional (3D) graphene foams are predominantly advantageous to extend potential applicability by offering a large active surface area and a highly conductive continuous porous network for fast charge transfer with decoration of nanosized pseudocapacitive materials. In this article, we review the latest methodologies and performance evaluation for several 3D graphene based metal oxides/hydroxides and conducting polymer electrodes with improved electrochemical properties for next-generation supercapacitors. The most recent research advancements of our and other groups in the field of 3D graphene based electrode materials for supercapacitors are discussed. To assess the studied materials fully, a careful interpretation and rigorous scrutiny of their electrochemical characteristics is essential. Auspiciously, both nano-structuration as well as confinement of metal hydroxides/oxides and conducting polymers onto a conducting porous 3D graphene matrix play a great role in improving the performance of electrodes mainly due to: (i) active material access over large surface area with fast charge transportation; (ii) synergetic effect of electric double layer and pseudocapacitive based charge storing.

  12. Polysaccharide/Surfactant complexes at the air-water interface - effect of the charge density on interfacial and foaming behaviors.

    PubMed

    Ropers, M H; Novales, B; Boué, F; Axelos, M A V

    2008-11-18

    The binding of a cationic surfactant (hexadecyltrimethylammonium bromide, CTAB) to a negatively charged natural polysaccharide (pectin) at air-solution interfaces was investigated on single interfaces and in foams, versus the linear charge densities of the polysaccharide. Besides classical methods to investigate polymer/surfactant systems, we applied, for the first time concerning these systems, the analogy between the small angle neutron scattering by foams and the neutron reflectivity of films to measure in situ film thicknesses of foams. CTAB/pectin foam films are much thicker than the pure surfactant foam film but similar for high- and low-charged pectin/CTAB systems despite the difference in structure of complexes at interfaces. The improvement of the foam properties of CTAB bound to pectin is shown to be directly related to the formation of pectin-CTAB complexes at the air-water interface. However, in opposition to surface activity, there is no specific behavior for the highly charged pectin: foam properties depend mainly upon the bulk charge concentration, while the interfacial behavior is mainly governed by the charge density of pectin. For the highly charged pectin, specific cooperative effects between neighboring charged sites along the chain are thought to be involved in the higher surface activity of pectin/CTAB complexes. A more general behavior can be obtained at lower charge density either by using a low-charged pectin or by neutralizing the highly charged pectin in decreasing pH.

  13. Energy-Dependent Ionization States of Shock-Accelerated Particles in the Solar Corona

    NASA Technical Reports Server (NTRS)

    Reames, Donald V.; Ng, C. K.; Tylka, A. J.

    2000-01-01

    We examine the range of possible energy dependence of the ionization states of ions that are shock-accelerated from the ambient plasma of the solar corona. If acceleration begins in a region of moderate density, sufficiently low in the corona, ions above about 0.1 MeV/amu approach an equilibrium charge state that depends primarily upon their speed and only weakly on the plasma temperature. We suggest that the large variations of the charge states with energy for ions such as Si and Fe observed in the 1997 November 6 event are consistent with stripping in moderately dense coronal. plasma during shock acceleration. In the large solar-particle events studied previously, acceleration occurs sufficiently high in the corona that even Fe ions up to 600 MeV/amu are not stripped of electrons.

  14. Comprehensive phase diagram of two-dimensional space charge doped Bi2Sr2CaCu2O8+x.

    PubMed

    Sterpetti, Edoardo; Biscaras, Johan; Erb, Andreas; Shukla, Abhay

    2017-12-12

    The phase diagram of hole-doped high critical temperature superconductors as a function of doping and temperature has been intensively studied with chemical variation of doping. Chemical doping can provoke structural changes and disorder, masking intrinsic effects. Alternatively, a field-effect transistor geometry with an electrostatically doped, ultra-thin sample can be used. However, to probe the phase diagram, carrier density modulation beyond 10 14  cm -2 and transport measurements performed over a large temperature range are needed. Here we use the space charge doping method to measure transport characteristics from 330 K to low temperature. We extract parameters and characteristic temperatures over a large doping range and establish a comprehensive phase diagram for one-unit-cell-thick BSCCO-2212 as a function of doping, temperature and disorder.

  15. 47 CFR 69.123 - Density pricing zones for special access and switched transport.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Density pricing zones for special access and...) COMMON CARRIER SERVICES (CONTINUED) ACCESS CHARGES Computation of Charges § 69.123 Density pricing zones... price cap regulation may establish any number of density zones within a study area that is used for...

  16. Entanglement transitions induced by large deviations

    NASA Astrophysics Data System (ADS)

    Bhosale, Udaysinh T.

    2017-12-01

    The probability of large deviations of the smallest Schmidt eigenvalue for random pure states of bipartite systems, denoted as A and B , is computed analytically using a Coulomb gas method. It is shown that this probability, for large N , goes as exp[-β N2Φ (ζ ) ] , where the parameter β is the Dyson index of the ensemble, ζ is the large deviation parameter, while the rate function Φ (ζ ) is calculated exactly. Corresponding equilibrium Coulomb charge density is derived for its large deviations. Effects of the large deviations of the extreme (largest and smallest) Schmidt eigenvalues on the bipartite entanglement are studied using the von Neumann entropy. Effect of these deviations is also studied on the entanglement between subsystems 1 and 2, obtained by further partitioning the subsystem A , using the properties of the density matrix's partial transpose ρ12Γ. The density of states of ρ12Γ is found to be close to the Wigner's semicircle law with these large deviations. The entanglement properties are captured very well by a simple random matrix model for the partial transpose. The model predicts the entanglement transition across a critical large deviation parameter ζ . Log negativity is used to quantify the entanglement between subsystems 1 and 2. Analytical formulas for it are derived using the simple model. Numerical simulations are in excellent agreement with the analytical results.

  17. Entanglement transitions induced by large deviations.

    PubMed

    Bhosale, Udaysinh T

    2017-12-01

    The probability of large deviations of the smallest Schmidt eigenvalue for random pure states of bipartite systems, denoted as A and B, is computed analytically using a Coulomb gas method. It is shown that this probability, for large N, goes as exp[-βN^{2}Φ(ζ)], where the parameter β is the Dyson index of the ensemble, ζ is the large deviation parameter, while the rate function Φ(ζ) is calculated exactly. Corresponding equilibrium Coulomb charge density is derived for its large deviations. Effects of the large deviations of the extreme (largest and smallest) Schmidt eigenvalues on the bipartite entanglement are studied using the von Neumann entropy. Effect of these deviations is also studied on the entanglement between subsystems 1 and 2, obtained by further partitioning the subsystem A, using the properties of the density matrix's partial transpose ρ_{12}^{Γ}. The density of states of ρ_{12}^{Γ} is found to be close to the Wigner's semicircle law with these large deviations. The entanglement properties are captured very well by a simple random matrix model for the partial transpose. The model predicts the entanglement transition across a critical large deviation parameter ζ. Log negativity is used to quantify the entanglement between subsystems 1 and 2. Analytical formulas for it are derived using the simple model. Numerical simulations are in excellent agreement with the analytical results.

  18. Solid-State Thin-Film Supercapacitors with Ultrafast Charge/Discharge Based on N-Doped-Carbon-Tubes/Au-Nanoparticles-Doped-MnO2 Nanocomposites.

    PubMed

    Lv, Qiying; Wang, Shang; Sun, Hongyu; Luo, Jun; Xiao, Jian; Xiao, JunWu; Xiao, Fei; Wang, Shuai

    2016-01-13

    Although carbonaceous materials possess long cycle stability and high power density, their low-energy density greatly limits their applications. On the contrary, metal oxides are promising pseudocapacitive electrode materials for supercapacitors due to their high-energy density. Nevertheless, poor electrical conductivity of metal oxides constitutes a primary challenge that significantly limits their energy storage capacity. Here, an advanced integrated electrode for high-performance pseudocapacitors has been designed by growing N-doped-carbon-tubes/Au-nanoparticles-doped-MnO2 (NCTs/ANPDM) nanocomposite on carbon fabric. The excellent electrical conductivity and well-ordered tunnels of NCTs together with Au nanoparticles of the electrode cause low internal resistance, good ionic contact, and thus enhance redox reactions for high specific capacitance of pure MnO2 in aqueous electrolyte, even at high scan rates. A prototype solid-state thin-film symmetric supercapacitor (SSC) device based on NCTs/ANPDM exhibits large energy density (51 Wh/kg) and superior cycling performance (93% after 5000 cycles). In addition, the asymmetric supercapacitor (ASC) device assembled from NCTs/ANPDM and Fe2O3 nanorods demonstrates ultrafast charge/discharge (10 V/s), which is among the best reported for solid-state thin-film supercapacitors with both electrodes made of metal oxide electroactive materials. Moreover, its superior charge/discharge behavior is comparable to electrical double layer type supercapacitors. The ASC device also shows superior cycling performance (97% after 5000 cycles). The NCTs/ANPDM nanomaterial demonstrates great potential as a power source for energy storage devices.

  19. Observation of increased space-charge limited thermionic electron emission current by neutral gas ionization in a weakly-ionized deuterium plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollmann, E. M.; Yu, J. H.; Doerner, R. P.

    2015-09-14

    The thermionic electron emission current emitted from a laser-produced hot spot on a tungsten target in weakly-ionized deuterium plasma is measured. It is found to be one to two orders of magnitude larger than expected for bipolar space charge limited thermionic emission current assuming an unperturbed background plasma. This difference is attributed to the plasma being modified by ionization of background neutrals by the emitted electrons. This result indicates that the allowable level of emitted thermionic electron current can be significantly enhanced in weakly-ionized plasmas due to the presence of large neutral densities.

  20. Modelling molecular adsorption on charged or polarized surfaces: a critical flaw in common approaches.

    PubMed

    Bal, Kristof M; Neyts, Erik C

    2018-03-28

    A number of recent computational material design studies based on density functional theory (DFT) calculations have put forward a new class of materials with electrically switchable chemical characteristics that can be exploited in the development of tunable gas storage and electrocatalytic applications. We find systematic flaws in almost every computational study of gas adsorption on polarized or charged surfaces, stemming from an improper and unreproducible treatment of periodicity, leading to very large errors of up to 3 eV in some cases. Two simple corrective procedures that lead to consistent results are proposed, constituting a crucial course correction to the research in the field.

  1. Relations among low ionosphere parameters and high frequency radio wave absorption

    NASA Technical Reports Server (NTRS)

    Cipriano, J. P.

    1973-01-01

    Charged particle conductivities measured in the very low ionosphere at White Sands Missile Range, New Mexico, and Wallops Island, Virginia, are compared with atmospheric parameters and high frequency radio wave absorption measurements. Charged particle densities are derived from the conductivity data. Between 33 and 58 km, positive conductivity correlated well with neutral atmospheric temperature, with temperature coefficients as large as 4.6%/deg K. Good correlations were also found between HF radio wave absorption and negative conductivity at altitudes as low as 53 km, indicating that the day-to-day absorption variations were principally due to variations in electron loss rate.

  2. Polymer space-charge-limited transistor as a solid-state vacuum tube triode

    NASA Astrophysics Data System (ADS)

    Chao, Yu-Chiang; Ku, Ming-Che; Tsai, Wu-Wei; Zan, Hsiao-Wen; Meng, Hsin-Fei; Tsai, Hung-Kuo; Horng, Sheng-Fu

    2010-11-01

    We report the construction of a polymer space-charge-limited transistor (SCLT), a solid-state version of vacuum tube triode. The SCLT achieves a high on/off ratio of 3×105 at a low operation voltage of 1.5 V by using high quality insulators both above and below the grid base electrode. Applying a greater bias to the base increases the barrier potential, and turns off the channel current, without introducing a large parasitic leakage current. Simulation result verifies the influence of base bias on channel potential distribution. The output current density is 1.7 mA/cm2 with current gain greater than 1000.

  3. Tailoring charge density and hydrogen bonding of imidazolium copolymers for efficient gene delivery.

    PubMed

    Allen, Michael H; Green, Matthew D; Getaneh, Hiwote K; Miller, Kevin M; Long, Timothy E

    2011-06-13

    Conventional free radical polymerization with subsequent postpolymerization modification afforded imidazolium copolymers with controlled charge density and side chain hydroxyl number. Novel imidazolium-containing copolymers where each permanent cation contained one or two adjacent hydroxyls allowed precise structure-transfection efficiency studies. The degree of polymerization was identical for all copolymers to eliminate the influence of molecular weight on transfection efficiency. DNA binding, cytotoxicity, and in vitro gene transfection in African green monkey COS-7 cells revealed structure-property-transfection relationships for the copolymers. DNA gel shift assays indicated that higher charge densities and hydroxyl concentrations increased DNA binding. As the charge density of the copolymers increased, toxicity of the copolymers also increased; however, as hydroxyl concentration increased, cytotoxicity remained constant. Changing both charge density and hydroxyl levels in a systematic fashion revealed a dramatic influence on transfection efficiency. Dynamic light scattering of the polyplexes, which were composed of copolymer concentrations required for the highest luciferase expression, showed an intermediate DNA-copolymer binding affinity. Our studies supported the conclusion that cationic copolymer binding affinity significantly impacts overall transfection efficiency of DNA delivery vehicles, and the incorporation of hydroxyl sites offers a less toxic and effective alternative to more conventional highly charged copolymers.

  4. Quantum crystallographic charge density of urea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, Michael E.

    Standard X-ray crystallography methods use free-atom models to calculate mean unit-cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra-high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared with models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the datamore » is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. Lastly, the results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra-high-resolution X-ray crystallographic model building and refinement.« less

  5. Quantum crystallographic charge density of urea

    DOE PAGES

    Wall, Michael E.

    2016-06-08

    Standard X-ray crystallography methods use free-atom models to calculate mean unit-cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra-high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared with models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the datamore » is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. Lastly, the results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra-high-resolution X-ray crystallographic model building and refinement.« less

  6. Charge-density-shear-moduli relationships in aluminum-lithium alloys.

    PubMed

    Eberhart, M

    2001-11-12

    Using the first principles full-potential linear-augmented-Slater-type orbital technique, the energies and charge densities of aluminum and aluminum-lithium supercells have been computed. The experimentally observed increase in aluminum's shear moduli upon alloying with lithium is argued to be the result of predictable changes to aluminum's total charge density, suggesting that simple rules may allow the alloy designer to predict the effects of dilute substitutional elements on alloy elastic response.

  7. Thermal stability of atomic layer deposition Al2O3 film on HgCdTe

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Sun, C. H.; Zhang, Y.; Chen, X.; He, K.; Chen, Y. Y.; Ye, Z. H.

    2015-06-01

    Thermal stability of Atomic Layer Deposition Al2O3 film on HgCdTe was investigated by Al2O3 film post-deposition annealing treatment and Metal-Insulator-Semiconductor device low-temperature baking treatment. The effectiveness of Al2O3 film was evaluated by measuring the minority carrier lifetime and capacitance versus voltage characteristics. After annealing treatment, the minority carrier lifetime of the HgCdTe sample presented a slight decrease. Furthermore, the fixed charge density and the slow charge density decreased significantly in the annealed MIS device. After baking treatment, the fixed charge density and the slow charge density of the unannealed and annealed MIS devices decreased and increased, respectively.

  8. Charge Transfer and Orbital Level Alignment at Inorganic/Organic Interfaces: The Role of Dielectric Interlayers.

    PubMed

    Hollerer, Michael; Lüftner, Daniel; Hurdax, Philipp; Ules, Thomas; Soubatch, Serguei; Tautz, Frank Stefan; Koller, Georg; Puschnig, Peter; Sterrer, Martin; Ramsey, Michael G

    2017-06-27

    It is becoming accepted that ultrathin dielectric layers on metals are not merely passive decoupling layers, but can actively influence orbital energy level alignment and charge transfer at interfaces. As such, they can be important in applications ranging from catalysis to organic electronics. However, the details at the molecular level are still under debate. In this study, we present a comprehensive analysis of the phenomenon of charge transfer promoted by a dielectric interlayer with a comparative study of pentacene adsorbed on Ag(001) with and without an ultrathin MgO interlayer. Using scanning tunneling microscopy and photoemission tomography supported by density functional theory, we are able to identify the orbitals involved and quantify the degree of charge transfer in both cases. Fractional charge transfer occurs for pentacene adsorbed on Ag(001), while the presence of the ultrathin MgO interlayer promotes integer charge transfer with the lowest unoccupied molecular orbital transforming into a singly occupied and singly unoccupied state separated by a large gap around the Fermi energy. Our experimental approach allows a direct access to the individual factors governing the energy level alignment and charge-transfer processes for molecular adsorbates on inorganic substrates.

  9. Abnormal Multiple Charge Memory States in Exfoliated Few-Layer WSe2 Transistors.

    PubMed

    Chen, Mikai; Wang, Yifan; Shepherd, Nathan; Huard, Chad; Zhou, Jiantao; Guo, L J; Lu, Wei; Liang, Xiaogan

    2017-01-24

    To construct reliable nanoelectronic devices based on emerging 2D layered semiconductors, we need to understand the charge-trapping processes in such devices. Additionally, the identified charge-trapping schemes in such layered materials could be further exploited to make multibit (or highly desirable analog-tunable) memory devices. Here, we present a study on the abnormal charge-trapping or memory characteristics of few-layer WSe 2 transistors. This work shows that multiple charge-trapping states with large extrema spacing, long retention time, and analog tunability can be excited in the transistors made from mechanically exfoliated few-layer WSe 2 flakes, whereas they cannot be generated in widely studied few-layer MoS 2 transistors. Such charge-trapping characteristics of WSe 2 transistors are attributed to the exfoliation-induced interlayer deformation on the cleaved surfaces of few-layer WSe 2 flakes, which can spontaneously form ambipolar charge-trapping sites. Our additional results from surface characterization, charge-retention characterization at different temperatures, and density functional theory computation strongly support this explanation. Furthermore, our research also demonstrates that the charge-trapping states excited in multiple transistors can be calibrated into consistent multibit data storage levels. This work advances the understanding of the charge memory mechanisms in layered semiconductors, and the observed charge-trapping states could be further studied for enabling ultralow-cost multibit analog memory devices.

  10. Single-molecule interfacial electron transfer dynamics in solar energy conversion

    NASA Astrophysics Data System (ADS)

    Dhital, Bharat

    This dissertation work investigated the parameters affecting the interfacial electron transfer (ET) dynamics in dye-semiconductor nanoparticles (NPs) system by using single-molecule fluorescence spectroscopy and imaging combined with electrochemistry. The influence of the molecule-substrate electronic coupling, the molecular structure, binding geometry on the surface and the molecule-attachment surface chemistry on interfacial charge transfer processes was studied on zinc porphyrin-TiO2 NP systems. The fluorescence blinking measurement on TiO2 NP demonstrated that electronic coupling regulates dynamics of charge transfer processes at the interface depending on the conformation of molecule on the surface. Moreover, semiconductor surface charge induced electronic coupling of molecule which is electrostatically adsorbed on the semiconductor surface also predominantly alters the ET dynamics. Furthermore, interfacial electric field and electron accepting state density dependent ET dynamics has been dissected in zinc porphyrin-TiO2 NP system by observing the single-molecule fluorescence blinking dynamics and fluorescence lifetime with and without applied bias. The significant difference in fluorescence fluctuation and lifetime suggested the modulation of charge transfer dynamics at the interface with external electric field perturbation. Quasi-continuous distribution of fluorescence intensity with applied negative potential was attributed to the faster charge recombination due to reduced density of electron accepting states. The driving force and electron accepting state density ET dependent dynamics has also been probed in zinc porphyrin-TiO2 NP and zinc porphyrin-indium tin oxide (ITO) systems. Study of a molecule adsorbed on two different semiconductors (ITO and TiO2), with large difference in electron densities and distinct driving forces, allows us to observe the changes in rates of back electron transfer process reflected by the suppressed fluorescence blinking of molecule on ITO surface. Finally, the electric field effect on the interface properties has been probed by using surface-enhanced Raman spectroscopy and supported by density functional theory calculations in alizarin-TiO2 system. The perturbation, created by the external potential, has been observed to cause a shift and/or splitting interfacial bond vibrational mode, typical indicator of the coupling energy changes between alizarin and TiO2. Such splitting provides evidence for electric field-dependent electronic coupling changes that have a significant impact on the interfacial electron transfer dynamics.

  11. Magnetically Filtered Faraday Probe for Measuring the Ion Current Density Profile of a Hall Thruster

    DTIC Science & Technology

    2006-01-01

    Hall thruster is investigated. The MFFP is designed to eliminate the collection of low-energy, charge-exchange (CEX) ions by using a variable magnetic field as an ion filter. In this study, a MFFP, Faraday probe with a reduced acceptance angle (BFP), and nude Faraday probe are used to measure the ion current density profile of a 5 kW Hall thruster operating over the range of 300-500 V and 5-10 mg/s. The probes are evaluated on a xenon propellant Hall thruster in the University of Michigan Large Vacuum Test Facility at operating

  12. Structural charge site influence on the interlayer hydration of expandable three-sheet clay minerals

    USGS Publications Warehouse

    Kerns, Raymond L.; Mankin, Charles J.

    1968-01-01

    Previous investigations have demonstrated the influences of interlayer cation composition, relative humidity, temperature, and magnitude of interlayer surface charge on the interlayer hydration of montmorillonites and vermiculites. It has been suggested that the sites of layer charge deficiencies may also have an influence upon the amount of hydration that can take place in the interlayers of expandable clay minerals. If the interlayer cation-to-layer bonds are considered as ideally electrostatic, the magnitude of the forces resisting expansion may be expressed as a form of Coulomb's law. If this effect is significant, expandable structures in which the charge-deficiency sites are predominantly in the tetrahedral sheet should have less pronounced swelling properties than should structures possessing charge deficiencies located primarily in the octahedral sheet.Three samples that differed in location of layer charge sites were selected for study. An important selection criterion was a non-correlation between tetrahedral charge sites and high surface-charge density, and between octahedral charge sites and low surface-charge density.The effects of differences in interlayer cation composition were eliminated by saturating portions of each sample with the same cations. Equilibrium (001) d values at controlled constant humidities were used as a measure of the relative degree of interlayer hydration.Although no correlation could be made between the degree of interlayer hydration and total surface-charge density, the investigation does not eliminate total surface-charge density as being significant to the swelling properties of three-sheet clay-mineral structures. The results do indicate a correlation between more intense expandability and predominance of charge deficiencies in the octahedral sheet. Conversely, less intense swelling behavior is associated with predominantly tetrahedral charge deficiencies.

  13. A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage

    NASA Astrophysics Data System (ADS)

    Zeng, Y. K.; Zhao, T. S.; An, L.; Zhou, X. L.; Wei, L.

    2015-12-01

    The promise of redox flow batteries (RFBs) utilizing soluble redox couples, such as all vanadium ions as well as iron and chromium ions, is becoming increasingly recognized for large-scale energy storage of renewables such as wind and solar, owing to their unique advantages including scalability, intrinsic safety, and long cycle life. An ongoing question associated with these two RFBs is determining whether the vanadium redox flow battery (VRFB) or iron-chromium redox flow battery (ICRFB) is more suitable and competitive for large-scale energy storage. To address this concern, a comparative study has been conducted for the two types of battery based on their charge-discharge performance, cycle performance, and capital cost. It is found that: i) the two batteries have similar energy efficiencies at high current densities; ii) the ICRFB exhibits a higher capacity decay rate than does the VRFB; and iii) the ICRFB is much less expensive in capital costs when operated at high power densities or at large capacities.

  14. Suppression of high-pT hadrons in Pb+Pb collisions at energies available at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Chen, Xiao-Fang; Hirano, Tetsufumi; Wang, Enke; Wang, Xin-Nian; Zhang, Hanzhong

    2011-09-01

    The nuclear modification factor RAA(pT) for large transverse momentum pion spectra in Pb+Pb collisions at s=2.76 TeV is predicted within the next-to-leading order perturbative QCD parton model. The effect of jet quenching is incorporated through medium-modified fragmentation functions within the higher-twist approach. The jet transport parameter that controls medium modification is proportional to the initial parton density, and the coefficient is fixed by data on the suppression of large-pT hadron spectra obtained at the BNL Relativistic Heavy Ion Collider. Data on charged hadron multiplicity dNch/dη=1584±80 in central Pb+Pb collisions from the ALICE experiment at the CERN Large Hadron Collider are used to constrain the initial parton density both for determining the jet transport parameter and the 3 + 1 dimensional (3 + 1D) ideal hydrodynamic evolution of the bulk matter that is employed for the calculation of RPbPb(pT) for neutral pions.

  15. Investigating the topological structure of quenched lattice QCD with overlap fermions using a multi-probing approximation

    NASA Astrophysics Data System (ADS)

    Zou, You-Hao; Zhang, Jian-Bo; Xiong, Guang-Yi; Chen, Ying; Liu, Chuan; Liu, Yu-Bin; Ma, Jian-Ping

    2017-10-01

    The topological charge density and topological susceptibility are determined by a multi-probing approximation using overlap fermions in quenched SU(3) gauge theory. Then we investigate the topological structure of the quenched QCD vacuum, and compare it with results from the all-scale topological density. The results are consistent. Random permuted topological charge density is used to check whether these structures represent underlying ordered properties. The pseudoscalar glueball mass is extracted from the two-point correlation function of the topological charge density. We study 3 ensembles of different lattice spacing a with the same lattice volume 163×32. The results are compatible with the results of all-scale topological charge density, and the topological structures revealed by multi-probing are much closer to all-scale topological charge density than those from eigenmode expansion. Supported by National Natural Science Foundation of China (NSFC) (11335001, 11275169, 11075167), It is also supported in part by the DFG and the NSFC (11261130311) through funds provided to the Sino-German CRC 110 "Symmetries and the Emergence of Structure in QCD". This work was also funded in part by National Basic Research Program of China (973 Program) (2015CB856700)

  16. Effect of Thermospheric Neutral Density upon Inner Trapped-belt Proton Flux

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.; Lodhi, M. A. K.; Diaz, Abel B.

    2007-01-01

    We wish to point out that a secular change in the Earth's atmospheric neutral density alters charged-particle lifetime in the inner trapped radiation belts, in addition to the changes recently reported as produced by greenhouse gases. Heretofore, changes in neutral density have been of interest primarily because of their effect on the orbital drag of satellites. We extend this to include the orbital lifetime of charged particles in the lower radiation belts. It is known that the charged-belt population is coupled to the neutral density of the atmosphere through changes induced by solar activity, an effect produced by multiple scattering off neutral and ionized atoms along with ionization loss in the thermosphere where charged and neutral populations interact. It will be shown here that trapped-belt flux J is bivariant in energy E and thermospheric neutral density , as J(E,rho). One can conclude that proton lifetimes in these belts are also directly affected by secular changes in the neutral species populating the Earth s thermosphere. This result is a consequence of an intrinsic property of charged-particle flux, that flux is not merely a function of E but is dependent upon density rho when a background of neutrals is present.

  17. Benzothiadiazole-based polymer for single and double junction solar cells with high open circuit voltage.

    PubMed

    Venkatesan, Swaminathan; Ngo, Evan C; Chen, Qiliang; Dubey, Ashish; Mohammad, Lal; Adhikari, Nirmal; Mitul, Abu Farzan; Qiao, Qiquan

    2014-06-21

    Single and double junction solar cells with high open circuit voltage were fabricated using poly{thiophene-2,5-diyl-alt-[5,6-bis(dodecyloxy)benzo[c][1,2,5]thiadiazole]-4,7-diyl} (PBT-T1) blended with fullerene derivatives in different weight ratios. The role of fullerene loading on structural and morphological changes was investigated using atomic force microscopy (AFM) and X-ray diffraction (XRD). The XRD and AFM measurements showed that a higher fullerene mixing ratio led to breaking of inter-chain packing and hence resulted in smaller disordered polymer domains. When the PBT-T1:PC60BM weight ratio was 1 : 1, the polymer retained its structural order; however, large aggregated domains formed, leading to poor device performance due to low fill factor and short circuit current density. When the ratio was increased to 1 : 2 and then 1 : 3, smaller amorphous domains were observed, which improved photovoltaic performance. The 1 : 2 blending ratio was optimal due to adequate charge transport pathways giving rise to moderate short circuit current density and fill factor. Adding 1,8-diiodooctane (DIO) additive into the 1 : 2 blend films further improved both the short circuit current density and fill factor, leading to an increased efficiency to 4.5% with PC60BM and 5.65% with PC70BM. These single junction solar cells exhibited a high open circuit voltage at ∼ 0.9 V. Photo-charge extraction by linearly increasing voltage (Photo-CELIV) measurements showed the highest charge carrier mobility in the 1 : 2 film among the three ratios, which was further enhanced by introducing the DIO. The Photo-CELIV measurements with varying delay times showed significantly higher extracted charge carrier density for cells processed with DIO. Tandem devices using P3HT:IC60BA as bottom cell and PBT-T1:PC60BM as top cell exhibited a high open circuit voltage of 1.62 V with 5.2% power conversion efficiency.

  18. Crystal-field splittings in rare-earth-based hard magnets: An ab initio approach

    NASA Astrophysics Data System (ADS)

    Delange, Pascal; Biermann, Silke; Miyake, Takashi; Pourovskii, Leonid

    2017-10-01

    We apply the first-principles density functional theory + dynamical mean-field theory framework to evaluate the crystal-field splitting on rare-earth sites in hard magnetic intermetallics. An atomic (Hubbard-I) approximation is employed for local correlations on the rare-earth 4 f shell and self-consistency in the charge density is implemented. We reduce the density functional theory self-interaction contribution to the crystal-field splitting by properly averaging the 4 f charge density before recalculating the one-electron Kohn-Sham potential. Our approach is shown to reproduce the experimental crystal-field splitting in the prototypical rare-earth hard magnet SmCo5. Applying it to R Fe12 and R Fe12X hard magnets (R =Nd , Sm and X =N , Li), we obtain in particular a large positive value of the crystal-field parameter A20〈r2〉 in NdFe12N resulting in a strong out-of-plane anisotropy observed experimentally. The sign of A20〈r2〉 is predicted to be reversed by substituting N with Li, leading to a strong out-of-plane anisotropy in SmFe12Li . We discuss the origin of this strong impact of N and Li interstitials on the crystal-field splitting on rare-earth sites.

  19. Competition of density waves and quantum multicritical behavior in Dirac materials from functional renormalization

    NASA Astrophysics Data System (ADS)

    Classen, Laura; Herbut, Igor F.; Janssen, Lukas; Scherer, Michael M.

    2016-03-01

    We study the competition of spin- and charge-density waves and their quantum multicritical behavior for the semimetal-insulator transitions of low-dimensional Dirac fermions. Employing the effective Gross-Neveu-Yukawa theory with two order parameters as a model for graphene and a growing number of other two-dimensional Dirac materials allows us to describe the physics near the multicritical point at which the semimetallic and the spin- and charge-density-wave phases meet. With the help of a functional renormalization group approach, we are able to reveal a complex structure of fixed points, the stability properties of which decisively depend on the number of Dirac fermions Nf. We give estimates for the critical exponents and observe crucial quantitative corrections as compared to the previous first-order ɛ expansion. For small Nf, the universal behavior near the multicritical point is determined by the chiral Heisenberg universality class supplemented by a decoupled, purely bosonic, Ising sector. At large Nf, a novel fixed point with nontrivial couplings between all sectors becomes stable. At intermediate Nf, including the graphene case (Nf=2 ), no stable and physically admissible fixed point exists. Graphene's phase diagram in the vicinity of the intersection between the semimetal, antiferromagnetic, and staggered density phases should consequently be governed by a triple point exhibiting first-order transitions.

  20. Spin density waves predicted in zigzag puckered phosphorene, arsenene and antimonene nanoribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Xiaohua; Zhang, Xiaoli; Wang, Xianlong

    2016-04-15

    The pursuit of controlled magnetism in semiconductors has been a persisting goal in condensed matter physics. Recently, Vene (phosphorene, arsenene and antimonene) has been predicted as a new class of 2D-semiconductor with suitable band gap and high carrier mobility. In this work, we investigate the edge magnetism in zigzag puckered Vene nanoribbons (ZVNRs) based on the density functional theory. The band structures of ZVNRs show half-filled bands crossing the Fermi level at the midpoint of reciprocal lattice vectors, indicating a strong Peierls instability. To remove this instability, we consider two different mechanisms, namely, spin density wave (SDW) caused by electron-electronmore » interaction and charge density wave (CDW) caused by electron-phonon coupling. We have found that an antiferromagnetic Mott-insulating state defined by SDW is the ground state of ZVNRs. In particular, SDW in ZVNRs displays several surprising characteristics:1) comparing with other nanoribbon systems, their magnetic moments are antiparallelly arranged at each zigzag edge and almost independent on the width of nanoribbons; 2) comparing with other SDW systems, its magnetic moments and band gap of SDW are unexpectedly large, indicating a higher SDW transition temperature in ZVNRs; 3) SDW can be effectively modified by strains and charge doping, which indicates that ZVNRs have bright prospects in nanoelectronic device.« less

  1. Alternative route to charge density wave formation in multiband systems

    PubMed Central

    Eiter, Hans-Martin; Lavagnini, Michela; Hackl, Rudi; Nowadnick, Elizabeth A.; Kemper, Alexander F.; Devereaux, Thomas P.; Chu, Jiun-Haw; Analytis, James G.; Fisher, Ian R.; Degiorgi, Leonardo

    2013-01-01

    Charge and spin density waves, periodic modulations of the electron, and magnetization densities, respectively, are among the most abundant and nontrivial low-temperature ordered phases in condensed matter. The ordering direction is widely believed to result from the Fermi surface topology. However, several recent studies indicate that this common view needs to be supplemented. Here, we show how an enhanced electron–lattice interaction can contribute to or even determine the selection of the ordering vector in the model charge density wave system ErTe3. Our joint experimental and theoretical study allows us to establish a relation between the selection rules of the electronic light scattering spectra and the enhanced electron–phonon coupling in the vicinity of band degeneracy points. This alternative proposal for charge density wave formation may be of general relevance for driving phase transitions into other broken-symmetry ground states, particularly in multiband systems, such as the iron-based superconductors. PMID:23248317

  2. Alternative route to charge density wave formation in multiband systems.

    PubMed

    Eiter, Hans-Martin; Lavagnini, Michela; Hackl, Rudi; Nowadnick, Elizabeth A; Kemper, Alexander F; Devereaux, Thomas P; Chu, Jiun-Haw; Analytis, James G; Fisher, Ian R; Degiorgi, Leonardo

    2013-01-02

    Charge and spin density waves, periodic modulations of the electron, and magnetization densities, respectively, are among the most abundant and nontrivial low-temperature ordered phases in condensed matter. The ordering direction is widely believed to result from the Fermi surface topology. However, several recent studies indicate that this common view needs to be supplemented. Here, we show how an enhanced electron-lattice interaction can contribute to or even determine the selection of the ordering vector in the model charge density wave system ErTe(3). Our joint experimental and theoretical study allows us to establish a relation between the selection rules of the electronic light scattering spectra and the enhanced electron-phonon coupling in the vicinity of band degeneracy points. This alternative proposal for charge density wave formation may be of general relevance for driving phase transitions into other broken-symmetry ground states, particularly in multiband systems, such as the iron-based superconductors.

  3. Correlation between the extent of catalytic activity and charge density of montmorillonites.

    PubMed

    Ertem, Gözen; Steudel, Annett; Emmerich, Katja; Lagaly, Gerhard; Schuhmann, Rainer

    2010-09-01

    The clay mineral montmorillonite is a member of the phyllosilicate group of minerals, which has been detected on martian soil. Montmorillonite catalyzes the condensation of activated monomers to form RNA-like oligomers. Extent of catalysis, that is, the yield of oligomers, and the length of the longest oligomer formed in these reactions widely varies with the source of montmorillonite (i.e., the locality where the mineral is mined). This study was undertaken to establish whether there exists a correlation between the extent of catalytic property and the charge density of montmorillonites. Charge density was determined by saturating the montmorillonites with alkyl ammonium cations that contained increasing lengths of alkyl chains, [CH₃-(CH₂)(n)-NH₃](+), where n = 3-16 and 18, and then measuring d(₀₀₁), interlayer spacing of the resulting montmorillonite-alkyl ammonium-montmorillonite complex by X-ray diffractometry (XRD). Results demonstrate that catalytic activity of montmorillonites with lower charge density is superior to that of higher charge density montmorillonite. They produce longer oligomers that contain 9 to 10 monomer units, while montmorillonite with high charge density catalyzes the formation of oligomers that contain only 4 monomer units. The charge density of montmorillonites can also be calculated from the chemical composition if elemental analysis data of the pure mineral are available. In the next mission to Mars, CheMin (Chemistry and Mineralogy), a combined X-ray diffraction/X-ray fluorescence instrument, will provide information on the mineralogical and elemental analysis of the samples. Possible significance of these results for planning the future missions to Mars for the search of organic compounds and extinct or extant life is discussed.

  4. Double ion production in mercury thrusters. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Peters, R. R.

    1976-01-01

    The development of a model which predicts doubly charged ion density is discussed. The accuracy of the model is shown to be good for two different thruster sizes and a total of 11 different cases. The model indicates that in most cases more than 80% of the doubly charged ions are produced from singly charged ions. This result can be used to develop a much simpler model which, along with correlations of the average plasma properties, can be used to determine the doubly charged ion density in ion thrusters with acceptable accuracy. Two different techniques which can be used to reduce the doubly charged ion density while maintaining good thruster operation, are identified as a result of an examination of the simple model. First, the electron density can be reduced and the thruster size then increased to maintain the same propellant utilization. Second, at a fixed thruster size, the plasma density, temperature and energy can be reduced and then to maintain a constant propellant utilization the open area of the grids to neutral propellant loss can be reduced through the use of a small hole accelerator grid.

  5. Emergence of charge density waves and a pseudogap in single-layer TiTe 2

    DOE PAGES

    Chen, P.; Pai, Woei Wu; Chan, Y. -H.; ...

    2017-09-11

    Two-dimensional materials constitute a promising platform for developing nanoscale devices and systems. Their physical properties can be very different from those of the corresponding three-dimensional materials because of extreme quantum confinement and dimensional reduction. Here in this paper we report a study of TiTe 2 from the single-layer to the bulk limit. Using angle-resolved photoemission spectroscopy and scanning tunneling microscopy and spectroscopy, we observed the emergence of a (2 × 2) charge density wave order in single-layer TiTe 2 with a transition temperature of 92 ± 3 K. Also observed was a pseudogap of about 28 meV at the Fermimore » level at 4.2 K. Surprisingly, no charge density wave transitions were observed in two-layer and multi-layer TiTe 2 , despite the quasi-two-dimensional nature of the material in the bulk. The unique charge density wave phenomenon in the single layer raises intriguing questions that challenge the prevailing thinking about the mechanisms of charge density wave formation.« less

  6. Measurement of clay surface areas by polyvinylpyrrolidone (PVP) sorption and its use for quantifying illite and smectite abundance

    USGS Publications Warehouse

    Blum, A.E.; Eberl, D.D.

    2004-01-01

    A new method has been developed for quantifying smectite abundance by sorbing polyvinylpyrrolidone (PVP) on smectite particles dispersed in aqueous solution. The sorption density of PVP-55K on a wide range of smectites, illites and kaolinites is ~0.99 mg/m2, which corresponds to ~0.72 g of PVP-55K per gram of montmorillonite. Polyvinylpyrrolidone sorption on smectites is independent of layer charge and solution pH. PVP sorption on SiO2, Fe2O3 and ZnO normalized to the BET surface area is similar to the sorption densities on smectites. γ-Al2O3, amorphous Al(OH)3 and gibbsite have no PVP sorption over a wide range of pH, and sorption of PVP by organics is minimal. The insensitivity of PVP sorption densities to mineral layer charge, solution pH and mineral surface charge indicates that PVP sorption is not localized at charged sites, but is controlled by more broadly distributed sorption mechanisms such as Van der Waals’ interactions and/or hydrogen bonding. Smectites have very large surface areas when dispersed as single unit-cell-thick particles (~725 m2/g) and usually dominate the total surface areas of natural samples in which smectites are present. In this case, smectite abundance is directly proportional to PVP sorption. In some cases, however, the accurate quantification of smectite abundance by PVP sorption may require minor corrections for PVP uptake by other phases, principally illite and kaolinite. Quantitative XRD can be combined with PVP uptake measurements to uniquely determine the smectite concentration in such samples.

  7. Alternative definitions of the frozen energy in energy decomposition analysis of density functional theory calculations.

    PubMed

    Horn, Paul R; Head-Gordon, Martin

    2016-02-28

    In energy decomposition analysis (EDA) of intermolecular interactions calculated via density functional theory, the initial supersystem wavefunction defines the so-called "frozen energy" including contributions such as permanent electrostatics, steric repulsions, and dispersion. This work explores the consequences of the choices that must be made to define the frozen energy. The critical choice is whether the energy should be minimized subject to the constraint of fixed density. Numerical results for Ne2, (H2O)2, BH3-NH3, and ethane dissociation show that there can be a large energy lowering associated with constant density orbital relaxation. By far the most important contribution is constant density inter-fragment relaxation, corresponding to charge transfer (CT). This is unwanted in an EDA that attempts to separate CT effects, but it may be useful in other contexts such as force field development. An algorithm is presented for minimizing single determinant energies at constant density both with and without CT by employing a penalty function that approximately enforces the density constraint.

  8. Kinetics of wet sodium vapor complex plasma

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Sodha, M. S.

    2014-04-01

    In this paper, we have investigated the kinetics of wet (partially condensed) Sodium vapor, which comprises of electrons, ions, neutral atoms, and Sodium droplets (i) in thermal equilibrium and (ii) when irradiated by light. The formulation includes the balance of charge over the droplets, number balance of the plasma constituents, and energy balance of the electrons. In order to evaluate the droplet charge, a phenomenon for de-charging of the droplets, viz., evaporation of positive Sodium ions from the surface has been considered in addition to electron emission and electron/ion accretion. The analysis has been utilized to evaluate the steady state parameters of such complex plasmas (i) in thermal equilibrium and (ii) when irradiated; the results have been graphically illustrated. As a significant outcome irradiated, Sodium droplets are seen to acquire large positive potential, with consequent enhancement in the electron density.

  9. Interplay of Bias-Driven Charging and the Vibrational Stark Effect in Molecular Junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yajing; Zolotavin, Pavlo; Doak, Peter

    We observe large, reversible, bias driven changes in the vibrational energies of PCBM based on simultaneous transport and surface-enhanced Raman spectroscopy (SERS) measurements on PCBM-gold junctions. A combination of linear and quadratic shifts in vibrational energies with voltage is analyzed and compared with similar measurements involving C-60-gold junctions. A theoretical model based on density functional theory (DFT) calculations suggests that both a vibrational Stark effect and bias-induced charging of the junction contribute to the shifts in vibrational energies. In the PCBM case, a linear vibrational Stark effect is observed due to the permanent electric dipole moment of PCBM. The vibrationalmore » Stark shifts shown here for PCBM junctions are comparable to or larger than the charging effects that dominate in C-60 junctions.« less

  10. Electron transfer beyond the static picture: A TDDFT/TD-ZINDO study of a pentacene dimer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reslan, Randa; Lopata, Kenneth; Arntsen, Christopher

    2012-12-14

    We use time-dependent density functional theory and time-dependent ZINDO (a semi-empirical method) to study transfer of an extra electron between a pair of pentacene molecules. A measure of the electronic transfer integral is computed in a dynamic picture via the vertical excitation energy from a delocalized anionic ground state. With increasing dimer separation, this dynamical measurement of charge transfer is shown to be significantly larger than the commonly used static approximation (i.e., LUMO+1–LUMO of the neutral dimer, or HOMO–LUMO of the charged dimer), up to an order of magnitude higher at 6 Å. These results offer a word of cautionmore » for calculations involving large separations, as in organic photovoltaics, where care must be taken when using a static picture to model charge transfer.« less

  11. Electron transfer beyond the static picture: A TDDFT/TD-ZINDO study of a pentacene dimer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reslan, Randa; Lopata, Kenneth A.; Arntsen, Christopher D.

    2012-12-14

    We use time-dependent density functional theory and time-dependent ZINDO (a semi-empirical method) to study transfer of an extra electron between a pair of pentacene dimers. A measure of the electronic transfer integral is computed in a dynamic picture via the vertical excitation energy from a delocalized anionic ground state. With increasing dimer separation, this dynamical measurement of charge transfer is shown to be significantly larger than the commonly used static approximation (i.e., LUMO+1 - LUMO of the neutral dimer, or HOMO - LUMO of the charged dimer), up to an order of magnitude higher at 6 Å. These results offermore » a word of caution for calculations involving large separations, as in organic photovoltaics, where care must be taken when using a static picture to model charge transfer.« less

  12. Desmosine-Inspired Cross-Linkers for Hyaluronan Hydrogels

    NASA Astrophysics Data System (ADS)

    Hagel, Valentin; Mateescu, Markus; Southan, Alexander; Wegner, Seraphine V.; Nuss, Isabell; Haraszti, Tamás; Kleinhans, Claudia; Schuh, Christian; Spatz, Joachim P.; Kluger, Petra J.; Bach, Monika; Tussetschläger, Stefan; Tovar, Günter E. M.; Laschat, Sabine; Boehm, Heike

    2013-06-01

    We designed bioinspired cross-linkers based on desmosine, the cross-linker in natural elastin, to prepare hydrogels with thiolated hyaluronic acid. These short, rigid cross-linkers are based on pyridinium salts (as in desmosine) and can connect two polymer backbones. Generally, the obtained semi-synthetic hydrogels are form-stable, can withstand repeated stress, have a large linear-elastic range, and show strain stiffening behavior typical for biopolymer networks. In addition, it is possible to introduce a positive charge to the core of the cross-linker without affecting the gelation efficiency, or consequently the network connectivity. However, the mechanical properties strongly depend on the charge of the cross-linker. The properties of the presented hydrogels can thus be tuned in a range important for engineering of soft tissues by controlling the cross-linking density and the charge of the cross-linker.

  13. Interplay of Bias-Driven Charging and the Vibrational Stark Effect in Molecular Junctions

    DOE PAGES

    Li, Yajing; Zolotavin, Pavlo; Doak, Peter; ...

    2016-01-27

    We observe large, reversible, bias driven changes in the vibrational energies of PCBM based on simultaneous transport and surface-enhanced Raman spectroscopy (SERS) measurements on PCBM-gold junctions. A combination of linear and quadratic shifts in vibrational energies with voltage is analyzed and compared with similar measurements involving C-60-gold junctions. A theoretical model based on density functional theory (DFT) calculations suggests that both a vibrational Stark effect and bias-induced charging of the junction contribute to the shifts in vibrational energies. In the PCBM case, a linear vibrational Stark effect is observed due to the permanent electric dipole moment of PCBM. The vibrationalmore » Stark shifts shown here for PCBM junctions are comparable to or larger than the charging effects that dominate in C-60 junctions.« less

  14. Dust Charging in Saturn's Rings: Observations and Theory

    NASA Astrophysics Data System (ADS)

    Horanyi, M.

    2008-12-01

    Saturn's rings show a variety of dusty plasma processes. The electrostatic charging and subsequent orbital dynamics of small grains can establish their size and spatial distributions, for example. Simultaneously, dust can alter the composition, density and temperature of the plasma surrounding it. The dynamics of charged dust particles can be surprisingly complex and fundamentally different from the well understood limits of gravitationally dominated motions of neutral particles or the adiabatic motion of electrons and ions in electromagnetic fields that dominate gravity. This talk will focus on recent Cassini observations at Saturn that are best explained by theories describing the effects of the magnetospheric fields and plasmas on the rings. As our best examples, we will discuss the physics describing the large-scale structure of the E-ring, and the formation of 'spokes' over the dense rings of Saturn.

  15. Real-space visualization of remnant Mott gap and magnon excitations.

    PubMed

    Wang, Y; Jia, C J; Moritz, B; Devereaux, T P

    2014-04-18

    We demonstrate the ability to visualize real-space dynamics of charge gap and magnon excitations in the Mott phase of the single-band Hubbard model and the remnants of these excitations with hole or electron doping. At short times, the character of magnetic and charge excitations is maintained even for large doping away from the Mott and antiferromagnetic phases. Doping influences both the real-space patterns and long timescales of these excitations with a clear carrier asymmetry attributable to particle-hole symmetry breaking in the underlying model. Further, a rapidly oscillating charge-density-wave-like pattern weakens, but persists as a visible demonstration of a subleading instability at half-filling which remains upon doping. The results offer an approach to analyzing the behavior of systems where momentum space is either inaccessible or poorly defined.

  16. Green's function enriched Poisson solver for electrostatics in many-particle systems

    NASA Astrophysics Data System (ADS)

    Sutmann, Godehard

    2016-06-01

    A highly accurate method is presented for the construction of the charge density for the solution of the Poisson equation in particle simulations. The method is based on an operator adjusted source term which can be shown to produce exact results up to numerical precision in the case of a large support of the charge distribution, therefore compensating the discretization error of finite difference schemes. This is achieved by balancing an exact representation of the known Green's function of regularized electrostatic problem with a discretized representation of the Laplace operator. It is shown that the exact calculation of the potential is possible independent of the order of the finite difference scheme but the computational efficiency for higher order methods is found to be superior due to a faster convergence to the exact result as a function of the charge support.

  17. Alignment of dust grains in ionized regions

    NASA Technical Reports Server (NTRS)

    Anderson, Nels; Watson, William D.

    1993-01-01

    The rate at which charged dust grains in a plasma are torqued by passing ions and electrons is calculated. When photo-emission of electrons is not important, attraction of ions by the grain monopole potential increases the rate at which the grains' spins are dealigned by nearly an order of magnitude. Consequently, the energy density of the magnetic field required to align grains in an H II region may be increased by about an order of magnitude. In contrast, electric dipole and quadrupole moments are unlikely to produce large dealignment rates for grains of modest length-to-width ratio. Nonetheless, for positively charged grains these higher-order moments likely prevent monopole repulsion of ions from reducing the dealignment rate far below that for neutral grains. The presence of positive grain charge therefore does not greatly facilitate grain alignment in an H II region.

  18. Fast-ion transport in low density L-mode plasmas at TCV using FIDA spectroscopy and the TRANSP code

    NASA Astrophysics Data System (ADS)

    Geiger, B.; Karpushov, A. N.; Duval, B. P.; Marini, C.; Sauter, O.; Andrebe, Y.; Testa, D.; Marascheck, M.; Salewski, M.; Schneider, P. A.; the TCV Team; the EUROfusion MST1 Team

    2017-11-01

    Experiments with the new neutral beam injection source of TCV have been performed with high fast-ion fractions (>20%) that exhibit a clear reduction of the loop voltage and a clear increase of the plasma pressure in on- and off-axis heating configurations. However, good quantitative agreement between the experimental data and TRANSP predictions is only found when including strong additional fast-ion losses. These losses could in part be caused by turbulence or MHD activity as, e.g. high frequency modes near the frequency of toroidicity induced Alfvén eignmodes are observed. In addition, a newly installed fast-ion D-alpha (FIDA) spectroscopy system measures strong passive radiation and, hence, indicates the presence of high background neutral densities such that charge-exchange losses are substantial. Also the active radiation measured with the FIDA diagnostic, as well as data from a neutral particle analyzer, suggest strong fast-ion losses and large neutral densities. The large neutral densities can be justified since high electron temperatures (3-4 keV), combined with low electron densities (about 2× {10}19 m-3) yield long mean free paths of the neutrals which are penetrating from the walls.

  19. The Holographic Electron Density Theorem, de-quantization, re-quantization, and nuclear charge space extrapolations of the Universal Molecule Model

    NASA Astrophysics Data System (ADS)

    Mezey, Paul G.

    2017-11-01

    Two strongly related theorems on non-degenerate ground state electron densities serve as the basis of "Molecular Informatics". The Hohenberg-Kohn theorem is a statement on global molecular information, ensuring that the complete electron density contains the complete molecular information. However, the Holographic Electron Density Theorem states more: the local information present in each and every positive volume density fragment is already complete: the information in the fragment is equivalent to the complete molecular information. In other words, the complete molecular information provided by the Hohenberg-Kohn Theorem is already provided, in full, by any positive volume, otherwise arbitrarily small electron density fragment. In this contribution some of the consequences of the Holographic Electron Density Theorem are discussed within the framework of the "Nuclear Charge Space" and the Universal Molecule Model. In the Nuclear Charge Space" the nuclear charges are regarded as continuous variables, and in the more general Universal Molecule Model some other quantized parameteres are also allowed to become "de-quantized and then re-quantized, leading to interrelations among real molecules through abstract molecules. Here the specific role of the Holographic Electron Density Theorem is discussed within the above context.

  20. A theoretical-electron-density databank using a model of real and virtual spherical atoms.

    PubMed

    Nassour, Ayoub; Domagala, Slawomir; Guillot, Benoit; Leduc, Theo; Lecomte, Claude; Jelsch, Christian

    2017-08-01

    A database describing the electron density of common chemical groups using combinations of real and virtual spherical atoms is proposed, as an alternative to the multipolar atom modelling of the molecular charge density. Theoretical structure factors were computed from periodic density functional theory calculations on 38 crystal structures of small molecules and the charge density was subsequently refined using a density model based on real spherical atoms and additional dummy charges on the covalent bonds and on electron lone-pair sites. The electron-density parameters of real and dummy atoms present in a similar chemical environment were averaged on all the molecules studied to build a database of transferable spherical atoms. Compared with the now-popular databases of transferable multipolar parameters, the spherical charge modelling needs fewer parameters to describe the molecular electron density and can be more easily incorporated in molecular modelling software for the computation of electrostatic properties. The construction method of the database is described. In order to analyse to what extent this modelling method can be used to derive meaningful molecular properties, it has been applied to the urea molecule and to biotin/streptavidin, a protein/ligand complex.

  1. Simulation study of signal formation in position sensitive planar p-on-n silicon detectors after short range charge injection

    NASA Astrophysics Data System (ADS)

    Peltola, T.; Eremin, V.; Verbitskaya, E.; Härkönen, J.

    2017-09-01

    Segmented silicon detectors (micropixel and microstrip) are the main type of detectors used in the inner trackers of Large Hadron Collider (LHC) experiments at CERN. Due to the high luminosity and eventual high fluence of energetic particles, detectors with fast response to fit the short shaping time of 20-25 ns and sufficient radiation hardness are required. Charge collection measurements carried out at the Ioffe Institute have shown a reversal of the pulse polarity in the detector response to short-range charge injection. Since the measured negative signal is about 30-60% of the peak positive signal, the effect strongly reduces the CCE even in non-irradiated detectors. For further investigation of the phenomenon the measurements have been reproduced by TCAD simulations. As for the measurements, the simulation study was applied for the p-on-n strip detectors similar in geometry to those developed for the ATLAS experiment and for the Ioffe Institute designed p-on-n strip detectors with each strip having a window in the metallization covering the p+ implant, allowing the generation of electron-hole pairs under the strip implant. Red laser scans across the strips and the interstrip gap with varying laser diameters and Si-SiO2 interface charge densities (Qf) were carried out. The results verify the experimentally observed negative response along the scan in the interstrip gap. When the laser spot is positioned on the strip p+ implant the negative response vanishes and the collected charge at the active strip increases respectively. The simulation results offer a further insight and understanding of the influence of the oxide charge density in the signal formation. The main result of the study is that a threshold value of Qf, that enables negligible losses of collected charges, is defined. The observed effects and details of the detector response for different charge injection positions are discussed in the context of Ramo's theorem.

  2. Effect of current density on electron beam induced charging in MgO

    NASA Astrophysics Data System (ADS)

    Boughariou, Aicha; Hachicha, Olfa; Kallel, Ali; Blaise, Guy

    2005-11-01

    It is well known that the presence of space charge in an insulator is correlated with an electric breakdown. Many studies have been carried out on the experimental characterization of space charges. In this paper, we outline the dependence on the current density of the charge-trapping phenomenon in magnesium oxide. Our study was performed with a dedicated scanning electron microscope (SEM) on the electrical property evolution of surface of magnesium oxide (1 0 0) (MgO) single crystal, during a 1.1, 5 and 30 keV electron irradiation. The types of charges trapped on the irradiated areas and the charging kinetics are determined by measuring the total secondary electron emission (SEE) σ during the injection process by means of two complementary detectors. At low energies 1.1 and 5 keV, two different kinds of self-regulated regime (σ = 1) were observed as a function of current density. At 30 keV energy, the electron emission appears to be stimulated by the current density, due to the Poole-Frenkel effect.

  3. The Charging of Dust Grains in the Inner Heliosheath

    NASA Astrophysics Data System (ADS)

    Avinash, K.; Slavin, J.; Zank, G. P.; Frisch, P.

    2008-12-01

    Equilibrium electric charge and surface potential on a dust grain in the heliosheath are calculated. The grain is charged due to heliosheath plasma flux, photo electrons flux, secondary electron emission flux and transmission flux. Realistically, the heliosheath plasma consists of solar electrons, solar wind ions [SWI] and pick up ions [PUI]. These species interact differently with TS and thus have different characteristics down stream in the heliosheath. The PUI suffer multiple reflections at TS and are accelerated to high energies in the range of ~ 106 K. The solar electrons, on the other hand, are heated adiabatically through the TS and have temperature in the range ~ 5x105 K. The SWI may have a smaller temperature typically in the range 1-5x104 K The density of electrons could be in the range ~5 x 10-4 cm-3, while the ratio of PUI to SWI density could range from 0.1 to 0.5. Taking into account these parameters, grain charging due to different plasma species and other fluxes mentioned earlier, is calculated. Our results show that (a) surface potential is very sensitive to electron temp. It goes through a maxima and for realistic values close to or less than 5x105 K it can be as big as 26V which is twice the value calculated by Kimura and Mann1. This may have implications for electrostatic disruption and the size distribution of dust particles in the heliosheath. With PUI density the surface potential increases about 10 to 20 %. Though temperature of PUI is significantly larger than that of electrons, it is not large enough to make up for the mass ratio of electrons to protons. On account small temperature and electron/proton mass ratio, the effect of SWI on dust charge is very weak. (1) H. Kimura and I. Mann, Ap.J. 499, 454 (1998).

  4. Oxidation and metal-insertion in molybdenite surfaces: evaluation of charge-transfer mechanisms and dynamics

    PubMed Central

    Ramana, CV; Becker, U; Shutthanandan, V; Julien, CM

    2008-01-01

    Molybdenum disulfide (MoS2), a layered transition-metal dichalcogenide, has been of special importance to the research community of geochemistry, materials and environmental chemistry, and geotechnical engineering. Understanding the oxidation behavior and charge-transfer mechanisms in MoS2 is important to gain better insight into the degradation of this mineral in the environment. In addition, understanding the insertion of metals into molybdenite and evaluation of charge-transfer mechanism and dynamics is important to utilize these minerals in technological applications. Furthermore, a detailed investigation of thermal oxidation behavior and metal-insertion will provide a basis to further explore and model the mechanism of adsorption of metal ions onto geomedia. The present work was performed to understand thermal oxidation and metal-insertion processes of molybdenite surfaces. The analysis was performed using atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Rutherford backscattering spectrometry (RBS), and nuclear reaction analysis (NRA). Structural studies using SEM and TEM indicate the local-disordering of the structure as a result of charge-transfer process between the inserted lithium and the molybdenite layer. Selected area electron diffraction measurements indicate the large variations in the diffusivity of lithium confirming that the charge-transfer is different along and perpendicular to the layers in molybdenite. Thermal heating of molybenite surface in air at 400°C induces surface oxidation, which is slow during the first hour of heating and then increases significantly. The SEM results indicate that the crystals formed on the molybdenite surface as a result of thermal oxidation exhibit regular thin-elongated shape. The average size and density of the crystals on the surface is dependent on the time of annealing; smaller size and high density during the first one-hour and significant increase in size associated with a decrease in density with further annealing. PMID:18534025

  5. Oxidation and metal-insertion in molybdenite surfaces: evaluation of charge-transfer mechanisms and dynamics.

    PubMed

    Ramana, C V; Becker, U; Shutthanandan, V; Julien, C M

    2008-06-05

    Molybdenum disulfide (MoS2), a layered transition-metal dichalcogenide, has been of special importance to the research community of geochemistry, materials and environmental chemistry, and geotechnical engineering. Understanding the oxidation behavior and charge-transfer mechanisms in MoS2 is important to gain better insight into the degradation of this mineral in the environment. In addition, understanding the insertion of metals into molybdenite and evaluation of charge-transfer mechanism and dynamics is important to utilize these minerals in technological applications. Furthermore, a detailed investigation of thermal oxidation behavior and metal-insertion will provide a basis to further explore and model the mechanism of adsorption of metal ions onto geomedia.The present work was performed to understand thermal oxidation and metal-insertion processes of molybdenite surfaces. The analysis was performed using atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Rutherford backscattering spectrometry (RBS), and nuclear reaction analysis (NRA).Structural studies using SEM and TEM indicate the local-disordering of the structure as a result of charge-transfer process between the inserted lithium and the molybdenite layer. Selected area electron diffraction measurements indicate the large variations in the diffusivity of lithium confirming that the charge-transfer is different along and perpendicular to the layers in molybdenite. Thermal heating of molybenite surface in air at 400 degrees C induces surface oxidation, which is slow during the first hour of heating and then increases significantly. The SEM results indicate that the crystals formed on the molybdenite surface as a result of thermal oxidation exhibit regular thin-elongated shape. The average size and density of the crystals on the surface is dependent on the time of annealing; smaller size and high density during the first one-hour and significant increase in size associated with a decrease in density with further annealing.

  6. A surface structural model for ferrihydrite I: Sites related to primary charge, molar mass, and mass density

    NASA Astrophysics Data System (ADS)

    Hiemstra, Tjisse; Van Riemsdijk, Willem H.

    2009-08-01

    A multisite surface complexation (MUSIC) model for ferrihydrite (Fh) has been developed. The surface structure and composition of Fh nanoparticles are described in relation to ion binding and surface charge development. The site densities of the various reactive surface groups, the molar mass, the mass density, the specific surface area, and the particle size are quantified. As derived theoretically, molecular mass and mass density of nanoparticles will depend on the types of surface groups and the corresponding site densities and will vary with particle size and surface area because of a relatively large contribution of the surface groups in comparison to the mineral core of nanoparticles. The nano-sized (˜2.6 nm) particles of freshly prepared 2-line Fh as a whole have an increased molar mass of M ˜ 101 ± 2 g/mol Fe, a reduced mass density of ˜3.5 ± 0.1 g/cm 3, both relatively to the mineral core. The specific surface area is ˜650 m 2/g. Six-line Fh (5-6 nm) has a molar mass of M ˜ 94 ± 2 g/mol, a mass density of ˜3.9 ± 0.1 g/cm 3, and a surface area of ˜280 ± 30 m 2/g. Data analysis shows that the mineral core of Fh has an average chemical composition very close to FeOOH with M ˜ 89 g/mol. The mineral core has a mass density around ˜4.15 ± 0.1 g/cm 3, which is between that of feroxyhyte, goethite, and lepidocrocite. These results can be used to constrain structural models for Fh. Singly-coordinated surface groups dominate the surface of ferrihydrite (˜6.0 ± 0.5 nm -2). These groups can be present in two structural configurations. In pairs, the groups either form the edge of a single Fe-octahedron (˜2.5 nm -2) or are present at a single corner (˜3.5 nm -2) of two adjacent Fe octahedra. These configurations can form bidentate surface complexes by edge- and double-corner sharing, respectively, and may therefore respond differently to the binding of ions such as uranyl, carbonate, arsenite, phosphate, and others. The relatively low PZC of ferrihydrite can be rationalized based on the estimated proton affinity constant for singly-coordinated surface groups. Nanoparticles have an enhanced surface charge. The charging behavior of Fh nanoparticles can be described satisfactory using the capacitance of a spherical Stern layer condenser in combination with a diffuse double layer for flat plates.

  7. Central depression of nuclear charge density distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu Yanyun; Ren Zhongzhou; Center of Theoretical Nuclear Physics, National Laboratory of Heavy-Ion Accelerator, Lanzhou 730000

    The center-depressed nuclear charge distributions are investigated with the parametrized distribution and the relativistic mean-field theory, and their corresponding charge form factors are worked out with the phase shift analysis method. The central depression of nuclear charge distribution of {sup 46}Ar and {sup 44}S is supported by the relativistic mean-field calculation. According to the calculation, the valence protons in {sup 46}Ar and {sup 44}S prefer to occupy the 1d{sub 3/2} state rather than the 2s{sub 1/2} state, which is different from that in the less neutron-rich argon and sulfur isotopes. As a result, the central proton densities of {sup 46}Armore » and {sup 44}S are highly depressed, and so are their central charge densities. The charge form factors of some argon and sulfur isotopes are presented, and the minima of the charge form factors shift upward and inward when the central nuclear charge distributions are more depressed. Besides, the effect of the central depression on the charge form factors is studied with a parametrized distribution, when the root-mean-square charge radii remain constant.« less

  8. On the dependence of charge density on surface curvature of an isolated conductor

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Kolahal

    2016-03-01

    A study of the relation between the electrostatic charge density at a point on a conducting surface and the curvature of the surface (at that point) is presented. Two major papers in the scientific literature on this topic are reviewed and the apparent discrepancy between them is resolved. Hence, a step is taken towards obtaining a general analytic formula for relating the charge density with surface curvature of conductors. The merit of this formula and its limitations are discussed.

  9. Gravity dual of spin and charge density waves

    NASA Astrophysics Data System (ADS)

    Jokela, Niko; Järvinen, Matti; Lippert, Matthew

    2014-12-01

    At high enough charge density, the homogeneous state of the D3-D7' model is unstable to fluctuations at nonzero momentum. We investigate the end point of this instability, finding a spatially modulated ground state, which is a charge and spin density wave. We analyze the phase structure of the model as a function of chemical potential and magnetic field and find the phase transition from the homogeneous state to be first order, with a second-order critical point at zero magnetic field.

  10. Pair density waves in superconducting vortex halos

    NASA Astrophysics Data System (ADS)

    Wang, Yuxuan; Edkins, Stephen D.; Hamidian, Mohammad H.; Davis, J. C. Séamus; Fradkin, Eduardo; Kivelson, Steven A.

    2018-05-01

    We analyze the interplay between a d -wave uniform superconducting and a pair-density-wave (PDW) order parameter in the neighborhood of a vortex. We develop a phenomenological nonlinear sigma model, solve the saddle-point equation for the order-parameter configuration, and compute the resulting local density of states in the vortex halo. The intertwining of the two superconducting orders leads to a charge density modulation with the same periodicity as the PDW, which is twice the period of the charge density wave that arises as a second harmonic of the PDW itself. We discuss key features of the charge density modulation that can be directly compared with recent results from scanning tunneling microscopy and speculate on the role PDW order may play in the global phase diagram of the hole-doped cuprates.

  11. Local Fitting of the Kohn-Sham Density in a Gaussian and Plane Waves Scheme for Large-Scale Density Functional Theory Simulations.

    PubMed

    Golze, Dorothea; Iannuzzi, Marcella; Hutter, Jürg

    2017-05-09

    A local resolution-of-the-identity (LRI) approach is introduced in combination with the Gaussian and plane waves (GPW) scheme to enable large-scale Kohn-Sham density functional theory calculations. In GPW, the computational bottleneck is typically the description of the total charge density on real-space grids. Introducing the LRI approximation, the linear scaling of the GPW approach with respect to system size is retained, while the prefactor for the grid operations is reduced. The density fitting is an O(N) scaling process implemented by approximating the atomic pair densities by an expansion in one-center fit functions. The computational cost for the grid-based operations becomes negligible in LRIGPW. The self-consistent field iteration is up to 30 times faster for periodic systems dependent on the symmetry of the simulation cell and on the density of grid points. However, due to the overhead introduced by the local density fitting, single point calculations and complete molecular dynamics steps, including the calculation of the forces, are effectively accelerated by up to a factor of ∼10. The accuracy of LRIGPW is assessed for different systems and properties, showing that total energies, reaction energies, intramolecular and intermolecular structure parameters are well reproduced. LRIGPW yields also high quality results for extended condensed phase systems such as liquid water, ice XV, and molecular crystals.

  12. Population inversion calculations using near resonant charge exchange as a pumping mechanism

    NASA Technical Reports Server (NTRS)

    Chubb, D. L.; Rose, J. R.

    1972-01-01

    Near resonance charge exchange between ions of a large ionization potential gas such as helium or neon and vapors of metals such as zinc, cadmium, selenium, or tellurium has produced laser action in the metal ion gas. The possibility of obtaining population inversions in near resonant charge exchange systems (Xe-Ca, Xe-Mg, Xe-Sr, Xe-Ba, Ar-Mg, N-Ca) was investigated. The analysis is an initial value problem that utilizes rate equations for the densities of relevant levels of the laser gas (Ca, Ba, Mg, or Sr) and an electron energy equation. Electron excitation rates are calculated using the Bohr-Thomson approximation for the cross section. Approximations to experimental values of the electron ionization cross section and the ion-atom charge exchange cross section are used. Preliminary results have been obtained for the Ca-Xe system and show that it is possible to obtain gains greater than 10 to the 14th power/m with inversion times up to 8x10 to the minus 7th power second. A possible charge exchange laser system using a MPD arc plasma accelerator is also described.

  13. Positive zeta potential of a negatively charged semi-permeable plasma membrane

    NASA Astrophysics Data System (ADS)

    Sinha, Shayandev; Jing, Haoyuan; Das, Siddhartha

    2017-08-01

    The negative charge of the plasma membrane (PM) severely affects the nature of moieties that may enter or leave the cells and controls a large number of ion-interaction-mediated intracellular and extracellular events. In this letter, we report our discovery of a most fascinating scenario, where one interface (e.g., membrane-cytosol interface) of the negatively charged PM shows a positive surface (or ζ) potential, while the other interface (e.g., membrane-electrolyte interface) still shows a negative ζ potential. Therefore, we encounter a completely unexpected situation where an interface (e.g., membrane-cytosol interface) that has a negative surface charge density demonstrates a positive ζ potential. We establish that the attainment of such a property by the membrane can be ascribed to an interplay of the nature of the membrane semi-permeability and the electrostatics of the electric double layer established on either side of the charged membrane. We anticipate that such a membrane property can lead to such capabilities of the cell (in terms of accepting or releasing certain kinds of moieties as well regulating cellular signaling) that was hitherto inconceivable.

  14. Cartilage-like electrostatic stiffening of responsive cryogel scaffolds

    NASA Astrophysics Data System (ADS)

    Offeddu, G. S.; Mela, I.; Jeggle, P.; Henderson, R. M.; Smoukov, S. K.; Oyen, M. L.

    2017-02-01

    Cartilage is a structural tissue with unique mechanical properties deriving from its electrically-charged porous structure. Traditional three-dimensional environments for the culture of cells fail to display the complex physical response displayed by the natural tissue. In this work, the reproduction of the charged environment found in cartilage is achieved using polyelectrolyte hydrogels based on polyvinyl alcohol and polyacrylic acid. The mechanical response and morphology of microporous physically-crosslinked cryogels are compared to those of heat-treated chemical gels made from the same polymers, as a result of pH-dependent swelling. In contrast to the heat-treated chemically-crosslinked gels, the elastic modulus of the physical cryogels was found to increase with charge activation and swelling, explained by the occurrence of electrostatic stiffening of the polymer chains at large charge densities. At the same time, the permeability of both materials to fluid flow was impaired by the presence of electric charges. This cartilage-like mechanical behavior displayed by responsive cryogels can be reproduced in other polyelectrolyte hydrogel systems to fabricate biomimetic cellular scaffolds for the repair of the tissue.

  15. Vertically Aligned Niobium Nanowire Arrays for Fast-Charging Micro-Supercapacitors.

    PubMed

    Mirvakili, Seyed M; Hunter, Ian W

    2017-07-01

    Planar micro-supercapacitors are attractive for system on chip technologies and surface mount devices due to their large areal capacitance and energy/power density compared to the traditional oxide-based capacitors. In the present work, a novel material, niobium nanowires, in form of vertically aligned electrodes for application in high performance planar micro-supercapacitors is introduced. Specific capacitance of up to 1 kF m -2 (100 mF cm -2 ) with peak energy and power density of 2 kJ m -2 (6.2 MJ m -3 or 1.7 mWh cm -3 ) and 150 kW m -2 (480 MW m -3 or 480 W cm -3 ), respectively, is achieved. This remarkable power density, originating from the extremely low equivalent series resistance value of 0.27 Ω (2.49 µΩ m 2 or 24.9 mΩ cm 2 ) and large specific capacitance, is among the highest for planar micro-supercapacitors electrodes made of nanomaterials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Total-energy Assisted Tight-binding Method Based on Local Density Approximation of Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Fujiwara, Takeo; Nishino, Shinya; Yamamoto, Susumu; Suzuki, Takashi; Ikeda, Minoru; Ohtani, Yasuaki

    2018-06-01

    A novel tight-binding method is developed, based on the extended Hückel approximation and charge self-consistency, with referring the band structure and the total energy of the local density approximation of the density functional theory. The parameters are so adjusted by computer that the result reproduces the band structure and the total energy, and the algorithm for determining parameters is established. The set of determined parameters is applicable to a variety of crystalline compounds and change of lattice constants, and, in other words, it is transferable. Examples are demonstrated for Si crystals of several crystalline structures varying lattice constants. Since the set of parameters is transferable, the present tight-binding method may be applicable also to molecular dynamics simulations of large-scale systems and long-time dynamical processes.

  17. Large Time Projection Chambers for Rare Event Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heffner, M

    The Time Projection Chamber (TPC) concept [add ref to TPC section] has been applied to many projects outside of particle physics and the accelerator based experiments where it was initially developed. TPCs in non-accelerator particle physics experiments are principally focused on rare event detection (e.g. neutrino and darkmater experiments) and the physics of these experiments can place dramatically different constraints on the TPC design (only extensions to the traditional TPCs are discussed here). The drift gas, or liquid, is usually the target or matter under observation and due to very low signal rates a TPC with the largest active massmore » is desired. The large mass complicates particle tracking of short and sometimes very low energy particles. Other special design issues include, efficient light collection, background rejection, internal triggering and optimal energy resolution. Backgrounds from gamma-rays and neutrons are significant design issues in the construction of these TPCs. They are generally placed deep underground to shield from cosmogenic particles and surrounded with shielding to reduce radiation from the local surroundings. The construction materials have to be carefully screened for radiopurity as they are in close contact with the active mass and can be a signification source of background events. The TPC excels in reducing this internal background because the mass inside the fieldcage forms one monolithic volume from which fiducial cuts can be made ex post facto to isolate quiet drift mass, and can be circulated and purified to a very high level. Self shielding in these large mass systems can be significant and the effect improves with density. The liquid phase TPC can obtain a high density at low pressure which results in very good self-shielding and compact installation with a lightweight containment. The down sides are the need for cryogenics, slower charge drift, tracks shorter than the typical electron diffusion, lower energy resolution (e.g. xenon) and limited charge readout options. Slower charge drift requires long electron lifetimes placing strict limits on the oxygen and other impurities with high electron affinity. A significant variation of the liquid phase TPC, that improves the charge readout, is the dual-phase TPC where a gas phase layer is formed above the liquid into which the drifting electrons are extracted and amplified, typically with electroluminescence. The successful transfer of electrons through the phase boundary requires careful control of its position and setting up an appropriate electric field. A high pressure gas phase TPC has no cryogenics and density is easily optimized for the signal, but a large heavy pressure vessel is required. Although shelf shielding is reduced, it can in some cases approach that of the liquid phase; in xenon at 50atm the density is about half that of water or about 1/6 of liquid xenon. A significant feature of high pressure xenon gas is the energy resolution. Below a density of about 0.5g/cc the intrinsic resolution is only a few times that of high purity germanium. A neutrino-less double beta decay (0{nu}2{beta}) TPC operated below this density limit could enjoy excellent energy resolution and maintain particle tracking for background rejection. An observable interaction with the TPC results in a charged particle that travels in the drift matter exciting and ionizing the atoms until the initial energy is converted into ionization, scintillation, or heat with relatively large fluctuations around a mean distribution. Rare event TPCs can be designed to detect scintillation light as well as charge to exploit the anti-correlation to improve energy resolution and/or signal to noise. An electric drift field separates the electrons and positive ions from the ionization although the separation is not complete and some electrons are captured, exciting atoms and releasing more light than the primary excitation alone. The average partition between the scintillation and ionization can be manipulated to increase the ionization (at a loss of scintillation) by a number of methods such as, increasing the strength of the electric field up to a saturation of the ionization yield, increasing the temperature to enhance the diffusion of the ionized electrons, and adding dopants such as triethylamine that can be photoionized by the scintillation photons releasing more ionization. Scintillation light is typically collected with photomultiplier tubes (PMTs) and avalanche photo diodes (APDs) although any fast (compared to the ionization drift speed) light collector capable of detecting the typically UV photons, maintaining high radiopurity and perhaps withstanding pressure would work. CCDs are slow and therefore only record 2 dimensions integrating over the time direction, some of which can be recovered with a few PMTs.« less

  18. Atomistic and molecular effects in electric double layers at high surface charges

    DOE PAGES

    Templeton, Jeremy Alan; Lee, Jonathan; Mani, Ali

    2015-06-16

    Here, the Poisson–Boltzmann theory for electrolytes near a charged surface is known to be invalid due to unaccounted physics associated with high ion concentration regimes. In order to investigate this regime, fluids density functional theory (f-DFT) and molecular dynamics (MD) simulations were used to determine electric surface potential as a function of surface charge. Based on these detailed computations, for electrolytes with nonpolar solvent, the surface potential is shown to depend quadratically on the surface charge in the high charge limit. We demonstrate that modified Poisson–Boltzmann theories can model this limit if they are augmented with atomic packing densities providedmore » by MD. However, when the solvent is a highly polar molecule water an intermediate regime is identified in which a constant capacitance is realized. Simulation results demonstrate the mechanism underlying this regime, and for the salt water system studied here, it persists throughout the range of physically realistic surface charge densities so the potential’s quadratic surface charge dependence is not obtained.« less

  19. Multi-frequency inversion-charge pumping for charge separation and mobility analysis in high-k/InGaAs metal-oxide-semiconductor field-effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Djara, V.; Cherkaoui, K.; Negara, M. A.

    2015-11-28

    An alternative multi-frequency inversion-charge pumping (MFICP) technique was developed to directly separate the inversion charge density (N{sub inv}) from the trapped charge density in high-k/InGaAs metal-oxide-semiconductor field-effect transistors (MOSFETs). This approach relies on the fitting of the frequency response of border traps, obtained from inversion-charge pumping measurements performed over a wide range of frequencies at room temperature on a single MOSFET, using a modified charge trapping model. The obtained model yielded the capture time constant and density of border traps located at energy levels aligned with the InGaAs conduction band. Moreover, the combination of MFICP and pulsed I{sub d}-V{sub g}more » measurements enabled an accurate effective mobility vs N{sub inv} extraction and analysis. The data obtained using the MFICP approach are consistent with the most recent reports on high-k/InGaAs.« less

  20. A Novel Method for Measuring Electrical Conductivity of High Insulating Oil Using Charge Decay

    NASA Astrophysics Data System (ADS)

    Wang, Z. Q.; Qi, P.; Wang, D. S.; Wang, Y. D.; Zhou, W.

    2016-05-01

    For the high insulating oil, it is difficult to measure the conductivity precisely using voltammetry method. A high-precision measurementis proposed for measuring bulk electrical conductivity of high insulating oils (about 10-9--10-15S/m) using charge decay. The oil is insulated and charged firstly, and then grounded fully. During the experimental procedure, charge decay is observed to show an exponential law according to "Ohm" theory. The data of time dependence of charge density is automatically recorded using an ADAS and a computer. Relaxation time constant is fitted from the data using Gnuplot software. The electrical conductivity is calculated using relaxation time constant and dielectric permittivity. Charge density is substituted by electric potential, considering charge density is difficult to measure. The conductivity of five kinds of oils is measured. Using this method, the conductivity of diesel oil is easily measured to beas low as 0.961 pS/m, as shown in Fig. 5.

  1. Low-temperature charged impurity scattering-limited conductivity in relatively high doped bilayer graphene

    NASA Astrophysics Data System (ADS)

    Hu, Bo

    2015-08-01

    Based on semiclassical Boltzamnn transport theory in random phase approximation, we develop a theoretical model to investigate low-temperature carrier transport properties in relatively high doped bilayer graphene. In the presence of both electron-hole puddles and band gap induced by charged impurities, we calculate low-temperature charged impurity scattering-limited conductivity in relatively high doped bilayer graphene. Our calculated conductivity results are in excellent agreement with published experimental data in all compensated gate voltage regime of study by using potential fluctuation parameter as only one free fitting parameter, indicating that both electron-hole puddles and band gap induced by charged impurities play an important role in carrier transport. More importantly, we also find that the conductivity not only depends strongly on the total charged impurity density, but also on the top layer charged impurity density, which is different from that obtained by neglecting the opening of band gap, especially for bilayer graphene with high top layer charged impurity density.

  2. Ultra-fast computation of electronic spectra for large systems by tight-binding based simplified Tamm-Dancoff approximation (sTDA-xTB)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimme, Stefan, E-mail: grimme@thch.uni-bonn.de; Bannwarth, Christoph

    2016-08-07

    The computational bottleneck of the extremely fast simplified Tamm-Dancoff approximated (sTDA) time-dependent density functional theory procedure [S. Grimme, J. Chem. Phys. 138, 244104 (2013)] for the computation of electronic spectra for large systems is the determination of the ground state Kohn-Sham orbitals and eigenvalues. This limits such treatments to single structures with a few hundred atoms and hence, e.g., sampling along molecular dynamics trajectories for flexible systems or the calculation of chromophore aggregates is often not possible. The aim of this work is to solve this problem by a specifically designed semi-empirical tight binding (TB) procedure similar to the wellmore » established self-consistent-charge density functional TB scheme. The new special purpose method provides orbitals and orbital energies of hybrid density functional character for a subsequent and basically unmodified sTDA procedure. Compared to many previous semi-empirical excited state methods, an advantage of the ansatz is that a general eigenvalue problem in a non-orthogonal, extended atomic orbital basis is solved and therefore correct occupied/virtual orbital energy splittings as well as Rydberg levels are obtained. A key idea for the success of the new model is that the determination of atomic charges (describing an effective electron-electron interaction) and the one-particle spectrum is decoupled and treated by two differently parametrized Hamiltonians/basis sets. The three-diagonalization-step composite procedure can routinely compute broad range electronic spectra (0-8 eV) within minutes of computation time for systems composed of 500-1000 atoms with an accuracy typical of standard time-dependent density functional theory (0.3-0.5 eV average error). An easily extendable parametrization based on coupled-cluster and density functional computed reference data for the elements H–Zn including transition metals is described. The accuracy of the method termed sTDA-xTB is first benchmarked for vertical excitation energies of open- and closed-shell systems in comparison to other semi-empirical methods and applied to exemplary problems in electronic spectroscopy. As side products of the development, a robust and efficient valence electron TB method for the accurate determination of atomic charges as well as a more accurate calculation scheme of dipole rotatory strengths within the Tamm-Dancoff approximation is proposed.« less

  3. A divide-conquer-recombine algorithmic paradigm for large spatiotemporal quantum molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimojo, Fuyuki; Hattori, Shinnosuke; Department of Physics, Kumamoto University, Kumamoto 860-8555

    We introduce an extension of the divide-and-conquer (DC) algorithmic paradigm called divide-conquer-recombine (DCR) to perform large quantum molecular dynamics (QMD) simulations on massively parallel supercomputers, in which interatomic forces are computed quantum mechanically in the framework of density functional theory (DFT). In DCR, the DC phase constructs globally informed, overlapping local-domain solutions, which in the recombine phase are synthesized into a global solution encompassing large spatiotemporal scales. For the DC phase, we design a lean divide-and-conquer (LDC) DFT algorithm, which significantly reduces the prefactor of the O(N) computational cost for N electrons by applying a density-adaptive boundary condition at themore » peripheries of the DC domains. Our globally scalable and locally efficient solver is based on a hybrid real-reciprocal space approach that combines: (1) a highly scalable real-space multigrid to represent the global charge density; and (2) a numerically efficient plane-wave basis for local electronic wave functions and charge density within each domain. Hybrid space-band decomposition is used to implement the LDC-DFT algorithm on parallel computers. A benchmark test on an IBM Blue Gene/Q computer exhibits an isogranular parallel efficiency of 0.984 on 786 432 cores for a 50.3 × 10{sup 6}-atom SiC system. As a test of production runs, LDC-DFT-based QMD simulation involving 16 661 atoms is performed on the Blue Gene/Q to study on-demand production of hydrogen gas from water using LiAl alloy particles. As an example of the recombine phase, LDC-DFT electronic structures are used as a basis set to describe global photoexcitation dynamics with nonadiabatic QMD (NAQMD) and kinetic Monte Carlo (KMC) methods. The NAQMD simulations are based on the linear response time-dependent density functional theory to describe electronic excited states and a surface-hopping approach to describe transitions between the excited states. A series of techniques are employed for efficiently calculating the long-range exact exchange correction and excited-state forces. The NAQMD trajectories are analyzed to extract the rates of various excitonic processes, which are then used in KMC simulation to study the dynamics of the global exciton flow network. This has allowed the study of large-scale photoexcitation dynamics in 6400-atom amorphous molecular solid, reaching the experimental time scales.« less

  4. Formation of polyelectrolyte complexes with diethylaminoethyl dextran: charge ratio and molar mass effect.

    PubMed

    Le Cerf, Didier; Pepin, Anne Sophie; Niang, Pape Momar; Cristea, Mariana; Karakasyan-Dia, Carole; Picton, Luc

    2014-11-26

    The formation of polyelectrolyte complexes (PECs) between carboxymethyl pullulan and DEAE Dextran, was investigated, in dilute solution, with emphasis on the effect of charge density (molar ratio or pH) and molar masses. Electrophoretic mobility measurements have evidenced that insoluble PECs (neutral electrophoretic mobility) occurs for charge ratio between 0.6 (excess of polycation) and 1 (stoichiometry usual value) according to the pH. This atypical result is explained by the inaccessibility of some permanent cationic charge when screened by pH dependant cationic ones (due to the Hoffman alkylation). Isothermal titration calorimetry (ITC) indicates an endothermic formation of PEC with a binding constant around 10(5) L mol(-1). Finally asymmetrical flow field flow fractionation coupled on line with static multi angle light scattering (AF4/MALS) evidences soluble PECs with very large average molar masses and size around 100 nm, in agreement with scrambled eggs multi-association between various polyelectrolyte chains. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. On the Control of the Fixed Charge Densities in Al2O3-Based Silicon Surface Passivation Schemes.

    PubMed

    Simon, Daniel K; Jordan, Paul M; Mikolajick, Thomas; Dirnstorfer, Ingo

    2015-12-30

    A controlled field-effect passivation by a well-defined density of fixed charges is crucial for modern solar cell surface passivation schemes. Al2O3 nanolayers grown by atomic layer deposition contain negative fixed charges. Electrical measurements on slant-etched layers reveal that these charges are located within a 1 nm distance to the interface with the Si substrate. When inserting additional interface layers, the fixed charge density can be continuously adjusted from 3.5 × 10(12) cm(-2) (negative polarity) to 0.0 and up to 4.0 × 10(12) cm(-2) (positive polarity). A HfO2 interface layer of one or more monolayers reduces the negative fixed charges in Al2O3 to zero. The role of HfO2 is described as an inert spacer controlling the distance between Al2O3 and the Si substrate. It is suggested that this spacer alters the nonstoichiometric initial Al2O3 growth regime, which is responsible for the charge formation. On the basis of this charge-free HfO2/Al2O3 stack, negative or positive fixed charges can be formed by introducing additional thin Al2O3 or SiO2 layers between the Si substrate and this HfO2/Al2O3 capping layer. All stacks provide very good passivation of the silicon surface. The measured effective carrier lifetimes are between 1 and 30 ms. This charge control in Al2O3 nanolayers allows the construction of zero-fixed-charge passivation layers as well as layers with tailored fixed charge densities for future solar cell concepts and other field-effect based devices.

  6. Magnetism and charge density wave in GdNiC2 and NdNiC2

    NASA Astrophysics Data System (ADS)

    Klimczuk, Tom; Kolincio, Kamil; Wianiarski, Michal; Strychalska-Nowak, Judyta; Górnicka, Karolina

    The RNiC2 compounds form in an orthorhombic Amm2 crystal structure with Ni and the rare-earth (R) metal chains along the crystallographic a-axis. This system is of particular interest because both a CDW and a long range magnetic ordering phases have been observed together. We report the specific heat, magnetic, magnetotransport and galvanomagnetic properties of GdNiC2 and NdNiC2 antiferromagnets. Complex B-T phase diagrams were built based on the specific heat data. Large negative magnetoresistance due to Zeeman splitting of the electronic bands and partial destruction of a charge density wave ground state is observed above TN. The magnetoresistance and Hall measurements show that at low temperatures a magnetic field induced transformation from antiferromagnetic order to a metamagnetic phase results in the partial suppression of the CDW. This project is financially supported by National Science Centre (Poland), Grant Number: UMO-2015/19/B/ST3/03127.

  7. Binding of an adatom to a simple metal surface

    NASA Technical Reports Server (NTRS)

    Huntington, H. B.; Turk, L. A.; White, W. W., III

    1975-01-01

    The density functional formalism of Hohenberg and Kohn is used to investigate the energies, charge densities and forces which hold an adatom on the surface of a simple metal. The valence wavefunction of the adatom is fitted to the Herman-Skillman solutions at large distance and is simplified somewhat in the core region. The field of the ion is represented by the Ashcroft pseudopotential. For the metal the jellium model is used. Detailed calculations are carried out for a sodium adatom on a sodium surface. Simply juxtaposing adatom and surface gives a binding energy of about 1/3 eV. This value is approximately twice the surface energy per atom in the close-packed plane. Charge redistributions as determined variationally increase the binding energy by about 10%. The equilibrium distance for the adatom turns out to be 1.66 A from the surface, as compared with 1.52 A, the observed value for one-half the distance between the close-packed planes.

  8. Pt-like Hydrogen Evolution Electrocatalysis on PANI/CoP Hybrid Nanowires by Weakening the Shackles of Hydrogen Ions on the Surfaces of Catalysts.

    PubMed

    Feng, Jin-Xian; Tong, Si-Yao; Tong, Ye-Xiang; Li, Gao-Ren

    2018-04-18

    The search for high active, stable, and cost-efficient hydrogen evolution reaction (HER) electrocatalysts for water electrolysis has attracted great interest. The coordinated water molecules in the hydronium ions will obviously reduce the positive charge density of H + and hamper the ability of H + to receive electrons from the cathode, leading to large overpotential of HER on nonprecious metal catalysts. Here we realize Pt-like hydrogen evolution electrocatalysis on polyaniline (PANI) nanodots (NDs)-decorated CoP hybrid nanowires (HNWs) supported on carbon fibers (CFs) (PANI/CoP HNWs-CFs) as PANI can effectively capture H + from hydronium ions to form protonated amine groups that have higher positive charge density than those of hydronium ions and can be electro-reduced easily. The PANI/CoP HNWs-CFs as low-cost electrocatalysts show excellent catalytic performance toward HER in acidic solution, such as super high catalytic activity, small Tafel slope, and superior stability.

  9. Chromatographic study of highly methoxylated lime pectins deesterified by different pectin methyl-esterases.

    PubMed

    Ralet, M C; Bonnin, E; Thibault, J F

    2001-03-25

    The inter-molecular distribution of free carboxyl groups of two highly methoxylated pectins enzymatically deesterified by plant and fungus pectin methyl-esterases were investigated by size-exclusion (SEC) and ion-exchange chromatography (IEC). "Homogeneous" populations with respect to molar mass or charge density were thereby obtained and their chemical composition and physico-chemical properties (transport parameter for monovalent cations and calcium, calcium activity coefficient) were studied. Chemical analysis showed that the composition varies from one SEC fraction to another, the highest molar mass fraction being richer in rhamnose and galactose and exhibiting a slightly higher degree of methylation. Separation of pectins by IEC revealed a quite homogeneous charge density distribution for F58 contrary to P60 which exhibited a large distribution of methoxyl groups. The free carboxyl groups distributions and calcium binding behaviours of SEC and IEC fractions were shown to differ widely for highly methoxylated pectins deesterified by plant and fungus pectin methyl-esterases.

  10. Low-Temperature Supercapacitors

    NASA Technical Reports Server (NTRS)

    Brandon, Erik J.; West, William C.; Smart, Marshall C.

    2008-01-01

    An effort to extend the low-temperature operational limit of supercapacitors is currently underway. At present, commercially available non-aqueous supercapacitors are rated for a minimum operating temperature of -40 C. A capability to operate at lower temperatures would be desirable for delivering power to systems that must operate in outer space or in the Polar Regions on Earth. Supercapacitors (also known as double-layer or electrochemical capacitors) offer a high power density (>1,000 W/kg) and moderate energy density (about 5 to 10 Wh/kg) technology for storing energy and delivering power. This combination of properties enables delivery of large currents for pulsed applications, or alternatively, smaller currents for low duty cycle applications. The mechanism of storage of electric charge in a supercapacitor -- at the electrical double-layer formed at a solid-electrode/liquid-electrolyte interface -- differs from that of a primary or secondary electrochemical cell (i.e., a battery) in such a manner as to impart a long cycle life (typically >10(exp 6) charge/discharge cycles).

  11. Thermodynamic theory of the plasmoelectric effect

    DOE PAGES

    van de Groep, Jorik; Sheldon, Matthew T.; Atwater, Harry A.; ...

    2016-03-18

    Resonant metal nanostructures exhibit an optically induced electrostatic potential when illuminated with monochromatic light under off-resonant conditions. This plasmoelectric effect is thermodynamically driven by the increase in entropy that occurs when the plasmonic structure aligns its resonant absorption spectrum with incident illumination by varying charge density. As a result, the elevated steady-state temperature of the nanostructure induced by plasmonic absorption is further increased by a small amount. Here, we study in detail the thermodynamic theory underlying the plasmoelectric effect by analyzing a simplified model system consisting of a single silver nanoparticle. We find that surface potentials as large as 473more » mV are induced under 100 W/m2 monochromatic illumination, as a result of a 11 mK increases in the steady-state temperature of the nanoparticle. Hence, we discuss the applicability of this analysis for realistic experimental geometries, and show that this effect is generic for optical structures in which the resonance is linked to the charge density.« less

  12. An unusual metallic behavior in a Ag4SSe single crystal

    NASA Astrophysics Data System (ADS)

    Matteppanavar, Shidaling; Bui, Nguyen Hai An; van Smaalen, Sander; Thamizhavel, A.; Ramakrishnan, S.

    2018-04-01

    We report the magnetic susceptibility, resistivity and heat capacity measurements on high quality single crystalline tetra silver sulphoselenide (Ag4SSe). The magnetic susceptibility and resistivity measurements show anomalies around 260 K. The large diamagnetic drop with hysteresis at the transition implies a first order transition. Such a diamagnetic drop cannot be ascribed to the formation of charge density wave (CDW) since the temperature dependence of the resistivity shows no upturn at this transition. Infact the resistivity is decreasing with decreasing temperature, indicating a metallic behavior. However, unlike normal metals, the resistivity is almost temperature independent in the temperature range from 4-180 K. Usually, when one observes a diamagnetic transition, it is assumed to be due to a drop in the density of states at the Fermi level which leads to the decrease in the Pauli paramagnetic susceptibility. Such a decrease in the density of states often results in an increase in resistivity unless mobility of the charge carriers changes significantly. Hence, we believe that in Ag4SSe, the structural transition causes an unusual Fermi surface reconstruction which in turn leads to a strange metallic behavior at low temperatures.

  13. Carrier polarity engineering in carbon nanotube field-effect transistors by induced charges in polymer insulator

    NASA Astrophysics Data System (ADS)

    Aikawa, Shinya; Kim, Sungjin; Thurakitseree, Theerapol; Einarsson, Erik; Inoue, Taiki; Chiashi, Shohei; Tsukagoshi, Kazuhito; Maruyama, Shigeo

    2018-01-01

    We present that the electrical conduction type in carbon nanotube field-effect transistors (CNT-FETs) can be converted by induced charges in a polyvinyl alcohol (PVA) insulator. When the CNT channels are covered with pure PVA, the FET characteristics clearly change from unipolar p-type to ambipolar. The addition of ammonium ions (NH4+) in the PVA leads to further conversion to unipolar n-type conduction. The capacitance - voltage characteristics indicate that a high density of positive charges is induced at the PVA/SiO2 interface and within the bulk PVA. Electrons are electrostatically accumulated in the CNT channels due to the presence of the positive charges, and thus, stable n-type conduction of PVA-coated CNT-FETs is observed, even under ambient conditions. The mechanism for conversion of the conduction type is considered to be electrostatic doping due to the large amount of positive charges in the PVA. A blue-shift of the Raman G-band peak was observed for CNTs coated with NH4+-doped PVA, which corresponds to unipolar n-type CNT-FET behavior. These results confirm that carrier polarity engineering in CNT-FETs can be achieved with a charged PVA passivation layer.

  14. Polyelectrolyte adsorption onto like-charged surfaces mediated by trivalent counterions: A Monte Carlo simulation study

    NASA Astrophysics Data System (ADS)

    Luque-Caballero, Germán; Martín-Molina, Alberto; Quesada-Pérez, Manuel

    2014-05-01

    Both experiments and theory have evidenced that multivalent cations can mediate the interaction between negatively charged polyelectrolytes and like-charged objects, such as anionic lipoplexes (DNA-cation-anionic liposome complexes). In this paper, we use Monte Carlo simulations to study the electrostatic interaction responsible for the trivalent-counterion-mediated adsorption of polyelectrolytes onto a like-charged planar surface. The evaluation of the Helmholtz free energy allows us to characterize both the magnitude and the range of the interaction as a function of the polyelectrolyte charge, surface charge density, [3:1] electrolyte concentration, and cation size. Both polyelectrolyte and surface charge favor the adsorption. It should be stressed, however, that the adsorption will be negligible if the surface charge density does not exceed a threshold value. The effect of the [3:1] electrolyte concentration has also been analyzed. In certain range of concentrations, the counterion-mediated attraction seems to be independent of this parameter, whereas very high concentrations of salt weaken the adsorption. If the trivalent cation diameter is doubled the adsorption moderates due to the excluded volume effects. The analysis of the integrated charge density and ionic distributions suggests that a delicate balance between charge inversion and screening effects governs the polyelectrolyte adsorption onto like-charged surfaces mediated by trivalent cations.

  15. Interaction between benzenedithiolate and gold: Classical force field for chemical bonding

    NASA Astrophysics Data System (ADS)

    Leng, Yongsheng; Krstić, Predrag S.; Wells, Jack C.; Cummings, Peter T.; Dean, David J.

    2005-06-01

    We have constructed a group of classical potentials based on ab initio density-functional theory (DFT) calculations to describe the chemical bonding between benzenedithiolate (BDT) molecule and gold atoms, including bond stretching, bond angle bending, and dihedral angle torsion involved at the interface between the molecule and gold clusters. Three DFT functionals, local-density approximation (LDA), PBE0, and X3LYP, have been implemented to calculate single point energies (SPE) for a large number of molecular configurations of BDT-1, 2 Au complexes. The three DFT methods yield similar bonding curves. The variations of atomic charges from Mulliken population analysis within the molecule/metal complex versus different molecular configurations have been investigated in detail. We found that, except for bonded atoms in BDT-1, 2 Au complexes, the Mulliken partial charges of other atoms in BDT are quite stable, which significantly reduces the uncertainty in partial charge selections in classical molecular simulations. Molecular-dynamics (MD) simulations are performed to investigate the structure of BDT self-assembled monolayer (SAM) and the adsorption geometry of S adatoms on Au (111) surface. We found that the bond-stretching potential is the most dominant part in chemical bonding. Whereas the local bonding geometry of BDT molecular configuration may depend on the DFT functional used, the global packing structure of BDT SAM is quite independent of DFT functional, even though the uncertainty of some force-field parameters for chemical bonding can be as large as ˜100%. This indicates that the intermolecular interactions play a dominant role in determining the BDT SAMs global packing structure.

  16. Interaction between benzenedithiolate and gold: classical force field for chemical bonding.

    PubMed

    Leng, Yongsheng; Krstić, Predrag S; Wells, Jack C; Cummings, Peter T; Dean, David J

    2005-06-22

    We have constructed a group of classical potentials based on ab initio density-functional theory (DFT) calculations to describe the chemical bonding between benzenedithiolate (BDT) molecule and gold atoms, including bond stretching, bond angle bending, and dihedral angle torsion involved at the interface between the molecule and gold clusters. Three DFT functionals, local-density approximation (LDA), PBE0, and X3LYP, have been implemented to calculate single point energies (SPE) for a large number of molecular configurations of BDT-1, 2 Au complexes. The three DFT methods yield similar bonding curves. The variations of atomic charges from Mulliken population analysis within the molecule/metal complex versus different molecular configurations have been investigated in detail. We found that, except for bonded atoms in BDT-1, 2 Au complexes, the Mulliken partial charges of other atoms in BDT are quite stable, which significantly reduces the uncertainty in partial charge selections in classical molecular simulations. Molecular-dynamics (MD) simulations are performed to investigate the structure of BDT self-assembled monolayer (SAM) and the adsorption geometry of S adatoms on Au (111) surface. We found that the bond-stretching potential is the most dominant part in chemical bonding. Whereas the local bonding geometry of BDT molecular configuration may depend on the DFT functional used, the global packing structure of BDT SAM is quite independent of DFT functional, even though the uncertainty of some force-field parameters for chemical bonding can be as large as approximately 100%. This indicates that the intermolecular interactions play a dominant role in determining the BDT SAMs global packing structure.

  17. Ferrocene/fullerene hybrids showing large second-order nonlinear optical activities: impact of the cage unit size.

    PubMed

    Wang, Wen-Yong; Wang, Li; Ma, Na-Na; Zhu, Chang-Li; Qiu, Yong-Qing

    2015-06-07

    The electron donor-acceptor complexes, which undergo intramolecular charge transfer under external stimulus, are an emerging class of materials showing important application in nonlinear optics. Synthesizing ferrocene/fullerene complexes through face-to-face fusion would enjoy the merits of both ferrocene and fullerene due to their strong donor-acceptor interactions. Four ferrocene/fullerene hybrid complexes with the gradual extension of fullerene cage size, including CpFe(C60H5), CpFe(C66H5), CpFe(C70H5), and CpFe(C80H5) (Cp is cyclopentadienyl), have been investigated by density functional theory. These hybrid molecules give eclipsed and staggered isomers. The main reason that the eclipsed isomer is stable is that the eclipsed structure possesses large CpFefullerene bonding energy. The CpFefullerene interaction is smaller than that of CpFefullerene, which must come from two different interfaces. The presence of covalent bond character between CpFe and fullerene is supported by the localized orbital locator, deformation of electron density distribution and energy decomposition analysis. Significantly, the absorption bands and first hyperpolarizabilities of these hybrid complexes are strongly sensitive to the fullerene cage size, which is ascribed to a change in the charge transfer pattern, especially for CpFe(C80H5), which displays reverse π → π* charge transfer from bottom to top cage, leading to notable hyperpolarizability. Investigation of the structure-property relationship at the molecular level can benefit the design and preparation of such hybrid complexes in chemistry and materials science.

  18. Development of a 1-m plasma source for heavy ion beam charge neutralization

    NASA Astrophysics Data System (ADS)

    Efthimion, Philip C.; Gilson, Erik P.; Grisham, Larry; Davidson, Ronald C.; Yu, Simon; Waldron, William; Grant Logan, B.

    2005-05-01

    Highly ionized plasmas are being employed as a medium for charge neutralizing heavy ion beams in order to focus to a small spot size. Calculations suggest that plasma at a density of 1-100 times the ion beam density and at a length ˜0.1-1 m would be suitable for achieving a high level of charge neutralization. A radio frequency (RF) source was constructed at the Princeton Plasma Physics Laboratory (PPPL) in support of the joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization. Pulsing the source enabled operation at pressures ˜10 -6 Torr with plasma densities of 10 11 cm -3. Near 100% ionization was achieved. The plasma was 10 cm in length, but future experiments require a source 1 m long. The RF source does not easily scale to the length. Consequently, large-volume plasma sources based upon ferroelectric ceramics are being considered. These sources have the advantage of being able to increase the length of the plasma and operate at low neutral pressures. The source will utilize the ferroelectric ceramic BaTiO 3 to form metal plasma. A 1 m long section of the drift tube inner surface of NTX will be covered with ceramic. A high voltage (˜1-5 kV) is applied between the drift tube and the front surface of the ceramic by placing a wire grid on the front surface. Plasma densities of 10 12 cm -3 and neutral pressures ˜10 -6 Torr are expected. A test stand to produce 20 cm long plasma is being constructed and will be tested before a 1 m long source is developed.

  19. Measuring the charge density of a tapered optical fiber using trapped microparticles.

    PubMed

    Kamitani, Kazuhiko; Muranaka, Takuya; Takashima, Hideaki; Fujiwara, Masazumi; Tanaka, Utako; Takeuchi, Shigeki; Urabe, Shinji

    2016-03-07

    We report the measurements of charge density of tapered optical fibers using charged particles confined in a linear Paul trap at ambient pressure. A tapered optical fiber is placed across the trap axis at a right angle, and polystyrene microparticles are trapped along the trap axis. The distance between the equilibrium position of a positively charged particle and the tapered fiber is used to estimate the amount of charge per unit length of the fiber without knowing the amount of charge of the trapped particle. The charge per unit length of a tapered fiber with a diameter of 1.6 μm was measured to be 2-1+3×10 -11 C/m.

  20. DFTB3: Extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB).

    PubMed

    Gaus, Michael; Cui, Qiang; Elstner, Marcus

    2012-04-10

    The self-consistent-charge density-functional tight-binding method (SCC-DFTB) is an approximate quantum chemical method derived from density functional theory (DFT) based on a second-order expansion of the DFT total energy around a reference density. In the present study we combine earlier extensions and improve them consistently with, first, an improved Coulomb interaction between atomic partial charges, and second, the complete third-order expansion of the DFT total energy. These modifications lead us to the next generation of the DFTB methodology called DFTB3, which substantially improves the description of charged systems containing elements C, H, N, O, and P, especially regarding hydrogen binding energies and proton affinities. As a result, DFTB3 is particularly applicable to biomolecular systems. Remaining challenges and possible solutions are also briefly discussed.

  1. Ground-State Charge-Density Distribution in a Crystal of the Luminescent ortho-Phenylenediboronic Acid Complex with 8-Hydroxyquinoline.

    PubMed

    Jarzembska, Katarzyna N; Kamiński, Radosław; Durka, Krzysztof; Woźniak, Krzysztof

    2018-05-10

    This contribution is devoted to the first electron density studies of a luminescent oxyquinolinato boron complex in the solid state. ortho-Phenylenediboronic acid mixed with 8-hydroxyquinoline in dioxane forms high-quality single crystals via slow solvent evaporation, which allows successful high resolution data collection (sin θ/λ = 1.2 Å -1 ) and charge density distribution modeling. Particular attention has been paid to the boron-oxygen fragment connecting the two parts of the complex, and to the solvent species exhibiting anharmonic thermal motion. The experiment and theory compared rather well in terms of atomic charges and volumes, except for the boron centers. Boron atoms, as expected, constitute the most electron-deficient species in the complex molecule, whereas the neighboring oxygen and carbon atoms are the most significantly negatively charged ones. This part of the molecule appears to be very much involved in the charge transfer occurring between the acid fragment and oxyquinoline moiety leading to the observed fluorescence, as supported by the time-dependent density functional theory (TDDFT) results and the generated transition density maps. TDDFT calculations indicated that p-type atomic orbitals contributing to the HOMO-1, HOMO, and LUMO play the major role in the lowest energy transitions, and enabled further comparison with the charge density features, which is discussed in details. Furthermore, the results confirmed the known fact the Q ligand character is most important for the spectroscopic properties of this class of complexes.

  2. Homogeneous dispersion of organic p-dopants in an organic semiconductor as an origin of high charge generation efficiency

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Hyun; Kim, Hyun-Mi; Kim, Ki-Bum; Kabe, Ryota; Anzenbacher, Pavel; Kim, Jang-Joo

    2011-04-01

    We report that an organic p-dopant tri[1,2-bis(trifluoromethyl)ethane-1,2-dithiolene] [Mo(tfd)3] resulted in higher density of holes than inorganic metal oxide dopants of ReO3 or MoO3 in 1,4-bis[N-(1-naphthyl)-N'-phenylamino]-4,4'-diamine even though the metal oxide dopants possess deeper work functions compared to Mo(tfd)3. Higher charge generation efficiency results largely from the homogeneous dispersion of Mo(tfd)3 in the host. In contradistinction, the transmission electron microscopy analysis revealed a formation of metal oxide nanoclusters. This highlights the importance of homogeneous dispersion for an efficient doping.

  3. Charge and Spin Currents in Open-Shell Molecules:  A Unified Description of NMR and EPR Observables.

    PubMed

    Soncini, Alessandro

    2007-11-01

    The theory of EPR hyperfine coupling tensors and NMR nuclear magnetic shielding tensors of open-shell molecules in the limit of vanishing spin-orbit coupling (e.g., for organic radicals) is analyzed in terms of spin and charge current density vector fields. The ab initio calculation of the spin and charge current density response has been implemented at the Restricted Open-Shell Hartree-Fock, Unrestricted Hartree-Fock, and unrestricted GGA-DFT level of theory. On the basis of this formalism, we introduce the definition of nuclear hyperfine coupling density, a scalar function of position providing a partition of the EPR observable over the molecular domain. Ab initio maps of spin and charge current density and hyperfine coupling density for small radicals are presented and discussed in order to illustrate the interpretative advantages of the newly introduced approach. Recent NMR experiments providing evidence for the existence of diatropic ring currents in the open-shell singlet pancake-bonded dimer of the neutral phenalenyl radical are directly assessed via the visualization of the induced current density.

  4. Experimental and theoretical charge density studies at subatomic resolution.

    PubMed

    Fischer, A; Tiana, D; Scherer, W; Batke, K; Eickerling, G; Svendsen, H; Bindzus, N; Iversen, B B

    2011-11-17

    Analysis of accurate experimental and theoretical structure factors of diamond and silicon reveals that the contraction of the core shell due to covalent bond formation causes significant perturbations of the total charge density that cannot be ignored in precise charge density studies. We outline that the nature and origin of core contraction/expansion and core polarization phenomena can be analyzed by experimental studies employing an extended Hansen-Coppens multipolar model. Omission or insufficient treatment of these subatomic charge density phenomena might yield erroneous thermal displacement parameters and high residual densities in multipolar refinements. Our detailed studies therefore suggest that the refinement of contraction/expansion and population parameters of all atomic shells is essential to the precise reconstruction of electron density distributions by a multipolar model. Furthermore, our results imply that also the polarization of the inner shells needs to be adopted, especially in cases where second row or even heavier elements are involved in covalent bonding. These theoretical studies are supported by direct multipolar refinements of X-ray powder diffraction data of diamond obtained from a third-generation synchrotron-radiation source (SPring-8, BL02B2).

  5. Quantitative nanoscale electrostatics of viruses

    NASA Astrophysics Data System (ADS)

    Hernando-Pérez, M.; Cartagena-Rivera, A. X.; Lošdorfer Božič, A.; Carrillo, P. J. P.; San Martín, C.; Mateu, M. G.; Raman, A.; Podgornik, R.; de Pablo, P. J.

    2015-10-01

    Electrostatics is one of the fundamental driving forces of the interaction between biomolecules in solution. In particular, the recognition events between viruses and host cells are dominated by both specific and non-specific interactions and the electric charge of viral particles determines the electrostatic force component of the latter. Here we probe the charge of individual viruses in liquid milieu by measuring the electrostatic force between a viral particle and the Atomic Force Microscope tip. The force spectroscopy data of co-adsorbed φ29 bacteriophage proheads and mature virions, adenovirus and minute virus of mice capsids is utilized for obtaining the corresponding density of charge for each virus. The systematic differences of the density of charge between the viral particles are consistent with the theoretical predictions obtained from X-ray structural data. Our results show that the density of charge is a distinguishing characteristic of each virus, depending crucially on the nature of the viral capsid and the presence/absence of the genetic material.Electrostatics is one of the fundamental driving forces of the interaction between biomolecules in solution. In particular, the recognition events between viruses and host cells are dominated by both specific and non-specific interactions and the electric charge of viral particles determines the electrostatic force component of the latter. Here we probe the charge of individual viruses in liquid milieu by measuring the electrostatic force between a viral particle and the Atomic Force Microscope tip. The force spectroscopy data of co-adsorbed φ29 bacteriophage proheads and mature virions, adenovirus and minute virus of mice capsids is utilized for obtaining the corresponding density of charge for each virus. The systematic differences of the density of charge between the viral particles are consistent with the theoretical predictions obtained from X-ray structural data. Our results show that the density of charge is a distinguishing characteristic of each virus, depending crucially on the nature of the viral capsid and the presence/absence of the genetic material. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04274g

  6. Inception of Snapover and Gas Induced Glow Discharges

    NASA Technical Reports Server (NTRS)

    Galofaro, J. T.; Vayner, B. V.; Degroot, W. A.; Ferguson, D. C.; Thomson, C. D.; Dennison, J. R.; Davies, R. E.

    2000-01-01

    Ground based experiments of the snapover phenomenon were conducted in the large vertical simulation chamber at the Glenn Research Center (GRC) Plasma Interaction Facility (PIF). Two Penning sources provided both argon and xenon plasmas for the experiments. The sources were used to simulate a variety of ionospheric densities pertaining to a spacecraft in a Low Earth Orbital (LEO) environment. Secondary electron emission is believed responsible for dielectric surface charging, and all subsequent snapover phenomena observed. Voltage sweeps of conductor potentials versus collected current were recorded in order to examine the specific charging history of each sample. The average time constant for sample charging was estimated between 25 and 50 seconds for all samples. It appears that current drops off by approximately a factor of 3 over the charging time of the sample. All samples charged in the forward and reverse bias directions, demonstrated hysteresis. Current jumps were only observed in the forward or positive swept voltage direction. There is large dispersion in tile critical snapover potential when repeating sweeps on any one sample. The current ratio for the first snapover region jumps between 2 and 4.6 times, with a standard deviation less than 1.6. Two of the samples showed even larger current ratios. It is believed the second large snapover region is due to sample outgassing. Under certain preset conditions, namely at the higher neutral gas background pressures, a perceptible blue-green glow was observed around the conductor. The glow is believed to be a result of secondary electrons undergoing collisions with an expelled tenuous cloud of gas, that is outgassed from the sample. Spectroscopic measurements of the glow discharge were made in an attempt to identify specific lines contributing to the observed glow.

  7. Systematic Approach to Electrostatically Induced 2D Crystallization of Nanoparticles at Liquid Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukuto, M.; Kewalramani, S.; Wang, S.

    2011-02-07

    We report an experimental demonstration of a strategy for inducing two-dimensional (2D) crystallization of charged nanoparticles on oppositely charged fluid interfaces. This strategy aims to maximize the interfacial adsorption of nanoparticles, and hence their lateral packing density, by utilizing a combination of weakly charged particles and a high surface charge density on the planar interface. In order to test this approach, we investigated the assembly of cowpea mosaic virus (CPMV) on positively charged lipid monolayers at the aqueous solution surface, by means of in situ X-ray scattering measurements at the liquid-vapor interface. The assembly was studied as a function ofmore » the solution pH, which was used to vary the charge on CPMV, and of the mole fraction of the cationic lipid in the binary lipid monolayer, which set the interface charge density. The 2D crystallization of CPMV occurred in a narrow pH range just above the particle's isoelectric point, where the particle charge was weakly negative, and only when the cationic-lipid fraction in the monolayer exceeded a threshold. The observed 2D crystals exhibited nearly the same packing density as the densest lattice plane within the known 3D crystals of CPMV. The above electrostatic approach of maximizing interfacial adsorption may provide an efficient route to the crystallization of nanoparticles at aqueous interfaces.« less

  8. Tuning Rashba spin-orbit coupling in homogeneous semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Wójcik, Paweł; Bertoni, Andrea; Goldoni, Guido

    2018-04-01

    We use k .p theory to estimate the Rashba spin-orbit coupling (SOC) in large semiconductor nanowires. We specifically investigate GaAs- and InSb-based devices with different gate configurations to control symmetry and localization of the electron charge density. We explore gate-controlled SOC for wires of different size and doping, and we show that in high carrier density SOC has a nonlinear electric field susceptibility, due to large reshaping of the quantum states. We analyze recent experiments with InSb nanowires in light of our calculations. Good agreement is found with the SOC coefficients reported in Phys. Rev. B 91, 201413(R) (2015), 10.1103/PhysRevB.91.201413, but not with the much larger values reported in Nat. Commun. 8, 478 (2017), 10.1038/s41467-017-00315-y. We discuss possible origins of this discrepancy.

  9. Linear-scaling density-functional simulations of charged point defects in Al2O3 using hierarchical sparse matrix algebra.

    PubMed

    Hine, N D M; Haynes, P D; Mostofi, A A; Payne, M C

    2010-09-21

    We present calculations of formation energies of defects in an ionic solid (Al(2)O(3)) extrapolated to the dilute limit, corresponding to a simulation cell of infinite size. The large-scale calculations required for this extrapolation are enabled by developments in the approach to parallel sparse matrix algebra operations, which are central to linear-scaling density-functional theory calculations. The computational cost of manipulating sparse matrices, whose sizes are determined by the large number of basis functions present, is greatly improved with this new approach. We present details of the sparse algebra scheme implemented in the ONETEP code using hierarchical sparsity patterns, and demonstrate its use in calculations on a wide range of systems, involving thousands of atoms on hundreds to thousands of parallel processes.

  10. Evidence for a Peierls phase-transition in a three-dimensional multiple charge-density waves solid

    PubMed Central

    Mansart, Barbara; Cottet, Mathieu J. G.; Penfold, Thomas J.; Dugdale, Stephen B.; Tediosi, Riccardo; Chergui, Majed; Carbone, Fabrizio

    2012-01-01

    The effect of dimensionality on materials properties has become strikingly evident with the recent discovery of graphene. Charge ordering phenomena can be induced in one dimension by periodic distortions of a material’s crystal structure, termed Peierls ordering transition. Charge-density waves can also be induced in solids by strong coulomb repulsion between carriers, and at the extreme limit, Wigner predicted that crystallization itself can be induced in an electrons gas in free space close to the absolute zero of temperature. Similar phenomena are observed also in higher dimensions, but the microscopic description of the corresponding phase transition is often controversial, and remains an open field of research for fundamental physics. Here, we photoinduce the melting of the charge ordering in a complex three-dimensional solid and monitor the consequent charge redistribution by probing the optical response over a broad spectral range with ultrashort laser pulses. Although the photoinduced electronic temperature far exceeds the critical value, the charge-density wave is preserved until the lattice is sufficiently distorted to induce the phase transition. Combining this result with ab initio electronic structure calculations, we identified the Peierls origin of multiple charge-density waves in a three-dimensional system for the first time. PMID:22451898

  11. Effect of pectin charge density on formation of multilayer films with chitosan.

    PubMed

    Kamburova, Kamelia; Milkova, Viktoria; Petkanchin, Ivana; Radeva, Tsetska

    2008-04-01

    The effect of pectin charge density on the formation of multilayer films with chitosan (PEC/CHI) is studied by means of electro-optics. Pectins of low (21%) and high (71%) degrees of esterification, which are inversely proportional to the pectin charge density, are used to form films on colloidal beta-FeOOH particles at pH 4.0 when the CHI is fully ionized. We find that, after deposition of the first 3-4 layers, the film thickness increases linearly with the number of adsorbed layers. However, the increase in the film thickness is larger when the film is terminated with CHI. Irregular increase of the film thickness is more marked for the PEC with higher density of charge. Oscillation in the electrical polarizability of the film-coated particles with the number of deposited layers is also registered in the PEC/CHI films. The charge balance of the multilayers, calculated from electrical polarizability of the film-coated particles, is positive, with larger excess of positive charge within the film constructed from CHI and less charged PEC. This is attributed to the ability of CHI to diffuse into the film at each deposition step. Despite the CHI diffusion, the film thickness increases linearly due to the dissolution of unstable PEC/CHI complexes from the film surface.

  12. NASCAP modelling of environmental-charging-induced discharges in satellites

    NASA Technical Reports Server (NTRS)

    Stevens, N. J.; Roche, J. C.

    1979-01-01

    The charging and discharging characteristics of a typical geosynchronous satellite experiencing time-varying geomagnetic substorms, in sunlight, were studied utilizing the NASA Charging Analyzer Program (NASCAP). An electric field criteria of 150,000 volts/cm to initiate discharges and transfer of 67 percent of the stored charge was used based on ground test results. The substorm characteristics were arbitrarily chosen to evaluate effects of electron temperature and particle density (which is equivalent to current density). It was found that while there is a minimum electron temperature for discharges to occur, the rate of discharges is dependent on particle density and duration times of the encounter. Hence, it is important to define the temporal variations in the substorm environments.

  13. Structure of spherical electric double layers with fully asymmetric electrolytes: a systematic study by Monte Carlo simulations and density functional theory.

    PubMed

    Patra, Chandra N

    2014-11-14

    A systematic investigation of the spherical electric double layers with the electrolytes having size as well as charge asymmetry is carried out using density functional theory and Monte Carlo simulations. The system is considered within the primitive model, where the macroion is a structureless hard spherical colloid, the small ions as charged hard spheres of different size, and the solvent is represented as a dielectric continuum. The present theory approximates the hard sphere part of the one particle correlation function using a weighted density approach whereas a perturbation expansion around the uniform fluid is applied to evaluate the ionic contribution. The theory is in quantitative agreement with Monte Carlo simulation for the density and the mean electrostatic potential profiles over a wide range of electrolyte concentrations, surface charge densities, valence of small ions, and macroion sizes. The theory provides distinctive evidence of charge and size correlations within the electrode-electrolyte interface in spherical geometry.

  14. High energy density and efficiency achieved in nanocomposite film capacitors via structure modulation

    NASA Astrophysics Data System (ADS)

    Zeng, Yi; Shen, Zhong-Hui; Shen, Yang; Lin, Yuanhua; Nan, Ce-Wen

    2018-03-01

    Flexible dielectric polymer films with high energy storage density and high charge-discharge efficiency have been considered as promising materials for electrical power applications. Here, we design hierarchical structured nanocomposite films using nonlinear polymer poly(vinylidene fluoride-HFP) [P(VDF-HFP)] with inorganic h-boron nitride (h-BN) nanosheets by electrospinning and hot-pressing methods. Our results show that the addition of h-BN nanosheets and the design of the hierarchical multilayer structure in the nanocomposites can remarkably enhance the charge-discharge efficiency and energy density. A high charge-discharge efficiency of 78% and an energy density of 21 J/cm3 can be realized in the 12-layered PVDF/h-BN nanocomposite films. Phase-field simulation results reveal that the spatial distribution of the electric field in these hierarchical structured films affects the charge-discharge efficiency and energy density. This work provides a feasible route, i.e., structure modulation, to improve the energy storage performances for nanocomposite films.

  15. Density-functional expansion methods: Grand challenges.

    PubMed

    Giese, Timothy J; York, Darrin M

    2012-03-01

    We discuss the source of errors in semiempirical density functional expansion (VE) methods. In particular, we show that VE methods are capable of well-reproducing their standard Kohn-Sham density functional method counterparts, but suffer from large errors upon using one or more of these approximations: the limited size of the atomic orbital basis, the Slater monopole auxiliary basis description of the response density, and the one- and two-body treatment of the core-Hamiltonian matrix elements. In the process of discussing these approximations and highlighting their symptoms, we introduce a new model that supplements the second-order density-functional tight-binding model with a self-consistent charge-dependent chemical potential equalization correction; we review our recently reported method for generalizing the auxiliary basis description of the atomic orbital response density; and we decompose the first-order potential into a summation of additive atomic components and many-body corrections, and from this examination, we provide new insights and preliminary results that motivate and inspire new approximate treatments of the core-Hamiltonian.

  16. Importance of core electrostatic properties on the electrophoresis of a soft particle

    NASA Astrophysics Data System (ADS)

    De, Simanta; Bhattacharyya, Somnath; Gopmandal, Partha P.

    2016-08-01

    The impact of the volumetric charged density of the dielectric rigid core on the electrophoresis of a soft particle is analyzed numerically. The volume charge density of the inner core of a soft particle can arise for a dendrimer structure or bacteriophage MS2. We consider the electrokinetic model based on the conservation principles, thus no conditions for Debye length or applied electric field is imposed. The fluid flow equations are coupled with the ion transport equations and the equation for the electric field. The occurrence of the induced nonuniform surface charge density on the outer surface of the inner core leads to a situation different from the existing analysis of a soft particle electrophoresis. The impact of this induced surface charge density together with the double-layer polarization and relaxation due to ion convection and electromigration is analyzed. The dielectric permittivity and the charge density of the core have a significant impact on the particle electrophoresis when the Debye length is in the order of the particle size. We find that by varying the ionic concentration of the electrolyte, the particle can exhibit reversal in its electrophoretic velocity. The role of the polymer layer softness parameter is addressed in the present analysis.

  17. Trap Modulated Charge Carrier Transport in Polyethylene/Graphene Nanocomposites.

    PubMed

    Li, Zhonglei; Du, Boxue; Han, Chenlei; Xu, Hang

    2017-06-21

    The role of trap characteristics in modulating charge transport properties is attracting much attentions in electrical and electronic engineering, which has an important effect on the electrical properties of dielectrics. This paper focuses on the electrical properties of Low-density Polyethylene (LDPE)/graphene nanocomposites (NCs), as well as the corresponding trap level characteristics. The dc conductivity, breakdown strength and space charge behaviors of NCs with the filler content of 0 wt%, 0.005 wt%, 0.01 wt%, 0.1 wt% and 0.5 wt% are studied, and their trap level distributions are characterized by isothermal discharge current (IDC) tests. The experimental results show that the 0.005 wt% LDPE/graphene NCs have a lower dc conductivity, a higher breakdown strength and a much smaller amount of space charge accumulation than the neat LDPE. It is indicated that the graphene addition with a filler content of 0.005 wt% introduces large quantities of deep carrier traps that reduce charge carrier mobility and result in the homocharge accumulation near the electrodes. The deep trap modulated charge carrier transport attributes to reduce the dc conductivity, suppress the injection of space charges into polymer bulks and enhance the breakdown strength, which is of great significance in improving electrical properties of polymer dielectrics.

  18. pi-eta mixing and charge symmetry violating NN potential in matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Subhrajyoti; Roy, Pradip; Dutt-Mazumder, Abhee K.

    2010-06-15

    We construct density-dependent class III charge symmetry violating (CSV) potential caused by the mixing of pi-eta mesons with off-shell corrections. The density dependence enters through the nonvanishing pi-eta mixing driven by both the neutron-proton mass difference and their asymmetric density distribution. The contribution of density-dependent mixing to the CSV potential is found to be appreciably larger than that of the vacuum part.

  19. Coulomb disorder in three-dimensional Dirac materials

    NASA Astrophysics Data System (ADS)

    Skinner, Brian

    2015-03-01

    In three-dimensional materials with a Dirac spectrum, weak short-ranged disorder is essentially irrelevant near the Dirac point. This is manifestly not the case for Coulomb disorder, where the long-ranged nature of the potential produced by charged impurities implies large fluctuations of the disorder potential even when impurities are sparse, and these fluctuations are screened by the formation of electron/hole puddles. Here I outline a theory of such nonlinear screening of Coulomb disorder in three-dimensional Dirac systems, and present results for the typical magnitude of the disorder potential, the corresponding density of states, and the size and density of electron/hole puddles. The resulting conductivity is also discussed.

  20. Optical characteristics of lightning and thunderstorm currents

    NASA Technical Reports Server (NTRS)

    Krider, E. P.; Blakeslee, R. J.

    1985-01-01

    Researchers determined that lightning can be used to determine the diurnal variations of thunderstorms, i.e., storms that produce audible thunder, and that these variations are also in good agreement with diurnal variations in rainfall and convective activity. Measurements of the Maxwell current density, J sub m, under active thunderstorms show that this physical quantity is quasi-steady between lightning discharges and that lightning does not produce large changes in J sub m. Maps of J sub m show contours of iso-current density that are consistent with the locations of radar echos and the locations of where lightning has altered the cloud charge distribution.

  1. Method of measuring a profile of the density of charged particles in a particle beam

    DOEpatents

    Hyman, L.G.; Jankowski, D.J.

    1975-10-01

    A profile of the relative density of charged particles in a beam is obtained by disposing a number of rods parallel to each other in a plane perpendicular to the beam and shadowing the beam. A second number of rods is disposed perpendicular to the first rods in a plane perpendicular to the beam and also shadowing the beam. Irradiation of the rods by the beam of charged particles creates radioactive isotopes in a quantity proportional to the number of charged particles incident upon the rods. Measurement of the radioactivity of each of the rods provides a measure of the quantity of radioactive material generated thereby and, together with the location of the rods, provides information sufficient to identify a profile of the density of charged particles in the beam.

  2. Determination of gas phase protein ion densities via ion mobility analysis with charge reduction.

    PubMed

    Maisser, Anne; Premnath, Vinay; Ghosh, Abhimanyu; Nguyen, Tuan Anh; Attoui, Michel; Hogan, Christopher J

    2011-12-28

    We use a charge reduction electrospray (ESI) source and subsequent ion mobility analysis with a differential mobility analyzer (DMA, with detection via both a Faraday cage electrometer and a condensation particle counter) to infer the densities of single and multiprotein ions of cytochrome C, lysozyme, myoglobin, ovalbumin, and bovine serum albumin produced from non-denaturing (20 mM aqueous ammonium acetate) and denaturing (1 : 49.5 : 49.5, formic acid : methanol : water) ESI. Charge reduction is achieved through use of a Po-210 radioactive source, which generates roughly equal concentrations of positive and negative ions. Ions produced by the source collide with and reduce the charge on ESI generated drops, preventing Coulombic fissions, and unlike typical protein ESI, leading to gas-phase protein ions with +1 to +3 excess charges. Therefore, charge reduction serves to effectively mitigate any role that Coulombic stretching may play on the structure of the gas phase ions. Density inference is made via determination of the mobility diameter, and correspondingly the spherical equivalent protein volume. Through this approach it is found that for both non-denaturing and denaturing ESI-generated ions, gas-phase protein ions are relatively compact, with average densities of 0.97 g cm(-3) and 0.86 g cm(-3), respectively. Ions from non-denaturing ESI are found to be slightly more compact than predicted from the protein crystal structures, suggesting that low charge state protein ions in the gas phase are slightly denser than their solution conformations. While a slight difference is detected between the ions produced with non-denaturing and denaturing ESI, the denatured ions are found to be much more dense than those examined previously by drift tube mobility analysis, in which charge reduction was not employed. This indicates that Coulombic stretching is typically what leads to non-compact ions in the gas-phase, and suggests that for gas phase measurements to be correlated to biomolecular structures in solution, low charge state ions should be analyzed. Further, to determine if different solution conditions give rise to ions of different structure, ions of similar charge state should be compared. Non-denatured protein ion densities are found to be in excellent agreement with non-denatured protein ion densities inferred from prior DMA and drift tube measurements made without charge reduction (all ions with densities in the 0.85-1.10 g cm(-3) range), showing that these ions are not strongly influenced by Coulombic stretching nor by analysis method.

  3. Charged Analogues of Henning Knutsen Type Solutions in General Relativity

    NASA Astrophysics Data System (ADS)

    Gupta, Y. K.; Kumar, Sachin; Pratibha

    2011-11-01

    In the present article, we have found charged analogues of Henning Knutsen's interior solutions which join smoothly to the Reissner-Nordstrom metric at the pressure free interface. The solutions are singularity free and analyzed numerically with respect to pressure, energy-density and charge-density in details. The solutions so obtained also present the generalization of A.L. Mehra's solutions.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, AG; Bhadra, S; Hertzberg, BJ

    We demonstrate that a simple acoustic time-of-flight experiment can measure the state of charge and state of health of almost any closed battery. An acoustic conservation law model describing the state of charge of a standard battery is proposed, and experimental acoustic results verify the simulated trends; furthermore, a framework relating changes in sound speed, via density and modulus changes, to state of charge and state of health within a battery is discussed. Regardless of the chemistry, the distribution of density within a battery must change as a function of state of charge and, along with density, the bulk modulimore » of the anode and cathode changes as well. The shifts in density and modulus also change the acoustic attenuation in a battery. Experimental results indicating both state-of-charge determination and irreversible physical changes are presented for two of the most ubiquitous batteries in the world, the lithium-ion 18650 and the alkaline LR6 (AA). Overall, a one-or two-point acoustic measurement can be related to the interaction of a pressure wave at multiple discrete interfaces within a battery, which in turn provides insights into state of charge, state of health, and mechanical evolution/degradation.« less

  5. Centrality dependence of the pseudorapidity density distribution for charged particles in Pb-Pb collisions at √{sNN} = 5.02 TeV

    NASA Astrophysics Data System (ADS)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; An, M.; Andrei, C.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barioglio, L.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Buitron, S. A. I.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Capon, A. A.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crkovská, J.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; de Souza, R. D.; Degenhardt, H. F.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; di Bari, D.; di Mauro, A.; di Nezza, P.; di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Duggal, A. K.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Esumi, S.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Garg, P.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Gay Ducati, M. B.; Germain, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L.; Grelli, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grion, N.; Gronefeld, J. M.; Grosa, F.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Grull, F. R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Hladky, J.; Horak, D.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Isakov, V.; Islam, M. S.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jercic, M.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kielbowicz, M. M.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lavicka, R.; Lazaridis, L.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lehrbach, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Litichevskyi, V.; Ljunggren, H. M.; Llope, W. J.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Loncar, P.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martinez, J. A. L.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Mastroserio, A.; Mathis, A. M.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mihaylov, D.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Mishra, T.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Montes, E.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Negrao de Oliveira, R. A.; Nellen, L.; Nesbo, S. V.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Ohlson, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Pagano, P.; Paić, G.; Pal, S. K.; Palni, P.; Pan, J.; Pandey, A. K.; Panebianco, S.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, J.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira, L. G.; Pereira da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Pezzi, R. P.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Pozdniakov, V.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Saha, S. K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H. P.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M. O.; Schmidt, M.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thakur, S.; Thomas, D.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Tripathy, S.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Trzeciak, B. A.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Vértesi, R.; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Windelband, B.; Witt, W. E.; Yalcin, S.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zimmermann, S.; Zinovjev, G.; Zmeskal, J.; Alice Collaboration

    2017-09-01

    We present the charged-particle pseudorapidity density in Pb-Pb collisions at √{sNN} = 5.02 TeV in centrality classes measured by ALICE. The measurement covers a wide pseudorapidity range from -3.5 to 5, which is sufficient for reliable estimates of the total number of charged particles produced in the collisions. For the most central (0-5%) collisions we find 21 400 ± 1 300, while for the most peripheral (80-90%) we find 230 ± 38. This corresponds to an increase of (27 ± 4)% over the results at √{sNN} = 2.76 TeV previously reported by ALICE. The energy dependence of the total number of charged particles produced in heavy-ion collisions is found to obey a modified power-law like behaviour. The charged-particle pseudorapidity density of the most central collisions is compared to model calculations - none of which fully describes the measured distribution. We also present an estimate of the rapidity density of charged particles. The width of that distribution is found to exhibit a remarkable proportionality to the beam rapidity, independent of the collision energy from the top SPS to LHC energies.

  6. Large-scale atomistic and quantum-mechanical simulations of a Nafion membrane: Morphology, proton solvation and charge transport.

    PubMed

    Komarov, Pavel V; Khalatur, Pavel G; Khokhlov, Alexei R

    2013-01-01

    Atomistic and first-principles molecular dynamics simulations are employed to investigate the structure formation in a hydrated Nafion membrane and the solvation and transport of protons in the water channel of the membrane. For the water/Nafion systems containing more than 4 million atoms, it is found that the observed microphase-segregated morphology can be classified as bicontinuous: both majority (hydrophobic) and minority (hydrophilic) subphases are 3D continuous and organized in an irregular ordered pattern, which is largely similar to that known for a bicontinuous double-diamond structure. The characteristic size of the connected hydrophilic channels is about 25-50 Å, depending on the water content. A thermodynamic decomposition of the potential of mean force and the calculated spectral densities of the hindered translational motions of cations reveal that ion association observed with decreasing temperature is largely an entropic effect related to the loss of low-frequency modes. Based on the results from the atomistic simulation of the morphology of Nafion, we developed a realistic model of ion-conducting hydrophilic channel within the Nafion membrane and studied it with quantum molecular dynamics. The extensive 120 ps-long density functional theory (DFT)-based simulations of charge migration in the 1200-atom model of the nanochannel consisting of Nafion chains and water molecules allowed us to observe the bimodality of the van Hove autocorrelation function, which provides the direct evidence of the Grotthuss bond-exchange (hopping) mechanism as a significant contributor to the proton conductivity.

  7. Simulation of radial expansion of an electron beam injected into a background plasma

    NASA Technical Reports Server (NTRS)

    Koga, J.; Lin, C. S.

    1989-01-01

    A 2-D electrostatic particle code was used to study the beam radial expansion of a nonrelativistic electron beam injected from an isolated equipotential conductor into a background plasma. The simulations indicate that the beam radius is generally proportional to the beam electron gyroradius when the conductor is charged to a large potential. The simulations also suggest that the charge buildup at the beam stagnation point causes the beam radial expansion. From a survey of the simulation results, it is found that the ratio of the beam radius to the beam electron gyroradius increases with the square root of beam density and decreases inversely with beam injection velocity. This dependence is explained in terms of the ratio of the beam electron Debye length to the ambient electron Debye length. These results are most applicable to the SEPAC electron beam injection experiments from Spacelab 1, where high charging potential was observed.

  8. Current-induced switching in a magnetic insulator

    NASA Astrophysics Data System (ADS)

    Avci, Can Onur; Quindeau, Andy; Pai, Chi-Feng; Mann, Maxwell; Caretta, Lucas; Tang, Astera S.; Onbasli, Mehmet C.; Ross, Caroline A.; Beach, Geoffrey S. D.

    2017-03-01

    The spin Hall effect in heavy metals converts charge current into pure spin current, which can be injected into an adjacent ferromagnet to exert a torque. This spin-orbit torque (SOT) has been widely used to manipulate the magnetization in metallic ferromagnets. In the case of magnetic insulators (MIs), although charge currents cannot flow, spin currents can propagate, but current-induced control of the magnetization in a MI has so far remained elusive. Here we demonstrate spin-current-induced switching of a perpendicularly magnetized thulium iron garnet film driven by charge current in a Pt overlayer. We estimate a relatively large spin-mixing conductance and damping-like SOT through spin Hall magnetoresistance and harmonic Hall measurements, respectively, indicating considerable spin transparency at the Pt/MI interface. We show that spin currents injected across this interface lead to deterministic magnetization reversal at low current densities, paving the road towards ultralow-dissipation spintronic devices based on MIs.

  9. Molecular Simulations of Graphene-Based Electric Double-Layer Capacitors

    NASA Astrophysics Data System (ADS)

    Kalluri, Raja K.; Konatham, Deepthi; Striolo, Alberto

    2011-03-01

    Towards deploying renewable energy sources it is crucial to develop efficient and cost-effective technologies to store electricity. Traditional batteries are plagued by a number of practical problems that at present limit their widespread applicability. One possible solution is represented by electric double-layer capacitors (EDLCs). To deploy EDLCs at the large scale it is necessary to better understand how electrolytes pack and diffuse within narrow charged pores. We present here simulation results for the concentrated aqueous solutions of NaCl, CsCl, and NaI confined within charged graphene-based porous materials. We discuss how the structure of confined water, the salt concentration, the ions size, and the surface charge density determine the accumulation of electrolytes within the porous network. Our results, compared to data available for bulk systems, are critical for relating macroscopic observations to molecular-level properties of the confined working fluids. Research supported by the Department of Energy.

  10. Enhanced Solar Cell Conversion Efficiency of InGaN/GaN Multiple Quantum Wells by Piezo-Phototronic Effect.

    PubMed

    Jiang, Chunyan; Jing, Liang; Huang, Xin; Liu, Mengmeng; Du, Chunhua; Liu, Ting; Pu, Xiong; Hu, Weiguo; Wang, Zhong Lin

    2017-09-26

    The piezo-phototronic effect is the tuning of piezoelectric polarization charges at the interface to largely enhance the efficiency of optoelectronic processes related to carrier separation or recombination. Here, we demonstrated the enhanced short-circuit current density and the conversion efficiency of InGaN/GaN multiple quantum well solar cells with an external stress applied on the device. The external-stress-induced piezoelectric charges generated at the interfaces of InGaN and GaN compensate the piezoelectric charges induced by lattice mismatch stress in the InGaN wells. The energy band realignment is calculated with a self-consistent numerical model to clarify the enhancement mechanism of optical-generated carriers. This research not only theoretically and experimentally proves the piezo-phototronic effect modulated the quantum photovoltaic device but also provides a great promise to maximize the use of solar energy in the current energy revolution.

  11. Development and study of charge sensors for fast charge detection in quantum dots

    NASA Astrophysics Data System (ADS)

    Thalakulam, Madhu

    Charge detection at microsecond time-scales has far reaching consequences in both technology and in our understanding of electron dynamics in nanoscale devices such as quantum dots. Radio-frequency superconducting single electron transistors (RF-SET) and quantum point contacts (QPC) are ultra sensitive charge sensors operating near the quantum limit. The operation of RF-SETs outside the superconducting gap has been a topic of study; the sub-gap operation, especially in the presence of large quantum fluctuations of quasiparticles remains largely unexplored, both theoretically and experimentally. We have investigated the effects of quantum fluctuations of quasiparticles on the operation of RF-SETs for large values of the quasiparticle cotunneling parameter alpha = 8EJ/Ec, where EJ and Ec are the Josephson and charging energies. We find that, for alpha > 1, sub-gap RF-SET operation is still feasible despite quantum fluctuations that wash out quasiparticle tunneling thresholds. Such RF-SETs show linearity and signal-to-noise ratio superior to those obtained when quantum fluctuations are weak, while still demonstrating excellent charge sensitivity. We have operated a QPC charge detector in a radio frequency mode that allows fast charge detection in a bandwidth of several megahertz. The noise limiting the sensitivity of the charge detector is not the noise of a secondary amplifier, but the non-equilibrium device noise of the QPC itself. The noise power averaged over a measurement bandwidth of about 10MHz around the carrier frequency is in agreement with the theory of photon-assisted shot noise. Frequency-resolved measurements, however show several significant discrepancies with the theoretical predictions. The measurement techniques developed can also be used to investigate the noise of other semiconductor nanostructures such as quantum dots in the Kondo regime. A study of the noise characteristics alone can not determine whether the device is operating at the quantum limit; a characterization of back action is also necessary. The inelastic current through a double quantum dot system (DQD) is sensitive to the spectral density of voltage fluctuations in its electromagnetic environment. Electrical transport studies on a DQD system electrostatically coupled to an SET shows qualitative evidence of back-action of SET. The design and fabrication of a few electron DQD device with integrated RF-SET and QPC charge sensors for the study of back action of the sensors and real-time electron dynamics in the DQD are also discussed.

  12. Relativistic polytropic spheres with electric charge: Compact stars, compactness and mass bounds, and quasiblack hole configurations

    NASA Astrophysics Data System (ADS)

    Arbañil, José D. V.; Zanchin, Vilson T.

    2018-05-01

    We study the static equilibrium configurations of uncharged and charged spheres composed by a relativistic polytropic fluid, and we compare with those of spheres composed by a nonrelativistic polytropic fluid, the later case being already studied in a previous work [J. D. Arbañil, P. S. Lemos, and V. T. Zanchin, Phys. Rev. D 88, 084023 (2013), 10.1103/PhysRevD.88.084023]. An equation of state connecting the pressure p and the energy density ρ is assumed. In the nonrelativistic fluid case, the connection is through a nonrelativistic polytropic equation of state, p =ω ργ , with ω and γ being respectively the polytropic constant and the polytropic exponent. In the relativistic fluid case, the connection is through a relativistic polytropic equation of state, p =ω δγ, with δ =ρ -p /(γ -1 ), and δ being the rest-mass density of the fluid. For the electric charge distribution, we assume that the charge density ρe is proportional to the energy density ρ , ρe=α ρ , with α being a constant such that 0 ≤|α |≤1 . The study is developed by integrating numerically the hydrostatic equilibrium equation. Some properties of the charged spheres such as the gravitational mass, the total electric charge, the radius, the surface redshift, and the speed of sound are analyzed by varying the central rest-mass density, the charge fraction, and the polytropic exponent. In addition, some limits that arise in general relativity, such as the Chandrasekhar limit, the Oppenheimer-Volkoff limit, the Buchdahl bound, and the Buchdahl-Andréasson bound are studied. It is confirmed that charged relativistic polytropic spheres with γ →∞ and α →1 saturate the Buchdahl-Andréasson bound, thus indicating that it reaches the quasiblack hole configuration. We show by means of numerical analysis that, as expected, the major differences between the two cases appear in the high energy density region.

  13. Mid-Latitude Ionospheric Disturbances Due to Geomagnetic Storms at ISS Altitudes

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Willis, Emily M.; Neergaard Parker, Linda

    2014-01-01

    Spacecraft charging of the International Space Station (ISS) is dominated by interaction of the US high voltage solar arrays with the F2-region ionosphere plasma environment. ISS solar array charging is enhanced in a high electron density environment due to the increased thermal electron currents to the edges of the solar cells. High electron temperature environments suppress charging due to formation of barrier potentials on the charged solar cell cover glass that restrict the charging currents to the cell edge [Mandell et al., 2003]. Environments responsible for strong solar array charging are therefore characterized by high electron densities and low electron temperatures. In support of the ISS space environmental effects engineering community, we are working to understand a number of features of solar array charging and to determine how well future charging behavior can be predicted from in-situ plasma density and temperature measurements. One aspect of this work is a need to characterize the magnitude of electron density and temperature variations that occur at ISS orbital altitudes (approximately 400 km) over time scales of days, the latitudes over which significant variations occur, and the time periods over which the disturbances persist once they start. This presentation provides examples of mid-latitude electron density and temperature disturbances at altitudes relevant to ISS using data sets and tools developed for our ISS plasma environment study. "Mid-latitude" is defined as the extra-tropical region between approx. 30 degrees to approx. 60 degrees magnetic latitude sampled by ISS over its 51.6 degree inclination orbit. We focus on geomagnetic storm periods because storms are well known drivers for disturbances in the ionospheric plasma environment.

  14. Effect of pristine graphene incorporation on charge storage mechanism of three-dimensional graphene oxide: superior energy and power density retention

    PubMed Central

    Singh, Kiran Pal; Bhattacharjya, Dhrubajyoti; Razmjooei, Fatemeh; Yu, Jong-Sung

    2016-01-01

    In the race of gaining higher energy density, carbon’s capacity to retain power density is generally lost due to defect incorporation and resistance increment in carbon electrode. Herein, a relationship between charge carrier density/charge movement and supercapacitance performance is established. For this purpose we have incorporated the most defect-free pristine graphene into defective/sacrificial graphene oxide. A unique co-solvent-based technique is applied to get a homogeneous suspension of single to bi-layer graphene and graphene oxide. This suspension is then transformed into a 3D composite structure of pristine graphene sheets (GSs) and defective N-doped reduced graphene oxide (N-RGO), which is the first stable and homogenous 3D composite between GS and RGO to the best of our knowledge. It is found that incorporation of pristine graphene can drastically decrease defect density and thus decrease relaxation time due to improved associations between electrons in GS and ions in electrolyte. Furthermore, N doping is implemented selectively only on RGO and such doping is shown to improve the charge carrier density of the composite, which eventually improves the energy density. After all, the novel 3D composite structure of N-RGO and GS greatly improves energy and power density even at high current density (20 A/g). PMID:27530441

  15. The impact of hot charge carrier mobility on photocurrent losses in polymer-based solar cells

    PubMed Central

    Philippa, Bronson; Stolterfoht, Martin; Burn, Paul L.; Juška, Gytis; Meredith, Paul; White, Ronald D.; Pivrikas, Almantas

    2014-01-01

    A typical signature of charge extraction in disordered organic systems is dispersive transport, which implies a distribution of charge carrier mobilities that negatively impact on device performance. Dispersive transport has been commonly understood to originate from a time-dependent mobility of hot charge carriers that reduces as excess energy is lost during relaxation in the density of states. In contrast, we show via photon energy, electric field and film thickness independence of carrier mobilities that the dispersive photocurrent in organic solar cells originates not from the loss of excess energy during hot carrier thermalization, but rather from the loss of carrier density to trap states during transport. Our results emphasize that further efforts should be directed to minimizing the density of trap states, rather than controlling energetic relaxation of hot carriers within the density of states. PMID:25047086

  16. Structure of Weakly Charged Polyelectrolyte Brushes: Monomer Density Profiles

    NASA Astrophysics Data System (ADS)

    Borisov, O. V.; Zhulina, E. B.

    1997-03-01

    The internal structure (the monomer density profiles) of weakly charged polyelectrolyte brushes of different morphologies has been analyzed on the basis of the self-consistent-field approach. In contrast to previous studies based on the local electroneutrality approximation valid for sufficiently strongly charged or densely grafted (“osmotic") brushes we consider the opposite limit of sparse brushes which are unable to retain the counterions inside the brush. We have shown that an exact analytical solution of the SCF-equations is available in the case of a planar brush. In contrast to Gaussian monomer density profile known for “osmotic" polyelectrolyte brushes we have found that weakly charged brushes are characterized by constant monomer density. At the same time free ends of grafted polyions are distributed throughout the brush. Thus, the structural cross-over between polyelectrolyte “mushrooms" and dense brush regimes is established.

  17. Modelling charge transfer reactions with the frozen density embedding formalism.

    PubMed

    Pavanello, Michele; Neugebauer, Johannes

    2011-12-21

    The frozen density embedding (FDE) subsystem formulation of density-functional theory is a useful tool for studying charge transfer reactions. In this work charge-localized, diabatic states are generated directly with FDE and used to calculate electronic couplings of hole transfer reactions in two π-stacked nucleobase dimers of B-DNA: 5'-GG-3' and 5'-GT-3'. The calculations rely on two assumptions: the two-state model, and a small differential overlap between donor and acceptor subsystem densities. The resulting electronic couplings agree well with benchmark values for those exchange-correlation functionals that contain a high percentage of exact exchange. Instead, when semilocal GGA functionals are used the electronic couplings are grossly overestimated.

  18. Comparing simulations and test data of a radiation damaged charge-coupled device for the Euclid mission

    NASA Astrophysics Data System (ADS)

    Skottfelt, Jesper; Hall, David J.; Gow, Jason P. D.; Murray, Neil J.; Holland, Andrew D.; Prod'homme, Thibaut

    2017-04-01

    The visible imager instrument on board the Euclid mission is a weak-lensing experiment that depends on very precise shape measurements of distant galaxies obtained by a large charge-coupled device (CCD) array. Due to the harsh radiative environment outside the Earth's atmosphere, it is anticipated that the CCDs over the mission lifetime will be degraded to an extent that these measurements will be possible only through the correction of radiation damage effects. We have therefore created a Monte Carlo model that simulates the physical processes taking place when transferring signals through a radiation-damaged CCD. The software is based on Shockley-Read-Hall theory and is made to mimic the physical properties in the CCD as closely as possible. The code runs on a single electrode level and takes the three-dimensional trap position, potential structure of the pixel, and multilevel clocking into account. A key element of the model is that it also takes device specific simulations of electron density as a direct input, thereby avoiding making any analytical assumptions about the size and density of the charge cloud. This paper illustrates how test data and simulated data can be compared in order to further our understanding of the positions and properties of the individual radiation-induced traps.

  19. Disk-accreting magnetic neutron stars as high-energy particle accelerators

    NASA Technical Reports Server (NTRS)

    Hamilton, Russell J.; Lamb, Frederick K.; Miller, M. Coleman

    1994-01-01

    Interaction of an accretion disk with the magnetic field of a neutron star produces large electromotive forces, which drive large conduction currents in the disk-magnetosphere-star circuit. Here we argue that such large conduction currents will cause microscopic and macroscopic instabilities in the magnetosphere. If the minimum plasma density in the magnetosphere is relatively low is less than or aproximately 10(exp 9)/cu cm, current-driven micro-instabilities may cause relativistic double layers to form, producing voltage differences in excess of 10(exp 12) V and accelerating charged particles to very high energies. If instead the plasma density is higher (is greater than or approximately = 10(exp 9)/cu cm, twisting of the stellar magnetic field is likely to cause magnetic field reconnection. This reconnection will be relativistic, accelerating plasma in the magnetosphere to relativistic speeds and a small fraction of particles to very high energies. Interaction of these high-energy particles with X-rays, gamma-rays, and accreting plasma may produce detectable high-energy radiation.

  20. Avidin as a Model for Charge Driven Transport into Cartilage and Drug Delivery for treating Early Stage Post-traumatic Osteoarthritis

    PubMed Central

    Bajpayee, Ambika G.; Wong, Cliff R.; Bawendi, Moungi G.; Frank, Eliot H.; Grodzinsky, Alan J.

    2013-01-01

    Local drug delivery into cartilage remains a challenge due to its dense extracellular matrix of negatively charged proteoglycans enmeshed within a collagen fibril network. The high negative fixed charge density of cartilage offers the unique opportunity to utilize electrostatic interactions to augment transport, binding and retention of drug carriers. With the goal of developing particle-based drug delivery mechanisms for treating post-traumatic osteoarthritis, our objectives were, first, to determine the size range of a variety of solutes that could penetrate and diffuse through normal cartilage and enzymatically treated cartilage to mimic early stages of OA, and second, to investigate the effects of electrostatic interactions on particle partitioning, uptake and binding within cartilage using the highly positively charged protein, Avidin, as a model. Results showed that solutes having a hydrodynamic diameter ≤ 10 nm can penetrate into the full thickness of cartilage explants while larger sized solutes were trapped in the tissue’s superficial zone. Avidin had a 400-fold higher uptake than its neutral same-sized counterpart, NeutrAvidin, and >90% of the absorbed Avidin remained within cartilage explants for at least 15 days. We report reversible, weak binding (KD ~150 μM) of Avidin to intratissue sites in cartilage. The large effective binding site density (NT ~ 2920 μM) within cartilage matrix facilitates Avidin’s retention, making its structure suitable for particle based drug delivery into cartilage. PMID:24120044

  1. Paramagnetic defects and charge trapping behavior of ZrO2 films deposited on germanium by plasma-enhanced CVD

    NASA Astrophysics Data System (ADS)

    Mahata, C.; Bera, M. K.; Bose, P. K.; Maiti, C. K.

    2009-02-01

    Internal photoemission and magnetic resonance studies have been performed to investigate the charge trapping behavior and chemical nature of defects in ultrathin (~14 nm) high-k ZrO2 dielectric films deposited on p-Ge (1 0 0) substrates at low temperature (<200 °C) by plasma-enhanced chemical vapor deposition (PECVD) in a microwave (700 W, 2.45 GHz) plasma at a pressure of ~65 Pa. Both the band and defect-related electron states have been characterized using electron paramagnetic resonance, internal photoemission, capacitance-voltage and current-voltage measurements under UV illumination. Capacitance-voltage and photocurrent-voltage measurements were used to determine the centroid of oxide charge within the high-k gate stack. The observed shifts in photocurrent response of the Al/ZrO2/GeO2/p-Ge metal-insulator-semiconductor (MIS) capacitors indicate the location of the centroids to be within the ZrO2 dielectric near to the gate electrode. Moreover, the measured flat band voltage and photocurrent shifts also indicate a large density of traps in the dielectric. The impact of plasma nitridation on the interfacial quality of the oxides has been investigated. Different N sources, such as NO and NH3, have been used for nitrogen engineering. Oxynitride samples show a lower defect density and trapping over the non-nitrided samples. The charge trapping and detrapping properties of MIS capacitors under stressing in constant current and voltage modes have been investigated in detail.

  2. Bipolaronic charge density waves, polaronic spin density waves and high Tc superconductivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aubry, S.

    1992-01-01

    At large enough electron phonon coupling, the existence of bipolaronic, polaronic and mixed states is rigorously proven for the adiabatic Holstein model at any dimension and any band filling. The ground-state is one of them which then prove the existence of insulating Bipolaronic Charge Density Waves. The role of the quantum lattice fluctuations is analysed and found to be neglegible in that regime but to become essential in case of phonon softening then favoring the occurence of superconductivity. When a strong Hubbard term is also present, the bipolarons break into polorons and the ground state is expected to be amore » polaronic spin density wave. If the repulsive Hubbard term is comparable to the electron-phonon coupling, the energy for breaking a bipoloron into two polarons can become small and we get instead of these two degenerate structures, a pait of polarons bounded by a spin resonance which we call spin resonant bipolaron''. This resonant bipolaron is still strongly bound, but the role of the quantum lattice fluctuations becomes now very important and yields a sharp broadening of the bandwidth of this resonant bipolarona. Thus, the strong quantum character of these resonant bipolarons could prevent their localization into real space structures which could be insulating bipolaronic CDWs or polaronic SDWS, then favoring the formation of a superconducting coherent state with a possible high {Tc}.« less

  3. Bipolaronic charge density waves, polaronic spin density waves and high {Tc} superconductivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aubry, S.

    1992-09-01

    At large enough electron phonon coupling, the existence of bipolaronic, polaronic and mixed states is rigorously proven for the adiabatic Holstein model at any dimension and any band filling. The ground-state is one of them which then prove the existence of insulating Bipolaronic Charge Density Waves. The role of the quantum lattice fluctuations is analysed and found to be neglegible in that regime but to become essential in case of phonon softening then favoring the occurence of superconductivity. When a strong Hubbard term is also present, the bipolarons break into polorons and the ground state is expected to be amore » polaronic spin density wave. If the repulsive Hubbard term is comparable to the electron-phonon coupling, the energy for breaking a bipoloron into two polarons can become small and we get instead of these two degenerate structures, a pait of polarons bounded by a spin resonance which we call ``spin resonant bipolaron``. This resonant bipolaron is still strongly bound, but the role of the quantum lattice fluctuations becomes now very important and yields a sharp broadening of the bandwidth of this resonant bipolarona. Thus, the strong quantum character of these resonant bipolarons could prevent their localization into real space structures which could be insulating bipolaronic CDWs or polaronic SDWS, then favoring the formation of a superconducting coherent state with a possible high {Tc}.« less

  4. DEM modeling of ball mills with experimental validation: influence of contact parameters on charge motion and power draw

    NASA Astrophysics Data System (ADS)

    Boemer, Dominik; Ponthot, Jean-Philippe

    2017-01-01

    Discrete element method simulations of a 1:5-scale laboratory ball mill are presented in this paper to study the influence of the contact parameters on the charge motion and the power draw. The position density limit is introduced as an efficient mathematical tool to describe and to compare the macroscopic charge motion in different scenarios, i.a. with different values of the contact parameters. While the charge motion and the power draw are relatively insensitive to the stiffness and the damping coefficient of the linear spring-slider-damper contact law, the coefficient of friction has a strong influence since it controls the sliding propensity of the charge. Based on the experimental calibration and validation by charge motion photographs and power draw measurements, the descriptive and predictive capabilities of the position density limit and the discrete element method are demonstrated, i.e. the real position of the charge is precisely delimited by the respective position density limit and the power draw can be predicted with an accuracy of about 5 %.

  5. 2D Raman band splitting in graphene: Charge screening and lifting of the K-point Kohn anomaly.

    PubMed

    Wang, Xuanye; Christopher, Jason W; Swan, Anna K

    2017-10-19

    Pristine graphene encapsulated in hexagonal boron nitride has transport properties rivalling suspended graphene, while being protected from contamination and mechanical damage. For high quality devices, it is important to avoid and monitor accidental doping and charge fluctuations. The 2D Raman double peak in intrinsic graphene can be used to optically determine charge density, with decreasing peak split corresponding to increasing charge density. We find strong correlations between the 2D 1 and 2D 2 split vs 2D line widths, intensities, and peak positions. Charge density fluctuations can be measured with orders of magnitude higher precision than previously accomplished using the G-band shift with charge. The two 2D intrinsic peaks can be associated with the "inner" and "outer" Raman scattering processes, with the counterintuitive assignment of the phonon closer to the K point in the KM direction (outer process) as the higher energy peak. Even low charge screening lifts the phonon Kohn anomaly near the K point for graphene encapsulated in hBN, and shifts the dominant intensity from the lower to the higher energy peak.

  6. X-Ray Sum Frequency Diffraction for Direct Imaging of Ultrafast Electron Dynamics

    NASA Astrophysics Data System (ADS)

    Rouxel, Jérémy R.; Kowalewski, Markus; Bennett, Kochise; Mukamel, Shaul

    2018-06-01

    X-ray diffraction from molecules in the ground state produces an image of their charge density, and time-resolved x-ray diffraction can thus monitor the motion of the nuclei. However, the density change of excited valence electrons upon optical excitation can barely be monitored with regular diffraction techniques due to the overwhelming background contribution of the core electrons. We present a nonlinear x-ray technique made possible by novel free electron laser sources, which provides a spatial electron density image of valence electron excitations. The technique, sum frequency generation carried out with a visible pump and a broadband x-ray diffraction pulse, yields snapshots of the transition charge densities, which represent the electron density variations upon optical excitation. The technique is illustrated by ab initio simulations of transition charge density imaging for the optically induced electronic dynamics in a donor or acceptor substituted stilbene.

  7. Comparison of direct and flow integration based charge density population analyses.

    PubMed

    Francisco, E; Martín Pendas, A; Blanco, M A; Costales, A

    2007-12-06

    Different exhaustive and fuzzy partitions of the molecular electron density (rho) into atomic densities (rho(A)) are used to compute the atomic charges (Q(A)) of a representative set of molecules. The Q(A)'s derived from a direct integration of rho(A) are compared to those obtained from integrating the deformation density rho(def) = rho - rho(0) within each atomic domain. Our analysis shows that the latter methods tend to give Q(A)'s similar to those of the (arbitrary) reference atomic densities rho(A)(0) used in the definition of the promolecular density, rho(0) = SigmaArho(A)(0). Moreover, we show that the basis set independence of these charges is a sign not of their intrinsic quality, as commonly stated, but of the practical insensitivity on the basis set of the atomic domains that are employed in this type of methods.

  8. Thermal management of batteries

    NASA Astrophysics Data System (ADS)

    Gibbard, H. F.; Chen, C.-C.

    Control of the internal temperature during high rate discharge or charge can be a major design problem for large, high energy density battery systems. A systematic approach to the thermal management of such systems is described for different load profiles based on: thermodynamic calculations of internal heat generation; calorimetric measurements of heat flux; analytical and finite difference calculations of the internal temperature distribution; appropriate system designs for heat removal and temperature control. Examples are presented of thermal studies on large lead-acid batteries for electrical utility load levelling and nickel-zinc and lithium-iron sulphide batteries for electric vehicle propulsion.

  9. Optical reading of field-effect transistors by phase-space absorption quenching in a single InGaAs quantum well conducting channel

    NASA Astrophysics Data System (ADS)

    Chemla, D. S.; Bar-Joseph, I.; Klingshirn, C.; Miller, D. A. B.; Kuo, J. M.

    1987-03-01

    Absorption switching in a semiconductor quantum well by electrically varying the charge density in the quantum well conducting channel of a selectively doped heterostructure transistor is reported for the first time. The phase-space absorption quenching (PAQ) is observed at room temperature in an InGaAs/InAlAs grown on InP FET, and it shows large absorption coefficient changes with relatively broad spectral bandwidth. This PAQ is large enough to be used for direct optical determination of the logic state of the FET.

  10. Lower limit on dark matter production at the CERN Large Hadron Collider.

    PubMed

    Feng, Jonathan L; Su, Shufang; Takayama, Fumihiro

    2006-04-21

    We evaluate the prospects for finding evidence of dark matter production at the CERN Large Hadron Collider. We consider weakly interacting massive particles (WIMPs) and superWIMPs and characterize their properties through model-independent parametrizations. The observed relic density then implies lower bounds on dark matter production rates as functions of a few parameters. For WIMPs, the resulting signal is indistinguishable from background. For superWIMPs, however, this analysis implies significant production of metastable charged particles. For natural parameters, these rates may far exceed Drell-Yan cross sections and yield spectacular signals.

  11. Second harmonic generation study of malachite green adsorption at the interface between air and an electrolyte solution: observing the effect of excess electrical charge density at the interface.

    PubMed

    Song, Jinsuk; Kim, Mahn Won

    2010-03-11

    Understanding the differential adsorption of ions at the interface of an electrolyte solution is very important because it is closely related, not only to the fundamental aspects of biological systems, but also to many industrial applications. We have measured the excess interfacial negative charge density at air-electrolyte solution interfaces by using resonant second harmonic generation of oppositely charged probe molecules. The excess charge density increased with the square root of the bulk electrolyte concentration. A new adsorption model that includes the electrostatic interaction between adsorbed molecules is proposed to explain the measured adsorption isotherm, and it is in good agreement with the experimental results.

  12. Insulator-semiconductor interface fixed charges in AlGaN/GaN metal-insulator-semiconductor devices with Al2O3 or AlTiO gate dielectrics

    NASA Astrophysics Data System (ADS)

    Le, Son Phuong; Nguyen, Duong Dai; Suzuki, Toshi-kazu

    2018-01-01

    We have investigated insulator-semiconductor interface fixed charges in AlGaN/GaN metal-insulator-semiconductor (MIS) devices with Al2O3 or AlTiO (an alloy of Al2O3 and TiO2) gate dielectrics obtained by atomic layer deposition on AlGaN. Analyzing insulator-thickness dependences of threshold voltages for the MIS devices, we evaluated positive interface fixed charges, whose density at the AlTiO/AlGaN interface is significantly lower than that at the Al2O3/AlGaN interface. This and a higher dielectric constant of AlTiO lead to rather shallower threshold voltages for the AlTiO gate dielectric than for Al2O3. The lower interface fixed charge density also leads to the fact that the two-dimensional electron concentration is a decreasing function of the insulator thickness for AlTiO, whereas being an increasing function for Al2O3. Moreover, we discuss the relationship between the interface fixed charges and interface states. From the conductance method, it is shown that the interface state densities are very similar at the Al2O3/AlGaN and AlTiO/AlGaN interfaces. Therefore, we consider that the lower AlTiO/AlGaN interface fixed charge density is not owing to electrons trapped at deep interface states compensating the positive fixed charges and can be attributed to a lower density of oxygen-related interface donors.

  13. Self-Consistent Determination of Atomic Charges of Ionic Liquid through a Combination of Molecular Dynamics Simulation and Density Functional Theory.

    PubMed

    Ishizuka, Ryosuke; Matubayasi, Nobuyuki

    2016-02-09

    A self-consistent scheme is developed to determine the atomic partial charges of ionic liquid. Molecular dynamics (MD) simulation was conducted to sample a set of ion configurations, and these configurations were subject to density functional theory (DFT) calculations to determine the partial charges. The charges were then averaged and used as inputs for the subsequent MD simulation, and MD and DFT calculations were repeated until the MD results are not altered any more. We applied this scheme to 1,3-dimethylimidazolium bis(trifluoromethylsulfonyl) imide ([C1mim][NTf2]) and investigated its structure and dynamics as a function of temperature. At convergence, the average ionic charges were ±0.84 e at 350 K due to charge transfer among ions, where e is the elementary charge, while the reduced ionic charges do not affect strongly the density of [C1mim][NTf2] and radial distribution function. Instead, major effects are found on the energetics and dynamics, with improvements of the overestimated heat of vaporization and the too slow motions of ions observed in MD simulations using commonly used force fields.

  14. Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model.

    PubMed

    Schuss, Z; Nadler, B; Eisenberg, R S

    2001-09-01

    Permeation of ions from one electrolytic solution to another, through a protein channel, is a biological process of considerable importance. Permeation occurs on a time scale of micro- to milliseconds, far longer than the femtosecond time scales of atomic motion. Direct simulations of atomic dynamics are not yet possible for such long-time scales; thus, averaging is unavoidable. The question is what and how to average. In this paper, we average a Langevin model of ionic motion in a bulk solution and protein channel. The main result is a coupled system of averaged Poisson and Nernst-Planck equations (CPNP) involving conditional and unconditional charge densities and conditional potentials. The resulting NP equations contain the averaged force on a single ion, which is the sum of two components. The first component is the gradient of a conditional electric potential that is the solution of Poisson's equation with conditional and permanent charge densities and boundary conditions of the applied voltage. The second component is the self-induced force on an ion due to surface charges induced only by that ion at dielectric interfaces. The ion induces surface polarization charge that exerts a significant force on the ion itself, not present in earlier PNP equations. The proposed CPNP system is not complete, however, because the electric potential satisfies Poisson's equation with conditional charge densities, conditioned on the location of an ion, while the NP equations contain unconditional densities. The conditional densities are closely related to the well-studied pair-correlation functions of equilibrium statistical mechanics. We examine a specific closure relation, which on the one hand replaces the conditional charge densities by the unconditional ones in the Poisson equation, and on the other hand replaces the self-induced force in the NP equation by an effective self-induced force. This effective self-induced force is nearly zero in the baths but is approximately equal to the self-induced force in and near the channel. The charge densities in the NP equations are interpreted as time averages over long times of the motion of a quasiparticle that diffuses with the same diffusion coefficient as that of a real ion, but is driven by the averaged force. In this way, continuum equations with averaged charge densities and mean-fields can be used to describe permeation through a protein channel.

  15. Charging in the ac Conductance of a Double Barrier Resonant Tunneling Structure

    NASA Technical Reports Server (NTRS)

    Anantram, M. P.; Saini, Subhash (Technical Monitor)

    1998-01-01

    There have been many studies of the linear response ac conductance of a double barrier resonant tunneling structure (DBRTS), both at zero and finite dc biases. While these studies are important, they fail to self consistently include the effect of the time dependent charge density in the well. In this paper, we calculate the ac conductance at both zero and finite do biases by including the effect of the time dependent charge density in the well in a self consistent manner. The charge density in the well contributes to both the flow of displacement currents in the contacts and the time dependent potential in the well. We find that including these effects can make a significant difference to the ac conductance and the total ac current is not equal to the simple average of the non-selfconsistently calculated conduction currents in the two contacts. This is illustrated by comparing the results obtained with and without the effect of the time dependent charge density included correctly. Some possible experimental scenarios to observe these effects are suggested.

  16. Transverse energy per charged particle in heavy-ion collisions: Role of collective flow

    NASA Astrophysics Data System (ADS)

    Kumar Tiwari, Swatantra; Sahoo, Raghunath

    2018-03-01

    The ratio of (pseudo)rapidity density of transverse energy and the (pseudo)rapidity density of charged particles, which is a measure of the mean transverse energy per particle, is an important observable in high energy heavy-ion collisions. This ratio reveals information about the mechanism of particle production and the freeze-out criteria. Its collision energy and centrality dependence is almost similar to the chemical freeze-out temperature until top Relativistic Heavy-Ion Collider (RHIC) energy. The Large Hadron Collider (LHC) measurement at √{s_{NN}} = 2.76 TeV brings up new challenges towards understanding the phenomena like gluon saturation and role of collective flow, etc. being prevalent at high energies, which could contribute to the above observable. Statistical Hadron Gas Model (SHGM) with a static fireball approximation has been successful in describing both the centrality and energy dependence until top RHIC energies. However, the SHGM predictions for higher energies lie well below the LHC data. In order to understand this, we have incorporated collective flow in an excluded-volume SHGM (EV-SHGM). Our studies suggest that the collective flow plays an important role in describing E T/ N ch and it could be one of the possible parameters to explain the rise observed in E T/ N ch from RHIC to LHC energies. Predictions are made for E T/ N ch , participant pair normalized-transverse energy per unit rapidity and the Bjorken energy density for Pb+Pb collisions at √{s_{NN}} = 5.02 TeV at the Large Hadron Collider.

  17. High charge state carbon and oxygen ions in Earth's equatorial quasi-trapping region

    NASA Technical Reports Server (NTRS)

    Christon, S. P.; Hamilton, D. C.; Gloeckler, G.; Eastmann, T. E.

    1994-01-01

    Observations of energetic (1.5 - 300 keV/e) medium-to-high charge state (+3 less than or equal to Q less than or equal to +7) solar wind origin C and O ions made in the quasi-trapping region (QTR) of Earth's magnetosphere are compared to ion trajectories calculated in model equatorial magnetospheric magnetic and electric fields. These comparisons indicate that solar wind ions entering the QTR on the nightside as an energetic component of the plasma sheet exit the region on the dayside, experiencing little or no charge exchange on the way. Measurements made by the CHarge Energy Mass (CHEM) ion spectrometer on board the Active Magnetospheric Particle Tracer Explorer/Charge Composition Explorer (AMPTE/CCE) spacecraft at 7 less than L less than 9 from September 1984 to January 1989 are the source of the new results contained herein: quantitative long-term determination of number densities, average energies, energy spectra, local time distributions, and their variation with geomagnetic disturbance level as indexed by Kp. Solar wind primaries (ions with charge states unchanged) and their secondaries (ions with generally lower charge states produced from primaries in the magnetosphere via charge exchange)are observed throughout the QTR and have distinctly different local time variations that persist over the entire 4-year analysis interval. During Kp larger than or equal to 3 deg intervals, primary ion (e.g., O(+6)) densities exhibit a pronounced predawn maximum with average energy minimum and a broad near-local-noon density minimum with average energy maximum. Secondary ion (e.g., O(+5)) densities do not have an identifiable predawn peak, rather they have a broad dayside maximum peaked in local morning and a nightside minimum. During Kp less than or equal to 2(-) intervals, primary ion density peaks are less intense, broader in local time extent, and centered near midnight, while secondary ion density local time variations diminish. The long-time-interval baseline helps to refine and extend previous observations; for example, we show that ionospheric contribution to O(+3)) is negligible. Through comparison with model ion trajectories, we interpret the lack of pronounced secondary ion density peaks colocated with the primary density peaks to indicate that: (1) negligible charge exchange occurs at L greater than 7, that is, solar wind secondaries are produced at L less than 7, and (2) solar wind secondaries do not form a significant portion of the plasma sheet population injected into the QTR. We conclude that little of the energetic solar wind secondary ion population is recirculated through the magnetosphere.

  18. Extension of many-body theory and approximate density functionals to fractional charges and fractional spins.

    PubMed

    Yang, Weitao; Mori-Sánchez, Paula; Cohen, Aron J

    2013-09-14

    The exact conditions for density functionals and density matrix functionals in terms of fractional charges and fractional spins are known, and their violation in commonly used functionals has been shown to be the root of many major failures in practical applications. However, approximate functionals are designed for physical systems with integer charges and spins, not in terms of the fractional variables. Here we develop a general framework for extending approximate density functionals and many-electron theory to fractional-charge and fractional-spin systems. Our development allows for the fractional extension of any approximate theory that is a functional of G(0), the one-electron Green's function of the non-interacting reference system. The extension to fractional charge and fractional spin systems is based on the ensemble average of the basic variable, G(0). We demonstrate the fractional extension for the following theories: (1) any explicit functional of the one-electron density, such as the local density approximation and generalized gradient approximations; (2) any explicit functional of the one-electron density matrix of the non-interacting reference system, such as the exact exchange functional (or Hartree-Fock theory) and hybrid functionals; (3) many-body perturbation theory; and (4) random-phase approximations. A general rule for such an extension has also been derived through scaling the orbitals and should be useful for functionals where the link to the Green's function is not obvious. The development thus enables the examination of approximate theories against known exact conditions on the fractional variables and the analysis of their failures in chemical and physical applications in terms of violations of exact conditions of the energy functionals. The present work should facilitate the calculation of chemical potentials and fundamental bandgaps with approximate functionals and many-electron theories through the energy derivatives with respect to the fractional charge. It should play an important role in developing accurate approximate density functionals and many-body theory.

  19. The effects of electronic impurities and electron-hole recombination dynamics on large-grain organic-inorganic perovskite photovoltaic efficiencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blancon, Jean-Christophe Robert; Nie, Wanyi; Neukirch, Amanda J.

    2016-04-27

    Hybrid organic-inorganic perovskites have attracted considerable attention after promising developments in energy harvesting and other optoelectronic applications. However, further optimization will require a deeper understanding of the intrinsic photophysics of materials with relevant structural characteristics. Here, the dynamics of photoexcited charge carriers in large-area grain organic-inorganic perovskite thin films is investigated via confocal time-resolved photoluminescence spectroscopy. It is found that the bimolecular recombination of free charges is the dominant decay mechanism at excitation densities relevant for photovoltaic applications. Bimolecular coefficients are found to be on the order of 10 –9 cm 3 s –1, comparable to typical direct-gap semiconductors, yetmore » significantly smaller than theoretically expected. It is also demonstrated that there is no degradation in carrier transport in these thin films due to electronic impurities. Here, suppressed electron–hole recombination and transport that is not limited by deep level defects provide a microscopic model for the superior performance of large-area grain hybrid perovskites for photovoltaic applications.« less

  20. Energy Decomposition Analysis Based on Absolutely Localized Molecular Orbitals for Large-Scale Density Functional Theory Calculations in Drug Design.

    PubMed

    Phipps, M J S; Fox, T; Tautermann, C S; Skylaris, C-K

    2016-07-12

    We report the development and implementation of an energy decomposition analysis (EDA) scheme in the ONETEP linear-scaling electronic structure package. Our approach is hybrid as it combines the localized molecular orbital EDA (Su, P.; Li, H. J. Chem. Phys., 2009, 131, 014102) and the absolutely localized molecular orbital EDA (Khaliullin, R. Z.; et al. J. Phys. Chem. A, 2007, 111, 8753-8765) to partition the intermolecular interaction energy into chemically distinct components (electrostatic, exchange, correlation, Pauli repulsion, polarization, and charge transfer). Limitations shared in EDA approaches such as the issue of basis set dependence in polarization and charge transfer are discussed, and a remedy to this problem is proposed that exploits the strictly localized property of the ONETEP orbitals. Our method is validated on a range of complexes with interactions relevant to drug design. We demonstrate the capabilities for large-scale calculations with our approach on complexes of thrombin with an inhibitor comprised of up to 4975 atoms. Given the capability of ONETEP for large-scale calculations, such as on entire proteins, we expect that our EDA scheme can be applied in a large range of biomolecular problems, especially in the context of drug design.

  1. Novel analysis technique for measuring edge density fluctuation profiles with reflectometry in the Large Helical Device.

    PubMed

    Creely, A J; Ida, K; Yoshinuma, M; Tokuzawa, T; Tsujimura, T; Akiyama, T; Sakamoto, R; Emoto, M; Tanaka, K; Michael, C A

    2017-07-01

    A new method for measuring density fluctuation profiles near the edge of plasmas in the Large Helical Device (LHD) has been developed utilizing reflectometry combined with pellet-induced fast density scans. Reflectometer cutoff location was calculated by proportionally scaling the cutoff location calculated with fast far infrared laser interferometer (FIR) density profiles to match the slower time resolution results of the ray-tracing code LHD-GAUSS. Plasma velocity profile peaks generated with this reflectometer mapping were checked against velocity measurements made with charge exchange spectroscopy (CXS) and were found to agree within experimental uncertainty once diagnostic differences were accounted for. Measured density fluctuation profiles were found to peak strongly near the edge of the plasma, as is the case in most tokamaks. These measurements can be used in the future to inform inversion methods of phase contrast imaging (PCI) measurements. This result was confirmed with both a fixed frequency reflectometer and calibrated data from a multi-frequency comb reflectometer, and this method was applied successfully to a series of discharges. The full width at half maximum of the turbulence layer near the edge of the plasma was found to be only 1.5-3 cm on a series of LHD discharges, less than 5% of the normalized minor radius.

  2. Novel analysis technique for measuring edge density fluctuation profiles with reflectometry in the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Creely, A. J.; Ida, K.; Yoshinuma, M.; Tokuzawa, T.; Tsujimura, T.; Akiyama, T.; Sakamoto, R.; Emoto, M.; Tanaka, K.; Michael, C. A.

    2017-07-01

    A new method for measuring density fluctuation profiles near the edge of plasmas in the Large Helical Device (LHD) has been developed utilizing reflectometry combined with pellet-induced fast density scans. Reflectometer cutoff location was calculated by proportionally scaling the cutoff location calculated with fast far infrared laser interferometer (FIR) density profiles to match the slower time resolution results of the ray-tracing code LHD-GAUSS. Plasma velocity profile peaks generated with this reflectometer mapping were checked against velocity measurements made with charge exchange spectroscopy (CXS) and were found to agree within experimental uncertainty once diagnostic differences were accounted for. Measured density fluctuation profiles were found to peak strongly near the edge of the plasma, as is the case in most tokamaks. These measurements can be used in the future to inform inversion methods of phase contrast imaging (PCI) measurements. This result was confirmed with both a fixed frequency reflectometer and calibrated data from a multi-frequency comb reflectometer, and this method was applied successfully to a series of discharges. The full width at half maximum of the turbulence layer near the edge of the plasma was found to be only 1.5-3 cm on a series of LHD discharges, less than 5% of the normalized minor radius.

  3. Pseudocapacitive and hierarchically ordered porous electrode materials supercapacitors

    NASA Astrophysics Data System (ADS)

    Saruhan, B.; Gönüllü, Y.; Arndt, B.

    2013-05-01

    Commercially available double layer capacitors store energy in an electrostatic field. This forms in the form of a double layer by charged particles arranged on two electrodes consisting mostly of active carbon. Such double layer capacitors exhibit a low energy density, so that components with large capacity according to large electrode areas are required. Our research focuses on the development of new electrode materials to realize the production of electrical energy storage systems with high energy density and high power density. Metal oxide based electrodes increase the energy density and the capacitance by addition of pseudo capacitance to the static capacitance present by the double layer super-capacitor electrodes. The so-called hybrid asymmetric cell capacitors combine both types of energy storage in a single component. In this work, the production routes followed in our laboratories for synthesis of nano-porous and aligned metal oxide electrodes using the electrochemical and sputter deposition as well as anodization methods will be described. Our characterisation studies concentrate on electrodes having redox metal-oxides (e.g. MnOx and WOx) and hierarchically aligned nano-porous Li-doped TiO2-NTs. The material specific and electrochemical properties achieved with these electrodes will be presented.

  4. The role of charged particles in the positive corona-generated photon count in a rod to plane air gap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bian, X. M.; Wang, Y. J.; MacAlpine, J. M. K.

    The relationship between the calculated charged-particle densities in positive corona, the rate of streamer production, and the photon count from the corona were investigated and found to be closely related. Both the densities of electrons and positive ions peaked at 11.8 kV, near the corona inception voltage; they then fell rapidly before slowly rising again. This behavior was exactly matched by the measured photon count. The calculation of the charged-particle density in a positive corona was achieved by means of a fluid model.

  5. Effects of nonthermal distribution of electrons and polarity of net dust-charge number density on nonplanar dust-ion-acoustic solitary waves.

    PubMed

    Mamun, A A; Shukla, P K

    2009-09-01

    Effects of the nonthermal distribution of electrons as well as the polarity of the net dust-charge number density on nonplanar (viz. cylindrical and spherical) dust-ion-acoustic solitary waves (DIASWs) are investigated by employing the reductive perturbation method. It is found that the basic features of the DIASWs are significantly modified by the effects of nonthermal electron distribution, polarity of net dust-charge number density, and nonplanar geometry. The implications of our results in some space and laboratory dusty plasma environments are briefly discussed.

  6. Impacts of oxidants in atomic layer deposition method on Al2O3/GaN interface properties

    NASA Astrophysics Data System (ADS)

    Taoka, Noriyuki; Kubo, Toshiharu; Yamada, Toshikazu; Egawa, Takashi; Shimizu, Mitsuaki

    2018-01-01

    The electrical interface properties of GaN metal-oxide-semiconductor (MOS) capacitors with an Al2O3 gate insulator formed by atomic layer deposition method using three kinds of oxidants were investigated by the capacitance-voltage technique, Terman method, and conductance method. We found that O3 and the alternate supply of H2O and O3 (AS-HO) are effective for reducing the interface trap density (D it) at the energy range of 0.15 to 0.30 eV taking from the conduction band minimum. On the other hand, we found that surface potential fluctuation (σs) induced by interface charges for the AS-HO oxidant is much larger than that for a Si MOS capacitor with a SiO2 layer formed by chemical vapor deposition despite the small D it values for the AS-HO oxidant compared with the Si MOS capacitor. This means that the total charged center density including the fixed charge density, charged slow trap density, and charged interface trap density for the GaN MOS capacitor is higher than that for the Si MOS capacitor. Therefore, σs has to be reduced to improve the performances and reliability of GaN devices with the Al2O3/GaN interfaces.

  7. Higgs-mode radiance and charge-density-wave order in 2 H -NbSe2

    NASA Astrophysics Data System (ADS)

    Grasset, Romain; Cea, Tommaso; Gallais, Yann; Cazayous, Maximilien; Sacuto, Alain; Cario, Laurent; Benfatto, Lara; Méasson, Marie-Aude

    2018-03-01

    Despite being usually considered two competing phenomena, charge-density wave and superconductivity coexist in few systems, the most emblematic one being the transition-metal dichalcogenide 2 H -NbSe2 . This unusual condition is responsible for specific Raman signatures across the two phase transitions in this compound. While the appearance of a soft phonon mode is a well-established fingerprint of the charge-density-wave order, the nature of the sharp subgap mode emerging below the superconducting temperature is still under debate. In this work we use external pressure as a knob to unveil the delicate interplay between the two orders, and consequently the nature of the superconducting mode. Thanks to an advanced extreme-conditions Raman technique, we are able to follow the pressure evolution and the simultaneous collapse of the two intertwined charge-density-wave and superconducting modes. The comparison with microscopic calculations in a model system supports the Higgs-type nature of the superconducting mode and suggests that charge-density wave and superconductivity in 2 H -NbSe2 involve mutual electronic degrees of freedom. These findings fill the knowledge gap on the electronic mechanisms at play in transition-metal dichalcogenides, a crucial step to fully exploit their properties in few-layer systems optimized for device applications.

  8. Sensing local pH and ion concentration at graphene electrode surfaces using in situ Raman spectroscopy.

    PubMed

    Shi, Haotian; Poudel, Nirakar; Hou, Bingya; Shen, Lang; Chen, Jihan; Benderskii, Alexander V; Cronin, Stephen B

    2018-02-01

    We report a novel approach to probe the local ion concentration at graphene/water interfaces using in situ Raman spectroscopy. Here, the upshifts observed in the G band Raman mode under applied electrochemical potentials are used to determine the charge density in the graphene sheet. For voltages up to ±0.8 V vs. NHE, we observe substantial upshifts in the G band Raman mode by as much as 19 cm -1 , which corresponds to electron and hole carrier densities of 1.4 × 10 13 cm -2 and Fermi energy shifts of ±430 meV. The charge density in the graphene electrode is also measured independently using the capacitance-voltage characteristics (i.e., Q = CV), and is found to be consistent with those measured by Raman spectroscopy. From charge neutrality requirements, the ion concentration in solution per unit area must be equal and opposite to the charge density in the graphene electrode. Based on these charge densities, we estimate the local ion concentration as a function of electrochemical potential in both pure DI water and 1 M KCl solutions, which span a pH range from 3.8 to 10.4 for pure DI water and net ion concentrations of ±0.7 mol L -1 for KCl under these applied voltages.

  9. Nanosecond pulsed electric field induced changes in cell surface charge density.

    PubMed

    Dutta, Diganta; Palmer, Xavier-Lewis; Asmar, Anthony; Stacey, Michael; Qian, Shizhi

    2017-09-01

    This study reports that the surface charge density changes in Jurkat cells with the application of single 60 nanosecond pulse electric fields, using atomic force microscopy. Using an atomic force microscope tip and Jurkat cells on silica in a 0.01M KCl ionic concentration, we were able to measure the interfacial forces, while also predicting surface charge densities of both Jurkat cell and silica surfaces. The most important finding is that the pulsing conditions varyingly reduced the cells' surface charge density. This offers a novel way in which to examine cellular effects of pulsed electric fields that may lead to the identification of unique mechanical responses. Compared to a single low field strength NsPEF (15kV/cm) application, exposure of Jurkat cells to a single high field strength NsPEF (60kV/cm) resulted in a further reduction in charge density and major morphological changes. The structural, physical, and chemical properties of biological cells immensely influence their electrostatic force; we were able to investigate this through the use of atomic force microscopy by measuring the surface forces between the AFM's tip and the Jurkat cells under different pulsing conditions as well as the interfacial forces in ionic concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Enzyme/non-enzyme discrimination and prediction of enzyme active site location using charge-based methods.

    PubMed

    Bate, Paul; Warwicker, Jim

    2004-07-02

    Calculations of charge interactions complement analysis of a characterised active site, rationalising pH-dependence of activity and transition state stabilisation. Prediction of active site location through large DeltapK(a)s or electrostatic strain is relevant for structural genomics. We report a study of ionisable groups in a set of 20 enzymes, finding that false positives obscure predictive potential. In a larger set of 156 enzymes, peaks in solvent-space electrostatic properties are calculated. Both electric field and potential match well to active site location. The best correlation is found with electrostatic potential calculated from uniform charge density over enzyme volume, rather than from assignment of a standard atom-specific charge set. Studying a shell around each molecule, for 77% of enzymes the potential peak is within that 5% of the shell closest to the active site centre, and 86% within 10%. Active site identification by largest cleft, also with projection onto a shell, gives 58% of enzymes for which the centre of the largest cleft lies within 5% of the active site, and 70% within 10%. Dielectric boundary conditions emphasise clefts in the uniform charge density method, which is suited to recognition of binding pockets embedded within larger clefts. The variation of peak potential with distance from active site, and comparison between enzyme and non-enzyme sets, gives an optimal threshold distinguishing enzyme from non-enzyme. We find that 87% of the enzyme set exceeds the threshold as compared to 29% of the non-enzyme set. Enzyme/non-enzyme homologues, "structural genomics" annotated proteins and catalytic/non-catalytic RNAs are studied in this context.

  11. The Effects of Self-Discharge on the Performance of Symmetric Electric Double-Layer Capacitors and Active Electrolyte-Enhanced Supercapacitors: Insights from Modeling and Simulation

    NASA Astrophysics Data System (ADS)

    Ike, Innocent S.; Sigalas, Iakovos; Iyuke, Sunny E.

    2017-02-01

    The effects of self-discharge on the performance of symmetric electric double-layer capacitors (EDLCs) and active electrolyte-enhanced supercapacitors were examined by incorporating self-discharge into electrochemical capacitor models during charging and discharging. The sources of self-discharge in capacitors were side reactions or redox reactions and several impurities and electric double-layer (EDL) instability. The effects of self-discharge during capacitor storage was negligible since it took a fully charged capacitor a minimum of 14.0 days to be entirely discharged by self-discharge in all conditions studied, hence self-discharge in storage condition can be ignored. The first and second charge-discharge cycle energy efficiencies η_{{{{E}}1}} and η_{{{{E}}2}} of a capacitor of electrode effective conductivity α1 = 0.05 S/cm with only EDL instability self-discharge with current density J_{{VR}} = 1.25 × 10-3 A/cm2 were 72.33% and 72.34%, respectively. Also, energy efficiencies η_{{{{E}}1}} and η_{{{{E}}2}} of a similar capacitor with both side reactions and redox reactions and EDL instability self-discharges with current densities J_{{VR}} = 0.00125 A/cm2 and J_{{{{VR}}1}} = 0.0032 A/cm2 were 38.13% and 38.14% respectively, compared with 84.24% and 84.25% in a similar capacitor without self-discharge. A capacitor with only EDL instability self-discharge and that with both side reactions and redox reactions and EDL instability self-discharge lost 9.73 Wh and 28.38 Wh of energy, respectively, through self-discharge during charging and discharging. Hence, EDLCs charging and discharging time is significantly dependent on the self-discharge rate which are too large to be ignored.

  12. Characterization of the internal ion environment of biofilms based on charge density and shape of ion.

    PubMed

    Kurniawan, Andi; Tsuchiya, Yuki; Eda, Shima; Morisaki, Hisao

    2015-12-01

    Biofilm polymers contain both electrically positively and negatively charged sites. These charged sites enable the biofilm to trap and retain ions leading to an important role of biofilm such as nutrient recycling and pollutant purification. Much work has focused on the ion-exchange capacity of biofilms, and they are known to adsorb ions through an exchange mechanism between the ions in solution and the ions adsorbed to the charged sites on the biofilm polymer. However, recent studies suggest that the adsorption/desorption behavior of ions in a biofilm cannot be explained solely by this ion exchange mechanism. To examine the possibility that a substantial amount of ions are held in the interstitial region of the biofilm polymer by an electrostatic interaction, intact biofilms formed in a natural environment were immersed in distilled water and ion desorption was investigated. All of the detected ion species were released from the biofilms over a short period of time, and very few ions were subsequently released over more time, indicating that the interstitial region of biofilm polymers is another ion reserve. The extent of ion retention in the interstitial region of biofilms for each ion can be determined largely by charge density, |Z|/r, where |Z| is the ion valence as absolute value and r is the ion radius. The higher |Z|/r value an ion has, the stronger it is retained in the interstitial region of biofilms. Ion shape is also a key determinant of ion retention. Spherical and non-spherical ions have different correlations between the condensation ratio and |Z|/r. The generality of these findings were assured by various biofilm samples. Thus, the internal regions of biofilms exchange ions dynamically with the outside environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Trajectories and distribution of interstellar dust grains in the heliosphere

    DOE PAGES

    Slavin, Jonathan D.; Frisch, Priscilla C.; Müller, Hans-Reinhard; ...

    2012-11-01

    The solar wind carves a bubble in the surrounding interstellar medium (ISM) known as the heliosphere. Charged interstellar dust grains (ISDG) encountering the heliosphere may be diverted around the heliopause or penetrate it depending on their charge-to-mass ratio. Here, we present new calculations of trajectories of ISDG in the heliosphere, and the dust density distributions that result. We include up-to-date grain charging calculations using a realistic UV radiation field and full three-dimensional magnetohydrodynamic fluid + kinetic models for the heliosphere. Models with two different (constant) polarities for the solar wind magnetic field (SWMF) are used, with the grain trajectory calculationsmore » done separately for each polarity. Small grains a gr ≲ 0.01 μm are completely excluded from the inner heliosphere. Large grains, a gr ≳ 1.0 μm, pass into the inner solar system and are concentrated near the Sun by its gravity. Trajectories of intermediate size grains depend strongly on the SWMF polarity. When the field has magnetic north pointing to ecliptic north, the field de-focuses the grains resulting in low densities in the inner heliosphere, while for the opposite polarity the dust is focused near the Sun. The ISDG density outside the heliosphere inferred from applying the model results to in situ dust measurements is inconsistent with local ISM depletion data for both SWMF polarities but is bracketed by them. Our result points to the need to include the time variation in the SWMF polarity during grain propagation. This provides valuable insights for interpretation of the in situ dust observations from Ulysses.« less

  14. Distribution of electron density in charged Li@C60 complexes

    NASA Astrophysics Data System (ADS)

    Sadlej-Sosnowska, Nina; Mazurek, Aleksander P.

    2013-08-01

    The Letter is an expanded commentary to the paper 'Fullerene as an electron buffer: charge transfer in Li@C60', by Pavanello and co-authors [8]. We calculated the electron density distribution in the space inside and outside the fullerene cage in Li@C60 complexes differing in total charge, based on Gauss's law. It allowed us to determine the charges contained inside surfaces isomorphic with the fullerene cage and contracted or enlarged with respect to the latter. For every complex, a surface was found in the vicinity of the central Li atom such that the charge enclosed within it was equal to +1.

  15. Two dimensional fluid simulation in capacitively coupled silane discharges

    NASA Astrophysics Data System (ADS)

    Song, Yuan-Hong; Liu, Xiang-Mei; Wang, Yan; Wang, You-Nian

    2011-10-01

    A two-dimensional (2D) self-consistent fluid model is developed to describe the formation, subsequent growth, transport and charging mechanisms of nanoparticles in a capacitively coupled silane plasma. In this discharge process, large anions are produced by a series of chemical reactions of anions with silane molecules, while the lower limit of the initial nanoparticles are taken as large anions to directly link the coagulation module with the nucleation module. The influences of source parameters on the electron density, electron temperature, nanoparticle uniformity, and deposition rate, are carefully studied. Moreover, the behavior of silicon plasma mixed with SiH4, N2 and O2 in a pulse modulated capacitively coupled plasma has been also investigated. Results showed a strong dependence of the electron density and electron temperature on the duty cycle and the modulated frequency. Supported by NSFC (No.10775025 and No. 10805008), INSTSP (Grant No: 2011ZX02403-001), and PNCETU (NCET-08-0073).

  16. Epoxidized Natural Rubber/Chitosan Network Binder for Silicon Anode in Lithium-Ion Battery.

    PubMed

    Lee, Sang Ha; Lee, Jeong Hun; Nam, Dong Ho; Cho, Misuk; Kim, Jaehoon; Chanthad, Chalathorn; Lee, Youngkwan

    2018-05-16

    Polymeric binder is extremely important for Si-based anode in lithium-ion batteries due to large volume variation during charging/discharging process. Here, natural rubber-incorporated chitosan networks were designed as a binder material to obtain both adhesion and elasticity. Chitosan could strongly anchor Si particles through hydrogen bonding, while the natural rubber could stretch reversibly during the volume variation of Si particles, resulting in high cyclic performance. The prepared electrode exhibited the specific capacities of 1350 mAh/g after 1600 cycles at the current density of 8 A/g and 2310 mAh/g after 500 cycles at the current density of 1 A/g. Furthermore, the cycle test with limiting lithiation capacity was conducted to study the optimal binder properties at varying degree of the volume expansion of silicon, and it was found that the elastic property of binder material was strongly required when the large volume expansion of Si occurred.

  17. Modelling charge transfer reactions with the frozen density embedding formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavanello, Michele; Neugebauer, Johannes

    2011-12-21

    The frozen density embedding (FDE) subsystem formulation of density-functional theory is a useful tool for studying charge transfer reactions. In this work charge-localized, diabatic states are generated directly with FDE and used to calculate electronic couplings of hole transfer reactions in two {pi}-stacked nucleobase dimers of B-DNA: 5{sup '}-GG-3{sup '} and 5{sup '}-GT-3{sup '}. The calculations rely on two assumptions: the two-state model, and a small differential overlap between donor and acceptor subsystem densities. The resulting electronic couplings agree well with benchmark values for those exchange-correlation functionals that contain a high percentage of exact exchange. Instead, when semilocal GGA functionalsmore » are used the electronic couplings are grossly overestimated.« less

  18. Ion Heating During Local Helicity Injection Plasma Startup in the Pegasus ST

    NASA Astrophysics Data System (ADS)

    Burke, M. G.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Perry, J. M.; Reusch, J. A.

    2015-11-01

    Plasmas in the Pegasus ST are initiated either through standard, MHD stable, inductive current drive or non-solenoidal local helicity injection (LHI) current drive with strong reconnection activity, providing a rich environment to study ion dynamics. During LHI discharges, a large amount of impurity ion heating has been observed, with the passively measured impurity Ti as high as 800 eV compared to Ti ~ 60 eV and Te ~ 175 eV during standard inductive current drive discharges. In addition, non-thermal ion velocity distributions are observed and appear to be strongest near the helicity injectors. The ion heating is hypothesized to be a result of large-scale magnetic reconnection activity, as the amount of heating scales with increasing fluctuation amplitude of the dominant, edge localized, n =1 MHD mode. An approximate temporal scaling of the heating with the amplitude of higher frequency magnetic fluctuations has also been observed, with large amounts of power spectral density present at several impurity ion cyclotron frequencies. Recent experiments have focused on investigating the impurity ion heating scaling with the ion charge to mass ratio as well as the reconnecting field strength. The ion charge to mass ratio was modified by observing different impurity charge states in similar LHI plasmas while the reconnecting field strength was modified by changing the amount of injected edge current. Work supported by US DOE grant DE-FG02-96ER54375.

  19. Efficient Suppression of Defects and Charge Trapping in High Density In-Sn-Zn-O Thin Film Transistor Prepared using Microwave-Assisted Sputter.

    PubMed

    Goh, Youngin; Ahn, Jaehan; Lee, Jeong Rak; Park, Wan Woo; Ko Park, Sang-Hee; Jeon, Sanghun

    2017-10-25

    Amorphous oxide semiconductor-based thin film transistors (TFTs) have been considered as excellent switching elements for driving active-matrix organic light-emitting diodes (AMOLED) owing to their high mobility and process compatibility. However, oxide semiconductors have inherent defects, causing fast transient charge trapping and device instability. For the next-generation displays such as flexible, wearable, or transparent displays, an active semiconductor layer with ultrahigh mobility and high reliability at low deposition temperature is required. Therefore, we introduced high density plasma microwave-assisted (MWA) sputtering method as a promising deposition tool for the formation of high density and high-performance oxide semiconductor films. In this paper, we present the effect of the MWA sputtering method on the defects and fast charge trapping in In-Sn-Zn-O (ITZO) TFTs using various AC device characterization methodologies including fast I-V, pulsed I-V, transient current, low frequency noise, and discharge current analysis. Using these methods, we were able to analyze the charge trapping mechanism and intrinsic electrical characteristics, and extract the subgap density of the states of oxide TFTs quantitatively. In comparison to conventional sputtered ITZO, high density plasma MWA-sputtered ITZO exhibits outstanding electrical performance, negligible charge trapping characteristics and low subgap density of states. High-density plasma MWA sputtering method has high deposition rate even at low working pressure and control the ion bombardment energy, resulting in forming low defect generation in ITZO and presenting high performance ITZO TFT. We expect the proposed high density plasma sputtering method to be applicable to a wide range of oxide semiconductor device applications.

  20. Solution Processed PEDOT Analogues in Electrochemical Supercapacitors.

    PubMed

    Österholm, Anna M; Ponder, James F; Kerszulis, Justin A; Reynolds, John R

    2016-06-01

    We have designed fully soluble ProDOTx-EDOTy copolymers that are electrochemically equivalent to electropolymerized PEDOT without using any surfactants or dispersants. We show that these copolymers can be incorporated as active layers in solution processed thin film supercapacitors to demonstrate capacitance, stability, and voltage similar to the values of those that use electrodeposited PEDOT as the active material with the added advantage of the possibility for large scale, high-throughput processing. These Type I supercapacitors provide exceptional cell voltages (up to 1.6 V), highly symmetrical charge/discharge behavior, promising long-term stability exceeding 50 000 charge/discharge cycles, as well as energy (4-18 Wh/kg) and power densities (0.8-3.3 kW/kg) that are comparable to those of electrochemically synthesized analogues.

  1. Molecularly "engineered" anode adsorbates for probing OLED interfacial structure-charge injection/luminance relationships: large, structure-dependent effects.

    PubMed

    Huang, Qinglan; Evmenenko, Guennadi; Dutta, Pulak; Marks, Tobin J

    2003-12-03

    Molecule-scale structure effects at organic light-emitting diodes (OLED) anode-organic transport layer interfaces are probed via a self-assembly approach. A series of ITO anode-linked silyltriarylamine molecules differing in aryl group and linker density are synthesized for this purpose and used to probe the relationship between nanoscale interfacial chemical structure, charge injection and electroluminescence properties. Dramatic variations in hole injection magnitude and OLED performance can be correlated with the molecular structures and electrochemically derived heterogeneous electron-transfer rates of such triarylamine fragments, placed precisely at the anode-hole transport layer interface. Very bright and efficient ( approximately 70 000 cd/m2 and approximately 2.5% forward external quantum efficiency) OLEDs have thereby been fabricated.

  2. Exploring Low Internal Reorganization Energies for Silicene Nanoclusters

    NASA Astrophysics Data System (ADS)

    Pablo-Pedro, Ricardo; Lopez-Rios, Hector; Mendoza-Cortes, Jose-L.; Kong, Jing; Fomine, Serguei; Van Voorhis, Troy; Dresselhaus, Mildred S.

    2018-05-01

    This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. High-performance materials rely on small reorganization energies to facilitate both charge separation and charge transport. Here, we perform density-functional-theory calculations to predict small reorganization energies of rectangular silicene nanoclusters with hydrogen-passivated edges denoted by H-SiNC. We observe that across all geometries, H-SiNCs feature large electron affinities and highly stabilized anionic states, indicating their potential as n -type materials. Our findings suggest that fine-tuning the size of H-SiNCs along the "zigzag" and "armchair" directions may permit the design of novel n -type electronic materials and spintronics devices that incorporate both high electron affinities and very low internal reorganization energies.

  3. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Formation of a plasma jet of multiply charged ions in the interaction of a laser plasma with an external pulsed magnetic field

    NASA Astrophysics Data System (ADS)

    Dyakin, V. M.; Pikuz, T. A.; Skobelev, I. Yu; Faenov, A. Ya; Wolowski, J.; Karpinski, L.; Kasperczuk, A.; Pisarczyk, T.

    1994-12-01

    A dense jet of a plasma consisting of multiply charged ions was generated in the interaction of a laser plasma with a strong external axial magnetic field. Images were formed by spectral lines and the soft x-ray spectrum range of the plasma jet was obtained with a large-aperture spectrograph containing a mica crystal bent to form a spherical surface with a radius of R = 10 cm. A tenfold increase in the density of the He-like Mg XI plasma, compared with a freely expanding plasma, was observed at a distance of 5 mm from the target.

  4. A Charged Particle Veto Wall for the Large Area Neutron Array (LANA)

    NASA Astrophysics Data System (ADS)

    Zhu, K.; Chajecki, Z.; Anderson, C.; Bromell, J.; Brown, K.; Crosby, J.; Kodali, S.; Lynch, W. G.; Morfouace, P.; Sweany, S.; Tsang, M. B.; Tsang, C.; Brett, J. J.; Swaim, J. L.

    2017-09-01

    Comparison of neutrons and protons emitted in heavy ion collisions is one of the observables to probe symmetry energy, which is related to the properties of neutron star. In general, neutrons are difficult to measure and neutron detectors are not as easy to use or as widely available as charged particle detectors. Two neutron walls (NW) called LANA exist at the National Superconducting Cyclotron Laboratory. Although the NSCL NW attains excellent discrimination of γ rays and neutron, it fails to discriminate charged particles from neutrons. To ensure near 100% rejection of charged particles, a Charged Particle Veto Wall (VW) is being jointly built by Michigan State University and Western Michigan University. It will be placed in front of one NW. To increase efficiency in detecting neutrons, the second neutron wall is stacked behind it. In this presentation, I will discuss the design, construction and testing of the VW together with the LANA in preparation of two approved NSCL experiments to probe the density and momentum dependence of the symmetry energy potentials in the equation state of the asymmetric nuclear matter. This material is based upon work supported by the National Science Foundation under Grant No. PHY 1565546.

  5. Effect of Particle Morphology on the Reactivity of Explosively Dispersed Titanium Particles

    NASA Astrophysics Data System (ADS)

    Frost, David; Cairns, Malcolm; Goroshin, Samuel; Zhang, Fan

    2009-06-01

    The effect of particle morphology on the reaction of titanium (Ti) particles explosively dispersed during the detonation of either cylindrical or spherical charges has been investigated experimentally. The explosive charges consisted of packed beds of Ti particles saturated with nitromethane. The reaction behavior of irregularly-shaped Ti particles in three size ranges is compared with tests with spherical Ti particles. The particle reaction is strongly dependent on particle morphology, e.g., 95 μm spherical Ti particles failed to ignite (in cylinders up to 49 mm in dia), whereas similarly sized irregular Ti particles readily ignited. For irregular particles, the uniformity of ignition on the particle cloud surface was almost independent of particle size, but depended on charge diameter. As the charge diameter was reduced, ignition in the conically expanding particle cloud occurred only at isolated spots or bands. For spherical charges, although large irregular Ti particles ignited promptly and uniformly throughout the particle cloud, the smallest particles dispersed nonuniformly and ignition occurred at isolated locations. In general, particle ignition is a competition between particle heating (which is influenced by particle morphology, size, number density and the local thermodynamic history) and expansion cooling of the products.

  6. Improved charging performance of Li-O2 batteries by forming Ba-incorporated Li2O2 as the discharge product

    NASA Astrophysics Data System (ADS)

    Matsuda, Shoichi; Uosaki, Kohei; Nakanishi, Shuji

    2017-06-01

    Although Li-O2 batteries can potentially achieve greater than two-fold higher energy densities than Li-ion batteries, the basic performance of Li-O2 batteries remains poor. In particular, the large over-potential of positive electrode reactions during the charging process results in low round-trip energy efficiency and limited cycle life, and is therefore the main barrier to the practical use of rechargeable Li-O2 batteries. In the present study, we demonstrate that the charging performance of Li-O2 batteries can be significantly improved by simply adding barium (Ba) ions into the electrolyte. Elemental analysis revealed that Ba-incorporated Li2O2 was obtained as the main discharge product of a Li-O2 cell operated in the presence of Ba2+. Notably, the improvement of charging performance was confirmed to originate from the Ba-incorporated Li2O2 deposits, rather than the Ba2+ present in the electrolyte. The present results suggest that the incorporation of heteroatoms into the discharge product is an effective approach for improving the charging performance of Li-O2 batteries.

  7. Neutral dynamics and ion energy transport in MST plasma

    NASA Astrophysics Data System (ADS)

    Xing, Zichuan; Nornberg, Mark; den Hartog, Daniel; Kumar, Santosh; Anderson, Jay

    2015-11-01

    Neutral dynamics can have a significant effect on ion energy transport through charge exchange collisions. Whereas previously charge exchange was considered a direct loss mechanism in MST plasmas, new analysis indicates that significant thermal charge exchange neutrals are reionized. Further, the temperatures of the neutral species in the core of the plasma are suspected to be much higher than room temperature, which has a large effect on ion energy losses due to charge exchange. The DEGAS2 Monte Carlo simulation code is applied to the MST reversed field pinch experiment to estimate the density and temperature profile of the neutral species. The result is then used to further examine the effect of the neutral species on ion energy transport in improved confinement plasmas. This enables the development of a model that accounts for collisional equilibration between species, classical convective and conductive energy transport, and energy loss due to charge exchange collisions. The goal is to quantify classical, stochastic, and anomalous ion heating and transport in RFP plasmas. Work supported by the US DOE. DEGAS2 is provided by PPPL and STRAHL is provided by Ralph Dux of the Max-Planck-Institut fur Plasmaphysik.

  8. Charge and pairing dynamics in the attractive Hubbard model: Mode coupling and the validity of linear-response theory

    NASA Astrophysics Data System (ADS)

    Bünemann, Jörg; Seibold, Götz

    2017-12-01

    Pump-probe experiments have turned out as a powerful tool in order to study the dynamics of competing orders in a large variety of materials. The corresponding analysis of the data often relies on standard linear-response theory generalized to nonequilibrium situations. Here we examine the validity of such an approach for the charge and pairing response of systems with charge-density wave and (or) superconducting (SC) order. Our investigations are based on the attractive Hubbard model which we study within the time-dependent Hartree-Fock approximation. In particular, we calculate the quench and pump-probe dynamics for SC and charge order parameters in order to analyze the frequency spectra and the coupling of the probe field to the specific excitations. Our calculations reveal that the "linear-response assumption" is justified for small to moderate nonequilibrium situations (i.e., pump pulses) in the case of a purely charge-ordered ground state. However, the pump-probe dynamics on top of a superconducting ground state is determined by phase and amplitude modes which get coupled far from the equilibrium state indicating the failure of the linear-response assumption.

  9. Nanoclustering phase competition induces the resistivity hump in colossal magnetoresistive manganites

    NASA Astrophysics Data System (ADS)

    Pradhan, Kalpataru; Yunoki, Seiji

    2017-12-01

    Using a two-band double-exchange model with Jahn-Teller lattice distortions and superexchange interactions, supplemented by quenched disorder, at an electron density n =0.65 , we explicitly demonstrate the coexistence of the n =1 /2 -type (π ,π ) charge-ordered and the ferromagnetic nanoclusters above the ferromagnetic transition temperature Tc in colossal magnetoresistive (CMR) manganites. The resistivity increases due to the enhancement of the volume fraction of the charge-ordered and the ferromagnetic nanoclusters upon decreasing the temperature down to Tc. The ferromagnetic nanoclusters start to grow and merge, and the volume fraction of the charge-ordered nanoclusters decreases below Tc, leading to the sharp drop in the resistivity. By applying a small external magnetic field h , we show that the resistivity above Tc increases, as compared with the case when h =0 , a fact that further confirms the coexistence of the charge-ordered and the ferromagnetic nanoclusters. In addition, we show that the volume fraction of the charge-ordered nanoclusters decreases upon increasing the bandwidth, and consequently the resistivity hump diminishes for large bandwidth manganites, in good qualitative agreement with experiments. The obtained insights from our calculations provide a complete pathway to understand the phase competition in CMR manganites.

  10. Modulated two-dimensional charge-carrier density in LaTiO3-layer-doped LaAlO3/SrTiO3 heterostructure.

    PubMed

    Nazir, Safdar; Bernal, Camille; Yang, Kesong

    2015-03-11

    The highly mobile two-dimensional electron gas (2DEG) formed at the polar/nonpolar LaAlO3/SrTiO3 (LAO/STO) heterostructure (HS) is a matter of great interest because of its potential applications in nanoscale solid-state devices. To realize practical implementation of the 2DEG in device design, desired physical properties such as tuned charge carrier density and mobility are necessary. In this regard, polar perovskite-based transition metal oxides can act as doping layers at the interface and are expected to tune the electronic properties of 2DEG of STO-based HS systems dramatically. Herein, we investigated the doping effects of LaTiO3(LTO) layers on the electronic properties of 2DEG at n-type (LaO)(+1)/(TiO2)(0) interface in the LAO/STO HS using spin-polarized density functional theory calculations. Our results indicate an enhancement of orbital occupation near the Fermi energy, which increases with respect to the number of LTO unit cells, resulting in a higher charge carrier density of 2DEG than that of undoped system. The enhanced charge carrier density is attributed to an extra electron introduced by the Ti 3d(1) orbitals from the LTO dopant unit cells. This conclusion is consistent with the recent experimental findings (Appl. Phys. Lett. 2013, 102, 091601). Detailed charge density and partial density of states analysis suggests that the 2DEG in the LTO-doped HS systems primarily comes from partially occupied dyz and dxz orbitals.

  11. Multi-temperature study of potassium uridine-5'-monophosphate: electron density distribution and anharmonic motion modelling.

    PubMed

    Jarzembska, Katarzyna N; Řlepokura, Katarzyna; Kamiński, Radosław; Gutmann, Matthias J; Dominiak, Paulina M; Woźniak, Krzysztof

    2017-08-01

    Uridine, a nucleoside formed of a uracil fragment attached to a ribose ring via a β-N1-glycosidic bond, is one of the four basic components of ribonucleic acid. Here a new anhydrous structure and experimental charge density distribution analysis of a uridine-5'-monophosphate potassium salt, K(UMPH), is reported. The studied case constitutes the very first structure of a 5'-nucleotide potassium salt according to the Cambridge Structural Database. The excellent crystal quality allowed the collection of charge density data at various temperatures, i.e. 10, 100, 200 and 300 K on one single crystal. Crystal structure and charge density data were analysed thoroughly in the context of related literature-reported examples. Detailed analysis of the charge density distribution revealed elevated anharmonic motion of part of the uracil ring moiety relatively weakly interacting with the neighbouring species. The effect was manifested by alternate positive and negative residual density patterns observed for these atoms, which `disappear' at low temperature. It also occurred that the potassium cation, quite uniformly coordinated by seven O atoms from all molecular fragments of the UMPH - anion, including the O atom from the ribofuranose ring, can be treated as spherical in the charge density model which was supported by theoretical calculations. Apart from the predominant electrostatic interactions, four relatively strong hydrogen bond types further support the stability of the crystal structure. This results in a compact and quite uniform structure (in all directions) of the studied crystal, as opposed to similar cases with layered architecture reported in the literature.

  12. Currents between tethered electrodes in a magnetized laboratory plasma

    NASA Technical Reports Server (NTRS)

    Stenzel, R. L.; Urrutia, J. M.

    1989-01-01

    Laboratory experiments on important plasma physics issues of electrodynamic tethers were performed. These included current propagation, formation of wave wings, limits of current collection, nonlinear effects and instabilities, charging phenomena, and characteristics of transmission lines in plasmas. The experiments were conducted in a large afterglow plasma. The current system was established with a small electron-emitting hot cathode tethered to an electron-collecting anode, both movable across the magnetic field and energized by potential difference up to V approx.=100 T(sub e). The total current density in space and time was obtained from complete measurements of the perturbed magnetic field. The fast spacecraft motion was reproduced in the laboratory by moving the tethered electrodes in small increments, applying delayed current pulses, and reconstructing the net field by a linear superposition of locally emitted wavelets. With this technique, the small-amplitude dc current pattern is shown to form whistler wings at each electrode instead of the generally accepted Alfven wings. For the beam electrode, the whistler wing separates from the field-aligned beam which carries no net current. Large amplitude return currents to a stationary anode generate current-driven microinstabilities, parallel electric fields, ion depletions, current disruptions and time-varying electrode charging. At appropriately high potentials and neutral densities, excess neutrals are ionized near the anode. The anode sheath emits high-frequency electron transit-time oscillations at the sheath-plasma resonance. The beam generates Langmuir turbulence, ion sound turbulence, electron heating, space charge fields, and Hall currents. An insulated, perfectly conducting transmission line embedded in the plasma becomes lossy due to excitation of whistler waves and magnetic field diffusion effects. The implications of the laboratory observations on electrodynamic tethers in space are discussed.

  13. Two-dimensional relativistic space charge limited current flow in the drift space

    NASA Astrophysics Data System (ADS)

    Liu, Y. L.; Chen, S. H.; Koh, W. S.; Ang, L. K.

    2014-04-01

    Relativistic two-dimensional (2D) electrostatic (ES) formulations have been derived for studying the steady-state space charge limited (SCL) current flow of a finite width W in a drift space with a gap distance D. The theoretical analyses show that the 2D SCL current density in terms of the 1D SCL current density monotonically increases with D/W, and the theory recovers the 1D classical Child-Langmuir law in the drift space under the approximation of uniform charge density in the transverse direction. A 2D static model has also been constructed to study the dynamical behaviors of the current flow with current density exceeding the SCL current density, and the static theory for evaluating the transmitted current fraction and minimum potential position have been verified by using 2D ES particle-in-cell simulation. The results show the 2D SCL current density is mainly determined by the geometrical effects, but the dynamical behaviors of the current flow are mainly determined by the relativistic effect at the current density exceeding the SCL current density.

  14. Properties of jets measured from tracks in proton-proton collisions at center-of-mass energy s = 7 TeV with the ATLAS detector

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2011-09-20

    Jets are identified and their properties studied in center-of-mass energy √s = 7 TeV proton-proton collisions at the Large Hadron Collider using charged particles measured by the ATLAS inner detector. Events are selected using a minimum bias trigger, allowing jets at very low transverse momentum to be observed and their characteristics in the transition to high-momentum fully perturbative jets to be studied. Jets are reconstructed using the anti-k t algorithm applied to charged particles with two radius parameter choices, 0.4 and 0.6. An inclusive charged jet transverse momentum cross section measurement from 4 GeV to 100 GeV is shown formore » four ranges in rapidity extending to 1.9 and corrected to charged particle-level truth jets. The transverse momenta and longitudinal momentum fractions of charged particles within jets are measured, along with the charged particle multiplicity and the particle density as a function of radial distance from the jet axis. Comparison of the data with the theoretical models implemented in existing tunings of Monte Carlo event generators indicates reasonable overall agreement between data and Monte Carlo. In conclusion, these comparisons are sensitive to Monte Carlo parton showering, hadronization, and soft physics models.« less

  15. Microscopic origins of charge transport in triphenylene systems

    NASA Astrophysics Data System (ADS)

    Thompson, Ian R.; Coe, Mary K.; Walker, Alison B.; Ricci, Matteo; Roscioni, Otello M.; Zannoni, Claudio

    2018-06-01

    We study the effects of molecular ordering on charge transport at the mesoscale level in a layer of ≈9000 hexa-octyl-thio-triphenylene discotic mesogens with dimensions of ≈20 ×20 ×60 nm3 . Ordered (columnar) and disordered isotropic morphologies are obtained from a combination of atomistic and coarse-grained molecular-dynamics simulations. Electronic structure codes are used to find charge hopping rates at the microscopic level. Energetic disorder is included through the Thole model. Kinetic Monte Carlo simulations then predict charge mobilities. We reproduce the large increase in mobility in going from an isotropic to a columnar morphology. To understand how these mobilities depend on the morphology and hopping rates, we employ graph theory to analyze charge trajectories by representing the film as a charge-transport network. This approach allows us to identify spatial correlations of molecule pairs with high transfer rates. These pairs must be linked to ensure good transport characteristics or may otherwise act as traps. Our analysis is straightforward to implement and will be a useful tool in linking materials to device performance, for example, to investigate the influence of local inhomogeneities in the current density. Our mobility-field curves show an increasing mobility with field, as would be expected for an organic semiconductor.

  16. Collective charge excitations and the metal-insulator transition in the square lattice Hubbard-Coulomb model

    DOE PAGES

    Ulybyshev, Maksim; Winterowd, Christopher; Zafeiropoulos, Savvas

    2017-11-09

    Here in this article, we discuss the nontrivial collective charge excitations (plasmons) of the extended square lattice Hubbard model. Using a fully nonperturbative approach, we employ the hybrid Monte Carlo algorithm to simulate the system at half-filling. A modified Backus-Gilbert method is introduced to obtain the spectral functions via numerical analytic continuation. We directly compute the single-particle density of states which demonstrates the formation of Hubbard bands in the strongly correlated phase. The momentum-resolved charge susceptibility also is computed on the basis of the Euclidean charge-density-density correlator. In agreement with previous extended dynamical mean-field theory studies, we find that, atmore » high strength of the electron-electron interaction, the plasmon dispersion develops two branches.« less

  17. Collective charge excitations and the metal-insulator transition in the square lattice Hubbard-Coulomb model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulybyshev, Maksim; Winterowd, Christopher; Zafeiropoulos, Savvas

    Here in this article, we discuss the nontrivial collective charge excitations (plasmons) of the extended square lattice Hubbard model. Using a fully nonperturbative approach, we employ the hybrid Monte Carlo algorithm to simulate the system at half-filling. A modified Backus-Gilbert method is introduced to obtain the spectral functions via numerical analytic continuation. We directly compute the single-particle density of states which demonstrates the formation of Hubbard bands in the strongly correlated phase. The momentum-resolved charge susceptibility also is computed on the basis of the Euclidean charge-density-density correlator. In agreement with previous extended dynamical mean-field theory studies, we find that, atmore » high strength of the electron-electron interaction, the plasmon dispersion develops two branches.« less

  18. Diffusion of Conserved Charges in Relativistic Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Greif, Moritz; Fotakis, Jan. A.; Denicol, Gabriel S.; Greiner, Carsten

    2018-06-01

    We demonstrate that the diffusion currents do not depend only on gradients of their corresponding charge density, but that the different diffusion charge currents are coupled. This happens in such a way that it is possible for density gradients of a given charge to generate dissipative currents of another charge. Within this scheme, the charge diffusion coefficient is best viewed as a matrix, in which the diagonal terms correspond to the usual charge diffusion coefficients, while the off-diagonal terms describe the coupling between the different currents. In this Letter, we calculate for the first time the complete diffusion matrix for hot and dense nuclear matter, including baryon, electric, and strangeness charges. We find that the baryon diffusion current is strongly affected by baryon charge gradients but also by its coupling to gradients in strangeness. The electric charge diffusion current is found to be strongly affected by electric and strangeness gradients, whereas strangeness currents depend mostly on strange and baryon gradients.

  19. Interactions between cells and ionized dendritic biomaterials: Flow cytometry and fluorescence spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Kannan, R. M.; Kolhe, Parag; Khandare, Jayant; Kannan, Sujatha; Lieh-Lai, Mary

    2004-03-01

    Dendrimers and hyperbranched polymers are a new class of macromolecules characterized by large density of "tunable" peripheral functional groups. Therefore dendrimers can serve as a model macromolecular system to study the influence of molecular geometry and charge density on transport across biological barriers, especially cellular interfaces. The effect of size, end-functionality, surface charge (pH), and the nature of the cell surface are expected to play an important role in transport, and are investigated using flow cytometry, fluorescene microscopy and UV/Vis spectroscopy. Our results suggest that at physiological pH, cationic polyamidoamine (PAMAM) dendrimers can enter the A549 cancer lung epithelial cells within 5 minutes, perhaps due to the favorable interaction between anionic surface receptors of cells and cationic PAMAM dendrimer, through adsorptive endocytosis. On the other hand, hyperbranched polyol, which is a neutral polymer at physiological pH, enters cells at a much slower rate. The entry of hyperbranched polyol may be because of fluid-phase pinocytosis. Our results also indicate that the dendritic polymers enter the cell surface much more rapidly than linear polymers, and some small drugs, suggesting that the high density of functional groups plays a key role in the interaction with the cell surface, and the subsequent transport inside.

  20. Morphology controlled synthesis of nanoporous Co3O4 nanostructures and their charge storage characteristics in supercapacitors.

    PubMed

    Deori, Kalyanjyoti; Ujjain, Sanjeev Kumar; Sharma, Raj Kishore; Deka, Sasanka

    2013-11-13

    Cubic spinel Co3O4 nanoparticles with spherical (0D) and hexagonal platelet (2D) morphologies were synthesized using a simple solvothermal method by tuning the reaction time. XRD and HRTEM analyses revealed pure phase with growth of Co3O4 particles along [111] and [110] directions. UV-vis studies showed two clear optical absorption peaks corresponding to two optical band gaps in the range of 400-500 nm and 700-800 nm, respectively, related to the ligand to metal charge transfer events (O(2-) → Co(2+,3+)). Under the electrochemical study in two electrode assembly system (Co3O4/KOH/Co3O4) without adding any large area support or a conductive filler, the hexagonal platelet Co3O4 particles exhibited comparatively better characteristics with high specific capacitance (476 F g(-1)), energy density 42.3 Wh kg(-1) and power density 1.56 kW kg(-1) at current density of 0.5 Ag(-1), that suited for potential applications in supercapacitors. The observed better electrochemical properties of the nanoporous Co3O4 particles is attributed to the layered platelet structural arrangement of the hexagonal platelet and the presence of exceptionally high numbers of regularly ordered pores.

  1. Electrolyte solutions at curved electrodes. II. Microscopic approach

    NASA Astrophysics Data System (ADS)

    Reindl, Andreas; Bier, Markus; Dietrich, S.

    2017-04-01

    Density functional theory is used to describe electrolyte solutions in contact with electrodes of planar or spherical shape. For the electrolyte solutions, we consider the so-called civilized model, in which all species present are treated on equal footing. This allows us to discuss the features of the electric double layer in terms of the differential capacitance. The model provides insight into the microscopic structure of the electric double layer, which goes beyond the mesoscopic approach studied in Paper I. This enables us to judge the relevance of microscopic details, such as the radii of the particles forming the electrolyte solutions or the dipolar character of the solvent particles, and to compare the predictions of various models. Similar to Paper I, a general behavior is observed for small radii of the electrode in that in this limit the results become independent of the surface charge density and of the particle radii. However, for large electrode radii, non-trivial behaviors are observed. Especially the particle radii and the surface charge density strongly influence the capacitance. From the comparison with the Poisson-Boltzmann approach, it becomes apparent that the shape of the electrode determines whether the microscopic details of the full civilized model have to be taken into account or whether already simpler models yield acceptable predictions.

  2. Electrolyte solutions at curved electrodes. II. Microscopic approach.

    PubMed

    Reindl, Andreas; Bier, Markus; Dietrich, S

    2017-04-21

    Density functional theory is used to describe electrolyte solutions in contact with electrodes of planar or spherical shape. For the electrolyte solutions, we consider the so-called civilized model, in which all species present are treated on equal footing. This allows us to discuss the features of the electric double layer in terms of the differential capacitance. The model provides insight into the microscopic structure of the electric double layer, which goes beyond the mesoscopic approach studied in Paper I. This enables us to judge the relevance of microscopic details, such as the radii of the particles forming the electrolyte solutions or the dipolar character of the solvent particles, and to compare the predictions of various models. Similar to Paper I, a general behavior is observed for small radii of the electrode in that in this limit the results become independent of the surface charge density and of the particle radii. However, for large electrode radii, non-trivial behaviors are observed. Especially the particle radii and the surface charge density strongly influence the capacitance. From the comparison with the Poisson-Boltzmann approach, it becomes apparent that the shape of the electrode determines whether the microscopic details of the full civilized model have to be taken into account or whether already simpler models yield acceptable predictions.

  3. A simulation study of interactions of space-shuttle generated electron beams with ambient plasma and neutral gas

    NASA Technical Reports Server (NTRS)

    Winglee, Robert M.

    1991-01-01

    The objective was to conduct large scale simulations of electron beams injected into space. The study of the active injection of electron beams from spacecraft is important, as it provides valuable insight into the plasma beam interactions and the development of current systems in the ionosphere. However, the beam injection itself is not simple, being constrained by the ability of the spacecraft to draw current from the ambient plasma. The generation of these return currents is dependent on several factors, including the density of the ambient plasma relative to the beam density, the presence of neutrals around the spacecraft, the configuration of the spacecraft, and the motion of the spacecraft through the plasma. Two dimensional (three velocity) particle simulations with collisional processes included are used to show how these different and often coupled processes can be used to enhance beam propagation from the spacecraft. To understand the radial expansion mechanism of an electron beam injected from a highly charged spacecraft, two dimensional particle-in-cell simulations were conducted for a high density electron beam injected parallel to magnetic fields from an isolated equipotential conductor into a cold background plasma. The simulations indicate that charge build-up at the beam stagnation point causes the beam to expand radially to the beam electron gyroradius.

  4. A simulation study of interactions of Space-Shuttle generated electron beams with ambient plasma and neutral gas

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The object was to conduct large scale simulations of electron beams injected into space. The study of active injection of electron beams from spacecraft is important since it provides valuable insight into beam-plasma interactions and the development of current systems in the ionosphere. However, the beam injection itself is not simple, being constrained by the ability of the spacecraft to draw return current from the ambient plasma. The generation of these return currents is dependent on several factors, including the density of the ambient plasma relative to the beam density, the presence of neutrals around the spacecraft, the configuration of the spacecraft, and the motion of the spacecraft through the plasma. Two dimensional particle simulations with collisional processes included are used to show how these different and often coupled processes can be utilized to enhance beam propagation from the spacecraft. To understand the radical expansion of mechanism of an electron beam from a highly charged spacecraft, two dimensional particle in cell simulations were conducted for a high density electron beam injected parallel to magnetic fields from an isolated equipotential conductor into a cold background plasma. The simulations indicate that charge buildup at the beam stagnation point causes the beam to expand radially to the beam electron gyroradius.

  5. Scaling properties of fractional momentum loss of high-pT hadrons in nucleus-nucleus collisions at √{sN N} from 62.4 GeV to 2.76 TeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Al-Bataineh, H.; Alexander, J.; Alfred, M.; Al-Ta'Ani, H.; Angerami, A.; Aoki, K.; Apadula, N.; Aphecetche, L.; Aramaki, Y.; Armendariz, R.; Aronson, S. H.; Asai, J.; Asano, H.; Aschenauer, E. C.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Baksay, G.; Baksay, L.; Baldisseri, A.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Barnes, P. D.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Batsouli, S.; Baublis, V.; Baumann, C.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belikov, S.; Belmont, R.; Bennett, R.; Berdnikov, A.; Berdnikov, Y.; Bickley, A. A.; Blau, D. S.; Boissevain, J. G.; Bok, J. S.; Borel, H.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Camacho, C. M.; Campbell, S.; Castera, P.; Chang, B. S.; Charvet, J.-L.; Chen, C.-H.; Chernichenko, S.; Chi, C. Y.; Chiba, J.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chung, P.; Churyn, A.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cleven, C. R.; Cole, B. A.; Comets, M. P.; Connors, M.; Constantin, P.; Csanád, M.; Csörgő, T.; Dahms, T.; Dairaku, S.; Danchev, I.; Danley, T. W.; Das, K.; Datta, A.; Daugherity, M. S.; David, G.; Deaton, M. B.; Deblasio, K.; Dehmelt, K.; Delagrange, H.; Denisov, A.; D'Enterria, D.; Deshpande, A.; Desmond, E. J.; Dharmawardane, K. V.; Dietzsch, O.; Ding, L.; Dion, A.; Diss, P. B.; Do, J. H.; Donadelli, M.; D'Orazio, L.; Drapier, O.; Drees, A.; Drees, K. A.; Dubey, A. K.; Durham, J. M.; Durum, A.; Dutta, D.; Dzhordzhadze, V.; Edwards, S.; Efremenko, Y. V.; Egdemir, J.; Ellinghaus, F.; Emam, W. S.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Eyser, K. O.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fusayasu, T.; Gadrat, S.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, H.; Gong, X.; Gonin, M.; Gosset, J.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gunji, T.; Guo, L.; Gustafsson, H.-Å.; Hachiya, T.; Hadj Henni, A.; Haegemann, C.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Hamilton, H. F.; Han, R.; Han, S. Y.; Hanks, J.; Harada, H.; Hartouni, E. P.; Haruna, K.; Hasegawa, S.; Haseler, T. O. S.; Hashimoto, K.; Haslum, E.; Hayano, R.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Hiejima, H.; Hill, J. C.; Hobbs, R.; Hohlmann, M.; Hollis, R. S.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hori, Y.; Hornback, D.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Ichihara, T.; Ichimiya, R.; Ide, J.; Iinuma, H.; Ikeda, Y.; Imai, K.; Imrek, J.; Inaba, M.; Inoue, Y.; Iordanova, A.; Isenhower, D.; Isenhower, L.; Ishihara, M.; Isobe, T.; Issah, M.; Isupov, A.; Ivanishchev, D.; Jacak, B. V.; Javani, M.; Jezghani, M.; Jia, J.; Jiang, X.; Jin, J.; Jinnouchi, O.; Johnson, B. M.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kajihara, F.; Kametani, S.; Kamihara, N.; Kamin, J.; Kanda, S.; Kaneta, M.; Kaneti, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kanou, H.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Kawall, D.; Kawashima, M.; Kazantsev, A. V.; Kempel, T.; Key, J. A.; Khachatryan, V.; Khanzadeev, A.; Kijima, K. M.; Kikuchi, J.; Kim, B. I.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.; Kim, E.-J.; Kim, G. W.; Kim, H. J.; Kim, K.-B.; Kim, M.; Kim, S. H.; Kim, Y.-J.; Kim, Y. K.; Kimelman, B.; Kinney, E.; Kiriluk, K.; Kiss, Á.; Kistenev, E.; Kitamura, R.; Kiyomichi, A.; Klatsky, J.; Klay, J.; Klein-Boesing, C.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kochenda, L.; Kochetkov, V.; Komatsu, Y.; Komkov, B.; Konno, M.; Koster, J.; Kotchetkov, D.; Kotov, D.; Kozlov, A.; Král, A.; Kravitz, A.; Krizek, F.; Kubart, J.; Kunde, G. J.; Kurihara, N.; Kurita, K.; Kurosawa, M.; Kweon, M. J.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, B.; Lee, D. M.; Lee, J.; Lee, K.; Lee, K. B.; Lee, K. S.; Lee, M. K.; Lee, S.; Lee, S. H.; Lee, S. R.; Lee, T.; Leitch, M. J.; Leite, M. A. L.; Leitgab, M.; Leitner, E.; Lenzi, B.; Lewis, B.; Li, X.; Liebing, P.; Lim, S. H.; Linden Levy, L. A.; Liška, T.; Litvinenko, A.; Liu, H.; Liu, M. X.; Love, B.; Luechtenborg, R.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Malakhov, A.; Malik, M. D.; Manion, A.; Manko, V. I.; Mannel, E.; Mao, Y.; Mašek, L.; Masui, H.; Masumoto, S.; Matathias, F.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Means, N.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Mikeš, P.; Miki, K.; Miller, T. E.; Milov, A.; Mioduszewski, S.; Mishra, D. K.; Mishra, M.; Mitchell, J. T.; Mitrovski, M.; Miyachi, Y.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Mohapatra, S.; Montuenga, P.; Moon, H. J.; Moon, T.; Morino, Y.; Morreale, A.; Morrison, D. P.; Motschwiller, S.; Moukhanova, T. V.; Mukhopadhyay, D.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagamiya, S.; Nagashima, K.; Nagata, Y.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Nederlof, A.; Netrakanti, P. K.; Newby, J.; Nguyen, M.; Nihashi, M.; Niida, T.; Nishimura, S.; Norman, B. E.; Nouicer, R.; Novák, T.; Novitzky, N.; Nyanin, A. S.; O'Brien, E.; Oda, S. X.; Ogilvie, C. A.; Ohnishi, H.; Oka, M.; Okada, K.; Omiwade, O. O.; Onuki, Y.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ouchida, M.; Ozawa, K.; Pak, R.; Pal, D.; Palounek, A. P. T.; Pantuev, V.; Papavassiliou, V.; Park, B. H.; Park, I. H.; Park, J.; Park, J. S.; Park, S.; Park, S. K.; Park, W. J.; Pate, S. F.; Patel, L.; Patel, M.; Pei, H.; Peng, J.-C.; Pereira, H.; Perepelitsa, D. V.; Perera, G. D. N.; Peresedov, V.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Purwar, A. K.; Qu, H.; Rak, J.; Rakotozafindrabe, A.; Ramson, B. J.; Ravinovich, I.; Read, K. F.; Rembeczki, S.; Reuter, M.; Reygers, K.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Rinn, T.; Roach, D.; Roche, G.; Rolnick, S. D.; Romana, A.; Rosati, M.; Rosen, C. A.; Rosendahl, S. S. E.; Rosnet, P.; Rowan, Z.; Rubin, J. G.; Rukoyatkin, P.; Ružička, P.; Rykov, V. L.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sakai, S.; Sakashita, K.; Sakata, H.; Sako, H.; Samsonov, V.; Sano, M.; Sano, S.; Sarsour, M.; Sato, S.; Sato, T.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Semenov, A. Yu.; Semenov, V.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shein, I.; Shevel, A.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Skutnik, S.; Slunečka, M.; Snowball, M.; Soldatov, A.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Sparks, N. A.; Staley, F.; Stankus, P. W.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Sugitate, T.; Suire, C.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Tabaru, T.; Takagi, S.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanabe, R.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarján, P.; Tennant, E.; Themann, H.; Thomas, T. L.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Togawa, M.; Toia, A.; Tojo, J.; Tomášek, L.; Tomášek, M.; Torii, H.; Towell, C. L.; Towell, R.; Towell, R. S.; Tram, V.-N.; Tserruya, I.; Tsuchimoto, Y.; Tsuji, T.; Vale, C.; Valle, H.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Vinogradov, A. A.; Virius, M.; Vossen, A.; Vrba, V.; Vznuzdaev, E.; Wagner, M.; Walker, D.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Wei, R.; Wessels, J.; White, A. S.; White, S. N.; Winter, D.; Wolin, S.; Wood, J. P.; Woody, C. L.; Wright, R. M.; Wysocki, M.; Xia, B.; Xie, W.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yamaura, K.; Yang, R.; Yanovich, A.; Yasin, Z.; Ying, J.; Yokkaichi, S.; Yoo, J. H.; Yoon, I.; You, Z.; Young, G. R.; Younus, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zaudtke, O.; Zelenski, A.; Zhang, C.; Zhou, S.; Zimamyi, J.; Zolin, L.; Zou, L.; Phenix Collaboration

    2016-02-01

    Measurements of the fractional momentum loss (Sloss≡δ pT/pT ) of high-transverse-momentum-identified hadrons in heavy-ion collisions are presented. Using π0 in Au +Au and Cu +Cu collisions at √{sNN}=62.4 and 200 GeV measured by the PHENIX experiment at the Relativistic Heavy Ion Collider and and charged hadrons in Pb +Pb collisions measured by the ALICE experiment at the Large Hadron Collider, we studied the scaling properties of Sloss as a function of a number of variables: the number of participants, Npart, the number of quark participants, Nqp, the charged-particle density, d Nch/d η , and the Bjorken energy density times the equilibration time, ɛBjτ0 . We find that the pT, where Sloss has its maximum, varies both with centrality and collision energy. Above the maximum, Sloss tends to follow a power-law function with all four scaling variables. The data at √{sNN}=200 GeV and 2.76 TeV, for sufficiently high particle densities, have a common scaling of Sloss with d Nch/d η and ɛBjτ0 , lending insight into the physics of parton energy loss.

  6. Generalized isobaric multiplet mass equation and its application to the Nolen-Schiffer anomaly

    NASA Astrophysics Data System (ADS)

    Dong, J. M.; Zhang, Y. H.; Zuo, W.; Gu, J. Z.; Wang, L. J.; Sun, Y.

    2018-02-01

    The Wigner isobaric multiplet mass equation (IMME) is the most fundamental prediction in nuclear physics with the concept of isospin. However, it was deduced based on the Wigner-Eckart theorem with the assumption that all charge-violating interactions can be written as tensors of rank two. In the present work, the charge-symmetry breaking (CSB) and charge-independent breaking (CIB) components of the nucleon-nucleon force, which contribute to the effective interaction in nuclear medium, are established in the framework of Brueckner theory with AV18 and AV14 bare interactions. Because such charge-violating components can no longer be expressed as an irreducible tensor due to density dependence, its matrix element cannot be analytically reduced by the Wigner-Eckart theorem. With an alternative approach, we derive a generalized IMME (GIMME) that modifies the coefficients of the original IMME. As the first application of GIMME, we study the long-standing question of the origin of the Nolen-Schiffer anomaly (NSA) found in the Coulomb displacement energy of mirror nuclei. We find that the naturally emerged CSB term in GIMME is largely responsible for explaining the NSA.

  7. Operando characterization of cathodic reactions in a liquid-state lithium-oxygen micro-battery by scanning transmission electron microscopy.

    PubMed

    Liu, Pan; Han, Jiuhui; Guo, Xianwei; Ito, Yoshikazu; Yang, Chuchu; Ning, Shoucong; Fujita, Takeshi; Hirata, Akihiko; Chen, Mingwei

    2018-02-16

    Rechargeable non-aqueous lithium-oxygen batteries with a large theoretical capacity are emerging as a high-energy electrochemical device for sustainable energy strategy. Despite many efforts made to understand the fundamental Li-O 2 electrochemistry, the kinetic process of cathodic reactions, associated with the formation and decomposition of a solid Li 2 O 2 phase during charging and discharging, remains debate. Here we report direct visualization of the charge/discharge reactions on a gold cathode in a non-aqueous lithium-oxygen micro-battery using liquid-cell aberration-corrected scanning transmission electron microscopy (STEM) combining with synchronized electrochemical measurements. The real-time and real-space characterization by time-resolved STEM reveals the electrochemical correspondence of discharge/charge overpotentials to the nucleation, growth and decomposition of Li 2 O 2 at a constant current density. The nano-scale operando observations would enrich our knowledge on the underlying reaction mechanisms of lithium-oxygen batteries during round-trip discharging and charging and shed lights on the strategies in improving the performances of lithium-oxygen batteries by tailoring the cathodic reactions.

  8. Structure and Electronic Spectra of Purine-Methyl Viologen Charge Transfer Complexes

    PubMed Central

    Jalilov, Almaz S.; Patwardhan, Sameer; Singh, Arunoday; Simeon, Tomekia; Sarjeant, Amy A.; Schatz, George C.; Lewis, Frederick D.

    2014-01-01

    The structure and properties of the electron donor-acceptor complexes formed between methyl viologen (MV) and purine nucleosides and nucleotides in water and the solid state have been investigated using a combination of experimental and theoretical methods. Solution studies were performed using UV-vis and 1H NMR spectroscopy. Theoretical calculations were performed within the framework of density functional theory (DFT). Energy decomposition analysis indicates that dispersion and induction (charge-transfer) interactions dominate the total binding energy, whereas electrostatic interactions are largely repulsive. The appearance of charge transfer bands in the absorption spectra of the complexes are well described by time-dependent (TD) DFT and are further explained in terms of the redox properties of purine monomers and solvation effects. Crystal structures are reported for complexes of methyl viologen with the purines 2′-deoxyguanosine 3′-monophosphate GMP (DAD′DAD′ type) and 7-deazaguanosine zG (DAD′ADAD′ type). Comparison of the structures determined in the solid state and by theoretical methods in solution provides valuable insights into the nature of charge-transfer interactions involving purine bases as electron donors. PMID:24294996

  9. Investigation of the Presence of Charge Order in Magnetite by Measurement of the Sprin Wave Spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McQueeny, R. J.; Yethiraj, Mohana; Montfrooij, W.

    Inelastic neutron scattering results on magnetite (Fe{sub 3}O{sub 4}) show a large splitting in the acoustic spin wave branch, producing a 7 meV gap midway to the Brillouin zone boundary at q = (0,0,1/2) and {h_bar}{omega} = 43 meV. The splitting occurs below the Verwey transition temperature, where a metal-insulator transition occurs simultaneously with a structural transformation, supposedly caused by the charge ordering on the iron sublattice. The wavevector (0,0,1/2) corresponds to the superlattice peak in the low symmetry structure. The dependence of the magnetic superexchange on changes in the crystal structure and ionic configurations that occur below the Verweymore » transition affect the spin wave dispersion. To better understand the origin of the observed splitting, several Heisenberg models intended to reproduce the pair-wise variation of the magnetic superexchange arising from both small crystalline distortions and charge ordering were studied. None of the models studied predicts the observed splitting, whose origin may arise from charge-density wave formation or magnetoelastic coupling.« less

  10. Structure and charge transfer correlated with oxygen content for a Y0.8Ca0.2Ba2Cu3Oy (y = 6.84 6.32) system: a positron study

    NASA Astrophysics Data System (ADS)

    Cao, Shixun; Li, Lingwei; Liu, Fen; Li, Wenfeng; Chi, Changyun; Jing, Chao; Zhang, Jincang

    2005-05-01

    The structure and charge transfer correlated with oxygen content are studied by measuring the positron lifetime parameters of the Y0.8Ca0.2Ba2Cu3Oy system with a large range of oxygen content (y = 6.84-6.32). The local electron density ne is evaluated from the positron lifetime data. The positron lifetime parameters show a clear change around y = 6.50 where the compounds undergo the orthorhombic-tetragonal phase transition. The effect of ne and oxygen content on the structure, charge transfer and superconductivity are discussed. With the decrease of oxygen content y, O(4) tends to the Cu(1) site, causing carrier localization, and accordingly, the decrease of ne. This would prove that the localized carriers (electrons and holes) in the Cu-O chain region have great influence on the superconductivity by affecting the charge transfer between the reservoir layers and the conducting layers. The positron annihilation mechanism and its relation with superconductivity are also discussed.

  11. Kinetics of electrically and chemically induced swelling in polyelectrolyte gels

    NASA Astrophysics Data System (ADS)

    Grimshaw, P. E.; Nussbaum, J. H.; Grodzinsky, A. J.; Yarmush, M. L.

    1990-09-01

    Controlled swelling and shrinking of polyelectrolyte gels is useful for regulating the transport of solutes into, out of, and through these materials. A macroscopic continuum model is presented to predict the kinetics of swelling in polyelectrolyte gel membranes induced by augmentation of electrostatic swelling forces arising from membrane fixed charge groups. The model accounts for ionic transport within the membrane, electrodiffusion phenomena, dissociation of membrane charge groups, intramembrane fluid flow, and mechanical deformation of the membrane matrix. Model predictions are compared with measurements of chemically and electrically induced swelling and shrinking in crosslinked polymethacrylic acid (PMAA) membranes. Large, reversible changes in PMAA membrane hydration were observed after changing the bath pH or by applying an electric field to modify the intramembrane ionic environment and fixed charge density. A relatively slow swelling process and more rapid shrinking for both chemical and electrical modulation of the intramembrane pH are observed. The model indicates that retardation of membrane swelling is dominated by diffusion-limited reaction of H+ ions with membrane charge groups, and that the more rapid shrinking is limited primarily by mechanical processes.

  12. Contribution of Charges in Polyvinyl Alcohol Networks to Marine Antifouling.

    PubMed

    Yang, Wufang; Lin, Peng; Cheng, Daocang; Zhang, Longzhou; Wu, Yang; Liu, Yupeng; Pei, Xiaowei; Zhou, Feng

    2017-05-31

    Semi-interpenetrated polyvinyl alcohol polymer networks (SIPNs) were prepared by integrating various charged components into polyvinyl alcohol polymer. Contact angle measurement, attenuated total reflection Fourier transform infrared spectroscopy, field emission scanning electron microscopy, and tensile tests were used to characterize the physicochemical properties of the prepared SIPNs. To investigate the contribution of charges to marine antifouling, the adhesion behaviors of green algae Dunaliella tertiolecta and diatoms Navicula sp. in the laboratory and of the actual marine animals in field test were studied for biofouling assays. The results suggest that less algae accumulation densities are observed for neutral-, anionic-, and zwitterionic-component-integrated SIPNs. However, for the cationic SIPNs, despite the hydration shell induced by the ion-dipole interaction, the resistance to biofouling largely depends on the amount of cationic component because of the possible favorable electrostatic attraction between the cationic groups in SIPNs and the negatively charged algae. Considering that the preparation of novel nontoxic antifouling coating is a long-standing and cosmopolitan industrial challenge, the SIPNs may provide a useful reference for marine antifouling and some other relevant fields.

  13. Charge-induced geometrical reorganization of DNA oligonucleotides studied by tandem mass spectrometry and ion mobility.

    PubMed

    Ickert, Stefanie; Hofmann, Johanna; Riedel, Jens; Beck, Sebastian; Pagel, Kevin; Linscheid, Michael W

    2018-04-01

    Mass spectrometry is applied as a tool for the elucidation of molecular structures. This premises that gas-phase structures reflect the original geometry of the analytes, while it requires a thorough understanding and investigation of the forces controlling and affecting the gas-phase structures. However, only little is known about conformational changes of oligonucleotides in the gas phase. In this study, a series of multiply charged DNA oligonucleotides (n = 15-40) has been subjected to a comprehensive tandem mass spectrometric study to unravel transitions between different ionic gas-phase structures. The nucleobase sequence and the chain length were varied to gain insights into their influence on the geometrical oligonucleotide organization. Altogether, 23 oligonucleotides were analyzed using collision-induced fragmentation. All sequences showed comparable correlation regarding the characteristic collision energy. This value that is also a measure for stability, strongly correlates with the net charge density of the precursor ions. With decreasing charge of the oligonucleotides, an increase in the fragmentation energy was observed. At a distinct charge density, a deviation from linearity was observed for all studied species, indicating a structural reorganization. To corroborate the proposed geometrical change, collisional cross-sections of the oligonucleotides at different charge states were determined using ion mobility-mass spectrometry. The results clearly indicate that an increase in charge density and thus Coulomb repulsion results in the transition from a folded, compact form to elongated structures of the precursor ions. Our data show this structural transition to depend mainly on the charge density, whereas sequence and size do not have an influence.

  14. Energetics of edge oxidization of graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Yasuma, Airi; Yamanaka, Ayaka; Okada, Susumu

    2018-06-01

    On the basis of the density functional theory, we studied the geometries and energetics of O atoms adsorbed on graphene edges for simulating the initial stage of the edge oxidization of graphene. Our calculations showed that oxygen atoms are preferentially adsorbed onto the graphene edges with the zigzag portion, resulting in a large adsorption energy of about 5 eV. On the other hand, the edges with armchair shape are rarely oxidized, or the oxidization causes substantial structural reconstructions, because of the stable covalent bond at the armchair edge with the triple bond nature. Furthermore, the energetics sensitively depends on the edge angles owing to the inhomogeneity of the charge density at the edge atomic sites.

  15. Plasma phenomena observed in the MAP/WINE campaign

    NASA Technical Reports Server (NTRS)

    Friedrich, M.

    1989-01-01

    The wealth of plasma data gathered in the MAP/WINE campaign allows insight into the generation of electron densities on a large, and the nature of the ions on a small scale. The associated measurements of winds and charged particles help to understand the morphology of the midlatitude ionization which turns out to correlate poorly with geomagnetic activity, but at least slightly with the prevailing winds. A somewhat clearer connection seems to exist between stratospheric warmings and radio wave absorption minima. On the local scale the interpretation of the rocket measurements of positive ions was helped by simultaneous observations of temperatures and atomic oxygen. The relevance of the description winter anomaly for high latitude electron density profiles are examined.

  16. Numerical method and FORTRAN program for the solution of an axisymmetric electrostatic collector design problem

    NASA Technical Reports Server (NTRS)

    Reese, O. W.

    1972-01-01

    The numerical calculation is described of the steady-state flow of electrons in an axisymmetric, spherical, electrostatic collector for a range of boundary conditions. The trajectory equations of motion are solved alternately with Poisson's equation for the potential field until convergence is achieved. A direct (noniterative) numerical technique is used to obtain the solution to Poisson's equation. Space charge effects are included for initial current densities as large as 100 A/sq cm. Ways of dealing successfully with the difficulties associated with these high densities are discussed. A description of the mathematical model, a discussion of numerical techniques, results from two typical runs, and the FORTRAN computer program are included.

  17. Injection-modulated polarity conversion by charge carrier density control via a self-assembled monolayer for all-solution-processed organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Roh, Jeongkyun; Lee, Taesoo; Kang, Chan-Mo; Kwak, Jeonghun; Lang, Philippe; Horowitz, Gilles; Kim, Hyeok; Lee, Changhee

    2017-04-01

    We demonstrated modulation of charge carrier densities in all-solution-processed organic field-effect transistors (OFETs) by modifying the injection properties with self-assembled monolayers (SAMs). The all-solution-processed OFETs based on an n-type polymer with inkjet-printed Ag electrodes were fabricated as a test platform, and the injection properties were modified by the SAMs. Two types of SAMs with different dipole direction, thiophenol (TP) and pentafluorobenzene thiol (PFBT) were employed, modifying the work function of the inkjet-printed Ag (4.9 eV) to 4.66 eV and 5.24 eV with TP and PFBT treatments, respectively. The charge carrier densities were controlled by the SAM treatment in both dominant and non-dominant carrier-channel regimes. This work demonstrates that control of the charge carrier densities can be efficiently achieved by modifying the injection property with SAM treatment; thus, this approach can achieve polarity conversion of the OFETs.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, P.; Pai, Woei Wu; Chan, Y. -H.

    Two-dimensional materials constitute a promising platform for developing nanoscale devices and systems. Their physical properties can be very different from those of the corresponding three-dimensional materials because of extreme quantum confinement and dimensional reduction. Here in this paper we report a study of TiTe 2 from the single-layer to the bulk limit. Using angle-resolved photoemission spectroscopy and scanning tunneling microscopy and spectroscopy, we observed the emergence of a (2 × 2) charge density wave order in single-layer TiTe 2 with a transition temperature of 92 ± 3 K. Also observed was a pseudogap of about 28 meV at the Fermimore » level at 4.2 K. Surprisingly, no charge density wave transitions were observed in two-layer and multi-layer TiTe 2 , despite the quasi-two-dimensional nature of the material in the bulk. The unique charge density wave phenomenon in the single layer raises intriguing questions that challenge the prevailing thinking about the mechanisms of charge density wave formation.« less

  19. Removal of dissolved organic matter by anion exchange: Effect of dissolved organic matter properties

    USGS Publications Warehouse

    Boyer, T.H.; Singer, P.C.; Aiken, G.R.

    2008-01-01

    Ten isolates of aquatic dissolved organic matter (DOM) were evaluated to determine the effect that chemical properties of the DOM, such as charge density, aromaticity, and molecular weight, have on DOM removal by anion exchange. The DOM isolates were characterized asterrestrial, microbial, or intermediate humic substances or transphilic acids. All anion exchange experiments were conducted using a magnetic ion exchange (MIEX) resin. The charge density of the DOM isolates, determined by direct potentiometric titration, was fundamental to quantifying the stoichiometry of the anion exchange mechanism. The results clearly show that all DOM isolates were removed by anion exchange; however, differences among the DOM isolates did influence their removal by MIEX resin. In particular, MIEX resin had the greatest affinity for DOM with high charge density and the least affinity for DOM with low charge density and low aromaticity. This work illustrates that the chemical characteristics of DOM and solution conditions must be considered when evaluating anion exchange treatment for the removal of DOM. ?? 2008 American Chemical Society.

  20. Organic electrical double layer transistors gated with ionic liquids

    NASA Astrophysics Data System (ADS)

    Xie, Wei; Frisbie, C. Daniel

    2011-03-01

    Transport in organic semiconductors gated with several types of ionic liquids has been systematically studied at charge densities larger than 1013 cm-2 . We observe a pronounced maximum in channel conductance for both p-type and n-type organic single crystals which is attributed to carrier localization at the semiconductor-electrolyte interface. Carrier mobility, as well as charge density and dielectric capacitance are determined through displacement current measurement and capacitance-voltage measurement. By using a larger-sized and spherical anion, tris(pentafluoroethyl)trifluorophosphate (FAP), effective carrier mobility in rubrene can be enhanced substantially up to 3.2 cm2 V-1 s -1 . Efforts have been made to maximize the charge density in rubrene single crystals, and at low temperature when higher gate bias can be applied, charge density can more than double the amount of that at room temperature, reaching 8*1013 cm-2 holes (0.4 holes per rubrene molecule). NSF MRSEC program at the University of Minnesota.

Top