The climate space of fire regimes in north-western North America
Whitman, Ellen; Batllori, Enric; Parisien, Marc-André; Miller, Carol; Coop, Jonathan D.; Krawchuk, Meg A.; Chong, Geneva W.; Haire, Sandra L.
2015-01-01
Aim. Studies of fire activity along environmental gradients have been undertaken, but the results of such studies have yet to be integrated with fire-regime analysis. We characterize fire-regime components along climate gradients and a gradient of human influence. Location. We focus on a climatically diverse region of north-western North America extending from northern British Columbia, Canada, to northern Utah and Colorado, USA.Methods. We used a multivariate framework to collapse 12 climatic variables into two major climate gradients and binned them into 73 discrete climate domains. We examined variation in fire-regime components (frequency, size, severity, seasonality and cause) across climate domains. Fire-regime attributes were compiled from existing databases and Landsat imagery for 1897 large fires. Relationships among the fire-regime components, climate gradients and human influence were examined through bivariate regressions. The unique contribution of human influence was also assessed.Results. A primary climate gradient of temperature and summer precipitation and a secondary gradient of continentality and winter precipitation in the study area were identified. Fire occupied a distinct central region of such climate space, within which fire-regime components varied considerably. We identified significant interrelations between fire-regime components of fire size, frequency, burn severity and cause. The influence of humans was apparent in patterns of burn severity and ignition cause.Main conclusions. Wildfire activity is highest where thermal and moisture gradients converge to promote fuel production, flammability and ignitions. Having linked fire-regime components to large-scale climate gradients, we show that fire regimes – like the climate that controls them – are a part of a continuum, expanding on models of varying constraints on fire activity. The observed relationships between fire-regime components, together with the distinct role of climatic and human influences, generate variation in biotic communities. Thus, future changes to climate may lead to ecological changes through altered fire regimes.
NASA Astrophysics Data System (ADS)
Anderegg, L. D. L.; Hillerislambers, J.
2016-12-01
Accurate prediction of climatically-driven range shifts requires knowledge of the dominant forces constraining species ranges, because climatically controlled range boundaries will likely behave differently from biotically controlled range boundaries in a changing climate. Yet the roles of climatic constraints (due to species physiological tolerance) versus biotic constraints (caused by species interactions) on geographic ranges are largely unknown, infusing large uncertainty into projections of future range shifts. Plant species ranges across strong climatic gradients such as elevation gradients are often assumed to represent a tradeoff between climatic constraints on the harsh side of the range and biotic constraints (often competitive constraints) on the climatically benign side. To test this assumption, we collected tree cores from across the elevational range of the three dominant tree species inhabiting each of three climatically disparate mountain slopes and assessed climatic versus competitive constraints on growth at each species' range margins. Across all species and mountains, we found evidence for a tradeoff between climatic and competitve growth constraints. We also found that some individual species did show an apparent trade-off between a climatic constraint at one range margin and a competitive constraint at the other. However, even these simple elevation gradients resulted in complex interactions between temperature, moisture, and competitive constraints such that a climate-competition tradeoff did not explain range constraints for many species. Our results suggest that tree species can be constrained by a simple trade-off between climate and competition, but that the intricacies of real world climate gradients complicate the application of this theory even in apparently harsh environments, such as near high elevation tree line.
NASA Astrophysics Data System (ADS)
Doughty, C.; Shenkin, A.; Bentley, L. P.; Malhi, Y.
2017-12-01
Tropical forest leaf albedo plays a critical role in global climate by determining how much radiation the planet absorbs near the equator. However, little is known about how tropical leaf albedo could be affected by climate change and how any such changes in albedo could, in turn, impact global climate. Here we measure sunlit leaf albedo along two elevation temperature gradients (a 3000-meter gradient in Peru (10 plots) and a 1500 m gradient in Australia (10 plots) and along two wet to dry transects (a 2000 mm yr-1 gradient in Ghana (10 plots) and a 2000 mm yr-1 gradient in Brazil (10 plots). We found a highly significant increase in visible leaf albedo with wetness at both wet to dry gradients. We also found a marginally significant trend of increased albedo with warmer temperatures along one of the elevation gradients. Leaf albedo can also be impacted by changes in species composition, variations in interspecific variation, and changes in leaf chlorophyll concentrations. We removed the dominant two species from the basal area weighting for each plots but found no significant change, a directional change of interspecific variation could change albedo by 0.01 in the NIR, and changes in chlorophyll could decrease visible albedo by 0.005. We then simulated changes in tropical leaf albedo with a climate model and show that such changes could act as a small negative feedback on climate, but most likely will not have a large impact on future climate.
NASA Astrophysics Data System (ADS)
Dovciak, M.; Wason, J. W., III; Frair, J.; Lesser, M.; Hurst, J.
2016-12-01
Warming climate is often expected to cause poleward and upslope migrations of native plant species and facilitate the spread of non-native plants, and thus affect the composition and diversity of forest understory plant communities. However, changing climate can often interact with other components of global environmental change, and especially so with land use, which often varies along extant climatic gradients making it more difficult to predict species and biodiversity responses to changing climate. We used large national databases (USDA FIA, NLCD, and PRISM) within GLM and NMDS analytical frameworks to study the effects of climate (temperature and precipitation), and land management (type, fragmentation, time since disturbance) on the diversity and composition of native and non-native plant species in forest understories across large geographical (environmental) gradients of the northeastern United States. We tested how non-native and native species diversity and composition responded to existing climate gradients and land-use drivers, and we approximated how changing climate may affect both native and non-native species composition and richness under different climate change scenarios (+1.5, 2, and 4.8 degrees C). Many understory forest plant communities already contain large proportions of non-native plants, particularly so in relatively warmer and drier areas, at lower elevations, and in areas with more substantial land-use histories. On the other hand, cooler and moister areas, higher elevations, and areas used predominantly for forestry or nature conservation (i.e., large contiguous forest cover) were characterized by a low proportion of non-native plant species in terms of both species cover and richness. In contrast to native plants, non-native plant richness was related positively to mean annual temperature and negatively to precipitation. Mountain areas appeared to serve as refugia for native forest understory species under the current climate, but considering various climate change scenarios (including IPCC) suggested that many of these climate refugia may considerably decline even under more moderate climate change scenarios as they may become increasingly invaded by non-native plant species.
Morphometric traits capture the climatically driven species turnover of 10 spruce taxa across China.
Li, He; Wang, GuoHong; Zhang, Yun; Zhang, WeiKang
2016-02-01
This study explored the relative roles of climate and phylogenetic background in driving morphometric trait variation in 10 spruce taxa in China. The study further addressed the hypothesis that these variations are consistent with species turnover on climatic gradients. Nine morphometric traits of leaves, seed cones, and seeds for the 10 studied spruce taxa were measured at 504 sites. These data were analyzed in combination with species DNA sequences from NCBI GenBank. We detected the effects of phylogeny and climate through trait-variation-based K statistics and phylogenetic eigenvector regression (PVR) analyses. Multivariate analyses were performed to detect trait variation along climatic gradients with species replacement. The estimated K-values for the nine studied morphometric traits ranged from 0.19 to 0.68, and the studied environmental variables explained 39-83% of the total trait variation. Trait variation tended to be determined largely by a temperature gradient varying from wet-cool climates to dry-warm summers and, additionally, by a moisture gradient. As the climate became wetter and cooler, spruce species tended to be replaced by other spruces with smaller needle leaves and seeds but larger cones and seed scales. A regression analysis showed that spruce species tended to be successively replaced by other species, along the gradient, although the trends observed within species were not necessarily consistent with the overall trend. The climatically driven replacement of the spruces in question could be well indicated by the between-species variation in morphometric traits that carry lower phylogenetic signal. Between-species variation in these traits is driven primarily by climatic factors. These species demonstrate a narrower ecological amplitude in temperature but wider ranges on the moisture gradient.
A gradient model of vegetation and climate utilizing NOAA satellite imagery. Phase 1: Texas transect
NASA Technical Reports Server (NTRS)
Greegor, D.; Norwine, J. (Principal Investigator)
1981-01-01
A climatological model/variable termed the sponge (a measure of moisture availability based on daily temperature maxima and minima, and precipitation) was tested for potential biogeograhic, ecological, and agro-climatological applications. Results, depicted in tabular and graphic form, suggest that, as generalized climatic index, sponge is particularly appropriate for large-area and global vegetation monitoring. The feasibility of utilizing NOAA/AVHRR data for vegetation classification was investigated and a vegetation gradient model that utilizes sponge and AVHRR data was initiated. Along an east-west Texas gradient, vegetation, sponge, and AVHRR pixel data (channels 1 and 2) were obtained for 12 locations. The normalized difference values for the AVHRR data when plotted against vegetation characteristics (biomass, net productivity, leaf area) and sponge values along the Texas gradient suggest that a multivariate gradient model incorporating AVHRR and sponge data may indeed be useful in global vegetation stratification and monitoring.
Reassessing Pliocene temperature gradients
NASA Astrophysics Data System (ADS)
Tierney, J. E.
2017-12-01
With CO2 levels similar to present, the Pliocene Warm Period (PWP) is one of our best analogs for climate change in the near future. Temperature proxy data from the PWP describe dramatically reduced zonal and meridional temperature gradients that have proved difficult to reproduce with climate model simulations. Recently, debate has emerged regarding the interpretation of the proxies used to infer Pliocene temperature gradients; these interpretations affect the magnitude of inferred change and the degree of inconsistency with existing climate model simulations of the PWP. Here, I revisit the issue using Bayesian proxy forward modeling and prediction that propagates known uncertainties in the Mg/Ca, UK'37, and TEX86 proxy systems. These new spatiotemporal predictions are quantitatively compared to PWP simulations to assess probabilistic agreement. Results show generally good agreement between existing Pliocene simulations from the PlioMIP ensemble and SST proxy data, suggesting that exotic changes in the ocean-atmosphere are not needed to explain the Pliocene climate state. Rather, the spatial changes in SST during the Pliocene are largely consistent with elevated CO2 forcing.
NASA Astrophysics Data System (ADS)
Koven, C. D.; Hugelius, G.; Lawrence, D. M.; Wieder, W. R.
2016-12-01
The projected loss of soil carbon to the atmosphere resulting from climate change is a potentially large but highly uncertain feedback to warming. The magnitude of this feedback is poorly constrained by observations and theory, and is disparately represented in Earth system models. To assess the likely long-term response of soils to climate change, spatial gradients in soil carbon turnover times can identify broad-scale and long-term controls on the rate of carbon cycling as a function of climate and other factors. Here we show that the climatological temperature control on carbon turnover in the top meter of global soils is more sensitive in cold climates than in warm ones. We present a simplified model that explains the high cold-climate sensitivity using only the physical scaling of soil freeze-thaw state across climate gradients. Critically, current Earth system models (ESMs) fail to capture this pattern, however it emerges from an ESM that explicitly resolves vertical gradients in soil climate and turnover. The weak tropical temperature sensitivity emerges from a different model that explicitly resolves mineralogical control on decomposition. These results support projections of strong future carbon-climate feedbacks from northern soils and demonstrate a method for ESMs to capture this emergent behavior.
Elevation Gradients and Climatic Consequences
NASA Astrophysics Data System (ADS)
Redmond, K. T.
2006-12-01
Steep topography usually results in gradients in surface meteorological elements. Sometimes these gradients are extremely sharp. Frequent or persistent gradients are expressed in climatic statistics as well. Most commonly, higher elevations are wetter and cooler than lower elevations. The magnitude of these climate gradients vary both spatially and temporally, generally on smaller scales for the former and on a greater variety of scales for the latter. Orographic contributions to precipitation vary on hourly to annual scales, and temperature inversions of different durations can alter or reverse the vertical temperature lapse rate normally found in the atmosphere. The presence of these factors affects the probability distributions of climate elements as a function of elevation. This leads in turn to consequences for ecology, resource management, and data. Orographic enhancement of Sierra precipitation varies by a factor of about three on seasonal time scales, and more on shorter scales. Particularly strong gradients in temperature climate are observed along the California coast, resulting in large changes in long-term climatological probability distributions over quite short distances in elevation. These have significant implications for plant life. For specific noteworthy events, such as the California heat wave of July 2006, striking differences were seen over a horizontal distance of merely 2-3 km along the Big Sur Coast, related entirely to elevation. There is evidence of differential warming with elevation between California's Central Valley and the Sierra Nevada. As a practical matter, the three-dimensional correlation fields of weather and climate elements in topographically diverse regions, on differing time scales, have complex structure, but also have certain regularities. This makes quality control of weather and climate data sets in highly diverse topography much more challenging. Quality control decisions that do not properly take this correlation structure (which varies in time) into account can result in degraded data sets, a variety of Type I and Type II errors, and paradoxically, hinder or prevent the discovery and description of the effects of climate gradients by incorrectly altering the data sets needed to uncover and quantify the relationships.
Influence of environment, disturbance, and ownership on forest vegetation of coastal Oregon.
J.L. Ohmann; M.J. Gregory; T.A. Spies
2007-01-01
We used spatial predictions from gradient models to examine the influence of environment, disturbance, and ownership on patterns of forest vegetation biodiversity across a large forested region, the Oregon Coast Range (USA). Gradients in tree species composition were strongly associated with physical environment, especially climate, and insensitive to disturbance. In...
Effects of Exurban Development and Temperature on Bird Species in the Southern Appalachians
Heather A. Lumpkin; Scott M. Pearson
2013-01-01
Land-use dynamics and climatic gradients have large effects on many terrestrial systems. Exurban development, one of the fastest growing forms of land use in the United States, may affect wildlife through habitat fragmentation and building presence may alter habitat quality. We studied the effects of residential development and temperature gradients on bird species...
Salas-Morales, Silvia H; Meave, Jorge A; Trejo, Irma
2015-12-01
Globally, climate is a fundamental driver of plant species' geographical distributions, yet we still lack a good understanding of climatic variation on tropical mountains and its consequences for elevational floristic patterns. In a seasonally dry region of southern Mexico, we analysed meteorological patterns along a large elevational gradient (0-3670 m a.s.l.) and examined their relationship with changes in floristic richness. Meteorological patterns were characterised using two data sources. First, climatic information was extracted from cartography and records from a few existing meteorological stations. Additionally, air temperature and humidity were recorded hourly during 1 year with data loggers, at sites representing 200-m elevation increments. Floristic information was extracted from a database containing 10,124 records of plant collections, and organized in 200-m elevational belts. Climatic charts distinguished three climate types along the gradient, all with marked rainfall seasonality, but these bore little correspondence with the information obtained with the data loggers. Mean annual air temperature decreased with increasing elevation (lapse rate of 0.542 °C 100 m(-1)). Thermal oscillation was minimum around 1400 m and increased towards both extremes of the gradient. Relative humidity opposed this pattern, with maxima between 800 and 1800 m, decreasing towards the highest elevations. An analysis of temperature frequency distributions revealed meteorological features undetectable from the annual or monthly means of this variable; despite an overall gradual transition of the proportions of time recorded at different temperatures, some changes did not conform to this pattern. The first discontinuity occurred between 1000-1200 m, where dominant temperatures shifted abruptly; also noticeable was an abrupt increase of the proportion of time elapsed at 0.1-10 °C between 2400 and 2600 m. Air temperature appears to be the most influential climatic factor driving elevational variation of plant species richness in this region.
USDA-ARS?s Scientific Manuscript database
Soil organic matter (SOM) is a key indicator of agricultural productivity and overall soil health. Currently, dryland cropping systems of the inland Pacific Northwest (iPNW) span a large gradient in mean annual temperature (MAT) and precipitation (MAP). These climatic drivers are major determinants ...
Madrigal-González, Jaime; Ruiz-Benito, Paloma; Ratcliffe, Sophia; Calatayud, Joaquín; Kändler, Gerald; Lehtonen, Aleksi; Dahlgren, Jonas; Wirth, Christian; Zavala, Miguel A.
2016-01-01
Neglecting tree size and stand structure dynamics might bias the interpretation of the diversity-productivity relationship in forests. Here we show evidence that complementarity is contingent on tree size across large-scale climatic gradients in Europe. We compiled growth data of the 14 most dominant tree species in 32,628 permanent plots covering boreal, temperate and Mediterranean forest biomes. Niche complementarity is expected to result in significant growth increments of trees surrounded by a larger proportion of functionally dissimilar neighbours. Functional dissimilarity at the tree level was assessed using four functional types: i.e. broad-leaved deciduous, broad-leaved evergreen, needle-leaved deciduous and needle-leaved evergreen. Using Linear Mixed Models we show that, complementarity effects depend on tree size along an energy availability gradient across Europe. Specifically: (i) complementarity effects at low and intermediate positions of the gradient (coldest-temperate areas) were stronger for small than for large trees; (ii) in contrast, at the upper end of the gradient (warmer regions), complementarity is more widespread in larger than smaller trees, which in turn showed negative growth responses to increased functional dissimilarity. Our findings suggest that the outcome of species mixing on stand productivity might critically depend on individual size distribution structure along gradients of environmental variation. PMID:27571971
Osland, Michael J.; Day, Richard H.; Hall, Courtney T.; Brumfield, Marisa D; Dugas, Jason; Jones, William R.
2017-01-01
Within the context of climate change, there is a pressing need to better understand the ecological implications of changes in the frequency and intensity of climate extremes. Along subtropical coasts, less frequent and warmer freeze events are expected to permit freeze-sensitive mangrove forests to expand poleward and displace freeze-tolerant salt marshes. Here, our aim was to better understand the drivers of poleward mangrove migration by quantifying spatiotemporal patterns in mangrove range expansion and contraction across land-ocean temperature gradients. Our work was conducted in a freeze-sensitive mangrove-marsh transition zone that spans a land-ocean temperature gradient in one of the world's most wetland-rich regions (Mississippi River Deltaic Plain; Louisiana, USA). We used historical air temperature data (1893-2014), alternative future climate scenarios, and coastal wetland coverage data (1978-2011) to investigate spatiotemporal fluctuations and climate-wetland linkages. Our analyses indicate that changes in mangrove coverage have been controlled primarily by extreme freeze events (i.e., air temperatures below a threshold zone of -6.3 to -7.6 °C). We expect that in the past 121 years, mangrove range expansion and contraction has occurred across land-ocean temperature gradients. Mangrove resistance, resilience, and dominance were all highest in areas closer to the ocean where temperature extremes were buffered by large expanses of water and saturated soil. Under climate change, these areas will likely serve as local hotspots for mangrove dispersal, growth, range expansion, and displacement of salt marsh. Collectively, our results show that the frequency and intensity of freeze events across land-ocean temperature gradients greatly influences spatiotemporal patterns of range expansion and contraction of freeze-sensitive mangroves. We expect that, along subtropical coasts, similar processes govern the distribution and abundance of other freeze-sensitive organisms. In broad terms, our findings can be used to better understand and anticipate the ecological effects of changing winter climate extremes, especially within the transition zone between tropical and temperate climates.
Pardikes, Nicholas A; Shapiro, Arthur M; Dyer, Lee A; Forister, Matthew L
2015-11-01
Understanding the spatial and temporal scales at which environmental variation affects populations of plants and animals is an important goal for modern population biology, especially in the context of shifting climatic conditions. The El Niño Southern Oscillation (ENSO) generates climatic extremes of interannual variation, and has been shown to have significant effects on the diversity and abundance of a variety of terrestrial taxa. However, studies that have investigated the influence of such large-scale climate phenomena have often been limited in spatial and taxonomic scope. We used 23 years (1988-2010) of a long-term butterfly monitoring data set to explore associations between variation in population abundance of 28 butterfly species and variation in ENSO-derived sea surface temperature anomalies (SSTA) across 10 sites that encompass an elevational range of 2750 m in the Sierra Nevada mountain range of California. Our analysis detected a positive, regional effect of increased SSTA on butterfly abundance (wetter and warmer years predict more butterfly observations), yet the influence of SSTA on butterfly abundances varied along the elevational gradient, and also differed greatly among the 28 species. Migratory species had the strongest relationships with ENSO-derived SSTA, suggesting that large-scale climate indices are particularly valuable for understanding biotic-abiotic relationships of the most mobile species. In general, however, the ecological effects of large-scale climatic factors are context dependent between sites and species. Our results illustrate the power of long-term data sets for revealing pervasive yet subtle climatic effects, but also caution against expectations derived from exemplar species or single locations in the study of biotic-abiotic interactions.
Rapid Swings between Greenhouse and Icehouse Climate States near the Oligocene - Miocene Boundary
NASA Astrophysics Data System (ADS)
Zhang, Y.; Fraass, A.; Ruan, J.; Jin, X.; D'haenens, S.; Gasson, E.; Deconto, R. M.; Pearson, A.; Leckie, R. M.; Liu, C.; Liebrand, D.; Hull, P. M.; Pagani, M.
2017-12-01
The Earth's Cenozoic climate is conventionally portrayed as either being in a greenhouse or an icehouse conditions. Greenhouse climates are characterized by warm temperatures, high CO2 concentrations, low continental ice volume and reduced meridional temperature gradients, whereas icehouse climates are the opposite. The transition between greenhouse and icehouse primarily is achieved through stepwise and unidirectional cooling, ice sheet growth and increases in the meridional temperature gradients. Various feedbacks in the climate system and the global carbon cycle as well as the ice sheet hysteresis effect seem to preclude substantial fluctuations in the meridional temperature gradients, atmospheric CO2 concentrations and the volume of the East Antarctic Ice Sheet (EAIS) on a high frequency (orbital timescales). For example, relative to the Holocene, the last glacial maximum (LGM) is characterized by relatively small pCO2 changes (80-100 parts per million, ppm), similar cooling between the mid- and low-latitudes, and a stable East Antarctica Ice Sheet (EAIS). However, here we present geochemical reconstructions that appear to indicate large and rapid swings of CO2 (>200 ppm) and meridional temperature gradients near the Oligocene - Miocene (O-M) boundary ( 23 Ma). Further, transient waxing and waning of the EAIS during the Mi-1 glaciation is suggested by ice volume calculations based on benthic δ18O data, which are supported by the glaciomarine sequences deposited at the Ross Sea. Our results demonstrate a high sensitivity of surface ocean temperatures and temperature gradients, the global carbon cycle, and the cryosphere to changes in boundary conditions, with implications for our future.
Venter, Michelle; Dwyer, John; Dieleman, Wouter; Ramachandra, Anurag; Gillieson, David; Laurance, Susan; Cernusak, Lucas A; Beehler, Bruce; Jensen, Rigel; Bird, Michael I
2017-11-01
Our ability to model global carbon fluxes depends on understanding how terrestrial carbon stocks respond to varying environmental conditions. Tropical forests contain the bulk of the biosphere's carbon. However, there is a lack of consensus as to how gradients in environmental conditions affect tropical forest carbon. Papua New Guinea (PNG) lies within one of the largest areas of contiguous tropical forest and is characterized by environmental gradients driven by altitude; yet, the region has been grossly understudied. Here, we present the first field assessment of aboveground biomass (AGB) across three main forest types of PNG using 193 plots stratified across 3,100-m elevation gradient. Unexpectedly, AGB had no direct relationship to rainfall, temperature, soil, or topography. Instead, natural disturbances explained most variation in AGB. While large trees (diameter at breast height > 50 cm) drove altitudinal patterns of AGB, resulting in a major peak in AGB (2,200-3,100 m) and some of the most carbon-rich forests at these altitudes anywhere. Large trees were correlated to a set of climatic variables following a hump-shaped curve. The set of "optimal" climatic conditions found in montane cloud forests is similar to that of maritime temperate areas that harbor the largest trees in the world: high ratio of precipitation to evapotranspiration (2.8), moderate mean annual temperature (13.7°C), and low intra-annual temperature range (7.5°C). At extreme altitudes (2,800-3,100 m), where tree diversity elsewhere is usually low and large trees are generally rare or absent, specimens from 18 families had girths >70 cm diameter and maximum heights 20-41 m. These findings indicate that simple AGB-climate-edaphic models may not be suitable for estimating carbon storage in forests where optimal climate niches exist. Our study, conducted in a very remote area, suggests that tropical montane forests may contain greater AGB than previously thought and the importance of securing their future under a changing climate is therefore enhanced. © 2017 John Wiley & Sons Ltd.
Wang, Xiao-Fei; Liu, Jian-Feng; Gao, Wen-Qiang; Deng, Yun-Peng; Ni, Yan-Yan; Xiao, Yi-Hua; Kang, Feng-Feng; Wang, Qi; Lei, Jing-Pin; Jiang, Ze-Ping
2016-01-01
Knowledge of latitudinal patterns in plant defense and herbivory is crucial for understanding the mechanisms that govern ecosystem functioning and for predicting their responses to climate change. Using a widely distributed species in East Asia, Quercus variabilis, we aim to reveal defense patterns of trees with respect to ontogeny along latitudinal gradients. Six leaf chemical (total phenolics and total condensed tannin concentrations) and physical (cellulose, hemicellulose, lignin and dry mass concentration) defensive traits as well as leaf herbivory (% leaf area loss) were investigated in natural Chinese cork oak (Q. variabilis) forests across two ontogenetic stages (juvenile and mature trees) along a ~14°-latitudinal gradient. Our results showed that juveniles had higher herbivory values and a higher concentration of leaf chemical defense substances compared with mature trees across the latitudinal gradient. In addition, chemical defense and herbivory in both ontogenetic stages decreased with increasing latitude, which supports the latitudinal herbivory-defense hypothesis and optimal defense theory. The identified trade-offs between chemical and physical defense were primarily determined by environmental variation associated with the latitudinal gradient, with the climatic factors (annual precipitation, minimum temperature of the coldest month) largely contributing to the latitudinal defense pattern in both juvenile and mature oak trees. PMID:27252112
NASA Astrophysics Data System (ADS)
Wang, Xiao-Fei; Liu, Jian-Feng; Gao, Wen-Qiang; Deng, Yun-Peng; Ni, Yan-Yan; Xiao, Yi-Hua; Kang, Feng-Feng; Wang, Qi; Lei, Jing-Pin; Jiang, Ze-Ping
2016-06-01
Knowledge of latitudinal patterns in plant defense and herbivory is crucial for understanding the mechanisms that govern ecosystem functioning and for predicting their responses to climate change. Using a widely distributed species in East Asia, Quercus variabilis, we aim to reveal defense patterns of trees with respect to ontogeny along latitudinal gradients. Six leaf chemical (total phenolics and total condensed tannin concentrations) and physical (cellulose, hemicellulose, lignin and dry mass concentration) defensive traits as well as leaf herbivory (% leaf area loss) were investigated in natural Chinese cork oak (Q. variabilis) forests across two ontogenetic stages (juvenile and mature trees) along a ~14°-latitudinal gradient. Our results showed that juveniles had higher herbivory values and a higher concentration of leaf chemical defense substances compared with mature trees across the latitudinal gradient. In addition, chemical defense and herbivory in both ontogenetic stages decreased with increasing latitude, which supports the latitudinal herbivory-defense hypothesis and optimal defense theory. The identified trade-offs between chemical and physical defense were primarily determined by environmental variation associated with the latitudinal gradient, with the climatic factors (annual precipitation, minimum temperature of the coldest month) largely contributing to the latitudinal defense pattern in both juvenile and mature oak trees.
USDA-ARS?s Scientific Manuscript database
Soil organic matter (SOM) is a key indicator of agricultural productivity and overall soil health. Currently, dryland cropping systems of the inland Pacific Northwest (iPNW) span a large gradient in mean annual temperature (MAT) and precipitation (MAP).These climatic drivers are major determinants o...
NASA Astrophysics Data System (ADS)
Osburn, Christopher L.; Anderson, Nicholas J.; Stedmon, Colin A.; Giles, Madeline E.; Whiteford, Erika J.; McGenity, Terry J.; Dumbrell, Alex J.; Underwood, Graham J. C.
2017-12-01
Dissolved organic matter (DOM) concentration and quality were examined from Arctic lakes located in three clusters across south-west (SW) Greenland, covering the regional climatic gradient: cool, wet coastal zone; dry inland interior; and cool, dry ice-marginal areas. We hypothesized that differences in mean annual precipitation between sites would result in a reduced hydrological connectivity between lakes and their catchments and that this concentrates degraded DOM. The DOM in the inland lake group was characterized by a lower aromaticity and molecular weight, a low soil-like fluorescence, and carbon stable isotope (δ13C-DOC) values enriched by 2‰ relative to the coastal group. DOC-specific absorbance (SUVA254) and DOC-specific soil-like fluorescence (SUVFC1) revealed seasonal and climatic gradients across which DOM exhibited a dynamic we term "pulse-process": Pulses of DOM exported from soils to lakes during snow and ice melt were followed by pulses of autochthonous DOM inputs (possibly from macrophytes), and their subsequent photochemical and microbial processing. These effects regulated the dynamics of DOM in the inland lakes and suggested that if circumpolar lakes currently situated in cool wetter climatic regimes with strong hydrological connectivity have reduced connectivity under a drier future climate, they may evolve toward an end-point of large stocks of highly degraded DOC, equivalent to the inland lakes in the present study. The regional climatic gradient across SW Greenland and its influence on DOM properties in these lakes provide a model of possible future changes to lake C cycling in high-latitude systems where climatic changes are most pronounced.
Jennifer D. Knoepp; Craig R. See; James M. Vose; Chelcy F. Miniat; James S. Clark
2018-01-01
The interactions of terrestrial C pools and fluxes with spatial and temporal variation in climate are not well understood. We conducted this study in the southern Appalachian Mountains where complex topography provides variability in temperature, precipitation, and forest communities. In 1990, we established five large plots across an elevation gradient...
Higher climatological temperature sensitivity of soil carbon in cold than warm climates
NASA Astrophysics Data System (ADS)
Koven, Charles D.; Hugelius, Gustaf; Lawrence, David M.; Wieder, William R.
2017-11-01
The projected loss of soil carbon to the atmosphere resulting from climate change is a potentially large but highly uncertain feedback to warming. The magnitude of this feedback is poorly constrained by observations and theory, and is disparately represented in Earth system models (ESMs). To assess the climatological temperature sensitivity of soil carbon, we calculate apparent soil carbon turnover times that reflect long-term and broad-scale rates of decomposition. Here, we show that the climatological temperature control on carbon turnover in the top metre of global soils is more sensitive in cold climates than in warm climates and argue that it is critical to capture this emergent ecosystem property in global-scale models. We present a simplified model that explains the observed high cold-climate sensitivity using only the physical scaling of soil freeze-thaw state across climate gradients. Current ESMs fail to capture this pattern, except in an ESM that explicitly resolves vertical gradients in soil climate and carbon turnover. An observed weak tropical temperature sensitivity emerges in a different model that explicitly resolves mineralogical control on decomposition. These results support projections of strong carbon-climate feedbacks from northern soils and demonstrate a method for ESMs to capture this emergent behaviour.
Osland, Michael J; Day, Richard H; Hall, Courtney T; Brumfield, Marisa D; Dugas, Jason L; Jones, William R
2017-01-01
Within the context of climate change, there is a pressing need to better understand the ecological implications of changes in the frequency and intensity of climate extremes. Along subtropical coasts, less frequent and warmer freeze events are expected to permit freeze-sensitive mangrove forests to expand poleward and displace freeze-tolerant salt marshes. Here, our aim was to better understand the drivers of poleward mangrove migration by quantifying spatiotemporal patterns in mangrove range expansion and contraction across land-ocean temperature gradients. Our work was conducted in a freeze-sensitive mangrove-marsh transition zone that spans a land-ocean temperature gradient in one of the world's most wetland-rich regions (Mississippi River Deltaic Plain; Louisiana, USA). We used historical air temperature data (1893-2014), alternative future climate scenarios, and coastal wetland coverage data (1978-2011) to investigate spatiotemporal fluctuations and climate-wetland linkages. Our analyses indicate that changes in mangrove coverage have been controlled primarily by extreme freeze events (i.e., air temperatures below a threshold zone of -6.3 to -7.6°C). We expect that in the past 121 yr, mangrove range expansion and contraction has occurred across land-ocean temperature gradients. Mangrove resistance, resilience, and dominance were all highest in areas closer to the ocean where temperature extremes were buffered by large expanses of water and saturated soil. Under climate change, these areas will likely serve as local hotspots for mangrove dispersal, growth, range expansion, and displacement of salt marsh. Collectively, our results show that the frequency and intensity of freeze events across land-ocean temperature gradients greatly influences spatiotemporal patterns of range expansion and contraction of freeze-sensitive mangroves. We expect that, along subtropical coasts, similar processes govern the distribution and abundance of other freeze-sensitive organisms. In broad terms, our findings can be used to better understand and anticipate the ecological effects of changing winter climate extremes, especially within the transition zone between tropical and temperate climates. © 2016 by the Ecological Society of America.
Aspect has a greater impact on alpine soil bacterial community structure than elevation.
Wu, Jieyun; Anderson, Barbara J; Buckley, Hannah L; Lewis, Gillian; Lear, Gavin
2017-03-01
Gradients in environmental conditions, including climate factors and resource availability, occur along mountain inclines, providing a 'natural laboratory' to explore their combined impacts on microbial distributions. Conflicting spatial patterns observed across elevation gradients in soil bacterial community structure suggest that they are driven by various interacting factors at different spatial scales. Here, we investigated the relative impacts of non-resource (e.g. soil temperature, pH) and resource conditions (e.g. soil carbon and nitrogen) on the biogeography of soil bacterial communities across broad (i.e. along a 1500 m mountain elevation gradient) and fine sampling scales (i.e. along sunny and shady aspects of a mountain ridge). Our analysis of 16S rRNA gene data confirmed that when sampling across distances of < 1000 m, bacterial community composition was more closely related to the aspect of a site than its elevation. However, despite large differences in climate and resource-availability factors across elevation- and aspect-related gradients, bacterial community composition and richness were most strongly correlated with soil pH. These findings highlight the need to incorporate knowledge of multiple factors, including site aspect and soil pH for the appropriate use of elevation gradients as a proxy to explore the impacts of climate change on microbial community composition. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Kröner, Nico; Kotlarski, Sven; Fischer, Erich; Lüthi, Daniel; Zubler, Elias; Schär, Christoph
2017-05-01
Climate models robustly project a strong overall summer warming across Europe showing a characteristic north-south gradient with enhanced warming and drying in southern Europe. However, the processes that are responsible for this pattern are not fully understood. We here employ an extended surrogate or pseudo-warming approach to disentangle the contribution of different mechanisms to this response pattern. The basic idea of the surrogate technique is to use a regional climate model and apply a large-scale warming to the lateral boundary conditions of a present-day reference simulation, while maintaining the relative humidity (and thus implicitly increasing the specific moisture content). In comparison to previous studies, our approach includes two important extensions: first, different vertical warming profiles are applied in order to separate the effects of a mean warming from lapse-rate effects. Second, a twin-design is used, in which the climate change signals are not only added to present-day conditions, but also subtracted from a scenario experiment. We demonstrate that these extensions provide an elegant way to separate the full climate change signal into contributions from large-scale thermodynamic (TD), lapse-rate (LR), and circulation and other remaining effects (CO). The latter in particular include changes in land-ocean contrast and spatial variations of the SST warming patterns. We find that the TD effect yields a large-scale warming across Europe with no distinct latitudinal gradient. The LR effect, which is quantified for the first time in our study, leads to a stronger warming and some drying in southern Europe. It explains about 50 % of the warming amplification over the Iberian Peninsula, thus demonstrating the important role of lapse-rate changes. The effect is linked to an extending Hadley circulation. The CO effect as inherited from the driving GCM is shown to further amplify the north-south temperature change gradient. In terms of mean summer precipitation the TD effect leads to a significant overall increase in precipitation all across Europe, which is compensated and regionally reversed by the LR and CO effects in particular in southern Europe.
A gradient model of vegetation and climate utilizing NOAA satellite imagery. Phase 1: Texas transect
NASA Technical Reports Server (NTRS)
Greegor, D. H.; Norwine, J.
1981-01-01
A new experimental climatological model/variable termed the sponge, a measure of moisture availability based on daily temperature maxima and minima and precipitation, is tested for potential biogeographic, ecological, and agro-climatological applications. Results, depicted in tabular and graphic from, suggest that, as a generalized climatic index, sponge's simplicity and sensitivity make particularly appropriate for trans-regional biogeographic studies (e.g., large-area and global vegetation monitoring). The feasibility of utilizing NOAA/AVHRR data for vegetation classification was investigated and a vegetation gradient model that utilizes sponge, and AVHRR pixel data (channels 1 and 2) were obtained for 12 locations. The normalized difference values for the AVHRR data when plotted against vegetation characteristics (biomass, net productivity, leaf area) and sponge values suggest that a multivariate gradient model incorporating AVHRR and sponge data may indeed be useful in global vegetation stratification and monitoring.
NASA Astrophysics Data System (ADS)
Jurasinski, Gerald; Scharnweber, Tobias; Schröder, Christian; Lennartz, Bernd; Bauwe, Andreas
2017-04-01
Tree growth depends, among other factors, largely on the prevailing climatic conditions. Therefore, tree growth patterns are to be expected under climate change. Here, we analyze the tree-ring growth response of three major European tree species to projected future climate across a climatic (mostly precipitation) gradient in northeastern Germany. We used monthly data for temperature, precipitation, and the standardized precipitation evapotranspiration index (SPEI) over multiple time scales (1, 3, 6, 12, and 24 months) to construct models of tree-ring growth for Scots pine (Pinus syl- vestris L.) at three pure stands, and for Common beech (Fagus sylvatica L.) and Pedunculate oak (Quercus robur L.) at three mature mixed stands. The regression models were derived using a two-step approach based on partial least squares regression (PLSR) to extract potentially well explaining variables followed by ordinary least squares regression (OLSR) to consolidate the models to the least number of variables while retaining high explanatory power. The stability of the models was tested with a comprehensive calibration-verification scheme. All models were successfully verified with R2s ranging from 0.21 for the western pine stand to 0.62 for the beech stand in the east. For growth prediction, climate data forecasted until 2100 by the regional climate model WETTREG2010 based on the A1B Intergovernmental Panel on Climate Change (IPCC) emission scenario was used. For beech and oak, growth rates will likely decrease until the end of the 21st century. For pine, modeled growth trends vary and range from a slight growth increase to a weak decrease in growth rates depending on the position along the climatic gradient. The climatic gradient across the study area will possibly affect the future growth of oak with larger growth reductions towards the drier east. For beech, site-specific adaptations seem to override the influence of the climatic gradient. We conclude that in Northeastern Germany Scots pine has great potential to remain resilient to projected climate change without any greater impairment, whereas Common beech and Pedunculate oak will likely face lesser growth under the expected warmer and dryer climate conditions. The results call for an adaptation of forest management to mitigate the negative effects of climate change for beech and oak in the region.
Can trait patterns along gradients predict plant community responses to climate change?
Guittar, John; Goldberg, Deborah; Klanderud, Kari; Telford, Richard J; Vandvik, Vigdis
2016-10-01
Plant functional traits vary consistently along climate gradients and are therefore potential predictors of plant community response to climate change. We test this space-for-time assumption by combining a spatial gradient study with whole-community turf transplantation along temperature and precipitation gradients in a network of 12 grassland sites in Southern Norway. Using data on eight traits for 169 species and annual vegetation censuses of 235 turfs over 5 yr, we quantify trait-based responses to climate change by comparing observed community dynamics in transplanted turfs to field-parameterized null model simulations. Three traits related to species architecture (maximum height, number of dormant meristems, and ramet-ramet connection persistence) varied consistently along spatial temperature gradients and also correlated to changes in species abundances in turfs transplanted to warmer climates. Two traits associated with resource acquisition strategy (SLA, leaf area) increased along spatial temperature gradients but did not correlate to changes in species abundances following warming. No traits correlated consistently with precipitation. Our study supports the hypothesis that spatial associations between plant traits and broad-scale climate variables can be predictive of community response to climate change, but it also suggests that not all traits with clear patterns along climate gradients will necessarily influence community response to an equal degree. © 2016 by the Ecological Society of America.
A new paradigm for predicting zonal-mean climate and climate change
NASA Astrophysics Data System (ADS)
Armour, K.; Roe, G.; Donohoe, A.; Siler, N.; Markle, B. R.; Liu, X.; Feldl, N.; Battisti, D. S.; Frierson, D. M.
2016-12-01
How will the pole-to-equator temperature gradient, or large-scale patterns of precipitation, change under global warming? Answering such questions typically involves numerical simulations with comprehensive general circulation models (GCMs) that represent the complexities of climate forcing, radiative feedbacks, and atmosphere and ocean dynamics. Yet, our understanding of these predictions hinges on our ability to explain them through the lens of simple models and physical theories. Here we present evidence that zonal-mean climate, and its changes, can be understood in terms of a moist energy balance model that represents atmospheric heat transport as a simple diffusion of latent and sensible heat (as a down-gradient transport of moist static energy, with a diffusivity coefficient that is nearly constant with latitude). We show that the theoretical underpinnings of this model derive from the principle of maximum entropy production; that its predictions are empirically supported by atmospheric reanalyses; and that it successfully predicts the behavior of a hierarchy of climate models - from a gray radiation aquaplanet moist GCM, to comprehensive GCMs participating in CMIP5. As an example of the power of this paradigm, we show that, given only patterns of local radiative feedbacks and climate forcing, the moist energy balance model accurately predicts the evolution of zonal-mean temperature and atmospheric heat transport as simulated by the CMIP5 ensemble. These results suggest that, despite all of its dynamical complexity, the atmosphere essentially responds to energy imbalances by simply diffusing latent and sensible heat down-gradient; this principle appears to explain zonal-mean climate and its changes under global warming.
NASA Astrophysics Data System (ADS)
Yang, J.; Weisberg, P.; Dilts, T.
2016-12-01
Climate warming can lead to large-scale drought-induced tree mortality events and greatly affect forest landscape resilience. Climatic water deficit (CWD) and its physiographic variations provide a key mechanism in driving landscape dynamics in response to climate change. Although CWD has been successfully applied in niche-based species distribution models, its application in process-based forest landscape models is still scarce. Here we present a framework incorporating fine-scale influence of terrain on ecohydrology in modeling forest landscape dynamics. We integrated CWD with a forest landscape succession and disturbance model (LANDIS-II) to evaluate how tree species distribution might shift in response to different climate-fire scenarios across an elevation-aspect gradient in a semi-arid montane landscape of northeastern Nevada, USA. Our simulations indicated that drought-intolerant tree species such as quaking aspen could experience greatly reduced distributions in the more arid portions of their existing ranges due to water stress limitations under future climate warming scenarios. However, even at the most xeric portions of its range, aspen is likely to persist in certain environmental settings due to unique and often fine-scale combinations of resource availability, species interactions and disturbance regime. The modeling approach presented here allowed identification of these refugia. In addition, this approach helped quantify how the direction and magnitude of fire influences on species distribution would vary across topoclimatic gradients, as well as furthers our understanding on the role of environmental conditions, fire, and inter-specific competition in shaping potential responses of landscape resilience to climate change.
NASA Astrophysics Data System (ADS)
Macias-Fauria, M.; Johnson, E. A.; Forbes, B. C.; Willis, K. J.
2013-12-01
In cold ecosystems such as sub-alpine forests and forest-tundra, vegetation geographical ranges are expected to expand upward/northward in a warmer world. Such moving fronts have been predicted to 1) decrease the remaining alpine area in mountain systems, increasing fragmentation and extinction risk of many alpine taxa, and 2) fundamentally modify the energy budget of newly afforested areas, enhancing further regional warming due to a reduction in albedo. The latter is particularly significant in the forest-tundra, where changes over large regions can have regional-to-global effects on climate. An integral part of the expected range shifts is their velocity. Whereas range shifts across thermal gradients can theoretically be fast in an elevation gradient relative to climate velocity (i.e. rate of climate change) due to the short distances involved, large lags are expected over the flat forest-tundra. Mountain regions have thus been identified as buffer areas where species can track climate change, in opposition to flat terrain where climate velocity is faster. Thus, much shorter time-to-equilibrium are expected for advancing upslope sub-alpine forest than for advancing northern boreal forest. We contribute to this discussion by showing two mechanisms that might largely alter the above predictions in opposite directions: 1) In mountain regions, terrain heterogeneity not only allows for slower climate velocities, but slope processes largely affect the advance of vegetation. Indeed, such mechanisms can potentially reduce the climatic signal in vegetation distribution limits (e.g. treeline), precluding it from migrating to climatically favourable areas - since these areas occur in geologically unfavourable ones. Such seemingly local control to species range shifts was found to reduce the climate-sensitive treeline areas in the sub-alpine forest of the Canadian Rocky Mountains to ~5% at a landscape scale, fundamentally altering the predictions of vegetation response to climate warming in the region (Macias-Fauria & Johnson 20013, PNAS). 2) In the low arctic tundra, un-treed to treed landscapes have sprouted in several parts of the tundra in a matter of decades, as opposed to the previously predicted response times of several centuries for boreal forest to advance to its new climate optimum (migrational lags). This takes place not through very rapid moving fronts, but through phenotypic responses of extant vegetation with highly flexible life forms, such as woody deciduous shrubs (Salix, Alnus, Betula). The resulting vegetation response creates strong energy feedbacks while at the same time potentially further reduces the speed of northward displacement of the boreal forest, that has to compete with a new treed ecosystem (Macias-Fauria et al. 2012, Nature Climate Change). In conclusion, control of rates of migration by factors other than climate in mountain systems can largely reduce the ability of vegetation to track climate change, and emergence of structurally novel ecosystems in low arctic tundra might largely alter current predictions based on climate response of vegetation, by accelerating ecosystem change and reducing migrational rates simultaneously.
Tropical cyclogenesis in warm climates simulated by a cloud-system resolving model
NASA Astrophysics Data System (ADS)
Fedorov, Alexey V.; Muir, Les; Boos, William R.; Studholme, Joshua
2018-03-01
Here we investigate tropical cyclogenesis in warm climates, focusing on the effect of reduced equator-to-pole temperature gradient relevant to past equable climates and, potentially, to future climate change. Using a cloud-system resolving model that explicitly represents moist convection, we conduct idealized experiments on a zonally periodic equatorial β-plane stretching from nearly pole-to-pole and covering roughly one-fifth of Earth's circumference. To improve the representation of tropical cyclogenesis and mean climate at a horizontal resolution that would otherwise be too coarse for a cloud-system resolving model (15 km), we use the hypohydrostatic rescaling of the equations of motion, also called reduced acceleration in the vertical. The simulations simultaneously represent the Hadley circulation and the intertropical convergence zone, baroclinic waves in mid-latitudes, and a realistic distribution of tropical cyclones (TCs), all without use of a convective parameterization. Using this model, we study the dependence of TCs on the meridional sea surface temperature gradient. When this gradient is significantly reduced, we find a substantial increase in the number of TCs, including a several-fold increase in the strongest storms of Saffir-Simpson categories 4 and 5. This increase occurs as the mid-latitudes become a new active region of TC formation and growth. When the climate warms we also see convergence between the physical properties and genesis locations of tropical and warm-core extra-tropical cyclones. While end-members of these types of storms remain very distinct, a large distribution of cyclones forming in the subtropics and mid-latitudes share properties of the two.
NASA Astrophysics Data System (ADS)
Horsák, Michal; Juřičková, Lucie; Horsáková, Veronika; Pokorná, Adéla; Pokorný, Petr; Šizling, Arnošt L.; Chytrý, Milan
2018-04-01
Diversity patterns of forest snail assemblages have been studied mainly in Europe. Siberian snail faunas have different evolutionary history and colonization dynamics than European faunas, but studies of forest snail diversity are almost missing from Siberia. Therefore, we collected snails at 173 forest sites in the Russian Altai and adjacent areas, encompassing broad variation in climate and forest types. We found 51 species, with a maximum of 15 and an average of seven species per site. The main gradient in species composition was related to soil pH, a variable that also positively correlates with snail abundances. The second gradient was associated with climate characteristics of winter. We observed significant differences in both species richness and composition among six forest types defined based on vegetation classification. Hemiboreal continental forests were the poorest of these types but hosted several species characteristic of European full-glacial stages of the Late Pleistocene. A high snow cover in Temperate coniferous and mixed forests, protecting the soil from freezing, allowed the frost-sensitive large-bodied (>10 mm) species to inhabit this forest type. In contrast to most of the European snail assemblages studied so far we found that the factors responsible for the variation in species richness differed from those driving species composition. This may be attributed to the sharp climatic gradient and the presence of the cold-adapted species typical of the Pleistocene cold stages. We suggest that southern Siberian forests hosting these species can serve as modern analogues of full-glacial forests in periglacial Central and Eastern Europe.
Climate-mediated cooperation promotes niche expansion in burying beetles.
Sun, Syuan-Jyun; Rubenstein, Dustin R; Chen, Bo-Fei; Chan, Shih-Fan; Liu, Jian-Nan; Liu, Mark; Hwang, Wenbe; Yang, Ping-Shih; Shen, Sheng-Feng
2014-05-13
The ability to form cooperative societies may explain why humans and social insects have come to dominate the earth. Here we examine the ecological consequences of cooperation by quantifying the fitness of cooperative (large groups) and non-cooperative (small groups) phenotypes in burying beetles (Nicrophorus nepalensis) along an elevational and temperature gradient. We experimentally created large and small groups along the gradient and manipulated interspecific competition with flies by heating carcasses. We show that cooperative groups performed as thermal generalists with similarly high breeding success at all temperatures and elevations, whereas non-cooperative groups performed as thermal specialists with higher breeding success only at intermediate temperatures and elevations. Studying the ecological consequences of cooperation may not only help us to understand why so many species of social insects have conquered the earth, but also to determine how climate change will affect the success of these and other social species, including our own.DOI: http://dx.doi.org/10.7554/eLife.02440.001. Copyright © 2014, Sun et al.
Climate-mediated cooperation promotes niche expansion in burying beetles
Sun, Syuan-Jyun; Rubenstein, Dustin R; Chen, Bo-Fei; Chan, Shih-Fan; Liu, Jian-Nan; Liu, Mark; Hwang, Wenbe; Yang, Ping-Shih; Shen, Sheng-Feng
2014-01-01
The ability to form cooperative societies may explain why humans and social insects have come to dominate the earth. Here we examine the ecological consequences of cooperation by quantifying the fitness of cooperative (large groups) and non-cooperative (small groups) phenotypes in burying beetles (Nicrophorus nepalensis) along an elevational and temperature gradient. We experimentally created large and small groups along the gradient and manipulated interspecific competition with flies by heating carcasses. We show that cooperative groups performed as thermal generalists with similarly high breeding success at all temperatures and elevations, whereas non-cooperative groups performed as thermal specialists with higher breeding success only at intermediate temperatures and elevations. Studying the ecological consequences of cooperation may not only help us to understand why so many species of social insects have conquered the earth, but also to determine how climate change will affect the success of these and other social species, including our own. DOI: http://dx.doi.org/10.7554/eLife.02440.001 PMID:24842999
The climate response of the Indo-Pacific warm pool to glacial sea level
NASA Astrophysics Data System (ADS)
Di Nezio, Pedro N.; Timmermann, Axel; Tierney, Jessica E.; Jin, Fei-Fei; Otto-Bliesner, Bette; Rosenbloom, Nan; Mapes, Brian; Neale, Rich; Ivanovic, Ruza F.; Montenegro, Alvaro
2016-06-01
Growing climate proxy evidence suggests that changes in sea level are important drivers of tropical climate change on glacial-interglacial timescales. These paleodata suggest that rainfall patterns over the Indo-Pacific warm pool (IPWP) are highly sensitive to the landmass configuration of the Maritime Continent and that lowered sea level contributed to large-scale drying during the Last Glacial Maximum (LGM, approximately 21,000 years B.P.). Using the Community Earth System Model Version 1.2 (CESM1), we investigate the mechanisms by which lowered sea level influenced the climate of the IPWP during the LGM. The CESM1 simulations show that, in agreement with previous hypotheses, changes in atmospheric circulation are initiated by the exposure of the Sunda and Sahul shelves. Ocean dynamical processes amplify the changes in atmospheric circulation by increasing the east-west sea surface temperature (SST) gradient along the equatorial Indian Ocean. The coupled mechanism driving this response is akin to the Bjerknes feedback and results in a large-scale climatic reorganization over the Indian Ocean with impacts extending from east Africa to the western tropical Pacific. Unlike exposure of the Sunda shelf, exposure of Sahul shelf and the associated changes in surface albedo play a key role because of the positive feedback. This mechanism could explain the pattern of dry (wet) eastern (western) Indian Ocean identified in climate proxies and LGM simulations. However, this response also requires a strengthened SST gradient along the equatorial Indian Ocean, a pattern that is not evident in marine paleoreconstructions. Strategies to resolve this issue are discussed.
AmeriFlux US-SCd Southern California Climate Gradient - Sonoran Desert
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goulden, Mike
This is the AmeriFlux version of the carbon flux data for the site US-SCd Southern California Climate Gradient - Sonoran Desert. Site Description - Half hourly data are available at https://www.ess.uci.edu/~california/. This site is one of six Southern California Climate Gradient flux towers operated along an elevation gradient (sites are US-SCg, US-SCs, US-SCf, US-SCw, US-SCc, US-SCd). This site is a low desert site in Southern California's rain shadow; the climate is extremely dry and hot. The site has experience repeated droughts, with negligible rainfall during several years of the record.
Raija Laiho; Jukka Laine; Carl C. Trettin; Leena Finér
2004-01-01
Peatlands form a large carbon (C) pool but their C sink is labile and susceptible to changes in climate and land-use. Some pristine peatlands are forested, and others have the potential: the amount of arboreal vegetation is likely to increase if soil water levels are lowered as a consequence of climate change. On those sites tree litter dynamics may be crucial for the...
NASA Astrophysics Data System (ADS)
Blagodatskaya, Evgenia; Blagodatsky, Sergey; Khomyakov, Nikita; Myachina, Olga; Kuzyakov, Yakov
2016-02-01
Short-term acceleration of soil organic matter decomposition by increasing temperature conflicts with the thermal adaptation observed in long-term studies. Here we used the altitudinal gradient on Mt. Kilimanjaro to demonstrate the mechanisms of thermal adaptation of extra- and intracellular enzymes that hydrolyze cellulose, chitin and phytate and oxidize monomers (14C-glucose) in warm- and cold-climate soils. We revealed that no response of decomposition rate to temperature occurs because of a cancelling effect consisting in an increase in half-saturation constants (Km), which counteracts the increase in maximal reaction rates (Vmax with temperature). We used the parameters of enzyme kinetics to predict thresholds of substrate concentration (Scrit) below which decomposition rates will be insensitive to global warming. Increasing values of Scrit, and hence stronger canceling effects with increasing altitude on Mt. Kilimanjaro, explained the thermal adaptation of polymer decomposition. The reduction of the temperature sensitivity of Vmax along the altitudinal gradient contributed to thermal adaptation of both polymer and monomer degradation. Extrapolating the altitudinal gradient to the large-scale latitudinal gradient, these results show that the soils of cold climates with stronger and more frequent temperature variation are less sensitive to global warming than soils adapted to high temperatures.
USDA-ARS?s Scientific Manuscript database
Climate models predict increased variability in precipitation regimes, which will likely increase frequency/duration of drought. Reductions in soil moisture affect physical and chemical characteristics of the soil habitat and can influence soil organisms such as mites and nematodes. These organisms ...
Pronounced zonal heterogeneity in Eocene southern high-latitude sea surface temperatures.
Douglas, Peter M J; Affek, Hagit P; Ivany, Linda C; Houben, Alexander J P; Sijp, Willem P; Sluijs, Appy; Schouten, Stefan; Pagani, Mark
2014-05-06
Paleoclimate studies suggest that increased global warmth during the Eocene epoch was greatly amplified at high latitudes, a state that climate models cannot fully reproduce. However, proxy estimates of Eocene near-Antarctic sea surface temperatures (SSTs) have produced widely divergent results at similar latitudes, with SSTs above 20 °C in the southwest Pacific contrasting with SSTs between 5 and 15 °C in the South Atlantic. Validation of this zonal temperature difference has been impeded by uncertainties inherent to the individual paleotemperature proxies applied at these sites. Here, we present multiproxy data from Seymour Island, near the Antarctic Peninsula, that provides well-constrained evidence for annual SSTs of 10-17 °C (1σ SD) during the middle and late Eocene. Comparison of the same paleotemperature proxy at Seymour Island and at the East Tasman Plateau indicate the presence of a large and consistent middle-to-late Eocene SST gradient of ∼7 °C between these two sites located at similar paleolatitudes. Intermediate-complexity climate model simulations suggest that enhanced oceanic heat transport in the South Pacific, driven by deep-water formation in the Ross Sea, was largely responsible for the observed SST gradient. These results indicate that very warm SSTs, in excess of 18 °C, did not extend uniformly across the Eocene southern high latitudes, and suggest that thermohaline circulation may partially control the distribution of high-latitude ocean temperatures in greenhouse climates. The pronounced zonal SST heterogeneity evident in the Eocene cautions against inferring past meridional temperature gradients using spatially limited data within given latitudinal bands.
Pronounced zonal heterogeneity in Eocene southern high-latitude sea surface temperatures
Douglas, Peter M. J.; Affek, Hagit P.; Ivany, Linda C.; Houben, Alexander J. P.; Sijp, Willem P.; Sluijs, Appy; Schouten, Stefan; Pagani, Mark
2014-01-01
Paleoclimate studies suggest that increased global warmth during the Eocene epoch was greatly amplified at high latitudes, a state that climate models cannot fully reproduce. However, proxy estimates of Eocene near-Antarctic sea surface temperatures (SSTs) have produced widely divergent results at similar latitudes, with SSTs above 20 °C in the southwest Pacific contrasting with SSTs between 5 and 15 °C in the South Atlantic. Validation of this zonal temperature difference has been impeded by uncertainties inherent to the individual paleotemperature proxies applied at these sites. Here, we present multiproxy data from Seymour Island, near the Antarctic Peninsula, that provides well-constrained evidence for annual SSTs of 10–17 °C (1σ SD) during the middle and late Eocene. Comparison of the same paleotemperature proxy at Seymour Island and at the East Tasman Plateau indicate the presence of a large and consistent middle-to-late Eocene SST gradient of ∼7 °C between these two sites located at similar paleolatitudes. Intermediate-complexity climate model simulations suggest that enhanced oceanic heat transport in the South Pacific, driven by deep-water formation in the Ross Sea, was largely responsible for the observed SST gradient. These results indicate that very warm SSTs, in excess of 18 °C, did not extend uniformly across the Eocene southern high latitudes, and suggest that thermohaline circulation may partially control the distribution of high-latitude ocean temperatures in greenhouse climates. The pronounced zonal SST heterogeneity evident in the Eocene cautions against inferring past meridional temperature gradients using spatially limited data within given latitudinal bands. PMID:24753570
NASA Astrophysics Data System (ADS)
Tulich, S. N.
2015-06-01
This paper describes a general method for the treatment of convective momentum transport (CMT) in large-scale dynamical solvers that use a cyclic, two-dimensional (2-D) cloud-resolving model (CRM) as a "superparameterization" of convective-system-scale processes. The approach is similar in concept to traditional parameterizations of CMT, but with the distinction that both the scalar transport and diagnostic pressure gradient force are calculated using information provided by the 2-D CRM. No assumptions are therefore made concerning the role of convection-induced pressure gradient forces in producing up or down-gradient CMT. The proposed method is evaluated using a new superparameterized version of the Weather Research and Forecast model (SP-WRF) that is described herein for the first time. Results show that the net effect of the formulation is to modestly reduce the overall strength of the large-scale circulation, via "cumulus friction." This statement holds true for idealized simulations of two types of mesoscale convective systems, a squall line, and a tropical cyclone, in addition to real-world global simulations of seasonal (1 June to 31 August) climate. In the case of the latter, inclusion of the formulation is found to improve the depiction of key synoptic modes of tropical wave variability, in addition to some aspects of the simulated time-mean climate. The choice of CRM orientation is also found to importantly affect the simulated time-mean climate, apparently due to changes in the explicit representation of wide-spread shallow convective regions.
Hargreaves, A L; Bailey, S F; Laird, R A
2015-08-01
Dispersal ability will largely determine whether species track their climatic niches during climate change, a process especially important for populations at contracting (low-latitude/low-elevation) range limits that otherwise risk extinction. We investigate whether dispersal evolution at contracting range limits is facilitated by two processes that potentially enable edge populations to experience and adjust to the effects of climate deterioration before they cause extinction: (i) climate-induced fitness declines towards range limits and (ii) local adaptation to a shifting climate gradient. We simulate a species distributed continuously along a temperature gradient using a spatially explicit, individual-based model. We compare range-wide dispersal evolution during climate stability vs. directional climate change, with uniform fitness vs. fitness that declines towards range limits (RLs), and for a single climate genotype vs. multiple genotypes locally adapted to temperature. During climate stability, dispersal decreased towards RLs when fitness was uniform, but increased when fitness declined towards RLs, due to highly dispersive genotypes maintaining sink populations at RLs, increased kin selection in smaller populations, and an emergent fitness asymmetry that favoured dispersal in low-quality habitat. However, this initial dispersal advantage at low-fitness RLs did not facilitate climate tracking, as it was outweighed by an increased probability of extinction. Locally adapted genotypes benefited from staying close to their climate optima; this selected against dispersal under stable climates but for increased dispersal throughout shifting ranges, compared to cases without local adaptation. Dispersal increased at expanding RLs in most scenarios, but only increased at the range centre and contracting RLs given local adaptation to climate. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
NASA Astrophysics Data System (ADS)
Marks, E.; Aflakpui, G. K. S.; Nkem, J.; Poch, R. M.; Khouma, M.; Kokou, K.; Sagoe, R.; Sebastiã, M.-T.
2009-08-01
Terrestrial carbon resources are major drivers of development in West Africa. The distribution of these resources co-varies with ecosystem type and rainfall along a strong Northeast-Southwest climatic gradient. Soil organic carbon, a strong indicator of soil quality, has been severely depleted in some areas by human activities, which leads to issues of soil erosion and desertification, but this trend can be altered with appropriate management. There is significant potential to enhance existing soil carbon stores in West Africa, with benefits at the global and local scale, for atmospheric CO2 mitigation as well as supporting and provisioning ecosystem services. Three key factors impacting carbon stocks are addressed in this review: climate, biotic factors, and human activities. Climate risks must be considered in a framework of global change, especially in West Africa, where landscape managers have few resources available to adapt to climatic perturbations. Among biotic factors, biodiversity conservation paired with carbon conservation may provide a pathway to sustainable development, and biodiversity conservation is also a global priority with local benefits for ecosystem resilience, biomass productivity, and provisioning services such as foodstuffs. Finally, human management has largely been responsible for reduced carbon stocks, but this trend can be reversed through the implementation of appropriate carbon conservation strategies in the agricultural sector, as shown by multiple studies. Owing to the strong regional climatic gradient, country-level initiatives will need to consider carbon sequestration approaches for multiple ecosystem types. Given the diversity of environments, global policies must be adapted and strategies developed at the national or sub-national levels to improve carbon storage above and belowground. Initiatives of this sort must act locally at farmer scale, and focus on ecosystem services rather than on carbon sequestration solely.
Knowles, Leel; Phelps, G.G.; Kinnaman, Sandra L.; German, Edward R.
2005-01-01
Two internally drained karstic wetlands in central Florida-Boggy Marsh at the Hilochee Wildlife Management Area and a large unnamed wetland at the Lyonia Preserve-were studied during 2001-03 to gain a better understanding of the net-recharge function that these wetlands provide, the significance of exchanges with ground water with regard to wetland water budgets, and the variability in wetland hydrologic response to a range of climate conditions. These natural, relatively remote and unaltered wetlands were selected to provide a baseline of natural wetland hydrologic variability to which anthropogenic influences on wetland hydrology could be compared. Large departures from normal rainfall during the study were fortuitous, and allowed monitoring of hydrologic processes over a wide range of climate conditions. Wetland responses varied greatly as a result of climate conditions that ranged from moderate drought to extremely moist. Anthropogenic activities influenced water levels at both study sites; however, because these activities were brief relative to the duration of the study, sufficient data were collected during unimpacted periods to allow for the following conclusions to be made. Water budgets developed for Boggy Marsh and the Lyonia large wetland showed strong similarity between the flux terms of rainfall, evaporation, net change in storage, and the net ground-water exchange residual. Runoff was assumed to be negligible. Of the total annual flux at Boggy Marsh, rainfall accounted for 45 percent; evaporation accounted for 25 percent; net change in storage accounted for 25 percent; and the net residual accounted for 5 percent. At the Lyonia large wetland, rainfall accounted for 44 percent; evaporation accounted for 29 percent; net change in storage accounted for 21 percent; and the net residual accounted for 6 percent of the total annual flux. Wetland storage and ground-water exchange were important when compared to the total water budget at both wetlands. Even though rainfall was far above average during the study, wetland evaporation volumetrically exceeded rainfall. Ground-water inflow was effective in partially offsetting the negative residual between rainfall and evaporation, thus adding to wetland storage. Ground-water inflow was most common at both wetlands when rainfall continued for days or weeks, or during a week with more than about 2.5 inches of rainfall. Large decreases in wetland storage were associated with large negative fluxes of evaporation and ground-water exchange. The response of wetland water levels to rainfall showed a strong and similar relation at both study sites; however, the greater variability in the relation of wetland water-level change to rainfall at higher rainfall rates indicated that hydrologic processes other than rainfall became more important in the response of the wetland. Changes in wetland water levels seemed to be related more to vertical gradients than to lateral gradients. The largest wetland water-level rises were associated mostly with lower vertical gradients, when vertical head differences were below the 18-month average; however, at the Lyonia large wetland, extremely large lateral gradients toward the wetland during late June 2002 may have contributed to substantial gains in wetland water. During the remainder of the study, wetland water-level rises were associated mostly with decreasing vertical gradients and highly variable lateral gradients. Conversely, wetland water-level decreases were associated mostly with increasing vertical gradients and lateral gradients away from the wetland, particularly during the dry season. The potential for lateral ground-water exchange with the wetlands varied substantially more than that for vertical exchange. Potential for vertical losses of wetland water to ground water was highest during a dry period from December 2001 to June 2002, during the wet season of 2002, and for several months into the following dry season. Lateral he
La Sorte, Frank A.; Butchart, Stuart H. M.; Jetz, Walter; Böhning-Gaese, Katrin
2014-01-01
Species' geographical distributions are tracking latitudinal and elevational surface temperature gradients under global climate change. To evaluate the opportunities to track these gradients across space, we provide a first baseline assessment of the steepness of these gradients for the world's terrestrial birds. Within the breeding ranges of 9,014 bird species, we characterized the spatial gradients in temperature along latitude and elevation for all and a subset of bird species, respectively. We summarized these temperature gradients globally for threatened and non-threatened species and determined how their steepness varied based on species' geography (range size, shape, and orientation) and projected changes in temperature under climate change. Elevational temperature gradients were steepest for species in Africa, western North and South America, and central Asia and shallowest in Australasia, insular IndoMalaya, and the Neotropical lowlands. Latitudinal temperature gradients were steepest for extratropical species, especially in the Northern Hemisphere. Threatened species had shallower elevational gradients whereas latitudinal gradients differed little between threatened and non-threatened species. The strength of elevational gradients was positively correlated with projected changes in temperature. For latitudinal gradients, this relationship only held for extratropical species. The strength of latitudinal gradients was better predicted by species' geography, but primarily for extratropical species. Our findings suggest threatened species are associated with shallower elevational temperature gradients, whereas steep latitudinal gradients are most prevalent outside the tropics where fewer bird species occur year-round. Future modeling and mitigation efforts would benefit from the development of finer grain distributional data to ascertain how these gradients are structured within species' ranges, how and why these gradients vary among species, and the capacity of species to utilize these gradients under climate change. PMID:24852009
Climate-driven thresholds for chemical weathering in postglacial soils of New Zealand
NASA Astrophysics Data System (ADS)
Dixon, Jean L.; Chadwick, Oliver A.; Vitousek, Peter M.
2016-09-01
Chemical weathering in soils dissolves and alters minerals, mobilizes metals, liberates nutrients to terrestrial and aquatic ecosystems, and may modulate Earth's climate over geologic time scales. Climate-weathering relationships are often considered fundamental controls on the evolution of Earth's surface and biogeochemical cycles. However, surprisingly little consensus has emerged on if and how climate controls chemical weathering, and models and data from published literature often give contrasting correlations and predictions for how weathering rates and climate variables such as temperature or moisture are related. Here we combine insights gained from the different approaches, methods, and theory of the soil science, biogeochemistry, and geomorphology communities to tackle the fundamental question of how rainfall influences soil chemical properties. We explore climate-driven variations in weathering and soil development in young, postglacial soils of New Zealand, measuring soil elemental geochemistry along a large precipitation gradient (400-4700 mm/yr) across the Waitaki basin on Te Waipounamu, the South Island. Our data show a strong climate imprint on chemical weathering in these young soils. This climate control is evidenced by rapid nonlinear changes along the gradient in total and exchangeable cations in soils and in the increased movement and redistribution of metals with rainfall. The nonlinear behavior provides insight into why climate-weathering relationships may be elusive in some landscapes. These weathering thresholds also have significant implications for how climate may influence landscape evolution and the release of rock-derived nutrients to ecosystems, as landscapes that transition to wetter climates across this threshold may weather and deplete rapidly.
Baker, Nameer R; Khalili, Banafshe; Martiny, Jennifer B H; Allison, Steven D
2018-06-01
Microbial decomposers mediate the return of CO 2 to the atmosphere by producing extracellular enzymes to degrade complex plant polymers, making plant carbon available for metabolism. Determining if and how these decomposer communities are constrained in their ability to degrade plant litter is necessary for predicting how carbon cycling will be affected by future climate change. We analyzed mass loss, litter chemistry, microbial biomass, extracellular enzyme activities, and enzyme temperature sensitivities in grassland litter transplanted along a Mediterranean climate gradient in southern California. Microbial community composition was manipulated by caging litter within bags made of nylon membrane that prevent microbial immigration. To test whether grassland microbes were constrained by climate history, half of the bags were inoculated with local microbial communities native to each gradient site. We determined that temperature and precipitation likely interact to limit microbial decomposition in the extreme sites along our gradient. Despite their unique climate history, grassland microbial communities were not restricted in their ability to decompose litter under different climate conditions across the gradient, although microbial communities across our gradient may be restricted in their ability to degrade different types of litter. We did find some evidence that local microbial communities were optimized based on climate, but local microbial taxa that proliferated after inoculation into litterbags did not enhance litter decomposition. Our results suggest that microbial community composition does not constrain C-cycling rates under climate change in our system, but optimization to particular resource environments may act as more general constraints on microbial communities. © 2018 by the Ecological Society of America.
Orographic Barriers, Rainshadows, and Earth Surface Processes in the Central Andes
NASA Astrophysics Data System (ADS)
Bookhagen, B.; Strecker, M. R.
2016-12-01
The Central Andes of NW Argentina, northern Chile, and SW Bolivia are characterized by a steep E-W topographic, climatic and environmental gradient. The first windward topographic rise in the eastern Central Andes forces high orographic rainfall and dense vegetation. In contrast, the higher-elevation areas of the windward flanks become progressively drier, until arid conditions are attained in the orogen interior. On seasonal, annual, and inter-annual timescales, large rainstorms may propagate into the semi-arid to arid high-elevation sectors and cause erosion and mass-transport processes that impact infrastructure and the natural environment. Similar to these present-day effects of climate variability the Central Andes experienced pronounced paleoclimatic changes with deeper penetration of moisture into the orogen and thus an orogenward shift of the climate gradient during Pleistocene and Holocene times, lasting several millennia. In this presentation, we demonstrate the impact of climate change on Earth surface processes at different timescales ranging from the late Pleistocene to the past decade. For millennial timescales and beyond, we rely on field observations, dating of geomorphic markers, erosion rates from cosmogenic nuclide dating, and the analysis of sedimentary archives to reconstruct past environmental conditions. For the last decades we use, satellite-derived rainfall and landcover observations, climate models, hydrometeorologic data, and riverbed-elevation changes are used to characterize environmental and atmospheric conditions. Decadal-scale climate variability shows statistically significant hydrometeorologic trends and exhibits changes of fluvial-transport magnitudes. Hydrometeorologic data, their trends and change points suggest that highest rainfall magnitudes have increased most in the past decades, resulting in large, event-driven mass-transport processes with fundamental impacts on population and infrastructure.
Meier, E.S.; Edwards, T.C.; Kienast, Felix; Dobbertin, M.; Zimmermann, N.E.
2011-01-01
Aim During recent and future climate change, shifts in large-scale species ranges are expected due to the hypothesized major role of climatic factors in regulating species distributions. The stress-gradient hypothesis suggests that biotic interactions may act as major constraints on species distributions under more favourable growing conditions, while climatic constraints may dominate under unfavourable conditions. We tested this hypothesis for one focal tree species having three major competitors using broad-scale environmental data. We evaluated the variation of species co-occurrence patterns in climate space and estimated the influence of these patterns on the distribution of the focal species for current and projected future climates.Location Europe.Methods We used ICP Forest Level 1 data as well as climatic, topographic and edaphic variables. First, correlations between the relative abundance of European beech (Fagus sylvatica) and three major competitor species (Picea abies, Pinus sylvestris and Quercus robur) were analysed in environmental space, and then projected to geographic space. Second, a sensitivity analysis was performed using generalized additive models (GAM) to evaluate where and how much the predicted F. sylvatica distribution varied under current and future climates if potential competitor species were included or excluded. We evaluated if these areas coincide with current species co-occurrence patterns.Results Correlation analyses supported the stress-gradient hypothesis: towards favourable growing conditions of F. sylvatica, its abundance was strongly linked to the abundance of its competitors, while this link weakened towards unfavourable growing conditions, with stronger correlations in the south and at low elevations than in the north and at high elevations. The sensitivity analysis showed a potential spatial segregation of species with changing climate and a pronounced shift of zones where co-occurrence patterns may play a major role.Main conclusions Our results demonstrate the importance of species co-occurrence patterns for calibrating improved species distribution models for use in projections of climate effects. The correlation approach is able to localize European areas where inclusion of biotic predictors is effective. The climate-induced spatial segregation of the major tree species could have ecological and economic consequences. ?? 2010 Blackwell Publishing Ltd.
Peay, Kabir G; von Sperber, Christian; Cardarelli, Emily; Toju, Hirokazu; Francis, Christopher A; Chadwick, Oliver A; Vitousek, Peter M
2017-05-01
Changes in species richness along climatological gradients have been instrumental in developing theories about the general drivers of biodiversity. Previous studies on microbial communities along climate gradients on mountainsides have revealed positive, negative and neutral richness trends. We examined changes in richness and composition of Fungi, Bacteria and Archaea in soil along a 50-1000 m elevation, 280-3280 mm/yr precipitation gradient in Hawai'i. Soil properties and their drivers are exceptionally well understood along this gradient. All three microbial groups responded strongly to the gradient, with community ordinations being similar along axes of environmental conditions (pH, rainfall) and resource availability (nitrogen, phosphorus). However, the form of the richness-climate relationship varied between Fungi (positive linear), Bacteria (unimodal) and Archaea (negative linear). These differences were related to resource-ecology and limiting conditions for each group, with fungal richness increasing most strongly with soil carbon, ammonia-oxidizing Archaea increasing with nitrogen mineralization rate, and Bacteria increasing with both carbon and pH. Reponses to the gradient became increasingly variable at finer taxonomic scales and within any taxonomic group most individual OTUs occurred in narrow climate-elevation ranges. These results show that microbial responses to climate gradients are heterogeneous due to complexity of underlying environmental changes and the diverse ecologies of microbial taxa. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Climatic effects on decomposing litter and substrate chemistry along climatological gradients.
NASA Astrophysics Data System (ADS)
Berg, B.
2009-04-01
Climatic effects on decomposing litter and substrate chemistry along climatological gradients. B. Berg, Dipartimento Biologia Strutturale e Funzionale, Complesso Universitario, Monte San Angelo, via Cintia, I-80126 Napoli, Italy and Department of Forest Ecology, P.O. Box 27, University of Helsinki, FIN-00014, Helsinki, Finland. Studies of several processes, using climatic gradients do provide new information as compared with studies at e.g. a single site. Decomposition of plant litter in such gradients give response in decomposition rates to natural climate conditions. Thus Scots pine needle litter incubated in a climate gradient with annual average temperature (AVGT) ranging from -0.5 to 6.8oC had a highly significant increase in initial mass-loss rate with R2 = 0.591 (p<0.001) and a 5o increase in temperature doubled the mass-loss rate. As a contrast - needle litter of Norway spruce incubated in the same transect had no significant response to climate and for initial litter a 5o increase increased mass-loss rate c. 6%. For more decomposed Scots pine litter we could see that the effect of temperature on mass-loss rate gradually decreased until it disappeared. Long-term decomposition studies revealed differences in litter decomposition patterns along a gradient, even for the same type of litter. This could be followed by using an asymptotic function that gave, (i) a measure a maximum level of decomposition, (ii) the initial decomposition rate. Over a gradient the calculated maximum level of decomposition decreased with increasing AVGT. Other gradient studies revealed an effect of AVGT on litter chemical composition. Pine needle litter from stands under different climate conditions had nutrient concentrations related to AVGT. Thus N, P, K, and S were positively related to AVGT and Mn negatively, all of them significantly. This information may be used to explain the changing pattern in decomposition over the gradient.
NASA Astrophysics Data System (ADS)
Rivals, Florent; Schulz, Ellen; Kaiser, Thomas M.
2009-12-01
Mesowear and microwear on enamel from 763 teeth of middle and late Pleistocene ungulates were analysed to infer the potential of dental wear analysis of faunal remains as a paleoenvironmental and paleoclimatic proxy in relation to climatic changes and diversity of vegetation available in the environment. Fossil localities including levels belonging to two glacial and two interglacial stages were selected in Germany, France, and Spain. At a temporal scale, results indicate that the dietary diversity in ungulates is higher during interglacial phases (MIS 5 and 3) than during pleniglacial phases (MIS 8 and 4). Dietary diversity is concluded to be related to climate-driven vegetation changes which during interglacials lead to increased variety of potential food items available to ungulates. At the geographical scale, during interglacials, changes in diet composition are evident along geographical gradients. The corresponding dietary gradients are proposed to be related to climate and vegetation gradients reflecting more arid climates in the Mediterranean area compared to North-Western Europe. Species consistently represented at all localities investigated are Cervus elaphus (Cervidae, Artiodactyla) and Equus ferus (Equidae, Perissodactyla). C. elaphus populations are found to consistently have less abrasive diets than E. ferus populations but dietary traits of both species varied largely, revealing a significant plasticity in the feeding adaptation of both species. Those traits are concluded to be related to differences in vegetation structure at each locality and complement the evidence that ungulates have broader dietary habits than what is usually assumed.
Miller, K.G.; Wright, J.D.; Katz, M.E.; Browning, J.V.; Cramer, B.S.; Wade, B.S.; Mizintseva, S.F.
2007-01-01
18O increase. This large ice sheet became a driver of climate change, not just a response to it, causing increased latitudinal thermal gradients and a spinning up of the oceans that, in turn, caused a dramatic reorganization of ocean circulation and chemistry.
A general predictive model for estimating monthly ecosystem evapotranspiration
Ge Sun; Karrin Alstad; Jiquan Chen; Shiping Chen; Chelcy R. Ford; al. et.
2011-01-01
Accurately quantifying evapotranspiration (ET) is essential for modelling regional-scale ecosystem water balances. This study assembled an ET data set estimated from eddy flux and sapflow measurements for 13 ecosystems across a large climatic and management gradient from the United States, China, and Australia. Our objectives were to determine the relationships among...
Seasonal differences in the response of Arctic cyclones to climate change in CESM1
NASA Astrophysics Data System (ADS)
Day, Jonathan J.; Holland, Marika M.; Hodges, Kevin I.
2017-06-01
The dramatic warming of the Arctic over the last three decades has reduced both the thickness and extent of sea ice, opening opportunities for business in diverse sectors and increasing human exposure to meteorological hazards in the Arctic. It has been suggested that these changes in environmental conditions have led to an increase in extreme cyclones in the region, therefore increasing this hazard. In this study, we investigate the response of Arctic synoptic scale cyclones to climate change in a large initial value ensemble of future climate projections with the CESM1-CAM5 climate model (CESM-LE). We find that the response of Arctic cyclones in these simulations varies with season, with significant reductions in cyclone dynamic intensity across the Arctic basin in winter, but with contrasting increases in summer intensity within the region known as the Arctic Ocean cyclone maximum. There is also a significant reduction in winter cyclogenesis events within the Greenland-Iceland-Norwegian sea region. We conclude that these differences in the response of cyclone intensity and cyclogenesis, with season, appear to be closely linked to changes in surface temperature gradients in the high latitudes, with Arctic poleward temperature gradients increasing in summer, but decreasing in winter.
Yuan, Z Y; Jiao, F; Shi, X R; Sardans, Jordi; Maestre, Fernando T; Delgado-Baquerizo, Manuel; Reich, Peter B; Peñuelas, Josep
2017-06-01
Manipulative experiments and observations along environmental gradients, the two most common approaches to evaluate the impacts of climate change on nutrient cycling, are generally assumed to produce similar results, but this assumption has rarely been tested. We did so by conducting a meta-analysis and found that soil nutrients responded differentially to drivers of climate change depending on the approach considered. Soil carbon, nitrogen, and phosphorus concentrations generally decreased with water addition in manipulative experiments but increased with annual precipitation along environmental gradients. Different patterns were also observed between warming experiments and temperature gradients. Our findings provide evidence of inconsistent results and suggest that manipulative experiments may be better predictors of the causal impacts of short-term (months to years) climate change on soil nutrients but environmental gradients may provide better information for long-term correlations (centuries to millennia) between these nutrients and climatic features. Ecosystem models should consequently incorporate both experimental and observational data to properly assess the impacts of climate change on nutrient cycling.
The impact of oceanic heat transport on the atmospheric circulation
NASA Astrophysics Data System (ADS)
Lucarini, Valerio; Lunkeit, Frank
2017-04-01
A general circulation model of intermediate complexity with an idealized Earth-like aquaplanet setup is used to study the impact of changes in the oceanic heat transport on the global atmospheric circulation. Focus is on the atmospheric mean meridional circulation and global thermodynamic properties. The atmosphere counterbalances to a large extent the imposed changes in the oceanic heat transport, but, nonetheless, significant modifications to the atmospheric general circulation are found. Increasing the strength of the oceanic heat transport up to 2.5 PW leads to an increase in the global mean near-surface temperature and to a decrease in its equator-to-pole gradient. For stronger transports, the gradient is reduced further, but the global mean remains approximately constant. This is linked to a cooling and a reversal of the temperature gradient in the tropics. Additionally, a stronger oceanic heat transport leads to a decline in the intensity and a poleward shift of the maxima of both the Hadley and Ferrel cells. Changes in zonal mean diabatic heating and friction impact the properties of the Hadley cell, while the behavior of the Ferrel cell is mostly controlled by friction. The efficiency of the climate machine, the intensity of the Lorenz energy cycle and the material entropy production of the system decline with increased oceanic heat transport. This suggests that the climate system becomes less efficient and turns into a state of reduced entropy production as the enhanced oceanic transport performs a stronger large-scale mixing between geophysical fluids with different temperatures, thus reducing the available energy in the climate system and bringing it closer to a state of thermal equilibrium.
Abiotic vs. biotic influences on habitat selection of coexisting species: Climate change impacts?
Martin, T.E.
2001-01-01
Species are commonly segregated along gradients of microclimate and vegetation. I explore the question of whether segregation is the result of microhabitat partitioning (biotic effects) or choice of differing microclimates (abiotic effects). I explored this question for four ground-nesting bird species that are segregated along a microclimate and vegetation gradient in Arizona. Birds shifted position of their nests on the microhabitat and microclimate gradient in response to changing precipitation over nine years. Similarly, annual bird abundance varied with precipitation across 12 yr. Those shifts in abundance and nesting microhabitat with changing precipitation demonstrate the importance of abiotic influences on bird distributions and habitat choice. However, nest-site shifts and microhabitat use also appear to be influenced by interactions among coexisting species. Moreover, shifts in habitat use by all species caused nest predation (i.e., biotic) costs that increased with increasing distance along the microclimate gradient. These results indicate that abiotic and biotic costs can strongly interact to influence microhabitat choice and abundances of coexisting species. Global climate change impacts have been considered largely in terms of simple distributional shifts, but these results indicate that shifts can also increase biotic costs when species move into habitat types for which they are poorly adapted or that create new biotic interactions.
Huang, Liuqin; Deng, Ye; Wang, Shang; Zhou, Yu; Liu, Li
2014-01-01
The response of soil ammonia-oxidizing bacterial (AOB) and archaeal (AOA) communities to individual environmental variables (e.g., pH, temperature, and carbon- and nitrogen-related soil nutrients) has been extensively studied, but how these environmental conditions collectively shape AOB and AOA distributions in unmanaged agricultural soils across a large latitudinal gradient remains poorly known. In this study, the AOB and AOA community structure and diversity in 26 agricultural soils collected from eastern China were investigated by using quantitative PCR and bar-coded 454 pyrosequencing of the amoA gene that encodes the alpha subunit of ammonia monooxygenase. The sampling locations span over a 17° latitude gradient and cover a range of climatic conditions. The Nitrosospira and Nitrososphaera were the dominant clusters of AOB and AOA, respectively; but the subcluster-level composition of Nitrosospira-related AOB and Nitrososphaera-related AOA varied across the latitudinal gradient. Variance partitioning analysis showed that geography and climatic conditions (e.g., mean annual temperature and precipitation), as well as carbon-/nitrogen-related soil nutrients, contributed more to the AOB and AOA community variations (∼50% in total) than soil pH (∼10% in total). These results are important in furthering our understanding of environmental conditions influencing AOB and AOA community structure across a range of environmental gradients. PMID:25002421
Leaf morphology shift linked to climate change.
Guerin, Greg R; Wen, Haixia; Lowe, Andrew J
2012-10-23
Climate change is driving adaptive shifts within species, but research on plants has been focused on phenology. Leaf morphology has demonstrated links with climate and varies within species along climate gradients. We predicted that, given within-species variation along a climate gradient, a morphological shift should have occurred over time due to climate change. We tested this prediction, taking advantage of latitudinal and altitudinal variations within the Adelaide Geosyncline region, South Australia, historical herbarium specimens (n = 255) and field sampling (n = 274). Leaf width in the study taxon, Dodonaea viscosa subsp. angustissima, was negatively correlated with latitude regionally, and leaf area was negatively correlated with altitude locally. Analysis of herbarium specimens revealed a 2 mm decrease in leaf width (total range 1-9 mm) over 127 years across the region. The results are consistent with a morphological response to contemporary climate change. We conclude that leaf width is linked to maximum temperature regionally (latitude gradient) and leaf area to minimum temperature locally (altitude gradient). These data indicate a morphological shift consistent with a direct response to climate change and could inform provenance selection for restoration with further investigation of the genetic basis and adaptive significance of observed variation.
Osland, Michael J.; Enwright, Nicholas M.; Stagg, Camille L.
2014-01-01
Climate gradient-focused ecological research can provide a foundation for better understanding critical ecological transition points and nonlinear climate-ecological relationships, which is information that can be used to better understand, predict, and manage ecological responses to climate change. In this study, we examined the influence of freshwater availability upon the coverage of foundation plant species in coastal wetlands along a northwestern Gulf of Mexico rainfall gradient. Our research addresses the following three questions: (1) what are the region-scale relationships between measures of freshwater availability (e.g., rainfall, aridity, freshwater inflow, salinity) and the relative abundance of foundation plant species in tidal wetlands; (2) How vulnerable are foundation plant species in tidal wetlands to future changes in freshwater availability; and (3) What is the potential future relative abundance of tidal wetland foundation plant species under alternative climate change scenarios? We developed simple freshwater availability-based models to predict the relative abundance (i.e., coverage) of tidal wetland foundation plant species using climate data (1970-2000), estuarine freshwater inflow-focused data, and coastal wetland habitat data. Our results identify regional ecological thresholds and nonlinear relationships between measures of freshwater availability and the relative abundance of foundation plant species in tidal wetlands. In drier coastal zones, relatively small changes in rainfall could produce comparatively large landscape-scale changes in foundation plant species abundance which would affect some ecosystem good and services. Whereas a drier future would result in a decrease in the coverage of foundation plant species, a wetter future would result in an increase in foundation plant species coverage. In many ways, the freshwater-dependent coastal wetland ecological transitions we observed are analogous to those present in dryland terrestrial ecosystems.
Waterhouse, Matthew D.; Erb, Liesl P.; Beever, Erik; Russello, Michael A.
2018-01-01
The American pika is a thermally sensitive, alpine lagomorph species. Recent climate-associated population extirpations and genetic signatures of reduced population sizes range-wide indicate the viability of this species is sensitive to climate change. To test for potential adaptive responses to climate stress, we sampled pikas along two elevational gradients (each ~470 to 1640 m) and employed three outlier detection methods, BAYESCAN, LFMM, and BAYPASS, to scan for genotype-environment associations in samples genotyped at 30,763 SNP loci. We resolved 173 loci with robust evidence of natural selection detected by either two independent analyses or replicated in both transects. A BLASTN search of these outlier loci revealed several genes associated with metabolic function and oxygen transport, indicating natural selection from thermal stress and hypoxia. We also found evidence of directional gene flow primarily downslope from large high-elevation populations and reduced gene flow at outlier loci, a pattern suggesting potential impediments to the upward elevational movement of adaptive alleles in response to contemporary climate change. Finally, we documented evidence of reduced genetic diversity associated the south-facing transect and an increase in corticosterone stress levels associated with inbreeding. This study suggests the American pika is already undergoing climate-associated natural selection at multiple genomic regions. Further analysis is needed to determine if the rate of climate adaptation in the American pika and other thermally sensitive species will be able to keep pace with rapidly changing climate conditions.
Nutrient enrichment modifies temperature-biodiversity relationships in large-scale field experiments
Wang, Jianjun; Pan, Feiyan; Soininen, Janne; Heino, Jani; Shen, Ji
2016-01-01
Climate effects and human impacts, that is, nutrient enrichment, simultaneously drive spatial biodiversity patterns. However, there is little consensus about their independent effects on biodiversity. Here we manipulate nutrient enrichment in aquatic microcosms in subtropical and subarctic regions (China and Norway, respectively) to show clear segregation of bacterial species along temperature gradients, and decreasing alpha and gamma diversity toward higher nutrients. The temperature dependence of species richness is greatest at extreme nutrient levels, whereas the nutrient dependence of species richness is strongest at intermediate temperatures. For species turnover rates, temperature effects are strongest at intermediate and two extreme ends of nutrient gradients in subtropical and subarctic regions, respectively. Species turnover rates caused by nutrients do not increase toward higher temperatures. These findings illustrate direct effects of temperature and nutrients on biodiversity, and indirect effects via primary productivity, thus providing insights into how nutrient enrichment could alter biodiversity under future climate scenarios. PMID:28000677
Wang, Jianjun; Pan, Feiyan; Soininen, Janne; Heino, Jani; Shen, Ji
2016-12-21
Climate effects and human impacts, that is, nutrient enrichment, simultaneously drive spatial biodiversity patterns. However, there is little consensus about their independent effects on biodiversity. Here we manipulate nutrient enrichment in aquatic microcosms in subtropical and subarctic regions (China and Norway, respectively) to show clear segregation of bacterial species along temperature gradients, and decreasing alpha and gamma diversity toward higher nutrients. The temperature dependence of species richness is greatest at extreme nutrient levels, whereas the nutrient dependence of species richness is strongest at intermediate temperatures. For species turnover rates, temperature effects are strongest at intermediate and two extreme ends of nutrient gradients in subtropical and subarctic regions, respectively. Species turnover rates caused by nutrients do not increase toward higher temperatures. These findings illustrate direct effects of temperature and nutrients on biodiversity, and indirect effects via primary productivity, thus providing insights into how nutrient enrichment could alter biodiversity under future climate scenarios.
Nutrient enrichment modifies temperature-biodiversity relationships in large-scale field experiments
NASA Astrophysics Data System (ADS)
Wang, Jianjun; Pan, Feiyan; Soininen, Janne; Heino, Jani; Shen, Ji
2016-12-01
Climate effects and human impacts, that is, nutrient enrichment, simultaneously drive spatial biodiversity patterns. However, there is little consensus about their independent effects on biodiversity. Here we manipulate nutrient enrichment in aquatic microcosms in subtropical and subarctic regions (China and Norway, respectively) to show clear segregation of bacterial species along temperature gradients, and decreasing alpha and gamma diversity toward higher nutrients. The temperature dependence of species richness is greatest at extreme nutrient levels, whereas the nutrient dependence of species richness is strongest at intermediate temperatures. For species turnover rates, temperature effects are strongest at intermediate and two extreme ends of nutrient gradients in subtropical and subarctic regions, respectively. Species turnover rates caused by nutrients do not increase toward higher temperatures. These findings illustrate direct effects of temperature and nutrients on biodiversity, and indirect effects via primary productivity, thus providing insights into how nutrient enrichment could alter biodiversity under future climate scenarios.
AmeriFlux US-SCf Southern California Climate Gradient - Oak/Pine Forest
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goulden, Mike
This is the AmeriFlux version of the carbon flux data for the site US-SCf Southern California Climate Gradient - Oak/Pine Forest. Site Description - Half hourly data are available at https://www.ess.uci.edu/~california/. This site is one of six Southern California Climate Gradient flux towers operated along an elevation gradient (sites are US-SCg, US-SCs, US-SCf, US-SCw, US-SCc, US-SCd). This site is a mixed oak/pine forest. The site experiences episodic severe drought and mortality, and has also experienced occasional logging and wildfire. Drought and mortality was especially severe in the early 2000s.
Climate-driven C4 plant distributions in China: divergence in C4 taxa
Wang, Renzhong; Ma, Linna
2016-01-01
There have been debates on the driving factors of C4 plant expansion, such as PCO2 decline in the late Micocene and warmer climate and precipitation at large-scale modern ecosystems. These disputes are mainly due to the lack of direct evidence and extensive data analysis. Here we use mass flora data to explore the driving factors of C4 distribution and divergent patterns for different C4 taxa at continental scale in China. The results display that it is mean annual climate variables driving C4 distribution at present-day vegetation. Mean annual temperature is the critical restriction of total C4 plants and the precipitation gradients seem to have much less impact. Grass and sedge C4 plants are largely restricted to mean annual temperature and precipitation respectively, while Chenopod C4 plants are strongly restricted by aridity in China. Separate regression analysis can succeed to detect divergences of climate distribution patterns of C4 taxa at global scale. PMID:27302686
Samuel M. Simkin; Edith B. Allen; William D. Bowman; Christopher M. Clark; Jayne Belnap; Matthew L. Brooks; Brian S. Cade; Scott L. Collins; Linda H. Geiser; Frank S. Gilliam; Sarah E. Jovan; Linda H. Pardo; Bethany K. Schulz; Carly J. Stevens; Katharine N. Suding; Heather L. Throop; Donald M. Waller
2016-01-01
Atmospheric nitrogen (N) deposition has been shown to decrease plant species richness along regional deposition gradients in Europe and in experimental manipulations. However, the general response of species richness to N deposition across different vegetation types, soil conditions, and climates remains largely unknown even though responses may be contingent on these...
Elevational range shifts in four mountain ungulate species from the Swiss Alps
Ulf Büntgen; Lucie Greuter; Kurt Bollmann; Hannes Jenny; Andrew Liebhold; J. Diego Galván; Nils C. Stenseth; Carrie Andrew; Atle Mysterud
2017-01-01
Warming-induced range shifts along elevational and latitudinal gradients have been observed in several species from various taxa. The mobility and behavioral plasticity of large endothermic mammals, however, complicate the detection of climatic effects on their spatial distributions. Here, we analyzed 230,565 hunting locations of the four most abundant ungulate species...
Code of Federal Regulations, 2012 CFR
2012-01-01
... to the local public body for use with local climate, soil, gradient, and volume and character of... public body for use with local climate, soil, gradient, and volume and character of traffic. Subdivision...
Code of Federal Regulations, 2013 CFR
2013-01-01
... to the local public body for use with local climate, soil, gradient, and volume and character of... public body for use with local climate, soil, gradient, and volume and character of traffic. Subdivision...
Code of Federal Regulations, 2014 CFR
2014-01-01
... to the local public body for use with local climate, soil, gradient, and volume and character of... public body for use with local climate, soil, gradient, and volume and character of traffic. Subdivision...
Code of Federal Regulations, 2011 CFR
2011-01-01
... to the local public body for use with local climate, soil, gradient, and volume and character of... public body for use with local climate, soil, gradient, and volume and character of traffic. Subdivision...
Code of Federal Regulations, 2010 CFR
2010-01-01
... to the local public body for use with local climate, soil, gradient, and volume and character of... public body for use with local climate, soil, gradient, and volume and character of traffic. Subdivision...
Rotem, Guy; Gavish, Yoni; Shacham, Boaz; Giladi, Itamar; Bouskila, Amos; Ziv, Yaron
2016-01-01
Grazing plays an important role in shaping ecological communities in human-related ecosystems. Although myriad studies have explored the joint effect of grazing and climate on plant communities, this interactive effect has rarely been studied in animals. We hypothesized that the effect of grazing on the reptile community varies along a climatic gradient in relation to the effect of grazing on habitat characteristics, and that grazing differentially affects reptiles of different biogeographic regions. We tested our hypotheses by collecting data on environmental characteristics and by trapping reptiles in four heterogeneous landscapes experiencing differing grazing intensities and distributed along a sharp climatic gradient. We found that while reptile diversity increased with grazing intensity at the mesic end of the gradient, it decreased with grazing intensity at the arid end. Moreover, the proportion of reptile species of differing biogeographic origins varied with the interactive effect of climate and grazing. The representation of species originating in arid biogeographic zones was highest at the arid end of the climatic gradient, and representation increased with grazing intensity within this area. Regardless of the climatic context, increased grazing pressure results in a reduction in vegetation cover and thus in changes in habitat characteristics. By reducing vegetation cover, grazing increased habitat heterogeneity in the dense mesic sites and decreased habitat heterogeneity in the arid sites. Thus, our results suggest that the same direction of habitat alteration caused by grazing may have opposite effects on biodiversity and community composition in different climatic contexts.
Intensified Indian Ocean climate variability during the Last Glacial Maximum
NASA Astrophysics Data System (ADS)
Thirumalai, K.; DiNezro, P.; Tierney, J. E.; Puy, M.; Mohtadi, M.
2017-12-01
Climate models project increased year-to-year climate variability in the equatorial Indian Ocean in response to greenhouse gas warming. This response has been attributed to changes in the mean climate of the Indian Ocean associated with the zonal sea-surface temperature (SST) gradient. According to these studies, air-sea coupling is enhanced due to a stronger SST gradient driving anomalous easterlies that shoal the thermocline in the eastern Indian Ocean. We propose that this relationship between the variability and the zonal SST gradient is consistent across different mean climate states. We test this hypothesis using simulations of past and future climate performed with the Community Earth System Model Version 1 (CESM1). We constrain the realism of the model for the Last Glacial Maximum (LGM) where CESM1 simulates a mean climate consistent with a stronger SST gradient, agreeing with proxy reconstructions. CESM1 also simulates a pronounced increase in seasonal and interannual variability. We develop new estimates of climate variability on these timescales during the LGM using δ18O analysis of individual foraminifera (IFA). IFA data generated from four different cores located in the eastern Indian Ocean indicate a marked increase in δ18O-variance during the LGM as compared to the late Holocene. Such a significant increase in the IFA-δ18O variance strongly supports the modeling simulations. This agreement further supports the dynamics linking year-to-year variability and an altered SST gradient, increasing our confidence in model projections.
The role of large-scale eddies in the climate equilibrium. Part 2: Variable static stability
NASA Technical Reports Server (NTRS)
Zhou, Shuntai; Stone, Peter H.
1993-01-01
Lorenz's two-level model on a sphere is used to investigate how the results of Part 1 are modified when the interaction of the vertical eddy heat flux and static stability is included. In general, the climate state does not depend very much on whether or not this interaction is included, because the poleward eddy heat transport dominates the eddy forcing of mean temperature and wind fields. However, the climatic sensitivity is significantly affected. Compared to two-level model results with fixed static stability, the poleward eddy heat flux is less sensitive to the meridional temperature gradient and the gradient is more sensitive to the forcing. For example, the logarithmic derivative of the eddy flux with respect to the gradient has a slope that is reduced from approximately 15 on a beta-plane with fixed static stability and approximately 6 on a sphere with fixed static stability, to approximately 3 to 4 in the present model. This last result is more in line with analyses from observations. The present model also has a stronger baroclinic adjustment than that in Part 1, more like that in two-level beta-plane models with fixed static stability, that is, the midlatitude isentropic slope is very insensitive to the forcing, the diabatic heating, and the friction, unless the forcing is very weak.
Lapierre, Jean-Francois; Seekell, David A; Del Giorgio, Paul A
2015-12-01
Freshwater ecosystems are strongly influenced by both climate and the surrounding landscape, yet the specific pathways connecting climatic and landscape drivers to the functioning of lake ecosystems are poorly understood. Here, we hypothesize that the links that exist between spatial patterns in climate and landscape properties and the spatial variation in lake carbon (C) cycling at regional scales are at least partly mediated by the movement of terrestrial dissolved organic carbon (DOC) in the aquatic component of the landscape. We assembled a set of indicators of lake C cycling (bacterial respiration and production, chlorophyll a, production to respiration ratio, and partial pressure of CO2 ), DOC concentration and composition, and landscape and climate characteristics for 239 temperate and boreal lakes spanning large environmental and geographic gradients across seven regions. There were various degrees of spatial structure in climate and landscape features that were coherent with the regionally structured patterns observed in lake DOC and indicators of C cycling. These different regions aligned well, albeit nonlinearly along a mean annual temperature gradient; whereas there was a considerable statistical effect of climate and landscape properties on lake C cycling, the direct effect was small and the overall effect was almost entirely overlapping with that of DOC concentration and composition. Our results suggest that key climatic and landscape signals are conveyed to lakes in part via the movement of terrestrial DOC to lakes and that DOC acts both as a driver of lake C cycling and as a proxy for other external signals. © 2015 John Wiley & Sons Ltd.
Connectivity planning to address climate change.
Nuñez, Tristan A; Lawler, Joshua J; McRae, Brad H; Pierce, D John; Krosby, Meade B; Kavanagh, Darren M; Singleton, Peter H; Tewksbury, Joshua J
2013-04-01
As the climate changes, human land use may impede species from tracking areas with suitable climates. Maintaining connectivity between areas of different temperatures could allow organisms to move along temperature gradients and allow species to continue to occupy the same temperature space as the climate warms. We used a coarse-filter approach to identify broad corridors for movement between areas where human influence is low while simultaneously routing the corridors along present-day spatial gradients of temperature. We modified a cost-distance algorithm to model these corridors and tested the model with data on current land-use and climate patterns in the Pacific Northwest of the United States. The resulting maps identified a network of patches and corridors across which species may move as climates change. The corridors are likely to be robust to uncertainty in the magnitude and direction of future climate change because they are derived from gradients and land-use patterns. The assumptions we applied in our model simplified the stability of temperature gradients and species responses to climate change and land use, but the model is flexible enough to be tailored to specific regions by incorporating other climate variables or movement costs. When used at appropriate resolutions, our approach may be of value to local, regional, and continental conservation initiatives seeking to promote species movements in a changing climate. Planificación de Conectividad para Atender el Cambio Climático. © 2013 Society for Conservation Biology.
Quantifying the abundance of co-occurring conifers along Inland Northwest (USA) climate gradients
Gerald E. Rehfeldt; Dennis E. Ferguson; Nicholas L. Crookston
2008-01-01
The occurrence and abundance of conifers along climate gradients in the Inland Northwest (USA) was assessed using data from 5082 field plots, 81% of which were forested. Analyses using the Random Forests classification tree revealed that the sequential distribution of species along an altitudinal gradient could be predicted with reasonable accuracy from a single...
Export of dissolved organic matter in relation to land use along a European climatic gradient.
Mattsson, Tuija; Kortelainen, Pirkko; Laubel, Anker; Evans, Dylan; Pujo-Pay, Mireille; Räike, Antti; Conan, Pascal
2009-03-01
The terrestrial export of dissolved organic matter (DOM) is associated with climate, vegetation and land use, and thus is under the influence of climatic variability and human interference with terrestrial ecosystems, their soils and hydrological cycles. We present a data-set including catchments from four areas covering the major climate and land use gradients within Europe: a forested boreal zone (Finland), a temperate agricultural area (Denmark), a wet and temperate mountain region in Wales, and a warm Mediterranean catchment draining into the Gulf of Lyon. In all study areas, DOC (dissolved organic carbon) was a major fraction of DOM, with much lower proportions of DON (dissolved organic nitrogen) and DOP (dissolved organic phosphorus). A south-north gradient with highest DOC concentrations and export in the northernmost catchments was recorded: DOC concentrations and loads were highest in Finland and lowest in France. These relationships indicate that DOC concentrations/export are controlled by several factors including wetland and forest cover, precipitation and hydrological processes. DON concentrations and loads were highest in the Danish catchments and lowest in the French catchments. In Wales and Finland, DON concentrations increased with the increasing proportion of agricultural land in the catchment, whereas in Denmark and France no such relationship was found. DOP concentrations and loads were low compared to DOC and DON. The highest DOP concentrations and loads were recorded in catchments with a high extent of agricultural land, large urban areas or a high population density, reflecting the influence of human impact on DOP loads.
Yuan, ZY; Jiao, F; Shi, XR; Sardans, Jordi; Maestre, Fernando T; Delgado-Baquerizo, Manuel; Reich, Peter B; Peñuelas, Josep
2017-01-01
Manipulative experiments and observations along environmental gradients, the two most common approaches to evaluate the impacts of climate change on nutrient cycling, are generally assumed to produce similar results, but this assumption has rarely been tested. We did so by conducting a meta-analysis and found that soil nutrients responded differentially to drivers of climate change depending on the approach considered. Soil carbon, nitrogen, and phosphorus concentrations generally decreased with water addition in manipulative experiments but increased with annual precipitation along environmental gradients. Different patterns were also observed between warming experiments and temperature gradients. Our findings provide evidence of inconsistent results and suggest that manipulative experiments may be better predictors of the causal impacts of short-term (months to years) climate change on soil nutrients but environmental gradients may provide better information for long-term correlations (centuries to millennia) between these nutrients and climatic features. Ecosystem models should consequently incorporate both experimental and observational data to properly assess the impacts of climate change on nutrient cycling. DOI: http://dx.doi.org/10.7554/eLife.23255.001 PMID:28570219
A test of multiple hypotheses for the species richness gradient of South American owls.
Diniz-Filho, José Alexandre Felizola; Rangel, Thiago F L V B; Hawkins, Bradford A
2004-08-01
Many mechanisms have been proposed to explain broad scale spatial patterns in species richness. In this paper, we evaluate five explanations for geographic gradients in species richness, using South American owls as a model. We compared the explanatory power of contemporary climate, landcover diversity, spatial climatic heterogeneity, evolutionary history, and area. An important aspect of our analyses is that very different hypotheses, such as history and area, can be quantified at the same observation scale and, consequently can be incorporated into a single analytical framework. Both area effects and owl phylogenetic history were poorly associated with richness, whereas contemporary climate, climatic heterogeneity at the mesoscale and landcover diversity explained ca. 53% of the variation in species richness. We conclude that both climate and environmental heterogeneity should be retained as plausible explanations for the diversity gradient. Turnover rates and scaling effects, on the other hand, although perhaps useful for detecting faunal changes and beta diversity at local and regional scales, are not strong explanations for the owl diversity gradient.
AmeriFlux US-SCs Southern California Climate Gradient - Coastal Sage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goulden, Mike
This is the AmeriFlux version of the carbon flux data for the site US-SCs Southern California Climate Gradient - Coastal Sage. Site Description - Half hourly data are available at https://www.ess.uci.edu/~california/. This site is one of six Southern California Climate Gradient flux towers operated along an elevation gradient (sites are US-SCg, US-SCs, US-SCf, US-SCw, US-SCc, US-SCd). This site is a coastal sage shrubland. Coastal sage is a small stature, closed canopy vegetation dominated by drought deciduous shrubs. The site has historically burned every 10-20 years, with the wild fire in October 2007. The tower data sets includes this recovery process.
Adaptation to climate through flowering phenology: a case study in Medicago truncatula.
Burgarella, Concetta; Chantret, Nathalie; Gay, Laurène; Prosperi, Jean-Marie; Bonhomme, Maxime; Tiffin, Peter; Young, Nevin D; Ronfort, Joelle
2016-07-01
Local climatic conditions likely constitute an important selective pressure on genes underlying important fitness-related traits such as flowering time, and in many species, flowering phenology and climatic gradients strongly covary. To test whether climate shapes the genetic variation on flowering time genes and to identify candidate flowering genes involved in the adaptation to environmental heterogeneity, we used a large Medicago truncatula core collection to examine the association between nucleotide polymorphisms at 224 candidate genes and both climate variables and flowering phenotypes. Unlike genome-wide studies, candidate gene approaches are expected to enrich for the number of meaningful trait associations because they specifically target genes that are known to affect the trait of interest. We found that flowering time mediates adaptation to climatic conditions mainly by variation at genes located upstream in the flowering pathways, close to the environmental stimuli. Variables related to the annual precipitation regime reflected selective constraints on flowering time genes better than the other variables tested (temperature, altitude, latitude or longitude). By comparing phenotype and climate associations, we identified 12 flowering genes as the most promising candidates responsible for phenological adaptation to climate. Four of these genes were located in the known flowering time QTL region on chromosome 7. However, climate and flowering associations also highlighted largely distinct gene sets, suggesting different genetic architectures for adaptation to climate and flowering onset. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Marks, E.; Aflakpui, G. K. S.; Nkem, J.; Poch, R. M.; Khouma, M.; Kokou, K.; Sagoe, R.; Sebastiã, M.-T.
2008-11-01
Terrestrial carbon resources are major drivers of development in West Africa. The distribution of these resources co-varies with ecosystem type and rainfall along a strong Northeast-Southwest climatic gradient. Soil organic carbon, a strong indicator of soil quality, has been severely depleted in some areas by human activities, which leads to issues of soil erosion and desertification, but this trend can be altered via appropriate management. There is significant potential to enhance existing soil carbon stores in West Africa, with benefits at the global and local scales, for atmospheric CO2 mitigation and supporting, and provisioning ecosystem services, respectively. Three key factors impacting carbon stocks are addressed in this review: climate, biotic factors, and human activities. Climate risks must be considered in a framework of global change, especially in West Africa, where landscape managers have few resources available to adapt to climatic perturbations. Among biotic factors, biodiversity conservation paired with carbon conservation may provide a pathway to sustainable development, as evidence suggests that both may be inter-linked, and biodiversity conservation is also a global priority with local benefits for ecosystem resilience, biomass productivity, and provisioning services such as foodstuffs. Finally, human management has largely been responsible for reduced carbon stocks, but this trend can be reversed through the implementation of appropriate carbon conservation strategies in the agricultural sector, as shown by multiple studies. Owing to the strong regional climatic gradient, country-level initiatives will need to consider carbon sequestration approaches for multiple ecosystem types. Given the diversity of environments, global policies must be adapted and strategised at the national or sub-national levels to improve C storage above and belowground. Initiatives of this sort must act locally at farmer scale, and focus on ecosystem services rather than on carbon sequestration solely.
Ruiz-Labourdette, Diego; Martínez, Felipe; Martín-López, Berta; Montes, Carlos; Pineda, Francisco D
2011-05-01
Mediterranean mountains harbour some of Europe's highest floristic richness. This is accounted for largely by the mesoclimatic variety in these areas, along with the co-occurrence of a small area of Eurosiberian, Boreal and Mediterranean species, and those of Tertiary Subtropical origin. Throughout the twenty-first century, we are likely to witness a climate change-related modification of the biogeographic scenario in these mountains, and there is therefore a need for accurate climate regionalisations to serve as a reference of the abundance and distribution of species and communities, particularly those of a relictic nature. This paper presents an objective mapping method focussing on climate regions in a mountain range. The procedure was tested in the Cordillera Central Mountains of the Iberian Peninsula, in the western Mediterranean, one of the ranges occupying the largest area of the Mediterranean Basin. This regionalisation is based upon multivariate analyses and upon detailed cartography employing 27 climatic variables. We used spatial interpolation of data based on geographic information. We detected high climatic diversity in the mountain range studied. We identified 13 climatic regions, all of which form a varying mosaic throughout the annual temperature and rainfall cycle. This heterogeneity results from two geographically opposed gradients. The first one is the Mediterranean-Euro-Siberian variation of the mountain range. The second gradient involves the degree of oceanicity, which is negatively related to distance from the Atlantic Ocean. The existing correlation between the climatic regions detected and the flora existing therein enables the results to be situated within the projected trends of global warming, and their biogeographic and ecological consequences to be analysed.
Nikolic, Nina; Böcker, Reinhard; Kostic-Kravljanac, Ljiljana; Nikolic, Miroslav
2014-01-01
Effects of soil on vegetation patterns are commonly obscured by other environmental factors; clear and general relationships are difficult to find. How would community assembly processes be affected by a substantial change in soil characteristics when all other relevant factors are held constant? In particular, can we identify some functional adaptations which would underpin such soil-induced vegetation response? Eastern Serbia: fields partially damaged by long-term and large-scale fluvial deposition of sulphidic waste from a Cu mine; subcontinental/submediterranean climate. We analysed the multivariate response of cereal weed assemblages (including biomass and foliar analyses) to a strong man-made soil gradient (from highly calcareous to highly acidic, nutrient-poor soils) over short distances (field scale). The soil gradient favoured a substitution of calcicoles by calcifuges, and an increase in abundance of pseudometallophytes, with preferences for Atlantic climate, broad geographical distribution, hemicryptophytic life form, adapted to low-nutrient and acidic soils, with lower concentrations of Ca, and very narrow range of Cu concentrations in leaves. The trends of abundance of the different ecological groups of indicator species along the soil gradient were systematically reflected in the maintenance of leaf P concentrations, and strong homeostasis in biomass N:P ratio. Using annual weed vegetation at the field scale as a fairly simple model, we demonstrated links between gradients in soil properties (pH, nutrient availability) and floristic composition that are normally encountered over large geographic distances. We showed that leaf nutrient status, in particular the maintenance of leaf P concentrations and strong homeostasis of biomass N:P ratio, underpinned a clear functional response of vegetation to mineral stress. These findings can help to understand assembly processes leading to unusual, novel combinations of species which are typically observed as a consequence of strong environmental filtering, as for instance on sites affected by industrial activities.
Nikolic, Nina; Böcker, Reinhard; Kostic-Kravljanac, Ljiljana; Nikolic, Miroslav
2014-01-01
Questions Effects of soil on vegetation patterns are commonly obscured by other environmental factors; clear and general relationships are difficult to find. How would community assembly processes be affected by a substantial change in soil characteristics when all other relevant factors are held constant? In particular, can we identify some functional adaptations which would underpin such soil-induced vegetation response? Location Eastern Serbia: fields partially damaged by long-term and large-scale fluvial deposition of sulphidic waste from a Cu mine; subcontinental/submediterranean climate. Methods We analysed the multivariate response of cereal weed assemblages (including biomass and foliar analyses) to a strong man-made soil gradient (from highly calcareous to highly acidic, nutrient-poor soils) over short distances (field scale). Results The soil gradient favoured a substitution of calcicoles by calcifuges, and an increase in abundance of pseudometallophytes, with preferences for Atlantic climate, broad geographical distribution, hemicryptophytic life form, adapted to low-nutrient and acidic soils, with lower concentrations of Ca, and very narrow range of Cu concentrations in leaves. The trends of abundance of the different ecological groups of indicator species along the soil gradient were systematically reflected in the maintenance of leaf P concentrations, and strong homeostasis in biomass N:P ratio. Conclusion Using annual weed vegetation at the field scale as a fairly simple model, we demonstrated links between gradients in soil properties (pH, nutrient availability) and floristic composition that are normally encountered over large geographic distances. We showed that leaf nutrient status, in particular the maintenance of leaf P concentrations and strong homeostasis of biomass N:P ratio, underpinned a clear functional response of vegetation to mineral stress. These findings can help to understand assembly processes leading to unusual, novel combinations of species which are typically observed as a consequence of strong environmental filtering, as for instance on sites affected by industrial activities. PMID:25474688
Covariation in Plant Functional Traits and Soil Fertility within Two Species-Rich Forests
Liu, Xiaojuan; Swenson, Nathan G.; Wright, S. Joseph; Zhang, Liwen; Song, Kai; Du, Yanjun; Zhang, Jinlong; Mi, Xiangcheng; Ren, Haibao; Ma, Keping
2012-01-01
The distribution of plant species along environmental gradients is expected to be predictable based on organismal function. Plant functional trait research has shown that trait values generally vary predictably along broad-scale climatic and soil gradients. This work has also demonstrated that at any one point along these gradients there is a large amount of interspecific trait variation. The present research proposes that this variation may be explained by the local-scale sorting of traits along soil fertility and acidity axes. Specifically, we predicted that trait values associated with high resource acquisition and growth rates would be found on soils that are more fertile and less acidic. We tested the expected relationships at the species-level and quadrat-level (20×20 m) using two large forest plots in Panama and China that contain over 450 species combined. Predicted relationships between leaf area and wood density and soil fertility were supported in some instances, but the majority of the predicted relationships were rejected. Alternative resource axes, such as light gradients, therefore likely play a larger role in determining the interspecific variability in plant functional traits in the two forests studied. PMID:22509355
Climatic and pollution influences on ecosystem processes in northern hardwood forests
Kurt S. Pregitzer; David D. Reed; Glenn D. Mroz; Andrew J. Burton; John A. Witter; Donald A. Zak
1996-01-01
The Michigan gradient study was established in 1987 to examine the effects of climate and atmospheric deposition on forest productivity and ecosystem processes in the Great Lakes region. Four intensively-monitored northern hardwood study sites are located along a climatic and pollutant gradient extending from southern lower Michigan to northwestern upper Michigan. The...
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Kauwe, M. G.; Zhou, S. -X.; Medlyn, B. E.
Future climate change has the potential to increase drought in many regions of the globe, making it essential that land surface models (LSMs) used in coupled climate models realistically capture the drought responses of vegetation. Recent data syntheses show that drought sensitivity varies considerably among plants from different climate zones, but state-of-the-art LSMs currently assume the same drought sensitivity for all vegetation. We tested whether variable drought sensitivities are needed to explain the observed large-scale patterns of drought impact on the carbon, water and energy fluxes. We implemented data-driven drought sensitivities in the Community Atmosphere Biosphere Land Exchange (CABLE) LSMmore » and evaluated alternative sensitivities across a latitudinal gradient in Europe during the 2003 heatwave. The model predicted an overly abrupt onset of drought unless average soil water potential was calculated with dynamic weighting across soil layers. We found that high drought sensitivity at the most mesic sites, and low drought sensitivity at the most xeric sites, was necessary to accurately model responses during drought. Furthermore, our results indicate that LSMs will over-estimate drought impacts in drier climates unless different sensitivity of vegetation to drought is taken into account.« less
De Kauwe, M. G.; Zhou, S. -X.; Medlyn, B. E.; ...
2015-12-21
Future climate change has the potential to increase drought in many regions of the globe, making it essential that land surface models (LSMs) used in coupled climate models realistically capture the drought responses of vegetation. Recent data syntheses show that drought sensitivity varies considerably among plants from different climate zones, but state-of-the-art LSMs currently assume the same drought sensitivity for all vegetation. We tested whether variable drought sensitivities are needed to explain the observed large-scale patterns of drought impact on the carbon, water and energy fluxes. We implemented data-driven drought sensitivities in the Community Atmosphere Biosphere Land Exchange (CABLE) LSMmore » and evaluated alternative sensitivities across a latitudinal gradient in Europe during the 2003 heatwave. The model predicted an overly abrupt onset of drought unless average soil water potential was calculated with dynamic weighting across soil layers. We found that high drought sensitivity at the most mesic sites, and low drought sensitivity at the most xeric sites, was necessary to accurately model responses during drought. Furthermore, our results indicate that LSMs will over-estimate drought impacts in drier climates unless different sensitivity of vegetation to drought is taken into account.« less
NE Grulke
2010-01-01
Population variation in ecophysiological traits of four co-occurring montane conifers was measured on a large latitudinal gradient to quantitatively assess their potential for response to environmental change. White fir (Abies concolor) had the highest variability, gross photosynthetic rate (Pg), and foliar carbon (C) and nitrogen (N) content. Despite low water use...
Climate Effect of Greenhouse Gas: Warming or Cooling is Determined by Temperature Gradient
NASA Astrophysics Data System (ADS)
Shia, R.
2011-12-01
The instantaneous radiative forcing (IRF) at the top of the atmosphere (ToA) is the initial change of the total energy in the climate system when the concentration of greenhouse gas (GHG) increases. In my previous presentation at the 2010 Fall AGU meeting (A11J-02, "Mechanism of Radiative Forcing of Greenhouse Gas its Implication to the Global Warming"), it was demonstrated that IRF at TOA is generated by moving up of the emission weighting function. Thus, the temperature gradient plays a critical role in determining the climate effect of GHG. In this presentation the change of the outgoing infrared radiation flux at ToA is studied from a perturbation point of view. After the cancellation between the changes in the outgoing radiation flux from the surface emission and from the reemission of the atmosphere, the derivative of the outgoing flux to the concentration of GHG is found to be proportional to the temperature gradients below the level where the concentration of GHG changes. Therefore, the greenhouse gas contribute only to the magnitude of the radiative forcing, the temperature gradients decide the direction of the radiative forcing, i.e. warming or cooling, in addition to contributing to its magnitude. In response to the question "Does the negative IRF at ToA lead to the surface cooling or it only cools the upper part of the atmosphere?" the Eddington grey radiative equilibrium model is modified to simulate different scenarios. The original model has been used to illustrate the warming effect of GHG in textbooks of the atmospheric physics. It is modified by adding source terms from the absorption of the solar flux and the internal energy exchange in the atmosphere. In two cases the modified model generates atmospheres with a large and warm stratosphere and negative IRF at ToA when GHG increases by 25%. This negative radiative forcing can lead to the cooling of the atmosphere all the way down to the surface. The implications of the cooling effect of GHG to the climate change, including paleoclimatology and the prerequests for climate models to include cooling effect of GHG properly are discussed.
Will the Arctic Land Surface become Wetter or Drier in Response to a Warming Climate
NASA Astrophysics Data System (ADS)
Hinzman, L. D.; Rawlins, M.; Serreze, M.; Vorosmarty, C. J.; Walsh, J. E.
2015-12-01
There is much concern about a potentially "accelerated" hydrologic cycle, with associated extremes in weather and climate-related phenomena. Whether this translates into wetter or drier conditions across arctic landscapes remains an open question. Arctic ecosystems differ substantially from those in temperate regions, largely due to the interactions of extremes in climate and land surface characteristics. Ice-rich permafrost prevents percolation of rainfall or snowmelt water, often maintaining a moist to saturated active layer where the permafrost table is shallow. Permafrost may also block the lateral movement of groundwater, and act as a confining unit for water in sub- or intra-permafrost aquifers. However, as permafrost degrades, profound changes in interactions between groundwater and surface water occur that affect the partitioning among the water balance components with subsequent impacts to the surface energy balance and essential ecosystem processes. Most simulations of arctic climate project sustained increases in temperature and gradual increases in precipitation over the 21st century. However, most climatic models do not correctly represent the essential controls that permafrost exerts on hydrological, ecological, and climatological processes. If warming continues as projected, we expect large-scale changes in surface hydrology as permafrost degrades. Where groundwater gradients are downward (i.e. surface water will infiltrate to subsurface groundwater), as in most cases, we may expect improved drainage and drier soils, which would result in reduced evaporation and transpiration (ET). In some special cases, where the groundwater gradient is upward (as in many wetlands or springs) surface soils may become wetter or inundated as permafrost degrades. Further, since soil moisture is a primary factor controlling ecosystem processes, interactions between ecosystems, GHG emissions, and high-latitude climate must also be considered highly uncertain. These inter-dependent processes will exert primary controls on several important feedback processes and vary across space and time in some as yet, unknown way.
Climate change and the northern Russian treeline zone.
MacDonald, G M; Kremenetski, K V; Beilman, D W
2008-07-12
The Russian treeline is a dynamic ecotone typified by steep gradients in summer temperature and regionally variable gradients in albedo and heat flux. The location of the treeline is largely controlled by summer temperatures and growing season length. Temperatures have responded strongly to twentieth-century global warming and will display a magnified response to future warming. Dendroecological studies indicate enhanced conifer recruitment during the twentieth century. However, conifers have not yet recolonized many areas where trees were present during the Medieval Warm period (ca AD 800-1,300) or the Holocene Thermal Maximum (HTM; ca 10,000-3,000 years ago). Reconstruction of tree distributions during the HTM suggests that the future position of the treeline due to global warming may approximate its former Holocene maximum position. An increased dominance of evergreen tree species in the northern Siberian forests may be an important difference between past and future conditions. Based on the slow rates of treeline expansion observed during the twentieth century, the presence of steep climatic gradients associated with the current Arctic coastline and the prevalence of organic soils, it is possible that rates of treeline expansion will be regionally variable and transient forest communities with species abundances different from today's may develop.
The influence of extratropical cloud phase and amount feedbacks on climate sensitivity
NASA Astrophysics Data System (ADS)
Frey, William R.; Kay, Jennifer E.
2018-04-01
Global coupled climate models have large long-standing cloud and radiation biases, calling into question their ability to simulate climate and climate change. This study assesses the impact of reducing shortwave radiation biases on climate sensitivity within the Community Earth System Model (CESM). The model is modified by increasing supercooled cloud liquid to better match absorbed shortwave radiation observations over the Southern Ocean while tuning to reduce a compensating tropical shortwave bias. With a thermodynamic mixed-layer ocean, equilibrium warming in response to doubled CO2 increases from 4.1 K in the control to 5.6 K in the modified model. This 1.5 K increase in equilibrium climate sensitivity is caused by changes in two extratropical shortwave cloud feedbacks. First, reduced conversion of cloud ice to liquid at high southern latitudes decreases the magnitude of a negative cloud phase feedback. Second, warming is amplified in the mid-latitudes by a larger positive shortwave cloud feedback. The positive cloud feedback, usually associated with the subtropics, arises when sea surface warming increases the moisture gradient between the boundary layer and free troposphere. The increased moisture gradient enhances the effectiveness of mixing to dry the boundary layer, which decreases cloud amount and optical depth. When a full-depth ocean with dynamics and thermodynamics is included, ocean heat uptake preferentially cools the mid-latitude Southern Ocean, partially inhibiting the positive cloud feedback and slowing warming. Overall, the results highlight strong connections between Southern Ocean mixed-phase cloud partitioning, cloud feedbacks, and ocean heat uptake in a climate forced by greenhouse gas changes.
Plasticity and genetic adaptation mediate amphibian and reptile responses to climate change.
Urban, Mark C; Richardson, Jonathan L; Freidenfelds, Nicole A
2014-01-01
Phenotypic plasticity and genetic adaptation are predicted to mitigate some of the negative biotic consequences of climate change. Here, we evaluate evidence for plastic and evolutionary responses to climate variation in amphibians and reptiles via a literature review and meta-analysis. We included studies that either document phenotypic changes through time or space. Plasticity had a clear and ubiquitous role in promoting phenotypic changes in response to climate variation. For adaptive evolution, we found no direct evidence for evolution of amphibians or reptiles in response to climate change over time. However, we found many studies that documented adaptive responses to climate along spatial gradients. Plasticity provided a mixture of adaptive and maladaptive responses to climate change, highlighting that plasticity frequently, but not always, could ameliorate climate change. Based on our review, we advocate for more experiments that survey genetic changes through time in response to climate change. Overall, plastic and genetic variation in amphibians and reptiles could buffer some of the formidable threats from climate change, but large uncertainties remain owing to limited data.
Plasticity and genetic adaptation mediate amphibian and reptile responses to climate change
Urban, Mark C; Richardson, Jonathan L; Freidenfelds, Nicole A
2014-01-01
Phenotypic plasticity and genetic adaptation are predicted to mitigate some of the negative biotic consequences of climate change. Here, we evaluate evidence for plastic and evolutionary responses to climate variation in amphibians and reptiles via a literature review and meta-analysis. We included studies that either document phenotypic changes through time or space. Plasticity had a clear and ubiquitous role in promoting phenotypic changes in response to climate variation. For adaptive evolution, we found no direct evidence for evolution of amphibians or reptiles in response to climate change over time. However, we found many studies that documented adaptive responses to climate along spatial gradients. Plasticity provided a mixture of adaptive and maladaptive responses to climate change, highlighting that plasticity frequently, but not always, could ameliorate climate change. Based on our review, we advocate for more experiments that survey genetic changes through time in response to climate change. Overall, plastic and genetic variation in amphibians and reptiles could buffer some of the formidable threats from climate change, but large uncertainties remain owing to limited data. PMID:24454550
NASA Astrophysics Data System (ADS)
Zhao, Wenqiang; Reich, Peter B.; Yu, Qiannan; Zhao, Ning; Yin, Chunying; Zhao, Chunzhang; Li, Dandan; Hu, Jun; Li, Ting; Yin, Huajun; Liu, Qing
2018-04-01
Understanding leaf stoichiometric patterns is crucial for improving predictions of plant responses to environmental changes. Leaf stoichiometry of terrestrial ecosystems has been widely investigated along latitudinal and longitudinal gradients. However, very little is known about the vertical distribution of leaf C : N : P and the relative effects of environmental parameters, especially for shrubs. Here, we analyzed the shrub leaf C, N and P patterns in 125 mountainous sites over an extensive altitudinal gradient (523-4685 m) on the Tibetan Plateau. Results showed that the shrub leaf C and C : N were 7.3-47.5 % higher than those of other regional and global flora, whereas the leaf N and N : P were 10.2-75.8 % lower. Leaf C increased with rising altitude and decreasing temperature, supporting the physiological acclimation mechanism that high leaf C (e.g., alpine or evergreen shrub) could balance the cell osmotic pressure and resist freezing. The largest leaf N and high leaf P occurred in valley region (altitude 1500 m), likely due to the large nutrient leaching from higher elevations, faster litter decomposition and nutrient resorption ability of deciduous broadleaf shrub. Leaf N : P ratio further indicated increasing N limitation at higher altitudes. Interestingly, drought severity was the only climatic factor positively correlated with leaf N and P, which was more appropriate for evaluating the impact of water status than precipitation. Among the shrub ecosystem and functional types (alpine, subalpine, montane, valley, evergreen, deciduous, broadleaf, and conifer), their leaf element contents and responses to environments were remarkably different. Shrub type was the largest contributor to the total variations in leaf stoichiometry, while climate indirectly affected the leaf C : N : P via its interactive effects on shrub type or soil. Collectively, the large heterogeneity in shrub type was the most important factor explaining the overall leaf C : N : P variations, despite the broad climate gradient on the plateau. Temperature and drought induced shifts in shrub type distribution will influence the nutrient accumulation in mountainous shrubs.
Title, Pascal O; Burns, Kevin J
2015-05-01
By employing a recently inferred phylogeny and museum occurrence records, we examine the relationship of ecological niche evolution to diversification in the largest family of songbirds, the tanagers (Thraupidae). We test whether differences in species numbers in the major clades of tanagers can be explained by differences in rate of climatic niche evolution. We develop a methodological pipeline to process and filter occurrence records. We find that, of the ecological variables examined, clade richness is higher in clades with higher climatic niche rate, and that this rate is also greater for clades that occupy a greater extent of climatic space. Additionally, we find that more speciose clades contain species with narrower niche breadths, suggesting that clades in which species are more successful at diversifying across climatic gradients have greater potential for speciation or are more buffered from the risk of extinction. © 2015 John Wiley & Sons Ltd/CNRS.
A climate-associated multispecies cryptic cline in the northwest Atlantic
DiBacco, Claudio; Lowen, Ben; Beiko, Robert G.; Bentzen, Paul; Brickman, David; Johnson, Catherine; Wang, Zeliang; Wringe, Brendan F.; Bradbury, Ian R.
2018-01-01
The spatial genetic structure of most species in the open marine environment remains largely unresolved. This information gap creates uncertainty in the sustainable management, recovery, and associated resilience of marine communities and our capacity to extrapolate beyond the few species for which such information exists. We document a previously unidentified multispecies biogeographic break aligned with a steep climatic gradient and driven by seasonal temperature minima in the northwest Atlantic. The coherence of this genetic break across our five study species with contrasting life histories suggests a pervasive macroecological phenomenon. The integration of this genetic structure with habitat suitability models and climate forecasts predicts significant variation in northward distributional shifts among populations and availability of suitable habitat in future oceans. The results of our integrated approach provide new perspective on how cryptic intraspecific diversity associated with climatic variation influences species and community response to climate change beyond simple poleward shifts. PMID:29600272
How range shifts induced by climate change affect neutral evolution
McInerny, G.J.; Turner, J.R.G.; Wong, H.Y.; Travis, J.M.J.; Benton, T.G.
2009-01-01
We investigate neutral evolution during range shifts in a strategic model of a metapopulation occupying a climate gradient. Using heritable, neutral markers, we track the spatio-temporal fate of lineages. Owing to iterated founder effects (‘mutation surfing’), survival of lineages derived from the leading range limit is enhanced. At trailing limits, where habitat suitability decreases, survival is reduced (mutations ‘wipe out’). These processes alter (i) the spatial spread of mutations, (ii) origins of persisting mutations and (iii) the generation of diversity. We show that large changes in neutral evolution can be a direct consequence of range shifting. PMID:19324824
How range shifts induced by climate change affect neutral evolution.
McInerny, G J; Turner, J R G; Wong, H Y; Travis, J M J; Benton, T G
2009-04-22
We investigate neutral evolution during range shifts in a strategic model of a metapopulation occupying a climate gradient. Using heritable, neutral markers, we track the spatio-temporal fate of lineages. Owing to iterated founder effects ('mutation surfing'), survival of lineages derived from the leading range limit is enhanced. At trailing limits, where habitat suitability decreases, survival is reduced (mutations 'wipe out'). These processes alter (i) the spatial spread of mutations, (ii) origins of persisting mutations and (iii) the generation of diversity. We show that large changes in neutral evolution can be a direct consequence of range shifting.
Megan McGroddy; Whendee L. Silver
2000-01-01
We used a humid tropical elevation gradient to examine the relationships among climate, edaphic conditions, belowground carbon storage, and soil respiration rates. We also compared open and closed canopy sites to increase the range of microclimate conditions sampled along the gradient, and determine the effects of canopy openings on C and P storage, and C dynamics....
Dingfang Chen; Mei Yu; Grizelle González; Xiaoming Zou; Qiong Gao
2017-01-01
Tropical forests play an important role in regulating the global climate and the carbon cycle. With the changing temperature and moisture along the elevation gradient, the Luquillo Experimental Forest in Northeastern Puerto Rico provides a natural approach to understand tropical forest ecosystems under climate change. In this study, we conducted a soil translocation...
Intra- and interspecific tree growth across a long altitudinal gradient in the Peruvian Andes.
Rapp, Joshua M; Silman, Miles R; Clark, James S; Girardin, Cecile A J; Galiano, Darcy; Tito, Richard
2012-09-01
Tree growth response across environmental gradients is fundamental to understanding species distributional ecology and forest ecosystem ecology and to predict future ecosystem services. Cross-sectional patterns of ecosystem properties with respect to climatic gradients are often used to predict ecosystem responses to global change. Across sites in the tropics, primary productivity increases with temperature, suggesting that forest ecosystems will become more productive as temperature rises. However, this trend is confounded with a shift in species composition and so may not reflect the response of in situ forests to warming. In this study, we simultaneously studied tree diameter growth across the altitudinal ranges of species within a single genus across a geographically compact temperature gradient, to separate the direct effect of temperature on tree growth from that of species compositional turnover. Using a Bayesian state space modeling framework we combined data from repeated diameter censuses and dendrometer measurements from across a 1700-m altitudinal gradient collected over six years on over 2400 trees in Weinmannia, a dominant and widespread genus of cloud forest trees in the Andes. Within species, growth showed no consistent trend with altitude, but higher-elevation species had lower growth rates than lower-elevation species, suggesting that species turnover is largely responsible for the positive correlation between productivity and temperature in tropical forests. Our results may indicate a significant difference in how low- and high-latitude forests will respond to climate change, since temperate and boreal tree species are consistently observed to have a positive relationship between growth and temperature. If our results hold for other tropical species, a positive response in ecosystem productivity to increasing temperatures in the Andes will depend on the altitudinal migration of tree species. The rapid pace of climate change, and slow observed rates of migration, suggest a slow, or even initially negative response of ecosystem productivity to warming. Finally, this study shows how the observed scale of biological organization can affect conclusions drawn from studies of ecological phenomena across environmental gradients, and calls into question the common practice in tropical ecology of lumping species at higher taxonomic levels.
Across a macro-ecological gradient forest competition is strongest at the most productive sites
Prior, Lynda D.; Bowman, David M. J. S.
2014-01-01
We tested the hypothesis that the effect of forest basal area on tree growth interacts with macro-ecological gradients of primary productivity, using a large dataset of eucalypt tree growth collected across temperate and sub- tropical mesic Australia. To do this, we derived an index of inter-tree competition based on stand basal area (stand BA) relative to the climatically determined potential basal area. Using linear mixed effects modeling, we found that the main effects of climatic productivity, tree size, and competition explained 26.5% of the deviance in individual tree growth, but adding interactions to the model could explain a further 8.9%. The effect of competition on growth interacts with the gradient of climatic productivity, with negligible effect of competition in low productivity environments, but marked negative effects at the most productive sites. We also found a positive interaction between tree size and stand BA, which was most pronounced in the most productive sites. We interpret these patterns as reflecting intense competition for light amongst maturing trees on more productive sites, and below ground moisture limitation at low productivity sites, which results in open stands with little competition for light. These trends are consistent with the life history and stand development of eucalypt forests: in cool moist environments, light is the most limiting resource, resulting in size-asymmetric competition, while in hot, low rainfall environments are open forests with little competition for light but where the amount of tree regeneration is limited by water availability. PMID:24926304
Refugia revisited: individualistic responses of species in space and time
Stewart, John R.; Lister, Adrian M.; Barnes, Ian; Dalén, Love
2010-01-01
Climate change in the past has led to significant changes in species' distributions. However, how individual species respond to climate change depends largely on their adaptations and environmental tolerances. In the Quaternary, temperate-adapted taxa are in general confined to refugia during glacials while cold-adapted taxa are in refugia during interglacials. In the Northern Hemisphere, evidence appears to be mounting that in addition to traditional southern refugia for temperate species, cryptic refugia existed in the North during glacials. Equivalent cryptic southern refugia, to the south of the more conventional high-latitude polar refugia, exist in montane areas during periods of warm climate, such as the current interglacial. There is also a continental/oceanic longitudinal gradient, which should be included in a more complete consideration of the interaction between species ranges and climates. Overall, it seems clear that there is large variation in both the size of refugia and the duration during which species are confined to them. This has implications for the role of refugia in the evolution of species and their genetic diversity. PMID:19864280
Macroclimatic change expected to transform coastal wetland ecosystems this century
Gabler, Christopher A.; Osland, Michael J.; Grace, James B.; Stagg, Camille L.; Day, Richard H.; Hartley, Stephen B.; Enwright, Nicholas M.; From, Andrew; McCoy, Meagan L.; McLeod, Jennie L.
2017-01-01
Coastal wetlands, existing at the interface between land and sea, are highly vulnerable to climate change. Macroclimate (for example, temperature and precipitation regimes) greatly influences coastal wetland ecosystem structure and function. However, research on climate change impacts in coastal wetlands has concentrated primarily on sea-level rise and largely ignored macroclimatic drivers, despite their power to transform plant community structure and modify ecosystem goods and services. Here, we model wetland plant community structure based on macroclimate using field data collected across broad temperature and precipitation gradients along the northern Gulf of Mexico coast. Our analyses quantify strongly nonlinear temperature thresholds regulating the potential for marsh-to-mangrove conversion. We also identify precipitation thresholds for dominance by various functional groups, including succulent plants and unvegetated mudflats. Macroclimate-driven shifts in foundation plant species abundance will have large effects on certain ecosystem goods and services. Based on current and projected climatic conditions, we project that transformative ecological changes are probable throughout the region this century, even under conservative climate scenarios. Coastal wetland ecosystems are functionally similar worldwide, so changes in this region are indicative of potential future changes in climatically similar regions globally.
Darcey K. Iwashita; Creighton M. Litton; Christian P. Giardina
2013-01-01
Coarse woody debris (CWD; defined here as fallen and standing dead trees and tree ferns) is a critical structural and functional component of forest ecosystems that typically comprises a large proportion of total aboveground carbon (C) storage. However, CWD estimates for the tropics are uncommon, and little is known about how C storage in CWD will respond to climate...
AmeriFlux US-SCg Southern California Climate Gradient - Grassland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goulden, Mike
This is the AmeriFlux version of the carbon flux data for the site US-SCg Southern California Climate Gradient - Grassland. Site Description - Half hourly data are available at https://www.ess.uci.edu/~california/. This site is one of six Southern California Climate Gradient flux towers operated along an elevation gradient (sites are US-SCg, US-SCs, US-SCf, US-SCw, US-SCc, US-SCd). This site is a grassland that was historically dominated by exotic annuals and that underwent restoration with a focus on native bunch grasses in the 2010s. The site has historically burned every 10-20 years, with a wildfire in October 2007. The restoration involved several yearsmore » of mowing and herbicide application to suppress exotics followed by dense planting of Nasella bunch grasses.« less
NASA Astrophysics Data System (ADS)
Hand, Ralf; Keenlyside, Noel; Omrani, Nour-Eddine; Greatbatch, Richard; Bader, Jürgen
2017-04-01
Climate change simulations robustly show a warming hole in the sub-polar North Atlantic that results from slowing of the AMOC countering the global warming signal. Here we investigate how the distinct SST spatial structures, which include a sharpening of the Gulf Stream SST gradients, influence climate change in the NA sector in winter. For this we analyse the RCP8.5 scenario simulation of the MPI Earth System Model. Additional sensitivity experiments with the atmospheric model component, ECHAM5, are performed to deconstruct the effect of the local spatial structure of the SST change from those arising from large-scale warming of the ocean, remote SST pattern changes and changed radiative forcings. The MPI model simulation shows a signifcant decrease in precipitation to the south of the GS extension region in the future, despite a strong increase in underlying SST. While directly to the north there is a significant increase in precipitation. These distinct features in the precipitation response over the North Atlantic result from the local SST. Over the Gulf Stream, the differential structure of the precipitation changes reflects the changes of the local SST gradients there. Over the subpolar gyre the increase in precipitation is partly suppressed. In this region the Subpolar Gyre the weakened AMOC causes a SST warming, that is much weaker than the warming other regions of the ocean show at the same latitude. The large-scale response, which includes the overall increase in precipitation over the NA is due to the overall warming, remote SSTs and/or directly connected to the radiative forcing.
Increased ventilation of Antarctic deep water during the warm mid-Pliocene.
Zhang, Zhongshi; Nisancioglu, Kerim H; Ninnemann, Ulysses S
2013-01-01
The mid-Pliocene warm period is a recent warm geological period that shares similarities with predictions of future climate. It is generally held the mid-Pliocene Atlantic Meridional Overturning Circulation must have been stronger, to explain a weak Atlantic meridional δ(13)C gradient and large northern high-latitude warming. However, climate models do not simulate such stronger Atlantic Meridional Overturning Circulation, when forced with mid-Pliocene boundary conditions. Proxy reconstructions allow for an alternative scenario that the weak δ(13)C gradient can be explained by increased ventilation and reduced stratification in the Southern Ocean. Here this alternative scenario is supported by simulations with the Norwegian Earth System Model (NorESM-L), which simulate an intensified and slightly poleward shifted wind field off Antarctica, giving enhanced ventilation and reduced stratification in the Southern Ocean. Our findings challenge the prevailing theory and show how increased Southern Ocean ventilation can reconcile existing model-data discrepancies about Atlantic Meridional Overturning Circulation while explaining fundamental ocean features.
Increased ventilation of Antarctic deep water during the warm mid-Pliocene
Zhang, Zhongshi; Nisancioglu, Kerim H.; Ninnemann, Ulysses S.
2013-01-01
The mid-Pliocene warm period is a recent warm geological period that shares similarities with predictions of future climate. It is generally held the mid-Pliocene Atlantic Meridional Overturning Circulation must have been stronger, to explain a weak Atlantic meridional δ13C gradient and large northern high-latitude warming. However, climate models do not simulate such stronger Atlantic Meridional Overturning Circulation, when forced with mid-Pliocene boundary conditions. Proxy reconstructions allow for an alternative scenario that the weak δ13C gradient can be explained by increased ventilation and reduced stratification in the Southern Ocean. Here this alternative scenario is supported by simulations with the Norwegian Earth System Model (NorESM-L), which simulate an intensified and slightly poleward shifted wind field off Antarctica, giving enhanced ventilation and reduced stratification in the Southern Ocean. Our findings challenge the prevailing theory and show how increased Southern Ocean ventilation can reconcile existing model-data discrepancies about Atlantic Meridional Overturning Circulation while explaining fundamental ocean features. PMID:23422667
Positive tropical marine low-cloud cover feedback inferred from cloud-controlling factors
Qu, Xin; Hall, Alex; Klein, Stephen A.; ...
2015-09-28
Differences in simulations of tropical marine low-cloud cover (LCC) feedback are sources of significant spread in temperature responses of climate models to anthropogenic forcing. Here we show that in models the feedback is mainly driven by three large-scale changes—a strengthening tropical inversion, increasing surface latent heat flux, and an increasing vertical moisture gradient. Variations in the LCC response to these changes alone account for most of the spread in model-projected 21st century LCC changes. A methodology is devised to constrain the LCC response observationally using sea surface temperature (SST) as a surrogate for the latent heat flux and moisture gradient.more » In models where the current climate's LCC sensitivities to inversion strength and SST variations are consistent with observed, LCC decreases systematically, which would increase absorption of solar radiation. These results support a positive LCC feedback. Finally, correcting biases in the sensitivities will be an important step toward more credible simulation of cloud feedbacks.« less
Ortiz-Gamino, Diana; Pérez-Rodríguez, Paulino
2016-01-01
The tropical earthworm Pontoscolex corethrurus (Rhinodrilidae, Oligochaeta) presents a broad distribution (e.g., 56 countries from four continents). It is generally assumed that temperature appears to limit the success of tropical exotic species in temperate climates. However, the distribution range of this species could advance towards higher elevations (with lower temperatures) where no tropical species currently occur. The aim of this study was to evaluate the soil and climatic variables that could be closely associated with the distribution of P. corethrurus in four sites along an altitudinal gradient in central Veracruz, Mexico. We predicted that the distribution of P. corethrurus would be more related to climate variables than edaphic parameters. Five sampling points (in the grassland) were established at each of four sites along an altitudinal gradient: Laguna Verde (LV), La Concepción (LC), Naolinco (NA) and Acatlán (AC) at 11–55, 992–1,025, 1,550–1,619 y 1,772–1,800 masl, respectively. The climate ranged from tropical to temperate along the altitudinal gradient. Ten earthworm species (5 Neotropical, 4 Palearctic and 1 Nearctic) were found along the gradient, belonging to three families (Rhinodrilidae, Megascolecide and Lumbricidae). Soil properties showed a significant association (positive for Ngrass, pH, permanent wilting point, organic matter and P; and negative for Total N, K and water-holding capacity) with the abundance of the earthworm community. Also there seems to be a relationship between climate and earthworm distribution along the altitudinal gradient. P. corethrurus was recorded at tropical (LV and LC) and temperate sites (NA) along the altitudinal gradient. Our results reveal that soil fertility determines the abundance of earthworms and site (climate) can act as a barrier to their migration. Further research is needed to determine the genetic structure and lineages of P. corethrurus along altitudinal gradients. PMID:27761348
Climatic warming and the future of bison as grazers
NASA Astrophysics Data System (ADS)
Craine, Joseph M.; Towne, E. Gene; Miller, Mary; Fierer, Noah
2015-11-01
Climatic warming is likely to exacerbate nutritional stress and reduce weight gain in large mammalian herbivores by reducing plant nutritional quality. Yet accurate predictions of the effects of climatic warming on herbivores are limited by a poor understanding of how herbivore diet varies along climate gradients. We utilized DNA metabarcoding to reconstruct seasonal variation in the diet of North American bison (Bison bison) in two grasslands that differ in mean annual temperature by 6 °C. Here, we show that associated with greater nutritional stress in warmer climates, bison consistently consumed fewer graminoids and more shrubs and forbs, i.e. eudicots. Bison in the warmer grassland consumed a lower proportion of C3 grass, but not a greater proportion of C4 grass. Instead, bison diet in the warmer grassland had a greater proportion of N2-fixing eudicots, regularly comprising >60% of their protein intake in spring and fall. Although bison have been considered strict grazers, as climatic warming reduces grass protein concentrations, bison may have to attempt to compensate by grazing less and browsing more. Promotion of high-protein, palatable eudicots or increasing the protein concentrations of grasses will be critical to minimizing warming-imposed nutritional stress for bison and perhaps other large mammalian herbivores.
Ecosystems and Climate Change. Research Priorities for the U.S. Climate Change Science Program
2006-06-01
ORION, NSF’s proposed NEON network) to gain quantitative understanding of ecosystem processes in representative systems and across gradients of...these interactions and subsequent effects expected to vary across gradients of land use (i.e., from unmanaged to managed or urban ecosystems) and...ecosystem processes along a gradient of managed to unmanaged landscapes? How will changes in freshwater inputs affect the coastal oceans? 2.4 How
The Bay of Bengal : an ideal laboratory for studying salinity
NASA Astrophysics Data System (ADS)
Vialard, jerome; Lengaigne, Matthieu; Akhil, Valiya; Chaitanya, Akurathi; Krishna-Mohan, Krishna; D'Ovidio, Francesco; Keerthi, Madhavan; Benshila, Rachid; Durand, Fabien; Papa, Fabrice; Suresh, Iyappan; Neetu, Singh
2017-04-01
The Bay of Bengal combines several unique features that make it an excellent laboratory to study the variability of salinity and its potential effects on the oceanic circulation and climate. This basin receives very large quantities of freshwater in association to the southwest monsoon, either directly from rain or indirectly through the runoffs of the Ganges-Brahmaputra and Irrawaddy. This large quantity of freshwater in a small, semi enclosed basin results in some of the lowest sea surface salinities (SSS) and strongest near-surface haline stratification in the tropical band. The strong monsoon winds also drive an energetic circulation, which exports the excess water received during the monsoon and results in strong horizontal salinity gradients. In this talk, I will summarize several studies of the Bay of Bengal salinity variability and its impacts undertaken in the context of an Indo-French collaboration. In situ data collected along the coast by fishermen and model results show that the intense, coastally-trapped East India Coastal Current (EICC) transports the very fresh water near the Ganges-Brahmaputra river mouth along the eastern Bay of Bengal rim to create a narrow, very fresh "river in the sea" after the southwest monsoon. The salinity-induced pressure gradient contributes to almost 50% of the EICC intensity and sustains mesoscale eddy generation through its effect on horizontal current shears and baroclinic gradients. Oceanic eddies play a strong role in exporting this fresh water from the coast to the basin interior. This "river in the sea" has a strong interannual variability related to the EICC remote modulation by the Indian Ocean Dipole (a regional climate mode). I will also discuss the potential effect of haline stratification on the regional climate through its influence on the upper ocean budget. Finally, I will briefly discuss the performance of remote-sensing for observing SSS in the Bay of Bengal.
Zhou, Decheng; Zhang, Liangxia; Hao, Lu; Sun, Ge; Liu, Yongqiang; Zhu, Chao
2016-02-15
Urban heat island (UHI) represents a major anthropogenic modification to the Earth system and its relationship with urban development is poorly understood at a regional scale. Using Aqua MODIS data and Landsat TM/ETM+ images, we examined the spatiotemporal trends of the UHI effect (ΔT, relative to the rural reference) along the urban development intensity (UDI) gradient in 32 major Chinese cities from 2003 to 2012. We found that the daytime and nighttime ΔT increased significantly (p<0.05, mostly in linear form) along a rising UDI for 27 and 30 out of 32 cities, respectively. More rapid increases were observed in the southeastern and northwestern parts of China in the day and night, respectively. Moreover, the ΔT trends differed greatly by season and during daytime in particular. The ΔT increased more rapidly in summer than in winter during the day and the reverse occurred at night for most cities. Inter-annually, the ΔT increased significantly in about one-third of the cities during both the day and night times from 2003 to 2012, especially in suburban areas (0.25
Environment and host as large-scale controls of ectomycorrhizal fungi.
van der Linde, Sietse; Suz, Laura M; Orme, C David L; Cox, Filipa; Andreae, Henning; Asi, Endla; Atkinson, Bonnie; Benham, Sue; Carroll, Christopher; Cools, Nathalie; De Vos, Bruno; Dietrich, Hans-Peter; Eichhorn, Johannes; Gehrmann, Joachim; Grebenc, Tine; Gweon, Hyun S; Hansen, Karin; Jacob, Frank; Kristöfel, Ferdinand; Lech, Paweł; Manninger, Miklós; Martin, Jan; Meesenburg, Henning; Merilä, Päivi; Nicolas, Manuel; Pavlenda, Pavel; Rautio, Pasi; Schaub, Marcus; Schröck, Hans-Werner; Seidling, Walter; Šrámek, Vít; Thimonier, Anne; Thomsen, Iben Margrete; Titeux, Hugues; Vanguelova, Elena; Verstraeten, Arne; Vesterdal, Lars; Waldner, Peter; Wijk, Sture; Zhang, Yuxin; Žlindra, Daniel; Bidartondo, Martin I
2018-06-06
Explaining the large-scale diversity of soil organisms that drive biogeochemical processes-and their responses to environmental change-is critical. However, identifying consistent drivers of belowground diversity and abundance for some soil organisms at large spatial scales remains problematic. Here we investigate a major guild, the ectomycorrhizal fungi, across European forests at a spatial scale and resolution that is-to our knowledge-unprecedented, to explore key biotic and abiotic predictors of ectomycorrhizal diversity and to identify dominant responses and thresholds for change across complex environmental gradients. We show the effect of 38 host, environment, climate and geographical variables on ectomycorrhizal diversity, and define thresholds of community change for key variables. We quantify host specificity and reveal plasticity in functional traits involved in soil foraging across gradients. We conclude that environmental and host factors explain most of the variation in ectomycorrhizal diversity, that the environmental thresholds used as major ecosystem assessment tools need adjustment and that the importance of belowground specificity and plasticity has previously been underappreciated.
Frost and leaf-size gradients in forests: global patterns and experimental evidence.
Lusk, Christopher H; Clearwater, Michael J; Laughlin, Daniel C; Harrison, Sandy P; Prentice, Iain Colin; Nordenstahl, Marisa; Smith, Benjamin
2018-05-16
Explanations of leaf size variation commonly focus on water availability, yet leaf size also varies with latitude and elevation in environments where water is not strongly limiting. We provide the first conclusive test of a prediction of leaf energy balance theory that may explain this pattern: large leaves are more vulnerable to night-time chilling, because their thick boundary layers impede convective exchange with the surrounding air. Seedlings of 15 New Zealand evergreens spanning 12-fold variation in leaf width were exposed to clear night skies, and leaf temperatures were measured with thermocouples. We then used a global dataset to assess several climate variables as predictors of leaf size in forest assemblages. Leaf minus air temperature was strongly correlated with leaf width, ranging from -0.9 to -3.2°C in the smallest- and largest-leaved species, respectively. Mean annual temperature and frost-free period were good predictors of evergreen angiosperm leaf size in forest assemblages, but no climate variable predicted deciduous leaf size. Although winter deciduousness makes large leaves possible in strongly seasonal climates, large-leaved evergreens are largely confined to frost-free climates because of their susceptibility to radiative cooling. Evergreen leaf size data can therefore be used to enhance vegetation models, and to infer palaeotemperatures from fossil leaf assemblages. © 2018 The Authors New Phytologist © 2018 New Phytologist Trust.
Microbial Decomposers Not Constrained by Climate History Along a Mediterranean Climate Gradient
NASA Astrophysics Data System (ADS)
Baker, N. R.; Khalili, B.; Martiny, J. B. H.; Allison, S. D.
2017-12-01
The return of organic carbon to the atmosphere through terrestrial decomposition is mediated through the breakdown of complex organic polymers by extracellular enzymes produced by microbial decomposer communities. Determining if and how these decomposer communities are constrained in their ability to degrade plant litter is necessary for predicting how carbon cycling will be affected by future climate change. To address this question, we deployed fine-pore nylon mesh "microbial cage" litterbags containing grassland litter with and without local inoculum across five sites in southern California, spanning a gradient of 10.3-22.8° C in mean annual temperature and 100-400+ mm mean annual precipitation. Litterbags were deployed in October 2014 and collected four times over the course of 14 months. Recovered litter was assayed for mass loss, litter chemistry, microbial biomass, extracellular enzymes (Vmax and Km), and enzyme temperature sensitivities. We hypothesized that grassland litter would decompose most rapidly in the grassland site, and that access to local microbial communities would enhance litter decomposition rates and microbial activity in the other sites along the gradient. We determined that temperature and precipitation likely interact to limit microbial decomposition in the extreme sites along our gradient. Despite their unique climate history, grassland microbes were not restricted in their ability to decompose litter under different climate conditions. Although we observed a strong correlation between bacterial biomass and mass loss across the gradient, litter that was inoculated with local microbial communities lost less mass despite having greater bacterial biomass and potentially accumulating more microbial residues. Our results suggest that microbial community composition may not constrain C-cycling rates under climate change in our system. However, there may be community constraints on decomposition if climate change alters litter chemistry, a mechanism only indirectly addressed by our design.
Can We Untangle the Weather? Stable Water Isotope Controls on the Juneau Icefield
NASA Astrophysics Data System (ADS)
Ihle, A. C.; Keenan, E.; Yong, C.; Bridgers, S. L.; Markle, B. R.; Hamel, J.; Klein, E. S.
2017-12-01
Stable water isotopes in snow and ice provide a reliable proxy for past weather and climate. However, untangling weather and climate signals from water isotopes on the Juneau Icefield, Alaska, has proven difficult due to consistent summer melt and rain. The Juneau Icefield is a large glaciated region consisting of complex terrain and sharp climatic gradients. Here we study how topographic steepness and elevation influence stable water isotope ratios on the Juneau Icefield using vertical snowpit profiles collected from water year 2017's snowpack. As terrain steepens, we expect gradients in isotope ratios to intensify. In addition, we aim to determine how post-depositional metamorphism, particularly precipitation, affects water isotope ratios. We anticipate rain events to increase the proportion of heavy water isotopes. Lastly, we compare model output and remote sensing observations of storm origin to vertical stratigraphy of stable isotope ratios in the snowpack in order to determine if it is possible to use isotopes to identify past storm tracks on the Juneau Icefield. Snowpack isotope stratigraphy ratios can likely be linked to seasonal trends of storm characteristics. Given this enhanced understanding of how stable water isotopes behave on the Juneau Icefield, we contribute to the understanding of past weather and climate, both here and elsewhere, and explore the possibility for future deep ice cores on the Juneau Icefield.
NASA Astrophysics Data System (ADS)
Böhme, M.; Ilg, A.; Ossig, A.; Küchenhoff, H.
2006-06-01
Existing methods for determining paleoprecipitation are subject to large errors (±350 400 mm or more using mammalian proxies), or are restricted to wet climate systems due to their strong facies dependence (paleobotanical proxies). Here we describe a new paleoprecipitation tool based on an indexing of ecophysiological groups within herpetological communities. In recent communities these indices show a highly significant correlation to annual precipitation (r2 = 0.88), and yield paleoprecipitation estimates with average errors of ±250 280 mm. The approach was validated by comparison with published paleoprecipitation estimates from other methods. The method expands the application of paleoprecipitation tools to dry climate systems and in this way contributes to the establishment of a more comprehensive paleoprecipitation database. This method is applied to two high-resolution time intervals from the European Neogene: the early middle Miocene (early Langhian) and the early late Miocene (early Tortonian). The results indicate that both periods show significant meridional precipitation gradients in Europe, these being stronger in the early Langhian (threefold decrease toward the south) than in the early Tortonian (twofold decrease toward the south). This pattern indicates a strengthening of climatic belts during the middle Miocene climatic optimum due to Southern Hemisphere cooling and an increased contribution of Arctic low-pressure cells to the precipitation from the late Miocene onward due to Northern Hemisphere cooling.
A latitudinal gradient in tree growth response to climate warming in the Siberian taiga
Andrea H. Lloyd; Andrew G. Bunn; Logan Berner
2010-01-01
We investigated the climate response of three Siberian taiga species, Larix cajanderi, Picea obovata, and Pinus sylvestris, across a latitudinal gradient in central Siberia. We hypothesized that warming is more frequently associated with increased growth for evergreen conifers (P. obovata and P....
Remote sensing of wetland parameters related to carbon cycling
NASA Technical Reports Server (NTRS)
Bartlett, David S.; Johnson, Robert W.
1985-01-01
Measurement of the rates of important biogeochemical fluxes on regional or global scales is vital to understanding the geochemical and climatic consequences of natural biospheric processes and of human intervention in those processes. Remote data gathering and interpretation techniques were used to examine important cycling processes taking place in wetlands over large geographic expanses. Large area estimation of vegetative biomass and productivity depends upon accurate, consistent measurements of canopy spectral reflectance and upon wide applicability of algorithms relating reflectance to biometric parameters. Results of the use of airborne multispectral scanner data to map above-ground biomass in a Delaware salt marsh are shown. The mapping uses an effective algorithm linking biomass to measured spectral reflectance and a means to correct the scanner data for large variations in the angle of observation of the canopy. The consistency of radiometric biomass algorithms for marsh grass when they are applied over large latitudinal and tidal range gradients were also examined. Results of a 1 year study of methane emissions from tidal wetlands along a salinity gradient show marked effects of temperature, season, and pore-water chemistry in mediating flux to the atmosphere.
Luo, Ya-Huang; Liu, Jie; Tan, Shao-Lin; Cadotte, Marc William; Wang, Yue-Hua; Xu, Kun; Li, De-Zhu; Gao, Lian-Ming
2016-01-01
Understanding how communities respond to environmental variation is a central goal in ecology. Plant communities respond to environmental gradients via intraspecific and/or interspecific variation in plant functional traits. However, the relative contribution of these two responses to environmental factors remains poorly tested. We measured six functional traits (height, leaf thickness, specific leaf area (SLA), leaf carbon concentration (LCC), leaf nitrogen concentration (LNC) and leaf phosphorus concentration (LPC)) for 55 tree species occurring at five elevations across a 1200 m elevational gradient of subalpine forests in Yulong Mountain, Southwest China. We examined the relative contribution of interspecific and intraspecific traits variability based on community weighted mean trait values and functional diversity, and tested how different components of trait variation respond to different environmental axes (climate and soil variables). Species turnover explained the largest amount of variation in leaf morphological traits (leaf thickness and SLA) across the elevational gradient. However, intraspecific variability explained a large amount of variation (49.3%-76.3%) in three other traits (height, LNC and LPC) despite high levels of species turnover. The detection of limiting similarity in community assembly was improved when accounting for both intraspecific and interspecific variability. Different components of trait variation respond to different environmental axes, especially soil water content and climatic variables. Our results indicate that intraspecific variation is critical for understanding community assembly and evaluating community response to environmental change.
Luo, Ya-Huang; Liu, Jie; Tan, Shao-Lin; Cadotte, Marc William; Wang, Yue-Hua; Xu, Kun; Li, De-Zhu; Gao, Lian-Ming
2016-01-01
Understanding how communities respond to environmental variation is a central goal in ecology. Plant communities respond to environmental gradients via intraspecific and/or interspecific variation in plant functional traits. However, the relative contribution of these two responses to environmental factors remains poorly tested. We measured six functional traits (height, leaf thickness, specific leaf area (SLA), leaf carbon concentration (LCC), leaf nitrogen concentration (LNC) and leaf phosphorus concentration (LPC)) for 55 tree species occurring at five elevations across a 1200 m elevational gradient of subalpine forests in Yulong Mountain, Southwest China. We examined the relative contribution of interspecific and intraspecific traits variability based on community weighted mean trait values and functional diversity, and tested how different components of trait variation respond to different environmental axes (climate and soil variables). Species turnover explained the largest amount of variation in leaf morphological traits (leaf thickness and SLA) across the elevational gradient. However, intraspecific variability explained a large amount of variation (49.3%–76.3%) in three other traits (height, LNC and LPC) despite high levels of species turnover. The detection of limiting similarity in community assembly was improved when accounting for both intraspecific and interspecific variability. Different components of trait variation respond to different environmental axes, especially soil water content and climatic variables. Our results indicate that intraspecific variation is critical for understanding community assembly and evaluating community response to environmental change. PMID:27191402
Cohn, Janet S; Lunt, Ian D; Bradstock, Ross A; Hua, Quan; McDonald, Simon
2013-01-01
Predicting species distributions with changing climate has often relied on climatic variables, but increasingly there is recognition that disturbance regimes should also be included in distribution models. We examined how changes in rainfall and disturbances along climatic gradients determined demographic patterns in a widespread and long-lived tree species, Callitris glaucophylla in SE Australia. We examined recruitment since 1950 in relation to annual (200–600 mm) and seasonal (summer, uniform, winter) rainfall gradients, edaphic factors (topography), and disturbance regimes (vertebrate grazing [tenure and species], fire). A switch from recruitment success to failure occurred at 405 mm mean annual rainfall, coincident with a change in grazing regime. Recruitment was lowest on farms with rabbits below 405 mm rainfall (mean = 0–0.89 cohorts) and highest on less-disturbed tenures with no rabbits above 405 mm rainfall (mean = 3.25 cohorts). Moderate levels of recruitment occurred where farms had no rabbits or less disturbed tenures had rabbits above and below 405 mm rainfall (mean = 1.71–1.77 cohorts). These results show that low annual rainfall and high levels of introduced grazing has led to aging, contracting populations, while higher annual rainfall with low levels of grazing has led to younger, expanding populations. This study demonstrates how demographic patterns vary with rainfall and spatial variations in disturbances, which are linked in complex ways to climatic gradients. Predicting changes in tree distribution with climate change requires knowledge of how rainfall and key disturbances (tenure, vertebrate grazing) will shift along climatic gradients. PMID:23919160
Häger, Achim
2010-12-01
On a global level, Tropical Montane Cloud Forests constitute important centers of vascular plant diversity. Tree species turnover along environmental gradients plays an important role in larger scale diversity patterns in tropical mountains. This study aims to estimate the magnitude of beta diversity across the Tilardn mountain range in North-Western Costa Rica, and to elucidate the impact of climate and soil conditions on tree species turnover at a local scale. Seven climate stations measuring rainfall, horizontal precipitation (clouds and wind-driven rain) and temperatures were installed along a 2.5km transect ranging from 1200 m.a.s.l. on the Atlantic to 1200 m.a.s.l. on the Pacific slope. The ridge top climate station was located at 1500 m.a.s.l. Climate data were recorded from March through December 2003. Additionally, seven 0.05 ha plots were established. On all plots soil moisture was monitored for one year, furthermore soil type and soil chemistry were assessed. Woody plants with a diameter at breast height (dbh) > or = 5 cm were identified to species. Species' distributions were explored by feeding pairwise Serensen measures between plots into a Principal Component Analysis. Relationships between floristic similarity and environmental variables were analyzed using Mantel tests. Pronounced gradients in horizontal precipitation, temperatures and soil conditions were found across the transect. In total, 483 woody plants were identified, belonging to 132 species. Environmental gradients were paralleled by tree species turnover; the plots could be divided in three distinctive floristic units which reflected different topographic positions on the transect (lower slopes, mid slopes and ridge). Most notably there was a complete species turnover between the ridge and the lower Pacific slope. Floristic similarity was negatively correlated with differences in elevation, horizontal precipitation, temperatures and soil conditions between plots. It is suggested that beta-diversity in the study area is largely driven by species with narrow spatial ranges, due to the interactions between topography, climate and soil formation processes, especially around the wind-exposed and cloud covered ridge area. The findings emphasize the extraordinary conservation value of tropical montane cloud forests in environmentally heterogeneous areas at mid-elevations.
How will biotic interactions influence climate change-induced range shifts?
HilleRisLambers, Janneke; Harsch, Melanie A; Ettinger, Ailene K; Ford, Kevin R; Theobald, Elinore J
2013-09-01
Biotic interactions present a challenge in determining whether species distributions will track climate change. Interactions with competitors, consumers, mutualists, and facilitators can strongly influence local species distributions, but few studies assess how and whether these interactions will impede or accelerate climate change-induced range shifts. In this paper, we explore how ecologists might move forward on this question. We first outline the conditions under which biotic interactions can result in range shifts that proceed faster or slower than climate velocity and result in ecological surprises. Next, we use our own work to demonstrate that experimental studies documenting the strength of biotic interactions across large environmental gradients are a critical first step for understanding whether they will influence climate change-induced range shifts. Further progress could be made by integrating results from these studies into modeling frameworks to predict how or generalize when biotic interactions mediate how changing climates influence range shifts. Finally, we argue that many more case studies like those described here are needed to explore the importance of biotic interactions during climate change-induced range shifts. © 2013 New York Academy of Sciences.
NASA Astrophysics Data System (ADS)
Kramer, M. G.; Chadwick, O.
2017-12-01
Volcanic ash soils retain the largest and most persistent soil carbon pools of any ecosystem. However, the mechanisms governing soil carbon accumulation and weathering during initial phases of weathering are not well understood. We examined soil organic matter dynamics and weathering across a high altitude (3563 - 3013 m) 20 ky climate gradient on Mauna Kea in Hawaii. Four elevation sites were selected ( 250-500 mm rainfall) which range from arid-periglacial to sites which contain a mix of shrubs and grasses. At each site, between 2-3 pits were dug and major diagnostic horizons down to bedrock (in-tact lava) were sampled. Soils were analyzed for particle size, organic C and N, soil pH, exchangeable cations, base saturation, NaF pH, phosphorous sorption and bulk elements. Mass loss and pedogenic metal accumulation (hydroxlamine Fe, Al and Si extractions) were used to measure extent of weathering, leaching, changes in soil mineralogy and carbon accumulation with the short-range-ordered (SRO) minerals. Reactive-phase (SRO) minerals show a general trend of increasing abundance through the soil depth profile with increasing rainfall. However carbon accumulation patterns across the climate gradient are largely decoupled from these trends. The results suggest that after 20ky, pedogenic processes have altered the nature and composition of the volcanic ash such that it is capable of retaining soil C even where organic acid influences from plant material and leaching from rainfall is severely limited. Comparisons with lower elevation soils on Mauna Kea and other moist mesic (2500mm rainfall) sites on Hawaii suggest that these soils have reached only between 1-15 % of their capacity to retain carbon. Our results suggest that in low rainfall and a cold climate, after 20ky, weathering has advanced but is decoupled from soil carbon accumulation patterns and the associated influence of vegetation on soil development. Changes in soil carbon composition and amount across the entire (250-2500mm rainfall) Mauna Kea climate gradient indicate that the rate of carbon supply to the subsoil (driven by coupling of rainfall above ground plant production) is a governing factor of forms and amount of soil organic matter accumulation, while soil mineralogy remained relatively uniform.
NASA Astrophysics Data System (ADS)
Talluto, M. V.; Boulangeat, I.; Vissault, S.; Gravel, D.
2015-12-01
Climate change is likely to push many species to the limits of their ecological niches and lead to mismatches between species ranges and local environmental conditions. Forested ecosystems in particular may have difficulty tracking climate change due to slow growth and dispersal rates. Correlative species distribution models (SDMs), commonly used to predict the response of species distributions to climate change, relate species occurrences to climate to describe the present niche; however they often project into the future without accounting for slow processes that might produce lags in the response to climate change. An alternative type of model that analyzes patch-scale colonization and extinction (C-E) rates along an environmental gradient has been successful in describing species range limits in theoretical studies. Because the model is stochastic and dynamic, it is more robust to changes in the environmental gradient than static SDMs. We applied such a model to 40 of the most abundant trees in eastern North American forests, using repeated observations across multiple decades to parameterize the C-E rates. We show that C-E rates for many species respond to climate in a manner that generates predicted range limits when the species is at equilibrium with the environment. Moreover, current distributions of many species are significantly out of equilibrium with the present climate, with predicted range limits shifted 10s to 100s of km northward from the present distribution. These results suggest that present warming has already exceeded the thermal tolerance at the southern range limits for the dominant trees of eastern North American forests, producing millions of ha of newly suitable areas north of the present distribution of these species that have not yet been colonized, as well as large southern regions where species are present but expected to be lost in the long-term as dead trees are not replaced, even if no further climate warming occurs.
Chamberlain, Dan; Brambilla, Mattia; Caprio, Enrico; Pedrini, Paolo; Rolando, Antonio
2016-08-01
Many species have shown recent shifts in their distributions in response to climate change. Patterns in species occurrence or abundance along altitudinal gradients often serve as the basis for detecting such changes and assessing future sensitivity. Quantifying the distribution of species along altitudinal gradients acts as a fundamental basis for future studies on environmental change impacts, but in order for models of altitudinal distribution to have wide applicability, it is necessary to know the extent to which altitudinal trends in occurrence are consistent across geographically separated areas. This was assessed by fitting models of bird species occurrence across altitudinal gradients in relation to habitat and climate variables in two geographically separated alpine regions, Piedmont and Trentino. The ten species studied showed non-random altitudinal distributions which in most cases were consistent across regions in terms of pattern. Trends in relation to altitude and differences between regions could be explained mostly by habitat or a combination of habitat and climate variables. Variation partitioning showed that most variation explained by the models was attributable to habitat, or habitat and climate together, rather than climate alone or geographic region. The shape and position of the altitudinal distribution curve is important as it can be related to vulnerability where the available space is limited, i.e. where mountains are not of sufficient altitude for expansion. This study therefore suggests that incorporating habitat and climate variables should be sufficient to construct models with high transferability for many alpine species.
AmeriFlux US-SCw Southern California Climate Gradient - Pinyon/Juniper Woodland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goulden, Mike
This is the AmeriFlux version of the carbon flux data for the site US-SCw Southern California Climate Gradient - Pinyon/Juniper Woodland. Site Description - Half hourly data are available at https://www.ess.uci.edu/~california/. This site is one of six Southern California Climate Gradient flux towers operated along an elevation gradient (sites are US-SCg, US-SCs, US-SCf, US-SCw, US-SCc, US-SCd). This site is a Pinyon Juniper woodland with trees that are at least 150 years old, and ephemeral herbaceous cover following winter or spring rains. The site has experienced repeated drought during the record and roughly 50% Pinyon mortality over the last decade. Amore » nearby tower site (US-SCc) burned in a 1994 wildfire; comparisons between US-SCw and US-SCc provide a measure of the effects of the 1994 on land-atmosphere exchange.« less
Busing, Richard T.; Solomon, Allen M.
2004-01-01
Two forest dynamics simulators are compared along climatic gradients in the Pacific Northwest. The ZELIG and FORCLIM models are tested against forest survey data from western Oregon. Their ability to generate accurate patterns of forest basal area and species composition is evaluated for series of sites with contrasting climate. Projections from both models approximate the basal area and composition patterns for three sites along the elevation gradient at H.J. Andrews Experimental Forest in the western Cascade Range. The ZELIG model is somewhat more accurate than FORCLIM at the two low-elevation sites. Attempts to project forest composition along broader climatic gradients reveal limitations of ZELIG, however. For example, ZELIG is less accurate than FORCLIM at projecting the average composition of a west Cascades ecoregion selected for intensive analysis. Also, along a gradient consisting of several sites on an east to west transect at 44.1oN latitude, both the FORCLIM model and the actual data show strong changes in composition and total basal area, but the ZELIG model shows a limited response. ZELIG does not simulate the declines in forest basal area and the diminished dominance of mesic coniferous species east of the Cascade crest. We conclude that ZELIG is suitable for analyses of certain sites for which it has been calibrated. FORCLIM can be applied in analyses involving a range of climatic conditions without requiring calibration for specific sites.
Biodiversity and Topographic Complexity: Modern and Geohistorical Perspectives
Badgley, Catherine; Smiley, Tara M.; Terry, Rebecca; Davis, Edward B.; DeSantis, Larisa R.G.; Fox, David L.; Hopkins, Samantha S.B.; Jezkova, Tereza; Matocq, Marjorie D.; Matzke, Nick; McGuire, Jenny L.; Mulch, Andreas; Riddle, Brett R.; Roth, V. Louise; Samuels, Joshua X.; Strömberg, Caroline A.E.; Yanites, Brian J.
2018-01-01
Topographically complex regions on land and in the oceans feature hotspots of biodiversity that reflect geological influences on ecological and evolutionary processes. Over geologic time, topographic diversity gradients wax and wane over millions of years, tracking tectonic or climatic history. Topographic diversity gradients from the present day and the past can result from the generation of species by vicariance or from the accumulation of species from dispersal into a region with strong environmental gradients. Biological and geological approaches must be integrated to test alternative models of diversification along topographic gradients. Reciprocal illumination among phylogenetic, phylogeographic, ecological, paleontological, tectonic, and climatic perspectives is an emerging frontier of biogeographic research. PMID:28196688
NASA Astrophysics Data System (ADS)
Herrera Silveira, J. A.; Morales-Ojeda, S. M.; Medina Gomez, I.; Kantun Manzano, C.; Caamal Sosa, J.; Marino-Tapia, I.; Adame, F.; Teutli Hernandez, C.
2013-05-01
Submarine groundwater discharge (SGD) contributes significantly in the structure and function of coastal ecosystems favoring nutrients and salinity gradients, and with these spatial variability of wetland types and rates of primary production. However, the connectivity between SGD and coastal wetlands remains largely unexplored, especially in the tropics and karstic regions. On the other hand, coastal wetlands could represents exceptionally large carbon (C) stocks, whose protection and restoration can constitute an effective mitigation strategy for climate change. The Yucatán Peninsula is a low-relief carbonate platform and karst geology that permits fast rainfall infiltration, minimal surface flow, and high SGD., which is characterized by a continuum of freshwater wetland, mangroves, seagrasses meadows and coral reefs. Our studies around the Yucatan coastal wetlands related with the ecohydrology, suggest strong connectivity between SGD and mangrove and seagrasses structure and function. Some of the results indicate that SGD are the main source of nitrate and silicate favoring salinity gradient along the coastal lagoons and bays like estuaries. Mangrove forests show the best structural developments where a spring of groundwater is located, these types of mangroves are called locally "petenes" and show large C stocks. Respect to seagrasses, high shoots density has been observed at sites characterized by low salinity and peak nutrients concentration. Further research on groundwater flows among human activities on inland activities, coastal wetlands and marine ecosystems are required in order to develop management strategies for mitigation and adaptation to global climate change
Beguin, Julien; McIntire, Eliot J B; Fortin, Daniel; Cumming, Steven G; Raulier, Frédéric; Racine, Pierre; Dussault, Claude
2013-01-01
Many animal species exhibit broad-scale latitudinal or longitudinal gradients in their response to biotic and abiotic components of their habitat. Although knowing the underlying mechanism of these patterns can be critical to the development of sound measures for the preservation or recovery of endangered species, few studies have yet identified which processes drive the existence of geographical gradients in habitat selection. Using extensive spatial data of broad latitudinal and longitudinal extent, we tested three hypotheses that could explain the presence of geographical gradients in landscape selection of the endangered boreal woodland caribou (Rangifer tarandus caribou) during winter in Eastern Canadian boreal forests: 1) climate-driven selection, which postulates that geographic gradients are surrogates for climatic gradients; 2) road-driven selection, which proposes that boreal caribou adjust their selection for certain habitat classes as a function of proximity to roads; and 3) an additive effect of both roads and climate. Our data strongly supported road-driven selection over climate influences. Thus, direct human alteration of landscapes drives boreal caribou distribution and should likely remain so until the climate changes sufficiently from present conditions. Boreal caribou avoided logged areas two-fold more strongly than burnt areas. Limiting the spread of road networks and accounting for the uneven impact of logging compared to wildfire should therefore be integral parts of any habitat management plan and conservation measures within the range of the endangered boreal caribou. The use of hierarchical spatial models allowed us to explore the distribution of spatially-structured errors in our models, which in turn provided valuable insights for generating alternative hypotheses about processes responsible for boreal caribou distribution.
You, Jianling; Qi, Danhui; Zhou, Yin; Chen, Jiakuan; Song, Zhiping
2016-01-01
Estimating the potential of species to cope with rapid environmental climatic modifications is of vital importance for determining their future viability and conservation. The variation between existing populations along a climatic gradient may predict how a species will respond to future climate change. Stipa purpurea is a dominant grass species in the alpine steppe and meadow of the Qinghai-Tibetan Plateau (QTP). Ecological niche modelling was applied to S. purpurea, and its distribution was found to be most strongly correlated with the annual precipitation and the mean temperature of the warmest quarter. We established a north-to-south transect over 2000 km long on the QTP reflecting the gradients of temperature and precipitation, and then we estimated the morphological by sampling fruited tussocks and genetic divergence by using 11 microsatellite markers between 20 populations along the transect. Reproductive traits (the number of seeds and reproductive shoots), the reproductive-vegetative growth ratio and the length of roots in the S. purpurea populations varied significantly with climate variables. S. purpurea has high genetic diversity (He = 0.585), a large effective population size (Ne >1,000), and a considerable level of gene flow between populations. The S. purpurea populations have a mosaic genetic structure: some distant populations (over 1000 km apart) clustered genetically, whereas closer populations (< 100 km apart) had diverged significantly, suggesting local adaptation. Asymmetrical long-distance inter-population gene flow occurs along the sampling transect and might be mediated by seed dispersal via migratory herbivores, such as the chiru (Pantholops hodgsonii). These findings suggest that population performance variation and gene flow both facilitate the response of S. purpurea to climate change. PMID:27580056
Liu, Wensheng; Zhao, Yao; You, Jianling; Qi, Danhui; Zhou, Yin; Chen, Jiakuan; Song, Zhiping
2016-01-01
Estimating the potential of species to cope with rapid environmental climatic modifications is of vital importance for determining their future viability and conservation. The variation between existing populations along a climatic gradient may predict how a species will respond to future climate change. Stipa purpurea is a dominant grass species in the alpine steppe and meadow of the Qinghai-Tibetan Plateau (QTP). Ecological niche modelling was applied to S. purpurea, and its distribution was found to be most strongly correlated with the annual precipitation and the mean temperature of the warmest quarter. We established a north-to-south transect over 2000 km long on the QTP reflecting the gradients of temperature and precipitation, and then we estimated the morphological by sampling fruited tussocks and genetic divergence by using 11 microsatellite markers between 20 populations along the transect. Reproductive traits (the number of seeds and reproductive shoots), the reproductive-vegetative growth ratio and the length of roots in the S. purpurea populations varied significantly with climate variables. S. purpurea has high genetic diversity (He = 0.585), a large effective population size (Ne >1,000), and a considerable level of gene flow between populations. The S. purpurea populations have a mosaic genetic structure: some distant populations (over 1000 km apart) clustered genetically, whereas closer populations (< 100 km apart) had diverged significantly, suggesting local adaptation. Asymmetrical long-distance inter-population gene flow occurs along the sampling transect and might be mediated by seed dispersal via migratory herbivores, such as the chiru (Pantholops hodgsonii). These findings suggest that population performance variation and gene flow both facilitate the response of S. purpurea to climate change.
Facilitation among plants in alpine environments in the face of climate change.
Anthelme, Fabien; Cavieres, Lohengrin A; Dangles, Olivier
2014-01-01
While there is a large consensus that plant-plant interactions are a crucial component of the response of plant communities to the effects of climate change, available data remain scarce, particularly in alpine systems. This represents an important obstacle to making consistent predictions about the future of plant communities. Here, we review current knowledge on the effects of climate change on facilitation among alpine plant communities and propose directions for future research. In established alpine communities, while warming seemingly generates a net facilitation release, earlier snowmelt may increase facilitation. Some nurse plants are able to buffer microenvironmental changes in the long term and may ensure the persistence of other alpine plants through local migration events. For communities migrating to higher elevations, facilitation should play an important role in their reorganization because of the harsher environmental conditions. In particular, the absence of efficient nurse plants might slow down upward migration, possibly generating chains of extinction. Facilitation-climate change relationships are expected to shift along latitudinal gradients because (1) the magnitude of warming is predicted to vary along these gradients, and (2) alpine environments are significantly different at low vs. high latitudes. Data on these expected patterns are preliminary and thus need to be tested with further studies on facilitation among plants in alpine environments that have thus far not been considered. From a methodological standpoint, future studies will benefit from the spatial representation of the microclimatic environment of plants to predict their response to climate change. Moreover, the acquisition of long-term data on the dynamics of plant-plant interactions, either through permanent plots or chronosequences of glacial recession, may represent powerful approaches to clarify the relationship between plant interactions and climate change.
Facilitation among plants in alpine environments in the face of climate change
Anthelme, Fabien; Cavieres, Lohengrin A.; Dangles, Olivier
2014-01-01
While there is a large consensus that plant–plant interactions are a crucial component of the response of plant communities to the effects of climate change, available data remain scarce, particularly in alpine systems. This represents an important obstacle to making consistent predictions about the future of plant communities. Here, we review current knowledge on the effects of climate change on facilitation among alpine plant communities and propose directions for future research. In established alpine communities, while warming seemingly generates a net facilitation release, earlier snowmelt may increase facilitation. Some nurse plants are able to buffer microenvironmental changes in the long term and may ensure the persistence of other alpine plants through local migration events. For communities migrating to higher elevations, facilitation should play an important role in their reorganization because of the harsher environmental conditions. In particular, the absence of efficient nurse plants might slow down upward migration, possibly generating chains of extinction. Facilitation–climate change relationships are expected to shift along latitudinal gradients because (1) the magnitude of warming is predicted to vary along these gradients, and (2) alpine environments are significantly different at low vs. high latitudes. Data on these expected patterns are preliminary and thus need to be tested with further studies on facilitation among plants in alpine environments that have thus far not been considered. From a methodological standpoint, future studies will benefit from the spatial representation of the microclimatic environment of plants to predict their response to climate change. Moreover, the acquisition of long-term data on the dynamics of plant–plant interactions, either through permanent plots or chronosequences of glacial recession, may represent powerful approaches to clarify the relationship between plant interactions and climate change. PMID:25161660
Stillman, Jonathon H; Tagmount, Abderrahmane
2009-10-01
Central predictions of climate warming models include increased climate variability and increased severity of heat waves. Physiological acclimatization in populations across large-scale ecological gradients in habitat temperature fluctuation is an important factor to consider in detecting responses to climate change related increases in thermal fluctuation. We measured in vivo cardiac thermal maxima and used microarrays to profile transcriptome heat and cold stress responses in cardiac tissue of intertidal zone porcelain crabs across biogeographic and seasonal gradients in habitat temperature fluctuation. We observed acclimatization dependent induction of heat shock proteins, as well as unknown genes with heat shock protein-like expression profiles. Thermal acclimatization had the largest effect on heat stress responses of extensin-like, beta tubulin, and unknown genes. For these genes, crabs acclimatized to thermally variable sites had higher constitutive expression than specimens from low variability sites, but heat stress dramatically induced expression in specimens from low variability sites and repressed expression in specimens from highly variable sites. Our application of ecological transcriptomics has yielded new biomarkers that may represent sensitive indicators of acclimatization to habitat temperature fluctuation. Our study also has identified novel genes whose further description may yield novel understanding of cellular responses to thermal acclimatization or thermal stress.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Law, Beverly E.
Investigate the effects of disturbance and climate variables on processes controlling carbon and water processes at AmeriFlux cluster sites in semi-arid and mesic forests in Oregon. The observations were made at three existing and productive AmeriFlux research sites that represent climate and disturbance gradients as a natural experiment of the influence of climatic and hydrologic variability on carbon sequestration and resulting atmospheric CO 2 feedback that includes anomalies during the warm/ dry phase of the Pacific Decadal Oscillation.
NASA Astrophysics Data System (ADS)
Musselman, Keith N.; Molotch, Noah P.; Margulis, Steven A.
2017-12-01
In a warmer climate, the fraction of annual meltwater produced at high melt rates in mountainous areas is projected to decline due to a contraction of the snow-cover season, causing melt to occur earlier and under lower energy conditions. How snowmelt rates, including extreme events relevant to flood risk, may respond to a range of warming over a mountain front is poorly known. We present a model sensitivity study of snowmelt response to warming across a 3600 m elevation gradient in the southern Sierra Nevada, USA. A snow model was run for three distinct years and verified against extensive ground observations. To simulate the impact of climate warming on meltwater production, measured meteorological conditions were modified by +1 to +6 °C. The total annual snow water volume exhibited linear reductions (-10 % °C-1) consistent with previous studies. However, the sensitivity of snowmelt rates to successive degrees of warming varied nonlinearly with elevation. Middle elevations and years with more snowfall were prone to the largest reductions in snowmelt rates, with lesser changes simulated at higher elevations. Importantly, simulated warming causes extreme daily snowmelt (99th percentiles) to increase in spatial extent and intensity, and shift from spring to winter. The results offer insight into the sensitivity of mountain snow water resources and how the rate and timing of water availability may change in a warmer climate. The identification of future climate conditions that may increase extreme melt events is needed to address the climate resilience of regional flood control systems.
Locating Pleistocene Refugia: Comparing Phylogeographic and Ecological Niche Model Predictions
2007-07-01
the nature of the paleoclimatic layers currently available. Mountain ranges or large ice sheets are reflected in climate layers, as they present major...environmental gradients running both north-south (latitu- dinal) and east to west (North American mountain ranges). To assure that the test could be...Conceived and designed the experiments: RG EW. Analyzed the data: RG EW. Other: Contributed to project planning: SP AN. Provided data layers: AP RH
Climate controls on forest productivity along the climate gradient of the western Sierra Nevada
NASA Astrophysics Data System (ADS)
Kelly, A. E.; Goulden, M. L.
2010-12-01
The broad climate gradient of the slopes of the western Sierra Nevada mountains supports ecosystems spanning extremes of productivity, biomass, and function. We are using this natural environmental gradient to understand how climate controls NPP, aboveground biomass, species' range limits, and phenology. Our experimental approach combines eddy covariance, sap flow, dendrometer, and litterfall measurements in combination with soil and hydrological data from the Southern Sierra Critical Zone Observatory (SSCZO). We have found that above about 2500 m, forest productivity is limited by winter cold, while below 1200 m, productivity is likely limited by summer drought. The sweet spot between these elevations has a nearly year-long growing season despite a snowpack that persists for as long as six months. Our results show that small differences in temperature can markedly alter the water balance and productivity of mixed conifer forests.
Effects of climatic gradients on genetic differentiation of Caragana on the Ordos Plateau, China
Jiuyan Yang; Samuel A. Cushman; Jie Yang; Mingbo Yang; Tiejun Bao
2013-01-01
The genus Caragana (Fabr.) in the Ordos Plateau of Inner Mongolia, China, provides a strong opportunity to investigate patterns of genetic differentiation along steep climatic gradients, and to identify the environmental factors most likely to be responsible for driving the radiation. This study used a factorial, multi-model approach to evaluate alternative hypotheses...
Soil respiration and net N mineralization along a climate gradient in Maine
Jeffery A. Simmons; Ivan J. Fernandez; Russell D. Briggs
1996-01-01
Our objective was to determine the influence of temperature and moisture on soil respiration and net N mineralization in northeastern forests. The study consisted of sixteen deciduous stands located along a regional climate gradient within Maine. A significant portion of the variance in net N mineralization (41 percent) and respiration (33 percent) was predicted by...
NASA Astrophysics Data System (ADS)
Cardoso, Rita M.; Soares, Pedro M. M.; Lima, Daniela C. A.; Miranda, Pedro M. A.
2018-02-01
Large temperature spatio-temporal gradients are a common feature of Mediterranean climates. The Portuguese complex topography and coastlines enhances such features, and in a small region large temperature gradients with high interannual variability is detected. In this study, the EURO-CORDEX high-resolution regional climate simulations (0.11° and 0.44° resolutions) are used to investigate the maximum and minimum temperature projections across the twenty-first century according to RCP4.5 and RCP8.5. An additional WRF simulation with even higher resolution (9 km) for RCP8.5 scenario is also examined. All simulations for the historical period (1971-2000) are evaluated against the available station observations and the EURO-CORDEX model results are ranked in order to build multi-model ensembles. In present climate models are able to reproduce the main topography/coast related temperature gradients. Although there are discernible differences between models, most present a cold bias. The multi-model ensembles improve the overall representation of the temperature. The ensembles project a significant increase of the maximum and minimum temperatures in all seasons and scenarios. Maximum increments of 8 °C in summer and autumn and between 2 and 4 °C in winter and spring are projected in RCP8.5. The temperature distributions for all models show a significant increase in the upper tails of the PDFs. In RCP8.5 more than half of the extended summer (MJJAS) has maximum temperatures exceeding the historical 90th percentile and, on average, 60 tropical nights are projected for the end of the century, whilst there are only 7 tropical nights in the historical period. Conversely, the number of cold days almost disappears. The yearly average number of heat waves increases by seven to ninefold by 2100 and the most frequent length rises from 5 to 22 days throughout the twenty-first century. 5% of the longest events will last for more than one month. The amplitude is overwhelming larger, reaching values which are not observed in the historical period. More than half of the heat waves will be stronger than the extreme heat wave of 2003 by the end of the century. The future heatwaves will also enclose larger areas, approximately 100 events in the 2071-2100 period (more than 3 per year) will cover the whole country. The RCP4.5 scenario has in general smaller magnitudes.
Relative importance of local- and large-scale drivers of alpine soil microarthropod communities.
Mitchell, Ruth J; Urpeth, Hannah M; Britton, Andrea J; Black, Helaina; Taylor, Astrid R
2016-11-01
Nitrogen (N) deposition and climate are acknowledged drivers of change in biodiversity and ecosystem function at large scales. However, at a local scale, their impact on functions and community structure of organisms is filtered by drivers like habitat quality and food quality/availability. This study assesses the relative impact of large-scale factors, N deposition and climate (rainfall and temperature), versus local-scale factors of habitat quality and food quality/availability on soil fauna communities at 15 alpine moss-sedge heaths along an N deposition gradient in the UK. Habitat quality and food quality/availability were the primary drivers of microarthropod communities. No direct impacts of N deposition on the microarthropod community were observed, but induced changes in habitat quality (decline in moss cover and depth) and food quality (decreased vegetation C:N) associated with increased N deposition strongly suggest an indirect impact of N. Habitat quality and climate explained variation in the composition of the Oribatida, Mesostigmata, and Collembola communities, while only habitat quality significantly impacted the Prostigmata. Food quality and prey availability were important in explaining the composition of the oribatid and mesostigmatid mite communities, respectively. This study shows that, in alpine habitats, soil microarthropod community structure responds most strongly to local-scale variation in habitat quality and food availability rather than large-scale variation in climate and pollution. However, given the strong links between N deposition and the key habitat quality parameters, we conclude that N deposition indirectly drives changes in the soil microarthropod community, suggesting a mechanism by which large-scale drivers indirectly impacts these functionally important groups.
Anthropogenic aerosols and the distribution of past large-scale precipitation change
Wang, Chien
2015-12-28
In this paper, the climate response of precipitation to the effects of anthropogenic aerosols is a critical while not yet fully understood aspect in climate science. Results of selected models that participated the Coupled Model Intercomparison Project Phase 5 and the data from the Twentieth Century Reanalysis Project suggest that, throughout the tropics and also in the extratropical Northern Hemisphere, aerosols have largely dominated the distribution of precipitation changes in reference to the preindustrial era in the second half of the last century. Aerosol-induced cooling has offset some of the warming caused by the greenhouse gases from the tropics tomore » the Arctic and thus formed the gradients of surface temperature anomaly that enable the revealed precipitation change patterns to occur. Improved representation of aerosol-cloud interaction has been demonstrated as the key factor for models to reproduce consistent distributions of past precipitation change with the reanalysis data.« less
The global warming in the North Atlantic Sector and the role of the ocean
NASA Astrophysics Data System (ADS)
Hand, R.; Keenlyside, N. S.; Greatbatch, R. J.; Omrani, N. E.
2014-12-01
This work presents an analysis of North Atlantic ocean-atmosphere interaction in a warming climate, based on a long-term earth system model experiment forced by the RCP 8.5 scenario, the strongest greenhouse gas forcing used in the climate projections for the 5th Assessement report of the Intergovernmental Panel on Climate Change). In addition to a global increase in SSTs as a direct response to the radiative forcing, the model shows a distinct change of the local sea surface temperature (SST hereafter) patterns in the Gulf Stream region: The SST front moves northward by several hundred kilometers, likely as a response of the wind-driven part of the oceanic surface circulation, and becomes more zonal. As a consequence of a massive slowdown of the Atlantic Meridional Overturning Circulation, the northeast North Atlantic only shows a moderate warming compared to the rest of the ocean. The feedback of these changes on the atmosphere was studied in a set of sensitivity experiments based on the SST climatology of the coupled runs. The set consists of a control run based on the historical run, a run using the full SST from the coupled RCP 8.5 run and two runs, where the SST signal was deconstructed into a homogenous mean warming part and a local pattern change. In the region of the precipitation maximum in the historical run the future scenario shows an increase of absolute SSTs, but a significant decrease in local precipitation, low-level convergence and upward motion. Since warmer SSTs usually cause the opposite, this indicates that the local response in that region is connected to the (with respect to the historical run) weakened SST gradients rather than to the absolute SST. Consistently, the model shows enhanced precipitation north of this region, where the SST gradients are enhanced. However, the signal restricts to the low and mid-troposphere and does not reach the higher model levels. There is little evidence for a large-scale response to the changes in the Gulf Stream region; instead, the large scale signal is mainly controlled by the warmer background state and the AMOC slowdown and influenced by tropical SSTs. In a warmer climate the same change in SST gradient has a stronger effect on precipitation and the model produces a slightly enhanced North Atlantic storm track.
Cayuela, Luis; González-Caro, Sebastián; Aldana, Ana M.; Stevenson, Pablo R.; Phillips, Oliver; Cogollo, Álvaro; Peñuela, Maria C.; von Hildebrand, Patricio; Jiménez, Eliana; Melo, Omar; Londoño-Vega, Ana Catalina; Mendoza, Irina; Velásquez, Oswaldo; Fernández, Fernando; Serna, Marcela; Velázquez-Rua, Cesar; Benítez, Doris; Rey-Benayas, José M.
2017-01-01
Understanding and predicting the likely response of ecosystems to climate change are crucial challenges for ecology and for conservation biology. Nowhere is this challenge greater than in the tropics as these forests store more than half the total atmospheric carbon stock in their biomass. Biomass is determined by the balance between biomass inputs (i.e., growth) and outputs (mortality). We can expect therefore that conditions that favor high growth rates, such as abundant water supply, warmth, and nutrient-rich soils will tend to correlate with high biomass stocks. Our main objective is to describe the patterns of above ground biomass (AGB) stocks across major tropical forests across climatic gradients in Northwestern South America. We gathered data from 200 plots across the region, at elevations ranging between 0 to 3400 m. We estimated AGB based on allometric equations and values for stem density, basal area, and wood density weighted by basal area at the plot-level. We used two groups of climatic variables, namely mean annual temperature and actual evapotranspiration as surrogates of environmental energy, and annual precipitation, precipitation seasonality, and water availability as surrogates of water availability. We found that AGB is more closely related to water availability variables than to energy variables. In northwest South America, water availability influences carbon stocks principally by determining stand structure, i.e. basal area. When water deficits increase in tropical forests we can expect negative impact on biomass and hence carbon storage. PMID:28301482
Deciphering flood frequency curves from a coupled human-nature system perspective
NASA Astrophysics Data System (ADS)
Li, H. Y.; Abeshu, G. W.; Wang, W.; Ye, S.; Guo, J.; Bloeschl, G.; Leung, L. R.
2017-12-01
Most previous studies and applications in deriving or applying FFC are underpinned by the stationarity assumption. To examine the theoretical robustness of this basic assumption, we analyzed the observed FFCs at hundreds of catchments in the contiguous United States along the gradients of climate conditions and human influences. The shape of FFCs is described using three similarity indices: mean annual floods (MAF), coefficient of variance (CV), and a seasonality index defined using circular statistics. The characteristics of catchments are quantified with a small number of dimensionless indices, including particularly: 1) the climatic aridity index, AI, which is a measure of the competition between energy and water availability; 2) reservoir impact index, defined as the total upstream reservoir storage capacity normalized by the annual streamflow volume. The linkages between these two sets of indices are then explored based on a combination of mathematical derivations of the Budyko formula, simple but physically based reservoir operation models, and other auxiliary data. It is found that the shape of FFCs shifts from arid to humid climate, and from periods with weak human influences to periods with strong influences. The seasonality of floods is found to be largely controlled by the synchronization between the seasonal cycles of precipitation and solar radiation in pristine catchments, but also by the reservoir regulation capacity in managed catchments. Our findings may help improve flood-risk assessment and mitigation in both natural and regulated river systems across various climate gradients.
Álvarez-Dávila, Esteban; Cayuela, Luis; González-Caro, Sebastián; Aldana, Ana M; Stevenson, Pablo R; Phillips, Oliver; Cogollo, Álvaro; Peñuela, Maria C; von Hildebrand, Patricio; Jiménez, Eliana; Melo, Omar; Londoño-Vega, Ana Catalina; Mendoza, Irina; Velásquez, Oswaldo; Fernández, Fernando; Serna, Marcela; Velázquez-Rua, Cesar; Benítez, Doris; Rey-Benayas, José M
2017-01-01
Understanding and predicting the likely response of ecosystems to climate change are crucial challenges for ecology and for conservation biology. Nowhere is this challenge greater than in the tropics as these forests store more than half the total atmospheric carbon stock in their biomass. Biomass is determined by the balance between biomass inputs (i.e., growth) and outputs (mortality). We can expect therefore that conditions that favor high growth rates, such as abundant water supply, warmth, and nutrient-rich soils will tend to correlate with high biomass stocks. Our main objective is to describe the patterns of above ground biomass (AGB) stocks across major tropical forests across climatic gradients in Northwestern South America. We gathered data from 200 plots across the region, at elevations ranging between 0 to 3400 m. We estimated AGB based on allometric equations and values for stem density, basal area, and wood density weighted by basal area at the plot-level. We used two groups of climatic variables, namely mean annual temperature and actual evapotranspiration as surrogates of environmental energy, and annual precipitation, precipitation seasonality, and water availability as surrogates of water availability. We found that AGB is more closely related to water availability variables than to energy variables. In northwest South America, water availability influences carbon stocks principally by determining stand structure, i.e. basal area. When water deficits increase in tropical forests we can expect negative impact on biomass and hence carbon storage.
Biodiversity and Topographic Complexity: Modern and Geohistorical Perspectives.
Badgley, Catherine; Smiley, Tara M; Terry, Rebecca; Davis, Edward B; DeSantis, Larisa R G; Fox, David L; Hopkins, Samantha S B; Jezkova, Tereza; Matocq, Marjorie D; Matzke, Nick; McGuire, Jenny L; Mulch, Andreas; Riddle, Brett R; Roth, V Louise; Samuels, Joshua X; Strömberg, Caroline A E; Yanites, Brian J
2017-03-01
Topographically complex regions on land and in the oceans feature hotspots of biodiversity that reflect geological influences on ecological and evolutionary processes. Over geologic time, topographic diversity gradients wax and wane over millions of years, tracking tectonic or climatic history. Topographic diversity gradients from the present day and the past can result from the generation of species by vicariance or from the accumulation of species from dispersal into a region with strong environmental gradients. Biological and geological approaches must be integrated to test alternative models of diversification along topographic gradients. Reciprocal illumination among phylogenetic, phylogeographic, ecological, paleontological, tectonic, and climatic perspectives is an emerging frontier of biogeographic research. Copyright © 2017 Elsevier Ltd. All rights reserved.
Slow Response or No Response? Distinguishing Non-Climatic Range Limits from Demographic Inertia
NASA Astrophysics Data System (ADS)
Hillerislambers, J.; Anderegg, L. D. L.; Breckheimer, I.; Ford, K.; Kroiss, S.
2016-12-01
One of the greatest challenges ecologists face is forecasting how species distributions will respond to climate change. In general, species distributions have moved polewards and upslope with recent climate change (i.e. range shifts), supporting the assumption that range limits are climatically determined. However, studies also document a surprising number of species whose distributions have remained unchanged in the last 50-100 years, despite significant warming during that time period. This apparent lack of response to warming can arise for species whose range limits are determined by factors other than climate (e.g. species interactions) OR for long-lived, slow-growing, and/or dispersal-limited species whose range shifts are unable to keep pace with rapid climate change. Unfortunately, while these two possibilities are often difficult to distinguish, they have very different implications for the long-term viability of the species in question. Here, we use extensive demographic data for long-lived and slow-growing conifers collected across a large climatic gradient at Mount Rainier (WA, USA) to explore A) evidence for climatically determined range limits and B) the rate at which altitudinal distributions could shift in response to climate change in the region. In doing so, we highlight some of the complications we face in identifying whether species will be sensitive or resilient to climate change.
Runoff and recharge processes under a strong semi-arid climatic gradient
NASA Astrophysics Data System (ADS)
Ries, F.; Lange, J.; Sauter, M.; Schmidt, S.
2012-04-01
Hydrological processes in semi-arid environments are highly dynamic. In the eastern slopes of the West Bank these dynamics are even intensified due to the predominant karst morphology, the strong climatic gradient (150-700 mm mean annual precipitation) and the small-scale variability of land use, topography and soil cover. The region is characterized by a scarcity in water resources and a high population growth. Therefore detailed information about the temporal and spatial distribution, amount and variability of available water resources is required. Providing this information by the use of hydrological models is challenging, because available data are extremely limited. From 2007 on, the research area of Wadi Auja, northeast of Jerusalem, has been instrumented with a dense monitoring network. Rainfall distribution and climatic parameters as well as the hydrological reaction of the system along the strong semi-arid climatic gradient are measured on the plot (soil moisture), hillslope (runoff generation) and catchment scale (spring discharge, groundwater level, flood runoff). First data from soil moisture plots situated along the climatic gradient are presented. They allow insights into physical properties of the soil layer and its impact on runoff and recharge processes under different climatic conditions. From continuous soil moisture profiles, soil water balances are calculated for singe events and entire seasons. These data will be used to parameterize the distributed hydrological model TRAIN-ZIN, which has been successfully applied in several studies in the Jordan River Basin.
Elmendorf, Sarah C; Henry, Gregory H R; Hollister, Robert D; Fosaa, Anna Maria; Gould, William A; Hermanutz, Luise; Hofgaard, Annika; Jónsdóttir, Ingibjörg S; Jónsdóttir, Ingibjörg I; Jorgenson, Janet C; Lévesque, Esther; Magnusson, Borgþór; Molau, Ulf; Myers-Smith, Isla H; Oberbauer, Steven F; Rixen, Christian; Tweedie, Craig E; Walker, Marilyn D; Walker, Marilyn
2015-01-13
Inference about future climate change impacts typically relies on one of three approaches: manipulative experiments, historical comparisons (broadly defined to include monitoring the response to ambient climate fluctuations using repeat sampling of plots, dendroecology, and paleoecology techniques), and space-for-time substitutions derived from sampling along environmental gradients. Potential limitations of all three approaches are recognized. Here we address the congruence among these three main approaches by comparing the degree to which tundra plant community composition changes (i) in response to in situ experimental warming, (ii) with interannual variability in summer temperature within sites, and (iii) over spatial gradients in summer temperature. We analyzed changes in plant community composition from repeat sampling (85 plant communities in 28 regions) and experimental warming studies (28 experiments in 14 regions) throughout arctic and alpine North America and Europe. Increases in the relative abundance of species with a warmer thermal niche were observed in response to warmer summer temperatures using all three methods; however, effect sizes were greater over broad-scale spatial gradients relative to either temporal variability in summer temperature within a site or summer temperature increases induced by experimental warming. The effect sizes for change over time within a site and with experimental warming were nearly identical. These results support the view that inferences based on space-for-time substitution overestimate the magnitude of responses to contemporary climate warming, because spatial gradients reflect long-term processes. In contrast, in situ experimental warming and monitoring approaches yield consistent estimates of the magnitude of response of plant communities to climate warming.
Alahuhta, Janne; Virtala, Antti; Hjort, Jan; Ecke, Frauke; Johnson, Lucinda B; Sass, Laura; Heino, Jani
2017-05-01
Different species' niche breadths in relation to ecological gradients are infrequently examined within the same study and, moreover, species niche breadths have rarely been averaged to account for variation in entire ecological communities. We investigated how average environmental niche breadths (climate, water quality and climate-water quality niches) in aquatic macrophyte communities are related to ecological gradients (latitude, longitude, altitude, species richness and lake area) among four distinct regions (Finland, Sweden and US states of Minnesota and Wisconsin) on two continents. We found that correlations between the three different measures of average niche breadths and ecological gradients varied considerably among the study regions, with average climate and average water quality niche breadth models often showing opposite trends. However, consistent patterns were also found, such as widening of average climate niche breadths and narrowing of average water quality niche breadths of aquatic macrophytes along increasing latitudinal and altitudinal gradients. This result suggests that macrophyte species are generalists in relation to temperature variations at higher latitudes and altitudes, whereas species in southern, lowland lakes are more specialised. In contrast, aquatic macrophytes growing in more southern nutrient-rich lakes were generalists in relation to water quality, while specialist species are adapted to low-productivity conditions and are found in highland lakes. Our results emphasise that species niche breadths should not be studied using only coarse-scale data of species distributions and corresponding environmental conditions, but that investigations on different kinds of niche breadths (e.g., climate vs. local niches) also require finer resolution data at broad spatial extents.
Ken Ferrier,; J. Taylor Perron,; Sujoy Mukhopadhyay,; Matt Rosener,; Stock, Jonathan; Slosberg, Michelle; Kimberly L. Huppert,
2013-01-01
Erosion of volcanic ocean islands creates dramatic landscapes, modulates Earth’s carbon cycle, and delivers sediment to coasts and reefs. Because many volcanic islands have large climate gradients and minimal variations in lithology and tectonic history, they are excellent natural laboratories for studying climatic effects on the evolution of topography. Despite concerns that modern sediment fluxes to island coasts may exceed long-term fluxes, little is known about how erosion rates and processes vary across island interiors, how erosion rates are influenced by the strong climate gradients on many islands, and how modern island erosion rates compare to long-term rates. Here, we present new measurements of erosion rates over 5 yr to 5 m.y. timescales on the Hawaiian island of Kaua‘i, across which mean annual precipitation ranges from 0.5 to 9.5 m/yr. Eroded rock volumes from basins across Kaua‘i indicate that million-year-scale erosion rates are correlated with modern mean annual precipitation and range from 8 to 335 t km–2 yr–1. In Kaua‘i’s Hanalei River basin, 3He concentrations in detrital olivines imply millennial-scale erosion rates of >126 to >390 t km–2 yr–1 from olivine-bearing hillslopes, while fluvial suspended sediment fluxes measured from 2004 to 2009 plus estimates of chemical and bed-load fluxes imply basin-averaged erosion rates of 545 ± 128 t km–2 yr–1. Mapping of landslide scars in satellite imagery of the Hanalei basin from 2004 and 2010 implies landslide-driven erosion rates of 30–47 t km–2 yr–1. These measurements imply that modern erosion rates in the Hanalei basin are no more than 2.3 ± 0.6 times faster than millennial-scale erosion rates, and, to the extent that modern precipitation patterns resemble long-term patterns, they are consistent with a link between precipitation rates and long-term erosion rates.
Wilson, Hannah; Johnson, Bart R; Bohannan, Brendan; Pfeifer-Meister, Laurel; Mueller, Rebecca; Bridgham, Scott D
2016-01-01
Arbuscular mycorrhizal fungi (AMF) provide numerous services to their plant symbionts. Understanding climate change effects on AMF, and the resulting plant responses, is crucial for predicting ecosystem responses at regional and global scales. We investigated how the effects of climate change on AMF-plant symbioses are mediated by soil water availability, soil nutrient availability, and vegetation dynamics. We used a combination of a greenhouse experiment and a manipulative climate change experiment embedded within a Mediterranean climate gradient in the Pacific Northwest, USA to examine this question. Structural equation modeling (SEM) was used to determine the direct and indirect effects of experimental warming on AMF colonization. Warming directly decreased AMF colonization across plant species and across the climate gradient of the study region. Other positive and negative indirect effects of warming, mediated by soil water availability, soil nutrient availability, and vegetation dynamics, canceled each other out. A warming-induced decrease in AMF colonization would likely have substantial consequences for plant communities and ecosystem function. Moreover, predicted increases in more intense droughts and heavier rains for this region could shift the balance among indirect causal pathways, and either exacerbate or mitigate the negative, direct effect of increased temperature on AMF colonization.
CLANIMAE: Climatic and Anthropogenic Impacts on African Ecosystems
NASA Astrophysics Data System (ADS)
Verschuren, D.; André, L.; Mahy, G.; Cocquyt, C.; Plisnier, P.-D.; Gelorini, V.; Rumes, B.; Lebrun, J.; Bock, L.; Marchant, R.
2009-04-01
Global studies of historical land use focusing on the large-scale landscape change that can potentially affect global climate (via effects on surface albedo, aerosols, and the carbon cycle) have concluded that the impact of pre-colonial East African cultures on regional ecosystems was limited, due to very low mean population density. This contrasts with the paradigm in East African archaeology and paleoecology that the onset of anthropogenic deforestation started at least 2500 years ago, following the introduction of iron metallurgy by Bantu immigrants. This conflict highlights the present lack of real data on historical climate-environment-human interactions in East Africa, which are eminently relevant to sustainable natural resource management and biodiversity conservation in a future of continued population growth and global climate change. CLANIMAE responds to the urgent need of a correct long-term perspective to today's climate-environment-human interactions in East Africa, by reconstructing simultaneously the histories of past climate change and of vegetation and water-quality changes over the last 2500 years, through multi-disciplinary analysis of dated lake-sediment records. The climate reconstructions integrate information on biological, geochemical and sedimentological indicators of past changes in the water balance of the study lakes, which cover the climatological gradient from (sub-)humid western Uganda to semi-arid eastern Kenya. Reconstruction of past terrestrial vegetation dynamics is based on analyses of fossil plant pollen and phytoliths, plus the fossil spores of fungi associated with the excrements of large domestic animals as indicators of lake use by pastoralists. The evolution of water quality through time is reconstructed using silicon isotopes in diatom algae as proxy indicator for past phytoplankton productivity, and paleoecological analyses of fossil diatoms and aquatic macrophytes, following calibration of diatom and macrophyte species distribution against lake trophic status and turbidity in the modern-day regional lake gradient. The integrated paleoecological research method of this project addresses the question of past climate-environment-human relationships at the time scale at which the relevant processes have actually occurred. This will allow us to 1) separate the influences of natural climate variability and human activity on East African ecosystems, 2) determine the exact timing and relative magnitude of indigenous (pre-20th century) anthropogenic land clearance compared to recent landscape alteration, 3) determine the severity of lake water-quality losses due to siltation and excess nutrient input directly linked to deforestation and agriculture, compared to those associated with natural ecosystem variability, and 4) assess the resilience of African ecosystems, and prospects for the restoration of disturbed ecosystems if human pressure were to be reversed.
2017-01-01
Understanding how populations adapt to heterogeneous thermal regimes is essential for comprehending how latitudinal gradients in species diversification are formed, and how taxa will respond to ongoing climate change. Adaptation can occur by innate genetic factors, by phenotypic plasticity, or by a combination of both mechanisms. Yet, the relative contribution of such mechanisms to large-scale latitudinal gradients of thermal tolerance across conspecific populations remains unclear. We examine thermal performance in 11 populations of the intertidal copepod Tigriopus californicus, ranging from Baja California Sur (Mexico) to British Columbia (Canada). Common garden experiments show that survivorship to acute heat-stress differs between populations (by up to 3.8°C in LD50 values), reflecting a strong genetic thermal adaptation. Using a split-brood experiment with two rearing temperatures, we also show that developmental phenotypic plasticity is beneficial to thermal tolerance (by up to 1.3°C), and that this effect differs across populations. Although genetic divergence in heat tolerance strongly correlates with latitude and temperature, differences in the plastic response do not. In the context of climate warming, our results confirm the general prediction that low-latitude populations are most susceptible to local extinction because genetic adaptation has placed physiological limits closer to current environmental maxima, but our results also contradict the prediction that phenotypic plasticity is constrained at lower latitudes. PMID:28446698
Meynard, Christine N; Gay, Pierre-Emmanuel; Lecoq, Michel; Foucart, Antoine; Piou, Cyril; Chapuis, Marie-Pierre
2017-11-01
The desert locust is an agricultural pest that is able to switch from a harmless solitarious stage, during recession periods, to swarms of gregarious individuals that disperse long distances and affect areas from western Africa to India during outbreak periods. Large outbreaks have been recorded through centuries, and the Food and Agriculture Organization keeps a long-term, large-scale monitoring survey database in the area. However, there is also a much less known subspecies that occupies a limited area in Southern Africa. We used large-scale climatic and occurrence data of the solitarious phase of each subspecies during recession periods to understand whether both subspecies climatic niches differ from each other, what is the current potential geographical distribution of each subspecies, and how climate change is likely to shift their potential distribution with respect to current conditions. We evaluated whether subspecies are significantly specialized along available climate gradients by using null models of background climatic differences within and between southern and northern ranges and applying niche similarity and niche equivalency tests. The results point to climatic niche conservatism between the two clades. We complemented this analysis with species distribution modeling to characterize current solitarious distributions and forecast potential recession range shifts under two extreme climate change scenarios at the 2050 and 2090 time horizon. Projections suggest that, at a global scale, the northern clade could contract its solitarious recession range, while the southern clade is likely to expand its recession range. However, local expansions were also predicted in the northern clade, in particular in southern and northern margins of the current geographical distribution. In conclusion, monitoring and management practices should remain in place in northern Africa, while in Southern Africa the potential for the subspecies to pose a threat in the future should be investigated more closely. © 2017 John Wiley & Sons Ltd.
Lv, Xue; Xia, Lin; Ge, Deyan; Wu, Yongjie; Yang, Qisen
2016-05-01
Climatic niche conservatism shapes patterns of diversity in many taxonomic groups, while ecological opportunity (EO) can trigger rapid speciation that is less constrained by the amount of time a lineage has occupied a given habitat. These two processes are well studied, but limited research has considered their joint and relative roles in shaping diversity patterns. We characterized climatic and biogeographic variables for 102 species of arvicoline rodents (Arvicolinae, Cricetidae), testing the effects of climatic niche conservatism and EO on arvicoline diversification as lineages transitioned between biogeographic regions. We found that the amount of time a lineage has occupied a precipitation niche is positively correlated with diversity along a precipitation gradient, suggesting climatic niche conservatism. In contrast, shift in diversification rate explained diversity patterns along a temperature gradient. Our results suggest that an indirect relationship exists between temperature and diversification that is associated with EO as arvicoline rodents colonized warm Palearctic environments. Climatic niche conservatism alone did not fully explain diversity patterns under density-dependence, highlighting the additional importance of EO-related processes in promoting the explosive radiation in arvicoline rodents and shaping diversity pattern among biogeographic regions and along climatic gradients. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
NASA Astrophysics Data System (ADS)
Kelly, A. E.; Goulden, M.; Fellows, A. W.
2013-12-01
California's Mediterranean climate supports a broad diversity of ecosystem types, including Sequoia forests in the mid-montane Sierra Nevada. Understanding how winter cold and summer drought interact to produce the lush forest in the Sierra is critical to predicting the impacts of projected climate change on California's ecosystems, water supply, and carbon cycling. We investigated how smooth gradients of temperature and water availability produced sharp thresholds in biomass, productivity, growing season, water use, and ultimately ecosystem type and function. We used the climate gradient of the western slope of the Sierra Nevada as a study system. Four eddy covariance towers were situated in the major ecosystem types of the Sierra Nevada at approximately 800-m elevation intervals. Eddy flux data were combined with remote sensing and direct measurements of biomass, productivity, soil available water, and evapotranspiration to understand how weather and available water control ecosystem production and function. We found that production at the high elevation lodgepole site at 2700 m was strongly limited by winter cold. Production at the low elevation oak woodland site at 400 m was strongly limited by summer drought. The yellow pine site at 1200 m was only 4 °C cooler than the oak woodland site, yet had an order of magnitude more biomass and productivity with year-round growth. The mixed conifer site at 2000 m is 3.5 °C warmer than the lodgepole forest, yet also has higher biomass, ten times higher productivity, and year-round growth. We conclude that there is a broad climatological 'sweet spot' within the Sierra Nevada, in which the Mediterranean climate can support large-statured forest with high growth rates. The range of the mid-elevation forest was sharply bounded by water limitation at the lower edge and cold limitation at the upper edge despite small differences in precipitation and temperature across these boundaries. Our results suggest that small changes in precipitation or winter warming could markedly alter ecosystem structure and function as well as carbon and water cycling in the Sierra Nevada.
NASA Technical Reports Server (NTRS)
Rind, D.; Perlwitz, J.; Lonergan, P.; Lerner, J.
2005-01-01
Using a variety of GCM experiments with various versions of the GISS model, we investigate how different aspects of tropospheric climate changes affect the extratropical Arctic Oscillation (AO)/North Atlantic Oscillation (NAO) circulation indices. The results show that low altitude changes in the extratropical latitudinal temperature gradient can have a strong impact on eddy forcing of the extratropical zonal wind, in the sense that when this latitudinal temperature gradient increases, it helps force a more negative AO/NAO phase. In addition, local conditions at high latitudes can stabilize/destabilize the atmosphere, inducing negative/positive phase changes. To the extent that there is not a large temperature change in the tropical upper troposphere (either through reduced tropical sensitivity at the surface, or limited transport of this change to high levels), the changes in the low level temperature gradient can provide the dominate influence on the extratropical circulation, so that planetary wave meridional refraction and eddy angular momentum transport changes become uncorrelated with potential vorticity transports. In particular, the climate change that produces the most positive NAO phase change would have substantial warming in the tropical upper troposphere over the Pacific Ocean, with high latitude warming in the North Atlantic. An increase in positive phase of these circulation indices is still more likely than not, but it will depend on the degree of tropical and high latitude temperature response and the transport of low level warming into the upper troposphere. These are aspects that currently differ among the models used for predicting the effects of global warning, contributing to the lack of consensus of future changes in the AO/NAO.
Drivers of lignin composition in boreal forest organic soils across a climate gradient
NASA Astrophysics Data System (ADS)
Myers-Pigg, A.; Kaiser, K.; Benner, R. H.; Ziegler, S. E.
2017-12-01
Lignin diagenesis in soils, including the cumulative effects of degradation and leaching, increases with experimental warming, signifying a potentially important change relevant to soil organic matter accumulation and fate. However, decadal to centennial climatic effects including changes in precipitation, litterfall inputs, and understory sources, on lignin composition are poorly constrained. We examined the lignin content and composition, via cupric oxide oxidation (CuO), within the organic layers of podzolic soils under similar balsam fir forests across a latitudinal climate gradient in Atlantic Canada. By exploring variation in lignin by both soil depth and climate region, this study informs on the climate drivers of lignin stability within boreal forest soil. A two-way analysis of variance (ANOVA) revealed significant variations in common signatures of CuO by-products with depth and/or site, indicating source and/or diagenetic controllers. Importantly, none of these signatures, with the exception of p-hydroxyphenols, exhibited a site by depth interaction indicating a similar degree of diagenetic alternation with depth across climates. The site by depth interaction for p-hydroxyphenols is a result of greater moss input in the northernmost site. To better elucidate this climate-induced source variation on our interpretation of lignin diagenesis, a principle component (PCA) model was built using signatures varying by site (p<0.01). These signatures loaded uniquely with the percentage of wood, needles, and mosses within the L layer in each region. Site differences in this loading indicate that shifts in understory input is a major climate effect controlling lignin composition in these forest soils. A lignin diagenesis PCA model was built using (1) all non-moss related signatures identified in the first PCA model, and (2) scores for additional sites within each region, calculated from modeled lignin composition based on 13C-NMR spectra. The combined results indicate that the lignin diagenetic states among soils is similar, despite the large increase in soil C turnover with climate warming across this transect. Thus our results indicate that shifts in moss contribution, and not increased diagenesis, controls CuO by-products with climate change in these moist boreal forests.
NASA Astrophysics Data System (ADS)
Pratap, B.
2015-12-01
The glacier mass balance is undelayed, unfiltered and direct method to assess the impact of climate change on the glaciers. Many studies suggest that some of the Himalayan glaciers have lost their mass at an increased rate during the past few decades. Furthermore, the mass balance gradient and hypsometric analysis are important to understand the glacier response towards climatic perturbations. Our long term in-situ monitoring on the Dokriani Glacier provides great insights to understand the variability in central Himalayan glaciers. We report the relationship between glacier hypsometry and annual mass balance gradient (12 years) to understand the glacier's response towards climate change. Dokriani Glacier in the Bhagirathi basin is a small (7 km2) NNW exposed glacier in the western part of central Himalaya, India. The study analysed the annual balance, mass balance gradient and length changes observed during first decade of 21st century (2007-2013) and compare with the previous observations of 1990s (1992-2000). A large spatial variability in the mass balance gradients of two different periods has been observed. The equilibrium-line altitude (ELA) was fluctuated between 5000 and 5100 m a.s.l. and the derived time averaged ELA (ELAn) and balance budget ELA (ELA0) were 5075 and 4965 m a.s.l respectively during 1992-2013. The observed time-averaged accumulation-area ratio (AARn) and balance budget AAR (AAR0) were 0.67 and 0.72 respectively during 1992-2013. The higher value of AAR comprises due to flat and broader accumulation area (4.50 km2) of the glacier. Although, having larger accumulation area, the glacier has faced strong mass wasting with average annual ablation of -1.82 m w.e. a-1 in the ablation zone as compare to residual average annual accumulation of 0.41 m w.e. a-1. Based on the annual mass balance series (12 years) Dokriani Glacier has continuous negative annual balances with monotonically negative cumulative mass loss of -3.86 m w.e with the average loss of -0.32 m w.e a-1. Dokriani Glacier also showed continues recession from 1992 to present. Snout was ascended 95 m a.s.l. from an elevation of 3870 m a.s.l. in 1992 to an elevation of 3965 m a.s.l. in 2013. The progressive retreat of the glacier affects its extension and volume and covered by continuous enhancement of debris in the lower ablation zone.
Ye, Duo; Liu, Guofang; Song, Yao-Bin; Cornwell, William K; Dong, Ming; Cornelissen, Johannes H C
2016-06-01
The clonal strategy should be relatively important in stressful environments (i.e. of low resource availability or harsh climate), e.g. in cold habitats. However, our understanding of the distribution pattern of clonality along environmental gradients is still far from universal. The weakness and inconsistency of overall clonality-climate relationships across taxa, as reported in previous studies, may be due to different phylogenetic lineages having fundamental differences in functional traits other than clonality determining their climate response. Thus, in this study we compared the clonality-climate relationships along a latitudinal gradient within and between different lineages at several taxonomic levels, including four major angiosperm lineages (Magnoliidae, Monocotyledoneae, Superrosidae and Superasteridae), orders and families. To this aim we used a species clonality dataset for 4015 vascular plant species in 545 terrestrial communities across China. Our results revealed clear predictive patterns of clonality proportion in relation to environmental gradients for the predominant representatives of each of the taxonomic levels above, but the relationships differed in shape and strength between the 4 major angiosperm lineages, between the 12 orders and between the 12 families. These different relationships canceled out one another when all lineages at a certain taxonomic level were pooled. Our findings highlight the importance of explicitly accounting for the functional or taxonomic scale for studying variation in plant ecological strategy across environmental gradients.
NASA Astrophysics Data System (ADS)
Kong, W.; Guo, G.; Liu, J.
2014-12-01
Soil microbial communities underpin terrestrial biogeochemical cycles and are greatly influenced by global warming and global-warming-induced dryness. However, the response of soil microbial community function to global change remains largely uncertain, particularly in the ecologically vulnerable Tibetan plateau permafrost area with large carbon storage. With the concept of space for time substitution, we investigated the responses of soil CO2-fixing microbial community and its enzyme activity to climate change along an elevation gradient (4400-5100 m) of alpine grassland on the central Tibetan plateau. The elevation gradient in a south-facing hill slope leads to variation in climate and soil physicochemical parameters. The autotrophic microbial communities were characterized by quantitative PCR (qPCR), terminal restriction fragment length polymorphism analysis (T-RFLP) and cloning/sequencing targeting the CO2-fixing gene (RubisCO). The results demonstrated that the autotrophic microbial community abundance, structure and its enzyme activity were mainly driven by soil temperature and water content. Soil temperature increase and water decrease dramatically reduced the abundance of the outnumbered form IC RubisCO-containing microbes, and significantly changed the structure of form IC, IAB and ID RubisCO-containing microbial community. Structural equation model revealed that the RubisCO enzyme was directly derived from RubisCO-containing microbes and its activity was significantly reduced by soil temperature increase and water content decrease. Thus our results provide a novel positive feedback loop of climate warming and warming-induced dryness by that soil microbial carbon fixing potential will reduce by 3.77%-8.86% with the soil temperature increase of 1.94oC and water content decrease of 60%-70%. This positive feedback could be capable of amplifying the climate change given the significant contribution of soil microbial CO2-fixing up to 4.9% of total soil organic carbon.
Hadley circulation strength and width in a wide range of simulated climates
NASA Astrophysics Data System (ADS)
D'Agostino, R.; Adam, O.; Lionello, P.; Schneider, T.
2016-12-01
Understanding how the Hadley circulation (HC) responds to global warming is crucial because it determines climatic features such as the seasonal migration of the ITCZ, the extent of subtropical arid regions and the strength of the monsoons. Here we analyse changes in the HC strength and width in the set of PMIP3 and CMIP5 simulations, spanning a wide range of climate conditions from Last Glacial Maximum to future RCP projections. The large climate change signal emerging from comparing paleoclimate simulations to future scenarios offers the possibility to analyse the corresponding HC change and to investigate its response to large variations of the factors controlling it. The results confirm that the HC generally expands and weakens as the global mean temperature increases, consistent with results from other studies. Furthermore, we find an asymmetric HC response between the northern and southern hemisphere in the rate at which the HC edges shift poleward with global warming. The mid-latitude static stability and meridional temperature gradients affect the HC edges to different degrees in the two hemispheres. In the southern hemisphere the increase in the mid-latitude static stability is associated with a poleward shift of the southern HC edge, while in the northern hemisphere, the reduction in the meridional temperature gradient plays the dominant role in the poleward shift of the northern HC edge. The two hemispheres also exhibit very different changes of HC strength. The HC weakening with global warming occurs primarily in the northern hemisphere, while there is no change, or even a slighter weakening in the southern hemisphere. The HC changes also have pronounced seasonal signatures. The maximum poleward shift of the northern HC edge occurs one month later (from August to September) in future global warming scenarios than when comparing pre-industrial simulations with the Last Glacial Maximum.
The effects of orbital and climatic variations on Martian surface heat flow
NASA Technical Reports Server (NTRS)
Mellon, Michael T.; Jakosky, Bruce M.
1993-01-01
Large changes in the orbital elements of Mars on timescales of 10(exp 4) to 10(exp 6) years will cause widely varying climate, specifically surface temperatures, as a result of varying insolation. These surface temperature oscillations will produce subsurface thermal gradients which contribute to the total surface heat flux. We investigate the thermal behavior of the Martian regolith on orbital timescales and show that this climatological surface heat flux is spatially variable and contributes significantly to the total surface heat flux at many locations. We model the thermal behavior of the Martian regolith by calculating the mean annual surface temperatures for each epoch (spaced 1000 years apart to resolve orbital variations) for the past 200,000 years at a chosen location on the surface. These temperatures are used as a boundary condition for the deeper regolith and subsurface temperature oscillation are then computed. The surface climatological heat flux due to past climate changes can then be found from the temperature gradient between the surface and about 150 m depth (a fraction of the thermal skin depth on these timescales). This method provides a fairly accurate determination of the climatological heat flow component at a point; however, this method is computationally time consuming and cannot be applied to all points on the globe. To map the spatial variations in the surface heat flow we recognize that the subsurface temperature structure will be largely dominated by the most recent surface temperature oscillations. In fact, the climate component of the surface heat flow will be approximately proportional to the magnitude of the most recent surface temperature change. By calculating surface temperatures at all points globally for the present epoch and an appropriate past epoch, and combining these results with a series of more precise calculations described above, we estimate the global distribution of climatological surface heat flow.
Sork, Victoria L; Squire, Kevin; Gugger, Paul F; Steele, Stephanie E; Levy, Eric D; Eckert, Andrew J
2016-01-01
The ability of California tree populations to survive anthropogenic climate change will be shaped by the geographic structure of adaptive genetic variation. Our goal is to test whether climate-associated candidate genes show evidence of spatially divergent selection in natural populations of valley oak, Quercus lobata, as preliminary indication of local adaptation. Using DNA from 45 individuals from 13 localities across the species' range, we sequenced portions of 40 candidate genes related to budburst/flowering, growth, osmotic stress, and temperature stress. Using 195 single nucleotide polymorphisms (SNPs), we estimated genetic differentiation across populations and correlated allele frequencies with climate gradients using single-locus and multivariate models. The top 5% of FST estimates ranged from 0.25 to 0.68, yielding loci potentially under spatially divergent selection. Environmental analyses of SNP frequencies with climate gradients revealed three significantly correlated SNPs within budburst/flowering genes and two SNPs within temperature stress genes with mean annual precipitation, after controlling for multiple testing. A redundancy model showed a significant association between SNPs and climate variables and revealed a similar set of SNPs with high loadings on the first axis. In the RDA, climate accounted for 67% of the explained variation, when holding climate constant, in contrast to a putatively neutral SSR data set where climate accounted for only 33%. Population differentiation and geographic gradients of allele frequencies in climate-associated functional genes in Q. lobata provide initial evidence of adaptive genetic variation and background for predicting population response to climate change. © 2016 Botanical Society of America.
NASA Astrophysics Data System (ADS)
Huang, Yan; Liu, Hongxing; Hinkel, Kenneth; Yu, Bailang; Beck, Richard; Wu, Jianping
2017-11-01
The Arctic coastal plain is covered with numerous thermokarst lakes. These lakes are closely linked to climate and environmental change through their heat and water budgets. We examined the intralake thermal structure at the local scale and investigated the water temperature pattern of lakes at the regional scale by utilizing extensive in situ measurements and multidate Landsat-8 remote sensing data. Our analysis indicates that the lake skin temperatures derived from satellite thermal sensors during most of the ice-free summer period effectively represent the lake bulk temperature because the lakes are typically well-mixed and without significant vertical stratification. With the relatively high-resolution Landsat-8 thermal data, we were able to quantitatively examine intralake lateral temperature differences and gradients in relation to geographical location, topography, meteorological factors, and lake morphometry for the first time. Our results suggest that wind speed and direction not only control the vertical stratification but also influences lateral differences and gradients of lake surface temperature. Wind can considerably reduce the intralake temperature gradient. Interestingly, we found that geographical location (latitude, longitude, distance to the ocean) and lake morphometry (surface size, depth, volume) not only control lake temperature regionally but also affect the lateral temperature gradient and homogeneity level within each individual lake. For the Arctic coastal plain, at regional scales, inland and southern lakes tend to have larger horizontal temperature differences and gradients compared to coastal and northern lakes. At local scales, large and shallow lakes tend to have large lateral temperature differences relative to small and deep lakes.
Yao, Yi-Feng; Song, Xiao-Yan; Wortley, Alexandra H; Wang, Yu-Fei; Blackmore, Stephen; Li, Cheng-Sen
2017-01-01
The Hengduan Mountains, with a distinct altitudinal differentiation and strong vertical vegetation zonation, occupy an important position in southwestern China as a global hotspot of biodiversity. Pollen analysis of lake sediments sampled along an altitudinal gradient in this region helps us to understand how this vegetation zonation arose and how it has responded to climate change and human impacts through time. Here we present a ~30-ka pollen record and interpret it in terms of vegetational and climatic change from a 310 cm-long core from Shudu Lake, located in the Hengduan Mountains region. Our results suggest that from 30 to 22 cal. ka BP, the vegetation was dominated by steppe/grassland (comprising mainly Artemisia, Poaceae and Polygonaceae) and broad-leaved forest (primarily Quercus, Betula and Castanopsis) in the lake catchment, reflecting a relatively warm, wet climate early in this phase and slightly warmer, drier conditions late in the phase. The period between 22 and 13.9 cal. ka BP was marked by a large expansion of needle- and broad-leaved mixed forest (Pinus, Abies and Quercus) and a decline in the extent of steppe/grassland, indicating warming, drying climatic conditions followed by a cold, wet period. Between 13.9 and 3 cal. ka BP, steppe/grassland expanded and the area covered by needle- and broad-leaved mixed forest reduced, implying a fluctuating climate dominated by warm and humid conditions. After 3 cal. ka BP, the vegetation was characterized by an increase in needle-leaved forest and reduction in steppe/grassland, suggesting warming and drying climate. A synthesis of palynological investigations from this and other sites suggests that the vegetation succession patterns seen along an altitudinal gradient in northwestern Yunnan since the Late Pleistocene are comparable, but that each site has its own characteristics probably due to the influences of altitude, topography, microclimate and human impact.
Legume abundance along successional and rainfall gradients in Neotropical forests.
Gei, Maga; Rozendaal, Danaë M A; Poorter, Lourens; Bongers, Frans; Sprent, Janet I; Garner, Mira D; Aide, T Mitchell; Andrade, José Luis; Balvanera, Patricia; Becknell, Justin M; Brancalion, Pedro H S; Cabral, George A L; César, Ricardo Gomes; Chazdon, Robin L; Cole, Rebecca J; Colletta, Gabriel Dalla; de Jong, Ben; Denslow, Julie S; Dent, Daisy H; DeWalt, Saara J; Dupuy, Juan Manuel; Durán, Sandra M; do Espírito Santo, Mário Marcos; Fernandes, G Wilson; Nunes, Yule Roberta Ferreira; Finegan, Bryan; Moser, Vanessa Granda; Hall, Jefferson S; Hernández-Stefanoni, José Luis; Junqueira, André B; Kennard, Deborah; Lebrija-Trejos, Edwin; Letcher, Susan G; Lohbeck, Madelon; Marín-Spiotta, Erika; Martínez-Ramos, Miguel; Meave, Jorge A; Menge, Duncan N L; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Ochoa-Gaona, Susana; Orihuela-Belmonte, Edith; Ostertag, Rebecca; Peña-Claros, Marielos; Pérez-García, Eduardo A; Piotto, Daniel; Reich, Peter B; Reyes-García, Casandra; Rodríguez-Velázquez, Jorge; Romero-Pérez, I Eunice; Sanaphre-Villanueva, Lucía; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B; de Almeida, Arlete Silva; Almeida-Cortez, Jarcilene S; Silver, Whendee; de Souza Moreno, Vanessa; Sullivan, Benjamin W; Swenson, Nathan G; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria das Dores Magalhães; Vester, Hans F M; Vieira, Ima Célia Guimarães; Zimmerman, Jess K; Powers, Jennifer S
2018-05-28
The nutrient demands of regrowing tropical forests are partly satisfied by nitrogen-fixing legume trees, but our understanding of the abundance of those species is biased towards wet tropical regions. Here we show how the abundance of Leguminosae is affected by both recovery from disturbance and large-scale rainfall gradients through a synthesis of forest inventory plots from a network of 42 Neotropical forest chronosequences. During the first three decades of natural forest regeneration, legume basal area is twice as high in dry compared with wet secondary forests. The tremendous ecological success of legumes in recently disturbed, water-limited forests is likely to be related to both their reduced leaflet size and ability to fix N 2 , which together enhance legume drought tolerance and water-use efficiency. Earth system models should incorporate these large-scale successional and climatic patterns of legume dominance to provide more accurate estimates of the maximum potential for natural nitrogen fixation across tropical forests.
NASA Technical Reports Server (NTRS)
Roberts, Christopher D.; LeGrande, Allegra N.; Tripati, Aradhna K.
2011-01-01
An isotope-enabled ocean-atmosphere general circulation model (GISS ModelE -R) is used to estimate the spatial gradients of the oxygen isotopic composition of seawater (delta O-18(sub sw), where delta is the deviation from a known reference material in per mil) during the early Paleogene (45.65 Ma). Understanding the response of delta O-18(sub sw) to changes in climatic and tectonic boundary conditions is important because records of carbonate delta O-18 document changes in hydrology, as well as changes in temperature and global ice -volume. We present results from an early Paleogene configuration of ModelE -R which indicate that spatial gradients of surface ocean delta O-18(sub sw) during this period could have been significantly different to those in the modern ocean. The differences inferred from ModelE -R are sufficient to change early Paleogene sea surface temperature estimates derived from primary carbonate delta O-18 signatures by more than +/-2 C in large areas of the ocean. In the North Atlantic, Indian, and Southern Oceans, the differences in d18Osw inferred from our simulation with ModelE -R are in direct contrast with those from another d18O ]tracing model study which used different, but equally plausible, early Paleogene boundary conditions. The large differences in delta O-18(sub sw) between preindustrial and early Paleogene simulations, and between models, emphasizes the sensitivity of d18Osw to climatic and tectonic boundary conditions. For this reason, absolute estimates of Eocene/ Paleocene temperature derived from carbonate delta O-18 alone are likely to have larger uncertainties than are usually assumed.
Global Climatic Controls On Leaf Size
NASA Astrophysics Data System (ADS)
Wright, I. J.; Prentice, I. C.; Dong, N.; Maire, V.
2015-12-01
Since the 1890s it's been known that the wet tropics harbour plants with exceptionally large leaves. Yet the observed latitudinal gradient of leaf size has never been fully explained: it is still unclear which aspects of climate are most important for understanding geographic trends in leaf size, a trait that varies many thousand-fold among species. The key is the leaf-to-air temperature difference, which depends on the balance of energy inputs (irradiance) and outputs (transpirational cooling, losses to the night sky). Smaller leaves track air temperatures more closely than larger leaves. Widely cited optimality-based theories predict an advantage for smaller leaves in dry environments, where transpiration is restricted, but are silent on the latitudinal gradient. We aimed to characterize and explain the worldwide pattern of leaf size. Across 7900 species from 651 sites, here we show that: large-leaved species predominate in wet, hot, sunny environments; smaller-leaved species typify hot, sunny environments only when arid; small leaves are required to avoid freezing in high latitudes and at high elevation, and to avoid overheating in dry environments. This simple pattern was unclear in earlier, more limited analyses. We present a simple but robust, fresh approach to energy-balance modelling for both day-time and night-time leaf-to-air temperature differences, and thus risk of overheating and of frost damage. Our analysis shows night-chilling is important as well as day-heating, and simplifies leaf temperature modelling. It provides both a framework for modelling leaf size constraints, and a solution to one of the oldest conundrums in ecology. Although the path forward is not yet fully clear, because of its role in controlling leaf temperatures we suggest that climate-related leaf size constraints could usefully feature in the next generation of land ecosystem models.
Matías, Luis; Linares, Juan C; Sánchez-Miranda, Ángela; Jump, Alistair S
2017-10-01
Ongoing changes in global climate are altering ecological conditions for many species. The consequences of such changes are typically most evident at the edge of a species' geographical distribution, where differences in growth or population dynamics may result in range expansions or contractions. Understanding population responses to different climatic drivers along wide latitudinal and altitudinal gradients is necessary in order to gain a better understanding of plant responses to ongoing increases in global temperature and drought severity. We selected Scots pine (Pinus sylvestris L.) as a model species to explore growth responses to climatic variability (seasonal temperature and precipitation) over the last century through dendrochronological methods. We developed linear models based on age, climate and previous growth to forecast growth trends up to year 2100 using climatic predictions. Populations were located at the treeline across a latitudinal gradient covering the northern, central and southernmost populations and across an altitudinal gradient at the southern edge of the distribution (treeline, medium and lower elevations). Radial growth was maximal at medium altitude and treeline of the southernmost populations. Temperature was the main factor controlling growth variability along the gradients, although the timing and strength of climatic variables affecting growth shifted with latitude and altitude. Predictive models forecast a general increase in Scots pine growth at treeline across the latitudinal distribution, with southern populations increasing growth up to year 2050, when it stabilizes. The highest responsiveness appeared at central latitude, and moderate growth increase is projected at the northern limit. Contrastingly, the model forecasted growth declines at lowland-southern populations, suggesting an upslope range displacement over the coming decades. Our results give insight into the geographical responses of tree species to climate change and demonstrate the importance of incorporating biogeographical variability into predictive models for an accurate prediction of species dynamics as climate changes. © 2017 John Wiley & Sons Ltd.
Cook, Benjamin I.; Wolkovich, Elizabeth M.; Davies, T. Jonathan; Ault, Toby R.; Betancourt, Julio L.; Allen, Jenica M.; Bolmgren, Kjell; Cleland, Elsa E.; Crimmins, Theresa M.; Kraft, Nathan J.B.; Lancaster, Lesley T.; Mazer, Susan J.; McCabe, Gregory J.; McGill, Brian J.; Parmesan, Camille; Pau, Stephanie; Regetz, James; Salamin, Nicolas; Schwartz, Mark D.; Travers, Steven E.
2012-01-01
Disparate ecological datasets are often organized into databases post hoc and then analyzed and interpreted in ways that may diverge from the purposes of the original data collections. Few studies, however, have attempted to quantify how biases inherent in these data (for example, species richness, replication, climate) affect their suitability for addressing broad scientific questions, especially in under-represented systems (for example, deserts, tropical forests) and wild communities. Here, we quantitatively compare the sensitivity of species first flowering and leafing dates to spring warmth in two phenological databases from the Northern Hemisphere. One—PEP725—has high replication within and across sites, but has low species diversity and spans a limited climate gradient. The other—NECTAR—includes many more species and a wider range of climates, but has fewer sites and low replication of species across sites. PEP725, despite low species diversity and relatively low seasonality, accurately captures the magnitude and seasonality of warming responses at climatically similar NECTAR sites, with most species showing earlier phenological events in response to warming. In NECTAR, the prevalence of temperature responders significantly declines with increasing mean annual temperature, a pattern that cannot be detected across the limited climate gradient spanned by the PEP725 flowering and leafing data. Our results showcase broad areas of agreement between the two databases, despite significant differences in species richness and geographic coverage, while also noting areas where including data across broader climate gradients may provide added value. Such comparisons help to identify gaps in our observations and knowledge base that can be addressed by ongoing monitoring and research efforts. Resolving these issues will be critical for improving predictions in understudied and under-sampled systems outside of the temperature seasonal mid-latitudes.
NASA Astrophysics Data System (ADS)
Cook, B. I.; Wolkovich, E. M.; Davies, J.; Ault, T. R.; Betancourt, J. L.; Allen, J.; Bolmgren, K.; Cleland, E. E.; Crimmins, T. M.; Kraft, N.; Lancaster, L.; Mazer, S.; McCabe, G. J.; McGill, B.; Parmesan, C.; Pau, S.; Regetz, J.; Salamin, N.; Schwartz, M. D.; Travers, S.
2012-12-01
Disparate ecological datasets are often organized into databases post-hoc and then analyzed and interpreted in ways that may diverge from the purposes of the original data collections. Few studies, however, have attempted to quantify how biases inherent in these data (e.g., species richness, replication, climate) affect their suitability for addressing broad scientific questions, especially in under-represented systems (e.g., deserts, tropical forests) and wild communities. Here, we quantitatively compare the sensitivity of species first flowering and leafing dates to spring warmth in two phenological databases from the Northern Hemisphere. One—PEP725—has high replication within and across sites, but has low species diversity and spans a limited climate gradient. The other—NECTAR—includes many more species and a wider range of climates, but has fewer sites and low replication of species across sites. PEP725, despite low species diversity and relatively low seasonality, accurately captures the magnitude and seasonality of warming responses at climatically similar NECTAR sites, with most species showing earlier phenological events in response to warming. In NECTAR, the prevalence of temperature responders significantly declines with increasing mean annual temperature, a pattern that cannot be detected across the limited climate gradient spanned by the PEP725 flowering and leafing data. Our results showcase broad areas of agreement between the two databases, despite significant differences in species richness and geographic coverage, while also noting areas where including data across broader climate gradients may provide added value. Such comparisons help to identify gaps in our observations and knowledge base that can be addressed by ongoing monitoring and research efforts. Resolving these issues will be critical for improving predictions in understudied and undersampled systems outside of the temperature seasonal midlatitudes.
Functional linear models to test for differences in prairie wetland hydraulic gradients
Greenwood, Mark C.; Sojda, Richard S.; Preston, Todd M.; Swayne, David A.; Yang, Wanhong; Voinov, A.A.; Rizzoli, A.; Filatova, T.
2010-01-01
Functional data analysis provides a framework for analyzing multiple time series measured frequently in time, treating each series as a continuous function of time. Functional linear models are used to test for effects on hydraulic gradient functional responses collected from three types of land use in Northeastern Montana at fourteen locations. Penalized regression-splines are used to estimate the underlying continuous functions based on the discretely recorded (over time) gradient measurements. Permutation methods are used to assess the statistical significance of effects. A method for accommodating missing observations in each time series is described. Hydraulic gradients may be an initial and fundamental ecosystem process that responds to climate change. We suggest other potential uses of these methods for detecting evidence of climate change.
Quantifying the abundance of co-occurring conifers along Inland Northwest (USA) climate gradients.
Rehfeldt, Gerald E; Ferguson, Dennis E; Crookston, Nicholas L
2008-08-01
The occurrence and abundance of conifers along climate gradients in the Inland Northwest (USA) was assessed using data from 5082 field plots, 81% of which were forested. Analyses using the Random Forests classification tree revealed that the sequential distribution of species along an altitudinal gradient could be predicted with reasonable accuracy from a single climate variable, a growing-season dryness index, calculated from the ratio of degree-days >5 degrees C that accumulate in the frost-free season to the summer precipitation. While the appearance and departure of species in an ascending altitudinal sequence were closely related to the dryness index, the departure was most easily visualized in relation to negative degree-days (degree-days < 0 degrees C). The results were in close agreement with the works of descriptive ecologists. A Weibull response function was used to predict from climate variables the abundance and occurrence probabilities of each species, using binned data. The fit of the models was excellent, generally accounting for >90% of the variance among 100 classes.
Isotopic evidence of multiple controls on atmospheric oxidants over climate transitions
NASA Astrophysics Data System (ADS)
Geng, Lei; Murray, Lee T.; Mickley, Loretta J.; Lin, Pu; Fu, Qiang; Schauer, Andrew J.; Alexander, Becky
2017-06-01
The abundance of tropospheric oxidants, such as ozone (O3) and hydroxyl (OH) and peroxy radicals (HO2 + RO2), determines the lifetimes of reduced trace gases such as methane and the production of particulate matter important for climate and human health. The response of tropospheric oxidants to climate change is poorly constrained owing to large uncertainties in the degree to which processes that influence oxidants may change with climate and owing to a lack of palaeo-records with which to constrain levels of atmospheric oxidants during past climate transitions. At present, it is thought that temperature-dependent emissions of tropospheric O3 precursors and water vapour abundance determine the climate response of oxidants, resulting in lower tropospheric O3 in cold climates while HOx (= OH + HO2 + RO2) remains relatively buffered. Here we report observations of oxygen-17 excess of nitrate (a proxy for the relative abundance of atmospheric O3 and HOx) from a Greenland ice core over the most recent glacial-interglacial cycle and for two Dansgaard-Oeschger events. We find that tropospheric oxidants are sensitive to climate change with an increase in the O3/HOx ratio in cold climates, the opposite of current expectations. We hypothesize that the observed increase in O3/HOx in cold climates is driven by enhanced stratosphere-to-troposphere transport of O3, and that reactive halogen chemistry is also enhanced in cold climates. Reactive halogens influence the oxidative capacity of the troposphere directly as oxidants themselves and indirectly via their influence on O3 and HOx. The strength of stratosphere-to-troposphere transport is largely controlled by the Brewer-Dobson circulation, which may be enhanced in colder climates owing to a stronger meridional gradient of sea surface temperatures, with implications for the response of tropospheric oxidants and stratospheric thermal and mass balance. These two processes may represent important, yet relatively unexplored, climate feedback mechanisms during major climate transitions.
NASA Astrophysics Data System (ADS)
Otto, Marco; Seidel, Jochen; Trachte, Katja
2013-04-01
The main moisture source for precipitation on the western slopes of the Central Andes is located east of the mountain range known as the Amazon basin. However, the Andean mountains, which reach up to 6000 m a.s.l., strongly influence climatic conditions along the Pacific coastline of South America as a climatic barrier for the low-level tropospheric flow and associated moisture transport from the Amazon basin. Additional, large scale subsidence caused by the South Pacific High inhabits convective rainfall at the Pacific coast where large metropolitan areas such as the Peruvian capital Lima are located. Two contrasts in precipitation can be found while crossing the Andean mountains from West to East. On the Pacific coast, at the location of the metropolitan area of Lima, no more than 10 mm mean annual rainfall occurs. In contrast, up to 1000 mm mean annual rainfall occur only 100 km east of Lima within the upper region (4000 m .a.s.l.) of the Western Cordillera. The transition takes place along the western slopes of the Western Cordillera and is characterised by a strong precipitation gradient. Here, catchment areas are located that provide most of the water resources needed to sustain an urban area of approximately 10 million people. This study investigates the interannual variability of the precipitation gradient between 1998 and 2012. The analysis is based on daily precipitation data of 22 rain gauge station, daily rainfall data of the Tropical Rainfall Mission (TRMM 3B42) at 0.25 degrees and reanalysis data at 36 km spatial resolution at the mesoscale. The reanalysis data was produced using the Weather Research and Forecasting Model. Station data was provided by the Peruvian weather service during the project "Sustainable Water and Wastewater Management in Urban Growth Centres Coping with Climate Change - Concepts for Lima Metropolitana (Peru) (LiWa)", which is financed by the German Federal Ministry of Education and Research (BMBF). We are interested in the following questions. How is the interannual variability of the observed precipitation gradient related to atmospheric circulation east (Amazon basin) and west (south-east Pacific) of the study region? If those relations are quantifiable, are there any forecast potentials for the characteristics of the precipitation gradient during the raining season? The results of the study provide valuable information needed to understand the generation of rainfall in the frame of a case study for the largest metropolitan area that is located at the arid Pacific coast of Peru. This information may also be useful for local managers in order to optimise water resource management and land use strategies.
Global Pyrogeography: the Current and Future Distribution of Wildfire
Krawchuk, Meg A.; Moritz, Max A.; Parisien, Marc-André; Van Dorn, Jeff; Hayhoe, Katharine
2009-01-01
Climate change is expected to alter the geographic distribution of wildfire, a complex abiotic process that responds to a variety of spatial and environmental gradients. How future climate change may alter global wildfire activity, however, is still largely unknown. As a first step to quantifying potential change in global wildfire, we present a multivariate quantification of environmental drivers for the observed, current distribution of vegetation fires using statistical models of the relationship between fire activity and resources to burn, climate conditions, human influence, and lightning flash rates at a coarse spatiotemporal resolution (100 km, over one decade). We then demonstrate how these statistical models can be used to project future changes in global fire patterns, highlighting regional hotspots of change in fire probabilities under future climate conditions as simulated by a global climate model. Based on current conditions, our results illustrate how the availability of resources to burn and climate conditions conducive to combustion jointly determine why some parts of the world are fire-prone and others are fire-free. In contrast to any expectation that global warming should necessarily result in more fire, we find that regional increases in fire probabilities may be counter-balanced by decreases at other locations, due to the interplay of temperature and precipitation variables. Despite this net balance, our models predict substantial invasion and retreat of fire across large portions of the globe. These changes could have important effects on terrestrial ecosystems since alteration in fire activity may occur quite rapidly, generating ever more complex environmental challenges for species dispersing and adjusting to new climate conditions. Our findings highlight the potential for widespread impacts of climate change on wildfire, suggesting severely altered fire regimes and the need for more explicit inclusion of fire in research on global vegetation-climate change dynamics and conservation planning. PMID:19352494
NASA Astrophysics Data System (ADS)
Bense, V. F.; Kurylyk, B. L.
2017-12-01
Sustained ground surface warming on a decadal time scale leads to an inversion of thermal gradients in the upper tens of meters. The magnitude and direction of vertical groundwater flow should influence the propagation of this warming signal, but direct field observations of this phenomenon are rare. Comparison of temperature-depth profiles in boreholes in the Veluwe area, Netherlands, collected in 1978-1982 and 2016 provided such direct measurement. We used these repeated profiles to track the downward propagation rate of the depth at which the thermal gradient is zero. Numerical modeling of the migration of this thermal gradient "inflection point" yielded estimates of downward groundwater flow rates (0-0.24 m a-1) that generally concurred with known hydrogeological conditions in the area. We conclude that analysis of inflection point depths in temperature-depth profiles impacted by surface warming provides a largely untapped opportunity to inform sustainable groundwater management plans that rely on accurate estimates of long-term vertical groundwater fluxes.
Habitable planets with high obliquities
NASA Technical Reports Server (NTRS)
Williams, D. M.; Kasting, J. F.
1997-01-01
Earth's obliquity would vary chaotically from 0 degrees to 85 degrees were it not for the presence of the Moon (J. Laskar, F. Joutel, and P. Robutel, 1993, Nature 361, 615-617). The Moon itself is thought to be an accident of accretion, formed by a glancing blow from a Mars-sized planetesimal. Hence, planets with similar moons and stable obliquities may be extremely rare. This has lead Laskar and colleagues to suggest that the number of Earth-like planets with high obliquities and temperate, life-supporting climates may be small. To test this proposition, we have used an energy-balance climate model to simulate Earth's climate at obliquities up to 90 degrees. We show that Earth's climate would become regionally severe in such circumstances, with large seasonal cycles and accompanying temperature extremes on middle- and high-latitude continents which might be damaging to many forms of life. The response of other, hypothetical, Earth-like planets to large obliquity fluctuations depends on their land-sea distribution and on their position within the habitable zone (HZ) around their star. Planets with several modest-sized continents or equatorial supercontinents are more climatically stable than those with polar supercontinents. Planets farther out in the HZ are less affected by high obliquities because their atmospheres should accumulate CO2 in response to the carbonate-silicate cycle. Dense, CO2-rich atmospheres transport heat very effectively and therefore limit the magnitude of both seasonal cycles and latitudinal temperature gradients. We conclude that a significant fraction of extrasolar Earth-like planets may still be habitable, even if they are subject to large obliquity fluctuations.
NASA Astrophysics Data System (ADS)
Garcia-Franco, Noelia; Wiesmeier, Martin; Kiese, Ralf; Dannenmann, Michael; Wolf, Benjamin; Zistl-Schlingmann, Marcus; Kögel-Knabner, Ingrid
2017-04-01
C sequestration in mountainous grassland soils is regulated by physical, chemical and biological soil process. An improved knowledge of the relationship between these stabilization mechanisms is decisive to recommend the best management practices for climate change mitigation. In this regard, the identification of a successful indicator of soil structural improvement and C sequestration in mountainous grassland soils is necessary. Alpine and pre-alpine grassland soils in Bavaria represent a good example for mountainous grassland soils faced with climate change. We sampled grassland soils of the northern limestone alps in Bavaria along an elevation gradient from 550 to 1300 m above sea level. We analyzed C dynamics by a comparative analysis of the distribution of C according to aggregate size classes: large-macroaggregates (> 2000 µm), small-macroaggregates (250-2000 µm), microaggregates (63-250 µm), silt plus clay particles (<63 µm) and bulk soil. Our preliminary results showed higher C content and changed water-stable aggregate distribution in the high elevation sites compared to lower elevations. Magnesium carbonate seem to play an important role in stabilizing macroaggregates formed from fresh OM. In addition, the isolation of occluded microaggregates within macroaggregates will help us to improve our understanding on the effects of climate change on soil structure and on the sensitivity of different C stabilization mechanisms present in mountainous soils.
Relating Paleoclimate Data and Past Temperature Gradients: Some Suggestive Rules
NASA Technical Reports Server (NTRS)
Rind, David
1999-01-01
Understanding tropical sensitivity is perhaps the major concern confronting researchers, for both past and future climate change issues. Tropical data has been beset by contradictions, and many techniques applicable to the extratropics are either unavailable or fraught with uncertainty when applied at low latitudes. Paleoclimate data, if interpreted within the context of the latitudinal temperature gradient data they imply, can be used to estimate what happened to tropical temperatures in the past, and provide a first guess for what might happen in the future. The approach is made possible by the modeling result that atmospheric dynamical changes, and the climate impacts they produce, respond primarily to temperature gradient changes. Here we review some "rules" obtained from GCM (General Circulation Model) experiments with different sea surface temperature gradients and different forcing, that can be used to relate paleoclimate reconstructions to the likely temperature gradient changes they suggest.
Parks, Sean A; Parisien, Marc-André; Miller, Carol; Dobrowski, Solomon Z
2014-01-01
Numerous theoretical and empirical studies have shown that wildfire activity (e.g., area burned) at regional to global scales may be limited at the extremes of environmental gradients such as productivity or moisture. Fire activity, however, represents only one component of the fire regime, and no studies to date have characterized fire severity along such gradients. Given the importance of fire severity in dictating ecological response to fire, this is a considerable knowledge gap. For the western US, we quantify relationships between climate and the fire regime by empirically describing both fire activity and severity along two climatic water balance gradients, actual evapotranspiration (AET) and water deficit (WD), that can be considered proxies for fuel amount and fuel moisture, respectively. We also concurrently summarize fire activity and severity among ecoregions, providing an empirically based description of the geographic distribution of fire regimes. Our results show that fire activity in the western US increases with fuel amount (represented by AET) but has a unimodal (i.e., humped) relationship with fuel moisture (represented by WD); fire severity increases with fuel amount and fuel moisture. The explicit links between fire regime components and physical environmental gradients suggest that multivariable statistical models can be generated to produce an empirically based fire regime map for the western US. Such models will potentially enable researchers to anticipate climate-mediated changes in fire recurrence and its impacts based on gridded spatial data representing future climate scenarios.
Parks, Sean A.; Parisien, Marc-André; Miller, Carol; Dobrowski, Solomon Z.
2014-01-01
Numerous theoretical and empirical studies have shown that wildfire activity (e.g., area burned) at regional to global scales may be limited at the extremes of environmental gradients such as productivity or moisture. Fire activity, however, represents only one component of the fire regime, and no studies to date have characterized fire severity along such gradients. Given the importance of fire severity in dictating ecological response to fire, this is a considerable knowledge gap. For the western US, we quantify relationships between climate and the fire regime by empirically describing both fire activity and severity along two climatic water balance gradients, actual evapotranspiration (AET) and water deficit (WD), that can be considered proxies for fuel amount and fuel moisture, respectively. We also concurrently summarize fire activity and severity among ecoregions, providing an empirically based description of the geographic distribution of fire regimes. Our results show that fire activity in the western US increases with fuel amount (represented by AET) but has a unimodal (i.e., humped) relationship with fuel moisture (represented by WD); fire severity increases with fuel amount and fuel moisture. The explicit links between fire regime components and physical environmental gradients suggest that multivariable statistical models can be generated to produce an empirically based fire regime map for the western US. Such models will potentially enable researchers to anticipate climate-mediated changes in fire recurrence and its impacts based on gridded spatial data representing future climate scenarios. PMID:24941290
Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests
Wu, Jin; Albert, Lauren; Lopes, Aline; Restrepo-Coupe, Natalia; Hayek, Matthew; Wiedemann, Kenia T.; Guan, Kaiyu; Stark, Scott C.; Christoffersen, Bradley; Prohaska, Neill; Tavares, Julia V.; Marostica, Suelen; Kobayashi, Hideki; Ferreira, Maurocio L.; Campos, Kleber Silva; da Silva, Rodrigo; Brando, Paulo M.; Dye, Dennis G.; Huxman, Travis E.; Huete, Alfredo; Nelson, Bruce; Saleska, Scott
2016-01-01
In evergreen tropical forests, the extent, magnitude, and controls on photosynthetic seasonality are poorly resolved and inadequately represented in Earth system models. Combining camera observations with ecosystem carbon dioxide fluxes at forests across rainfall gradients in Amazônia, we show that aggregate canopy phenology, not seasonality of climate drivers, is the primary cause of photosynthetic seasonality in these forests. Specifically, synchronization of new leaf growth with dry season litterfall shifts canopy composition toward younger, more light-use efficient leaves, explaining large seasonal increases (~27%) in ecosystem photosynthesis. Coordinated leaf development and demography thus reconcile seemingly disparate observations at different scales and indicate that accounting for leaf-level phenology is critical for accurately simulating ecosystem-scale responses to climate change.
Predicting species' range limits from functional traits for the tree flora of North America.
Stahl, Ulrike; Reu, Björn; Wirth, Christian
2014-09-23
Using functional traits to explain species' range limits is a promising approach in functional biogeography. It replaces the idiosyncrasy of species-specific climate ranges with a generic trait-based predictive framework. In addition, it has the potential to shed light on specific filter mechanisms creating large-scale vegetation patterns. However, its application to a continental flora, spanning large climate gradients, has been hampered by a lack of trait data. Here, we explore whether five key plant functional traits (seed mass, wood density, specific leaf area (SLA), maximum height, and longevity of a tree)--indicative of life history, mechanical, and physiological adaptations--explain the climate ranges of 250 North American tree species distributed from the boreal to the subtropics. Although the relationship between traits and the median climate across a species range is weak, quantile regressions revealed strong effects on range limits. Wood density and seed mass were strongly related to the lower but not upper temperature range limits of species. Maximum height affects the species range limits in both dry and humid climates, whereas SLA and longevity do not show clear relationships. These results allow the definition and delineation of climatic "no-go areas" for North American tree species based on key traits. As some of these key traits serve as important parameters in recent vegetation models, the implementation of trait-based climatic constraints has the potential to predict both range shifts and ecosystem consequences on a more functional basis. Moreover, for future trait-based vegetation models our results provide a benchmark for model evaluation.
Historical climate controls soil respiration responses to current soil moisture.
Hawkes, Christine V; Waring, Bonnie G; Rocca, Jennifer D; Kivlin, Stephanie N
2017-06-13
Ecosystem carbon losses from soil microbial respiration are a key component of global carbon cycling, resulting in the transfer of 40-70 Pg carbon from soil to the atmosphere each year. Because these microbial processes can feed back to climate change, understanding respiration responses to environmental factors is necessary for improved projections. We focus on respiration responses to soil moisture, which remain unresolved in ecosystem models. A common assumption of large-scale models is that soil microorganisms respond to moisture in the same way, regardless of location or climate. Here, we show that soil respiration is constrained by historical climate. We find that historical rainfall controls both the moisture dependence and sensitivity of respiration. Moisture sensitivity, defined as the slope of respiration vs. moisture, increased fourfold across a 480-mm rainfall gradient, resulting in twofold greater carbon loss on average in historically wetter soils compared with historically drier soils. The respiration-moisture relationship was resistant to environmental change in field common gardens and field rainfall manipulations, supporting a persistent effect of historical climate on microbial respiration. Based on these results, predicting future carbon cycling with climate change will require an understanding of the spatial variation and temporal lags in microbial responses created by historical rainfall.
Compensation and climate: Latitudinal variation in ecototherm response to environmental change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtin, C.G.
1995-06-01
Thermal preference measured in a laboratory thermal gradient, and field body temperatures in a field enclosure, contrast the fundamental and realized thermal niches of ornate box turtles (Terrapene ornata) from northern, central, and southern locations. The relatively warmer thermal preference of southern turtles appears to result in lower body temperatures and relatively shorter activity periods. Variation in thermal constraints are input into computer simulations of ectotherm response to climate to assess latitudinal variation in turtle response to microclimate cooling (4{degrees} C), current climate (1970-1990), and climatic warming (3-5{degrees} C). Climatic warming is calculated to lead to a northward shift inmore » turtle range and distribution with increases in northern and declines in southern populations. Microclimate cooling is estimated to result in declines in northern areas and in the core of the box turtle range. The local changes in microclimate, such as can result from shifts in land-use, can be greater than those resulting from large scale changes in climate. Suggesting that land managers and conservation biologists need to focus greater attention on the impact of changes in within patch structure of plant associations and its implications for alteration of microclimate and species life history.« less
Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots.
Reich, Peter B; Luo, Yunjian; Bradford, John B; Poorter, Hendrik; Perry, Charles H; Oleksyn, Jacek
2014-09-23
Whether the fraction of total forest biomass distributed in roots, stems, or leaves varies systematically across geographic gradients remains unknown despite its importance for understanding forest ecology and modeling global carbon cycles. It has been hypothesized that plants should maintain proportionally more biomass in the organ that acquires the most limiting resource. Accordingly, we hypothesize greater biomass distribution in roots and less in stems and foliage in increasingly arid climates and in colder environments at high latitudes. Such a strategy would increase uptake of soil water in dry conditions and of soil nutrients in cold soils, where they are at low supply and are less mobile. We use a large global biomass dataset (>6,200 forests from 61 countries, across a 40 °C gradient in mean annual temperature) to address these questions. Climate metrics involving temperature were better predictors of biomass partitioning than those involving moisture availability, because, surprisingly, fractional distribution of biomass to roots or foliage was unrelated to aridity. In contrast, in increasingly cold climates, the proportion of total forest biomass in roots was greater and in foliage was smaller for both angiosperm and gymnosperm forests. These findings support hypotheses about adaptive strategies of forest trees to temperature and provide biogeographically explicit relationships to improve ecosystem and earth system models. They also will allow, for the first time to our knowledge, representations of root carbon pools that consider biogeographic differences, which are useful for quantifying whole-ecosystem carbon stocks and cycles and for assessing the impact of climate change on forest carbon dynamics.
Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots
Reich, Peter B.; Luo, Yunjian; Bradford, John B.; Poorter, Hendrik; Perry, Charles H.; Oleksyn, Jacek
2014-01-01
Whether the fraction of total forest biomass distributed in roots, stems, or leaves varies systematically across geographic gradients remains unknown despite its importance for understanding forest ecology and modeling global carbon cycles. It has been hypothesized that plants should maintain proportionally more biomass in the organ that acquires the most limiting resource. Accordingly, we hypothesize greater biomass distribution in roots and less in stems and foliage in increasingly arid climates and in colder environments at high latitudes. Such a strategy would increase uptake of soil water in dry conditions and of soil nutrients in cold soils, where they are at low supply and are less mobile. We use a large global biomass dataset (>6,200 forests from 61 countries, across a 40 °C gradient in mean annual temperature) to address these questions. Climate metrics involving temperature were better predictors of biomass partitioning than those involving moisture availability, because, surprisingly, fractional distribution of biomass to roots or foliage was unrelated to aridity. In contrast, in increasingly cold climates, the proportion of total forest biomass in roots was greater and in foliage was smaller for both angiosperm and gymnosperm forests. These findings support hypotheses about adaptive strategies of forest trees to temperature and provide biogeographically explicit relationships to improve ecosystem and earth system models. They also will allow, for the first time to our knowledge, representations of root carbon pools that consider biogeographic differences, which are useful for quantifying whole-ecosystem carbon stocks and cycles and for assessing the impact of climate change on forest carbon dynamics. PMID:25225412
Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots
Reich, Peter B.; Lou, Yunjian; Bradford, John B.; Poorter, Hendrik; Perry, Charles H.; Oleksyn, Jacek
2014-01-01
Whether the fraction of total forest biomass distributed in roots, stems, or leaves varies systematically across geographic gradients remains unknown despite its importance for understanding forest ecology and modeling global carbon cycles. It has been hypothesized that plants should maintain proportionally more biomass in the organ that acquires the most limiting resource. Accordingly, we hypothesize greater biomass distribution in roots and less in stems and foliage in increasingly arid climates and in colder environments at high latitudes. Such a strategy would increase uptake of soil water in dry conditions and of soil nutrients in cold soils, where they are at low supply and are less mobile. We use a large global biomass dataset (>6,200 forests from 61 countries, across a 40 °C gradient in mean annual temperature) to address these questions. Climate metrics involving temperature were better predictors of biomass partitioning than those involving moisture availability, because, surprisingly, fractional distribution of biomass to roots or foliage was unrelated to aridity. In contrast, in increasingly cold climates, the proportion of total forest biomass in roots was greater and in foliage was smaller for both angiosperm and gymnosperm forests. These findings support hypotheses about adaptive strategies of forest trees to temperature and provide biogeographically explicit relationships to improve ecosystem and earth system models. They also will allow, for the first time to our knowledge, representations of root carbon pools that consider biogeographic differences, which are useful for quantifying whole-ecosystem carbon stocks and cycles and for assessing the impact of climate change on forest carbon dynamics.
Roland, Carl A; Schmidt, Joshua H; Johnstone, Jill F
2014-03-01
Mast-seeding conifers such as Picea glauca exhibit synchronous production of large seed crops over wide areas, suggesting climate factors as possible triggers for episodic high seed production. Rapidly changing climatic conditions may thus alter the tempo and spatial pattern of masting of dominant species with potentially far-reaching ecological consequences. Understanding the future reproductive dynamics of ecosystems including boreal forests, which may be dominated by mast-seeding species, requires identifying the specific cues that drive variation in reproductive output across landscape gradients and among years. Here we used annual data collected at three sites spanning an elevation gradient in interior Alaska, USA between 1986 and 2011 to produce the first quantitative models for climate controls over both seedfall and seed viability in P. glauca, a dominant boreal conifer. We identified positive associations between seedfall and increased summer precipitation and decreased summer warmth in all years except for the year prior to seedfall. Seed viability showed a contrasting response, with positive correlations to summer warmth in all years analyzed except for one, and an especially positive response to warm and wet conditions in the seedfall year. Finally, we found substantial reductions in reproductive potential of P. glauca at high elevation due to significantly reduced seed viability there. Our results indicate that major variation in the reproductive potential of this species may occur in different landscape positions in response to warming, with decreasing reproductive success in areas prone to drought stress contrasted with increasing success in higher elevation areas currently limited by cool summer temperatures.
Weidel, Brian C.; Baglini, Katherine; Jones, Stuart E.; Kelly, Patrick T.; Solomon, Christopher T.; Zwart, Jacob A.
2017-01-01
Dissolved organic carbon (DOC) in lakes reduces light penetration and limits fish production in low nutrient lakes, reportedly via reduced primary and secondary production. Alternatively, DOC and light reductions could influence fish by altering their visual feeding. Previous studies report mixed effects of DOC on feeding rates of zooplanktivorous fish, but most investigators tested effects of a single concentration of DOC against clear-water, turbid, or algal treatments. We used a controlled laboratory study to quantify the effects of a DOC gradient (3–19 mg L−1) on average light climate and the zooplankton feeding rate of 3 common, north temperate fishes. Light availability, which was inversely related to DOC concentration, had a positive and linear effect on zooplankton consumption by juvenile largemouth bass (Micropterus salmoides) and bluegill (Lepomis macrochirus), explaining 22% and 28% of the variation in consumption, respectively. By contrast, zooplankton feeding rates by fathead minnow (Pimephales promelas) were best predicted by a nonlinear, negative influence of light (R2 = 0.13). In bluegill feeding trials we found a general trend for positive selection of larger zooplankton (Cladocera and Chaoboridae); however, the light climate did not influence the selection of prey type. Largemouth bass selected for larger-bodied zooplankton, with weak evidence that selectivity for large Cladocera changed from negative to neutral selection based on electivity values across the light gradient. Our results suggest that the effect of DOC on the light climate of lakes may directly influence fish zooplanktivory and that this influence may vary among fish species.
Kotowska, Martyna M; Leuschner, Christoph; Triadiati, Triadiati; Hertel, Dietrich
2016-02-01
Tropical landscapes are not only rapidly transformed by ongoing land-use change, but are additionally confronted by increasing seasonal climate variation. There is an increasing demand for studies analyzing the effects and feedbacks on ecosystem functioning of large-scale conversions of tropical natural forest into intensively managed cash crop agriculture. We analyzed the seasonality of aboveground litterfall, fine root litter production, and aboveground woody biomass production (ANPP(woody)) in natural lowland forests, rubber agroforests under natural tree cover ("jungle rubber"), rubber and oil palm monocultures along a forest-to-agriculture transformation gradient in Sumatra. We hypothesized that the temporal fluctuation of litter production increases with increasing land-use intensity, while the associated nutrient fluxes and nutrient use efficiency (NUE) decrease. Indeed, the seasonal variation of aboveground litter production and ANPP(woody) increased from the natural forest to the plantations, while aboveground litterfall generally decreased. Nutrient return through aboveground litter was mostly highest in the natural forest; however, it was significantly lower only in rubber plantations. NUE of N, P and K was lowest in the oil palm plantations, with natural forest and the rubber systems showing comparably high values. Root litter production was generally lower than leaf litter production in all systems, while the root-to-leaf ratio of litter C flux increased along the land-use intensity gradient. Our results suggest that nutrient and C cycles are more directly affected by climate seasonality in species-poor agricultural systems than in species-rich forests, and therefore might be more susceptible to inter-annual climate fluctuation and climate change.
Konarzewski, Tara K.; Murray, Brad R.; Godfree, Robert C.
2012-01-01
We examined adaptive clinal variation in seed mass among populations of an invasive annual species, Echium plantagineum, in response to climatic selection. We collected seeds from 34 field populations from a 1,000 km long temperature and rainfall gradient across the species' introduced range in south-eastern Australia. Seeds were germinated, grown to reproductive age under common glasshouse conditions, and progeny seeds were harvested and weighed. Analyses showed that seed mass was significantly related to climatic factors, with populations sourced from hotter, more arid sites producing heavier seeds than populations from cooler and wetter sites. Seed mass was not related to edaphic factors. We also found that seed mass was significantly related to both longitude and latitude with each degree of longitude west and latitude north increasing seed mass by around 2.5% and 4% on average. There was little evidence that within-population or between-population variation in seed mass varied in a systematic manner across the study region. Our findings provide compelling evidence for development of a strong cline in seed mass across the geographic range of a widespread and highly successful invasive annual forb. Since large seed mass is known to provide reproductive assurance for plants in arid environments, our results support the hypothesis that the fitness and range potential of invasive species can increase as a result of genetic divergence of populations along broad climatic gradients. In E. plantagineum population-level differentiation has occurred in 150 years or less, indicating that the adaptation process can be rapid. PMID:23284621
Gavazov, Konstantin; Spiegelberger, Thomas; Buttler, Alexandre
2014-04-01
Climate change could impact strongly on cold-adapted mountain ecosystems, but little is known about its interaction with traditional land-use practices. We used an altitudinal gradient to simulate a year-round warmer and drier climate for semi-natural subalpine grasslands across a landscape of contrasting land-use management. Turf mesocosms from three pasture-woodland land-use types-unwooded pasture, sparsely wooded pasture, and densely wooded pasture-spanning a gradient from high to low management intensity were transplanted downslope to test their resistance to two intensities of climate change. We found strong overall effects of intensive (+4 K) experimental climate change (i.e., warming and reduced precipitation) on plant community structure and function, while moderate (+2 K) climate change did not substantially affect the studied land-use types, thus indicating an ecosystem response threshold to moderate climate perturbation. The individual land-use types were affected differently under the +4 K scenario, with a 60% decrease in aboveground biomass (AGB) in unwooded pasture turfs, a 40% decrease in sparsely wooded pasture turfs, and none in densely wooded ones. Similarly, unwooded pasture turfs experienced a 30% loss of species, advanced (by 30 days) phenological development, and a mid-season senescence due to drought stress, while no such effects were recorded for the other land-use types. The observed contrasting effects of climate change across the pasture-woodland landscape have important implications for future decades. The reduced impact of climate change on wooded pastures as compared to unwooded ones should promote the sustainable land use of wooded pastures by maintaining low management intensity and a sparse forest canopy, which buffer the immediate impacts of climate change on herbaceous vegetation.
Reynolds, Lorien L; Johnson, Bart R; Pfeifer-Meister, Laurel; Bridgham, Scott D
2015-01-01
Soil respiration is expected to increase with rising global temperatures but the degree of response may depend on soil moisture and other local factors. Experimental climate change studies from single sites cannot discern whether an observed response is site-dependent or generalizable. To deconvolve site-specific vs. regional climatic controls, we examined soil respiration for 18 months along a 520 km climate gradient in three Pacific Northwest, USA prairies that represents increasingly severe Mediterranean conditions from north to south. At each site we implemented a fully factorial combination of 2.5-3 °C warming and 20% added precipitation intensity. The response of soil respiration to warming was driven primarily by the latitudinal climate gradient and not site-specific factors. Warming increased respiration at all sites during months when soil moisture was not limiting. However, these gains were offset by reductions in respiration during seasonal transitions and summer drought due to lengthened periods of soil moisture limitation. The degree of this offset varied along the north-south climate gradient such that in 2011 warming increased cumulative annual soil respiration 28.6% in the northern site, 13.5% in the central site, and not at all in the southern site. Precipitation also stimulated soil respiration more frequently in the south, consistent with an increased duration of moisture limitation. The best predictors of soil respiration in nonlinear models were the Normalized Difference Vegetation Index (NDVI), antecedent soil moisture, and temperature but these models provided biased results at high and low soil respiration. NDVI was an effective integrator of climate and site differences in plant productivity in terms of their combined effects on soil respiration. Our results suggest that soil moisture limitation can offset the effect of warming on soil respiration, and that greater growing-season moisture limitation would constrain cumulative annual responses to warming. © 2014 John Wiley & Sons Ltd.
Ju, Lihua; Yang, Jun; Liu, Lemian; Wilkinson, David M
2014-11-01
Freshwater microbial diversity is subject to multiple stressors in the Anthropocene epoch. However, the effects of climate changes and human activities on freshwater protozoa remain poorly understood. In this study, the diversity and distribution of testate amoebae from the surface sediments were investigated in 51 Chinese lakes and reservoirs along two gradients, latitude and trophic status. A total of 169 taxa belonging to 24 genera were identified, and the most diverse and dominant genera were Difflugia (78 taxa), Centropyxis (26 taxa) and Arcella (12 taxa). Our analysis revealed that biomass of testate amoebae decreased significantly along the latitudinal gradient, while Shannon-Wiener indices and species richness presented an opposite trend (P < 0.05). The relationship of diversity and latitude is, we suspect, an artifact of the altitudinal distribution of our sites. Furthermore, biomass-based Shannon-Wiener index and species richness of testate amoebae were significantly unimodally related to trophic status (P < 0.05). This is the first large-scale study showing the effects of latitude and trophic status on diversity and distribution of testate amoebae in China. Therefore, our results provide valuable baseline data on testate amoebae and contribute to lake management and our understanding of the large-scale global patterns in microorganism diversity.
Qian, H.; Song, J.-S.; Krestov, P.; Guo, Q.; Wu, Z.; Shen, X.; Guo, X.
2003-01-01
Aim: This paper aims at determining how different floristic elements (e.g. cosmopolitan, tropical, and temperate) change with latitude and major climate factors, and how latitude affects the floristic relationships between East Asia and the other parts of the world. Location: East Asia from the Arctic to tropical regions, an area crossing over 50?? of latitudes and covering the eastern part of China, Korea, Japan and the eastern part of Russia. Methods: East Asia is divided into forty-five geographical regions. Based on the similarity of their world-wide distributional patterns, a total of 2808 indigenous genera of seed plants found in East Asia were grouped into fourteen geographical elements, belonging to three major categories (cosmopolitan, tropical and temperate). The 50??-long latitudinal gradient of East Asia was divided into five latitudinal zones, each of c. 10??. Phytogeographical relationships of East Asia to latitude and climatic variables were examined based on the forty-five regional floras. Results: Among all geographical and climatic variables considered, latitude showed the strongest relationship to phytogeographical composition. Tropical genera (with pantropical, amphi-Pacific tropical, palaeotropical, tropical Asia-tropical Australia, tropical Asia-tropical Africa and tropical Asia geographical elements combined) accounted for c. 80% of the total genera at latitude 20??N and for c. 0% at latitude 55-60??N. In contrast, temperate genera (including holarctic, eastern Asia-North America, temperate Eurasia, temperate Asia, Mediterranean, western Asia to central Asia, central Asia and eastern Asia geographical elements) accounted for 15.5% in the southernmost latitude and for 80% at 55-60??N, from where northward the percentage tended to level off. The proportion of cosmopolitan genera increased gradually with latitude from 5% at the southernmost latitude to 21% at 55-60??N, where it levelled off northward. In general, the genera present in a more northerly flora are a subset of the genera present in a more southerly flora. Main conclusions: The large-scale patterns of phytogeography in East Asia are strongly related to latitude, which covaries with several climatic variables such as temperature. Evolutionary processes such as the adaptation of plants to cold climates and current and past land connections are likely responsible for the observed latitudinal patterns.
Sulfate Aerosol Control of Tropical Atlantic Climate over the Twentieth Century
NASA Technical Reports Server (NTRS)
Chang, C.-Y.; Chiang, J. C. H.; Wehner, M. F.; Friedman, A. R.; Ruedy, R.
2011-01-01
The tropical Atlantic interhemispheric gradient in sea surface temperature significantly influences the rainfall climate of the tropical Atlantic sector, including droughts over West Africa and Northeast Brazil. This gradient exhibits a secular trend from the beginning of the twentieth century until the 1980s, with stronger warming in the south relative to the north. This trend behavior is on top of a multi-decadal variation associated with the Atlantic multi-decadal oscillation. A similar long-term forced trend is found in a multimodel ensemble of forced twentieth-century climate simulations. Through examining the distribution of the trend slopes in the multimodel twentieth-century and preindustrial models, the authors conclude that the observed trend in the gradient is unlikely to arise purely from natural variations; this study suggests that at least half the observed trend is a forced response to twentieth-century climate forcings. Further analysis using twentieth-century single-forcing runs indicates that sulfate aerosol forcing is the predominant cause of the multimodel trend. The authors conclude that anthropogenic sulfate aerosol emissions, originating predominantly from the Northern Hemisphere, may have significantly altered the tropical Atlantic rainfall climate over the twentieth century
Cover of coastal vegetation as an indicator of eutrophication along environmental gradients.
Wikström, Sofia A; Carstensen, Jacob; Blomqvist, Mats; Krause-Jensen, Dorte
2016-01-01
Coastal vegetation communities are important for primary production, biodiversity, coastal protection, carbon and nutrient cycling which, in combination with their sensitivity to eutrophication, render them potential indicators of environmental status for environmental policies like the EU Water and Marine Strategy Framework Directives. We evaluated one potential indicator for coastal vegetation, the cumulative cover at depths where the vegetation is light limited, by investigating its response to eutrophication along gradients in natural conditions. We used a large data set covering the Swedish coastline, spanning broad gradients in nutrient level, water clarity, seabed substrate, physical exposure and climate in addition to a salinity gradient from 0.5 to 30.5. Macroalgal cover increased significantly along gradients of declining nutrient concentration and increasing water clarity when we had accounted for diver effects, spatio-temporal sampling variability, salinity gradients, wave exposure and latitude. The developed empirical model explained 79% of the variation in algal cover across 130 areas. Based on this, we identified macroalgal cover as a promising indicator across the Baltic Sea, Kattegat and Skagerrak. A parallel analysis of soft-substrate macrophytes similarly identified significant increases in cover with decreasing concentrations of total nitrogen and increasing salinity, but the resulting empirical model explained only 52% of the variation in cover, probably due to the spatially more variable nature of soft-substrate vegetation. The identified general responses of vegetation cover to gradients of eutrophication across wide ranges in environmental settings may be useful for monitoring and management of marine vegetation in areas with strong environmental gradients.
Abdulai, Issaka; Jassogne, Laurence; Graefe, Sophie; Asare, Richard; Van Asten, Piet; Läderach, Peter; Vaast, Philippe
2018-01-01
Reduced climatic suitability due to climate change in cocoa growing regions of Ghana is expected in the coming decades. This threatens farmers' livelihood and the cocoa sector. Climate change adaptation requires an improved understanding of existing cocoa production systems and farmers' coping strategies. This study characterized current cocoa production, income diversification and shade tree management along a climate gradient within the cocoa belt of Ghana. The objectives were to 1) compare existing production and income diversification between dry, mid and wet climatic regions, and 2) identify shade trees in cocoa agroforestry systems and their distribution along the climatic gradient. Our results showed that current mean cocoa yield level of 288kg ha-1yr-1 in the dry region was significantly lower than in the mid and wet regions with mean yields of 712 and 849 kg ha-1 yr-1, respectively. In the dry region, farmers diversified their income sources with non-cocoa crops and off-farm activities while farmers at the mid and wet regions mainly depended on cocoa (over 80% of annual income). Two shade systems classified as medium and low shade cocoa agroforestry systems were identified across the studied regions. The medium shade system was more abundant in the dry region and associated to adaptation to marginal climatic conditions. The low shade system showed significantly higher yield in the wet region but no difference was observed between the mid and dry regions. This study highlights the need for optimum shade level recommendation to be climatic region specific.
Yang, Jian; Weisberg, Peter J.; Shinneman, Douglas; Dilts, Thomas E.; Earnst, Susan L.; Scheller, Robert M
2015-01-01
Content Changing aspen distribution in response to climate change and fire is a major focus of biodiversity conservation, yet little is known about the potential response of aspen to these two driving forces along topoclimatic gradients. Objective This study is set to evaluate how aspen distribution might shift in response to different climate-fire scenarios in a semi-arid montane landscape, and quantify the influence of fire regime along topoclimatic gradients. Methods We used a novel integration of a forest landscape succession and disturbance model (LANDIS-II) with a fine-scale climatic water deficit approach to simulate dynamics of aspen and associated conifer and shrub species over the next 150 years under various climate-fire scenarios. Results Simulations suggest that many aspen stands could persist without fire for centuries under current climate conditions. However, a simulated 2–5 °C increase in temperature caused a substantial reduction of aspen coverage at lower elevations and a modest increase at upper elevations, leading to an overall reduction of aspen range at the landscape level. Increasing fire activity may favor aspen increase at its upper elevation limits adjacent to coniferous forest, but may also favor reduction of aspen at lower elevation limits adjacent to xeric shrubland. Conclusions Our study highlights the importance of incorporating fine-scale terrain effects on climatic water deficit and ecohydrology when modeling species distribution response to climate change. This modeling study suggests that climate mitigation and adaptation strategies that use fire would benefit from consideration of spatial context at landscape scales.
Jassogne, Laurence; Graefe, Sophie; Asare, Richard; Van Asten, Piet; Läderach, Peter; Vaast, Philippe
2018-01-01
Reduced climatic suitability due to climate change in cocoa growing regions of Ghana is expected in the coming decades. This threatens farmers’ livelihood and the cocoa sector. Climate change adaptation requires an improved understanding of existing cocoa production systems and farmers’ coping strategies. This study characterized current cocoa production, income diversification and shade tree management along a climate gradient within the cocoa belt of Ghana. The objectives were to 1) compare existing production and income diversification between dry, mid and wet climatic regions, and 2) identify shade trees in cocoa agroforestry systems and their distribution along the climatic gradient. Our results showed that current mean cocoa yield level of 288kg ha-1yr-1 in the dry region was significantly lower than in the mid and wet regions with mean yields of 712 and 849 kg ha-1 yr-1, respectively. In the dry region, farmers diversified their income sources with non-cocoa crops and off-farm activities while farmers at the mid and wet regions mainly depended on cocoa (over 80% of annual income). Two shade systems classified as medium and low shade cocoa agroforestry systems were identified across the studied regions. The medium shade system was more abundant in the dry region and associated to adaptation to marginal climatic conditions. The low shade system showed significantly higher yield in the wet region but no difference was observed between the mid and dry regions. This study highlights the need for optimum shade level recommendation to be climatic region specific. PMID:29659629
NASA Astrophysics Data System (ADS)
Osland, M. J.; Enwright, N.; Day, R. H.; Gabler, C. A.; Stagg, C. L.; From, A. S.
2014-12-01
Across the globe, macroclimatic drivers greatly influence coastal wetland ecosystem structure and function. However, changing macroclimatic conditions are rarely incorporated into coastal wetland vulnerability assessments. Here, we quantify the influence of macroclimatic drivers upon coastal wetland ecosystems along the Northern Gulf of Mexico (NGOM) coast. From a global perspective, the NGOM coast provides several excellent opportunities to examine the effects of climate change upon coastal wetlands. The abundant coastal wetland ecosystems in the region span two major climatic gradients: (1) a winter temperature gradient that crosses temperate to tropical climatic zones; and (2) a precipitation gradient that crosses humid to semi-arid zones. We present analyses where we used geospatial data (historical climate, hydrology, and coastal wetland coverage) and field data (soil, elevation, and plant community composition and structure) to quantify climate-mediated ecological transitions. We identified winter climate and precipitation-based thresholds that separate mangrove forests from salt marshes and vegetated wetlands from unvegetated wetlands, respectively. We used simple distribution and abundance models to evaluate the potential ecological effects of alternative future climate change scenarios. Our results illustrate and quantify the importance of macroclimatic drivers and indicate that climate change could result in landscape-scale changes in coastal wetland ecosystem structure and function. These macroclimate-mediated ecological changes could affect the supply of some ecosystem goods and services as well as the resilience of these ecosystems to stressors, including accelerated sea level rise. Collectively, our findings highlight the importance of incorporating macroclimatic drivers within future-focused coastal wetland vulnerability assessments.
Spatial grain and the causes of regional diversity gradients in ants.
Kaspari, Michael; Yuan, May; Alonso, Leeanne
2003-03-01
Gradients of species richness (S; the number of species of a given taxon in a given area and time) are ubiquitous. A key goal in ecology is to understand whether and how the many processes that generate these gradients act at different spatial scales. Here we evaluate six hypotheses for diversity gradients with 49 New World ant communities, from tundra to rain forest. We contrast their performance at three spatial grains from S(plot), the average number of ant species nesting in a m2 plot, through Fisher's alpha, an index that treats our 30 1-m2 plots as subsamples of a locality's diversity. At the smallest grain, S(plot), was tightly correlated (r2 = 0.99) with colony abundance in a fashion indistinguishable from the packing of randomly selected individuals into a fixed space. As spatial grain increased, the coaction of two factors linked to high net rates of diversification--warm temperatures and large areas of uniform climate--accounted for 75% of the variation in Fisher's alpha. However, the mechanisms underlying these correlations (i.e., precisely how temperature and area shape the balance of speciation to extinction) remain elusive.
Growth-climate relationships across topographic gradients in the northern Great Lakes
S.F. Dymond; A.W. D' Amato; Randy Kolka; P.V. Bolstad; Stephen Sebestyen; J.B. Bradford
2016-01-01
Climatic conditions exert important control over the growth, productivity, and distribution of forests, and characterizing these relationships is essential for understanding how forest ecosystems will respond to climate change. We used dendrochronological methods to develop climateâgrowth relationships for two dominant species, Populus tremuloides...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinkle, Ross; Benscoter, Brian; Comas, Xavier
2015-04-07
Carbon Dynamics of the Greater Everglades Watershed and Implications of Climate Change The objectives of this project are to: 1) quantify above- and below-ground carbon stocks of terrestrial ecosystems along a seasonal hydrologic gradient in the headwaters region of the Greater Everglades watershed; 2) develop budgets of ecosystem gaseous carbon exchange (carbon dioxide and methane) across the seasonal hydrologic gradient; 3) assess the impact of climate drivers on ecosystem carbon exchange in the Greater Everglades headwater region; and 4) integrate research findings with climate-driven terrestrial ecosystem carbon models to examine the potential influence of projected future climate change on regionalmore » carbon cycling. Note: this project receives a one-year extension past the original performance period - David Sumner (USGS) is not included in this extension.« less
Reed, Charlotte C; Ballantyne, Ashley P; Cooper, Leila Annie; Sala, Anna
2018-04-15
Forests sequester large amounts of carbon annually and are integral in buffering against effects of global change. Increasing atmospheric CO 2 may enhance photosynthesis and/or decrease stomatal conductance (g s ) thereby enhancing intrinsic water-use efficiency (iWUE), having potential indirect and direct benefits to tree growth. While increasing iWUE has been observed in most trees globally, enhanced growth is not ubiquitous, possibly due to concurrent climatic constraints on growth. To investigate our incomplete understanding of interactions between climate and CO 2 and their impacts on tree physiology and growth, we used an environmental gradient approach. We combined dendrochronology with carbon isotope analysis (δ 13 C) to assess the covariation of basal area increment (BAI) and iWUE over time in lodgepole pine. Trees were sampled at 18 sites spanning two climatically distinct elevation transects on the lee and windward sides of the Continental Divide, encompassing the majority of lodgepole pine's northern Rocky Mountain elevational range. We analyzed BAI and iWUE from 1950 to 2015, and explored correlations with monthly climate variables. As expected, iWUE increased at all sites. However, concurrent growth trends depended on site climatic water deficit (CWD). Significant growth increases occurred only at the driest sites, where increases in iWUE were strongest, while growth decreases were greatest at sites where CWD has been historically lowest. Late summer drought of the previous year negatively affected growth across sites. These results suggest that increasing iWUE, if strong enough, may indirectly benefit growth at drier sites by effectively extending the growing season via reductions in g s . Strong growth decreases at high elevation windward sites may reflect increasing water stress as a result of decreasing snowpack, which was not offset by greater iWUE. Our results imply that increasing iWUE driven by decreasing g s may benefit tree growth in limited scenarios, having implications for future carbon uptake potential of semiarid ecosystems. © 2018 John Wiley & Sons Ltd.
Monahan, William B; Tingley, Morgan W
2012-01-01
The ability of species to respond to novel future climates is determined in part by their physiological capacity to tolerate climate change and the degree to which they have reached and continue to maintain distributional equilibrium with the environment. While broad-scale correlative climatic measurements of a species' niche are often described as estimating the fundamental niche, it is unclear how well these occupied portions actually approximate the fundamental niche per se, versus the fundamental niche that exists in environmental space, and what fitness values bounding the niche are necessary to maintain distributional equilibrium. Here, we investigate these questions by comparing physiological and correlative estimates of the thermal niche in the introduced North American house sparrow (Passer domesticus). Our results indicate that occupied portions of the fundamental niche derived from temperature correlations closely approximate the centroid of the existing fundamental niche calculated on a fitness threshold of 50% population mortality. Using these niche measures, a 75-year time series analysis (1930-2004) further shows that: (i) existing fundamental and occupied niche centroids did not undergo directional change, (ii) interannual changes in the two niche centroids were correlated, (iii) temperatures in North America moved through niche space in a net centripetal fashion, and consequently, (iv) most areas throughout the range of the house sparrow tracked the existing fundamental niche centroid with respect to at least one temperature gradient. Following introduction to a new continent, the house sparrow rapidly tracked its thermal niche and established continent-wide distributional equilibrium with respect to major temperature gradients. These dynamics were mediated in large part by the species' broad thermal physiological tolerances, high dispersal potential, competitive advantage in human-dominated landscapes, and climatically induced changes to the realized environmental space. Such insights may be used to conceptualize mechanistic climatic niche models in birds and other taxa.
NASA Astrophysics Data System (ADS)
Kobler, Johannes; Zehetgruber, Bernhard; Jandl, Robert; Dirnböck, Thomas; Schindlbacher, Andreas
2017-04-01
Own to the complexity of landscape morphology, mountainous landscapes are characterized by substantial changes of site parameters (i.e. elevation, slope, aspect) within short distances. As these site parameters affect the spatial-temporal dynamics of landscape climate and therefore the spatial patterns of forest carbon (C) distribution, they pose a substantial impact on landscape-related soil C dynamics. Aspect and elevation form natural temperature gradients and thereby can be used as a surrogate to infer to potential climate change effects on forest C. We aimed at studying how slope aspect affected soil respiration, soil C stocks, tree increment and litter production along two elevation gradients in the Zöbelboden catchment, northern limestone Alps, Austria during 2015 and 2016. A preliminary assessment showed that soil respiration was significantly higher at the west facing slope across all elevations. Soil temperature was only slightly higher at the west facing slope, and warmer soil only partly explained the large difference in soil respiration between east and west facing slopes. Aspect had no clear effect on soil moisture, which seemed to be strongly affected by stocking density at the different forest sites. The dense grassy ground vegetation at some of the sites further seems to play a key role in determining soil respiration rates and litter input. A detailed analysis and C-budgets along the elevation gradients will be presented at the conference.
Assessing climate change impacts on water resources in remote mountain regions
NASA Astrophysics Data System (ADS)
Buytaert, Wouter; De Bièvre, Bert
2013-04-01
From a water resources perspective, remote mountain regions are often considered as a basket case. They are often regions where poverty is often interlocked with multiple threats to water supply, data scarcity, and high uncertainties. In these environments, it is paramount to generate locally relevant knowledge about water resources and how they impact local livelihoods. This is often problematic. Existing environmental data collection tends to be geographically biased towards more densely populated regions, and prioritized towards strategic economic activities. Data may also be locked behind institutional and technological barriers. These issues create a "knowledge trap" for data-poor regions, which is especially acute in remote and hard-to-reach mountain regions. We present lessons learned from a decade of water resources research in remote mountain regions of the Andes, Africa and South Asia. We review the entire tool chain of assessing climate change impacts on water resources, including the interrogation and downscaling of global circulation models, translating climate variables in water availability and access, and assessing local vulnerability. In global circulation models, mountain regions often stand out as regions of high uncertainties and lack of agreement of future trends. This is partly a technical artifact because of the different resolution and representation of mountain topography, but it also highlights fundamental uncertainties in climate impacts on mountain climate. This problem also affects downscaling efforts, because regional climate models should be run in very high spatial resolution to resolve local gradients, which is computationally very expensive. At the same time statistical downscaling methods may fail to find significant relations between local climate properties and synoptic processes. Further uncertainties are introduced when downscaled climate variables such as precipitation and temperature are to be translated in hydrologically relevant variables such as streamflow and groundwater recharge. Fundamental limitations in both the understanding of hydrological processes in mountain regions (e.g., glacier melt, wetland attenuation, groundwater flows) and in data availability introduce large uncertainties. Lastly, assessing access to water resources is a major challenge. Topographical gradients and barriers, as well as strong spatiotemporal variations in hydrological processes, makes it particularly difficult to assess which parts of the mountain population is most vulnerable to future perturbations of the water cycle.
Seidl, Rupert; Vigl, Friedrich; Rössler, Günter; Neumann, Markus; Rammer, Werner
2017-01-01
As a result of a rapidly changing climate the resilience of forests is an increasingly important property for ecosystem management. Recent efforts have improved the theoretical understanding of resilience, yet its operational quantification remains challenging. Furthermore, there is growing awareness that resilience is not only a means to addressing the consequences of climate change but is also affected by it, necessitating a better understanding of the climate sensitivity of resilience. Quantifying current and future resilience is thus an important step towards mainstreaming resilience thinking into ecosystem management. Here, we present a novel approach for quantifying forest resilience from thinning trials, and assess the climate sensitivity of resilience using process-based ecosystem modeling. We reinterpret the wide range of removal intensities and frequencies in thinning trials as an experimental gradient of perturbation, and estimate resilience as the recovery rate after perturbation. Our specific objectives were (i) to determine how resilience varies with stand and site conditions, (ii) to assess the climate sensitivity of resilience across a range of potential future climate scenarios, and (iii) to evaluate the robustness of resilience estimates to different focal indicators and assessment methodologies. We analyzed three long-term thinning trials in Norway spruce (Picea abies (L.) Karst.) forests across an elevation gradient in Austria, evaluating and applying the individual-based process model iLand. The resilience of Norway spruce was highest at the montane site, and decreased at lower elevations. Resilience also decreased with increasing stand age and basal area. The effects of climate change were strongly context-dependent: At the montane site, where precipitation levels were ample even under climate change, warming increased resilience in all scenarios. At lower elevations, however, rising temperatures decreased resilience, particularly at precipitation levels below 750–800 mm. Our results were largely robust to different focal variables and resilience definitions. Based on our findings management can improve the capacity to recover from partial disturbances by avoiding overmature and overstocked conditions. At increasingly water limited sites a strongly decreasing resilience of Norway spruce will require a shift towards tree species better adapted to the expected future conditions. PMID:28860674
NASA Astrophysics Data System (ADS)
Joo, Y. J.; Nam, S. I.; Son, Y. J.; Forwick, M.
2017-12-01
Fjords in the Svalbard archipelago are characterized by an extreme environmental gradient between 1) the glacial system affected by tidewater glaciers and seasonal sea ice inside the fjords and 2) the warm Atlantic Water intrusion by the West Spitsbergen Current from open ocean. As sediment is largely supplied from the terrestrial source area exposed along the steep slopes of the fjords, the changes in the surface processes affected by glaciers are likely preserved in the sediments in the inner fjords. On the other hand, variations in the influence of the warm Atlantic Water in the marine realm (e.g. marine productivity) can be archived in the sediment deposited in the vicinity of the entrance to the fjords. Since the last deglaciation of the Svalbard-Barents ice sheet ( 13000 yrs BP), the Svalbard fjords have faced dramatic climate changes including the early Holocene Climate Optimum (HCO) and subsequent cooling that eventually led to the current cold and dry climate. We investigate the Holocene environmental changes in both terrestrial and marine realms based on stable isotopic and inorganic geochemical analyses of sediments deposited in Dicksonfjorden and Woodfjorden in the western and northern Spitsbergen, respectively. The two fjords are expected to provide intriguing information regarding how terrestrial and marine realms of the Arctic fjords system responded to regional and global climate changes. Being a branch of the larger Isfjorden, Dicksonfjorden penetrates deeply to the land, whereas Woodfjorden is rather directly connected to the open ocean. Accordingly, the results suggest that the Dicksonfjorden sediment records mainly terrestrial signals with marked fluctuations in sediment composition that coincide with major climate changes (e.g. HCO). On the contrary, the two Woodfjorden cores collected from different parts of the fjord exhibit contrasting results, likely illustrating differing response of terrestrial and marine realms to the climate changes in terms of behavior of tidewater glaciers and inflow of the warm West Spitsbergen Current and their possible interactions. This study aims to disentangle the interaction between the fjords and the global climate changes and provide a holistic view to the Arctic fjords system with strong environmental gradients.
NASA Astrophysics Data System (ADS)
McKain, K.; Sweeney, C.; Stephens, B. B.; Long, M. C.; Jacobson, A. R.; Basu, S.; Chatterjee, A.; Weir, B.; Wofsy, S. C.; Atlas, E. L.; Blake, D. R.; Montzka, S. A.; Stern, R.
2017-12-01
The Southern Ocean plays an important role in the global carbon cycle and climate system, but net CO2 flux into the Southern Ocean is difficult to measure and model because it results from large opposing and seasonally-varying fluxes due to thermal forcing, biological uptake, and deep-water mixing. We present an analysis to constrain the seasonal cycle of net CO2 exchange with the Southern Ocean, and the magnitude of summer uptake, using the vertical gradients in atmospheric CO2 observed during three aircraft campaigns in the southern polar region. The O2/N2 Ratio and CO2 Airborne Southern Ocean Study (ORCAS) was an airborne campaign that intensively sampled the atmosphere at 0-13 km altitude and 45-75 degrees south latitude in the austral summer (January-February) of 2016. The global airborne campaigns, the HIAPER Pole-to-Pole Observations (HIPPO) study and the Atmospheric Tomography Mission (ATom), provide additional measurements over the Southern Ocean from other seasons and multiple years (2009-2011, 2016-2017). Derivation of fluxes from measured vertical gradients requires robust estimates of the residence time of air in the polar tropospheric domain, and of the contribution of long-range transport from northern latitudes outside the domain to the CO2 gradient. We use diverse independent approaches to estimate both terms, including simulations using multiple transport and flux models, and observed gradients of shorter-lived tracers with specific sources regions and well-known loss processes. This study demonstrates the utility of aircraft profile measurements for constraining large-scale air-sea fluxes for the Southern Ocean, in contrast to those derived from the extrapolation of sparse ocean and atmospheric measurements and uncertain flux parameterizations.
Responses of leaf traits to climatic gradients: adaptive variation versus compositional shifts
NASA Astrophysics Data System (ADS)
Meng, T.-T.; Wang, H.; Harrison, S. P.; Prentice, I. C.; Ni, J.; Wang, G.
2015-09-01
Dynamic global vegetation models (DGVMs) typically rely on plant functional types (PFTs), which are assigned distinct environmental tolerances and replace one another progressively along environmental gradients. Fixed values of traits are assigned to each PFT; modelled trait variation along gradients is thus driven by PFT replacement. But empirical studies have revealed "universal" scaling relationships (quantitative trait variations with climate that are similar within and between species, PFTs and communities); and continuous, adaptive trait variation has been proposed to replace PFTs as the basis for next-generation DGVMs. Here we analyse quantitative leaf-trait variation on long temperature and moisture gradients in China with a view to understanding the relative importance of PFT replacement vs. continuous adaptive variation within PFTs. Leaf area (LA), specific leaf area (SLA), leaf dry matter content (LDMC) and nitrogen content of dry matter were measured on all species at 80 sites ranging from temperate to tropical climates and from dense forests to deserts. Chlorophyll fluorescence traits and carbon, phosphorus and potassium contents were measured at 47 sites. Generalized linear models were used to relate log-transformed trait values to growing-season temperature and moisture indices, with or without PFT identity as a predictor, and to test for differences in trait responses among PFTs. Continuous trait variation was found to be ubiquitous. Responses to moisture availability were generally similar within and between PFTs, but biophysical traits (LA, SLA and LDMC) of forbs and grasses responded differently from woody plants. SLA and LDMC responses to temperature were dominated by the prevalence of evergreen PFTs with thick, dense leaves at the warm end of the gradient. Nutrient (N, P and K) responses to climate gradients were generally similar within all PFTs. Area-based nutrients generally declined with moisture; Narea and Karea declined with temperature, but Parea increased with temperature. Although the adaptive nature of many of these trait-climate relationships is understood qualitatively, a key challenge for modelling is to predict them quantitatively. Models must take into account that community-level responses to climatic gradients can be influenced by shifts in PFT composition, such as the replacement of deciduous by evergreen trees, which may run either parallel or counter to trait variation within PFTs. The importance of PFT shifts varies among traits, being important for biophysical traits but less so for physiological and chemical traits. Finally, models should take account of the diversity of trait values that is found in all sites and PFTs, representing the "pool" of variation that is locally available for the natural adaptation of ecosystem function to environmental change.
Trade-off between competition and facilitation defines gap colonization in mountains
Lembrechts, Jonas J.; Milbau, Ann; Nijs, Ivan
2015-01-01
Recent experimental observations show that gap colonization in small-stature (e.g. grassland and dwarf shrubs) vegetation strongly depends on the abiotic conditions within them. At the same time, within-gap variation in biotic interactions such as competition and facilitation, caused by distance to the gap edge, would affect colonizer performance, but a theoretical framework to explore such patterns is missing. Here, we model how competition, facilitation and environmental conditions together determine the small-scale patterns of gap colonization along a cold gradient in mountains, by simulating colonizer survival in gaps of various sizes. Our model adds another dimension to the known effects of biotic interactions along a stress gradient by focussing on the trade-off between competition and facilitation in the within-gap environment. We show that this trade-off defines a peak in colonizer survival at a specific distance from the gap edge, which progressively shifts closer to the edge as the environment gets colder, ultimately leaving a large fraction of gaps unsuitable for colonization in facilitation-dominated systems. This is reinforced when vegetation size and temperature amelioration are manipulated simultaneously with temperature in order to simulate an elevational gradient more realistically. Interestingly, all other conditions being equal, the magnitude of the realized survival peak was always lower in large than in small gaps, making large gaps harder to colonize. The model is relevant to predict effects of non-native plant invasions and climate warming on colonization processes in mountains. PMID:26558706
Duminil, Jerome; Brown, Richard P; Ewédjè, Eben-Ezer B K; Mardulyn, Patrick; Doucet, Jean-Louis; Hardy, Olivier J
2013-09-12
The evolutionary events that have shaped biodiversity patterns in the African rainforests are still poorly documented. Past forest fragmentation and ecological gradients have been advocated as important drivers of genetic differentiation but their respective roles remain unclear. Using nuclear microsatellites (nSSRs) and chloroplast non-coding sequences (pDNA), we characterised the spatial genetic structure of Erythrophleum (Fabaceae) forest trees in West and Central Africa (Guinea Region, GR). This widespread genus displays a wide ecological amplitude and taxonomists recognize two forest tree species, E. ivorense and E. suaveolens, which are difficult to distinguish in the field and often confused. Bayesian-clustering applied on nSSRs of a blind sample of 648 specimens identified three major gene pools showing no or very limited introgression. They present parapatric distributions correlated to rainfall gradients and forest types. One gene pool is restricted to coastal evergreen forests and corresponds to E. ivorense; a second one is found in gallery forests from the dry forest zone of West Africa and North-West Cameroon and corresponds to West-African E. suaveolens; the third gene pool occurs in semi-evergreen forests and corresponds to Central African E. suaveolens. These gene pools have mostly unique pDNA haplotypes but they do not form reciprocally monophyletic clades. Nevertheless, pDNA molecular dating indicates that the divergence between E. ivorense and Central African E. suaveolens predates the Pleistocene. Further Bayesian-clustering applied within each major gene pool identified diffuse genetic discontinuities (minor gene pools displaying substantial introgression) at a latitude between 0 and 2°N in Central Africa for both species, and at a longitude between 5° and 8°E for E. ivorense. Moreover, we detected evidence of past population declines which are consistent with historical habitat fragmentation induced by Pleistocene climate changes. Overall, deep genetic differentiation (major gene pools) follows ecological gradients that may be at the origin of speciation, while diffuse differentiation (minor gene pools) are tentatively interpreted as the signature of past forest fragmentation induced by past climate changes.
2013-01-01
Background The evolutionary events that have shaped biodiversity patterns in the African rainforests are still poorly documented. Past forest fragmentation and ecological gradients have been advocated as important drivers of genetic differentiation but their respective roles remain unclear. Using nuclear microsatellites (nSSRs) and chloroplast non-coding sequences (pDNA), we characterised the spatial genetic structure of Erythrophleum (Fabaceae) forest trees in West and Central Africa (Guinea Region, GR). This widespread genus displays a wide ecological amplitude and taxonomists recognize two forest tree species, E. ivorense and E. suaveolens, which are difficult to distinguish in the field and often confused. Results Bayesian-clustering applied on nSSRs of a blind sample of 648 specimens identified three major gene pools showing no or very limited introgression. They present parapatric distributions correlated to rainfall gradients and forest types. One gene pool is restricted to coastal evergreen forests and corresponds to E. ivorense; a second one is found in gallery forests from the dry forest zone of West Africa and North-West Cameroon and corresponds to West-African E. suaveolens; the third gene pool occurs in semi-evergreen forests and corresponds to Central African E. suaveolens. These gene pools have mostly unique pDNA haplotypes but they do not form reciprocally monophyletic clades. Nevertheless, pDNA molecular dating indicates that the divergence between E. ivorense and Central African E. suaveolens predates the Pleistocene. Further Bayesian-clustering applied within each major gene pool identified diffuse genetic discontinuities (minor gene pools displaying substantial introgression) at a latitude between 0 and 2°N in Central Africa for both species, and at a longitude between 5° and 8°E for E. ivorense. Moreover, we detected evidence of past population declines which are consistent with historical habitat fragmentation induced by Pleistocene climate changes. Conclusions Overall, deep genetic differentiation (major gene pools) follows ecological gradients that may be at the origin of speciation, while diffuse differentiation (minor gene pools) are tentatively interpreted as the signature of past forest fragmentation induced by past climate changes. PMID:24028582
North American nonmarine climates and vegetation during the Late Cretaceous
Wolfe, J.A.; Upchurch, G.R.
1987-01-01
Analyses of physiognomy of Late Cretaceous leaf assemblages and of structural adaptations of Late Cretaceous dicotyledonous woods indicate that megathermal vegetation was an open-canopy, broad-leaved evergreen woodland that existed under low to moderate amounts of rainfall evenly distributed through the year, with a moderate increase at about 40-45??N. Many dicotyledons were probably large, massive trees, but the tallest trees were evergreen conifers. Megathermal climate extended up to paleolatitude 45-50??N. Mesothermal vegetation was at least partially an open, broad-leaved evergreen woodland (perhaps a mosaic of woodland and forest), but the evapotranspirational stress was less than in megathermal climate. Some dicotyledons were large trees, but most were shrubs or small trees; evergreen conifers were the major tree element. Some mild seasonality is evidenced in mesothermal woods; precipitational levels probably varied markedly from year to year. Northward of approximately paleolatitude 65??N, evergreen vegetation was replaced by predominantly deciduous vegetation. This replacement is presumably related primarily to seasonality of light. The southern part of the deciduous vegetation probably existed under mesothermal climate. Comparisons to leaf and wood assemblages from other continents are generally consistent with the vegetational-climatic patterns suggested from North American data. Limited data from equatorial regions suggest low rainfall. Late Cretaceous climates, except probably those of the Cenomanian, had only moderate change through time. Temperatures generally appear to have warmed into the Santonian, cooled slightly into the Campanian and more markedly into the Maastrichtian, and then returned to Santonian values by the late Maastrichtian. The early Eocene was probably warmer than any period of the Late Cretaceous. Latitudinal temperature gradients were lower than at present. For the Campanian and Maastrichtian, a gradient of about 0.3??C/1?? latitude is inferred. Equability was high: a mean annual range of temperature of about 8??C is inferred for paleolatitude 51-56??N during the Campanian. Most Late Cretaceous plants evolved in a climate characterized by absence of freezing and low to moderate amounts of precipitation. A brief, low-temperature excursion and a major, long-lasting increase in precipitation occurred at the Cretaceous-Tertiary boundary. In megathermal climates, these events selected for plants that could exist in rainforest environments. In mesothermal climates, deciduousness and contamitant structural adaptations were selected. The events at the Cretaceous-Tertiary boundary had a major and long-lasting impact on the evolution of land plants and their ecosystems. Low precipitation at low to middle Late Cretaceous latitudes is suggested to be the result of high levels of atmospheric CO2, which, in turn, are probably related to inability of warm, saline oceans to store large amounts of carbon. Conditions appear to have rapidly changed at the Cretaceous-Tertiary boundary, when oceanic circulation and stratification may have been fundamentally altered. After the boundary, the oceans were apparently able to store much greater amounts of carbon, and the oceans withdrew large amounts of CO2 from the atmosphere. In turn, more precipitation fell at low to middle latitudes; the resulting high-biomass vegetation formed a second major carbon reservoir to keep atmospheric CO2 low relative to the Late Cretaceous. Changes in oceanic and atmospheric circulation probably resulted from some factor external to the ocean-atmosphere system. ?? 1987.
NASA Astrophysics Data System (ADS)
Redmond, M. D.; Kelsey, K.; Urza, A.; Barger, N. N.
2015-12-01
Forest and woodland ecosystems play a crucial role in the global carbon cycle and may be strongly affected by changing climate. Here we use an individual-based approach to model piñon pine (Pinus edulis) radial growth responses to climate across gradients of environmental stress. We sampled piñon pine trees at 24 sites across southwestern Colorado that varied in soil available water capacity, elevation, and latitude, obtaining a total of 552 pinon pine tree ring series. We used linear mixed effect models to assess piñon pine growth responses to climate and site-level environmental stress (mean annual climatic water deficit and soil available water capacity). Using a similar modeling approach, we also determined long-term growth trends across our gradients of environmental stress. Piñon pine growth was strongly positively associated with winter precipitation and strongly negatively associated with summer vapor pressure deficit. However, the strength of the relationship between winter precipitation and piñon pine growth was affected by site-level environmental stress. Trees at sites with greater climatic water deficit (i.e. hotter, drier sites) were more sensitive to winter precipitation. Interestingly, trees at sites with greater soil available water capacity were also more sensitive to winter precipitation, as these trees had much higher growth rates during years of high precipitation. We found weak evidence of long-term declines in piñon growth rates over the past century within our study area. Growth trends overtime did vary across our soil available water capacity gradient: trees growing at sites with higher soil available water capacity responded more positively to the cool, wet climate conditions of the 1910s and 1980s, whereas tree growth rates at sites with lower soil available water capacity declined more linearly over the last century. Our findings suggest that the sensitivity of woodland ecosystems to changing climate will vary across the landscape due to differences in edaphic and physiographic factors. These results support recent dendroecology studies that emphasize the need to use a more individual-based approach to enhance our understanding of tree growth responses to climate.
NASA Technical Reports Server (NTRS)
Smith, Eric A.; Sohn, B. J.
1990-01-01
Global cloudiness and radiation budget data from Nimbus 6 and 7 are used to investigate the role of cloud and surface radiative forcing and elements of the earth's general circulation. Although globally integrated cloud forcing is nearly zero, there are large regional imbalances and well regulated processes in the shortwave and longwave spectrum that control the meridional gradient structure of the net radiation balance and the factors modulating the east-west oriented North Africa-western Pacific energy transport dipole. The analysis demonstrates that clouds play a dual role in both the shortwave and longwave spectra in terms of tropical and midlatitude east-west gradients. The key result is that cloud forcing, although not always the principle regulator of interannual variability of the global climate, serves to reinforce the basic three-cell meridional circulation.
Tonkin, Jonathan D.; Shah, Deep Narayan; Kuemmerlen, Mathias; Li, Fengqing; Cai, Qinghua; Haase, Peter; Jähnig, Sonja C.
2015-01-01
Little work has been done on large-scale patterns of stream insect richness in China. We explored the influence of climatic and catchment-scale factors on stream insect (Ephemeroptera, Plecoptera, Trichoptera; EPT) richness across mid-latitude China. We assessed the predictive ability of climatic, catchment land cover and physical structure variables on genus richness of EPT, both individually and combined, in 80 mid-latitude Chinese streams, spanning a 3899-m altitudinal gradient. We performed analyses using boosted regression trees and explored the nature of their influence on richness patterns. The relative importance of climate, land cover, and physical factors on stream insect richness varied considerably between the three orders, and while important for Ephemeroptera and Plecoptera, latitude did not improve model fit for any of the groups. EPT richness was linked with areas comprising high forest cover, elevation and slope, large catchments and low temperatures. Ephemeroptera favoured areas with high forest cover, medium-to-large catchment sizes, high temperature seasonality, and low potential evapotranspiration. Plecoptera richness was linked with low temperature seasonality and annual mean, and high slope, elevation and warm-season rainfall. Finally, Trichoptera favoured high elevation areas, with high forest cover, and low mean annual temperature, seasonality and aridity. Our findings highlight the variable role that catchment land cover, physical properties and climatic influences have on stream insect richness. This is one of the first studies of its kind in Chinese streams, thus we set the scene for more in-depth assessments of stream insect richness across broader spatial scales in China, but stress the importance of improving data availability and consistency through time. PMID:25909190
Castagneri, Daniele; Petit, Giai; Carrer, Marco
2015-12-01
Climate change can induce substantial modifications in xylem structure and water transport capacity of trees exposed to environmental constraints. To elucidate mechanisms of xylem plasticity in response to climate, we retrospectively analysed different cell anatomical parameters over tree-ring series in Norway spruce (Picea abies L. Karst.). We sampled 24 trees along an altitudinal gradient (1200, 1600 and 2100 m above sea level, a.s.l.) and processed 2335 ± 1809 cells per ring. Time series for median cell lumen area (MCA), cell number (CN), tree-ring width (RW) and tree-ring-specific hydraulic conductivity (Kr) were crossed with daily temperature and precipitation records (1926-2011) to identify climate influence on xylem anatomical traits. Higher Kr at the low elevation site was due to higher MCA and CN. These variables were related to different aspects of intra-seasonal climatic variability under different environmental conditions, with MCA being more sensitive to summer precipitation. Winter precipitation (snow) benefited most parameters in all the sites. Descending the gradient, sensitivity of xylem features to summer climate shifted mostly from temperature to precipitation. In the context of climate change, our results indicate that higher summer temperatures at high elevations will benefit cell production and xylem hydraulic efficiency, whereas reduced water availability at lower elevations could negatively affect tracheids enlargement and thus stem capacity to transport water. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Pastor, A.; Babault, J.; Teixell, A.; Arboleya, M. L.
2012-11-01
The Ouarzazate basin is a Cenozoic foreland basin located to the south of the High Atlas Mountains. The basin has been externally drained during the Quaternary, with fluvial dynamics dominated by erosive processes from a progressive base level drop. The current drainage network is composed of rivers draining the mountain and carrying large amounts of coarse sediments and by piedmont streams with smaller catchments eroding the soft Cenozoic rocks of the Ouarzazate basin. The coarse-grained sediments covering the channel beds of main rivers cause the steepening of the channel gradient and act as a shield inhibiting bedrock incision. Under such circumstances, piedmont streams that incise to lower gradients evolve to large, depressed pediments at lower elevations and threaten to capture rivers originating in the mountain. Much of the current surface of the Ouarzazate basin is covered by coarse sediments forming large systems of stepped fan pediments that developed by the filling of low elevation pediments after a capture event. We identified 14 capture events, and previously published geochronology support an ~ 100 ka frequency for fan pediment formation. Our study indicates that the reorganization of the fluvial network in the Ouarzazate basin during the late Pleistocene and Holocene has been controlled by the piedmont-stream piracy process, a process ultimately controlled by the cover effect. The stream capture is influenced by erosion, sediment supply and transport, and therefore may not be entirely decoupled from tectonic and climatic forcing. Indeed, we show that at least two capture events may have occurred during climate changes, and local tectonic structures control at most the spatial localization of capture events.
White, A.F.; Schulz, M.S.; Stonestrom, David A.; Vivit, D.V.; Fitzpatrick, J.; Bullen, T.D.; Maher, K.; Blum, A.E.
2009-01-01
The spatial and temporal changes in hydrology and pore water elemental and 87Sr/86Sr compositions are used to determine contemporary weathering rates in a 65- to 226-kyr-old soil chronosequence formed from granitic sediments deposited on marine terraces along coastal California. Soil moisture, tension and saturation exhibit large seasonal variations in shallow soils in response to a Mediterranean climate. These climate effects are dampened in underlying argillic horizons that progressively developed in older soils, and reached steady-state conditions in unsaturated horizons extending to depths in excess of 15 m. Hydraulic fluxes (qh), based on Cl mass balances, vary from 0.06 to 0.22 m yr-1, resulting in fluid residence times in the terraces of 10-24 yrs. As expected for a coastal environment, the order of cation abundances in soil pore waters is comparable to sea water, i.e., Na > Mg > Ca > K > Sr, while the anion sequence Cl > NO3 > HCO3 > SO4 reflects modifying effects of nutrient cycling in the grassland vegetation. Net Cl-corrected solute Na, K and Si increase with depth, denoting inputs from feldspar weathering. Solute 87Sr/86Sr ratios exhibit progressive mixing of sea water-dominated precipitation with inputs from less radiogenic plagioclase. While net Sr and Ca concentrations are anomalously high in shallow soils due to biological cycling, they decline with depth to low and/or negative net concentrations. Ca/Mg, Sr/Mg and 87Sr/86Sr solute and exchange ratios are similar in all the terraces, denoting active exchange equilibration with selectivities close to unity for both detrital smectite and secondary kaolinite. Large differences in the magnitudes of the pore waters and exchange reservoirs result in short-term buffering of the solute Ca, Sr, and Mg. Such buffering over geologic time scales can not be sustained due to declining inputs from residual plagioclase and smectite, implying periodic resetting of the exchange reservoir such as by past vegetational changes and/or climate. Pore waters approach thermodynamic saturation with respect to albite at depth in the younger terraces, indicating that weathering rates ultimately become transport-limited and dependent on hydrologic flux. Contemporary rates Rsolute are estimated from linear Na and Si pore weathering gradients bsolute such that Rsolute = frac(qh, bsolute ?? Sv) where Sv is the volumetric surface area and ?? is the stoichiometric coefficient. Plagioclase weathering rates (0.38-2.8 ?? 10-15 mol m-2 s-1) are comparable to those based on 87Sr/86Sr mass balances and solid-state Na and Ca gradients using analogous gradient approximations. In addition, contemporary solute gradients, under transport-limited conditions, approximate long-term solid-state gradients when normalized against the mass of protolith plagioclase and its corresponding aqueous solubility. The multi-faceted weathering analysis presented in this paper is perhaps the most comprehensive yet applied to a single field study. Within uncertainties of the methods used, present day weathering rates, based on solute characterizations, are comparable to average long-term past rates as evidenced by soil profiles.
Connectivity planning to address climate change
Tristan A. Nuñez; Joshua J. Lawler; Brad H. McRae; D. John Pierce; Meade B. Krosby; Darren M. Kavanagh; Peter H. Singleton; Joshua J. Tewksbury
2013-01-01
As the climate changes, human land use may impede species from tracking areas with suitable climates. Maintaining connectivity between areas of different temperatures could allow organisms to move along temperature gradients and allow species to continue to occupy the same temperature space as the climate warms. We used a coarse-filter approach to identify broad...
Photosynthetic Control of Atmospheric Carbonyl Sulfide during the Growing Season
NASA Technical Reports Server (NTRS)
Campbell, J. Elliott; Carmichael, Gregory R.; Chai, T.; Mena-Carrasco, M.; Tang, Y.; Blake, D. R.; Blake, N. J.; Vay, Stephanie A.; Collatz, G. James; Baker, I.;
2008-01-01
Climate models incorporate photosynthesis-climate feedbacks, yet we lack robust tools for large-scale assessments of these processes. Recent work suggests that carbonyl sulfide (COS), a trace gas consumed by plants, could provide a valuable constraint on photosynthesis. Here we analyze airborne observations of COS and carbon dioxide concentrations during the growing season over North America with a three-dimensional atmospheric transport model. We successfully modeled the persistent vertical drawdown of atmospheric COS using the quantitative relation between COS and photosynthesis that has been measured in plant chamber experiments. Furthermore, this drawdown is driven by plant uptake rather than other continental and oceanic fluxes in the model. These results provide quantitative evidence that COS gradients in the continental growing season may have broad use as a measurement-based photosynthesis tracer.
Kramer, Marc G; Chadwick, Oliver A
2016-09-01
Volcanic ash soils retain the largest and most persistent soil carbon pools of any ecosystem. However, the mechanisms governing soil carbon accumulation and weathering during initial phases of ecosystem development are not well understood. We examined soil organic matter dynamics and soil development across a high-altitude (3,560-3,030 m) 20-kyr climate gradient on Mauna Kea in Hawaii. Four elevation sites were selected (~250-500 mm rainfall), which range from sparsely vegetated to sites that contain a mix of shrubs and grasses. At each site, two or three pits were dug and major diagnostic horizons down to bedrock (intact lava) were sampled. Soils were analyzed for particle size, organic C and N, soil pH, exchangeable cations, base saturation, NaF pH, phosphorous sorption, and major elements. Mass loss and pedogenic metal accumulation (hydroxlamine Fe, Al, and Si extractions) were used to measure extent of weathering, leaching, changes in soil mineralogy and carbon accumulation. Reactive-phase (SRO) minerals show a general trend of increasing abundance with increasing rainfall. However carbon accumulation patterns across the climate gradient are largely decoupled from these trends. The results suggest that after 20 kyr, pedogenic processes have altered the nature and composition of the volcanic ash such that it is capable of retaining soil C even where organic acid influences from plant material and leaching from rainfall are severely limited. Carbon storage comparisons with lower-elevation soils on Mauna Kea and other moist mesic (2,500 mm rainfall) sites on Hawaii suggest that these soils have reached only between 1% and 15% of their capacity to retain carbon. Our results suggest that, after 20 kyr in low rainfall and a cold climate, weathering was decoupled from soil carbon accumulation patterns and the associated influence of vegetation on soil development. Overall, we conclude that the rate of carbon supply to the subsoil (driven by coupling of rainfall above ground plant production) is a governing factor of forms and amount of soil organic matter accumulation, while soil mineralogy remained relatively uniform. © 2016 by the Ecological Society of America.
de Luis, Martin; Čufar, Katarina; Di Filippo, Alfredo; Novak, Klemen; Papadopoulos, Andreas; Piovesan, Gianluca; Rathgeber, Cyrille B. K.; Raventós, José; Saz, Miguel Angel; Smith, Kevin T.
2013-01-01
We investigated the variability of the climate-growth relationship of Aleppo pine across its distribution range in the Mediterranean Basin. We constructed a network of tree-ring index chronologies from 63 sites across the region. Correlation function analysis identified the relationships of tree-ring index to climate factors for each site. We also estimated the dominant climatic gradients of the region using principal component analysis of monthly, seasonal, and annual mean temperature and total precipitation from 1,068 climatic gridpoints. Variation in ring width index was primarily related to precipitation and secondarily to temperature. However, we found that the dendroclimatic relationship depended on the position of the site along the climatic gradient. In the southern part of the distribution range, where temperature was generally higher and precipitation lower than the regional average, reduced growth was also associated with warm and dry conditions. In the northern part, where the average temperature was lower and the precipitation more abundant than the regional average, reduced growth was associated with cool conditions. Thus, our study highlights the substantial plasticity of Aleppo pine in response to different climatic conditions. These results do not resolve the source of response variability as being due to either genetic variation in provenance, to phenotypic plasticity, or a combination of factors. However, as current growth responses to inter-annual climate variability vary spatially across existing climate gradients, future climate-growth relationships will also likely be determined by differential adaptation and/or acclimation responses to spatial climatic variation. The contribution of local adaptation and/or phenotypic plasticity across populations to the persistence of species under global warming could be decisive for prediction of climate change impacts across populations. In this sense, a more complex forest dynamics modeling approach that includes the contribution of genetic variation and phenotypic plasticity can improve the reliability of the ecological inferences derived from the climate-growth relationships. PMID:24391786
Regional impacts of Atlantic Forest deforestation on climate and vegetation dynamics
NASA Astrophysics Data System (ADS)
Holm, J. A.; Chambers, J. Q.
2012-12-01
The Brazilian Atlantic Forest was a large and important forest due to its high biodiversity, endemism, range in climate, and complex geography. The original Atlantic Forest was estimated to cover 150 million hectares, spanning large latitudinal, longitudinal, and elevation gradients. This unique environment helped contribute to a diverse assemblage of plants, mammals, birds, and reptiles. Unfortunately, due to land conversion into agriculture, pasture, urban areas, and increased forest fragmentation, only ~8-10% of the original Atlantic Forest remains. Tropical deforestation in the Americas can have considerable effects on local to global climates, and surrounding vegetation growth and survival. This study uses a fully coupled, global climate model (Community Earth System Model, CESM v.1.0.1) to simulate the full removal of the historical Atlantic Forest, and evaluate the regional climatic and vegetation responses due to deforestation. We used the fully coupled atmosphere and land surface components in CESM, and a partially interacting ocean component. The vegetated grid cell portion of the land surface component, the Community Landscape Model (CLM), is divided into 4 of 16 plant functional types (PFTs) with vertical layers of canopy, leaf area index, soil physical properties, and interacting hydrological features all tracking energy, water, and carbon state and flux variables, making CLM highly capable in predicting the complex nature and outcomes of large-scale deforestation. The Atlantic Forest removal (i.e. deforestation) was conducted my converting all woody stem PFTs to grasses in CLM, creating a land-use change from forest to pasture. By comparing the simulated historical Atlantic Forest (pre human alteration) to a deforested Atlantic Forest (close to current conditions) in CLM and CESM we found that live stem carbon, NPP (gC m-2 yr-1), and other vegetation dynamics inside and outside the Atlantic Forest region were largely altered. In addition to vegetation effects, regional surface air temperature (C°), precipitation (mm day-1), and emitted longwave radiation (W m-2) were highly affected in the location of the removed forest, and throughout surrounding areas of South America. For example climate patterns of increased temperature and decreased precipitation were affected as far as the Amazon Forest region. The use of fully coupled global climate and terrestrial models to study the effects of large-scale forest removal have been rarely applied. This study successfully showed the valuation of an important tropical forest, and the consequences of large deforestation through the reporting of complex earth-atmosphere interactions between vegetation dynamics and climate.
Stationary Waves of the Ice Age Climate.
NASA Astrophysics Data System (ADS)
Cook, Kerry H.; Held, Isaac M.
1988-08-01
A linearized, steady state, primitive equation model is used to simulate the climatological zonal asymmetries (stationary eddies) in the wind and temperature fields of the 18 000 YBP climate during winter. We compare these results with the eddies simulated in the ice age experiments of Broccoli and Manabe, who used CLIMAP boundary conditions and reduced atmospheric CO2 in an atmospheric general circulation model (GCM) coupled with a static mixed layer ocean model. The agreement between the models is good, indicating that the linear model can be used to evaluate the relative influences of orography, diabatic heating, and transient eddy heat and momentum transports in generating stationary waves. We find that orographic forcing dominates in the ice age climate. The mechanical influence of the continental ice sheets on the atmosphere is responsible for most of the changes between the present day and ice age stationary eddies. This concept of the ice age climate is complicated by the sensitivity of the stationary eddies to the large increase in the magnitude of the zonal mean meridional temperature gradient simulated in the ice age GCM.
Casolo, Valentino; Beraldo, Paola; Braidot, Enrico; Zancani, Marco; Rixen, Christian
2018-01-01
Enhanced shrub growth and expansion are widespread responses to climate warming in many arctic and alpine ecosystems. Warmer temperatures and shrub expansion could cause major changes in plant community structure, affecting both species composition and diversity. To improve our understanding of the ongoing changes in plant communities in alpine tundra, we studied interrelations among climate, shrub growth, shrub cover and plant diversity, using an elevation gradient as a proxy for climate conditions. Specifically, we analyzed growth of bilberry (Vaccinium myrtillus L.) and its associated plant communities along an elevation gradient of ca. 600 vertical meters in the eastern European Alps. We assessed the ramet age, ring width and shoot length of V. myrtillus, and the shrub cover and plant diversity of the community. At higher elevation, ramets of V. myrtillus were younger, with shorter shoots and narrower growth rings. Shoot length was positively related to shrub cover, but shrub cover did not show a direct relationship with elevation. A greater shrub cover had a negative effect on species richness, also affecting species composition (beta-diversity), but these variables were not influenced by elevation. Our findings suggest that changes in plant diversity are driven directly by shrub cover and only indirectly by climate, here represented by changes in elevation. PMID:29698464
Snell-Rood, Emilie C
2012-02-01
The divergence of signals along ecological gradients may lead to speciation. The current research tests the hypothesis that variation in sound absorption selects for divergence in acoustic signals along climatic gradients, which has implications for understanding not only diversification, but also how organisms may respond to climate change. Because sound absorption varies with temperature, humidity, and the frequency of sound, individuals or species may vary signal structure with changes in climate over space or time. In particular, signals of lower frequency, narrower bandwidth, and longer duration should be more detectable in environments with high sound absorption. Using both North American wood warblers (Parulidae) and bats of the American Southwest, this work found evidence of associations between signal structure and sound absorption. Warbler species with higher mean absorption across their range were more likely to have narrow bandwidth songs. Bat species found in higher absorption habitats were more likely to have lower frequency echolocation calls. In addition, bat species changed echolocation call structure across seasons, using longer duration, lower frequency calls in the higher absorption rainy season. These results suggest that signals may diverge along climatic gradients due to variation in sound absorption, although the effects of absorption are modest. © 2012 Acoustical Society of America
Inverse Modeling of Tropospheric Methane Constrained by 13C Isotope in Methane
NASA Astrophysics Data System (ADS)
Mikaloff Fletcher, S. E.; Tans, P. P.; Bruhwiler, L. M.
2001-12-01
Understanding the budget of methane is crucial to predicting climate change and managing earth's carbon reservoirs. Methane is responsible for approximately 15% of the anthropogenic greenhouse forcing and has a large impact on the oxidative capacity of Earth's atmosphere due to its reaction with hydroxyl radical. At present, many of the sources and sinks of methane are poorly understood, due in part to the large spatial and temporal variability of the methane flux. Model calculations of methane mixing ratios using most process-based source estimates typically over-predict the inter-hemispheric gradient of atmospheric methane. Inverse models, which estimate trace gas budgets by using observations of atmospheric mixing ratios and transport models to estimate sources and sinks, have been used to incorporate features of the atmospheric observations into methane budgets. While inverse models of methane generally tend to find a decrease in northern hemisphere sources and an increase in southern hemisphere sources relative to process-based estimates,no inverse study has definitively associated the inter-hemispheric gradient difference with a specific source process or group of processes. In this presentation, observations of isotopic ratios of 13C in methane and isotopic signatures of methane source processes are used in conjunction with an inverse model of methane to further constrain the source estimates of methane. In order to investigate the advantages of incorporating 13C, the TM3 three-dimensional transport model was used. The methane and carbon dioxide measurements used are from a cooperative international effort, the Cooperative Air Sampling Network, lead by the Climate Monitoring Diagnostics Laboratory (CMDL) at the National Oceanic and Atmospheric Administration (NOAA). Experiments using model calculations based on process-based source estimates show that the inter-hemispheric gradient of δ 13CH4 is not reproduced by these source estimates, showing that the addition of observations of δ 13CH4 should provide unique insight into the methane problem.
Does weather shape rodents? Climate related changes in morphology of two heteromyid species
NASA Astrophysics Data System (ADS)
Wolf, Mosheh; Friggens, Michael; Salazar-Bravo, Jorge
2009-01-01
Geographical variation in morphometric characters in heteromyid rodents has often correlated with climate gradients. Here, we used the long-term database of rodents trapped in the Sevilleta National Wildlife Refuge in New Mexico, USA to test whether significant annual changes in external morphometric characters are observed in a region with large variations in temperature and precipitation. We looked at the relationships between multiple temperature and precipitation variables and a number of morphological traits (body mass, body, tail, hind leg, and ear length) for two heteromyid rodents, Dipodomys merriami and Perognathus flavescens. Because these rodents can live multiple years in the wild, the climate variables for the year of the capture and the previous 2 years were included in the analyses. Using multiple linear regressions, we found that all of our morphometric traits, with the exception of tail length in D. merriami, had a significant relationship with one or more of the climate variables used. Our results demonstrate that effects of climate change on morphological traits occur over short periods, even in noninsular mammal populations. It is unclear, though, whether these changes are the result of morphological plasticity or natural selection.
Adaptive fine root foraging patterns in climate experiments and natural gradients
NASA Astrophysics Data System (ADS)
Ostonen, Ivika; Truu, Marika; Parts, Kaarin; Truu, Jaak
2017-04-01
Site based manipulative experiments and studies along climatic gradients have long been keystones of ecological research. We aimed to compare the response of ectomycorrhizal (EcM) and fine roots in manipulative studies and along climate gradient to describe the universal trends in root traits and to raise hypotheses about general mechanisms in fine root system adaptation of forest trees in global change. The root traits from two climate manipulation experiments - Bangor FACE and FAHM in Estonia, manipulated by CO2 concentration and relative air humidity in silver birch forest ecosystems, respectively and the data for three most ubiquitous tree species - Norway spruce (Picea abies), Scots pine (Pinus sylvestris) and silver birch (Betula pendula) stands along natural gradient encompassing different climate and forest zones in Northern Europe were analysed. There are two main strategies in response of fine root system of trees: A) an extensive increase in absorptive root biomass, surface area and length, or B) a greater reliance on root-associated EcM fungi and bacterial communities with a smaller investment to absorptive root biomass. Trees in all studies tended to increase the EcM root biomass and the proportion of EcM root biomass of total fine root biomass towards harsh (northern boreal forests) or changed conditions (stress created by the increase in CO2 concentration or relative air humidity). We envisage a role of trilateral relation between the morphological traits of absorptive fine roots, exploration types of colonising EcM fungi and rhizosphere and bulk soil bacterial community structure. A significant change in EcM absorptive fine root biomass in all experiments and for all studied tree species coincided with changes in absorptive root morphology, being longer and thinner root tips with higher root tissue density in poor/treated sites. These changes were associated with significant shifts in community structure of dominating EcM fungi as well as soil and rhizosphere bacterial communities. We suggest a multidimensional concept of absorptive fine root foraging strategies involving both qualitative and quantitative changes in root-mycorhizosphere along environmental gradients and in climate experiments.
NASA Astrophysics Data System (ADS)
Cusack, D. F.; Markesteijn, L.; Turner, B. L.
2016-12-01
Soil organic carbon (C) dynamics present a large source of uncertainty in global C cycle models, and inhibit our ability to predict effects of climate change. Tropical wet and seasonal forests exert a disproportionate influence on the global C cycle relative to their land area because they are the most C-rich ecosystems on Earth, containing 25-40% of global terrestrial C stocks. While significant advances have been made to map aboveground C stocks in tropical forests, determining soil C stocks using remote sensing technology is still not possible for closed-canopy forests. It is unclear to what extent aboveground C stocks can be used to predict soil C stocks across tropical forests. Here we present 1-m-deep soil organic C stocks for 42 tropical forest sites across rainfall and geological gradients in Panama. We show that soil C stocks do not correspond to aboveground plant biomass or to litterfall productivity in these humid tropical forests. Rather, soil C stocks were strongly and positively predicted by fine root biomass, soil clay content, and rainfall (R2 = 0.47, p < 0.05). Fine root biomass, in turn, was most strongly predicted by total extractable soil base cations (R2 = 0.24, p < 0.05, negative relationship). Our measures of tropical soil C and its relationships with climatic and soil chemical characteristics form an important basis for improving model estimates of soil C stocks and predictions of climate change effects on tropical C storage.
Impact of Lateral Mixing in the Ocean on El Nino in Fully Coupled Climate Models
NASA Astrophysics Data System (ADS)
Gnanadesikan, A.; Russell, A.; Pradal, M. A. S.; Abernathey, R. P.
2016-02-01
Given the large number of processes that can affect El Nino, it is difficult to understand why different climate models simulate El Nino differently. This paper focusses on the role of lateral mixing by mesoscale eddies. There is significant disagreement about the value of the mixing coefficient ARedi which parameterizes the lateral mixing of tracers. Coupled climate models usually prescribe small values of this coefficient, ranging between a few hundred and a few thousand m2/s. Observations, however, suggest values that are much larger. We present a sensitivity study with a suite of Earth System Models that examines the impact of varying ARedi on the amplitude of El Nino. We examine the effect of varying a spatially constant ARedi over a range of values similar to that seen in the IPCC AR5 models, as well as looking at two spatially varying distributions based on altimetric velocity estimates. While the expectation that higher values of ARedi should damp anomalies is borne out in the model, it is more than compensated by a weaker damping due to vertical mixing and a stronger response of atmospheric winds to SST anomalies. Under higher mixing, a weaker zonal SST gradient causes the center of convection over the Warm pool to shift eastward and to become more sensitive to changes in cold tongue SSTs . Changes in the SST gradient also explain interdecadal ENSO variability within individual model runs.
NASA Astrophysics Data System (ADS)
Matthes, J. H.; Dietze, M.; Fox, A. M.; Goring, S. J.; McLachlan, J. S.; Moore, D. J.; Poulter, B.; Quaife, T. L.; Schaefer, K. M.; Steinkamp, J.; Williams, J. W.
2014-12-01
Interactions between ecological systems and the atmosphere are the result of dynamic processes with system memories that persist from seconds to centuries. Adequately capturing long-term biosphere-atmosphere exchange within earth system models (ESMs) requires an accurate representation of changes in plant functional types (PFTs) through time and space, particularly at timescales associated with ecological succession. However, most model parameterization and development has occurred using datasets than span less than a decade. We tested the ability of ESMs to capture the ecological dynamics observed in paleoecological and historical data spanning the last millennium. Focusing on an area from the Upper Midwest to New England, we examined differences in the magnitude and spatial pattern of PFT distributions and ecotones between historic datasets and the CMIP5 inter-comparison project's large-scale ESMs. We then conducted a 1000-year model inter-comparison using six state-of-the-art biosphere models at sites that bridged regional temperature and precipitation gradients. The distribution of ecosystem characteristics in modeled climate space reveals widely disparate relationships between modeled climate and vegetation that led to large differences in long-term biosphere-atmosphere fluxes for this region. Model simulations revealed that both the interaction between climate and vegetation and the representation of ecosystem dynamics within models were important controls on biosphere-atmosphere exchange.
The dynamics of droplets in moist Rayleigh-Benard turbulence
NASA Astrophysics Data System (ADS)
Chandrakar, Kamal Kant; van der Voort, Dennis; Kinney, Greg; Cantrell, Will; Shaw, Raymond
2017-11-01
Clouds are an intricate part of the climate, and strongly influence atmospheric dynamics and radiative balances. While properties such as cloud albedo and precipitation rate are large scale effects, these properties are determined by dynamics on the microscale, such droplet sizes, liquid water content, etc. The growth of droplets from condensation is dependent on a multitude of parameters, such as aerosol concentration (nucleation sites) and turbulence (scalar fluctuations and coalescence). However, the precise mechanism behind droplet growth and clustering in a cloud environment is still unclear. In this investigation we use a facility called the Pi Chamber to generate a (miniature) cloud in a laboratory setting with known boundary conditions, such as aerosol concentration, temperature, and humidity. Through the use of particle imaging velocimetry (PIV) on the droplets generated in the cloud, we can investigate the dynamics of these cloud droplets in the convective (Rayleigh-Benard) turbulence generated through an induced temperature gradient. We show the influence of the temperature gradient and Froude number (gravity forces) on the changing turbulence anisotropy, large scale circulation, and small-scale dissipation rates. This work was supported by National Science Foundation Grant AGS-1623429.
On the role of ozone feedback in the ENSO amplitude response under global warming.
Nowack, Peer J; Braesicke, Peter; Luke Abraham, N; Pyle, John A
2017-04-28
The El Niño-Southern Oscillation (ENSO) in the tropical Pacific Ocean is of key importance to global climate and weather. However, state-of-the-art climate models still disagree on the ENSO's response under climate change. The potential role of atmospheric ozone changes in this context has not been explored before. Here we show that differences between typical model representations of ozone can have a first-order impact on ENSO amplitude projections in climate sensitivity simulations. The vertical temperature gradient of the tropical middle-to-upper troposphere adjusts to ozone changes in the upper troposphere and lower stratosphere, modifying the Walker circulation and consequently tropical Pacific surface temperature gradients. We show that neglecting ozone changes thus results in a significant increase in the number of extreme ENSO events in our model. Climate modeling studies of the ENSO often neglect changes in ozone. We therefore highlight the need to understand better the coupling between ozone, the tropospheric circulation, and climate variability.
Space can substitute for time in predicting climate-change effects on biodiversity
Blois, Jessica L.; Williams, John W.; Fitzpatrick, Matthew C.; Jackson, Stephen T.; Ferrier, Simon
2013-01-01
“Space-for-time” substitution is widely used in biodiversity modeling to infer past or future trajectories of ecological systems from contemporary spatial patterns. However, the foundational assumption—that drivers of spatial gradients of species composition also drive temporal changes in diversity—rarely is tested. Here, we empirically test the space-for-time assumption by constructing orthogonal datasets of compositional turnover of plant taxa and climatic dissimilarity through time and across space from Late Quaternary pollen records in eastern North America, then modeling climate-driven compositional turnover. Predictions relying on space-for-time substitution were ∼72% as accurate as “time-for-time” predictions. However, space-for-time substitution performed poorly during the Holocene when temporal variation in climate was small relative to spatial variation and required subsampling to match the extent of spatial and temporal climatic gradients. Despite this caution, our results generally support the judicious use of space-for-time substitution in modeling community responses to climate change.
Space can substitute for time in predicting climate-change effects on biodiversity.
Blois, Jessica L; Williams, John W; Fitzpatrick, Matthew C; Jackson, Stephen T; Ferrier, Simon
2013-06-04
"Space-for-time" substitution is widely used in biodiversity modeling to infer past or future trajectories of ecological systems from contemporary spatial patterns. However, the foundational assumption--that drivers of spatial gradients of species composition also drive temporal changes in diversity--rarely is tested. Here, we empirically test the space-for-time assumption by constructing orthogonal datasets of compositional turnover of plant taxa and climatic dissimilarity through time and across space from Late Quaternary pollen records in eastern North America, then modeling climate-driven compositional turnover. Predictions relying on space-for-time substitution were ∼72% as accurate as "time-for-time" predictions. However, space-for-time substitution performed poorly during the Holocene when temporal variation in climate was small relative to spatial variation and required subsampling to match the extent of spatial and temporal climatic gradients. Despite this caution, our results generally support the judicious use of space-for-time substitution in modeling community responses to climate change.
Soil fertility shapes belowground food webs across a regional climate gradient.
Laliberté, Etienne; Kardol, Paul; Didham, Raphael K; Teste, François P; Turner, Benjamin L; Wardle, David A
2017-10-01
Changes in soil fertility during pedogenesis affect the quantity and quality of resources entering the belowground subsystem. Climate governs pedogenesis, yet how climate modulates responses of soil food webs to soil ageing remains unexplored because of the paucity of appropriate model systems. We characterised soil food webs along each of four retrogressive soil chronosequences situated across a strong regional climate gradient to show that belowground communities are predominantly shaped by changes in fertility rather than climate. Basal consumers showed hump-shaped responses to soil ageing, which were propagated to higher-order consumers. There was a shift in dominance from bacterial to fungal energy channels with increasing soil age, while the root energy channel was most important in intermediate-aged soils. Our study highlights the overarching importance of soil fertility in regulating soil food webs, and indicates that belowground food webs will respond more strongly to shifts in soil resources than climate change. © 2017 John Wiley & Sons Ltd/CNRS.
Simulating Pliocene warmth and a permanent El Niño-like state: The role of cloud albedo
Burls, N. J.; Fedorov, A. V.
2014-09-13
We present that available evidence suggests that during the early Pliocene (4–5 Ma) the mean east-west sea surface temperature (SST) gradient in the equatorial Pacific Ocean was significantly smaller than today, possibly reaching only 1–2°C. The meridional SST gradients were also substantially weaker, implying an expanded ocean warm pool in low latitudes. Subsequent global cooling led to the establishment of the stronger, modern temperature gradients. Given our understanding of the physical processes that maintain the present-day cold tongue in the east, warm pool in the west and hence sharp temperature contrasts, determining the key factors that maintained early Pliocene climatemore » still presents a challenge for climate theories and models. This study demonstrates how different cloud properties could provide a solution. We show that a reduction in the meridional gradient in cloud albedo can sustain reduced meridional and zonal SST gradients, an expanded warm pool and warmer thermal stratification in the ocean, and weaker Hadley and Walker circulations in the atmosphere. Having conducted a range of hypothetical modified cloud albedo experiments, we arrive at our Pliocene simulation, which shows good agreement with proxy SST data from major equatorial and coastal upwelling regions, the tropical warm pool, middle and high latitudes, and available subsurface temperature data. As suggested by the observations, the simulated Pliocene-like climate sustains a robust El Niño-Southern Oscillation despite the reduced mean east-west SST gradient. In conclusion, our results demonstrate that cloud albedo changes may be a critical element of Pliocene climate and that simulating the meridional SST gradient correctly is central to replicating the geographical patterns of Pliocene warmth.« less
Diversity dynamics of Miocene mammals in relation to the history of tectonism and climate
Finarelli, John A.; Badgley, Catherine
2010-01-01
Continental biodiversity gradients result not only from ecological processes, but also from evolutionary and geohistorical processes involving biotic turnover in landscape and climatic history over millions of years. Here, we investigate the evolutionary and historical contributions to the gradient of increasing species richness with topographic complexity. We analysed a dataset of 418 fossil rodent species from western North America spanning 25 to 5 Ma. We compared diversification histories between tectonically active (Intermontane West) and quiescent (Great Plains) regions. Although diversification histories differed between the two regions, species richness, origination rate and extinction rate per million years were not systematically different over the 20 Myr interval. In the tectonically active region, the greatest increase in originations coincided with a Middle Miocene episode of intensified tectonic activity and global warming. During subsequent global cooling, species richness declined in the montane region and increased on the Great Plains. These results suggest that interactions between tectonic activity and climate change stimulate diversification in mammals. The elevational diversity gradient characteristic of modern mammalian faunas was not a persistent feature over geologic time. Rather, the Miocene rodent record suggests that the elevational diversity gradient is a transient feature arising during particular episodes of Earth's history. PMID:20427339
2012-09-30
Lamont-Doherty Earth Observatory of Columbia University Ocean and Climate Physics Division 61 Route 9W Palisades , NY 10964 Phone: (845) 365-8547...Route 9W Palisades , NY 10964 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S...convective cells in the region as seen in the S-Pol. The robust large-scale temperature gradient of nearly 1°C is real with window and atmosphere
NASA Astrophysics Data System (ADS)
van der Voort, Tessa Sophia; Hagedorn, Frank; McIntyre, Cameron; Zell, Claudia; Eglinton, Timothy Ian
2017-04-01
Soil carbon constitutes the largest terrestrial reservoir of organic carbon, and therefore understanding the mechanisms and drivers of carbon stabilization is crucial, especially in the framework of climate change. The understanding of the dependence of soil organic turnover in specific carbon pools as related to e.g. climate, soil texture and mineralogy is limited. In this framework, radiocarbon constitutes a uniquely powerful tool that help to unravel carbon dynamics from decadal to millennial timescales. This project combines bulk and pool-specific radiocarbon analyses in the top and deep soil on a wide range of forested soils that span a large climatic gradient (MAT 1.3-9.2°C, MAP 600 to 2100 mm m-2y-1). These well-studies sites are part of the Long-Term Forest Ecosystem Research (LWF) program of the Swiss Federal Institute for Forest, Snow and Landscape research (WSL). This study aims to combine the insights gained from bulk and pool-specific turnover to environmental conditions and molecular composition of soil carbon. The pools investigated span the mineral-associated (occluded and heavy fractions from density fractionation) and potentially water-soluble (free light fractions from density fractionation and water extractable organic carbon) organic carbon fractions. Pool-specific radiocarbon work is augmented by the measurement of abundance of compounds such as alkanes, fatty acids and lignin phenols on a subset of samples. Initial results show disparate patterns depending on soil type and in particular soil texture, which could be indicative of various stabilization mechanisms in different soils. Overall, this study provides new insights into the controls of soil organic matter dynamics as related to environmental conditions, in particular in specific sub-pools of carbon.
Tracing grassland degradation on the Eastern Tibetan Plateau with multi-temporal remote sensing data
NASA Astrophysics Data System (ADS)
Fassnacht, Fabian E.; Li, Li; Fritz, Andreas
2017-04-01
The Tibetan Plateau in Western China is the world's largest alpine landscape, sheltering a rich diversity of native flora and fauna. In the past few decades, the Tibetan Plateau was found to suffer from grassland degradation processes. Grassland degradation is assumed to not only endanger biodiversity but also to increase the risk for natural hazards in other parts of the country which are ecologically and hydrologically connected to the area. Grassland degradation is furthermore, changing the albedo of the surfaces of the Plateau and may therefore even notably affect atmospheric and climatic processes. However, the mechanisms behind the degradation processes remain poorly understood due to scarce baseline data and insufficient scientific research as well as manifold potential influences on the degradation processes including pastoral management, climate, herbivor mammals and administrative decisions. This study tries to contribute to this research gap by tracing grassland degradation processes by time-series analysis of multi-spectral Landsat data. After identifying the degraded areas, it is examined whether the degradation patterns relate to topographic properties, climatic gradients or administrative borders. Results from a first study showed that most degradation occurred in high-altitude areas, while slope and aspect where not having a notable influence. Furthermore, a climatic gradient within the study area was found to correlate with the degradation patterns observed for large extents. Currently, the study is being expanded over a larger area and more detailed spatially-adaptive analysis concerning the degradation drivers are being developed. Corresponding results will be presented. We conclude that remotely sensed patterns of grassland degradation can contribute to an improved understanding of the degradation processed on the Tibetan Plateau by providing spatially and temporally explicit information on the degradation processes at an adequate scale.
Ocean currents modify the coupling between climate change and biogeographical shifts.
García Molinos, J; Burrows, M T; Poloczanska, E S
2017-05-02
Biogeographical shifts are a ubiquitous global response to climate change. However, observed shifts across taxa and geographical locations are highly variable and only partially attributable to climatic conditions. Such variable outcomes result from the interaction between local climatic changes and other abiotic and biotic factors operating across species ranges. Among them, external directional forces such as ocean and air currents influence the dispersal of nearly all marine and many terrestrial organisms. Here, using a global meta-dataset of observed range shifts of marine species, we show that incorporating directional agreement between flow and climate significantly increases the proportion of explained variance. We propose a simple metric that measures the degrees of directional agreement of ocean (or air) currents with thermal gradients and considers the effects of directional forces in predictions of climate-driven range shifts. Ocean flows are found to both facilitate and hinder shifts depending on their directional agreement with spatial gradients of temperature. Further, effects are shaped by the locations of shifts in the range (trailing, leading or centroid) and taxonomic identity of species. These results support the global effects of climatic changes on distribution shifts and stress the importance of framing climate expectations in reference to other non-climatic interacting factors.
Berry composition and climate: responses and empirical models.
Barnuud, Nyamdorj N; Zerihun, Ayalsew; Gibberd, Mark; Bates, Bryson
2014-08-01
Climate is a strong modulator of berry composition. Accordingly, the projected change in climate is expected to impact on the composition of berries and of the resultant wines. However, the direction and extent of climate change impact on fruit composition of winegrape cultivars are not fully known. This study utilised a climate gradient along a 700 km transect, covering all wine regions of Western Australia, to explore and empirically describe influences of climate on anthocyanins, pH and titratable acidity (TA) levels in two or three cultivars of Vitis vinifera (Cabernet Sauvignon, Chardonnay and Shiraz). The results showed that, at a common maturity of 22° Brix total soluble solids, berries from the warmer regions had low levels of anthocyanins and TA as well as high pH compared to berries from the cooler regions. Most of these regional variations in berry composition reflected the prevailing climatic conditions of the regions. Thus, depending on cultivar, 82-87 % of TA, 83 % of anthocyanins and about half of the pH variations across the gradient were explained by climate-variable-based empirical models. Some of the variables that were relevant in describing the variations in berry attributes included: diurnal ranges and ripening period temperature (TA), vapour pressure deficit in October and growing degree days (pH), and ripening period temperatures (anthocyanins). Further, the rates of change in these berry attributes in response to climate variables were cultivar dependent. Based on the observed patterns along the climate gradient, it is concluded that: (1) in a warming climate, all other things being equal, berry anthocyanins and TA levels will decline whereas pH levels will rise; and (2) despite variations in non-climatic factors (e.g. soil type and management) along the sampling transect, variations in TA and anthocyanins were satisfactorily described using climate-variable-based empirical models, indicating the overriding impact of climate on berry composition. The models presented here are useful tools for assessing likely changes in berry TA and anthocyanins in response to changing climate for the wine regions and cultivars covered in this study.
Berry composition and climate: responses and empirical models
NASA Astrophysics Data System (ADS)
Barnuud, Nyamdorj N.; Zerihun, Ayalsew; Gibberd, Mark; Bates, Bryson
2014-08-01
Climate is a strong modulator of berry composition. Accordingly, the projected change in climate is expected to impact on the composition of berries and of the resultant wines. However, the direction and extent of climate change impact on fruit composition of winegrape cultivars are not fully known. This study utilised a climate gradient along a 700 km transect, covering all wine regions of Western Australia, to explore and empirically describe influences of climate on anthocyanins, pH and titratable acidity (TA) levels in two or three cultivars of Vitis vinifera (Cabernet Sauvignon, Chardonnay and Shiraz). The results showed that, at a common maturity of 22° Brix total soluble solids, berries from the warmer regions had low levels of anthocyanins and TA as well as high pH compared to berries from the cooler regions. Most of these regional variations in berry composition reflected the prevailing climatic conditions of the regions. Thus, depending on cultivar, 82-87 % of TA, 83 % of anthocyanins and about half of the pH variations across the gradient were explained by climate-variable-based empirical models. Some of the variables that were relevant in describing the variations in berry attributes included: diurnal ranges and ripening period temperature (TA), vapour pressure deficit in October and growing degree days (pH), and ripening period temperatures (anthocyanins). Further, the rates of change in these berry attributes in response to climate variables were cultivar dependent. Based on the observed patterns along the climate gradient, it is concluded that: (1) in a warming climate, all other things being equal, berry anthocyanins and TA levels will decline whereas pH levels will rise; and (2) despite variations in non-climatic factors (e.g. soil type and management) along the sampling transect, variations in TA and anthocyanins were satisfactorily described using climate-variable-based empirical models, indicating the overriding impact of climate on berry composition. The models presented here are useful tools for assessing likely changes in berry TA and anthocyanins in response to changing climate for the wine regions and cultivars covered in this study.
Douglas-fir growth in mountain ecosystems: water limits tree growth from stand to region
Jeremy S. Littell; David L. Peterson; Michael Tjoelker
2008-01-01
The purpose of this work is to understand the nature of growth-climate relationships for Douglas-fir (Pseudotsuga menziesii) across the climatic dimensions of its niche. We used a combination of biophysically informed sampling (to identify sample sites) and dendroclimatology (to identify growth-climate relationships) along a climate gradient in...
From GCM grid cell to agricultural plot: scale issues affecting modelling of climate impact
Baron, Christian; Sultan, Benjamin; Balme, Maud; Sarr, Benoit; Traore, Seydou; Lebel, Thierry; Janicot, Serge; Dingkuhn, Michael
2005-01-01
General circulation models (GCM) are increasingly capable of making relevant predictions of seasonal and long-term climate variability, thus improving prospects of predicting impact on crop yields. This is particularly important for semi-arid West Africa where climate variability and drought threaten food security. Translating GCM outputs into attainable crop yields is difficult because GCM grid boxes are of larger scale than the processes governing yield, involving partitioning of rain among runoff, evaporation, transpiration, drainage and storage at plot scale. This study analyses the bias introduced to crop simulation when climatic data is aggregated spatially or in time, resulting in loss of relevant variation. A detailed case study was conducted using historical weather data for Senegal, applied to the crop model SARRA-H (version for millet). The study was then extended to a 10°N–17° N climatic gradient and a 31 year climate sequence to evaluate yield sensitivity to the variability of solar radiation and rainfall. Finally, a down-scaling model called LGO (Lebel–Guillot–Onibon), generating local rain patterns from grid cell means, was used to restore the variability lost by aggregation. Results indicate that forcing the crop model with spatially aggregated rainfall causes yield overestimations of 10–50% in dry latitudes, but nearly none in humid zones, due to a biased fraction of rainfall available for crop transpiration. Aggregation of solar radiation data caused significant bias in wetter zones where radiation was limiting yield. Where climatic gradients are steep, these two situations can occur within the same GCM grid cell. Disaggregation of grid cell means into a pattern of virtual synoptic stations having high-resolution rainfall distribution removed much of the bias caused by aggregation and gave realistic simulations of yield. It is concluded that coupling of GCM outputs with plot level crop models can cause large systematic errors due to scale incompatibility. These errors can be avoided by transforming GCM outputs, especially rainfall, to simulate the variability found at plot level. PMID:16433096
Historical climate controls soil respiration responses to current soil moisture
Waring, Bonnie G.; Rocca, Jennifer D.; Kivlin, Stephanie N.
2017-01-01
Ecosystem carbon losses from soil microbial respiration are a key component of global carbon cycling, resulting in the transfer of 40–70 Pg carbon from soil to the atmosphere each year. Because these microbial processes can feed back to climate change, understanding respiration responses to environmental factors is necessary for improved projections. We focus on respiration responses to soil moisture, which remain unresolved in ecosystem models. A common assumption of large-scale models is that soil microorganisms respond to moisture in the same way, regardless of location or climate. Here, we show that soil respiration is constrained by historical climate. We find that historical rainfall controls both the moisture dependence and sensitivity of respiration. Moisture sensitivity, defined as the slope of respiration vs. moisture, increased fourfold across a 480-mm rainfall gradient, resulting in twofold greater carbon loss on average in historically wetter soils compared with historically drier soils. The respiration–moisture relationship was resistant to environmental change in field common gardens and field rainfall manipulations, supporting a persistent effect of historical climate on microbial respiration. Based on these results, predicting future carbon cycling with climate change will require an understanding of the spatial variation and temporal lags in microbial responses created by historical rainfall. PMID:28559315
NASA Astrophysics Data System (ADS)
Alexander, H. D.; Loranty, M. M.; Natali, S.; Pena, H., III; Ludwig, S.; Spektor, V.; Davydov, S. P.; Zimov, N.; Mack, M. C.
2017-12-01
Fire severity is increasing in larch forests of the Siberian Arctic as climate warms, and initial fire impacts on tree demographic processes could be an especially important determinant of long-term forest structure and carbon (C) dynamics. We hypothesized that (1) larch forest regrowth post-fire is largely determined by residual soil organic layer (SOL) depth because of the SOL's role as a seedbed and thermal regulator, and (2) changes in post-fire larch recruitment impact C accumulation through stand density impacts on understory microclimate and permafrost thaw. We tested these hypotheses by (1) experimentally creating a soil burn severity gradient in a Cajander larch (Larix cajanderi Mayr.) forest near Cherskiy, Russia and (2) quantifying C pools across a stand density gradient within a 75-year old fire scar. From 2012-2015, we added larch seeds to plots burned at different severities and monitored recruitment along with permafrost and active layer (i.e., subject to annual freeze-thaw) conditions (SOL depth, temperature, moisture, and thaw depth). Across the density gradient, we inventoried larch trees and harvested ground-layer vegetation to estimate aboveground contribution to C pools. We quantified woody debris C pools and sampled belowground C pools (soil, fine roots, and coarse roots) in the organic + upper (0-10 cm) mineral soil. Larch recruits were rare in unburned and low severity plots, but a total of 6 new germinants m-2 were tallied in moderate and high severity plots during the study. Seedling survival for > 1 year was only 40 and 25% on moderate and high severity treatments, respectively, but yielded net larch recruitment of 2 seedlings m-2, compared to 0.3 seedlings m-2 on low severity plots. Density of both total and established recruits increased with decreasing residual SOL depth, which correlated with increased soil temperature, moisture, and thaw depth. At 75-year post-fire, total C pools increased with increased larch density, largely due to increased tree aboveground C pools and decreased ground-layer vegetation C pools, which corresponded to higher canopy cover, cooler soils, and shallower active layer depths. Our findings highlight the potential for a climate-driven increase in fire severity to alter tree recruitment, successional dynamics, and C cycling in Siberian larch forests.
Influence of Microclimate on Semi-Arid Montane Conifer Forest Sapflux Velocity in Complex Terrain
NASA Astrophysics Data System (ADS)
Thirouin, K. R.; Barnard, D. M.; Barnard, H. R.
2016-12-01
Microclimate variation in complex terrain is key to our understanding of large-scale climate change effects on montane ecosystems. Modern climate models forecast that semi-arid montane ecosystems in the western United States are to experience increases in temperature, number of extreme drought events, and decreases in annual snowpack, all of which will potentially influence ecosystem water, carbon, and energy balances. In this study, we developed response curves that describe the relationships between stem sapflux velocity, air temperature (Tair), incoming solar radiation (SWin), soil temperature (Tsoil), and soil moisture content (VWC) in sites of Pinus contorta and Pinus ponderosa distributed along an elevation and aspect gradient in the montane zone of the Central Rocky Mountains, Colorado, USA. Among sites we found sapflux velocity to be significantly correlated with all four environmental factors (p < 0.05), but most strongly with SWin and Tair. The response of sapflux velocity to SWin was logarithmic, whereas the response to Tair indicated a peak sapflux velocity at a site-specific temperature that declined with increasing Tair. Sapflux velocity also increased with increasing VWC, but decreased with increasing Tsoil. At south-facing sites, the initial increase in the logarithmic response curve for SWin leveled off at 150-250 W m-2, whereas for north-facing sites it leveled off at 50-125 W m-2. While the differences in the SWin response between aspects could be due to species physiological differences, the highest elevation south-facing P. contorta site behaved similarly to the south-facing P. ponderosa, suggesting that environmental drivers may dominate the response. In response to Tair, peak sapflux velocity occurred at 12-13 degrees C at all sites except the mid-slope north-facing P. contorta site, which also had the lowest Tsoil. The responses of stem sapflux velocity to climate drivers indicate that forest transpiration is regulated by microclimate gradients across small spatial scales in complex terrain, which need to be characterized in order to understand broader ecosystem dynamics and the role that large-scale climate change will play in these systems.
Mapping Brazilian savanna vegetation gradients with Landsat time series
NASA Astrophysics Data System (ADS)
Schwieder, Marcel; Leitão, Pedro J.; da Cunha Bustamante, Mercedes Maria; Ferreira, Laerte Guimarães; Rabe, Andreas; Hostert, Patrick
2016-10-01
Global change has tremendous impacts on savanna systems around the world. Processes related to climate change or agricultural expansion threaten the ecosystem's state, function and the services it provides. A prominent example is the Brazilian Cerrado that has an extent of around 2 million km2 and features high biodiversity with many endemic species. It is characterized by landscape patterns from open grasslands to dense forests, defining a heterogeneous gradient in vegetation structure throughout the biome. While it is undisputed that the Cerrado provides a multitude of valuable ecosystem services, it is exposed to changes, e.g. through large scale land conversions or climatic changes. Monitoring of the Cerrado is thus urgently needed to assess the state of the system as well as to analyze and further understand ecosystem responses and adaptations to ongoing changes. Therefore we explored the potential of dense Landsat time series to derive phenological information for mapping vegetation gradients in the Cerrado. Frequent data gaps, e.g. due to cloud contamination, impose a serious challenge for such time series analyses. We synthetically filled data gaps based on Radial Basis Function convolution filters to derive continuous pixel-wise temporal profiles capable of representing Land Surface Phenology (LSP). Derived phenological parameters revealed differences in the seasonal cycle between the main Cerrado physiognomies and could thus be used to calibrate a Support Vector Classification model to map their spatial distribution. Our results show that it is possible to map the main spatial patterns of the observed physiognomies based on their phenological differences, whereat inaccuracies occurred especially between similar classes and data-scarce areas. The outcome emphasizes the need for remote sensing based time series analyses at fine scales. Mapping heterogeneous ecosystems such as savannas requires spatial detail, as well as the ability to derive important phenological parameters for monitoring habitats or ecosystem responses to climate change. The open Landsat and Sentinel-2 archives provide the satellite data needed for improved analyses of savanna ecosystems globally.
Temperature influence on Hadley cell dynamics
NASA Astrophysics Data System (ADS)
Molnos, S.
2016-12-01
Over the last decades, satellite observations indicate that the Hadley cells have widened and possibly also intensified [1,2]. This might lead to a shift of fertile habitats with implications for biodiversity and agriculture [3]. Causes for these observed changes are uncertain and the possible role of global warming is debated. To better understand the key dynamical forcings involved, we investigate Hadley cell dynamics with an idealized atmosphere model [4,5] and compare its results with reanalysis data. This statistical-dynamical atmosphere model (SDAM) is based on time-averaged equations, and therefore much faster than the more widely used Atmospheric general circulations models (AGCMs).With SDAMS it is possible to perform climate simulations up to multi-millennia timescales. Here, we employ it to study the dominant processes related to the observed strengthening and widening of the Hadley cell using a very large ensemble sensitivity experiment testing the following possible underlying drivers: meridional temperature gradient, temperature anomaly and global mean temperature GMT. Interestingly, whereas the width of the Hadley cell depends nonlinearly on the temperature gradient, while its Intensification is nearly independent on temperature gradient. In contrast, a larger GMT always leads to an intensified Hadley cell. References: [1] Mitas, C. M.: Has the Hadley cell been strengthening in recent decades?, Geophys. Res. Lett., 32(3), 2005. [2] Seidel, D., Fu, Q., Randel, W. and Reichler, T.: Widening of the tropical belt in a changing climate, Nat. Geosci., 1(1), 21-248, 2008. [3] Heffernan, O.: The Mystery of Expanding Tropics, Nature, 530, 20-22, 2016. [4] Coumou, D., Petoukhov, V. and Eliseev, A. V.: Three-dimensional parameterizations of the synoptic scale kinetic energy and momentum flux in the Earth's atmosphere, Nonlinear Process. Geophys., 18(6), 807-827, 2011. [5] Eliseev, A. V., Coumou, D., Chernokulsky, A. V., Petoukhov, V. and Petri, S.: Scheme for calculation of multi-layer cloudiness and precipitation for climate models of intermediate complexity, Geosci. Model Dev., 6(5), 1745-1765, 2013.
Climate drives phenological reassembly of a mountain wildflower meadow community.
Theobald, Elli J; Breckheimer, Ian; HilleRisLambers, Janneke
2017-11-01
Spatial community reassembly driven by changes in species abundances or habitat occupancy is a well-documented response to anthropogenic global change, but communities can also reassemble temporally if the environment drives differential shifts in the timing of life events across community members. Much like spatial community reassembly, temporal reassembly could be particularly important when critical species interactions are temporally concentrated (e.g., plant-pollinator dynamics during flowering). Previous studies have documented species-specific shifts in phenology driven by climate change, implying that temporal reassembly, a process we term "phenological reassembly," is likely. However, few studies have documented changes in the temporal co-occurrence of community members driven by environmental change, likely because few datasets of entire communities exist. We addressed this gap by quantifying the relationship between flowering phenology and climate for 48 co-occurring subalpine wildflower species at Mount Rainier (Washington, USA) in a large network of plots distributed across Mt. Rainier's steep environmental gradients; large spatio-temporal variability in climate over the 6 yr of our study (including the earliest and latest snowmelt year on record) provided robust estimates of climate-phenology relationships for individual species. We used these relationships to examine changes to community co-flowering composition driven by 'climate change analog' conditions experienced at our sites in 2015. We found that both the timing and duration of flowering of focal species was strongly sensitive to multiple climatic factors (snowmelt, temperature, and soil moisture). Some consistent responses emerged, including earlier snowmelt and warmer growing seasons driving flowering phenology earlier for all focal species. However, variation among species in their phenological sensitivities to these climate drivers was large enough that phenological reassembly occurred in the climate change analog conditions of 2015. An unexpected driver of phenological reassembly was fine-scale variation in the direction and magnitude of climatic change, causing phenological reassembly to be most apparent early and late in the season and in topographic locations where snow duration was shortest (i.e., at low elevations and on ridges in the landscape). Because phenological reassembly may have implications for many types of ecological interactions, failing to monitor community-level repercussions of species-specific phenological shifts could underestimate climate change impacts. © 2017 by the Ecological Society of America.
Climate Effects on Plant Range Distributions and Community Structure of Pacific Northwest Prairies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bridgham, Scott D.; Johnson, Bart
2013-09-26
Pacific Northwest (PNW) prairies are an imperiled ecosystem that contain a large number of plant species with high fidelity to this habitat. The few remaining high-quality PNW prairies harbor a number of sensitive, rare, and endangered plant species that may be further at-risk with climate change. Thus, PNW prairies are an excellent model system to examine how climate change will affect the distribution of native plant species in grassland sites. Our experimental objectives were to determine: (i) how climate change will affect the range distribution of native plant species; (ii) what life history stages are most sensitive to climate changemore » in a group of key indicator native species; (iii) the robustness of current restoration techniques and suites of species to changing climate, and in particular, the relative competitiveness of native species versus exotic invasive species; and (iv) the effects of climate change on carbon and nutrient cycling and soil-microbial-plant feedbacks. We addressed these objectives by experimentally increasing temperature 2.5 to 3.0 ºC above ambient with overhead infrared lamps and increasing wet-season precipitation by 20% above ambient in three upland prairie sites in central-western Washington, central-western Oregon, and southwestern Oregon from fall 2010 through 2012. Additional precipitation was applied within 2 weeks of when it fell so precipitation intensity was increased, particularly during the winter rainy season but with minimal additions during the summer dry season. These three sites also represent a 520-km natural climate gradient of increasing degree of severity of Mediterranean climate from north to south. After removing the extant vegetation, we planted a diverse suite of 12 native species that have their northern range limit someplace within the PNW in each experimental plot. An additional 20 more wide-spread native species were also planted into each plot. We found that recruitment of plant species within their ranges was negatively impacted by increased temperatures, but for species planted north of their current range, increased temperature was neutral. However, for surviving plants climate treatments and site-specific factors (e.g., nutrient availability) were the strongest predictors of plant growth and seed set. When recruitment and plant growth are considered together, increased temperatures are negative within a species current range but beyond this range they become positive. Germination was the most critical stage for plant response across all sites and climate treatments. Our results underscore the importance of including plant vital rates into models that are examining climate change effects on plant ranges. Warming altered plant community composition, decreased diversity, and increased total cover, with warmed northern communities over time becoming more like ambient communities further south. In particular, warming increased the cover of annual introduced species, suggesting that the observed biogeographic pattern of increasing invasion by this plant functional group in US West Coast prairies as one moves further south is at least in part due to climate. Our results suggest that with the projected increase in drought severity with climate change, Pacific Northwest prairies may face an increase of invasion by annuals, similar to what has been observed in California, resulting in novel species assemblages and shifts in functional composition, which in turn may alter ecosystem function. Warming generally increased nutrient availability and plant productivity across all sites. The seasonality of soil respiration responses to heating were strongly dependent on the Mediterranean climate gradient in the PNW, with heating responses being generally positive during periods of adequate soil moisture and becoming neutral to negative during periods of low soil moisture. The asynchrony between temperature and precipitation may make soils less sensitive to warming. Precipitation effects were minimal for all measured responses indicating the importance of increased temperatures in driving biotic responses to climate change in Mediterranean ecosystems. However, substantially increased precipitation during the dry season would almost certainly have profound effects, but the opposite is predicted by current climate change models for the PNW. A manipulative climate change experiment embedded within a natural climate gradient provides unique insights into the degree to which biotic responses to climate change are regionally consistent and site-dependent. Perhaps surprisingly, most climatic effects that we observed were either consistent in the three sites or could be readily interpreted in terms of the gradient of increasing intensity of the Mediterranean climate from north to south.« less
Rapid adaptation to climate facilitates range expansion of an invasive plant.
Colautti, Robert I; Barrett, Spencer C H
2013-10-18
Adaptation to climate, evolving over contemporary time scales, could facilitate rapid range expansion across environmental gradients. Here, we examine local adaptation along a climatic gradient in the North American invasive plant Lythrum salicaria. We show that the evolution of earlier flowering is adaptive at the northern invasion front where it increases fitness as much as, or more than, the effects of enemy release and the evolution of increased competitive ability. However, early flowering decreases investment in vegetative growth, which reduces fitness by a factor of 3 in southern environments where the North American invasion commenced. Our results demonstrate that local adaptation can evolve quickly during range expansion, overcoming environmental constraints on propagule production.
A 2 °C warmer world is not safe for ecosystem services in the European Alps.
Elkin, Ché; Gutiérrez, Alvaro G; Leuzinger, Sebastian; Manusch, Corina; Temperli, Christian; Rasche, Livia; Bugmann, Harald
2013-06-01
Limiting the increase in global average temperature to 2 °C is the objective of international efforts aimed at avoiding dangerous climate impacts. However, the regional response of terrestrial ecosystems and the services that they provide under such a scenario are largely unknown. We focus on mountain forests in the European Alps and evaluate how a range of ecosystem services (ES) are projected to be impacted in a 2 °C warmer world, using four novel regional climate scenarios. We employ three complementary forest models to assess a wide range of ES in two climatically contrasting case study regions. Within each climate scenario we evaluate if and when ES will deviate beyond status quo boundaries that are based on current system variability. Our results suggest that the sensitivity of mountain forest ES to a 2 °C warmer world depends heavily on the current climatic conditions of a region, the strong elevation gradients within a region, and the specific ES in question. Our simulations project that large negative impacts will occur at low and intermediate elevations in initially warm-dry regions, where relatively small climatic shifts result in negative drought-related impacts on forest ES. In contrast, at higher elevations, and in regions that are initially cool-wet, forest ES will be comparatively resistant to a 2 °C warmer world. We also found considerable variation in the vulnerability of forest ES to climate change, with some services such as protection against rockfall and avalanches being sensitive to 2 °C global climate change, but other services such as carbon storage being reasonably resistant. Although our results indicate a heterogeneous response of mountain forest ES to climate change, the projected substantial reduction of some forest ES in dry regions suggests that a 2 °C increase in global mean temperature cannot be seen as a universally 'safe' boundary for the maintenance of mountain forest ES. © 2013 Blackwell Publishing Ltd.
Soil Carbon Stocks in a Shifting Ecosystem; Climate Induced Migration of Mangroves into Salt Marsh
NASA Astrophysics Data System (ADS)
Simpson, L.; Osborne, T.; Feller, I. C.
2015-12-01
Across the globe, coastal wetland vegetation distributions are changing in response to climate change. The increase in global average surface temperature has already caused shifts in the structure and distribution of many ecological communities. In parts of the southeastern United States, increased winter temperatures have resulted in the poleward range expansion of mangroves at the expense of salt marsh habitat. Our work aims to document carbon storage in the salt marsh - mangrove ecotone and any potential changes in this reservoir that may ensue due to the shifting range of this habitat. Differences in SOM and C stocks along a latitudinal gradient on the east coast of Florida will be presented. The gradient studied spans 342 km and includes pure mangrove habitat, the salt marsh - mangrove ecotone, and pure salt marsh habitat.This latitudinal gradient gives us an exceptional opportunity to document and investigate ecosystem soil C modifications as mangroves transgress into salt marsh habitat due to climatic change.
Yu, Xiao-Dong; Lü, Liang; Wang, Feng-Yan; Luo, Tian-Hong; Zou, Si-Si; Wang, Cheng-Bin; Song, Ting-Ting; Zhou, Hong-Zhang
2016-01-01
The aim of this paper is to increase understanding of the relative importance of the input of geographic and local environmental factors on richness and composition of epigaeic steppe beetles (Coleoptera: Carabidae and Tenebrionidae) along a geographic (longitudinal/precipitation) gradient in the Inner Mongolia grassland. Specifically, we evaluate the associations of environmental variables representing climate and environmental heterogeneity with beetle assemblages. Beetles were sampled using pitfall traps at 25 sites scattered across the full geographic extent of the study biome in 2011-2012. We used variance partitioning techniques and multi-model selection based on the Akaike information criterion to assess the relative importance of the spatial and environmental variables on beetle assemblages. Species richness and abundance showed unimodal patterns along the geographic gradient. Together with space, climate variables associated with precipitation, water-energy balance and harshness of climate had strong explanatory power in richness pattern. Abundance pattern showed strongest association with variation in temperature and environmental heterogeneity. Climatic factors associated with temperature and precipitation variables and the interaction between climate with space were able to explain a substantial amount of variation in community structure. In addition, the turnover of species increased significantly as geographic distances increased. We confirmed that spatial and local environmental factors worked together to shape epigaeic beetle communities along the geographic gradient in the Inner Mongolia grassland. Moreover, the climate features, especially precipitation, water-energy balance and temperature, and the interaction between climate with space and environmental heterogeneity appeared to play important roles on controlling richness and abundance, and species compositions of epigaeic beetles.
NASA Astrophysics Data System (ADS)
Marcisz, Katarzyna; Gałka, Mariusz; Pietrala, Patryk; Miotk-Szpiganowicz, Grażyna; Obremska, Milena; Tobolski, Kazimierz; Lamentowicz, Mariusz
2017-12-01
Fire is a critical component of many ecosystems and, as predicted by various climate models, fire activity may increase significantly in the following years due to climate change. Therefore, knowledge about the past fire activity of various ecosystems is highly important for future nature conservation purposes. We present results of high-resolution investigation of fire activity and hydrological changes in northern Poland. We analyzed microscopic charcoal from three Sphagnum-dominated peatlands located on the south of Baltic, on the oceanic-continental (west-east) climatic gradient, and reconstructed the history of fire in the last 5700 years. We hypothesize that air circulation patterns are highly important for local fire activity, and that fire activity is more intensive in peatlands influenced by continental air masses. We have found out that forest fires have been occurring regularly since the past millennia and were linked to climatic conditions. We show that fire activity (related to climate and fuel availability) was significantly higher in sites dominated by continental climate (northeastern Poland) than in the site located under oceanic conditions (northwestern Poland)-microscopic charcoal influx was 13.3 times higher in the eastern study site of the gradient, compared to the western study site. Recorded fire activity patterns were different between the sites in a long timescale. Moreover, most of the recorded charcoal peaks occurred during high water tables. Rising human pressure has caused droughts and water table instability, and substantial increase in fire activity in the last 400 years.
Spindelböck, Joachim P; Cook, Zoë; Daws, Matthew I; Heegaard, Einar; Måren, Inger E; Vandvik, Vigdis
2013-09-01
Across their range, widely distributed species are exposed to a variety of climatic and other environmental conditions, and accordingly may display variation in life history strategies. For seed germination in cold climates, two contrasting responses to variation in winter temperature have been documented: first, an increased ability to germinate at low temperatures (cold tolerance) as winter temperatures decrease, and secondly a reduced ability to germinate at low temperatures (cold avoidance) that concentrates germination towards the warmer parts of the season. Germination responses were tested for Calluna vulgaris, the dominant species of European heathlands, from ten populations collected along broad-scale bioclimatic gradients (latitude, altitude) in Norway, covering a substantial fraction of the species' climatic range. Incubation treatments varied from 10 to 25 °C, and germination performance across populations was analysed in relation to temperature conditions at the seed collection locations. Seeds from all populations germinated rapidly and to high final percentages under the warmer incubation temperatures. Under low incubation temperatures, cold-climate populations had significantly lower germination rates and percentages than warm-climate populations. While germination rates and percentages also increased with seed mass, seed mass did not vary along the climatic gradients, and therefore did not explain the variation in germination responses. Variation in germination responses among Calluna populations was consistent with increased temperature requirements for germination towards colder climates, indicating a cold-avoidance germination strategy conditional on the temperature at the seeds' origin. Along a gradient of increasing temperatures this suggests a shift in selection pressures on germination from climatic adversity (i.e. low temperatures and potential frost risk in early or late season) to competitive performance and better exploitation of the entire growing season.
Spindelböck, Joachim P.; Cook, Zoë; Daws, Matthew I.; Heegaard, Einar; Måren, Inger E.; Vandvik, Vigdis
2013-01-01
Background and Aims Across their range, widely distributed species are exposed to a variety of climatic and other environmental conditions, and accordingly may display variation in life history strategies. For seed germination in cold climates, two contrasting responses to variation in winter temperature have been documented: first, an increased ability to germinate at low temperatures (cold tolerance) as winter temperatures decrease, and secondly a reduced ability to germinate at low temperatures (cold avoidance) that concentrates germination towards the warmer parts of the season. Methods Germination responses were tested for Calluna vulgaris, the dominant species of European heathlands, from ten populations collected along broad-scale bioclimatic gradients (latitude, altitude) in Norway, covering a substantial fraction of the species' climatic range. Incubation treatments varied from 10 to 25 °C, and germination performance across populations was analysed in relation to temperature conditions at the seed collection locations. Key Results Seeds from all populations germinated rapidly and to high final percentages under the warmer incubation temperatures. Under low incubation temperatures, cold-climate populations had significantly lower germination rates and percentages than warm-climate populations. While germination rates and percentages also increased with seed mass, seed mass did not vary along the climatic gradients, and therefore did not explain the variation in germination responses. Conclusions Variation in germination responses among Calluna populations was consistent with increased temperature requirements for germination towards colder climates, indicating a cold-avoidance germination strategy conditional on the temperature at the seeds' origin. Along a gradient of increasing temperatures this suggests a shift in selection pressures on germination from climatic adversity (i.e. low temperatures and potential frost risk in early or late season) to competitive performance and better exploitation of the entire growing season. PMID:23884396
Convergence of soil nitrogen isotopes across global climate gradients
Craine, Joseph M.; Elmore, Andrew J.; Wang, Lixin; Augusto, Laurent; Baisden, W. Troy; Brookshire, E. N. J.; Cramer, Michael D.; Hasselquist, Niles J.; Hobbie, Erik A.; Kahmen, Ansgar; Koba, Keisuke; Kranabetter, J. Marty; Mack, Michelle C.; Marin-Spiotta, Erika; Mayor, Jordan R.; McLauchlan, Kendra K.; Michelsen, Anders; Nardoto, Gabriela B.; Oliveira, Rafael S.; Perakis, Steven S.; Peri, Pablo L.; Quesada, Carlos A.; Richter, Andreas; Schipper, Louis A.; Stevenson, Bryan A.; Turner, Benjamin L.; Viani, Ricardo A. G.; Wanek, Wolfgang; Zeller, Bernd
2015-01-01
Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the 15 N: 14 N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in 15 N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ15N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ15N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.
Convergence of soil nitrogen isotopes across global climate gradients.
Craine, Joseph M; Elmore, Andrew J; Wang, Lixin; Augusto, Laurent; Baisden, W Troy; Brookshire, E N J; Cramer, Michael D; Hasselquist, Niles J; Hobbie, Erik A; Kahmen, Ansgar; Koba, Keisuke; Kranabetter, J Marty; Mack, Michelle C; Marin-Spiotta, Erika; Mayor, Jordan R; McLauchlan, Kendra K; Michelsen, Anders; Nardoto, Gabriela B; Oliveira, Rafael S; Perakis, Steven S; Peri, Pablo L; Quesada, Carlos A; Richter, Andreas; Schipper, Louis A; Stevenson, Bryan A; Turner, Benjamin L; Viani, Ricardo A G; Wanek, Wolfgang; Zeller, Bernd
2015-02-06
Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the (15)N:(14)N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in (15)N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ(15)N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ(15)N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.
USDA-ARS?s Scientific Manuscript database
Climate gradients shape spatial variation in the richness and composition of plant communities. Given future predicted changes in climate means and variability, and likely regional variation in the magnitudes of these changes, it is important to determine how temporal variation in climate influences...
NASA Astrophysics Data System (ADS)
Bauch, H. A.; Zhuravleva, A.
2017-12-01
Meridional gradients in sea surface temperature (SST) control ocean-atmosphere circulation patterns and, thus, regulate the global climate. Here we reconstruct variability of these gradients in the course of the Last Interglacial (MIS5e), by using sediment records from the low and high latitude North Atlantic which are linked via the Gulf Stream.In the Nordic Seas, i.e., at the northern end of the Gulf Stream extension, strong post-Saalian meltwater discharge reduced northward-directed transport of surface oceanic heat until the mid-MIS5e, resulting in a late and rather weak SST peak. To decipher the corresponding climatic changes in the area of the Gulf Stream origin, we employ stable isotopes data, planktic foraminifera assemblages as well as a new alkenone paleotemperature record from core drilled on the upper northern slope of the Little Bahama Bank. In addition, chemical composition of sediments (XRF data) was used to asses past sea level fluctuations and sedimentation regimes on this shallow-water carbonate bank. Significant variations in Sr/Ca ratios point to a two-fold structure of the Last Interglacial. Stabilized Sr/Ca values were reached only during the second phase of MIS5e, possibly representing the interval of maximum bank-top flooding after the northern hemisphere deglaciation terminated. Faunal-based proxies as well as oxygen isotopic gradients between surface and bottom-dwelling foraminifera corroborate existence of the two major climatic phases within the Last Interglacial, in agreement with the respective development in the polar region. This further suggests a strong climatic coupling between the subtropical and high-latitude North Atlantic with important implications for meridional SST gradients during the Last Interglacial.
Menezes, Riya C.; Jayarajan, Aditi; Shanker, Kartik
2016-01-01
The historical processes underlying high diversity in tropical biodiversity hotspots like the Western Ghats of Peninsular India remain poorly understood. We sampled bush frogs on 13 massifs across the Western Ghats Escarpment and examined the relative influence of Quaternary glaciations, ecological gradients and geological processes on the spatial patterns of lineage and clade diversification. The results reveal a large in situ radiation (more than 60 lineages), exhibiting geographical structure and clade-level endemism, with two deeply divergent sister clades, North and South, highlighting the biogeographic significance of an ancient valley, the Palghat Gap. A majority of the bush frog sister lineages were isolated on adjacent massifs, and signatures of range stasis provide support for the dominance of geological processes in allopatric speciation. In situ diversification events within the montane zones (more than 1800 m) of the two highest massifs suggest a role for climate-mediated forest-grassland persistence. Independent transitions along elevational gradients among sub-clades during the Miocene point to diversification along the elevational gradient. The study highlights the evolutionary significance of massifs in the Western Ghats with the high elevations acting as centres of lineage diversification and the low- and mid-elevations of the southern regions, with deeply divergent lineages, serving as museums. PMID:27534957
Vijayakumar, S P; Menezes, Riya C; Jayarajan, Aditi; Shanker, Kartik
2016-08-17
The historical processes underlying high diversity in tropical biodiversity hotspots like the Western Ghats of Peninsular India remain poorly understood. We sampled bush frogs on 13 massifs across the Western Ghats Escarpment and examined the relative influence of Quaternary glaciations, ecological gradients and geological processes on the spatial patterns of lineage and clade diversification. The results reveal a large in situ radiation (more than 60 lineages), exhibiting geographical structure and clade-level endemism, with two deeply divergent sister clades, North and South, highlighting the biogeographic significance of an ancient valley, the Palghat Gap. A majority of the bush frog sister lineages were isolated on adjacent massifs, and signatures of range stasis provide support for the dominance of geological processes in allopatric speciation. In situ diversification events within the montane zones (more than 1800 m) of the two highest massifs suggest a role for climate-mediated forest-grassland persistence. Independent transitions along elevational gradients among sub-clades during the Miocene point to diversification along the elevational gradient. The study highlights the evolutionary significance of massifs in the Western Ghats with the high elevations acting as centres of lineage diversification and the low- and mid-elevations of the southern regions, with deeply divergent lineages, serving as museums. © 2016 The Author(s).
NASA Astrophysics Data System (ADS)
Bauerle, William L.; Daniels, Alex B.; Barnard, David M.
2014-05-01
Sensitivity of carbon uptake and water use estimates to changes in physiology was determined with a coupled photosynthesis and stomatal conductance ( g s) model, linked to canopy microclimate with a spatially explicit scheme (MAESTRA). The sensitivity analyses were conducted over the range of intraspecific physiology parameter variation observed for Acer rubrum L. and temperate hardwood C3 (C3) vegetation across the following climate conditions: carbon dioxide concentration 200-700 ppm, photosynthetically active radiation 50-2,000 μmol m-2 s-1, air temperature 5-40 °C, relative humidity 5-95 %, and wind speed at the top of the canopy 1-10 m s-1. Five key physiological inputs [quantum yield of electron transport ( α), minimum stomatal conductance ( g 0), stomatal sensitivity to the marginal water cost of carbon gain ( g 1), maximum rate of electron transport ( J max), and maximum carboxylation rate of Rubisco ( V cmax)] changed carbon and water flux estimates ≥15 % in response to climate gradients; variation in α, J max, and V cmax input resulted in up to ~50 and 82 % intraspecific and C3 photosynthesis estimate output differences respectively. Transpiration estimates were affected up to ~46 and 147 % by differences in intraspecific and C3 g 1 and g 0 values—two parameters previously overlooked in modeling land-atmosphere carbon and water exchange. We show that a variable environment, within a canopy or along a climate gradient, changes the spatial parameter effects of g 0, g 1, α, J max, and V cmax in photosynthesis- g s models. Since variation in physiology parameter input effects are dependent on climate, this approach can be used to assess the geographical importance of key physiology model inputs when estimating large scale carbon and water exchange.
NASA Astrophysics Data System (ADS)
Bernhard, Nadine; Moskwa, Lisa-Marie; Kühn, Peter; Mueller, Carsten W.; Wagner, Dirk; Scholten, Thomas
2017-04-01
It is well-known that the land surface resistance against erosion is largely controlled by the structure stability of the soil given by its inherent properties. Microbial activity plays a vital role in soil structure development, and thus affecting soil physical parameters. Accordingly the influence of biota shaping the earth's surface has been described through mechanisms such as mineral weathering, formation of ions and biofilms controlling land surface resistance against erosion. However the role of microorganisms for the development of soil stabilizing properties is still unclear and a precise quantitative understanding of the mechanisms under different climate conditions is widely missing. The objectives of our study are to examine to which extend microbiological processes control soil structure formation and stability and whether this is influenced by climate and topographic position. Soil samples were taken along a climate gradient and from different topographic positions of hillslopes in the Chilean Coastal Cordillera in austral autumn 2016. The variables of lithology, human disturbances and relief were held as far as possible constant whereas climate varies along the transect. We implemented 10 wet-dry cycles on air dried and sieved natural and sterile samples to enhance particle aggregation and increase structure stability. Throughout the entire experiment temperature is held constant at 20 °C to avoid changes in microbial activity. Samples are moistened and dried and each kept at the same respective pF-values for the same duration to add the same stress to each sample. Aggregate stability will be measured using wet sieving, ultrasonic dispersion and simulated rainfall. The results will be compared with on-site rainfall simulation experiments on hillslopes in the Chilean Coastal Cordillera to link laboratory results with natural field conditions. The experiment gives first insight into the aggregate formation process over time with and without microorganisms (sterilized samples). Furthermore it allows to qualify and quantify the contribution of biota to soil structure formation and stability.
Orchid Species Richness along Elevational and Environmental Gradients in Yunnan, China
Zhang, Shi-Bao; Chen, Wen-Yun; Huang, Jia-Lin; Bi, Ying-Feng; Yang, Xue-Fei
2015-01-01
The family Orchidaceae is not only one of the most diverse families of flowering plants, but also one of the most endangered plant taxa. Therefore, understanding how its species richness varies along geographical and environmental gradients is essential for conservation efforts. However, such knowledge is rarely available, especially on a large scale. We used a database extracted from herbarium records to investigate the relationships between orchid species richness and elevation, and to examine how elevational diversity in Yunnan Province, China, might be explained by mid-domain effect (MDE), species–area relationship (SAR), water–energy dynamics (WED), Rapoport’s Rule, and climatic variables. This particular location was selected because it is one of the primary centers of distribution for orchids. We recorded 691 species that span 127 genera and account for 88.59% of all confirmed orchid species in Yunnan. Species richness, estimated at 200-m intervals along a slope, was closely correlated with elevation, peaking at 1395 to 1723 m. The elevational pattern of orchid richness was considerably shaped by MDE, SAR, WED, and climate. Among those four predictors, climate was the strongest while MDE was the weakest for predicting the elevational pattern of orchid richness. Species richness showed parabolic responses to mean annual temperature (MAT) and mean annual precipitation (MAP), with maximum richness values recorded at 13.7 to 17.7°C for MAT and 1237 to 1414 mm for MAP. Rapoport’s Rule also helped to explain the elevational pattern of species richness in Yunnan, but those influences were not entirely uniform across all methods. These results suggested that the elevational pattern of orchid species richness in Yunnan is collectively shaped by several mechanisms related to geometric constraints, size of the land area, and environments. Because of the dominant role of climate in determining orchid richness, our findings may contribute to a better understanding of the potential effects of climate change on orchid diversity, and the development of conservation strategies for orchids. PMID:26555336
NASA Astrophysics Data System (ADS)
Mathew, Manoj Joseph; Menier, David; Siddiqui, Numair; Ramkumar, Mu.; Santosh, M.; Kumar, Shashi; Hassaan, Muhammad
2016-07-01
We investigated the recent landscape development of Borneo through geomorphic analysis of two large drainage basins (Rajang and Baram basins). The extraction of morphometric parameters utilizing digital terrain data in a GIS environment, focusing on hydrography (stream length-gradient index, ratio of valley floor width to valley height, and transverse topographic symmetry factor) and topography (local relief and relief anomaly), was carried out in order to elucidate processes governing drainage and landscape evolution. Anomalously high and low values of stream length-gradient indices of main tributary streams associated with faults and multiple knick-points along the channel profiles are linked to deformation events. The development of deeply incised V-shaped valleys show enhanced incision capability of streams in response to steepening of hillslope gradients following tectonic inputs. Deflection of streams and probable dynamic reorganization of the drainage system through stream capture processes as feedbacks to tectonic uplift and orographic effect are observed. Local relief and relief anomaly maps highlight the presence of preserved elevation-accordant relict portions of landscapes characterized by low amplitude relief, nested between ridgelines in regions of complex folding. Our results reveal dynamic geomorphic adjustment of the landscape due to perturbations in tectonic and climatic boundary conditions. The implication is that the landscape of north Borneo experienced a tectonic phase of rapid uplift after 5 Ma and undergoes active folding of the Rajang Group thrust belts in the present-day. Active shortening combined with high rates of denudation in Sarawak, demonstrates transience emphasized by the drainage system attempting to adjust to tectonic and climatic forcing.
Trade-off between competition and facilitation defines gap colonization in mountains.
Lembrechts, Jonas J; Milbau, Ann; Nijs, Ivan
2015-11-10
Recent experimental observations show that gap colonization in small-stature (e.g. grassland and dwarf shrubs) vegetation strongly depends on the abiotic conditions within them. At the same time, within-gap variation in biotic interactions such as competition and facilitation, caused by distance to the gap edge, would affect colonizer performance, but a theoretical framework to explore such patterns is missing. Here, we model how competition, facilitation and environmental conditions together determine the small-scale patterns of gap colonization along a cold gradient in mountains, by simulating colonizer survival in gaps of various sizes. Our model adds another dimension to the known effects of biotic interactions along a stress gradient by focussing on the trade-off between competition and facilitation in the within-gap environment. We show that this trade-off defines a peak in colonizer survival at a specific distance from the gap edge, which progressively shifts closer to the edge as the environment gets colder, ultimately leaving a large fraction of gaps unsuitable for colonization in facilitation-dominated systems. This is reinforced when vegetation size and temperature amelioration are manipulated simultaneously with temperature in order to simulate an elevational gradient more realistically. Interestingly, all other conditions being equal, the magnitude of the realized survival peak was always lower in large than in small gaps, making large gaps harder to colonize. The model is relevant to predict effects of non-native plant invasions and climate warming on colonization processes in mountains. Published by Oxford University Press on behalf of the Annals of Botany Company.
Pascual, Mercedes
2015-11-01
It is clear that climate variability and climate change influence malaria in low transmission regions. Much less understood is how climate forcing interacts with population immunity as one moves towards higher transmission intensity. The same transmission model confronted to time series data from two contrasting intensities helps unravel this interaction. Copyright © 2015 Elsevier Ltd. All rights reserved.
Timothy G.F. Kittel; Nan. A. Rosenbloom; J.A. Royle; C. Daly; W.P. Gibson; H.H. Fisher; P. Thornton; D.N. Yates; S. Aulenbach; C. Kaufman; R. McKeown; Dominque Bachelet; David S. Schimel
2004-01-01
Analysis and simulation of biospheric responses to historical forcing require surface climate data that capture those aspects of climate that control ecological processes, including key spatial gradients and modes of temporal variability. We developed a multivariate, gridded historical climate dataset for the conterminous USA as a common input database for the...
Mountain Plant Community Sentinels: AWOL
NASA Astrophysics Data System (ADS)
Malanson, G. P.
2017-12-01
Mountain plant communities are thought to be sensitive to climate change. Because climatic gradients are steep on mountain slopes, the spatial response of plant communities to climate change should be compressed and easier to detect. These expectations have led to identifying mountain plant communities as sentinels for climate change. This idea has, however, been criticized. Two critiques, for alpine treeline and alpine tundra, are rehearsed and supplemented. The critique of alpine treeline as sentinel is bolstered with new model results on the confounding role of dispersal mechanisms and sensitivity to climatic volatility. In alpine tundra, for which background turnover rates have yet to be established, community composition may reflect environmental gradients only for extremes where effects of climate are most indirect. Both plant communities, while primarily determined by energy at broad scales, may respond to water as a proximate driver at local scales. These plant communities may not be in equilibrium with climate, and differently scaled time lags may mean that ongoing vegetation change may not signal ongoing climate change (or lack thereof). In both cases a double-whammy is created by scale dependence for time lags and for drivers leading to confusion, but these cases present opportunities for insights into basic ecology.
The uncertain climate footprint of wetlands under human pressure
Petrescu, Ana Maria Roxana; Lohila, Annalea; Tuovinen, Juha-Pekka; Baldocchi, Dennis D.; Roulet, Nigel T.; Vesala, Timo; Dolman, Albertus Johannes; Oechel, Walter C.; Marcolla, Barbara; Friborg, Thomas; Rinne, Janne; Matthes, Jaclyn Hatala; Merbold, Lutz; Meijide, Ana; Kiely, Gerard; Sottocornola, Matteo; Sachs, Torsten; Zona, Donatella; Varlagin, Andrej; Lai, Derrick Y. F.; Veenendaal, Elmar; Parmentier, Frans-Jan W.; Skiba, Ute; Lund, Magnus; Hensen, Arjan; van Huissteden, Jacobus; Flanagan, Lawrence B.; Shurpali, Narasinha J.; Grünwald, Thomas; Humphreys, Elyn R.; Jackowicz-Korczyński, Marcin; Aurela, Mika A.; Laurila, Tuomas; Grüning, Carsten; Corradi, Chiara A. R.; Schrier-Uijl, Arina P.; Christensen, Torben R.; Tamstorf, Mikkel P.; Mastepanov, Mikhail; Martikainen, Pertti J.; Verma, Shashi B.; Bernhofer, Christian; Cescatti, Alessandro
2015-01-01
Significant climate risks are associated with a positive carbon–temperature feedback in northern latitude carbon-rich ecosystems, making an accurate analysis of human impacts on the net greenhouse gas balance of wetlands a priority. Here, we provide a coherent assessment of the climate footprint of a network of wetland sites based on simultaneous and quasi-continuous ecosystem observations of CO2 and CH4 fluxes. Experimental areas are located both in natural and in managed wetlands and cover a wide range of climatic regions, ecosystem types, and management practices. Based on direct observations we predict that sustained CH4 emissions in natural ecosystems are in the long term (i.e., several centuries) typically offset by CO2 uptake, although with large spatiotemporal variability. Using a space-for-time analogy across ecological and climatic gradients, we represent the chronosequence from natural to managed conditions to quantify the “cost” of CH4 emissions for the benefit of net carbon sequestration. With a sustained pulse–response radiative forcing model, we found a significant increase in atmospheric forcing due to land management, in particular for wetland converted to cropland. Our results quantify the role of human activities on the climate footprint of northern wetlands and call for development of active mitigation strategies for managed wetlands and new guidelines of the Intergovernmental Panel on Climate Change (IPCC) accounting for both sustained CH4 emissions and cumulative CO2 exchange. PMID:25831506
The uncertain climate footprint of wetlands under human pressure.
Petrescu, Ana Maria Roxana; Lohila, Annalea; Tuovinen, Juha-Pekka; Baldocchi, Dennis D; Desai, Ankur R; Roulet, Nigel T; Vesala, Timo; Dolman, Albertus Johannes; Oechel, Walter C; Marcolla, Barbara; Friborg, Thomas; Rinne, Janne; Matthes, Jaclyn Hatala; Merbold, Lutz; Meijide, Ana; Kiely, Gerard; Sottocornola, Matteo; Sachs, Torsten; Zona, Donatella; Varlagin, Andrej; Lai, Derrick Y F; Veenendaal, Elmar; Parmentier, Frans-Jan W; Skiba, Ute; Lund, Magnus; Hensen, Arjan; van Huissteden, Jacobus; Flanagan, Lawrence B; Shurpali, Narasinha J; Grünwald, Thomas; Humphreys, Elyn R; Jackowicz-Korczyński, Marcin; Aurela, Mika A; Laurila, Tuomas; Grüning, Carsten; Corradi, Chiara A R; Schrier-Uijl, Arina P; Christensen, Torben R; Tamstorf, Mikkel P; Mastepanov, Mikhail; Martikainen, Pertti J; Verma, Shashi B; Bernhofer, Christian; Cescatti, Alessandro
2015-04-14
Significant climate risks are associated with a positive carbon-temperature feedback in northern latitude carbon-rich ecosystems, making an accurate analysis of human impacts on the net greenhouse gas balance of wetlands a priority. Here, we provide a coherent assessment of the climate footprint of a network of wetland sites based on simultaneous and quasi-continuous ecosystem observations of CO2 and CH4 fluxes. Experimental areas are located both in natural and in managed wetlands and cover a wide range of climatic regions, ecosystem types, and management practices. Based on direct observations we predict that sustained CH4 emissions in natural ecosystems are in the long term (i.e., several centuries) typically offset by CO2 uptake, although with large spatiotemporal variability. Using a space-for-time analogy across ecological and climatic gradients, we represent the chronosequence from natural to managed conditions to quantify the "cost" of CH4 emissions for the benefit of net carbon sequestration. With a sustained pulse-response radiative forcing model, we found a significant increase in atmospheric forcing due to land management, in particular for wetland converted to cropland. Our results quantify the role of human activities on the climate footprint of northern wetlands and call for development of active mitigation strategies for managed wetlands and new guidelines of the Intergovernmental Panel on Climate Change (IPCC) accounting for both sustained CH4 emissions and cumulative CO2 exchange.
Epiphytes as an Indicator of Climate Change in Hawaii
NASA Astrophysics Data System (ADS)
Kettwich, S. K.
2013-12-01
Although climate change threatens many ecosystems, current research in this field suggests tropical vegetation lags in response. Epiphytes, or arboreal vegetation, occupy tight, climate-defined niches compared with co-occurring life forms such as trees, yet there have been few studies of Hawaii's epiphyte communities. Because of Hawaii Island's natural climatic diversity, it is an ideal location to understand how these intrinsically climate sensitive plants interact with the atmosphere and evaluate how they may serve as a near-term indicator of climate change. Here we establish a baseline from which changes in corticolous epiphyte communities can be monitored as a leading indicator of likely forest changes by 1) investigating patterns of epiphyte abundance and species composition across elevation and precipitation gradients on windward Hawaii Island, and 2) using physiological measurements to investigate the relative importance of rain vs. fog in epiphyte-atmosphere interactions. The precipitation gradient keeps elevation constant at 1000m, while varying precipitation between 2,400 and 6,400 mm/year. The elevation gradient keeps rainfall constant at 3000mm/year, and varies elevation between 200 and 1750 m. Forest sites are dominated by Ohia Lehua (Metrosideros polymorpha) across broad geographic and climatological ranges thus allowing examination of epiphytes on this single host. We quantified bryophytes and vascular plants growing on Ohia trunks with standardized diameter and branching characteristics. Overall, epiphyte communities showed much finer scale responses to climate variation when compared with structurally dominant vegetation (which was broadly similar at all sites). The precipitation gradient exhibits a clear increase in abundance of all epiphyte groups and a definable increase in diversity with increasing rainfall. Results across the elevation gradient show a higher abundance of filmy ferns and bryophytes above the lifting condensation level (about 600 m) where fog incidence is highest and PET is lowest, as well as a marked difference in composition, whereby larger species dominate lower elevations where temperatures are greater. We are also analyzing O18 stable isotopes of both fog and rain water at two forest locations differing in fog input but in which elevation and rainfall are held constant at 1000m and 3000mm respectively. A laboratory experiment uses O18 stable isotope analysis to trace water uptake by five species of epiphytes. Results suggest that fog is an important determinant of how ecophysiological characteristics of epiphytes respond to the environments they inhabit. We further evaluate these results with respect to fine-scale climate models based on statistical downsampling of GCM's. Small, short lived species, especially filmy ferns are likely to exhibit the most rapid response to Hawaii's changing climate whereas larger, longer lived species are likely to respond more slowly.
NASA Astrophysics Data System (ADS)
Yang, X.; Rial, J. A.
2014-12-01
According to the hypothesis of polar synchronization, climate variations of Earth's poles are connected with a persistent phase lock of π/2 throughout the last glacial period. However, it is not clear yet how the Earth's two poles communicate with each other, the Thermohaline circulation (THC) being a possible candidate for signal carrier. Here we present a possible way of climate variation propagation through the Atlantic Ocean - likely in the form of heat or thermal wave (Cattaneo's solution) - based on lagged correlation between an organic carbon climate proxy record from the tropical Atlantic and the south-north polar temperature gradient. We further demonstrate that the speed of such propagation is frequency dependent, of which the wave of the longest period travels the fastest at the speed of ~32 km/year consistent with the estimated speed of the THC. The observed speed - frequency relationship can be successfully modeled as resulting from a propagating dispersive thermal wave initiated by the polar temperature gradient maximum. We show that such heat wave propagation is a potential mechanism to couple and synchronize the polar climates during the last glacial period and to force the occurrence of Heinrich events. To summarize, the polar temperature gradient anomalies are consequence of the π/2 phase lock between the polar climates, which is caused by polar synchronization maintained by the coupling, which is, as the data suggest, in the form of thermal waves. The spikes in organic carbon and the Fe/Ca ratio records in the core GeoB3912-1 can be thought of as snapshots of the passage of strong meteorological wavefronts through the equatorial region. The results strongly suggest that each peak in the organic carbon recorded a half-hemisphere-delayed passage of a wave-like disturbance through the equator carrying the south-north temperature gradient maxima. And each of these occurs within timing error of the Heinrich events H0-H6.
Frei, Esther R; Ghazoul, Jaboury; Matter, Philippe; Heggli, Martin; Pluess, Andrea R
2014-02-01
Mountain ecosystems are particularly susceptible to climate change. Characterizing intraspecific variation of alpine plants along elevational gradients is crucial for estimating their vulnerability to predicted changes. Environmental conditions vary with elevation, which might influence plastic responses and affect selection pressures that lead to local adaptation. Thus, local adaptation and phenotypic plasticity among low and high elevation plant populations in response to climate, soil and other factors associated with elevational gradients might underlie different responses of these populations to climate warming. Using a transplant experiment along an elevational gradient, we investigated reproductive phenology, growth and reproduction of the nutrient-poor grassland species Ranunculus bulbosus, Trifolium montanum and Briza media. Seeds were collected from low and high elevation source populations across the Swiss Alps and grown in nine common gardens at three different elevations with two different soil depths. Despite genetic differentiation in some traits, the results revealed no indication of local adaptation to the elevation of population origin. Reproductive phenology was advanced at lower elevation in low and high elevation populations of all three species. Growth and reproduction of T. montanum and B. media were hardly affected by garden elevation and soil depth. In R. bulbosus, however, growth decreased and reproductive investment increased at higher elevation. Furthermore, soil depth influenced growth and reproduction of low elevation R. bulbosus populations. We found no evidence for local adaptation to elevation of origin and hardly any differences in the responses of low and high elevation populations. However, the consistent advanced reproductive phenology observed in all three species shows that they have the potential to plastically respond to environmental variation. We conclude that populations might not be forced to migrate to higher elevations as a consequence of climate warming, as plasticity will buffer the detrimental effects of climate change in the three investigated nutrient-poor grassland species. © 2013 John Wiley & Sons Ltd.
Tropical forest soil microbes and climate warming: An Andean-Amazon gradient and `SWELTR'
NASA Astrophysics Data System (ADS)
Nottingham, A.; Turner, B. L.; Fierer, N.; Whitaker, J.; Ostle, N. J.; McNamara, N. P.; Bardgett, R.; Silman, M.; Bååth, E.; Salinas, N.; Meir, P.
2017-12-01
Climate warming predicted for the tropics in the coming century will result in average temperatures under which no closed canopy forest exists today. There is, therefore, great uncertainty associated with the direction and magnitude of feedbacks between tropical forests and our future climate - especially relating to the response of soil microbes and the third of global soil carbon contained in tropical forests. While warming experiments are yet to be performed in tropical forests, natural temperature gradients are powerful tools to investigate temperature effects on soil microbes. Here we draw on studies from a 3.5 km elevation gradient - and 20oC mean annual temperature gradient - in Peruvian tropical forest, to investigate how temperature affects the structure of microbial communities, microbial metabolism, enzymatic activity and soil organic matter cycling. With decreased elevation, soil microbial diversity increased and community composition shifted, from taxa associated with oligotrophic towards copiotrophic traits. A key role for temperature in shaping these patterns was demonstrated by a soil translocation experiment, where temperature-manipulation altered the relative abundance of specific taxa. Functional implications of these community composition shifts were indicated by changes in enzyme activities, the temperature sensitivity of bacterial and fungal growth rates, and the presence of temperature-adapted iso-enzymes at different elevations. Studies from a Peruvian elevation transect indicated that soil microbial communities are adapted to long-term (differences with elevation) and short-term (translocation responses) temperature changes. These findings indicate the potential for adaptation of soil microbes in tropical soils to future climate warming. However, in order to evaluate the sensitivity of these processes to climate warming in lowland forests, in situ experimentation is required. Finally, we describe SWELTR (Soil Warming Experiment in Lowland Tropical Rainforest), a new soil warming experiment being undertaken on Barro Colorado Island, Panama, designed to improve our understanding of biogeochemical feedbacks to climate warming in lowland tropical forests.
NASA Astrophysics Data System (ADS)
D'Odorico, P.; Wong, C. Y.; Besik, A.; Earon, E.; Isabel, N.; Ensminger, I.
2017-12-01
Rapid climate change is expected to cause a mismatch between locally adapted tree populations and the optimal climatic conditions to which they have adapted. Plant breeding and reforestation programs will increasingly need to rely on high-throughput precision phenotyping tools for the selection of genotypes with increased drought and stress tolerance. In this work, we present the possibilities offered by Unmanned Aircraft Systems (UAS) carrying optical sensors to monitor and assess differences in performance among white spruce genotypes. While high-throughput precision phenotyping using UAS has gained traction in agronomic crop research during the last few years, to our knowledge it is still at its infancy in forestry applications. UAS surveys were performed at different times during the growing season over large white spruce common garden experiments established by the Canadian Forest Service at four different sites, each characterized by 2000 clonally replicated genotypes. Sites are distributed over a latitudinal gradient, in Ontario and Quebec, Canada. The UAS payload consisted of a custom-bands multispectral sensor acquiring radiation at wavelength at which the reflectance spectrum of vegetation is known to capture physiological change under disturbance and stress. Ground based tree-top spectral reflectances and leaf level functional traits were also acquired for validation purposes parallel to UAS surveys. We will discuss the potential and the challenges of using optical sensors on UAS to infer genotypic variation in tree response to stress events and show how spectral data can function as the link between large-scale phenotype and genotype data.
The Patagonian icefields: A glaciological review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, C.R.; Sugden, D.E.
The Patagonian icefields are the largest mid-latitude ice masses and yet few glaciological data exist for them. The presence of the Andes lying athwart the westerlies makes for a dynamic glacial system with steep balance gradients and west-east equilibrium-line altitude gradients. The overall trend during the 20th century has been glacier retreat. However, whereas most eastern outlets retreated consistently from the beginning of the century, recession on the west began later, has been interrupted by readvances, and most recently has accelerated markedly, reaching higher mean rates of retreat than those on the east. This contrast may result from a predominantlymore » precipitation-controlled mass-balance regime in the west and a dominant temperature control in the east. Superimposed on these contrasts is the anomalous behavior of certain calving glaciers, the oscillations of which contrast in magnitude, timing and sign with each other and with noncalving glaciers, and which in many cases do not relate directly to climate change. Two large calving outlets are at or near their Neoglacial maxima. The tantalizing fragments of information that exist suggest that there is a rich glaciological source to be mined in Patagonia yielding insights into glacioclimatic interactions, calving dynamics, Holocene climate change and the role of topography in controlling glacier behavior. 118 refs., 13 figs., 2 tabs.« less
Termites promote resistance of decomposition to spatiotemporal variability in rainfall.
Veldhuis, Michiel P; Laso, Francisco J; Olff, Han; Berg, Matty P
2017-02-01
The ecological impact of rapid environmental change will depend on the resistance of key ecosystems processes, which may be promoted by species that exert strong control over local environmental conditions. Recent theoretical work suggests that macrodetritivores increase the resistance of African savanna ecosystems to changing climatic conditions, but experimental evidence is lacking. We examined the effect of large fungus-growing termites and other non-fungus-growing macrodetritivores on decomposition rates empirically with strong spatiotemporal variability in rainfall and temperature. Non-fungus-growing larger macrodetritivores (earthworms, woodlice, millipedes) promoted decomposition rates relative to microbes and small soil fauna (+34%) but both groups reduced their activities with decreasing rainfall. However, fungus-growing termites increased decomposition rates strongest (+123%) under the most water-limited conditions, making overall decomposition rates mostly independent from rainfall. We conclude that fungus-growing termites are of special importance in decoupling decomposition rates from spatiotemporal variability in rainfall due to the buffered environment they create within their extended phenotype (mounds), that allows decomposition to continue when abiotic conditions outside are less favorable. This points at a wider class of possibly important ecological processes, where soil-plant-animal interactions decouple ecosystem processes from large-scale climatic gradients. This may strongly alter predictions from current climate change models. © 2016 by the Ecological Society of America.
Forest gradient response in Sierran landscapes: the physical template
Urban, Dean L.; Miller, Carol; Halpin, Patrick N.; Stephenson, Nathan L.
2000-01-01
Vegetation pattern on landscapes is the manifestation of physical gradients, biotic response to these gradients, and disturbances. Here we focus on the physical template as it governs the distribution of mixed-conifer forests in California's Sierra Nevada. We extended a forest simulation model to examine montane environmental gradients, emphasizing factors affecting the water balance in these summer-dry landscapes. The model simulates the soil moisture regime in terms of the interaction of water supply and demand: supply depends on precipitation and water storage, while evapotranspirational demand varies with solar radiation and temperature. The forest cover itself can affect the water balance via canopy interception and evapotranspiration. We simulated Sierran forests as slope facets, defined as gridded stands of homogeneous topographic exposure, and verified simulated gradient response against sample quadrats distributed across Sequoia National Park. We then performed a modified sensitivity analysis of abiotic factors governing the physical gradient. Importantly, the model's sensitivity to temperature, precipitation, and soil depth varies considerably over the physical template, particularly relative to elevation. The physical drivers of the water balance have characteristic spatial scales that differ by orders of magnitude. Across large spatial extents, temperature and precipitation as defined by elevation primarily govern the location of the mixed conifer zone. If the analysis is constrained to elevations within the mixed-conifer zone, local topography comes into play as it influences drainage. Soil depth varies considerably at all measured scales, and is especially dominant at fine (within-stand) scales. Physical site variables can influence soil moisture deficit either by affecting water supply or water demand; these effects have qualitatively different implications for forest response. These results have clear implications about purely inferential approaches to gradient analysis, and bear strongly on our ability to use correlative approaches in assessing the potential responses of montane forests to anthropogenic climatic change.
Klanderud, Kari; Vandvik, Vigdis; Goldberg, Deborah
2015-01-01
We assessed if the relative importance of biotic and abiotic factors for plant community composition differs along environmental gradients and between functional groups, and asked which implications this may have in a warmer and wetter future. The study location is a unique grid of sites spanning regional-scale temperature and precipitation gradients in boreal and alpine grasslands in southern Norway. Within each site we sampled vegetation and associated biotic and abiotic factors, and combined broad- and fine-scale ordination analyses to assess the relative explanatory power of these factors for species composition. Although the community responses to biotic and abiotic factors did not consistently change as predicted along the bioclimatic gradients, abiotic variables tended to explain a larger proportion of the variation in species composition towards colder sites, whereas biotic variables explained more towards warmer sites, supporting the stress gradient hypothesis. Significant interactions with precipitation suggest that biotic variables explained more towards wetter climates in the sub alpine and boreal sites, but more towards drier climates in the colder alpine. Thus, we predict that biotic interactions may become more important in alpine and boreal grasslands in a warmer future, although more winter precipitation may counteract this trend in oceanic alpine climates. Our results show that both local and regional scales analyses are needed to disentangle the local vegetation-environment relationships and their regional-scale drivers, and biotic interactions and precipitation must be included when predicting future species assemblages. PMID:26091266
Klanderud, Kari; Vandvik, Vigdis; Goldberg, Deborah
2015-01-01
We assessed if the relative importance of biotic and abiotic factors for plant community composition differs along environmental gradients and between functional groups, and asked which implications this may have in a warmer and wetter future. The study location is a unique grid of sites spanning regional-scale temperature and precipitation gradients in boreal and alpine grasslands in southern Norway. Within each site we sampled vegetation and associated biotic and abiotic factors, and combined broad- and fine-scale ordination analyses to assess the relative explanatory power of these factors for species composition. Although the community responses to biotic and abiotic factors did not consistently change as predicted along the bioclimatic gradients, abiotic variables tended to explain a larger proportion of the variation in species composition towards colder sites, whereas biotic variables explained more towards warmer sites, supporting the stress gradient hypothesis. Significant interactions with precipitation suggest that biotic variables explained more towards wetter climates in the sub alpine and boreal sites, but more towards drier climates in the colder alpine. Thus, we predict that biotic interactions may become more important in alpine and boreal grasslands in a warmer future, although more winter precipitation may counteract this trend in oceanic alpine climates. Our results show that both local and regional scales analyses are needed to disentangle the local vegetation-environment relationships and their regional-scale drivers, and biotic interactions and precipitation must be included when predicting future species assemblages.
Sarah C. Elmendorf; Gregory H.R. Henry; Robert D. Hollisterd; Anna Maria Fosaa; William A. Gould; Luise Hermanutz; Annika Hofgaard; Ingibjorg I. Jonsdottir; Janet C. Jorgenson; Esther Levesque; Borgbor Magnusson; Ulf Molau; Isla H. Myers-Smith; Steven F. Oberbauer; Christian Rixen; Craig E. Tweedie; Marilyn Walkers
2015-01-01
Inference about future climate change impacts typically relies on one of three approaches: manipulative experiments, historical comparisons (broadly defined to include monitoring the response to ambient climate fluctuations using repeat sampling of plots, dendroecology, and paleoecology techniques), and space-for-time substitutions derived from sampling along...
NASA Astrophysics Data System (ADS)
Nicholls, S.; Mohr, K. I.
2014-12-01
The meridional extent and complex orography of the South American continent contributes to a wide diversity of climate regimes ranging from hyper-arid deserts to tropical rainforests to sub-polar highland regions. Global climate models, although capable of resolving synoptic-scale South American climate features, are inadequate for fully-resolving the strong gradients between climate regimes and the complex orography which define the Tropical Andes given their low spatial and temporal resolution. Recent computational advances now make practical regional climate modeling with prognostic mesoscale atmosphere-ocean coupled models, such as the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system, to climate research. Previous work has shown COAWST to reasonably simulate the both the entire 2003-2004 wet season (Dec-Feb) as validated against both satellite and model analysis data. More recently, COAWST simulations have also been shown to sensibly reproduce the entire annual cycle of rainfall (Oct 2003 - Oct 2004) with historical climate model input. Using future global climate model input for COAWST, the present work involves year-long cycle spanning October to October for the years 2031, 2059, and 2087 assuming the most likely regional climate pathway (RCP): RCP 6.0. COAWST output is used to investigate how global climate change impacts the spatial distribution, precipitation rates, and diurnal cycle of precipitation patterns in the Central Andes vary in these yearly "snapshots". Initial results show little change to precipitation coverage or its diurnal cycle, however precipitation amounts did tend drier over the Brazilian Plateau and wetter over the Western Amazon and Central Andes. These results suggest potential adjustments to large-scale climate features (such as the Bolivian High).
NASA Astrophysics Data System (ADS)
Reyer, Christopher P. O.; Bathgate, Stephen; Blennow, Kristina; Borges, Jose G.; Bugmann, Harald; Delzon, Sylvain; Faias, Sonia P.; Garcia-Gonzalo, Jordi; Gardiner, Barry; Gonzalez-Olabarria, Jose Ramon; Gracia, Carlos; Guerra Hernández, Juan; Kellomäki, Seppo; Kramer, Koen; Lexer, Manfred J.; Lindner, Marcus; van der Maaten, Ernst; Maroschek, Michael; Muys, Bart; Nicoll, Bruce; Palahi, Marc; Palma, João HN; Paulo, Joana A.; Peltola, Heli; Pukkala, Timo; Rammer, Werner; Ray, Duncan; Sabaté, Santiago; Schelhaas, Mart-Jan; Seidl, Rupert; Temperli, Christian; Tomé, Margarida; Yousefpour, Rasoul; Zimmermann, Niklaus E.; Hanewinkel, Marc
2017-03-01
Recent studies projecting future climate change impacts on forests mainly consider either the effects of climate change on productivity or on disturbances. However, productivity and disturbances are intrinsically linked because 1) disturbances directly affect forest productivity (e.g. via a reduction in leaf area, growing stock or resource-use efficiency), and 2) disturbance susceptibility is often coupled to a certain development phase of the forest with productivity determining the time a forest is in this specific phase of susceptibility. The objective of this paper is to provide an overview of forest productivity changes in different forest regions in Europe under climate change, and partition these changes into effects induced by climate change alone and by climate change and disturbances. We present projections of climate change impacts on forest productivity from state-of-the-art forest models that dynamically simulate forest productivity and the effects of the main European disturbance agents (fire, storm, insects), driven by the same climate scenario in seven forest case studies along a large climatic gradient throughout Europe. Our study shows that, in most cases, including disturbances in the simulations exaggerate ongoing productivity declines or cancel out productivity gains in response to climate change. In fewer cases, disturbances also increase productivity or buffer climate-change induced productivity losses, e.g. because low severity fires can alleviate resource competition and increase fertilization. Even though our results cannot simply be extrapolated to other types of forests and disturbances, we argue that it is necessary to interpret climate change-induced productivity and disturbance changes jointly to capture the full range of climate change impacts on forests and to plan adaptation measures.
Reyer, Christopher P O; Bathgate, Stephen; Blennow, Kristina; Borges, Jose G; Bugmann, Harald; Delzon, Sylvain; Faias, Sonia P; Garcia-Gonzalo, Jordi; Gardiner, Barry; Gonzalez-Olabarria, Jose Ramon; Gracia, Carlos; Hernández, Juan Guerra; Kellomäki, Seppo; Kramer, Koen; Lexer, Manfred J; Lindner, Marcus; van der Maaten, Ernst; Maroschek, Michael; Muys, Bart; Nicoll, Bruce; Palahi, Marc; Palma, João HN; Paulo, Joana A; Peltola, Heli; Pukkala, Timo; Rammer, Werner; Ray, Duncan; Sabaté, Santiago; Schelhaas, Mart-Jan; Seidl, Rupert; Temperli, Christian; Tomé, Margarida; Yousefpour, Rasoul; Zimmermann, Niklaus E; Hanewinkel, Marc
2017-01-01
Recent studies projecting future climate change impacts on forests mainly consider either the effects of climate change on productivity or on disturbances. However, productivity and disturbances are intrinsically linked because 1) disturbances directly affect forest productivity (e.g. via a reduction in leaf area, growing stock or resource-use efficiency), and 2) disturbance susceptibility is often coupled to a certain development phase of the forest with productivity determining the time a forest is in this specific phase of susceptibility. The objective of this paper is to provide an overview of forest productivity changes in different forest regions in Europe under climate change, and partition these changes into effects induced by climate change alone and by climate change and disturbances. We present projections of climate change impacts on forest productivity from state-of-the-art forest models that dynamically simulate forest productivity and the effects of the main European disturbance agents (fire, storm, insects), driven by the same climate scenario in seven forest case studies along a large climatic gradient throughout Europe. Our study shows that, in most cases, including disturbances in the simulations exaggerate ongoing productivity declines or cancel out productivity gains in response to climate change. In fewer cases, disturbances also increase productivity or buffer climate-change induced productivity losses, e.g. because low severity fires can alleviate resource competition and increase fertilization. Even though our results cannot simply be extrapolated to other types of forests and disturbances, we argue that it is necessary to interpret climate change-induced productivity and disturbance changes jointly to capture the full range of climate change impacts on forests and to plan adaptation measures. PMID:28855959
Reyer, Christopher P O; Bathgate, Stephen; Blennow, Kristina; Borges, Jose G; Bugmann, Harald; Delzon, Sylvain; Faias, Sonia P; Garcia-Gonzalo, Jordi; Gardiner, Barry; Gonzalez-Olabarria, Jose Ramon; Gracia, Carlos; Hernández, Juan Guerra; Kellomäki, Seppo; Kramer, Koen; Lexer, Manfred J; Lindner, Marcus; van der Maaten, Ernst; Maroschek, Michael; Muys, Bart; Nicoll, Bruce; Palahi, Marc; Palma, João Hn; Paulo, Joana A; Peltola, Heli; Pukkala, Timo; Rammer, Werner; Ray, Duncan; Sabaté, Santiago; Schelhaas, Mart-Jan; Seidl, Rupert; Temperli, Christian; Tomé, Margarida; Yousefpour, Rasoul; Zimmermann, Niklaus E; Hanewinkel, Marc
2017-03-16
Recent studies projecting future climate change impacts on forests mainly consider either the effects of climate change on productivity or on disturbances. However, productivity and disturbances are intrinsically linked because 1) disturbances directly affect forest productivity (e.g. via a reduction in leaf area, growing stock or resource-use efficiency), and 2) disturbance susceptibility is often coupled to a certain development phase of the forest with productivity determining the time a forest is in this specific phase of susceptibility. The objective of this paper is to provide an overview of forest productivity changes in different forest regions in Europe under climate change, and partition these changes into effects induced by climate change alone and by climate change and disturbances. We present projections of climate change impacts on forest productivity from state-of-the-art forest models that dynamically simulate forest productivity and the effects of the main European disturbance agents (fire, storm, insects), driven by the same climate scenario in seven forest case studies along a large climatic gradient throughout Europe. Our study shows that, in most cases, including disturbances in the simulations exaggerate ongoing productivity declines or cancel out productivity gains in response to climate change. In fewer cases, disturbances also increase productivity or buffer climate-change induced productivity losses, e.g. because low severity fires can alleviate resource competition and increase fertilization. Even though our results cannot simply be extrapolated to other types of forests and disturbances, we argue that it is necessary to interpret climate change-induced productivity and disturbance changes jointly to capture the full range of climate change impacts on forests and to plan adaptation measures.
Understanding Climate Variability of Urban Ecosystems Through the Lens of Citizen Science
NASA Astrophysics Data System (ADS)
Ripplinger, J.; Jenerette, D.; Wang, J.; Chandler, M.; Ge, C.; Koutzoukis, S.
2017-12-01
The Los Angeles megacity is vulnerable to climate warming - a process that locally exacerbates the urban heat island effect as it intensifies with size and density of the built-up area. We know that large-scale drivers play a role, but in order to understand local-scale climate variation, more research is needed on the biophysical and sociocultural processes driving the urban climate system. In this study, we work with citizen scientists to deploy a high-density network of microsensors across a climate gradient to characterize geographic variation in neighborhood meso- and micro-climates. This research asks: How do urbanization, global climate, and vegetation interact across multiple scales to affect local-scale experiences of temperature? Additionally, citizen scientist-led efforts generated research questions focused on examining microclimatic differences among yard groundcover types (rock mulch vs. lawn vs. artificial turf) and also on variation in temperature related to tree cover. Combining sensor measurements with Weather Research and Forecasting (WRF) spatial models and satellite-based temperature, we estimate spatially-explicit maps of land surface temperature and air temperature to illustrate the substantial difference between surface and air urban heat island intensities and the variable degree of coupling between land surface and air temperature in urban areas. Our results show a strong coupling between air temperature variation and landcover for neighborhoods, with significant detectable signatures from tree cover and impervious surface. Temperature covaried most strongly with urbanization intensity at nighttime during peak summer season, when daily mean air temperature ranged from 12.8C to 30.4C across all groundcover types. The combined effects of neighborhood geography and vegetation determine where and how temperature and tree canopy vary within a city. This citizen science-enabled research shows how large-scale climate drivers and urbanization intensity jointly influence the nature and magnitude of coupling between air temperature and tree cover, and demonstrate how urban vegetation provides an important ecosystem service in cities by decreasing the intensity of local urban heat islands.
Laird, Kathleen R; Haig, Heather A; Ma, Susan; Kingsbury, Melanie V; Brown, Thomas A; Lewis, C F Michael; Oglesby, Robert J; Cumming, Brian F
2012-09-01
Multi-decadal to centennial-scale shifts in effective moisture over the past two millennia are inferred from sedimentary records from six lakes spanning a ~250 km region in northwest Ontario. This is the first regional application of a technique developed to reconstruct drought from drainage lakes (open lakes with surface outlets). This regional network of proxy drought records is based on individual within-lake calibration models developed using diatom assemblages collected from surface sediments across a water-depth gradient. Analysis of diatom assemblages from sediment cores collected close to the near-shore ecological boundary between benthic and planktonic diatom taxa indicated this boundary shifted over time in all lakes. These shifts are largely dependent on climate-driven influences, and can provide a sensitive record of past drought. Our lake-sediment records indicate two periods of synchronous signals, suggesting a common large-scale climate forcing. The first is a period of prolonged aridity during the Medieval Climate Anomaly (MCA, c. 900-1400 CE). Documentation of aridity across this region expands the known spatial extent of the MCA megadrought into a region that historically has not experienced extreme droughts such as those in central and western north America. The second synchronous period is the recent signal of the past ~100 years, which indicates a change to higher effective moisture that may be related to anthropogenic forcing on climate. This approach has the potential to fill regional gaps, where many previous paleo-lake depth methods (based on deeper centrally located cores) were relatively insensitive. By filling regional gaps, a better understanding of past spatial patterns in drought can be used to assess the sensitivity and realism of climate model projections of future climate change. This type of data is especially important for validating high spatial resolution, regional climate models. © 2012 Blackwell Publishing Ltd.
Ashley E. Van Beusekom; William A. Gould; Adam J. Terando; Jaime A. Collazo
2015-01-01
Many tropical islands have limited water resources with historically increasing demand, all potentially affected by a changing climate. The effects of climate change on island hydrology are difficult to model due to steep local precipitation gradients and sparse data. Thiswork uses 10 statistically downscaled general circulationmodels (GCMs) under two greenhouse gas...
Estuarine fish communities respond to climate variability over both river and ocean basins
Feyrer, Frederick V.; Cloern, James E.; Brown, Larry R.; Fish, Maxfield; Hieb, Kathryn; Baxter, Randall
2015-01-01
Estuaries are dynamic environments at the land–sea interface that are strongly affected by interannual climate variability. Ocean–atmosphere processes propagate into estuaries from the sea, and atmospheric processes over land propagate into estuaries from watersheds. We examined the effects of these two separate climate-driven processes on pelagic and demersal fish community structure along the salinity gradient in the San Francisco Estuary, California, USA. A 33-year data set (1980–2012) on pelagic and demersal fishes spanning the freshwater to marine regions of the estuary suggested the existence of five estuarine salinity fish guilds: limnetic (salinity = 0–1), oligohaline (salinity = 1–12), mesohaline (salinity = 6–19), polyhaline (salinity = 19–28), and euhaline (salinity = 29–32). Climatic effects propagating from the adjacent Pacific Ocean, indexed by the North Pacific Gyre Oscillation (NPGO), affected demersal and pelagic fish community structure in the euhaline and polyhaline guilds. Climatic effects propagating over land, indexed as freshwater outflow from the watershed (OUT), affected demersal and pelagic fish community structure in the oligohaline, mesohaline, polyhaline, and euhaline guilds. The effects of OUT propagated further down the estuary salinity gradient than the effects of NPGO that propagated up the estuary salinity gradient, exemplifying the role of variable freshwater outflow as an important driver of biotic communities in river-dominated estuaries. These results illustrate how unique sources of climate variability interact to drive biotic communities and, therefore, that climate change is likely to be an important driver in shaping the future trajectory of biotic communities in estuaries and other transitional habitats.
Estuarine fish communities respond to climate variability over both river and ocean basins.
Feyrer, Frederick; Cloern, James E; Brown, Larry R; Fish, Maxfield A; Hieb, Kathryn A; Baxter, Randall D
2015-10-01
Estuaries are dynamic environments at the land-sea interface that are strongly affected by interannual climate variability. Ocean-atmosphere processes propagate into estuaries from the sea, and atmospheric processes over land propagate into estuaries from watersheds. We examined the effects of these two separate climate-driven processes on pelagic and demersal fish community structure along the salinity gradient in the San Francisco Estuary, California, USA. A 33-year data set (1980-2012) on pelagic and demersal fishes spanning the freshwater to marine regions of the estuary suggested the existence of five estuarine salinity fish guilds: limnetic (salinity = 0-1), oligohaline (salinity = 1-12), mesohaline (salinity = 6-19), polyhaline (salinity = 19-28), and euhaline (salinity = 29-32). Climatic effects propagating from the adjacent Pacific Ocean, indexed by the North Pacific Gyre Oscillation (NPGO), affected demersal and pelagic fish community structure in the euhaline and polyhaline guilds. Climatic effects propagating over land, indexed as freshwater outflow from the watershed (OUT), affected demersal and pelagic fish community structure in the oligohaline, mesohaline, polyhaline, and euhaline guilds. The effects of OUT propagated further down the estuary salinity gradient than the effects of NPGO that propagated up the estuary salinity gradient, exemplifying the role of variable freshwater outflow as an important driver of biotic communities in river-dominated estuaries. These results illustrate how unique sources of climate variability interact to drive biotic communities and, therefore, that climate change is likely to be an important driver in shaping the future trajectory of biotic communities in estuaries and other transitional habitats. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Ren, Chengjie; Zhang, Wei; Zhong, ZeKun; Han, Xinhui; Yang, Gaihe; Feng, Yongzhong; Ren, Guangxin
2018-01-01
Alt'itudinal gradients strongly affect plant biodiversity, but the effects on microbial patterns remain unclear, especially in the large scale. We therefore designed an altitudinal gradient experiment that covered three climate zones to monitor soil microbial community dynamics and to compare those with plant and soil characteristics. Illumina sequencing of the 16S rRNA gene and ITS gene was used to analyze soil microbial (bacterial and fungal) diversity and composition, and fumigation-extraction was used to determine microbial biomass; the plant community metrics (i.e., percent cover, Shannon-Wiener, grass biomass, and carbon/nitrogen in leaf and biomass) and soil properties (i.e., soil moisture, soil temperature, bulk density, organic carbon, total nitrogen, and available nitrogen) were determined. The results showed that carbon/nitrogen in microbial biomass was higher at medium altitude and was positively related to carbon and nitrogen in both soil and grass biomass along the altitudinal gradients. Soil bacterial alpha diversity was significantly higher at medium altitude but fungal alpha diversity did not affected by altitudinal gradients; the effect of altitudinal gradients on bacterial beta diversity was larger than that on fungal beta diversity, although both groups were significantly affected by altitudinal gradients. Moreover, Alpha-proteobacteria, Beta-proteobacteria, and Gemmatimonadetes were significantly more abundant in higher altitude than in lower altitude, both Acidobacteria and Actinobacteria significantly declined with increasing altitude; other bacterial taxa such as Chloroflexi, Nitrospirae, Gamma-proteobacteria, and Delta-proteobacteria were significantly higher at medium altitudes. For fungal taxa, Basidiomycota and Ascomycota were the dominant phyla and responded insignificantly to the altitudinal gradients. The responses of microbial alpha diversity were mostly associated with plant Shannon index, organic carbon, and total nitrogen, whereas microbial beta diversity and composition mainly depended on soil moisture and temperature. Overall, these results suggest that soil bacteria rather than fungi can reflect changes in plant and soil characteristics along altitudinal gradients. Copyright © 2017 Elsevier B.V. All rights reserved.
Evidence for a rapid release of carbon at the Paleocene-Eocene thermal maximum.
Wright, James D; Schaller, Morgan F
2013-10-01
The Paleocene/Eocene thermal maximum (PETM) and associated carbon isotope excursion (CIE) are often touted as the best geologic analog for the current anthropogenic rise in pCO2. However, a causal mechanism for the PETM CIE remains unidentified because of large uncertainties in the duration of the CIE's onset. Here, we report on a sequence of rhythmic sedimentary couplets comprising the Paleocene/Eocene Marlboro Clay (Salisbury Embayment). These couplets have corresponding δ(18)O cycles that imply a climatic origin. Seasonal insolation is the only regular climate cycle that can plausibly account for δ(18)O amplitudes and layer counts. High-resolution stable isotope records show 3.5‰ δ(13)C decrease over 13 couplets defining the CIE onset, which requires a large, instantaneous release of (13)C-depleted carbon. During the CIE, a clear δ(13)C gradient developed on the shelf with the largest excursions in shallowest waters, indicating atmospheric δ(13)C decreased by ~20‰. Our observations and revised release rate are consistent with an atmospheric perturbation of 3,000-gigatons of carbon (GtC).
Evidence for a rapid release of carbon at the Paleocene-Eocene thermal maximum
Wright, James D.; Schaller, Morgan F.
2013-01-01
The Paleocene/Eocene thermal maximum (PETM) and associated carbon isotope excursion (CIE) are often touted as the best geologic analog for the current anthropogenic rise in pCO2. However, a causal mechanism for the PETM CIE remains unidentified because of large uncertainties in the duration of the CIE’s onset. Here, we report on a sequence of rhythmic sedimentary couplets comprising the Paleocene/Eocene Marlboro Clay (Salisbury Embayment). These couplets have corresponding δ18O cycles that imply a climatic origin. Seasonal insolation is the only regular climate cycle that can plausibly account for δ18O amplitudes and layer counts. High-resolution stable isotope records show 3.5‰ δ13C decrease over 13 couplets defining the CIE onset, which requires a large, instantaneous release of 13C-depleted carbon. During the CIE, a clear δ13C gradient developed on the shelf with the largest excursions in shallowest waters, indicating atmospheric δ13C decreased by ∼20‰. Our observations and revised release rate are consistent with an atmospheric perturbation of 3,000-gigatons of carbon (GtC). PMID:24043840
Benomar, Lahcen; Lamhamedi, Mohammed S.; Rainville, André; Beaulieu, Jean; Bousquet, Jean; Margolis, Hank A.
2016-01-01
Assisted population migration (APM) is the intentional movement of populations within a species range to sites where future environmental conditions are projected to be more conducive to growth. APM has been proposed as a proactive adaptation strategy to maintain forest productivity and to reduce the vulnerability of forest ecosystems to projected climate change. The validity of such a strategy will depend on the adaptation capacity of populations, which can partially be evaluated by the ecophysiological response of different genetic sources along a climatic gradient. This adaptation capacity results from the compromise between (i) the degree of genetic adaptation of seed sources to their environment of origin and (ii) the phenotypic plasticity of functional trait which can make it possible for transferred seed sources to positively respond to new growing conditions. We examined phenotypic variation in morphophysiological traits of six seed sources of white spruce (Picea glauca [Moench] Voss) along a regional climatic gradient in Québec, Canada. Seedlings from the seed sources were planted at three forest sites representing a mean annual temperature (MAT) gradient of 2.2°C. During the second growing season, we measured height growth (H2014) and traits related to resources use efficiency and photosynthetic rate (Amax). All functional traits showed an adaptive response to the climatic gradient. Traits such as H2014, Amax, stomatal conductance (gs), the ratio of mesophyll to stomatal conductance, water use efficiency, and photosynthetic nitrogen-use efficiency showed significant variation in both physiological plasticity due to the planting site and seed source variation related to local genetic adaptation. However, the amplitude of seed source variation was much less than that related to plantation sites in the area investigated. The six seed sources showed a similar level of physiological plasticity. H2014, Amax and gs, but not carboxylation capacity (Vcmax), were correlated and decreased with a reduction of the average temperature of the growing season at seed origin. The clinal variation in H2014 and Amax appeared to be driven by CO2 conductance. The presence of locally adapted functional traits suggests that the use of APM may have advantages for optimizing seed source productivity in future local climates. PMID:26870067
Liang, Liang; Schwartz, Mark D
2014-10-01
Variation in the timing of plant phenology caused by phenotypic plasticity is a sensitive measure of how organisms respond to weather and climate variability. Although continental-scale gradients in climate and consequential patterns in plant phenology are well recognized, the contribution of underlying genotypic difference to the geography of phenology is less well understood. We hypothesize that different temperate plant genotypes require varying amount of heat energy for resuming annual growth and reproduction as a result of adaptation and other ecological and evolutionary processes along climatic gradients. In particular, at least for some species, the growing degree days (GDD) needed to trigger the same spring phenology events (e.g., budburst and flower bloom) may be less for individuals originated from colder climates than those from warmer climates. This variable intrinsic heat energy requirement in plants can be characterized by the term growth efficiency and is quantitatively reflected in the timing of phenophases-earlier timing indicates higher efficiency (i.e., less heat energy needed to trigger phenophase transitions) and vice versa compared to a standard reference (i.e., either a uniform climate or a uniform genotype). In this study, we tested our hypothesis by comparing variations of budburst and bloom timing of two widely documented plants from the USA National Phenology Network (i.e., red maple-Acer rubrum and forsythia-Forsythia spp.) with cloned indicator plants (lilac-Syringa x chinensis 'Red Rothomagensis') at multiple eastern US sites. Our results indicate that across the accumulated temperature gradient, the two non-clonal plants showed significantly more gradual changes than the cloned plants, manifested by earlier phenology in colder climates and later phenology in warmer climates relative to the baseline clone phenological response. This finding provides initial evidence supporting the growth efficiency hypothesis, and suggests more work is warranted. More studies investigating genotype-determined phenological variations will be useful for better understanding and prediction of the continental-scale patterns of biospheric responses to climate change.
EarthShape: A Strategy for Investigating the Role of Biota on Surface Processes
NASA Astrophysics Data System (ADS)
Übernickel, Kirstin; Ehlers, Todd Alan; von Blanckenburg, Friedhelm; Paulino, Leandro
2017-04-01
EarthShape - "Earth surface shaping by biota" is a 6-year priority research program funded by the German science foundation (DFG-SPP 1803) that performs soil- and landscape-scale critical zone research at 4 locations along a climate gradient in Chile, South America. The program is in its first year and involves an interdisciplinary collaboration between geologists, geomorphologists, ecologists, soil scientists, microbiologists, geophysicists, geochemists, hydrogeologists and climatologists including 18 German and 8 Chilean institutions. EarthShape is composed of 4 research clusters representing the process chain from weathering of substrate to deposition of eroded material. Cluster 1 explores micro-biota as the "weathering engine". Investigations in this cluster quantify different mechanisms of biogenic weathering whereby plants, fungi, and bacteria interact with rock in the production of soil. Cluster 2 explores bio-mediated redistribution of material within the weathering zone. Studies in this cluster focus on soil catenas along hill slope profiles to investigate the modification of matter along its transport path. Cluster 3 explores biotic modulation of erosion and sediment routing at the catchment scale. Investigations in this cluster explore the effects of vegetation cover on solute and sediment transport from hill slopes to the channel network. Cluster 4 explores the depositional legacy of coupled biogenic and Earth surface systems. This cluster investigates records of vegetation-land surface interactions in different depositional settings. A final component of EarthShape lies in the integration of results from these 4 clusters using numerical models to bridging between the diverse times scales used by different disciplines. The Chilean Coastal Cordillera between 25° and 40°S was selected to carry out this research because its north-south orientation captures a large ecological and climate gradient. This gradient ranges from hyper-arid (Atacama desert) to temperate to humid conditions without a dry season and pristine temperate Araucaria forest. All study sites comprise granitic, previously unglaciated mountain ranges. It is one of the very few regions on Earth with uniquely rich conditions for quantifying biotic interactions with topography. Here, we benefit from (1) similar rock type, (2) tectonic uplift providing a topographic gradient for erosion on geological time-scales, (3) glaciation free catchments, and (4) well-documented records of climate change (marine, and lacustrine sediment records available). The presentation provides an introduction to the EarthShape project and an overview of activities over the first year.
NASA Astrophysics Data System (ADS)
Fernanda Sanchez Goñi, Maria; Bard, Edouard; Landais, Amaelle; Rossignol, Linda
2014-05-01
Theoretical and numerical models predict that rapid ice sheet growth in the North Atlantic high latitudes was the consequence of a) a decrease in summer insolation, b) a strong thermal gradient between ocean and landmasses, and c) moisture generated by persisting warmth and salinity in the subpolar and northern subtropical Atlantic. So far, however, no data have demonstrated the strong land-sea thermal gradient, and how this process was affected by the sub-orbital climatic variability. To fine tune our understanding of this process we examined the MIS 5a/4 transition, between ~80 and 70 thousand years before present (ka), a period marked by decrease in summer insolation and a succession of cooling events, C20 to C19, affecting large parts of the subpolar and central North Atlantic, and Greenland (GS21 to 19). We combined high resolution pollen-based vegetation and foraminifera-based sea surface temperature (SST) data for the interval 85-50 ka, MIS5a-MIS3, from core MD04-2845 located in the Bay of Biscay (northern subtropical gyre, 45°21'N, 5°13'W, 4100 m water depth) with Ice Rafted Debris (IRD), N. pachyderma (s) and benthic foraminifera δ18O records from the same core. This approach allows the identification, without chronological ambiguity, of offsets between eastern North Atlantic Ocean surface hydrology (temperatures and iceberg melting) and atmospherically-driven changes in western European vegetation. The Bay of Biscay palaeoclimatic records were compared with foraminifera and Uk'37-based SST and pollen-based vegetation records from another core, MD99-2331, located in the northwestern Iberian margin. Data from these two cores located in the northern subtropical gyre reveal for the first time a decoupling between atmospheric and oceanic responses to orbital and sub-orbital climatic variability during the last interglacial-glacial transition. We have identified a long-term increase in the thermal gradient (cold land-warm sea) along the western European margin punctuated by three phases of highly pronounced land-sea thermal gradients. We argue that this composite trend was responsible for the production of moisture that continued to feed, via northward tracking storms, northern European, Greenland and Arctic ice sheets during the C20, onset C19 and C18' cold events.
Buse, Jörn; Fassbender, Samuel; Entling, Martin H; Pavlicek, Tomas
2015-01-01
Large valleys with opposing slopes may act as a model system with which the effects of strong climatic gradients on biodiversity can be evaluated. The advantage of such comparisons is that the impact of a change of climate can be studied on the same species pool without the need to consider regional differences. The aim of this study was to compare the assemblage of saproxylic beetles on such opposing slopes at Lower Nahal Oren, Mt. Carmel, Israel (also known as "Evolution Canyon") with a 200-800% higher solar radiation on the south-facing (SFS) compared to the north-facing slope (NFS). We tested specific hypotheses of species richness patterns, assemblage structure, and body size resulting from interslope differences in microclimate. Fifteen flight-interception traps per slope were distributed over three elevation levels ranging from 50 to 100 m a.s.l. Richness of saproxylic beetles was on average 34% higher on the SFS compared with the NFS, with no detected influence of elevation levels. Both assemblage structure and average body size were determined by slope aspect, with more small-bodied beetles found on the SFS. Both the increase in species richness and the higher prevalence of small species on the SFS reflect ecological rules present on larger spatial grain (species-energy hypothesis and community body size shift hypothesis), and both can be explained by the metabolic theory of ecology. This is encouraging for the complementary use of micro- and macroclimatic gradients to study impacts of climate warming on biodiversity.
Katuwal, Hem Bahadur; Basnet, Khadga; Khanal, Bhaiya; Devkota, Shiva; Rai, Sanjeev Kumar; Gajurel, Jyoti Prasad; Scheidegger, Christoph; Nobis, Michael P.
2016-01-01
The Himalayas are a global hotspot for bird diversity with a large number of threatened species, but little is known about seasonal changes in bird communities along elevational gradients in this region. We studied the seasonality of bird diversity in six valleys of the Central Himalayas, Nepal. Using 318 plots with a 50 m radius, located from 2200 to 3800 m a.s.l., and repeated sampling during different seasons (mainly pre-monsoon, monsoon, and post-monsoon), we analyzed 3642 occurrences of 178 species. Birds classified in the literature as resident were more species-rich than migratory birds (140 vs. 38 species). In all six valleys and within the studied elevation range, species richness of all birds showed a peak at mid-elevation levels of 2600 or 3000 m a.s.l. Similar patterns were found for the most species-rich feeding guilds of insectivores (96 species) and omnivores (24 species), whereas the species richness of herbivores (37 species including frugivores) increased towards higher elevations. Among these feeding guilds, only species richness of insectivores showed pronounced seasonal changes with higher species numbers during post-monsoon season. Similarly, individual bird species showed distinct spatio-temporal distribution patterns, with transitions from species dominated by elevational differences to those characterized by strong seasonal changes. In an era of climate change, the results demonstrate that individual bird species as well as feeding guilds might greatly differ in their responses to climate warming and changes in the seasonality of the precipitation regime, two aspects of climate change which should not be analyzed independently. PMID:27367903
NASA Astrophysics Data System (ADS)
McPhee, James; Mengual, Sebastian; MacDonell, Shelley
2017-04-01
Seasonal snowpack melt constitutes the main water source for large portions of extratropical South America, including central Chile and Western Argentina. The properties and distribution of snow in the Andes are threatened by rapid climate change, characterised by warming and drying. This study provides a first attempt at detailed description of the energy balance of the seasonal snowpack and its variability along a latitudinal gradient, which is also correlated with an elevation and precipitation gradient, in the Andes Cordillera. The Snowpack model was validated at semi-arid, Mediterranean and temperate humid sites, where meteorological and snowpack properties have been observed since year 2013. Site elevations decrease from north to south, whereas precipitation climatology increases with latitude. Results show that turbulent energy exchange becomes relatively more important in periods of low snow accumulation, with sensible heat fluxes having a greater effect in cooling the snowpack at the high-altitude, low latitude site. Likewise, daily melt-freeze cycles are important in maintaining positive cold contents throughout the accumulation season at this site, and contribute to extending the duration of snow cover despite low accumulation and high radiation loads. In contrast, the southernmost, lowest elevation site shows smaller daily temperature amplitude and a much more preponderant radiation component to the energy balance. This modelling exercise highlights the nonlinearities of snow dynamics at different geographical settings in a sparsely monitored mountain area of the world, as well as the need for further understanding in order to evaluate the sensitivity of snow-dominated watersheds to global warming and climate change.
Interacting effects of wildlife loss and climate on ticks and tick-borne disease.
Titcomb, Georgia; Allan, Brian F; Ainsworth, Tyler; Henson, Lauren; Hedlund, Tyler; Pringle, Robert M; Palmer, Todd M; Njoroge, Laban; Campana, Michael G; Fleischer, Robert C; Mantas, John Naisikie; Young, Hillary S
2017-09-13
Both large-wildlife loss and climatic changes can independently influence the prevalence and distribution of zoonotic disease. Given growing evidence that wildlife loss often has stronger community-level effects in low-productivity areas, we hypothesized that these perturbations would have interactive effects on disease risk. We experimentally tested this hypothesis by measuring tick abundance and the prevalence of tick-borne pathogens ( Coxiella burnetii and Rickettsia spp . ) within long-term, size-selective, large-herbivore exclosures replicated across a precipitation gradient in East Africa. Total wildlife exclusion increased total tick abundance by 130% (mesic sites) to 225% (dry, low-productivity sites), demonstrating a significant interaction of defaunation and aridity on tick abundance. When differing degrees of exclusion were tested for a subset of months, total tick abundance increased from 170% (only mega-herbivores excluded) to 360% (all large wildlife excluded). Wildlife exclusion differentially affected the abundance of the three dominant tick species, and this effect varied strongly over time, likely due to differences among species in their host associations, seasonality, and other ecological characteristics. Pathogen prevalence did not differ across wildlife exclusion treatments, rainfall levels, or tick species, suggesting that exposure risk will respond to defaunation and climate change in proportion to total tick abundance. These findings demonstrate interacting effects of defaunation and aridity that increase disease risk, and they highlight the need to incorporate ecological context when predicting effects of wildlife loss on zoonotic disease dynamics. © 2017 The Author(s).
NASA Astrophysics Data System (ADS)
Chi, Jinshu; Waldo, Sarah; Pressley, Shelley N.; Russell, Eric S.; O'Keeffe, Patrick T.; Pan, William L.; Huggins, David R.; Stöckle, Claudio O.; Brooks, Erin S.; Lamb, Brian K.
2017-12-01
Cropland is an important land cover influencing global carbon and water cycles. Variability of agricultural carbon and water fluxes depends on crop species, management practices, soil characteristics, and climatic conditions. In the context of climate change, it is critical to quantify the long-term effects of these environmental drivers and farming activities on carbon and water dynamics. Twenty site-years of carbon and water fluxes covering a large precipitation gradient and a variety of crop species and management practices were measured in the inland Pacific Northwest using the eddy covariance method. The rain-fed fields were net carbon sinks, while the irrigated site was close to carbon neutral during the winter wheat crop years. Sites growing spring crops were either carbon sinks, sources, or neutral, varying with crops, rainfall zones, and tillage practices. Fluxes were more sensitive to variability in precipitation than temperature: annual carbon and water fluxes increased with the increasing precipitation while only respiration increased with temperature in the high-rainfall area. Compared to a nearby rain-fed site, irrigation improved winter wheat production but resulted in large losses of carbon and water to the atmosphere. Compared to conventional tillage, no-till had significantly lower respiration but resulted in slightly lower yields and water use efficiency over 4 years. Under future climate change, it is expected that more carbon fixation by crops and evapotranspiration would occur in a warmer and wetter environment.
El Niño/Southern Oscillation response to global warming
Latif, M.; Keenlyside, N. S.
2009-01-01
The El Niño/Southern Oscillation (ENSO) phenomenon, originating in the Tropical Pacific, is the strongest natural interannual climate signal and has widespread effects on the global climate system and the ecology of the Tropical Pacific. Any strong change in ENSO statistics will therefore have serious climatic and ecological consequences. Most global climate models do simulate ENSO, although large biases exist with respect to its characteristics. The ENSO response to global warming differs strongly from model to model and is thus highly uncertain. Some models simulate an increase in ENSO amplitude, others a decrease, and others virtually no change. Extremely strong changes constituting tipping point behavior are not simulated by any of the models. Nevertheless, some interesting changes in ENSO dynamics can be inferred from observations and model integrations. Although no tipping point behavior is envisaged in the physical climate system, smooth transitions in it may give rise to tipping point behavior in the biological, chemical, and even socioeconomic systems. For example, the simulated weakening of the Pacific zonal sea surface temperature gradient in the Hadley Centre model (with dynamic vegetation included) caused rapid Amazon forest die-back in the mid-twenty-first century, which in turn drove a nonlinear increase in atmospheric CO2, accelerating global warming. PMID:19060210
NASA Astrophysics Data System (ADS)
Schmidt, H.; Alterskjær, K.; Karam, D. Bou; Boucher, O.; Jones, A.; Kristjansson, J. E.; Niemeier, U.; Schulz, M.; Aaheim, A.; Benduhn, F.; Lawrence, M.; Timmreck, C.
2012-01-01
In this study we compare the response of four state-of-the-art Earth system models to climate engineering under scenario G1 of the GeoMIP and IMPLICC model intercomparison projects. In G1, the radiative forcing from an instantaneous quadrupling of the CO2 concentration, starting from the preindustrial level, is balanced by a reduction of the solar constant. Model responses to the two counteracting forcings in G1 are compared to the preindustrial climate in terms of global means and regional patterns and their robustness. While the global mean surface air temperature in G1 remains almost unchanged, the meridional temperature gradient is reduced in all models compared to the control simulation. Another robust response is the global reduction of precipitation with strong effects in particular over North and South America and northern Eurasia. It is shown that this reduction is only partly compensated by a reduction in evaporation so that large continental regions are drier in the engineered climate. In comparison to the climate response to a quadrupling of CO2 alone the temperature responses are small in experiment G1. Precipitation responses are, however, of comparable magnitude but in many regions of opposite sign.
Range-wide parallel climate-associated genomic clines in Atlantic salmon
Stanley, Ryan R. E.; Wringe, Brendan F.; Guijarro-Sabaniel, Javier; Bourret, Vincent; Bernatchez, Louis; Bentzen, Paul; Beiko, Robert G.; Gilbey, John; Clément, Marie; Bradbury, Ian R.
2017-01-01
Clinal variation across replicated environmental gradients can reveal evidence of local adaptation, providing insight into the demographic and evolutionary processes that shape intraspecific diversity. Using 1773 genome-wide single nucleotide polymorphisms we evaluated latitudinal variation in allele frequency for 134 populations of North American and European Atlantic salmon (Salmo salar). We detected 84 (4.74%) and 195 (11%) loci showing clinal patterns in North America and Europe, respectively, with 12 clinal loci in common between continents. Clinal single nucleotide polymorphisms were evenly distributed across the salmon genome and logistic regression revealed significant associations with latitude and seasonal temperatures, particularly average spring temperature in both continents. Loci displaying parallel clines were associated with several metabolic and immune functions, suggesting a potential basis for climate-associated adaptive differentiation. These climate-based clines collectively suggest evidence of large-scale environmental associated differences on either side of the North Atlantic. Our results support patterns of parallel evolution on both sides of the North Atlantic, with evidence of both similar and divergent underlying genetic architecture. The identification of climate-associated genomic clines illuminates the role of selection and demographic processes on intraspecific diversity in this species and provides a context in which to evaluate the impacts of climate change. PMID:29291123
El Nino/Southern Oscillation response to global warming.
Latif, M; Keenlyside, N S
2009-12-08
The El Niño/Southern Oscillation (ENSO) phenomenon, originating in the Tropical Pacific, is the strongest natural interannual climate signal and has widespread effects on the global climate system and the ecology of the Tropical Pacific. Any strong change in ENSO statistics will therefore have serious climatic and ecological consequences. Most global climate models do simulate ENSO, although large biases exist with respect to its characteristics. The ENSO response to global warming differs strongly from model to model and is thus highly uncertain. Some models simulate an increase in ENSO amplitude, others a decrease, and others virtually no change. Extremely strong changes constituting tipping point behavior are not simulated by any of the models. Nevertheless, some interesting changes in ENSO dynamics can be inferred from observations and model integrations. Although no tipping point behavior is envisaged in the physical climate system, smooth transitions in it may give rise to tipping point behavior in the biological, chemical, and even socioeconomic systems. For example, the simulated weakening of the Pacific zonal sea surface temperature gradient in the Hadley Centre model (with dynamic vegetation included) caused rapid Amazon forest die-back in the mid-twenty-first century, which in turn drove a nonlinear increase in atmospheric CO(2), accelerating global warming.
Distributed Memory Parallel Computing with SEAWAT
NASA Astrophysics Data System (ADS)
Verkaik, J.; Huizer, S.; van Engelen, J.; Oude Essink, G.; Ram, R.; Vuik, K.
2017-12-01
Fresh groundwater reserves in coastal aquifers are threatened by sea-level rise, extreme weather conditions, increasing urbanization and associated groundwater extraction rates. To counteract these threats, accurate high-resolution numerical models are required to optimize the management of these precious reserves. The major model drawbacks are long run times and large memory requirements, limiting the predictive power of these models. Distributed memory parallel computing is an efficient technique for reducing run times and memory requirements, where the problem is divided over multiple processor cores. A new Parallel Krylov Solver (PKS) for SEAWAT is presented. PKS has recently been applied to MODFLOW and includes Conjugate Gradient (CG) and Biconjugate Gradient Stabilized (BiCGSTAB) linear accelerators. Both accelerators are preconditioned by an overlapping additive Schwarz preconditioner in a way that: a) subdomains are partitioned using Recursive Coordinate Bisection (RCB) load balancing, b) each subdomain uses local memory only and communicates with other subdomains by Message Passing Interface (MPI) within the linear accelerator, c) it is fully integrated in SEAWAT. Within SEAWAT, the PKS-CG solver replaces the Preconditioned Conjugate Gradient (PCG) solver for solving the variable-density groundwater flow equation and the PKS-BiCGSTAB solver replaces the Generalized Conjugate Gradient (GCG) solver for solving the advection-diffusion equation. PKS supports the third-order Total Variation Diminishing (TVD) scheme for computing advection. Benchmarks were performed on the Dutch national supercomputer (https://userinfo.surfsara.nl/systems/cartesius) using up to 128 cores, for a synthetic 3D Henry model (100 million cells) and the real-life Sand Engine model ( 10 million cells). The Sand Engine model was used to investigate the potential effect of the long-term morphological evolution of a large sand replenishment and climate change on fresh groundwater resources. Speed-ups up to 40 were obtained with the new PKS solver.
Plant distributions along salinity and tidal gradients in Oregon tidal marshes
Accurately modeling climate change effects on tidal marshes in the Pacific Northwest requires understanding how plant assemblages and species are presently distributed along gradients of salinity and tidal inundation. We outline on-going field efforts by the EPA and USGS to dete...
Tardif, Antoine; Shipley, Bill; Bloor, Juliette M. G.; Soussana, Jean-François
2014-01-01
Background and Aims The biomass-ratio hypothesis states that ecosystem properties are driven by the characteristics of dominant species in the community. In this study, the hypothesis was operationalized as community-weighted means (CWMs) of monoculture values and tested for predicting the decomposition of multispecies litter mixtures along an abiotic gradient in the field. Methods Decomposition rates (mg g−1 d−1) of litter from four herb species were measured using litter-bed experiments with the same soil at three sites in central France along a correlated climatic gradient of temperature and precipitation. All possible combinations from one to four species mixtures were tested over 28 weeks of incubation. Observed mixture decomposition rates were compared with those predicted by the biomass-ratio hypothesis. Variability of the prediction errors was compared with the species richness of the mixtures, across sites, and within sites over time. Key Results Both positive and negative prediction errors occurred. Despite this, the biomass-ratio hypothesis was true as an average claim for all sites (r = 0·91) and for each site separately, except for the climatically intermediate site, which showed mainly synergistic deviations. Variability decreased with increasing species richness and in less favourable climatic conditions for decomposition. Conclusions Community-weighted mean values provided good predictions of mixed-species litter decomposition, converging to the predicted values with increasing species richness and in climates less favourable to decomposition. Under a context of climate change, abiotic variability would be important to take into account when predicting ecosystem processes. PMID:24482152
Spasojevic, Marko J.; Grace, James B.; Harrison, Susan; Damschen, Ellen Ingman
2013-01-01
1. The physiological tolerance hypothesis proposes that plant species richness is highest in warm and/or wet climates because a wider range of functional strategies can persist under such conditions. Functional diversity metrics, combined with statistical modeling, offer new ways to test whether diversity-environment relationships are consistent with this hypothesis. 2. In a classic study by R. H. Whittaker (1960), herb species richness declined from mesic (cool, moist, northerly) slopes to xeric (hot, dry, southerly) slopes. Building on this dataset, we measured four plant functional traits (plant height, specific leaf area, leaf water content and foliar C:N) and used them to calculate three functional diversity metrics (functional richness, evenness, and dispersion). We then used a structural equation model to ask if ‘functional diversity’ (modeled as the joint responses of richness, evenness, and dispersion) could explain the observed relationship of topographic climate gradients to species richness. We then repeated our model examining the functional diversity of each of the four traits individually. 3. Consistent with the physiological tolerance hypothesis, we found that functional diversity was higher in more favorable climatic conditions (mesic slopes), and that multivariate functional diversity mediated the relationship of the topographic climate gradient to plant species richness. We found similar patterns for models focusing on individual trait functional diversity of leaf water content and foliar C:N. 4. Synthesis. Our results provide trait-based support for the physiological tolerance hypothesis, suggesting that benign climates support more species because they allow for a wider range of functional strategies.
A compendium of multi-omic sequence information from the Saanich Inlet water column
Hawley, Alyse K.; Torres-Beltran, Monica; Zaikova, Elena; ...
2017-10-31
Microbial communities play vital roles in earth’s geochemical cycles. Within marine oxygen minimum zones (OMZs) gradients of oxygen, nitrate and sulfide create redox gradients that drive biogeochemical cycling of carbon, nitrogen and sulphur. Climate-change induced expansion and intensification of OMZs and associated biogeochemical activities has significant implications for green house gas production i.e. nitrous oxide and methane. Next generation sequencing technologies have enabled observations of changes in microbial community structure and expression of RNA and protein along these redox gradients within OMZs. Here, we present a multi-omic time series dataset from Saanich Inlet spanning six years, including high spatial resolutionmore » small subunit ribosomal RNA tags, metagenomes, metatranscriptomes, and metaproteomes. As a result, this compendium provides paired multi-omic datasets over multiple time points providing a basis for exploring shifts in microbial community interactions and regulation of metabolic activities both along redox gradients and over time with implications for global climate models.« less
A compendium of multi-omic sequence information from the Saanich Inlet water column
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawley, Alyse K.; Torres-Beltran, Monica; Zaikova, Elena
Microbial communities play vital roles in earth’s geochemical cycles. Within marine oxygen minimum zones (OMZs) gradients of oxygen, nitrate and sulfide create redox gradients that drive biogeochemical cycling of carbon, nitrogen and sulphur. Climate-change induced expansion and intensification of OMZs and associated biogeochemical activities has significant implications for green house gas production i.e. nitrous oxide and methane. Next generation sequencing technologies have enabled observations of changes in microbial community structure and expression of RNA and protein along these redox gradients within OMZs. Here, we present a multi-omic time series dataset from Saanich Inlet spanning six years, including high spatial resolutionmore » small subunit ribosomal RNA tags, metagenomes, metatranscriptomes, and metaproteomes. As a result, this compendium provides paired multi-omic datasets over multiple time points providing a basis for exploring shifts in microbial community interactions and regulation of metabolic activities both along redox gradients and over time with implications for global climate models.« less
Dwyer, John M; Laughlin, Daniel C
2017-07-01
Trade-offs maintain diversity and structure communities along environmental gradients. Theory indicates that if covariance among functional traits sets a limit on the number of viable trait combinations in a given environment, then communities with strong multidimensional trait constraints should exhibit low species diversity. We tested this prediction in winter annual plant assemblages along an aridity gradient using multilevel structural equation modelling. Univariate and multivariate functional diversity measures were poorly explained by aridity, and were surprisingly poor predictors of community richness. By contrast, the covariance between maximum height and seed mass strengthened along the aridity gradient, and was strongly associated with richness declines. Community richness had a positive effect on local neighbourhood richness, indicating that climate effects on trait covariance indirectly influence diversity at local scales. We present clear empirical evidence that declines in species richness along gradients of environmental stress can be due to increasing constraints on multidimensional phenotypes. © 2017 John Wiley & Sons Ltd/CNRS.
Tropical Convection and Climate Processes in a Cumulus Ensemble Model
NASA Technical Reports Server (NTRS)
Sui, Chung-Hsiung
1999-01-01
Local convective-radiative equilibrium states of the tropical atmosphere are determined by the following external forcing: 1) Insolation, 2) Surface heat and moisture exchanges (primarily radiation and evaporation), 3) Heating and moistening induced by large-scale circulation. Understanding the equilibrium states of the tropical atmosphere in different external forcing conditions is of vital importance for studying cumulus parameterization, climate feedbacks, and climate changes. We extend our previous study using the Goddard Cumulus Ensemble (GCE) Model which resolves convective-radiative processes more explicitly than global climate models do. Several experiments are carried out under fixed insolation and sea surface temperature. The prescribed SST consists of a uniform warm pool (29C) surrounded by uniform cold SST (26C). The model produces "Walker"-type circulation with the ascending branch of the model atmosphere more humid than the descending part, but the vertically integrated temperature does not show a horizontal gradient. The results are compared with satellite measured moisture by SSM/I (Special Sensor Microwave/Imager) and temperature by MSU in the ascending and descending tropical atmosphere. The vertically integrated temperature and humidity in the two model regimes are comparable to the observed values in the tropics.
Air Pollution, Greenhouse Gases and Climate Change
NASA Astrophysics Data System (ADS)
Ramanathan, V.
2007-12-01
The global build up of greenhouse gases (GHGs), is the most significant environmental issue facing the planet. GHGs warm the surface and the atmosphere with significant implications for, rainfall, retreat of glaciers and sea ice, sea level, among other factors. What is less recognized, however, is a comparably major global problem dealing with air pollution. Until about ten years ago, air pollution was thought to be just an urban or a local problem. But new data have revealed that, due to fast long range transport, air pollution is transported across continents and ocean basins, resulting in trans-oceanic and trans-continental plumes of atmospheric brown clouds (ABCs) containing sub micron size particles, i.e, aerosols. ABCs intercept sunlight by absorbing as well as reflecting it, both of which lead to a large surface dimming. The dimming effect is enhanced further because aerosols nucleate more cloud drops which makes the clouds reflect more solar radiation. While the solar heating at the surface is reduced by aerosols in ABCs, the atmospheric solar heating increases due to soot solar absorption. The net difference between the dimming and the atmospheric solar heating is estimated be negative which contributes to a global cooling effect. The global cooling from this negative ABC forcing may have masked as much as 50% of the warming due to GHGs. We will identify regional and mega-city hot spots of ABCs. Long range transport from these hot spots gives rise to wide spread plumes over the adjacent oceans. Such a pattern of regionally concentrated surface dimming and atmospheric solar heating, accompanied by wide spread dimming over the oceans, gives rise to large regional effects. Only during the last decade, we have begun to comprehend the surprisingly large regional impacts. The large north-south gradient in the ABC dimming has altered the north-south gradients in sea surface temperatures, which in turn has been shown by models to decrease rainfall over the continents. The uncertainties in our understanding of the ABC effects are large, but we are discovering new ways in which human activities are changing the climate and the environment.
Ashton, L A; Nakamura, A; Burwell, C J; Tang, Y; Cao, M; Whitaker, T; Sun, Z; Huang, H; Kitching, R L
2016-05-23
South-western China is widely acknowledged as a biodiversity 'hotspot': there are high levels of diversity and endemism, and many environments are under significant anthropogenic threats not least climate warming. Here, we explore diversity and compare response patterns of moth assemblages among three elevational gradients established within different climatic bioregions - tropical rain forest, sub-tropical evergreen broad-leaved forest and sub-alpine coniferous forest in Yunnan Province, China. We hypothesised that tropical assemblages would be more elevationally stratified than temperate assemblages, and tropical species would be more elevationally restricted than those in the temperate zone. Contrary to our hypothesis, the moth fauna was more sensitive to elevational differences within the temperate transect, followed by sub-tropical and tropical transects. Moths in the cooler and more seasonal temperate sub-alpine gradient showed stronger elevation-decay beta diversity patterns, and more species were restricted to particular elevational ranges. Our study suggests that moth assemblages are under threat from future climate change and sub-alpine rather than tropical faunas may be the most sensitive to climate change. These results improve our understanding of China's biodiversity and can be used to monitor future changes to herbivore assemblages in a 'hotspot' of biodiversity.
Ashton, L. A.; Nakamura, A.; Burwell, C. J.; Tang, Y.; Cao, M.; Whitaker, T.; Sun, Z.; Huang, H.; Kitching, R. L.
2016-01-01
South-western China is widely acknowledged as a biodiversity ‘hotspot’: there are high levels of diversity and endemism, and many environments are under significant anthropogenic threats not least climate warming. Here, we explore diversity and compare response patterns of moth assemblages among three elevational gradients established within different climatic bioregions - tropical rain forest, sub-tropical evergreen broad-leaved forest and sub-alpine coniferous forest in Yunnan Province, China. We hypothesised that tropical assemblages would be more elevationally stratified than temperate assemblages, and tropical species would be more elevationally restricted than those in the temperate zone. Contrary to our hypothesis, the moth fauna was more sensitive to elevational differences within the temperate transect, followed by sub-tropical and tropical transects. Moths in the cooler and more seasonal temperate sub-alpine gradient showed stronger elevation-decay beta diversity patterns, and more species were restricted to particular elevational ranges. Our study suggests that moth assemblages are under threat from future climate change and sub-alpine rather than tropical faunas may be the most sensitive to climate change. These results improve our understanding of China’s biodiversity and can be used to monitor future changes to herbivore assemblages in a ‘hotspot’ of biodiversity. PMID:27211989
NASA Astrophysics Data System (ADS)
Ashton, L. A.; Nakamura, A.; Burwell, C. J.; Tang, Y.; Cao, M.; Whitaker, T.; Sun, Z.; Huang, H.; Kitching, R. L.
2016-05-01
South-western China is widely acknowledged as a biodiversity ‘hotspot’: there are high levels of diversity and endemism, and many environments are under significant anthropogenic threats not least climate warming. Here, we explore diversity and compare response patterns of moth assemblages among three elevational gradients established within different climatic bioregions - tropical rain forest, sub-tropical evergreen broad-leaved forest and sub-alpine coniferous forest in Yunnan Province, China. We hypothesised that tropical assemblages would be more elevationally stratified than temperate assemblages, and tropical species would be more elevationally restricted than those in the temperate zone. Contrary to our hypothesis, the moth fauna was more sensitive to elevational differences within the temperate transect, followed by sub-tropical and tropical transects. Moths in the cooler and more seasonal temperate sub-alpine gradient showed stronger elevation-decay beta diversity patterns, and more species were restricted to particular elevational ranges. Our study suggests that moth assemblages are under threat from future climate change and sub-alpine rather than tropical faunas may be the most sensitive to climate change. These results improve our understanding of China’s biodiversity and can be used to monitor future changes to herbivore assemblages in a ‘hotspot’ of biodiversity.
NASA Astrophysics Data System (ADS)
Enquist, B. J.
2017-12-01
Tropical and temperate elevation gradients are natural laboratories to assess how changing climate can influence tropical forests. However, there is a need for theory and integrated data collection to scale from traits to ecosystems. We assess predictions of a novel trait-based metabolic scaling theory including whether observed shifts in forest traits across a broad tropical temperature gradient is consistent with local phenotypic optima and adaptive compensation for temperature. We tested a new anaytical theory - Trait Driver Theory - that is capable of scaling from traits to entire stands and ecosystems across several elevation gradients spanning 3300m. Each gradient consists of thousands of tropical and temperate tree trait measures taken from forest plots. In several of these plots, in particular in southern Perú, gross and net primary productivity (GPP and NPP) were measured. We measured multiple traits linked to variation in tree growth and assessed their frequency distributions within and across the elevation gradient. We paired these trait measures across individuals within forests with simultaneous measures of ecosystem net and gross primary productivity. Consistent with theory, variation in forest NPP and GPP primarily scaled with forest biomass but the secondary effect of temperature on productivity was much less than expected. This weak temperature dependency appears to reflect directional shifts in several mean community traits that underlie tree growth with decreases in site temperature. The observed shift in traits of trees that dominant more cold environments appear to reflect `adaptive/acclimatory' compensation for the kinetic effects of temperature on leaf photosynthesis and tree growth. Forest trait distributions across the gradient showed peaked and skewed distributions, consistent with the importance of local filtering of optimal growth traits and recent shifts in species composition and dominance due to warming from climate change. Trait-based metabolic scaling theory provides a basis to predict how shifts in climate have and will influence the trait composition and ecosystem functioning of temperate and tropical forests.
Fitzpatrick, Matthew C.; Sanders, Nathan J.; Normand, Signe; Svenning, Jens-Christian; Ferrier, Simon; Gove, Aaron D.; Dunn, Robert R.
2013-01-01
A common approach for analysing geographical variation in biodiversity involves using linear models to determine the rate at which species similarity declines with geographical or environmental distance and comparing this rate among regions, taxa or communities. Implicit in this approach are weakly justified assumptions that the rate of species turnover remains constant along gradients and that this rate can therefore serve as a means to compare ecological systems. We use generalized dissimilarity modelling, a novel method that accommodates variation in rates of species turnover along gradients and between different gradients, to compare environmental and spatial controls on the floras of two regions with contrasting evolutionary and climatic histories: southwest Australia and northern Europe. We find stronger signals of climate history in the northern European flora and demonstrate that variation in rates of species turnover is persistent across regions, taxa and different gradients. Such variation may represent an important but often overlooked component of biodiversity that complicates comparisons of distance–decay relationships and underscores the importance of using methods that accommodate the curvilinear relationships expected when modelling beta diversity. Determining how rates of species turnover vary along and between gradients is relevant to understanding the sensitivity of ecological systems to environmental change. PMID:23926147
NASA Technical Reports Server (NTRS)
Tegen, Ina; Rind, David
2000-01-01
To investigate the effects of changes in the latitudinal temperature gradient and the global mean temperature on dust concentration in the Northern Hemisphere, experiments with the Goddard Institute for Space Studies General Circulation Model (GISS GCM) are performed. The dust concentration over Greenland is calculated from sources in central and eastern Asia, which are integrated on-line in the model. The results show that an increase in the latitudinal temperature gradient increases both the Asian dust source strength and the concentration over Greenland. The source increase is the result of increased surface winds, and to a minor extent, the increase in Greenland dust is also associated with increased northward transport. Cooling the climate in addition to this increased gradient leads to a decrease in precipitation scavenging, which helps produce a further (slight) increase in Greenland dust in this experiment. Reducing the latitudinal gradient reduces the surface wind and hence the dust source, with a subsequent reduction in Greenland dust concentrations. Warming the climate in addition to this reduced gradient leads to a further reduction in Greenland dust due to enhanced precipitation scavenging. These results can be used to evaluate the relationship of Greenland ice core temperature changes to changes in the latitudinal and global temperatures.
NASA Astrophysics Data System (ADS)
Lang, C.; Fettweis, X.; Erpicum, M.
2015-05-01
We have performed a future projection of the climate and surface mass balance (SMB) of Svalbard with the MAR (Modèle Atmosphérique Régional) regional climate model forced by MIROC5 (Model for Interdisciplinary Research on Climate), following the RCP8.5 scenario at a spatial resolution of 10 km. MAR predicts a similar evolution of increasing surface melt everywhere in Svalbard followed by a sudden acceleration of melt around 2050, with a larger melt increase in the south compared to the north of the archipelago. This melt acceleration around 2050 is mainly driven by the albedo-melt feedback associated with the expansion of the ablation/bare ice zone. This effect is dampened in part as the solar radiation itself is projected to decrease due to a cloudiness increase. The near-surface temperature is projected to increase more in winter than in summer as the temperature is already close to 0 °C in summer. The model also projects a stronger winter west-to-east temperature gradient, related to the large decrease of sea ice cover around Svalbard. By 2085, SMB is projected to become negative over all of Svalbard's glaciated regions, leading to the rapid degradation of the firn layer.
NASA Astrophysics Data System (ADS)
Ramstein, Gilles; Khodri, Myriam; Donnadieu, Yannick; Fluteau, Frédéric; Goddéris, Yves
2005-02-01
We investigate in the paper the impact of the hydrologic cycle on climate at different periods. The aim is to illustrate how the changes in moisture transport, precipitation pattern, and weathering may alter, at regional or global scales, the CO 2 and climate equilibriums. We choose three climate periods to pinpoint intricate relationships between water cycle and climate. The illustrations are the following. ( i) The onset of ice-sheet build-up, 115 kyr BP. We show that the increased thermal meridian gradient of SST allows large moisture advection over the North American continent and provides appropriate conditions for perennial snow on the Canadian Archipelago. ( ii) The onset of Indian Monsoon at the end of the Tertiary. We demonstrate that superimposed to the Tibetan Plateau, the shrinkage of the Tethys, since Oligocene, plays a major role to explain changes in the geographical pattern of the southeastern Asian Monsoon. ( iii) The onset of Global Glaciation (750 Ma). We show that the break-up of Rodinia occurring at low latitudes is an important feature to explain how the important precipitation increase leads to weathering and carbon burial, which contribute to decrease atmospheric CO 2 enough to produce a snows ball Earth. All these periods have been simulated with a hierarchy of models appropriate to quantify the water cycle impact on climate. To cite this article: G. Ramstein et al., C. R. Geoscience 337 (2005).
NASA Astrophysics Data System (ADS)
Speelman, E. N.; Sewall, J. O.; Noone, D. C.; Huber, M.; Sinninghe Damsté, J. S.; Reichart, G.
2009-12-01
Proxy-based climate reconstructions suggest the existence of a strongly reduced equator-to-pole temperature gradient during most of the Early Eocene. With the realization that the Eocene Arctic Ocean was covered with enormous quantities of the free floating freshwater fern Azolla, new questions related to Eocene (global) hydrological cycling facilitating these blooms arose. Changes in hydrological cycling, as a consequence of a reduced temperature gradient, are expected to be most clearly reflected in the isotopic composition (D, 18O) of precipitation. The interpretation of water isotopic records to quantitatively estimate past precipitation patterns is, however, hampered by the lack of detailed information on changes in their spatial and temporal distribution. Using the isotope-enabled global circulation model, Community Atmosphere Model v.3 (isoCAM3), relationships between water isotopes and past climates can be simulated. Here we examine the influence of a reduced meridional sea surface temperature gradient on the spatial distribution of precipitation and its isotopic composition in an Eocene setting. Overall, our combination of Eocene climate forcings, with superimposed TEX86-derived SST estimates and elevated pCO2 concentrations, produces a climate that agrees well with proxy data in locations around the globe. It shows the presence of an intensified hydrological cycle with precipitation exceeding evaporation in the Arctic region. The Eocene model runs with a significantly reduced equator-to-pole temperature gradient in a warmer more humid world predict occurrence of less depleted precipitation, with δD values ranging only between 0 and -140‰ (as opposed to the present-day range of 0 to -300‰). Combining new results obtained from compound specific isotope analyses on terrestrially derived n-alkanes extracted from Eocene sediments, and model calculations, shows that the model not only captures the main features, but reproduces isotopic values quantitatively as well. This combination of modeling outcomes and independent stable isotope records thus confirms independently the validity of the earlier, proxy-based, inferred reduced meridional temperature gradient.
William J. Zielinski; Jody M. Tucker; Kerry M. Rennie
2017-01-01
There is considerable interest in factors controlling âwarm-edgeâ limits â the lower elevation and latitudinal edges of a species' range. Understanding whether conservation measures can mitigate anticipated change in climate requires consideration of future climate as well as species interactions. We explored niche relations of martens and fishers at their...
NASA Astrophysics Data System (ADS)
Martín, José; Javier Zamora-Camacho, Francisco; Reguera, Senda; López, Pilar; Moreno-Rueda, Gregorio
2017-04-01
Chemical signals used in intraspecific communication are expected to evolve or to show phenotipic plasticity to maximize efficacy in the climatic conditions of a given environment. Elevational environmental gradients in mountains provide a good opportunity to test this hypothesis by examining variation in characteristics of signals in species found across different elevations with different climatic conditions. We analyzed by gas chromatography-mass spectrometry (GC-MS) the lipophilic fraction of the femoral gland secretions of male lizards Psammodromus algirus (Fam. Lacertidae) from six localities located along a 2200 m elevational gradient at Sierra Nevada Mountains (SE Spain). There was elevational clinal variation in climatic variables, number of femoral pores and in the relative proportions of some classes of compounds (i.e., ethyl esters of fatty acids, waxy esters, and aldehydes) but not others. We discuss how this variation would result in different physicochemical properties of the entire femoral secretion, which might help optimize the efficacy of chemical signals under the particular microclimatic conditions at each elevation.
Martín, José; Javier Zamora-Camacho, Francisco; Reguera, Senda; López, Pilar; Moreno-Rueda, Gregorio
2017-04-01
Chemical signals used in intraspecific communication are expected to evolve or to show phenotipic plasticity to maximize efficacy in the climatic conditions of a given environment. Elevational environmental gradients in mountains provide a good opportunity to test this hypothesis by examining variation in characteristics of signals in species found across different elevations with different climatic conditions. We analyzed by gas chromatography-mass spectrometry (GC-MS) the lipophilic fraction of the femoral gland secretions of male lizards Psammodromus algirus (Fam. Lacertidae) from six localities located along a 2200 m elevational gradient at Sierra Nevada Mountains (SE Spain). There was elevational clinal variation in climatic variables, number of femoral pores and in the relative proportions of some classes of compounds (i.e., ethyl esters of fatty acids, waxy esters, and aldehydes) but not others. We discuss how this variation would result in different physicochemical properties of the entire femoral secretion, which might help optimize the efficacy of chemical signals under the particular microclimatic conditions at each elevation.
Evolution of plasticity and adaptive responses to climate change along climate gradients.
Kingsolver, Joel G; Buckley, Lauren B
2017-08-16
The relative contributions of phenotypic plasticity and adaptive evolution to the responses of species to recent and future climate change are poorly understood. We combine recent (1960-2010) climate and phenotypic data with microclimate, heat balance, demographic and evolutionary models to address this issue for a montane butterfly, Colias eriphyle , along an elevational gradient. Our focal phenotype, wing solar absorptivity, responds plastically to developmental (pupal) temperatures and plays a central role in thermoregulatory adaptation in adults. Here, we show that both the phenotypic and adaptive consequences of plasticity vary with elevation. Seasonal changes in weather generate seasonal variation in phenotypic selection on mean and plasticity of absorptivity, especially at lower elevations. In response to climate change in the past 60 years, our models predict evolutionary declines in mean absorptivity (but little change in plasticity) at high elevations, and evolutionary increases in plasticity (but little change in mean) at low elevation. The importance of plasticity depends on the magnitude of seasonal variation in climate relative to interannual variation. Our results suggest that selection and evolution of both trait means and plasticity can contribute to adaptive response to climate change in this system. They also illustrate how plasticity can facilitate rather than retard adaptive evolutionary responses to directional climate change in seasonal environments. © 2017 The Author(s).
Assessment of the impact of climate shifts on malaria transmission in the Sahel.
Bomblies, Arne; Eltahir, Elfatih A B
2009-09-01
Climate affects malaria transmission through a complex network of causative pathways. We seek to evaluate the impact of hypothetical climate change scenarios on malaria transmission in the Sahel by using a novel mechanistic, high spatial- and temporal-resolution coupled hydrology and agent-based entomology model. The hydrology model component resolves individual precipitation events and individual breeding pools. The impact of future potential climate shifts on the representative Sahel village of Banizoumbou, Niger, is estimated by forcing the model of Banizoumbou environment with meteorological data from two locations along the north-south climatological gradient observed in the Sahel--both for warmer, drier scenarios from the north and cooler, wetter scenarios from the south. These shifts in climate represent hypothetical but historically realistic climate change scenarios. For Banizoumbou climatic conditions (latitude 13.54 N), a shift toward cooler, wetter conditions may dramatically increase mosquito abundance; however, our modeling results indicate that the increased malaria transmissibility is not simply proportional to the precipitation increase. The cooler, wetter conditions increase the length of the sporogonic cycle, dampening a large vectorial capacity increase otherwise brought about by increased mosquito survival and greater overall abundance. Furthermore, simulations varying rainfall event frequency demonstrate the importance of precipitation patterns, rather than simply average or time-integrated precipitation, as a controlling factor of these dynamics. Modeling results suggest that in addition to changes in temperature and total precipitation, changes in rainfall patterns are very important to predict changes in disease susceptibility resulting from climate shifts. The combined effect of these climate-shift-induced perturbations can be represented with the aid of a detailed mechanistic model.
Jezkova, Tereza; Wiens, John J
2018-05-19
Climate may play important roles in speciation, such as causing the range fragmentation that underlies allopatric speciation (through niche conservatism) or driving divergence of parapatric populations along climatic gradients (through niche divergence). Here, we developed new methods to test the frequency of climate niche conservatism and divergence in speciation, and applied it to species pairs of squamate reptiles (lizards and snakes). We used a large-scale phylogeny to identify 242 sister-species pairs for analysis. From these, we selected all terrestrial allopatric pairs with sufficient occurrence records (n=49 pairs) and inferred whether each originated via climatic niche conservatism or climatic niche divergence. Among the 242 pairs, allopatric pairs were most common (41.3%), rather than parapatric (19.4%), partially sympatric (17.7%), or fully sympatric species pairs (21.5%). Among the 49 selected allopatric pairs, most appeared to have originated via climatic niche divergence (61-76%, depending on the details of the methods). Surprisingly, we found greater climatic niche divergence between allopatric sister species than between parapatric pairs, even after correcting for geographic distance. We also found that niche divergence did not increase with time, further implicating niche divergence in driving lineage splitting. Overall, our results suggest that climatic niche divergence may often play an important role in allopatric speciation, and the methodology developed here can be used to address the generality of these findings in other organisms. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Feher, Laura C.; Osland, Michael J.; Griffith, Kereen T.; Grace, James B.; Howard, Rebecca J.; Stagg, Camille L.; Enwright, Nicholas M.; Krauss, Ken W.; Gabler, Christopher A.; Day, Richard H.; Rogers, Kerrylee
2017-01-01
Climate greatly influences the structure and functioning of tidal saline wetland ecosystems. However, there is a need to better quantify the effects of climatic drivers on ecosystem properties, particularly near climate-sensitive ecological transition zones. Here, we used climate- and literature-derived ecological data from tidal saline wetlands to test hypotheses regarding the influence of climatic drivers (i.e., temperature and precipitation regimes) on the following six ecosystem properties: canopy height, biomass, productivity, decomposition, soil carbon density, and soil carbon accumulation. Our analyses quantify and elucidate linear and nonlinear effects of climatic drivers. We quantified positive linear relationships between temperature and above-ground productivity and strong positive nonlinear (sigmoidal) relationships between (1) temperature and above-ground biomass and canopy height and (2) precipitation and canopy height. Near temperature-controlled mangrove range limits, small changes in temperature are expected to trigger comparatively large changes in biomass and canopy height, as mangrove forests grow, expand, and, in some cases, replace salt marshes. However, within these same transition zones, temperature-induced changes in productivity are expected to be comparatively small. Interestingly, despite the significant above-ground height, biomass, and productivity relationships across the tropical–temperate mangrove–marsh transition zone, the relationships between temperature and soil carbon density or soil carbon accumulation were not significant. Our literature review identifies several ecosystem properties and many regions of the world for which there are insufficient data to fully evaluate the influence of climatic drivers, and the identified data gaps can be used by scientists to guide future research. Our analyses indicate that near precipitation-controlled transition zones, small changes in precipitation are expected to trigger comparatively large changes in canopy height. However, there are scant data to evaluate the influence of precipitation on other ecosystem properties. There is a need for more decomposition data across climatic gradients, and to advance understanding of the influence of changes in precipitation and freshwater availability, additional ecological data are needed from tidal saline wetlands in arid climates. Collectively, our results can help scientists and managers better anticipate the linear and nonlinear ecological consequences of climate change for coastal wetlands.
Functional tradeoffs underpin salinity-driven divergence in microbial community composition.
Dupont, Chris L; Larsson, John; Yooseph, Shibu; Ininbergs, Karolina; Goll, Johannes; Asplund-Samuelsson, Johannes; McCrow, John P; Celepli, Narin; Allen, Lisa Zeigler; Ekman, Martin; Lucas, Andrew J; Hagström, Åke; Thiagarajan, Mathangi; Brindefalk, Björn; Richter, Alexander R; Andersson, Anders F; Tenney, Aaron; Lundin, Daniel; Tovchigrechko, Andrey; Nylander, Johan A A; Brami, Daniel; Badger, Jonathan H; Allen, Andrew E; Rusch, Douglas B; Hoffman, Jeff; Norrby, Erling; Friedman, Robert; Pinhassi, Jarone; Venter, J Craig; Bergman, Birgitta
2014-01-01
Bacterial community composition and functional potential change subtly across gradients in the surface ocean. In contrast, while there are significant phylogenetic divergences between communities from freshwater and marine habitats, the underlying mechanisms to this phylogenetic structuring yet remain unknown. We hypothesized that the functional potential of natural bacterial communities is linked to this striking divide between microbiomes. To test this hypothesis, metagenomic sequencing of microbial communities along a 1,800 km transect in the Baltic Sea area, encompassing a continuous natural salinity gradient from limnic to fully marine conditions, was explored. Multivariate statistical analyses showed that salinity is the main determinant of dramatic changes in microbial community composition, but also of large scale changes in core metabolic functions of bacteria. Strikingly, genetically and metabolically different pathways for key metabolic processes, such as respiration, biosynthesis of quinones and isoprenoids, glycolysis and osmolyte transport, were differentially abundant at high and low salinities. These shifts in functional capacities were observed at multiple taxonomic levels and within dominant bacterial phyla, while bacteria, such as SAR11, were able to adapt to the entire salinity gradient. We propose that the large differences in central metabolism required at high and low salinities dictate the striking divide between freshwater and marine microbiomes, and that the ability to inhabit different salinity regimes evolved early during bacterial phylogenetic differentiation. These findings significantly advance our understanding of microbial distributions and stress the need to incorporate salinity in future climate change models that predict increased levels of precipitation and a reduction in salinity.
Ferrera, Isabel; Sarmento, Hugo; Priscu, John C.; Chiuchiolo, Amy; González, José M.; Grossart, Hans-Peter
2017-01-01
Aerobic anoxygenic phototrophs (AAPs) have been shown to exist in numerous marine and brackish environments where they are hypothesized to play important ecological roles. Despite their potential significance, the study of freshwater AAPs is in its infancy and limited to local investigations. Here, we explore the occurrence, diversity and distribution of AAPs in lakes covering a wide latitudinal gradient: Mongolian and German lakes located in temperate regions of Eurasia, tropical Great East African lakes, and polar permanently ice-covered Antarctic lakes. Our results show a widespread distribution of AAPs in lakes with contrasting environmental conditions and confirm that this group is composed of different members of the Alpha- and Betaproteobacteria. While latitude does not seem to strongly influence AAP abundance, clear patterns of community structure and composition along geographic regions were observed as indicated by a strong macro-geographical signal in the taxonomical composition of AAPs. Overall, our results suggest that the distribution patterns of freshwater AAPs are likely driven by a combination of small-scale environmental conditions (specific of each lake and region) and large-scale geographic factors (climatic regions across a latitudinal gradient). PMID:28275369
Zhao, Cancan; Miao, Yuan; Yu, Chengde; Zhu, Lili; Wang, Feng; Jiang, Lin; Hui, Dafeng; Wan, Shiqiang
2016-01-01
As a primary limiting factor in arid and semiarid regions, precipitation strongly influences soil microbial properties. However, the patterns and mechanisms of soil microbial responses to precipitation have not been well documented. In this study, changes in soil microorganisms along an experimental precipitation gradient with seven levels of precipitation manipulation (i.e., ambient precipitation as a control, and ±20%, ±40%, and ±60% of ambient precipitation) were explored in a semiarid temperate steppe in northern China. Soil microbial biomass carbon and respiration as well as the ratio of fungal to bacterial biomass varied along the experimental precipitation gradient and peaked under the +40% precipitation treatment. The shifts in microbial community composition could be largely attributable to the changes in soil water and nutrient availability. The metabolic quotient increased (indicating reduced carbon use efficiency) with increasing precipitation due to the leaching of dissolved organic carbon. The relative contributions of microbial respiration to soil and ecosystem respiration increased with increasing precipitation, suggesting that heterotrophic respiration will be more sensitive than autotrophic respiration if precipitation increases in the temperate steppe as predicted under future climate-change scenarios. PMID:27074973
Roitberg, Elena; Shoshany, Maxim
2017-01-01
Following a predicted decline in water resources in the Mediterranean Basin, we used reaction-diffusion equations to gain a better understanding of expected changes in properties of vegetation patterns that evolve along the rainfall transition between semi-arid and arid rainfall regions. Two types of scenarios were investigated: the first, a discrete scenario, where the potential consequences of climate change are represented by patterns evolving at discrete rainfall levels along a rainfall gradient. This scenario concerns space-for-time substitutions characteristic of the rainfall gradient hypothesis. The second, a continuous scenario, represents explicitly the effect of rainfall decline on patterns which evolved at different rainfall levels along the rainfall gradient prior to the climate change. The eccentricity of patterns that emerge through these two scenarios was found to decrease with decreasing rainfall, while their solidity increased. Due to their inverse modes of change, their ratio was found to be a highly sensitive indicator for pattern response to rainfall decline. An eccentricity ratio versus rainfall (ER:R) line was generalized from the results of the discrete experiment, where ERs above this line represent developed (recovered) patterns and ERs below this line represent degraded patterns. For the rainfall range of 1.2 to 0.8 mm/day, the continuous rainfall decline experiment with ERs that lie above the ER:R line, yielded patterns less affected by rainfall decline than would be expected according to the discrete representation of ecosystems' response. Thus, for this range, space-for-time substitution represents an overestimation of the consequences of the expected rainfall decline. For rainfall levels below 0.8 mm/day, eccentricity ratios from the discrete and continuous experiments practically converge to the same trend of pattern change along the ER:R line. Thus, the rainfall gradient hypothesis may be valid for regions characterized by this important rainfall range, which typically include desert fringe ecosystems.
NASA Astrophysics Data System (ADS)
Cosby, J.; Reinsch, S.; Koehler, E.; de Dato, G.; Estiarte, M.; Guidolotti, G.; Kovacs-Lang, E.; Dukes, J.; Kröel-Dulay, G.; Larsen, K. S.; Lellei-Kovács, E.; Liberati, D.; Ransijn, J.; Schmidt, I. K.; Smith, A. R.; Sowerby, A.; Emmett, B.
2015-12-01
Understanding the relationship between aboveground and belowground processes are crucial to understand if we are to forecast feedbacks between terrestrial carbon (C) dynamics and future climate. To test if climate induced changes in annual aboveground net primary production (ANPP) will drive changes in C loss by soil respiration (Rs) we integrated data across a European temperature and precipitation gradient. Six European shrublands were exposed to year-round, night time warming (+1.5 oC) or repeated drought (-30% annual rain) during the plants growth season for over a decade, using an identical experimental approach. As a result, drought reduced ecosystem C gain as ANPP by 50% (compared to an untreated control) at the driest xeric site with effects reducing in intensity across the aridity gradient to a 15% ANPP-C gain at the wettest hydric site (slope=1.2, R2=0.76). In contrast, reductions in Rs-C loss were of a lower magnitude (0-15%) and increased in intensity across the aridity gradient (slope=-0.44, R2=0.76) if the hydric site was excluded. These results suggest (i) above and belowground C fluxes responses do not track each other in response to drought and (ii) whilst ANPP at our hydric sites follows that predicted from an aridity gradient, Rs responses did not. Results from the warming treatments were generally of lower magnitude and opposite direction indicating different mechanisms were driving responses. Overall, these results suggest that ANPP is more sensitive than Rs to climate stresses and soil respiration C fluxes are not predictable from changes in plant productivity. Indirect effects on soil properties and/or microbial communities need to be explored. As we observed no acclimation of either ANPP or Rs after over a decade of treatments, feedbacks between the terrestrial C cycle and climate may not weaken over decadal timescales at larger, continental scales.
Atlantic Ocean Circulation and Climate: The Current View From the Geological Record
NASA Astrophysics Data System (ADS)
Curry, W.
2006-12-01
Several recent advances in our understanding of past ocean circulation come from geological reconstructions using deep sea sediment proxies of water mass structure and flow. Put together, the observations suggest that the Atlantic Ocean during the last glacial period (21,000 years ago) was very different from today. Geochemical tracers document a shoaling of North Atlantic Deep Water and a much greater volume of deep waters with an Antarctic origin. Sedimentary pore water profiles have detected a reversal in the salinity gradient between northern and southern deep water sources. Uranium-series decay products in North Atlantic sediments indicate that the southward transport of North Atlantic Deep Water was as much as 30-40% reduced from today's transport. Ocean-margin density reconstructions are consistent with a one third reduction in transport through the Florida Straits. A reversed cross-basin density gradient in the South Atlantic calls for a different intermediate water circulation in the South Atlantic. The glacial Atlantic circulation appears to be best explained by a reduced influence of North Atlantic deep water sources and much greater influence of Antarctic deep water sources. More recent changes in Atlantic circulation have been much more modest. During the Little Ice Age (LIA - a much smaller cooling event about 200 to 600 years ago), transport of the Florida Current was reduced by about 10%, significant but a much smaller reduction than observed during the glacial period. There is little evidence for a change in the distribution or geochemistry of the water masses during the LIA. For both climate events (the glacial and the LIA) reduced Florida Current transport was accompanied by increased salinity of its surface waters, linking changes in ocean circulation to large scale changes in surface water hydrology. A feedback between the circulation of the Atlantic Ocean and the climate of the tropics has been proposed before and also seen in some coupled climate models: variations in the temperature gradients in the Atlantic basin affect the position of the Intertropical Convergence Zone and alter evaporation and precipitation patterns in the tropics. The salinity anomalies caused by these atmospheric shifts eventually are transported back to high latitudes by ocean circulation (Vellinga and Wu, 2004). Several recent geological reconstructions appear to observe such a coupling on centennial and millennial time scales.
Hedwall, Per-Ola; Brunet, Jörg; Rydin, Håkan
2017-01-01
Mires (bogs and fens) are nutrient-limited peatland ecosystems, the vegetation of which is especially sensitive to nitrogen deposition and climate change. The role of mires in the global carbon cycle, and the delivery of different ecosystem services can be considerably altered by changes in the vegetation, which has a strong impact on peat-formation and hydrology. Mire ecosystems are commonly open with limited canopy cover but both nitrogen deposition and increased temperatures may increase the woody vegetation component. It has been predicted that such an increase in tree cover and the associated effects on light and water regimes would cause a positive feed-back loop with respect to the ground vegetation. None of these effects, however, have so far been confirmed in large-scale spatiotemporal studies. Here we analyzed data pertaining to mire vegetation from the Swedish National Forest Inventory collected from permanent sample plots over a period of 20 yr along a latitudinal gradient covering 14°. We hypothesized that the changes would be larger in the southern parts as a result of higher nitrogen deposition and warmer climate. Our results showed an increase in woody vegetation with increases in most ericaceous dwarf-shrubs and in the basal area of trees. These changes were, in contrast to our expectations, evenly distributed over most of the latitudinal gradient. While nitrogen deposition is elevated in the south, the increase in temperatures during recent decades has been larger in the north. Hence, we suggest that different processes in the north and south have produced similar vegetation changes along the latitudinal gradient. There was, however, a sharp increase in compositional change at high deposition, indicating a threshold effect in the response. Instead of a positive feed-back loop caused by the tree layer, an increase in canopy cover reduced the changes in composition of the ground vegetation, whereas a decrease in canopy cover lead to larger changes. Increased natural disturbances of the tree layer due to, for example, pathogens or climate is a predicted outcome of climate change. Hence, these results may have important implications for predictions of long-term effects of increased temperature on peatland vegetation. © 2016 by the Ecological Society of America.
Large-scale disturbance legacies and the climate sensitivity of primary Picea abies forests.
Schurman, Jonathan S; Trotsiuk, Volodymyr; Bače, Radek; Čada, Vojtěch; Fraver, Shawn; Janda, Pavel; Kulakowski, Dominik; Labusova, Jana; Mikoláš, Martin; Nagel, Thomas A; Seidl, Rupert; Synek, Michal; Svobodová, Kristýna; Chaskovskyy, Oleh; Teodosiu, Marius; Svoboda, Miroslav
2018-05-01
Determining the drivers of shifting forest disturbance rates remains a pressing global change issue. Large-scale forest dynamics are commonly assumed to be climate driven, but appropriately scaled disturbance histories are rarely available to assess how disturbance legacies alter subsequent disturbance rates and the climate sensitivity of disturbance. We compiled multiple tree ring-based disturbance histories from primary Picea abies forest fragments distributed throughout five European landscapes spanning the Bohemian Forest and the Carpathian Mountains. The regional chronology includes 11,595 tree cores, with ring dates spanning the years 1750-2000, collected from 560 inventory plots in 37 stands distributed across a 1,000 km geographic gradient, amounting to the largest disturbance chronology yet constructed in Europe. Decadal disturbance rates varied significantly through time and declined after 1920, resulting in widespread increases in canopy tree age. Approximately 75% of current canopy area recruited prior to 1900. Long-term disturbance patterns were compared to an historical drought reconstruction, and further linked to spatial variation in stand structure and contemporary disturbance patterns derived from LANDSAT imagery. Historically, decadal Palmer drought severity index minima corresponded to higher rates of canopy removal. The severity of contemporary disturbances increased with each stand's estimated time since last major disturbance, increased with mean diameter, and declined with increasing within-stand structural variability. Reconstructed spatial patterns suggest that high small-scale structural variability has historically acted to reduce large-scale susceptibility and climate sensitivity of disturbance. Reduced disturbance rates since 1920, a potential legacy of high 19th century disturbance rates, have contributed to a recent region-wide increase in disturbance susceptibility. Increasingly common high-severity disturbances throughout primary Picea forests of Central Europe should be reinterpreted in light of both legacy effects (resulting in increased susceptibility) and climate change (resulting in increased exposure to extreme events). © 2018 John Wiley & Sons Ltd.
Jump, Alistair S; Ruiz-Benito, Paloma; Greenwood, Sarah; Allen, Craig D; Kitzberger, Thomas; Fensham, Rod; Martínez-Vilalta, Jordi; Lloret, Francisco
2017-09-01
Ongoing climate change poses significant threats to plant function and distribution. Increased temperatures and altered precipitation regimes amplify drought frequency and intensity, elevating plant stress and mortality. Large-scale forest mortality events will have far-reaching impacts on carbon and hydrological cycling, biodiversity, and ecosystem services. However, biogeographical theory and global vegetation models poorly represent recent forest die-off patterns. Furthermore, as trees are sessile and long-lived, their responses to climate extremes are substantially dependent on historical factors. We show that periods of favourable climatic and management conditions that facilitate abundant tree growth can lead to structural overshoot of aboveground tree biomass due to a subsequent temporal mismatch between water demand and availability. When environmental favourability declines, increases in water and temperature stress that are protracted, rapid, or both, drive a gradient of tree structural responses that can modify forest self-thinning relationships. Responses ranging from premature leaf senescence and partial canopy dieback to whole-tree mortality reduce canopy leaf area during the stress period and for a lagged recovery window thereafter. Such temporal mismatches of water requirements from availability can occur at local to regional scales throughout a species geographical range. As climate change projections predict large future fluctuations in both wet and dry conditions, we expect forests to become increasingly structurally mismatched to water availability and thus overbuilt during more stressful episodes. By accounting for the historical context of biomass development, our approach can explain previously problematic aspects of large-scale forest mortality, such as why it can occur throughout the range of a species and yet still be locally highly variable, and why some events seem readily attributable to an ongoing drought while others do not. This refined understanding can facilitate better projections of structural overshoot responses, enabling improved prediction of changes in forest distribution and function from regional to global scales. © 2017 John Wiley & Sons Ltd.
Jump, Alistair S.; Ruiz-Benito, Paloma; Greenwood, Sarah; Allen, Craig D.; Kitzberger, Thomas; Fensham, Rod; Martínez-Vilalta, Jordi; Lloret, Francisco
2017-01-01
Ongoing climate change poses significant threats to plant function and distribution. Increased temperatures and altered precipitation regimes amplify drought frequency and intensity, elevating plant stress and mortality. Large-scale forest mortality events will have far-reaching impacts on carbon and hydrological cycling, biodiversity, and ecosystem services. However, biogeographical theory and global vegetation models poorly represent recent forest die-off patterns. Furthermore, as trees are sessile and long-lived, their responses to climate extremes are substantially dependent on historical factors. We show that periods of favourable climatic and management conditions that facilitate abundant tree growth can lead to structural overshoot of aboveground tree biomass due to a subsequent temporal mismatch between water demand and availability. When environmental favourability declines, increases in water and temperature stress that are protracted, rapid, or both, drive a gradient of tree structural responses that can modify forest self-thinning relationships. Responses ranging from premature leaf senescence and partial canopy dieback to whole-tree mortality reduce canopy leaf area during the stress period and for a lagged recovery window thereafter. Such temporal mismatches of water requirements from availability can occur at local to regional scales throughout a species geographical range. As climate change projections predict large future fluctuations in both wet and dry conditions, we expect forests to become increasingly structurally mismatched to water availability and thus overbuilt during more stressful episodes. By accounting for the historical context of biomass development, our approach can explain previously problematic aspects of large-scale forest mortality, such as why it can occur throughout the range of a species and yet still be locally highly variable, and why some events seem readily attributable to an ongoing drought while others do not. This refined understanding can facilitate better projections of structural overshoot responses, enabling improved prediction of changes in forest distribution and function from regional to global scales.
Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems.
Forkel, Matthias; Carvalhais, Nuno; Rödenbeck, Christian; Keeling, Ralph; Heimann, Martin; Thonicke, Kirsten; Zaehle, Sönke; Reichstein, Markus
2016-02-12
Atmospheric monitoring of high northern latitudes (above 40°N) has shown an enhanced seasonal cycle of carbon dioxide (CO2) since the 1960s, but the underlying mechanisms are not yet fully understood. The much stronger increase in high latitudes relative to low ones suggests that northern ecosystems are experiencing large changes in vegetation and carbon cycle dynamics. We found that the latitudinal gradient of the increasing CO2 amplitude is mainly driven by positive trends in photosynthetic carbon uptake caused by recent climate change and mediated by changing vegetation cover in northern ecosystems. Our results underscore the importance of climate-vegetation-carbon cycle feedbacks at high latitudes; moreover, they indicate that in recent decades, photosynthetic carbon uptake has reacted much more strongly to warming than have carbon release processes. Copyright © 2016, American Association for the Advancement of Science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chien
In this paper, the climate response of precipitation to the effects of anthropogenic aerosols is a critical while not yet fully understood aspect in climate science. Results of selected models that participated the Coupled Model Intercomparison Project Phase 5 and the data from the Twentieth Century Reanalysis Project suggest that, throughout the tropics and also in the extratropical Northern Hemisphere, aerosols have largely dominated the distribution of precipitation changes in reference to the preindustrial era in the second half of the last century. Aerosol-induced cooling has offset some of the warming caused by the greenhouse gases from the tropics tomore » the Arctic and thus formed the gradients of surface temperature anomaly that enable the revealed precipitation change patterns to occur. Improved representation of aerosol-cloud interaction has been demonstrated as the key factor for models to reproduce consistent distributions of past precipitation change with the reanalysis data.« less
AmeriFlux US-MRf Mary's River (Fir) site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Law, Bev
This is the AmeriFlux version of the carbon flux data for the site US-MRf Mary's River (Fir) site. Site Description - The Marys River Fir site is part of the "Synthesis of Remote Sensing and Field Observations to Model and Understand Disturbance and Climate Effects on the Carbon Balance of Oregon and Northern California (ORCA)". Located in the western region of Oregon the Marys River site represents the western extent of the climate gradient that spans eastward into the semi-arid basin of central Oregon. The sites that make up the eastern extent of the ORCA climate gradient is the Metoliusmore » site network (US-Me1, US-ME2, US-ME4, US-Me5) all of which are part of the TERRA PNW project at Oregon State University.« less
NASA Astrophysics Data System (ADS)
Condon, Laura E.; Maxwell, Reed M.
2015-08-01
We study the influence of topography on groundwater fluxes and water table depths across the contiguous United States (CONUS). Groundwater tables are often conceptualized as subdued replicas of topography. While it is well known that groundwater configuration is also controlled by geology and climate, nonlinear interactions between these drivers within large real-world systems are not well understood and are difficult to characterize given sparse groundwater observations. We address this limitation using the fully integrated physical hydrology model ParFlow to directly simulate groundwater fluxes and water table depths within a complex heterogeneous domain that incorporates all three primary groundwater drivers. Analysis is based on a first of its kind, continental-scale, high-resolution (1 km), groundwater-surface water simulation spanning more than 6.3 million km2. Results show that groundwater fluxes are most strongly driven by topographic gradients (as opposed to gradients in pressure head) in humid regions with small topographic gradients or low conductivity. These regions are generally consistent with the topographically controlled groundwater regions identified in previous studies. However, we also show that areas where topographic slopes drive groundwater flux do not generally have strong correlations between water table depth and elevation. Nonlinear relationships between topography and water table depth are consistent with groundwater flow systems that are dominated by local convergence and could also be influenced by local variability in geology and climate. One of the strengths of the numerical modeling approach is its ability to evaluate continental-scale groundwater behavior at a high resolution not possible with other techniques. This article was corrected on 11 SEP 2015. See the end of the full text for details.
Size variation of Acacia caven (leguminosae) pods along a climatic gradient in Chile
NASA Astrophysics Data System (ADS)
Gutiérrez, J. R.; Armesto, J. J.
1981-06-01
A southward tendency of increment in pod-length is shown for 11 populations of Acacia caven (Mol.) Hook et Arn. localized along a climatic gradient of increasing annual rainfall in Chile. This fact would suggest that A. caven populations occurring in the south are in better conditions for reproduction than northern populations, since pod-length is related to the amount of seeds inside the pods. The possible bearing of this southward tendency of increasing seed production upon the expansion of A. caven toward the more humid zones in southern Chile is discussed.
Divergent environmental filters drive functional segregation of European peatlands
NASA Astrophysics Data System (ADS)
Robroek, B.; Jassey, V.; Bragazza, L.; Buttler, A.
2015-12-01
Plant communities are largely shaped by prevailing climatic conditions. As a result, environmental change is expected to alter the (functional) composition in plant communities. Because plants, and particularly the composition of plant species, play an important role in driving ecosystem processes, it is crucial that we improve our understanding on which environmental factors are most important in shaping plant communities. Here we presnt the results for a cross-Eurpean study, were we assessed the role of environmnetal conditions on plant community composition in 56 peatlands. We show that plant species richness and diversity are relatively stable across the main environmental gradients. Nevertheless, we observe large changes in the plant community structure. In other words, species turnover increased with increasing differences in environmental viariables. Such turnover in the community composition is largely associated to gradients temperature and precipitation, whilst nutrients -often reported as major driver for changes in peatland ecosystems- were only important at the end of the gradient of current deposition levels in Europe. Using a combination of species distribution modelling and species co-occurence patterns, we identified two spatially non-exclusive groups of plant species. Species within a distinct group responded similarly to bioclimatic variables and nutrient deposition levels, whilst between group response was mirrored. These results suggest that these two groups of plants are subjected to divergent environmental filters. Additionally, European peatlands aggregate into two distinct clusters based on plant functional trait composition. Each cluster was dominated by plant species from either one of the two co-response groups. Overall, our results demonstrate that environmental change results in a gradual replacement of plant species from two divergent groups, consequently affecting the functional trait composition in peatlands.
Increasing arboreality with altitude: a novel biogeographic dimension
Scheffers, Brett R.; Phillips, Ben L.; Laurance, William F.; Sodhi, Navjot S.; Diesmos, Arvin; Williams, Stephen E.
2013-01-01
Biodiversity is spatially organized by climatic gradients across elevation and latitude. But do other gradients exist that might drive biogeographic patterns? Here, we show that rainforest's vertical strata provide climatic gradients much steeper than those offered by elevation and latitude, and biodiversity of arboreal species is organized along this gradient. In Philippine and Singaporean rainforests, we demonstrate that rainforest frogs tend to shift up in the rainforest strata as altitude increases. Moreover, a Philippine-wide dataset of frog distributions shows that frog assemblages become increasingly arboreal at higher elevations. Thus, increased arboreality with elevation at broad biogeographic scales mirrors patterns we observed at local scales. Our proposed ‘arboreality hypothesis’ suggests that the ability to exploit arboreal habitats confers the potential for larger geographical distributions because species can shift their location in the rainforest strata to compensate for shifts in temperature associated with elevation and latitude. This novel finding may help explain patterns of species richness and abundance wherever vegetation produces a vertical microclimatic gradient. Our results further suggest that global warming will ‘flatten’ the biodiversity in rainforests by pushing arboreal species towards the cooler and wetter ground. This ‘flattening’ could potentially have serious impacts on forest functioning and species survival. PMID:24026817
Increasing arboreality with altitude: a novel biogeographic dimension.
Scheffers, Brett R; Phillips, Ben L; Laurance, William F; Sodhi, Navjot S; Diesmos, Arvin; Williams, Stephen E
2013-11-07
Biodiversity is spatially organized by climatic gradients across elevation and latitude. But do other gradients exist that might drive biogeographic patterns? Here, we show that rainforest's vertical strata provide climatic gradients much steeper than those offered by elevation and latitude, and biodiversity of arboreal species is organized along this gradient. In Philippine and Singaporean rainforests, we demonstrate that rainforest frogs tend to shift up in the rainforest strata as altitude increases. Moreover, a Philippine-wide dataset of frog distributions shows that frog assemblages become increasingly arboreal at higher elevations. Thus, increased arboreality with elevation at broad biogeographic scales mirrors patterns we observed at local scales. Our proposed 'arboreality hypothesis' suggests that the ability to exploit arboreal habitats confers the potential for larger geographical distributions because species can shift their location in the rainforest strata to compensate for shifts in temperature associated with elevation and latitude. This novel finding may help explain patterns of species richness and abundance wherever vegetation produces a vertical microclimatic gradient. Our results further suggest that global warming will 'flatten' the biodiversity in rainforests by pushing arboreal species towards the cooler and wetter ground. This 'flattening' could potentially have serious impacts on forest functioning and species survival.
NASA Astrophysics Data System (ADS)
Speelman, Eveline N.; Sewall, Jacob O.; Noone, David; Huber, Matthew; von der Heydt, Anna; Damsté, Jaap Sinninghe; Reichart, Gert-Jan
2010-09-01
Proxy-based climate reconstructions suggest the existence of a strongly reduced equator-to-pole temperature gradient during the Azolla interval in the Early/Middle Eocene, compared to modern. Changes in the hydrological cycle, as a consequence of a reduced temperature gradient, are expected to be reflected in the isotopic composition of precipitation (δD, δ 18O). The interpretation of water isotopic records to quantitatively reconstruct past precipitation patterns is, however, hampered by a lack of detailed information on changes in their spatial and temporal distribution. Using the isotope-enabled version of the National Center for Atmospheric Research (NCAR) atmospheric general circulation model, Community Atmosphere Model v.3 (isoCAM3), relationships between water isotopes and past climates can be simulated. Here we examine the influence of an imposed reduced meridional sea surface temperature gradient on the spatial distribution of precipitation and its isotopic composition in an Early/Middle Eocene setting. As a result of the applied forcings, the Eocene simulation predicts the occurrence of less depleted high latitude precipitation, with δD values ranging only between 0 and -140‰ (compared to Present-day 0 to -300‰). Comparison with Early/Middle Eocene-age isotopic proxy data shows that the simulation accurately captures the main features of the spatial distribution of the isotopic composition of Early/Middle Eocene precipitation over land in conjunction with the aspects of the modeled Early/Middle Eocene climate. Hence, the included stable isotope module quantitatively supports the existence of a reduced meridional temperature gradient during this interval.
NASA Astrophysics Data System (ADS)
Le Bris, A.; Pershing, A. J.; Holland, D. S.; Mills, K.; Sun, C. H. J.
2016-02-01
The Gulf of Maine and the northwest Atlantic shelf have experienced one of the fastest warming rates of the global ocean over the past decade, and concerns are growing about the long-term sustainability of the fishing industries in the region. The lucrative American lobster fishery occurs over a steep temperature gradient, providing a unique opportunity to evaluate the consequences of climate change and variability on marine socio-ecological systems. This study aims at developing an integrated climate, population dynamics, and fishery economics model to predict consequences of climate change on the American lobster fishery. In this talk, we first describe a mechanistic model that combines life-history theory and a size-spectrum approach to simulate the dynamics of the population. Results show that as temperature increases, early growth rate and predation on small individuals increases, while size-at-maturity, maximum length and predation on large individuals decreases, resulting in a lower recruitment in the southern New-England and higher recruitment in the northern Gulf of Maine. Second, we present an integrated fishery and economic module that links temperature to landings and price through its influence on catchability and abundance. Preliminary results show that temperature is positively correlated with landings and negatively correlated with price in the Gulf of Maine. Finally, we discuss how model simulations under various fishing effort, market and climate scenarios can be used to identify adaptation opportunities to improve the resilience of the fishery to climate change.
NASA Astrophysics Data System (ADS)
Niswonger, R. G.; Huntington, J. L.; Dettinger, M. D.; Rajagopal, S.; Gardner, M.; Morton, C. G.; Reeves, D. M.; Pohll, G. M.
2013-12-01
Water resources in the Tahoe basin are susceptible to long-term climate change and extreme events because it is a middle-altitude, snow-dominated basin that experiences large inter-annual climate variations. Lake Tahoe provides critical water supply for its basin and downstream populations, but changes in water supply are obscured by complex climatic and hydrologic gradients across the high relief, geologically complex basin. An integrated surface and groundwater model of the Lake Tahoe basin has been developed using GSFLOW to assess the effects of climate change and extreme events on surface and groundwater resources. Key hydrologic mechanisms are identified with this model that explains recent changes in water resources of the region. Critical vulnerabilities of regional water-supplies and hazards also were explored. Maintaining a balance between (a) accurate representation of spatial features (e.g., geology, streams, and topography) and hydrologic response (i.e., groundwater, stream, lake, and wetland flows and storages), and (b) computational efficiency, is a necessity for the desired model applications. Potential climatic influences on water resources are analyzed here in simulations of long-term water-availability and flood responses to selected 100-year climate-model projections. GSFLOW is also used to simulate a scenario depicting an especially extreme storm event that was constructed from a combination of two historical atmospheric-river storm events as part of the USGS MultiHazards Demonstration Project. Historical simulated groundwater levels, streamflow, wetlands, and lake levels compare well with measured values for a 30-year historical simulation period. Results are consistent for both small and large model grid cell sizes, due to the model's ability to represent water table altitude, streams, and other hydrologic features at the sub-grid scale. Simulated hydrologic responses are affected by climate change, where less groundwater resources will be available during more frequent droughts. Simulated floods for the region indicate issues related to drainage in the developed areas around Lake Tahoe, and necessary dam releases that create downstream flood risks.
NASA Astrophysics Data System (ADS)
Tavares, Filipa; Schwaerzel, Kai; Nunes, João. Pedro; Feger, Karl-Heinz
2010-05-01
Forestry activities affect the environmental conditions of river basins by modifying soil properties and vegetation cover, leading to changes in e.g. runoff generation and routing, water yield or the trophic status of water bodies. Climate change is directly linked to forestry, since site-adapted sustainable forest management can buffer negative climate change impacts in river basins, while practices leading to over-harvesting or increasing wildfires can exacerbate these impacts. While studies relating hydrological processes with forestry practices or climate change have already been conducted, the combined impacts of both are rarely discussed. The main objective of the proposed work is to study the interactions between forest management and climate change and the effects of these upon water fluxes and water quality at the catchment scale, over medium to long-term periods and following an East-West climate gradient. Additional objectives are to increase knowledge about the relations between forest, water quality and soil conservation/degradation; and to improve the modelling of hydrological and matter transport processes in managed forests. The present poster shows a conceptual approach to understand this combined interaction by analysing an East-West climatic gradient (Ukraine-Germany-Portugal), with contrasting forestry practices and climate vulnerabilities. The activities within this workplan, to take place during the period 2010 - 2014, will be developed in close collaboration with several ongoing research projects in the host institution at the Dresden University of Technology (TUD) and in the University of Aveiro (UA). The Institute of Soil Science and Site-Ecology (ISSE) at TUD has an internationally renowned research tradition in forest hydrological topics using methods and findings from various (sub)disciplines in a multidisplinary approach. The measurement and simulation of forest catchments has also been a point of research at the Centre for Environmental and Marine Studies (CESAM) at UA. This work will profit greatly from the experience in both institutions, therefore enhancing knowledge exchange and collaboration between both parties.
Water Vapor Feedbacks to Climate Change
NASA Technical Reports Server (NTRS)
Rind, David
1999-01-01
The response of water vapor to climate change is investigated through a series of model studies with varying latitudinal temperature gradients, mean temperatures, and ultimately, actual climate change configurations. Questions to be addressed include: what role does varying convection have in water vapor feedback; do Hadley Circulation differences result in differences in water vapor in the upper troposphere; and, does increased eddy energy result in greater eddy vertical transport of water vapor in varying climate regimes?
Ecosystem Resilience to Drought and Temperature Anomalies in the Mekong River Basin
NASA Astrophysics Data System (ADS)
Na-U-Dom, T.; García, M.; Mo, X.
2017-05-01
Climate change is leading to an increasing in the frequency and intensity of extreme weather events, which significantly affect ecosystems stability. In this study, ecological stability metrics in response to wet/dry events and warm/cold events on vegetation greenness were assessed using an auto-regressive model of NDVI in the Mekong River basin (around 759,000 km2) where large ecological and climatic gradients exist. Gridded temperature, and the Global Standard Precipitation Evaporation Index (SPEI) and antecedent NDVI were used as model predictors. The forest in north Laos was more resilient to the temperate and wet/dry anomalies events than other regions in the basin. Drought reduced green biomass in north Laos, northeast Thailand and Myanmar, but in these tropical climate regions’ the vegetation biomass was also more responsive by higher temperatures. Vegetation in northeast Thailand, Cambodia and the Mekong delta were less sensitive to the temperature anomalies effect compared to other part of Mekong River basin. The map of resistance and resilience metrics can help to determine the most vulnerable regions to extreme events for policy makers.
Air pollution, greenhouse gases and climate change: Global and regional perspectives
NASA Astrophysics Data System (ADS)
Ramanathan, V.; Feng, Y.
Greenhouse gases (GHGs) warm the surface and the atmosphere with significant implications for rainfall, retreat of glaciers and sea ice, sea level, among other factors. About 30 years ago, it was recognized that the increase in tropospheric ozone from air pollution (NO x, CO and others) is an important greenhouse forcing term. In addition, the recognition of chlorofluorocarbons (CFCs) on stratospheric ozone and its climate effects linked chemistry and climate strongly. What is less recognized, however, is a comparably major global problem dealing with air pollution. Until about ten years ago, air pollution was thought to be just an urban or a local problem. But new data have revealed that air pollution is transported across continents and ocean basins due to fast long-range transport, resulting in trans-oceanic and trans-continental plumes of atmospheric brown clouds (ABCs) containing sub micron size particles, i.e., aerosols. ABCs intercept sunlight by absorbing as well as reflecting it, both of which lead to a large surface dimming. The dimming effect is enhanced further because aerosols may nucleate more cloud droplets, which makes the clouds reflect more solar radiation. The dimming has a surface cooling effect and decreases evaporation of moisture from the surface, thus slows down the hydrological cycle. On the other hand, absorption of solar radiation by black carbon and some organics increase atmospheric heating and tend to amplify greenhouse warming of the atmosphere. ABCs are concentrated in regional and mega-city hot spots. Long-range transport from these hot spots causes widespread plumes over the adjacent oceans. Such a pattern of regionally concentrated surface dimming and atmospheric solar heating, accompanied by widespread dimming over the oceans, gives rise to large regional effects. Only during the last decade, we have begun to comprehend the surprisingly large regional impacts. In S. Asia and N. Africa, the large north-south gradient in the ABC dimming has altered both the north-south gradients in sea surface temperatures and land-ocean contrast in surface temperatures, which in turn slow down the monsoon circulation and decrease rainfall over the continents. On the other hand, heating by black carbon warms the atmosphere at elevated levels from 2 to 6 km, where most tropical glaciers are located, thus strengthening the effect of GHGs on retreat of snow packs and glaciers in the Hindu Kush-Himalaya-Tibetan glaciers. Globally, the surface cooling effect of ABCs may have masked as much 47% of the global warming by greenhouse gases, with an uncertainty range of 20-80%. This presents a dilemma since efforts to curb air pollution may unmask the ABC cooling effect and enhance the surface warming. Thus efforts to reduce GHGs and air pollution should be done under one common framework. The uncertainties in our understanding of the ABC effects are large, but we are discovering new ways in which human activities are changing the climate and the environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kay, Jennifer E.; Wall, Casey; Yettella, Vineel
Here, a large, long-standing, and pervasive climate model bias is excessive absorbed shortwave radiation (ASR) over the midlatitude oceans, especially the Southern Ocean. This study investigates both the underlying mechanisms for and climate impacts of this bias within the Community Earth System Model, version 1, with the Community Atmosphere Model, version 5 [CESM1(CAM5)]. Excessive Southern Ocean ASR in CESM1(CAM5) results in part because low-level clouds contain insufficient amounts of supercooled liquid. In a present-day atmosphere-only run, an observationally motivated modification to the shallow convection detrainment increases supercooled cloud liquid, brightens low-level clouds, and substantially reduces the Southern Ocean ASR bias.more » Tuning to maintain global energy balance enables reduction of a compensating tropical ASR bias. In the resulting preindustrial fully coupled run with a brighter Southern Ocean and dimmer tropics, the Southern Ocean cools and the tropics warm. As a result of the enhanced meridional temperature gradient, poleward heat transport increases in both hemispheres (especially the Southern Hemisphere), and the Southern Hemisphere atmospheric jet strengthens. Because northward cross-equatorial heat transport reductions occur primarily in the ocean (80%), not the atmosphere (20%), a proposed atmospheric teleconnection linking Southern Ocean ASR bias reduction and cooling with northward shifts in tropical precipitation has little impact. In summary, observationally motivated supercooled liquid water increases in shallow convective clouds enable large reductions in long-standing climate model shortwave radiation biases. Of relevance to both model bias reduction and climate dynamics, quantifying the influence of Southern Ocean cooling on tropical precipitation requires a model with dynamic ocean heat transport.« less
Wang, Xiaoyue; Wang, Feng; Jiang, Yuji
2013-01-01
Decomposition of plant residues is largely mediated by soil-dwelling microorganisms whose activities are influenced by both climate conditions and properties of the soil. However, a comprehensive understanding of their relative importance remains elusive, mainly because traditional methods, such as soil incubation and environmental surveys, have a limited ability to differentiate between the combined effects of climate and soil. Here, we performed a large-scale reciprocal soil transplantation experiment, whereby microbial communities associated with straw decomposition were examined in three initially identical soils placed in parallel in three climate regions of China (red soil, Chao soil, and black soil, located in midsubtropical, warm-temperate, and cold-temperate zones). Maize straws buried in mesh bags were sampled at 0.5, 1, and 2 years after the burial and subjected to chemical, physical, and microbiological analyses, e.g., phospholipid fatty acid analysis for microbial abundance, community-level physiological profiling, and 16S rRNA gene denaturing gradient gel electrophoresis, respectively, for functional and phylogenic diversity. Results of aggregated boosted tree analysis show that location rather soil is the primary determining factor for the rate of straw decomposition and structures of the associated microbial communities. Principal component analysis indicates that the straw communities are primarily grouped by location at any of the three time points. In contrast, microbial communities in bulk soil remained closely related to one another for each soil. Together, our data suggest that climate (specifically, geographic location) has stronger effects than soil on straw decomposition; moreover, the successive process of microbial communities in soils is slower than those in straw residues in response to climate changes. PMID:23524671
Kay, Jennifer E.; Wall, Casey; Yettella, Vineel; ...
2016-06-10
Here, a large, long-standing, and pervasive climate model bias is excessive absorbed shortwave radiation (ASR) over the midlatitude oceans, especially the Southern Ocean. This study investigates both the underlying mechanisms for and climate impacts of this bias within the Community Earth System Model, version 1, with the Community Atmosphere Model, version 5 [CESM1(CAM5)]. Excessive Southern Ocean ASR in CESM1(CAM5) results in part because low-level clouds contain insufficient amounts of supercooled liquid. In a present-day atmosphere-only run, an observationally motivated modification to the shallow convection detrainment increases supercooled cloud liquid, brightens low-level clouds, and substantially reduces the Southern Ocean ASR bias.more » Tuning to maintain global energy balance enables reduction of a compensating tropical ASR bias. In the resulting preindustrial fully coupled run with a brighter Southern Ocean and dimmer tropics, the Southern Ocean cools and the tropics warm. As a result of the enhanced meridional temperature gradient, poleward heat transport increases in both hemispheres (especially the Southern Hemisphere), and the Southern Hemisphere atmospheric jet strengthens. Because northward cross-equatorial heat transport reductions occur primarily in the ocean (80%), not the atmosphere (20%), a proposed atmospheric teleconnection linking Southern Ocean ASR bias reduction and cooling with northward shifts in tropical precipitation has little impact. In summary, observationally motivated supercooled liquid water increases in shallow convective clouds enable large reductions in long-standing climate model shortwave radiation biases. Of relevance to both model bias reduction and climate dynamics, quantifying the influence of Southern Ocean cooling on tropical precipitation requires a model with dynamic ocean heat transport.« less
Biogeography and Change among Regional Coral Communities across the Western Indian Ocean
McClanahan, Timothy R.; Ateweberhan, Mebrahtu; Darling, Emily S.; Graham, Nicholas A. J.; Muthiga, Nyawira A.
2014-01-01
Coral reefs are biodiverse ecosystems structured by abiotic and biotic factors operating across many spatial scales. Regional-scale interactions between climate change, biogeography and fisheries management remain poorly understood. Here, we evaluated large-scale patterns of coral communities in the western Indian Ocean after a major coral bleaching event in 1998. We surveyed 291 coral reef sites in 11 countries and over 30° of latitude between 2004 and 2011 to evaluate variations in coral communities post 1998 across gradients in latitude, mainland-island geography and fisheries management. We used linear mixed-effect hierarchical models to assess total coral cover, the abundance of four major coral families (acroporids, faviids, pocilloporids and poritiids), coral genus richness and diversity, and the bleaching susceptibility of the coral communities. We found strong latitudinal and geographic gradients in coral community structure and composition that supports the presence of a high coral cover and diversity area that harbours temperature-sensitive taxa in the northern Mozambique Channel between Tanzania, northern Mozambique and northern Madagascar. Coral communities in the more northern latitudes of Kenya, Seychelles and the Maldives were generally composed of fewer bleaching-tolerant coral taxa and with reduced richness and diversity. There was also evidence for continued declines in the abundance of temperature-sensitive taxa and community change after 2004. While there are limitations of our regional dataset in terms of spatial and temporal replication, these patterns suggest that large-scale interactions between biogeographic factors and strong temperature anomalies influence coral communities while smaller-scale factors, such as the effect of fisheries closures, were weak. The northern Mozambique Channel, while not immune to temperature disturbances, shows continued signs of resistance to climate disturbances and remains a priority for future regional conservation and management actions. PMID:24718371
Biogeography and change among regional coral communities across the Western Indian Ocean.
McClanahan, Timothy R; Ateweberhan, Mebrahtu; Darling, Emily S; Graham, Nicholas A J; Muthiga, Nyawira A
2014-01-01
Coral reefs are biodiverse ecosystems structured by abiotic and biotic factors operating across many spatial scales. Regional-scale interactions between climate change, biogeography and fisheries management remain poorly understood. Here, we evaluated large-scale patterns of coral communities in the western Indian Ocean after a major coral bleaching event in 1998. We surveyed 291 coral reef sites in 11 countries and over 30° of latitude between 2004 and 2011 to evaluate variations in coral communities post 1998 across gradients in latitude, mainland-island geography and fisheries management. We used linear mixed-effect hierarchical models to assess total coral cover, the abundance of four major coral families (acroporids, faviids, pocilloporids and poritiids), coral genus richness and diversity, and the bleaching susceptibility of the coral communities. We found strong latitudinal and geographic gradients in coral community structure and composition that supports the presence of a high coral cover and diversity area that harbours temperature-sensitive taxa in the northern Mozambique Channel between Tanzania, northern Mozambique and northern Madagascar. Coral communities in the more northern latitudes of Kenya, Seychelles and the Maldives were generally composed of fewer bleaching-tolerant coral taxa and with reduced richness and diversity. There was also evidence for continued declines in the abundance of temperature-sensitive taxa and community change after 2004. While there are limitations of our regional dataset in terms of spatial and temporal replication, these patterns suggest that large-scale interactions between biogeographic factors and strong temperature anomalies influence coral communities while smaller-scale factors, such as the effect of fisheries closures, were weak. The northern Mozambique Channel, while not immune to temperature disturbances, shows continued signs of resistance to climate disturbances and remains a priority for future regional conservation and management actions.
NASA Astrophysics Data System (ADS)
Wang, Y.; Xue, Y.; Huang, B.; Lee, J.; De Sales, F.
2016-12-01
A long term simulation has been conducted using the Climate Forecast System (CFSv2) coupled to the SSiB-2 land model, which consists of the Global Forecast System atmospheric model (GFS) and the Modular Ocean model - version 4 (MOM4) as the ocean component. This study evaluates the model's performance in simulating sea surface temperature (SST) mean state, trend, and inter-annual and decadal variabilities. The model is able to produce the reasonable spatial distribution of the SST climatology; however, it has prominent large scale biases. In the middle latitude of the Northern Hemisphere, major cold biases is close to the warm side of the large SST gradients, which may be associated with the weaker Kuroshio and Gulf Stream extensions that diffuse the SST gradient. IN addition, warm biases extend along the west coast of the North America continent to the high latitude, which may be related with excessive Ekman down-welling and solar radiation fluxes reaching to the surface due to the lack of cloud there. Warm biases also exist over the tropical cold tough areas in the Pacific and Atlantic. The global SST trend and interannual variations are well captured except for that in the south Hemisphere after year 2000, which is mainly contributed by the bias from the southern Pacific Ocean. Although the model fails to accurately produce ENSO events in proper years, it does reproduce the ENSO frequency well; they are skewed toward more warm events after 1990. The model also shows ability in SST decadal variation, such as the so-called inter-decadal Pacific oscillation (IPO); however, its phases seem to go reversely compared with the observation.
Skovrind, Mikkel; Olsen, Morten Tange; Vieira, Filipe Garrett; Pacheco, George; Carl, Henrik; Gilbert, M Thomas P; Møller, Peter Rask
2016-02-01
Climate change experts largely agree that future climate change and associated rises in oceanic water levels over the upcoming decades, will affect marine salinity levels. The subsequent effects on fish communities in estuarine ecosystems however, are less clear. One species that is likely to become increasingly affected by changes in salinity is the ide (Leuciscus idus). The ide is a stenohaline freshwater fish that primarily inhabits rivers, with frequent anadromous behavior when sea salinity does not exceed 15%. Unlike most other anadromous Baltic Sea fish species, the ide has yet to be subjected to large-scale stocking programs, and thus provides an excellent opportunity for studying the natural population structure across the current salinity gradient in the Danish Belts. To explore this, we used Genotyping-by-Sequencing to determine genomic population structure of both freshwater resident and anadromous ide populations in the western Baltic Sea region, and relate the results to the current salinity gradient and the demographic history of ide in the region. The sample sites separate into four clusters, with all anadromous populations in one cluster and the freshwater resident populations in the remaining three. Results demonstrate high level of differentiation between sites hosting freshwater resident populations, but little differentiation among anadromous populations. Thus ide exhibit the genomic population structure of both a typical freshwater species, and a typical anadromous species. In addition to providing a first insight into the population structure of north-western European ide, our data also (1) provide indications of a single illegal introduction by man; (2) suggest limited genetic effects of heavy pollution in the past; and (3) indicate possible historical anadromous behavior in a now isolated freshwater population.
NASA Astrophysics Data System (ADS)
Johnson, D. J.; Needham, J.; Xu, C.; Davies, S. J.; Bunyavejchewin, S.; Giardina, C. P.; Condit, R.; Cordell, S.; Litton, C. M.; Hubbell, S.; Kassim, A. R. B.; Shawn, L. K. Y.; Nasardin, M. B.; Ong, P.; Ostertag, R.; Sack, L.; Tan, S. K. S.; Yap, S.; McDowell, N. G.; McMahon, S.
2016-12-01
Terrestrial carbon cycling is a function of the growth and survival of trees. Current model representations of tree growth and survival at a global scale rely on coarse plant functional traits that are parameterized very generally. In view of the large biodiversity in the tropical forests, it is important that we account for the functional diversity in order to better predict tropical forest responses to future climate changes. Several next generation Earth System Models are moving towards a size-structured, trait-based approach to modelling vegetation globally, but the challenge of which and how many traits are necessary to capture forest complexity remains. Additionally, the challenge of collecting sufficient trait data to describe the vast species richness of tropical forests is enormous. We propose a more fundamental approach to these problems by characterizing forests by their patterns of survival. We expect our approach to distill real-world tree survival into a reasonable number of functional types. Using 10 large-area tropical forest plots that span geographic, edaphic and climatic gradients, we model tree survival as a function of tree size for hundreds of species. We found surprisingly few categories of size-survival functions emerge. This indicates some fundamental strategies at play across diverse forests to constrain the range of possible size-survival functions. Initial cluster analysis indicates that four to eight functional forms are necessary to describe variation in size-survival relations. Temporal variation in size-survival functions can be related to local environmental variation, allowing us to parameterize how demographically similar groups of species respond to perturbations in the ecosystem. We believe this methodology will yield a synthetic approach to classifying forest systems that will greatly reduce uncertainty and complexity in global vegetation models.
NASA Astrophysics Data System (ADS)
Menge, B. A.; Gouhier, T.; Chan, F.; Hacker, S.; Menge, D.; Nielsen, K. J.
2016-02-01
Ecology focuses increasingly on the issue of matching spatial and temporal scales responsible for ecosystem pattern and dynamics. Benthic coastal communities traditionally were studied at local scales using mostly short-term research, while environmental (oceanographic, climatic) drivers were investigated at large scales (e.g., regional to oceanic, mostly offshore) using combined snapshot and monitoring (time series) research. The comparative-experimental approach combines local-scale studies at multiple sites spanning large-scale environmental gradients in combination with monitoring of inner shelf oceanographic conditions including upwelling/downwelling wind forcing and their consequences (e.g., temperature), and inputs of subsidies (larvae, phytoplankton, detritus). Temporal scale varies depending on the questions, but can extend from years to decades. We discuss two examples of rocky intertidal ecosystem dynamics, one at a regional scale (California Current System, CCS) and one at an interhemispheric scale. In the upwelling-dominated CCS, 52% and 32% of the variance in local community structure (functional group abundances at 13 sites across 725 km) was explained by external factors (ecological subsidies, oceanographic conditions, geographic location), and species interactions, respectively. The interhemispheric study tested the intermittent upwelling hypothesis (IUH), which predicts that key ecological processes will vary unimodally along a persistent downwelling to persistent upwelling gradient. Using 14-22 sites, unimodal relationships between ecological subsidies (phytoplankton, prey recruitment), prey responses (barnacle colonization, mussel growth) and species interactions (competition rate, predation rate and effect) and the Bakun upwelling index calculated at each site accounted for 50% of the variance. Hence, external factors can account for about half of locally-expressed community structure and dynamics.
Tara L. Keyser; Peter M. Brown
2014-01-01
Forecasted changes in climate across the southeastern US include an increase in temperature along with more variable precipitation patterns, including an increase in the severity and frequency of drought events. As such, the management of forests for increased resistance or resilience to the direct and indirect effects of climate change, including decreased tree- and...
Ayron M. Strauch; Christian P. Giardina; Richard A. MacKenzie; Chris Heider; Tom W. Giambelluca; Ed Salminen; Gregory L. Bruland
2017-01-01
Climate change is anticipated to affect freshwater resources, but baseline data on the functioning of tropical watersheds is lacking, limiting efforts that seek to predict how watershed processes, water supply, and streamflow respond to anticipated changes in climate and vegetation change, and to management. To address this data gap, we applied the distributed...
NASA Astrophysics Data System (ADS)
Fisher, J. A.; Wilson, S. R.; Zeng, G.; Williams, J. E.; Emmons, L. K.; Langenfelds, R. L.; Krummel, P. B.; Steele, L. P.
2014-11-01
We use aircraft observations from the 1991-2000 Cape Grim Overflight Program and the 2009-2011 HIAPER Pole-to-Pole Observations (HIPPO), together with output from four chemical transport and chemistry-climate models, to better understand the vertical distribution of carbon monoxide (CO) in the remote Southern Hemisphere. Observed CO vertical gradients at Cape Grim vary from 1.6 ppbv km-1 in austral autumn to 2.2 ppbv km-1 in austral spring. CO vertical profiles from Cape Grim are remarkably consistent with those observed over the southern mid-latitudes Pacific during HIPPO, despite major differences in time periods, flight locations, and sampling strategies between the two datasets. Using multi-model simulations from the Southern Hemisphere Model Intercomparison Project (SHMIP), we find that observed CO vertical gradients in austral winter-spring are well-represented in models and can be attributed to primary CO emissions from biomass burning. In austral summer-autumn, inter-model variability in simulated gradients is much larger, and two of the four SHMIP models significantly underestimate the Cape Grim observations. Sensitivity simulations show that CO vertical gradients at this time of year are driven by long-range transport of secondary CO of biogenic origin, implying a large sensitivity of the remote Southern Hemisphere troposphere to biogenic emissions and chemistry. Inter-model variability in summer-autumn gradients can be explained by differences in both the chemical mechanisms that drive secondary production of CO from biogenic sources and the vertical transport that redistributes this CO throughout the Southern Hemisphere. This suggests that the CO vertical gradient in the remote Southern Hemisphere provides a sensitive test of the chemistry and transport processes that define the chemical state of the background atmosphere.
The role of clouds in early Pliocene warmth
NASA Astrophysics Data System (ADS)
Burls, N.; Fedorov, A. V.
2013-12-01
The climate of the early Pliocene (4-5 million years ago) presents a challenging puzzle to climate scientists - although the Earth experienced atmospheric CO2 concentrations similar to the elevated levels seen today, many climate characteristics in both low to high latitudes were very different. In particular, a salient feature of the modern climate, the pronounced cold tongues on the eastern sides of the Pacific and Atlantic equatorial basins, were much weaker. At the same time the ocean meridional (equator-to-pole) temperature gradient was also reduced. However, state-of-the-art coupled general circulation models forced with elevated CO2 concentrations and reconstructed Pliocene boundary conditions fail to capture the full extent of warming in the equatorial cold tongues and high-latitude regions relative to present-day conditions, and hence the corresponding reduction in meridional and zonal sea surface temperature gradients suggested by paleoclimatic evidence (as reviewed by Fedorov et al., 2013, Nature 496). A number of physical processes unresolved or underestimated by these models have been proposed as a contributing factor or a potential driving force resulting in these differences. Amongst the proposed hypotheses is the idea that different cloud properties might be the key to the Pliocene puzzle. In this study we demonstrate how a modified spatial distribution in cloud albedo could have been responsible for sustaining Pliocene climate. In particular, we show that a reduction in the meridional gradient in cloud albedo can sustain reduced meridional and zonal gradients in sea surface temperature, an expanded warm pool in the ocean, weaker Hadley and Walker circulations in the atmosphere, and amplified high-latitude warming. Having conducted a range of modified cloud albedo experiments, we arrive at our Pliocene simulation, which shows an excellent agreement with proxy sea surface temperature data from the major equatorial and coastal upwelling regions, the tropical warm pool, and the mid- and high- latitudes. A good agreement is also achieved with available subsurface temperature data. Within this simulated early Pliocene state, we explore the major climatic features such as ENSO and the Atlantic meridional overturning circulation (AMOC).
Experimental evidence for herbivore limitation of the treeline.
Speed, James D M; Austrheim, Gunnar; Hester, Alison J; Mysterud, Atle
2010-11-01
The treeline ecotone divides forest from open alpine or arctic vegetation states. Treelines are generally perceived to be temperature limited. The role of herbivores in limiting the treeline is more controversial, as experimental evidence from relevant large scales is lacking. Here we quantify the impact of different experimentally controlled herbivore densities on the recruitment and survival of birch Betula pubescens tortuosa along an altitudinal gradient in the mountains of southern Norway. After eight years of summer grazing in large-scale enclosures at densities of 0, 25, and 80 sheep/km2, birch recruited within the whole altitudinal range of ungrazed enclosures, but recruitment was rarer in enclosures with low-density sheep and was largely limited to within the treeline in enclosures with high-density sheep. In contrast, the distribution of saplings (birch older than the experiment) did not differ between grazing treatments, suggesting that grazing sheep primarily limit the establishment of new tree recruits rather than decrease the survival of existing individuals. This study provides direct experimental evidence that herbivores can limit the treeline below its potential at the landscape scale and even at low herbivore densities in this climatic zone. Land use changes should thus be considered in addition to climatic changes as potential drivers of ecotone shifts.
Mountain landscapes offer few opportunities for high-elevation tree species migration
Bell, David M.; Bradford, John B.; Lauenroth, William K.
2014-01-01
Climate change is anticipated to alter plant species distributions. Regional context, notably the spatial complexity of climatic gradients, may influence species migration potential. While high-elevation species may benefit from steep climate gradients in mountain regions, their persistence may be threatened by limited suitable habitat as land area decreases with elevation. To untangle these apparently contradictory predictions for mountainous regions, we evaluated the climatic suitability of four coniferous forest tree species of the western United States based on species distribution modeling (SDM) and examined changes in climatically suitable areas under predicted climate change. We used forest structural information relating to tree species dominance, productivity, and demography from an extensive forest inventory system to assess the strength of inferences made with a SDM approach. We found that tree species dominance, productivity, and recruitment were highest where climatic suitability (i.e., probability of species occurrence under certain climate conditions) was high, supporting the use of predicted climatic suitability in examining species risk to climate change. By predicting changes in climatic suitability over the next century, we found that climatic suitability will likely decline, both in areas currently occupied by each tree species and in nearby unoccupied areas to which species might migrate in the future. These trends were most dramatic for high elevation species. Climatic changes predicted over the next century will dramatically reduce climatically suitable areas for high-elevation tree species while a lower elevation species, Pinus ponderosa, will be well positioned to shift upslope across the region. Reductions in suitable area for high-elevation species imply that even unlimited migration would be insufficient to offset predicted habitat loss, underscoring the vulnerability of these high-elevation species to climatic changes.
Life history trade-off moderates model predictions of diversity loss from climate change.
Moor, Helen
2017-01-01
Climate change can trigger species range shifts, local extinctions and changes in diversity. Species interactions and dispersal capacity are important mediators of community responses to climate change. The interaction between multispecies competition and variation in dispersal capacity has recently been shown to exacerbate the effects of climate change on diversity and to increase predictions of extinction risk dramatically. Dispersal capacity, however, is part of a species' overall ecological strategy and are likely to trade off with other aspects of its life history that influence population growth and persistence. In plants, a well-known example is the trade-off between seed mass and seed number. The presence of such a trade-off might buffer the diversity loss predicted by models with random but neutral (i.e. not impacting fitness otherwise) differences in dispersal capacity. Using a trait-based metacommunity model along a warming climatic gradient the effect of three different dispersal scenarios on model predictions of diversity change were compared. Adding random variation in species dispersal capacity caused extinctions by the introduction of strong fitness differences due an inherent property of the dispersal kernel. Simulations including a fitness-equalising trade-off based on empirical relationships between seed mass (here affecting dispersal distance, establishment probability, and seedling biomass) and seed number (fecundity) maintained higher initial species diversity and predicted lower extinction risk and diversity loss during climate change than simulations with variable dispersal capacity. Large seeded species persisted during climate change, but developed lags behind their climate niche that may cause extinction debts. Small seeded species were more extinction-prone during climate change but tracked their niches through dispersal and colonisation, despite competitive resistance from residents. Life history trade-offs involved in coexistence mechanisms may increase community resilience to future climate change and are useful guides for model development.
NASA Astrophysics Data System (ADS)
Mougin, E.; Hiernaux, P.; Kergoat, L.; Grippa, M.; de Rosnay, P.; Timouk, F.; Le Dantec, V.; Demarez, V.; Lavenu, F.; Arjounin, M.; Lebel, T.; Soumaguel, N.; Ceschia, E.; Mougenot, B.; Baup, F.; Frappart, F.; Frison, P. L.; Gardelle, J.; Gruhier, C.; Jarlan, L.; Mangiarotti, S.; Sanou, B.; Tracol, Y.; Guichard, F.; Trichon, V.; Diarra, L.; Soumaré, A.; Koité, M.; Dembélé, F.; Lloyd, C.; Hanan, N. P.; Damesin, C.; Delon, C.; Serça, D.; Galy-Lacaux, C.; Seghieri, J.; Becerra, S.; Dia, H.; Gangneron, F.; Mazzega, P.
2009-08-01
SummaryThe Gourma site in Mali is one of the three instrumented meso-scale sites deployed in West-Africa as part of the African Monsoon Multi-disciplinary Analysis (AMMA) project. Located both in the Sahelian zone sensu stricto, and in the Saharo-Sahelian transition zone, the Gourma meso-scale window is the northernmost site of the AMMA-CATCH observatory reached by the West African Monsoon. The experimental strategy includes deployment of a variety of instruments, from local to meso-scale, dedicated to monitoring and documentation of the major variables characterizing the climate forcing, and the spatio-temporal variability of surface processes and state variables such as vegetation mass, leaf area index (LAI), soil moisture and surface fluxes. This paper describes the Gourma site, its associated instrumental network and the research activities that have been carried out since 1984. In the AMMA project, emphasis is put on the relations between climate, vegetation and surface fluxes. However, the Gourma site is also important for development and validation of satellite products, mainly due to the existence of large and relatively homogeneous surfaces. The social dimension of the water resource uses and governance is also briefly analyzed, relying on field enquiry and interviews. The climate of the Gourma region is semi-arid, daytime air temperatures are always high and annual rainfall amounts exhibit strong inter-annual and seasonal variations. Measurements sites organized along a north-south transect reveal sharp gradients in surface albedo, net radiation, vegetation production, and distribution of plant functional types. However, at any point along the gradient, surface energy budget, soil moisture and vegetation growth contrast between two main types of soil surfaces and hydrologic systems. On the one hand, sandy soils with high water infiltration rates and limited run-off support almost continuous herbaceous vegetation with scattered woody plants. On the other hand, water infiltration is poor on shallow soils, and vegetation is sparse and discontinuous, with more concentrated run-off that ends in pools or low lands within structured endorheic watersheds. Land surface in the Gourma is characterized by rapid response to climate variability, strong intra-seasonal, seasonal and inter-annual variations in vegetation growth, soil moisture and energy balance. Despite the multi-decadal drought, which still persists, ponds and lakes have increased, the grass cover has largely recovered, and there are signs of increased tree cover at least in the low lands.
Thermal barriers constrain microbial elevational range size via climate variability.
Wang, Jianjun; Soininen, Janne
2017-08-01
Range size is invariably limited and understanding range size variation is an important objective in ecology. However, microbial range size across geographical gradients remains understudied, especially on mountainsides. Here, the patterns of range size of stream microbes (i.e., bacteria and diatoms) and macroorganisms (i.e., macroinvertebrates) along elevational gradients in Asia and Europe were examined. In bacteria, elevational range size showed non-significant phylogenetic signals. In all taxa, there was a positive relationship between niche breadth and species elevational range size, driven by local environmental and climatic variables. No taxa followed the elevational Rapoport's rule. Climate variability explained the most variation in microbial mean elevational range size, whereas local environmental variables were more important for macroinvertebrates. Seasonal and annual climate variation showed negative effects, while daily climate variation had positive effects on community mean elevational range size for all taxa. The negative correlation between range size and species richness suggests that understanding the drivers of range is key for revealing the processes underlying diversity. The results advance the understanding of microbial species thermal barriers by revealing the importance of seasonal and diurnal climate variation, and highlight that aquatic and terrestrial biota may differ in their response to short- and long-term climate variability. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Gitlin, Alicyn R; Sthultz, Christopher M; Bowker, Matthew A; Stumpf, Stacy; Paxton, Kristina L; Kennedy, Karla; Muñoz, Axhel; Bailey, Joseph K; Whitham, Thomas G
2006-10-01
Understanding patterns of plant population mortality during extreme weather events is important to conservation planners because the frequency of such events is expected to increase, creating the need to integrate climatic uncertainty into management. Dominant plants provide habitat and ecosystem structure, so changes in their distribution can be expected to have cascading effects on entire communities. Observing areas that respond quickly to climate fluctuations provides foresight into future ecological changes and will help prioritize conservation efforts. We investigated patterns of mortality in six dominant plant species during a drought in the southwestern United States. We quantified population mortality for each species across its regional distribution and tested hypotheses to identify ecological stress gradients for each species. Our results revealed three major patterns: (1) dominant species from diverse habitat types (i.e., riparian, chaparral, and low- to high-elevation forests) exhibited significant mortality, indicating that the effects of drought were widespread; (2) average mortality differed among dominant species (one-seed juniper[Juniperus monosperma (Engelm.) Sarg.] 3.3%; manzanita[Arctostaphylos pungens Kunth], 14.6%; quaking aspen[Populus tremuloides Michx.], 15.4%; ponderosa pine[Pinus ponderosa P. & C. Lawson], 15.9%; Fremont cottonwood[Populus fremontii S. Wats.], 20.7%; and pinyon pine[Pinus edulis Engelm.], 41.4%); (3) all dominant species showed localized patterns of very high mortality (24-100%) consistent with water stress gradients. Land managers should plan for climatic uncertainty by promoting tree recruitment in rare habitat types, alleviating unnatural levels of competition on dominant plants, and conserving sites across water stress gradients. High-stress sites, such as those we examined, have conservation value as barometers of change and because they may harbor genotypes that are adapted to climatic extremes.
Phenotypic clines, energy balances and ecological responses to climate change.
Buckley, Lauren B; Nufio, César R; Kingsolver, Joel G
2014-01-01
The Metabolic Theory of Ecology has renewed interest in using energetics to scale across levels of ecological organization. Can scaling from individual phenotypes to population dynamics provides insight into why species have shifted their phenologies, abundances and distributions idiosyncratically in response to recent climate change? We consider how the energetic implications of phenotypes may scale to understand population and species level responses to climate change using four focal grasshopper species along an elevation gradient in Colorado. We use a biophysical model to translate phenotypes and environmental conditions into estimates of body temperatures. We measure thermal tolerances and preferences and metabolic rates to assess rates of energy use and acquisition. Body mass declines along the elevation gradient for all species, but mass-specific metabolic rates increases only modestly. We find interspecific differences in both overall thermal tolerances and preferences and in the variation of these metrics along the elevation gradient. The more dispersive species exhibit significantly higher thermal tolerance and preference consistent with much of their range spanning hot, low elevation areas. When integrating these metrics to consider metabolic constraints, we find that energetic costs decrease along the elevation gradient due to decreasing body size and temperature. Opportunities for energy acquisition, as reflected by the proportion of time that falls within a grasshopper's thermal tolerance range, peak at mid elevations. We discuss methods for translating these energetic metrics into population dynamics. Quantifying energy balances and allocation offers a viable approach for predicting how populations will respond to climate change and the consequences for species composed of populations that may be locally adapted. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
Effects of exurban development and temperature on bird species in the southern Appalachians.
Lumpkin, Heather A; Pearson, Scott M
2013-10-01
Land-use dynamics and climatic gradients have large effects on many terrestrial systems. Exurban development, one of the fastest growing forms of land use in the United States, may affect wildlife through habitat fragmentation and building presence may alter habitat quality. We studied the effects of residential development and temperature gradients on bird species occurrence at 140 study sites in the southern Appalachian Mountains (North Carolina, U.S.A.) that varied with respect to building density and elevation. We used occupancy models to determine 36 bird species' associations with building density, forest canopy cover, average daily mean temperature, and an interaction between building density and mean temperature. Responses varied with habitat requirement, breeding range, and migration distance. Building density and mean temperature were both included in the top occupancy models for 19 of 36 species and a building density by temperature interaction was included in models for 8 bird species. As exurban development expands in the southern Appalachians, interior forest species and Neotropical migrants are likely to decline, but shrubland or edge species are not likely to benefit. Overall, effects of building density were greater than those of forest canopy cover. Exurban development had a greater effect on birds at high elevations due to a greater abundance of sensitive forest-interior species and Neotropical migrants. A warming climate may exacerbate these negative effects. © 2013 Society for Conservation Biology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yim, Bo; Yeh, Sang -Wook; Sohn, Byung -Ju
Observational evidence shows that the Walker circulation (WC) in the tropical Pacific has strengthened in recent decades. In this study, we examine the WC trend for 1979–2005 and its relationship with the precipitation associated with the El Niño Southern Oscillation (ENSO) using the sea surface temperature (SST)-constrained Atmospheric Model Intercomparison Project (AMIP) simulations of the Coupled Model Intercomparison Project Phase 5 (CMIP5) climate models. All of the 29 models show a strengthening of the WC trend in response to an increase in the SST zonal gradient along the equator. Despite the same SST-constrained AMIP simulations, however, a large diversity ismore » found among the CMIP5 climate models in the magnitude of the WC trend. The relationship between the WC trend and precipitation anomalies (PRCPAs) associated with ENSO (ENSO-related PRCPAs) shows that the longitudinal position of the ENSO-related PRCPAs in the western tropical Pacific is closely related to the magnitude of the WC trend. Specifically, it is found that the strengthening of the WC trend is large (small) in the CMIP5 AMIP simulations in which the ENSO-related PRCPAs are located relatively westward (eastward) in the western tropical Pacific. Furthermore, the zonal shift of the ENSO-related precipitation in the western tropical Pacific, which is associated with the climatological mean precipitation in the tropical Pacific, could play an important role in modifying the WC trend in the CMIP5 climate models.« less
García Molinos, Jorge; Takao, Shintaro; Kumagai, Naoki H; Poloczanska, Elvira S; Burrows, Michael T; Fujii, Masahiko; Yamano, Hiroya
2017-10-01
Conservation efforts strive to protect significant swaths of terrestrial, freshwater and marine ecosystems from a range of threats. As climate change becomes an increasing concern, these efforts must take into account how resilient-protected spaces will be in the face of future drivers of change such as warming temperatures. Climate landscape metrics, which signal the spatial magnitude and direction of climate change, support a convenient initial assessment of potential threats to and opportunities within ecosystems to inform conservation and policy efforts where biological data are not available. However, inference of risk from purely physical climatic changes is difficult unless set in a meaningful ecological context. Here, we aim to establish this context using historical climatic variability, as a proxy for local adaptation by resident biota, to identify areas where current local climate conditions will remain extant and future regional climate analogues will emerge. This information is then related to the processes governing species' climate-driven range edge dynamics, differentiating changes in local climate conditions as promoters of species range contractions from those in neighbouring locations facilitating range expansions. We applied this approach to assess the future climatic stability and connectivity of Japanese waters and its network of marine protected areas (MPAs). We find 88% of Japanese waters transitioning to climates outside their historical variability bounds by 2035, resulting in large reductions in the amount of available climatic space potentially promoting widespread range contractions and expansions. Areas of high connectivity, where shifting climates converge, are present along sections of the coast facilitated by the strong latitudinal gradient of the Japanese archipelago and its ocean current system. While these areas overlap significantly with areas currently under significant anthropogenic pressures, they also include much of the MPA network that may provide stepping-stone protection for species that must shift their distribution because of climate change. © 2017 John Wiley & Sons Ltd.
McGuire, Chris R; Nufio, César R; Bowers, M Deane; Guralnick, Robert P
2012-01-01
Determining the magnitude of climate change patterns across elevational gradients is essential for an improved understanding of broader climate change patterns and for predicting hydrologic and ecosystem changes. We present temperature trends from five long-term weather stations along a 2077-meter elevational transect in the Rocky Mountain Front Range of Colorado, USA. These trends were measured over two time periods: a full 56-year record (1953-2008) and a shorter 20-year (1989-2008) record representing a period of widely reported accelerating change. The rate of change of biological indicators, season length and accumulated growing-degree days, were also measured over the 56 and 20-year records. Finally, we compared how well interpolated Parameter-elevation Regression on Independent Slopes Model (PRISM) datasets match the quality controlled and weather data from each station. Our results show that warming signals were strongest at mid-elevations over both temporal scales. Over the 56-year record, most sites show warming occurring largely through increases in maximum temperatures, while the 20-year record documents warming associated with increases in maximum temperatures at lower elevations and increases in minimum temperatures at higher elevations. Recent decades have also shown a shift from warming during springtime to warming in July and November. Warming along the gradient has contributed to increases in growing-degree days, although to differing degrees, over both temporal scales. However, the length of the growing season has remained unchanged. Finally, the actual and the PRISM interpolated yearly rates rarely showed strong correlations and suggest different warming and cooling trends at most sites. Interpretation of climate trends and their seasonal biases in the Rocky Mountain Front Range are dependent on both elevation and the temporal scale of analysis. Given mismatches between interpolated data and the directly measured station data, we caution against an over-reliance on interpolation methods for documenting local patterns of climatic change.
Sediment aggradation and erosional dynamics of intermontane basins in NW Argentina
NASA Astrophysics Data System (ADS)
Bookhagen, Bodo; Castino, Fabiana; Purinton, Ben; Strecker, Manfred
2017-04-01
The NW Argentine Andes constitute the Andean Plateau (Altiplano-Puna), the second-largest orogenic plateau on Earth, an internally drained highland with a mean elevation of 4.0 ± 0.5 km (±2 sigma). The Puna is flanked by the externally drained Eastern Cordillera thrust belt and the adjacent broken foreland that are connected to the Atlantic Ocean. These mountain ranges lie in the south-central Andes and are characterized by steep topographic and climatic gradients: The first windward topographic rise east of the Puna forms a significant orographic barrier resulting in high orographic rainfall causing some of the wettest places on Earth. In contrast, the higher-elevation areas of the windward flanks become progressively drier westward, until arid conditions are attained in the central Puna. During the Quaternary the south-central Andes have repeatedly experienced significant paleoclimatic changes associated with deeper penetration of moisture into the orogen, and thus an orogenward shift of the climate gradient. This mechanism has resulted in large variations in erosion dynamics and sediment transfer toward the foreland, resulting in thick valley fills and multiple terrace levels. At much shorter timescales, climate variability during the Holocene has caused similar, yet less pronounced hydrologic trends and associated sedimentation- and erosion processes. Here, we use a time series of Digital Elevation Models (DEMs) to reconstruct land-level changes in the intramontane basins in NW Argentina. We generated the DEMs and height measurements based on stereo airphotos from the 1980s, ASTER satellite imagery, ICESat and dGPS measurements during the past decade, and several TerraSAR-X and TanDEM-X CoSSC pairs starting in 2013. Our data show a strong signal of fluvial sediment aggradation during the past 30 years, in places up to 0.5m per decade, which explains the regionally observed, modern sediment accumulation in basins that has caused major infrastructural problems. We link the increased sediment flux to cascading processes reflecting environmental and climatic changes of the southern-central Andes.
NASA Astrophysics Data System (ADS)
Tseng, H.; Giambelluca, T. W.; DeLay, J. K.; Nullet, M.
2017-12-01
Steep climate gradients and diverse ecosystems make the Hawaiian Islands an ideal laboratory for ecohydrological experiments. Researchers are able to control physical and ecological variables, which is difficult for most environmental studies, by selecting sites along these gradients. Tropical montane forests, especially those situated in the cloud zone, are known to improve recharge and sustain baseflow. This is probably the result of frequent and persistent fog characteristic to these systems. During fog events, evapotranspiration is suppressed due to high humidity and reduced solar radiation. Moreover, cloud water interception by the forest canopy can produce fog drip and contribute significantly to the local water budget. Because the interception process is a complex interaction between the atmosphere and the vegetation, the effects of the meteorological conditions and canopy characteristics are equally important and sometimes hard to separate. This study aims to examine patterns in cloud water interception and canopy water balance across five tropical montane forest sites on three of the main islands of Hawaii. The sites cover a range of elevations between 1100- 2114 m, annual rainfall between 1155-3375 mm, and different dominant plant species with canopy heights ranging from 1.5 m to 30 m. We investigate the effect of climatic factors by comparing passive fog gauge measurements and other meteorological variables, then examine the differences in canopy water balance by comparing throughfall and stemflow measurements at these sites. While this study is ongoing, we present the first few months of field observations and the results of preliminary analyses. This study will improve understanding of how large-scale climate and vegetation factors interact to control cloud water interception and will inform ongoing watershed management. This is particularly important for oceanic islands such as Hawaii because they rely on precipitation entirely for water supply and are, therefore, vulnerable to impacts of altered ecohydrological functioning due to climate and land cover changes.
McGuire, Chris R.; Nufio, César R.; Bowers, M. Deane; Guralnick, Robert P.
2012-01-01
Determining the magnitude of climate change patterns across elevational gradients is essential for an improved understanding of broader climate change patterns and for predicting hydrologic and ecosystem changes. We present temperature trends from five long-term weather stations along a 2077-meter elevational transect in the Rocky Mountain Front Range of Colorado, USA. These trends were measured over two time periods: a full 56-year record (1953–2008) and a shorter 20-year (1989–2008) record representing a period of widely reported accelerating change. The rate of change of biological indicators, season length and accumulated growing-degree days, were also measured over the 56 and 20-year records. Finally, we compared how well interpolated Parameter-elevation Regression on Independent Slopes Model (PRISM) datasets match the quality controlled and weather data from each station. Our results show that warming signals were strongest at mid-elevations over both temporal scales. Over the 56-year record, most sites show warming occurring largely through increases in maximum temperatures, while the 20-year record documents warming associated with increases in maximum temperatures at lower elevations and increases in minimum temperatures at higher elevations. Recent decades have also shown a shift from warming during springtime to warming in July and November. Warming along the gradient has contributed to increases in growing-degree days, although to differing degrees, over both temporal scales. However, the length of the growing season has remained unchanged. Finally, the actual and the PRISM interpolated yearly rates rarely showed strong correlations and suggest different warming and cooling trends at most sites. Interpretation of climate trends and their seasonal biases in the Rocky Mountain Front Range are dependent on both elevation and the temporal scale of analysis. Given mismatches between interpolated data and the directly measured station data, we caution against an over-reliance on interpolation methods for documenting local patterns of climatic change. PMID:22970205
Late quaternary climate, precipitation δ18O, and Indian monsoon variations over the Tibetan Plateau
NASA Astrophysics Data System (ADS)
Li, Jingmin; Ehlers, Todd A.; Werner, Martin; Mutz, Sebastian G.; Steger, Christian; Paeth, Heiko
2017-01-01
The Himalaya-Tibet orogen contains one of the largest modern topographic and climate gradients on Earth. Proxy data from the region provide a basis for understanding Tibetan Plateau paleo climate and paleo elevation reconstructions. Paleo climate model comparisons to proxy data compliment sparsely located data and can improve climate reconstructions. This study investigates temporal changes in precipitation, temperature and precipitation δ18O (δO18p) over the Himalaya-Tibet from the Last Glacial Maximum (LGM) to present. We conduct a series of atmospheric General Circulation Model (GCM, ECHAM5-wiso) experiments at discrete time slices including a Pre-industrial (PI, Pre-1850 AD), Mid Holocene (MH, 6 ka BP) and LGM (21 ka BP) simulations. Model predictions are compared with existing proxy records. Model results show muted climate changes across the plateau during the MH and larger changes occurring during the LGM. During the LGM surface temperatures are ∼ 2.0- 4.0 °C lower across the Himalaya and Tibet, and >5.0 °C lower at the northwest and northeast edge of the Tibetan Plateau. LGM mean annual precipitation is 200-600 mm/yr lower over on the Tibetan Plateau. Model and proxy data comparison shows a good agreement for the LGM, but large differences for the MH. Large differences are also present between MH proxy studies near each other. The precipitation weighted annual mean δ18Op lapse rate at the Himalaya is about 0.4 ‰ /km larger during the MH and 0.2 ‰ /km smaller during the LGM than during the PI. Finally, rainfall associated with the continental Indian monsoon (between 70°E-110°E and 10°N-30°N) is about 44% less in the LGM than during PI times. The LGM monsoon period is about one month shorter than in PI times. Taken together, these results document significant spatial and temporal changes in temperature, precipitation, and δ18Op over the last ∼21 ka. These changes are large enough to impact interpretations of proxy data and the intensity of the Indian monsoon.
NASA Astrophysics Data System (ADS)
Hogg, E.
2009-05-01
In western Canada, the boundary between boreal forest and prairie grasslands marks a dramatic change in nearly all aspects of ecosystem functioning. These include a steep spatial gradient in hydrological characteristics of the landscape (lake level variability, water runoff and stream flow patterns) that coincides with the southern range limit of peatlands and several species of boreal conifers. Previous studies indicate that the forest-grassland boundary in this region represents a critical "tipping point" (Lenton et al. 2008) where long-term water input by precipitation is barely sufficient to satisfy the water use demands of productive, closed-canopy forests. This concept is consistent with the observed, regional gradient in the character of forests dominated by aspen (Populus tremuloides), the most abundant and widespread deciduous tree in North America. Aspen-dominated forests are productive and continuous in the boreal zone, but are stunted and patchy in the boreal-grassland transition zone, often referred to as the aspen parkland. Based on the "tipping point" concept, there are concerns that aspen forests in this region are especially sensitive to the projected trend toward warmer and drier conditions under human-induced climate change. In response to these concerns, a large-scale study was established across west-central Canada in 2000, entitled "Climate Impacts on Productivity and Health of Aspen" (CIPHA). The study has hierarchical sampling design that is aimed at "scaling up" forest-climate responses from individual trees to the region. During 2001-2002, the region was affected by an exceptionally severe drought that subsequently led to massive dieback and mortality of aspen forests within the boreal-grassland transition zone. Drought severity and extent was quantified using a simple climate moisture index (CMI), and drought impacts were quantified using tree-ring analysis, in combination with plot-based and remotely-sensed measures. Results showed that stand-level productivity, dieback and mortality were governed primarily by moisture variation. Furthermore, during and following this drought there was increasing damage by wood-boring insects and elevated, regional-scale mortality of aspen over at least 6 years (2002-2008). Although it is premature to attribute these impacts to anthropogenic climate change, they provide an excellent analog for what may be expected in future, even under a modest trend toward drying over the next few decades. Furthermore, the recent aspen mortality in western Canada shares many features common to other recent episodes of drought-induced forest mortality that have been documented on all of the earth's forested continents. This suggests the need for an integrated, global research and monitoring system that would enable early detection and attribution of large-scale ecosystem changes, especially in climatically-sensitive regions along forest-grassland boundaries around the world.
The Carbon Tetrachloride (CCl4) Budget: Mystery or Not
NASA Technical Reports Server (NTRS)
Liang, Qing; Newman, Paul A.; Daniel, John S.; Reimann, Stefan; Hall, Bradley; Dutton, Geoff; Kuijpers, Lambert J. M.
2014-01-01
Carbon tetrachloride (CCl4) is a major anthropogenic ozone-depleting substance and greenhouse gas and has been regulated under the Montreal Protocol. However, atmospheric observations show a very slow decline in CCl4 concentrations, inconsistent with the nearly zero emissions estimate based on the UNEP reported production and feedstock usage in recent years. It is now apparent that there are either unidentified industrial leakages, an unknown production source of CCl4, or large legacy emissions from CCl4 contaminated sites. In this paper we use a global chemistry climate model to assess the budget mystery of atmospheric CCl4. We explore various factors that affect the global trend and the gradient between the Northern and Southern hemispheres or interhemispheric gradient (IHG): emissions, emission hemispheric partitioning, and lifetime variations. We find a present-day emission of 30-50 Gg per yr and a total lifetime 25 - 36 years are necessary to reconcile both the observed CCl4 global trend and IHG.
Spatial and temporal dynamics of disturbance interactions along an ecological gradient
Christopher D. O' Connor
2013-01-01
Interactions among site conditions, disturbance events, and climate determine the patterns of forest species recruitment and mortality across landscapes. Forests of the American Southwest have undergone significant changes over a century of altered disturbance regimes, human land uses, and changing environmental conditions. Along steep vertical gradients such as those...
USDA-ARS?s Scientific Manuscript database
Global mean temperature may increase up to 6°C by the end of this century and together with precipitation change may steepen regional aridity gradients, impacting the hydrology, productivity, diversity, and ecosystem goods and services from freshwater wetlands, where the water balance is tightly cou...
USDA-ARS?s Scientific Manuscript database
We examined morphological and physiological leaf traits of Spartina densiflora plants in populations from invaded estuarine sites across broad latitudinal and climate gradients along the Pacific west coast of North America, and in favourable conditions in a common garden experiment. We hypothesized ...
Shrubland primary production and soil respiration diverge along European climate gradient
Reinsch, Sabine; Koller, Eva; Sowerby, Alwyn; de Dato, Giovanbattista; Estiarte, Marc; Guidolotti, Gabriele; Kovács-Láng, Edit; Kröel-Dulay, György; Lellei-Kovács, Eszter; Larsen, Klaus S.; Liberati, Dario; Peñuelas, Josep; Ransijn, Johannes; Robinson, David A.; Schmidt, Inger K.; Smith, Andrew R.; Tietema, Albert; Dukes, Jeffrey S.; Beier, Claus; Emmett, Bridget A.
2017-01-01
Above- and belowground carbon (C) stores of terrestrial ecosystems are vulnerable to environmental change. Ecosystem C balances in response to environmental changes have been quantified at individual sites, but the magnitudes and directions of these responses along environmental gradients remain uncertain. Here we show the responses of ecosystem C to 8–12 years of experimental drought and night-time warming across an aridity gradient spanning seven European shrublands using indices of C assimilation (aboveground net primary production: aNPP) and soil C efflux (soil respiration: Rs). The changes of aNPP and Rs in response to drought indicated that wet systems had an overall risk of increased loss of C but drier systems did not. Warming had no consistent effect on aNPP across the climate gradient, but suppressed Rs more at the drier sites. Our findings suggest that above- and belowground C fluxes can decouple, and provide no evidence of acclimation to environmental change at a decadal timescale. aNPP and Rs especially differed in their sensitivity to drought and warming, with belowground processes being more sensitive to environmental change. PMID:28256623
Shrubland primary production and soil respiration diverge along European climate gradient
NASA Astrophysics Data System (ADS)
Reinsch, Sabine; Koller, Eva; Sowerby, Alwyn; de Dato, Giovanbattista; Estiarte, Marc; Guidolotti, Gabriele; Kovács-Láng, Edit; Kröel-Dulay, György; Lellei-Kovács, Eszter; Larsen, Klaus S.; Liberati, Dario; Peñuelas, Josep; Ransijn, Johannes; Robinson, David A.; Schmidt, Inger K.; Smith, Andrew R.; Tietema, Albert; Dukes, Jeffrey S.; Beier, Claus; Emmett, Bridget A.
2017-03-01
Above- and belowground carbon (C) stores of terrestrial ecosystems are vulnerable to environmental change. Ecosystem C balances in response to environmental changes have been quantified at individual sites, but the magnitudes and directions of these responses along environmental gradients remain uncertain. Here we show the responses of ecosystem C to 8-12 years of experimental drought and night-time warming across an aridity gradient spanning seven European shrublands using indices of C assimilation (aboveground net primary production: aNPP) and soil C efflux (soil respiration: Rs). The changes of aNPP and Rs in response to drought indicated that wet systems had an overall risk of increased loss of C but drier systems did not. Warming had no consistent effect on aNPP across the climate gradient, but suppressed Rs more at the drier sites. Our findings suggest that above- and belowground C fluxes can decouple, and provide no evidence of acclimation to environmental change at a decadal timescale. aNPP and Rs especially differed in their sensitivity to drought and warming, with belowground processes being more sensitive to environmental change.
Dodson, Erich K; Root, Heather T
2015-02-01
Community re-assembly following future disturbances will often occur under warmer and more moisture-limited conditions than when current communities assembled. Because the establishment stage is regularly the most sensitive to climate and competition, the trajectory of recovery from disturbance in a changing environment is uncertain, but has important consequences for future ecosystem functioning. To better understand how ongoing warming and rising moisture limitation may affect recovery, we studied native and exotic plant composition 11 years following complete stand-replacing wildfire in a dry coniferous forest spanning a large gradient in climatic moisture deficit (CMD) from warm and dry low elevation sites to relatively cool and moist higher elevations sites. We then projected future precipitation, temperature and CMD at our study locations for four scenarios selected to encompass a broad range of possible future conditions for the region. Native perennials dominated relatively cool and moist sites 11 years after wildfire, but were very sparse at the warmest and driest (high CMD) sites, particularly when combined with high topographic sun exposure. In contrast, exotic species (primarily annual grasses) were dominant or co-dominant at the warmest and driest sites, especially with high topographic sun exposure. All future scenarios projected increasing temperature and CMD in coming decades (e.g., from 4.5% to 29.5% higher CMD by the 2080's compared to the 1971-2000 average), even in scenarios where growing season (May-September) precipitation increased. These results suggest increasing temperatures and moisture limitation could facilitate longer term (over a decade) transitions toward exotic-dominated communities after severe wildfire when a suitable exotic seed source is present. © 2014 John Wiley & Sons Ltd.
Consequences of declining snow accumulation for water balance of mid-latitude dry regions
Schlaepfer, Daniel R.; Lauenroth, William K.; Bradford, John B.
2012-01-01
Widespread documentation of positive winter temperature anomalies, declining snowpack and earlier snow melt in the Northern Hemisphere have raised concerns about the consequences for regional water resources as well as wildfire. A topic that has not been addressed with respect to declining snowpack is effects on ecosystem water balance. Changes in water balance dynamics will be particularly pronounced at low elevations of mid-latitude dry regions because these areas will be the first to be affected by declining snow as a result of rising temperatures. As a model system, we used simulation experiments to investigate big sagebrush ecosystems that dominate a large fraction of the semiarid western United States. Our results suggest that effects on future ecosystem water balance will increase along a climatic gradient from dry, warm and snow-poor to wet, cold and snow-rich. Beyond a threshold within this climatic gradient, predicted consequences for vegetation switched from no change to increasing transpiration. Responses were sensitive to uncertainties in climatic prediction; particularly, a shift of precipitation to the colder season could reduce impacts of a warmer and snow-poorer future, depending on the degree to which ecosystem phenology tracks precipitation changes. Our results suggest that big sagebrush and other similar semiarid ecosystems could decrease in viability or disappear in dry to medium areas and likely increase only in the snow-richest areas, i.e. higher elevations and higher latitudes. Unlike cold locations at high elevations or in the arctic, ecosystems at low elevations respond in a different and complex way to future conditions because of opposing effects of increasing water-limitation and a longer snow-free season. Outcomes of such nonlinear interactions for future ecosystems will likely include changes in plant composition and productivity, dynamics of water balance, and availability of water resources.
Andriuzzi, Walter S; Wall, Diana H
2017-09-01
The importance of herbivore-plant and soil biota-plant interactions in terrestrial ecosystems is amply recognized, but the effects of aboveground herbivores on soil biota remain challenging to predict. To find global patterns in belowground responses to vertebrate herbivores, we performed a meta-analysis of studies that had measured abundance or activity of soil organisms inside and outside field exclosures (areas that excluded herbivores). Responses were often controlled by climate, ecosystem type, and dominant herbivore identity. Soil microfauna and especially root-feeding nematodes were negatively affected by herbivores in subarctic sites. In arid ecosystems, herbivore presence tended to reduce microbial biomass and nitrogen mineralization. Herbivores decreased soil respiration in subarctic ecosystems and increased it in temperate ecosystems, but had no net effect on microbial biomass or nitrogen mineralization in those ecosystems. Responses of soil fauna, microbial biomass, and nitrogen mineralization shifted from neutral to negative with increasing herbivore body size. Responses of animal decomposers tended to switch from negative to positive with increasing precipitation, but also differed among taxa, for instance Oribatida responded negatively to herbivores, whereas Collembola did not. Our findings imply that losses and gains of aboveground herbivores will interact with climate and land use changes, inducing functional shifts in soil communities. To conceptualize the mechanisms behind our findings and link them with previous theoretical frameworks, we propose two complementary approaches to predict soil biological responses to vertebrate herbivores, one focused on an herbivore body size gradient, and the other on a climate severity gradient. Major research gaps were revealed, with tropical biomes, protists, and soil macrofauna being especially overlooked. © 2017 John Wiley & Sons Ltd.
Hotspots and key periods of Greenland climate change during the past six decades
NASA Astrophysics Data System (ADS)
Abermann, J.; Hansen, B. U.; Lund, M.; Wacker, S.; Karami, M.; Cappelen, J.
2016-12-01
We investigate spatial gradients of air temperature and pressure and their trends in Greenland and compare these considering varying time window lengths since 1958. Both latitudinal temperature and pressure gradients are strongest during winter. An overall temperature increase of up to 0.15°C yr-1 has been observed for 1996-2014. The strongest warming happened during February at the West Coast (up to 0.6°C/yr), weaker but significant warming occurred during summer months (up to 0.3°C/yr) both in West and in East Greenland. Pressure trends are mainly negative if at all, but largely not significant. We discuss the relevance of these findings in an upscaling context of an extensive ecosystem monitoring program that was established in 1996 in Northeast Greenland (Zackenberg, www.g-e-m.dk). Improving the understanding of the interaction between the individual components of the ecosystem is its core idea, climate being the main driver. A series of studies highlights trends and variability for biotic and abiotic parameters for this period on a point scale. In order to expand trend assessments to a Greenland-wide scale, local climate trends in Zackenberg have to be put into a larger spatio-temporal context. We find that temperature trends in Northeast Greenland and the area around Zackenberg follow the general pattern but are smaller than the average in Greenland. Compared with other time windows in the past 6 decades, the study period 1996 - 2014 marks an above average warming trend; peak warming however occurred half a decade earlier. We therefore conclude that temperature-driven ecosystem changes observed in Zackenberg mark a lower boundary for environmental changes in Greenland.
NASA Astrophysics Data System (ADS)
Pineda-Martinez, Luis F.; Carbajal, Noel
2009-08-01
A series of numerical experiments were carried out to study the effect of meteorological events such as warm and cold air masses on climatic features and variability of a understudied region with strong topographic gradients in the northeastern part of Mexico. We applied the mesoscale model MM5. We investigated the influence of soil moisture availability in the performance of the model under two representative events for winter and summer. The results showed that a better resolution in land use cover improved the agreement among observed and calculated data. The topography induces atmospheric circulation patterns that determine the spatial distribution of climate and seasonal behavior. The numerical experiments reveal regions favorable to forced convection on the eastern side of the mountain chains Eastern Sierra Madre and Sierra de Alvarez. These processes affect the vertical and horizontal structure of the meteorological variables along the topographic gradient.
Progress with lossy compression of data from the Community Earth System Model
NASA Astrophysics Data System (ADS)
Xu, H.; Baker, A.; Hammerling, D.; Li, S.; Clyne, J.
2017-12-01
Climate models, such as the Community Earth System Model (CESM), generate massive quantities of data, particularly when run at high spatial and temporal resolutions. The burden of storage is further exacerbated by creating large ensembles, generating large numbers of variables, outputting at high frequencies, and duplicating data archives (to protect against disk failures). Applying lossy compression methods to CESM datasets is an attractive means of reducing data storage requirements, but ensuring that the loss of information does not negatively impact science objectives is critical. In particular, test methods are needed to evaluate whether critical features (e.g., extreme values and spatial and temporal gradients) have been preserved and to boost scientists' confidence in the lossy compression process. We will provide an overview on our progress in applying lossy compression to CESM output and describe our unique suite of metric tests that evaluate the impact of information loss. Further, we will describe our processes how to choose an appropriate compression algorithm (and its associated parameters) given the diversity of CESM data (e.g., variables may be constant, smooth, change abruptly, contain missing values, or have large ranges). Traditional compression algorithms, such as those used for images, are not necessarily ideally suited for floating-point climate simulation data, and different methods may have different strengths and be more effective for certain types of variables than others. We will discuss our progress towards our ultimate goal of developing an automated multi-method parallel approach for compression of climate data that both maximizes data reduction and minimizes the impact of data loss on science results.
A paleo-perspective on ocean heat content: Lessons from the Holocene and Common Era
NASA Astrophysics Data System (ADS)
Rosenthal, Yair; Kalansky, Julie; Morley, Audrey; Linsley, Braddock
2017-01-01
The ocean constitutes the largest heat reservoir in the Earth's energy budget and thus exerts a major influence on its climate. Instrumental observations show an increase in ocean heat content (OHC) associated with the increase in greenhouse emissions. Here we review proxy records of intermediate water temperatures from sediment cores and corals in the equatorial Pacific and northeastern Atlantic Oceans, spanning 10,000 years beyond the instrumental record. These records suggests that intermediate waters were 1.5-2 °C warmer during the Holocene Thermal Maximum than in the last century. Intermediate water masses cooled by 0.9 °C from the Medieval Climate Anomaly to the Little Ice Age. These changes are significantly larger than the temperature anomalies documented in the instrumental record. The implied large perturbations in OHC and Earth's energy budget are at odds with very small radiative forcing anomalies throughout the Holocene and Common Era. We suggest that even very small radiative perturbations can change the latitudinal temperature gradient and strongly affect prevailing atmospheric wind systems and hence air-sea heat exchange. These dynamic processes provide an efficient mechanism to amplify small changes in insolation into relatively large changes in OHC. Over long time periods the ocean's interior acts like a capacitor and builds up large (positive and negative) heat anomalies that can mitigate or amplify small radiative perturbations as seen in the Holocene trend and Common Era anomalies, respectively. Evidently the ocean's interior is more sensitive to small external forcings than the global surface ocean because of the high sensitivity of heat exchange in the high-latitudes to climate variations.
NASA Astrophysics Data System (ADS)
Konecky, B. L.; Noone, D.; Mosimanyana, E.; Gondwe, M.
2016-12-01
The Okavango Delta in northern Botswana is one of the world's richest biodiversity hotspots. A UNESCO World Heritage Site, the Delta is known for its unique annual flood pulse, whereby the wetland and its neighboring river systems are inundated with waters that travel nearly 1000 km before reaching this subtropical, semi-arid destination. The livelihoods of northern Botswana's ecosystems and human populations rely on these floods to supplement the short and variable rainy season, which in many years is too minimal to ameliorate regional drought. However, anthropogenic climate change is reducing the amount of water that reaches the delta by increasing evaporation from soils and rivers, and transpiration by vegetation, during its long transit to Botswana. Future changes in rainfall patterns, extreme events, and increased upstream water use could exacerbate this water stress. Unfortunately, it remains difficult to assess the impacts of climate change on the delta because few data exist to constrain its complex climatic and seasonal water cycling regimes. This study presents a novel characterization of the water cycle in and around the Okavango Delta based on a survey of free-flowing surface waters, stagnant pools, precipitation, and groundwater carried out during the 2016 rainy and early-flood season. We use stable isotope and water quality data to assess local moisture sources, transport, evaporation, wetland flushing, and land-atmosphere exchanges, all of which are subject to change under global warming. We find a strong evaporation gradient and a progressive flushing of stagnant swamp waters along the northeastern and northwestern channels of the Delta. The evaporation gradient is more limited in nearby rivers with more limited wetlands. We contrast results with a survey of the Delta performed in the 1970's in order to assess changes over the past 40 years. Since some of these changes may arise from rainfall supply, we also present new analysis of rainfall moisture sources and transport characteristics during 2016's unusually-late wet season, using both in situ and satellite data. Implications are discussed for the large-scale water cycling over the southern African continental interior. These data serve as a baseline for future monitoring under climate change.
Isoscapes of δ18O and δ2H reveal climatic forcings on Alaska and Yukon precipitation
NASA Astrophysics Data System (ADS)
Lachniet, Matthew S.; Lawson, Daniel E.; Stephen, Haroon; Sloat, Alison R.; Patterson, William P.
2016-08-01
Spatially extensive Arctic stable isotope data are sparse, inhibiting the climatic understanding required to interpret paleoclimate proxy records. To fill this need, we constrained the climatic and physiographic controls on δ18O and δD values of stream waters across Alaska and the Yukon to derive interpolated isoscape maps. δ18O is strongly correlated to winter temperature parameters and similarity of the surface water line (δ2H = 8.0 × δ18O + 6.4) to the Global Meteoric Water Line suggests stream waters are a proxy for meteoric precipitation. We observe extreme orographic δ18O decreases and a trans-Alaskan continental gradient of -8.3‰ 1000 km-1. Continental gradients are high in coastal zones and low in the interior. Localized δ18O increases indicate inland air mass penetration via topographic lows. Using observed δ18O/temperature gradients, we show that δ18O decreases in a ˜24 ka permafrost ice wedge relative to the late Holocene indicate mean annual and coldest quarter temperature reductions of 8.9 ± 1.7°C and 17.2 ± 3.2°C, respectively.
Geographic patterns and dynamics of Alaskan climate interpolated from a sparse station record
Fleming, Michael D.; Chapin, F. Stuart; Cramer, W.; Hufford, Gary L.; Serreze, Mark C.
2000-01-01
Data from a sparse network of climate stations in Alaska were interpolated to provide 1-km resolution maps of mean monthly temperature and precipitation-variables that are required at high spatial resolution for input into regional models of ecological processes and resource management. The interpolation model is based on thin-plate smoothing splines, which uses the spatial data along with a digital elevation model to incorporate local topography. The model provides maps that are consistent with regional climatology and with patterns recognized by experienced weather forecasters. The broad patterns of Alaskan climate are well represented and include latitudinal and altitudinal trends in temperature and precipitation and gradients in continentality. Variations within these broad patterns reflect both the weakening and reduction in frequency of low-pressure centres in their eastward movement across southern Alaska during the summer, and the shift of the storm tracks into central and northern Alaska in late summer. Not surprisingly, apparent artifacts of the interpolated climate occur primarily in regions with few or no stations. The interpolation model did not accurately represent low-level winter temperature inversions that occur within large valleys and basins. Along with well-recognized climate patterns, the model captures local topographic effects that would not be depicted using standard interpolation techniques. This suggests that similar procedures could be used to generate high-resolution maps for other high-latitude regions with a sparse density of data.
Regional Climate Variability Under Model Simulations of Solar Geoengineering
NASA Astrophysics Data System (ADS)
Dagon, Katherine; Schrag, Daniel P.
2017-11-01
Solar geoengineering has been shown in modeling studies to successfully mitigate global mean surface temperature changes from greenhouse warming. Changes in land surface hydrology are complicated by the direct effect of carbon dioxide (CO2) on vegetation, which alters the flux of water from the land surface to the atmosphere. Here we investigate changes in boreal summer climate variability under solar geoengineering using multiple ensembles of model simulations. We find that spatially uniform solar geoengineering creates a strong meridional gradient in the Northern Hemisphere temperature response, with less consistent patterns in precipitation, evapotranspiration, and soil moisture. Using regional summertime temperature and precipitation results across 31-member ensembles, we show a decrease in the frequency of heat waves and consecutive dry days under solar geoengineering relative to a high-CO2 world. However in some regions solar geoengineering of this amount does not completely reduce summer heat extremes relative to present day climate. In western Russia and Siberia, an increase in heat waves is connected to a decrease in surface soil moisture that favors persistent high temperatures. Heat waves decrease in the central United States and the Sahel, while the hydrologic response increases terrestrial water storage. Regional changes in soil moisture exhibit trends over time as the model adjusts to solar geoengineering, particularly in Siberia and the Sahel, leading to robust shifts in climate variance. These results suggest potential benefits and complications of large-scale uniform climate intervention schemes.
Food web structure shaped by habitat size and climate across a latitudinal gradient.
Romero, Gustavo Q; Piccoli, Gustavo C O; de Omena, Paula M; Gonçalves-Souza, Thiago
2016-10-01
Habitat size and climate are known to affect the trophic structure and dynamics of communities, but their interactive effects are poorly understood. Organisms from different trophic levels vary in terms of metabolic requirements and heat dissipation. Indeed, larger species such as keystone predators require more stable climatic conditions than their prey. Likewise, habitat size disproportionally affects large-sized predators, which require larger home ranges and are thus restricted to larger habitats. Therefore, food web structure in patchy ecosystems is expected to be shaped by habitat size and climate variations. Here we investigate this prediction using natural aquatic microcosm (bromeliad phytotelmata) food webs composed of litter resources (mainly detritus), detritivores, mesopredators, and top predators (damselflies). We surveyed 240 bromeliads of varying sizes (water retention capacity) across 12 open restingas in SE Brazil spread across a wide range of tropical latitudes (-12.6° to -27.6°, ca. 2,000 km) and climates (Δ mean annual temperature = 5.3°C). We found a strong increase in predator-to-detritivore mass ratio with habitat size, which was representative of a typical inverted trophic pyramid in larger ecosystems. However, this relationship was contingent among the restingas; slopes of linear models were steeper in more stable and favorable climates, leading to inverted trophic pyramids (and top-down control) being more pronounced in environments with more favorable climatic conditions. By contrast, detritivore-resource and mesopredator-detritivore mass ratios were not affected by habitat size or climate variations across latitudes. Our results highlight that the combined effects of habitat size, climate and predator composition are pivotal to understanding the impacts of multiple environmental factors on food web structure and dynamics. © 2016 by the Ecological Society of America.
A continuous latitudinal energy balance model to explore non-uniform climate engineering strategies
NASA Astrophysics Data System (ADS)
Bonetti, F.; McInnes, C. R.
2016-12-01
Current concentrations of atmospheric CO2 exceed measured historical levels in modern times, largely attributed to anthropogenic forcing since the industrial revolution. The required decline in emissions rates has never been achieved leading to recent interest in climate engineering for future risk-mitigation strategies. Climate engineering aims to offset human-driven climate change. It involves techniques developed both to reduce the concentration of CO2 in the atmosphere (Carbon Dioxide Removal (CDR) methods) and to counteract the radiative forcing that it generates (Solar Radiation Management (SRM) methods). In order to investigate effects of SRM technologies for climate engineering, an analytical model describing the main dynamics of the Earth's climate has been developed. The model is a time-dependent Energy Balance Model (EBM) with latitudinal resolution and allows for the evaluation of non-uniform climate engineering strategies. A significant disadvantage of climate engineering techniques involving the management of solar radiation is regional disparities in cooling. This model offers an analytical approach to design multi-objective strategies that counteract climate change on a regional basis: for example, to cool the Artic and restrict undesired impacts at mid-latitudes, or to control the equator-to-pole temperature gradient. Using the Green's function approach the resulting partial differential equation allows for the computation of the surface temperature as a function of time and latitude when a 1% per year increase in the CO2 concentration is considered. After the validation of the model through comparisons with high fidelity numerical models, it will be used to explore strategies for the injection of the aerosol precursors in the stratosphere. In particular, the model involves detailed description of the optical properties of the particles, the wash-out dynamics and the estimation of the radiative cooling they can generate.
NASA Astrophysics Data System (ADS)
Rustic, G. T.; Polissar, P. J.; Ravelo, A. C.; White, S. M.
2017-12-01
The El Niño Southern Oscillation (ENSO) plays a dominant role in Earth's climate variability. Paleoceanographic evidence suggests that ENSO has changed in the past, and these changes have been linked to large-scale climatic shifts. While a close relationship between ENSO evolution and climate boundary conditions has been predicted, testing these predictions remains challenging. These climate boundary conditions, including insolation, the mean surface temperature gradient of the tropical Pacific, global ice volume, and tropical thermocline depth, often co-vary and may work together to suppress or enhance the ocean-atmosphere feedbacks that drive ENSO variability. Furthermore, suitable paleo-archives spanning multiple climate states are sparse. We have aimed to test ENSO response to changing climate boundary conditions by generating new reconstructions of mixed-layer variability from sedimentary archives spanning the last three glacial-interglacial cycles from the Central Tropical Pacific Line Islands, where El Niño is strongly expressed. We analyzed Mg/Ca ratios from individual foraminifera to reconstruct mixed-layer variability at discrete time intervals representing combinations of climatic boundary conditions from the middle Holocene to Marine Isotope Stage (MIS) 8. We observe changes in the mixed-layer temperature variability during MIS 5 and during the previous interglacial (MIS 7) showing significant reductions in ENSO amplitude. Differences in variability during glacial and interglacial intervals are also observed. Additionally, we reconstructed mixed-layer and thermocline conditions using multi-species Mg/Ca and stable isotope measurements to more fully characterize the state of the Central Tropical Pacific during these intervals. These reconstructions provide us with a unique view of Central Tropical Pacific variability and water-column structure at discrete intervals under varying boundary climate conditions with which to assess factors that shape ENSO variability.
NASA Astrophysics Data System (ADS)
Hand, Ralf; Keenlyside, Noel S.; Omrani, Nour-Eddine; Bader, Jürgen; Greatbatch, Richard J.
2018-03-01
Beside its global effects, climate change is manifested in many regionally pronounced features mainly resulting from changes in the oceanic and atmospheric circulation. Here we investigate the influence of the North Atlantic SST on shaping the winter-time response to global warming. Our results are based on a long-term climate projection with the Max Planck Institute Earth System Model (MPI-ESM) to investigate the influence of North Atlantic sea surface temperature pattern changes on shaping the atmospheric climate change signal. In sensitivity experiments with the model's atmospheric component we decompose the response into components controlled by the local SST structure and components controlled by global/remote changes. MPI-ESM simulates a global warming response in SST similar to other climate models: there is a warming minimum—or "warming hole"—in the subpolar North Atlantic, and the sharp SST gradients associated with the Gulf Stream and the North Atlantic Current shift northward by a few a degrees. Over the warming hole, global warming causes a relatively weak increase in rainfall. Beyond this, our experiments show more localized effects, likely resulting from future SST gradient changes in the North Atlantic. This includes a significant precipitation decrease to the south of the Gulf Stream despite increased underlying SSTs. Since this region is characterised by a strong band of precipitation in the current climate, this is contrary to the usual case that wet regions become wetter and dry regions become drier in a warmer climate. A moisture budget analysis identifies a complex interplay of various processes in the region of modified SST gradients: reduced surface winds cause a decrease in evaporation; and thermodynamic, modified atmospheric eddy transports, and coastal processes cause a change in the moisture convergence. The changes in the the North Atlantic storm track are mainly controlled by the non-regional changes in the forcing. The impact of the local SST pattern changes on regions outside the North Atlantic is small in our setup.
Jiang, Yuan; Zhang, Wentao; Wang, Mingchang; Kang, Muyi; Dong, Manyu
2014-01-01
North-Central China is a region in which the air temperature has clearly increased for several decades. Picea meyeri and Larix principis-rupprechtii are the most dominant co-occurring tree species within the cold coniferous forest belt ranging vertically from 1800 m to 2800 m a.s.l. in this region. Based on a tree-ring analysis of 292 increment cores sampled from 146 trees at different elevations, this study aimed to examine if the radial growth of the two species in response to climate is similar, whether the responses are consistent along altitudinal gradients and which species might be favored in the future driven by the changing climate. The results indicated the following: (1) The two species grew in different rhythms at low and high elevation respectively; (2) Both species displayed inconsistent relationships between radial growth and climate data along altitudinal gradients. The correlation between radial growth and the monthly mean temperature in the spring or summer changed from negative at low elevation into positive at high elevation, whereas those between the radial growth and the total monthly precipitation displayed a change from positive into negative along the elevation gradient. These indicate the different influences of the horizontal climate and vertical mountainous climate on the radial growth of the two species; (3) The species-dependent different response to climate in radial growth appeared mainly in autumn of the previous year. The radial growth of L. principis-rupprechtii displayed negative responses both to temperature and to precipitation in the previous September, October or November, which was not observed in the radial growth of P. meyeri. (4) The radial growth of both species will tend to be increased at high elevation and limited at low elevation, and L. principis-rupprechtii might be more favored in the future, if the temperature keeps rising.
The velocity of climate change.
Loarie, Scott R; Duffy, Philip B; Hamilton, Healy; Asner, Gregory P; Field, Christopher B; Ackerly, David D
2009-12-24
The ranges of plants and animals are moving in response to recent changes in climate. As temperatures rise, ecosystems with 'nowhere to go', such as mountains, are considered to be more threatened. However, species survival may depend as much on keeping pace with moving climates as the climate's ultimate persistence. Here we present a new index of the velocity of temperature change (km yr(-1)), derived from spatial gradients ( degrees C km(-1)) and multimodel ensemble forecasts of rates of temperature increase ( degrees C yr(-1)) in the twenty-first century. This index represents the instantaneous local velocity along Earth's surface needed to maintain constant temperatures, and has a global mean of 0.42 km yr(-1) (A1B emission scenario). Owing to topographic effects, the velocity of temperature change is lowest in mountainous biomes such as tropical and subtropical coniferous forests (0.08 km yr(-1)), temperate coniferous forest, and montane grasslands. Velocities are highest in flooded grasslands (1.26 km yr(-1)), mangroves and deserts. High velocities suggest that the climates of only 8% of global protected areas have residence times exceeding 100 years. Small protected areas exacerbate the problem in Mediterranean-type and temperate coniferous forest biomes. Large protected areas may mitigate the problem in desert biomes. These results indicate management strategies for minimizing biodiversity loss from climate change. Montane landscapes may effectively shelter many species into the next century. Elsewhere, reduced emissions, a much expanded network of protected areas, or efforts to increase species movement may be necessary.
Averaged 30 year climate change projections mask opportunities for species establishment
Serra-Diaz, Josep M.; Franklin, Janet; Sweet, Lynn C.; McCullough, Ian M.; Syphard, Alexandra D.; Regan, Helen M.; Flint, Lorraine E.; Flint, Alan L.; Dingman, John; Moritz, Max A.; Redmond, Kelly T.; Hannah, Lee; Davis, Frank W.
2016-01-01
Survival of early life stages is key for population expansion into new locations and for persistence of current populations (Grubb 1977, Harper 1977). Relative to adults, these early life stages are very sensitive to climate fl uctuations (Ropert-Coudert et al. 2015), which often drive episodic or ‘event-limited’ regeneration (e.g. pulses) in long-lived plant species (Jackson et al. 2009). Th us, it is diffi cult to mechanistically associate 30-yr climate norms to dynamic processes involved in species range shifts (e.g. seedling survival). What are the consequences of temporal aggregation for estimating areas of potential establishment? We modeled seedling survival for three widespread tree species in California, USA ( Quercus douglasii, Q. kelloggii , Pinus sabiniana ) by coupling a large-scale, multi-year common garden experiment to high-resolution downscaled grids of climatic water defi cit and air temperature (Flint and Flint 2012, Supplementary material Appendix 1). We projected seedling survival for nine climate change projections in two mountain landscapes spanning wide elevation and moisture gradients. We compared areas with windows of opportunity for seedling survival – defi ned as three consecutive years of seedling survival in our species, a period selected based on studies of tree niche ontogeny (Supplementary material Appendix 1) – to areas of 30-yr averaged estimates of seedling survival. We found that temporal aggregation greatly underestimated the potential for species establishment (e.g. seedling survival) under climate change scenarios.
NASA Astrophysics Data System (ADS)
Wu, J.; Serbin, S.; Xu, X.; Guan, K.; Albert, L.; Hayek, M.; Restrepo-Coupe, N.; Lopes, A. P.; Wiedemann, K. T.; Christoffersen, B. O.; Meng, R.; De Araujo, A. C.; Oliveira Junior, R. C.; Camargo, P. B. D.; Silva, R. D.; Nelson, B. W.; Huete, A. R.; Rogers, A.; Saleska, S. R.
2016-12-01
Tropical evergreen forest photosynthetic metabolism is an important driver of large-scale carbon, water, and energy cycles, generating various climate feedbacks. However, considerable uncertainties remain regarding how best to represent evergreen forest photosynthesis in current terrestrial biosphere models (TBMs), especially its sensitivity to climatic vs. biotic variation. Here, we develop a new approach to partition climatic and biotic controls on tropical forest photosynthesis from hourly to inter-annual timescales. Our results show that climatic factors dominate photosynthesis dynamics at shorter-time scale (i.e. hourly), while biotic factors dominate longer-timescale (i.e. monthly and longer) photosynthetic dynamics. Focusing on seasonal timescales, we combine camera and ecosystem carbon flux observations of forests across a rainfall gradient in Amazonia to show that high dry season leaf turnover shifts canopy composition towards younger more efficient leaves. This seasonal variation in leaf quality (per-area leaf photosynthetic capacity) thus can explain the high photosynthetic seasonality observed in the tropics. Finally, we evaluated the performance of models with different phenological schemes (i.e. leaf quantity versus leaf quality; with and without leaf phenological variation alone the vertical canopy profile). We found that models which represented the phenology of leaf quality and its within-canopy variation performed best in simulating photosynthetic seasonality in tropical evergreen forests. This work highlights the importance of incorporating improved understanding of climatic and biotic controls in next generation TBMs to project future carbon and water cycles in the tropics.
First gas-phase metallicity gradients of 0.1 ≲ z ≲ 0.8 galaxies with MUSE
NASA Astrophysics Data System (ADS)
Carton, David; Brinchmann, Jarle; Contini, Thierry; Epinat, Benoît; Finley, Hayley; Richard, Johan; Patrício, Vera; Schaye, Joop; Nanayakkara, Themiya; Weilbacher, Peter M.; Wisotzki, Lutz
2018-05-01
Galaxies at low-redshift typically possess negative gas-phase metallicity gradients (centres more metal-rich than their outskirts). Whereas, it is not uncommon to observe positive metallicity gradients in higher-redshift galaxies (z ≳ 0.6). Bridging these epochs, we present gas-phase metallicity gradients of 84 star-forming galaxies between 0.08 < z < 0.84. Using the galaxies with reliably determined metallicity gradients, we measure the median metallicity gradient to be negative (-0.039^{+0.007}_{-0.009} dex/kpc). Underlying this, however, is significant scatter: (8 ± 3)% [7] of galaxies have significantly positive metallicity gradients, (38 ± 5)% [32] have significantly negative gradients, (31 ± 5)% [26] have gradients consistent with being flat. (The remaining (23 ± 5)% [19] have unreliable gradient estimates.) We notice a slight trend for a more negative metallicity gradient with both increasing stellar mass and increasing star formation rate (SFR). However, given the potential redshift and size selection effects, we do not consider these trends to be significant. Indeed, once we normalize the SFR relative to that of the main sequence, we do not observe any trend between the metallicity gradient and the normalized SFR. This is contrary to recent studies of galaxies at similar and higher redshifts. We do, however, identify a novel trend between the metallicity gradient of a galaxy and its size. Small galaxies (rd < 3 kpc) present a large spread in observed metallicity gradients (both negative and positive gradients). In contrast, we find no large galaxies (rd > 3 kpc) with positive metallicity gradients, and overall there is less scatter in the metallicity gradient amongst the large galaxies. These large (well-evolved) galaxies may be analogues of present-day galaxies, which also show a common negative metallicity gradient.
Quero, José L; Maestre, Fernando T; Ochoa, Victoria; García-Gómez, Miguel; Delgado-Baquerizo, Manuel
2013-11-01
One of the most important changes taking place in drylands worldwide is the increase of the cover and dominance of shrubs in areas formerly devoid of them (shrub encroachment). A large body of research has evaluated the causes and consequences of shrub encroachment for both ecosystem structure and functioning. However, there are virtually no studies evaluating how shrub encroachment affects the ability of ecosystems to maintain multiple functions and services simultaneously (multifunctionality). We aimed to do so by gathering data from ten ecosystem functions linked to the maintenance of primary production and nutrient cycling and storage (organic C, activity of β-glucosidase, pentoses, hexoses, total N, total available N, amino acids, proteins, available inorganic P and phosphatase activity), and summarizing them in a multifunctionality index ( M ). We assessed how climate, species richness, anthropic factors (distance to the nearest town, sandy and asphalted road, and human population in the nearest town at several historical periods) and encroachment by sprouting shrubs impacted both the functions in isolation and M along a regional (ca. 350 km) gradient in Mediterranean grasslands and shrublands dominated by a non-sprouting shrub. Values of M were higher in those grasslands and shrublands containing sprouting shrubs (43% and 62%, respectively). A similar response was found when analyzing the different functions in isolation, as encroachment by sprouting shrubs increased functions by 2%-80% compared to unencroached areas. Encroachment was the main driver of changes in M along the regional gradient evaluated, followed by anthropic factors and species richness. Climate had little effects on M in comparison to the other factors studied. Similar responses were observed when evaluating the functions in isolation. Overall, our results showed that M was higher at sites with higher sprouting shrub cover, longer distance to roads and higher perennial plant species richness. Our study is the first documenting that ecosystem multifunctionality in shrublands is enhanced by encroaching shrubs differing in size and leaf attributes. Our findings reinforce the idea that encroachment effects on ecosystem functioning cannot be generalized, and that are largely dependent on the traits of the encroaching shrub relative to those of the species being replaced.
Equatorward dispersion of the Sarychev volcanic plume and the relation to the Asian summer monsoon
NASA Astrophysics Data System (ADS)
Wu, Xue; Griessbach, Sabine; Hoffmann, Lars
2017-04-01
Sulfur dioxide emissions and subsequent sulfate aerosols from strong volcanic eruptions have large impact on global climate. Although most of previous studies attribute the global influence to volcanic eruptions in the tropics, high-latitude volcanic eruptions are also an important cause for global climate variations. In fact, the potential climate impact of volcanic also largely depends on the season when eruptions occur, the erupted plume height and the surrounding meteorological conditions. This work focuses on the eruption of a high-latitude volcano Sarychev, and the role of Asian summer monsoon (ASM) during the transport and dispersion of the erupted plumes. First, the sulfur dioxide emission rate and height of emission of the Sarychev eruption in June 2009 are modelled using a Lagrangian particle dispersion model named Massive-Parallel Trajectory Calculations (MPTRAC), together with sulfur dioxide observations of the Atmospheric Infrared Sounder (AIRS/Aqua) and a backward trajectory approach. Then, the transport and dispersion of the plumes are modelled with MPTRAC and validated with sulfur dioxide observations from AIRS and aerosol observations from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). The modelled trajectories and the MIPAS data both show the plumes are transported towards the tropics from the southeast edge of the ASM (in the vertical range of 340-400K) controlled by the clockwise winds of ASM, and from above the ASM (above 400K) in form of in-mixing process. Especially, in the vertical range around 340-400K, a transport barrier based on potential vorticity (PV) gradients separates the 'aerosol hole' inside of the ASM circulation and the aerosol-rich surrounding area, which shows the PV gradients based barrier may be more practical than the barrier based on the geopotential height. With help of ASM circulation, the aerosol transported to the tropics and stayed in the tropical lower stratosphere for about eight months, which were the main aerosol sources during that time. This enables the Sarychev eruption to have potential impact on global radiative budget similar to a tropical volcanic eruption.
Modelling the interactions between vegetation and climate from the Cretaceous to the Eocene
NASA Astrophysics Data System (ADS)
Loptson, Claire; Lunt, Dan; Francis, Jane
2013-04-01
The climates during the Cretaceous (~144 to 66 Ma) and the early Eocene (~56 to 48 Ma) were much warmer than the present day. Atmospheric CO2 levels for these past climates have a large uncertainty associated with them, but were possibly as high as 2000 to 3000 ppm for the early Eocene (Beerling and Royer, 2011; Lowenstein and Demicco, 2006) and maximum values are thought to range from 800 to 1800 ppm during the Cretaceous (Royer et al., 2012). Current modelling efforts have had great difficulty in replicating the shallow latitudinal temperature gradient indicated by proxy data for these time periods (e.g. Heinemann et al., 2009; Winguth et al., 2010; Shellito et al., 2009). Mechanisms that can result in such a low temperature gradient have not been found (Winguth et al., 2010; Beerling et al., 2011; Sloan and Morrill, 1998), but a contributing factor could be that not all climate feedbacks are included in these models. Vegetation feedbacks have been shown to be especially important (e.g. Otto-Bliesner and Upchurch, 1997; Bonan, 2008) so by including a more accurate representation of vegetation in the climate model, the model-data discrepancies may be reduced. A fully coupled atmosphere-ocean GCM, HadCM3L, coupled to a dynamic global vegetation model (TRIFFID), was used to simulate the climate and the predicted vegetation distributions for and the early Eocene and 12 different time slices representing different ages throughout the Cretaceous at 4x pre-industrial CO2. The only difference in the way these simulations were set up are different boundary conditions that are specific to that time period, e.g. different solar constants and paleogeographies. This allows a direct comparison between the time slices. We present the changes in climate, and therefore vegetation, during the Cretaceous due to changes in these boundary conditions alone, with a focus on Antarctica. Additional Eocene simulations were also carried out with a) fixed globally-uniform vegetation and b) a prescribed vegetation distribution as predicted by the TRIFFID model, but with TRIFFID turned off i.e. the vegetation distribution was fixed, not dynamic. All three Eocene simulations were also run for 2x pre-industrial CO2, allowing the effects of changing CO2 on climate and vegetation to be analysed. We present the effects of different vegetation representations included in a GCM on the early Eocene climate. In addition, climate sensitivity and sensitivity of vegetation to atmospheric CO2 concentration during the early Eocene are investigated. Modelled vegetation types are compared to fossil data to evaluate the performance of TRIFFID for these paleoclimate simulations.
NASA Astrophysics Data System (ADS)
Robinson, C. M.; Saatchi, S. S.; Clark, D.; Fricker, G. A.; Wolf, J.; Gillespie, T. W.; Rovzar, C. M.; Andelman, S.
2012-12-01
This research sought to understand how alpha and beta diversity of plants vary and relate to the three-dimensional vegetation structure and aboveground biomass along environmental gradients in the tropical montane forests of Braulio Carrillo National Park in Costa Rica. There is growing evidence that ecosystem structure plays an important role in defining patterns of species diversity and along with abiotic factors (climate and edaphic) control the phenotypic and functional variations across landscapes. It is well documented that strong subdivisions at local and regional scales are found mainly on geologic or climate gradients. These general determinants of biodiversity are best demonstrated in regions with natural gradients such as tropical montane forests. Altitudinal gradients provide a landscape scale changes through variations in topography, climate, and edaphic conditions on which we tested several theoretical and biological hypotheses regarding drivers of biodiversity. The study was performed by using forest inventory and botanical data from nine 1-ha plots ranging from 100 m to 2800 m above sea level and remote sensing data from airborne lidar and radar sensors to quantify variations in forest structure. In this study we report on the effectiveness of relating patterns of tree taxonomic alpha diversity to three-dimensional structure of a tropical montane forest using lidar and radar observations of forest structure and biomass. We assessed alpha and beta diversity at the species, genus, and family levels utilizing datasets provided by the Terrestrial Ecology Assessment and Monitoring (TEAM) Network. Through the comparison to active remote sensing imagery, our results show that there is a strong relationship between forest 3D-structure, and alpha and beta diversity controlled by variations in abiotic factors along the altitudinal gradient. Using spatial analysis with the aid of remote sensing data, we find distinct patterns along the environmental gradients defining species turnover and changes in functional diversity. The study will provide novel approaches to use detailed spatial information from remote sensing data to study relations between functional and taxonomic dimensions of diversity.
NASA Astrophysics Data System (ADS)
Lewis, G.; Osterberg, E. C.; Hawley, R. L.; Marshall, H. P.; Birkel, S. D.; Meehan, T. G.; Graeter, K.; Overly, T. B.; McCarthy, F.
2017-12-01
The mass balance of the Greenland Ice Sheet (GrIS) in a warming climate is of critical interest to scientists and the general public in the context of future sea-level rise. Increased melting in the GrIS percolation zone over the past several decades has led to increased mass loss at lower elevations due to recent warming. Uncertainties in mass balance are especially large in regions with sparse and/or outdated in situ measurements. This study is the first to calculate in situ accumulation over a large region of western Greenland since the Program for Arctic Regional Climate Assessment campaign during the 1990s. Here we analyze 5000 km of 400 MHz ground penetrating radar data and sixteen 25-33 m-long firn cores in the western GrIS percolation zone to determine snow accumulation over the past 50 years. The cores and radar data were collected as part of the 2016-2017 Greenland Traverse for Accumulation and Climate Studies (GreenTrACS). With the cores and radar profiles we capture spatial accumulation gradients between 1850-2500 m a.s.l and up to Summit Station. We calculate accumulation rates and use them to validate five widely used regional climate models and to compare with IceBridge snow and accumulation radars. Our results indicate that while the models capture most regional spatial climate patterns, they lack the small-scale spatial variability captured by in situ measurements. Additionally, we evaluate temporal trends in accumulation at ice core locations and throughout the traverse. Finally, we use empirical orthogonal function and correlation analyses to investigate the principal drivers of radar-derived accumulation rates across the western GrIS percolation zone, including major North Atlantic climate modes such as the North Atlantic Oscillation, Atlantic Multidecadal Oscillation, and Greenland Blocking Index.
Kerhoulas, Lucy P; Kane, Jeffrey M
2012-01-01
Most dendrochronological studies focus on cores sampled from standard positions (main stem, breast height), yet vertical gradients in hydraulic constraints and priorities for carbon allocation may contribute to different growth sensitivities with position. Using cores taken from five positions (coarse roots, breast height, base of live crown, mid-crown branch and treetop), we investigated how radial growth sensitivity to climate over the period of 1895-2008 varies by position within 36 large ponderosa pines (Pinus ponderosa Dougl.) in northern Arizona. The climate parameters investigated were Palmer Drought Severity Index, water year and monsoon precipitation, maximum annual temperature, minimum annual temperature and average annual temperature. For each study tree, we generated Pearson correlation coefficients between ring width indices from each position and six climate parameters. We also investigated whether the number of missing rings differed among positions and bole heights. We found that tree density did not significantly influence climatic sensitivity to any of the climate parameters investigated at any of the sample positions. Results from three types of analyses suggest that climatic sensitivity of tree growth varied with position height: (i) correlations of radial growth and climate variables consistently increased with height; (ii) model strength based on Akaike's information criterion increased with height, where treetop growth consistently had the highest sensitivity and coarse roots the lowest sensitivity to each climatic parameter; and (iii) the correlation between bole ring width indices decreased with distance between positions. We speculate that increased sensitivity to climate at higher positions is related to hydraulic limitation because higher positions experience greater xylem tensions due to gravitational effects that render these positions more sensitive to climatic stresses. The low sensitivity of root growth to all climatic variables measured suggests that tree carbon allocation to coarse roots is independent of annual climate variability. The greater number of missing rings in branches highlights the fact that canopy development is a low priority for carbon allocation during poor growing conditions.
Assessing the Dynamic Effects of Climate on Individual Tree Growth Across Time and Space
NASA Astrophysics Data System (ADS)
Itter, M.; Finley, A. O.; D'Amato, A. W.; Foster, J. R.; Bradford, J. B.
2015-12-01
The relationship between climate variability and an ecosystem process, such as forest growth, is frequently not fixed over time, but changes due to complex interactions between unobserved ecological factors and the process of interest. Climate data and forecasts are frequently spatially and temporally misaligned with ecological observations making inference regarding the effects of climate on ecosystem processes particularly challenging. Here we develop a Bayesian dynamic hierarchical model for annual tree growth increment that allows the effects of climate to evolve over time, applies climate data at a spatial-temporal scale consistent with observations, and controls for individual-level variability commonly encountered in ecological datasets. The model is applied to individual tree data from northern Minnesota using a modified Thornthwaite-type water balance model to transform PRISM temperature and precipitation estimates to physiologically relevant values of actual and potential evapotranspiration (AET, PET), and climatic water deficit. Model results indicate that mean tree growth is most sensitive to AET during the growing season and PET and minimum temperature in the spring prior to growth. The effects of these variables on tree growth, however, are not stationary with significant effects observed in only a subset of years during the 111-year study period. Importantly, significant effects of climate do not result from anomalous climate observations, but follow from large growth deviations unexplained by tree age and size, and time since forest disturbance. Results differ markedly from alternative models that assume the effects of climate are stationary over time or apply climate estimates at the individual scale. Forecasts of future tree growth as a function of climate follow directly from the dynamic hierarchical model allowing for assessment of forest change. Current work is focused on extending the model framework to include regional climate and ecosystem effects for application to a larger tree growth dataset spanning a latitudinal gradient within the US from Maine to Florida.
Huang, Jian-Guo; Bergeron, Yves; Berninger, Frank; Zhai, Lihong; Tardif, Jacques C.; Denneler, Bernhard
2013-01-01
Immediate phenotypic variation and the lagged effect of evolutionary adaptation to climate change appear to be two key processes in tree responses to climate warming. This study examines these components in two types of growth models for predicting the 2010–2099 diameter growth change of four major boreal species Betula papyrifera, Pinus banksiana, Picea mariana, and Populus tremuloides along a broad latitudinal gradient in eastern Canada under future climate projections. Climate-growth response models for 34 stands over nine latitudes were calibrated and cross-validated. An adaptive response model (A-model), in which the climate-growth relationship varies over time, and a fixed response model (F-model), in which the relationship is constant over time, were constructed to predict future growth. For the former, we examined how future growth of stands in northern latitudes could be forecasted using growth-climate equations derived from stands currently growing in southern latitudes assuming that current climate in southern locations provide an analogue for future conditions in the north. For the latter, we tested if future growth of stands would be maximally predicted using the growth-climate equation obtained from the given local stand assuming a lagged response to climate due to genetic constraints. Both models predicted a large growth increase in northern stands due to more benign temperatures, whereas there was a minimal growth change in southern stands due to potentially warm-temperature induced drought-stress. The A-model demonstrates a changing environment whereas the F-model highlights a constant growth response to future warming. As time elapses we can predict a gradual transition between a response to climate associated with the current conditions (F-model) to a more adapted response to future climate (A-model). Our modeling approach provides a template to predict tree growth response to climate warming at mid-high latitudes of the Northern Hemisphere. PMID:23468879
Huang, Jian-Guo; Bergeron, Yves; Berninger, Frank; Zhai, Lihong; Tardif, Jacques C; Denneler, Bernhard
2013-01-01
Immediate phenotypic variation and the lagged effect of evolutionary adaptation to climate change appear to be two key processes in tree responses to climate warming. This study examines these components in two types of growth models for predicting the 2010-2099 diameter growth change of four major boreal species Betula papyrifera, Pinus banksiana, Picea mariana, and Populus tremuloides along a broad latitudinal gradient in eastern Canada under future climate projections. Climate-growth response models for 34 stands over nine latitudes were calibrated and cross-validated. An adaptive response model (A-model), in which the climate-growth relationship varies over time, and a fixed response model (F-model), in which the relationship is constant over time, were constructed to predict future growth. For the former, we examined how future growth of stands in northern latitudes could be forecasted using growth-climate equations derived from stands currently growing in southern latitudes assuming that current climate in southern locations provide an analogue for future conditions in the north. For the latter, we tested if future growth of stands would be maximally predicted using the growth-climate equation obtained from the given local stand assuming a lagged response to climate due to genetic constraints. Both models predicted a large growth increase in northern stands due to more benign temperatures, whereas there was a minimal growth change in southern stands due to potentially warm-temperature induced drought-stress. The A-model demonstrates a changing environment whereas the F-model highlights a constant growth response to future warming. As time elapses we can predict a gradual transition between a response to climate associated with the current conditions (F-model) to a more adapted response to future climate (A-model). Our modeling approach provides a template to predict tree growth response to climate warming at mid-high latitudes of the Northern Hemisphere.
Dudaniec, Rachael Y; Yong, Chuan Ji; Lancaster, Lesley T; Svensson, Erik I; Hansson, Bengt
2018-06-01
Insect distributions are shifting rapidly in response to climate change and are undergoing rapid evolutionary change. We investigate the molecular signatures underlying local adaptation in the range-expanding damselfly, Ischnura elegans. Using a landscape genomic approach combined with generalized dissimilarity modelling (GDM), we detect selection signatures on loci via allelic frequency change along environmental gradients. We analyse 13,612 single nucleotide polymorphisms (SNPs), derived from restriction site-associated DNA sequencing (RADseq), in 426 individuals from 25 sites spanning the I. elegans distribution in Sweden, including its expanding northern range edge. Environmental association analysis (EAA) and the magnitude of allele frequency change along the range expansion gradient revealed significant signatures of selection in relation to high maximum summer temperature, high mean annual precipitation and low wind speeds at the range edge. SNP annotations with significant signatures of selection revealed gene functions associated with ongoing range expansion, including heat shock proteins (HSP40 and HSP70), ion transport (V-ATPase) and visual processes (long-wavelength-sensitive opsin), which have implications for thermal stress response, salinity tolerance and mate discrimination, respectively. We also identified environmental thresholds where climate-mediated selection is likely to be strong, and indicate that I. elegans is rapidly adapting to the climatic environment during its ongoing range expansion. Our findings empirically validate an integrative approach for detecting spatially explicit signatures of local adaptation along environmental gradients. © 2018 John Wiley & Sons Ltd.
Ectotherm thermal stress and specialization across altitude and latitude.
Buckley, Lauren B; Miller, Ethan F; Kingsolver, Joel G
2013-10-01
Gradients of air temperature, radiation, and other climatic factors change systematically but differently with altitude and latitude. We explore how these factors combine to produce altitudinal and latitudinal patterns of body temperature, thermal stress, and seasonal overlap that differ markedly from patterns based solely on air temperature. We use biophysical models to estimate body temperature as a function of an organism's phenotype and environmental conditions (air and surface temperatures and radiation). Using grasshoppers as a case study, we compare mean body temperatures and the incidence of thermal extremes along altitudinal gradients both under past and current climates. Organisms at high elevation can experience frequent thermal stress despite generally cooler air temperatures due to high levels of solar radiation. Incidences of thermal stress have increased more rapidly than have increases in mean conditions due to recent climate change. Increases in air temperature have coincided with shifts in cloudiness and solar radiation, which can exacerbate shifts in body temperature. We compare altitudinal thermal gradients and their seasonality between tropical and temperate mountains to ask whether mountain passes pose a greater physiological barrier in the tropics (Janzen's hypothesis). We find that considering body temperature rather than air temperature generally increases the amount of overlap in thermal conditions along gradients in elevation and thus decreases the physiological barrier posed by tropical mountains. Our analysis highlights the limitations of predicting thermal stress based solely on air temperatures, and the importance of considering how phenotypes influence body temperatures.
Regional-scale carbon and greenhouse gas dynamics of organic matter amendments on grassland soils
NASA Astrophysics Data System (ADS)
Mayer, A.; Silver, W. L.
2017-12-01
While progress is being made toward emissions reductions, achieving the international warming target of no more than 2 °C by 2100 will require active removal of carbon dioxide from the atmosphere. This research explores the potential for grassland ecosystems to sequester soil carbon (C) and mitigate climate change over time. We parameterized a site-level biogeochemical model (DayCent) to predict the effect of compost applications on grassland net primary productivity, greenhouse gas emissions, and soil C storage and loss. We compare the results of the DayCent model from seven grassland regions across a broad climate gradient in CA. We also modeled the impact of climate change under a high emissions scenario (RCP 8.5) and reduced emissions scenario (RCP 4.5). Model results show that a single application of compost leads to a large net increase in soil C over several decades across all sites. Maximum soil C sequestration relative to control simulations occurred approximately 15 years after a ¼ inch compost was applied to the land, resulting in a maximum net C drawdown of approximately 6.6 Mg C/ha (Mendocino) by 2030 and a continued climate benefit from enhanced C storage through the end of the century. Compost application resulted in enhanced soil C in both climate scenarios, but the reduced emissions climate scenario resulted in greater net C storage than the high emissions scenario by 2100. This points to a virtuous cycle of simultaneous emissions reductions leading to enhanced climate change mitigation potential from land management strategies.
Heim, Nicole; Fisher, Jason T; Clevenger, Anthony; Paczkowski, John; Volpe, John
2017-11-01
Contemporary landscapes are subject to a multitude of human-derived stressors. Effects of such stressors are increasingly realized by population declines and large-scale extirpation of taxa worldwide. Most notably, cumulative effects of climate and landscape change can limit species' local adaptation and dispersal capabilities, thereby reducing realized niche space and range extent. Resolving the cumulative effects of multiple stressors on species persistence is a pressing challenge in ecology, especially for declining species. For example, wolverines ( Gulo gulo L.) persist on only 40% of their historic North American range. While climate change has been shown to be a mechanism of range retractions, anthropogenic landscape disturbance has been recently implicated. We hypothesized these two interact to effect declines. We surveyed wolverine occurrence using camera trapping and genetic tagging at 104 sites at the wolverine range edge, spanning a 15,000 km 2 gradient of climate, topographic, anthropogenic, and biotic variables. We used occupancy and generalized linear models to disentangle the factors explaining wolverine distribution. Persistent spring snow pack-expected to decrease with climate change-was a significant predictor, but so was anthropogenic landscape change. Canid mesocarnivores, which we hypothesize are competitors supported by anthropogenic landscape change, had comparatively weaker effect. Wolverine population declines and range shifts likely result from climate change and landscape change operating in tandem. We contend that similar results are likely for many species and that research that simultaneously examines climate change, landscape change, and the biotic landscape is warranted. Ecology research and species conservation plans that address these interactions are more likely to meet their objectives.
Functional Tradeoffs Underpin Salinity-Driven Divergence in Microbial Community Composition
Yooseph, Shibu; Ininbergs, Karolina; Goll, Johannes; Asplund-Samuelsson, Johannes; McCrow, John P.; Celepli, Narin; Allen, Lisa Zeigler; Ekman, Martin; Lucas, Andrew J.; Hagström, Åke; Thiagarajan, Mathangi; Brindefalk, Björn; Richter, Alexander R.; Andersson, Anders F.; Tenney, Aaron; Lundin, Daniel; Tovchigrechko, Andrey; Nylander, Johan A. A.; Brami, Daniel; Badger, Jonathan H.; Allen, Andrew E.; Rusch, Douglas B.; Hoffman, Jeff; Norrby, Erling; Friedman, Robert; Pinhassi, Jarone; Venter, J. Craig; Bergman, Birgitta
2014-01-01
Bacterial community composition and functional potential change subtly across gradients in the surface ocean. In contrast, while there are significant phylogenetic divergences between communities from freshwater and marine habitats, the underlying mechanisms to this phylogenetic structuring yet remain unknown. We hypothesized that the functional potential of natural bacterial communities is linked to this striking divide between microbiomes. To test this hypothesis, metagenomic sequencing of microbial communities along a 1,800 km transect in the Baltic Sea area, encompassing a continuous natural salinity gradient from limnic to fully marine conditions, was explored. Multivariate statistical analyses showed that salinity is the main determinant of dramatic changes in microbial community composition, but also of large scale changes in core metabolic functions of bacteria. Strikingly, genetically and metabolically different pathways for key metabolic processes, such as respiration, biosynthesis of quinones and isoprenoids, glycolysis and osmolyte transport, were differentially abundant at high and low salinities. These shifts in functional capacities were observed at multiple taxonomic levels and within dominant bacterial phyla, while bacteria, such as SAR11, were able to adapt to the entire salinity gradient. We propose that the large differences in central metabolism required at high and low salinities dictate the striking divide between freshwater and marine microbiomes, and that the ability to inhabit different salinity regimes evolved early during bacterial phylogenetic differentiation. These findings significantly advance our understanding of microbial distributions and stress the need to incorporate salinity in future climate change models that predict increased levels of precipitation and a reduction in salinity. PMID:24586863
NASA Astrophysics Data System (ADS)
Fox, D. L.; Rose, P.
2010-12-01
We use the middle Paleocene (ca. 63-58) mammalian fossil record of western North America to examine the latitudinal gradients in both species richness and body size of mammals during their evolutionary radiation following the Cretaceous-Paleogene mass extinction. Decreasing species richness with latitude is a biogeographic pattern common to most clades today, including mammals, and is linked to climatic gradients; an inverse relationship between body size and environmental temperature (Bergmann’s rule) is well-known both within and among species of living endothermic vertebrates, including diverse clades of mammals. Despite the frequency among mammals of these patterns today, their long-term histories in the fossil record is not well documented. We compiled mammalian taxonomic occurrence data from published literature, online museum collection databases, and the Paleobiology Database for roughly 160 Torrejonian (To, ca. 63-60 Ma) and Tiffanian (Ti, ca. 60-58 Ma) North American Land Mammal Age fossil localities in western North America from Texas to Alberta. These localities were binned into nine geographic regions based on paleolatitude, and the centroids of the regions span ca. 28° of latitude. For the faunas from these regions, we compiled body size data from the literature for 170 Paleocene (Torrejonian and Tiffanian) mammal species, using lower first molar area (m1 LxW) as a proxy for body mass. The phosphate oxygen isotope composition of teeth from species of a single clade of herbivorous mammals (Phenacodontidae) indicates that mid-Paleocene latitudinal climate gradients were broadly similar to modern gradients in the region, so we treat paleolatitude as a proxy for temperature. Slopes of separate least squares linear regressions of rarefied To and Ti species richness on paleolatitude are not significantly different from zero, and the regressions explain only a small fraction of the variances in richness. For all species, m1 area has a statistically significant negative relationship with paleolatitude. For both analyses, results are similar at the genus levels. In eight species that occur in four or more regions, none demonstrate a statistically significant increase in m1 area with latitude. Thus, despite climatic gradients in the mid-Paleocene that were similar to modern gradients, mammals in the region during the Paleocene appear to violate two essentially canonical biogeographic patterns seen in modern mammals and diverse other organisms, potentially ruling out climate as a long-term control on these patterns. The contrasts between the biogeography of modern and mid-Paleocene mammals in the region could result from distinct community ecology of faunas dominated by extinct “archaic” clades of mammals, ongoing ecological recovery after the Cretaceous-Paleogene extinction, and/or the modern biogeographic patterns being geologically recent or episodic phenomenon and not long-term characteristics of the geographic distribution of mammalian species richness or body size.
Petrů, Martina; Tielbörger, Katja
2008-04-01
The role of local adaptation and factors other than climate in determining extinction probabilities of species under climate change has not been yet explicitly studied. Here we performed a field experiment with annual plants growing along a steep climatic gradient in Israel to isolate climatic effects for local trait expression. The focus trait was seed dormancy, for which many theoretical predictions exist regarding climate-driven optimal germination behaviour. We evaluated how germination is consistent with theory, indicating local adaptation to current and changing climatic conditions, and how it varies among species and between natural and standardised soil conditions. We reciprocally sowed seeds from three or four origins for each of three annual species, Biscutella didyma, Bromus fasciculatus and Hymenocarpos circinnatus, in their home and neighbouring sowing locations along an aridity gradient. Our predictions were: lower germination fraction for seeds from more arid origins, and higher germination at wetter sowing locations for all seed origins. By sowing seeds in both local and standard soil, we separated climatic effects from local conditions. At the arid sowing location, two species supported the prediction of low germination of drier seed origins, but differences between seed origins at the other sites were not substantial. There were no clear rainfall effects on germination. Germination fractions were consistently lower on local soil than on standard soil, indicating the important role of soil type and neighbour conditions for trait expression. Local environmental conditions may override effects of climate and so should be carefully addressed in future studies testing for the potential of species to adapt or plastically respond to climate change.
Permafrost and organic layer interactions over a climate gradient in a discontinuous permafrost zone
Kristofer D. Johnson; Jennifer W. Harden; A. David McGuire; Mark Clark; Fengming Yuan; Andrew O. Finley
2013-01-01
Permafrost is tightly coupled to the organic soil layer, an interaction that mediates permafrost degradation in response to regional warming. We analyzed changes in permafrost occurrence and organic layer thickness (OLT) using more than 3000 soil pedons across a mean annual temperature (MAT) gradient. Cause and effect relationships between permafrost probability (PF),...
Summer Scobell; Stewart Schultz
2005-01-01
We tested hypotheses of how pollinators and water resource gradients influence the evolution of dioecy using Echinocereus coccineus, a cactus with both hermaphroditic and dioecious populations growing over wide climatic and biotic gradients in the Madrean Archipelago. A GIS database was compiled from herbarium specimens, rainfall data, and...
Tim Seipel; Jake M. Alexander; Curtis C. Daehler; Lisa J. Rew; Peter J. Edwards; Pervaiz A. Dar; Keith McDougall; Bridgett Naylor; Catherine Parks; Fredric W. Pollnac; Zafar A. Reshi; Mel Schroder; Christoph Kueffer; Peter Pearman
2014-01-01
Aim We evaluated whether the performance of individuals and populations of the invasive plant Verbascum thapsus differs between its native and non-native ranges, across climate gradients, and in response to its position in a global- scaled niche model.Location India (Kashmir) and Switzerland (native range) and Australia and USA (Hawaii,...
Topography may mitigate drought effects on vegetation along a hillslope gradient
Sandra Hawthorne; Chelcy Ford Miniat
2017-01-01
Topography may mitigate drought effects on vegetation along a hillslope gradient through redistribution of soil moisture. We examined the interaction of topography, climate, soil moisture, and transpiration in a lowâelevation, mixedâhardwood forest in the southern Appalachian Mountains. The effects of meteorological variation (wet and dry years) and topographic...
Earthworm communities along an elevation gradient in Northeastern Puerto Rico.
Grizelle Gonzalez; Emerita Garcia; Veronica Cruz; Sonia Borges; Marcela Zalamea; Maria M. Rivera
2007-01-01
In this study, we describe earthworm communities along an elevation gradient of eight forest types in Northeastern Puerto Rico, and determine whether their abundance, biomass and/or diversity is related to climatic, soil physical/chemical and/or biotic characteristics. We found that the density, biomass, and diversity of worms varied significantly among forest types....
Post-fire ecosystem recovery trajectories along burn severity gradients
NASA Astrophysics Data System (ADS)
Newingham, B. A.; Hudak, A. T.; Bright, B. C.; Smith, A. G.; Henareh Khalyani, A.
2017-12-01
Burn severity is a term used to describe the longer-term, second-order effects of fire on ecosystems. Plant communities are assumed to recover more slowly at higher burn severities; however, this likely depends on plant community type and climate. We assessed vegetation recovery approximately a decade post-fire across North American forests (moist mixed conifer, dry mixed conifer, ponderosa pine) and shrublands (mountain big sagebrush and Wyoming big sagebrush) distributed across climate and burn severity gradients. We assessed vegetation recovery across these ecosystems as indicated by the differenced Normalized Burn Ratio derived from 1984-2016 Landsat time series imagery (LandTrendr). Additionally, we used field vegetation measurements to examine local topographic controls on burn severity and post-fire vegetation recovery. Ecosystem responses were related to climate predictors derived from downscaled 1993-2011 climate normals. We hypothesized that drier and hotter ecosystems would take longer to recover. We also predicted areas with higher burn severity to have slower recovery. We found post-fire recovery to be strongly predicted by precipitation with the slowest recovery in shrublands and ponderosa pine forest, the driest vegetation types considered. We conclude that climate and burn severity interact to determine ecosystem recovery trajectories after fire, with burn severity having larger influence in the short term, and climate having larger influence in the long term.
Temperature mediates continental-scale diversity of microbes in forest soils
Zhou, Jizhong; Deng, Ye; Shen, Lina; Wen, Chongqing; Yan, Qingyun; Ning, Daliang; Qin, Yujia; Xue, Kai; Wu, Liyou; He, Zhili; Voordeckers, James W.; Nostrand, Joy D. Van; Buzzard, Vanessa; Michaletz, Sean T.; Enquist, Brian J.; Weiser, Michael D.; Kaspari, Michael; Waide, Robert; Yang, Yunfeng; Brown, James H.
2016-01-01
Climate warming is increasingly leading to marked changes in plant and animal biodiversity, but it remains unclear how temperatures affect microbial biodiversity, particularly in terrestrial soils. Here we show that, in accordance with metabolic theory of ecology, taxonomic and phylogenetic diversity of soil bacteria, fungi and nitrogen fixers are all better predicted by variation in environmental temperature than pH. However, the rates of diversity turnover across the global temperature gradients are substantially lower than those recorded for trees and animals, suggesting that the diversity of plant, animal and soil microbial communities show differential responses to climate change. To the best of our knowledge, this is the first study demonstrating that the diversity of different microbial groups has significantly lower rates of turnover across temperature gradients than other major taxa, which has important implications for assessing the effects of human-caused changes in climate, land use and other factors. PMID:27377774
Busing, Richard T.; Solomon, Allen M.
2005-01-01
An individual-based model of forest dynamics (FORCLIM) was tested for its ability to simulate forest composition and structure in the Pacific Northwest region of North America. Simulation results across gradients of climate and disturbance were compared to forest survey data from several vegetation zones in western Oregon. Modelled patterns of tree species composition, total basal area and stand height across climate gradients matched those in the forest survey data. However, the density of small stems (<50 cm DBH) was underestimated by the model. Thus actual size-class structure and other density-based parameters of stand structure were not simulated with high accuracy. The addition of partial-stand disturbances at moderate frequencies (<0.01 yr-1) often improved agreement between simulated and actual results. Strengths and weaknesses of the FORCLIM model in simulating forest dynamics and structure in the Pacific Northwest are discussed.
Tolerance to multiple climate stressors: A case study of Douglas-fir drought and cold hardiness
Bansal, Sheel; Harrington, Constance A; St. Clair, John Bradley
2016-01-01
Summary: 1. Drought and freeze events are two of the most common forms of climate extremes which result in tree damage or death, and the frequency and intensity of both stressors may increase with climate change. Few studies have examined natural covariation in stress tolerance traits to cope with multiple stressors among wild plant populations. 2. We assessed the capacity of coastal Douglas-fir (Pseudotsuga menziesii var. menziesii), an ecologically and economically important species in the northwestern USA, to tolerate both drought and cold stress on 35 populations grown in common gardens. We used principal components analysis to combine drought and cold hardiness trait data into generalized stress hardiness traits to model geographic variation in hardiness as a function of climate across the Douglas-fir range. 3. Drought and cold hardiness converged among populations along winter temperature gradients and diverged along summer precipitation gradients. Populations originating in regions with cold winters had relatively high tolerance to both drought and cold stress, which is likely due to overlapping adaptations for coping with winter desiccation. Populations from regions with dry summers had increased drought hardiness but reduced cold hardiness, suggesting a trade-off in tolerance mechanisms. 4. Our findings highlight the necessity to look beyond bivariate trait–climate relationships and instead consider multiple traits and climate variables to effectively model and manage for the impacts of climate change on widespread species.
Korosi, Jennifer B; Griffiths, Katherine; Smol, John P; Blais, Jules M
2018-06-02
Recent climate change may be enhancing mercury fluxes to Arctic lake sediments, confounding the use of sediment cores to reconstruct histories of atmospheric deposition. Assessing the independent effects of climate warming on mercury sequestration is challenging due to temporal overlap between warming temperatures and increased long-range transport of atmospheric mercury following the Industrial Revolution. We address this challenge by examining mercury trends in short cores (the last several hundred years) from eight lakes centered on Cape Herschel (Canadian High Arctic) that span a gradient in microclimates, including two lakes that have not yet been significantly altered by climate warming due to continued ice cover. Previous research on subfossil diatoms and inferred primary production indicated the timing of limnological responses to climate warming, which, due to prevailing ice cover conditions, varied from ∼1850 to ∼1990 for lakes that have undergone changes. We show that climate warming may have enhanced mercury deposition to lake sediments in one lake (Moraine Pond), while another (West Lake) showed a strong signal of post-industrial mercury enrichment without any corresponding limnological changes associated with warming. Our results provide insights into the role of climate warming and organic carbon cycling as drivers of mercury deposition to Arctic lake sediments. Copyright © 2018 Elsevier Ltd. All rights reserved.
Choudoir, Mallory J; Buckley, Daniel H
2018-06-07
The latitudinal diversity gradient is a pattern of biogeography observed broadly in plants and animals but largely undocumented in terrestrial microbial systems. Although patterns of microbial biogeography across broad taxonomic scales have been described in a range of contexts, the mechanisms that generate biogeographic patterns between closely related taxa remain incompletely characterized. Adaptive processes are a major driver of microbial biogeography, but there is less understanding of how microbial biogeography and diversification are shaped by dispersal limitation and drift. We recently described a latitudinal diversity gradient of species richness and intraspecific genetic diversity in Streptomyces by using a geographically explicit culture collection. Within this geographically explicit culture collection, we have identified Streptomyces sister-taxa whose geographic distribution is delimited by latitude. These sister-taxa differ in geographic distribution, genomic diversity, and ecological traits despite having nearly identical SSU rRNA gene sequences. Comparative genomic analysis reveals genomic differentiation of these sister-taxa consistent with restricted gene flow across latitude. Furthermore, we show phylogenetic conservatism of thermal traits between the sister-taxa suggesting that thermal trait adaptation limits dispersal and gene flow across climate regimes as defined by latitude. Such phylogenetic conservatism of thermal traits is commonly associated with latitudinal diversity gradients for plants and animals. These data provide further support for the hypothesis that the Streptomyces latitudinal diversity gradient was formed as a result of historical demographic processes defined by dispersal limitation and driven by paleoclimate dynamics.
Gamboa, Maribet; Tsuchiya, Maria Claret; Matsumoto, Suguru; Iwata, Hisato; Watanabe, Kozo
2017-11-01
Proteome variation among natural populations along an environmental gradient may provide insights into how the biological functions of species are related to their local adaptation. We investigated protein expression in five stream stonefly species from four geographic regions along a latitudinal gradient in Japan with varying climatic conditions. The extracted proteins were separated by two-dimensional gel electrophoresis and identified by matrix-assisted laser desorption/ionization of time-of-flight (MALDI TOF/TOF), yielding 446 proteins. Low interspecies variation in the proteome profiles was observed among five species within geographical regions, presumably due to the co-occurring species sharing the environments. However, large spatial variations in protein expression were found among four geographic regions, suggesting strong regulation of protein expression in heterogeneous environments, where the spatial variations were positively correlated with water temperature. We identified 21 unique proteins expressed specifically in a geographical region and six common proteins expressed throughout all regions. In warmer regions, metabolic proteins were upregulated, whereas proteins related to cold stress, the photoperiod, and mating were downregulated. Oxygen-related and energy-production proteins were upregulated in colder regions with higher altitudes. Thus, our proteomic approach is useful for identifying and understanding important biological functions related to local adaptations by populations of stoneflies. © 2017 Wiley Periodicals, Inc.
Subalpine Forest Carbon Cycling Short- and Long-Term Influence ofClimate and Species
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kueppers, L.; Harte, J.
2005-08-23
Ecosystem carbon cycle feedbacks to climate change comprise one of the largest remaining sources of uncertainty in global model predictions of future climate. Both direct climate effects on carbon cycling and indirect effects via climate-induced shifts in species composition may alter ecosystem carbon balance over the long term. In the short term, climate effects on carbon cycling may be mediated by ecosystem species composition. We used an elevational climate and tree species composition gradient in Rocky Mountain subalpine forest to quantify the sensitivity of all major ecosystem carbon stocks and fluxes to these factors. The climate sensitivities of carbon fluxesmore » were species-specific in the cases of relative above ground productivity and litter decomposition, whereas the climate sensitivity of dead wood decay did not differ between species, and total annual soil CO2 flux showed no strong climate trend. Lodge pole pine relative productivity increased with warmer temperatures and earlier snowmelt, while Engelmann spruce relative productivity was insensitive to climate variables. Engelmann spruce needle decomposition decreased linearly with increasing temperature(decreasing litter moisture), while lodgepole pine and subalpine fir needle decay showed a hump-shaped temperature response. We also found that total ecosystem carbon declined by 50 percent with a 2.88C increase in mean annual temperature and a concurrent 63 percent decrease ingrowing season soil moisture, primarily due to large declines in mineral soil and dead wood carbon. We detected no independent effect of species composition on ecosystem C stocks. Overall, our carbon flux results suggest that, in the short term, any change in subalpine forest net carbon balance will depend on the specific climate scenario and spatial distribution of tree species. Over the long term, our carbon stock results suggest that with regional warming and drying, Rocky Mountain subalpine forest will be a net source of carbon to the atmosphere.« less
Xu, Jinshi; Chai, Yongfu; Wang, Mao; Dang, Han; Guo, Yaoxin; Chen, Yu; Zhang, Chenguang; Li, Ting; Zhang, Lixia; Yue, Ming
2018-01-01
Species respond to changes in their environments. A core goal in ecology is to understand the process of plant community assembly in response to a changing climate. Examining the performance of functional traits and trait-based assembly patterns across species among different growth forms is a useful way to explore the assembly process. In this study, we constructed a habitat severity gradient including several environment factors along a 2300 m wide elevational range at Taibai Mountain, central China. Then we assessed the shift on functional trait values and community assembly patterns along this gradient across species among different growth forms. We found that (1) although habitat-severity values closely covaried with elevation in this study, an examined communities along a habitat severity gradient might reveal community dynamics and species responses under future climate change. (2) the occurrence of trait values along the habitat severity gradient across different growth forms were similar, whereas the assembly pattern of herbaceous species was inconsistent with the community and woody species. (3) the trait-trait relationships of herbaceous species were dissimilar to those of the community and woody species. These results suggest that (1) community would re-assemble along habitat severity gradient through environmental filtering, regardless of any growth forms and that (2) different growth forms' species exhibiting similar trait values' shift but different trait-trait relationship by different trait combinations.
Dengue Vectors and their Spatial Distribution
Higa, Yukiko
2011-01-01
The distribution of dengue vectors, Ae. aegypti and Ae. albopictus, is affected by climatic factors. In addition, since their life cycles are well adapted to the human environment, environmental changes resulting from human activity such as urbanization exert a great impact on vector distribution. The different responses of Ae. aegypti and Ae albopictus to various environments result in a difference in spatial distribution along north-south and urban-rural gradients, and between the indoors and outdoors. In the north-south gradient, climate associated with survival is an important factor in spatial distribution. In the urban-rural gradient, different distribution reflects a difference in adult niches and is modified by geographic and human factors. The direct response of the two species to the environment around houses is related to different spatial distribution indoors and outdoors. Dengue viruses circulate mainly between human and vector mosquitoes, and the vector presence is a limiting factor of transmission. Therefore, spatial distribution of dengue vectors is a significant concern in the epidemiology of the disease. Current technologies such as GIS, satellite imagery and statistical models allow researchers to predict the spatial distribution of vectors in the changing environment. Although it is difficult to confirm the actual effect of environmental and climate changes on vector abundance and vector-borne diseases, environmental changes caused by humans and human behavioral changes due to climate change can be expected to exert an impact on dengue vectors. Longitudinal monitoring of dengue vectors and viruses is therefore necessary. PMID:22500133
Lázaro-Nogal, Ana; Forner, Alicia; Traveset, Anna; Valladares, Fernando
2013-12-01
Plants have evolved different strategies to cope with drought, involving alternative ecophysiologies and different levels of plasticity. These strategies are critical for species of limited distribution, which are especially vulnerable to the current rates of rapid environmental change. The aim of this study was to assess the water strategy of two species with limited distribution, Cneorum tricoccon L. and Rhamnus ludovici-salvatoris Chodat., and evaluate their interpopulation variability along an aridity gradient to estimate their vulnerability to a drier climate. We measured different ecophysiological traits influenced by drought--stomatal conductance, maximum photochemical efficiency of photosynthesis II, carbon isotope ratio and chlorophyll concentration--in two climatically contrasting years, before and during summer drought. Both species were vulnerable to drought at the aridity limit of the gradient, but showed contrasting water strategies: while C. tricoccon was consistent in its water conservation strategy across the aridity gradient, R. ludovici-salvatoris was not, displaying higher and more variable stomatal conductances and being able to increase water-use efficiency at the most xeric sites. Changes in length and intensity of drought events may favor one species' strategy to the detriment of the other: C. tricoccon is more vulnerable to chronic and prolonged droughts, whereas short but acute droughts might have a stronger effect on R. ludovici-salvatoris. In those communities where these two species coexist, such different strategies might lead to changes in community structure under climate change scenarios, with unknown cascade effects on ecosystem functioning.
Widespread correlations between climatic niche evolution and species diversification in birds.
Cooney, Christopher R; Seddon, Nathalie; Tobias, Joseph A
2016-07-01
The adaptability of species' climatic niches can influence the dynamics of colonization and gene flow across climatic gradients, potentially increasing the likelihood of speciation or reducing extinction in the face of environmental change. However, previous comparative studies have tested these ideas using geographically, taxonomically and ecologically restricted samples, yielding mixed results, and thus the processes linking climatic niche evolution with diversification remain poorly understood. Focusing on birds, the largest and most widespread class of terrestrial vertebrates, we test whether variation in species diversification among clades is correlated with rates of climatic niche evolution and the extent to which these patterns are modified by underlying gradients in biogeography and species' ecology. We quantified climatic niches, latitudinal distribution and ecological traits for 7657 (˜75%) bird species based on geographical range polygons and then used Bayesian phylogenetic analyses to test whether niche evolution was related to species richness and rates of diversification across genus- and family-level clades. We found that the rate of climatic niche evolution has a positive linear relationship with both species richness and diversification rate at two different taxonomic levels (genus and family). Furthermore, this positive association between labile climatic niches and diversification was detected regardless of variation in clade latitude or key ecological traits. Our findings suggest either that rapid adaptation to unoccupied areas of climatic niche space promotes avian diversification, or that diversification promotes adaptation. Either way, we propose that climatic niche evolution is a fundamental process regulating the link between climate and biodiversity at global scales, irrespective of the geographical and ecological context of speciation and extinction. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
NASA Astrophysics Data System (ADS)
Quetin, G. R.; Swann, A. L. S.
2017-12-01
Successfully predicting the state of vegetation in a novel environment is dependent on our process level understanding of the ecosystem and its interactions with the environment. We derive a global empirical map of the sensitivity of vegetation to climate using the response of satellite-observed greenness and leaf area to interannual variations in temperature and precipitation. Our analysis provides observations of ecosystem functioning; the vegetation interactions with the physical environment, across a wide range of climates and provide a functional constraint for hypotheses engendered in process-based models. We infer mechanisms constraining ecosystem functioning by contrasting how the observed and simulated sensitivity of vegetation to climate varies across climate space. Our analysis yields empirical evidence for multiple physical and biological mediators of the sensitivity of vegetation to climate as a systematic change across climate space. Our comparison of remote sensing-based vegetation sensitivity with modeled estimates provides evidence for which physiological mechanisms - photosynthetic efficiency, respiration, water supply, atmospheric water demand, and sunlight availability - dominate the ecosystem functioning in places with different climates. Earth system models are generally successful in reproducing the broad sign and shape of ecosystem functioning across climate space. However, this general agreement breaks down in hot wet climates where models simulate less leaf area during a warmer year, while observations show a mixed response but overall more leaf area during warmer years. In addition, simulated ecosystem interaction with temperature is generally larger and changes more rapidly across a gradient of temperature than is observed. We hypothesize that the amplified interaction and change are both due to a lack of adaptation and acclimation in simulations. This discrepancy with observations suggests that simulated responses of vegetation to global warming, and feedbacks between vegetation and climate, are too strong in the models.
NASA Astrophysics Data System (ADS)
van der Voort, Tessa Sophia; Hagedorn, Frank; Zell, Claudia; McIntyre, Cameron; Eglinton, Tim
2016-04-01
Understanding the interaction between soil organic matter (SOM) and climatic, geologic and ecological factors is essential for the understanding of potential susceptibility and vulnerability to climate and land use change. Radiocarbon constitutes a powerful tool for unraveling SOM dynamics and is increasingly used in studies of carbon turnover. The complex and inherently heterogeneous nature of SOM renders it challenging to assess the processes that govern SOM stability by solely looking at the bulk signature on a plot-scale level. This project combines bulk radiocarbon measurements on a regional-scale spanning wide climatic and geologic gradients with a more in-depth approach for a subset of locations. For this subset, time-series and carbon pool-specific radiocarbon data has been acquired for both topsoil and deeper soils. These well-studied sites are part of the Long-Term Forest Ecosystem Research (LWF) program of the Swiss Federal Institute for Forest, Snow and Landscape research (WSL). Statistical analysis was performed to examine relationships of radiocarbon signatures with variables such as temperature, precipitation and elevation. Bomb-curve modeling was applied determine carbon turnover using time-series data. Results indicate that (1) there is no significant correlation between Δ14C signature and environmental conditions except a weak positive correlation with mean annual temperature, (2) vertical gradients in Δ14C signatures in surface and deeper soils are highly similar despite covering disparate soil-types and climatic systems, and (3) radiocarbon signatures vary significantly between time-series samples and carbon pools. Overall, this study provides a uniquely comprehensive dataset that allows for a better understanding of links between carbon dynamics and environmental settings, as well as for pool-specific and long-term trends in carbon (de)stabilization.
NASA Astrophysics Data System (ADS)
Lucas, M.; Miura, T.; Trauernicht, C.; Frazier, A. G.
2017-12-01
A drought which results in prolonged and extended deficit in naturally available water supply and creates multiple stresses across ecosystems is classified as an ecological drought. Detecting and understanding the dynamics and response of such droughts in tropical systems, specifically across various vegetation and climatic gradients is fairly undetermined, yet increasingly important for better understandings of the ecological effects of drought. To understanding the link between what lengths and intensities of known meteorological drought triggers detectable ecological vegetation responses, a landscape scale regression analysis evaluating the response (slope) and relationship strength (R-squared) of several cumulative SPI (standard precipitation index) lengths(1, 3, 6, 12, 18, 24, 36, 48, and 60 month), to various satellite derived monthly vegetation indices anomalies (NDVI, EVI, EVI2, and LSWI) was performed across a matrix of dominant vegetation covers (grassland, shrubland, and forest) and climatic moisture zones (arid, dry, mesic, and wet). The nine different SPI lags across these climactic and vegetation gradients was suggest that stronger relationships and steeper slopes were found in dryer climates (across all vegetation covers) and finer vegetation types (across all moisture zones). Overall NDVI, EVI and EVI2 showed the best utility in these dryer climatic zones across all vegetation types. Within arid and dry areas "best" fits showed increasing lengths of cumulative SPI were with increasing vegetation coarseness respectively. Overall these findings suggest that rainfall driven drought may have a stronger impact on the ecological condition of vegetation in water limited systems with finer vegetation types ecologically responding more rapidly to meteorological drought events than coarser woody vegetation systems. These results suggest that previously and newly documented trends of decreasing rainfall and increasing drought in Hawaiian drylands may have drastic and lasting impacts on these unique ecosystems.
NASA Astrophysics Data System (ADS)
Kargel, J. S.; Furfaro, R.
2013-12-01
Thermal gradients within conductive layers of icy satellite and asteroids depend partly on heat flow, which is related to the secular decay of radioactive isotopes, to heat released by chemical phase changes, by conversion of gravitational potential energy to heat during differentiation, tidal energy dissipation, and to release of heat stored from prior periods. Thermal gradients are also dependent on the thermal conductivity of materials, which in turn depends on their composition, crystallinity, porosity, crystal fabric anisotropy, and details of their mixture with other materials. Small impurities can produce lattice defects and changes in polymerization, and thereby have a huge influence on thermal conductivity, as can cage-inclusion (clathrate) compounds. Heat flow and thermal gradients can be affected by fluid phase advection of mass and heat (in oceans or sublimating upper crusts), by refraction related to heterogeneities of thermal conductivity due to lateral variations and composition or porosity. Thermal profiles depend also on the surface temperature controlled by albedo and climate, surface relief, and latitude, orbital obliquity and surface insolation, solid state greenhouses, and endogenic heating of the surface. The thermal state of icy moon interiors and thermal gradients can be limited at depth by fluid phase advection of heat (e.g., percolating meteoric methane or gas emission), by the latent heat of phase transitions (melting, solid-state transitions, and sublimation), by solid-state convective or diapiric heat transfer, and by foundering. Rapid burial of thick volatile deposits can also affect thermal gradients. For geologically inactive or simple icy objects, most of these controls on heat flow and thermal gradients are irrelevant, but for many other icy objects they can be important, in some cases causing large lateral and depth variations in thermal gradients, large variations in heat flow, and dynamically evolving thermal states. Many of these processes result in transient thermal states and hence rapid evolution of icy body interiors. Interesting heat-flow phenomena (approximated as steady-state thermal states) have been modeled in volatile-rich main belt asteroids, Io, Europa, Enceladus, Titan, Pluto, and Makemake (2005 FY9). Thermal conditions can activate geologic processes, but the occurrence of geologic activity can fundamentally alter the thermal conductivity and elasticity of icy objects, which then further affects the distribution and type of subsequent geologic activity. For example, cryoclastic volcanism on Enceladus can increase solid-state greenhouse heating of the upper crust, reduce thermal conductivity, and increase retention of heat and spur further cryovolcanism. Sulfur extrusion on Io can produce low-thermal-conductivity flows, high thermal gradients, basal melting of the flows, and lateral extrusion and spreading of the flows or formation of solid-crusted lava lakes. Impact formation of regoliths and fine-grained dust deposits on large asteroids may generate local variations in thermal gradients. Interior heating and geologic activity can either (1) emplace low-conductivity materials on the surface and cause further interior heating, or (2) drive metamorphism, sintering, and volatile loss, and increase thermal conductivity and cool the object. Thus, the type and distribution of present-day geologic activity on icy worlds is dependent on geologic history. Geology begets geology.
Variations in pollen counts largely explained by climate and weather
NASA Astrophysics Data System (ADS)
Jung, Stephan; Damialis, Athanasios; Estrella, Nicole; Jochner, Susanne; Menzel, Annette
2017-04-01
The interaction between climate and vegetation is well studied within phenology. Climatic / weather conditions affect e.g. flowering date, length of vegetation period, start and end of the season and the plant growth. Besides phenological stages also pollen counts can be used to investigate the interaction between climate and vegetation. Pollen emission and distribution is directly influenced by temperature, wind speed, wind direction and humidity/precipitation. The objective of this project is to study daily/sub daily variations in pollen counts of woody and herbaceous plant species along an altitudinal gradient with different climatic conditions during the vegetation period. Measurements of pollen were carried out with three volumetric pollen traps installed at the altitudes 450 m a.s.l (Freising), 700 m a.s.l (Garmisch-Partenkirchen), and 2700 m a.s.l (Schneefernerhaus near Zugspitze) representing gradient from north of Munich towards the highest mountain of Germany. Airborne pollen concentrations were recorded during the years 2014-2015. The altitudinal range of these three stations accompanied by different microclimates ("space for time approach") can be used as proxy for climate change and to assess its impact on pollen counts and thus allergenic risk for human health. For example the pollen season is shortened and pollen amount is reduced at higher sites. For detailed investigations pollen of the species Plantago, Quercus, Poaceae, Cupressaceae, Cyperacea, Betula and Platanus were chosen, because those are found in appropriate quantities. In general, pollen captured in the pollen traps to a certain extent has its origin from the immediate surrounding. Thus, it mirrors local species distribution. But furthermore the distance of pollen transport is also based on (micro-) climatic conditions, land cover and topography. The pollen trap shortly below the summit of Zugspitze (Schneefernerhaus) has an alpine environment without vegetation nearby. Therefore, this trap can be used to detect short-, middle- and long-range pollen transport. The pollen trap in Garmisch-Partenkirchen is located in the valley below Zugspitze making these two stations suitable for a direct comparison. First results show that the total amount of pollen at Schneefernerhaus for Plantago, Quercus, Poaceae, Cupressaceae, Cyperaceae and Betula is only about 20% in comparison to Garmisch. Furthermore there are daily differences in the pollen counts in yearly sum between morning (24:00 -12:00) and afternoon (12:00- 24:00). This phenomenon might be caused by diurnal climatic variations in the boundary layer as well as local mountain wind systems (changing wind direction from morning to afternoon time). Additionally pollen counts were linked to weather data recorded by the German Meteorological Service and local climate stations. Results indicate that the duration of precipitation events is a major factor of influence concerning the counted pollen. With increasing duration of a rain event pollen counts are decreasing.
Controls on the Climates of Tidally Locked Terrestrial Planets
NASA Astrophysics Data System (ADS)
Yang, J.; Cowan, N. B.; Abbot, D. S.
2013-12-01
Earth-size planets in the habitable zone of M-dwarf stars may be very common. Due to strong tidal forces, these planets in circulate orbits are expected to be tidally locked, with one hemisphere experiencing perpetual day and the other permanent night. Previous studies on the climates of tidally locked planets were primarily based on complex 3D general circulation models (GCMs). The central question to be answered in this work is: what is the minimum necessary physics needed to understand the climates simulated by GCMs? A two-column model, primarily based on the weak temperature gradient (WTG) approximation (Sobel et al. 2001) and the fixed anvil temperature (FAT) hypothesis (Hartmann and Larson 2002) for the tropical climate of Earth, is developed for understanding the climates of tidally locked planets. This highly idealized model well reproduces fundamental features of the climates obtained in complicated GCMs (Yang et al. 2013), including planetary albedo, longwave cloud forcing, outgoing longwave radiation (OLR), and atmospheric energy transport. This suggests that the WTG approximation and the FAT hypothesis may be good approximations for tidally locked habitable planets, which provides strong constraints on the large-scale circulations, diabatic processes, and cloud behaviour on these planets. Both the simple model and the GCMs predict that (i) convection and planetary albedo on the dayside increase as stellar flux is increased; (ii) longwave cloud radiative forcing increases as stellar flux is increased, due to the cloud top temperature remains nearly constant as the climate changes (FAT hypothesis); (iii) for planets at the inner regions of the habitable zone, the dayside--nightside OLR contrast becomes very weak or even reverses, due to the strong longwave absorption by water vapor and clouds on the dayside; (iv) the dayside--to--nightside atmospheric energy transport (AET) increases as stellar flux is increased, and decreases as oceanic energy transport (OET) is included, although the compensation between AET and OET is incomplete. To summarize, we are able to construct a realistic low-order model for the climate of tidally locked terrestrial planets, including the cloud behavior, using only the two constraints. This bodes well for the interpretation of complex GCMs and future observations of such planets using, for example, the James Webb Space Telescope. Cited papers: [1]. Sobel, A. H., J. Nilsson and L. M. Polvani: The weak temperature gradient approximation and balanced tropical moisture waves, J. Atmos. Sci., 58, 3650-65, 2001. [2]. Hartmann, D. L. and K. Larson, An important constraint on tropical cloud-climate feedback, Geophys. Res. Lett., 29, 1951-54, 2002. [3]. Yang, J., N. B. Cowan and D. S. Abbot: Stabilizing cloud feedback dramatically expands the habitable zone of tidally locked planets, ApJ. Lett., 771, L45, 2013.
Tree-ring characteristics including stable isotope composition are commonly used to reconstruct climate variables and establish mechanisms that underlie oscillations in modes of climate variability. However, divergence from the assumption of a single, primary biophysical control ...
10 CFR 960.4-2-4 - Climatic changes.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Climatic changes. 960.4-2-4 Section 960.4-2-4 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE... over the next 10,000 years could cause perturbations in the hydraulic gradient, the hydraulic...
10 CFR 960.4-2-4 - Climatic changes.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Climatic changes. 960.4-2-4 Section 960.4-2-4 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE... over the next 10,000 years could cause perturbations in the hydraulic gradient, the hydraulic...
USDA-ARS?s Scientific Manuscript database
Ecological instability and low resource use efficiencies are concerns for the long-term productivity of conventional cereal monoculture systems, particularly those threatened by projected climate change. Crop intensification, diversification, reduced tillage, and variable N management are among str...
USDA-ARS?s Scientific Manuscript database
Understanding of the underlying causes of spatial variation in exchange of carbon and water vapor fluxes between grasslands and the atmosphere is crucial for accurate estimates of regional and global carbon and water budgets, and for predicting the impact of climate change on biosphere–atmosphere fe...
USDA-ARS?s Scientific Manuscript database
Although climate models forecast warmer temperatures with a high degree of certainty, precipitation is the primary driver of aboveground net primary productivity (ANPP) in most grasslands. In contrast, variations in temperature seldom are related to patterns of ANPP. Thus forecasting responses to wa...
Hadley circulation extent and strength in a wide range of simulated climates
NASA Astrophysics Data System (ADS)
D'Agostino, Roberta; Adam, Ori; Lionello, Piero; Schneider, Tapio
2017-04-01
Understanding the Hadley circulation (HC) dynamics is crucial because its changes affect the seasonal migration of the ITCZ, the extent of subtropical arid regions and the strength of the monsoons. Despite decades of study, the factors controlling its strength and extent have remained unclear. Here we analyse how HC strength and extent change over a wide range of climate conditions from the Last Glacial Maximum to future projections. The large climate change between paleoclimate simulations and future scenarios offers the chance to analyse robust HC changes and their link to large-scale factors. The HC shrinks and strengthens in the coldest simulation relative to the warmest. A progressive poleward shift of its edges is evident as the climate warms (at a rate of 0.35°lat./K in each hemisphere). The HC extent and strength both depend on the isentropic slope, which in turn is related to the meridional temperature gradient, subtropical static stability and tropopause height. In multiple robust regression analysis using these as predictors, we find that the tropical tropopause height does not add relevant information to the model beyond surface temperature. Therefore, primarily the static stability and secondarily the meridional temperature contrast together account for the bulk of the almost the total HC variance. However, the regressions leave some of the northern HC edge and southern HC strength variance unexplained. The effectiveness of this analysis is limited by the correlation among the predictors and their relationship with mean temperature. In fact, for all simulations, the tropical temperature explains well the variations of HC except its southern hemisphere intensity. Hence, it can be used as the sole predictor to diagnose the HC response to greenhouse-induced global warming. How to account for the evolution of the southern HC strength remains unclear, because of the large inter-model spread in this quantity.
Urbieta, Itziar R.; Zavala, Gonzalo; Bedia, Joaquin; Gutierrez, Jose M.; San Miguel-Ayanz, Jesus; Camia, Andrea; Keeley, Jon E.; Moreno, Jose M.
2015-01-01
Climate has a strong influence on fire activity, varying across time and space. We analyzed the relationships between fire–weather conditions during the main fire season and antecedent water-balance conditions and fires in two Mediterranean-type regions with contrasted management histories: five southern countries of the European Union (EUMED)(all fires); the Pacific western coast of the USA (California and Oregon, PWUSA)(national forest fires). Total number of fires (≥1 ha), number of large fires (≥100 ha) and area burned were related to mean seasonal fire weather index (FWI), number of days over the 90th percentile of the FWI, and to the standardized precipitation-evapotranspiration index (SPEI) from the preceding 3 (spring) or 8 (autumn through spring) months. Calculations were made at three spatial aggregations in each area, and models related first-difference (year-to-year change) of fires and FWI/climate variables to minimize autocorrelation. An increase in mean seasonal FWI resulted in increases in the three fire variables across spatial scales in both regions. SPEI contributed little to explain fires, with few exceptions. Negative water-balance (dry) conditions from autumn through spring (SPEI8) were generally more important than positive conditions (moist) in spring (SPEI3), both of which contributed positively to fires. The R2 of the models generally improved with increasing area of aggregation. For total number of fires and area burned, the R2 of the models tended to decrease with increasing mean seasonal FWI. Thus, fires were more susceptible to change with climate variability in areas with less amenable conditions for fires (lower FWI) than in areas with higher mean FWI values. The relationships were similar in both regions, albeit weaker in PWUSA, probably due to the wider latitudinal gradient covered in PWUSA than in EUMED. The large variance explained by some of the models indicates that large-scale seasonal forecast could help anticipating fire activity in the investigated areas.
NASA Astrophysics Data System (ADS)
Urbieta, Itziar R.; Zavala, Gonzalo; Bedia, Joaquín; Gutiérrez, José M.; San Miguel-Ayanz, Jesús; Camia, Andrea; Keeley, Jon E.; Moreno, José M.
2015-11-01
Climate has a strong influence on fire activity, varying across time and space. We analyzed the relationships between fire-weather conditions during the main fire season and antecedent water-balance conditions and fires in two Mediterranean-type regions with contrasted management histories: five southern countries of the European Union (EUMED)(all fires); the Pacific western coast of the USA (California and Oregon, PWUSA)(national forest fires). Total number of fires (≥1 ha), number of large fires (≥100 ha) and area burned were related to mean seasonal fire weather index (FWI), number of days over the 90th percentile of the FWI, and to the standardized precipitation-evapotranspiration index (SPEI) from the preceding 3 (spring) or 8 (autumn through spring) months. Calculations were made at three spatial aggregations in each area, and models related first-difference (year-to-year change) of fires and FWI/climate variables to minimize autocorrelation. An increase in mean seasonal FWI resulted in increases in the three fire variables across spatial scales in both regions. SPEI contributed little to explain fires, with few exceptions. Negative water-balance (dry) conditions from autumn through spring (SPEI8) were generally more important than positive conditions (moist) in spring (SPEI3), both of which contributed positively to fires. The R2 of the models generally improved with increasing area of aggregation. For total number of fires and area burned, the R2 of the models tended to decrease with increasing mean seasonal FWI. Thus, fires were more susceptible to change with climate variability in areas with less amenable conditions for fires (lower FWI) than in areas with higher mean FWI values. The relationships were similar in both regions, albeit weaker in PWUSA, probably due to the wider latitudinal gradient covered in PWUSA than in EUMED. The large variance explained by some of the models indicates that large-scale seasonal forecast could help anticipating fire activity in the investigated areas.
Rinde, Eli; Christie, Hartvig; Fagerli, Camilla W.; Bekkby, Trine; Gundersen, Hege; Norderhaug, Kjell Magnus; Hjermann, Dag Ø.
2014-01-01
The spatial distribution of kelp (Laminaria hyperborea) and sea urchins (Strongylocentrotus droebachiensis) in the NE Atlantic are highly related to physical factors and to temporal changes in temperature. On a large scale, we identified borders for kelp recovery and sea urchin persistence along the north-south gradient. Sea urchin persistence was also related to the coast-ocean gradient. The southern border corresponds to summer temperatures exceeding about 10°C, a threshold value known to be critical for sea urchin recruitment and development. The outer border along the coast-ocean gradient is related to temperature, wave exposure and salinity. On a finer scale, kelp recovery occurs mainly at ridges in outer, wave exposed, saline and warm areas whereas sea urchins still dominate in inner, shallow and cold areas, particularly in areas with optimal current speed for sea urchin foraging. In contrast to other studies in Europe, we here show a positive influence of climate change to presence of a long-lived climax canopy-forming kelp. The extent of the coast-ocean gradient varies within the study area, and is especially wide in the southern part where the presence of islands and skerries increases the area of the shallow coastal zone. This creates a large area with intermediate physical conditions for the two species and a mosaic of kelp and sea urchin dominated patches. The statistical models (GAM and BRT) show high performance and indicate recovery of kelp in 45–60% of the study area. The study shows the value of combining a traditional (GAM) and a more complex (BRT) modeling approach to gain insight into complex spatial patterns of species or habitats. The results, methods and approaches are of general ecological relevance regardless of ecosystems and species, although they are particularly relevant for understanding and exploring the corresponding changes between algae and grazers in different coastal areas. PMID:24949954
Rinde, Eli; Christie, Hartvig; Fagerli, Camilla W; Bekkby, Trine; Gundersen, Hege; Norderhaug, Kjell Magnus; Hjermann, Dag Ø
2014-01-01
The spatial distribution of kelp (Laminaria hyperborea) and sea urchins (Strongylocentrotus droebachiensis) in the NE Atlantic are highly related to physical factors and to temporal changes in temperature. On a large scale, we identified borders for kelp recovery and sea urchin persistence along the north-south gradient. Sea urchin persistence was also related to the coast-ocean gradient. The southern border corresponds to summer temperatures exceeding about 10°C, a threshold value known to be critical for sea urchin recruitment and development. The outer border along the coast-ocean gradient is related to temperature, wave exposure and salinity. On a finer scale, kelp recovery occurs mainly at ridges in outer, wave exposed, saline and warm areas whereas sea urchins still dominate in inner, shallow and cold areas, particularly in areas with optimal current speed for sea urchin foraging. In contrast to other studies in Europe, we here show a positive influence of climate change to presence of a long-lived climax canopy-forming kelp. The extent of the coast-ocean gradient varies within the study area, and is especially wide in the southern part where the presence of islands and skerries increases the area of the shallow coastal zone. This creates a large area with intermediate physical conditions for the two species and a mosaic of kelp and sea urchin dominated patches. The statistical models (GAM and BRT) show high performance and indicate recovery of kelp in 45-60% of the study area. The study shows the value of combining a traditional (GAM) and a more complex (BRT) modeling approach to gain insight into complex spatial patterns of species or habitats. The results, methods and approaches are of general ecological relevance regardless of ecosystems and species, although they are particularly relevant for understanding and exploring the corresponding changes between algae and grazers in different coastal areas.
Steven P. Norman; William W. Hargrove; William M. Christie
2017-01-01
Mountainous regions experience complex phenological behavior along climatic, vegetational and topographic gradients. In this paper, we use a MODIS time series of the Normalized Difference Vegetation Index (NDVI) to understand the causes of variations in spring and autumn timing from 2000 to 2015, for a landscape renowned for its biological diversity. By filtering for...
Adaptation, migration or extirpation: climate change outcomes for tree populations
Aitken, Sally N; Yeaman, Sam; Holliday, Jason A; Wang, Tongli; Curtis-McLane, Sierra
2008-01-01
Abstract Species distribution models predict a wholesale redistribution of trees in the next century, yet migratory responses necessary to spatially track climates far exceed maximum post-glacial rates. The extent to which populations will adapt will depend upon phenotypic variation, strength of selection, fecundity, interspecific competition, and biotic interactions. Populations of temperate and boreal trees show moderate to strong clines in phenology and growth along temperature gradients, indicating substantial local adaptation. Traits involved in local adaptation appear to be the product of small effects of many genes, and the resulting genotypic redundancy combined with high fecundity may facilitate rapid local adaptation despite high gene flow. Gene flow with preadapted alleles from warmer climates may promote adaptation and migration at the leading edge, while populations at the rear will likely face extirpation. Widespread species with large populations and high fecundity are likely to persist and adapt, but will likely suffer adaptational lag for a few generations. As all tree species will be suffering lags, interspecific competition may weaken, facilitating persistence under suboptimal conditions. Species with small populations, fragmented ranges, low fecundity, or suffering declines due to introduced insects or diseases should be candidates for facilitated migration. PMID:25567494
Yim, Bo; Yeh, Sang -Wook; Sohn, Byung -Ju
2016-01-29
Observational evidence shows that the Walker circulation (WC) in the tropical Pacific has strengthened in recent decades. In this study, we examine the WC trend for 1979–2005 and its relationship with the precipitation associated with the El Niño Southern Oscillation (ENSO) using the sea surface temperature (SST)-constrained Atmospheric Model Intercomparison Project (AMIP) simulations of the Coupled Model Intercomparison Project Phase 5 (CMIP5) climate models. All of the 29 models show a strengthening of the WC trend in response to an increase in the SST zonal gradient along the equator. Despite the same SST-constrained AMIP simulations, however, a large diversity ismore » found among the CMIP5 climate models in the magnitude of the WC trend. The relationship between the WC trend and precipitation anomalies (PRCPAs) associated with ENSO (ENSO-related PRCPAs) shows that the longitudinal position of the ENSO-related PRCPAs in the western tropical Pacific is closely related to the magnitude of the WC trend. Specifically, it is found that the strengthening of the WC trend is large (small) in the CMIP5 AMIP simulations in which the ENSO-related PRCPAs are located relatively westward (eastward) in the western tropical Pacific. Furthermore, the zonal shift of the ENSO-related precipitation in the western tropical Pacific, which is associated with the climatological mean precipitation in the tropical Pacific, could play an important role in modifying the WC trend in the CMIP5 climate models.« less
Simulated Hothouse Climate at the P-Tr and implications for the mass extinction (Invited)
NASA Astrophysics Data System (ADS)
Winguth, A. M.; Winguth, C.
2013-12-01
The Permian-Triassic Boundary (P-Tr, ~251.5 Ma) marks the largest mass extinction of the Phanerozoic, with a reduction of marine family diversity of 60% and an extinction of marine organisms of 90%, and is characterized by large oscillatory excursions of carbon isotopes, wide-spread anoxia and extreme sea surface temperatures, reaching over 40 C in the equatorial Tethys. Anthropogenic emissions from fossil fuel burning over the next centuries will probably lead to a transition into a hothouse world with an ice-free climate analog to that at the P-Tr. The P-Tr global warming has been linked to greenhouse emissions from the Siberian Traps and associated coal-bed intrusions and likely led to severe environmental consequences, such as a decline in the dissolved oxygen concentration and marine productivity. In order to understand these changes, the pole-to-equator heat transport and feedbacks in the climate system have been explored with climate simulations, temperature reconstructions, climate-sensitive sediments, and the distribution of biomes. The response of the ocean circulation to a perturbation of ~4,900 PgC, comparable to the total Earth's fossil fuel inventory, leads to a global temperature increase by 3-4 C and an increase in ocean stratification. The pole-to-equator gradient changes remain small, because an ice-free world already existed during the Late Permian, with an atmospheric CO2 concentration of ~4x the preindustrial value, prior to the carbon pulse. However, the climatic changes might have been amplified by feedback processes. The greenhouse-induced warming could have led to a weakening of the Hadley cell and an associated decrease in the trade winds and equatorial primary productivity. A decline of cloud condensation nuclei due to these changes would lead to reduction of the cloud optical depth, particularly in high latitudes. Results from a climate simulation with reduced optical depth suggest a polar warming of ~5-7 C and a reduction of the pole-to-equator temperature gradient by 2-4 C, an increase in ocean stratification, a decline in marine productivity, and widespread low-oxygen concentrations throughout the Late Permian/Early Triassic deep sea. The recently observed rise in present-day deep-sea temperatures, slowdown of the overturning circulation, and decline in dissolved oxygen in the North Pacific and Equatorial Pacific could be the first signs of a transition to a more stratified ocean with lower dissolved oxygen concentrations in the deep water.
A 22,000-year record of monsoonal precipitation from northern Chile's Atacama Desert
Betancourt, J.L.; Latorre, C.; Rech, J.A.; Quade, Jay; Rylander, K.A.
2000-01-01
Fossil rodent middens and wetland deposits from the central Atacama Desert (22° to 24°S) indicate increasing summer precipitation, grass cover, and groundwater levels from 16.2 to 10.5 calendar kiloyears before present (ky B.P.). Higher elevation shrubs and summer-flowering grasses expanded downslope across what is now the edge of Absolute Desert, a broad expanse now largely devoid of rainfall and vegetation. Paradoxically, this pluvial period coincided with the summer insolation minimum and reduced adiabatic heating over the central Andes. Summer precipitation over the central Andes and central Atacama may depend on remote teleconnections between seasonal insolation forcing in both hemispheres, the Asian monsoon, and Pacific sea surface temperature gradients. A less pronounced episode of higher groundwater levels in the central Atacama from 8 to 3 ky B.P. conflicts with an extreme lowstand of Lake Titicaca, indicating either different climatic forcing or different response times and sensitivities to climatic change.