NASA Astrophysics Data System (ADS)
Bradley, Kyle E.; Vassilakis, Emmanuel; Hosa, Aleksandra; Weiss, Benjamin P.
2013-01-01
New paleomagnetic data from Early Miocene to Pliocene terrestrial sedimentary and volcanic rocks in Central Greece constrain the history of vertical-axis rotation along the central part of the western limb of the Aegean arc. The present-day pattern of rapid block rotation within a broad zone of distributed deformation linking the right-lateral North Anatolian and Kephalonia continental transform faults initiated after Early Pliocene time, resulting in a uniform clockwise rotation of 24.3±6.5° over a region >250 km long and >150 km wide encompassing Central Greece and the western Cycladic archipelago. Because the published paleomagnetic dataset requires clockwise rotations of >50° in Western Greece after ˜17 Ma, while our measurements resolve no vertical-axis rotation of Central Greece between ˜15 Ma and post-Early Pliocene time, a large part of the clockwise rotation of Western Greece must have occurred during the main period of contraction within the external thrust belt of the Ionian Zone between ˜17 and ˜15 Ma. Pliocene initiation of rapid clockwise rotation in Central and Western Greece reflects the development of the North Anatolia-Kephalonia Fault system within the previously extended Aegean Sea region, possibly in response to entry of dense oceanic lithosphere of the Ionian Sea into the Hellenic subduction zone and consequent accelerated slab rollback. The development of the Aegean geometric arc therefore occurred in two short-duration pulses characterized by rapid rotation and strong regional deformation.
DOT National Transportation Integrated Search
2002-05-01
INTRODUCTION. Many air traffic control specialists work relatively unique counter-clockwise, rapidly rotating shift schedules. Researchers recommend, however, that if rotating schedules are to be used, they should rotate in a clockwise, rather than a...
Nystagmus responses in a group of normal humans during earth-horizontal axis rotation
NASA Technical Reports Server (NTRS)
Wall, Conrad, III; Furman, Joseph M. R.
1989-01-01
Horizontal eye movement responses to earth-horizontal yaw axis rotation were evaluated in 50 normal human subjects who were uniformly distributed in age (20-69 years) and each age group was then divided by gender. Subjects were rotated with eyes open in the dark, using clockwise and counter-clockwise 60 deg velocity trapezoids. The nystagmus slow component velocity is analyzed. It is shown that, despite large intersubject variability, parameters which describe earth-horizontal yaw axis responses are loosely interrelated, and some of them vary significantly with gender and age.
Aksu-Dinar Fault System: Its bearing on the evolution of the Isparta Angle (SW Turkey)
NASA Astrophysics Data System (ADS)
Kaymakci, Nuretdin; Özacar, Arda; Langereis, Cornelis G.; Özkaptan, Murat; Gülyüz, Erhan; van Hinsbergen, Douwe J. J.; Uzel, Bora; McPhee, Peter; Sözbilir, Hasan
2017-04-01
The Isparta Angle is a triangular structure in SW Turkey with NE-SW trending western and NW-SE trending eastern flanks. Aksu Fault is located within the core of this structure and have been taken-up large E-W shortening and sinistral translation since the Late Miocene. It is an inherited structure which emplaced Antalya nappes over the Beydaǧları Platform during the late Eocene to Late Miocene and was reactivated by the Pliocene as a high angle reverse fault to accommodate the counter-clockwise rotation of Beydaǧları and SW Anatolia. On the other hand, the Dinar Fault is a normal fault with slight sinistral component has been active since Pliocene. These two structures are collinear and delimit areas with clockwise and counter-clockwise rotations. The areas to the north and east of these structures rotated clockwise while southern and western areas are rotated counter-clockwise. We claim that the Dinar-Aksu Fault System facilitate rotational deformation in the region as a scissor like mechanism about a pivot point north of Burdur. This mechanism resulted in the normal motion along the Dinar and reverse motion along the Aksu faults with combined sinistral translation component on both structures. We claim that the driving force for the motion of these faults and counter-clockwise rotation of the SW Anatolia seems to be slab-pull forces exerted by the east dipping Antalya Slab, a relic of Tethys oceanic lithosphere. The research for this paper is supported by TUBITAK - Grant Number 111Y239. Key words: Dinar Fault, Aksu Fault, Isparta Angle, SW Turkey, Burdur Pivot, Normal Fault, Reverse Fault
Cell envelopes of chemotaxis mutants of Escherichia coli rotate their flagella counterclockwise.
Szupica, C J; Adler, J
1985-01-01
Flagella rotated exclusively counterclockwise in Escherichia coli cell envelopes prepared from wild-type cells, whose flagella rotated both clockwise and counterclockwise, from mutants rotating their flagella counterclockwise only, and even from mutants rotating their flagella primarily clockwise. Some factor needed for clockwise flagellar rotation appeared to be missing or defective in the cell envelopes. PMID:3884599
NASA Astrophysics Data System (ADS)
Li, Shihu; van Hinsbergen, Douwe J. J.; Deng, Chenglong; Advokaat, Eldert L.; Zhu, Rixiang
2018-02-01
The Sibumasu Block in SE Asia represents the eastward continuation of the Qiangtang Block. Here we report a detailed rock magnetic and paleomagnetic study on the Middle Jurassic and Paleocene rocks from northern Sibumasu, to document the crustal deformation during the India-Asia collision since the Paleocene and reconstruct the overall strike of the Qiangtang/Sibumasu elements before the India-Asia collision. Although the fold test is inconclusive based solely on our data, a positive reversal test, a positive regional fold test with previous paleomagnetic results, and a detrital origin of hematite in the red beds as indicated by scanning electron microscopy suggest that the magnetizations obtained from the Jurassic and Paleocene rocks are most likely primary, showing an 80° clockwise rotation since Paleocene. These results, together with previously published paleomagnetic data, suggest that the northern Sibumasu and northern Simao elements experienced a 60-80° clockwise rotation since Paleocene. This large clockwise rotation is also consistent with the surface GPS velocity field and NE-SW fault networks, suggesting a rotational motion of crustal material from southeastern Tibet during late Cenozoic. We infer that the large clockwise rotation is a sum of rotation in the Eocene to Middle Miocene time associated with Indochina extrusion and rotation after the Middle Miocene associated with the E-W extension in central Tibet. This suggests that the eastward motion of Tibetan crustal material along the Xianshuihe-Xiaojiang fault after Middle Miocene is transmitted to the southwest toward Myanmar. Jurassic and Cretaceous paleomagnetic results suggest that the Qiangtang/northern Sibumasu was originally a curved structure with an orientation of N60°W in Tibet and changes to N10°W in southern Sibumasu.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cisowski, S.M.; Fuller, M.; Haston, R.B.
1990-06-01
On-land and deep-sea core paleomagnetic data have been collected from around the Philippine Sea plate. Data from the Palau islands suggest 70{degree} of clockwise rotation and northward translation since the mid-Oligocene. The authors interpret this rotation as a rotation of the West Philippine Sea basin as a whole. New paleomagnetic data from Guam indicate 70{degree} of clockwise rotation and northward translation since the early Oligocene. Although Eocene results have been previously quoted, the new data suggest that there is no reliable Eocene data from Guam. New data from Saipan suggest 50-60{degree} of clockwise rotation since the Late Eocene and 20{degree}more » of clockwise rotation since the mid-Miocene, along with northward translation. During ODP Leg 126, a new technique utilizing the formation microscanner logging tool was employed to obtain orientated drill cores from the Bonin forearc basin. Preliminary results indicate that 70-110{degree} of clockwise rotation has occurred there since the mid-Oligocene. Inclination studies on cores from ODP Legs 125 and 126 along with the on-land paleomagnetic data support 15{degree} of northward translation of the Philippine Sea plate since the mid-Oligocene. The consistent clockwise rotations found around the Philippine Sea plate suggest that the entire plate, including the Bonin and Mariana arcs, has rotated more than 50{degree} since the mid-Oligocene. The similarity of Oligocene results from the Bonin forearc and Guam suggest that little or no relative rotation has occurred between these two points. This implies that the shape of the Mariana arc is probably not due to rotational deformation. The northward translation and clockwise rotation of the Philippine Sea plate established oblique subduction along the proto-Philippine margin, which could account for the 600 km of subducted slab beneath the eastern Celebes Sea.« less
Patel, Siddharth; Kwak, Lucia; Agarwal, Sunil K; Tereshchenko, Larisa G; Coresh, Josef; Soliman, Elsayed Z; Matsushita, Kunihiro
2017-11-03
A few studies have recently reported clockwise and counterclockwise rotations of QRS transition zone as predictors of mortality. However, their prospective correlates and associations with individual cardiovascular disease (CVD) outcomes are yet to be investigated. Among 13 567 ARIC (Atherosclerosis Risk in Communities) study participants aged 45 to 64 years, we studied key correlates of changes in the status of clockwise and counterclockwise rotation over time as well as the association of rotation status with incidence of coronary heart disease (2408 events), heart failure (2196 events), stroke (991 events), composite CVD (4124 events), 898 CVD deaths, and 3469 non-CVD deaths over 23 years of follow-up. At baseline, counterclockwise rotation was most prevalent (52.9%), followed by no (40.5%) and clockwise (6.6%) rotation. Of patients with no rotation, 57.9% experienced counterclockwise or clockwise rotation during follow-up, with diabetes mellitus and black race significantly predicting clockwise and counterclockwise conversion, respectively. Clockwise rotation was significantly associated with higher risk of heart failure (hazard ratio, 1.20; 95% confidence interval [CI], 1.02-1.41) and non-CVD death (hazard ratio, 1.28; 95% CI, 1.12-1.46) after adjusting for potential confounders including other ECG parameters. On the contrary, counterclockwise rotation was significantly related to lower risk of composite CVD (hazard ratio, 0.93; 95% CI, 0.87-0.99]), CVD mortality (hazard ratio, 0.76; 95% CI, 0.65-0.88), and non-CVD deaths (hazard ratio, 0.92; 95% CI, 0.85-0.99 [borderline significance with heart failure]). Counterclockwise rotation, the most prevalent QRS transition zone pattern, demonstrated the lowest risk of CVD and mortality, whereas clockwise rotation was associated with the highest risk of heart failure and non-CVD mortality. These results have implications on how to interpret QRS transition zone rotation when ECG was recorded. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
DOT National Transportation Integrated Search
2002-07-01
INTRODUCTION. Many Air Traffic Control Specialists (ATCSs) work a relatively unique counter-clockwise, rapidly rotating shift schedule. Although arguments against these kinds of schedules are prevalent in the literature, few studies have examined rot...
Clockwise rotation of the western Mojave Desert
NASA Technical Reports Server (NTRS)
Golombek, Matthew P.; Brown, Laurie L.
1988-01-01
A study of paleomagnetic data from Miocene volcanic rocks in the western Mojave Desert, which suggests about 25 deg of clockwise rotation, is presented. A total of 166 oriented core samples of two types of basalt were taken from 19 sites in the region. After demagnetization to 40 or 60 mT, application of structural corrections, and inversion of reversed sites, the data yielded an average direction of 51.6 deg inclination and 15.6 deg declination. When compared with the expected direction for Miocene rocks for stable North America, the direction for these Mojave rocks shows a clockwise rotation of 23.8 deg + or - 11.3 deg and a flattening of about 2.1 deg, a rotation which agrees in direction with oroclinal bending of the southern Sierra Nevada due to right-lateral shear along the western margin of North America. Most of this rotation is constrained by other paleomagnetic and strucural information to have occurred soon after the sampled basalts were deposited (about 20 Ma) and before about 16 Ma. These clockwise declination anomalies indicate that any subsequent counterclockwise rotation is small and/or compensated by previous clockwise rotation.
2013-01-01
Background Rotation of the torso while reaching produces torques (e.g., Coriolis torque) that deviate the arm from its planned trajectory. To ensure an accurate reaching movement, the brain may take these perturbing torques into account during movement planning or, alternatively, it may correct hand trajectory during movement execution. Irrespective of the process selected, it is expected that an underestimation of trunk rotation would likely induce inaccurate shoulder and elbow torques, resulting in hand deviation. Nonetheless, it is still undetermined to what extent a small error in the perception of trunk rotations, translating into an inappropriate selection of motor commands, would affect reaching accuracy. Methods To investigate, we adapted a biomechanical model (J Neurophysiol 89: 276-289, 2003) to predict the consequences of underestimating trunk rotations on right hand reaching movements performed during either clockwise or counter clockwise torso rotations. Results The results revealed that regardless of the degree to which the torso rotation was underestimated, the amplitude of hand deviation was much larger for counter clockwise rotations than for clockwise rotations. This was attributed to the fact that the Coriolis and centripetal joint torques were acting in the same direction during counter clockwise rotation yet in opposite directions during clockwise rotations, effectively cancelling each other out. Conclusions These findings suggest that in order to anticipate and compensate for the interaction torques generated during torso rotation while reaching, the brain must have an accurate prediction of torso rotation kinematics. The present study proposes that when designing upper limb prostheses controllers, adding a sensor to monitor trunk kinematics may improve prostheses control and performance. PMID:23758968
The horizontal and vertical cervico-ocular reflexes of the rabbit.
Barmack, N H; Nastos, M A; Pettorossi, V E
1981-11-16
Horizontal and vertical cervico-ocular reflexes of the rabbit (HCOR, VCOR) were evoked by sinusoidal oscillation of the body about the vertical and longitudinal axes while the head was fixed. These reflexes were studied over a frequency range of 0.005-0.800 Hz and at stimulus amplitudes of +/- 10 degrees. When the body of the rabbit was rotated horizontally clockwise around the fixed head, clockwise conjugate eye movements were evoked. When the body was rotated about the longitudinal axis onto the right side, the right eye rotated down and the left eye rotated up. The mean gain of the HCOR (eye velocity/body velocity) rose from 0.21 and 0.005 Hz to 0.27 at 0.020 Hz and then declined to 0.06 at 0.3Hz. The gain of the VCOR was less than the gain of the HCOR by a factor of 2-3. The HCOR was measured separately and in combination with the horizontal vestibulo-ocular reflex (HVOR). These reflexes combine linearly. The relative movements of the first 3 cervical vertebrae during stimulation of the HCOR and VCOR were measured. For the HCOR, the largest angular displacement (74%) occurs between C1 and C2. For the VCOR, the largest relative angular displacement (45%) occurs between C2 and C3. Step horizontal clockwise rotation of the head and body (HVOR) evoked low velocity counterclockwise eye movements followed by fast clockwise (resetting) eye movements. Step horizontal clockwise rotation of the body about the fixed head (HCOR) evoked low velocity clockwise eye movements which were followed by fast clockwise eye movements. Step horizontal clockwise rotation of the head about the fixed body (HCOR + HVOR) evoked low velocity counterclockwise eye movements which were not interrupted by fast clockwise eye movements. These data provide further evidence for a linear combination of independent HCOR and HVOR signals.
NASA Astrophysics Data System (ADS)
Nukman, M.; Moeck, I.
2012-04-01
The Tarutung Basin is one of several basins along the prominent Sumatra Fault System (SFS) which represents a dextral strike slip fault zone segmented into individual fault strands. The basins are located at right-stepping transfer. The Tarutung Basin hosts geothermal manifestations such as hot springs and travertines indicating a geothermal system with some decent potential in the subsurface. As part of geothermal exploration, field geology is investigated focusing on how the structural setting controls the thermal manifestation distribution. A complex fault pattern is now newly mapped and evidences sinistral faults striking E-W (Silangkitang), normal faults striking SE-NW at the eastern strand of Tarutung Basin (Sitompul) and normal faults striking NW-SE at the western strand of the basin (Sitaka). These structures form an angle greater than 450 with respect to the current maximum principal stress which is oriented in N-S. Secondary sinistral shear fractures identified as antithetic Riedel shears can be correlated with hot spring locations at Silangkitang, forming an angle of 500 with respect to the current maximum stress. A large angle of normal fault and antithetic Riedel shear trend with respect to the current maximum stress direction indicates that the structures have been rotated. Unidentified dextral strike slip faults might exist at the eastern strand of Tarutung Basin to accommodate the clockwise rotation between the eastern boundary of the basin and the NW-SE striking normal fault of Panabungan. Normal faults striking parallel with the SFS East of the basin are interpreted as dilatational jogs caused by the clockwise rotated block movement with respect to the NW-SE fault trend sinistral shear along ENE-WSW faults. Silicified pryroclastics in association with large discharge at hot springs at these NW-SE striking normal faults support this hypothesis. As proposed by Nivinkovich (1976) and Nishimura (1986) Sumatra has rotated 20° clockwise since the last two million years due to the increase in sea-floor spreading rate of the Indian-Australian plate. The combination of regional clockwise rotation of Sumatra with local clockwise rotation caused by simple shear along the dextral SFS might generate the complex fault pattern which controls fluid flow of thermal water and placement of hot springs. Acknowledgements : Deutscher Akademischer Austausch Dienst, DAAD. German Ministry for Education and Research, BMBF. Badan Geologi - KESDM Bandung, Indonesia.
Flagella and motility behaviour of square bacteria.
Alam, M; Claviez, M; Oesterhelt, D; Kessel, M
1984-01-01
Square bacteria are shown to have right-handed helical (RH) flagella. They swim forward by clockwise (CW), and backwards by counterclockwise (CCW) rotation of their flagella. They are propelled by several or single filaments arising at several or single points on the cell surface. When there are several filaments a stable bundle is formed that does not fly apart during the change from clockwise to counterclockwise rotation or vice versa. In addition to the flagella attached to the cells, large amounts of detached flagella aggregated into thick super-flagella, can be observed at all phases of growth. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:6526006
NASA Astrophysics Data System (ADS)
Meyer, Matthew; Morris, Antony; Anderson, Mark; MacLeod, Chris
2015-04-01
The Oman ophiolite is an important natural laboratory for understanding the construction of oceanic crust at fast spreading axes and its subsequent tectonic evolution. Previous paleomagnetic research in lavas of the northern ophiolitic blocks (Perrin et al., 2000) has demonstrated substantial clockwise intraoceanic tectonic rotations. Paleomagnetic data from lower crustal sequences in the southern blocks, however, have been more equivocal due to complications arising from remagnetization, and have been used to infer that clockwise rotations seen in the north are internal to the ophiolite rather than regionally significant (Weiler, 2000). Here we demonstrate the importance and advantages of sampling crustal transects in the ophiolite in order to understand the nature and variability in magnetization directions. By systematically sampling the lower crustal sequence exposed in Wadi Abyad (Rustaq block) we resolve for the first time in a single section a pattern of remagnetized lowermost gabbros and retention of earlier magnetizations by uppermost gabbros and the overlying dyke-rooting zone. Results are supported by a positive fold test that shows that remagnetization of lower gabbros occurred prior to the Campanian structural disruption of the Moho. NW-directed remagnetized remanences in the lower units are consistent with those used by Weiler (2000) to infer lack of significant rotation of the southern blocks and to argue, therefore, that rotation of the northern blocks was internal to the ophiolite. In contrast, E/ENE-directed remanences in the uppermost levels of Wadi Abyad imply large, clockwise rotation of the Rustaq block, of a sense and magnitude consistent with intraoceanic rotations inferred from extrusive sections in the northern blocks. We conclude that without the control provided by systematic crustal sampling, the potential for different remanence directions being acquired at different times may lead to erroneous tectonic interpretation.
NASA Astrophysics Data System (ADS)
Dalziel, I. W. D.; Norton, I. O.; Lawver, L. A.; Lavier, L.; Davis, J. K.; Gahagan, L.
2016-12-01
Geological and paleomagnetic data indicate that initial fragmentation of the Gondwanaland supercontinent in the southernmost Atlantic-Weddell Sea region involved translation and rotation of two small crustal blocks. The Falkland/Malvinas block on the South American plate (F/M) and the Ellsworth-Whitmore mountains block in West Antarctica (EWM) both contain segments of the earliest Mesozoic Gondwana fold belt. The blocks originated in the Natal embayment between the Cape Mountains of southernmost Africa and the Pensacola Mountains of the East Antarctic craton margin. Shortly after emplacement of the Karoo-Ferrar large igneous province (LIP) at ca. 182Ma, the F/M block was rotated clockwise 150 ° and the EWM block counter¬clockwise 90°, while both were translated several hundred kilometers towards the Panthalassic/Pacific Ocean. As indicated by absence of shortening in the sedimentary basins of the F/M Plateau and Weddell embayment, the motions of the crustal blocks relative to the major continents happened during extreme extension accompanied by widespread silicic magmatism that preceded seafloor spreading. We propose a new reconstruction of the Gondwana craton margin, suggesting an original embayment between the Kalahari and East Antarctic cratons, and subsequent mirror-image clockwise (South America-F/M) and counterclockwise (Antarctic Peninsula-EWM) rotations prior to seafloor spreading in the Weddell Sea and South Atlantic.What geodynamic processes were involved in the significant rotations and translations of continental lithosphere prior to ocean basin formation? Our conclusion, based on the geologic and geophysical data and on geodynamic modeling, is that the motions were driven by the distributed crustal thinning of warm continental lithosphere and by mantle flow towards a retreating Panthalassic margin subduction zone associated with the formation of the Karoo-Ferrar Large Igneous Province between the East Antarctic, Kalahari and Rio de la Plata cratons.
Laser-driven clockwise molecular rotation for a transient spinning waveplate.
York, Andrew G
2009-08-03
Our simulations show a copropagating pair of laser pulses polarized in two different directions can selectively excite clockwise or counterclockwise molecular rotation in a gas of linear molecules. The resulting birefringence of the gas rotates on a femtosecond timescale and shows a periodic revival structure. The total duration of the pulse pair can be subpicosecond, allowing molecular alignment at the high densities and temperatures necessary to create a transient spinning waveplate.
Observed Properties of Giant Cells
NASA Technical Reports Server (NTRS)
Hathaway, David H.; Upton, Lisa; Colegrove, Owen
2014-01-01
The existence of Giant Cells has been suggested by both theory and observation for over 45 years. We have tracked the motions of supergranules in SDO/HMI Doppler velocity data and find larger (Giant Cell) flows that persist for months. The flows in these cells are clockwise around centers of divergence in the north and counter-clockwise in the south. Equatorward flows are correlated with prograde flows - giving the transport of angular momentum toward the equator that is needed to maintain the Sun's rapid equatorial rotation. The cells are most pronounced at mid- and high-latitudes where they exhibit the rotation rates representative of those latitudes. These are clearly large, long-lived, cellular features, with the dynamical characteristics expected from the effects of the Sun's rotation, but the shapes of the cells are not well represented in numerical models. While the Giant Cell flow velocities are small (<10 m/s), their long lifetimes should nonetheless substantially impact the transport of magnetic flux in the Sun's near surface layers.
NASA Astrophysics Data System (ADS)
Pluhar, Christopher J.; Coe, Robert S.; Lewis, Jonathan C.; Monastero, Francis C.; Glen, Jonathan M. G.
2006-10-01
Pliocene lavas and sediments of Wild Horse Mesa in the Coso Range, CA exhibit clockwise vertical-axis rotation of fault-bounded blocks. This indicates localization of one strand of the Eastern California shear zone/Walker Lane Belt within a large-scale, transtensional, dextral, releasing stepover. We measured rotations paleomagnetically relative to two different reference frames. At two localities we averaged secular variation through sedimentary sections to reveal rotation or its absence relative to paleogeographic north. Where sediments are lacking we used areally-extensive lava flows from individual cooling units or short eruptive episodes to measure the relative rotation of localities by comparing their paleomagnetic remanence directions to one another. At the western edge of Wild Horse Mesa the fanglomerate member of the Coso Formation (c.a. 3 Ma) exhibits between 8.4° ± 7.8° and 26.2° ± 9.0° (two endmember models of a continuum) absolute clockwise rotation. Within Wild Horse Mesa, 3-3.5 Ma lavas at 5 different localities exhibit about 12.0° ± 4.6° (weighted mean) clockwise rotation relative to the margins of the area, a result statistically indistinguishable from the absolute rotation. Hence the segment of the Eastern California shear zone passing through Wild Horse Mesa has caused vertical axis rotation of fault-bounded blocks as part of the overall dextral shear strain. The magnitude of block rotation at Wild Horse Mesa suggests that rotation has accommodated: 1) 1.5 km of dextral shear along an azimuth of about north 30° west since ca. 3 Ma between the area's bounding faults and 2) 2 km of extension perpendicular to the Coso Wash normal fault during this same period. This corresponds to 13-25% extension across the mesa. In contrast to Wild Horse Mesa, the opposite (western) side of the trace of the Coso Wash normal fault hosts the Coso geothermal area and what Monastero et al. [F.C. Monastero, A.M. Katzenstein, J.S. Miller, J.R. Unruh, M.C. Adams, K. Richards-Dinger, The Coso geothermal field: a nascent metamorphic core complex, Geol. Soc. Amer. Bull. 117 (2005) 1534-1553.] characterize as a nascent metamorphic core complex. Consistent with upper plate disruption above a detachment, surface rocks (i.e. the upper plate of the detachment system) at the Coso geothermal area are tilted westward. However they appear to exhibit no detectable rotation. Thus, the style of block rotation may be partitioned: with clockwise vertical-axis rotation dominating in the Wild Horse Mesa and horizontal axis rotation (tilting) in the geothermal area.
Oroclines and paleomagnetism in Borneo and South-East Asia
NASA Astrophysics Data System (ADS)
Hutchison, Charles S.
2010-12-01
Oroclinal bending of Borneo is interpreted to result from indentation and collision by the continental promontory of the Miri Zone-Central Luconia Province of northern Sundaland into southern Sundaland. The collision caused strong compression and uplift of the intervening Sibu Zone Upper Cretaceous-Eocene Rajang-Embaluh Group turbidite basin that was floored by oceanic crust of the Proto South China Sea. Timing of the collision is indicated by uplift of turbidite formations to be overlain by Upper Eocene-Lower Oligocene carbonates and intrusion of tin-mineralised granites into the turbidites at the south-east maximum inflexion of the orocline, a region complicated by juxtaposition of both shallow and deep water formations. The oroclinal model, requiring clockwise rotation of the north-west limb, is given no support from the paleomagnetic data that instead demonstrate about 50° of Cenozoic anti-clockwise rotation. Unfortunately not a single outcrop of the strongly oroclinally bent Sibu Zone rocks was measured for paleomagnetism in the north-west limb. Limited support was given for the required anti-clockwise rotation in the north-east limb. Previous syntheses emphasised anti-clockwise rotation, or stable non-rotation of the greater Borneo region as a coherent entity, without any internal deformation. Such models have ignored the oroclinal shape defined by the areal geology of the island, known since early Dutch publications. The northern Thailand-Myanmar north-south-trending geology fabric results from indentation by a promontory of continental India at the Assam-Yunnan oroclinal syntaxis, resulting in paleomagnetically-determined clockwise rotation. The bend of Peninsular Malaysia and Sumatra, from north-south changing to west-east towards Borneo in the south, remains difficult to model because of widespread remagnetisation.
NASA Astrophysics Data System (ADS)
Meyer, M.; Morris, A.; Anderson, M.; MacLeod, C. J.
2014-12-01
The Oman ophiolite is an important natural laboratory for understanding the construction of oceanic crust at fast spreading axes and its subsequent tectonic evolution. Previous paleomagnetic research in lavas of the northern ophiolitic blocks (Perrin et al., 2000, Mar. Geophys. Res.) has demonstrated substantial clockwise intraoceanic tectonic rotations. Paleomagnetic data from lower crustal sequences in the southern blocks, however, have been more equivocal due to complications arising from remagnetization, and have been used to infer that clockwise rotations seen in the north are internal to the ophiolite rather than regionally significant (Weiler, 2000, Mar. Geophys. Res.). Here we demonstrate the importance and advantages of sampling crustal transects in the ophiolite in order to understand the nature and variability in magnetization directions. By systematically sampling the lower crustal sequence exposed in Wadi Abyad (Rustaq block) we resolve for the first time in a single section a pattern of remagnetized lowermost gabbros and retention of earlier magnetizations by uppermost gabbros and the overlying dyke-rooting zone. Results are supported by a positive fold test that shows that remagnetization of lower gabbros occurred prior to the Campanian structural disruption of the Moho. NW-directed remagnetized remanences in the lower units are consistent with those used by Weiler (2000, Mar. Geophys. Res.) to infer lack of significant rotation of the southern blocks and to argue, therefore, that rotation of the northern blocks was internal to the ophiolite. In contrast, E/ENE-directed remanences in the uppermost levels of Wadi Abyad imply a large, clockwise rotation of the Rustaq block, of a sense and magnitude consistent with intraoceanic rotations inferred from extrusive sections in the northern blocks. We conclude that without the control provided by systematic crustal sampling, the potential for different remanence directions being acquired at different times may lead to erroneous tectonic interpretation.
Concentration-discharge responses to storm events in coastal California watersheds
NASA Astrophysics Data System (ADS)
Aguilera, R.; Melack, J. M.
2017-12-01
Storm events in montane catchments are the main cause of mobilization of solutes and particulates into and within stream channels in coastal California. Non-linear behavior of nutrients and suspended sediments during storms is evident in the hysteresis that arises in concentration-discharge (C-Q) relationships. We examined patterns in the C-Q hysteresis of nutrients (NO3-, NH4+, DON and PO43-) and total suspended solids (TSS) during storms across ten sites and water years 2002 to 2015 by quantifying the slope of the C-Q relationship and the rotational pattern of the hysteresis loop. We observed several hysteresis types: constituents associated with sediment transport (PO43- and TSS) were flushed during storm events, whereas nitrogen species had hysteretic responses such as dilution with clockwise rotation in urban sites and enrichment with anti-clockwise rotation in undeveloped sites. The wide range of C-Q responses that occurred among sites and seasons reflected the variable hydrological and biogeochemical characteristics of catchments and storms. Storm responses for nitrate in nested catchments differed in slope and rotation of C-Q hysteresis. Upland undeveloped and lowland urban sites had anti-clockwise rotation at the onset of the rainy season following a dry year, which implied a delay in the transport of this solute to the streams. By the middle of the season, the urban site switched from dilution to enrichment, and then again to dilution with clockwise rotation, which implied high initial concentrations and proximal sources by the end of the season.
NASA Astrophysics Data System (ADS)
Fredrickson, S. M.; Pluhar, C. J.; Carlson, C. W.
2013-12-01
Walker Lane is a broad (~100-200 km) zone of dextral shear located between the Sierra Nevada microplate and the Basin and Range Province. We consider Bodie Hills a part of the greater Walker Lane because it has experienced clockwise, vertical-axis rotation of crustal blocks due to dextral shear accommodation. This strain is variable, resulting in rotations ranging from ~10°-70° depending on location. The Miocene Eureka Valley Tuff (EVT) is an ideal strain marker, because it is a geologically instantaneous and laterally extensive unit. We use paleomagnetic analysis of ignimbrites to improve the resolution of strain domain boundaries as well as test for doming in Bodie Hills. EVT site mean directions were compared to reference directions of the Tollhouse Flat and By Day Members collected from the stable Sierra Nevada to determine magnitudes of vertical-axis rotation. Three new sites and three previously sampled sites define a high-rotation domain including Bridgeport Valley and the East Walker River Canyon with an average clockwise rotation of ~50°-60°. We define the eastern boundary of this high-rotation domain as coinciding with a mapped fault exhibiting 11.7°×7.9° rotation of the presumed footwall. Our data corroborates and improves on Carlson's (2012) kinematic model in which the greater Bodie Hills has rotated clockwise ~30° since EVT emplacement. Eutaxitic textures, dipping up to 90°, are gross indicators of true tilt, but are also influenced by original dips in some localities, complicating interpretations. John et al. (2012) describe a simple doming model of Bodie Hills since EVT emplacement, supported by the high elevation of outflow channels compared to source areas. Our paleomagnetic data does not support simple doming, suggesting that there is either no doming of Bodie Hills, or that vertical crustal displacements have occurred without large-scale folding. John et al. (2012) dated undifferentiated EVT in Bodie Hills at ~9.4 Ma; using paleomagnetism, we show the dated outcrops to be Tollhouse Flat Member, substantially improving age constraints on EVT.
Bathroom Buddies: Countering your Clockwise Rotation
NASA Astrophysics Data System (ADS)
Cooper, C. M.; Stegman, D. R.
2006-12-01
Which way does your bathtub, toilet, sink, or other favorite plumbing basin drain? Popular television shows perpetuate the fact that water spins the opposite direction in the southern hemisphere, and sometimes even explicitly point to the Coriolis effect (or Earth's rotation) as the cause. Skeptics disagree: "No way. Water doesn't obey your rules: it goes where it wants...like me, babe." [1]. Fact: Cyclones rotate clockwise in the southern hemisphere and hurricanes counter-clockwise in the northern hemisphere. But does your hemisphere also determine the direction water spirals down your toilet? In the ideal scenario of water draining out a sink (i.e. a defect-free, perfectly-leveled basin in which water has remained undisturbed for sufficient enough time to quiet any background motions or eddies) --- then yes, maybe it is possible. However, in everyday life, not even the most decadent of bathtubs provide us a large enough lengthscale to observe the Coriolis effect on the direction which water spirals towards the drain. Thus, we are left confronting the possibility that something heard on television isn't true. But is just "telling" students, friends, or strangers in bars enough to debunk this urban myth? Rather, we offer a practical demonstration involving a friend from the opposite hemisphere (if not one in existence, then find one on the internet!), a bathroom, a funnel, a bucket, some food coloring, a camera, a pitcher and some equations and scalings for extra credit and fun. 1) Simpson, B., "Bart vs. Australia", Season 6, Episode 119, 1995.
Stress field rotation or block rotation: An example from the Lake Mead fault system
NASA Technical Reports Server (NTRS)
Ron, Hagai; Nur, Amos; Aydin, Atilla
1990-01-01
The Coulomb criterion, as applied by Anderson (1951), has been widely used as the basis for inferring paleostresses from in situ fault slip data, assuming that faults are optimally oriented relative to the tectonic stress direction. Consequently if stress direction is fixed during deformation so must be the faults. Freund (1974) has shown that faults, when arranged in sets, must generally rotate as they slip. Nur et al., (1986) showed how sufficiently large rotations require the development of new sets of faults which are more favorably oriented to the principal direction of stress. This leads to the appearance of multiple fault sets in which older faults are offset by younger ones, both having the same sense of slip. Consequently correct paleostress analysis must include the possible effect of fault and material rotation, in addition to stress field rotation. The combined effects of stress field rotation and material rotation were investigated in the Lake Meade Fault System (LMFS) especially in the Hoover Dam area. Fault inversion results imply an apparent 60 degrees clockwise (CW) rotation of the stress field since mid-Miocene time. In contrast structural data from the rest of the Great Basin suggest only a 30 degrees CW stress field rotation. By incorporating paleomagnetic and seismic evidence, the 30 degrees discrepancy can be neatly resolved. Based on paleomagnetic declination anomalies, it is inferred that slip on NW trending right lateral faults caused a local 30 degrees counter-clockwise (CCW) rotation of blocks and faults in the Lake Mead area. Consequently the inferred 60 degrees CW rotation of the stress field in the LMFS consists of an actual 30 degrees CW rotation of the stress field (as for the entire Great Basin) plus a local 30 degrees CCW material rotation of the LMFS fault blocks.
Stress field rotation or block rotation: An example from the Lake Mead fault system
NASA Astrophysics Data System (ADS)
Ron, Hagai; Nur, Amos; Aydin, Atilla
1990-02-01
The Coulomb criterion, as applied by Anderson (1951), has been widely used as the basis for inferring paleostresses from in situ fault slip data, assuming that faults are optimally oriented relative to the tectonic stress direction. Consequently if stress direction is fixed during deformation so must be the faults. Freund (1974) has shown that faults, when arranged in sets, must generally rotate as they slip. Nur et al., (1986) showed how sufficiently large rotations require the development of new sets of faults which are more favorably oriented to the principal direction of stress. This leads to the appearance of multiple fault sets in which older faults are offset by younger ones, both having the same sense of slip. Consequently correct paleostress analysis must include the possible effect of fault and material rotation, in addition to stress field rotation. The combined effects of stress field rotation and material rotation were investigated in the Lake Meade Fault System (LMFS) especially in the Hoover Dam area. Fault inversion results imply an apparent 60 degrees clockwise (CW) rotation of the stress field since mid-Miocene time. In contrast structural data from the rest of the Great Basin suggest only a 30 degrees CW stress field rotation. By incorporating paleomagnetic and seismic evidence, the 30 degrees discrepancy can be neatly resolved. Based on paleomagnetic declination anomalies, it is inferred that slip on NW trending right lateral faults caused a local 30 degrees counter-clockwise (CCW) rotation of blocks and faults in the Lake Mead area. Consequently the inferred 60 degrees CW rotation of the stress field in the LMFS consists of an actual 30 degrees CW rotation of the stress field (as for the entire Great Basin) plus a local 30 degrees CCW material rotation of the LMFS fault blocks.
NASA Astrophysics Data System (ADS)
Choudhary, Mangilal; Mukherjee, S.; Bandyopadhyay, P.
2018-02-01
In this paper, the collective dynamics of large aspect ratio dusty plasma is studied over a wide range of discharge parameters. An inductively coupled diffused plasma, which creates an electrostatic trap to confine the negatively charged grains, is used to form a large volume (or large aspect ratio) dusty plasma at low pressure. For introducing the dust grains into the potential well, a unique technique using secondary DC glow discharge plasma is employed. The dust dynamics is recorded in a two-dimension (2D) plane at a given axial location. The dust fluid exhibits wave-like behavior at low pressure (p < 0.06 mbar) and high rf power (P > 3 W). The mixed motion, waves and vortices, is observed at an intermediate gas pressure (p ˜ 0.08 mbar) and low power (P < 3 W). Above the threshold value of gas pressure (p > 0.1 mbar), the clockwise and anti-clockwise co-rotating vortex series are observed on edges of the dust cloud, whereas the particles in the central region show random motion. These vortices are only observed above the threshold width of the dust cloud. The occurrence of the co-rotating vortices is understood on the basis of the charge gradient of dust particles, which is orthogonal to the gravity. The charge gradient is a consequence of the plasma inhomogeneity from the central region to the outer edge of the dust fluid. Since a vortex has the characteristic size in the dissipative medium; therefore, a series of the co-rotating vortex on both sides of dusty plasma is observed. The experimental results on the vortex formation and its multiplicity are compared to an available theoretical model and are found to be in close agreement.
NASA Astrophysics Data System (ADS)
Tian, A.; Degeling, A. W.
2017-12-01
Simulations and observations had shown that single positive/negative solar wind dynamic pressure pulse would excite geomagnetic impulsive events along with ionosphere and/or magnetosphere vortices which are connected by field aligned currents(FACs). In this work, a large scale ( 9min) magnetic hole event in solar wind provided us with the opportunity to study the effects of positive-negative pulse pair (△p/p 1) on the magnetosphere and ionosphere. During the magnetic hole event, two traveling convection vortices (TCVs, anti-sunward) first in anticlockwise then in clockwise rotation were detected by geomagnetic stations located along the 10:30MLT meridian. At the same time, another pair of ionospheric vortices azimuthally seen up to 3 MLT first in clockwise then in counter-clockwise rotation were also appeared in the afternoon sector( 14MLT) and centered at 75 MLAT without obvious tailward propagation feature. The duskside vortices were also confirmed in SuperDARN radar data. We simulated the process of magnetosphere struck by a positive-negative pulse pair and it shows that a pair of reversed flow vortices in the magnetosphere equatorial plane appeared which may provide FACs for the vortices observed in ionosphere. Dawn dusk asymmetry of the vortices as well as the global geomagnetism perturbation characteristics were also discussed.
Concept for a 3D-printed soft rotary actuator driven by a shape-memory alloy
NASA Astrophysics Data System (ADS)
Yuan, Han; Chapelle, Frédéric; Fauroux, Jean-Christophe; Balandraud, Xavier
2018-05-01
In line with the recent development of soft actuators involving shape-memory alloys (SMAs) embedded in compliant structures, this paper proposes a concept for a rotary actuator driven by a SMA wire placed inside a 3D-printed helical structure. The concept consists of using the one-way memory effect of the SMA (activated by Joule heating) to create the rotation of a material point of the structure, while the inverse rotation is obtained during the return to ambient temperature thanks to the structure’s elasticity. The study was performed in three steps. First, a prototype was designed from a chain of design rules, and tested to validate the feasibility of the concept. Thermal and geometrical measurements were performed using infrared and visible-range stereo cameras. A clockwise rotation (250°) followed by an anti-clockwise rotation (‑200°) were obtained, enabling us to validate the concept despite the partial reversibility of the movement. Second, finite element simulations were performed to improve rotation reversibility. The high compliance of the mechanical system required a framework of large displacements for the calculations (in the strength of materials sense), due to the high structural flexibility. Finally, a second prototype was constructed and tested. Attention was paid to the rotation (fully reversible rotation of 150° reached) as well as to parasitic movements due to overall structural deformation. This study opens new prospects for the design and analysis of 3D-printed soft actuators activated by smart materials.
Asymmetry in the clockwise and counterclockwise rotation of the bacterial flagellar motor
Yuan, Junhua; Fahrner, Karen A.; Turner, Linda; Berg, Howard C.
2010-01-01
Cells of Escherichia coli are able to swim up gradients of chemical attractants by modulating the direction of rotation of their flagellar motors, which spin alternately clockwise (CW) and counterclockwise (CCW). Rotation in either direction has been thought to be symmetric and exhibit the same torques and speeds. The relationship between torque and speed is one of the most important measurable characteristics of the motor, used to distinguish specific mechanisms of motor rotation. Previous measurements of the torque–speed relationship have been made with cells lacking the response regulator CheY that spin their motors exclusively CCW. In this case, the torque declines slightly up to an intermediate speed called the “knee speed” after which it falls rapidly to zero. This result is consistent with a “power-stroke” mechanism for torque generation. Here, we measure the torque–speed relationship for cells that express large amounts of CheY and only spin their motors CW. We find that the torque decreases linearly with speed, a result remarkably different from that for CCW rotation. We obtain similar results for wild-type cells by reexamining data collected in previous work. We speculate that CCW rotation might be optimized for runs, with higher speeds increasing the ability of cells to sense spatial gradients, whereas CW rotation might be optimized for tumbles, where the object is to change cell trajectories. But why a linear torque–speed relationship might be optimum for the latter purpose we do not know. PMID:20615986
NASA Technical Reports Server (NTRS)
Ralston, J. N.
1984-01-01
The rotational aerodynamic characteristics are discussed for a 1/8 scale model of the X-29A airplane. The effects of rotation on the aerodynamics of the basic model were determined, as well as the influence of airplane components, various control deflections, and several forebody modifications. These data were measured using a rotary balance, over an angle of attack range of 0 to 90 deg, for clockwise and counter clockwise rotations covering an omega b/2V range of 0 to 0.4.
Stochl, Jan; Croudace, Tim
2013-01-01
Why some humans prefer to rotate clockwise rather than anticlockwise is not well understood. This study aims to identify the predictors of the preferred rotation direction in humans. The variables hypothesised to influence rotation preference include handedness, footedness, sex, brain hemisphere lateralisation, and the Coriolis effect (which results from geospatial location on the Earth). An online questionnaire allowed us to analyse data from 1526 respondents in 97 countries. Factor analysis showed that the direction of rotation should be studied separately for local and global movements. Handedness, footedness, and the item hypothesised to measure brain hemisphere lateralisation are predictors of rotation direction for both global and local movements. Sex is a predictor of the direction of global rotation movements but not local ones, and both sexes tend to rotate clockwise. Geospatial location does not predict the preferred direction of rotation. Our study confirms previous findings concerning the influence of handedness, footedness, and sex on human rotation; our study also provides new insight into the underlying structure of human rotation movements and excludes the Coriolis effect as a predictor of rotation.
Ni, Xian-Da; Huang, Jun; Hu, Yuan-Ping; Xu, Rui; Yang, Wei-Yu; Zhou, Li-Ming
2013-01-01
The aim of this study was to observe the rotation patterns at the papillary muscle plane in the Left Ventricle(LV) with normal subjects using two-dimensional speckle tracking imaging(2D-STI). We acquired standard of the basal, the papillary muscle and the apical short-axis images of the LV in 64 subjects to estimate the LV rotation motion by 2D-STI. The rotational degrees at the papillary muscle short-axis plane were measured at 15 different time points in the analysis of two heart cycles. There were counterclockwise rotation, clockwise rotation, and counterclockwise to clockwise rotation at the papillary muscle plane in the LV with normal subjects, respectively. The ROC analysis of the rotational degrees was performed at the papillary muscle short-axis plane at the peak LV torsion for predicting whether the turnaround point of twist to untwist motion pattern was located at the papillary muscle level. Sensitivity and specificity were 97% and 67%, respectively, with a cut-off value of 0.34°, and an area under the ROC curve of 0.8. At the peak LV torsion, there was no correlation between the rotational degrees at the papillary muscle short-axis plane and the LVEF in the normal subjects(r = 0.000, p = 0.998). In the study, we conclude that there were three rotation patterns at the papillary muscle short-axis levels, and the transition from basal clockwise rotation to apical counterclockwise rotation is located at the papillary muscle level.
NASA Astrophysics Data System (ADS)
Brocher, Thomas M.; Wells, Ray E.; Lamb, Andrew P.; Weaver, Craig S.
2017-05-01
Paleomagnetic and GPS data indicate that Washington and Oregon have rotated clockwise for the past 16 Myr. Late Cenozoic and Quaternary fault geometries, seismicity lineaments, and focal mechanisms provide evidence that this rotation is accommodated by north directed thrusting and right-lateral strike-slip faulting in Washington, and SW to W directed normal faulting and right-lateral strike-slip faulting to the east. Several curvilinear NW to NNW trending high-angle strike-slip faults and seismicity lineaments in Washington and NW Oregon define a geologic pole (117.7°W, 47.9°N) of rotation relative to North America. Many faults and focal mechanisms throughout northwestern U.S. and southwestern British Columbia have orientations consistent with this geologic pole as do GPS surface velocities corrected for elastic Cascadia subduction zone coupling. Large Quaternary normal faults radial to the geologic pole, which appear to accommodate crustal rotation via crustal extension, are widespread and can be found along the Lewis and Clark zone in Montana, within the Centennial fault system north of the Snake River Plain in Idaho and Montana, to the west of the Wasatch Front in Utah, and within the northern Basin and Range in Oregon and Nevada. Distributed strike-slip faults are most prominent in western Washington and Oregon and may serve to transfer slip between faults throughout the northwestern U.S.
Brocher, Thomas M.; Wells, Ray E.; Lamb, Andrew P.; Weaver, Craig S.
2017-01-01
Paleomagnetic and GPS data indicate that Washington and Oregon have rotated clockwise for the past 16 Myr. Late Cenozoic and Quaternary fault geometries, seismicity lineaments, and focal mechanisms provide evidence that this rotation is accommodated by north directed thrusting and right-lateral strike-slip faulting in Washington, and SW to W directed normal faulting and right-lateral strike-slip faulting to the east. Several curvilinear NW to NNW trending high-angle strike-slip faults and seismicity lineaments in Washington and NW Oregon define a geologic pole (117.7°W, 47.9°N) of rotation relative to North America. Many faults and focal mechanisms throughout northwestern U.S. and southwestern British Columbia have orientations consistent with this geologic pole as do GPS surface velocities corrected for elastic Cascadia subduction zone coupling. Large Quaternary normal faults radial to the geologic pole, which appear to accommodate crustal rotation via crustal extension, are widespread and can be found along the Lewis and Clark zone in Montana, within the Centennial fault system north of the Snake River Plain in Idaho and Montana, to the west of the Wasatch Front in Utah, and within the northern Basin and Range in Oregon and Nevada. Distributed strike-slip faults are most prominent in western Washington and Oregon and may serve to transfer slip between faults throughout the northwestern U.S.
NASA Astrophysics Data System (ADS)
Vernant, P.; Bilham, R.; Szeliga, W.; Drupka, D.; Kalita, S.; Bhattacharyya, A. K.; Gaur, V. K.; Pelgay, P.; Cattin, R.; Berthet, T.
2014-08-01
GPS data reveal that the Brahmaputra Valley has broken from the Indian Plate and rotates clockwise relative to India about a point a few hundred kilometers west of the Shillong Plateau. The GPS velocity vectors define two distinct blocks separated by the Kopili fault upon which 2-3 mm/yr of dextral slip is observed: the Shillong block between longitudes 89 and 93°E rotating clockwise at 1.15°/Myr and the Assam block from 93.5°E to 97°E rotating at ≈1.13°/Myr. These two blocks are more than 120 km wide in a north-south sense, but they extend locally a similar distance beneath the Himalaya and Tibet. A result of these rotations is that convergence across the Himalaya east of Sikkim decreases in velocity eastward from 18 to ≈12 mm/yr and convergence between the Shillong Plateau and Bangladesh across the Dauki fault increases from 3 mm/yr in the west to >8 mm/yr in the east. This fast convergence rate is inconsistent with inferred geological uplift rates on the plateau (if a 45°N dip is assumed for the Dauki fault) unless clockwise rotation of the Shillong block has increased substantially in the past 4-8 Myr. Such acceleration is consistent with the reported recent slowing in the convergence rate across the Bhutan Himalaya. The current slip potential near Bhutan, based on present-day convergence rates and assuming no great earthquake since 1713 A.D., is now ~5.4 m, similar to the slip reported from alluvial terraces that offsets across the Main Himalayan Thrust and sufficient to sustain a Mw ≥ 8.0 earthquake in this area.
NASA Astrophysics Data System (ADS)
Gao, Liang; Yang, Zhenyu; Tong, Yabo; Wang, Heng; An, Chunzhi; Zhang, Haifeng
2017-12-01
Late Eocene-early Oligocene red beds of the Ninglang Formation were sampled from 23 sites in the Yongsheng area, which comprises the northwestern part of the Chuan Dian Fragment (CDF) of the South China Block. The higher temperature components (HTC) were isolated by stepwise thermal demagnetization between ∼300-680 °C and they passed the fold test. However, all the HTCs are of normal polarity, which appears to conflict with the frequent occurrence of reversed polarities during the late Eocene-early Oligocene, and therefore the possibility of remagnetization needs to be considered. Widespread secondary hematite was detected in the red beds that further indicates the remagnetization of samples. From the magmatic-metallogenic events in the sampling area, we propose an early Oligocene (∼35 Ma) remagnetization event that was most likely related to porphyritic intrusions induced by fluid activity. Comparison of the pole calculated from the remagnetized remanent directions with the ∼35 Ma paleomagnetic pole for Eurasia indicated that the degree of clockwise rotation in the Yongsheng area is 17.0 ± 4.1° relative to stable Eurasia. The rotation value is consistent at the 95% confidence level with results obtained from Paleogene and Cretaceous strata in other areas of the CDF. Paleomagnetic data indicate that a consistent clockwise rotation of 20.6 ± 6.3° occurred in different areas in the CDF: at Yongsheng, Zhupeng, Bailu, Dayao, Chuxiong west and Jianchuan. Careful analysis of the paleomagnetic data and the geometrical characteristics of the Ailao Shan-Red River shear zone indicates that the rotation process was separated into two discrete intervals: Approximately 11° of quasi-rigid clockwise rotation occurred between ∼35 and 12.7 Ma compared to stable Eurasia, which may have been accompanied by strike-slip movement of the Ziyun-Luodian fault, caused by west-to-east compression induced by the northeastern indention of the Eastern Himalayan Syntaxis. Subsequently, a clockwise rotation of about 10° of the CDF with respect to stable Eurasia is inferred from the paleomagnetic results since 12.7 Ma, which is consistent with the change in the geometry of the Ailao Shan-Red River shear zone around the western Chuxiong Basin. The later CW rotation was related to shearing movement of the Xianshuihe-Xiaojiang fault.
Neptune's small dark spot (D2)
NASA Technical Reports Server (NTRS)
1999-01-01
This bulls-eye view of Neptune's small dark spot (D2) was obtained by Voyager 2's narrow-angle camera. Banding surrounding the feature indicates unseen strong winds, while structures within the bright spot suggest both active upwelling of clouds and rotation about the center. A rotation rate has not yet been measured, but the V-shaped structure near the right edge of the bright area indicates that the spot rotates clockwise. Unlike the Great Red Spot on Jupiter, which rotates counterclockwise, if the D2 spot on Neptune rotates clockwise, the material will be descending in the dark oval region. The fact that infrared data will yield temperature information about the region above the clouds makes this observation especially valuable. The Voyager Mission is conducted by JPL for NASA's Office of Space Science and Applications.
Non-Back-Drivable, Freewheeling Coupling
NASA Technical Reports Server (NTRS)
Llewellin, W.
1986-01-01
Cables reeled in and out with less risk of tangling. Opposing teeth engage with clockwise rotation and disengage with clockwise rotation of crank. Driving plate moves axially with respect to driven plate on ball points to engage and disengage. Clutch developed for reeling and unreeling tether line used to link astronaut to space vehicle. Allows line pulled out freely and helps to prevent line from tangling in reel housing when crank is turned backward. New clutch concept also applicable to fishing reels, toys, and safety-line mechanisms.
Decreased Left Ventricular Torsion and Untwisting in Children with Dilated Cardiomyopathy
Jin, Seon Mi; Bae, Eun Jung; Choi, Jung Yun; Yun, Yong Soo
2007-01-01
The purpose of this study was to analyze left ventricular (LV) torsion and untwisting, and to evaluate the correlation between torsion and other components of LV contraction in children with dilated cardiomyopathy (DCM). Segmental and global rotation, rotational rate (Vrot) were measured at three levels of LV using the two-dimensional (2D) speckle tracking imaging (STI) method in 10 DCM patients (range 0.6-15 yr, median 6.5 yr, 3 females) and 17 age- and sex-matched normal controls. Global torsion was decreased in DCM (peak global torsion; 10.9±4.6° vs. 0.3±2.1°, p<0.001). Loss of LV torsion occurred mainly by the diminution of counterclockwise apical rotation and was augmented by somewhat less reduction in clockwise basal rotation. In DCM, the normal counterclockwise apical rotation was not observed, and the apical rotation about the central axis was clockwise or slightly counterclockwise (peak apical rotation; 5.9±4.1° vs. -0.9±3.1°, p<0.001). Systolic counterclockwise Vrot and early diastolic clockwise Vrot at the apical level were decreased or abolished. In DCM, decreased systolic torsion and loss of early diastolic recoil contribute to LV systolic and diastolic dysfunction. The STI method may facilitate the serial evaluation of the LV torsional behavior in clinical settings and give new biomechanical concepts for better management of patients with DCM. PMID:17728501
NASA Astrophysics Data System (ADS)
Xia, Yi; Lin, Jianzhong; Ku, Xiaoke; Chan, Tatleung
2018-04-01
Flow past a center-pinned freely rotatable cylinder asymmetrically confined in a two-dimensional channel is simulated with the lattice Boltzmann method for a range of Reynolds number 0.1 ≤ Re ≤ 200, eccentricity ratio 0/8 ≤ ɛ ≤ 7/8, and blockage ratio 0.1 ≤ β ≤ 0.5. It is found that the inertia tends to facilitate the anomalous clockwise rotation of the cylinder. As the eccentricity ratio increases, the cylinder rotates faster in the counterclockwise direction and then slows down at a range of Re < 10. At a range of Re > 40, there exists an anomalous clockwise rotation for the cylinder at a low eccentricity ratio and the domain where the cylinder rotates anomalously becomes larger with the increase in the Reynolds number. In a channel with a higher blockage ratio, the rotation of the cylinder is more sensitive to the change of cylinder lateral position, and the separatrix at which the cylinder remains a state of rest moves upward generally. The cylinder is more likely to rotate counterclockwise and the rotating velocity is larger. At a lower blockage ratio, the anomalous clockwise rotation is more likely to occur, and the largest rotating velocity occurs when the blockage ratio is equal to 0.3. The mechanism of distinct rotational behavior of the cylinder is attributed to the transformation of distribution of shear stress which is resulted from the variation of pressure drop, the shift of maximum or minimum pressure zones along the upper and lower semi-cylinder surface, and the movement of stagnant point and separate point. Finally, the effects of the cylinder rotation on the flow structure and hydrodynamic force exerted on the cylinder surface are analyzed as well.
Counter Clockwise Rotation of Cylinder with Variable Position to Control Base Flows
NASA Astrophysics Data System (ADS)
Asadullah, Mohammed; Khan, S. A.; Asrar, Waqar; Sulaeman, E.
2018-05-01
Experimental study of supersonic base flow at Mach 2 has been carried out to see the effect of cylinder when rotated counter clockwise inside the dead zone at variable locations near its base to control base pressure for different level of expansion for area ratio 9. Active cylinder of 2 mm diameter rotating counter clockwise when seen from top, is mounted as a controller. Three locations are chosen from the side wall of square duct namely at 2, 4, 6 mm respectively and 8 mm from square nozzle exit in the base region to mount the controller. Base pressure in recirculation zone and wall pressure along the square duct length has been measured with and without control. The experiments were carried out for NPR 2, 3, 6, 7.8 and 8.5. Cylinder when rotated counter clockwise as an active controller were found to reduce the base drag as high as 62 percent at NPR 8.5 when located near to duct wall and 50 percent when located away from duct wall for the same NPR. For perfectly expanded flows at NPR 7.8 the reduction in base drag was 53 percent near duct wall and 44 percent near duct wall. The active controller was up to 19 percentage effective for over expanded flows near to duct wall and up to 12 percent when located away from duct wall. Also, the control did not adversely affect the flow field.
NASA Technical Reports Server (NTRS)
Vranish, John M. (Inventor)
2007-01-01
A tool comprises a first handle and a second handle, each handle extending from a gripping end portion to a working end portion, the first handle having first screw threads disposed circumferentially about an inner portion of a first through-hole at the working end portion thereof, the second handle having second screw threads disposed circumferentially about an inner portion of a second through-hole at the working end portion thereof, the first and second respective through-holes being disposed concentrically about a common axis of the working end portions. First and second screw locks preferably are disposed concentrically with the first and second respective through-holes, the first screw lock having a plurality of locking/unlocking screw threads for engaging the first screw threads of the first handle, the second screw lock having a plurality of locking/unlocking screw threads for engaging the second screw threads of the second handle. A locking clutch drive, disposed concentrically with the first and second respective through-holes, engages the first screw lock and the second screw lock. The first handle and the second handle are selectively operable at their gripping end portions by a user using a single hand to activate the first and second screw locks to lock the locking clutch drive for either clockwise rotation about the common axis, or counter-clockwise rotation about the common axis, or to release the locking clutch drive so that the handles can be rotated together about the common axis either the clockwise or counter-clockwise direction without rotation of the locking clutch drive.
Ni, Xian-Da; Huang, Jun; Hu, Yuan-Ping; Xu, Rui; Yang, Wei-Yu; Zhou, Li-Ming
2013-01-01
Background The aim of this study was to observe the rotation patterns at the papillary muscle plane in the Left Ventricle(LV) with normal subjects using two-dimensional speckle tracking imaging(2D-STI). Methods We acquired standard of the basal, the papillary muscle and the apical short-axis images of the LV in 64 subjects to estimate the LV rotation motion by 2D-STI. The rotational degrees at the papillary muscle short-axis plane were measured at 15 different time points in the analysis of two heart cycles. Results There were counterclockwise rotation, clockwise rotation, and counterclockwise to clockwise rotation at the papillary muscle plane in the LV with normal subjects, respectively. The ROC analysis of the rotational degrees was performed at the papillary muscle short-axis plane at the peak LV torsion for predicting whether the turnaround point of twist to untwist motion pattern was located at the papillary muscle level. Sensitivity and specificity were 97% and 67%, respectively, with a cut-off value of 0.34°, and an area under the ROC curve of 0.8. At the peak LV torsion, there was no correlation between the rotational degrees at the papillary muscle short-axis plane and the LVEF in the normal subjects(r = 0.000, p = 0.998). Conclusions In the study, we conclude that there were three rotation patterns at the papillary muscle short-axis levels, and the transition from basal clockwise rotation to apical counterclockwise rotation is located at the papillary muscle level. PMID:24376634
NASA Astrophysics Data System (ADS)
Montes, C.; Bayona, G.; Cardona, A.; Pardo, A.; Nova, G.; Montano, P.
2013-05-01
A recent update of the geochronologic and mapping database of the Isthmus of Panama suggests that the Isthmus represents an arc that was left-laterally fragmented between 38 and 28 Ma, and then oroclinally bent. This was hypothesis was tested using paleomagnetic data (24 sites and 192 cores) that indicated large counterclockwise vertical-axis rotations (70.9°, ± 6.7°), and moderate clockwise rotations (between 40° ± 4.1° and 56.2° ± 11.1) on either side of an east-west trending fault at the apex of the Isthmus (Rio Gatun Fault), consistent with Isthmus curvature. Sampling for paleomagnetism was performed on Cretaceous basaltic rocks of the Panama arc, some of them probably correlative to the Caribbean large igneous province. Also, sampling took place in younger Cenozoic cover rocks, as well as in the younger arc rocks. This database is here complemented with 15 new pilot paleomagnetic sites taken in eastern, central, and western Panama, and 3 new sites from Miocene cover rocks of what is now considered to be the southeastern-most tip of the Central American arc. The latter record clockwise vertical-axis rotations between 12 and 40°, in agreement with oroclinal bending hypothesis for the formation of the Isthmus of Panama. These new results begin to fill a gap in the paleomagnetic vertical-axis rotation database for the Panama arc. These results also support the continuity of the Central America arc to the east, into what is now docked to western South America.
Low torque hydrodynamic lip geometry for bi-directional rotation seals
Dietle, Lannie L [Houston, TX; Schroeder, John E [Richmond, TX
2009-07-21
A hydrodynamically lubricating geometry for the generally circular dynamic sealing lip of rotary seals that are employed to partition a lubricant from an environment. The dynamic sealing lip is provided for establishing compressed sealing engagement with a relatively rotatable surface, and for wedging a film of lubricating fluid into the interface between the dynamic sealing lip and the relatively rotatable surface in response to relative rotation that may occur in the clockwise or the counter-clockwise direction. A wave form incorporating an elongated dimple provides the gradual convergence, efficient impingement angle, and gradual interfacial contact pressure rise that are conducive to efficient hydrodynamic wedging. Skewed elevated contact pressure zones produced by compression edge effects provide for controlled lubricant movement within the dynamic sealing interface between the seal and the relatively rotatable surface, producing enhanced lubrication and low running torque.
Low torque hydrodynamic lip geometry for bi-directional rotation seals
Dietle, Lannie L [Houston, TX; Schroeder, John E [Richmond, TX
2011-11-15
A hydrodynamically lubricating geometry for the generally circular dynamic sealing lip of rotary seals that are employed to partition a lubricant from an environment. The dynamic sealing lip is provided for establishing compressed sealing engagement with a relatively rotatable surface, and for wedging a film of lubricating fluid into the interface between the dynamic sealing lip and the relatively rotatable surface in response to relative rotation that may occur in the clockwise or the counter-clockwise direction. A wave form incorporating an elongated dimple provides the gradual convergence, efficient impingement angle, and gradual interfacial contact pressure rise that are conducive to efficient hydrodynamic wedging. Skewed elevated contact pressure zones produced by compression edge effects provide for controlled lubricant movement within the dynamic sealing interface between the seal and the relatively rotatable surface, producing enhanced lubrication and low running torque.
Hillhouse, John W.
2010-01-01
New paleomagnetic results from mid-Tertiary sedimentary beds in the Santa Monica Mountains reinforce the evidence for large-scale rotation of the western Transverse Ranges, and anisotropy measurements indicate that compaction-induced inclination flattening may resolve a long-standing controversy regarding the original paleolatitude of the rotated block. Previously published paleomagnetic data indicate that post-Oligocene rotation amounts to 70°–110° clockwise, affecting the Channel Islands, Santa Monica Mountains, and Santa Ynez Mountains. The Sespe Formation near Malibu consists of a lower member dominated by nonmarine sandstone and conglomerate and an upper section, the Piuma Member, which consists of gray-red sandstone and mudstone interbedded with minor tuff and limestone beds. The Piuma Member has a paleomagnetic pole at 36.6°N, 326.7°E (A95min = 5.0°, A95max = 9.6°), obtained by thermal demagnetization of 34 oriented cores from Oligocene and early Miocene beds. After correcting for plunge of the geologic structure, the data are consistent with significant clockwise rotation (77° ± 7°) of the region relative to stable North America. Rotation of the western Transverse Ranges is generally viewed as a consequence of Pacific–North American plate interactions after 28 Ma, when east–west subduction gave way to northwest transform motion in southern California. Inclinations from the Piuma study indicate a paleolatitude anomaly of 11° ± 7° and are consistent with a mean northward drift that exceeds generally accepted San Andreas fault displacement by a factor of 3. However, sedimentary inclination error may accentuate the anomaly. Anisotropy of isothermal remanent magnetization indicates inclination flattening of approximately 8°, and correction for the effect reduces the paleolatitude anomaly to 5.3° ± 5.8°. Compaction may explain the inclination flattening in these sedimentary rocks, but the process does not adequately explain lower-than-expected inclinations found in previous studies of Miocene volcanic rocks of the western Transverse Ranges.
Absolute plate motions and true polar wander in the absence of hotspot tracks.
Steinberger, Bernhard; Torsvik, Trond H
2008-04-03
The motion of continents relative to the Earth's spin axis may be due either to rotation of the entire Earth relative to its spin axis--true polar wander--or to the motion of individual plates. In order to distinguish between these over the past 320 Myr (since the formation of the Pangaea supercontinent), we present here computations of the global average of continental motion and rotation through time in a palaeomagnetic reference frame. Two components are identified: a steady northward motion and, during certain time intervals, clockwise and anticlockwise rotations, interpreted as evidence for true polar wander. We find approximately 18 degrees anticlockwise rotation about 250-220 Myr ago and the same amount of clockwise rotation about 195-145 Myr ago. In both cases the rotation axis is located at about 10-20 degrees W, 0 degrees N, near the site that became the North American-South American-African triple junction at the break-up of Pangaea. This was followed by approximately 10 degrees clockwise rotation about 145-135 Myr ago, followed again by the same amount of anticlockwise rotation about 110-100 Myr ago, with a rotation axis in both cases approximately 25-50 degrees E in the reconstructed area of North Africa and Arabia. These rotation axes mark the maxima of the degree-two non-hydrostatic geoid during those time intervals, and the fact that the overall net rotation since 320 Myr ago is nearly zero is an indication of long-term stability of the degree-two geoid and related mantle structure. We propose a new reference frame, based on palaeomagnetism, but corrected for the true polar wander identified in this study, appropriate for relating surface to deep mantle processes from 320 Myr ago until hotspot tracks can be used (about 130 Myr ago).
Spirals in space - non-random orientation of moss protonemata in microgravity (STS-87)
NASA Astrophysics Data System (ADS)
Kern, V.; Sack, F.
Protonemata of the moss Ceratodon purpureus are an excellent system for studying gravitropism and phototropis in a tip-growing cell. In darkness protonemata express negative gravitropism (they grow up) with high fidelity. When irradiated they accurately align in the light path. When grown in darkness under microgravity conditions (STS-87, Nov./Dec. 1997), 7-day old cultures displayed a predominately radial orientation. However, in older (14 d) cultures the protonemata grew in arcs and overall formed clockwise spirals. Cultures grown on a slow-rotating clinostat for 14 days also expressed spirals. Spirals were mostly clockwise and formed regardless of the orientation with respect to the acceleration force (speed of clinostat rotation) or to the direction of rotation. The presence of spirals in 14 d but not 7 d cultures could be due to culture age, stage, or size and/or to the duration of exposure to microgravity or clino-rotation. The phenomenon of protonemal phototropism allowed us to investigate this further. When unilaterally irradiated for 7 days, cultures displayed negative and positive phototropism while gravitropism was suppressed; in these cultures almost all cells were aligned in a straight line along the light path. When such cultures were transferred to darkness for an additional 7 d, clockwise arcs and spirals formed. Thus, spiral formation requires only a 7-day dose of microgravity or clino-rotation, as long as the cultures are of a sufficient age or stage (7 days or less). The presence of coordinated clockwise spiral growth in μg suggests that there is an endogenous growth polarity in Ceratodon that normally is suppressed by gravitropism. A working hypothesis is that the spirals represent a residual spacing mechanism for controlling colony growth and the distribution of side branches. (Supported by NASA: NAG10-017).
On Sagnac frequency splitting in a solid-state ring Raman laser.
Liang, Wei; Savchenkov, Anatoliy; Ilchenko, Vladimir; Griffith, Robert; De Cuir, Edwin; Kim, Steven; Matsko, Andrey; Maleki, Lute
2017-11-15
We report on an accurate measurement of the frequency splitting of an optical rotating ring microcavity made out of calcium fluoride. By measuring the frequencies of the clockwise and counter-clockwise coherent Raman emissions confined in the cavity modes, we show that the frequency splitting is inversely proportional to the refractive index of the cavity host material. The measurement has an accuracy of 1% and unambiguously confirms the classical theoretical prediction based on special theory of relativity. This Letter also demonstrates the usefulness of the ring Raman microlaser for rotation measurements.
The Advantage of Mentally Rotating Clockwise
ERIC Educational Resources Information Center
Liesefeld, Heinrich R.; Zimmer, Hubert D.
2011-01-01
The time taken to decide whether a character is shown in its mirror or normal version has been shown to increase approximately linearly with the angular departure from an up-right position. Additionally, in some studies, decisions took longer for clockwise tilted characters than for counterclockwise tilted ones. Other studies do not report the…
Tactile stimulations and wheel rotation responses: toward augmented lane departure warning systems
Tandonnet, Christophe; Burle, Borís; Vidal, Franck; Hasbroucq, Thierry
2014-01-01
When an on-board system detects a drift of a vehicle to the left or to the right, in what way should the information be delivered to the driver? Car manufacturers have so far neglected relevant results from Experimental Psychology and Cognitive Neuroscience. Here we show that this situation possibly led to the sub-optimal design of a lane departure warning system (AFIL, PSA Peugeot Citroën) implemented in commercially available automobile vehicles. Twenty participants performed a two-choice reaction time task in which they were to respond by clockwise or counter-clockwise wheel-rotations to tactile stimulations of their left or right wrist. They performed poorer when responding counter-clockwise to the right vibration and clockwise to the left vibration (incompatible mapping) than when responding according to the reverse (compatible) mapping. This suggests that AFIL implements the worse (incompatible) mapping for the operators. This effect depended on initial practice with the interface. The present research illustrates how basic approaches in Cognitive Science may benefit to Human Factors Engineering and ultimately improve man-machine interfaces and show how initial learning can affect interference effects. PMID:25324791
Palaeomagnetic evidence for post-thrusting tectonic rotation in the Southeast Pyrenees, Spain
NASA Astrophysics Data System (ADS)
Keller, P.; Lowrie, W.; Gehring, A. U.
1994-12-01
The structural framework of the Southeast Pyrenees led to two conflicting interpretations—thrust tectonics vs. wrench tectonics—to explain the geometry of this mountain range. In the present study palaeomagnetic data are presented in an attempt to resolve this conflict. The data reveal different magnetisation directions that indicate tectonic rotations about vertical axes. By means of a regionally homogeneous pattern of rotation, three tectonic units could be distinguished in the Southeast Pyrenees. The Internal Unit in the north reveals no rotation since the Permian. The External Unit to the south shows anticlockwise rotation of 25°, younger than the Early Oligocene. The Pedraforca Unit, placed on the External Unit, shows 57° clockwise rotation which can be assigned to the Neogene. The anticlockwise rotation of the External Unit can be explained by differential compression during the last phase of Pyrenean thrusting, whereas the clockwise rotation of the Pedraforca Unit can be interpreted by post-thrusting tectonics. The rotation pattern of the Southeast Pyrenees provides evidence for both Cretaceous to Paleogene N-S compression and Neogene right-lateral wrench tectonics.
NASA Astrophysics Data System (ADS)
Silenko, Alexander J.
2017-12-01
We consider a proton electric-dipole-moment experiment in an all-electric storage ring when the spin is frozen and local longitudinal and vertical electric fields alternate. In this experiment, the geometric (Berry) phases are very important. Due to the these phases, the spin rotates about the radial axis. The corresponding systematic error is rather important while it can be canceled with clockwise and counterclockwise beams. The geometric phases also lead to the spin rotation about the radial axis. This effect can be canceled with clockwise and counterclockwise beams as well. The sign of the azimuthal component of the angular velocity of the spin precession depends on the starting point where the spin orientation is perfect. The radial component of this quantity keeps its value and sign for each starting point. When the longitudinal and vertical electric fields are joined in the same sections without any alternation, the systematic error due to the geometric phases does not appear but another systematic effect of the spin rotation about the azimuthal axis takes place. It has opposite signs for clockwise and counterclockwise beams.
New constraints on Neogene counter-clockwise rotation of Adria relative to Europe
NASA Astrophysics Data System (ADS)
Le Breton, Eline; Handy, Mark R.; Molli, Giancarlo; Ustaszewski, Kamil
2017-04-01
The Adriatic microplate (Adria) is a key player in the geodynamics of Alpine-Mediterranean belts because of its location between two converging plates, Europe and Africa. Most of Adria has been subducted and is presently surrounded by deformed margins comprising the Alps, Apennines, Dinarides and the Calabrian Arc. The Alps-Apennines and Alps-Dinarides junctions are marked by switches in subduction polarity, with Adria being the indenting upper plate in the Alps and the lower plate in the Apennines and Dinarides. Reconstructing Neogene motion and rotation of Adria is therefore key to understanding how such contrasting orogenic styles develop within a similar convergent tectonic regime. We propose a new kinematic reconstruction that balances shortening and extension in the northern Apennines; it reveals that Adria rotated counter-clockwise as it subducted beneath the European Plate to the west and to the east, while indenting the Alps to the north. Syn-collisional back-arc extension in the Liguro-Provençal and northern Tyrrhenian basins exceeds collisional shortening in the northern Apennines, indicating that after 20 Ma Adria and Europe diverged. When combined with existing estimates of Neogene shortening in the Western and Eastern Alps, this overall divergence in the Apennines constrains Adria to have moved to the NW while rotating counter-clockwise relative to Europe. We furthermore consider the length of the present Adriatic slab (135 km) imaged by P-wave tomography in the southern Dinarides to represent the maximum convergence since late Paleogene slab-breakoff, constraining Adria to have rotated 6.5˚ counter-clockwise about an axis in northwestern Italy. Thus, the best fit of available structural data from the Apennines, Alps and Dinarides constrains Adria to have moved 113 km to the NW (azimuth 325˚ ) while rotating 6.5˚ counter-clockwise relative to Europe since 20 Ma. Our model predicts some 80-100 km of Neogene extension between Adria and Africa, most likely accommodated along a NW-SE striking rift system on the African margin and by transtension along NW-SE striking transform faults in the Ionian Sea. We propose that this Neogene motion of Adria resulted from a combination of Africa pushing from the south, the Adriatic-Hellenic slab pulling to the northeast and crustal wedging in the Western Alps, which acted as a pivot and stopped further northwestward motion of Adria.
NASA Astrophysics Data System (ADS)
Sandvol, E. A.
2016-12-01
Studies of the evolution of the India-Eurasia collision have shown that the geodynamic processes associated with trench/slab rollback in the western Pacific and Indonesia have played a significant role in the large-scale rotational deformational patterns and influenced the building of the Tibetan Plateau. Prior measurements of the surface crustal velocities across the Southeastern Tibetan Plateau, western Sichuan, Yunnan and Myanmar are characterized by clockwise rotation around the Eastern Himalayan Syntaxis (up to 1.7° per million years). Relative to South China, there is no eastward extrusion of crustal material beyond the eastern margin of the Tibetan Plateau. The crustal clockwise rotational deformation appears continues into northern Myanmar, accommodated by a series of East Northeast - West Southwest left-lateral strike-slip faults bounded between the Sagaing Fault and the Red River Fault. The relative contribution of crustal and mantle processes to surface clockwise rotational deformation remains to be determined. GPS, earthquake source and fault slip data indicate that crustal rotational deformation extends at least to the Sagaing Fault, the western boundary of the Burma microplate, however, mantle deformation inferred from SKS and SKKS shear wave splitting data deviates greatly from crustal deformation in regions south of 27°N. Whether this lack of coherence in crustal in mantle deformation extends west of the Saigaing Fault and across the Burma microplate remains unclear. The concave eastward curvature of the northern section of the Sagaing Fault may be related to the rotational push from the east. An additional factor that is important is the segmentation and geometry of the subducting Indian slab along the Indo-Burman Arc. There is some evidence from seismicity and focal mechanisms that the slab is broken into pieces. Furthermore, if the Indian slab is broken from slabs resting in the transition zone then the below-slab flow may be responsible for the intraplate volcanoes and N-S trending rifts in the Tengchong volcanic field, Yunnan Province, China. In order to better understand the interaction between the deformation of the crust along the boundaries of the Burma microplate we are hoping to use data from a planned 70-station broadband seismic array in the northern and central parts of Myanmar.
Low torque hydrodynamic lip geometry for rotary seals
Dietle, Lannie L.; Schroeder, John E.
2015-07-21
A hydrodynamically lubricating geometry for the generally circular dynamic sealing lip of rotary seals that are employed to partition a lubricant from an environment. The dynamic sealing lip is provided for establishing compressed sealing engagement with a relatively rotatable surface, and for wedging a film of lubricating fluid into the interface between the dynamic sealing lip and the relatively rotatable surface in response to relative rotation that may occur in the clockwise or the counter-clockwise direction. A wave form incorporating an elongated dimple provides the gradual convergence, efficient impingement angle, and gradual interfacial contact pressure rise that are conducive to efficient hydrodynamic wedging. Skewed elevated contact pressure zones produced by compression edge effects provide for controlled lubricant movement within the dynamic sealing interface between the seal and the relatively rotatable surface, producing enhanced lubrication and low running torque.
NASA Astrophysics Data System (ADS)
Haproff, Peter J.; Zuza, Andrew V.; Yin, An
2018-01-01
Whether continental deformation is accommodated by microplate motion or continuum flow is a central issue regarding the nature of Cenozoic deformation surrounding the eastern Himalayan syntaxis. The microplate model predicts southeastward extrusion of rigid blocks along widely-spaced strike-slip faults, whereas the crustal-flow model requires clockwise crustal rotation along closely-spaced, semi-circular right-slip faults around the eastern Himalayan syntaxis. Although global positioning system (GPS) data support the crustal-flow model, the surface velocity field provides no information on the evolution of the India-Asia orogenic system at million-year scales. In this work, we present the results of systematic geologic mapping across the northernmost segment of the Indo-Burma Ranges, located directly southeast of the eastern Himalayan syntaxis. Early research inferred the area to have experienced either right-slip faulting accommodating northward indentation of India or thrusting due to the eastward continuation of the Himalayan orogen in the Cenozoic. Our mapping supports the presence of dip-slip thrust faults, rather than strike-slip faults. Specifically, the northern Indo-Burma Ranges exposes south- to west-directed ductile thrust shear zones in the hinterland and brittle fault zones in the foreland. The trends of ductile stretching lineations within thrust shear zones and thrust sheets rotate clockwise from the northeast direction in the northern part of the study area to the east direction in the southern part of the study area. This clockwise deflection pattern of lineations around the eastern Himalayan syntaxis mirrors the clockwise crustal-rotation pattern as suggested by the crustal-flow model and contemporary GPS velocity field. However, our finding is inconsistent with discrete strike-slip deformation in the area and the microplate model.
2013-09-01
35 2. Signal Rotator .....................................................................................37 1...37 Figure 18. The implementation of a clockwise rotator for phase error correction. ...........39 Figure... rotation by carrier phase/frequency synchronization circuit. .........................................................41 Figure 21. Output of the phase
NASA Technical Reports Server (NTRS)
Pantason, P.; Dickens, W.
1979-01-01
Aerodynamic characteristics obtained in a rotational flow environment utilizing a rotary balance located in the Langley spin tunnel are presented in plotted form for a 1/6 scale, single engine trainer airplane model. The configurations tested included the basic airplane, various wing leading edge devices, elevator, aileron and rudder control settings as well as airplane components. Data are presented without analysis for an angle of attack range of 8 to 90 degrees and clockwise and counter-clockwise rotations.
NASA Technical Reports Server (NTRS)
Mulcay, W.; Rose, R.
1979-01-01
Aerodynamic characteristics obtained in a rotational flow environment utilizing a rotary balance located in the Langley spin tunnel are presented in plotted form for a 1/5-scale, single-engine, high-wing, general aviation airplane model. The configurations tested included various tail designs and fuselage shapes. Data are presented without analysis for an angle of attack range of 8 to 90 degrees and clockwise and counter-clockwise rotations covering an Omega b/2 v range from 0 to 0.85.
Perceptual disturbances predicted in zero-g through three-dimensional modeling.
Holly, Jan E
2003-01-01
Perceptual disturbances in zero-g and 1-g differ. For example, the vestibular coriolis (or "cross-coupled") effect is weaker in zero-g. In 1-g, blindfolded subjects rotating on-axis experience perceptual disturbances upon head tilt, but the effects diminish in zero-g. Head tilts during centrifugation in zero-g and 1-g are investigated here by means of three-dimensional modeling, using a model that was previously used to explain the zero-g reduction of the on-axis vestibular coriolis effect. The model's foundation comprises the laws of physics, including linear-angular interactions in three dimensions. Addressed is the question: In zero-g, will the vestibular coriolis effect be as weak during centrifugation as during on-axis rotation? Centrifugation in 1-g was simulated first, with the subject supine, head toward center. The most noticeable result concerned direction of head yaw. For clockwise centrifuge rotation, greater perceptual effects arose in simulations during yaw counterclockwise (as viewed from the top of the head) than for yaw clockwise. Centrifugation in zero-g was then simulated with the same "supine" orientation. The result: In zero-g the simulated vestibular coriolis effect was greater during centrifugation than during on-axis rotation. In addition, clockwise-counterclockwise differences did not appear in zero-g, in contrast to the differences that appear in 1-g.
Maxillary movement in distraction osteogenesis using internal devices in cleft palate patients.
Tomita, Daisuke; Omura, Susumu; Ozaki, Shusaku; Shimazaki, Kazuo; Fukuyama, Eiji; Tohnai, Iwai; Torikai, Katsuyuki
2011-03-01
The purpose of this cephalometric study was to compare the actual movement with the planned movement of the maxilla by using internal maxillary distraction in cleft lip and palate patients. Twelve patients, including eight with unilateral and four with bilateral cleft lip and palate, underwent maxillary advancement with internal maxillary distractors. Lateral cephalometric radiographs obtained preoperatively, predistraction, and postdistraction were used for analysis. The movement of the maxilla, angular change of the internal devices and rotation of the mandible were measured at each stage, and the planned vector of advancement predicted from the placement vector of the distractors was compared with the actual vector. Internal maxillary distractors were rotated in a clockwise direction during the distraction period. The angular change of the distractors was 7.7°. The amount of actual advancement at anterior nasal spine with distraction was 6.3 mm, which represented about 70% of the distance of activation of distraction. The actual advanced vector at anterior nasal spine was 9.7° smaller than the planned vector. The mandible underwent a clockwise rotation of 3.5°. In the internal distraction technique, the maxilla was advanced inferiorly to the planned vector and with a slight clockwise rotation. These results are useful for surgical planning when using internal distractors.
Interseismic strain and rotation rates in the northeast Mojave domain, eastern California
Savage, J.C.; Svarc, J.L.; Prescott, II W.
2004-01-01
The northeast Mojave domain, a type locality for bookshelf faulting, is a region of east striking, left-lateral faults in the northeast comer of the Mojave block, a block otherwise dominated by ??N40??W striking, right-lateral faults. Paleomagnetic evidence suggests that blocks within the domain have rotated clockwise about a vertical axis as much as 60?? since 12.8 Ma [Schermer et al., 1996]. In 1994, and again in 2002, the U.S. Geological Survey surveyed an array of 14 geodetic monuments distributed across the northeast Mojave domain. The 2002 survey results were adjusted to remove the coseismic offsets imposed by the nearby Hector Mine earthquake (16 October 1999, Mw = 7.1). The adjusted deformation across the array appears to be uniform and can be approximated by the principal strain rates ??:1 = 28.9 ?? 9.1 N77.2??W ?? 4.8?? and ??2 = -48.2 ?? 8.9 N12.8??E ?? 4.8?? nstrain yr-1; extension reckoned positive, and quoted uncertainties are standard deviations. That strain accumulation could be released by slip . on faults striking N32??W but not by bookshelf faulting on the east striking faults alone. The vertical axis rotation rate of the northeast Mojave domain as a whole relative to fixed North America is 71.0 ?? 6.4 nrad yr-1 (4.07?? ?? 0.37?? Myr-1) clockwise, about twice the maximum tenser shear strain rate. The observed rotation rate acting over 12.8 Myr would produce'a clockwise rotation of 52.1?? ?? 4.7??, exclusive of possible coseismic rotations. That rotation is in rough agreement with the paleomagnetic rotation accumulated in the individual fault blocks within the northeast Mojave domain since 12.8 Ma.
Capar, I D; Arslan, H; Ertas, H; Gök, T; Saygılı, G
2015-01-01
To compare the effectiveness of ProTaper Universal retreatment instruments with continuous rotation and adaptive motion (AM; a modified reciprocating motion that combines rotational and reciprocating motion) in the removal of filling material. Mesiobuccal root canals in 36 mandibular first molars were instrumented up to size F2 with the ProTaper Universal instrument (Dentsply Maillefer, Ballaigues, Switzerland) and filled using sealer and ProTaper Universal F2 gutta-percha cones. Gutta-percha was then down-packed and the root canal backfilled using the extruder hand-piece of the Elements Obturation System (SybronEndo, Orange, CA, USA). The teeth were assigned to two groups (n = 18), and removal of the root fillings was performed using one of the following techniques: group 1) ProTaper Universal retreatment files used with rotational motion (RM) and group 2) ProTaper Universal retreatment files used with adaptive motion (AM) (600° clockwise/0° counter-clockwise to 370° clockwise/50° counter-clockwise). The teeth were sectioned, and both halves were analysed at 8 × magnification. The percentage of remaining filling material was recorded. The data were analysed statistically using the Student's t-test at a 95% confidence level (P < 0.05). There was no significant difference between the groups with respect to the total time required for retreatment (P = 0.481). The AM technique left significantly less filling material than the RM method (P = 0.013). The use of ProTaper Universal retreatment files with adaptive motion removed more filling materials from root canals than the rotational movement. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.
E. coli chemotaxis and super-diffusion
NASA Astrophysics Data System (ADS)
Dobnikar, Jure; Matthäus, Franziska; Jagodic, Marko
2010-03-01
The bacteria E. coli actively propel by switching between clockwise and anti-clockwise rotation of the flagella attached to their cell membranes. This results in two modes of motion: tumbling and swimming. The switching between the two modes is coupled to the ligand sensing through the chemotactic signalling pathway inside the cell. We modelled the signalling pathway and performed numerical simulations of the chemotactic motion of a large number of E. coli bacteria under various external conditions. We have shown that under certain conditions the thermal noise in the level of receptor-bound CheR (an enzyme responsible for methylation of the receptor sites) leads to super-diffusive behaviour (L'evy walk) which is advantageous for the bacterial populations in environments with scarce food. Exerting external pressure we might observe evolution of the wild-type to the super-diffusive populations.
NASA Astrophysics Data System (ADS)
Metois, M.
2017-12-01
Convergence partitioning between subduction zones and crustal active structures has been widely evidenced. For instance, the convergence between the Indian and Sunda plates is accommodated both by the Sumatra subduction zone and the Great Sumatran strike-slip fault, that defines a narrow sliver. In Cascadia, small-scale rotating rigid blocks bounded by active faults have been proposed (e.g. McCaffrey et al. 2007). Recent advances in geodetic measurements along the South-American margin especially in Ecuador, Peru and Chile and the need for precise determination of the coupling amount on the megathrust interface in particular for seismic hazard assessment, led several authors to propose the existence of large-scale Andean slivers rotating clockwise and counter-clockwise South and North of the Arica bend, respectively (e.g. Chlieh et al. 2011, Nocquet et al. 2014, Métois et al. 2013). In Chile, one single large Andean sliver bounded to the west by the subduction thrust and to the east by the subandean fold-an-thrust belt active front is used to mimic the velocities observed in the middle to far field that are misfitted by elastic coupling models on the megathrust interface alone (Métois et al. 2016). This rigid sliver is supposed to rotate clockwise around a Euler pole located in the South Atlantic ocean, consistently with long-term observed rotations detected by paleomagnetism (e.g. Arriagada et al. 2008). However, recent GPS data acquired in the Taltal area ( 26°S, Klein et al. submitted) show higher than expected middle-field eastward velocities and question the first-order assumption of a rigid Andean sliver. Mis-modeling the fore-arc deformation has a direct impact on the inverted coupling amount and distribution, and could therefore bias significantly the megathrust rupture scenarios. Correctly estimating the current-day deformation of the Andes is therefore required to properly assess for coupling on the plate interface and is challenging since crustal active structures are often hidden by the intense seismic activity of the subduction zone. Here we discuss the validity of the rigid Andean sliver hypothesis based on GPS velocities, present alternative models for both coupling and sliver kinematics along the Chilean margin, and discuss the relationship between upper plate long and short-term deformation.
Controlled clockwise and anticlockwise rotational switching of a molecular motor.
Perera, U G E; Ample, F; Kersell, H; Zhang, Y; Vives, G; Echeverria, J; Grisolia, M; Rapenne, G; Joachim, C; Hla, S-W
2013-01-01
The design of artificial molecular machines often takes inspiration from macroscopic machines. However, the parallels between the two systems are often only superficial, because most molecular machines are governed by quantum processes. Previously, rotary molecular motors powered by light and chemical energy have been developed. In electrically driven motors, tunnelling electrons from the tip of a scanning tunnelling microscope have been used to drive the rotation of a simple rotor in a single direction and to move a four-wheeled molecule across a surface. Here, we show that a stand-alone molecular motor adsorbed on a gold surface can be made to rotate in a clockwise or anticlockwise direction by selective inelastic electron tunnelling through different subunits of the motor. Our motor is composed of a tripodal stator for vertical positioning, a five-arm rotor for controlled rotations, and a ruthenium atomic ball bearing connecting the static and rotational parts. The directional rotation arises from sawtooth-like rotational potentials, which are solely determined by the internal molecular structure and are independent of the surface adsorption site.
Hopson, R.F.; Hillhouse, J.W.; Howard, K.A.
2008-01-01
Analysis of the strikes of 3841 dikes in 47 domains in the 500-km-long Late Jurassic Independence dike swarm indicates a distribution that is skewed clockwise from the dominant northwest strike. Independence dike swarm azimuths tend to cluster near 325?? ?? 30??, consistent with initial subparallel intrusion along much of the swarm. Dike azimuths in a quarter of the domains vary widely from the dominant trend. In domains in the essentially unrotated Sierra Nevada block, mean dike azimuths range mostly between 300?? and 320??, with the exception of Mount Goddard (247??). Mean dike azimuths in domains in the Basin and Range Province in the Argus, Inyo, and White Mountains areas range from 291?? to 354?? the mean is 004?? in the El Paso Mountains. In the Mojave Desert, mean dike azimuths range from 318?? to 023??, and in the eastern Transverse Ranges, they range from 316?? to 051??. Restoration for late Cenozoic vertical-axis rotations, suggested by paleodeclinations determined from published studies from nearby Miocene and younger rocks, shifts dike azimuths into better agreement with azimuths measured in the tectonically stable Sierra Nevada. This confirms that vertical-axis tectonic rotations explain some of the dispersion in orientation, especially in the Mojave Desert and eastern Transverse Ranges, and that the dike orientations can be a useful if imperfect guide to tectonic rotations where paleomagnetic data do not exist. Large deviations from the main trend of the swarm may reflect (1) clockwise rotations for which there is no paleomagnetic evidence available, (2) dike intrusions of other ages, (3) crack filling at angles oblique or perpendicular to the main swarm, (4) pre-Miocene rotations, or (5) unrecognized domain boundaries between dike localities and sites with paleomagnetic determinations. ?? 2008 The Geological Society of America.
NASA Astrophysics Data System (ADS)
Tsuchiyama, Yukiho; Zaman, Haider; Sotham, Sieng; Samuth, Yos; Sato, Eiichi; Ahn, Hyeon-Seon; Uno, Koji; Tsumura, Kosuke; Miki, Masako; Otofuji, Yo-ichiro
2016-01-01
Late Jurassic to Early Cretaceous red beds of the Phuquoc Formation were sampled at 33 sites from the Sihanoukville and Koah Kong areas of the Phuquoc-Kampot Som Basin, southwestern Cambodia. Two high-temperature remanent components with unblocking temperature ranging 650°-670 °C and 670-690 °C were identified. The magnetization direction for the former component (D = 5.2 °, I = 18.5 ° with α95 = 3.1 ° in situ) reveals a negative fold test that indicates a post-folding secondary nature. However, the latter component, carried by specular hematite, is recognized as a primary remanent magnetization. A tilt-corrected mean direction of D = 43.4 °, I = 31.9 ° (α95 = 3.6 °) was calculated for the primary component at 11 sites, corresponding to a paleopole of 47.7°N, 178.9°E (A95 = 3.6 °). When compared with the 130 Ma East Asian pole, a southward displacement of 6.0 ° ± 3.5 ° and a clockwise rotation of 33.1 ° ± 4.0 ° of the Phuquoc-Kampot Som Basin (as a part of the Indochina Block) with respect to East Asia were estimated. This estimate of the clockwise rotation is ∼15° larger than that of the Khorat Basin, which we attribute to dextral motion along the Wang Chao Fault since the mid-Oligocene. The comparison of the herein estimated clockwise rotation with the counter-clockwise rotation reported from the Da Lat area in Vietnam suggests the occurrence of a differential tectonic rotation in the southern tip of the Indochina Block. During the southward displacement of the Indochina Block, the non-rigid lithosphere under its southern tip moved heterogeneously, while the rigid lithosphere under the Khorat Basin moved homogeneously.
Geometry, kinematics and tectonic models of the Kazakhstan Orocline, Central Asian Orogenic Belt
NASA Astrophysics Data System (ADS)
Li, Pengfei; Sun, Min; Rosenbaum, Gideon; Yuan, Chao; Safonova, Inna; Cai, Keda; Jiang, Yingde; Zhang, Yunying
2018-03-01
The Central Asian Orogenic Belt (CAOB) is one of the largest accretionary orogens on Earth and is characterized by the occurrence of tight oroclines (Kazakhstan and Tuva-Mongolian oroclines). The origin of these large-scale orogenic curvatures is not quite understood, but is fundamentally important for understanding crustal growth and tectonic evolution of the CAOB. Here we provide an outline of available geological and paleomagnetic data around the Kazakhstan Orocline, with an aim of clarifying the geometry, kinematics and geodynamic origin of the orocline. The Kazakhstan Orocline is evident in a total magmatic image, and can be traced by the continuation of high magnetic anomalies associated with the Devonian Volcanic Belt and the Late Devonian to Carboniferous Balkhash-Yili arc. Paleomagnetic data show ∼112-126° clockwise rotation of the northern limb relative to the southern limb in the Late Devonian to Early Carboniferous, as well as ∼15-28° clockwise rotation of the northern limb and ∼39-40° anticlockwise rotation of the southern limb relative to the hinge of the orocline during the Late Carboniferous to Permian. We argue that the Kazakhstan Orocline experienced two-stage bending with the early stage of bending (Late Devonian to Early Carboniferous; ∼112-126°) driven by slab rollback, and the later stage (Late Carboniferous to Permian; 54-68°) possibly associated with the amalgamation of the Siberian, Tarim and Baltic cratons. This new tectonic model is compatible with the occurrence of rift basins, the spatial migration of magmatic arc, and the development of large-scale strike-slip fault systems during oroclinal bending.
NASA Astrophysics Data System (ADS)
Cengiz Çinku, Mualla
2017-12-01
Paleomagnetic results obtained from Upper Cretaceous sandstones in Northeastern Anatolia demonstrate that the entire area from Erzincan to Kars has been remagnetised. The remagnetisation was acquired before the Middle Eocene collision between the Eastern Pontides and the Arabian Platform because Middle Eocene sandstones carry primary natural remanent magnetisations. The post-folding in situ mean direction of the Upper Cretaceous sandstones is compared with mean directions of younger, Middle Eocene to present rock formations. As a result, a two-stage antagonistic rotation mechanism is proposed. First, the collision between the Pontides and the Taurides between Late Cretaceous and Middle Eocene was associated by clockwise rotation of 26°. In the second stage between Middle Eocene and Middle Miocene and beyond, counterclockwise rotations up to 52° of the Pontide and Anatolide blocks and clockwise rotations of the Van Block were characterised by regional shortening and westward escape.
Wells, R.E.
1990-01-01
Paleomagnetic results from Cenozoic (62-12 Ma) volcanic rocks of the Cascade Arc and adjacent areas indicate that moderate to large clockwise rotations are an important component of the tectonic history of the arc, Two mechanisms of rotation are suggested. The progressive increase in rotation toward the coast in arc and forearc rocks results from distributed dextral shear, which is likely driven by oblique subduction of oceanic plates to the west. Simple shear rotation is accommodated in the upper crust by strike-slip faulting. A progressive eastward shift of the arc volcanic front with time in the rotated arc terrane is the result of the westward pivoting of the arc block in front of a zone of extension since Eocene time. Westward migration of bimodal Basin and Range volcanism since at least 16 Ma is tracking rotation of the frontal arc block and growth of the Basin and Range in its wake. -from Author
A study of safety and tolerability of rotatory vestibular input for preschool children
Su, Wen-Ching; Lin, Chin-Kai; Chang, Shih-Chung
2015-01-01
The objectives of this study were to determine a safe rotatory vestibular stimulation input for preschool children and to study the effects of grade level and sex of preschool children during active, passive, clockwise, and counterclockwise rotation vestibular input. This study adopted purposive sampling with 120 children from three kindergarten levels (K1, K2, and K3) in Taiwan. The subjects ranged in age from 46 to 79 months of age (mean: 62.1 months; standard deviation =9.60). This study included testing with four types of vestibular rotations. The number, duration, and speed of rotations were recorded. The study found that the mean number of active rotations was 10.28; the mean duration of rotation was 24.17 seconds; and the mean speed was 2.29 seconds per rotation. The mean number of passive rotations was 23.04. The differences in number of rotations in clockwise, counterclockwise, active, and passive rotations were not statistically significant. Sex and grade level were not important related factors in the speed and time of active rotation. Different sexes, rotation methods (active, passive), and grades made significant differences in the number of rotations. The safety and tolerability of rotatory vestibular stimulation input data obtained in this study can provide useful reference data for therapists using sensory integration therapy. PMID:25657579
Combination drilling and skiving tool
Stone, William J.
1989-01-01
A combination drilling and skiving tool including a longitudinally extending hollow skiving sleeve slidably and concentrically mounted on a right-handed twist drill. Dogs or pawls provided on the internal periphery of the skiving sleeve engage with the helical grooves of the drill. During a clockwise rotation of the tool, the drill moves downwardly and the sleeve translates upwardly, so that the drill performs a drilling operation on a workpiece. On the other hand, the drill moves upwardly and the sleeve translates downwardly, when the tool is rotated in a counter-clockwise direction, and the sleeve performs a skiving operation. The drilling and skiving operations are separate, independent and exclusive of each other.
NASA Technical Reports Server (NTRS)
Ralston, J. N.; Barnhart, B. P.
1984-01-01
The influence of control deflections on the rotational flow aerodynamics and on predicted spin modes is discussed for a 1/6-scale general aviation airplane model. The model was tested for various control settings at both zero and ten degree sideslip angles. Data were measured, using a rotary balance, over an angle-of-attack range of 30 deg to 90 deg, and for clockwise and counter-clockwise rotations covering an omegab/2V range of 0 to 0.5.
NASA Technical Reports Server (NTRS)
Barnhart, B.
1982-01-01
The influence of horizontal tail location on the rotational flow aerodynamics is discussed for a 1/6-scale general aviation airplane model. The model was tested using various horizontal tail positions, with both a high and a low-wing location and for each of two body lengths. Data were measured, using a rotary balance, over an angle-of-attack range of 8 to 90 deg, and for clockwise and counter-clockwise rotations covering an Omega b/2V range of 0 to 0.9.
ERIC Educational Resources Information Center
Rodriguez-Fernandez, Emilio
2013-01-01
By using cardboard models that resemble propellers, the students of inorganic courses can easily visualizing the distinct rotation of optical isomers. These propellers rotate clockwise or counterclockwise when they are dropped from a certain height or in the presence of wind. (Contains 1 figure.)
NASA Astrophysics Data System (ADS)
Molina Garza, Roberto S.; Geissman, John W.
1999-04-01
Two ancient magnetizations have been isolated in rocks of the Caborca terrane, northwest Mexico. The characteristic magnetizations of Neoproterozoic and Paleozoic miogeoclinal shelf-strata, arc-derived Lower Jurassic marine strata, and Jurassic volcanic and volcaniclastic rocks are of dual polarity and east-northeast declination (or south-southwest) and shallow inclination. Magnetizations in Neoproterozoic and Paleozoic miogeoclinal strata are interpreted as secondary (J*) and to be of similar age to those observed in Lower and Middle Jurassic rocks. Remanence acquisition is bracketed between about 190 and 160 Ma. The overall mean (D=15.0°, I=8.5° n=38 sites; six localities; k=19.1, α95=5.5°) suggests a moderate to large clockwise rotation of 12 to 50° (depending on reference direction assumed) of the Caborca terrane, and rocks of the Sonoran segment of the Cordilleran volcanic arc, with respect to the North America craton. When compared with expected inclinations, observed values are not anomalously steep, arguing against statistically significant southward latitudinal displacement of the Caborca block after remanence acquisition. Late Cretaceous intrusions yield primary, dual-polarity steep inclination ``K'' magnetizations (D=341.4°, I=52.3° n=10 sites; five localities; k=38.3, α95=7.9°) and have locally remagnetized Neoproterozoic and Jurassic strata. When present, secondary (K*) magnetizations in Neoproterozoic strata are of higher coercivity and higher unblocking temperature than the characteristic (J*) magnetization. Importantly, the regional internal consistency of data for Late Cretaceous intrusions suggests that effects of Tertiary tilt or rotation about a vertical axis over the broad region sampled (~5000 km2) are not substantial. Late Cretaceous primary (K) magnetizations and secondary (K*) magnetizations yield a combined mean of D=348.1°, I=50.7° (N=10 localities; 47 sites; k=53.5, α95=6.7°), indicating at most small (<~10°) clockwise rotation of the Caborca region with respect to the craton. Permissible post-Late Cretaceous latitudinal displacement is near or below the detection limit of paleomagnetism (<~300 km). Limited data from Lower Cretaceous strata of the Bisbee Group (D=339.9°, I=47.9° n=4 sites) suggest that the modest clockwise rotations inferred on the basis of J* magnetizations in Jurassic and older strata occurred in Jurassic time. Together, the lack of evidence for southward displacement, yet evidence for statistically significant clockwise rotation, and the overall similarity of Jurassic magnetizations in the Cordilleran arc with those of the Caborca block, despite the fact that some of them are clearly secondary, are not consistent with the Mojave-Sonora megashear hypothesis of Late Jurassic left-lateral strike-slip motion of the crust of northern Mexico.
Hagstrum, J.T.; Gans, P.B.
1989-01-01
The Oligocene Kalamazoo Tuff (???35 Ma) was sampled for paleomagnetic analysis across a 100-km-wide zone of highly extended crust in east central Nevada to estimate between-site vertical axis rotations and thus the relative importance of strike-slip faulting to the mechanism of extension. The tilt-corrected data, with sources of error reduced or eliminated, exhibit a 28?? ?? 12?? clockwise rotation of the Schell Creek Range relative to the Kern Mountains region. This rotation implies differential extension accommodated by strike-slip faulting or N-S shortening. The paleomagnetic results also suggest that large changes in strike of layered units near faults with presumed strike-slip movement need not be the result of oroclinal bending, but could result from superimposed sets of orthogonal normal faults. -from Authors
Understanding reversals of a rattleback
NASA Astrophysics Data System (ADS)
Rauch-Wojciechowski, Stefan; Przybylska, Maria
2017-07-01
A counterintuitive unidirectional (say counterclockwise) motion of a toy rattleback takes place when it is started by tapping it at a long side or by spinning it slowly in the clockwise sense of rotation. We study the motion of a toy rattleback having an ellipsoidal-shaped bottom by using frictionless Newton equations of motion of a rigid body rolling without sliding in a plane. We simulate these equations for tapping and spinning initial conditions to see the contact trajectory, the force arm and the reaction force responsible for torque turning the rattleback in the counterclockwise sense of rotation. Long time behavior of such a rattleback is, however, quasi-periodic and a rattleback starting with small transversal oscillations turns in the clockwise direction.
NASA Technical Reports Server (NTRS)
Bihrle, W., Jr.; Hultberg, R. S.
1979-01-01
Aerodynamic characteristics obtained in a rotational flow environment utilizing a rotary balance located in the spin tunnel are presented in plotted form for a 1/6.5 scale, single engine, low wing, general aviation airplane model. The configurations tested included the basic airplane, various wing leading-edge devices, tail designs, and rudder control settings as well as airplane components. Data are presented without analysis for an angle-of-attack range of 8 deg to 90 deg and clockwise and counter-clockwise rotations covering an (omega)(b)/2V range from 0 to 0.85.
NASA Technical Reports Server (NTRS)
Bihrle, W., Jr.; Hultberg, R. S.
1979-01-01
Aerodynamic characteristics obtained in a rotational flow environment utilizing a rotary balance located in a spin tunnel are presented in plotted form for a 1/6.5 scale, single engine, high wing, general aviation airplane model. The configurations tested included the basic airplane, various wing leading-edge devices, tail designs, and rudder control settings as well as airplane components. Data are presented without analysis for an angle of attack range of 8 deg to 90 deg and clockwise and counter-clockwise rotations covering an omega b/2V range from 0 to 0.85.
Precise Measurement of Velocity Dependent Friction in Rotational Motion
ERIC Educational Resources Information Center
Alam, Junaid; Hassan, Hafsa; Shamim, Sohaib; Mahmood, Waqas; Anwar, Muhammad Sabieh
2011-01-01
Frictional losses are experimentally determined for a uniform circular disc exhibiting rotational motion. The clockwise and anticlockwise rotations of the disc, that result when a hanger tied to a thread is released from a certain height, give rise to vertical oscillations of the hanger as the thread winds and unwinds over a pulley attached to the…
NASA Astrophysics Data System (ADS)
Johnson, S.; Geissman, J. W.; Katopody, D. T.; Kerstetter, S. R.; Oldow, J. S.
2016-12-01
The northern part of the southern Walker Lane experienced three extensional events from the late Oligocene to the Holocene: 1) late Oligocene to early Miocene WNW and ENE trending half-grabens, 2) Late Miocene to early Pliocene high-magnitude extension on a low-angle normal fault, and 3) contemporary transtensional deformation that initiated at 4 Ma. Each of the extensional events controlled deposition of synextensional strata. What is less understood is the timing and magnitude of vertical axis rotation and its relationship to each of the three extensional events. As part of a recent and ongoing multidisciplinary study to better understand the complex nature and history of these extensional events we present preliminary paleomagnetic data from 55 sites in Miocene extrusive igneous rocks which record that clockwise vertical-axis rotation played a significant role in accommodating displacement in these systems. Recently refined stratigraphic, geochronologic, and structural controls have allowed the detailed paleomagnetic sampling required for this study. We seek to provide better constraints on timing, areal extent, and distribution of vertical axis rotation to answer how vertical axis rotation interacted with these extensional events. Consistent with past studies, we have recognized 20-30 degrees of clockwise vertical-axis rotation distributed heterogeneously throughout the study area. However, clockwise vertical-axis rotations are no longer occurring in this region as evidenced by modern geodetic velocity fields. The accommodation of displacement by vertical axis rotations in this region likely ceased by early Pliocene to late Miocene when the structural step-over migrated to the northwest to its present day manifestation in the Mina Deflection. Anisotropy of magnetic susceptibility (AMS), used as a proxy for flow direction in igneous extrusive rocks, provides evidence that at least one late Oligocene-early Miocene half-grabens acted as near-source depositional centers concurrent with extension.
NASA Astrophysics Data System (ADS)
Platt, J. P.; Becker, T. W.
2013-09-01
Sets of E- to NE-trending sinistral and/or reverse faults occur within the San Andreas system, and are associated with palaeomagnetic evidence for clockwise vertical-axis rotations. These structures cut across the trend of active dextral faults, posing questions as to how displacement is transferred across them. Geodetic data show that they lie within an overall dextral shear field, but the data are commonly interpreted to indicate little or no slip, nor any significant rate of rotation. We model these structures as rotating by bookshelf slip in a dextral shear field, and show that a combination of sinistral slip and rotation can produce the observed velocity field. This allows prediction of rates of slip, rotation, fault-parallel extension and fault-normal shortening within the panel. We use this method to calculate the kinematics of the central segment of the Garlock Fault, which cuts across the eastern California shear zone at a high angle. We obtain a sinistral slip rate of 6.1 ± 1.1 mm yr-1, comparable to geological evidence, but higher than most previous geodetic estimates, and a rotation rate of 4.0 ± 0.7° Myr-1 clockwise. The western Transverse Ranges transect a similar shear zone in coastal and offshore California, but at an angle of only 40°. As a result, the faults, which were sinistral when they were at a higher angle to the shear zone, have been reactivated in a dextral sense at a low rate, and the rate of rotation of the panel has decreased from its long-term rate of ˜5° to 1.6° ± 0.2° Myr-1 clockwise. These results help to resolve some of the apparent discrepancies between geological and geodetic slip-rate estimates, and provide an enhanced understanding of the mechanics of intracontinental transform systems.
Gambarini, Gianlucca; Gergi, Richard; Grande, Nicola Maria; Osta, Nada; Plotino, Gianluca; Testarelli, Luca
2013-12-01
The aim of this study was to investigate whether cyclic fatigue resistance is increased for nickel titanium instruments manufactured with improved heating processes in clockwise or counterclockwise continuous rotation. The instruments compared were produced either using the R-phase heat treatment (K3XF; SybronEndo, Orange, CA, USA) or the M-wire alloy (ProFile Vortex; DENTSPLY Tulsa Dental Specialties, Tulsa, OK, USA). Tests were performed with a specific cyclic fatigue device that evaluated cycles to failure of rotary instruments in curved artificial canals. Results indicated no significant difference in resistance to cyclic fatigue when rotary nickel titanium instruments are used in clockwise or counterclockwise continuous rotation. In both directions of rotation, size 04-25 K3XF showed a significant increase (P < 0.05) in the mean number of cycles to failure when compared with size 04-25 ProFile Vortex. © 2012 The Authors. Australian Endodontic Journal © 2012 Australian Society of Endodontology.
ON THE ROTATION OF SUNSPOTS AND THEIR MAGNETIC POLARITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Jianchuan; Yang, Zhiliang; Guo, Kaiming
2016-07-20
The rotation of sunspots of 2 yr in two different solar cycles is studied with the data from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory and the Michelson Doppler Imager instrument on board the Solar and Heliospheric Observataory . We choose the α sunspot groups and the relatively large and stable sunspots of complex active regions in our sample. In the year of 2003, the α sunspot groups and the preceding sunspots tend to rotate counterclockwise and have positive magnetic polarity in the northern hemisphere. In the southern hemisphere, the magnetic polarity and rotational tendency ofmore » the α sunspot groups and the preceding sunspots are opposite to the northern hemisphere. The average rotational speed of these sunspots in 2003 is about 0.°65 hr{sup 1}. From 2014 January to 2015 February, the α sunspot groups and the preceding sunspots tend to rotate clockwise and have negative magnetic polarity in the northern hemisphere. The patterns of rotation and magnetic polarity of the southern hemisphere are also opposite to those of the northern hemisphere. The average rotational speed of these sunspots in 2014/2015 is about 1.°49 hr{sup 1}. The rotation of the relatively large and stable preceding sunspots and that of the α sunspot groups located in the same hemisphere have opposite rotational direction in 2003 and 2014/2015.« less
NASA Astrophysics Data System (ADS)
Ni, J.; Holt, W. E.; Flesch, L. M.; Sandvol, E. A.; Hearn, T. M.; Schmerr, N. C.
2015-12-01
The late Cenozoic tectonics of the southeastern Tibetan Plateau and surrounding regions needs to be evaluated within the context of a larger dynamic system related to the subduction of the Indian oceanic lithosphere beneath Myanmar and Yunnan. The details of the geodynamic processes involve mantle flows associated with rollback and tears (which probably occur both laterally and horizontally) of the Indian slab with consequent effects on the geology of the overriding plate. These effects include: 1) volcanism in Tongchong, Yunnan Province, 2) clockwise rotational deformation of the overriding plate and 3) Burma Plate capture. In this talk we will present the strain rate throughout the region with a moment tensor summation of earthquake data. The deformation of SE Tibet, Yunnan and western Sichuan constitutes a distributed N-S oriented dextral shear zone with clockwise rotations up to 1.7° per million years. It is the clockwise vorticity relative to south China that accounts for the relative northward motion of India at a rate of 38±12 mm/yr at the Himalayas. Relative to south China, there is no southeastward extrusion of crustal material beyond the eastern margin of the Tibetan Plateau. Studies on earthquake seismic moment data, fault-slip data, and GPS measurements all show a clockwise rotational motion of SE Tibet, Yunnan, western Sichuan and eastern Myanmar around the EHS. The mirror image of this situation that is occurring today is the counterclockwise rotation of Anatolia, which is associated with the rollback of the Hellenic and Cyprian Trenches. In this talk we will also discuss the extreme oblique convergence between Indian and Burma plates and one of the effects of the oblique subducation is the transfer of right-lateral strike-slip faulting to the Indo Burma Range, one of the largest GeoPRISMs on Earth.
NASA Astrophysics Data System (ADS)
Petronis, M. S.; Grondin, D.; Castillo, G., Sr.; Shields, S.; Lindline, J.; Romero, B.; Pluhar, C. J.
2016-12-01
Deformation between the North American and Pacific plates is distributed across a wide zone of the western margin of the continent, where at least 25-30% of the plate boundary strain is accommodated via intraplate deformation. We hypothesize that during the early to mid-Miocene transtensional deformation was located east of the Sierra Nevada in the Mono Basin prior to stepping east into the Mina Deflection. Seventeen 40Ar/39Ar age determinations were obtained from sequences of lava flows that yield relatively stable plateau ages that indicate eruption in the late Miocene to early Pliocene. Paleomagnetic data were collected from the Miocene Jack Springs Tuff (JST) east of Huntoon Valley, and stratigraphically continuous sections of Mio-Pliocene basalt flows near Marietta, NV (MB), Pizona, CA (PB), Queens Valley, CA/NV (QVB), and in the Adobe Hills (AH). Nineteen sites from the JST yield clockwise discordant results, with respect to the reference location, from +20°±10° to +60°±11°. The results from the basalts yield discordant data with respect to the Miocene expected field direction (D=353°, I=58°, A95= 3°). Twelve of 13 sites from the MB yield a group mean direction D=027°, I=57°, a95=12.4° that is clockwise discordant with an inferred rotation (R) and flattening (F) of R=+33.9°+/-18.4° and F=1.3°+/-10.6°. Seventeen of 22 sites from four sections in the PB indicate that three sections are counter-clockwise discordant and one section plots on the expected field direction. Sixteen of 23 sites from five sections in the QVB indicate that three sections are counter-clockwise discordant and two sections are clockwise discordant. Thirty-four sites of the >100 sites collected in the Adobe Hills are clockwise discordant ranging from +15°±10° to +50°±10°. This study provides the first paleomagnetic data for this area, which supports the hypothesis of strain accommodated by vertical axis rotation in the Mono Basin and constrains the timing of intraplate reorganization.
NASA Technical Reports Server (NTRS)
Bihrle, W., Jr.; Mulcay, W.
1979-01-01
Aerodynamic characteristics obtained in a rotational flow environment utilizing a rotary balance located in the Langley spin tunnel are presented in plotted form for a 1/5 scale, single-engine, low-wing, general aviation airplane model. The configurations tested included the basic airplane, sixteen wing leading-edge modifications and lateral-directional control settings. Data are presented for all configurations without analysis for an angle of attack range of 8 deg to 35 deg and clockwise and counter-clockwise rotations covering an Omega b/2v range from 0 to 0.85. Also, data are presented above 35 deg of attack for some configurations.
NASA Technical Reports Server (NTRS)
Ralston, J.
1983-01-01
The influence of airplane components, as well as wing location and tail length, on the rotational flow aerodynamics is discussed for a 1/6 scale general aviation airplane model. The airplane was tested in a built-up fashion (i.e., body, body-wing, body-wing-vertical, etc.) in the presence of two wing locations and two body lengths. Data were measured, using a rotary balance, over an angle-of-attack range of 8 deg to 90 deg, and for clockwise and counter-clockwise rotations covering an omega b/2V range of 0 to 0.9.
NASA Technical Reports Server (NTRS)
Wade, Michael O. (Inventor); Poland, Jr., James W. (Inventor)
2003-01-01
A ratcheting device comprising a driver head assembly which includes at least two 3-D sprag elements positioned within a first groove within the driver head assembly such that at least one of the 3-D sprag elements may lockingly engage the driver head assembly and a mating hub assembly to allow for rotation of the hub assembly in one direction with respect to the driver head assembly. This arrangement allows the ratcheting tool to impart torque in either the clockwise or counterclockwise direction without having to first rotate the ratcheting tool in the direction opposite the direction in which the torque is applied. This arrangement also allows the ratcheting tool to impart torque in either the clockwise or counterclockwise direction while in the neutral position.
Tectonic evolution of Gorda Ridge inferred from sidescan sonar images
Masson, D.G.; Cacchione, D.A.; Drake, D.E.
1988-01-01
Gorda Ridge is the southern segment of the Juan de Fuca Ridge complex, in the north-east Pacific. Along-strike spreading-rate variation on Gorda Ridge and deformation of Gorda Plate are evidence for compression between the Pacific and Gorda Plates. GLORIA sidescan sonographs allow the spreading fabric associated with Gorda Ridge to be mapped in detail. Between 5 and 2 Ma, a pair of propagating rifts re-orientated the northern segment of Gorda Ridge by about 10?? clockwise, accommodating a clockwise shift in Pacific-Juan de Fuca plate motion that occurred around 5 Ma. Deformation of Gorda Plate, associated with southward decreasing spreading rates along southern Gorda Ridge, is accommodated by a combination of clockwise rotation of Gorda Plate crust, coupled with left-lateral motion on the original normal faults of the ocean crust. Segments of Gorda Plate which have rotated by different amounts are separated by narrow deformation zones across which sharp changes in ocean fabric trend are seen. Although minor lateral movement may occur on these NW to WNW structures, no major right-lateral movement, as predicted by previous models, is observed. ?? 1988 Kluwer Academic Publishers.
Symmetry-breaking phase transitions in highly concentrated semen
Creppy, Adama; Plouraboué, Franck; Praud, Olivier; Druart, Xavier; Cazin, Sébastien; Yu, Hui
2016-01-01
New experimental evidence of self-motion of a confined active suspension is presented. Depositing fresh semen sample in an annular shaped microfluidic chip leads to a spontaneous vortex state of the fluid at sufficiently large sperm concentration. The rotation occurs unpredictably clockwise or counterclockwise and is robust and stable. Furthermore, for highly active and concentrated semen, richer dynamics can occur such as self-sustained or damped rotation oscillations. Experimental results obtained with systematic dilution provide a clear evidence of a phase transition towards collective motion associated with local alignment of spermatozoa akin to the Vicsek model. A macroscopic theory based on previously derived self-organized hydrodynamics models is adapted to this context and provides predictions consistent with the observed stationary motion. PMID:27733694
Torsion of a nongravid uterus with a large ovarian cyst: usefulness of contrast MR image.
Matsumoto, Hiroki; Ohta, Tsuyoshi; Nakahara, Kenji; Kojimahara, Takanobu; Kurachi, Hirohisa
2007-01-01
Torsion of a nongravid uterus is extremely rare. Most cases of uterine torsion occur during pregnancy. Here we report a case of nongravid uterus torsion with a large adnexal mass. A 73-year-old woman presented at the emergency room with acute abdominal pain. A preoperative diagnosis of torsion of an ovarian cyst was made and laparotomy was performed. The left ovary was twisted 360 degrees in a clockwise rotation, and the uterine corpus had also undergone a 360 degrees rotation. Total abdominal hysterectomy and bilateral salpingo-oophorectomy were carried out. Although a preoperative diagnosis of uterine torsion was not possible, it is noteworthy that in the contrast-enhanced magnetic resonance images the uterine cervix was intensely enhanced, while the uterine corpus was not. This is the first report to show the magnetic resonance imaging findings of a twisted uterus. Copyright (c) 2007 S. Karger AG, Basel.
Le Fort III Distraction With Internal vs External Distractors: A Cephalometric Analysis.
Robertson, Kevin J; Mendez, Bernardino M; Bruce, William J; McDonnell, Brendan D; Chiodo, Michael V; Patel, Parit A
2018-05-01
This study compares the change in midface position following Le Fort III advancement using either rigid external distraction (group 1) or internal distraction (group 2). We hypothesized that, with reference to right-facing cephalometry, internal distraction would result in increased clockwise rotation and inferior displacement of the midface. Le Fort III osteotomies and standardized distraction protocols were performed on 10 cadaveric specimens per group. Right-facing lateral cephalograms were traced and compared across time points to determine change in position at points orbitale, anterior nasal spine (ANS), A-point, and angle ANB. Institutional. Twenty cadaveric head specimens. Standard subcranial Le Fort III osteotomies were performed from a coronal approach and adequately mobilized. The specified distraction mechanism was applied and advanced by 15 mm. Changes of position were calculated at various skeletal landmarks: orbitale, ANS, A-point, and ANB. Group 1 demonstrated relatively uniform x-axis advancement with minimal inferior repositioning at the A-point, ANS, and orbitale. Group 2 demonstrated marked variation in x-axis advancement among the 3 points, along with a significant inferior repositioning and clockwise rotation of the midface ( P < .0001). External distraction resulted in more uniform advancement of the midface, whereas internal distraction resulted in greater clockwise rotation and inferior displacement. External distraction appears to provide increased vector control of the midface, which is important in creating a customized distraction plan based on the patient's individual occlusal and skeletal needs.
NASA Astrophysics Data System (ADS)
Osete, M. L.; Villalain, J. J.; Pavon-Carrasco, F. J.; Palencia, A.
2009-05-01
The Betic Cordillera is the northern branch of the Betic-Rifean orogen, the westernmost segment of the Mediterranean Alpine orogenic system. Several palaeomagnetic studies have enhanced the important role that block rotations about vertical axes have played in the tectonic evolution of the region. In this work we present a review of published palaeomagnetic data. According with the rotational deformation, the Betics are divided into the central-western area and the eastern Betics. A sequence of rotations for the two regions is also proposed. In central and western Subbetics almost constant clockwise rotations of about 60 are documented in Jurassic limestones. The existence of a pervasive remagnetization of Jurassic limestones, which was coeval with the folding of the studied units and dated as post-Palaeogene, constrains the timing of tectonic rotations in western Subbetics. New palaeomagnetic data from Neogene sedimentary sequences in central Betics indicate that palaeomagnetic clockwise rotations continued after late Miocene. A similar pattern of 40 CW rotations occurred after 20-17 Ma was obtained from the study of the Ronda-Malaga peridotites (western Internal Betics). In eastern Subbetics a more heterogeneous pattern, including very high CW rotations has been observed. But recent rotational deformation in the Internal part of eastern Betics is CCW and related to the left-lateral strike-slip fault systems. Proposed kinematics models for the Betics are discussed under the light of the present available palaeomagnetic information.
NASA Astrophysics Data System (ADS)
Bormann, Jayne M.; Hammond, William C.; Kreemer, Corné; Blewitt, Geoffrey
2016-04-01
We present 264 new interseismic GPS velocities from the Mobile Array of GPS for Nevada Transtension (MAGNET) and continuous GPS networks that measure Pacific-North American plate boundary deformation in the Central Walker Lane. Relative to a North America-fixed reference frame, northwestward velocities increase smoothly from ∼4 mm/yr in the Basin and Range province to 12.2 mm/yr in the central Sierra Nevada resulting in a Central Walker Lane deformation budget of ∼8 mm/yr. We use an elastic block model to estimate fault slip and block rotation rates and patterns of deformation from the GPS velocities. Right-lateral shear is distributed throughout the Central Walker Lane with strike-slip rates generally <1.5 mm/yr predicted by the block model, but extension rates are highest near north-striking normal faults found along the Sierra Nevada frontal fault system and in a left-stepping, en-echelon series of asymmetric basins that extend from Walker Lake to Lake Tahoe. Neotectonic studies in the western Central Walker Lane find little evidence of strike-slip or oblique faulting in the asymmetric basins, prompting the suggestion that dextral deformation in this region is accommodated through clockwise block rotations. We test this hypothesis and show that a model relying solely on the combination of clockwise block rotations and normal faulting to accommodate dextral transtensional strain accumulation systematically misfits the GPS data in comparison with our preferred model. This suggests that some component of oblique or partitioned right-lateral fault slip is needed to accommodate shear in the asymmetric basins of the western Central Walker Lane. Present-day clockwise vertical axis rotation rates in the Bodie Hills, Carson Domain, and Mina Deflection are between 1-4°/Myr, lower than published paleomagnetic rotation rates, suggesting that block rotation rates have decreased since the Late to Middle Miocene.
Guillaud, Etienne; Simoneau, Martin; Blouin, Jean
2011-06-01
Reaching for a target while rotating the trunk generates substantial Coriolis and centrifugal torques that push the arm in the opposite direction of the rotations. These torques rarely perturb movement accuracy, suggesting that they are compensated for during the movement. Here we tested whether signals generated during body motion (e.g., vestibular) can be used to predict the torques induced by the body rotation and to modify the motor commands accordingly. We asked a deafferented subject to reach for a memorized visual target in darkness. At the onset of the reaching, the patient was rotated 25° or 40° in the clockwise or the counterclockwise directions. During the rotation, the patient's head remained either fixed in space (Head-Fixed condition) or fixed on the trunk (Head Rotation condition). At the rotation onset, the deafferented patient's hand largely deviated from the mid-sagittal plane in both conditions. The hand deviations were compensated for in the Head Rotation condition only. These results highlight the computational faculty of the brain and show that body rotation-related information can be processed for predicting the consequence of the rotation dynamics on the reaching arm movements. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Beardsley, A. G.; Avé Lallemant, H. G.
2005-12-01
The Leeward Antilles island arc is located offshore northern Venezuela and includes Aruba, Curaçao, and Bonaire (ABCs). The ABCs trend WNW-ESE parallel to the obliquely convergent Caribbean-South American plate boundary zone. Field work on the ABCs has provided new structural data supporting a minimum of 90° clockwise rotation of the islands within the diffuse plate boundary zone. Analysis of faulting, bedding, and cleavages suggest three phases of deformation (D1-D3). The oldest phase of deformation, D1, is characterized by northeast trending normal faults, northwest trending fold axes and cleavages, and northeast striking dextral strike-slip faults. East striking sinstral strike-slip faults are rare. The second phase of deformation, D2, is represented by west-northwest trending thrust faults, north-northeast striking normal faults, northwest trending dextral strike-slip faults, and northeast striking sinstral strike-slip faults. Finally, the youngest phase of deformation, D3, is characterized by northeast striking thrust faults, northwest striking normal faults, east-west dextral strike-slip faults, and north-northwest sinstral strike-slip faults. Quartz and calcite veins were also studied on the ABCs. Cross-cutting relationships in outcrop suggest three phases of veining (V1-V3). The oldest veins, V1, trend northeastward; V2 veins trend northward; and the youngest veins, V3, trend northwestward. Additionally, joints were measured on the ABCs. On Bonaire and Curaçao, joints trend approximately northeast while joints on Aruba are almost random with a slight preference for west-northwest. Fluid inclusion analysis of quartz and calcite veins provides additional information about the pressure and temperature conditions of the deformation phases. Preliminary results from the earliest veins (V1) show a single deformational event on Aruba and Bonaire. On Bonaire, they exhibit both hydrostatic and lithostatic pressure conditions. This new data supports three stages of deformation accompanied by rotation of the ABCs. The structures identified suggest a clockwise rotation of the principal stress orientation since the Late Cretaceous. D1 deformation and rotation occurred at the southeastern Caribbean plate margin beginning approximately 73 Ma on Aruba. Arc-parallel strike-slip motion rotated the islands clockwise 90° Internal deformation features of the island blocks are consistent with an obliquely convergent plate boundary. D2 deformation is characterized by clockwise block rotation facilitated by dextral strike-slip faults defining the northern and southern boundaries of the diffuse plate boundary zone. Most likely, D2 correlates to the Eocene change in plate motions due to convergence between North and South America, approximately 55 Ma. The youngest phase of deformation and rotation, D3, happens along the arcuate South Caribbean Deformed Belt. Since approximately 25 Ma, rotation and development of northwest trending pull-apart basins between the ABCs progressed. Northeastward motion of the Maracaibo block may also contribute to recent rotation of the island arc.
Martin, James; Hudson, Jennifer; Hornung, Tassilo; Frasch, Wayne D.
2015-01-01
Living organisms rely on the FoF1 ATP synthase to maintain the non-equilibrium chemical gradient of ATP to ADP and phosphate that provides the primary energy source for cellular processes. How the Fo motor uses a transmembrane electrochemical ion gradient to create clockwise torque that overcomes F1 ATPase-driven counterclockwise torque at high ATP is a major unresolved question. Using single FoF1 molecules embedded in lipid bilayer nanodiscs, we now report the observation of Fo-dependent rotation of the c10 ring in the ATP synthase (clockwise) direction against the counterclockwise force of ATPase-driven rotation that occurs upon formation of a leash with Fo stator subunit a. Mutational studies indicate that the leash is important for ATP synthase activity and support a mechanism in which residues aGlu-196 and cArg-50 participate in the cytoplasmic proton half-channel to promote leash formation. PMID:25713065
Liu, J D; Parkinson, J S
1989-01-01
Chemotactic behavior in Escherichia coli is mediated by membrane-associated chemoreceptors that transmit sensory signals to the flagellar motors through an intracellular signaling system, which appears to involve a protein phosphorylation cascade. This study concerns the role of CheW, a cytoplasmic protein, in coupling methyl-accepting chemotaxis proteins (MCPs), the major class of membrane receptors, to the intracellular signaling system. Steady-state flagellar rotation behavior was examined in a series of strains with different combinations and relative amounts of CheW, MCPs, and other signaling components. At normal expression levels, CheW stimulated clockwise rotation, and receptors appeared to enhance this stimulatory effect. At high expression levels, MCPs inhibited clockwise rotation, and CheW appeared to augment this inhibitory effect. Since overexpression of CheW or MCP molecules had the same behavioral effect as their absence, chemoreceptors probably use CheW to modulate two distinct signals, one that stimulates and one that inhibits the intracellular phosphorylation cascade. Images PMID:2682657
1989-08-24
Voyager II Imagery; Neptune. This bulls-eye view of Neptune's small dark spot (D2) was obtained by Voyager 2's narrow-angle camera , when Neptune was within 1.1 million km (680,000 miles) of the planet. The smallest structures that can be seen are 20 km (12 miles) across. This unplanned photograph was obtained when the infrared spectrograph was mapping the the highest-resolution view of the feature taken during the flyby. Banding surrounding the feature indicates unseen strong winds, while structues within the bright spot suggest both active upwelling of clouds and rotation about the center. A rotation rate has not yet been measured, but the v-shaped structure near the right edge of the bright area indicates that the spot rotates clockwise. Unlike the Great Red Spot on Jupiter, which rotates counterclockwise, if the D2 spot on Neptune rotates clockwise, the material will be descending in the dark oval region. The fact that infrared data will yield temperature information about the region above the clouds makes this observation especially valuable. The Voyager Mission is conducted by JPL for NASA's Office of Space Science and Applicaitons. (JPL ref: P-34749 Voyager N-71) taken during the flyby. Banding surrounding the feature indicates unseen strong winds, while structures within the bright spot suggest both active upwelling of clouds and rotation about the center. A rotation rate has not yest been measured, but the Vv-sphped
2017-01-01
PURPOSE The aim of this study was to determine the influence of long base lengths of a fixed partial denture (FPD) to rotational resistance with variation of vertical wall angulation. MATERIALS AND METHODS Trigonometric calculations were done to determine the maximum wall angle needed to resist rotational displacement of an experimental-FPD model in 2-dimensional plane. The maximum wall angle calculation determines the greatest taper that resists rotation. Two different axes of rotation were used to test this model with five vertical abutment heights of 3-, 3.5-, 4-, 4.5-, and 5-mm. The two rotational axes were located on the mesial-side of the anterior abutment and the distal-side of the posterior abutment. Rotation of the FPD around the anterior axis was counter-clockwise, Posterior-Anterior (P-A) and clockwise, Anterior-Posterior (A-P) around the distal axis in the sagittal plane. RESULTS Low levels of vertical wall taper, ≤ 10-degrees, were needed to resist rotational displacement in all wall height categories; 2–to–6–degrees is generally considered ideal, with 7–to–10–degrees as favorable to the long axis of the abutment. Rotation around both axes demonstrated that two axial walls of the FPD resisted rotational displacement in each direction. In addition, uneven abutment height combinations required the lowest wall angulations to achieve resistance in this study. CONCLUSION The vertical height and angulation of FPD abutments, two rotational axes, and the long base lengths all play a role in FPD resistance form. PMID:28874995
Paleomagnetism and Lithostratigraphy of the Miocene Tuff of Huntoon Creek Type Section
NASA Astrophysics Data System (ADS)
Johnson, S.; Pluhar, C. J.; Lindeman, J. R.
2014-12-01
Here we define the Tuff of Huntoon Creek (THC), previously identified and mapped in Mono Basin, CA by Gilbert et al. (1968) as "latite ignimbrite" (K-Ar date of 11.1-11.9 Ma). Formally defining this formation and its paleomagnetic characteristics, can help reveal the spatial and temporal relationships of the Walker Lane and Mina Deflection structural features, including distribution of vertical axis rotation. THC is composed of four tuffs with an intercalated volcaniclastic sandstone giving a total stratigraphic thickness of ~300 m. We define THC in a gorge of Huntoon Creek, where the stratigraphic section is capped by Pliocene basalt. The lowest and most extensive stratigraphic unit, the Huntoon Valley member of THC, is ~243 m thick and can be distinguished from other units by the presence of sanidine and biotite phenocrysts and normal polarity. A 7-meter-thick volcaniclastic sandstone overlies the Huntoon Valley member, straddling a magnetic polarity reversal within the section. The 3 overlying members of THC are reversed-polarity, biotite-bearing, sanidine-free tuffs of variable degrees of welding. Their paleomagnetic directions are each statistically distinguishable from the others, indicating that the deposition of each tuff is separated by a significant amount of time and can be used as a geologically instantaneous measure of Earth's magnetic field for purposes of averaging out secular variation. The capping Pliocene olivine basalt was emplaced over an erosional unconformity of significant relief, as evidenced by the complete absence at some locations of the uppermost biotite-bearing THC member. The tilt corrected mean paleomagnetic direction for the 4 members of THC indicate a clockwise rotation magnitude of 77.5°±40.3°. The absolute rotation results of this locality are statistically indistinguishable from the relative rotation results of this locality compared to Cowtrack Mountain (Lindeman et al. 2013). The corroboration of these data suggests that this region of the Mina Deflection has undergone large magnitude clockwise rotation since the emplacement of THC. However, the capping basalt exhibits a magnetic declination of due north, suggesting that this unit experienced little rotation and that rotational deformation in this region had mostly ended by the time of its emplacement at ~3.5 Ma.
Langenheim, V.E.; Powell, R.E.
2009-01-01
The Eastern Transverse Ranges, adjacent to and southeast of the big left bend of the San Andreas fault, southern California, form a crustal block that has rotated clockwise in response to dextral shear within the San Andreas system. Previous studies have indicated a discrepancy between the measured magnitudes of left slip on through-going east-striking fault zones of the Eastern Transverse Ranges and those predicted by simple geometric models using paleomagnetically determined clockwise rotations of basalts distributed along the faults. To assess the magnitude and source of this discrepancy, we apply new gravity and magnetic data in combination with geologic data to better constrain cumulative fault offsets and to define basin structure for the block between the Pinto Mountain and Chiriaco fault zones. Estimates of offset from using the length of pull-apart basins developed within left-stepping strands of the sinistral faults are consistent with those derived by matching offset magnetic anomalies and bedrock patterns, indicating a cumulative offset of at most ???40 km. The upper limit of displacements constrained by the geophysical and geologic data overlaps with the lower limit of those predicted at the 95% confidence level by models of conservative slip located on margins of rigid rotating blocks and the clockwise rotation of the paleomagnetic vectors. Any discrepancy is likely resolved by internal deformation within the blocks, such as intense deformation adjacent to the San Andreas fault (that can account for the absence of basins there as predicted by rigid-block models) and linkage via subsidiary faults between the main faults. ?? 2009 Geological Society of America.
NASA Astrophysics Data System (ADS)
Hoshi, H.; Sugisaki, Y.
2017-12-01
Central Honshu of Japan is an ideal field for the study of crustal deformation related to arc-arc collision. In this study we obtained rock magnetic and paleomagnetic results from early Miocene igneous rocks in central Honshu in order to examine rotational deformation caused by the collision of the Izu-Bonin-Mariana (IBM) arc with central Honshu. In Takane of the Hida region, gabbro intrusions and older sedimentary rocks are intruded by numerous andesitic dikes that comprise a parallel dike swarm. The dikes formed under two different normal-faulting paleostress conditions, which were suggested using a method of clustering dike orientations. Cross-cutting relationships indicate that the two paleostress conditions existed during the same period. More than 240 oriented cores were taken at 38 sites in two localities for magnetic study. The andesites and gabbros generally have magnetite, and some andesites also contain pyrrhotite. The magnetite records easterly deflected remanent magnetization directions of dual polarities that pass the reversals test. Positive baked contact tests at two sites demonstrate that the easterly deflected direction is a thermoremanent magnetization acquired at the time of intrusion. The overall in situ (i.e., in geographic coordinates) mean direction for andesitic dikes is judged to be highly reliable, although there are two possible scenarios for explaining the easterly deflection: (1) clockwise rotation and (2) tilting to the northwest. We prefer the former scenario and conclude that 45° clockwise rotation occurred in Takane with respect to the North China Block of the Asian continent. This rotation must represent the clockwise rotation of entire Southwest Japan during the opening period of the Japan Sea. Very little difference is observed between the amount of the easterly deflection in Takane and those in the Tokai and Hokuriku regions, indicating no significant relative rotation. Thus, the crust beneath Takane has not suffered rotation caused by collision of the IBM arc with Honshu. Statistical analyses of paleomagnetic directional data suggest that the two paleostress conditions during the intrusion of andesite dikes lasted for a long period enough to sample geomagnetic secular variation.
NASA Astrophysics Data System (ADS)
Tan, X.; Gilder, S.; Chen, Y.; Cogné, J. P.; Courtillot, V. E.; Cai, J.
2017-12-01
Large northward translation of central Asian crustal blocks has been reported from paleomagnetism of Cretaceous and Tertiary terrestrial sediments. This motion was initially taken as evidence of deformation occurred in the Asian interior as a result of indentation of the Indian Plate. However, because the amount of motion is far greater than geological observations, accuracy of the paleomagnetic record has become a controversial issue. To solve the problem, it has been shown that the latitudinal offset can be entirely attributed to inclination shallowing during deposition and compaction processes (Tan et al., 2003; Tauxe and Kent, 2004). On the other hand, coeval volcanic rocks from central Asia did record steeper paleomagnetic inclinations than terrestrial rocks (Gilder et al., 2003). To extend the effort of solving the controversy, we report paleomagnetic results of Cretaceous limestones from western Tarim basin. Our results show that the majority of our collections have been overprinted. Fortunately, a special type of limestones preserved stable characteristic remanence. Fold tests suggest a primary origin of the magnetization. Comparison of the paleomagnetic direction with the coeval expected direction from reference poles indicates a negligible amount of northward movement consistent with previous result of inclination correction based on magnetic fabrics, and a pattern of clockwise rotation symmetric with the style observed in the western flank of the Pamir ranges. Rock magnetic data will also be presented to support the accurate paleomagnetic record.
Steady rotation of the Cascade arc
Wells, Ray E.; McCaffrey, Robert
2013-01-01
Displacement of the Miocene Cascade volcanic arc (northwestern North America) from the active arc is in the same sense and at nearly the same rate as the present clockwise block motions calculated from GPS velocities in a North American reference frame. Migration of the ancestral arc over the past 16 m.y. can be explained by clockwise rotation of upper-plate blocks at 1.0°/m.y. over a linear melting source moving westward 1–4.5 km/m.y. due to slab rollback. Block motion and slab rollback are in opposite directions in the northern arc, but both are westerly in the southern extensional arc, where rollback may be enhanced by proximity to the edge of the Juan de Fuca slab. Similarities between post–16 Ma arc migration, paleomagnetic rotation, and modern GPS block motions indicate that the secular block motions from decadal GPS can be used to calculate long-term strain rates and earthquake hazards. Northwest-directed Basin and Range extension of 140 km is predicted behind the southern arc since 16 Ma, and 70 km of shortening is predicted in the northern arc. The GPS rotation poles overlie a high-velocity slab of the Siletzia terrane dangling into the mantle beneath Idaho (United States), which may provide an anchor for the rotations.
Small Sized Drone Fall Recover Mechanism Design
NASA Astrophysics Data System (ADS)
LIU, Tzu-Heng; CHAO, Fang-Lin; LIOU, Jhen-Yuan
2017-12-01
Drones uses four motors to rotate clockwise, counter-clockwise, or change in rotational speed to change its status of motion. The problem of Unmanned Aerial Vehicle turnover causes personal loses and harm local environment. Designs of devices that can let falling drones recover are discussed. The models attempt to change the orientation, so that the drone may be able to improve to the point where it can take off again. The design flow included looking for functional elements, using simplify model to estimate primary functional characteristics, and find the appropriate design parameters. For reducing the complexity, we adopted the simple rotate mechanism with rotating arms to change the fuselage angle and reduce the dependence on the extra-components. A rough model was built to verify structure, and then the concept drawing and prototype were constructed. We made the prototype through the integration of mechanical part and the electronic control circuit. The electronic control module that selected is Arduino-mini pro. Through the Bluetooth modules, user can start the rebound mechanism by the motor control signal. Protections frames are added around each propeller to improve the body rotate problem. Limited by current size of Arduino module, motor and rebound mechanism make the main chassis more massive than the commercial product. However, built-in sensor and circuit miniaturization will improve it in future.
Fluid mechanics of swimming bacteria with multiple flagella.
Kanehl, Philipp; Ishikawa, Takuji
2014-04-01
It is known that some kinds of bacteria swim by forming a bundle of their multiple flagella. However, the details of flagella synchronization as well as the swimming efficiency of such bacteria have not been fully understood. In this study, swimming of multiflagellated bacteria is investigated numerically by the boundary element method. We assume that the cell body is a rigid ellipsoid and the flagella are rigid helices suspended on flexible hooks. Motors apply constant torque to the hooks, rotating the flagella either clockwise or counterclockwise. Rotating all flagella clockwise, bundling of all flagella is observed in every simulated case. It is demonstrated that the counter rotation of the body speeds up the bundling process. During this procedure the flagella synchronize due to hydrodynamic interactions. Moreover, the results illustrated that during running the multiflagellated bacterium shows higher propulsive efficiency (distance traveled per one flagellar rotation) over a bacterium with a single thick helix. With an increasing number of flagella the propulsive efficiency increases, whereas the energetic efficiency decreases, which indicates that efficiency is something multiflagellated bacteria are assigning less priority to than to motility. These findings form a fundamental basis in understanding bacterial physiology and metabolism.
Relationship of Inglehart's and Schwartz's value dimensions revisited.
Dobewall, Henrik; Strack, Micha
2014-08-01
This study examines the relationship between Inglehart's and Schwartz's value dimensions-both at the individual and the country levels. By rotating one set of items towards the other, we show that these value dimensions have more in common than previously reported. The ranking of countries (N = 47) based on Schwartz's Embeddedness--Autonomy and the Survival--Self-Expression dimensions reached a maximum of similarity, r = .82, after rotating Inglehart's factor scores 27 degrees clockwise. The correlation between the other pair of dimensions (Schwartz's Hierarchy-Mastery--Egalitarianism-Harmony and Inglehart's Traditional--Secular-Rational values) was near zero before and after rotation. At the individual level (N = 46,444), positive correlations were found for Schwartz's Conservation--Openness dimension with both of Inglehart's dimensions (Survival--Self-Expression and Traditional--Secular-Rational values). The highest correlation with this Schwartz dimension was obtained at the Secular-Rational/Self-Expression diagonal, r = .24, after rotating the factor scores 45 degrees clockwise. We conclude that Schwartz's and Inglehart's originally proposed two-dimensional value structures share one dimension at the country level and some commonality at the individual level, whereas the respective other pair of dimensions seem to be more or less unrelated. © 2013 International Union of Psychological Science.
Chasing the Garlock: A study of tectonic response to vertical axis rotation
NASA Astrophysics Data System (ADS)
Guest, Bernard; Pavlis, Terry L.; Golding, Heather; Serpa, Laura
2003-06-01
Vertical-axis, clockwise block rotations in the Northeast Mojave block are well documented by numerous authors. However, the effects of these rotations on the crust to the north of the Northeast Mojave block have remained unexplored. In this paper we present a model that results from mapping and geochronology conducted in the north and central Owlshead Mountains. The model suggests that some or all of the transtension and rotation observed in the Owlshead Mountains results from tectonic response to a combination of clockwise block rotation in the Northeast Mojave block and Basin and Range extension. The Owlshead Mountains are effectively an accommodation zone that buffers differential extension between the Northeast Mojave block and the Basin and Range. In addition, our model explores the complex interactions that occur between faults and fault blocks at the junction of the Garlock, Brown Mountain, and Owl Lake faults. We hypothesize that the bending of the Garlock fault by rotation of the Northeast Mojave block resulted in a misorientation of the Garlock that forced the Owl Lake fault to break in order to accommodate slip on the western Garlock fault. Subsequent sinistral slip on the Owl Lake fault offset the Garlock, creating the now possibly inactive Mule Springs strand of the Garlock fault. Dextral slip on the Brown Mountain fault then locked the Owl Lake fault, forcing the active Leach Lake strand of the Garlock fault to break.
Coarsening dynamics of binary liquids with active rotation.
Sabrina, Syeda; Spellings, Matthew; Glotzer, Sharon C; Bishop, Kyle J M
2015-11-21
Active matter comprised of many self-driven units can exhibit emergent collective behaviors such as pattern formation and phase separation in both biological (e.g., mussel beds) and synthetic (e.g., colloidal swimmers) systems. While these behaviors are increasingly well understood for ensembles of linearly self-propelled "particles", less is known about the collective behaviors of active rotating particles where energy input at the particle level gives rise to rotational particle motion. A recent simulation study revealed that active rotation can induce phase separation in mixtures of counter-rotating particles in 2D. In contrast to that of linearly self-propelled particles, the phase separation of counter-rotating fluids is accompanied by steady convective flows that originate at the fluid-fluid interface. Here, we investigate the influence of these flows on the coarsening dynamics of actively rotating binary liquids using a phenomenological, hydrodynamic model that combines a Cahn-Hilliard equation for the fluid composition with a Navier-Stokes equation for the fluid velocity. The effect of active rotation is introduced though an additional force within the Navier-Stokes equations that arises due to gradients in the concentrations of clockwise and counter-clockwise rotating particles. Depending on the strength of active rotation and that of frictional interactions with the stationary surroundings, we observe and explain new dynamical behaviors such as "active coarsening" via self-generated flows as well as the emergence of self-propelled "vortex doublets". We confirm that many of the qualitative behaviors identified by the continuum model can also be found in discrete, particle-based simulations of actively rotating liquids. Our results highlight further opportunities for achieving complex dissipative structures in active materials subject to distributed actuation.
NASA Astrophysics Data System (ADS)
Rood, Dylan H.; Burbank, Douglas W.; Herman, Scott W.; Bogue, Scott
2011-10-01
We use paleomagnetic data from Tertiary volcanic rocks to address the rates and timing of vertical-axis block rotations across the central Sierra Nevada-Walker Lane transition in the Bodie Hills, California/Nevada. Samples from the Upper Miocene (˜9 Ma) Eureka Valley Tuff suggest clockwise vertical-axis block rotations between NE-striking left-lateral faults in the Bridgeport and Mono Basins. Results in the Bodie Hills suggest clockwise rotations (R ± ΔR, 95% confidence limits) of 74 ± 8° since Early to Middle Miocene (˜12-20 Ma), 42 ± 11° since Late Miocene (˜8-9 Ma), and 14 ± 10° since Pliocene (˜3 Ma) time with no detectable northward translation. The data are compatible with a relatively steady rotation rate of 5 ± 2° Ma-1 (2σ) since the Middle Miocene over the three examined timescales. The average rotation rates have probably not varied by more than a factor of two over time spans equal to half of the total time interval. Our paleomagnetic data suggest that block rotations in the region of the Mina Deflection began prior to Late Miocene time (˜9 Ma), and perhaps since the Middle Miocene if rotation rates were relatively constant. Block rotation in the Bodie Hills is similar in age and long-term average rate to rotations in the Transverse Ranges of southern California associated with early transtensional dextral shear deformation. We speculate that the age of rotations in the Bodie Hills indicates dextral shear and strain accommodation within the central Walker Lane Belt resulting from coupling of the Pacific and North America plates.
Flocking ferromagnetic colloids
Kaiser, Andreas; Snezhko, Alexey; Aranson, Igor S.
2017-01-01
Assemblages of microscopic colloidal particles exhibit fascinating collective motion when energized by electric or magnetic fields. The behaviors range from coherent vortical motion to phase separation and dynamic self-assembly. Although colloidal systems are relatively simple, understanding their collective response, especially under out-of-equilibrium conditions, remains elusive. We report on the emergence of flocking and global rotation in the system of rolling ferromagnetic microparticles energized by a vertical alternating magnetic field. By combing experiments and discrete particle simulations, we have identified primary physical mechanisms, leading to the emergence of large-scale collective motion: spontaneous symmetry breaking of the clockwise/counterclockwise particle rotation, collisional alignment of particle velocities, and random particle reorientations due to shape imperfections. We have also shown that hydrodynamic interactions between the particles do not have a qualitative effect on the collective dynamics. Our findings shed light on the onset of spatial and temporal coherence in a large class of active systems, both synthetic (colloids, swarms of robots, and biopolymers) and living (suspensions of bacteria, cell colonies, and bird flocks). PMID:28246633
NASA Astrophysics Data System (ADS)
Hagstrum, J. T.; Wells, R. E.; Evarts, R. C.; Blakely, R. J.; Beeson, M. H.
2006-12-01
Paleomagnetic analysis of the Miocene Columbia River Basalt Group (CRBG) in the northern Willamette Valley of Oregon was undertaken as part of a larger mapping and hydrogeologic investigation of the CRBG's internal stratigraphy and structure. Differences in paleomagnetic directions between flows due to geomagnetic reversals and paleosecular variation, in combination with geochemical data, provide the most reliable means of flow identification. In addition, vertical-axis rotations between CRBG sites in the Portland area and sampling localities within the same flow units on the relatively stable Columbia Plateau were calculated. Clockwise rotations for sites within the northern Willamette Valley are remarkably consistent and have a weighted mean of 29°±3° (N=94). Available paleomagnetic data from CRBG sites along the Oregon coast at Cape Lookout (19°±22°, N=4) and Cape Foulweather (29°±18°, N=4) show similar results. East of the Portland Hills fault zone along the Columbia River Gorge, however, clockwise rotations are much less averaging 12°±3° (N=15). North of Portland, the CRBG rotational values drop abruptly from ~29° to 6°±17° (N=3) across an unnamed fault near Woodland, WA, identified using aeromagnetic data; to the south, the values drop from ~29° to 18°±3° (N=6) across the Mt. Angel-Gales Creek fault zone east of Salem, OR. The eastern boundary of the Oregon Coast Range block is thus defined by three offset NW-trending fault segments, with the offsets corresponding to the Portland and Willamette pull-apart basins. North of the Coast Range block's northern boundary, which is roughly coincident with the Columbia River, CRBG rotations also are about half that (15°±3°, N=15) found within the block. Northward movement and clockwise rotation of the Oregon Coast Range block have previously been modeled as decreasing continuously eastward to the Columbia Plateau. Our new paleomagnetic data indicate an abrupt step down of rotational values by half in the vicinity of the Portland metropolitan area, and that the Portland Hills-Clackamas River and other parallel structural zones could be the loci of larger and more dangerous strike-slip earthquakes than previously thought.
Earthshots: Satellite images of environmental change – Selkirk Island, Chile
,
2013-01-01
How did these Karman vortices develop? On that day, the wind was carrying northward a layer of stratocumulus clouds (flat-bottomed puffballs). The mile-high island caused this cloud layer to slow about the island, while remaining fast farther out on either side. So on each “wing,” left and right, the air started rotating toward the inside—clockwise on the left, counter-clockwise on the right. The rotational momentum made each side swirl in on itself. The whorl-cores were clear because the swirling pulled dry, clear air (from above or below) into the wet layer, a bit like the funnel formed when you stir up a pitcher of orange juice. These clear, spinning pockets trailed off down the “street” from the island like soap bubbles from a toy wand—drifting downwind, weakening, filling with clouds, and breaking up.
NASA Technical Reports Server (NTRS)
2002-01-01
Like dancers pirouetting in opposite directions, the rotational patterns of two different tropical storms are contrasted in this pair of Multi-angle Imaging Spectroradiometer (MISR) nadir-camera images. The left-hand image is of Tropical Storm Bud, acquired on June 17, 2000 (Terra orbit 2656) as the storm was dissipating. Bud was situated in the eastern Pacific Ocean between Socorro Island and the southern tip of Baja California. South of the storm's center is a vortex pattern caused by obstruction of the prevailing flow by tiny Socorro Island. Sonora, Mexico and Baja California are visible at the top of the image. The right-hand image is of Tropical Cyclone Dera, acquired on March 12, 2001. Dera was located in the Indian Ocean, south of Madagascar. The southern end of this large island is visible in the top portion of this image. Northern hemisphere tropical storms, like Bud, rotate in a counterclockwise direction, whereas those in the southern hemisphere, such as Dera, rotate clockwise. The opposite spins are a consequence of Earth's rotation. Each image covers a swath approximately 380 kilometers wide. Image courtesy NASA/JPL/GSFC/LaRC, MISR Team
2001-04-04
Like dancers pirouetting in opposite directions, the rotational patterns of two different tropical storms are contrasted in this pair of MISR nadir-camera images. The left-hand image is of Tropical Storm Bud, acquired on June 17, 2000 (Terra orbit 2656) as the storm was dissipating. Bud was situated in the eastern Pacific Ocean between Socorro Island and the southern tip of Baja California. South of the storm's center is a vortex pattern caused by obstruction of the prevailing flow by tiny Socorro Island. Sonora, Mexico and Baja California are visible at the top of the image. The right-hand image is of Tropical Cyclone Dera, acquired on March 12, 2001 (Terra orbit 6552). Dera was located in the Indian Ocean, south of Madagascar. The southern end of this large island is visible in the top portion of this image. Northern hemisphere tropical storms, like Bud, rotate in a counterclockwise direction, whereas those in the southern hemisphere, such as Dera, rotate clockwise. The opposite spins are a consequence of Earth's rotation. Each image covers a swath approximately 380 kilometers wide. http://photojournal.jpl.nasa.gov/catalog/PIA03400
NASA Astrophysics Data System (ADS)
Creus, P. K.; Basson, I. J.; Stoch, B.; Mogorosi, O.; Gabanakgosi, K.; Ramsden, F.; Gaegopolwe, P.
2018-01-01
Country rock at Jwaneng Diamond Mine provides a rare insight into the deformational history of the Transvaal Supergroup in southern Botswana. The ca. 235 Ma kimberlite diatremes intruded into late Archaean to Early Proterozoic, mixed, siliciclastic-carbonate sediments, that were subjected to at least three deformational events. The first deformational event (D1), caused by NW-SE directed compression, is responsible for NE-trending, open folds (F1) with associated diverging, fanning, axial planar cleavage. The second deformational event (D2) is probably progressive, involving a clockwise rotation of the principal stress to NE-SW trends. Early D2, which was N-S directed, involved left-lateral, oblique shearing along cleavage planes that developed around F1 folds, along with the development of antithetic structures. Progressive clockwise rotation of far-field forces saw the development of NW-trending folds (F2) and its associated, weak, axial planar cleavage. D3 is an extensional event in which normal faulting, along pre-existing cleavage planes, created a series of rhomboid-shaped, fault-bounded blocks. Normal faults, which bound these blocks, are the dominant structures at Jwaneng Mine. Combined with block rotation and NW-dipping bedding, a horst-like structure on the northwestern limb of a broad, gentle, NE-trending anticline is indicated. The early compressional and subsequent extensional events are consistent throughout the Jwaneng-Ramotswa-Lobatse-Thabazimbi area, suggesting that a large area records the same fault geometry and, consequently, deformational history. It is proposed that Jwaneng Mine is at or near the northernmost limit of the initial, northwards-directed compressional event.
NASA Technical Reports Server (NTRS)
Mulcay, W. J.; Chu, J.
1980-01-01
Aerodynamic characteristics obtained in a helical flow environment utilizing a rotary balance located in the Langley spin tunnel are presented in plotted form for a 1/10 scale single engine agricultural airplane model. The configurations tested include the basic airplane, various wing leading edge and wing tip devices, elevator, aileron, and rudder control settings, and other modifications. Data are presented without analysis for an angle of attack range of 8 deg to 90 deg, and clockwise and counter-clockwise rotations covering a spin coefficient range from 0 to .9.
Paleo movement of continents, mantle dynamics and large wander of the rotational pole
NASA Astrophysics Data System (ADS)
Greff-Lefftz, M.; Besse, J.
2010-12-01
Polar wander is known to be mainly linked to mass distribution changes in its mantle or surface, and more particularly to subductions evolution. On one hand, the peri-pacific subductions seem to be a quite permanent feature of the earth's history at least since the Paleozoic, while the "Tethyan" subductions have a complex history with successive collisions of continental blocs (Hercynian, Kimmerian, Indian) and episodically rebirth of E-W subduction zones. We investigate plate motion during the last 350 million years in a reference frame where Africa is fixed, this last plate being a central plate from which most continents diverged since Pangea break-up. The exact amount of subduction is unknown before 120 Ma and we try to estimate it from the study of the subduction volcanism in the past and plate motion history, when available. Assuming that the subducted slabs sink vertically into the mantle and taking into account large-scale upwellings derived from present-day tomography and intra-plate volcanism in the past, we compute the time variation of mantle density heterogeneities since 350 Ma. By conservation of the angular momentum of the Earth, the temporal evolution of the rotational axis, with respect to the fixed Africa, is computed and compared to the Apparent Polar Wander (APW) observed by paleomagnetism since 280 Ma. We find that a major trend of the computed APW can be described as successive oscillatory clockwise or counter-clockwise motions and that the cusps (around 230 Ma and 170 Ma), both in the observed Africa APW and in the computed pole, are essentially due to the Hercynian (340-300 Ma) and Kimmerian (270-230 Ma) continental collisions.
Young, Richard; Glennon, Richard A
2008-01-01
Racemic MDMA (0.3-30 mg/kg), S(+)-MDMA (0.3-30 mg/kg), R(-)-MDMA (0.3-50 mg/kg) and saline vehicle (10 ml/kg) were comprehensively evaluated in fully automated and computer-integrated activity chambers, which were designed for mice, and provided a detailed analysis of the frequency, location, and/or duration of 18 different activities. The results indicated that MDMA and its isomers produced stimulation of motor actions, with S(+)-MDMA and (+/-)-MDMA usually being more potent than R(-)-MDMA in measures such as movement (time, distance, velocity), margin distance, rotation (clockwise and counterclockwise), and retraced activities. Interestingly, racemic MDMA appeared to exert a greater than expected potency and/or an enhanced effect on measures such as movement episodes, center actions (entries and distance), clockwise rotations, and jumps; actions that might be explained by additive or synergistic (i.e. potentiation) effects of the stereoisomers. In other measures, the enantiomers displayed different effects: S(+)-MDMA produced a preference to induce counterclockwise (versus clockwise) rotations, and each isomer exerted a different profile of effect on vertical activities and jumps. Furthermore, each isomer of MDMA appeared to attenuate the effect of its opposite enantiomer on some behaviors; antagonism effects that were surmised from a lack of expected activities by racemic MDMA. S(+)-MDMA (but not R(-)-MDMA), for example, produced an increase in vertical entries (rearing) and a preference to increase counterclockwise (versus clockwise) rotations; (+/-)-MDMA also should have induced such effects but did not. Apparently, R(-)-MDMA, when combined with S(+)-MDMA to form (+/-)-MDMA, prevented the appearance of those increases (from control) in activities. Similarly, R(-)-MDMA (but not S(+)-MDMA) produced increases in episodes (i.e. jumps) and vertical distance that racemic MDMA also should have, but were not, exhibited. Evidently, the presence of S(+)-MDMA in the racemic mixture inhibited the appearance of those increases (from control) in behavior. Taken together, the various and complex effects of MDMA and its stereoisomers are noted and a strategy is suggested for future studies that stresses the importance of steric effects and interplay, probable interaction(s) with various neurotransmitters, and interaction(s) with the particular behavioral or biological event (or action) being measured.
Young, Richard; Glennon, Richard A.
2010-01-01
Racemic MDMA (0.3 – 30 mg/kg), S(+)-MDMA (0.3 – 30 mg/kg), R(-)-MDMA (0.3 – 50 mg/kg) and saline vehicle (10 ml/kg) were comprehensively evaluated in fully automated and computer-integrated activity chambers, which were designed for mice, and provided a detailed analysis of the frequency, location, and/or duration of 18 different activities. The results indicated that MDMA and its isomers produced stimulation of motor actions, with S(+)-MDMA and (±)-MDMA usually being more potent than R(-)-MDMA in measures such as movement (time, distance, velocity), margin distance, rotation (clockwise and counterclockwise), and retraced activities. Interestingly, racemic MDMA appeared to exert a greater than expected potency and/or an enhanced effect on measures such as movement episodes, center actions (entries and distance), clockwise rotations, and jumps; actions that might be explained by additive or synergistic (i.e. potentiation) effects of the stereoisomers. In other measures, the enantiomers displayed different effects: S(+)-MDMA produced a preference to induce counterclockwise (versus clockwise) rotations, and each isomer exerted a different profile of effect on vertical activities and jumps. Furthermore, each isomer of MDMA appeared to attenuate the effect of its opposite enantiomer on some behaviors; antagonism effects that were surmised from a lack of expected activities by racemic MDMA. S(+)-MDMA (but not R(-)-MDMA), for example, produced an increase in vertical entries (rearing) and a preference to increase counterclockwise (versus clockwise) rotations; (±)-MDMA also should have induced such effects but did not. Apparently, R(-)-MDMA, when combined with S(+)-MDMA to form (±)-MDMA, prevented the appearance of those increases (from control) in activities. Similarly, R(-)-MDMA (but not S(+)-MDMA) produced increases in episodes (i.e. jumps) and vertical distance that racemic MDMA also should have, but were not, exhibited. Evidently, the presence of S(+)-MDMA in the racemic mixture inhibited the appearance of those increases (from control) in behavior. Taken together, the various and complex effects of MDMA and its stereoisomers are noted and a strategy is suggested for future studies that stresses the importance of steric effects and interplay, probable interaction(s) with various neurotransmitters, and interaction(s) with the particular behavioral or biological event (or action) being measured. PMID:17904622
Rotation in Xenopus laevis embryos during the second cell cycle.
Starodubov, Sergey M; Golychenkov, Vladimir A
2009-01-01
Using time-lapse video recording and comparing successive digital images, we found that 38% of Xenopus laevis embryos (n=118) exhibited rotation during the second cell cycle. This rotation, which we term the second rotation, started approximately during the appearance of the first cleavage furrow and proceeded clockwise or counterclockwise around the vertical axis. Rotations lasted for 5-30 minutes, i.e. up to the beginning of the third cell cycle. The mean rotation angle was 36.4 degrees, with a maximum rotation of 77 degrees. No mortality was observed among the embryos exhibiting rotation. The second rotation was observed to be similar to the well-known fertilization rotation which takes place during the first cell cycle. The possible nature and significance of the second rotation are discussed.
Synchronization in counter-rotating oscillators.
Bhowmick, Sourav K; Ghosh, Dibakar; Dana, Syamal K
2011-09-01
An oscillatory system can have opposite senses of rotation, clockwise or anticlockwise. We present a general mathematical description of how to obtain counter-rotating oscillators from the definition of a dynamical system. A type of mixed synchronization emerges in counter-rotating oscillators under diffusive scalar coupling when complete synchronization and antisynchronization coexist in different state variables. We present numerical examples of limit cycle van der Pol oscillator and chaotic Rössler and Lorenz systems. Stability conditions of mixed synchronization are analytically obtained for both Rössler and Lorenz systems. Experimental evidences of counter-rotating limit cycle and chaotic oscillators and mixed synchronization are given in electronic circuits.
Crack azimuths on Europa: The G1 lineament sequence revisited
Sarid, A.R.; Greenberg, R.; Hoppa, G.V.; Brown, D.M.; Geissler, P.
2005-01-01
The tectonic sequence in the anti-jovian area covered by regional mapping images from Galileo's orbit E15 is determined from a study of cross-cutting relationships among lineament features. The sequence is used to test earlier results from orbit G1, based on lower resolution images, which appeared to display a progressive change in azimuthal orientation over about 90?? in a clockwise sense. Such a progression is consistent with expected stress variations that would accompany plausible non-synchronous rotation. The more recent data provide a more complete record than the G1 data did. We find that to fit the sequence into a continual clockwise change of orientation would require at least 1000?? (> 5 cycles) of azimuthal rotation. If due to non-synchronous rotation of Europa, this result implies that we are seeing back further into the tectonic record than the G1 results had suggested. The three sets of orientations found by Geissler et al. now appear to have been spaced out over several cycles, not during a fraction of one cycle. While our more complete sequence of lineament formation is consistent with non-synchronous rotation, a statistical test shows that it cannot be construed as independent evidence. Other lines of evidence do support non-synchronous rotation, but azimuths of crack sequences do not show it, probably because only a couple of cracks form in a given region in any given non-synchronous rotation period. ?? 2004 Elsevier Inc. All rights reserved.
Role of tumbling in bacterial swarming
NASA Astrophysics Data System (ADS)
Sidortsov, Marina; Morgenstern, Yakov; Be'er, Avraham
2017-08-01
Typical wild-type bacteria swimming in sparse suspensions exhibit a movement pattern called "run and tumble," characterized by straight trajectories (runs) interspersed by shorter, random reorientation (tumbles). This is achieved by rotating their flagella counterclockwise, or clockwise, respectively. The chemotaxis signaling network operates in controlling the frequency of tumbles, enabling navigation toward or away from desired regions in the medium. In contrast, while in dense populations, flagellated bacteria exhibit collective motion and form large dynamic clusters, whirls, and jets, with intricate dynamics that is fundamentally different than trajectories of sparsely swimming cells. Although collectively swarming cells do change direction at the level of the individual cell, often exhibiting reversals, it has been suggested that chemotaxis does not play a role in multicellular colony expansion, but the change in direction stems from clockwise flagellar rotation. In this paper, the effects of cell rotor switching (i.e., the ability to tumble) and chemotaxis on the collective statistics of swarming bacteria are studied experimentally in wild-type Bacillus subtilis and two mutants—one that does not tumble and one that tumbles independently of the chemotaxis system. We show that while several of the parameters examined are similar between the strains, other collective and individual characteristics are significantly different. The results demonstrate that tumbling and/or flagellar directional rotor switching has an important role on the dynamics of swarming, and imply that swarming models of self-propelled rods that do not take tumbling and/or rotor switching into account may be oversimplified.
NASA Astrophysics Data System (ADS)
Tetreault, J. L.; Jones, C. H.
2007-12-01
The Coalinga Anticline is a one of a series of fault-related folds in the central Coast Ranges, California, oriented subparallel to the San Andreas Fault (SAF). The development of the Central Coast Range anticlines can be related to the relative strength of the SAF. If positing a weak SAF, fault-normal slip is partitioned to these subparallel compressional folds. If the SAF is strong, these folds rotated to their current orientation during wrenching. Another possibility is that the Coast Range anticlines are accommodating oblique-slip partitioned from the SAF. The 1983 Coalinga earthquake does not have a purely thrusting focal mechanism (rake =100°), reflecting the likelihood that oblique slip is being partitioned to this anticline, even though surface expression of fold-axis-parallel slip has not been identified. Paleomagnetic vertical-axis rotations and focal mechanism strain inversions were used to quantify oblique-slip deformation within the Coalinga Anticline. Clockwise rotations of 10° to 16° are inferred from paleomagnetic sites located in late Miocene to Pliocene beds on the steeply dipping forelimb and backlimb of the fold. Significant vertical-axis rotations are not identified in the paleomagnetic sites within the nose of the anticline. The varying vertical axis rotations conflict with wrench tectonics (strong SAF) as the mechanism of fold development. We use focal mechanisms inversions of earthquakes that occurred between 1983 to 2006 to constrain the seismogenic strain within the fold that presumably help to build it over time. In the upper 7 km, the principal shortening axis is oriented N37E to N40E, statistically indistinguishable from normal to the fold (N45E). The right-lateral shear in the folded strata above the fault tip, evident from the paleomagnetically determined clockwise vertical-axis rotations, is being accommodated aseismically or interseismically. In the region between 7 and 11 km, where the mainshock occurred, the shortening direction ranges from oblique to normal to the fold trend. Our results show that right-lateral slip is resolved along the main fault plane and not distributed to the smaller aftershocks at depths of 7-11 km. The principal strain axes and clockwise paleomagnetic rotations indicate that the Coalinga Anticline is accommodating minor right-lateral shearing and thus shares some of the strike-slip motion of the San Andreas system.
NASA Astrophysics Data System (ADS)
Studnikigizbert, C.; Eich, L.; King, R.; Burchfiel, B. C.; Chen, Z.; Chen, L.
2004-12-01
Seismological (Holt et. al. 1996), geodetic (King et. al. 1996, Chen et. al. 2000) and geological (Wang et. al. 1995, Wang and Burchfiel 2002) studies have shown that upper crustal material north and east of the eastern Himalayan syntaxis rotates clockwise about the syntaxis, with the Xianshuihe fault accommodating most of this motion. Within the zone of rotating material, however, deformation is not completely homogenous, and numerous differentially rotating small crustal fragments are recognised. We combine seismic (CSB and Harvard CMT catalogues), geodetic (CSB and MIT-Chengdu networks), remote sensing, compilation of existing regional maps and our own detailed field mapping to characterise the active tectonics of a clockwise rotating crustal block between Zhongdian and Dali. The northeastern boundary is well-defined by the northwest striking left-lateral Zhongdian and Daju faults. The eastern boundary, on the other hand, is made up of a 80 km wide zone characterised by north-south trending extensional basins linked by NNE trending left-lateral faults. Geological mapping suggests that strain is accommodated by three major transtensional fault systems: the Jianchuan-Lijiang, Heqing and Chenghai fault systems. Geodetic data indicates that this zone accommodates 10 +/- 1.4 mm/year of E-W extension, but strain may be (presently) preferentially partitioned along the easternmost (Chenghai) fault. Not all geodetic velocities are consistent with geological observations. In particular, rotation and concomitant transtension are somehow transferred across the Red River-Tongdian faults to Nan Tinghe fault with no apparent accommodating structures. Rotation and extension is surmised to be related to the northward propagation of the syntaxis.
NASA Astrophysics Data System (ADS)
Montes, Camilo; Guzman, Georgina; Bayona, German; Cardona, Agustin; Valencia, Victor; Jaramillo, Carlos
2010-10-01
A moderate amount of vertical-axis clockwise rotation of the Santa Marta massif (30°) explains as much as 115 km of extension (stretching of 1.75) along its trailing edge (Plato-San Jorge basin) and up to 56 km of simultaneous shortening with an angular shear of 0.57 along its leading edge (Perijá range). Extensional deformation is recorded in the 260 km-wide, fan-shaped Plato-San Jorge basin by a 2-8 km thick, shallowing-upward and almost entirely fine-grained, upper Eocene and younger sedimentary sequence. The simultaneous initiation of shortening in the Cesar-Ranchería basin is documented by Mesozoic strata placed on to lower Eocene syntectonic strata (Tabaco Formation and equivalents) along the northwest-verging, shallow dipping (9-12° to the southeast) and discrete Cerrejón thrust. First-order subsidence analysis in the Plato-San Jorge basin is consistent with crustal stretching values between 1.5 and 2, also predicted by the rigid-body rotation of the Santa Marta massif. The model predicts about 100 km of right-lateral displacement along the Oca fault and 45 km of left-lateral displacement along the Santa Marta-Bucaramanga fault. Clockwise rotation of a rigid Santa Marta massif, and simultaneous Paleogene opening of the Plato-San Jorge basin and emplacement of the Cerrejón thrust sheet would have resulted in the fragmentation of the Cordillera Central-Santa Marta massif province. New U/Pb ages (241 ± 3 Ma) on granitoid rocks from industry boreholes in the Plato-San Jorge basin confirm the presence of fragments of a now segmented, Late Permian to Early Triassic age, two-mica, granitic province that once spanned the Santa Marta massif to the northernmost Cordillera Central.
Zhang, X B; Yin, Y F; Yao, H M; Han, Y H; Wang, N; Ge, Z L
2016-07-01
To investigate the stress distribution on the maxillary anterior teeth retracted with sliding mechanics and micro-implant anchorage using different retraction hook heights and positions. DICOM image data including maxilla and upper teeth were obtained with cone-beam CT. The three-dimensional finite element model was constructed using Mimics software. Brackets and archwire model were constructed using Creo software. The models were instantiated using Pro/Engineer software. Abaqus software was used to simulate the sliding mechanics by loading 2 N force on 0, 2, 4, 6, 8, 10 mm retraction hooks and three different positions, repectively. Rotation of the occlusal plane, the initial displacement and stress distribution of teeth were analyzed. Lingual rotation of maxillary central incisor(0.021°), gingival movement of the maxillary first molar(0.005 mm), and clockwise rotation of the maxillary occlusal plane(0.012°) were observed when the force application point located at the archwire level (0 mm). In contrast, 0.235° labial rotation of the maxillary central incisor, 0.015 mm occlusal movement of the maxillary first molar, and 0.075° anti-clockwise rotation of the maxillary occlusal plane were observed when the force application point located at the higher level(10 mm retraction hook). The more the force application point was located posteriorly at the archwire level, the less lingual rotation of the maxillary central incisor and the more buccal displacement of maxillary first molar was observed. Maxillary anterior tooth rotation and retraction, vertical displacement of posterior segment, and rotation of the occlusal plane could be controlled by adjusting the height and position of the retraction hook in space closure using miniscrew and sliding mechanics.
Spline-Screw Payload-Fastening System
NASA Technical Reports Server (NTRS)
Vranish, John M.
1994-01-01
Payload handed off securely between robot and vehicle or structure. Spline-screw payload-fastening system includes mating female and male connector mechanisms. Clockwise (or counter-clockwise) rotation of splined male driver on robotic end effector causes connection between robot and payload to tighten (or loosen) and simultaneously causes connection between payload and structure to loosen (or tighten). Includes mechanisms like those described in "Tool-Changing Mechanism for Robot" (GSC-13435) and "Self-Aligning Mechanical and Electrical Coupling" (GSC-13430). Designed for use in outer space, also useful on Earth in applications needed for secure handling and secure mounting of equipment modules during storage, transport, and/or operation. Particularly useful in machine or robotic applications.
NASA Technical Reports Server (NTRS)
Hultberg, R. S.; Chu, J.
1980-01-01
Aerodynamic characteristics obtained in a helical flow environment utilizing a rotary balance located in the Langley spin g tunnel are presented in plotted form for a 1/6 scale, single engine, high wing, general aviation model. The configurations tested included the basic airplane and control deflections, wing leading edge devices, tail designs, and airplane components. Data are presented without analysis for an angle of attack range of 8 deg to 90 deg and clockwise and counter clockwise rotations covering a spin coefficient range from 0 to 0.9.
Photographer : JPL Range : 6.5 million kilometers (4 million miles) Six violet images of Jupiter
NASA Technical Reports Server (NTRS)
1979-01-01
Photographer : JPL Range : 6.5 million kilometers (4 million miles) Six violet images of Jupiter makes the mosaic photo, showing the Great Red Spot as a swirling vortex type motion. This motion is also seen in several nearby white clouds. These bright white clouds and the Red Spot are rotating in a counter clockwise direction, except the peculiar filimentary cloud to the right of the Red Spot is going clockwise. The top of the picture shows the turbulence from the equatorial jet and more northerly atmospheric currents. The smallest clouds shown are only 70 miles (120 km) across.
NASA Technical Reports Server (NTRS)
Kern, Volker D.; Schwuchow, Jochen M.; Reed, David W.; Nadeau, Jeanette A.; Lucas, Jessica; Skripnikov, Alexander; Sack, Fred D.
2005-01-01
In addition to shoots and roots, the gravity (g)-vector orients the growth of specialized cells such as the apical cell of dark-grown moss protonemata. Each apical cell of the moss Ceratodon purpureus senses the g-vector and adjusts polar growth accordingly producing entire cultures of upright protonemata (negative gravitropism). The effect of withdrawing a constant gravity stimulus on moss growth was studied on two NASA Space Shuttle (STS) missions as well as during clinostat rotation on earth. Cultures grown in microgravity (spaceflight) on the STS-87 mission exhibited two successive phases of non-random growth and patterning, a radial outgrowth followed by the formation of net clockwise spiral growth. Also, cultures pre-aligned by unilateral light developed clockwise hooks during the subsequent dark period. The second spaceflight experiment flew on STS-107 which disintegrated during its descent on 1 February 2003. However, most of the moss experimental hardware was recovered on the ground, and most cultures, which had been chemically fixed during spaceflight, were retrieved. Almost all intact STS-107 cultures displayed strong spiral growth. Non-random culture growth including clockwise spiral growth was also observed after clinostat rotation. Together these data demonstrate the existence of default non-random growth patterns that develop at a population level in microgravity, a response that must normally be overridden and masked by a constant g-vector on earth.
Hypothetical model for the bending of the Mariana Arc
NASA Astrophysics Data System (ADS)
McCabe, Robert; Uyeda, Seiya
The southern Mariana Arc has a distinct eastward convex shape which is more pronounced than the typical arcuate structure observed above oceanic subduction zones. The Yap Trench is offset hundreds of kilometers westward from the main Izu-Bonin-Mariana trend. Between the southern Mariana Arc and the Yap Trench, the Mariana Arc has an anomalous east-west orientation and is characterized by a markedly lower seismicity than the main Mariana trend. Situated east of the Yap Trench is the ESE trending Caroline Ridge that geochemically resembles the Hawaiian hot spot trend. Paleomagnetic data from Truk and the generally increasing ages to the WNW trend of the Caroline Ridge suggest that the Caroline Ridge is part of the Pacific plate as suggested by Clague and Jarrard (1973). Pacific plate motion for the Caroline Ridge predicts that the ridge has collided with the Yap Trench during the Tertiary. Other evidence for this collision is observed on the island of Yap and by the fact that this portion of the arc has not had volcanic activity during the Neogene period. Paleomagnetic studies show that since the early Oligocene, Guam has rotated greater than 50° clockwise. During this same period, Saipan has rotated only 35° clockwise. These data, the similar bends of the west Mariana Ridge and the Mariana Ridge, and the orientation of fold axes on Guam and Saipan suggest that the clockwise rotation occurred after the initiation of spreading of the Parece Vela Basin and before the opening of the Mariana Trough. This investigation also suggests that the east-west trending portion of the Mariana Trench is a transform boundary which developed in response to the collision.
Sakai, K; Watanabe, A; Kogi, K
1993-01-01
The improvement of an irregular three-shift system with anti-clockwise rotation of workers of a disabled persons' facility covering 42 h a week was a subject for management-labour debate. Workers were complaining of physical fatigue, high prevalence of low back pain, sleep shortages associated with short inter-shift intervals, and irregular holidays. With the co-operation of trade union members, an educational and intervention programme was designed to analyse, plan, and implement improved shift rotation schemes. The programme consisted of (a) a group study on the existing system and effects on health and working life; (b) joint planning of potential schemes; (c) communication and feedback (d) testing and evaluation; and (e) agreement on an improved system. The group study was undertaken by means of time study, questionnaire and physiological methods, and the results were jointly discussed. This led to the planning of alternative shift schemes incorporating more regular, clockwise rotation. It was agreed to stage a trial period with a view to shorter working hours. This experience indicated the importance of a stepwise intervention strategy with frequent dialogues and a participatory process focusing on the broad range of working life and health issues.
Costa, Tony Eduardo; Barbosa, Saulo de Matos; Pereira, Rodrigo Alvitos; Chaves Netto, Henrique Duque de Miranda
2018-01-01
Dentofacial deformities (DFD) presenting mainly as Class III malocclusions that require orthognathic surgery as a part of definitive treatment. Class III patients can have obvious signs such as increasing the chin projection and chin throat length, nasolabial folds, reverse overjet, and lack of upper lip support. However, Class III patients can present different facial patterns depending on the angulation of occlusal plane (OP), and only bite correction does not always lead to the improvement of the facial esthetic. We described two Class III patients with different clinical features and inclination of OP and had undergone different treatment planning based on 6 clinical features: (I) facial type; (II) upper incisor display at rest; (III) dental and gingival display on smile; (IV) soft tissue support; (V) chin projection; and (VI) lower lip projection. These patients were submitted to orthognathic surgery with different treatment plannings: a clockwise rotation and counterclockwise rotation of OP according to their facial features. The clinical features and OP inclination helped to define treatment planning by clockwise and counterclockwise rotations of the maxillomandibular complex, and two patients undergone to bimaxillary orthognathic surgery showed harmonic outcomes and stables after 2 years of follow-up. PMID:29854480
Molecular spinning by a chiral train of short laser pulses
NASA Astrophysics Data System (ADS)
Floß, Johannes; Averbukh, Ilya Sh.
2012-12-01
We provide a detailed theoretical analysis of molecular rotational excitation by a chiral pulse train, a sequence of linearly polarized pulses with the polarization direction rotating from pulse to pulse by a controllable angle. Molecular rotation with a preferential rotational sense (clockwise or counterclockwise) can be excited by this scheme. We show that the directionality of the rotation is caused by quantum interference of different excitation pathways. The chiral pulse train is capable of selective excitation of molecular isotopologs and nuclear spin isomers in a mixture. We demonstrate this using 14N2 and 15N2 as examples for isotopologs and para- and ortho-nitrogen as examples for nuclear-spin isomers.
Paleomagnetic constraints on the interpretation of early Cenozoic Pacific Northwest paleogeography
Wells, Ray E.
1984-01-01
Widespread Cenozoic clockwise tectonic rotation in the Pacific Northwest is an established fact; however, the geologic reconstructions based on these rotations are the subject of continuing debate. Three basic mechanisms have been proposed to explain the rotations: (1) simple shear rotation of marginal terranes caught in the dextral shear couple between oceanic plates and North America; (2) rotation during oblique microplate collision and accretion to the continental margin; and (3) rotation of continental margin areas during episodes of intracontinental extension. In areas where detailed structure and stratigraphy are available, distributed shear rotations are amplv demonstrated paleomagnetically. However, rotation due to asymmetric interarc extension must be significant, especially for the Oregon Coast Range, in light of recent estimates of large Tertiary extension across the northern Basin and Range. The relative importance of shear versus extension is difficult to determine, but shear could account for nearly onehalf of the observed rotations. Oblique microplate collision has not contributed significantly to the observed Cenozoic rotations because most of the rotation post-dates collision-related deformation in the Oregon and Washington. Coast Range. The resultant continental reconstructions suggest that about 300 km of extension has occurred at 42°N. latitude (southern Oregon border) since early Eocene time. This reconstruction suggests that Cretaceous sedimentary basins east of the Klamath Mountains have undergone significant Tertiary extension (about f<0%) , but little rotation. Upper Cretaceous sedimentary rocks in the Blue Mountains of Oregon near Mitchell are probably rotated at least 15° and perhaps as much as 60°, which allows considerable latitude in the restoration of that part of the basin.
Concentration-Discharge Responses to Storm Events in Coastal California Watersheds
NASA Astrophysics Data System (ADS)
Aguilera, Rosana; Melack, John M.
2018-01-01
Storm events in montane catchments are the main cause of mobilization of solutes and particulates into and within stream channels in coastal California. Nonlinear behavior of nutrients and suspended sediments during storms is evident in the hysteresis that arises in concentration-discharge (C-Q) relationships. We examined patterns in the C-Q hysteresis of nutrients (NO3-, NH4+, DON, and PO43-) and total suspended solids (TSS) during storms across 10 sites and water years 2002-2015 by quantifying the slope of the C-Q relationship and the rotational pattern of the hysteresis loop. We observed several hysteresis types in the ˜400 storms included in our study. Concentrations of constituents associated with sediment transport (PO43- and TSS) peaked during high flows. Conversely, nitrogen species had hysteretic responses such as dilution with clockwise rotation in urban sites and enrichment with anticlockwise rotation in undeveloped sites. The wide range of C-Q responses that occurred among sites and seasons reflected the variable hydrological and biogeochemical characteristics of catchments and storms. Responses for nitrate in nested catchments differed in slope and rotation of C-Q hysteresis. Upland undeveloped and lowland urban sites had anticlockwise rotation at the onset of the rainy season following a dry year, which implied a delay in the transport of this solute to the streams. Slopes by the middle of the rainy season showed that the urban site switched from dilution to enrichment, and then again to dilution with clockwise rotation at the end of the season, which implied high initial concentrations and proximal sources.
Wells, R.E.; Simpson, R.W.
2001-01-01
Geologic and paleomagnetic data from the Cascadia forearc indicate long-term northward migration and clockwise rotation of an Oregon coastal block with respect to North America. Paleomagnetic rotation of coastal Oregon is linked by a Klamath Mountains pole to geodetically and geologically determined motion of the Sierra Nevada block to derive a new Oregon Coast-North America (OC-NA) pole of rotation and velocity field. This long-term velocity field, which is independent of Pacific Northwest GPS data, is interpreted to be the result of Basin-Range extension and Pacific-North America dextral shear. The resulting Oregon Coast pole compares favorably to those derived solely from GPS data, although uncertainties are large. Subtracting the long-term motion from forearc GPS velocities reveals ENE motion with respect to an OC reference frame that is parallel to the direction of Juan de Fuca-OC convergence and decreases inland. We interpret this to be largely the result of subduction-related deformation. The adjusted mean GPS velocities are generally subparallel to those predicted from elastic dislocation models for Cascadia, but more definitive interpretations await refinement of the present large uncertainty in the Sierra Nevada block motion. Copyright ?? The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences.
Childrens' left-turning preference is not modulated by magical ideation.
Streuli, Jürg C; Obrist, Gina; Brugger, Peter
2017-01-01
The literature on human turning preferences is inconsistent. While the few studies with children below 14 years of age uniformly describe an overall left-turning (counterclockwise) tendency, a recent Internet study with more than 1500 adults found a right-sided (clockwise) bias. We set out to investigate spontaneous turning behaviour in children age 5-3 years and, based on neuropsychiatric work in adults, also explored a potential association with magical thinking. Findings indicated a clear left-turning preference, independent of a participant's sex and handedness. Whether a child responded a question about the existence of extrasensory communication in the affirmative or not was unrelated to direction and size of turning bias and lateral preference. Our results are consistent with a left-sided turning preference reported for children, but in opposition to the clockwise bias recently described in a large-scale study with adults. Whether they point to a maturational gradient in the preferred direction of spontaneous whole-body rotation or rather to a lack of comparability between measures used in observational versus Internet-based studies remains to be further investigated. Regarding a purported association between body turns and magical thinking, our study is preliminary, as only one single question was used to probe the latter.
High Resolution WENO Simulation of 3D Detonation Waves
2012-02-27
pocket behind the detonation front was not observed in their results because the rotating transverse detonation completely consumed the unburned gas. Dou...three-dimensional detonations We add source terms (functions of x, y, z and t) to the PDE system so that the following functions are exact solutions to... detonation rotates counter-clockwise, opposite to that in [48]. It can be seen that, the triple lines and transverse waves collide with the walls, and strong
NASA Astrophysics Data System (ADS)
Billah, Md. Mamun; Khan, Md Imran; Rahman, Mohammed Mizanur; Alam, Muntasir; Saha, Sumon; Hasan, Mohammad Nasim
2017-06-01
A numerical study of steady two dimensional mixed convention heat transfer phenomena in a rectangular channel with active flow modulation is carried out in this investigation. The flow in the channel is modulated via a rotating cylinder placed at the center of the channel. In this study the top wall of the channel is subjected to an isothermal low temperature while a discrete isoflux heater is positioned on the lower wall. The fluid flow under investigation is assumed to have a Prandtl number of 0.71 while the Reynolds No. and the Grashof No. are varied in wide range for four different situations such as: i) plain channel with no cylinder, ii) channel with stationary cylinder, iii) channel with clockwise rotating cylinder and iv) channel with counter clockwise rotating cylinder. The results obtained in this study are presented in terms of the distribution of streamlines, isotherms in the channel while the heat transfer process from the heat source is evaluated in terms of the local Nusselt number, average Nusselt number. The outcomes of this study also indicate that the results are strongly dependent on the type of configuration and direction of rotation of the cylinder and that the average Nusselt number value rises with an increase in Reynolds and Grashof numbers but the correlation between these parameters at higher values of Reynolds and Grashof numbers becomes weak.
NASA Technical Reports Server (NTRS)
Mulcay, W. J.; Rose, R. A.
1980-01-01
Aerodynamic characteristics obtained in a helical flow environment utilizing a rotary balance located in the Langley spin tunnel are presented in plotted form for a 1/6 scale, single engine, low wing, general aviation model (model C). The configurations tested included the basic airplane and control deflections, wing leading edge and fuselage modification devices, tail designs and airplane components. Data are presented without analysis for an angle of attack range of 8 deg to 90 deg and clockwise and counter clockwise rotations covering an omega b/2v range from 0 to .9.
NASA Technical Reports Server (NTRS)
Bihrle, W., Jr.; Hultberg, R. S.; Mulcay, W.
1978-01-01
Aerodynamic characteristics obtained in a spinning flow environment utilizing a rotary balance located spin tunnel are presented in plotted form for a 1/5 scale single-engine low-wing general aviation airplane model. The configurations tested include the basic airplane, various airfoil shapes, tail designs, fuselage strakes and modifications as well as airplane components. Data are presented for pitch and roll angle ranges of 30 to 90 degrees and 10 to -10 degrees, respectively, and clockwise and counter-clockwise rotations covering an Omega b/2V range from 0 to .9. The data are presented without analysis.
2011-02-01
transactions. Analysts used frame counts to measure the duration for which the Test Subject interacted with the iris recognition system camera, from the...44 Figure 20: Frame Extracted from HD CCTV Video...the eyes are located and used as a frame of reference. Once the eyes are located, the face image can be rotated clockwise or counter‐clockwise to
Lohmann, Johannes; Rolke, Bettina; Butz, Martin V
2017-04-01
Although several process models have described the cognitive processing stages that are involved in mentally rotating objects, the exact nature of the rotation process itself remains elusive. According to embodied cognition, cognitive functions are deeply grounded in the sensorimotor system. We thus hypothesized that modal rotation perceptions should influence mental rotations. We conducted two studies in which participants had to judge if a rotated letter was visually presented canonically or mirrored. Concurrently, participants had to judge if a tactile rotation on their palm changed direction during the trial. The results show that tactile rotations can systematically influence mental rotation performance in that same rotations are favored. In addition, the results show that mental rotations produce a response compatibility effect: clockwise mental rotations facilitate responses to the right, while counterclockwise mental rotations facilitate responses to the left. We conclude that the execution of mental rotations activates cognitive mechanisms that are also used to perceive rotations in different modalities and that are associated with directional motor control processes.
Huhn, John M; Potts, Cory Adam; Rosenbaum, David A
2016-06-01
Cognitive framing effects have been widely reported in higher-level decision-making and have been ascribed to rules of thumb for quick thinking. No such demonstrations have been reported for physical action, as far as we know, but they would be expected if cognition for physical action is fundamentally similar to cognition for higher-level decision-making. To test for such effects, we asked participants to reach for a horizontally-oriented pipe to move it from one height to another while turning the pipe 180° to bring one end (the "business end") to a target on the left or right. From a physical perspective, participants could have always rotated the pipe in the same angular direction no matter which end was the business end; a given participant could have always turned the pipe clockwise or counter-clockwise. Instead, our participants turned the business end counter-clockwise for left targets and clockwise for right targets. Thus, the way the identical physical task was framed altered the way it was performed. This finding is consistent with the hypothesis that cognition for physical action is fundamentally similar to cognition for higher-level decision-making. A tantalizing possibility is that higher-level decision heuristics have roots in the control of physical action, a hypothesis that accords with embodied views of cognition. Copyright © 2016 Elsevier B.V. All rights reserved.
Wells, Ray E.; Hillhouse, John W.
1989-01-01
We have determined remanent magnetization directions of the lower Miocene Peach Springs Tuff at 41 localities in western Arizona and southeastern California. An unusual northeast and shallow magnetization direction confirms the proposed geologic correlation of isolated outcrops of the tuff from the Colorado Plateau to Barstow, California, a distance of 350 km. The Peach Springs Tuff was apparently emplaced as a single cooling unit about 18 or 19 Ma and is now exposed in 4 tectonic provinces west of the Plateau, including the Transition Zone, Basin and Range, Colorado River extensional corridor, and central Mojave Desert strike-slip zone. As such, the tuff is an ideal stratigraphic and structural marker for paleomagnetic assessment of regional variations in tectonic rotations about vertical axes. From 4 sites on the stable Colorado Plateau, we have determined a reference direction of remanent magnetization (I = 36.4°, D = 33.0°, α95 = 3.4°) that we interpret as a representation of the ambient magnetic field at the time of eruption. A steeper direction of magnetization (I = 54.8°, D = 22.5°, α95 = 2.3°) was observed at Kingman where the tuff is more than 100 m thick, and similar directions were determined at 7 other thick exposures of the Peach Springs Tuff. The steeper component is presumably a later-stage magnetization acquired after prolonged cooling of the ignimbrite. When compared to the Plateau reference direction, tilt-corrected directions from 3 of 6 sites in the central Mojave strike-slip zone show localized rotations up to 13° in the vicinity of strike-slip faults. The other three sites show no significant rotations with respect to the Colorado Plateau. Both clockwise and counterclockwise rotations were measured, and no systematic regional pattern is evident. Our results do not support kinematic models which require consistent rotation of large regions to accommodate the cumulative displacement of major post-middle Miocene strike-slip faults in the central Mojave Desert. Most of our sites in the Transition Zone and Basin and Range province have had no significant rotation, although small counterclockwise rotation in the McCullough and New York Mountains may be related to sinistral shear along en echelon faults southwest of the Lake Mead shear zone. The larger rotations occur in the Colorado River extensional corridor, where 8 of 14 sites show rotations ranging from 37° clockwise to 51° counterclockwise. These rotations occur in allochthonous tilt blocks which have been transported northeastward above the Chemehuevi-Whipple Mountains detachment fault. Upper-plate blocks within 1 km of the exposed detachment unexpectedly show no significant rotation. From this relation, we infer that rotations are accommodated along numerous low-angle faults at higher structural levels above the detachment surface.
1985-10-31
61A-50-020 (30 Oct-6 Nov 1985) --- Large photo plankton vortex along the coast of New Zealand's South Island, about 100 kilometers to the north by northeast of Christchurch. Southern hemisphere vortices are clearly clockwise as opposed to counter-clockwise in the northern hemisphere.
Properties of solar ephemeral regions at the emergence stage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Shuhong; Zhang, Jun, E-mail: shuhongyang@nao.cas.cn, E-mail: zjun@nao.cas.cn
2014-01-20
For the first time, we statistically study the properties of ephemeral regions (ERs) and quantitatively determine their parameters at the emergence stage based on a sample of 2988 ERs observed by the Solar Dynamics Observatory. During the emergence process, there are three kinds of kinematic performances, i.e., separation of dipolar patches, shift of the ER's magnetic centroid, and rotation of the ER's axis. The average emergence duration, flux emergence rate, separation velocity, shift velocity, and angular speed are 49.3 minutes, 2.6 × 10{sup 15} Mx s{sup –1}, 1.1 km s{sup –1}, 0.9 km s{sup –1}, and 0.°6 minute{sup –1}, respectively.more » At the end of emergence, the mean magnetic flux, separation distance, shift distance, and rotation angle are 9.3 × 10{sup 18} Mx, 4.7 Mm, 1.1 Mm, and 12.°9, respectively. We also find that the higher the ER magnetic flux is, (1) the longer the emergence lasts, (2) the higher the flux emergence rate is, (3) the further the two polarities separate, (4) the lower the separation velocity is, (5) the larger the shift distance is, (6) the slower the ER shifts, and (7) the lower the rotation speed is. However, the rotation angle seems not to depend on the magnetic flux. Not only at the start time, but also at the end time, the ERs are randomly oriented in both the northern and the southern hemispheres. Finally, neither the anti-clockwise-rotated ERs nor the clockwise rotated ones dominate the northern or the southern hemisphere.« less
NASA Astrophysics Data System (ADS)
Acton, Gary D.; Tessema, Abera; Jackson, Michael; Bilham, Roger
2000-08-01
Deformation throughout Afar over the past 2 myr has been characterized by widespread and intense crustal fragmentation that results from inhomogeneous extension across the region. In eastern Afar, this situation has evolved to localized extension associated with the westward propagation of the Gulf of Aden/Gulf of Tadjurah seafloor spreading system into the Asal-Ghoubbet Rift. During the gradual process of rift propagation and localization, crustal blocks in eastern Afar sustained clockwise rotations of ˜11°. To better understand the processes of rift propagation and localization and how they affect the rest of Afar, we have collected and analyzed over 400 oriented paleomagnetic samples from 67 lava flows from central and southern Afar. Unlike eastern Afar, the mean paleomagnetic direction from central Afar indicates that vertical-axis rotations are statistically insignificant (3.6°±4.4°), though small clockwise rotations (<8°) are permitted. Thus, propagation and localization in central Afar have not had the same influence in causing crustal block rotations or, perhaps more likely, have not reached the same stage of evolution as seen in eastern Afar. In addition, several of the lava flows record intriguing geomagnetic field behavior associated with polarity transitions, excursions, or large secular variation events. Interestingly, the transitional or anomalous virtual geomagnetic poles (VGPs) tend to cluster in two nearly antipodal regions, one in the northern Pacific Ocean and the other in the southwest Indian Ocean. One lava flow has recorded both of the antipodal transitional components, with the two components residing in magnetic minerals with unblocking temperatures above and below ˜500°C, respectively. Reheating and partial remagnetization by the overlying flow cannot explain either of the transitional directions because both differ significantly from that of the reversely magnetized overlying flow. The high-temperature component gives a VGP in the northern Pacific, whereas the lower-temperature component gives a nearly antipodal VGP south of Cape Town, South Africa. Hence, the configuration of the geomagnetic field appears to have jumped nearly instantaneously from a northern-hemisphere transitional state to a southern-hemisphere one during this normal-to-reverse polarity transition.
Hagstrum, J.T.; Sawyer, D.A.
1989-01-01
Late Cretaceous ash flow volcanism in the Silver Bell Mountains of southern Arizona (32.3??N, 248.5??E) was associated with caldera formation and porphyry copper mineralization. Oriented samples from 34 sites in volcanic, volcaniclastic, and intrusive units related to this episode of igneous activity (73-69 Ma) yield a mean paleomagnetic direction of (I = 61.2??, D = 24.0??, ??95 = 7.6??. Previously determined paleomagnetic data for southeastern Arizona suggest that this apparent clockwise rotation in the Silver Bell Mountains is a local phenomenon. Although preliminary, the average paleomagnetic direction for Oligocene and lower Miocene rocks in the Silver Bell area (I = 43.8??, D = 357.3??, ??95 = 16.5??) is similar to that calculated for stable North America (I = 50.2??, D = 352.2??, ??95 = 3.9??), implying that the observed rotation in the Silver Bell Mountains occurred before 26 Ma and was most likely associated with dextral strike-slip movement along the Ragged Top and related WNW trending faults bounding the Silver Bell Mountain block. These data, in conjunction with plate reconstructions and other paleomagnetic data from southwestern North America, imply that WNW trending strike-slip faults may have played an important role during Late Cretaceous to early Tertiary deformation in southern Arizona. -Authors
Microcinematographic analysis of tethered Leptospira illini.
Charon, N W; Daughtry, G R; McCuskey, R S; Franz, G N
1984-01-01
A model of Leptospira motility was recently proposed. One element of the model states that in translating cells the anterior spiral-shaped end gyrates counterclockwise and the posterior hook-shaped end gyrates clockwise. We tested these predictions by analyzing cells tethered to a glass surface. Leptospira illini was incubated with antibody-coated latex beads (Ab-beads). These beads adhered to the cells, and subsequently some cells became attached to either the slide or the cover glass via the Ab-beads. As previously reported, these cells rapidly moved back and forth across the surface of the beads. In addition, a general trend was observed: cells tethered to the cover glass rotated clockwise around the Ab-bead; cells tethered to the slide rotated counterclockwise around the Ab-bead. A computer-aided microcinematographic analysis of tethered cells indicated that the direction of rotation of cells around the Ab-bead was a function of both the surface of attachment and the shape of the cell ends. The results can best be explained by assuming that the gyrating ends interact with the glass surface to cause rotation around the Ab-beads. The analysis obtained indicates that the hook- and spiral-shaped ends rotate in the directions predicted by the model. In addition, the tethered cell assay permitted detection of rapid, coordinated reversals of the cell ends, e.g., cells rapidly switched from a hook-spiral configuration to a spiral-hook configuration. These results suggest the existance of a mechanism which coordinates the shape of the cell ends of L. illini. Images PMID:6501226
Zhou, Jia; Pu, Da-Rong; Tian, Lei-Qi; Tong, Hai; Liu, Hong-Yu; Tang, Yan; Zhou, Qi-Chang
2015-05-28
Our study aimed to investigate the feasibility of velocity vector imaging (VVI) to analyze left ventricular (LV) myocardial mechanics in rabbits at basal state. The animals used in this study were 30 New Zealand white rabbits. All rabbits underwent routine echocardiography under VVI-mode at basal state. The 2-dimensional (2-D) echocardiography images acquired included parasternal left long-axis views and short-axis views at the level of LV mitral valve, papillary muscles, and apex. Images were analyzed by VVI software. At basal state, longitudinal LV velocity decreased from the basal to the apical segment (P<0.05). In the short axis direction, the highest peak myocardial velocity was found between the anterior septum and anterior wall for each segment at the same level; the peak strains and strain rates (SR) were the highest in the anterior and lateral wall compared to other segments (all P<0.05). During systole, LV base rotated in a clockwise direction and LV apex rotated in a counter-clockwise direction, while during diastole, both LV base and apex rotated in the direction opposite to systole. The rotation angle, rotation velocity and unwinding velocity in the apical segment were greater than the basal segment (P<0.05). VVI is a reliable tool for evaluating LV myocardial mechanics in rabbits at basal state, and the LV long-axis short-axis and torsional motions reflect the normal regular patterns. Our study lays the foundation for future experimental approaches in rabbit models and for other applications related to the study of human myocardial mechanics.
NASA Astrophysics Data System (ADS)
Audin, L.; Quidelleur, X.; Coulié, E.; Courtillot, V.; Gilder, S.; Manighetti, I.; Gillot, P.-Y.; Tapponnier, P.; Kidane, T.
2004-07-01
A new detailed palaeomagnetic study of Tertiary volcanics, including extensive K-Ar and 40Ar/39Ar dating, helps constrain the deformation mechanisms related to the opening processes of the Afar depression (Ethiopia and Djibouti). Much of the Afar depression is bounded by 30 Myr old flood basalts and floored by the ca 2 Myr old Stratoid basalts, and evidence for pre-2 Ma deformation processes is accessible only on its borders. K-Ar and 40Ar/39Ar dating of several mineral phases from rhyolitic samples from the Ali Sabieh block shows indistinguishable ages around 20 Myr. These ages can be linked to separation of this block in relation to continental breakup. Different amounts of rotation are found to the north and south of the Holhol fault zone, which cuts across the northern part of the Ali Sabieh block. The southern domain did not record any rotation for the last 8 Myr, whereas the northern domain experienced approximately 12 +/- 9° of clockwise rotation. We propose to link this rotation to the counter-clockwise rotation observed in the Danakil block since 7 Ma. This provides new constraints on the early phases of rifting and opening of the southern Afar depression in connection with the propagation of the Aden ridge. A kinematic model of propagation and transfer of extension within southern Afar is proposed, with particular emphasis on the previously poorly-known period from 10 to 4 Ma.
Podokinetic Stimulation Causes Shifts in Perception of Straight Ahead
Scott, John T.; Lohnes, Corey A.; Horak, Fay B.; Earhart, Gammon M.
2011-01-01
Podokinetic after-rotation (PKAR) is a phenomenon in which subjects inadvertently rotate when instructed to step in place after a period of walking on a rotating treadmill. PKAR has been shown to transfer between different forms of locomotion, but has not been tested in a non-locomotor task. We conducted two experiments to assess effects of PKAR on perception of subjective straight ahead and on quiet standing posture. Twenty-one healthy young right-handed subjects pointed to what they perceived as their subjective straight ahead with a laser pointer while they were recorded by a motion capture system both before and after a training period on the rotating treadmill. Subjects performed the pointing task while standing, sitting on a chair without a back, and a chair with a back. After the training period, subjects demonstrated a significant shift in subjective straight ahead, pointing an average of 29.1 ± 10.6 degrees off of center. The effect was direction-specific, depending on whether subjects had trained in the clockwise or counter-clockwise direction. Postures that limited subjects’ ability to rotate the body in space resulted in reduction, but not elimination, of the effect. The effect was present in quiet standing and even in sitting postures where locomotion was not possible. The robust transfer of PKAR to non-locomotor tasks, and across locomotor forms as demonstrated previously, is in contrast to split-belt adaptations that show limited transfer. We propose that, unlike split-belt adaptations, podokinetic adaptations are mediated at supraspinal, spatial orientation areas that influences spinal-level circuits for locomotion. PMID:21076818
Seismic shear waves as Foucault pendulum
NASA Astrophysics Data System (ADS)
Snieder, Roel; Sens-Schönfelder, Christoph; Ruigrok, Elmer; Shiomi, Katsuhiko
2016-03-01
Earth's rotation causes splitting of normal modes. Wave fronts and rays are, however, not affected by Earth's rotation, as we show theoretically and with observations made with USArray. We derive that the Coriolis force causes a small transverse component for P waves and a small longitudinal component for S waves. More importantly, Earth's rotation leads to a slow rotation of the transverse polarization of S waves; during the propagation of S waves the particle motion behaves just like a Foucault pendulum. The polarization plane of shear waves counteracts Earth's rotation and rotates clockwise in the Northern Hemisphere. The rotation rate is independent of the wave frequency and is purely geometric, like the Berry phase. Using the polarization of ScS and ScS2 waves, we show that the Foucault-like rotation of the S wave polarization can be observed. This can affect the determination of source mechanisms and the interpretation of observed SKS splitting.
NASA Astrophysics Data System (ADS)
Zuza, Andrew V.; Yin, An
2016-05-01
Collision-induced continental deformation commonly involves complex interactions between strike-slip faulting and off-fault deformation, yet this relationship has rarely been quantified. In northern Tibet, Cenozoic deformation is expressed by the development of the > 1000-km-long east-striking left-slip Kunlun, Qinling, and Haiyuan faults. Each have a maximum slip in the central fault segment exceeding 10s to ~ 100 km but a much smaller slip magnitude (~< 10% of the maximum slip) at their terminations. The along-strike variation of fault offsets and pervasive off-fault deformation create a strain pattern that departs from the expectations of the classic plate-like rigid-body motion and flow-like distributed deformation end-member models for continental tectonics. Here we propose a non-rigid bookshelf-fault model for the Cenozoic tectonic development of northern Tibet. Our model, quantitatively relating discrete left-slip faulting to distributed off-fault deformation during regional clockwise rotation, explains several puzzling features, including the: (1) clockwise rotation of east-striking left-slip faults against the northeast-striking left-slip Altyn Tagh fault along the northwestern margin of the Tibetan Plateau, (2) alternating fault-parallel extension and shortening in the off-fault regions, and (3) eastward-tapering map-view geometries of the Qimen Tagh, Qaidam, and Qilian Shan thrust belts that link with the three major left-slip faults in northern Tibet. We refer to this specific non-rigid bookshelf-fault system as a passive bookshelf-fault system because the rotating bookshelf panels are detached from the rigid bounding domains. As a consequence, the wallrock of the strike-slip faults deforms to accommodate both the clockwise rotation of the left-slip faults and off-fault strain that arises at the fault ends. An important implication of our model is that the style and magnitude of Cenozoic deformation in northern Tibet vary considerably in the east-west direction. Thus, any single north-south cross section and its kinematic reconstruction through the region do not properly quantify the complex deformational processes of plateau formation.
Large-scale models reveal the two-component mechanics of striated muscle.
Jarosch, Robert
2008-12-01
This paper provides a comprehensive explanation of striated muscle mechanics and contraction on the basis of filament rotations. Helical proteins, particularly the coiled-coils of tropomyosin, myosin and alpha-actinin, shorten their H-bonds cooperatively and produce torque and filament rotations when the Coulombic net-charge repulsion of their highly charged side-chains is diminished by interaction with ions. The classical "two-component model" of active muscle differentiated a "contractile component" which stretches the "series elastic component" during force production. The contractile components are the helically shaped thin filaments of muscle that shorten the sarcomeres by clockwise drilling into the myosin cross-bridges with torque decrease (= force-deficit). Muscle stretch means drawing out the thin filament helices off the cross-bridges under passive counterclockwise rotation with torque increase (= stretch activation). Since each thin filament is anchored by four elastic alpha-actinin Z-filaments (provided with force-regulating sites for Ca(2+) binding), the thin filament rotations change the torsional twist of the four Z-filaments as the "series elastic components". Large scale models simulate the changes of structure and force in the Z-band by the different Z-filament twisting stages A, B, C, D, E, F and G. Stage D corresponds to the isometric state. The basic phenomena of muscle physiology, i. e. latency relaxation, Fenn-effect, the force-velocity relation, the length-tension relation, unexplained energy, shortening heat, the Huxley-Simmons phases, etc. are explained and interpreted with the help of the model experiments.
Large-scale Models Reveal the Two-component Mechanics of Striated Muscle
Jarosch, Robert
2008-01-01
This paper provides a comprehensive explanation of striated muscle mechanics and contraction on the basis of filament rotations. Helical proteins, particularly the coiled-coils of tropomyosin, myosin and α-actinin, shorten their H-bonds cooperatively and produce torque and filament rotations when the Coulombic net-charge repulsion of their highly charged side-chains is diminished by interaction with ions. The classical “two-component model” of active muscle differentiated a “contractile component” which stretches the “series elastic component” during force production. The contractile components are the helically shaped thin filaments of muscle that shorten the sarcomeres by clockwise drilling into the myosin cross-bridges with torque decrease (= force-deficit). Muscle stretch means drawing out the thin filament helices off the cross-bridges under passive counterclockwise rotation with torque increase (= stretch activation). Since each thin filament is anchored by four elastic α-actinin Z-filaments (provided with force-regulating sites for Ca2+ binding), the thin filament rotations change the torsional twist of the four Z-filaments as the “series elastic components”. Large scale models simulate the changes of structure and force in the Z-band by the different Z-filament twisting stages A, B, C, D, E, F and G. Stage D corresponds to the isometric state. The basic phenomena of muscle physiology, i. e. latency relaxation, Fenn-effect, the force-velocity relation, the length-tension relation, unexplained energy, shortening heat, the Huxley-Simmons phases, etc. are explained and interpreted with the help of the model experiments. PMID:19330099
Tokita, Daisuke; Ebihara, Arata; Nishijo, Miki; Miyara, Kana; Okiji, Takashi
2017-10-01
The purpose of the present study was to compare 2 modes of reciprocal movement (torque-sensitive and time-dependent reciprocal rotation) with continuous rotation in terms of torque and apical force generation during nickel-titanium rotary root canal instrumentation. A custom-made automated root canal instrumentation and torque/force analyzing device was used to prepare simulated canals in resin blocks and monitor the torque and apical force generated in the blocks during preparation. Experimental groups (n = 7, each) consisted of (1) torque-sensitive reciprocal rotation with torque-sensitive vertical movement (group TqR), (2) time-dependent reciprocal rotation with time-dependent vertical movement (group TmR), and (3) continuous rotation with time-dependent vertical movement (group CR). The canals were instrumented with TF Adaptive SM1 and SM2 rotary files (SybronEndo, Orange, CA), and the torque and apical force were measured during instrumentation with SM2. The mean and maximum torque and apical force values were statistically analyzed using 1-way analysis of variance and the Tukey test (α = 0.05). The recordings showed intermittent increases of upward apical force and clockwise torque, indicating the generation and release of screw-in forces. The maximum upward apical force values in group TmR were significantly smaller than those in group CR (P < .05). The maximum torque values in clockwise and counterclockwise directions in groups TqR and TmR were significantly smaller than those in group CR (P < .05). Under the present experimental conditions using TF Adaptive instruments, both torque-sensitive and time-dependent reciprocal rotation generated significantly lower maximum torque and may have advantages in reducing stress generation caused by screw-in forces when compared with continuous rotation. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Crustal Strike-Slip Faulting along Small Circle Paths in the Northwestern United States
NASA Astrophysics Data System (ADS)
Brocher, T. M.; Wells, R. E.; Lamb, A. P.; Weaver, C. S.
2015-12-01
Late Cenozoic and Quaternary faults, seismicity lineaments, and focal mechanisms provide evidence that clockwise rotation of Washington and Oregon is accommodated by north-directed thrusting and strike-slip deformation in the Washington segment of the Cascadia forearc. Curvilinear NW- to NNW-trending high-angle strike-slip faults and seismicity lineaments define small circles around an Euler pole (117.7°W, 47.9°N) of rotation relative to North America that approximates GPS-derived poles for the rotation of eastern Washington and the Snake River Plain. Although the lengths of strike-slip faults that follow small circle paths suggest maximum earthquake magnitudes of M6.6 to M7.2, their slip rates calculated from the Euler pole are low (0.3 to 0.5 mm/yr). Many normal faults in the Lewis and Clark Zone in Montana, the Centennial fault system north of the Snake River Plain, west of the Wasatch Front, in the northern Basin and Range, and locally east of the Oregon Cascade arc are radial to this pole of rotation, suggesting that these normal faults help accommodate this crustal rotation. Regions undergoing contraction in western Washington and northwestern Oregon are separated from those to the east undergoing extension by lines radial to the Euler pole. In our regional kinematic model, dextral faults along small circles connect SW-directed crustal extension in the Intermountain Seismic Belt and E-directed extension in the Cascade arc south of Mount Hood to N-directed contraction in the Olympic Peninsula, Puget Lowland, and the Yakima Fold and Thrust Belt. The lack of Quaternary faulting and seismicity in the Oregon segment of the forearc is consistent with its clockwise rotation as a rigid block. Potential drivers of the crustal rotation include westward slab rollback and the Yellowstone geoid high, and the overall velocity field may integrate the response of rotating blocks and distributed deformation between them.
A bird's eye view of "Understanding volcanoes in the Vanuatu arc"
NASA Astrophysics Data System (ADS)
Vergniolle, S.; Métrich, N.
2016-08-01
The Vanuatu intra-oceanic arc, located between 13 and 22°S in the southwest Pacific Ocean (Fig. 1), is one of the most seismically active regions with almost 39 earthquakes magnitude 7 + in the past 43 years (Baillard et al., 2015). Active deformation in both the Vanuatu subduction zone and the back-arc North-Fiji basin accommodates the variation of convergence rates which are c.a. 90-120 mm/yr along most of the arc (Taylor et al., 1995; Pelletier et al., 1998). The convergence rate is slowed down to 25-43 mm/yr (Baillard et al., 2015) in the central segment where the D'Entrecasteaux ridge - an Eocene-Oligocene island arc complex on the Australian subducting plate - collides and is subducted beneath the fore-arc (Taylor et al., 2005). Hence, the Vanuatu arc is segmented in three blocks which move independently; as the north block rotates counter-clockwise in association with rapid back-arc spreading ( 80 mm/year), the central block translates eastward and the south block rotates clockwise (Calmant et al., 2003; Bergeot et al., 2009). (See Fig. 1.)
Experimental Array for Generating Dual Circularly-Polarized Dual-Mode OAM Radio Beams.
Bai, Xu-Dong; Liang, Xian-Ling; Sun, Yun-Tao; Hu, Peng-Cheng; Yao, Yu; Wang, Kun; Geng, Jun-Ping; Jin, Rong-Hong
2017-01-10
Recently, vortex beam carrying orbital angular momentum (OAM) for radio communications has attracted much attention for its potential of transmitting multiple signals simultaneously at the same frequency, which can be used to increase the channel capacity. However, most of the methods for getting multi-mode OAM radio beams are of complicated structure and very high cost. This paper provides an effective solution of generating dual circularly-polarized (CP) dual-mode OAM beams. The antenna consists of four dual-CP elements which are sequentially rotated 90 degrees in the clockwise direction. Different from all previous published research relating to OAM generation by phased arrays, the four elements are fed with the same phase for both left-hand circular polarization (LHCP) and right-hand circular polarization (RHCP). The dual-mode operation for OAM is achieved through the opposite phase differences generated for LHCP and RHCP, when the dual-CP elements are sequentially rotated in the clockwise direction. The measured results coincide well with the simulated ones, which verified the effectiveness of the proposed design.
Future wave and wind projections for United States and United-States-affiliated Pacific Islands
Storlazzi, Curt D.; Shope, James B.; Erikson, Li H.; Hegermiller, Christine A.; Barnard, Patrick L.
2015-01-01
Changes in future wave climates in the tropical Pacific Ocean from global climate change are not well understood. Spatially and temporally varying waves dominate coastal morphology and ecosystem structure of the islands throughout the tropical Pacific. Waves also impact coastal infrastructure, natural and cultural resources, and coastal-related economic activities of the islands. Wave heights, periods, and directions were forecast through the year 2100 using wind parameter outputs from four atmosphere-ocean global climate models from the Coupled Model Inter-Comparison Project, Phase 5, for Representative Concentration Pathways (RCP) scenarios 4.5 and 8.5 that correspond to moderately mitigated and unmitigated greenhouse gas emissions, respectively. Wind fields from the global climate models were used to drive a global WAVEWATCH-III wave model and generate hourly time-series of bulk wave parameters for 25 islands in the mid to western tropical Pacific for the years 1976–2005 (historical), 2026–2045 (mid-century projection), and 2085–2100 (end-of-century projection). Although the results show some spatial heterogeneity, overall the December-February extreme significant wave heights, defined as the mean of the top 5 percent of significant wave height time-series data modeled within a specific period, increase from present to mid-century and then decrease toward the end of the century; June-August extreme wave heights increase throughout the century within the Central region of the study area; and September-November wave heights decrease strongly throughout the 21st century, displaying the largest and most widespread decreases of any season. Peak wave periods increase east of the International Date Line during the December-February and June-August seasons under RCP4.5. Under the RCP8.5 scenario, wave periods decrease west of the International Date Line during December-February but increase in the eastern half of the study area. Otherwise, wave periods decrease throughout the study area during other seasons. Extreme wave directions in equatorial Micronesia during June-August undergo an approximate 30° clockwise rotation from primarily west to northwest. September-November RCP4.5 extreme mean wave directions rotate counterclockwise by approximately 30 to 45° in equatorial Micronesia; September-November RCP8.5 extreme mean wave directions within equatorial Micronesia rotate clockwise by approximately 20 to 30°. Extreme wind speeds decreased within both scenarios, with the largest decreases occurring in the September-November season. Extreme wind directions under RCP4.5 rotated clockwise by more than 60° in equatorial Micronesia during the September-November season and by approximately 30° during June-August. RCP8.5 extreme wind directions rotated counterclockwise during September-November within the same region by 30 to 50° and clockwise by 30 to 40° at one island. The spatial patterns and trends are similar between the two different greenhouse gas emission scenarios, with the magnitude and extent of the trends generally greater for the higher (RCP8.5) scenario.
Paleo movement of continents since 300 Ma, mantle dynamics and large wander of the rotational pole
NASA Astrophysics Data System (ADS)
Greff-Lefftz, Marianne; Besse, Jean
2012-09-01
Apparent polar wander (APW) is known to be mainly linked to internal mass distribution changes and in particular to changes in subduction and large-scale upwellings in the mantle. We investigate plate motions during the last 410 million years in a reference frame where Africa is fixed. Indeed, Africa has remained a central plate from which most continents diverged since the break-up of Pangea. The exact amount of subduction is unknown prior to 120 Ma. We propose an approach, based on one hand on the study of the past subduction volcanism to locate ancient subduction activity, and on the other hand microplate motion history in the Tethyan area derived from geology and paleomagnetism. The peri-Pacific subductions seem to be a quasi-permanent feature of the Earth's history at least since the Paleozoic, with however localized interruptions. The “Tethyan” subductions have a complex history with successive collisions of continental blocs (Hercynian, Indo-Sinian, Alpine and Himalayan) and episodical rebirth of E-W subduction trending zones. Assuming that subducted slabs sink vertically into the mantle and taking into account large-scale upwellings derived from present-day tomography and intra-plate volcanism in the past, we compute the time variation of mantle density heterogeneities since 280 Ma. Due to conservation of the angular momentum of the Earth, the temporal evolution of the rotational axis is computed in a mantle reference frame where the Africa plate is fixed, and compared to the apparent polar wander (APW) observed by paleomagnetism since 280 Ma. We find that a major trend of both paleomagnetic and computed APW are successive oscillatory clockwise or counter-clockwise motions, with tracks separated by abrupt cusps (around 230 Ma, 190 Ma and 140-110 Ma). We find that cusps result from earlier major geodynamic events: the 230 Ma cusp is related to the end of active subduction due to the closure of the Rheic Ocean basin after the Hercynian continental collision (340-300 Ma) and to renewed subduction zone West of Laurentia, whereas the 190 Ma cusp results from the Indo-Sinian collision (270-230 Ma) and the subsequent end of the Neo-Tethys ocean subduction.
Horizontal wind fluctuations in the stratosphere during large-scale cyclogenesis
NASA Technical Reports Server (NTRS)
Chan, K. R.; Scott, S. G.; Danielsen, Edwin F.; Pfister, L.; Bowen, S. W.; Gaines, Steven E.
1991-01-01
The meteorological measurement system (MMS) on the U-2 aircraft measured pressure, temperature, and the horizontal wind during a cyclogenesis event over western United States on April 20, 1984. The mean horizontal wind in the stratosphere decreases monotonically with altitude. Superimposed on the mean stratospheric wind is a perturbation wind vector, which is an elliptically polarized wave with an amplitude of 4 to 10 m/s and a vertical wavelength of 2 to 3 km. The perturbation wind vector rotates anticyclonically (clockwise) with altitude and produces alternating advection in the plane of the aircraft flight path. This differential advection folds surfaces of constant tracer mixing ratio and contributes to the observed tracer laminar structures and inferred cross-jet transport.
Nickalls, R W
1996-09-01
Visual latency difference was determined directly in normal volunteers, using the rotating Pulfrich technique described by Nickalls [Vision Research, 26, 367-372 (1986)]. Subjects fixated a black vertical rod rotating clockwise on a horizontal turntable turning with constant angular velocity (16.6,33.3 or 44.7 revs/min) with a neutral density filter (OD 0.7 or 1.5) in front of the right eye. For all subjects the latency difference associated with the 1.5 OD filter was significantly greater (P < 0.001) with the rod rotating at 16.6 rev/min than at 33.3 revs/min. The existence of an inverse relationship between latency difference and angular velocity is hypothesized.
Normal impact of a low-velocity projectile against a taut string-like membrane
NASA Astrophysics Data System (ADS)
Zhao, Yifei; Sun, Zhili
2018-07-01
For the impact system in which a moving projectile transversely impacts against a taut fabric band, 1-D linearized model applies because of low-velocity, sufficient pretension, and the sizes of the objects. This projectile-to-band impact model can serve as the physical prototype of applications in engineering such as cable-membrane architectures and seat belts. In this fundamental work, the response properties under central and non-central impacts are investigated analytically from the viewpoint of wave propagations, while comparisons and verifications are made with finite element (FE) analysis. For a central impact after the first separation, band can catch up with the projectile such that a contact-impact state is re-established when m is in the small interval neighbouring m = 1. For a non-central impact, the projectile would be subjected to a combination of translation and rotation due to asymmetric wave propagations. From every certain instant, the projectile is subjected to an additional rotational acceleration (principal moment) with an abrupt or zero initial value in the anti-clockwise or clockwise direction. The swing amplitude of a small-j or a flat projectile is susceptible to significant fluctuations, and vice versa. The band with a rather large off-centre ratio for the impacted zone and a rather short length of the shorter segment would facilitate a larger accumulation of swing amplitude in a single direction soon after the impact. The linearized impact models proposed can be used to well describe the small-deflection responses for the system, based on 1-D wave propagations or the dependence of quasi-static band deflection on time if the impact duration is much longer than the double wave transit time for the band.
Tetreault, J.; Jones, C.H.; Erslev, E.; Larson, S.; Hudson, M.; Holdaway, S.
2008-01-01
Significant fold-axis-parallel slip is accommodated in the folded strata of the Grayback monocline, northeastern Front Range, Colorado, without visible large strike-slip displacement on the fold surface. In many cases, oblique-slip deformation is partitioned; fold-axis-normal slip is accommodated within folds, and fold-axis-parallel slip is resolved onto adjacent strike-slip faults. Unlike partitioning strike-parallel slip onto adjacent strike-slip faults, fold-axis-parallel slip has deformed the forelimb of the Grayback monocline. Mean compressive paleostress orientations in the forelimb are deflected 15??-37?? clockwise from the regional paleostress orientation of the northeastern Front Range. Paleomagnetic directions from the Permian Ingleside Formation in the forelimb are rotated 16??-42?? clockwise about a bedding-normal axis relative to the North American Permian reference direction. The paleostress and paleomagnetic rotations increase with the bedding dip angle and decrease along strike toward the fold tip. These measurements allow for 50-120 m of fold-axis-parallel slip within the forelimb, depending on the kinematics of strike-slip shear. This resolved horizontal slip is nearly equal in magnitude to the ???180 m vertical throw across the fold. For 200 m of oblique-slip displacement (120 m of strike slip and 180 m of reverse slip), the true shortening direction across the fold is N90??E, indistinguishable from the regionally inferred direction of N90??E and quite different from the S53??E fold-normal direction. Recognition of this deformational style means that significant amounts of strike slip can be accommodated within folds without axis-parallel surficial faulting. ?? 2008 Geological Society of America.
6. Photocopied August 1978. LINEUP OF HORRY ROTARY FURNACES ON ...
6. Photocopied August 1978. LINE-UP OF HORRY ROTARY FURNACES ON THE SECOND FLOOR OF THE MICHIGAN LAKE SUPERIOR POWER COMPANY POWER HOUSE. THE HOPPERS WHICH FED THE RAW MATERIALS INTO THE FURNACES ARE SHOWN ABOVE THE FURNACES. AS THE 'SPOOL' OF THE FURNACE ROTATED PAST THE ELECTRODES PLATES WERE ADDED TO HOLD THE FINISHED PRODUCT AND THE DESCENDING RAW MATERIALS IN PLACE. THE DIRECTION OF ROTATION OF THE FURNACES SHOWN IN THIS PHOTO IS CLOCKWISE, (M). - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI
NASA Astrophysics Data System (ADS)
Weber, J.; Umhoefer, P. J.; Pérez Venzor, J. A.; Bachtadse, V.
2009-12-01
Compared to oceanic plate boundaries which are generally narrow zones of deformation, continental plate boundaries appear as widespread areas with complex and poorly understood kinematics. Motion of crustal blocks within these “diffuse plate boundaries” causes rather small-scale lithospheric deformation within the boundary zone, while the main plates behave more rigid. Complex deformation patterns of interacting terranes separated by a variety of active faults are the consequence. To study the dynamic implications of boundary zone deformation, the southern part of the Baja California peninsula, Mexico (Baja) has been chosen as target for a detailed paleomagnetic study. In combination with geodetic measurements it is tried to characterize rigid block rotations and temporal changes in rotation rates. Up to now, little paleomagnetic work directed toward vertical axis rotations has been done in Baja California, despite its location in a major active transtensional zone. To address this problem, a total of 501 cores from 63 sites in the southern part of Baja - including sites on San José Island, San Francisco Island and Cerralvo Island - has been taken from volcanic and sedimentary rocks covering the last 25 million years in time. The analysis of paleomagnetic declinations and comparison to coeval data from North America and stable areas of Baja California allow evaluating the long-term kinematics of the region and the effects of oblique-rifting in the Gulf of California to the east. Nearly all sampled sites indicate vertical axis rotation up to 30-40 degrees with an average of about 20-25 degrees. Depending on the location these rotations have been either clockwise or counter-clockwise and are correlated with the opening of the Gulf of California and the translation of the Baja California peninsula to the North. Results of the paleomagnetic investigation are compared to geodetic data of the last few years in order to address the problem how strain is partitioned within a complex network of faults and how rates of rotation change with time.
NASA Astrophysics Data System (ADS)
Martin, A. K.
2007-12-01
A model has been developed where two arc-parallel rifts propagate in opposite directions from an initial central location during backarc seafloor spreading and subduction rollback. The resultant geometry causes pairs of terranes to simultaneously rotate clockwise and counterclockwise like the motion of double-saloon-doors about their hinges. As movement proceeds and the two terranes rotate, a gap begins to extend between them, where a third rift initiates and propagates in the opposite direction to subduction rollback. Observations from the Oligocene to Recent Western Mediterranean, the Miocene to Recent Carpathians, the Miocene to Recent Aegean and the Oligocene to Recent Caribbean point to a two-stage process. Initially, pairs of terranes comprising a pre-existing retro-arc fold thrust belt and magmatic arc rotate about poles and accrete to adjacent continents. Terrane docking reduces the width of the subduction zone, leading to a second phase during which subduction to strike-slip transitions initiate. The clockwise rotated terrane is caught up in a dextral strike-slip zone, whereas the counterclockwise rotated terrane is entrained in a sinistral strike-slip fault system. The likely driving force is a pair of rotational torques caused by slab sinking and rollback of a curved subduction hingeline. By analogy with the above model, a revised five-stage Early Jurassic to Early Cretaceous Gondwana dispersal model is proposed in which three plates always separate about a single triple rift or triple junction in the Weddell Sea area. Seven features are considered diagnostic of double-saloon-door rifting and seafloor spreading: earliest movement involves clockwise and counterclockwise rotations of the Falkland Islands Block and the Ellsworth Whitmore Terrane respectively; terranes comprise areas of a pre-existing retro-arc fold thrust belt (the Permo-Triassic Gondwanide Orogeny) attached to an accretionary wedge/magmatic arc; the Falklands Islands Block is initially attached to Southern Patagonia/West Antarctic Peninsula, while the Ellsworth Whitmore Terrane is combined with the Thurston Island Block; paleogeographies demonstrate rifting and extension in a backarc environment relative to a Pacific margin subduction zone/accretionary wedge where simultaneous crustal shortening occurs; a ridge jump towards the subduction zone from east of the Falkland Islands to the Rocas Verdes Basin evinces subduction rollback; this ridge jump combined with backarc extension isolated an area of thicker continental crust — The Falkland Islands Block; well-documented EW oriented seafloor spreading anomalies in the Weddell Sea are perpendicular to the subduction zone and propagate in the opposite direction to rollback; the dextral strike-slip Gastre and sub-parallel faults form one boundary of the Gondwana subduction rollback, whereas the other boundary may be formed by inferred sinistral strike-slip motion between a combined Thurston Island/Ellsworth Whitmore Terrane and Marie Byrd Land/East Antarctica.
Global-Scale Consequences of Magnetic-Helicity Injection and Condensation on the Sun
NASA Technical Reports Server (NTRS)
Mackay, Duncan H.; DeVore, C. Richard; Antiochos, Spiro K.
2013-01-01
In the recent paper of Antiochos, a new concept for the injection of magnetic helicity into the solar corona by small-scale convective motions and its condensation onto polarity inversion lines (PILs) has been developed. We investigate this concept through global simulations of the Sun's photospheric and coronal magnetic fields and compare the results with the hemispheric pattern of solar filaments. Assuming that the vorticity of the cells is predominately counter-clockwise/clockwise in the northern/southern hemisphere, the convective motions inject negative/positive helicity into each hemisphere. The simulations show that: (i) On a north-south orientated PIL, both differential rotation and convective motions inject the same sign of helicity which matches that required to reproduce the hemispheric pattern of filaments. (ii) On a high latitude east-west orientated polar crown or sub-polar crown PIL, the vorticity of the cells has to be approximately 2-3 times greater than the local differential rotation gradient in order to overcome the incorrect sign of helicity injection from differential rotation. (iii) In the declining phase of the cycle, as a bipole interacts with the polar field, in some cases helicity condensation can reverse the effect of differential rotation along the East-West lead arm, but not in all cases. The results show that this newly developed concept of magnetic helicity injection and condensation is a viable method to explain the hemispheric pattern of filaments in conjunction with the mechanisms used in Yeates et al. (2008). Future observational studies should focus on determining the vorticity component within convective motions to determine, both its magnitude and latitudinal variation relative to the differential rotation gradient on the Sun.
NASA Technical Reports Server (NTRS)
Doggett, T. C.; Grosfils, E. B.
2002-01-01
The stress history of a feature, identified as a previously uncataloged dike swarm, at 45N 191E is mapped as clockwise rotation of maximum horizontal compressive stress. It is intermediate between areas associated with compression, mantle upwelling and convection. Additional information is contained in the original extended abstract.
Flagellar dynamics reveal the distribution of chemotactic signaling molecule CheY-P in E. coli
NASA Astrophysics Data System (ADS)
Bano, Roshni; Mears, Patrick; Chemla, Yann; Golding, Ido
E. colicells swim in a random walk consisting of ''runs'' - during which the flagella that propel the cell rotate counter-clockwise (CCW) - and ''tumbles''- during which one or more flagella rotate clockwise (CW). The tumbling frequency is modulated by the phosphorylation state of the signaling molecule CheY, which depends on the cell's environment. Phosphorylated CheY (CheY-P) binds to a flagellar motor and engenders a change in rotation state from CCW to CW. Despite advances in methods used to observe chemotactic signaling, it remains a challenge to measure the CheY-P level in cells directly. Here, we used an optical trap assay coupled with fluorescence microscopy to observe the dynamics of fluorescently labelled flagella in individual cells. By measuring the distribution of flagellar states in multi-flagellated cells and using our recent finding that each flagellar motor independently measures the cellular CheY-P concentration, we are able to extract the probability distribution of the CheY-P level in the cell. This analysis reveals the magnitude of fluctuations in chemotactic signaling in the live cell. We further investigate how this CheY-P distribution changes when cells encounter chemical gradients and perform chemotaxis. This work was supported by the National Science Foundation (NSF) through the Centre for Physics of Living Cells (CPLC).
NASA Astrophysics Data System (ADS)
Sheriff, Steven D.
1984-06-01
Anomalous paleomagnetic directions have been determined for 17 sites in the Frenchmans Springs member of the Wanapum basalt formation, Columbia River basalt group. These sites are located in the Ginkgo flows from near Vantage, Washington, to Portland, Oregon, a distance of approximately 300 km. The average paleomagnetic direction for six of these sites, centered around Vantage is D = 147°, I = 41°, α95 = 4.5°. The expected Miocene field direction is D = 355°, I = 65°. At some localities there are two distinct Ginkgo flows, in direct stratigraphic succession, with statistically identical anomalous directions. Their anomalous paleomagnetic direction makes these flows a valuable marker horizon in the Columbia River basalt group. The nondipole field direction of the Ginkgo flows correlates well with available results from the Miocene Cape Foulweather basalts of Oregon. This correlation strongly supports the hypothesis that these coastal basalts of Oregon are the distal ends of Columbia Plateau derived basalt flows. The spatial distribution of these anomalous field directions suggests about 14° of clockwise rotation between Vantage and Portland. Combining these data with data from the Oregon Coast basalts allows a maximum declination difference of about 35°. The increase in declination can be best explained by clockwise rotation, about nearby vertical axes, increasing to the southwest across the Columbia Plateau and Oregon coast.
Extreme-ultraviolet observations of global coronal wave rotation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Attrill, G. D. R.; Long, D. M.; Green, L. M.
2014-11-20
We present evidence of global coronal wave rotation in EUV data from SOHO/EIT, STEREO/EUVI, and SDO/AIA. The sense of rotation is found to be consistent with the helicity of the source region (clockwise for positive helicity, anticlockwise for negative helicity), with the source regions hosting sigmoidal structures. We also study two coronal wave events observed by SDO/AIA where no clear rotation (or sigmoid) is observed. The selected events show supporting evidence that they all originate with flux rope eruptions. We make comparisons across this set of observations (both with and without clear sigmoidal structures). On examining the magnetic configuration ofmore » the source regions, we find that the nonrotation events possess a quadrupolar magnetic configuration. The coronal waves that do show a rotation originate from bipolar source regions.« less
2018-01-01
Abstract Trends in solid‐state structures were used to identify preferred intramolecular movements in half‐sandwich compounds [CpFe(CO){C(=O)R}PPh3]. Three weak interactions were analyzed: 1) the CH/π donor–acceptor interaction of phenyl rings in the PPh3 ligand, 2) the PhPPh3 face‐on Cp stabilization, and 3) the hydrogen bond between the oxygen atom of the acyl group and an ortho‐C−H bond of one of the PPh3 phenyl rings. Clockwise and counter‐clockwise rotations established directed and coupled movements of the PPh3 ligand, the acyl group, and the phenyl rings within the PPh3 ligand. PMID:29744282
NASA Astrophysics Data System (ADS)
Herman, Scott William
The history of late Miocene (Proto-Gulf) deformation on the Sonoran margin of the Gulf of California is key to understanding how Baja California was captured by the Pacific plate and how strain was partitioned during the Proto-Gulf period (12.5-6 Ma). The Sierra el Aguaje and Sierra Tinajas del Carmen are located in southwestern coastal Sonora, Mexico, and represent the eastern rifted margin of the central Gulf of California. The ranges are composed of volcanic units and their corresponding volcaniclastic units which are the result of persistent magmatic activity between 20 and 8.8 Ma, including three packages of basalt and andesite that make excellent paleomagnetic recorders. Based on cross cutting relations and geochronologic data for pre-, syn-, and post-tectonic volcanic units, most of the faulting and tilting in the Sierra El Aguaje is bracketed between 11.9 and 9.0 Ma, thus falling entirely within Proto-Gulf time. A paleomagnetic investigation into possible vertical axis rotations in the Sierra el Aguaje has uncovered evidence of clockwise rotations between ~13º and ~105º with possible translations. These results are consistent with existing field relations, which suggest the presence of large (>45°) vertical axis rotations in this region. This evidence includes: a) abrupt changes in the strike of tilted strata in different parts of the range, including large domains characterized by E-W strikes b) ubiquitous NE-SW striking faults with left lateral-normal oblique slip, that terminate against major NW-trending right lateral faults, and c) obliquity between the general strike of tilted strata and the strike of faults. These rotations occurred after 12 Ma and largely prior to 9 Ma, thus falling into the Proto-Gulf period. Such large-scale rotations lend credence to the theory that the area inboard of Baja California was experiencing transtension during the Proto-Gulf period, rather than the pure extension that would be the result of strain partitioning between Sonora and the Tosco-Abreojos fault offshore Baja California.
Basic kinematics of the saddle and rider in high-level dressage horses trotting on a treadmill.
Byström, A; Rhodin, M; von Peinen, K; Weishaupt, M A; Roepstorff, L
2009-03-01
A comprehensive kinematic description of rider and saddle movements is not yet present in the scientific literature. To describe saddle and rider movements in a group of high-level dressage horses and riders. Seven high-level dressage horses and riders were subjected to kinematic measurements while performing collected trot on a treadmill. For analysis a rigid body model for the saddle and core rider segments, projection angles of the rider's extremities and the neck and trunk of the horse, and distances between markers selected to indicate rider position were used. For a majority of the variables measured it was possible to describe a common pattern for the group. Rotations around the transverse axis (pitch) were generally biphasic for each diagonal. During the first half of stance the saddle rotated anti-clockwise and the rider's pelvis clockwise viewed from the right and the rider's lumbar back extended. During the later part of stance and the suspension phase reverse pitch rotations were observed. Rotations of the saddle and core rider segments around the longitudinal (roll) and vertical axes (yaw) changed direction only around time of contact of each diagonal. The saddles and riders of high-level dressage horses follow a common movement pattern at collected trot. The movements of the saddle and rider are clearly related to the movements of the horse and saddle movements also seem to be influenced by the rider. Knowledge about rider and saddle movements can further our understanding of, and hence possibilities to prevent, orthopaedic injuries related to the exposure of the horse to a rider and saddle.
NASA Astrophysics Data System (ADS)
García, Helbert; Jiménez, Giovanny
2016-08-01
We report paleomagnetic, magnetic fabric and structural results from 21 sites collected in Cretaceous marine mudstones and Paleogene continental sandstones from the limbs, hinge and transverse zones of the Zipaquira Anticline (ZA). The ZA is an asymmetrical fold with one limb completely overturned by processes like gravity and salt tectonics, and marked by several axis curvatures. The ZA is controlled by at least two (2) transverse zones known as the Neusa and Zipaquira Transverse Zones (NTZ and ZTZ, respectively). Magnetic mineralogy methods were applied at different sites and the main carriers of the magnetic properties are paramagnetic components with some sites being controlled by hematite and magnetite. Magnetic fabric analysis shows rigid-body rotation for the back-limb in the ZA, while the forelimb is subjected to internal deformation. Structural and paleomagnetic data shows the influence of the NTZ and ZTZ in the evolution of the different structures like the ZA and the Zipaquira, Carupa, Rio Guandoque, Las Margaritas and Neusa faults, controlling several factors as vergence, extension, fold axis curvature and stratigraphic detatchment. Clockwise rotations unraveled a block segmentation following a discontinuos model caused by transverse zones and one site reported a counter clockwise rotation associated with a left-lateral strike slip component for transverse faults (e.g. the Neusa Fault). We propose that diverse transverse zones have been active since Paleogene times, playing an important role in the tectonic evolution of the Cundinamarca sub-basin and controlling the structural evolution of folds and faults with block segmentation and rotations.
NASA Astrophysics Data System (ADS)
Aigbe, U. O.; Ho, W. H.; Maity, A.; Khenfouch, M.; Srinivasu, V.
2018-03-01
The influence of varying rotating magnetic field using a 2-pole three-phase induction motor on the removal of hexavalent chromium ions from wastewater using polypyrrole magnetic nanocomposite was explored in this study. Hexavalent chromium removal in this study was observed to be pH dependent under the influence of rotating magnetic field, as the percentage removal of hexavalent chromium decreased with increase in pH. The percentage amount of hexavalent chromium ions removed from the aqueous solution increased as the rotating magnetic field intensity was increased from 8.96-12.15 mT in the anticlockwise direction and 10.10-13.38 mT in the clockwise direction with maximum removals of 73% and 81% observed.
Cloud Spirals and Outflow in Tropical Storm Katrina
NASA Technical Reports Server (NTRS)
2005-01-01
On Tuesday, August 30, 2005, NASA's Multi-angle Imaging SpectroRadiometer retrieved cloud-top heights and cloud-tracked wind velocities for Tropical Storm Katrina, as the center of the storm was situated over the Tennessee valley. At this time Katrina was weakening and no longer classified as a hurricane, and would soon become an extratropical depression. Measurements such as these can help atmospheric scientists compare results of computer-generated hurricane simulations with observed conditions, ultimately allowing them to better represent and understand physical processes occurring in hurricanes. Because air currents are influenced by the Coriolis force (caused by the rotation of the Earth), Northern Hemisphere hurricanes are characterized by an inward counterclockwise (cyclonic) rotation towards the center. It is less widely known that, at high altitudes, outward-spreading bands of cloud rotate in a clockwise (anticyclonic) direction. The image on the left shows the retrieved cloud-tracked winds as red arrows superimposed across the natural color view from MISR's nadir (vertical-viewing) camera. Both the counter-clockwise motion for the lower-level storm clouds and the clockwise motion for the upper clouds are apparent in these images. The speeds for the clockwise upper level winds have typical values between 40 and 45 m/s (144-162 km/hr). The low level counterclockwise winds have typical values between 7 and 24 m/s (25-86 km/hr), weakening with distance from the storm center. The image on the right displays the cloud-top height retrievals. Areas where cloud heights could not be retrieved are shown in dark gray. Both the wind velocity vectors and the cloud-top height field were produced by automated computer recognition of displacements in spatial features within successive MISR images acquired at different view angles and at slightly different times. The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously, viewing the entire globe between 82o north and 82o south latitude every nine days. This image covers an area of about 380 kilometers by 1970 kilometers. These data products were generated from a portion of the imagery acquired during Terra orbit 30324 and utilize data from blocks 55-68 within World Reference System-2 path 22. MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is managed for NASA by the California Institute of Technology.Oroclinal Bending and Mountain Uplift in the Central Andes
NASA Astrophysics Data System (ADS)
Mpodozis, C.; Arriagada, C.; Roperch, P.
2007-05-01
The large paleomagnetic database now available for the Central Andes permits a good understanding of the overall spatial and temporal variations of rotations. Mesozoic to Early Paleogene rocks along the forearc of northern Chile (23°-28°S) record significant clockwise rotations (>25°) [Arriagada et al., 2006, Tectonics, doi:10.1029/2005TC001923]. Along the forearc of southern Peru, counterclockwise rotations recorded within flat lying red-beds (Moquegua Formation) increase from about -30° at 17.5°S to - 45° at15.5°S and decrease through time from the late Eocene to the late Oligocene-early Miocene [Roperch et al., 2006, Tectonics, doi:10.1029/2005TC001882]. Recently published thermo-chronological studies show evidence for strong exhumation within Bolivian Eastern Cordillera and the Puna plateau starting in the Eocene while structural studies indicate that the majority of crustal shortening in the Eastern Cordillera occurred during the Eocene-Oligocene, although the final stages of deformation may have continued through the Early Miocene. Rotations in the Peruvian and north Chilean forearc thus occurred at the same time than deformation and exhumation/uplift within the Eastern Cordillera. In contrast Neogene forearc rocks in southern Peru and northern Chile do not show evidences of rotation but low magnitude (10°) counterclockwise rotations are usually found in mid to late Miocene rocks from the northern Altiplano. These Neogene rotations are concomitant with shortening in the Sub-Andean zone and sinistral strike-slip faulting along the eastern edge of the northern Altiplano. We interpret the rotation pattern along the southern Peru and north Chile forearc as a result of strong late Eocene- late Oligocene oroclinal bending of the Central Andes associated with shortening gradients along the Eastern Cordillera associated both with the Abancay deflection and the Arica bend. The amount and spatial distribution of pre-Neogene shortening needed to account for oroclinal bending is difficult to estimate as the rotations may be partly driven by transpression along strike slip shear zones. The large rotations strongly highlight the importance of the pre-Neogene tectonic history in the evolution of the Central Andes.
The Weak Nuclear Force: Through the Looking Glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lincoln, Don
Of all of the known subatomic forces, the weak force is in many ways unique. One particularly interesting facet is that the force differentiates between a particle that is rotating clockwise and counterclockwise. In this video, Fermilab’s Dr. Don Lincoln describes this unusual property and introduces some of the historical figures who played a role in working it all out.
ERIC Educational Resources Information Center
Lindemann, Oliver; Bekkering, Harold
2009-01-01
In 3 experiments, the authors investigated the bidirectional coupling of perception and action in the context of object manipulations and motion perception. Participants prepared to grasp an X-shaped object along one of its 2 diagonals and to rotate it in a clockwise or a counterclockwise direction. Action execution had to be delayed until the…
Standing wave brass-PZT square tubular ultrasonic motor.
Park, Soonho; He, Siyuan
2012-09-01
This paper reports a standing wave brass-PZT tubular ultrasonic motor. The motor is composed of a brass square tube with two teeth on each tube end. Four PZT plates are attached to the outside walls of the brass tube. The motor requires only one driving signal to excite vibration in a single bending mode to generate reciprocating diagonal trajectories of teeth on the brass tube ends, which drive the motor to rotate. Bi-directional rotation is achieved by exciting different pairs of PZT plates to switch the bending vibration direction. Through using the brass-PZT tube structure, the motor can take high magnitude vibration to achieve a high output power in comparison to PZT tube based ultrasonic motors. Prototypes are fabricated and tested. The dimension of the brass-PZT tube is 3.975mm×3.975mm×16mm. Measured performance is a no-load speed of >1000RPM, a stall torque of 370μNm and a maximum output power of 16 mW when a sinusoidal driving voltage of 50V is applied. The working frequencies of the motor are 46,050Hz (clockwise) and 46,200Hz (counter-clockwise). Copyright © 2012. Published by Elsevier B.V.
Axial hypertonicity in Parkinson’s disease: Direct measurements of trunk and hip torque
Wright, W.G.; Gurfinkel, V.S.; Nutt, J.; Horak, F.B.; Cordo, P.J.
2007-01-01
A cardinal feature of Parkinson’s disease (PD) is muscle hypertonicity, i.e. rigidity. Little is known about the axial tone in PD or the relation of hypertonia to functional impairment. We quantified axial rigidity to assess its relation to motor symptoms as measured by UPDRS and determine whether rigidity is affected by levodopa treatment. Axial rigidity was measured in 12 PD and 14 age-matched controls by directly measuring torsional resistance of the longitudinal axis to twisting (±10°). Feet were rotated relative to fixed hips (Hip Tone) or feet and hips were rotated relative to fixed shoulders (Trunk Tone). To assess tonic activity only, low constant velocity rotation (1°/s) and low acceleration (<12°/s2) were used to avoid eliciting phasic sensorimotor responses. Subjects stood during testing without changing body orientation relative to gravity. Body parts fixed against rotation could translate laterally within the boundaries of normal postural sway, but could not rotate. PD OFF-medication had higher axial rigidity (p<0.05) in hips (5.07 Nm) and trunk (5.30 Nm) than controls (3.51 Nm and 4.46 Nm, respectively), which didn’t change with levodopa (p>0.10). Hip-to-trunk torque ratio was greater in PD than controls (p<0.05) and unchanged by levodopa (p=0.28). UPDRS scores were significantly correlated with hip rigidity for PD OFF-medication (r=0.73, p<0.05). Torsional resistance to clockwise versus counter-clockwise axial rotation was more asymmetrical in PD than controls (p<0.05), however, there was no correspondence between direction of axial asymmetry and side of disease onset. In conclusion, these findings concerning hypertonicity may underlie functional impairments of posture and locomotion in PD. The absence of a levodopa effect on axial tone suggests axial and appendicular tone are controlled by separate neural circuits. PMID:17692315
The interference effects of non-rotated versus counter-rotated trials in visuomotor adaptation.
Hinder, Mark R; Walk, Laura; Woolley, Daniel G; Riek, Stephan; Carson, Richard G
2007-07-01
An isometric torque-production task was used to investigate interference and retention in adaptation to multiple visuomotor environments. Subjects produced isometric flexion-extension and pronation-supination elbow torques to move a cursor to acquire targets as quickly as possible. Adaptation to a 30 degrees counter-clockwise (CCW) rotation (task A), was followed by a period of rest (control), trials with no rotation (task B0), or trials with a 60 degrees clockwise (CW) rotation (task B60). For all groups, retention of task A was assessed 5 h later. With initial training, all groups reduced the angular deviation of cursor paths early in the movements, indicating feedforward adaptation. For the control group, performance at commencement of the retest was significantly better than that at the beginning of the initial learning. For the B0 group, performance in the retest of task A was not dissimilar to that at the start of the initial learning, while for the B60 group retest performance in task A was markedly worse than initially observed. Our results indicate that close juxtaposition of two visuomotor environments precludes improved retest performance in the initial environment. Data for the B60 group, specifically larger angular errors upon retest compared with initial exposures, are consistent with the presence of anterograde interference. Furthermore, full interference occurred even when the visuomotor environment encountered in the second task was not rotated (B0). This latter novel result differs from those obtained for force field learning, where interference does not occur when task B does not impose perturbing forces, i.e., when B consists of a null field (Brashers-Krug et al., Nature 382:252-255, 1996). The results are consistent with recent proposals suggesting different interference mechanisms for visuomotor (kinematic) compared to force field (dynamic) adaptations, and have implications for the use of washout trials when studying interference between multiple visuomotor environments.
Noji, S; Kitamura, N; Yamaguchi, A; Otaki, M; Miki, T; Tamura, H
1991-08-01
We present a surgical case of 41-year-old woman with Scimitar syndrome. Preoperative catheterization showed azygos connection and L-R shunt ratio of 45% without intracardiac malformations. To our knowledge, this combination has not been previously reported. At operation the right single pulmonary vein was found and drained into the inferior vena cava below the diaphragm. Because of counter clockwise rotation of the heart the distance of the scimitar vein and the left atrium was too long for direct anastomosis, a polytetrafluoroethylene tube (10 mm in diameter) was utilized for an extracardiac conduit using cardiopulmonary bypass. Postoperative course was uneventful. We conclude that this technique is effective for this syndrome with a large amount of L-R shunt and a sufficient patency is expected.
Optimizing the use of a skin prick test device on children.
Buyuktiryaki, Betul; Sahiner, Umit Murat; Karabulut, Erdem; Cavkaytar, Ozlem; Tuncer, Ayfer; Sekerel, Bulent Enis
2013-01-01
Studies comparing skin prick test (SPT) devices have revealed varying results in performance and there is little known about their use on children. We performed 2 complementary studies to test the sensitivity, reproducibility and acceptability of commercially available SPT devices (Stallerpoint, Antony, France) using different application techniques. In the first part, histamine/saline was put on as a drop by use of a vial (V), and in the second part it was transferred from a well with the aid of the test device (W). The techniques were as follows: apply vertical pressure (Stallerpoint-VP or Stallerpoint-WP), apply vertical pressure with 90° clockwise rotation (Stallerpoint-VC or Stallerpoint-WC) and apply vertical pressure with 90° clockwise and counter-clockwise rotations (Stallerpoint-VCC or Stallerpoint-WCC). For comparison, ALK Lancet was used with a technique of 'drop and apply vertical pressure'. In the first part, sensitivities of the Stallerpoint-VC (96.6%), Stallerpoint-VCC (95.5%) and ALK Lancet (93.2%) techniques were superior (p < 0.001) to the other Stallerpoint-VP and Stallerpoint-WP techniques (76.1 and 46.6%). Intrapatient coefficient of variation (CV) values were 15.0, 18.9, 15.4, 22.4 and 48.5%, respectively. Interpatient CV ranged between 22.8 and 55.1%. In the second part, the Stallerpoint-WC (98.8%), WCC (97.5%) and ALK Lancet (98.8%) techniques yielded high sensitivities, whereas the sensitivity of Stallerpoint-WP (28.7%) was very low. There were false-positive reactions in the Stallerpoint-VCC and WCC techniques. In children, the SPT technique was found to be as important as the testing device. Stallerpoint-VC and WC techniques are reliable, tolerable and comparable with the ALK Lancet technique. Copyright © 2013 S. Karger AG, Basel.
The influence of foot position on scrum kinetics during machine scrummaging.
Bayne, Helen; Kat, Cor-Jacques
2018-05-23
The purpose of this study was to investigate the effect of variations in the alignment of the feet on scrum kinetics during machine scrummaging. Twenty nine rugby forwards from amateur-level teams completed maximal scrum efforts against an instrumented scrum machine, with the feet in parallel and non-parallel positions. Three-dimensional forces, the moment about the vertical axis and sagittal plane joint angles were measured during the sustained pushing phase. There was a decrease in the magnitude of the resultant force and compression force in both of the non-parallel conditions compared to parallel and larger compression forces were associated with more extended hip and knee angles. Scrummaging with the left foot forward resulted in the lateral force being directed more towards the left and the turning moment becoming more clockwise. These directional changes were reversed when scrummaging with the right foot forward. Scrummaging with the right foot positioned ahead of the left may serve to counteract the natural clockwise wheel of the live scrum and could be used to achieve an anti-clockwise rotation of the scrum for tactical reasons. However, this would be associated with lower resultant forces and a greater lateral shear force component directed towards the right.
NASA Astrophysics Data System (ADS)
Xuan, Songbai; Shen, Chongyang; Shen, Wenbin; Wang, Jiapei; Li, Jianguo
2018-06-01
The crustal deformation beneath the Chuan-Dian rhombic block (CDB) and surrounding regions has been studied in geological and geodetic methods, and provide important insights into the kinematics and dynamics about the clockwise movement of this tectonic block. In this work, we present images of the normalized full gradient (NFG) of the Bouguer gravity anomalies from five gravity profiles across the boundary faults of the CDB measured in recent years, and investigate the distribution characteristics of the crustal anomalous bodies along the profiles. Firstly, an anomalous body with eastward dipping exist beneath the Xianshuihe fault, suggesting that crustal mass move to east. Secondly, near the Xiaojiang fault, two anomalous bodies dip westward with depth increasing. The inferred movement direction of the north one is from west to east, and the south one is from east to west. Thirdly, anomalous bodies on the northeast and southwest sides of the Red River fault suggest the directions of crustal movement is from northeast to southwest. These results are also consistent with GPS solutions, and provide gravity evidence for crustal deformation of the CDB with clockwise rotation.
Hayashi, Yuichiro; Ishii, Shin; Urakubo, Hidetoshi
2014-01-01
Human observers perceive illusory rotations after the disappearance of circularly repeating patches containing dark-to-light luminance. This afterimage rotation is a very powerful phenomenon, but little is known about the mechanisms underlying it. Here, we use a computational model to show that the afterimage rotation can be explained by a combination of fast light adaptation and the physiological architecture of the early visual system, consisting of ON- and OFF-type visual pathways. In this retinal ON/OFF model, the afterimage rotation appeared as a rotation of focus lines of retinal ON/OFF responses. Focus lines rotated clockwise on a light background, but counterclockwise on a dark background. These findings were consistent with the results of psychophysical experiments, which were also performed by us. Additionally, the velocity of the afterimage rotation was comparable with that observed in our psychophysical experiments. These results suggest that the early visual system (including the retina) is responsible for the generation of the afterimage rotation, and that this illusory rotation may be systematically misinterpreted by our high-level visual system. PMID:25517906
NASA Technical Reports Server (NTRS)
Vranish, John M. (Inventor)
1999-01-01
A roller type sprag member consisting of three main elements, an outer roller half section, an inner roller half section, and an assembly-location pin. The sprag locks using roller locking techniques in a manner well known in the case of a three-dimensional (3-D) locking sprag. It unlocks, however, using a roll technique in which the inner and outer roller halves rotate in mutually opposite directions, one clockwise and the other counterclockwise. In the process of rotation, the roller is foreshortened between the distance across the sprag contact surfaces, whereupon it loses its ability to act as a locking sprag and releases.
Hershberger, W A; Stewart, M R; Laughlin, N K
1976-05-01
Motion projections (pictures) simulating a horizontal array of vertical lines rotating in depth about its central vertical line were observed by 24 college students who rotated a crank handle in the direction of apparent rotation. All displays incorporated contradictory motion perspective: Whereas the perspective transformation in the vertical (y) dimension stimulated one direction of rotation, the transformation in the horizontal (x) dimension simulated the opposite direction. The amount of perspective in each dimension was varied independently of the other by varying the projection ratio used for each dimension. We used the same five ratios for each dimension, combining them factorially to generate the 25 displays. Analysis of variance of the duration of crank turning which agreed with y-axis information yielded main effects of both x and y projection ratios but no interaction, revealing that x- and y-axis motion perspectives mediate kinetic depth effects which are functionally independent.
Large Vertical Axis Rotations along Neotethyan Sutures in TURKEY
NASA Astrophysics Data System (ADS)
Ozkaptan, M.; Gulyuz, E.; Kaymakci, N.; Langereis, C. G.; Ozacar, A. A.; Lefebvre, C.
2014-12-01
Two Neotethyan Sutures,Izmir-Ankara and Intra-Tauride suture zones meet around Ankara region appx. at right angles.The northerly located Izmir-Ankara Suture zone follows approximately E-W trend and it makes a sharp approximately 90° bend at the east along the western margin of the Çankiri Basin.The Intra-Tauride suture follows approximately the Tuzgölü Fault Zone and trends NW-SE and seems to be overprinted by the structures related to the Izmir-Ankara suture zone. These two sutures meet southeastern corner of the Haymana Basin where the basin makes major eastwards counterclockwise bend.From west to East, the Haymana, Tuzgölü and Çankiri Basins straddle these suture zones and are developed in relation to the subduction and collision processes in the region, making them the perfect sites to unravel deformation history and paleogeography of the Neotethyan suture zones in the region. In order to accomplish this, the tectono-stratigraphic evolution of the basin and its paleogeographical positions, in different time slices, constructed by conducting a very detailed study on the Late Cretaceous to Recent infill of the Haymana, Tuzgölü, and Çankiri Basins. We collected more than 4500 sedimentary paleomagnetic samples for paleomagnetic purposes from 112 different locations within 250 km diameter area.Before the demagnetization process, nearly 3000 core specimens were measured for anisotropy of magnetic susceptibility (AMS) in order to understand deformation amounts and kinematics.The paleomagnetic results show that the region underwent strong clockwise and counterclockwise rotations more than 90° in places, resulting in the present geometry of the suture zones. The central part of the Haymana basin rotated as high as 90° counterclockwise while its northern part together with the southwestern part of the Çankiri basin and northern part of the Tuzgölü basin rotated approximately 30° clockwise contrary to almost all published paleomagnetic data from the region.The restored orientations based on this new paleomagnetic data indicate that Haymana, Tuzgölü Basin and the SW margin of the Çankiri basins were initially oriented N-S prior to Eocene.These results indicate that the most of the paleogeographical maps and evolutionary scenarios and models of the region requires major re-thinking and serious revisions.
NASA Technical Reports Server (NTRS)
2001-01-01
Like dancers pirouetting in opposite directions, the rotational patterns of two different tropical storms are contrasted in this pair of MISR nadir-camera images.The left-hand image is of Tropical Storm Bud, acquired on June 17, 2000 (Terra orbit 2656) as the storm was dissipating. Bud was situated in the eastern Pacific Ocean between Socorro Island and the southern tip of Baja California. South of the storm's center is a vortex pattern caused by obstruction of the prevailing flow by tiny Socorro Island. Sonora, Mexico and Baja California are visible at the top of the image.The right-hand image is of Tropical Cyclone Dera, acquired on March 12, 2001 (Terra orbit 6552). Dera was located in the Indian Ocean, south of Madagascar. The southern end of this large island is visible in the top portion of this image.Northern hemisphere tropical storms, like Bud, rotate in a counterclockwise direction, whereas those in the southern hemisphere, such as Dera, rotate clockwise. The opposite spins are a consequence of Earth's rotation.Each image covers a swath approximately 380 kilometers wide.MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.Bacterial Tethering Analysis Reveals a “Run-Reverse-Turn” Mechanism for Pseudomonas Species Motility
Qian, Chen; Wong, Chui Ching; Swarup, Sanjay
2013-01-01
We have developed a program that can accurately analyze the dynamic properties of tethered bacterial cells. The program works especially well with cells that tend to give rise to unstable rotations, such as polar-flagellated bacteria. The program has two novel components. The first dynamically adjusts the center of the cell's rotational trajectories. The second applies piecewise linear approximation to the accumulated rotation curve to reduce noise and separate the motion of bacteria into phases. Thus, it can separate counterclockwise (CCW) and clockwise (CW) rotations distinctly and measure rotational speed accurately. Using this program, we analyzed the properties of tethered Pseudomonas aeruginosa and Pseudomonas putida cells for the first time. We found that the Pseudomonas flagellar motor spends equal time in both CCW and CW phases and that it rotates with the same speed in both phases. In addition, we discovered that the cell body can remain stationary for short periods of time, leading to the existence of a third phase of the flagellar motor which we call “pause.” In addition, P. aeruginosa cells adopt longer run lengths, fewer pause frequencies, and shorter pause durations as part of their chemotactic response. We propose that one purpose of the pause phase is to allow the cells to turn at a large angle, where we show that pause durations in free-swimming cells positively correlate with turn angle sizes. Taken together, our results suggest a new “run-reverse-turn” paradigm for polar-flagellated Pseudomonas motility that is different from the “run-and-tumble” paradigm established for peritrichous Escherichia coli. PMID:23728820
Computing the motor torque of Escherichia coli.
Das, Debasish; Lauga, Eric
2018-06-13
The rotary motor of bacteria is a natural nano-technological marvel that enables cell locomotion by powering the rotation of semi-rigid helical flagellar filaments in fluid environments. It is well known that the motor operates essentially at constant torque in counter-clockwise direction but past work have reported a large range of values of this torque. Focusing on Escherichia coli cells that are swimming and cells that are stuck on a glass surface for which all geometrical and environmental parameters are known (N. C. Darnton et al., J. Bacteriol., 2007, 189, 1756-1764), we use two validated numerical methods to compute the value of the motor torque consistent with experiments. Specifically, we use (and compare) a numerical method based on the boundary integral representation of Stokes flow and also develop a hybrid method combining boundary element and slender body theory to model the cell body and flagellar filament, respectively. Using measured rotation speed of the motor, our computations predict a value of the motor torque in the range 440 pN nm to 829 pN nm, depending critically on the distance between the flagellar filaments and the nearby surface.
Irwin, William P.; Mankinen, Edward A.
1998-01-01
The purpose of this report is to show graphically how the Klamath Mountains grew from a relatively small nucleus in Early Devonian time to its present size while rotating clockwise approximately 110°. This growth occurred by the addition of large tectonic slices of oceanic lithosphere, volcanic arcs, and melange during a sequence of accretionary episodes. The Klamath Mountains province consists of eight lithotectonoic units called terranes, some of which are divided into subterranes. The Eastern Klamath terrane, which was the early Paleozoic nucleus of the province, is divided into the Yreka, Trinity, and Redding subterranes. Through tectonic plate motion, usually involving subduction, the other terranes joined the early Paleozoic nucleus during seven accretionary episodes ranging in age from Early Devonian to Late Jurassic. The active terrane suture is shown for each episode by a bold black line. Much of the western boundary of the Klamath Mountains is marked by the South Fork and correlative faults along which the Klamath terranes overrode the Coast Range rocks during an eighth accretionary episode, forming the South Fork Mountain Schist in Early Cretaceous time.
NASA Astrophysics Data System (ADS)
Herman, S. W.; Gans, P. B.
2006-12-01
A paleomagnetic investigation into possible vertical axis rotations has been conducted in the Sierra el Aguaje and Sierra Tinajas del Carmen, Sonora, Mexico, in order assess proposed styles for oblique continental rifting in the Gulf of California. Two styles of rifting have been proposed; (1) strain partitioning (Stock and Hodges, 89), and (2) transtension (Gans, 97), for the Proto-Gulf period of the Gulf of California. The presence of large- scale vertical axis rotations would lend weight to the argument for transtension. The Sierra el Aguaje and Sierra Tinajas del Carmen are located in southwestern coastal Sonora, Mexico. The ranges represent the eastern-rifted margin of the central Gulf of California. This is one of the few areas of that margin which is entirely above water, with new ocean crust of the Guaymas basin lying immediately offshore of the western edge of the ranges. The ranges are composed of volcanic units and their corresponding volcaniclastic units that are the result of persistent magmatic activity between 20 and 8.8 Ma, including three packages of basalt and andesite that make excellent paleomagnetic recorders. Based on cross cutting relations and geochronologic data for pre-, syn-, and post-tectonic volcanic units, most of the faulting and tilting in the Sierra El Aguaje and Sierra Tinajas del Carmen is bracketed between 11.9 and 9.0 Ma, thus falling entirely within Proto-Gulf time. Existing field relations suggest the presence of large (>45°) vertical axis rotations in this region. This evidence includes: a) abrupt changes in the strike of tilted strata in different parts of the range b) ubiquitous NE-SW striking faults with left lateral-normal oblique slip, that terminate against major NW-trending right lateral faults, and c) obliquity between the general strike of tilted strata and the strike of faults. The results of the paleomagnetic investigation are consistent with the field evidence and show large clockwise rotations between ~30° and ~100° with no discernable translation. Such large-scale rotations lend credence to the theory that the area inboard of Baja California was experiencing transtension during the Proto-Gulf period, rather than the pure extension that would have been the result of strain partitioning.
Lee, Sang Woo; Cho, Jeongmok; Kim, Kikap; Ahn, Seung Hyun
2017-06-01
Orthognathic surgery has become more popular to slenderize a wide lower face and to improve facial esthetics in Asian patients with normal occlusion. Clockwise rotation (CR) of the maxillomandibular complex (MMC) steepens the mandibular plane. This study performed a quantitative analysis on the influence of CR on slenderness of the lower face from the frontal view. This retrospective study included 36 female patients with Angle Class I occlusion and skeletal Class III pattern. The subjects underwent CR of the MMC without perioperative orthodontic treatment and change in the occlusion only for the purpose of esthetic improvement. Linear and angular variables were measured on a cephalogram and three-dimensional computed tomography (3D CT) obtained before and at least 6 months after surgery. Data were analyzed using paired t tests and Spearman correlations. Univariate regression analysis was used to predict the postoperative change according to the amount of posterior impaction. The mean posterior impaction was 3.81 mm. All mandibular plane angle (MPA) measurements were increased (ranged from 5.69° to 13.12°, p < 0.001), exhibiting a significant correlation with the amount of posterior impaction. Bigonial width measurements were decreased after surgery (ranged from 4.97 to 5.51 mm, p < 0.001). Among the MPAs derived from the 3D CT, the coronal projection from the frontal view exhibited a discrepancy between right and left side. The changes in linear and angular measurements in this study indicate that the lower face becomes narrower and more slender as the MMC rotates in a clockwise direction. Orthognathic surgery with CR has the advantage of increasing the MPAs and obtaining natural soft tissue contouring while minimizing the amount of bone resection. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266c .
Paleomagnetic constraints on deformation of superfast-spread oceanic crust exposed at Pito Deep Rift
NASA Astrophysics Data System (ADS)
Horst, A. J.; Varga, R. J.; Gee, J. S.; Karson, J. A.
2011-12-01
The uppermost oceanic crust produced at the superfast spreading (˜142 km Ma-1, full-spreading rate) southern East Pacific Rise (EPR) during the Gauss Chron is exposed in a tectonic window along the northeastern wall of the Pito Deep Rift. Paleomagnetic analysis of fully oriented dike (62) and gabbro (5) samples from two adjacent study areas yield bootstrapped mean remanence directions of 38.9° ± 8.1°, -16.7° ± 15.6°, n = 23 (Area A) and 30.4° ± 8.0°, -25.1° ± 12.9°, n = 44 (Area B), both are significantly distinct from the Geocentric Axial Dipole expected direction at 23° S. Regional tectonics and outcrop-scale structural data combined with bootstrapped remanence directions constrain models that involve a sequence of three rotations that result in dikes restored to subvertical orientations related to (1) inward-tilting of crustal blocks during spreading (Area A = 11°, Area B = 22°), (2) clockwise, vertical-axis rotation of the Easter Microplate (A = 46°, B = 44°), and (3) block tilting at Pito Deep Rift (A = 21°, B = 10°). These data support a structural model for accretion at the southern EPR in which outcrop-scale faulting and block rotation accommodates spreading-related subaxial subsidence that is generally less than that observed in crust generated at a fast spreading rate exposed at Hess Deep Rift. These data also support previous estimates for the clockwise rotation of crust adjacent to the Easter Microplate. Dike sample natural remanent magnetization (NRM) has an arithmetic mean of 5.96 A/m ± 3.76, which suggests that they significantly contribute to observed magnetic anomalies from fast- to superfast-spread crust.
The Breath of Planet Earth: Atmospheric Circulation. Assimilation of Surface Wind Observations
NASA Technical Reports Server (NTRS)
Atlas, Robert; Bloom, Stephen; Otterman, Joseph
2000-01-01
Differences in air pressure are a major cause of atmospheric circulation. Because heat excites the movement of atoms, warm temperatures cause, air molecules to expand. Because those molecules now occupy a larger space, the pressure that their weight exerts is decreased. Air from surrounding high-pressure areas is pushed toward the low-pressure areas, creating circulation. This process causes a major pattern of global atmosphere movement known as meridional circulation. In this form of convection, or vertical air movement, heated equatorial air rises and travels through the upper atmosphere toward higher latitudes. Air just above the equator heads toward the North Pole, and air just below the equator moves southward. This air movement fills the gap created where increased air pressure pushes down cold air. The ,cold air moves along the surface back toward the equator, replacing the air masses that rise there. Another influence on atmospheric. circulation is the Coriolis force. Because of the Earth's rotation, large-scale wind currents move in the direction of this axial spin around low-pressure areas. Wind rotates counterclockwise in the Northern Hemisphere and clockwise in the Southern Hemisphere. just as the Earth's rotation affects airflow, so too does its surface. In the phenomenon of orographic lifting, elevated topographic features such as mountain ranges lift air as it moves up their surface.
NASA Astrophysics Data System (ADS)
Horst, A. J.; Varga, R. J.; Gee, J. S.; Karson, J. A.
2008-12-01
Escarpments bounding the Pito Deep Rift expose cross-sections into ~3 Ma oceanic crust accreted at a super-fast spreading (>140 mm/yr) segment of the East Pacific Rise (EPR). Dikes within the sheeted dike complex persistently strike NE, parallel to local abyssal hill lineaments and magnetic anomaly stripes, and dip SE, outward and away from the EPR. During the Pito Deep 2005 Cruise, both ALVIN and JASON II used the Geocompass to fully orient a total of 69 samples [63 basaltic dikes, 6 massive gabbros] collected in situ. Paleomagnetic analyses of these oriented samples provide a quantitative constraint of kinematics of structural rotations of dikes. Magnetic remanence of dike samples indicates a dominant normal polarity with almost all directions rotated clockwise from the expected direction. The most geologically plausible model to account for these dispersions using these data coupled with the general orientation of the dikes incorporates two different structural rotations: 1) A horizontal-axis rotation that occurred near the EPR axis, related to sub-axial subsidence, and 2) A clockwise vertical-axis rotation, associated with the rotation of the Easter microplate consistent with current models. Additionally, the anisotropy of magnetic susceptibility (AMS) of dike samples indicates rock fabric and magmatic flow direction within dikes. In most samples, two of three AMS eigenvectors lie near the dike plane orientations. Generally, Kmin lies perpendicular to dike planes, while Kmax is often shallow within the dike planes, indicating dominantly subhorizontal magma flow. Steep Kmax in a few samples indicates vertical flow directions that suggest either primary flow or gravitational back-flow during waning stages of dike intrusion. These results provide the first direct evidence for primarily horizontal magma flow in sheeted dikes of super-fast spread oceanic crust. Results for Pito Deep Rift and previous results for Hess Deep Rift reveal outward dipping dikes that are interpreted as a result of subaxial spreading processes that are not evident from surface studies of spreading centers. Both areas show evidence of subaxial subsidence during accretion and lateral magmatic flow in the sheeted dike complex.
Mankinen, Edward A.; Irwin, William P.; Gromme, C. Sherman
1989-01-01
Paleomagnetic study of Permian through Jurassic volcanic and sedimentary strata of the Eastern Klamath terrane has shown the remanent magnetization of many of these rocks to be prefolding and most likely primary. Similarities in magnetic declinations recorded by coeval strata over a broad area are consistent with the hypothesis that the terrane, in general, has behaved as a single rigid block. Paleomagnetic data indicate that the volcanic island arc represented by this terrane, the nucleus of the province, was facing toward the present southwest during late Paleozoic time, although its orientation during earlier periods is unknown. Whether the arc was separated from the North American craton by a small marginal basin or originated far offshore cannot be determined from paleomagnetic data. The declination anomalies for both Permian and Triassic strata are similar (average = 106° ± 12°), so we infer that clockwise rotation of the late Paleozoic arc did not begin until latest Triassic or earliest Jurassic time. The arc may have completed its initial rotation with respect to stable North America by Middle Jurassic time. After some retrograde motion, the arc was again facing west by the Late Jurassic, by which time some of the more westerly terranes of the province had become attached to the Eastern Klamath terrane. The composite Klamath Mountains terranes continued to rotate until the final 60° of clockwise rotation was nearly complete by the Early Cretaceous. Coincidence of the waning stages of rotation, at about 136 Ma, with the beginning of deposition of the basal Great Valley sequence onto the Klamath basement probably represents the completion of accretion of the Klamath Mountains terranes to the North American continent. Nearly all the rotation occurred while the Klamath Mountains terranes were part of a converging oceanic plate, with only about 20° of rotation in mid‐Tertiary time during Basin and Range extension. No data currently available show evidence for any significant latitudinal displacement of any Klamath Mountains terranes relative to cratonic North America.
NASA Astrophysics Data System (ADS)
Rood, D. H.; Burbank, D. W.; Luyendyk, B. P.
2005-12-01
We document the geometry, timing, rates, and kinematic style of Late Tertiary deformation between Sonora Pass and Mono Basin, central Sierra Nevada, California. Observed mismatches between geodetic and geologic deformation rates in the western Great Basin may be primarily due to underestimates of true geologic deformation. Relatively little attention has been paid to the role of permanent deformation between faults, i.e. folding or crustal block rotation. Current slip discrepancies may be accounted for if a significant component of off-fault transrotational deformation is present. We use geologic and paleomagnetic data to address the kinematic development of the Sierra Nevada frontal fault zone (SNFFZ), and to quantify both the elastic and inelastic strain accumulated across the Sierra Nevada-Basin and Range transition since ~9 Ma. The complex structure of this transition, between the regions of Sonora Pass and Mono Basin, may be a result of three distinct modes of dextral shear accommodation (transtensional, transpressional, and crustal thinning). The study area is characterized by four important structural elements that lie between the SNFFZ and Walker Lane Belt: (1) N- to NNW-striking normal and oblique faults, dominantly E-dipping, and associated W-tilted fault blocks; (2) NW-striking dextral faults; (3) ENE- to NE-striking left-lateral oblique faults that may accommodate overall dextral shear through clockwise vertical axis rotations of fault blocks; (4) E- to NE-trending folds, which may accommodate N-S shortening at large-scale left steps in the dextral transtensional fault system. Between Bridgeport and Mono Basins, a regional E- to NE-trending fold is present that affects both the Tertiary volcanic strata and a Quaternary glacial outwash surface. To the west, normal faulting rates on the SNFFZ are 1-2 mm/yr (Bursik and Sieh, 1989). This slip decreases to the north, into the folded region of the Bodie Hills. This kinematic relationship suggests that the region may be an accommodation zone between two linking faults, possibly an active fold that accommodates N-S shortening at a large-scale left step in the range front fault system. We collected ~200 paleomagnetic samples from the Late Miocene Eureka Valley Tuff of the Stanislaus Group at 21 sites over a 125-km-long, E-W transect (from the Sierra Nevada foothills to east of Mono Basin). Stepwise AF demagnetization reveals a stable characteristic remnant magnetization. Our preliminary data suggest 20-40 degrees of clockwise rotation adjacent to faults of the SNFFZ. An expanded dataset aims to identify specific structural domains, quantify differential vertical axis block rotations, and test geometric models of transrotation (i.e. block-specific versus gradational) during transtensional lithospheric deformation.
Huang, Yuan-Dong; He, Wen-Rong; Kim, Chang-Nyung
2015-02-01
A two-dimensional numerical model for simulating flow and pollutant dispersion in an urban street canyon is firstly developed using the FLUENT code and then validated against the wind tunnel results. After this, the flow field and pollutant dispersion inside an urban street canyon with aspect ratio W/H = 1 are examined numerically considering five different shapes (vaulted, trapezoidal, slanted, upward wedged, and downward wedged roofs) as well as three different roof height to building height ratios (Z H /H = 1/6, 1/3, and 1/2) for the upstream building roof. The results obtained reveal that the shape and height of an upstream roof have significant influences on flow pattern and pollutant distribution in an urban canyon. A large single clockwise vortex is generated in the canyon for the vaulted upstream roof at Z H /H = 1/6, 1/3, and 1/2, the trapezoidal and downward wedged roofs at Z H /H = 1/6 and 1/3, and the slanted and upward wedged roofs at Z H /H = 1/6, while a main clockwise vortex and a secondary counterclockwise vortex are established for the trapezoidal and downward wedged roofs at Z H /H = 1/2 and the slanted and upward wedged roofs at Z H /H = 1/3 and 1/2. In the one-vortex flow regime, the clockwise vortex moves upward and grows in size with increasing upstream roof height for the vaulted, trapezoidal, and downward wedged roofs. In the two-vortex flow regime, the size and rotational velocity of both upper clockwise and lower counterclockwise vortices increase with the upstream roof height for the slanted and upward wedged roofs. At Z H /H = 1/6, the pollution levels in the canyon are close among all the upstream roof shapes studied. At Z H /H = 1/3, the pollution levels in the canyon for the upward wedged roof and slanted roof are much higher than those for the vaulted, trapezoidal, and downward wedged roofs. At Z H /H = 1/2, the lowest pollution level appears in the canyon for the vaulted upstream roof, while the highest pollution level occurs in the canyon for the upward wedged roof.
NASA Astrophysics Data System (ADS)
Tetreault, Joya Liana
The two geologic questions I address in this research are: do fault-related folds accommodate oblique-slip shortening, and how is oblique-slip deformation absorbed within the folded strata? If the strata is deforming as a strike-slip shear zone, then we should be able to observe material rotations produced by strike-slip shear by measuring paleomagnetic vertical-axis rotations. I have approached these problems by applying paleomagnetic vertical-axis rotations, minor fault analyses, and focal mechanism strain inversions to identify evidence of strike-slip shear and to quantify oblique-slip deformation within fault-related folds in the Rocky Mountain Foreland, Colorado Plateau, and the central Coast Ranges. Clockwise paleomagnetic vertical-axis rotations and compressive paleostress rotations of 15-40º in the forelimb of the Grayback Monocline, northeastern Front Range Colorado, indicate that this Laramide fold is absorbing right-lateral shear from a N90E regional shortening direction. This work shows that paleomagnetic vertical-axis rotations in folded strata can be used to identify strike-slip motion on an underlying fault, and that oblique-slip deformation is localized in the forelimb of the fold. I applied the same paleomagnetic methods to identify oblique-slip on the underlying faults of the Nacimiento, East Kaibab, San Rafael, and Grand Hogback monoclines of the Colorado Plateau. The absence of paleomagnetic rotations and structural evidence for small displacements at the Nacimiento and East Kaibab monoclines indicate minor (<1km) right-lateral slip is being accommodated in these folds. Paleomagnetic vertical-axis rotations are found in the forelimbs of the San Rafael and Grand Hogback monoclines, yielding strike-slip displacements of ˜5km within these two folds. These results are consistent with a northeast Laramide compressive stress direction. In the Coalinga anticline, central Coast Ranges, California, clockwise paleomagnetic rotations and an 8º counterclockwise deflection of the maximum shortening direction (derived from focal mechanisms strain inversions of the upper 7km) are compatible with right-lateral shear. The maximum shortening direction in the area of the mainshock rupture is fold-normal, indicating that strike-slip displacement is confined to the main fault plane and not distributed to the hanging wall. The San Andreas Fault is therefore partitioning a small amount of strike-slip to the Coalinga anticline.
Chaotic gas turbine subject to augmented Lorenz equations.
Cho, Kenichiro; Miyano, Takaya; Toriyama, Toshiyuki
2012-09-01
Inspired by the chaotic waterwheel invented by Malkus and Howard about 40 years ago, we have developed a gas turbine that randomly switches the sense of rotation between clockwise and counterclockwise. The nondimensionalized expressions for the equations of motion of our turbine are represented as a starlike network of many Lorenz subsystems sharing the angular velocity of the turbine rotor as the central node, referred to as augmented Lorenz equations. We show qualitative similarities between the statistical properties of the angular velocity of the turbine rotor and the velocity field of large-scale wind in turbulent Rayleigh-Bénard convection reported by Sreenivasan et al. [Phys. Rev. E 65, 056306 (2002)]. Our equations of motion achieve the random reversal of the turbine rotor through the stochastic resonance of the angular velocity in a double-well potential and the force applied by rapidly oscillating fields. These results suggest that the augmented Lorenz model is applicable as a dynamical model for the random reversal of turbulent large-scale wind through cessation.
High resolution miniaturized stepper ultrasonic motor using differential composite motion.
Chu, Xiangcheng; Xing, Zengping; Li, Longtu; Gui, Zhilun
2004-03-01
Experiments show that there is a limited minimum stepped angle in ultrasonic motors (USM). The research on the minimum angle of stepper USM with 15 mm in diameter and wobbling mode is being carried out. This paper presents a novel way to decrease the minimum stepped angle of USM based on the principle of differential composite motion (DCM), i.e. clockwise and counterclockwise rotation. The prototype was fabricated and experiments proved that this method is useful and also keeps a high torque for a large stepped angle. The stator of the prototype is steel, and rotor is fiberglass, antifriction material or steel. The prototype can operate well over 150 h with a 5 kHz wide frequency band. The minimum stepped angle is 46" using a coventional method while 12" using DCM method proposed in this paper.
Li, Yao; Cao, Feng; Vo Doan, Tat Thang; Sato, Hirotaka
2017-10-01
In flight, many insects fold their forelegs tightly close to the body, which naturally decreases drag or air resistance. However, flying beetles stretch out their forelegs for some reason. Why do they adopt this posture in flight? Here, we show the role of the stretched forelegs in flight of the beetle Mecynorrhina torquata Using leg motion tracking and electromyography in flight, we found that the forelegs were voluntarily swung clockwise in yaw to induce counter-clockwise rotation of the body for turning left, and vice versa. Furthermore, we demonstrated remote control of left-right turnings in flight by swinging the forelegs via a remote electrical stimulator for the leg muscles. The results and demonstration reveal that the beetle's forelegs play a supplemental role in directional steering during flight. © 2017. Published by The Company of Biologists Ltd.
Tornadogensis within Hurricanes Based on the Orientation of the Rainband to the Coast after Landfall
NASA Astrophysics Data System (ADS)
Etten-Bohm, M.
2015-12-01
The focus of this study is to investigate the development of tornadoes within the rainband of a hurricane for various orientations of the rainband when a hurricane makes landfall. The rainband of a hurricane is a common area where tornadogenesis is found depending on the size, intensity, and orientation of the rain band when the storm makes landfall. As a hurricane approaches a coast line, land-surface roughness contributes to surface friction, which can contribute in tornadogenesis. The orientation of the rainband may play a part in the type of supercells that are formed in that rainband and the number and intensity of the tornadoes produced. This study will investigate if the orientation of the rainband leads to the direction in which the supercells rotate, whether clockwise or counter-clockwise, and the scale and intensity of the tornadoes produced.
A Kinematic Model for Opening of the Gulf of Mexico between 169-150 Ma
NASA Astrophysics Data System (ADS)
Harry, D. L.; Jha, S.
2016-12-01
Lineated magnetic anomalies interpreted to be seafloor spreading isochrons are identified in the central and eastern Gulf of Mexico. The southernmost of these anomalies coincides with a strong positive vertical gravity gradient interpreted to mark the location of the extinct spreading ridge in the Gulf. Together, the magnetic and gravity anomalies reveal a concave-south fossil spreading system that accommodated counterclockwise rotation of Yucatan away from North America during Jurassic opening of the Gulf. Magnetic models show that the magnetic lineations correlate with geomagnetic time scale chrons M22n (150 Ma), M33n (161 Ma), M39n (165 Ma), and Toar-Aal N (174 Ma). M22n lies astride the fossil ridge and defines the age at which seafloor spreading ended. M33n lies between the ridge and the Florida shelf. M39n lies close to the shelf edge in the eastern Gulf. Taor-Aal N is the oldest recognized seafloor spreading anomaly and is present only in the central Gulf, laying near the ocean-continent transition (OCT). The magnetic anomalies define an Euler pole located at 22°N, 82ºW. Rotating Yucatan clockwise 29° about this pole places the northeast Yucatan shelf edge tightly against the southwestern Florida shelf, closing the southeastern Gulf. An additional 12° clockwise rotation juxtaposes the OCT on the northwestern Yucatan margin against the North American OCT in the central Gulf. These constraints on Yucatan's past position indicate that continental extension propagated from the western into the eastern Gulf between 215-174 Ma as Yucatan began to rotate away from North America. Seafloor spreading began 174 Ma and was asymmetric, with all extension occurring north of the spreading ridge. Symmetric seafloor spreading was established by 165 Ma and continued until 150 Ma. A total of 41°counterclockwise rotation of Yucatan relative to North America is predicted to have occurred during continental extension and seafloor spreading.
NASA Astrophysics Data System (ADS)
McCaffrey, R.; King, R. W.; Lancaster, M.; Miller, M. M.; Wells, R. E.
2015-12-01
Geodetic, geologic and paleomagnetic data reveal that Oregon and parts of California, Nevada and Idaho rotate clockwise at 0.3 to 1.0 deg/Ma (relative to North America) about an axis near the Idaho-Oregon-Washington border, while northeast Washington is relatively fixed to North America. This rotation has been going on for at least 15 Ma. The spatial termination of the rotation requires shortening between Oregon and Washington. The Yakima fold and thrust belt (YFTB) lies along the boundary between northern Oregon and central Washington where convergence of the clockwise-rotating Oregon block is apparently accommodated. Shortening across the YFTB is thought to occur in a fan-like manner, increasing to the west. We obtained high-accuracy, high-density geodetic GPS measurements in 2012 and 2013 that are used with earlier measurements to characterize YFTB kinematics. Deformation associated with the YFTB starts in the south at the Blue Mountains Anticline in northern Oregon and extends northward to Frenchman Hills in Washington. To the east, the faulting and earthquake activity of the YFTB are truncated by a NNW-trending, narrow zone of deformation that runs along the Pasco Basin and Moses Lake region. It accommodates about 0.5 to 1.0 mm/yr of east to northeast shortening along the eastern boundary of the Department of Energy Hanford Site. The deforming zone aligns with recent seismicity in the Ice Harbor dike swarm, a relatively young ~ 8.5 Ma vent complex. West of the Cascade arc, shortening is accommodated by a series of east-trending faults, starting at the Doty fault in central coastal Washington and extending through Seattle up to the Canadian border. South of the Doty fault, other faults may take up some motion but may be too slow to resolve with GPS.
NASA Astrophysics Data System (ADS)
Martínez-Martos, Manuel; Galindo-Zaldivar, Jesús; Martínez-Moreno, Francisco José; Calvo-Rayo, Raquel; Sanz de Galdeano, Carlos
2017-10-01
The relief of the Betic Cordillera was formed since the late Serravallian inducing the development of intramontane basins. The Alhabia basin, situated in the central part of the Internal Zones, is located at the intersection of the Alpujarran Corridor, the Tabernas basin, both trending E-W, and the NW-SE oriented Gádor-Almería basin. The geometry of the basin has been constrained by new gravity data. The basin is limited to the North by the Sierra de Filabres and Sierra Nevada antiforms that started to develop in Serravallian times under N-S shortening and to the south by Sierra Alhamilla and Sierra de Gádor antiforms. Plate convergence in the region rotated counter-clockwise in Tortonian times favouring the formation of E-W dextral faults. In this setting, NE-SW extension, orthogonal to the shortening direction, was accommodated by normal faults on the SW edge of Sierra Alhamilla. The Alhabia basin shows a cross-shaped depocentre in the zone of synform and fault intersection. This field example serves to constrain recent counter-clockwise stress rotation during the latest stages of Neogene-Quaternary basin evolution in the Betic Cordillera Internal Zones and underlines the importance of studying the basins' deep structure and its relation with the tectonic structures interactions.
NASA Astrophysics Data System (ADS)
Mitri, Farid G.
2018-01-01
Generalized solutions of vector Airy light-sheets, adjustable per their derivative order m, are introduced stemming from the Lorenz gauge condition and Maxwell's equations using the angular spectrum decomposition method. The Cartesian components of the incident radiated electric, magnetic and time-averaged Poynting vector fields in free space (excluding evanescent waves) are determined and computed with particular emphasis on the derivative order of the Airy light-sheet and the polarization on the magnetic vector potential forming the beam. Negative transverse time-averaged Poynting vector components can arise, while the longitudinal counterparts are always positive. Moreover, the analysis is extended to compute the optical radiation force and spin torque vector components on a lossless dielectric prolate subwavelength spheroid in the framework of the electric dipole approximation. The results show that negative forces and spin torques sign reversal arise depending on the derivative order of the beam, the polarization of the magnetic vector potential, and the orientation of the subwavelength prolate spheroid in space. The spin torque sign reversal suggests that counter-clockwise or clockwise rotations around the center of mass of the subwavelength spheroid can occur. The results find useful applications in single Airy light-sheet tweezers, particle manipulation, handling, and rotation applications to name a few examples.
Counter-rotating microplates at the Galapagos triple junction.
Klein, Emily M; Smith, Deborah K; Williams, Clare M; Schouten, Hans
2005-02-24
An 'incipient' spreading centre east of (and orthogonal to) the East Pacific Rise at 2 degrees 40' N has been identified as forming a portion of the northern boundary of the Galapagos microplate. This spreading centre was described as a slowly diverging, westward propagating rift, tapering towards the East Pacific Rise. Here we present evidence that the 'incipient rift' has also rifted towards the east and opens anticlockwise about a pivot at its eastern end. The 'incipient rift' then bounds a second microplate, north of the clockwise-rotating Galapagos microplate. The Galapagos triple junction region, in the eastern equatorial Pacific Ocean, thus consists of two counter-rotating microplates partly separated by the Hess Deep rift. Our kinematic solution for microplate motion relative to the major plates indicates that the two counter-rotating microplates may be treated as rigid blocks driven by drag on the microplates' edges3.
NASA Astrophysics Data System (ADS)
Sinclair, D.; Sherrell, R. M.; Tremaine, D. M.; Sweeney, J. R.; Rowe, H.; Wright, J. D.; Mortlock, R. A.; Hellstrom, J. C.; Cheng, H.; Min, A.; Edwards, R. L.
2017-12-01
Here we present a high-resolution glacial paleorainfall record from the heart of the South Pacific Convergence Zone (SPCZ) extracted from a stalagmite from the remote island of Niue (19°03'S 169°52'W). The record spans much of MIS3 (25-45 ka) and captures rapid rainfall changes associated with shifts in the SPCZ. It is clear that rapid climate shifts in the Northern Hemisphere have a strong influence on the SPCZ. All of the warm Dansgaard-Oeschger (`D-O') interstadials across this period are represented by rainfall increases, with D-O Events 9-11 particularly strongly represented. Since Niue lies south of the core of the SPCZ, this implies that rather than shifting northwards (as the ITCZ does), the SPCZ instead rotates clockwise in response to northern Hemisphere warming (analogous to a shift between modern El Nino and La Nina states). We propose that changes to surface ocean temperature gradients in the Eastern Pacific modulate the strength of the Wind Evaporation SST feedback, changing the size and westward penetration of the eastern Pacific dry zone, resulting in changes to the diagonality of the SPCZ. Our record also captures a response to strong northern Hemisphere cooling. The 25-45 ka record is bounded by large hiatuses (inferred dry conditions) coincident with cold Heinrich Stadials (HS) 2 and 5, while HS3 and HS4 are captured as distinct reductions in speleothem growth rate and proxy evidence for declining rainfall. This is consistent with a counter-clockwise rotation of the SPCZ during Northern cooling, supporting our proposed mechanism. Interestingly, our record also captures several other (non-Heinrich) cooling events, including a strong 500-year dry interval at 26ka that is seen in Chinese and Brazilian speleothems and coincides with a strong cooling over Asia (inferred from Greenland dust records). We note the (possibly coincidental) timing between this event and the Oruanui super-eruption at 25.6 ka.
Fleck, Robert J.; Hagstrum, Jonathan T.; Calvert, Andrew T.; Evarts, Russell C.; Conrey, Richard M.
2014-01-01
The 40Ar/39Ar investigations of a large suite of fine-grained basaltic rocks of the Boring volcanic field (BVF), Oregon and Washington (USA), yielded two primary results. (1) Using age control from paleomagnetic polarity, stratigraphy, and available plateau ages, 40Ar/39Ar recoil model ages are defined that provide reliable age results in the absence of an age plateau, even in cases of significant Ar redistribution. (2) Grouping of eruptive ages either by period of activity or by composition defines a broadly northward progression of BVF volcanism during latest Pliocene and Pleistocene time that reflects rates consistent with regional plate movements. Based on the frequency distribution of measured ages, periods of greatest volcanic activity within the BVF occurred 2.7–2.2 Ma, 1.7–0.5 Ma, and 350–50 ka. Grouped by eruptive episode, geographic distributions of samples define a series of northeast-southwest–trending strips whose centers migrate from south-southeast to north-northwest at an average rate of 9.3 ± 1.6 mm/yr. Volcanic activity in the western part of the BVF migrated more rapidly than that to the east, causing trends of eruptive episodes to progress in an irregular, clockwise sense. The K2O and CaO values of dated samples exhibit well-defined temporal trends, decreasing and increasing, respectively, with age of eruption. Divided into two groups by K2O, the centers of these two distributions define a northward migration rate similar to that determined from eruptive age groups. This age and compositional migration rate of Boring volcanism is similar to the clockwise rotation rate of the Oregon Coast Range with respect to North America, and might reflect localized extension on the trailing edge of that rotating crustal block.
Hillhouse, John W.; Miller, David M.; Turrin, Brent D.
2010-01-01
We report new paleomagnetic results and 40Ar/39Ar ages from the Peach Spring Tuff (PST), a key marker bed that occurs in the desert region between Barstow, California, and Peach Springs, Arizona. The 40Ar/39Ar ages were determined using individual hand-picked sanidine crystals from ash-flow specimens used in previous paleomagnetic studies at eight sites correlated by mineralogy, stratigraphic position, and magnetic inclination. Site-mean ages, which range from 18.43 Ma to 18.78 Ma with analytical precision (1 s.d.) typically 0.04 Ma, were obtained from areas near Fort Rock, AZ; McCullough Mts, NV; Cima Dome, Parker Dam, Danby, Ludlow, Kane Wash, and Stoddard Wash, CA. The regional mean age determination is 18.71 ± 0.13 Ma, after the data were selected for sanidine crystals that yielded greater than 90% radiogenic argon (N = 40). This age determination is compatible with previous 40Ar/39Ar dating of the PST after taking various neutron-flux monitor calibrations into account. We report paleomagnetic results from eight new sites that bear on reconstructions of the Miocene basins associated with the Hector Formation, Barstow Formation, and similar fine-grained sedimentary deposits in the Barstow region. Key findings of the new paleomagnetic study pertain to age control of the Hector Formation and clockwise rotation of the Northeast Mojave Domain. Our study of a rhyolitic ash flow at Baxter Wash, northern Cady Mountains, confirms the correlation of the PST within the Hector Formation and prompts reinterpretation of the previously determined magnetostratigraphy. Our model correlates the PST to the normal-polarity zone just below the C6–C5E boundary (18.748 Ma) of the astronomically tuned Geomagnetic Polarity Time Scale. After emplacement of the Peach Spring Tuff at Alvord Mountain and the Cady Mountains, the southern part of the Northeast Mojave Domain (between Cady and Coyote Lake faults) underwent clockwise rotation of 30°–55°. Clockwise rotations increase with distance northward from the Cady fault and may reflect Late Miocene and younger accommodation of right-lateral motion across the Eastern California Shear Zone. The new results also expand the area known to be affected by the Peach Springs eruption, and confirm that a pink ash-flow tuff surrounding Daggett Ridge near Barstow is part of the PST.
Hillhouse, John W.; Miller, David M.; Turrin, Brent D.; Reynolds, Robert E.; Miller, David M.
2010-01-01
We report new paleomagnetic results and 40Ar/39Ar ages from the Peach Spring Tuff (PST), a key marker bed that occurs in the desert region between Barstow, California, and Peach Springs, Arizona. The 40Ar/39Ar ages were determined using individual hand-picked sanidine crystals from ash-flow specimens used in previous paleomagnetic studies at eight sites correlated by mineralogy, stratigraphic position, and magnetic inclination. Site-mean ages, which range from 18.43 Ma to 18.78 Ma with analytical precision (1 s.d.) typically 0.04 Ma, were obtained from areas near Fort Rock, AZ; McCullough Mts, NV; Cima Dome, Parker Dam, Danby, Ludlow, Kane Walsh, and Stoddard Wash, CA. The regional mean age determination is 18.71 ± 0.13 Ma, after the data were selected for sanidine crystals that yielded greater than 90% radiogenic argon (N=40). This age determination is compatible with previous 40Ar/39Ar dating of the PST after taking various neutron-flux monitor calibrations into account. We report paleomagnetic results from eight new sites that bear on reconstructions of the Miocene basins associated with the Hector Formation, Barstow Formation, and similar fine-grained sedimentary deposits in the Barstow region. Key findings of the new paleomagnetic study pertain to age control of the Hector Formation and clockwise rotation of the Northeast Mojave Domain. Our study of a rhyolitic ash flow at Baxter Wash, northern Cady Mountains, confirms the correlation of the PST within the Hector Formation and prompts reinterpretation of the previously determined magnetostratigraphy. Our model correlates the PST to the normal-polarity zone just below the C6-C5E boundary (18.748 Ma) of the astronomically tuned Geomagnetic Polarity Time Scale. After emplacement of the Peach Spring Tuff at Alvord Mountain and the Cady Mountains, the southern part of the Northeast Mojave Domain (between Cady and Coyote Lake faults) underwent clockwise rotation of 30°–55°. Clockwise rotations increase with distance northward from the Cady fault and may reflect Late Miocene and younger accommodation of right-lateral motion across the Eastern California Shear Zone. The new results also expand the area known to be affected by the Peach Springs eruption, and confirm that a pink ash-flow tuff surrounding Daggett Ridge near Barstow is part of the PST.
Rotation Reveals the Importance of Configural Cues in Handwritten Word Perception
Barnhart, Anthony S.; Goldinger, Stephen D.
2013-01-01
A dramatic perceptual asymmetry occurs when handwritten words are rotated 90° in either direction. Those rotated in a direction consistent with their natural tilt (typically clockwise) become much more difficult to recognize, relative to those rotated in the opposite direction. In Experiment 1, we compared computer-printed and handwritten words, all equated for degrees of leftward and rightward tilt, and verified the phenomenon: The effect of rotation was far larger for cursive words, especially when rotated in a tilt-consistent direction. In Experiment 2, we replicated this pattern with all items presented in visual noise. In both experiments, word frequency effects were larger for computer-printed words and did not interact with rotation. The results suggest that handwritten word perception requires greater configural processing, relative to computer print, because handwritten letters are variable and ambiguous. When words are rotated, configural processing suffers, particularly when rotation exaggerates natural tilt. Our account is similar to theories of the “Thatcher Illusion,” wherein face inversion disrupts holistic processing. Together, the findings suggest that configural, word-level processing automatically increases when people read handwriting, as letter-level processing becomes less reliable. PMID:23589201
NASA Technical Reports Server (NTRS)
Richard, Stephen M.
1992-01-01
A paleogeographic reconstruction of southeastern California and southwestern Arizona at 10 Ma was made based on available geologic and geophysical data. Clockwise rotation of 39 deg was reconstructed in the eastern Transverse Ranges, consistent with paleomagnetic data from late Miocene volcanic rocks, and with slip estimates for left-lateral faults within the eastern Transverse Ranges and NW-trending right lateral faults in the Mojave Desert. This domain of rotated rocks is bounded by the Pinto Mountain fault on the north. In the absence of evidence for rotation of the San Bernardino Mountains or for significant right slip faults within the San Bernardino Mountains, the model requires that the late Miocene Pinto Mountain fault become a thrust fault gaining displacement to the west. The Squaw Peak thrust system of Meisling and Weldon may be a western continuation of this fault system. The Sheep Hole fault bounds the rotating domain on the east. East of this fault an array of NW-trending right slip faults and south-trending extensional transfer zones has produced a basin and range physiography while accumulating up to 14 km of right slip. This maximum is significantly less than the 37.5 km of right slip required in this region by a recent reconstruction of the central Mojave Desert. Geologic relations along the southern boundary of the rotating domain are poorly known, but this boundary is interpreted to involve a series of curved strike slip faults and non-coaxial extension, bounded on the southeast by the Mammoth Wash and related faults in the eastern Chocolate Mountains. Available constraints on timing suggest that Quaternary movement on the Pinto Mountain and nearby faults is unrelated to the rotation of the eastern Transverse Ranges, and was preceded by a hiatus during part of Pliocene time which followed the deformation producing the rotation. The reconstructed Clemens Well fault in the Orocopia Mountains, proposed as a major early Miocene strand of the San Andreas fault, projects eastward towards Arizona, where early Miocene rocks and structures are continuous across its trace. The model predicts a 14 deg clockwise rotation and 55 km extension along the present trace of the San Andreas fault during late Miocene and early Pliocene time. Palinspastic reconstructions of the San Andreas system based on this proposed reconstruction may be significantly modified from current models.
The Tethys Sea and the Alpine-Himalayan orogenic belt; mega-elements in a new global tectonic system
NASA Astrophysics Data System (ADS)
Storetvedt, K. M.
Analysis of Meso-Cainozoic palaeomagnetic data for Africa, India and Eurasia has led to the development of a new mobilistic Alpine plate tectonic model characterized by a hierarchical system of plates in relative rotation. The new model, which discounts seafloor spreading, implies that there have been no significant palaeogeographic changes in the overall distribution of continental and oceanic regions. The mid-oceanic ridges are interpreted as transpressive tectonic features caused by rotation of megaplates (containing both continental and oceanic crust), the isostatic uplift due to crustal/lithospheric thickening giving rise to the general ridge topography as well as to the ridge-parallel structural grain. The new plate tectonic theory gains strong support from a variety of geophysical, geological and palaeoclimatological evidence, and several observations that have remained enigmatic or awkward within the context of the orthodox model can be readily accounted for in the new tectonic framework. The model maintains the Tethys as a relatively narrow epicontinental sea which, during its maximum extent, stretched latitudinally from the Caribbean, across the Central Atlantic to SE Asia. The Alpine-Himalayan orogenic belt developed along the boundary of two megaplates in relative rotation, which provided a transpressive tectonic regime. The location of the plate boundary to the north of the Mediterranean has important implications for discussion of Mediterranean microplates. For example, it now seems that Italy has been subjected to 10-15° of clockwise microplate rotation; previous conclusions in favour of 30-40° of anticlockwise rotation are regarded as artefacts which arise from incorrectly linking the Mediterranean region to the European palaeomagnetic frame instead of to the African one. The model suggests further that the Indo-Pakistani plate was closely tied to Eurasia; this challenges the conventional view that the Peninsula was part of an alleged Gondwanaland. The new pre-drift configuration implies that the Indo-Pakistani plate rotated ˜ 135° clockwise at around the Cretaceous-Tertiary boundary before redocking with Asia in approximately its present relative orientation.
Effects of trunk-to-head rotation on the labyrinthine responses of rat reticular neurons.
Barresi, M; Grasso, C; Bruschini, L; Berrettini, S; Manzoni, D
2012-11-08
Vestibulospinal reflexes elicited by head displacement become appropriate for body stabilization owing to the integration of neck input by the cerebellar anterior vermis. Due to this integration, the preferred direction of spinal motoneurons' responses to animal tilt rotates by the same angle and by the same direction as the head over the body, which makes it dependent on the direction of body displacement rather than on head displacement. It is known that the cerebellar control of spinal motoneurons involves the reticular formation. Since the preferred directions of corticocerebellar units' responses to animal tilt are tuned by neck rotation, as occuring in spinal motoneurons, we investigated whether a similar tuning can be observed also in the intermediate station of reticular formation. In anaesthetized rats, the activity of neurons in the medullary reticular formation was recorded during wobble of the whole animal at 0.156 Hz, a stimulus that tilted the animal's head by a constant amplitude (5°), in a direction rotating clockwise or counter clockwise over the horizontal plane. The response gain and the direction of tilt eliciting the maximal activity were evaluated with the head and body axes aligned and during a maintained body-to-head displacement of 5-20° over the horizontal plane, in either direction. We found that the neck displacement modified the response gain and/or the average activity of most of the responsive neurons. Rotation of the response direction was observed only in a minor percentage of the recorded neurons. The modifications of reticular neurons' responses were different from those observed in the P-cells of the cerebellar anterior vermis, which rarely showed gain and activity changes and often exhibited a rotation of their response directions. In conclusion, reticular neurons take part in the neck tuning of vestibulospinal reflexes by transforming a head-driven sensory input into a body-centred postural response. The present findings prompt re-evaluation of the role played by the reticular neurons and the cerebellum in vestibulospinal reflexes. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Baugh, B.; Housen, B. A.; Burmester, R. F.
2010-12-01
The Helena salient is a curved orogen in southwest Montana, characterized by thin-skinned folding and thrusting. Ages dated from volcanic sills imply that deformation in the region began 77 million years ago during the late Cretaceous (Harlan et al, 1998). This study investigates the nature of curvature associated with this orogen using paleomagnetic techniques. Carbonate rocks of the Mississippian Madison Group were sampled from 24 sites across three folds: the Devil’s Fence anticline, the Three Forks anticline and the Turner anticline (near Townsend, MT). Results from 16 sites have well defined, but very weak, magnetizations. At 100% untilting, two components of magnetization are revealed: a Mississippian primary magnetization (M-group) from at least two sites, and a Late Cretaceous chemical remanent magnetization (CRM) for 13 sites (K-group). Fold tests for the K-group indicate that each fold acquired a magnetization at 90-100% untilting. A mean direction, in geographic coordinates and D = 35°, I = 72.9°, α95 = 8.8° is obtained for Devil’s Fence anticline, D = 37.7°, I = 70.1°, α95 = 23.9° for Three forks anticline and D = 224.6°, I = 69.1°, α95 = 29.1° for Turner anticline. Using a calculated late Cretaceous NA reference pole (D = 335.8, I = 70.1 and ΔDx = 6.3°;), the K-group indicates large (~60° CW) vertical axis rotations from Devil’s Fence and Three Forks anticlines, as well as 111° counter-clockwise rotation from Turner anticline, since the Late Cretaceous. Hysteresis data fall on the SP-PSD mixing lines, consistent with rock magnetic data from other studies sampling remagnetized carbonate units (e.g. Suk et al., 1993; Xu et al., 1998). When K-group directions are un-rotated on an equal-area plot to a Late Cretaceous NA reference pole, the M-group restores nearly to a Mississippian NA reference pole (D = 310, I = 8.2 and ΔDx = 4.7°) and indicates a clockwise rotation of the pre-deformational sedimentary basin of 22 ± 18° to 59 ± 14°. Pink units show Mission Canyon limestone exposures. Yellow units show Lodgepole limestone exposures. Rectangles are locations of the three anticlines sampled in this study. In red are approximate thrust trace locations, which disappear beneath quaternary alluvial deposits. The western most trace is the Lombard thrust fault.
NASA Astrophysics Data System (ADS)
Kim, Sang-Koog; Lee, Ki-Suk; Yu, Young-Sang; Choi, Youn-Seok
2008-01-01
The authors investigated the technological utility of counterclockwise (CCW) and clockwise (CW) circular-rotating fields (HCCW and HCW) and spin-polarized currents with an angular frequency ωH close to the vortex eigenfrequency ωD, for the reliable, low-power, and selective switching of the bistate magnetization (M) orientations of a vortex core (VC) in an array of soft magnetic nanoelements. CCW and CW circular gyrotropic motions in response to HCCW and HCW, respectively, show remarkably contrasting resonant behaviors, (i.e., extremely large-amplitude resonance versus small-amplitude nonresonance), depending on the M orientation of a given VC. Owing to this asymmetric resonance characteristics, the HCCW(HCW) with ωH˜ωD can be used to effectively switch only the up (down) core to its downward (upward) M orientation, selectively, by sufficiently low field (˜10Oe) and current density (˜107A/cm2). This work provides a reliable, low power, effective means of information storage, information recording, and information readout in vortex-based random access memory, simply called VRAM.
Asteroid Ida Rotation Sequence
NASA Technical Reports Server (NTRS)
1994-01-01
This montage of 14 images (the time order is right to left, bottom to top) shows Ida as it appeared in the field of view of Galileo's camera on August 28, 1993. Asteroid Ida rotates once every 4 hours, 39 minutes and clockwise when viewed from above the north pole; these images cover about one Ida 'day.' This sequence has been used to create a 3-D model that shows Ida to be almost croissant shaped. The earliest view (lower right) was taken from a range of 240,000 kilometers (150,000 miles), 5.4 hours before closest approach. The asteroid Ida draws its name from mythology, in which the Greek god Zeus was raised by the nymph Ida.
NASA Technical Reports Server (NTRS)
Hultberg, R. S.; Mulcay, W.
1980-01-01
Aerodynamic characteristics obtained in a rotational flow environment utilizing a rotary balance are presented in plotted form for a 1/5 scale, single engine, low-wing, general aviation airplane model. The configuration tested included the basic airplane, various control deflections, tail designs, fuselage shapes, and wing leading edges. Data are presented without analysis for an angle of attack range of 8 to 90 deg and clockwise and counterclockwise rotations covering a range from 0 to 0.85.
NASA Astrophysics Data System (ADS)
Jonk, R.; Biermann, C.
2002-05-01
Detailed structural analyses are presented of the Neogene Sorbas Basin adjacent to the E-W striking Gafarillos fault zone and the Vera Basin adjacent to the 020° striking Palomares fault zone in southeastern Spain. A stress regime with an E-W oriented subhorizontal maximum principal stress ( σ1) existed in pre-Tortonian (>11.3 Ma) time. A strike-slip regime with NW-SE oriented compression during Tortonian and earliest Messinian time caused dextral displacement along the E-W trending Gafarillos fault of approximately 10 km. Structural analysis indicates that most displacement took place in the Early Tortonian. Deformational patterns within the adjacent pull-apart basin reflect a dextral simple shear-zone of at least 500 m width. Kinematical analysis of folds in the Sorbas Basin suggests, however, that rotational effects are largely caused by rigid-body rotation without much internal deformation. Sinistral strike-slip displacements occurred along the Palomares fault zone under the influence of the same stress-regime. An abrupt change in the orientation of the stress field to N-S directed compression in earliest Messinian time (6.5 Ma) caused the termination of displacements along the Gafarillos fault zone, whereas the 020° trending Palomares fault zone continued to accumulate sinistral strike-slip displacements of about 25 km. Volcanism occurred along splays of the fault zone. A wider shear-zone of a few kilometers width evolved, in which considerable anti-clockwise rotation of folds occurred. Kinematic analysis of these folds shows that these rotational effects are again dominantly rigid-body rotations. Assuming rotations are merely caused by simple-shear deformation overestimates the amounts of strain. A better way to deal with simple-shear deformation is to compare observed shortening caused by folding with the magnitude of rotation of fold-hinges.
Peri-equatorial paleolatitudes for Jurassic radiolarian cherts of Greece
Aiello, I.W.; Hagstrum, J.T.; Principi, G.
2008-01-01
Radiolarian-rich sediments dominated pelagic deposition over large portions of the Tethys Ocean during middle to late Jurassic time as shown by extensive bedded chert sequences found in both continental margin and ophiolite units of the Mediterranean region. Which paleoceanographic mechanisms and paleotectonic setting favored radiolarian deposition during the Jurassic, and the nature of a Tethys-wide change from biosiliceous to biocalcareous (mainly nannofossil) deposition at the beginning of Cretaceous time, have remained open questions. Previous paleomagnetic analyses of Jurassic red radiolarian cherts in the Italian Apennines indicate that radiolarian deposition occurred at low peri-equatorial latitudes, similar to modern day deposition of radiolarian-rich sediments within equatorial zones of high biologic productivity. To test this result for other sectors of the Mediterranean region, we undertook paleomagnetic study of Mesozoic (mostly middle to upper Jurassic) red radiolarian cherts within the Aegean region on the Peloponnesus and in continental Greece. Sampled units are from the Sub-Pelagonian Zone on the Argolis Peninsula, the Pindos-Olonos Zone on the Koroni Peninsula, near Karpenissi in central Greece, and the Ionian Zone in the Varathi area of northwestern Greece. Thermal demagnetization of samples from all sections removed low-temperature viscous and moderate-temperature overprint magnetizations that fail the available fold tests. At Argolis and Koroni, however, the cherts carry a third high-temperature magnetization that generally exhibits a polarity stratigraphy and passes the available fold tests. We interpret the high-temperature component to be the primary magnetization acquired during chert deposition and early diagenesis. At Kandhia and Koliaky (Argolis), the primary declinations and previous results indicate clockwise vertical-axis rotations of ??? 40?? relative to "stable" Europe. Due to ambiguities in hemispheric origin (N or S) and thus paleomagnetic polarity, the observed declinations could indicate either clockwise (CW) or counterclockwise (CCW) vertical-axis rotations. Thus at Adriani (Koroni), the primary declinations indicate either CW or CCW rotations of ??? 95?? or ??? 84??, depending on paleomagnetic polarity and age. The primary inclinations for all Peloponnesus sites indicate peri-equatorial paleolatitudes similar to those found for coeval radiolarian cherts exposed in other Mediterranean orogenic belts. Our new paleomagnetic data support the interpretation that Mesozoic radiolarites within the Tethys Ocean were originally deposited along peri-equatorial belts of divergence and high biologic productivity. ?? 2007 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fox, Kenneth F., Jr.; Beck, Myrl E., Jr.
1985-04-01
The direction of remanent magnetization for 102 sites in Eocene volcanic and volcaniclastic rocks of the O'Brien Creek Formation, Sanpoil Volcanics, and Klondike Mountain Formation suggests approximately 25° of clockwise rotation of a 100 by 200 km area in northeastern Washington. The volcanic rocks consist chiefly of rhyodacite and quartz latite flows, with intercalated ash flow tuff and volcaniclastic layers. These rocks have been sampled at 102 sites distributed among five volcanotectonic depressions: the Toroda Creek, Republic, Keller, and First Thought grabens and the Spokane-Enterprise lineament. The volcanic rocks probably range in age from 55 m.y. to about 48 m.y., and the 50- to 48-m.y.-old volcanic rocks within this suite appear to be rotated as much as the older rocks. Previous investigators have shown that 40-m.y.-old and younger plutonic rocks of northwestern Washington are not rotated; hence we infer that the north-central Washington rocks were rotated to their present declination between 48 and 40 m.y. B.P. (during the middle and/or late Eocene). During early Eocene time this region was extended in a westward direction through crustal necking, gneiss-doming, diking, and graben formation. Internal deformation of the region related to this crustal extension was extreme, but most bedrock units that were formed concurrent with the crustal extension were probably in place prior to the rotation; hence we infer that the rotation was chiefly accommodated by movement on faults peripheral to the sampled area. Faults active during Paleogene time appear to define boundaries of a triangular crustal block (the Sanpoil block), encompassing much of northeastern Washington, northern Idaho, northwestern Montana, and adjacent parts of British Columbia. The faults include the Laramide thrusts of the Rocky Mountain thrust belt, the strike-slip faults of the Lewis and Clark line, and strike-slip faults of the Straight Creek-Fraser zone. We suggest that during early Eocene time the Sanpoil block was extended westward through crustal necking and dilation and then during the middle Eocene was rotated clockwise and thrust over the craton in a final stage of Laramide thrusting. The "motor" driving these deformations presumably was interaction of North America with oceanic lithosphere off its western margin; such interaction probably involved right-oblique underthrusting and dextral shear.
Motion in the north Iceland volcanic rift zone accommodated by bookshelf faulting
NASA Astrophysics Data System (ADS)
Green, Robert G.; White, Robert S.; Greenfield, Tim
2014-01-01
Along mid-ocean ridges the extending crust is segmented on length scales of 10-1,000km. Where rift segments are offset from one another, motion between segments is accommodated by transform faults that are oriented orthogonally to the main rift axis. Where segments overlap, non-transform offsets with a variety of geometries accommodate shear motions. Here we use micro-seismic data to analyse the geometries of faults at two overlapping rift segments exposed on land in north Iceland. Between the rift segments, we identify a series of faults that are aligned sub-parallel to the orientation of the main rift. These faults slip through left-lateral strike-slip motion. Yet, movement between the overlapping rift segments is through right-lateral motion. Together, these motions induce a clockwise rotation of the faults and intervening crustal blocks in a motion that is consistent with a bookshelf-faulting mechanism, named after its resemblance to a tilting row of books on a shelf. The faults probably reactivated existing crustal weaknesses, such as dyke intrusions, that were originally oriented parallel to the main rift and have since rotated about 15° clockwise. Reactivation of pre-existing, rift-parallel weaknesses contrasts with typical mid-ocean ridge transform faults and is an important illustration of a non-transform offset accommodating shear motion between overlapping rift segments.
A step forward in understanding step-overs: the case of the Dead Sea Fault in northern Israel
NASA Astrophysics Data System (ADS)
Dembo, Neta; Granot, Roi; Hamiel, Yariv
2017-04-01
The rotational deformation field around step-overs between segments of strike-slip faults is poorly resolved. Vertical-axis paleomagnetic rotations can be used to characterize the deformation field, and together with mechanical modeling, can provide constraints on the characteristics of the adjacent fault segments. The northern Dead Sea Fault, a major segmented sinistral transform fault that straddles the boundary between the Arabian Plate and Sinai Subplate, offers an appropriate tectonic setting for our detailed mechanical and paleomagnetic investigation. We examine the paleomagnetic vertical-axis rotations of Neogene-Pleistocene basalt outcrops surrounding a right step-over between two prominent segments of the fault: the Jordan Gorge section and the Hula East Boundary Fault. Results from 20 new paleomagnetic sites reveal significant (>20˚) counterclockwise rotations within the step-over and small clockwise rotations in the vicinity. Sites located further (>2.5 km) away from the step-over generally experience negligible to minor rotations. Finally, we construct a mechanical model guided by the observed rotational field that allows us to characterize the structural, mechanical and kinematic behavior of the Dead Sea Fault in northern Israel.
NASA Astrophysics Data System (ADS)
Karson, J.; Horst, A. J.; Nanfito, A.
2011-12-01
Iceland has long been used as an analog for studies of seafloor spreading. Despite its thick (~25 km) oceanic crust and subaerial lavas, many features associated with accretion along mid-ocean ridge spreading centers, and the processes that generate them, are well represented in the actively spreading Neovolcanic Zone and deeply glaciated Tertiary crust that flanks it. Integrated results of structural and geodetic studies show that the plate boundary zone on Iceland is a complex array of linked structures bounding major crustal blocks or microplates, similar to oceanic microplates. Major rift zones propagate N and S from the hotspot centered beneath the Vatnajökull icecap in SE central Iceland. The southern propagator has extended southward beyond the South Iceland Seismic Zone transform fault to the Westman Islands, resulting in abandonment of the Eastern Rift Zone. Continued propagation may cause abandonment of the Reykjanes Ridge. The northern propagator is linked to the southern end of the receding Kolbeinsey Ridge to the north. The NNW-trending Kerlingar Pseudo-fault bounds the propagator system to the E. The Tjörnes Transform Fault links the propagator tip to the Kolbeinsey Ridge and appears to be migrating northward in incremental steps, leaving a swath of deformed crustal blocks in its wake. Block rotations, concentrated mainly to the west of the propagators, are clockwise to the N of the hotspot and counter-clockwise to the S, possibly resulting in a component of NS divergence across EW-oriented rift zones. These rotations may help accommodate adjustments of the plate boundary zone to the relative movements of the N American and Eurasian plates. The rotated crustal blocks are composed of highly anisotropic crust with rift-parallel internal fabric generated by spreading processes. Block rotations result in reactivation of spreading-related faults as major rift-parallel, strike-slip faults. Structural details found in Iceland can help provide information that is difficult or impossible to obtain in propagating systems of the deep seafloor.
Strain accumulation and rotation in western Nevada, 1993-2000
NASA Astrophysics Data System (ADS)
Svarc, J. L.; Savage, J. C.; Prescott, W. H.; Ramelli, A. R.
2002-05-01
The positions of 44 GPS monuments in an array extending from the Sierra Nevada at the latitude of Reno to near Austin, Nevada, have been measured several times in the 1993-2000 interval. The western half of the array spans the Walker Lane belt, whereas the eastern half spans the central Nevada seismic zone (CNSZ). The principal strain rates in the Walker Lane belt are 29.6 +/- 5.3 nstrain yr-1 N88.4°E +/- 5.4° and -12.8 +/- 6.0 nanostrain yr-1 N01.6°W +/- 5.4°, extension reckoned positive, and the clockwise (as seen from above the Earth) rotation rate about a vertical axis is 13.6 +/- 4.0 nrad yr-1. The quoted uncertainties are standard deviations. The motion in the Walker Lane belt can then be represented by a zone striking N35°W subject to 16.8 +/- 4.9 nstrain yr-1 extension perpendicular to it and 19.5 +/- 4.0 nstrain yr-1 right-lateral, simple shear across it. The N35°W strike of the zone is the same as the direction of the local tangent to the small circle drawn about the Pacific-North America pole of rotation. The principal strain rates for the CNSZ are 46.2 +/- 11.0 nstrain yr-1 N49.9°W +/- 6.0° and -13.6 +/- 6.1 nstrain yr-1 N40.1°E +/- 6.0°, and the clockwise rotation rate about a vertical axis is 20.3 +/- 6.3 nrad yr-1. The motion across the CNSZ can then be represented by a zone striking N12°E subject to 32.6 +/- 11.0 nstrain yr-1 extension perpendicular to it and 25.1 +/- 6.3 nstrain yr-1 right-lateral, simple shear across it. The N12°E strike of the zone is similar to the strikes of the faults (Rainbow Mountain, Fairview Peak, and Dixie Valley) within it.
Clinical applications of perforator-based propeller flaps in upper limb soft tissue reconstruction.
Ono, Shimpei; Sebastin, Sandeep J; Yazaki, Naoya; Hyakusoku, Hiko; Chung, Kevin C
2011-05-01
A propeller flap is an island flap that moves from one orientation to another by rotating around its vascular axis. The vascular axis is stationary, and flap movement is achieved by revolving on this axis. Early propeller flaps relied on a thick, subcutaneous pedicle to maintain vascularity, and this limited the flap rotation to 90°. With increasing awareness of the location and the vascular territory perfused by cutaneous perforators, it is now possible to design propeller flaps based on a single perforator, so-called "perforator-based propeller flaps." These flaps permit flap rotation up to 180°. We present the results of upper limb soft tissue reconstruction using perforator-based propeller flaps. We constructed a treatment strategy based on the location of the soft tissue defect and the perforator anatomy for expedient wound coverage in 1 stage. All perforator-based propeller flaps derived from 3 institutions that were used for upper limb soft tissue reconstruction were retrospectively analyzed. The parameters studied included the size and location of the defect, the perforator that was used, the size and shape of the flap, the direction (ie, clockwise or counter-clockwise) of flap rotation, the degree of twisting of the perforator, the management of the donor site (ie, linear closure or skin grafting), and flap survival (recorded as the percentage of the flap area that survived). Twelve perforator-based propeller flaps were used to reconstruct upper limb soft tissue defects in 12 patients. Six different perforators were used as vascular pedicles. The donor defects of 11 flaps could be closed primarily. One flap was partially lost in a patient with electrical burns. Perforator-based propeller flaps provide a reliable option for covering small- to medium-size upper limb soft tissue defects. Copyright © 2011 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Strain accumulation and rotation in western Nevada, 1993-2000
Svarc, J.L.; Savage, J.C.; Prescott, W.H.; Ramelli, A.R.
2002-01-01
The positions of 44 GPS monuments in an array extending from the Sierra Nevada at the latitude of Reno to near Austin, Nevada, have been measured several times in the 1993-2000 interval. The western half of the array spans the Walker Lane belt, whereas the eastern half spans the central Nevada seismic zone (CNSZ). The principal strain rates in the Walker Lane belt are 29.6 ?? 5.3 nstrain yr-1 N88.4??E ?? 5.4?? and -12.8 ?? 6.0 nanostrain yr-1 N01.6??W ?? 5.4??, extension reckoned positive, and the clockwise (as seen from above the Earth) rotation rate about a vertical axis is 13.6 ?? 4.0 nrad yr-1. The quoted uncertainties are standard deviations. The motion in the Walker Lane belt can then be represented by a zone striking N35??W subject to 16.8 ?? 4.9 nstrain yr-1 extension perpendicular to it and 19.5 ?? 4.0 nstrain yr-1 right-lateral, simple shear across it. The N35??W strike of the zone is the same as the direction of the local tangent to the small circle drawn about the Pacific-North America pole of rotation. The principal strain rates for the CNSZ are 46.2 ?? 11.0 nstrain yr-1 N49.9??W ?? 6.0?? and -13.6 ?? 6.1 nstrain yr-1 N40.1??E ?? 6.0??, and the clockwise rotation rate about a vertical axis is 20.3 ?? 6.3 nrad yr-1. The motion across the CNSZ can then be represented by a zone striking N12??E subject to 32.6 ?? 11.0 nstrain yr-1 extension perpendicular to it and 25.1 ?? 6.3 nstrain yr-1 right-lateral, simple shear across it. The N12??E strike of the zone is similar to the strikes of the faults (Rainbow Mountain, Fairview Peak, and Dixie Valley) within it.
High-resolution reconstructions of Pacific-North America plate motion: 20 Ma to present
NASA Astrophysics Data System (ADS)
DeMets, C.; Merkouriev, S.
2016-11-01
We present new rotations that describe the relative positions and velocities of the Pacific and North America plates at 22 times during the past 19.7 Myr, offering ≈1-Myr temporal resolution for studies of the geotectonic evolution of western North America and other plate boundary locations. Derived from ≈18 000 magnetic reversal, fracture zone and transform fault identifications from the Pacific-Antarctic-Nubia-North America plate circuit and the velocities of 935 GPS sites on the Pacific and North America plates, the new rotations and GPS-derived angular velocity indicate that the rate of motion between the two plates increased by ≈70 per cent from 19.7 to 9±1 Ma, but changed by less than 2 per cent since 8 Ma and even less since 4.2 Ma. The rotations further suggest that the relative plate direction has rotated clockwise for most of the past 20 Myr, with a possible hiatus from 9 to 5 Ma. This conflicts with previously reported evidence for a significant clockwise change in the plate direction at ≈8-6 Ma. Our new rotations indicate that Pacific plate motion became obliquely convergent with respect to the San Andreas Fault of central California at 5.2-4.2 Ma, in agreement with geological evidence for a Pliocene onset of folding and faulting in central California. Our reconstruction of the northern Gulf of California at 6.3 Ma differs by only 15-30 km from structurally derived reconstructions after including 3-4 km Myr-1 of geodetically measured slip between the Baja California Peninsula and Pacific plate. This implies an approximate 15-30 km upper bound for plate non-rigidity integrated around the global circuit at 6.3 Ma. A much larger 200±54 km discrepancy between our reconstruction of the northern Gulf of California at 12 Ma and that estimated from structural and marine geophysical observations suggests that faults in northwestern Mexico or possibly west of the Baja California Peninsula accommodated large amounts of obliquely divergent dextral shear from 12-6.3 Ma. Pacific-North America plate motion since 16 Myr estimated with our new rotations agrees well with structurally summed deformation along two transects of western North America between the Colorado Plateau and western California, with a difference as small as 40 km out of 760 km of margin-parallel motion. A strong resemblance between a 20-Myr-to-present flow line reconstructed with our new rotations and the traces of the 700-km-long Queen Charlotte Fault and continental slope west of Canada suggests that the plate margin geometry was influenced by the passage of the Pacific plate and Yakutat block. The new rotations also suggest that (1) oblique convergence west of Canada initiated at 12-11 Ma, 5-8 Myr earlier than previously estimated, (2) no significant margin-normal shortening has occurred in areas of Canada located east of the Haida Gwaii archipelago since 20 Ma and (3) Pacific plate underthrusting of Haida Gwaii has accommodated the margin-normal component of plate motion since 12-11 Ma. Our rotations suggest an ≈70 per cent increase in the rate that the Pacific plate has been consumed by subduction beneath the Aleutian arc since 19.7 Ma, with still-unknown consequences for the rate of arc magmatism.
Iriondo, Alexander; Martínez-Torres, Luis M.; Kunk, Michael J.; Atkinson, William W.; Premo, Wayne R.; McIntosh, William C.
2005-01-01
Restoration of 12%–30% Basin and Range extension allows direct interpretation of ductile fabrics associated with a stack of Laramide thrust faults in the Quitovac region in northwestern Sonora. The inferred direction of displacement of these thrusts varies gradually from N63°W to N23°E and is interpreted to represent a clockwise rotation of the direction of Laramide thrusting through time. The thrust faults represent a piggy-back sequence of thrusting propagating north, toward the foreland. The average direction and sense of displacement of the thrusts is N18°W, and the cumulative 45 km of estimated northward-directed displacement corresponds to ∼86% of shortening.Based on geochronological constraints, onset of thrusting in Quitovac occurred sometime between 75 and 61 Ma, whereas cessation occurred at ca. 39 Ma. The presence of Paleocene-Eocene orogenic gold mineralization, spatially associated with thrusting, strengthens our idea that compressional tectonism associated with the Laramide orogeny is a very important and widespread dynamometamorphic event in the region.Similarities in age, kinematics, and structural stratigraphy indicate that the thrusting in the Quitovac region may be equivalent to the Laramide Quitobaquito Thrust in southwestern Arizona. In both areas, thrust faults juxtapose the Paleoproterozoic Caborca and “North America” basement blocks. This juxtaposition was previously proposed as exclusively related to movements along the hypothetical Upper Jurassic Mojave-Sonora megashear. The Laramide northward displacements and clockwise rotations recorded in the Caborca block rocks in Quitovac contradict the southward displacements (∼800 km) and counterclockwise rotations inherent in the left-lateral Upper Jurassic Mojave-Sonora megashear hypothesis. We conclude that if this megashear exists in northwestern Sonora, its trace should be to the southwest of the Quitovac region.
From Rising Bubble to RNA/DNA and Bacteria
NASA Astrophysics Data System (ADS)
Marks, Roman; Cieszyńska, Agata; Wereszka, Marzena; Borkowski, Wojciech
2017-04-01
In this study we have focused on the movement of rising bubbles in a salty water body. Experiments reviled that free buoyancy movement of bubbles forces displacement of ions, located on the outer side of the bubble wall curvatures. During the short moment of bubble passage, all ions in the vicinity of rising bubble, are separated into anions that are gathered on the bubble upper half sphere and cations that slip along the bottom concave half-sphere of a bubble and develop a sub-bubble vortex. The principle of ions separation bases on the differences in displacement resistance. In this way, relatively heavier and larger, thus more resistant to displacement anions are gathered on the rising bubble upper half sphere, while smaller and lighter cations are assembled on the bottom half sphere and within the sub-bubble vortex. The acceleration of motion generates antiparallel rotary of bi-ionic domains, what implies that anions rotate in clockwise (CW) and cationic in counter-clockwise (CCW) direction. Then, both rotational systems may undergo splicing and extreme condensing by bi-pirouette narrowing of rotary. It is suggested that such double helix motion of bi-ionic domains creates RNA/DNA molecules. Finally, when the bubble reaches the water surface it burst and the preprocessed RNA/DNA matter is ejected into the droplets. Since that stage, droplet is suspended in positively charged troposphere, thus the cationic domain is located in the droplet center, whilst negative ions are attracted to configure the outer areola. According to above, the present study implies that the rising bubbles in salty waters may incept synergistic processing of matter resulting in its rotational/spherical organization that led to assembly of RNA/DNA molecules and bacteria cells.
Monopolar vortices as relative equilibria and their dissipative decay
NASA Astrophysics Data System (ADS)
Vandefliert, B. W.; Vangroesen, E. W. C.
1991-11-01
Families of confined rotating monopolar vortices are characterized using a variational formulation with the angular momentum as the driving force for confinement. The characterization for positive monopolar vortices given, can be extended to negative vortices or to vortices within a rotating frame of reference. Besides the uniform Kirchhoff paths, new branches of vorticity solutions are found restricting the dynamics to levelsets of both the angular momentum and the quadratic anisotropy. The rotation rate of the smooth vorticity structures depends on the vorticity profile. This is made perceptible by considering both minimum energy vortices and minimizing vortices, rotating counterclockwise and clockwise respectively. An approximation for the decay of the vortices due to dissipation is given in terms of the dissipation of the integrals in the inviscid system. This description enables us to consider dissipation of vortices without loss of confinement. The elliptical Kirchhoff patches are found to symmetrize into circular patches. The minimum energy vortices gradually diminish while expending their support, while the maximum energy vortices are unstable for the dissipative evolution.
Active tectonics of northwestern U.S. inferred from GPS-derived surface velocities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert McCaffrey; Robert W. King; Suzette J. Payne
2013-02-01
Surface velocities derived from GPS observations from 1993 to 2011 at several hundred sites across the deforming northwestern United States are used to further elucidate the region's active tectonics. The new velocities reveal that the clockwise rotations, relative to North America, seen in Oregon and western Washington from earlier GPS observations, continue to the east to include the Snake River Plain of Idaho and south into the Basin and Range of northern Nevada. Regional-scale rotation is attributed to gravitationally driven extension in the Basin and Range and Pacific-North America shear transferred through the Walker Lane belt aided by potentially strongmore » pinning below the Idaho Batholith. The large rotating section comprising eastern Oregon displays very low internal deformation rates despite seismological evidence for a thin crust, warm mantle, organized mantle flow, and elevated topography. The observed disparity between mantle and surface kinematics suggests that either little stress acts between them (low basal shear) or that the crust is strong relative to the mantle. The rotation of the Oregon block impinges on Washington across the Yakima fold-thrust belt where shortening occurs in a closing-fan style. Elastic fault locking at the Cascadia subduction zone is reevaluated using the GPS velocities and recently published uplift rates. The 18 year GPS and 80 year leveling data can both be matched with a common locking model suggesting that the locking has been stable over many decades. The rate of strain accumulation is consistent with hundreds of years between great subduction events.« less
Neotectonic deformation model of the Northern Algeria from Paleomagnetic data
NASA Astrophysics Data System (ADS)
Derder, M. E. M.; Henry, B.; Maouche, S.; Amenna, M.; Bayou, B.; Djellit, H.; Ymel, H.; Gharbi, S.; Abtout, A.; Ayache, M.
2012-04-01
The seismic activity of the Western Mediterranean area is partly concentrated in northern Africa, particularly in northern Algeria, as it is shown by the strongest recent earthquakes of "Zemmouri" 21 May 2003 Mw=6.9 and the "El Asnam" 10 October 1980 Ms= 7.3. This seismicity is due to the tectonic activity related to the convergence between Africa and Eurasia plates since at least the Oligocene. The deformation is mostly compressional with associated folds, strike-slip faults and thrusts, and a direction of shortening between N-S and NNW-SSE. This convergence involves a tectonic transpression which is expressed by active deformation along the plate boundary. In northern Algeria, the seismicity is concentrated in a coastal E-W thin band zone (the Tell Atlas). Active structures define there NE-SW trending folds and NE-SW sinistral transpressive faults, which affect the intermountain and coastal Neogene to Quaternary sedimentary basins (e.g. " Cheliff "basin, " Mitidja "basin, …). These reverse faults are associated with NW-SE to E-W strike-slips deep faults. The active tectonics could be explained by a simple blocks rotation kinematics model. In order to test the validity of this kinematic model, three different paleomagnetic studies have been conducted. The first one concerned the "Cheliff" basin where sedimentary Neogene formations were extensively sampled (66 sites). The second study was carried out on Miocene andesite and dacite rocks cropping out along the northern coastal zone of the "Cheliff" basin ("Beni Haoua" area, 19 sites). The third study has been carried out on the Miocene magmatic rocks (rhyolites and basalts) cropping out north-eastern part of the "Mitidja" basin ("Cap Djinet" - "Boumerdes" area, 23 sites). The obtained results show existence of paleomagnetic clockwise rotations in all the studied areas and then validates the kinematics block rotation model. Accordingly, the deformation related to the convergence between the Africa and Eurasia plates, is partly accommodated in northern Algeria by blocks rotation movements. It seems that the Tellian Atlas (northern Algeria) domain is organized as tectonic blocks with relative clockwise blocks rotation movement as in a "bookshelf" model.
The bacterial flagellar switch complex is getting more complex
Cohen-Ben-Lulu, Galit N; Francis, Noreen R; Shimoni, Eyal; Noy, Dror; Davidov, Yaacov; Prasad, Krishna; Sagi, Yael; Cecchini, Gary; Johnstone, Rose M; Eisenbach, Michael
2008-01-01
The mechanism of function of the bacterial flagellar switch, which determines the direction of flagellar rotation and is essential for chemotaxis, has remained an enigma for many years. Here we show that the switch complex associates with the membrane-bound respiratory protein fumarate reductase (FRD). We provide evidence that FRD binds to preparations of isolated switch complexes, forms a 1:1 complex with the switch protein FliG, and that this interaction is required for both flagellar assembly and switching the direction of flagellar rotation. We further show that fumarate, known to be a clockwise/switch factor, affects the direction of flagellar rotation through FRD. These results not only uncover a new component important for switching and flagellar assembly, but they also reveal that FRD, an enzyme known to be primarily expressed and functional under anaerobic conditions in Escherichia coli, nonetheless, has important, unexpected functions under aerobic conditions. PMID:18337747
NASA Astrophysics Data System (ADS)
Palano, M.; Piromallo, C.; Chiarabba, C.
2017-01-01
Dense GPS observations can help Earth scientists to capture the surface imprint of mantle toroidal flow at slab edges. We document this process in the Calabrian subduction system, where the Ionian slab rollback took place during the past 30 Ma, following a stepwise process driven by migration of lithospheric tearing. We found rotation rates of 1.29°/Ma (counterclockwise) and 1.74°/Ma (clockwise), for poles located close to the northern and southern slab edges, respectively. These small-scale, opposite rotations occur along complex sets of active faults representing the present-day lithospheric expression of the tearing processes affecting the southeastward retreating Ionian slab at both edges. The observed rotations are likely still young and the process more immature at the northern tear, where it is unable to reorient mantle fabric and therefore is unseen by SKS splitting.
Mankinen, Edward A.; Irwin, William P.
1990-01-01
Paleomagnetic studies of the Klamath Mountains, Blue Mountains, Sierra Nevada, and northwestern Nevada pertain mostly to Jurassic and Cretaceous rocks, but some data also are available for Permian and Triassic rocks of the region. Large vertical-axis rotations are indicated for rocks in many of the terranes, but few studies show statistically significant latitudinal displacements. The most complete paleomagnetic record is from the Eastern Klamath terrane, which shows large post-Triassic clockwise rotations and virtual cessation of rotation by Early Cretaceous time, when accretion to the continent was completed. Data from Permian strata of the Eastern Klamath terrane indicate no paleolatitude anomaly, in contrast to preliminary results from coeval strata of Hells Canyon in the Blue Mountains region, which are suggestive of some southward movement. If these Hells Canyon results are confirmed, some of the terranes in these two regions must have been traveling on separate plates during late Paleozoic time. Data from Triassic and younger strata in the Blue Mountains region indicate paleolatitudes that are concordant with North America. Results from Triassic rocks of the Koipato Formation in west-central Nevada also indicate southward transport, but when this movement ceased is unknown. The Nevadan orogeny may have occurred in the Sierra Nevada during Jurassic accretion of the ophiolitic and volcanic-arc terranes of that province to the continent, whereas what has been considered to be the same orogeny in the Klamath Mountains may have occurred before accretion. Using the concordance of observed and expected paleomagnetic directions as a guide, the allochthonous Sierra Nevada, Klamath Mountains, and Blue Mountains composite terranes seem to have accreted to the continent sequentially from south to north.
The Galapagos Microplate Revealed
NASA Astrophysics Data System (ADS)
Smith, D. K.; Schouten, H.; Cann, J. R.; Zhu, W.; Montesi, L. G.; Mitchell, G. A.
2009-12-01
We report a new bathymetry survey of the Galapagos microplate (GMP), which separates the Pacific, Nazca, and Cocos plates at the Galapagos Triple Junction. Prior to the formation of the microplate, 1.5-1.0 Ma, there was a succession of transient minor rifts forming triple junctions north and south of the propagating Cocos-Nazca rift (see Schouten et al. abstract). As proposed by Lonsdale (1988) the formation of a large near-axis seamount coincided with the initiation of the GMP and stabilized rifting on its southern boundary, now called Dietz Deep Rift. Lonsdale also proposed that the GMP was rotating clockwise at 6 degrees/my. Schouten et al. (1993) and Klein et al. (2005) applied an edge-driven microplate model to the GMP to understand its kinematics and predicted rotation rates of 30-40 degrees/my and 22 degrees/my, respectively. These interpretations and predictions were based on sparse bathymetry data. In early 2009 (AT 15-41), we mapped the Galapagos microplate in its entirety to understand more fully the conditions that led to the stabilization of the southern triple junction at Dietz Deep Rift and to constrain the rotation rate of the microplate. Our new data show the two highly contrasted sections of Dietz Deep Rift. The northeastern section contains Dietz Deep, a 2 km deep basin, within a fault-dominated rift valley about 20 km wide; subsidiary rifts occur to the south. Sidescan data indicate that extension in this broadly rifted area has been largely amagmatic. The southwestern section of Dietz Deep Rift is dominated by a variety of volcanic constructions in which faulting plays a minor part. The volcanism has resulted in two large seamounts and a number of volcanic ridges running parallel to the fault dominated rift valley. The largest volcanic ridge is steep-sided and straight, and extends to intersect the East Pacific Rise (EPR) at 1 10’N to form the triple junction. Other minor volcanic ridges occur in the SW section of the microplate fanning towards the EPR from the north side of the large, straight ridge. Most of the core of the microplate shows N-S abyssal hills produced at the EPR, and indicates that the microplate is not rotating and has not rotated for much of its history. A section of seafloor in the northeast part of the microplate, however, has been rotated and indicates that before about 1 Ma the kinematics of the region were different. We present scenarios for the evolution of the southern triple junction to explain the seafloor patterns.
Mankinen, Edward A.; Gromme, C. Sherman; Irwin, W. Porter
2013-01-01
We obtained paleomagnetic samples from six sites within the Middle Jurassic Ironside Mountain batholith (~170 Ma), which constitutes the structurally lowest part of the Western Hayfork terrane, in the Klamath Mountains province of northern California and southern Oregon. Structural attitudes measured in the coeval Hayfork Bally Meta-andesite were used to correct paleomagnetic data from the batholith. Comparing the corrected paleomagnetic pole with a 170-Ma reference pole for North America indicates 73.5° ± 10.6° of clockwise rotation relative to the craton. Nearly one-half of this rotation may have occurred before the terrane accreted to the composite Klamath province at ~168 Ma. No latitudinal displacement of the batholith was detected.
1992-01-22
Onboard Space Shuttle Discovery (STS-42) the seven crewmembers pose for a traditional in-space portrait in the shirt-sleeve environment of the International Microgravity Laboratory (IML-1) science module in the Shuttle's cargo bay. Pictured are (clockwise from top),Commander Ronald J. Grabe, payload commander Norman E. Thagard, payload specialist Roberta L. Bondar; mission specialists William F. Readdy and David C. Hilmers; pilot Stephen S. Oswald and payload specialist Ulf Merbold. The rotating chair, used often in biomedical tests on the eight-day flight, is in center frame.
NASA Astrophysics Data System (ADS)
Gürer, Derya; van Hinsbergen, Douwe J. J.; Özkaptan, Murat; Creton, Iverna; Koymans, Mathijs R.; Cascella, Antonio; Langereis, Cornelis G.
2018-03-01
To quantitatively reconstruct the kinematic evolution of Central and Eastern Anatolia within the framework of Neotethyan subduction accommodating Africa-Eurasia convergence, we paleomagnetically assess the timing and amount of vertical axis rotations across the Ulukışla and Sivas regions. We show paleomagnetic results from ˜ 30 localities identifying a coherent rotation of a SE Anatolian rotating block comprised of the southern Kırşehir Block, the Ulukışla Basin, the Central and Eastern Taurides, and the southern part of the Sivas Basin. Using our new and published results, we compute an apparent polar wander path (APWP) for this block since the Late Cretaceous, showing that it experienced a ˜ 30-35° counterclockwise vertical axis rotation since the Oligocene time relative to Eurasia. Sediments in the northern Sivas region show clockwise rotations. We use the rotation patterns together with known fault zones to argue that the counterclockwise-rotating domain of south-central Anatolia was bounded by the Savcılı Thrust Zone and Deliler-Tecer Fault Zone in the north and by the African-Arabian trench in the south, the western boundary of which is poorly constrained and requires future study. Our new paleomagnetic constraints provide a key ingredient for future kinematic restorations of the Anatolian tectonic collage.
Paleomagnetic data bearing on style of Miocene deformation in the Lake Mead area, Southern Nevada
Wawrzyniec, T.F.; Geissman, J.W.; Anderson, R.E.; Harlan, S.S.; Faulds, J.
2001-01-01
Paleomagnetic and structural data from intermediate to mafic composition lava flows and related dikes in all major blocks of the late Miocene Hamblin-Cleopatra Volcano, which was structurally dismembered during the development of the Lake Mead Fault System (LMFS), provide limits on the magnitude and sense of tilting and vertical axis rotation of crust during extension of this part of the Basin and Range province. Sinistral separation along the fault system dissected the volcano into three major blocks. The eastern, Cleopatra Lobe of the volcano is structurally the most intact section of the volcano. Normal and reverse polarity data from paleomagnetic sites collected along traverses in the Cleopatra Lobe yield an in situ grand mean of Declination (D) = 339??, Inclination (I) = +54??, ??95 = 3.1??, k = 27.2, N = 81 sites. The rocks of the central core of the volcano yield an in situ grand mean of D = 3??, I = + 59??, ??95 = 6.8??, k = 42.5, N = 11 sites (six normal, five reverse polarity). Sites collected within the western Hamblin Lobe of the volcano are exclusively of reverse polarity and yield an overall in situ mean of D = 168??, I = -58??, ??95 = 6.5??. k = 28.9, N = 18 sites. Interpretation of the paleomagnetic data in the context of the structural history of the volcano and surrounding area, considers the possibility of two different types of structural corrections. A stratigraphic tilt correction involves restoring flows to the horizontal using the present strike. This correction assumes no initial, possibly radial, dip of flows of the volcano and is considered invalid. A structural tilt correction to the data assumes that dikes of the radiating swarm associated with the volcano were originally vertical and results in block mean directions of D = 9??, I = +53??, ??95 = 3.1??, k = 27.2, and D = 58??, I = + 78??, ??95 = 6.8, k = 42.5, for the Cleopatra Lobe and the central intrusive core, respectively. The data from the Cleopatra Lobe are slightly discordant, in a clockwise sense, from expected middle- to late-Miocene field directions. The data from the volcano are not consistent with a proposed structural model of uniform, moderate magnitude, statistically significant, counter-clockwise vertical axis rotation of fault-bounded blocks during overall sinsitral displacement along the LMFS. We also analyzed dikes of the northernmost part of the Miocene Wilson Ridge hypabyssal igneous complex, strata of the Triassic Chinle Formation, and basalt flows of the Miocene West End Wash/Callville Mesa volcanic centers. Dikes in the Wilson Ridge pluton and the Triassic strata yield magnetizations with directions suggestive of statistically significant, clockwise, vertical-axis rotations consistent with local, large-magnitude shear of crustal fragments near some of the faults of the LMFS. Late Cenozoic deformation of the Hamblin-Cleopatra volcano area appears to have been non-uniform in scale and magnitude and no single structural model, involving strictly strike-slip faulting, can account for the observed paleomagnetic data. ?? 2001 Elsevier Science Ltd. All rights reserved.
ROTATING MOTIONS AND MODELING OF THE ERUPTING SOLAR POLAR-CROWN PROMINENCE ON 2010 DECEMBER 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Yingna; Van Ballegooijen, Adriaan, E-mail: ynsu@head.cfa.harvard.edu
2013-02-10
A large polar-crown prominence composed of different segments spanning nearly the entire solar disk erupted on 2010 December 6. Prior to the eruption, the filament in the active region part split into two layers: a lower layer and an elevated layer. The eruption occurs in several episodes. Around 14:12 UT, the lower layer of the active region filament breaks apart: One part ejects toward the west, while the other part ejects toward the east, which leads to the explosive eruption of the eastern quiescent filament. During the early rise phase, part of the quiescent filament sheet displays strong rolling motionmore » (observed by STEREO-B) in the clockwise direction (viewed from east to west) around the filament axis. This rolling motion appears to start from the border of the active region, then propagates toward the east. The Atmospheric Imaging Assembly (AIA) observes another type of rotating motion: In some other parts of the erupting quiescent prominence, the vertical threads turn horizontal, then turn upside down. The elevated active region filament does not erupt until 18:00 UT, when the erupting quiescent filament has already reached a very large height. We develop two simplified three-dimensional models that qualitatively reproduce the observed rolling and rotating motions. The prominence in the models is assumed to consist of a collection of discrete blobs that are tied to particular field lines of a helical flux rope. The observed rolling motion is reproduced by continuous twist injection into the flux rope in Model 1 from the active region side. Asymmetric reconnection induced by the asymmetric distribution of the magnetic fields on the two sides of the filament may cause the observed rolling motion. The rotating motion of the prominence threads observed by AIA is consistent with the removal of the field line dips in Model 2 from the top down during the eruption.« less
Hu, Bin; Yue, Shigang; Zhang, Zhuhong
All complex motion patterns can be decomposed into several elements, including translation, expansion/contraction, and rotational motion. In biological vision systems, scientists have found that specific types of visual neurons have specific preferences to each of the three motion elements. There are computational models on translation and expansion/contraction perceptions; however, little has been done in the past to create computational models for rotational motion perception. To fill this gap, we proposed a neural network that utilizes a specific spatiotemporal arrangement of asymmetric lateral inhibited direction selective neural networks (DSNNs) for rotational motion perception. The proposed neural network consists of two parts-presynaptic and postsynaptic parts. In the presynaptic part, there are a number of lateral inhibited DSNNs to extract directional visual cues. In the postsynaptic part, similar to the arrangement of the directional columns in the cerebral cortex, these direction selective neurons are arranged in a cyclic order to perceive rotational motion cues. In the postsynaptic network, the delayed excitation from each direction selective neuron is multiplied by the gathered excitation from this neuron and its unilateral counterparts depending on which rotation, clockwise (cw) or counter-cw (ccw), to perceive. Systematic experiments under various conditions and settings have been carried out and validated the robustness and reliability of the proposed neural network in detecting cw or ccw rotational motion. This research is a critical step further toward dynamic visual information processing.All complex motion patterns can be decomposed into several elements, including translation, expansion/contraction, and rotational motion. In biological vision systems, scientists have found that specific types of visual neurons have specific preferences to each of the three motion elements. There are computational models on translation and expansion/contraction perceptions; however, little has been done in the past to create computational models for rotational motion perception. To fill this gap, we proposed a neural network that utilizes a specific spatiotemporal arrangement of asymmetric lateral inhibited direction selective neural networks (DSNNs) for rotational motion perception. The proposed neural network consists of two parts-presynaptic and postsynaptic parts. In the presynaptic part, there are a number of lateral inhibited DSNNs to extract directional visual cues. In the postsynaptic part, similar to the arrangement of the directional columns in the cerebral cortex, these direction selective neurons are arranged in a cyclic order to perceive rotational motion cues. In the postsynaptic network, the delayed excitation from each direction selective neuron is multiplied by the gathered excitation from this neuron and its unilateral counterparts depending on which rotation, clockwise (cw) or counter-cw (ccw), to perceive. Systematic experiments under various conditions and settings have been carried out and validated the robustness and reliability of the proposed neural network in detecting cw or ccw rotational motion. This research is a critical step further toward dynamic visual information processing.
Nakamura, Shuichi; Kami-ike, Nobunori; Yokota, Jun-ichi P.; Minamino, Tohru; Namba, Keiichi
2010-01-01
The bacterial flagellar motor can rotate in both counterclockwise (CCW) and clockwise (CW) directions. It has been shown that the sodium ion-driven chimeric flagellar motor rotates with 26 steps per revolution, which corresponds to the number of FliG subunits that form part of the rotor ring, but the size of the backward step is smaller than the forward one. Here we report that the proton-driven flagellar motor of Salmonella also rotates with 26 steps per revolution but symmetrical in both CCW and CW directions with occasional smaller backward steps in both directions. Occasional shift in the stepping positions is also observed, suggesting the frequent exchange of stators in one of the 11–12 possible anchoring positions around the rotor. These observations indicate that the elementary process of torque generation by the cyclic association/dissociation of the stator with every FliG subunit along the circumference of the rotor is symmetric in CCW and CW rotation even though the structure of FliG is highly asymmetric and suggests a 180° rotation of a FliG domain for the rotor-stator interaction to reverse the direction of rotation. PMID:20876126
NASA Astrophysics Data System (ADS)
Geuna, Silvana E.; Somoza, Rubén; Vizán, Haroldo; Figari, Eduardo G.; Rinaldi, Carlos A.
2000-08-01
A paleomagnetic study in Jurassic and Cretaceous rocks from the Cañadón Asfalto basin, central Patagonia, indicates the occurrence of about 25-30° clockwise rotation in Upper Jurassic-lowermost Cretaceous rocks, whereas the overlying mid-Cretaceous rocks do not show evidence of rotation. This constrains the tectonic rotation to be related to a major regional unconformity in Patagonia, which in turn seems to be close in time with the early opening of the South Atlantic Ocean. The sense and probably the timing of this rotation are similar to those of other paleomagnetically detected rotations in different areas of southwestern Gondwana, suggesting a possible relationship between these and major tectonic processes related with fragmentation of the supercontinent. On the other hand, the mid-Cretaceous rocks in the region yield a paleopole located at Lat. 87° South, Long. 159° East, A95=3.8°. This pole position is consistent with coeval high-quality paleopoles of other plates when transferred to South American coordinates, implying it is an accurate determination of the Aptian (circa 116 Ma) geomagnetic field in South America.
NASA Astrophysics Data System (ADS)
Jiménez Díaz, G.; Speranza, F.; Faccenna, C.; Bayona, G.; Mora, A.
2012-12-01
The Eastern Cordillera of Colombia (EC) is a double-verging mountain system inverting a Mesozoic rift, and bounded by major reverse faults that locally involve crystalline and metamorphic Precambrian-Lower Paleozoic basement rocks, as well as Upper Paleozoic-Cenozoic sedimentary and volcanic sequences. In map view the EC is a curved mountain belt with a regional structural strike that ranges from NNE in the southern part to NNW in the northern part. The origin of its curvature has not been studied or discussed so far. We report on an extensive paleomagnetic and anisotropy of magnetic susceptibility (AMS) investigation of the EC, in order to address to test its non-rotational vs. oroclinal nature. Fifty-eight sites were gathered from Cretaceous to Miocene marine and continental strata, both from the southern and northern parts of the EC; additionally, we examined the southern Maracaibo plate, at the junction between the Santander Massif and the Merida Andes of Colombia (Cucuta zone). Twenty-three sites reveal no rotation of the EC range with respect to stable South America. In contrast, a 35°±9° clockwise rotation is documented in four post-Miocene magnetically overprinted sites from the Cucuta zone. Magnetic lineations from AMS analysis do not trend parallel to the chain, but are oblique to the main strike of the orogenic belt. By also considering GPS evidence of a ~1 cm/yr ENE displacement of central-western Colombia accommodated by the EC, we suggest that the late Miocene-recent deformation occurred by a ENE oblique convergence reactivating a NNE rift zone. Our data show that the EC is a non-rotational chain, and that the locations of the Mesozoic rift and the mountain chain roughly correspond. One possible solution is that the oblique shortening is partitioned in pure dip-slip shear characterizing thick-skinned frontal thrust sheets (well-known along both chain fronts), and by range-parallel right-lateral strike-slip fault(s), which have not been identified yet and likely occur in the axial part of the EC. The clockwise rotation in the Cucuta zone reflects late Cenozoic and ongoing right-lateral strike-slip displacement occurring along buried faults parallel to the Boconó fault system, possibly connected with the right-lateral faults inferred along the axial part of the EC.
NASA Astrophysics Data System (ADS)
Shields, S.; Petronis, M. S.; Pluhar, C. J.; Gordon, L.
2014-12-01
The mid-Miocene Jack Springs Tuff (JST) outcrops across the western Mina Deflection accommodation zone, west-central Nevada and into eastern California. Previously, the source location for the JST was unknown, yet recent studies northwest of Mono Lake, CA have identified a relatively un-rotated structural block in which to reference the paleomagnetic data. Although new studies have indicated that this block may be rotated up to 13º, we argue that the probable source area is located near the Bodie Hills, CA. At this site, the paleomagnetic reference direction is D = 353°, I = 43°, α95 = 7.7° (Carlson et al, 2013). Based on these data, the JST can be used to measure absolute vertical-axis rotation as well as enable reconstruction of the paleo-topography using the corrected anisotropy of magnetic susceptibility (AMS) data. A total of 19 sites were sampled to constrain Cenozoic to recent vertical axis rotation within the region and AMS experiments were conducted to determine the flow direction of the JST. Curie point estimates indicate that the JST ranges in titanium concentration from 0.042 to 1.10, indicating a low to moderate titanomagnetite phase (Akimoto, 1962). Demagnetization experiments reveal mean destructive fields of the NRM ranging between 15mT and 40mT suggesting that both multi-domain to pseudo-single domain grains are the dominant ferromagnetic phases that carry the remanence and AMS fabric. Preliminary paleomagnetic data yield stable single component demagnetization behavior for most sites that, after structural correction, indicate clockwise vertical axis rotation ranging from +20°± 10° to +60°± 11° between multiple fault blocks. The uncorrected AMS data yield oblate magnetic fabrics that can be used to infer the transport direction, source region, and paleovalley geometry of the JST. These data are tentatively interpreted to indicate west to east transport of the JST across the Mono Basin region into the Mina Deflection that was erupted and flowed into a paleovalley off the Sierra Nevada Mountain front. Based on the new paleomagnetic data, we hypothesize that the JST experienced clockwise vertical axis rotation associated with transtensional faulting east of Mono Lake, CA. Our paleomagnetic data support this hypothesis and we argue that deformation likely occurred between ca. 9.5 Ma to as late as 3 Ma.
NASA Astrophysics Data System (ADS)
Cengiz Cinku, Mualla; Heller, Friedrich; Ustaömer, Timur
2017-10-01
A paleomagnetic study of Cretaceous arc type rocks in the Central-Eastern Pontides and in the Southeastern Taurides investigates the tectonic and paleolatitudinal evolution of three volcanic belts in Anatolia, namely the Northern and Southern Volcanic Belts in the Pontides and the SE Taurides volcanic belt. The paleomagnetic data indicate that magnetizations were acquired prior to folding at most sampling localities/sites, except for those in the Erzincan area in the Eastern Pontides. The Southern Volcanic Belt was magnetized at a paleolatitude between 23.8_{-3.8}^{+4.2}°N and 20.2_{-1.2}^{+1.3}°N. Hisarlı (J Geodyn 52:114-128, 2011) reported a more northerly paleolatitude (26.6_{-4.6}^{+5.1}°N) for the Northern Volcanic Belt. The comparison of the new paleomagnetic results with previous ones in Anatolia allows to conclude that the Southern Volcanic Belt in the Central-Eastern Pontides was emplaced after the Northern Volcanic Belt as a result of slab-roll back of the Northern Neotethys ocean in the Late Cretaceous. In the Southeast Taurides, Upper Cretaceous arc-related sandstones were at a paleolatitude of 16.8_{-3.8}^{+4.2} . The Late Cretaceous paleomagnetic rotations in the Central Pontides exhibit a counterclockwise rotation of R± Δ R=-37.1° ± 5.8° (Group 1; Çankırı, Yaylaçayı Formation) while Maastrichtian arc type rocks in the Yozgat area (Group 2) show clockwise rotations R + Δ R = 33.7° ± 8.4° and R + Δ R = 29.3° ± 6.0°. In the SE Taurides counterclockwise and clockwise rotations of R± Δ R=-48.6° ± 5.2° and R± Δ R=+34.1° ± 15.1° are obtained (Group 4; Elazığ Magmatic Complex). The Late Cretaceous paleomagnetic rotations in the Pontides follow a general trend in concordance with the shape of the suture zone after the collision between the Pontides and the Kırşehir block. The affect of the westwards excursion of the Anatolian plate and the associated fault bounded block rotations in Miocene are observed in the east of the study area and the SE Taurides.
2010-05-24
The northern portion of the Gulf of Mexico Loop Current, shown in red, appears about to detach a large ring of current, creating a separate eddy. An eddy is a large, warm, clockwise-spinning vortex of water -- the ocean version of a cyclone.
A Coastal Bay Summer Breeze Study, Part 1: Results of the Quiberon 2006 Experimental Campaign
NASA Astrophysics Data System (ADS)
Mestayer, Patrice G.; Calmet, Isabelle; Herlédant, Olivier; Barré, Sophie; Piquet, Thibaud; Rosant, Jean-Michel
2018-04-01
The Quiberon 2006 experiment was launched to document the onset and development of land and sea breezes over a semi-circular coastal bay propitious to inshore sailing competitions. The measurements were taken during the 2 weeks of 16-28 June 2006. Micrometeorological variables were recorded at three shore sites around the bay using turbulence sensors on 10-30-m high masts, on four instrumented catamarans at selected sites within the bay, and at a fourth shore site with a Sodar. Synoptic data and local measurements are analyzed here from the point of view of both micrometeorologists and competition skippers, testing in particular the empirical rules of breeze veering and backing according to the wind direction with respect to the coastline orientation at the mesoscale (the quadrant theory). Our analysis focuses on the patterns of lower-altitude wind direction and speed around the bay and over the water basin, and the temporal variations during the periods of the breeze onset, establishment and thermal reinforcement. In offshore synoptic-flow conditions (quadrants 1 and 2), the clockwise rotation of the surface flow had a very large amplitude, reaching up to 360°. The breeze strength was negatively correlated to that of the synoptic wind speed. In conditions of onshore synoptic flow from the west (quadrant 3) at an angle to the mainland coast but perpendicular to the Quiberon peninsula, the rotation of the flow was backwards in the early morning and clockwise during the day with a moderate amplitude (40°-50°) around the synoptic wind direction. As the surface wind speed was much larger than the synoptic wind speed, such a case we have designated as a "synoptic breeze". The breeze onset was shown to fail several times under the influence of weak non-thermal events, e.g., the passage of an occluded front or clouds or an excess of convection. Finally, several local-scale influences of the complex coastal shape appeared in our measurements, e.g., wind fanning in the lee of the isthmus and airflow skirting around the peninsula forehand.
NASA Astrophysics Data System (ADS)
Kuo, B. Y.
2017-12-01
We measured shear wave splitting for the intraslab events in the Middle America and Izu-Bonin subduction zones recorded at Pacific stations to infer the anisotropic structure in the subslab mantle. The receiver-side anisotropy is accounted for by considering both azimuthal anisotropy determined by SKS splitting and radial anisotropy given in global tomographic model, although the latter does not change the overall pattern of subslab anisotropy. By removing the anisotropy effects from both receiver and source sides, the initial polarization directions (p) of the shear waves used were recovered, most of which are in reasonable agreement with that predicted form the CMT solutions. For both subduction zones, the polarization-splitting plots strongly suggest the presence of two layers of anisotropy. To constrain the two-layer model, we perform inversions which minimize the misfit in both the splitting parameters and p. In the MASZ, the best model contains an upper layer with the fast direction in parallel with the absolute plate motion of the Cocos plate and a lower layer 40-60 degree clockwise from the APM. The delay times are 1.5 and 1.9 s respectively. The interference of the double layer produced dts in excess of 3 s at a certain range of p. The SKS splitting were also inverted for a two-layer model, yielding similar splitting characters and the clockwise rotation. We are investigating why this rotation takes place and how this observation is related to the dynamics of the asthenosphere.
Song, Jae-Won; Lim, Joong-Ki; Lee, Kee-Joon; Sung, Sang-Jin; Chun, Youn-Sic
2016-01-01
Objective Orthodontic mini-implants (OMI) generate various horizontal and vertical force vectors and moments according to their insertion positions. This study aimed to help select ideal biomechanics during maxillary incisor retraction by varying the length in the anterior retraction hook (ARH) and OMI position. Methods Two extraction models were constructed to analyze the three-dimentional finite element: a first premolar extraction model (Model 1, M1) and a residual 1-mm space post-extraction model (Model 2, M2). The OMI position was set at a height of 8 mm from the arch wire between the second maxillary premolar and the first molar (low OMI traction) or at a 12-mm height in the mesial second maxillary premolar (high OMI traction). Retraction force vectors of 200 g from the ARH (-1, +1, +3, and +6 mm) at low or high OMI traction were resolved into X-, Y-, and Z-axis components. Results In M1 (low and high OMI traction) and M2 (low OMI traction), the maxillary incisor tip was extruded, but the apex was intruded, and the occlusal plane was rotated clockwise. Significant intrusion and counter-clockwise rotation in the occlusal plane were observed under high OMI traction and -1 mm ARH in M2. Conclusions This study observed orthodontic tooth movement according to the OMI position and ARH height, and M2 under high OMI traction with short ARH showed retraction with maxillary incisor intrusion. PMID:27478801
Fukawa, Toshihiko; Hirakawa, Takashi; Maegawa, Jiro
2014-01-01
Background: We have developed a hybrid facial osteogenesis distraction system that combines the advantages of external and internal distraction devices to enable control of both the distraction distance and vector. However, when the advanced maxilla has excessive clockwise rotation and shifts more downward vertically than planned, it might be impossible to pull it up to correct it. We invented devices attached to external distraction systems that can control the vertical vector of distraction to resolve this problem. The purpose of this article is to describe the result of utilizing the distraction system for syndromic craniosynostosis. Methods: In addition to a previously reported hybrid facial distraction system, the devices for controlling the vertical direction of the advanced maxilla were attached to the external distraction device. The vertical direction of the advanced maxilla can be controlled by adjustment of the spindle units. This system was used for 2 patients with Crouzon and Apert syndrome. Results: The system enabled control of the vertical distance, with no complications during the procedures. As a result, the maxilla could be advanced into the planned position including overcorrection without excessive clockwise rotation of distraction. Conclusion: Our system can alter the cases and bring them into the planned position, by controlling the vertical vector of distraction. We believe that this system might be effective in infants with syndromic craniosynostosis as it involves 2 osteotomies and horizontal and vertical direction of elongation can be controlled. PMID:25289307
Chapter 50 Geology and tectonic development of the Amerasia and Canada Basins, Arctic Ocean
Grantz, Arthur; Hart, Patrick E.; Childers, Vicki A
2011-01-01
Amerasia Basin is the product of two phases of counterclockwise rotational opening about a pole in the lower Mackenzie Valley of NW Canada. Phase 1 opening brought ocean–continent transition crust (serpentinized peridotite?) to near the seafloor of the proto-Amerasia Basin, created detachment on the Eskimo Lakes Fault Zone of the Canadian Arctic margin and thinned the continental crust between the fault zone and the proto-Amerasia Basin to the west, beginning about 195 Ma and ending prior to perhaps about 160 Ma. The symmetry of the proto-Amerasia Basin was disrupted by clockwise rotation of the Chukchi Microcontinent into the basin from an original position along the Eurasia margin about a pole near 72°N, 165 W about 145.5–140 Ma. Phase 2 opening enlarged the proto-Amerasia Basin by intrusion of mid-ocean ridge basalt along its axis between about 131 and 127.5 Ma. Following intrusion of the Phase 2 crust an oceanic volcanic plateau, the Alpha–Mendeleev Ridge LIP (large igneous province), was extruded over the northern Amerasia Basin from about 127 to 89–75 Ma. Emplacement of the LIP halved the area of the Amerasia Basin, and the area lying south of the LIP became the Canada Basin.
Chapter 50: Geology and tectonic development of the Amerasia and Canada Basins, Arctic Ocean
Grantz, A.; Hart, P.E.; Childers, V.A.
2011-01-01
Amerasia Basin is the product of two phases of counterclockwise rotational opening about a pole in the lower Mackenzie Valley of NW Canada. Phase 1 opening brought ocean-continent transition crust (serpentinized peridotite?) to near the seafloor of the proto-Amerasia Basin, created detachment on the Eskimo Lakes Fault Zone of the Canadian Arctic margin and thinned the continental crust between the fault zone and the proto-Amerasia Basin to the west, beginning about 195 Ma and ending prior to perhaps about 160 Ma. The symmetry of the proto-Amerasia Basin was disrupted by clockwise rotation of the Chukchi Microcontinent into the basin from an original position along the Eurasia margin about a pole near 72??N, 165 Wabout 145.5-140 Ma. Phase 2 opening enlarged the proto-Amerasia Basin by intrusion of mid-ocean ridge basalt along its axis between about 131 and 127.5 Ma. Following intrusion of the Phase 2 crust an oceanic volcanic plateau, the Alpha-Mendeleev Ridge LIP (large igneous province), was extruded over the northern Amerasia Basin from about 127 to 89-75 Ma. Emplacement of the LIP halved the area of the Amerasia Basin, and the area lying south of the LIP became the Canada Basin. ?? 2011 The Geological Society of London.
Coarse graining Escherichia coli chemotaxis: from multi-flagella propulsion to logarithmic sensing.
Curk, Tine; Matthäus, Franziska; Brill-Karniely, Yifat; Dobnikar, Jure
2012-01-01
Various sensing mechanisms in nature can be described by the Weber-Fechner law stating that the response to varying stimuli is proportional to their relative rather than absolute changes. The chemotaxis of bacteria Escherichia coli is an example where such logarithmic sensing enables sensitivity over large range of concentrations. It has recently been experimentally demonstrated that under certain conditions E. coli indeed respond to relative gradients of ligands. We use numerical simulations of bacteria in food gradients to investigate the limits of validity of the logarithmic behavior. We model the chemotactic signaling pathway reactions, couple them to a multi-flagella model for propelling and take the effects of rotational diffusion into account to accurately reproduce the experimental observations of single cell swimming. Using this simulation scheme we analyze the type of response of bacteria subject to exponential ligand profiles and identify the regimes of absolute gradient sensing, relative gradient sensing, and a rotational diffusion dominated regime. We explore dependance of the swimming speed, average run time and the clockwise (CW) bias on ligand variation and derive a small set of relations that define a coarse grained model for bacterial chemotaxis. Simulations based on this coarse grained model compare well with microfluidic experiments on E. coli diffusion in linear and exponential gradients of aspartate.
Characterization of C-ring component assembly in flagellar motors from amino acid coevolution
dos Santos, Ricardo Nascimento; Khan, Shahid
2018-01-01
Bacterial flagellar motility, an important virulence factor, is energized by a rotary motor localized within the flagellar basal body. The rotor module consists of a large framework (the C-ring), composed of the FliG, FliM and FliN proteins. FliN and FliM contacts the FliG torque ring to control the direction of flagellar rotation. We report that structure-based models constrained only by residue coevolution can recover the binding interface of atomic X-ray dimer complexes with remarkable accuracy (approx. 1 Å RMSD). We propose a model for FliM–FliN heterodimerization, which agrees accurately with homologous interfaces as well as in situ cross-linking experiments, and hence supports a proposed architecture for the lower portion of the C-ring. Furthermore, this approach allowed the identification of two discrete and interchangeable homodimerization interfaces between FliM middle domains that agree with experimental measurements and might be associated with C-ring directional switching dynamics triggered upon binding of CheY signal protein. Our findings provide structural details of complex formation at the C-ring that have been difficult to obtain with previous methodologies and clarify the architectural principle that underpins the ultra-sensitive allostery exhibited by this ring assembly that controls the clockwise or counterclockwise rotation of flagella. PMID:29892378
Herbort, Oliver; Büschelberger, Juliane; Janczyk, Markus
2018-03-01
In adults, the motor plans for object-directed grasping movements reflects the anticipated requirements of intended future object manipulations. This prospective mode of planning has been termed second-order planning. Surprisingly, second-order planning is thought to be fully developed only by 10 years of age, when children master seemingly more complex motor skills. In this study, we tested the hypothesis that already 5- and 6-year-old children consistently use second-order planning but that this ability does not become apparent in tasks that are traditionally used to probe it. We asked 5- and 6-year-olds and adults to grasp and rotate a circular dial in a clockwise or counterclockwise direction. Although children's grasp selections were less consistent on an intra- and inter-individual level than adults' grasp selections, all children adjusted their grasps to the upcoming dial rotations. By contrast, in an also administered bar rotation task, only a subset of children adjusted their grasps to different bar rotations, thereby replicating previous results. The results indicate that 5- and 6-year-olds consistently use second-order planning in a dial rotation task, although this ability does not become apparent in bar rotation tasks. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Schouten, H.; Smith, D. K.
2005-12-01
Magellan and Trinidad microplates developed at the Mesozoic triple junction between the Pacific, Phoenix and Farallon plates; the microplates were instrumental in the transition from a transform-ridge-transform to a ridge-ridge-ridge triple junction, which took several tens of millions of years. Contrasting qualitative models for the evolution of these microplates [e.g., Tamaki and Larson, 1988; Nakanishi et al., 1992] provide meager insight in the mechanics of microplate evolution and triple junction transformation. We propose a quantitative model for the evolution of Magellan and Trinidad microplates based on the edge-driven microplate kinematic principles [Schouten et al., 1993] that have provided successful quantitative solutions for the motions of Easter, Juan Fernandez, and Galapagos microplates. In these edge-driven solutions, two angular velocity vectors (describing motion between microplate and driving plates) are located on the microplate boundaries at the tip of rifts that propagate between microplate and driving plates. The rift propagation leaves pseudofaults on microplate and driving plates; the pseudofaults, which can be recognized in the seafloor topography, then become proxies for the trajectories of the angular velocity vectors from which a quantitative solution of microplate motion is derived. Using the estimated seafloor topography of the region and published marine magnetic anomaly lineations we propose the following scenario. The Magellan microplate rotated counterclockwise as evidenced by the fanning of magnetic lineations about the Magellan Trough and the rotation of the older Mid-Pac Mountains lineation set. The Trinidad microplate rotated clockwise relative to the Pacific plate to judge from the wedge-shaped region about the Trinidad trough that has its narrow tip on the Victoria fracture zone (recognized in the estimated seafloor topograpy). The clockwise motion of the Trinidad microplate was driven by Pacific-Phoenix motion; the counterclockwise motion of the Magellan microplate by Pacific-Farallon motion. Thus the Magellan trough opened between the counter-rotating Trinidad and Magellan microplates, similar to the opening of Hess Deep between two counter-rotating Galapagos microplates at the present Galapagos triple junction [Klein et al., 2005]. When the northeastward propagating rift between the Trindad microplate and the Phoenix plate and the southward propagating rift between the Magellan microplate and the Farallon plate broke through to the Phoenix-Farallon spreading center, a new ridge-ridge-ridge triple junction was established between the Pacific, Phoenix and Farallon plates and the Trinidad and Magellan microplates ceased rotating and were abandoned on the Pacific plate.
Latching Solenoid-Operated Ball Valve
NASA Technical Reports Server (NTRS)
Brudnicki, Myron
1994-01-01
Proposed solenoid-operated ball valve latches in open or closed position until energized to change position. Electrical energy consumed only during opening or closing motion. Valve ball contains central channel through which fluid could flow. Made of highly magnetically permeable steel. When appropriate coil(s) energized by brief pulse (or pulses) of electrical current at appropriate polarity, ball rotates clockwise until permanent magnets come to rest against hard stops in housing, and inlet and outlet ports aligned with central channel so fluid flows through valve. Magnets adhere to stops by magnetic attraction, latching valve in open position. To close valve, appropriate coil(s) energized by pulse (or pulses) of appropriate polarity to generate magnetic forces rotating ball counterclockwise until magnets make contact with hard stops, and inlet and outlet ports sealed.
NASA Astrophysics Data System (ADS)
Cengiz Cinku, M.; Karabulut, S.; Parlak, O.; Cabuk, B. S.; Ustaömer, T.; Hisarli, M. Z.
2016-12-01
Two E-W trending ophiolite belts crop out in SE Turkey, The southerly located ophiolites (Hatay, Koçali) were emplaced onto the Arabian Platform in Late Cretaceous whereas the northerly located ophiolites (Göksun, İspendere, Kömürhan, Guleman) were underthrust the S Tauride margin (i.e. Malatya-Keban Platform) in Late Cretaceous. Here we report our first paleomagnetic results from 155 different sites which was was focused on to the sheeted dyke complex, cumulate gabbros and extrusive sequences of each ophiolite from the N and S belts, while the cover units where sampled to distinguish emplacement related tectonic rotations from post-emplacement tectonic rotations. Rock magnetic experiments showed evidence of magnetite/titanomagnetite as the main magnetic carriers at the majority of sites. Progressive thermal and alternating demagnetization revealed that the characteristic remanent component is removed between 500 and 580 °C or 30-100 mT, respectively. Our new paleomagnetic results from the ophiolitic rocks emplaced in Arabian platform and the SE Anatolia show important implications to the spreading centre of the former ocean (s). Large counterclockwise rotations up to 100° are obtained from the sheeded dykes of the Hatay ophiolite in the Arabian plate with a paleolatitude of 16°, in contrast to the sheeded dykes of the Göksun ophiolite emplaced in the SE Anatolian with clockwise rotation of 90° and a paleolatitude of 22°. The relative movement of the ophiolitic series show their emplacement in the different zones. This study was financially supported by the project of the Scientific and Technical Research Council of Turkey (TUBITAK) with Project number 114R024.
A Simple Two Aircraft Conflict Resolution Algorithm
NASA Technical Reports Server (NTRS)
Chatterji, Gano B.
1999-01-01
Conflict detection and resolution methods are crucial for distributed air-ground traffic management in which the crew in the cockpit, dispatchers in operation control centers and air traffic controllers in the ground-based air traffic management facilities share information and participate in the traffic flow and traffic control imctions.This paper describes a conflict detection and a conflict resolution method. The conflict detection method predicts the minimum separation and the time-to-go to the closest point of approach by assuming that both the aircraft will continue to fly at their current speeds along their current headings. The conflict resolution method described here is motivated by the proportional navigation algorithm. It generates speed and heading commands to rotate the line-of-sight either clockwise or counter-clockwise for conflict resolution. Once the aircraft achieve a positive range-rate and no further conflict is predicted, the algorithm generates heading commands to turn back the aircraft to their nominal trajectories. The speed commands are set to the optimal pre-resolution speeds. Six numerical examples are presented to demonstrate the conflict detection and resolution method.
NASA Technical Reports Server (NTRS)
2004-01-01
This animation shows the view from the front hazard avoidance cameras on the Mars Exploration Rover Spirit as the rover turns 45 degrees clockwise. This maneuver is the first step in a 3-point turn that will rotate the rover 115 degrees to face west. The rover must make this turn before rolling off the lander because airbags are blocking it from exiting off the front lander petal. Before this crucial turn could take place, engineers instructed the rover to cut the final cord linking it to the lander. The turn took around 30 minutes to complete.
NASA Technical Reports Server (NTRS)
2004-01-01
This animation shows the view from the rear hazard avoidance cameras on the Mars Exploration Rover Spirit as the rover turns 45 degrees clockwise. This maneuver is the first step in a 3-point turn that will rotate the rover 115 degrees to face west. The rover must make this turn before rolling off the lander because airbags are blocking it from exiting from the front lander petal. Before this crucial turn took place, engineers instructed the rover to cut the final cord linking it to the lander. The turn took around 30 minutes to complete.
The DESIRE Airborne gravity project in the Dead Sea Basin and 3D numerical gravity modeling
NASA Astrophysics Data System (ADS)
Choi, Sungchan; Götze, Hans-Jürgen; Meyer, Uwe; Desire-Group
2010-05-01
This geo-scientific research focuses on the geological setting of the Dead Sea Transform (DST) and the Dead Sea Basin (DSB) and its resulting pull-apart basins. Since the late 1970s, crustal scale geophysical experiments have been carried out in this region. However, the nature of the crust underlying the eastern and western shoulders of the DSB and underneath the DST itself is still a hotly debated topic among researchers. To address one of the central questions of plate tectonics - How do large transform systems work and what are their typical features? - An international geoscientific Dead Sea Integrated Research project (DESIRE) is being conducted by colleagues from Germany, Israel, Palestine, and Jordan. In order to provide a high resolution gravity database that support 3D numerical modeling and hence a more comprehensive understanding of the nature and segmentation of the DST, an airborne gravity survey as a part of the DESIRE project has been carried out from February to March 2007. The airborne gravity survey covered the DST from Elat/Aqaba in the South to the northern rim of the Dead Sea. The low speed and terrain-following helicopter gravity flights were performed to acquire the highest possible data quality. In total, 32 north-south profiles and 16 west-east profiles crossing the DST have been measured. Most of the profiles concentrated in areas that lacked terrestrial gravity data coverage, e. g. over the shoulders of the DSB. The airborne gravity data are merged with existing conventional (terrestrial) data sets to provide a seamless gravity map of the area of interest. The results of the 3D gravity modelling based the GPS analysis, magnetic field characters, seismic researches and analysis of earthquake data allow us to propose that (1) the DSB is divided into two tectonic blocks by the region between the Lisan peninsula and the southern margin of the northern DSB and (2) the tectonic system in the DSB is defined as a counter-clockwise rotating pull apart basin due to the ‘Riedel flaking', by which the northern DSB is rotated counter-clockwise from the region and the southern DSB to the opposite direction. The salt diapir below the Dead Sea is suspected to be migrated from the Lisan peninsula to present region by the rotation of the northern DSB, while the Sedom diapir is extended to the SE direction. The Almacik flake along the North Anatolian fault, Turkey is probably another example of such basin.
Paleomagnetism and the assembly of the Mexican subcontinent.
NASA Astrophysics Data System (ADS)
Molina-Garza, R. S.
2008-05-01
The paleomagnetic database for Mexico is still small, but using available data and new results paleomagnetic data can be used to support the following hypothesis: (1) Jurassic anticlockwise rotation of the Chiapas massif and the Yucatan peninsula from a position in the northwest interior of the Golf of Mexico; (2) apparent stability of the Tampico and Coahuila blocks respect to North America for Late Triassic and Jurassic time, allowing for local vertical axis rotations attributed to Cenozoic deformation; (3) clockwise rotation of the Caborca block and the adjacent Jurassic continental arc, without significant north to south latitudinal displacement, between Middle Jurassic and Early Cretaceous time (which argues against the Mojave-Sonora megashear model); and, (4) the apparent accretion of the Guerrero terrane to mainland Mexico after clockwise rotation and transport from a more southern latitude. Paleomagnetic data for the southern Mexico block (SMB) are still difficult to incorporate in reconstructions of western equatorial Pangea. Paleomagnetic data for remagnetized Lower Permian strata and primary directions in igneous rocks of the SMB (crystalline terranes of Oaxaca and Acatlan) suggest stability with respect to North America, which is not consistent with reconstruction of South America closing the Golf region. Alternative explanations require a position for the SMB similar to its present location but at more westerly longitudes. We propose that terranes of the SMB reach their Mesozoic position through mechanisms of extrusion tectonics. Interpretation of Jurassic data for southern Mexico is hindered by incomplete knowledge of the North American APWP and rapid northward drift of the continent. Nonetheless, any model for the evolution of southern Mexico must consider that paleomagnetic data indicate internal deformation of Oaxaquia in pre-Cretaceous time. Paleomagnetic directions reported for Jurassic strata of the Tlaxiaco basin in Oaxaca are interpreted as secondary magnetizations, as they record the same inclination as remagnetized mid-Cretaceous carbonate rocks in the region. Thus previously inferred more northern latitudes for the SMB in Jurassic time are equivocal. The assembly of Mexico is thus the result of Lower Permian tectonics (during and following the Ouachita collision), Late Triassic-Middle Jurassic tectonics (during break-up of Pangea and opening of the Golf of Mexico); and Middle-Upper Cretaceous Cordilleran style terrane accretion.
NASA Astrophysics Data System (ADS)
Meijers, Maud J. M.; van Hinsbergen, Douwe J. J.; Dekkers, Mark J.; Altıner, Demir; Kaymakcı, Nuretdin; Langereis, Cor G.
2011-03-01
The Turkish Anatolide-Tauride block rifted away from the northern margin of Gondwana in the Triassic, which gave way to the opening of the southern Neo-Tethys. By the late Palaeocene to Eocene, it collided with the southern Eurasian margin, leading to the closure of the northern Neo-Tethys ocean. To determine the position of the Anatolide-Tauride block with respect to the African and Eurasian margin we carried out a palaeomagnetic study in the central Taurides belt, which constitutes the eastern limb of the Isparta Angle. The sampled sections comprise Carboniferous to Palaeocene rocks (mainly limestones). Our data suggest that all sampled rocks are remagnetized during the late Palaeocene to Eocene phase of folding and thrusting event, related to the collision of the Anatolide-Tauride block with Eurasia. To further test the possibility of remagnetization, we use a novel end-member modelling approach on 174 acquired isothermal remanent magnetization (IRM) curves. We argue that the preferred three end-member model confirms the proposed remagnetization of the rocks. Comparing our data to the post-Eocene declination pattern in the central Tauride belt, we conclude that our clockwise rotations are in agreement with data from other studies. After combining our results with previously published data from the Isparta Angle (that includes our study area), we have reasons to cast doubt on the spatial and temporal extent of an earlier reported early to middle Miocene remagnetization event. We argue that the earlier reported remagnetized directions from Triassic rocks—in tilt corrected coordinates—from the southwestern Antalya Nappes (western Taurides), are in good agreement with other studies from the area that show a primary origin of their characteristic remanent magnetization. This implies that we document a clockwise rotation for the southwestern Antalya Nappes since the Triassic that is remarkably similar to the post-Eocene (˜40°) rotation of the central Taurides. For the previously published results that are clearly remagnetized, we argue that their remagnetization has occurred in the Palaeocene to Eocene.
Paleomagnetic reconstruction of the Neotethyan Suture in Central Anatolia (Turkey)
NASA Astrophysics Data System (ADS)
Ozkaptan, M.; Gulyuz, E.; Kaymakci, N.; Langereis, C. G.
2016-12-01
The consumption of the Neo-Tethyan Ocean and the accretion of intervening continental blocks such as the Taurides and Kırşehir Block in the south and the Pontides in the north since the Mesozoic occurred along two sutures. The İzmir-Ankara Suture Zone (IASZ) between the Pontides in the north and the Taurides in the south and Intra-Tauride suture Zone (ITSZ) between the Taurides and the Kırşehir block meets around the Haymana Basin. The IASZ follows roughly an E-W trend and makes a sharp bend of approximately of 90° along the western margin of the Çankırı Basin. The ITSZ, on the other hand, follows a NW-SE trend parallel to the Tuz Gölü Fault Zone and overprinted by the structures related to the İASZ in the north. From West to East; the Haymana, Tuz Gölü and Çankırı basins straddle these suture zones and are developed in relation to the subduction and collision processes, which make them invaluable for unraveling deformation history and evolution of the Neotethys. In this regard we have conducted a very detailed paleomagnetic study to determine vertical axis rotations in the region, mainly on the Late Cretaceous to Recent infill of these basins. Results have shown that the region undergone strong clockwise (CW) and counter-clockwise (CCW) rotations, up to ±90° in places, resulting in the present geometry of the region. The central part of the Haymana Basin rotated as much as 90° CCW sense while its northern parts and the Tuz Gölü basin rotated 30° CW sense, which contradicts with almost all the published paleomagnetic results from the region. The restored geometries, based on new paleomagnetic data indicate that Haymana, Tuz Gölü basins and the SW margin of the Çankırı Basin were initially oriented in N-S direction prior to the Eocene. These results indicate that the most of the paleogeographical maps and evolutionary scenarios and models proposed for the region previously requires major re-thinking and serious revisions.
Ikehata, Jun-Ichi; Shinomiya, Kazufusa; Kobayashi, Koji; Ohshima, Hisashi; Kitanaka, Susumu; Ito, Yoichiro
2004-02-06
The effect of Coriolis force on the counter-current chromatographic separation was studied using centrifugal partition chromatography (CPC) with four different two-phase solvent systems including n-hexane-acetonitrile (ACN); tert-butyl methyl ether (MtBE)-aqueous 0.1% trifluoroacetic acid (TFA) (1:1); MtBE-ACN-aqueous 0.1% TFA (2:2:3); and 12.5% (w/w) polyethylene glycol (PEG) 1000-12.5% (w/w) dibasic potassium phosphate. Each separation was performed by eluting either the upper phase in the ascending mode or the lower phase in the descending mode, each in clockwise (CW) and counterclockwise column rotation. Better partition efficiencies were attained by the CW rotation in both mobile phases in all the two-phase solvent systems examined. The mathematical analysis also revealed the Coriolis force works favorably under the CW column rotation for both mobile phases. The overall results demonstrated that the Coriolis force produces substantial effects on CPC separation in both organic-aqueous and aqueous-aqueous two-phase systems.
The swimming of a perfect deforming helix
NASA Astrophysics Data System (ADS)
Koens, Lyndon; Zhang, Hang; Mourran, Ahmed; Lauga, Eric
2017-11-01
Many bacteria rotate helical flagellar filaments in order to swim. When at rest or rotated counter-clockwise these flagella are left handed helices but they undergo polymorphic transformations to right-handed helices when the motor is reversed. These helical deformations themselves can generate motion, with for example Rhodobacter sphaeroides using the polymorphic transformation of the flagellum to generate rotation, or Spiroplasma propagating a change of helix handedness across its body's length to generate forward motion. Recent experiments reported on an artificial helical microswimmer generating motion without a propagating change in handedness. Made of a temperature sensitive gel, these swimmers moved by changing the dimensions of the helix in a non-reciprocal way. Inspired by these results and helix's ubiquitous presence in the bacterial world, we investigate how a deforming helix moves within a viscous fluid. Maintaining a single handedness along its entire length, we discuss how a perfect deforming helix can create a non-reciprocal swimming stroke, identify its principle directions of motion, and calculate the swimming kinematics asymptotically.
Dynamic Receptor Team Formation Can Explain the High Signal Transduction Gain in Escherichia coli
NASA Astrophysics Data System (ADS)
Albert, R.; Chiu, Y.; Othmer, H.
2004-05-01
Evolution has provided many organisms with sophisticated sensory systems that enable them to respond to signals in their environment. The response frequently involves alteration in the pattern of movement, such as the chemokinesis of the bacterium Escherichia coli, which swims by rotating its flagella. When rotated counterclockwise (CCW) the flagella coalesce into a propulsive bundle, producing a relatively straight ``run'', and when rotated clockwise (CW) they fly apart, resulting in a ``tumble'' which reorients the cell with little translocation. A stochastic process generates the runs and tumbles, and in a chemoeffector gradient runs that carry the cell in a favorable direction are extended. The overall structure of the signal transduction pathways is well-characterized in E. coli, but important details are still not understood. Only recently has a source of gain in the signal transduction network been identified experimentally, and here we present a mathematical model based on dynamic assembly of receptor teams that can explain this observation.
Hu, Jian Zhi [Richland, WA; Sears, Jr., Jesse A.; Hoyt, David W [Richland, WA; Wind, Robert A [Kennewick, WA
2009-05-19
Described are a "Discrete Magic Angle Turning" (DMAT) system, devices, and processes that combine advantages of both magic angle turning (MAT) and magic angle hopping (MAH) suitable, e.g., for in situ magnetic resonance spectroscopy and/or imaging. In an exemplary system, device, and process, samples are rotated in a clockwise direction followed by an anticlockwise direction of exactly the same amount. Rotation proceeds through an angle that is typically greater than about 240 degrees but less than or equal to about 360 degrees at constant speed for a time applicable to the evolution dimension. Back and forth rotation can be synchronized and repeated with a special radio frequency (RF) pulse sequence to produce an isotropic-anisotropic shift 2D correlation spectrum. The design permits tubes to be inserted into the sample container without introducing plumbing interferences, further allowing control over such conditions as temperature, pressure, flow conditions, and feed compositions, thus permitting true in-situ investigations to be carried out.
Contemporary deformation in the Yakima fold and thrust belt estimated with GPS
NASA Astrophysics Data System (ADS)
McCaffrey, Robert; King, Robert W.; Wells, Ray E.; Lancaster, Matthew; Miller, M. Meghan
2016-10-01
Geodetic, geologic and palaeomagnetic data reveal that Oregon (western USA) rotates clockwise at 0.3 to 1.0° Ma-1 (relative to North America) about an axis near the Idaho-Oregon-Washington border, while northeast Washington is relatively fixed. This rotation has been going on for at least 15 Ma. The Yakima fold and thrust belt (YFTB) forms the boundary between northern Oregon and central Washington where convergence of the clockwise-rotating Oregon block is apparently accommodated. North-south shortening across the YFTB has been thought to occur in a fan-like manner, increasing in rate to the west. We obtained high-accuracy, high-density geodetic GPS measurements in 2012-2014 that are used with earlier GPS measurements from the 1990s to characterize YFTB kinematics. The new results show that the deformation associated with the YFTB starts at the Blue Mountains Anticline in northern Oregon and extends north beyond the Frenchman Hills in Washington, past the epicentre of the 1872 Mw 7.0 Entiat earthquake to 49°N. The north-south strain rate across the region is 2 to 3 × 10-9 yr-1 between the volcanic arc and the eastern edge of the YFTB (241.0°E); east of there it drops to about 10-9 yr-1. At the eastern boundary of the YFTB, faults and earthquake activity are truncated by a north-trending, narrow zone of deformation that runs along the Pasco Basin and Moses Lake regions near 240.9°E. This zone, abutting the Department of Energy Hanford Nuclear Reservation, accommodates about 0.5 mm yr-1 of east to northeast shortening. A similar zone of N-trending transpression is seen along 239.9°E where there is a change in the strike of the Yakima folds. The modern deformation of the YFTB is about 600 km wide from south to north and internally may be controlled by pre-existing crustal structure.
Contemporary deformation in the Yakima fold and thrust belt estimated with GPS
McCaffrey, Robert; King, Robert W.; Wells, Ray; Lancaster, Matthew; Miller, M. Meghan
2016-01-01
Geodetic, geologic and palaeomagnetic data reveal that Oregon (western USA) rotates clockwise at 0.3 to 1.0° Ma−1 (relative to North America) about an axis near the Idaho–Oregon–Washington border, while northeast Washington is relatively fixed. This rotation has been going on for at least 15 Ma. The Yakima fold and thrust belt (YFTB) forms the boundary between northern Oregon and central Washington where convergence of the clockwise-rotating Oregon block is apparently accommodated. North–south shortening across the YFTB has been thought to occur in a fan-like manner, increasing in rate to the west. We obtained high-accuracy, high-density geodetic GPS measurements in 2012–2014 that are used with earlier GPS measurements from the 1990s to characterize YFTB kinematics. The new results show that the deformation associated with the YFTB starts at the Blue Mountains Anticline in northern Oregon and extends north beyond the Frenchman Hills in Washington, past the epicentre of the 1872 Mw 7.0 Entiat earthquake to 49°N. The north–south strain rate across the region is 2 to 3 × 10−9 yr−1 between the volcanic arc and the eastern edge of the YFTB (241.0°E); east of there it drops to about 10−9 yr−1. At the eastern boundary of the YFTB, faults and earthquake activity are truncated by a north-trending, narrow zone of deformation that runs along the Pasco Basin and Moses Lake regions near 240.9°E. This zone, abutting the Department of Energy Hanford Nuclear Reservation, accommodates about 0.5 mm yr−1 of east to northeast shortening. A similar zone of N-trending transpression is seen along 239.9°E where there is a change in the strike of the Yakima folds. The modern deformation of the YFTB is about 600 km wide from south to north and internally may be controlled by pre-existing crustal structure.
NASA Astrophysics Data System (ADS)
Aldrich, M. J.; Adams, Andrew I.; Escobar, Carlos
1991-03-01
The structural geology of the Platanares geothermal site in western Honduras, located about 25 km south of the northern boundary of the Caribbean plate, is the result of post Early Miocene extensional deformation. Normal faults, many with listric geometries, are numerous throughout the area. Strike-slip faulting has mostly occurred on reactived normal faults. Analysis of the fault slip data shows an older minimum principal stress, σ 3, oriented approximately N-S and a contemporary σ 3 tensional and oriented ENE-WSW. The analysis suggests that σ 3 has rotated clockwise since the Early Miocene although some of the change in orientation of σ 3 might reflect counterclockwise rotation of the crust about a vertical axis. The σ 1 and σ 2 stress axes apparently switched recently, with the σ 3 axis remaining unchanged. These results are consistent with a tectonic model in which the east-drifting Caribbean plate is pinned against North America by the subducting Cocos plate (Malfait and Dinkleman, 1972) and the northern and southern margins of the Caribbean plate are broad, mobile zones that are undergoing counterclockwise and clockwise rotations respectively (Gose, 1985). The majority of the hot springs at Platanares lie along Quebrada del Agua Caliente. Fractures control the movement of the geothermal waters. Hot springs occur along joints and faults and, in places, hot water flows laterally along bedding planes. If the fractures also control the movement of water at depth then the source reservoir of the geothermal waters may be located northeast of the principal hot spring areas along the quebrada since the majority of the faults dip in that direction. However, if the fault that seems to have controlled the development of Quebrada del Agua Caliente is vertical as inferred then the main reservoir may lie directly beneath this drainage.
Ileri, Zehra; Basciftci, Faruk Ayhan
2015-03-01
To investigate the short-term effects of the asymmetric rapid maxillary (ARME) appliance on the vertical, sagittal, and transverse planes in patients with true unilateral posterior crossbite. Subjects were divided into two groups. The treatment group was comprised of 21 patients with unilateral posterior crossbite (mean age = 13.3 ± 2.1 years). Members of this group were treated with the ARME appliance. The control group was comprised of 17 patients with Angle Class I who were kept under observation (mean age = 12.3 ± 0.8 years). Lateral and frontal cephalograms were taken before the expansion (T1), immediately after expansion (T2), and at postexpansion retention (T3) in the treatment group and at preobservation (T1) and postobservation (T2) in the control group. A total of 34 measurements were assessed on cephalograms. For statistical analysis, the Wilcoxon test and analysis of covariance were used. The ARME appliance produced significant increases in nasal, maxillary base, upper arch, and lower arch dimensions (P < .01) and a clockwise rotation of the occlusal plane (P = .001). The ARME appliance created asymmetric increments in the transversal dimensions of the nose, maxilla, and upper arch in the short term. Asymmetric expansion therapy for subjects with unilateral maxillary deficiency may provide satisfactory outcomes in adolescents, with the exception of mandibular arch expansion. The triangular pattern of expansion caused clockwise rotation of the mandible and the occlusal plane and produced significant alterations in the vertical facial dimensions, whereas it created no displacement in maxilla in the sagittal plane.
Hay, A D; Singh, G D
2000-01-01
To analyze correction of mandibular deformity using an inverted L osteotomy and autogenous bone graft in patients exhibiting unilateral craniofacial microsomia (CFM), thin-plate spline analysis was undertaken. Preoperative, early postoperative, and approximately 3.5-year postoperative posteroanterior cephalographs of 15 children (age 10+/-3 years) with CFM were scanned, and eight homologous mandibular landmarks digitized. Average mandibular geometries, scaled to an equivalent size, were generated using Procrustes superimposition. Results indicated that the mean pre- and postoperative mandibular configurations differed statistically (P<0.05). Thin-plate spline analysis indicated that the total spline (Cartesian transformation grid) of the pre- to early postoperative configuration showed mandibular body elongation on the treated side and inferior symphyseal displacement. The affine component of the total spline revealed a clockwise rotation of the preoperative configuration, whereas the nonaffine component was responsible for ramus, body, and symphyseal displacements. The transformation grid for the early and late postoperative comparison showed bilateral ramus elongation. A superior symphyseal displacement contrasted with its earlier inferior displacement, the affine component had translocated the symphyseal landmarks towards the midline. The nonaffine component demonstrated bilateral ramus lengthening, and partial warps suggested that these elongations were slightly greater on the nontreated side. The affine component of the pre- and late postoperative comparison also demonstrated a clockwise rotation. The nonaffine component produced the bilateral ramus elongations-the nontreated side ramus lengthening slightly more than the treated side. It is concluded that an inverted L osteotomy improves mandibular morphology significantly in CFM patients and permits continued bilateral ramus growth. Copyright 2000 Wiley-Liss, Inc.
Perception of Fechner Illusory Colors in Alzheimer Disease Patients.
Kaubrys, Gintaras; Bukina, Vera; Bingelytė, Ieva; Taluntis, Vladas
2016-11-30
BACKGROUND Alzheimer disease (AD) primarily affects cognition. A variety of visual disorders was established in AD. Fechner illusory colors are produced by a rotating disk with a black and white pattern. The purpose of our research was to explore the perception of illusory colors in AD. MATERIAL AND METHODS W recruited 40 AD patients (MMSE ≥14) and 40 normal controls (CG group) matched by age, education, gender in this prospective, cross-sectional, case-control study. An achromatic Benham's disk attached to a device to control the speed and direction of rotation was used to produce illusory colors. Primary, secondary, and tertiary RGB system colors were used for matching of illusory and physical colors. RESULTS Subjects in the AD group perceived less illusory colors in 5 arcs (p<0.05) of the 8 arcs assessed. The biggest difference was found between AD and CG groups for pure blue (χ²=26.87, p<0.001 clockwise, χ²=22.75, p<0.001 counter-clockwise). Groups did not differ in perception of pure yellow opponent colors (p>0.05). Mixed colors of the blue-yellow axis were perceived less often in AD, but more frequently than pure blue (#0000FF). The sequence of colors on Benham's disk followed a complex pattern, different from the order of physical spectral colors and opponent processes-based colors. CONCLUSIONS AD patients retained reduced perception of illusory colors. The perception of pure blue illusory color is almost absent in AD. The asymmetrical shift to the yellow opponent is observed in AD with red prevailing over green constituent. This may indicate cortical rather than retinal impairment.
Langmuir circulation inhibits near-surface water turbulence
NASA Astrophysics Data System (ADS)
Schultz, Colin
2012-07-01
In the surface ocean, breaking waves are a major source of air bubbles and turbulent kinetic energy. During the presence of a consistent surface wind, these wave-generated bubbles, along with other surface material like seaweed or foam, can be drawn into long rows along the surface. Driving this organization is Langmuir circulation, a phenomenon in which the wind and waves cause surface waters to rotate helically, moving like a wire wrapped around a pole in the windward direction. These spiral currents oscillate between clockwise and counterclockwise rotations, such that in some places the surface waters are pushed together and in others they are pulled apart. Researchers have previously found that at sites of convergence the bubbles produced by breaking waves are pushed to depths of 15 meters or more, with important implications for air-sea gas mixing and other processes.
Burgess, Paula A.
2007-01-01
Since September 11, 2001, and the consequent restructuring of the US preparedness and response activities, public health workers are increasingly called on to activate a temporary round-the-clock staffing schedule. These workers may have to make key decisions that could significantly impact the health and safety of the public. The unique physiological demands of rotational shift work and night shift work have the potential to negatively impact decisionmaking ability. A responsible, evidence-based approach to scheduling applies the principles of circadian physiology, as well as unique individual physiologies and preferences. Optimal scheduling would use a clockwise (morning-afternoon-night) rotational schedule: limiting night shifts to blocks of 3, limiting shift duration to 8 hours, and allowing 3 days of recuperation after night shifts. PMID:17413074
Representational momentum in older adults.
Piotrowski, Andrea S; Jakobson, Lorna S
2011-10-01
Humans have a tendency to perceive motion even in static images that simply "imply" movement. This tendency is so strong that our memory for actions depicted in static images is distorted in the direction of implied motion - a phenomenon known as representational momentum (RM). In the present study, we created an RM display depicting a pattern of implied (clockwise) rotation of a rectangle. Young adults viewers' memory of the final position of the test rectangle was biased in the direction of continuing rotation, but older adults did not show a similar memory bias. We discuss several possible explanations for this group difference, but argue that the failure of older adults to shown an RM effect most likely reflects age-related changes in areas of the brain involved in processing real and implied motion. Copyright © 2011 Elsevier Inc. All rights reserved.
Vection in patients with glaucoma.
Tarita-Nistor, Luminita; Hadavi, Shahriar; Steinbach, Martin J; Markowitz, Samuel N; González, Esther G
2014-05-01
Large moving scenes can induce a sensation of self-motion in stationary observers. This illusion is called "vection." Glaucoma progressively affects the functioning of peripheral vision, which plays an important role in inducing vection. It is still not known whether vection can be induced in these patients and, if it can, whether the interaction between visual and vestibular inputs is solved appropriately. The aim of this study was to investigate vection responses in patients with mild to moderate open-angle glaucoma. Fifteen patients with mild to moderate glaucoma and 15 age-matched controls were exposed to a random-dot pattern at a short viewing distance and in a dark room. The pattern was projected on a large screen and rotated clockwise with an angular speed of 45 degrees per second to induce a sensation of self-rotation. Vection latency, vection duration, and objective and subjective measures of tilt were obtained in three viewing conditions (binocular, and monocular with each eye). Each condition lasted 2 minutes. Patients with glaucoma had longer vection latencies (p = 0.005) than, but the same vection duration as, age-matched controls. Viewing condition did not affect vection responses for either group. The control group estimated the tilt angle as being significantly larger than the actual maximum tilt angle measured with the tilt sensor (p = 0.038). There was no relationship between vection measures and visual field sensitivity for the glaucoma group. These findings suggest that, despite an altered visual input that delays vection, the neural responses involved in canceling the illusion of self-motion remain intact in patients with mild peripheral visual field loss.
Minor, Scott A.; Hudson, Mark R.; Caine, Jonathan S.; Thompson, Ren A.
2013-01-01
The structural geometry of transfer and accommodation zones that relay strain between extensional domains in rifted crust has been addressed in many studies over the past 30 years. However, details of the kinematics of deformation and related stress changes within these zones have received relatively little attention. In this study we conduct the first-ever systematic, multi-basin fault-slip measurement campaign within the late Cenozoic Rio Grande rift of northern New Mexico to address the mechanisms and causes of extensional strain transfer associated with a broad accommodation zone. Numerous (562) kinematic measurements were collected at fault exposures within and adjacent to the NE-trending Santo Domingo Basin accommodation zone, or relay, which structurally links the N-trending, right-stepping en echelon Albuquerque and Española rift basins. The following observations are made based on these fault measurements and paleostresses computed from them. (1) Compared to the typical northerly striking normal to normal-oblique faults in the rift basins to the north and south, normal-oblique faults are broadly distributed within two merging, NE-trending zones on the northwest and southeast sides of the Santo Domingo Basin. (2) Faults in these zones have greater dispersion of rake values and fault strikes, greater dextral strike-slip components over a wide northerly strike range, and small to moderate clockwise deflections of their tips. (3) Relative-age relations among fault surfaces and slickenlines used to compute reduced stress tensors suggest that far-field, ~E-W–trending σ3 stress trajectories were perturbed 45° to 90° clockwise into NW to N trends within the Santo Domingo zones. (4) Fault-stratigraphic age relations constrain the stress perturbations to the later stages of rifting, possibly as late as 2.7–1.1 Ma. Our fault observations and previous paleomagnetic evidence of post–2.7 Ma counterclockwise vertical-axis rotations are consistent with increased bulk sinistral-normal oblique shear along the Santo Domingo rift segment in Pliocene and later time. Regional geologic evidence suggests that the width of active rift faulting became increasingly confined to the Santo Domingo Basin and axial parts of the adjoining basins beginning in the late Miocene. We infer that the Santo Domingo clockwise stress perturbations developed coevally with the oblique rift segment mainly due to mechanical interactions of large faults propagating toward each other from the adjoining basins as the rift narrowed. Our results suggest that negligible bulk strike-slip displacement has been accommodated along the north-trending rift during much of its development, but uncertainties in the maximum ages of fault slip do not allow us to fully evaluate and discriminate between earlier models that invoked northward or southward rotation and translation of the Colorado Plateau during early (Miocene) rifting.
Three-dimensional study of pelvic asymmetry on anatomical specimens and its clinical perspectives.
Boulay, Christophe; Tardieu, Christine; Bénaim, Charles; Hecquet, Jérome; Marty, Catherine; Prat-Pradal, Dominique; Legaye, Jean; Duval-Beaupère, Ginette; Pélissier, Jacques
2006-01-01
The aim of this study was to assess pelvic asymmetry (i.e. to determine whether the right iliac bone and the right part of the sacrum are mirror images of the left), both quantitatively and qualitatively, using three-dimensional measurements. Pelvic symmetry was described osteologically using a common reference coordinate system for a large sample of pelvises. Landmarks were established on 12 anatomical specimens with an electromagnetic Fastrak system. Seventy-one paired variables were tested with a paired t-test and a non-parametric test (Wilcoxon). A Pearson correlation matrix between the right and left values of the same variable was applied exclusively to values that were significantly asymmetric in order to calculate a dimensionless asymmetry index, ABGi, for each variable. Fifteen variables were significantly asymmetric and correlated with the right vs. left sides for the following anatomical regions: sacrum, iliac blades, iliac width, acetabulum and the superior lunate surface of the acetabulum. ABGi values above a threshold of +/- 4.8% were considered significantly asymmetric in seven variables of the pelvic area. Total asymmetry involving the right and the left pelvis seems to follow a spiral path in the pelvis; in the upper part, the iliac blades rotate clockwise, and in the lower part, the pubic symphysis rotates anticlockwise. Thus, pelvic asymmetry may be evaluated in clinical examinations by measuring iliac crest orientation.
Three-dimensional study of pelvic asymmetry on anatomical specimens and its clinical perspectives
Boulay, Christophe; Tardieu, Christine; Bénaim, Charles; Hecquet, Jérome; Marty, Catherine; Prat-Pradal, Dominique; Legaye, Jean; Duval-Beaupère, Ginette; Pélissier, Jacques
2006-01-01
The aim of this study was to assess pelvic asymmetry (i.e. to determine whether the right iliac bone and the right part of the sacrum are mirror images of the left), both quantitatively and qualitatively, using three-dimensional measurements. Pelvic symmetry was described osteologically using a common reference coordinate system for a large sample of pelvises. Landmarks were established on 12 anatomical specimens with an electromagnetic Fastrak system. Seventy-one paired variables were tested with a paired t-test and a non-parametric test (Wilcoxon). A Pearson correlation matrix between the right and left values of the same variable was applied exclusively to values that were significantly asymmetric in order to calculate a dimensionless asymmetry index, ABGi, for each variable. Fifteen variables were significantly asymmetric and correlated with the right vs. left sides for the following anatomical regions: sacrum, iliac blades, iliac width, acetabulum and the superior lunate surface of the acetabulum. ABGi values above a threshold of ± 4.8% were considered significantly asymmetric in seven variables of the pelvic area. Total asymmetry involving the right and the left pelvis seems to follow a spiral path in the pelvis; in the upper part, the iliac blades rotate clockwise, and in the lower part, the pubic symphysis rotates anticlockwise. Thus, pelvic asymmetry may be evaluated in clinical examinations by measuring iliac crest orientation. PMID:16420376
Surgical Orthodontic Treatment for Open Bite in Noonan Syndrome Patient: A Case Report.
Kawakami, Masayoshi; Yamamoto, Kazuhiko; Shimomura, Tadahiro; Kirita, Tadaaki
2016-03-01
Noonan syndrome, characterized by short stature, facial anomalies, and congenital heart defects, may also be associated with hematopoietic disorders. Craniofacial anomalies in affected patients include hypertelorism and severe open bite associated with masticatory dysfunction. We treated a Noonan syndrome patient with a skeletal open bite. Surgical orthodontic treatment including two-jaw surgery established a good occlusal relationship after correction of severe anemia. Both upper and lower incisors were moved to upright positions, while clockwise rotation of the palatal plane and decreased mandibular plane angle were accomplished. Lower masticatory activity may affect posttreatment occlusion in such cases.
Two-dimensional arbitrary nano-manipulation on a plasmonic metasurface.
Jiang, Min; Wang, Guanghui; Xu, Wenhao; Ji, Wenbin; Zou, Ningmu; Ho, Ho-Pui; Zhang, Xuping
2018-04-01
In this Letter, we report on a plasmonic nano-ellipse metasurface with the purpose of trapping and two-dimensional (2D) arbitrary transport of nanoparticles by means of rotating the polarization of an excitation beam. The locations of hot spots within a metasurface are polarization dependent, thus making it possible to turn on/off the adjacent hot spots and then convey the trapped target by rotating the incident polarization state. For the case of a metasurface with a unit cell of perpendicularly orientated nano-ellipses, the hot spots with higher intensities are located at both apexes of the nano-ellipse whose major axis is parallel to the direction of polarization. When the polarization gradually rotates to its counterpart direction, the trapped particle may move around the ellipse and transfer to the most adjacent ellipse, due to the unbalanced trap potentials around the nano-ellipse. Clockwise and counterclockwise rotation would guide the particle in a different direction, which makes it possible to convey the particle arbitrarily within the plasmonic metasurface by setting a time sequence of polarization rotation. As confirmed by the three-dimensional finite-difference time-domain analysis, our design offers a novel scheme of 2D arbitrary transport with nanometer accuracy, which could be used in many on-chip optofluidic applications.
Zhang, Yuan; Wang, Mei-qing; Ling, Wei
2005-10-01
To evaluate the resultant differences of stress distribution in bilateral condyle when occlusal loads were changed with teeth rotation. A three-dimensional FEA model containing human TMJ and left lower second premolar was developed using commercial FEA software ANSYS. Lower second premolar was applied with ICO occlusal loading in the load case 1. According to the same upper dentition in the load case 2, lower premolar was applied with occlusal loading when it was rotated 30 degree counter-clockwise in Frankfort horizontal plane level. In this two load cases,the different stress distributions of the condyle was investigated. The stress distribution of loading side condyle had changed abnormally when premolar rotation was performed. It had showed more disorderly than ICO loading in load case 1. In load case 1 the maximum main stress and Von Mises stress values increased from medial pole to lateral pole. In load case 2,the stress values mainly decreased from medial pole to lateral pole, but along the path there were some parts with values-increasing. The stress values of bilateral condyle in load case 2 were lower than that in load case 1, especially for the stress values of the opposite condyle. The stress distribution of loading side condyle got in disorder resulting from rotation of unilateral lower premolar.
NASA Astrophysics Data System (ADS)
Fazzito, Sabrina Y.; Rapalini, Augusto E.; Cortés, José M.; Terrizzano, Carla M.
2017-03-01
Palaeomagnetic data from poorly consolidated to non-consolidated late Cenozoic sediments along the central segment of the active El Tigre Fault (Central-Western Precordillera of the San Juan Province, Argentina) demonstrate broad cumulative deformation up to 450 m from the fault trace and reveal clockwise and anticlockwise vertical-axis rotations of variable magnitude. This deformation has affected in different amounts Miocene to late Pleistocene samples and indicates a complex kinematic pattern. Several inherited linear structures in the shear zone that are oblique to the El Tigre Fault may have acted as block boundary faults. Displacement along these faults may have resulted in a complex pattern of rotations. The maximum magnitude of rotation is a function of the age of the sediments sampled, with largest values corresponding to middle Miocene-lower Pliocene deposits and minimum values obtained from late Pleistocene deposits. The kinematic study is complemented by low-field anisotropy of magnetic susceptibility data to show that the local strain regime suggests a N-S stretching direction, subparallel to the strike of the main fault.
Lee, Lawrence K; Ginsburg, Michael A; Crovace, Claudia; Donohoe, Mhairi; Stock, Daniela
2010-08-19
The flagellar motor drives the rotation of flagellar filaments at hundreds of revolutions per second, efficiently propelling bacteria through viscous media. The motor uses the potential energy from an electrochemical gradient of cations across the cytoplasmic membrane to generate torque. A rapid switch from anticlockwise to clockwise rotation determines whether a bacterium runs smoothly forward or tumbles to change its trajectory. A protein called FliG forms a ring in the rotor of the flagellar motor that is involved in the generation of torque through an interaction with the cation-channel-forming stator subunit MotA. FliG has been suggested to adopt distinct conformations that induce switching but these structural changes and the molecular mechanism of switching are unknown. Here we report the molecular structure of the full-length FliG protein, identify conformational changes that are involved in rotational switching and uncover the structural basis for the formation of the FliG torque ring. This allows us to propose a model of the complete ring and switching mechanism in which conformational changes in FliG reverse the electrostatic charges involved in torque generation.
Posturography of ataxia induced by Coriolis- and Purkinje-effects.
Fitger, C; Brandt, T
1982-02-01
Vestibular Coriolis- and Purkinje-effect, which are known to induce vertigo, were investigated with respect to body posture. One aim of this investigation was to provide information concerning clinical vertigo symptoms. Standing on a rotatable stabilometer, 25 healthy subjects had to execute lateral head tilts during (Coriolis), or after (Purkinje), rotation varied with different constant velocities. The conditions were varied with respect to eyes open vs. eyes closed, head upright vs. head tilt to the right and left, direction of rotation clockwise vs. counterclockwise, active vs. passive head tilt, and active vs. passive body rotation. The results supported the expectation that destabilization was less severe with open than with closed eyes and that sway amplitudes were increased after head tilt as well as with a higher velocity of rotation. The direction of the induced body shift was, as expected, opposite to the initial vestibular stimulus. A forward shift after stop without head tilt was frequently found, being independent of the previous direction of rotation. Reported perceptions coincided mostly not with the initial vestibular signal but rather with the actual movement of compensation. Active instead of passive movements did not produce clearly different effects. The Purkinje experiment appeared to be equivalent to the situation when a patient with an acute lesion of a horizontal vestibular canal bends his head. The stabilogram under this condition may allow a prediction of the side of the lesion.
A Simple Two Aircraft Conflict Resolution Algorithm
NASA Technical Reports Server (NTRS)
Chatterji, Gano B.
2006-01-01
Conflict detection and resolution methods are crucial for distributed air-ground traffic management in which the crew in, the cockpit, dispatchers in operation control centers sad and traffic controllers in the ground-based air traffic management facilities share information and participate in the traffic flow and traffic control functions. This paper describes a conflict detection, and a conflict resolution method. The conflict detection method predicts the minimum separation and the time-to-go to the closest point of approach by assuming that both the aircraft will continue to fly at their current speeds along their current headings. The conflict resolution method described here is motivated by the proportional navigation algorithm, which is often used for missile guidance during the terminal phase. It generates speed and heading commands to rotate the line-of-sight either clockwise or counter-clockwise for conflict resolution. Once the aircraft achieve a positive range-rate and no further conflict is predicted, the algorithm generates heading commands to turn back the aircraft to their nominal trajectories. The speed commands are set to the optimal pre-resolution speeds. Six numerical examples are presented to demonstrate the conflict detection, and the conflict resolution methods.
Space-based and object-centered gaze cuing of attention in right hemisphere-damaged patients.
Dalmaso, Mario; Castelli, Luigi; Priftis, Konstantinos; Buccheri, Marta; Primon, Daniela; Tronco, Silvia; Galfano, Giovanni
2015-01-01
Gaze cuing of attention is a well established phenomenon consisting of the tendency to shift attention to the location signaled by the averted gaze of other individuals. Evidence suggests that such phenomenon might follow intrinsic object-centered features of the head containing the gaze cue. In the present exploratory study, we aimed to investigate whether such object-centered component is present in neuropsychological patients with a lesion involving the right hemisphere, which is known to play a critical role both in orienting of attention and in face processing. To this purpose, we used a modified gaze-cuing paradigm in which a centrally placed head with averted gaze was presented either in the standard upright position or rotated 90° clockwise or anti-clockwise. Afterward, a to-be-detected target was presented either in the right or in the left hemifield. The results showed that gaze cuing of attention was present only when the target appeared in the left visual hemifield and was not modulated by head orientation. This suggests that gaze cuing of attention in right hemisphere-damaged patients can operate within different frames of reference.
Space-based and object-centered gaze cuing of attention in right hemisphere-damaged patients
Dalmaso, Mario; Castelli, Luigi; Priftis, Konstantinos; Buccheri, Marta; Primon, Daniela; Tronco, Silvia; Galfano, Giovanni
2015-01-01
Gaze cuing of attention is a well established phenomenon consisting of the tendency to shift attention to the location signaled by the averted gaze of other individuals. Evidence suggests that such phenomenon might follow intrinsic object-centered features of the head containing the gaze cue. In the present exploratory study, we aimed to investigate whether such object-centered component is present in neuropsychological patients with a lesion involving the right hemisphere, which is known to play a critical role both in orienting of attention and in face processing. To this purpose, we used a modified gaze-cuing paradigm in which a centrally placed head with averted gaze was presented either in the standard upright position or rotated 90° clockwise or anti-clockwise. Afterward, a to-be-detected target was presented either in the right or in the left hemifield. The results showed that gaze cuing of attention was present only when the target appeared in the left visual hemifield and was not modulated by head orientation. This suggests that gaze cuing of attention in right hemisphere-damaged patients can operate within different frames of reference. PMID:26300815
NASA Technical Reports Server (NTRS)
Vranish, John M. (Inventor)
1999-01-01
A screw-released roller brake including an input drive assembly, an output drive assembly, a plurality of locking sprags, a mechanical tripper nut for unlocking the sprags, and a casing therefor. The sprags consist of three dimensional (3-D) sprag members having pairs of contact surface regions which engage respective pairs of contact surface regions included in angular grooves or slots formed in the casing and the output drive assembly. The sprags operate to lock the output drive assembly to the casing to prevent rotation thereof in an idle mode of operation. In a drive mode of operation, the tripper is either self actuated or motor driven and is translated linearly up and down against a spline and at the limit of its travel rotates the sprags which unlock while coupling the input drive assembly to the output drive assembly so as to impart a turning motion thereto in either a clockwise or counterclockwise direction.
Misono, Kunio S; Ogawa, Haruo; Qiu, Yue; Ogata, Craig M
2005-06-01
The atrial natriuretic peptide (ANP) receptor is a single-span transmembrane receptor that is coupled to its intrinsic intracellular guanylate cyclase (GCase) catalytic activity. To investigate the mechanisms of hormone binding and signal transduction, we have expressed the extracellular hormone-binding domain of the ANP receptor (ANPR) and characterized its structure and function. The disulfide-bond structure, state of glycosylation, binding-site residues, chloride-dependence of ANP binding, dimerization, and binding stoichiometry have been determined. More recently, the crystal structures of both the apoANPR dimer and ANP-bound complex have been determined. The structural comparison between the two has shown that, upon ANP binding, two ANPR molecules in the dimer undergo an inter-molecular twist with little intra-molecular conformational change. This motion produces a Ferris wheel-like translocation of two juxtamembrane domains with essentially no change in the inter-domain distance. This movement alters the relative orientation of the two domains equivalent to counter-clockwise rotation of each by 24 degrees . These results suggest that transmembrane signaling by the ANP receptor is mediated by a novel hormone-induced rotation mechanism.
A rotating, expanding disk in the Wolf-Rayet star EZ Canis Majoris?
NASA Technical Reports Server (NTRS)
Schulte-Ladbeck, R. E.; Nordsieck, K. H.; Nook, M. A.; Magalhaes, A. M.; Taylor, M.
1990-01-01
The discovery of linear polarization changes across the extended wings of He II lines, mainly the strong 4-3 transition at 4686 A, in the WN5 star EZ CMa, is reported. When the polarization across the line profiles is plotted in the Stokes parameters plane, it traces loops clockwise from the blue wing through line center to the red, rather than straight lines. Such polarization loops are reminiscent of what is observed in the Balmer lines of Be stars. The continuum polarization in EZ CMa can be understood by an axisymmetric, electron-scattering envelope, with the decrease in polarization in He II being caused by an increase in absorptive opacity in the lines and dilution by unpolarized line emission, while the variations in position angle are due to the Doppler-shifted absorptive opacity and/or scattered line photons. As the sense of rotation in the loops is also independent of phase of this alleged Wolf-Rayet + compact binary, the polarized line profiles are the signature of a rotating, expanding wind geometry around a single star.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, W.E.; Krause, R.G.F.
1989-04-01
Stratigraphic and paleomagnetic studies have suggested that the western Transverse Ranges (WTR) microplate is allochthonous, and may have experienced translational and rotational motions. Present paleocurrent directions from the Upper Cretaceous Jalama Formation of the Santa Ynez Mountains are north-directed; these forearc sediments (Great Valley sequence) contain magmatic arc-derived conglomerate clasts from the Peninsular Ranges in southern California. Paleocurrents in the lower Eocene Juncal and Cozy Dell Formations are south-directed. This juxtaposition is best explained by 90/degrees/ or more of clockwise rotation of the WTR microplate, so that Upper Cretaceous forearc sediments sourced from the Peninsular Ranges magmatic arc were depositedmore » by west-directed currents. Eocene sediments were derived from an uplifted portion of the western basin margin and deposited by east-directed currents. Franciscan olistoliths in the Upper Cretaceous sediments indicate deposition adjacent to an accretionary wedge; conglomeratic clasts recycled from the Upper Cretaceous sequence, and radiolarian cherts and ophiolitic boulders in the Eocene strata indicate derivation from an outer accretionary ridge.« less
A new vestibulo-ocular reflex recording system designed for routine vestibular clinical use.
Funabiki, K; Naito, Y; Matsuda, K; Honjo, I
1999-01-01
A new vestibulo-ocular reflex (VOR) recording system was developed, which consists of an infrared eye camera, a small velocity sensor and a frequency modulator. Using this system, the head velocity signal was frequency modulated and simultaneously recorded as a sound signal on the audio track of a Hi8 video recorder with eye images. This device enabled recording of the VOR response in routine vestibular clinical practice. The reliability and effectiveness of this system were estimated by recording and analysing the VOR response against manually controlled rotation in normal subjects (n = 22) and in patients with unilateral severe vestibular hypofunction (n = 11). VOR gain on clockwise rotation viewed from the top was defined as R gain, and counterclockwise rotation as L gain. Directional preponderance (DP%) was also calculated. VOR gain towards the diseased side was significantly lower than that towards the intact side, and also significantly lower than that of normal subjects. DP% of unilateral vestibular hypofunction cases was significantly larger than that of normal subjects. These findings indicate that this VOR recording system reliably detects severe unilateral vestibular hypofunction.
Analysis of tectonic features in US southwest from Skylab photographs
NASA Technical Reports Server (NTRS)
Abdel-Gawad, M. (Principal Investigator); Tubbesing, L.
1975-01-01
The author has identified the following significant results. Skylab photographs were utilized to study faults and tectonic lines in selected areas of the U.S. Southwest. Emphasis was on elements of the Texas Zone in the Mojave Desert and the tectonic intersection in southern Nevada. Transverse faults believed to represent the continuation of the Texas Zone were found to be anomalous in strike. This suggests that the Mojave Desert block was rotated counterclockwise as a unit with the Sierra Nevada. Left-lateral strike-slip faults in Lake Mead area are interpreted as elements of the Wasatch tectonic zone; their anomalous trend indicates that the Lake Mead area has rotated clockwise with the Colorado Plateau. A tectonic model relating major fault zones to fragmentation and rotation of crustal blocks was developed. Detailed correlation of the high resolution S190B metric camera photographs with U-2 photographs and geologic maps demonstrates the feasibility of utilizing S190B photographs for the identification of geomorphic features associated with recent and active faults and for the assessment of seismic hazards.
Electromagnetic brake/clutch device
NASA Technical Reports Server (NTRS)
Vranish, John M. (Inventor)
1994-01-01
An electromagnetic brake/clutch device includes a drive shaft supported by at least one bearing for transmitting torque, a housing, affixed to prevent its rotation, surrounding the drive shaft, and an electromagnetically activated device within the housing to selectively prevent and allow rotation of the drive shaft. The electromagnetically activated device includes a plurality of cammed rollers to prevent counter-clockwise rotation of the drive shaft. The drive shaft includes a circumferential disk and the housing includes a reaction ring for engagement with the plurality of cammed rollers. The plurality of cammed rollers are released from engagement with the circumferential disk and the reaction ring by a plurality of tripping mechanisms within the housing. The tripping action uses the locking force to act as a release force merely by changing the boundary conditions of the roller interface angles. The tripping mechanisms include trippers for disengaging the plurality of cammed rollers and an anvil shaped portion for providing lateral movement of the trippers. The plurality of cammed rollers is preloaded to engagement with the circumferential disk and reaction ring by a spring, and is located with respect to an adjacent tripping mechanism with another spring.
NASA Astrophysics Data System (ADS)
Yoshida, Keisuke; Hasegawa, Akira; Saito, Tatsuhiko; Asano, Youichi; Tanaka, Sachiko; Sawazaki, Kaoru; Urata, Yumi; Fukuyama, Eiichi
2016-10-01
A shallow M7.3 event with a M6.5 foreshock occurred along the Futagawa-Hinagu fault zone in Kyushu, SW Japan. We investigated the spatiotemporal variation of the stress orientations in and around the source area of this 2016 Kumamoto earthquake sequence by inverting 1218 focal mechanisms. The results show that the σ3 axis in the vicinity of the fault plane significantly rotated counterclockwise after the M6.5 foreshock and rotated clockwise after the M7.3 main shock in the Hinagu fault segment. This observation indicates that a significant portion of the shear stress was released both by the M6.5 foreshock and M7.3 main shock. It is estimated that the stress release by the M6.5 foreshock occurred in the shallower part of the Hinagu fault segment, which brought the stress concentration in its deeper part. This might have caused the M7.3 main shock rupture mainly along the deeper part of the Hinagu fault segment after 28 h.
Perception of Fechner Illusory Colors in Alzheimer Disease Patients
Kaubrys, Gintaras; Bukina, Vera; Bingelytė, Ieva; Taluntis, Vladas
2016-01-01
Background Alzheimer disease (AD) primarily affects cognition. A variety of visual disorders was established in AD. Fechner illusory colors are produced by a rotating disk with a black and white pattern. The purpose of our research was to explore the perception of illusory colors in AD. Material/Methods W recruited 40 AD patients (MMSE ≥14) and 40 normal controls (CG group) matched by age, education, gender in this prospective, cross-sectional, case-control study. An achromatic Benham’s disk attached to a device to control the speed and direction of rotation was used to produce illusory colors. Primary, secondary, and tertiary RGB system colors were used for matching of illusory and physical colors. Results Subjects in the AD group perceived less illusory colors in 5 arcs (p<0.05) of the 8 arcs assessed. The biggest difference was found between AD and CG groups for pure blue (χ2=26.87, p<0.001 clockwise, χ2=22.75, p<0.001 counter-clockwise). Groups did not differ in perception of pure yellow opponent colors (p>0.05). Mixed colors of the blue-yellow axis were perceived less often in AD, but more frequently than pure blue (#0000FF). The sequence of colors on Benham’s disk followed a complex pattern, different from the order of physical spectral colors and opponent processes-based colors. Conclusions AD patients retained reduced perception of illusory colors. The perception of pure blue illusory color is almost absent in AD. The asymmetrical shift to the yellow opponent is observed in AD with red prevailing over green constituent. This may indicate cortical rather than retinal impairment. PMID:27902677
Sakamoto, Sadanori; Iguchi, Masaki
2018-06-08
Less attention to a balance task reduces the center of foot pressure (COP) variability by automating the task. However, it is not fully understood how the degree of postural automaticity influences the voluntary movement and anticipatory postural adjustments. Eleven healthy young adults performed a bipedal, eyes closed standing task under the three conditions: Control (C, standing task), Single (S, standing + reaction tasks), and Dual (D, standing + reaction + mental tasks). The reaction task was flexing the right shoulder to an auditory stimulus, which causes counter-clockwise rotational torque, and the mental task was arithmetic task. The COP variance before the reaction task was reduced in the D condition compared to that in the C and S conditions. On average the onsets of the arm movement and the vertical torque (Tz, anticipatory clockwise rotational torque) were both delayed, and the maximal Tz slope (the rate at which the torque develops) became less steep in the D condition compared to those in the S condition. When these data in the D condition were expressed as a percentage of those in the S condition, the arm movement onset and the Tz slope were positively and negatively, respectively, correlated with the COP variance. By using the mental-task induced COP variance reduction as the indicator of postural automaticity, our data suggest that the balance task for those with more COP variance reduction is less cognitively demanding, leading to the shorter reaction time probably due to the attention shift from the automated balance task to the reaction task. Copyright © 2018 Elsevier B.V. All rights reserved.
Hagstrum, J.T.; Sedlock, R.L.
1998-01-01
Paleomagnetic data for two sections of Cretaceous forearc strata with different structural attitudes on Santa Margarita and Magdalena Islands in Baja California Sur, Mexico, indicate that these rocks have been remagnetized, probably during the late Cenozoic. The in situ paleomagnetic directions, however, are similar to data from other Cretaceous rocks on peninsular California with unexpectedly shallow inclinations and easterly declinations. These data have been interpreted as indicating either northward tectonic transport (10??15?? of latitude) and clockwise rotation (>20??) or compaction shallowing of magnetic inclinations in sedimentary rocks combined with southwestward tilting of plutonic rocks. The available paleomagnetic data for Cretaceous forearc strata in southern and Baja California can be divided into three groups: (1) sections with normal-polarity magnetizations that fail fold tests and are remagnetized, (2) sections with normal-polarity magnetizations with no or inconclusive fold tests that may or may not be remagnetized, and (3) sections with both normaland reversed-polarity intervals where pervasive remagnetization has not occurred. Other rocks of the Mesozoic Great Valley Group, Coast Range ophiolite, and Franciscan Complex in California also have secondary magnetizations with directions similar to younger geomagnetic field directions. Although these widespread remagnetizations could have variable local causes, we propose regional burial and uplift, related to changes in subduction parameters, as a possible explanation. Two episodes of remagnetization are apparent: one in the Late Cretaceous and a second in the late Cenozoic. On the other hand, the unremagnetized and apparently reliable data from sedimentary and plutonic rocks on the Baja Peninsula consistently indicate northward translation (14???? 3??) and clockwise rotation (29???? 8??) with respect to North America since the Late Cretaceous. Copyright 1998 by the American Geophysical Union.
Lund, K.; Aleinikoff, J.N.; Yacob, E.Y.; Unruh, D.M.; Fanning, C.M.
2008-01-01
During dextral oblique translation along Laurentia in western Idaho, the Blue Mountains superterrane underwent clockwise rotation and impinged into the Syringa embayment at the northern end of the Salmon River suture. Along the suture, the superterrane is juxtaposed directly against western Laurentia, making this central Cordilleran accretionary-margin segment unusually attenuated. In the embayment, limited orthogonal contraction produced a crustal wedge of oceanic rocks that delaminated Laurentian crust. The wedge is exposed through Laurentian crust in the Coolwater culmination as documented by mapping and by sensitive high-resolution ion microprobe U-Pb, Sri, and ??Nd data for gneisses that lie inboard of the suture. The predominant country rock is Mesoproterozoic paragneiss overlying Laurentian basement. An overlying Neoproterozoic (or younger) paragneiss belt in the Syringa embayment establishes the form of the Cordilleran miogeocline and that the embayment is a relict of Rodinia rifting. An underlying Cretaceous paragneiss was derived from arc terranes and suture-zone orogenic welt but also from Laurentia. The Cretaceous paragneiss and an 86-Ma orthogneiss that intruded it formed the wedge of oceanic rocks that were inserted into the Laurentian margin between 98 and 73 Ma, splitting supracrustal Laurentian rocks from their basement. Crustal thickening, melting and intrusion within the wedge, and folding to form the Coolwater culmination continued until 61 Ma. The embayment formed a restraining bend at the end of the dextral transpressional suture. Clockwise rotation of the impinging superterrane and overthrusting of Laurentia that produced the crustal wedge in the Coolwater culmination are predicted by oblique collision into the Syringa embayment. Copyright 2008 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Gao, Liang; Zhao, Yue; Yang, Zhenyu; Liu, Jianmin; Liu, Xiaochun; Zhang, Shuan-Hong; Pei, Junling
2018-01-01
To reconstruct the paleoposition of the Antarctic Peninsula relative to the South American Plate during the breakup of Gondwana, as well as the opening kinematics of the Drake Passage, we conducted detailed paleomagnetic, rock magnetic, and isotopic chronology studies of Byers Peninsula (Livingston Island) and Fildes Peninsula (King George Island) of the South Shetland Islands. The 40Ar/39Ar ages of the Agate Beach Formation to the Long Hill Formation in Fildes Peninsula range from 56.38 ± 0.2 Ma to 52.42 ± 0.19 Ma. Low natural remanent magnetization/isothermal remanent magnetization ratios, inconsistency with the polarity constrained by the paleomagnetic results and 40Ar/39Ar age constraints, as well as the widespread cation-deficient titanomagnetite and Ti-free magnetite of secondary origin, indicate that the volcanic and sedimentary rocks of Fildes Peninsula were remagnetized at about 55 Ma. Combining our results with previous data from the South Shetland Islands and the Antarctic Peninsula, we calculated the paleopoles for 110 Ma and 55 Ma for the South Shetland Islands and the Antarctic Peninsula. The paleomagnetic reconstruction of the relative paleoposition of the Antarctic Peninsula and South America shows that these plates were connected and experienced a southward movement and clockwise rotation from 110 to 55 Ma. Subsequently, southward translation and clockwise rotation of the Antarctic Peninsula between 55 and 27 Ma separated the Antarctic Peninsula and South America, forming the Drake Passage. Northward translation of South America after 27 Ma increased the N-S divergence and increased the distance between the Antarctic Peninsula and the South American Plate.
Bookshelf faulting and transform motion between rift segments of the Northern Volcanic Zone, Iceland
NASA Astrophysics Data System (ADS)
Green, R. G.; White, R. S.; Greenfield, T. S.
2013-12-01
Plate spreading is segmented on length scales from 10 - 1,000 kilometres. Where spreading segments are offset, extensional motion has to transfer from one segment to another. In classical plate tectonics, mid-ocean ridge spreading centres are offset by transform faults, but smaller 'non-transform' offsets exist between slightly overlapping spreading centres which accommodate shear by a variety of geometries. In Iceland the mid-Atlantic Ridge is raised above sea level by the Iceland mantle plume, and is divided into a series of segments 20-150 km long. Using microseismicity recorded by a temporary array of 26 three-component seismometers during 2009-2012 we map bookshelf faulting between the offset Askja and Kverkfjöll rift segments in north Iceland. The micro-earthquakes delineate a series of sub-parallel strike-slip faults. Well constrained fault plane solutions show consistent left-lateral motion on fault planes aligned closely with epicentral trends. The shear couple across the transform zone causes left-lateral slip on the series of strike-slip faults sub-parallel to the rift fabric, causing clockwise rotations about a vertical axis of the intervening rigid crustal blocks. This accommodates the overall right-lateral transform motion in the relay zone between the two overlapping volcanic rift segments. The faults probably reactivated crustal weaknesses along the dyke intrusion fabric (parallel to the rift axis) and have since rotated ˜15° clockwise into their present orientation. The reactivation of pre-existing rift-parallel weaknesses is in contrast with mid-ocean ridge transform faults, and is an important illustration of a 'non-transform' offset accommodating shear between overlapping spreading segments.
Husson, Amro H; Burhan, Ahmad S; Salma, Fadwa B; Nawaya, Fehmieh R
2016-07-01
The aim of this randomized controlled trial was to compare the skeletal and dentoalveolar effects of the modified tandem appliance (MTA) vs the facemask (FM) with rapid maxillary expansion. Thirty-two patients, aged 7 to 9 years were recruited. Eligibility criteria included skeletal class III malocclusion that resulted from the retrusion of the maxilla. Randomization was accomplished to divide the sample into two equal groups to be treated with either MTA or FM. Lateral cephalometric radiographs were obtained before treatment and after 2 mm positive overjet was achieved. Intragroup comparisons were performed using paired-sample t-test, and intergroup comparisons were performed using two-sample t-test at the p ≤ 0.05 level. Thirty-two patients (16 in each group) were available for statistical analysis. The pretreatment variables of both groups were similar. Both treatment therapies showed similar significant increase in the SNA and ANB angles, accompanied by slight decrease in the SNB angle. The increase in the SN:GoMe angle, Bjork's sum, and the overjet were significantly greater in the FM group. The forward movement of upper dentition was similar in both groups. Although the lower incisors retrusion was significantly greater in the FM group than in the MTA group, the uprighting of the lower molars was significantly greater in the MTA group. Both appliances showed similar effects apart from less clockwise rotation of the mandible, less retrusion of the lower incisors, and greater uprighting of the lower molars in the MTA group. Both the MTA and the FM groups are effective in treating class III malocclusion. The MTA group is more efficient in controlling the clockwise rotation and gaining some space in the lower arch.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hochstein, M.P.; Sudarman, Sayogi
There are at least 30 high temperatures systems (with inferred reservoir temperatures > 200 C) along the active Sumatra Arc that transfer heat from crustal intrusions to the surface. These systems, together with eleven active volcanoes, five degassing volcanoes and one caldera volcano (Lake Toba), are controlled by the Sumatra Fault Zone, an active mega shear zone that follows the median axis of the arc. At least half of the active and degassing volcanoes are associated with volcanic geothermal reservoirs containing magmatic gases and acid fluids. Large, low temperature resources exist in the Tertiary sedimentary basins of east Sumatra (back-arcmore » region), where anomalously higher thermal gradients (up to 8 C/100 m) have been measured. Volcanic activity was not continuous during the Cenozoic; subduction and arc volcanism probably decreased after the Eocene as a result of a clockwise rotation of Sumatra. In the Late Miocene, subduction started again, and andesitic volcanism reached a new peak of intensity in the Pliocene and has been continuous ever since. Rhyolitic volcanism, which has produced voluminous ignimbrite flows, began later (Pliocene/Pleistocene). All known rhyolitic centers associated with ignimbrite flows appear to lie along the Sumatra Fault Zone.« less
Ultrahigh 6D-brightness electron beams for the light sources of the next generation
NASA Astrophysics Data System (ADS)
Habib, Fahim; Manahan, Grace G.; Scherkl, Paul; Heinemann, Thomas; Sheng, Z. M.; Bruhwiler, D. L.; Cary, J. R.; Rosenzweig, J. B.; Hidding, Bernhard
2017-10-01
The plasma photocathode mechanism (aka Trojan Horse) enables a path towards electron beams with nm-level normalized emittance and kA range peak currents, hence ultrahigh 5D-brightness. This ultrahigh 5D-brightness beams hold great prospects to realize laboratory scale free-electron-lasers. However, the GV/m-accelerating gradient in plasma accelerators leads to substantial energy chirp and spread. The large energy spread is a major show-stopper towards key application such as the free-electron-laser. Here we present a novel method for energy chirp compensation which takes advantage of tailored beam loading due to a second ``escort'' bunch released via plasma photocathode. The escort bunch reverses the accelerating field locally at the trapping position of the ultrahigh 5D-brightness beam. This induces a counter-clockwise rotation within the longitudinal phase space and allows to compensate the chirp completely. Analytical scaling predicts energy spread values below 0.01 percentage level. Ultrahigh 5D-brightness combined with minimized energy spread opens a path towards witness beams with unprecedented ultrahigh 6D-brightness.
Gao, Fan; Latash, Mark L.
2010-01-01
We address issues of simultaneous control of the grasping force and the total moment of forces applied to a handheld object during its manipulation. Six young healthy male subjects grasped an instrumented handle and performed its cyclic motion in the vertical direction. The handle allowed for setting different clockwise (negative) or counterclockwise torques. Three movement frequencies: 1, 1.5 and 2 Hz, and five different torques: −1/3, −1/6, 0, 1/6 and 1/3 Nm, were used. The rotational equilibrium was maintained by two means: (1) Concerted changes of the moments produced by the normal and tangential forces, specifically anti-phase changes of the moments during the tasks with zero external torque and in-phase changes during the non-zero-torque tasks, and (2) Redistribution of the normal forces among individual fingers such that the agonist fingers—the fingers that resist external torque—increased the force in phase with the acceleration, while the forces of the antagonist fingers—those that assist the external torque—especially, the fingers with the large moment arms, the index and little fingers, stayed unchanged. The observed effects agree with the principle of superposition—according to which some complex actions, for example, prehension, can be decomposed into elemental actions controlled independently—and the mechanical advantage hypothesis according to which in moment production the fingers are activated in proportion to their moment arms with respect to the axis of rotation. We would like to emphasize the linearity of the observed relations, which was not prescribed by the task mechanics and seems to be produced by specific neural control mechanisms. PMID:16328302
NASA Astrophysics Data System (ADS)
Prezzi, Claudia; Caffe, Pablo J.; Somoza, Rubén
2004-09-01
Along the Central Andes a pattern of vertical axis tectonic rotations has been paleomagnetically identified. The rotations are clockwise in southern Bolivia, northern Chile and northwestern Argentina. Various models have been proposed to explain the geodynamic evolution of the Central Andes, but the driving mechanism of these rotations remains controversial. Constraining the spatial variability and the timing of the rotations may contribute to a better understanding of their origin. Our results complement information from previous studies, improving the knowledge of tectonic rotations in the region of the northern Argentine Puna and western Cordillera Oriental. In the San Juan de Oro basin (SJOB), 132 cores were drilled from the middle Miocene Tiomayo Formation in the zone of Tiomayo-Santa Ana (22°30'S-66°30'W), and from the ˜17 Ma Casa Colorada dacite dome complex. Another 114 cores were collected from middle Miocene dacitic dome centers emplaced in the zone of Laguna de Pozuelos basin (22°30'S-66°00'W). The results of our paleomagnetic study suggest that the sampled zones underwent very low, statistically insignificant rotation since middle Miocene. However, a tendency for low magnitude rotation appears when observing our data together with paleomagnetic results from coeval rocks in neighbouring areas. If so, this low rotation could be related to middle Miocene thrust activity in the central and eastern parts of the Cordillera Oriental. The combined analysis of paleomagnetic and structural data illustrates the probable, direct relationship between timing of significant rotations and timing of local deformation in the sourthern Central Andes.
NASA Astrophysics Data System (ADS)
Koyi, Hemin; Nilfouroushan, Faramarz; Hessami, Khaled
2015-04-01
A series of scaled analogue models are run to study the degree of coupling between basement block kinematics and cover deformation. In these models, rigid basal blocks were rotated about vertical axis in a "bookshelf" fashion, which caused strike-slip faulting along the blocks and, to some degrees, in the overlying cover units of loose sand. Three different combinations of cover basement deformations are modeled; cover shortening prior to basement fault movement; basement fault movement prior to shortening of cover units; and simultaneous cover shortening with basement fault movement. Model results show that the effect of basement strike-slip faults depends on the timing of their reactivation during the orogenic process. Pre- and syn-orogen basement strike-slip faults have a significant impact on the structural pattern of the cover units, whereas post-orogenic basement strike-slip faults have less influence on the thickened hinterland of the overlying fold-and-thrust belt. The interaction of basement faulting and cover shortening results in formation of rhomb features. In models with pre- and syn-orogen basement strike-slip faults, rhomb-shaped cover blocks develop as a result of shortening of the overlying cover during basement strike-slip faulting. These rhombic blocks, which have resemblance to flower structures, differ in kinematics, genesis and structural extent. They are bounded by strike-slip faults on two opposite sides and thrusts on the other two sides. In the models, rhomb-shaped cover blocks develop as a result of shortening of the overlying cover during basement strke-slip faulting. Such rhomb features are recognized in the Alborz and Zagros fold-and-thrust belts where cover units are shortened simultaneously with strike-slip faulting in the basement. Model results are also compared with geodetic results obtained from combination of all available GPS velocities in the Zagros and Alborz FTBs. Geodetic results indicate domains of clockwise and anticlockwise rotation in these two FTBs. The typical pattern of structures and their spatial distributions are used to suggest clockwise block rotation of basement blocks about vertical axes and their associated strike-slip faulting in both west-central Alborz and the southeastern part of the Zagros fold-and-thrust belt.
NASA Astrophysics Data System (ADS)
Sarkarinejad, Khalil
2010-05-01
New approach to the boundary-parallel plastic / viscous diapiric flow patterns in the curvilinear boundary zones: an implication for structural geology studies Khalil Sarkarinejad and Abdolreza Partabian Department of Earth Sciences, College of Sciences, Shiraz University, Shiraz, Iran (Sarkarinejad@geology.susc.ac.ir). In the oceanic diverging away plates, the asthenospheric flow at solidus high-temperature conditions typically produces mineral foliations and lineations in peridotites. Foliation and lineation of mantle are defined by preferred flattening and alignment of olivine, pyroxene and spinel. In the areas with steep foliations trajectories which are associated with the steeply plunging stretching lineation trajectories, reflecting localized vertical flow and has been related to mantle diapir. The mantle flow patterns are well documented through detail structural mapping of the Neyriz ophiolite along the Zagros inclined dextral transpression and Oman ophiolite. Such models of the diverging asthenaspheric mantle flow and formation of mantle diapir are rarely discussed and paid any attention in the mathematical models of transpressional deformation in converging continental crusts. Systematic measurements of the mineral preferred orientations and construction of the foliation and lineation trajectories of the Zagros high-strain zone reveal two diapers with the shape of the inclined NW-SE boundary-parallel semi-ellipses shape and one rotated asymmetric diapir. These diapers made of quartzo-feldspathic gneiss and garnet amphibolite core with phyllite, phyllonite, muscovite schist and deformed conglomerate as a cover sequences. These boundary-parallel and rotated diapirs are formed by the interaction of Afro-Arabian lower to middle continental detachment and hot subdacting Tethyan oceanic crust, due to increasing effective pressure and temperature. The plastic/viscous gneissic diapers were squeezed between in Zagros transpression curvilinear boundary zones in an angle alpha=25°. Constructed finite strain ellipsoid based on the X-axes of the elliptical shaped deformed markers of the diapir cover sequences show trend X-axis of the strain ellipsoid making an angle phai=2° with the boundary zones. The steep plunging stretching lineation primarily controlled by the plastic/viscous flow. This also show that during inclined upwelling boundary-parallel diapers, X-, Y-axes of the strain ellipsoid rotated clockwise and Z-axis experienced counter clockwise rotation with triclinic symmetries relative to the Zagros curvilinear transpression boundary zones with an orientation of N42°plus/minus 24°W.
Extension tectonics: The Neogene opening of the north-south trending basins of central Thailand
NASA Astrophysics Data System (ADS)
McCabe, Robert; Celaya, Michael; Cole, Jay; Han, Hyun-Chul; Ohnstad, Tiffany; Paijitprapapon, Vivat; Thitipawarn, Veeravat
1988-10-01
Paleomagnetic samples were collected from late Neogene basalt flows from Thailand. All of these flows are horizontal and are relatively unaltered in thin section. These rocks possess a stable magnetization which is believed to be primary. Samples from 48 lava flows were collected from sites located within the Khorat Plateau, the Chao Phraya-Phitsanulok Basin, and the mountainous terrane west of the Chao Phraya-Phitsanulok Basin. These data were combined with previously reported late Neogene data from five flows from western Thailand. Although the average inclination from the 53 sites is indistiguishable from the expected dipole inclination, the average declination has a net clockwise rotation of 13.5±5.8 from the geocentric dipole field. Furthermore, the mean declination values from the 29 flows from the Khorat Plateau are indistinguishable from the present dipole field direction (Dm = 4.3°±7.5°) and indistinguishable from the mean declination from 28 late Neogene volcanic flows from Vietnam. In contrast, the mean declinations from 24 flows collected from central and western Thailand are deflected significantly clockwise (Dm = 24.4°±7.7°) from the geocentric dipole field direction. The differential rotation between western and central Thailand versus the Khorat Plateau suggests that Indochina is composed of at least two structural blocks which underwent a different rotational history. These observations, when combined with geologic and geophysical data from the Chao Phraya-Phitsanulok Basin, Gulf of Thailand, and the intermontane basins of western Thailand, suggest that the rotations are recording a late Neogene phase of E-W extension of these basins. We suggest that the formation of these basins and the related basaltic volcanism developed in reponse to subduction of the Indian plate under western Burma. We envision the tectonics of this region is similar in style to the Basin and Range region of the western United States. Last, we have observed field relationships from some of the rhyolites located in the central basin. Although these rhyolites are reported to be Mesozoic or Paleozoic in age, our field observations and a K-Ar age date show that at least some of these rhyolites are younger than the basalts. We suggest that the rhyolites form a bimodal suite with the basaltic rocks which were erupted in the later stages of the extension.
NASA Astrophysics Data System (ADS)
Guerit, Laure; Goren, Liran; Dominguez, Stéphane; Malavieille, Jacques; Castelltort, Sébastien
2017-04-01
The morphology of a fluvial landscape reflects a balance between its own dynamics and external forcings, and therefore holds the potential to reveal local or large-scale tectonic patterns. Commonly, particular focus has been cast on the longitudinal profiles of rivers as they constitute sensitive recorders of vertical movements, that can be recovered based on models of bedrock incision. However, several recent studies have suggested that maps of rescaled distance along channel called chi (χ), derived from the commonly observed power law relation between the slope and the drainage area , could reveal transient landscapes in state of reorganization of basin geometry and location of water divides. If river networks deforms in response to large amount of distributed strain, then they might be used to reconstruct the mode and rate of horizontal deformation away from major active structures through the use of the parameter χ. To explore how streams respond to tectonic horizontal deformation, we develop an experimental model for studying river pattern evolution over a doubly-vergent orogenic wedge growing in a context of oblique convergence. We use a series of sprinklers located about the experimental table to activate erosion, sediment transport and river development on the surface of the experimental wedge. At the end of the experiment, the drainage network is statistically rotated clockwise, confirming that rivers can record the distribution of motion along the wedge. However, the amount of rotation does not match with the imposed deformation, and thus we infer that stream networks are not purely passive markers. Based on the comparison between the observed evolution of the fluvial system and the predictions made from χ maps, we show that the plan-view morphology of the streams results from the competition between the imposed deformation and fluvial processes of drainage reorganization.
Paleomagnetic data from the Philippine Sea Plate and their tectonic significance
NASA Astrophysics Data System (ADS)
Haston, Roger B.; Fuller, M.
1991-04-01
New paleomagnetic data from Guam and Saipan have been obtained and are used, in conjunction with previously published results from around the Philippine Sea plate, to interpret the origin and history of the Philippine Sea plate. A lower Miocene direction (I=3.5°, D=54.5°, a95=17.4°, k=20.3) and a middle Oligocene direction (I=5.3°, D=68.4°, a95=12.8°, k=52.4) have been obtained from the Palau Islands. Only one reliable result, a middle Oligocene direction (I=15.1°, D=66.1°, a95=11.1°, k=20.1), has been obtained from Guam. Many characteristic remanent magnetic directions have been obtained from the lower Eocene Facpi Formation; however, the results are too scattered (k=4.5) to be considered reliable. Two reliable directions have been obtained from Saipan: a middle Miocene result (I=30.7°, D=28.1°, a95=8.4°, k=64.6), and a lower Eocene result (I=-12.0°, D=43.0°, a95=12.5°, k=16.0). Two lower Eocene results from Chichijima (I=9.5°, D=105.3°, a95=12.6°, k=6.1) and Anijima (I=-0.8°, D=91.7°, a95=16.9°, k=4.9) are the reliable results from the Bonin islands. There are two end-member interpretations for these data: (1) small scale local rotation of blocks along the plate margin, or (2) rotation of the Philippine Sea plate as a whole. To distinguish between these interpretations, we reconstructed the East Philippine Sea province back to its prerifting configuration. The rotation caused by deformation can be estimated by comparing the paleomagnetism of Guam, Saipan, and the Bonin islands to Palau. Prior to reconstruction, the older declination values are scattered. Closing the marginal basins reduces the declination scatter, and all of the islands show increasing clockwise deflection with time. This suggests that the Philippine Sea plate has rotated up to 80° clockwise and moved northward around 20° since the Eocene, and deformational rotation is a second-order feature. The finite pole of rotation of the Philippine Sea plate relative to Eurasia must be somewhere near the southeast comer of the plate, because this is the only location that is compatible with both the change in orientation and paleolatitude for the plate. These data cannot distinguish between a backarc origin or trapped crust origin for the West Philippine Sea province. The existing models require major modification to be consistent with the paleomagnetic data.
Lin, J L; Lai, L P; Lin, L J; Tseng, Y Z; Lien, W P; Huang, S K
1999-01-01
To investigate the electrophysiological determinant underlying the electrical induction of counterclockwise and clockwise isthmus dependent atrial flutter. The isthmus bordered by the inferior vena caval orifice-tricuspid annulus-coronary sinus ostium (IVCO-TA-CSO) has been assumed to be the site of both slow conduction and unidirectional block critical to the initiation of atrial flutter. Trans-isthmus and the global atrial conduction were studied in 25 patients with isthmus dependent atrial flutter (group A) and in 21 patients without atrial flutter (group B), by pacing at the coronary sinus ostium and the low lateral right atrium (LLRA) and mapping with a 20 pole Halo catheter in the right atrium. Mean (SD) fluoroscopic isthmus length between the coronary sinus ostium and LLRA sites was 28.1 (4.0) mm in group A and 28.0 (3.9) mm in group B (p = 0.95), but the trans-isthmus conduction velocity of both directions at various pacing cycle lengths was nearly halved in group A compared with group B (mean 0.39-0.46 m/s v 0.83-0.89 m/s, p < 0.0001). Pacing at coronary sinus ostium directly induced counterclockwise atrial flutter in 14 patients and pacing at LLRA induced clockwise atrial flutter in 11 patients, following abrupt unidirectional trans-isthmus block. Transient atrial tachyarrhythmias preceded the onset of atrial flutter in 10 counterclockwise and six clockwise cases of atrial flutter. None of the group B patients had inducible atrial flutter even in the presence of trans-isthmus block. The intra- and interatrial conduction times, as well as the conduction velocities at the right atrial free wall and the septum, were similar and largely within the normal range in both groups. Critical slowing of the trans-IVCO-TA-CSO isthmus conduction, but not the unidirectional block or the global atrial performance, is the electrophysiological determinant of the induction of counterclockwise and clockwise isthmus dependent atrial flutter in man.
NASA Technical Reports Server (NTRS)
Bodechtel, J. (Principal Investigator)
1975-01-01
The author has identified the following significant results. The geological interpretation on data exhibiting the Italian peninsula led to the recognition of tectonic features which are explained by a clockwise rotation of various blocks along left-handed transform faults. These faults can be interpreted as resulting from shear due to main stress directed north-eastwards. A land use map of the mountainous regions of Italy was produced on a scale of 1:250,000. For the digital treatment of MSS-CCTs an image processing software was written in FORTRAN 4. The software package includes descriptive statistics and also classification algorithms.
Chiral solitons in spinor polariton rings
NASA Astrophysics Data System (ADS)
Zezyulin, D. A.; Gulevich, D. R.; Skryabin, D. V.; Shelykh, I. A.
2018-04-01
We consider theoretically one-dimensional polariton ring accounting for both longitudinal-transverse (TE-TM) and Zeeman splittings of spinor polariton states and spin-dependent polariton-polariton interactions. We present a class of solutions in the form of the localized defects rotating with constant angular velocity and analyze their properties for realistic values of the parameters of the system. We show that the effects of the geometric phase arising from the interplay between the external magnetic field and the TE-TM splitting introduce chirality in the system and make solitons propagating in clockwise and anticlockwise directions nonequivalent. This can be interpreted as a solitonic analog of the Aharonov-Bohm effect.
Bak, Jia; Pyeon, Hae-In; Seok, Jin-I; Choi, Yun-Sik
2017-03-01
Y maze has been used to test spatial working memory in rodents. To this end, the percentage of spontaneous alternation has been employed. Alternation indicates sequential entries into all three arms; e.g., when an animal visits all three arms clockwise or counterclockwise sequentially, alternation is achieved. Interestingly, animals have a tendency to rotate or turn to a preferred side. Thus, when an animal has a high rotation preference, this may influence their alternation behavior. Here, we have generated a new analytical method, termed entropy of spontaneous alternation, to offset the effect of rotation preference on Y maze. To validate the entropy of spontaneous alternation, we employed a free rotation test using a cylinder and a spatial working memory test on Y maze. We identified that mice showed 65.1% rotation preference on average. Importantly, the percentage of spontaneous alternation in the high preference group (more than 70% rotation to a preferred side) was significantly higher than that in the no preference group (<55%). In addition, there was a clear correlation between rotation preference on cylinder and turning preference on Y maze. On the other hand, this potential leverage effect that arose from rotation preference disappeared when the animal behavior on Y maze was analyzed with the entropy of spontaneous alternation. Further, entropy of spontaneous alternation significantly determined the loss of spatial working memory by scopolamine administration. Combined, these data indicate that the entropy of spontaneous alternation provides higher credibility when spatial working memory is evaluated using Y maze. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Bo; Jiang, Yunchun; Yang, Jiayan
We present the first observation of the formation and eruption of a small circular filament driven by a rotating network magnetic field (RNF) in the quiet Sun. In the negative footpoint region of an inverse J-shaped dextral filament, the RNF was formed by the convergence to supergranular junctions of several magnetic flux patches of the same polarity, and it then rotated counterclockwise (CCW) for approximately 11 hr and showed up as a CCW rotating EUV cyclone, during which time the filament gradually evolved into a circular filament that surrounded the cyclone. When the calculated convergence and vortex flows appeared aroundmore » the RNF during its formation and rotation phases, the injected magnetic helicity calculation also showed negative helicity accumulation during the RNF rotation that was consistent with the dextral chirality of the filament. Finally, the RNF rotation stopped and the cyclone disappeared, and, probably due to an emerging bipole and its forced cancellation with the RNF, the closure filament underwent an eruption along its axis in the (clockwise) direction opposite to the rotation directions of the RNF and cyclone. These observations suggest that the RNFs might play an important role in the formation of nearby small-scale circular filaments as they transport and inject magnetic energy and helicity, and the formation of the EUV cyclones may be a further manifestation of the helicity injected into the corona by the rotation of the RNFs in the photosphere. In addition, the new emerging bipole observed before the filament eruption might be responsible for destabilizing the system and triggering the magnetic reconnection which proves useful for the filament eruption.« less
Quantifying deformation in North Borneo with GPS
NASA Astrophysics Data System (ADS)
Mustafar, Mohamad Asrul; Simons, Wim J. F.; Tongkul, Felix; Satirapod, Chalermchon; Omar, Kamaludin Mohd; Visser, Pieter N. A. M.
2017-10-01
The existence of intra-plate deformation of the Sundaland platelet along its eastern edge in North Borneo, South-East Asia, makes it an interesting area that still is relatively understudied. In addition, the motion of the coastal area of North-West Borneo is directed toward a frontal fold-and-thrust belt and has been fueling a long debate on the possible geophysical sources behind it. At present this fold-and-thrust belt is not generating significant seismic activity and may also not be entirely active due to a decreasing shelfal extension from south to north. Two sets of Global Positioning System (GPS) data have been used in this study; the first covering a time period from 1999 until 2004 (ending just before the Giant Sumatra-Andaman earthquake) to determine the continuous Sundaland tectonic plate motion, and the second from 2009 until 2011 to investigate the current deformations of North Borneo. Both absolute and relative positioning methods were carried out to investigate horizontal and vertical displacements. Analysis of the GPS results indicates a clear trend of extension along coastal regions of Sarawak and Brunei in North Borneo. On the contrary strain rate tensors in Sabah reveal that only insignificant and inconsistent extension and compression occurs throughout North-West Borneo. Moreover, station velocities and rotation rate tensors on the northern part of North Borneo suggest a clockwise (micro-block) rotation. The first analysis of vertical displacements recorded by GPS in North-West Borneo points to low subsidence rates along the western coastal regions of Sabah and inconsistent trends between the Crocker and Trusmadi mountain ranges. These results have not been able to either confirm or reject the hypothesis that gravity sliding is the main driving force behind the local motions in North Borneo. The ongoing Sundaland-Philippine Sea plate convergence may also still play an active role in the present-day deformation (crustal shortening) in North Borneo and the possible clockwise rotation of the northern part of North Borneo as a micro-block. However, more observations need to be collected to determine if the northern part of North Borneo indeed is (slowly) moving independently.
Paleomagnetism of the Chinle and Kayenta Formations, New Mexico and Arizona
NASA Astrophysics Data System (ADS)
Bazard, David R.; Butler, Robert F.
1991-06-01
Paleomagnetic data were obtained from 22 sites (6-10 samples/site) in the Upper Shale Member of the Chinle Formation, 43 sites in the Owl Rock Member of the Chinle Formation, and 35 sites in the Kayenta Formation. Thermal demagnetization and data analyses indicate that within-site dispersion is an important criterion for selecting sites which retain a high unblocking temperature characteristic remanent magnetization (ChRM). Site-mean directions define at least four antipodal polarity zones within each member/formation, suggesting the ChRM was acquired soon after deposition. Fifteen site-mean virtual geomagnetic poles (VGPs) from the Upper Shale Member of the Chinle Formation yield an early Norian paleomagnetic pole position of 57.4°N, 87.8°E (K = 60, A95 = 5.0°). Eighteen site-mean VGPs from the Owl Rock Member of the Chinle Formation yield a middle Norian paleomagnetic pole position of 56.5°N, 66.4°E (K = 183, A95 = 2.6°). Twenty-three site-mean VGPs from the Kayenta Formation yield a Pliensbachian pole position of 59.0°N, 66.6°E (K = 155, A95 = 2.4°). Combined with paleomagnetic poles from the Moenave Formation and the Shinarump Member of the Chinle Formation, these data record ˜30 m.y. of North American apparent polar wander (APW) within a regional stratigraphic succession. During the Camian and Norian stages of the Late Triassic, Chinle poles progress westward. During the Hettangian through Pliensbachian stages of the Early Jurassic, the pattern of APW changed to an eastward progression. Even after correction for 4° clockwise rotation of the Colorado Plateau, a sharp comer in the APW path (J1 cusp) is resolved near the pole from the Hettangian/Sinemurian (˜200 Ma) Moenave Formation (59.4°N, 59.2°E). Amongst other implications, the sharp change in the APW path at the J1 cusp implies an abrupt change from counterclockwise rotation of Pangea prior to 200 Ma to clockwise rotation thereafter.
Ruiz, Javier A.; Hayes, Gavin P.; Carrizo, Daniel; Kanamori, Hiroo; Socquet, Anne; Comte, Diana
2014-01-01
On 2010 March 11, a sequence of large, shallow continental crust earthquakes shook central Chile. Two normal faulting events with magnitudes around Mw 7.0 and Mw 6.9 occurred just 15 min apart, located near the town of Pichilemu. These kinds of large intraplate, inland crustal earthquakes are rare above the Chilean subduction zone, and it is important to better understand their relationship with the 2010 February 27, Mw 8.8, Maule earthquake, which ruptured the adjacent megathrust plate boundary. We present a broad seismological analysis of these earthquakes by using both teleseismic and regional data. We compute seismic moment tensors for both events via a W-phase inversion, and test sensitivities to various inversion parameters in order to assess the stability of the solutions. The first event, at 14 hr 39 min GMT, is well constrained, displaying a fault plane with strike of N145°E, and a preferred dip angle of 55°SW, consistent with the trend of aftershock locations and other published results. Teleseismic finite-fault inversions for this event show a large slip zone along the southern part of the fault, correlating well with the reported spatial density of aftershocks. The second earthquake (14 hr 55 min GMT) appears to have ruptured a fault branching southward from the previous ruptured fault, within the hanging wall of the first event. Modelling seismograms at regional to teleseismic distances (Δ > 10°) is quite challenging because the observed seismic wave fields of both events overlap, increasing apparent complexity for the second earthquake. We perform both point- and extended-source inversions at regional and teleseismic distances, assessing model sensitivities resulting from variations in fault orientation, dimension, and hypocentre location. Results show that the focal mechanism for the second event features a steeper dip angle and a strike rotated slightly clockwise with respect to the previous event. This kind of geological fault configuration, with secondary rupture in the hanging wall of a large normal fault, is commonly observed in extensional geological regimes. We propose that both earthquakes form part of a typical normal fault diverging splay, where the secondary fault connects to the main fault at depth. To ascertain more information on the spatial and temporal details of slip for both events, we gathered near-fault seismological and geodetic data. Through forward modelling of near-fault synthetic seismograms we build a kinematic k−2 earthquake source model with spatially distributed slip on the fault that, to first-order, explains both coseismic static displacement GPS vectors and short-period seismometer observations at the closest sites. As expected, the results for the first event agree with the focal mechanism derived from teleseismic modelling, with a magnitude Mw 6.97. Similarly, near-fault modelling for the second event suggests rupture along a normal fault, Mw 6.90, characterized by a steeper dip angle (dip = 74°) and a strike clockwise rotated (strike = 155°) with respect to the previous event.
Analysis of Variscan dynamics; early bending of the Cantabria-Asturias Arc, northern Spain
NASA Astrophysics Data System (ADS)
Kollmeier, J. M.; van der Pluijm, B. A.; Van der Voo, R.
2000-08-01
Calcite twinning analysis in the Cantabria-Asturias Arc (CAA) of northern Spain provides a basis for evaluating conditions of Variscan stress and constrains the arc's structural evolution. Twinning typically occurs during earliest layer-parallel shortening, offering the ability to define early conditions of regional stress. Results from the Somiedo-Correcilla region are of two kinds: early maximum compressive stress oriented layer-parallel and at high angles to bedding strike (D1 σ1) and later twin producing compression oriented sub-parallel to strike (D2 σ1). When all D1 compressions are rotated into a uniform east-west reference orientation, a quite linear, north-south trending fold-thrust belt results showing a slight deflection of the southern zone to the south-southeast. North-south-directed D2 σ1 compression was recorded prior to bending of the belt. Calcite twinning data elucidate earliest structural conditions that could not be obtained by other means, whereas the kinematics of arc tightening during D2 is constrained by paleomagnetism. A large and perhaps protracted D2 σ1 is suggested by our results, as manifested by approximately 50% arc tightening prior to acquisition of paleomagnetic remagnetizations throughout the CAA. Early east-west compression (D1 σ1) likely resulted from the Ebro-Aquitaine massif docking to Laurussia whereas the north-directed collision of Africa (D2 σ1) produced clockwise bending in the northern zone, radial folding in the hinge, and rotation of thrusts in the southern zone.
Longitude origins on moving equator II: effects of nutation
NASA Astrophysics Data System (ADS)
Fukushima, T.
We obtained an explicit solution of s, the angle specifying the non-rotating orign (NRO) (Guinot 1979), for the pole uniformly rotating on a circle around an arbitrary fixed direction. Thanks to the obtained formula, we derived an approximate expression of its correction, Δs, due to the fast nutational motion of the pole by ignoring the slow precessional motion. By adopting the IAU 1980 nutation series (Seidelmann 1980) and combining the result with the previous solution for the precessional motion of the Earth's pole (Fukushima 2000), we developed a more precise expression of the global motion of the Celestial Ephemeris Origin (CEO). The current speed of global rotation of CEO amounts to -4.149 688 1"/yr where the contribution of the nutation is small as -38.4μas/yr but non-negligible. The negative sign shows that CEO rotates clockwise with respect to the inertial frame when viewed from the north pole. The long periodic motion of CEO is of the amplitude of the obliquity of ecliptic, around 23.5 degree, and of the period of precession, around 25800 yr. While the effect of nutation on the periodic motion of CEO looks like a series of mixed secular terms, which is simply proportional to the nutation in longitude and is of the order of some tens mas/yr.
Johnsson, A; Solheim, B G B; Iversen, T-H
2009-01-01
In a microgravity experiment onboard the International Space Station, circumnutations of Arabidopsis thaliana were studied. Plants were cultivated on rotors under a light:dark (LD) cycle of 16 : 8 h, and it was possible to apply controlled centrifugation pulses. Time-lapse images of inflorescence stems (primary, primary axillary and lateral inflorescences) documented the effect of microgravity on the circumnutations. Self-sustained circumnutations of side stems were present in microgravity but amplitudes were mostly very small. In darkness, centrifugation at 0.8 g increased the amplitude by a factor of five to ten. The period at 0.8 g was c. 85 min, in microgravity roughly of the same magnitude. In white light the period decreased to c. 60 min at 0.8 g (microgravity value not measurable). Three-dimensional data showed that under 0.8 g side stems rotated in both clockwise and counter-clockwise directions. Circumnutation data for the main stem in light showed a doubling of the amplitude and a longer period at 0.8 g than in microgravity (c. 80 vs 60 min). For the first time, the importance of gravity in amplifying minute oscillatory movements in microgravity into high-amplitude circumnutations was unequivocally demonstrated. The importance of these findings for the modelling of gravity effects on self-sustained oscillatory movements is discussed.
Magnetic swirls and associated fast magnetoacoustic kink waves in a solar chromospheric flux tube
NASA Astrophysics Data System (ADS)
Murawski, K.; Kayshap, P.; Srivastava, A. K.; Pascoe, D. J.; Jelínek, P.; Kuźma, B.; Fedun, V.
2018-02-01
We perform numerical simulations of impulsively generated magnetic swirls in an isolated flux tube that is rooted in the solar photosphere. These swirls are triggered by an initial pulse in a horizontal component of the velocity. The initial pulse is launched either (a) centrally, within the localized magnetic flux tube or (b) off-central, in the ambient medium. The evolution and dynamics of the flux tube are described by three-dimensional, ideal magnetohydrodynamic equations. These equations are numerically solved to reveal that in case (a) dipole-like swirls associated with the fast magnetoacoustic kink and m = 1 Alfvén waves are generated. In case (b), the fast magnetoacoustic kink and m = 0 Alfvén modes are excited. In both these cases, the excited fast magnetoacoustic kink and Alfvén waves consist of a similar flow pattern and magnetic shells are also generated with clockwise and counter-clockwise rotating plasma within them, which can be the proxy of dipole-shaped chromospheric swirls. The complex dynamics of vortices and wave perturbations reveals the channelling of sufficient amount of energy to fulfil energy losses in the chromosphere (˜104 W m-1) and in the corona (˜102 W m-1). Some of these numerical findings are reminiscent of signatures in recent observational data.
Direction of flagellar rotation in bacterial cell envelopes.
Ravid, S; Eisenbach, M
1984-01-01
Cell envelopes with functional flagella, isolated from wild-type strains of Escherichia coli and Salmonella typhimurium by formation of spheroplasts with penicillin and subsequent osmotic lysis, demonstrate counterclockwise (CCW)-biased rotation when energized with an electron donor for respiration, DL-lactate. Since the direction of flagellar rotation in bacteria is central to the expression of chemotaxis, we studied the cause of this bias. Our main observations were: (i) spheroplasts acquired a clockwise (CW) bias if instead of being lysed they were further incubated with penicillin; (ii) repellents temporarily caused CW rotation of tethered bacteria and spheroplasts but not of their derived cell envelopes; (iii) deenergizing CW-rotating cheV bacteria by KCN or arsenate treatment caused CCW bias; (iv) cell envelopes isolated from CW-rotating cheC and cheV mutants retained the CW bias, unlike envelopes isolated from cheB and cheZ mutants, which upon cytoplasmic release lost this bias and acquired CCW bias; and (v) an inwardly directed, artificially induced proton current rotated tethered envelopes in CCW direction, but an outwardly directed current was unable to rotate the envelopes. It is concluded that (i) a cytoplasmic constituent is required for the expression of CW rotation (or repression of CCW rotation) in strains which are not defective in the switch; (ii) in the absence of this cytoplasmic constituent, the motor is not reversible in such strains, and it probably is mechanically constricted so as to permit CCW sense of rotation only; (iii) the requirement of CW rotation for ATP is not at the level of the motor or the switch but at one of the preceding functional steps of the chemotaxis machinery; (iv) the cheC and cheV gene products are associated with the cytoplasmic membrane; and (v) direct interaction between the switch-motor system and the repellent sensors is improbable. Images PMID:6370958
Strain accumulation and rotation in the Eastern California Shear Zone
Savage, J.C.; Gan, Weijun; Svarc, J.L.
2001-01-01
Although the Eastern California Shear Zone (ECSZ) (strike ???N25??W) does not quite coincide with a small circle drawn about the Pacific-North America pole of rotation, trilateration and GPS measurements demonstrate that the motion within the zone corresponds to right-lateral simple shear across a vertical plane (strike N33??W??5??) roughly parallel to the tangent to that local small circle (strike ???N40??W). If the simple shear is released by slip on faults subparallel to the shear zone, the accumulated rotation is also released, leaving no secular rotation. South of the Garlock fault the principal faults (e.g., Calico-Blackwater fault) strike ???N40??W, close enough to the strike of the vertical plane across which maximum right-lateral shear accumulates to almost wholly accommodate that accumulation of both strain and rotation by right-lateral slip. North of the Garlock fault dip slip as well as strike slip on the principal faults (strike ???N20??W) is required to accommodate the simple shear accumulation. In both cases the accumulated rotation is released with the shear strain. The Garlock fault, which transects the ECSZ, is not offset by north-northwest striking faults nor, despite geological evidence for long-term left-lateral slip, does it appear at the present time to be accumulating left-lateral simple shear strain across the fault due to slip at depth. Rather the motion is explained by right-lateral simple shear across the orthogonal ECSZ. Left-lateral slip on the Garlock fault will release the shear strain accumulating there but would augment the accumulating rotation, resulting in a secular clockwise rotation rate ???80 nrad yr-1 (4.6?? Myr-1).
Domino structures evolution in strike-slip shear zones; the importance of the cataclastic flow
NASA Astrophysics Data System (ADS)
Moreira, N.; Dias, R.
2018-05-01
The Porto-Tomar-Ferreira do Alentejo dextral Shear Zone is one of the most important structures of the Iberian Variscides. In its vicinity, close to Abrantes (Central Portugal), a localized heterogeneous strain pattern developed in a decimetric metamorphic siliceous multilayer. This complex pattern was induced by the D2 dextral shearing of the early S0//S1 foliation in brittle-ductile conditions, giving rise to three main shear zone families. One of these families, with antithetic kinematics, delimits blocks with rigid clockwise rotation surrounded by coeval cataclasites, generating a local domino structure. The proposed geometrical and kinematic analysis, coupled with statistical studies, highlights the relation between subsidiary shear zones and the main shear zone. Despite the heterogeneous strain pattern, a quantitative approach of finite strain was applied based on the restoration of the initial fracture pattern. This approach shows the importance of the cataclastic flow coupled with the translational displacement of the domino domain in solving space problems related to the rigid block rotation. Such processes are key in allowing the rigid block rotation inside shear zones whenever the simple shear component is a fundamental mechanism.
Reversible vector ratchets for skyrmion systems
NASA Astrophysics Data System (ADS)
Ma, X.; Reichhardt, C. J. Olson; Reichhardt, C.
2017-03-01
We show that ac driven skyrmions interacting with an asymmetric substrate provide a realization of a class of ratchet system which we call a vector ratchet that arises due to the effect of the Magnus term on the skyrmion dynamics. In a vector ratchet, the dc motion induced by the ac drive can be described as a vector that can be rotated clockwise or counterclockwise relative to the substrate asymmetry direction. Up to a full 360∘ rotation is possible for varied ac amplitudes or skyrmion densities. In contrast to overdamped systems, in which ratchet motion is always parallel to the substrate asymmetry direction, vector ratchets allow the ratchet motion to be in any direction relative to the substrate asymmetry. It is also possible to obtain a reversal in the direction of rotation of the vector ratchet, permitting the creation of a reversible vector ratchet. We examine vector ratchets for ac drives applied parallel or perpendicular to the substrate asymmetry direction, and show that reverse ratchet motion can be produced by collective effects. No reversals occur for an isolated skyrmion on an asymmetric substrate. Since a vector ratchet can produce motion in any direction, it could represent a method for controlling skyrmion motion for spintronic applications.
NASA Astrophysics Data System (ADS)
Stotz, I. L.; Iaffaldano, G.; Davies, D. R.
2017-07-01
The timing and magnitude of a Pacific plate motion change within the past 10 Ma remains enigmatic, due to the noise associated with finite-rotation data. Nonetheless, it has been hypothesized that this change was driven by the arrival of the Ontong Java Plateau (OJP) at the Melanesian arc and the consequent subduction polarity reversal. The uncertainties associated with the timing of this event, however, make it difficult to quantitatively demonstrate a dynamical association. Here, we first reconstruct the Pacific plate's absolute motion since the mid-Miocene (15 Ma), at high-temporal resolution, building on previous efforts to mitigate the impact of finite-rotation data noise. We find that the largest change in Pacific plate-motion direction occurred between 10 and 5 Ma, with the plate rotating clockwise. We subsequently develop and use coupled global numerical models of the mantle/lithosphere system to test hypotheses on the dynamics driving this change. These indicate that the arrival of the OJP at the Melanesian arc, between 10 and 5 Ma, followed by a subduction polarity reversal that marked the initiation of subduction of the Australian plate underneath the Pacific realm, were the key drivers of this kinematic change.
NASA Technical Reports Server (NTRS)
Tolleson, William
2012-01-01
A document describes designing, building, testing, and certifying a customized crane (Lifting Device LD) with a strong back (cradle) to facilitate the installation of long wall panels and short door panels for the GHe phase of the James Webb Space Telescope (JWST). The LD controls are variable-frequency drive controls designed to be adjustable for very slow and very-short-distance movements throughout the installation. The LD has a lift beam with an electric actuator attached at the end. The actuator attaches to a rectangular strong back (cradle) for lifting the long wall panels and short door panels from a lower angle into the vertical position inside the chamber, and then rotating around the chamber for installation onto the existing ceiling and floor. The LD rotates 360 (in very small increments) in both clockwise and counterclockwise directions. Eight lifting pads are on the top ring with 2-in. (.5-cm) eye holes spaced evenly around the ring to allow for the device to be suspended by three crane hoists from the top of the chamber. The LD is operated by remote controls that allow for a single, slow mode for booming the load in and out, with slow and very slow modes for rotating the load.
Propagation as a mechanism of reorientation of the Juan de Fuca ridge
NASA Technical Reports Server (NTRS)
Wilson, D. S.; Hey, R. N.; Nishimura, C.
1984-01-01
A revised model is presented of the tectonic evolution of the Juan de Fuca ridge by propagating rifting. The new model has three different relative rotation poles, covering the time intervals 17.0-8.5 Ma, 8.5-5.0 Ma, and 5.0 Ma to the present. The rotation pole shifts at 8.5 and 5.0 Ma imply clockwise shifts in the direction of relative motion of 10 deg to 15 deg. At each of these shifts, the pattern of propagation reorganizes, and the new ridges formed by propagation are at an orientation closer to orthogonal to the new direction of motion than the orientation of the preexisting ridges. The model, containing a total of seven propagation sequences, shows excellent agreement with the isochrons inferred from the magnetic anomaly data, except in areas complicated by the separate Explorer and Gorda plates. The agreement between model and data near the Explorer plate breaks down abruptly at an age of about 5 Ma, indicating that the probable cause of the rotation pole shift at that time was the separation of the Explorer plate from the Juan de Fuca plate.
Cyclic fatigue analysis of twisted file rotary NiTi instruments used in reciprocating motion.
Gambarini, G; Gergi, R; Naaman, A; Osta, N; Al Sudani, D
2012-09-01
To evaluate the cyclic fatigue fracture resistance of engine-driven twisted file (TF) instruments under reciprocating movement. A sample of 30 size 25, 0.08 taper NiTi TF instruments was tested in a simulated canal with 60˚ angle of curvature and a 3 mm radius. During mechanical testing, different movement kinematics were used at a constant speed, which resulted in three experimental groups (each group n = 10). The instruments from the first group (G1) were rotated until fracture occurred. The instruments in the second (G2) and third group (G3) were driven under reciprocating movement with different angles of reciprocation. The time of fracture for each instrument was measured, and statistical analysis was performed using one-way analysis of variance followed by Tukey's Honestly Significant Different test. Reciprocating movement resulted in a significantly longer cyclic fatigue life (P < 0.0001) when compared with continuous rotation. No difference was found between reciprocation 150° clockwise/30° counterclockwise (CW/CCW) and 30° CW/150° CCW. The reciprocating movement was associated with an extended cyclic fatigue life of the TF size 0.25, 0.08 taper instruments in comparison with conventional rotation. © 2012 International Endodontic Journal.
NASA Technical Reports Server (NTRS)
Falls, L. W.; Crutcher, H. L.
1976-01-01
Transformation of statistics from a dimensional set to another dimensional set involves linear functions of the original set of statistics. Similarly, linear functions will transform statistics within a dimensional set such that the new statistics are relevant to a new set of coordinate axes. A restricted case of the latter is the rotation of axes in a coordinate system involving any two correlated random variables. A special case is the transformation for horizontal wind distributions. Wind statistics are usually provided in terms of wind speed and direction (measured clockwise from north) or in east-west and north-south components. A direct application of this technique allows the determination of appropriate wind statistics parallel and normal to any preselected flight path of a space vehicle. Among the constraints for launching space vehicles are critical values selected from the distribution of the expected winds parallel to and normal to the flight path. These procedures are applied to space vehicle launches at Cape Kennedy, Florida.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaul, Alexander; Holzinger, Dennis; Müglich, Nicolas David
A magnetic domain texture has been deterministically engineered in a topographically flat exchange-biased (EB) thin film system. The texture consists of long-range periodically arranged unit cells of four individual domains, characterized by individual anisotropies, individual geometry, and with non-collinear remanent magnetizations. The texture has been engineered by a sequence of light-ion bombardment induced magnetic patterning of the EB layer system. The magnetic texture's in-plane spatial magnetization distribution and the corresponding domain walls have been characterized by scanning electron microscopy with polarization analysis (SEMPA). The influence of magnetic stray fields emerging from neighboring domain walls and the influence of the differentmore » anisotropies of the adjacent domains on the Néel type domain wall core's magnetization rotation sense and widths were investigated. It is shown that the usual energy degeneracy of clockwise and counterclockwise rotating magnetization through the walls is revoked, suppressing Bloch lines along the domain wall. Estimates of the domain wall widths for different domain configurations based on material parameters determined by vibrating sample magnetometry were quantitatively compared to the SEMPA data.« less
Strain accumulation and rotation in western Oregon and southwestern Washington
Svarc, J.L.; Savage, J.C.; Prescott, W.H.; Murray, M.H.
2002-01-01
Velocities of 75 geodetic monuments in western Oregon and southwestern Washington extending from the coast to more than 300 km inland have been determined from GPS surveys over the interval 1992-2000. The average standard deviation in each of the horizontal velocity components is ??? 1 mm yr-1. The observed velocity field is approximated by a combination of rigid rotation (Euler vector relative to interior North America: 43. 40??N ?? 0.14??, 119.33??W ?? 0.28??, and 0.822 ?? 0.057?? Myr-1 clockwise; quoted uncertainties are standard deviations), uniform regional strain rate (??EE = -7.4 ?? 1.8, ??EN = -3.4 ?? 1.0, and ??NN = -5.0 ?? 0.8 nstrain yr-1, extension reckoned positive), and a dislocation model representing subduction of the Juan de Fuca plate beneath North America. Subduction south of 44.5??N was represented by a 40-km-wide locked thrust and subduction north of 44.5??N by a 75-km-wide locked thrust.
Method for determining shear direction using liquid crystal coatings
NASA Technical Reports Server (NTRS)
Reda, Daniel C.
1995-01-01
A method is provided for determining shear direction wherein a beam of white light is directed onto the surface of a liquid crystal coating to cause the white light to be dispersed (reflected) from the surface in a spectrum having bands of different colors in a fixed spatial 2 (angular) sequence. The system is calibrated by locating an observer, e.g., a video and movie camera, such that a particular color band (preferably at or near the center of the reflected spectrum) is observed to thereby provide a reference color band. Because the application of shear causes either clockwise or counterclockwise rotation of the reflected spectrum dependent on the direction of the shear, a determination is then made of the reflected color band observed by the observer when the surface of the liquid crystal is subjected to shear to thereby determine the direction of the shear based on the directional (rotation) relation of the observed color band with respect to the reference color band in the spatial sequence of color bands.
NASA Technical Reports Server (NTRS)
Thorp, Scott A.; Downey, Kevin M.
1992-01-01
One of the propulsion concepts being investigated for future cruise missiles is advanced unducted propfans. To support the evaluation of this technology applied to the cruise missile, a joint DOD and NASA test project was conducted to design and then test the characteristics of the propfans on a 0.55-scale, cruise missile model in a NASA wind tunnel. The configuration selected for study is a counterrotating rearward swept propfan. The forward blade row, having six blades, rotates in a counterclockwise direction, and the aft blade row, having six blades, rotates in a clockwise direction, as viewed from aft of the test model. Figures show the overall cruise missile and propfan blade configurations. The objective of this test was to evaluate propfan performance and suitability as a viable propulsion option for next generation of cruise missiles. This paper details the concurrent computer aided design, engineering, and manufacturing of the carbon fiber/epoxy propfan blades as the NASA Lewis Research Center.
Active Tectonics of the Far North Pacific Observed with GPS
NASA Astrophysics Data System (ADS)
Elliott, J.; Freymueller, J. T.; Jiang, Y.; Leonard, L. J.; Hyndman, R. D.; Mazzotti, S.
2017-12-01
The idea that the tectonics of the northeastern Pacific is defined by relatively discrete deformation along the boundary between the Pacific and North American plates has given way to a more complex picture of broad plate boundary zones and distributed deformation. This is due in large part to the Plate Boundary Observatory and several focused GPS studies, which have greatly increased the density of high-quality GPS data throughout the region. We will present an updated GPS velocity field in a consistent reference frame as well as a new, integrated block model that sheds light on regional tectonics and provides improved estimates of motion along faults and their potential seismic hazard. Crustal motions in southern Alaska are strongly influenced by the collision and flat-slab subduction of the Yakutat block along the central Gulf of Alaska margin. In the area nearest to the collisional front, small blocks showing evidence of internal deformation are required. East of the front, block motions show clockwise rotation into the Canadian Cordillera while west of the front there are counterclockwise rotations that extend along the Alaska forearc, suggesting crustal extrusion. Farther from the convergent margin, the crust appears to move as rigid blocks, with uniform motion over large areas. In western Alaska, block motions show a southwesterly rotation into the Bering Sea. Arctic Alaska displays southeasterly motions that gradually transition into easterly motion in Canada. Much of the southeastern Alaska panhandle and coastal British Columbia exhibit northwesterly motions. Although the relative plate motions are mainly accommodated along major faults systems, including the Fairweather-Queen Charlotte transform system, the St. Elias fold-and-thrust belt, the Denali-Totschunda system, and the Alaska-Aleutian subduction zone, a number of other faults accommodate lesser but still significant amounts of motion in the model. These faults include the eastern Denali/Duke River system, the Castle Mountain fault, the western Denali fault, the Kaltag fault, and the Kobuk fault. Based on the expanded GPS data set, locked or partially locked sections of the Alaska subduction zone may extend as far north and east as the eastern Alaska Range.
Novel optical gyroscope: proof of principle demonstration and future scope
Srivastava, Shailesh; Rao D. S., Shreesha; Nandakumar, Hari
2016-01-01
We report the first proof-of-principle demonstration of the resonant optical gyroscope with reflector that we have recently proposed. The device is very different from traditional optical gyroscopes since it uses the inherent coupling between the clockwise and counterclockwise propagating waves to sense the rotation. Our demonstration confirms our theoretical analysis and simulations. We also demonstrate a novel method of biasing the gyroscope using orthogonal polarization states. The simplicity of the structure and the readout method, the theoretically predicted high sensitivities (better than 0.001 deg/hr), and the possibility of further performance enhancement using a related laser based active device, all have immense potential for attracting fresh research and technological initiatives. PMID:27694987
Coordinated observations of chemical releases from the ground and from aircraft at high latitudes
NASA Technical Reports Server (NTRS)
Romick, G. J.
1973-01-01
The ground observations of the Na-Li trail released from a Nike-Apache rocket obtained by the Geophysical Institute are discussed. By using the nominal trajectory for a 60 pound payload and the particular rocket, a best fit trajectory was determined based on the Ester Dome photographic data, launch time and earth-sun geometrical shadow height. From these calculations, the height of obvious features along the trail were determined and their velocity estimated. A clockwise rotation of the velocity vector with increasing height was observed. Velocities deduced at various altitudes were then compared to meter radar data also obtained during this period. The comparisons of these two neutral wind measurements techniques are satisfactory.
NASA Astrophysics Data System (ADS)
Hagstrum, J. T.; Wells, R. E.; Evarts, R. C.; Niem, A. R.; Sawlan, M. G.; Blakely, R. J.
2008-12-01
Identification of individual flows within the Columbia River Basalt Group (CRBG) has mostly relied on minor differences in geochemistry, but magnetic polarity has also proved useful in differentiating flows and establishing a temporal framework. Within the thick, rapidly erupted Grande Ronde Basalt four major polarity chrons (R1 to N2) have been identified. Because cooling times of CRBG flows are brief compared to rates of paleosecular variation (PSV), within-flow paleomagnetic directions are expected to be constant across the extensive east-west reaches of these flows. Vertical-axis rotations in OR and WA, driven by northward-oblique subduction of the Juan de Fuca plate, thus can be measured by comparing directions for western sampling localities to directions for the same flow units on the relatively stable Columbia Plateau. Clockwise rotations calculated for outcrop locations within the Coast Range (CR) block are uniformly about 30° (N=102 sites). East of the northwest-trending en échelon Mt. Angel-Gales Creek, Portland Hills, and northern unnamed fault zones, as well as north of the CR block's northern boundary (~Columbia River), clockwise rotations abruptly drop to about 15° (N=39 sites), with offsets in these bounding fault zones corresponding to the Portland and Willamette pull-apart basins. The general agreement of vertical- axis rotation rates estimated from CRBG magnetizations with those determined from modern GPS velocities indicates a relatively steady rate over the last 10 to 15 Myr. Unusual directions due to PSV, field excursions, or polarity transitions could provide useful stratigraphic markers. Individual flow directions, however, have not been routinely used to identify flows. One reason this has been difficult is that remagnetization is prevalent, particularly in the Coast Ranges, coupled with earlier demagnetization techniques that did not completely remove overprint components. Except for the Ginkgo and Pomona flows of the Wanapum and Saddle Mountains Basalts, reference Plateau directions for the CRBG are poorly known. Moreover, field and drill- core relations indicate that flows with different chemistries were erupted at the same time. Renewed sampling, therefore, has been undertaken eastward from the Portland area into the Columbia River Gorge and out onto the Plateau. Resampling of the Patrick Grade section (23 flows) in southeastern WA has shown that overprint magnetizations were not successfully removed in many flows at this locality in an earlier study [1]. This brings into question blanket demagnetization studies of the CRBG as well as polarity measurements routinely made in the field with hand-held fluxgate magnetometers. [1] Choiniere and Swanson, 1979, Am. J. Sci., 279, p. 755
Paleomagnetism of the Talesh Mountains and implications for the geodynamics of NW Iran
NASA Astrophysics Data System (ADS)
Langereis, C. G.; Kuijper, C. B.; Rezaeian, M.; van der Boon, A.; Cotton, L.; Pastor-Galan, D.; Krijgsman, W.
2017-12-01
Since the late Eocene, convergence and subsequent collision between Arabia and Eurasia was accommodated both in the overriding Eurasian plate - which includes the Iranian plateau - and by subduction and accretion of the Neotethys and Arabian margin. Determining rotations of the Talesh is of crucial importance for estimating crustal shortening in the Arabia-Eurasia collision region. Previously, we quantified how much Arabia-Eurasia convergence was accommodated north of the Talesh mountains of NW Iran (120 km). Since the Eocene, the Talesh and western Alborz Mountains show a 16° net clockwise rotation relative to Eurasia. In our kinematic restoration, we considered the Talesh and western Alborz Mountains as a coherent single block, with a length of 600 km. However, on a smaller scale ( 100 km), the Talesh Mountains show a Z-shaped outcrop pattern of Eocene volcanic rocks. Here, we present new paleomagnetic data from Cretaceous sediments and Eocene volcanics of the Talesh Mountains, which cover a gap in our previous work. We reconstruct vertical axis rotations of the Z-shape. For the Eocene, our results indicate an increasing amount of CW rotation with respect to Eurasia from south to north: 24° in the southeast to 49° in the central Talesh. Cretaceous data show significantly larger rotations of 70-100° CW. This could indicate that curvature in the Talesh is progressive through time. The formation of this orocline must have started after the Eocene at the latest. However, it seems that not all of the outcrop pattern can be explained by the observed vertical axis rotations yet.
NASA Astrophysics Data System (ADS)
Pederzoli, Marek; Pittner, Jiří; Barbatti, Mario; Lischka, Hans
2012-10-01
The cis-trans isomerization of azobenzene upon S1(n,π*) excitation is studied both in gas phase and in solution. Our study is based on ab initio non-adiabatic dynamics simulations with the non-adiabatic effects included via the fewest-switches surface hopping method with potential-energy surfaces and couplings determined on the fly. The non-adiabatic couplings have been computed based on overlaps of CASSCF wave functions. The solvent is described using classical molecular dynamics employing the quantum mechanics/molecular mechanics (QM/MM) approach. Azobenzene photoisomerization upon S1(n,π*) excitation occurs purely as a rotational motion of the central CNNC moiety. Two non-equivalent rotational pathways, corresponding to clockwise or counterclockwise rotation, are available. The course of the rotational motion is strongly dependent on the initial conditions. The internal conversion occurs via a S0/S1 crossing seam located near the midpoint of both of these rotational pathways. Based on statistical analysis it is shown that the occurrence of one or other pathways can be completely controlled by selecting adequate initial conditions. The effect of the solvent on the reaction mechanism is small. The lifetime of the S1 state is marginally lowered; the effect does not depend on the polarity, but rather on the viscosity of the solvent. The quantum yield is solvent dependent; the simulations in water give smaller quantum yield than those obtained in n-hexane and in gas phase.
Structural patterns and tectonic history of the Bauer microplate, Eastern Tropical Pacific
Eakins, B.W.; Lonsdale, P.F.
2003-01-01
The Bauer microplate was an independent slab of oceanic lithosphere that from 17 Ma to 6 Ma grew from 1.4 ?? 105 km2 to 1.2 ?? 106 km2 between the rapidly diverging Pacific and Nazca plates. Growth was by accretion at the lengthening and overlapping axes of the (Bauer-Nazca) Galapagos Rise (GR) and the (Pacific-Bauer) East Pacific Rise (EPR). EPR and GR axial propagation to create and rapidly grow the counter-clockwise spinning microplate occurred in two phases: (1) 17-15Ma, when the EPR axis propagated north and the GR axis propagated south around a narrow (100- to 200-km-wide) core of older lithosphere; and (2) 8-6 Ma, when rapid northward propagation of the EPR axis resumed, overlapping ???400 km of the fast-spreading Pacific-Nazca rise-crest and appending a large (200- to 400-km-wide) area of the west flank of that rise as a 'northern annex' to the microplate. Between 15 and 8 Ma the microplate grew principally by crustal accretion at the crest of its rises. The microplate was captured by the Nazca plate and the Galapagos Rise axis became extinct soon after 6 Ma, when the south end of the Pacific-Bauer EPR axis became aligned with the southern Pacific-Nazca EPR axis and its north end was linked by the Quebrada Transform to the northern Pacific-Nazca EPR axis. Incomplete multibeam bathymetry of the microplate margins, and of both flanks of the Pacific-Bauer and Bauer-Nazca Rises, together with archival magnetic and satellite altimetry data, clarifies the growth and (counter-clockwise) rotation of the microplate, and tests tectonic models derived from studies of the still active, much smaller, Easter and Juan Fernandez microplates. Our interpretations differ from model predictions in that Euler poles were not located on the microplate boundary, propagation in the 15-8 Ma phase of growth was not toward these poles, and microplate rotation rates were small (5??/m.y.) for much of its history, when long, bounding transform faults reduced coupling to Nazca plate motion. Some structures of the Bauer microplate boundary, such as deep rift valleys and a broad zone of thrust-faulted lithosphere, are, however, similar to those observed around the smaller, active microplates. Analysis of how the Bauer microplate was captured when coupling to the Pacific plate was reduced invites speculation on why risecrest microplates eventually lose their independence. ?? Springer 2005.
NASA Astrophysics Data System (ADS)
Langfellner, J.; Gizon, L.; Birch, A. C.
2015-09-01
Flow vorticity is a fundamental property of turbulent convection in rotating systems. Solar supergranules exhibit a preferred sense of rotation, which depends on the hemisphere. This is due to the Coriolis force acting on the diverging horizontal flows. We aim to spatially resolve the vertical flow vorticity of the average supergranule at different latitudes, both for outflow and inflow regions. To measure the vertical vorticity, we use two independent techniques: time-distance helioseismology (TD) and local correlation tracking of granules in intensity images (LCT) using data from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Both maps are corrected for center-to-limb systematic errors. We find that 8 h TD and LCT maps of vertical vorticity are highly correlated at large spatial scales. Associated with the average supergranule outflow, we find tangential (vortical) flows that reach about 10 m s-1 in the clockwise direction at 40° latitude. In average inflow regions, the tangential flow reaches the same magnitude, but in the anticlockwise direction. These tangential velocities are much smaller than the radial (diverging) flow component (300 m s-1 for the average outflow and 200 m s-1 for the average inflow). The results for TD and LCT as measured from HMI are in excellent agreement for latitudes between -60° and 60°. From HMI LCT, we measure the vorticity peak of the average supergranule to have a full width at half maximum of about 13 Mm for outflows and 8 Mm for inflows. This is larger than the spatial resolution of the LCT measurements (about 3 Mm). On the other hand, the vorticity peak in outflows is about half the value measured at inflows (e.g., 4 × 10-6 s-1 clockwise compared to 8 × 10-6 s-1 anticlockwise at 40° latitude). Results from the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO) obtained in 2010 are biased compared to the HMI/SDO results for the same period. Appendices are available in electronic form at http://www.aanda.orgThe azimuthally averaged velocity components vr and vt for supergranular outflows and inflows at various latitudes are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/581/A67
NASA Astrophysics Data System (ADS)
Elliott, J.; Freymueller, J. T.; Larsen, C. F.; Motyka, R. J.
2010-12-01
GPS data from southern Alaska and the northern Canadian Cordillera have helped redefine the region’s tectonic landscape. Instead of a comparatively simple interaction between the Pacific and North American plates, with relative motion accommodated on a single boundary fault, we find a margin made up of a number of small blocks and deformation zones with relative motion distributed across a variety of structures. Much of this complexity can be attributed to the Yakutat block, an allochthonous terrane that has been colliding with southern Alaska since the Miocene. We present a GPS-derived tectonic model for the Yakutat block collision and its effects on southern Alaska and eastern Canada. The Yakutat block moves NNW at a rate of 50 mm/a, resulting in ~ 45 mm/a of NW-directed convergence with southern Alaska. Along its eastern edge, the Yakutat block is deforming, represented in our model by two small northwesterly moving blocks outboard of the Fairweather fault. Part of the strain from the collision is transferred east of the Fairweather - Queen Charlotte fault system, causing the region inboard of the Fairweather fault to undergo a distinct clockwise rotation into the northern Canadian Cordillera. Further south, the region directly east of the Queen Charlotte fault displays a much slower clockwise rotation, suggesting that it is at least partially pulled along by the northern block motion. About 5% of the relative motion is transferred even further east, causing small northeasterly motions well into the northern Cordillera. The northwestern edge of the Yakutat block marks the main deformation front between that block and southern Alaska. Multiple narrow, northwesterly moving blocks bounded by N- to NW-dipping thrust faults are required to explain the GPS data between the Malaspina Glacier and the Bagley Ice Valley. These “blocks” may be more aptly termed crustal slivers or deformation zones due to their size and because their bounding faults may sole out into a main thrust instead of cutting through the lithosphere. In contrast with the region to the east, relative convergence is accommodated over a fairly short distance across the St. Elias Mountains. West of the deformation front, the en echelon blocks and faults continue until the vicinity of the Bering Glacier, where the GPS data reveal a rotation towards the north as the tectonic regime transitions from the collision and accretion of the Yakutat block to subduction along the Aleutian Megathrust. North of the Chugach and St. Elias Ranges, the Southern Alaska block rotates counterclockwise.
Juno Close Look at the Little Red Spot
2017-01-25
The JunoCam imager on NASA's Juno spacecraft snapped this shot of Jupiter's northern latitudes on Dec. 11, 2016 at 8:47 a.m. PST (11:47 a.m. EST), as the spacecraft performed a close flyby of the gas giant planet. The spacecraft was at an altitude of 10,300 miles (16,600 kilometers) above Jupiter's cloud tops. This stunning view of the high north temperate latitudes fortuitously shows NN-LRS-1, a giant storm known as the Little Red Spot (lower left). This storm is the third largest anticyclonic reddish oval on the planet, which Earth-based observers have tracked for the last 23 years. An anticyclone is a weather phenomenon with large-scale circulation of winds around a central region of high atmospheric pressure. They rotate clockwise in the northern hemisphere, and counterclockwise in the southern hemisphere. The Little Red Spot shows very little color, just a pale brown smudge in the center. The color is very similar to the surroundings, making it difficult to see as it blends in with the clouds nearby. Citizen scientists Gerald Eichstaedt and John Rogers processed the image and drafted the caption. http://photojournal.jpl.nasa.gov/catalog/PIA21378
NASA Technical Reports Server (NTRS)
d'Ambrosio, U.; Dolan, M.; Wier, A. M.; Margulis, L.
1999-01-01
An amitochondriate trichomonad cell of the family Devescovinidae (Class Parabasalia), helped demonstrate the fluid model of lipoprotein cell membranes. This wood-ingesting symbiont in the hindgut of the dry wood-eating termite Cryptotermes cavifrons is informally known to cell biologists as "Rubberneckia". As the microtubular axo-style complex generates force causing clockwise movement of the entire anterior portion of the cell at the shear zone the protist displays "head" rotation. Studies by phase contrast and videomicroscopy of live cells, of whole mounts by scanning, and thin sections by transmission electron microscopy extend the observations of Tamm and Tamm [24-26] and Tamm [19-23]. Habitat, cell shape, size, nuclear features, parabasal apparatus and other morphological details permit the assignment of "Rubberneckia" to Kirby's cosmopolitan genus Caduceia. This large-sized devescovinid has distinctive parabasal gyres, an axostylar rotary, motor, and regularly-associated nonflagellated, fusiform and flagellated rod epibiotic surface bacteria. In addition to regularly aligned epibionts intranuclear and endocytoplasmic bacteria are abundant and hydrogenosomes are Present. "Rubberneckia" is compared here to the other seven species of Caduceia. Since it is clearly sufficiently distinctive to warrant new species status, we named it C. versatilis.
The Association of High-Latitude Dayside Aurora With NBZ Field-Aligned Currents
NASA Astrophysics Data System (ADS)
Carter, J. A.; Milan, S. E.; Fogg, A. R.; Paxton, L. J.; Anderson, B. J.
2018-05-01
The relationship between auroral emissions in the polar ionosphere and the large-scale flow of current within the Earth's magnetosphere has yet to be comprehensively established. Under northward interplanetary magnetic field (IMF) conditions, magnetic reconnection occurs at the high-latitude magnetopause, exciting two reverse lobe convection cells in the dayside polar ionosphere and allowing ingress of solar wind plasma to form an auroral "cusp spot" by direct impact on the atmosphere. It has been hypothesized that a second class of NBZ auroras, High-latitude Dayside Aurora, are produced by upward field-aligned currents associated with lobe convection. Here we present data from the Special Sensor Ultraviolet Spectrographic Imager instrument and from the Active Magnetosphere and Planetary Electrodynamics Response Experiment, from January 2010 to September 2013, in a large statistical study. We reveal a northward IMF auroral phenomenon that is located adjacent to the cusp spot and that is colocated with a region of upward electrical current in the clockwise-rotating lobe cell. The emission only occurs in the sunlit summer hemisphere, demonstrating the influence of the conductance of the ionosphere on current closure. In addition, fast solar wind speed is required for this emission to be bright. The results show that dayside auroral emission is produced by IMF-magnetosphere electrodynamic coupling, as well as by direct impact of the atmosphere by the solar wind, confirming the association of High-latitude Dayside Aurora with NBZ currents.
NASA Astrophysics Data System (ADS)
Wallace, Laura M.; Stevens, Colleen; Silver, Eli; McCaffrey, Rob; Loratung, Wesley; Hasiata, Suvenia; Stanaway, Richard; Curley, Robert; Rosa, Robert; Taugaloidi, Jones
2004-05-01
The island of New Guinea is located within the deforming zone between the Pacific and Australian plates that converge obliquely at ˜110 mm/yr. New Guinea has been fragmented into a complex array of microplates, some of which rotate rapidly about nearby vertical axes. We present velocities from a network of 38 Global Positioning System (GPS) sites spanning much of the nation of Papua New Guinea (PNG). The GPS-derived velocities are used to explain the kinematics of major tectonic blocks in the region and the nature of strain accumulation on major faults in PNG. We simultaneously invert GPS velocities, earthquake slip vectors on faults, and transform orientations in the Woodlark Basin for the poles of rotation of the tectonic blocks and the degree of elastic strain accumulation on faults in the region. The data are best explained by six distinct tectonic blocks: the Australian, Pacific, South Bismarck, North Bismarck, and Woodlark plates and a previously unrecognized New Guinea Highlands Block. Significant portions of the Ramu-Markham Fault appear to be locked, which has implications for seismic hazard determination in the Markham Valley region. We also propose that rapid clockwise rotation of the South Bismarck plate is controlled by edge forces initiated by the collision between the Finisterre arc and the New Guinea Highlands.
Non-genetic individuality in Escherichia coli motor switching
Mora, Thierry; Bai, Fan; Che, Yong-Suk; Minamino, Tohru; Namba, Keiichi; Wingreen, Ned S.
2011-01-01
By analyzing 30-minute, high-resolution recordings of single E. coli flagellar motors in the physiological regime, we show that two main properties of motor switching —the mean clockwise and mean counter-clockwise interval durations— vary significantly. When we represent these quantities on a two-dimensional plot for several cells, the data does not fall on a one-dimensional curve, as expected with a single control parameter, but instead spreads in two dimensions, pointing to motor individuality. The largest variations are in the mean counter-clockwise interval, and are attributable to variations in the concentration of the internal signaling molecule CheY-P. In contrast, variations in the mean clockwise interval are interpreted in terms of motor individuality. We argue that the sensitivity of the mean counter-clockwise interval to fluctuations in CheY-P is consistent with an optimal strategy of run and tumble. The concomittent variability in mean run length may allow populations of cells to better survive in rapidly changing environments by “hedging their bets”. PMID:21422514
SU-E-T-195: Gantry Angle Dependency of MLC Leaf Position Error
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ju, S; Hong, C; Kim, M
Purpose: The aim of this study was to investigate the gantry angle dependency of the multileaf collimator (MLC) leaf position error. Methods: An automatic MLC quality assurance system (AutoMLCQA) was developed to evaluate the gantry angle dependency of the MLC leaf position error using an electronic portal imaging device (EPID). To eliminate the EPID position error due to gantry rotation, we designed a reference maker (RM) that could be inserted into the wedge mount. After setting up the EPID, a reference image was taken of the RM using an open field. Next, an EPID-based picket-fence test (PFT) was performed withoutmore » the RM. These procedures were repeated at every 45° intervals of the gantry angle. A total of eight reference images and PFT image sets were analyzed using in-house software. The average MLC leaf position error was calculated at five pickets (-10, -5, 0, 5, and 10 cm) in accordance with general PFT guidelines using in-house software. This test was carried out for four linear accelerators. Results: The average MLC leaf position errors were within the set criterion of <1 mm (actual errors ranged from -0.7 to 0.8 mm) for all gantry angles, but significant gantry angle dependency was observed in all machines. The error was smaller at a gantry angle of 0° but increased toward the positive direction with gantry angle increments in the clockwise direction. The error reached a maximum value at a gantry angle of 90° and then gradually decreased until 180°. In the counter-clockwise rotation of the gantry, the same pattern of error was observed but the error increased in the negative direction. Conclusion: The AutoMLCQA system was useful to evaluate the MLC leaf position error for various gantry angles without the EPID position error. The Gantry angle dependency should be considered during MLC leaf position error analysis.« less
Zarco-Zavala, Mariel; Mendoza-Hoffmann, Francisco; García-Trejo, José J
2018-06-07
The ATP synthase is a reversible nanomotor that gyrates its central rotor clockwise (CW) to synthesize ATP and in counter clockwise (CCW) direction to hydrolyse it. In bacteria and mitochondria, two natural inhibitor proteins, namely the ε and IF 1 subunits, prevent the wasteful CCW F 1 F O -ATPase activity by blocking γ rotation at the α DP /β DP /γ interface of the F 1 portion. In Paracoccus denitrificans and related α-proteobacteria, we discovered a different natural F 1 -ATPase inhibitor named ζ. Here we revise the functional and structural data showing that this novel ζ subunit, although being different to ε and IF 1 , it also binds to the α DP /β DP /γ interface of the F 1 of P. denitrificans. ζ shifts its N-terminal inhibitory domain from an intrinsically disordered protein region (IDPr) to an α-helix when inserted in the α DP /β DP /γ interface. We showed for the first time the key role of a natural ATP synthase inhibitor by the distinctive phenotype of a Δζ knockout mutant in P. denitrificans. ζ blocks exclusively the CCW F 1 F O -ATPase rotation without affecting the CW-F 1 F O -ATP synthase turnover, confirming that ζ is important for respiratory bacterial growth by working as an unidirectional pawl-ratchet PdF 1 F O -ATPase inhibitor, thus preventing the wasteful consumption of cellular ATP. In summary, ζ is an useful model that mimics mitochondrial IF 1 but in α-proteobacteria. The structural, functional, and endosymbiotic evolutionary implications of this ζ inhibitor are discussed to shed light on the natural control mechanisms of the three natural inhibitor proteins (ε, ζ, and IF 1 ) of this unique ATP synthase nanomotor, essential for life. Copyright © 2018. Published by Elsevier B.V.
Coarse-Scale Biases for Spirals and Orientation in Human Visual Cortex
Heeger, David J.
2013-01-01
Multivariate decoding analyses are widely applied to functional magnetic resonance imaging (fMRI) data, but there is controversy over their interpretation. Orientation decoding in primary visual cortex (V1) reflects coarse-scale biases, including an over-representation of radial orientations. But fMRI responses to clockwise and counter-clockwise spirals can also be decoded. Because these stimuli are matched for radial orientation, while differing in local orientation, it has been argued that fine-scale columnar selectivity for orientation contributes to orientation decoding. We measured fMRI responses in human V1 to both oriented gratings and spirals. Responses to oriented gratings exhibited a complex topography, including a radial bias that was most pronounced in the peripheral representation, and a near-vertical bias that was most pronounced near the foveal representation. Responses to clockwise and counter-clockwise spirals also exhibited coarse-scale organization, at the scale of entire visual quadrants. The preference of each voxel for clockwise or counter-clockwise spirals was predicted from the preferences of that voxel for orientation and spatial position (i.e., within the retinotopic map). Our results demonstrate a bias for local stimulus orientation that has a coarse spatial scale, is robust across stimulus classes (spirals and gratings), and suffices to explain decoding from fMRI responses in V1. PMID:24336733
NASA Astrophysics Data System (ADS)
Poblete, Fernando; Roperch, Pierrick; Herve, Francisco; Ramirez, Cristobal; Arriagada, Cesar
2014-05-01
The southernmost Andes of Patagonia and Tierra del Fuego present a prominent arc-shaped structure, the Patagonian Orocline. Despite the fact that this major structure was already described by Alfred Wegener in his famous textbook in 1929, few paleomagnetic studies have been attempted to describe the rotations associated with the formation of the Patagonian Orocline. In this study we present a paleomagnetic and anisotropy of magnetic susceptibility (AMS) study from more than 130 sites obtained from the Ultima Esperanza region (NS structures at ~51°S) to Península Hardy, south of the Beagle Channel at ~55°S. 45 sites were sampled in early-cretaceous gabbros (gabbro complex), mid-cretaceous tonalites and granodiorites (Canal Beagle group) and Paleocene intrusive rocks (Seno Año Nuevo group) from the South Patagonian batholith, 4 sites from the late Jurassic Hardy formation, a volcanic succession outcropping in Hardy Peninsula and Stewart Island, 9 sites were drilled in the lower cretaceous sedimentary infill of the Rocas Verdes Basin, 3 sites from the Tortuga ophiolite, a quasi-oceanic crust related to the opening of the Rocas Verdes basin. 80 sites were sampled in Cretaceous to Miocene sedimentary rocks from the Magallanes fold and thrust belt and Magallanes Basin. Characteristic Remanent Magnetizations (ChRMs) obtained from the Rocas Verdes Basin tectonic province correspond to secondary magnetizations postdating the early phase of folding. Pyrrhotite is the main magnetic carrier in some of these sites. ChRMs from the South Patagonian Batholith correspond to a primary magnetization. These rocks record about 90° counterclockwise rotations south of the Beagle channel. Few sites from sediments of the Magallanes fold and thrust belt have stable ChRM. The available paleomagnetic results show that no rotation has occurred in the Provincia of Ultima Esperanza (51.5°S), at least, for the last 60 Ma. In the southern part of Provincia de Magallanes and Tierra del Fuego (53°-54.5°S), paleomagnetic results indicate a counterclockwise rotation of ~15° after 60 Ma. AMS results show a good correlation between magnetic lineations and the strikes of structures of the fold and thrust belt except near the Magallanes Fagnano fault zone. On the other hand, the magnetic lineations in both intrusive and sedimentary rocks along the Beagle Channel are mainly vertical suggesting compressive deformation during pluton emplacement at ~90 Ma along the Beagle channel fault. In summary, the formation of the Patagonian Orocline occurred in two stages during a period of convergence and collision of the Antarctic Peninsula with Patagonia. The first stage is associated with large counterclockwise rotations and closure of the Rocas Verdes basin during the late Cretaceous. The second stage corresponds to the formation of the curved, mainly non-rotational Magallanes fold and thrust belt during the Tertiary. Funding for this study was provided by CONICYT Project ACT-105 and CONICYT/IRD scholarships to F. Poblete.
Measurement of the rotational misfit and implant-abutment gap of all-ceramic abutments.
Garine, Wael N; Funkenbusch, Paul D; Ercoli, Carlo; Wodenscheck, Joseph; Murphy, William C
2007-01-01
The specific aims of this study were to measure the implant and abutment hexagonal dimensions, to measure the rotational misfit between implant and abutments, and to correlate the dimension of the gap present between the abutment and implant hexagons with the rotational misfit of 5 abutment-implant combinations from 2 manufacturers. Twenty new externally hexed implants (n = 10 for Nobel Biocare; n = 10 for Biomet/3i) and 50 new abutments were used (n = 10; Procera Zirconia; Procera Alumina; Esthetic Ceramic Abutment; ZiReal; and GingiHue post ZR Zero Rotation abutments). The mating surfaces of all implants and abutments were imaged with a scanning electron microscope before and after rotational misfit measurements. The distances between the corners and center of the implant and abutment hexagon were calculated by entering their x and y coordinates, measured on a measuring microscope, into Pythagoras' theorem. The dimensional difference between abutment and implant hexagons was calculated and correlated with the rotational misfit, which was recorded using a precision optical encoder. Each abutment was rotated (3 times/session) clockwise and counterclockwise until binding. Analysis of variance and Student-Newman-Keuls tests were used to compare rotational misfit among groups (alpha = .05). With respect to rotational misfit, the abutment groups were significantly different from one another (P < .001), with the exception of the Procera Zirconia and Esthetic Ceramic groups (P = .4). The mean rotational misfits in degrees were 4.13 +/- 0.68 for the Procera Zirconia group, 3.92 +/- 0.62 for the Procera Alumina group, 4.10 +/- 0.67 for the Esthetic Ceramic group, 3.48 +/- 0.40 for the ZiReal group, and 1.61 +/- 0.24 for the GingiHue post ZR group. There was no correlation between the mean implant-abutment gap and rotational misfit. Within the limits of this study, machining inconsistencies of the hexagons were found for all implants and abutments tested. The GingiHue Post showed the smallest rotational misfit. All-ceramic abutments without a metal collar showed a greater rotational misfit than those with a metal collar.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yun; Catalano, Suzanne; Kelsey, Chris R.
2014-04-01
To quantitatively evaluate dosimetric effects of rotational offsets in stereotactic body radiation therapy (SBRT) for lung cancer. Overall, 11 lung SBRT patients (8 female and 3 male; mean age: 75.0 years) with medially located tumors were included. Treatment plans with simulated rotational offsets of 1°, 3°, and 5° in roll, yaw, and pitch were generated and compared with the original plans. Both clockwise and counterclockwise rotations were investigated. The following dosimetric metrics were quantitatively evaluated: planning target volume coverage (PTV V{sub 100%}), max PTV dose (PTV D{sub max}), percentage prescription dose to 0.35 cc of cord (cord D{sub 0.35} {submore » cc}), percentage prescription dose to 0.35 cc and 5 cc of esophagus (esophagus D{sub 0.35} {sub cc} and D{sub 5} {sub cc}), and volume of the lungs receiving at least 20 Gy (lung V{sub 20}). Statistical significance was tested using Wilcoxon signed rank test at the significance level of 0.05. Overall, small differences were found in all dosimetric matrices at all rotational offsets: 95.6% of differences were < 1% or < 1 Gy. Of all rotational offsets, largest change in PTV V{sub 100%}, PTV D{sub max}, cord D{sub 0.35} {sub cc}, esophagus D{sub 0.35} {sub cc}, esophagus D{sub 5} {sub cc}, and lung V{sub 20} was − 8.36%, − 6.06%, 11.96%, 8.66%, 6.02%, and − 0.69%, respectively. No significant correlation was found between any dosimetric change and tumor-to-cord/esophagus distances (R{sup 2} range: 0 to 0.44). Larger dosimetric changes and intersubject variations were observed at larger rotational offsets. Small dosimetric differences were found owing to rotational offsets up to 5° in lung SBRT for medially located tumors. Larger intersubject variations were observed at larger rotational offsets.« less
Distributed deformation and block rotation in 3D
NASA Technical Reports Server (NTRS)
Scotti, Oona; Nur, Amos; Estevez, Raul
1990-01-01
The authors address how block rotation and complex distributed deformation in the Earth's shallow crust may be explained within a stationary regional stress field. Distributed deformation is characterized by domains of sub-parallel fault-bounded blocks. In response to the contemporaneous activity of neighboring domains some domains rotate, as suggested by both structural and paleomagnetic evidence. Rotations within domains are achieved through the contemporaneous slip and rotation of the faults and of the blocks they bound. Thus, in regions of distributed deformation, faults must remain active in spite of their poor orientation in the stress field. The authors developed a model that tracks the orientation of blocks and their bounding faults during rotation in a 3D stress field. In the model, the effective stress magnitudes of the principal stresses (sigma sub 1, sigma sub 2, and sigma sub 3) are controlled by the orientation of fault sets in each domain. Therefore, adjacent fault sets with differing orientations may be active and may display differing faulting styles, and a given set of faults may change its style of motion as it rotates within a stationary stress regime. The style of faulting predicted by the model depends on a dimensionless parameter phi = (sigma sub 2 - sigma sub 3)/(sigma sub 1 - sigma sub 3). Thus, the authors present a model for complex distributed deformation and complex offset history requiring neither geographical nor temporal changes in the stress regime. They apply the model to the Western Transverse Range domain of southern California. There, it is mechanically feasible for blocks and faults to have experienced up to 75 degrees of clockwise rotation in a phi = 0.1 strike-slip stress regime. The results of the model suggest that this domain may first have accommodated deformation along preexisting NNE-SSW faults, reactivated as normal faults. After rotation, these same faults became strike-slip in nature.
Tam, Byron; Bollu, Prashanti; Chaudhry, Kishore; Subramani, Karthikeyan
2017-10-01
The purpose of this study was to determine the influence of linear and rotational pre-cure bracket displacement during the bonding procedure on shear bond strength (SBS) of orthodontic brackets. Stainless steel orthodontic premolar brackets were bonded to the buccal surfaces of 50 human pre-molars with a conventional two-step bonding protocol. Extracted human pre-molars were divided into 5 groups (n=10/group). In the Control Group, the brackets were bonded with no pre-cure bracket displacement or rotation. The Rotation Group was bonded with 45 degrees of pre-cure rotation. The Displacement Group was bonded with 2mm pre-cure linear displacement. The Rotation-Displacement Group was bonded with pre-cure movements of 45º counter-clockwise rotation and 2mm displacement. The Slippage Group was bonded with 2mm each of mesial and distal pre-cure linear displacement. Photo-activation was carried out on the lateral sides of the bracket. Shear debonding force was measured, 24 hours after initial bonding, with an Instron universal testing machine using a knife-edged chisel. Data was analyzed using one-way ANOVA test. Adhesive Remnant Index (ARI) was scored under 15x magnification. The ARI data was analyzed using the Chi-square test ( p -value < 0.05). No statistically significant differences were detected among the control and experimental groups ( p = 0.331). The rotation and displacement group showed the highest mean SBS than all other groups. Mean SBS for all groups were above the clinically acceptable range. No statistically significant differences were detected in ARI scores among groups ( p = 0.071). Linear and rotational pre-cure bracket displacements do not appear to effect the shear bond strength of orthodontic brackets. Key words: Shear bond strength, orthodontic bracket, displacement, rotation, adhesive remnant index, pre-cure movement.
NASA Astrophysics Data System (ADS)
Szatmari, P.
2012-04-01
Rabinowitz & LaBrecque (1979) proposed that Africa and South America separated between 130 Ma and 107 Ma by 11.1° rigid plate rotation about an Euler pole in NE Brazil. According to those authors, the two continents remained contiguous in the north as the wedge-shaped South Atlantic opened up between them and deposited salt mostly over oceanic crust. Subsequent seismic profiling and drilling showed that salt, restricted to north of the volcanic proto-Walvis Ridge, deposited over rift sediments and stretched-thinned continental crust. Increasingly accurate restorations by Nürnberg & Müller (1991), Aslanian et al. (2009), Torsvik et al. (2009), and Moulin et al. (2010) differentiated in both continents several rigid plates separated by active deformation zones. Still, tectonic analysis of the rifted margins indicates that the main Early Cretaceous event was the clockwise rotation of South America about an Euler pole in its northeast. Both rifting and volcanism, including the Paraná-Etendeka large igneous province, where most flood basalts erupted at 134.6 ± 0.6 Ma (Thiede & Vasconcelos, 2010), were controlled by distance and orientation of rift segments relative to that pole in NE Brazil. Rifting was active from latest Jurassic to early Albian time (Magnavita et al., 2011) over inherited late Proterozoic fold-thrust belts. By Aptian time a long, dry wedge-shaped basin formed north of the volcanic barrier of the proto-Walvis Ridge, widening southward to 700 km and subsiding deep below sea level in the Santos Basin. The basin was filled with oil-rich lacustrine limestone and marine salt, each more than 2 km thick, deposited in often desiccating shallow water over the partially hyperextended continental crust of the São Paulo Plateau (Zalán et al., 2010; Magnavita et al., 2011; Szatmari, 2011). Further south marine sediments deposited over oceanic crust. Surface subsidence of the long, deep sediment-starved rift wedge was shaped, prior to the deposition of the lacustrine limestones and marine evaporites, by South America's continental rotation and by hotspot activity; asthenosphere inflow was limited by the bordering two old continents.
The merger of two giant anticyclones in the atmosphere of Jupiter
NASA Astrophysics Data System (ADS)
Sanchez-Lavega, A.; Orton, G. S.; Morales, R.; Lecacheux, J.; Colas, F.; Fisher, B.; Fukumura-Sawada, P.; Golisch, W.; Griep, D.; Kaminski, C.; Baines, K.; Rages, K.; West, R.
2000-10-01
Two giant ovals in Jupiter's southern atmosphere, vortices of counterclockwise-rotating winds, merged in a 3-week period, starting in March 2000. One of the ovals called FA was more than 60 years old; the other called BE was the product of two 60-year ovals (BC and DE) that merged in 1998 (Sanchez-Lavega et al., Icarus, Vol. 142, 116. 1999). Here we report the coordinated observations of the BE - FA merger obtained with different facilities: The 1 - m Pic-du-Midi telescope (visual wavelength range), the 3.5 m NASA - IRTF telescope (red and near infrared range) and the Hubble Space Telescope (visual range). The merger took place when the ovals were southeast of the Great Red Spot and after the disappearance of a smaller, clockwise-rotating oval midway between them. The interaction began when the high-altitude oval clouds showed counterclockwise rotation about each other, followed by coalescence and shrinking. The interaction in deeper clouds did not include mutual rotation, but there was evidence of complex cloud structure during the merger. After 60 years, these three vortices consolidate into a single vortex that could now either (1) merge with the large, axisymmetric high-albedo band from which the ovals were originally formed or (2) continue as a stable and long-lived vortex in Jupiter. If the new oval (BA) is long-lived, then it is tempting to speculate that the more than 300-year old Great Red Spot could have had a similar genesis. The Spanish team was supported by Gobierno Vasco PI 034/97. The French team was supported by the "Programme National de Planetologie." The US team was supported by NASA through grants to the Institute for Astronomy (U. Hawaii) and JPL. Some of the observations were made by the NASA-ESA Hubble Space Telescope, with support provided through grant GO-8148 from the Space Telescope Science Institute which is operated by the Association of Universities for Research in Astronmy under NASA contract NAS5-26555. RM acknowledges a fellowship from Universidad Pais Vasco.
NASA Astrophysics Data System (ADS)
Horst, A.; Varga, R. J.; Gee, J. S.; Karson, J. A.
2006-12-01
The tectonic window at the Pito Deep Rift exposes super-fast spread (>140mm/yr) oceanic crust created at the East Pacific Rise (EPR). Observations and investigations of well-exposed cross sections into modern ocean crust, such as Pito Deep, provide essential insights into ridge crest dynamics. Paleomagnetic analysis provides a quantitative means for assessing both magnitude and style of structural rotations of oceanic crust. The Pito Cruise 2005 collected 69 fully oriented samples [67 dikes, 2 gabbros] during several ALVIN and JASON II dives. These samples were all oriented in situ using the Geocompass. Along the escarpment of Pito Deep, dike orientations have consistant NE strikes and SE dips. These dikes are all formed roughly 3 million years ago at the EPR located to the west of their present position. We determined magnetic remanence for a subset of 34 oriented blocks. A majority of dikes in this subset have normal polarity and many are clockwise rotated from expected orientations. To assess possible orientation errors during collection, we sampled multiple dikes from relatively small areas. On ALVIN dive 4081, for example, we collected 14 samples from a well-exposed, subparallel series of dikes. These dikes provide stable and consistently oriented remanence directions suggesting that errors in the collection process are small. Remanence data collected to date verify tectonic models that suggest clockwise rotation of the Easter microplate, consistent with current models. In addition to magnetic remanence, we determined the anisotropy of magnetic susceptibility (AMS) of the 34 dike samples. AMS studies have proven their utility in a wide range of geological studies and have been shown to determine flow direction within dikes in a variety of settings. In most Pito Deep samples, two of three AMS eigenvectors lie close to dike plane orientations. Kmin generally lies perpendicular to dike planes while, in most samples, Kmax is shallow indicating dominantly subhorizontal magma flow. Steep Kmax in a few samples indicates vertical flow directions suggestive of primary flow or of gravitational back-flow during the waning stages of dike injection. Primarily horizontal magma flow in dikes might indicate injection of magma from a centralized magma chamber toward a plate segment boundary.
Fontana, Mattia; Cozzani, Mauro; Caprioglio, Alberto
2012-05-01
The purpose of this retrospective prolective study is to evaluate soft tissue, dentoalveolar and skeletal vertical changes following conventional anchorage molar distalization therapy in adult patients. Forty-six patients (34 females, mean age 25 years 6 months; and 12 males, mean age 28 years 4 months) were recruited from 4 specialists Board Certified. All subjects underwent molar distalization therapy according different distalization mechanics. Cephalometric headfilms were available for all subjects before (T0) and at the end of comprehensive treatment (T1). The initial and final measurements and treatment changes were compared by means of a paired t-test or a paired Wilcoxon test. Mean total treatment time was 3 years 3 months ± 8 months. Maxillary first and second molars distalized 2.16±0.84 mm and 2.01±0.69 mm respectively, but also maintained a slight distal tipping of 1.45° (min 2.22°, max -6.45°) and 3.35° (min 0.47°, max -15.48°) at the end of treatment. Distal movement of maxillary first molar contributed 57.6% to molar correction, and 42.4% was due to a mesial movement of mandibular first molar (1.59±0.46 mm). Dentoalveolar changes contributed to overjet correction; maxillary incisors retroclined 5.78°±3.17°, lower incisors proclined 7.49°±4.52° and occlusal plane rotated down and backward 2.32°±2.10°. A significant clockwise rotation of the mandible (1.97°±1.32°) and a significant increase in lower facial height (3.35±1.48) mm were observed. Upper lip slightly retruded (-1.76±1.70 mm) and lower lip protruded (0.96±0.99 mm) but these changes had a negligible impact on clinical appearance. Although maxillary molar distalization therapy can be performed in adult patients, significant proclination of the lower incisors, clockwise rotation of the occlusal plane and increase in vertical facial dimension should be expected. Nevertheless, in absence of maxillary third molars and in presence of mandibular third molars this procedure could be recommended. Copyright © 2011 Società Italiana di Ortodonzia SIDO. Published by Elsevier Srl. All rights reserved.
Bistability of Cavity Magnon Polaritons
NASA Astrophysics Data System (ADS)
Wang, Yi-Pu; Zhang, Guo-Qiang; Zhang, Dengke; Li, Tie-Fu; Hu, C.-M.; You, J. Q.
2018-01-01
We report the first observation of the magnon-polariton bistability in a cavity magnonics system consisting of cavity photons strongly interacting with the magnons in a small yttrium iron garnet (YIG) sphere. The bistable behaviors emerged as sharp frequency switchings of the cavity magnon polaritons (CMPs) and related to the transition between states with large and small numbers of polaritons. In our experiment, we align, respectively, the [100] and [110] crystallographic axes of the YIG sphere parallel to the static magnetic field and find very different bistable behaviors (e.g., clockwise and counter-clockwise hysteresis loops) in these two cases. The experimental results are well fitted and explained as being due to the Kerr nonlinearity with either a positive or negative coefficient. Moreover, when the magnetic field is tuned away from the anticrossing point of CMPs, we observe simultaneous bistability of both magnons and cavity photons by applying a drive field on the lower branch.
Bistability of Cavity Magnon Polaritons.
Wang, Yi-Pu; Zhang, Guo-Qiang; Zhang, Dengke; Li, Tie-Fu; Hu, C-M; You, J Q
2018-02-02
We report the first observation of the magnon-polariton bistability in a cavity magnonics system consisting of cavity photons strongly interacting with the magnons in a small yttrium iron garnet (YIG) sphere. The bistable behaviors emerged as sharp frequency switchings of the cavity magnon polaritons (CMPs) and related to the transition between states with large and small numbers of polaritons. In our experiment, we align, respectively, the [100] and [110] crystallographic axes of the YIG sphere parallel to the static magnetic field and find very different bistable behaviors (e.g., clockwise and counter-clockwise hysteresis loops) in these two cases. The experimental results are well fitted and explained as being due to the Kerr nonlinearity with either a positive or negative coefficient. Moreover, when the magnetic field is tuned away from the anticrossing point of CMPs, we observe simultaneous bistability of both magnons and cavity photons by applying a drive field on the lower branch.
STS-42 OV-103 crew poses for onboard (in-space) portrait in IML-1 SL module
1992-01-30
STS042-78-061 (22-30 Jan. 1992) --- The seven STS-42 crewmembers pose for a traditional in-space portrait in the shirt-sleeve environment of the International Microgravity Laboratory (IML-1) science module in the shuttle's cargo bay. (Hold picture with index numbers at top.) David C. Hilmers, mission specialist, is at top center of the 70mm image. Others pictured are (clockwise) Ronald J. Grabe, mission commander; William F. Readdy; mission specialist; Ulf Merbold, European Space Agency (ESA) payload specialist; Norman E. Thagard, payload commander; Stephen S. Oswald, pilot; and Roberta L. Bondar, Canadian payload specialist. The rotating chair, used often in biomedical tests on the eight-day flight, is (partially obscured) in center frame.
Surface Deformation and Lower Crustal Flow in Eastern Tibet
Royden; Burchfiel; King; Wang; Chen; Shen; Liu
1997-05-02
Field observations and satellite geodesy indicate that little crustal shortening has occurred along the central to southern margin of the eastern Tibetan plateau since about 4 million years ago. Instead, central eastern Tibet has been nearly stationary relative to southeastern China, southeastern Tibet has rotated clockwise without major crustal shortening, and the crust along portions of the eastern plateau margin has been extended. Modeling suggests that these phenomena are the result of continental convergence where the lower crust is so weak that upper crustal deformation is decoupled from the motion of the underlying mantle. This model also predicts east-west extension on the high plateau without convective removal of Tibetan lithosphere and without eastward movement of the crust east of the plateau.
NASA Astrophysics Data System (ADS)
Van der Voo, Rob; Levashova, Natalia M.; Skrinnik, Ludmila I.; Kara, Taras V.; Bazhenov, Mikhail L.
2006-11-01
Most of Kazakhstan belongs to the central part of the Eurasian Paleozoic mobile belts for which previously proposed tectonic scenarios have been rather disparate. Of particular interest is the origin of strongly curved Middle and Late Paleozoic volcanic belts of island-arc and Andean-arc affinities that dominate the structure of Kazakhstan. We undertook a paleomagnetic study of Carboniferous to Upper Permian volcanics and sediments from several localities in the Ili River basin between the Tien Shan and the Junggar-Alatau ranges in southeast Kazakhstan. Our main goal was to investigate the Permian kinematic evolution of these belts, particularly in terms of rotations about vertical axes, in the hope of deciphering the dynamics that played a role during the latest Paleozoic deformation in this area. This deformation, in turn, can then be related to the amalgamation of this area with Baltica, Siberia, and Tarim in the expanding Eurasian supercontinent. Thermal demagnetization revealed that most Permian rocks retained a pretilting and likely primary component, which is of reversed polarity at three localities and normal at the fourth. In contrast, most Carboniferous rocks are dominated by postfolding reversed overprints of probably "mid-Permian" age, whereas presumably primary components are isolated from a few sites at two localities. Mean inclinations of primary components generally agree with coeval reference values extrapolated from Baltica, whereas declinations from primary as well as secondary components are deflected counterclockwise (ccw) by up to ˜ 90°. Such ccw rotated directions have previously also been observed in other Tien Shan sampling areas and in the adjacent Tarim Block to the south. However, two other areas in Kazakhstan show clockwise (cw) rotations of Permian magnetization directions. One area is located in the Kendyktas block about 300 km to the west of the Ili River valley, and the other is found in the Chingiz Range, to the north of Lake Balkhash and about 400 km to the north of the Ili River valley. The timing of the ccw as well as cw rotations is clearly later than the disappearance of any marine basins from northern Tarim, the Tien Shan and eastern Kazakhstan, so that the rotations cannot be attributed to island-arc or Andean-margin plate settings — instead we attribute the rotations to large-scale, east-west (present-day coordinates), sinistral wrenching in an intracontinental setting, related to convergence between Siberia and Baltica, as recently proposed by Natal'in and Şengör [Natal'in, B.A., and Şengör, A.M.C., 2005. Late Palaeozoic to Triassic evolution of the Turan and Scythian platforms: the pre-history of the palaeo-Tethyan closure, Tectonophysics, 404, 175-202.]. Our previous work in the Chingiz and North Tien Shan areas on Ordovician and Silurian rocks suggested relative rotations of ˜ 180°, whereas the Permian declination differences are of the order of 90° between the two areas. Thus, we assume that about 50% of the total post-Ordovician rotations are of pre-Late Permian age, with the other half of Late Permian-earliest Mesozoic age. The pre-Late Permian rotations are likely related to oroclinal bending during plate boundary evolution in a supra-subduction setting, given the calc-alkaline character of nearly all of the pre-Late Permian volcanics in the strongly curved belts.
NASA Astrophysics Data System (ADS)
Weiler, P. D.; Coe, R. S.
2000-01-01
We report paleomagnetic results from 12 Plio-Pleistocene localities in the actively colliding Finisterre Arc Terrane of northeastern Papua New Guinea (PNG). Calcareous, hemipelagic cover rocks possess a stable, syn-collisional remagnetization indicating a clockwise rotation of the colliding terrane through about 40° in post-Miocene time. A decrease in paleomagnetic declination anomalies as a function of along-strike distance in the Finisterre Arc Terrane, analyzed by our preferred model of a linear remagnetization and a migrating Euler pole, suggests an average rotation rate of 8° Ma -1, in good agreement with the instantaneous rate from global positioning system geodesy. Thus, we propose that this rotation results from a coherent, rigid-body rotation of the Finisterre Terrane rather than from sequential docking of independently colliding blocks of the terrane. Moreover, we conclude that these paleomagnetic declinations result mainly from South Bismarck Plate motion, and not decoupled rotation of the crustal terrane independent of the underlying lithosphere. We examine models of a syn-collisional remagnetization with both fixed and migrating Euler poles of South Bismarck/Australia plate relative motion, and suggest that the Euler pole describing South Bismarck Plate motion has migrated southwestward to its present location on the collision suture in response to the propagating collision. This plate kinematic model agrees with the variability in depth of the seismogenic slab beneath the collision zone. Our best-fit model of pole migration describes South Bismarck/Australia relative motion producing a highly oblique collision in its early stages, with the Finisterre Arc Terrane converging along a left-lateral Ramu-Markham suture, gradually changing to the nearly orthogonal convergence observed today.
NASA Astrophysics Data System (ADS)
Novčić, Novak; Toljić, Marinko; Stojadinović, Uroš; Matenco, Liviu
2017-04-01
Indentation of Adria microplate during latest Miocene to Quaternary times created contraction and transcurrent movements distributed in the Dinarides Mountains and along its margin with the adjacent Pannonian Basin. Fru\\vska Gora of northern Serbia is one of the few areas along the southern margin of the Pannonian Basin where the kinematic effects of this late-stage inversion can be studied. These mountains are located along the Sava-Vardar Suture Zone as an isolated inselberg surrounded by Neogene deposits of the Pannonian Basin, exposing metamorphic rocks, Mesozoic ophiolites and sediments belonging to the Dinarides units. Our field kinematic study demonstrate that deformation structures are related to several Oligocene - Miocene extensional and latest Miocene - Quaternary contractional deformation events. These events took place during the differential rotational stages experienced by Fru\\vska Gora. This has created a gradual change in strike from N-S to E-W of three successive normal faulting episodes (Oligocene-Early Miocene, Early Miocene and Middle-Late Miocene), subsequently inverted by contractional deformation. This latter deformation took place during the continuous latest Miocene - Quaternary Adria indentation and was accompanied by yet another 40 degrees counter clockwise rotation of the entire Fru\\vska Gora. Almost all resulting contractional structures reactivate the pre-existing Oligocene - Miocene normal faults. This is reflected in the present-day morphology of Fruska Gora that has a large-scale flower-type of structural geometry formed during dextral transpression, as demonstrated by field kinematics and seismic interpretations. This overall geometry is significantly different when compared with other areas situated more westwards in a similar structural position in the Dinariders at their contact with the Pannonian Basin, such as Medvednica Mountains or Sava-Drava transpressional systems. The variation in offsets along the strike of the orogen demonstrate that the indentation into the Pannonian basin significantly decrease eastwards towards Fruska Gora, likely accommodating a large-scale variation in indentation mechanics across and along the Dinarides.
NASA Astrophysics Data System (ADS)
Chamot-Rooke, N.; Le Pichon, X.
1999-12-01
GPS measurements acquired over Southeast Asia in 1994 and 1996 in the framework of the GEODYSSEA program revealed that a large piece of continental lithosphere comprising the Indochina Peninsula, Sunda shelf and part of Indonesia behaves as a rigid `Sundaland' platelet. A direct adjustment of velocity vectors obtained in a Eurasian frame of reference shows that Sundaland block is rotating clockwise with respect to Eurasia around a pole of rotation located south of Australia. We present here an additional check of Sundaland motion that uses earthquakes slip vectors at Sunda and Philippine trenches. Seven sites of the GEODYSSEA network are close to the trenches and not separated from them by large active faults (two at Sumatra Trench, three at Java Trench and two at the Philippine Trench). The difference between the vector at the station and the adjacent subducting plate vector defines the relative subduction motion and should thus be aligned with the subduction earthquake slip vectors. We first derive a frame-free solution that minimizes the upper plate (or Sundaland) motion. When corrected for Australia-Eurasia and Philippines-Eurasia NUVEL1-A motion, the misfit between GPS and slip vectors azimuths is significant at 95% confidence, indicating that the upper plate does not belong to Eurasia. We then examine the range of solutions compatible with the slip vectors azimuths and conclude that the minimum velocity of Sundaland is a uniform 7-10 mm/a eastward velocity. However, introducing the additional constraint of the fit of the GEODYSSEA sites with the Australian IGS reference ones, or tie with the NTUS Singapore station, leads to a much narrower range of solutions. We conclude that Sundaland has an eastward velocity of about 10 mm/a on its southern boundary increasing to 16-18 mm/a on its northern boundary.
Reversible vector ratchets for skyrmion systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Xiu; Reichhardt, Cynthia Jane Olson; Reichhardt, Charles
In this paper, we show that ac driven skyrmions interacting with an asymmetric substrate provide a realization of a class of ratchet system which we call a vector ratchet that arises due to the effect of the Magnus term on the skyrmion dynamics. In a vector ratchet, the dc motion induced by the ac drive can be described as a vector that can be rotated clockwise or counterclockwise relative to the substrate asymmetry direction. Up to a full 360° rotation is possible for varied ac amplitudes or skyrmion densities. In contrast to overdamped systems, in which ratchet motion is alwaysmore » parallel to the substrate asymmetry direction, vector ratchets allow the ratchet motion to be in any direction relative to the substrate asymmetry. It is also possible to obtain a reversal in the direction of rotation of the vector ratchet, permitting the creation of a reversible vector ratchet. We examine vector ratchets for ac drives applied parallel or perpendicular to the substrate asymmetry direction, and show that reverse ratchet motion can be produced by collective effects. No reversals occur for an isolated skyrmion on an asymmetric substrate. Finally, since a vector ratchet can produce motion in any direction, it could represent a method for controlling skyrmion motion for spintronic applications.« less
History of Hubble Space Telescope (HST)
2004-01-01
Residing roughly 17 million light years from Earth, in the northern constellation Coma Berenices, is a merged star system known as Messier 64 (M64). First cataloged in the 18th century by the French astronomer Messier, M64 is a result of two colliding galaxies and has an unusual appearance as well as bizarre internal motions. It has a spectacular dark band of absorbing dust in front of its bright nucleus, lending to it the nickname of the "Black Eye" or "Evil Eye" galaxy. Fine details of the dark band can be seen in this image of the central portion of M64 obtained by the Wide Field Planetary Camera (WFPC2) of NASA's Hubble Space Telescope (HST). Appearing to be a fairly normal pinwheel-shaped galaxy, the M64 stars are rotating in the same direction, clockwise, as in the majority of galaxies. However, detailed studies in the 1990's led to the remarkable discovery that the interstellar gas in the outer regions of M64 rotates in the opposite direction from the gas and stars in the irner region. Astronomers believe that the oppositely rotating gas arose when M64 absorbed a satellite galaxy that collided with it, perhaps more than one billion years ago. The Marshall Space Flight Center had responsibility for design, development, and construction of the HST.
Reversible vector ratchets for skyrmion systems
Ma, Xiu; Reichhardt, Cynthia Jane Olson; Reichhardt, Charles
2017-03-03
In this paper, we show that ac driven skyrmions interacting with an asymmetric substrate provide a realization of a class of ratchet system which we call a vector ratchet that arises due to the effect of the Magnus term on the skyrmion dynamics. In a vector ratchet, the dc motion induced by the ac drive can be described as a vector that can be rotated clockwise or counterclockwise relative to the substrate asymmetry direction. Up to a full 360° rotation is possible for varied ac amplitudes or skyrmion densities. In contrast to overdamped systems, in which ratchet motion is alwaysmore » parallel to the substrate asymmetry direction, vector ratchets allow the ratchet motion to be in any direction relative to the substrate asymmetry. It is also possible to obtain a reversal in the direction of rotation of the vector ratchet, permitting the creation of a reversible vector ratchet. We examine vector ratchets for ac drives applied parallel or perpendicular to the substrate asymmetry direction, and show that reverse ratchet motion can be produced by collective effects. No reversals occur for an isolated skyrmion on an asymmetric substrate. Finally, since a vector ratchet can produce motion in any direction, it could represent a method for controlling skyrmion motion for spintronic applications.« less
A Numerical Study on the Effects of Street‒canyon Aspect‒ratio on Reactive Pollutant Dispersion
NASA Astrophysics Data System (ADS)
Park, S. J.; Kim, J.
2014-12-01
In this study, the effects of street‒canyon aspect‒ratio on reactive pollutant dispersion were investigated using the coupled CFD‒chemistry model. For this, flow characteristics were analyzed first in street canyons with different aspect ratios and flow regimes were classified according to the building height. For each flow regime, dispersion characteristics were investigated in views of reactive pollutant concentration and VOCs‒NOX ratio. Finally, the relations between pollutant concentration and aspect ratio in urban street canyons were investigated. In the case of H/S = 1.0 (H is building height and S is street width), one clockwise‒rotating vortex appeared vertically and the reverse and outward flows were dominant near the street bottom. In the case of H/S = 2.0, two counter‒rotating vortices appeared vertically in the street canyon. The primary (secondary) vortex rotating clockwise (counterclockwise) was formed in upper (lower) layer. The flow patterns affected the reactive pollutant concentration in street canyons. As building height increased, mean concentration of NO decreased when one vortex was generated in street canyons and increased when two vortexes appeared in street canyons. O3 concentration showed almost contrasted tendency with those of NO because O3 was depleted by the NO titration.
Godi, Marco; Giardini, Marica; Nardone, Antonio; Turcato, Anna Maria; Caligari, Marco; Pisano, Fabrizio; Schieppati, Marco
2017-01-01
Training subjects to step-in-place eyes open on a rotating platform while maintaining a fixed body orientation in space [podokinetic stimulation (PKS)] produces a posteffect consisting in inadvertent turning around while stepping-in-place eyes closed [podokinetic after-rotation (PKAR)]. Since the rationale for rehabilitation of curved walking in Parkinson’s disease is not fully known, we tested the hypothesis that repeated PKS favors the production of curved walking in these patients, who are uneasy with turning, even when straight walking is little affected. Fifteen patients participated in 10 training sessions distributed in 3 weeks. Both counterclockwise and clockwise PKS were randomly administered in each session. PKS velocity and duration were gradually increased over sessions. The velocity and duration of the following PKAR were assessed. All patients showed PKAR, which increased progressively in peak velocity and duration. In addition, before and at the end of the treatment, all patients walked overground along linear and circular trajectories. Post-training, the velocity of walking bouts increased, more so for the circular than the linear trajectory. Cadence was not affected. This study has shown that parkinsonian patients learn to produce turning while stepping when faced with appropriate training and that this capacity translates into improved overground curved walking. PMID:28293213
Godi, Marco; Giardini, Marica; Nardone, Antonio; Turcato, Anna Maria; Caligari, Marco; Pisano, Fabrizio; Schieppati, Marco
2017-01-01
Training subjects to step-in-place eyes open on a rotating platform while maintaining a fixed body orientation in space [podokinetic stimulation (PKS)] produces a posteffect consisting in inadvertent turning around while stepping-in-place eyes closed [podokinetic after-rotation (PKAR)]. Since the rationale for rehabilitation of curved walking in Parkinson's disease is not fully known, we tested the hypothesis that repeated PKS favors the production of curved walking in these patients, who are uneasy with turning, even when straight walking is little affected. Fifteen patients participated in 10 training sessions distributed in 3 weeks. Both counterclockwise and clockwise PKS were randomly administered in each session. PKS velocity and duration were gradually increased over sessions. The velocity and duration of the following PKAR were assessed. All patients showed PKAR, which increased progressively in peak velocity and duration. In addition, before and at the end of the treatment, all patients walked overground along linear and circular trajectories. Post-training, the velocity of walking bouts increased, more so for the circular than the linear trajectory. Cadence was not affected. This study has shown that parkinsonian patients learn to produce turning while stepping when faced with appropriate training and that this capacity translates into improved overground curved walking.
Ball-and-socket tectonic rotation during the 2013 Mw 7.7 Balochistan earthquake
NASA Astrophysics Data System (ADS)
Barnhart, W. D.; Hayes, G. P.; Briggs, R. W.; Gold, R. D.; Bilham, R.
2014-10-01
The September 2013 Mw 7.7 Balochistan earthquake ruptured a ∼200-km-long segment of the curved Hoshab fault in southern Pakistan with 10 ± 0.2 m of peak sinistral and ∼ 1.7 ± 0.8 m of dip slip. This rupture is unusual because the fault dips 60 ± 15° towards the focus of a small circle centered in northwest Pakistan, and, despite a 30° increase in obliquity along strike, the ratios of strike and dip slip remain relatively uniform. Surface displacements and geodetic and teleseismic source inversions quantify a bilateral rupture that propagated rapidly at shallow depths from a transtensional jog near the northern end of the rupture. Static friction prior to rupture was unusually weak (μ < 0.05), and friction may have approached zero during dynamic rupture. Here we show that the inward-dipping Hoshab fault defines the northern rim of a structural unit in southeast Makran that rotates - akin to a 2-D ball-and-socket joint - counter-clockwise in response to India's penetration into the Eurasian plate. This rotation accounts for complexity in the Chaman fault system and, in principle, reduces seismic potential near Karachi; nonetheless, these findings highlight deficiencies in strong ground motion equations and tectonic models that invoke Anderson-Byerlee faulting predictions.
Ball-and-socket tectonic rotation during the 2013 Mw7.7 Balochistan earthquake
Barnhart, William D.; Hayes, Gavin P.; Briggs, Richard W.; Gold, Ryan D.; Bilham, R.
2014-01-01
The September 2013 Mw7.7 Balochistan earthquake ruptured a ∼200-km-long segment of the curved Hoshab fault in southern Pakistan with 10±0.2 m of peak sinistral and ∼1.7±0.8 m of dip slip. This rupture is unusual because the fault dips 60±15° towards the focus of a small circle centered in northwest Pakistan, and, despite a 30° increase in obliquity along strike, the ratios of strike and dip slip remain relatively uniform. Surface displacements and geodetic and teleseismic source inversions quantify a bilateral rupture that propagated rapidly at shallow depths from a transtensional jog near the northern end of the rupture. Static friction prior to rupture was unusually weak (μ<0.05), and friction may have approached zero during dynamic rupture. Here we show that the inward-dipping Hoshab fault defines the northern rim of a structural unit in southeast Makran that rotates – akin to a 2-D ball-and-socket joint – counter-clockwise in response to India's penetration into the Eurasian plate. This rotation accounts for complexity in the Chaman fault system and, in principle, reduces seismic potential near Karachi; nonetheless, these findings highlight deficiencies in strong ground motion equations and tectonic models that invoke Anderson–Byerlee faulting predictions.
NASA Astrophysics Data System (ADS)
Szatmari, P.; Milani, E.
2012-12-01
Large igneous provinces with continental flood basalts, some related to rifting, have been traditionally attributed to mantle plume heads rising from the lower mantle. The early Cretaceous South Atlantic rift, an archetype of plate tectonics, and the Paraná-Etendeka continental flood basalts on land outside the rift, formed as South America rotated clockwise about a pole in its northeastern tip (Rabinowitz & LaBrecque, 1979), away from Africa and toward the subduction zone on its Pacific margin. This rotation opened the early South Atlantic southward while it kept the Equatorial Atlantic gateway to the Central Atlantic and the Tethys closed by compression. Rifting started in the late Jurassic in the extreme south, near the subduction zone at the continent's southern tip. It rapidly propagated NNE, mainly along inherited late Proterozoic (mostly Ediacaran) fold belts, and reached what has later become the eastern end of the Equatorial margin still in latest Jurassic time. Massive mostly basaltic volcanism peaked about 20 Ma later in Hauterivian time (136 to 130 Ma), forming dike swarms which, in the south, are accompanied by flood basalts of the Paraná-Etendeka large igneous province. The massive rise of mostly tholeiitic magma resulted from hotspot-like high temperatures prevailing beneath the cold and thick Gondwana lithosphere that had remained unbroken since Proterozoic times for about 400 Ma. Early basalt dike swarms trending E-W and SE-NW were transversal to the rift. They are two-three hundred kilometers long and 1000-2000 km apart, penetrating far into the continent's unrifted lithosphere and cutting through all inherited Proterozoic structures that controlled rifting. The successive basalt dike swarms (and their individual dikes) increase in thickness to the southwest, away from the continent's pole of rotation, as does the width of the rift. The E-W-trending Ceará-Mirim dike swarm occurs in the extreme northeast of the continent. Further southwest the Colatina dike swarm and still further southwest the widest, Ponta Grossa dike swarm both trend SE-NW; the latter is associated with the continental flood basalts of the Paraná-Etendeka province that lie on land in the Paraná Basin and offshore in the rift beneath Aptian salt. South of about 28 degrees S offshore from southernmost Brazil, Uruguay and Argentina, a seaward dipping reflector sequence (SDRs) composed predominantly of volcanic rocks borders pre-Aptian oceanic crust that is absent to the north. The southwest increasing abundance of the volcanics,together with the E-W and SE-NW trends of the early dike swarms strongly suggest that volcanism was controlled by the same in-place rotation of the continent that controlled rifting.
Ventura, Joel; DiZio, Paul; Lackner, James R.
2013-01-01
In a rotating environment, goal-oriented voluntary movements are initially disrupted in trajectory and endpoint, due to movement-contingent Coriolis forces, but accuracy is regained with additional movements. We studied whether adaptation acquired in a voluntary, goal-oriented postural swaying task performed during constant-velocity counterclockwise rotation (10 RPM) carries over to recovery from falling induced using a hold and release (H&R) paradigm. In H&R, standing subjects actively resist a force applied to their chest, which when suddenly released results in a forward fall and activation of an automatic postural correction. We tested H&R postural recovery in subjects (n = 11) before and after they made voluntary fore-aft swaying movements during 20 trials of 25 s each, in a counterclockwise rotating room. Their voluntary sway about their ankles generated Coriolis forces that initially induced clockwise deviations of the intended body sway paths, but fore-aft sway was gradually restored over successive per-rotation trials, and a counterclockwise aftereffect occurred during postrotation attempts to sway fore-aft. In H&R trials, we examined the initial 10- to 150-ms periods of movement after release from the hold force, when voluntary corrections of movement path are not possible. Prerotation subjects fell directly forward, whereas postrotation their forward motion was deviated significantly counterclockwise. The postrotation deviations were in a direction consistent with an aftereffect reflecting persistence of a compensation acquired per-rotation for voluntary swaying movements. These findings show that control and adaptation mechanisms adjusting voluntary postural sway to the demands of a new force environment also influence the automatic recovery of posture. PMID:24304863
Fault locking, block rotation and crustal deformation in the Pacific Northwest
McCaffrey, R.; Qamar, A.I.; King, R.W.; Wells, R.; Khazaradze, G.; Williams, C.A.; Stevens, C.W.; Vollick, J.J.; Zwick, P.C.
2007-01-01
We interpret Global Positioning System (GPS) measurements in the northwestern United States and adjacent parts of western Canada to describe relative motions of crustal blocks, locking on faults and permanent deformation associated with convergence between the Juan de Fuca and North American plates. To estimate angular velocities of the oceanic Juan de Fuca and Explorer plates and several continental crustal blocks, we invert the GPS velocities together with seafloor spreading rates, earthquake slip vector azimuths and fault slip azimuths and rates. We also determine the degree to which faults are either creeping aseismically or, alternatively, locked on the block-bounding faults. The Cascadia subduction thrust is locked mainly offshore, except in central Oregon, where locking extends inland. Most of Oregon and southwest Washington rotate clockwise relative to North America at rates of 0.4-1.0?? Myr-1. No shear or extension along the Cascades volcanic arc has occurred at the mm/yr level during the past decade, suggesting that the shear deformation extending northward from the Walker Lane and eastern California shear zone south of Oregon is largely accommodated by block rotation in Oregon. The general agreement of vertical axis rotation rates derived from GPS velocities with those estimated from palaeomagnetic declination anomalies suggests that the rotations have been relatively steady for 10-15 Ma. Additional permanent dextral shear is indicated within the Oregon Coast Range near the coast. Block rotations in the Pacific Northwest do not result in net westward flux of crustal material - the crust is simply spinning and not escaping. On Vancouver Island, where the convergence obliquity is less than in Oregon and Washington, the contractional strain at the coast is more aligned with Juan de Fuca-North America motion. GPS velocities are fit significantly better when Vancouver Island and the southern Coast Mountains move relative to North America in a block-like fashion. The relative motions of the Oregon, western Washington and Vancouver Island crustal blocks indicate that the rate of permanent shortening, the type that causes upper plate earthquakes, across the Puget Sound region is 4.4 ?? 0.3 mm yr-1. This shortening is likely distributed over several faults but GPS data alone cannot determine the partitioning of slip on them. The transition from predominantly shear deformation within the continent south of the Mendocino Triple Junction to predominantly block rotations north of it is similar to changes in tectonic style at other transitions from shear to subduction. This similarity suggests that crustal block rotations are enhanced in the vicinity of subduction zones possibly due to lower resisting stress. ?? 2007 The Authors Journal compilation ?? 2007 RAS.
Does Vertical Reading Help People with Macular Degeneration: An Exploratory Study
Calabrèse, Aurélie; Liu, Tingting; Legge, Gordon E.
2017-01-01
Individuals with macular degeneration often develop a Preferred Retinal Locus (PRL) used in place of the impaired fovea. It is known that many people adopt a PRL left of the scotoma, which is likely to affect reading by occluding text to the right of fixation. For such individuals, we examined the possibility that reading vertical text, in which words are rotated 90° with respect to the normal horizontal orientation, would be beneficial for reading. Vertically oriented words would be tangential to the scotoma instead of being partially occluded by it. Here we report the results of an exploratory study that aimed at investigating this hypothesis. We trained individuals with macular degeneration who had PRLs left of their scotoma to read text rotated 90° clockwise and presented using rapid serial visual presentation (RSVP). Although training resulted in improved reading of vertical text, the training did not result in reading speeds that appreciably exceeded reading speeds following training with horizontal text. These results do not support the hypothesis that people with left PRLs read faster with vertical text. PMID:28114373
Domain walls and Dzyaloshinskii-Moriya interaction in epitaxial Co/Ir(111) and Pt/Co/Ir(111)
NASA Astrophysics Data System (ADS)
Perini, Marco; Meyer, Sebastian; Dupé, Bertrand; von Malottki, Stephan; Kubetzka, André; von Bergmann, Kirsten; Wiesendanger, Roland; Heinze, Stefan
2018-05-01
We use spin-polarized scanning tunneling microscopy and density functional theory (DFT) to study domain walls (DWs) and the Dzyaloshinskii-Moriya interaction (DMI) in epitaxial films of Co/Ir(111) and Pt/Co/Ir(111). Our measurements reveal DWs with fixed rotational sense for one monolayer of Co on Ir, with a wall width around 2.7 nm. With Pt islands on top, we observe that the DWs occur mostly in the uncovered Co/Ir areas, suggesting that the wall energy density is higher in Pt/Co/Ir(111). From DFT we find an interfacial DMI that stabilizes Néel-type DWs with clockwise rotational sense. The calculated DW widths are in good agreement with the experimental observations. The calculated total DMI nearly doubles from Co/Ir(111) to Pt/Co/Ir(111); however, in the latter case the DMI is almost entirely due to the Pt with only a minor Ir contribution. Therefore a simple additive effect, in which both interfaces contribute significantly to the total DMI, is not observed for one atomic Co layer sandwiched between Ir and Pt.
Active turbulence in a gas of self-assembled spinners
Kokot, Gašper; Das, Shibananda; Winkler, Roland G.; Aranson, Igor S.; Snezhko, Alexey
2017-01-01
Colloidal particles subject to an external periodic forcing exhibit complex collective behavior and self-assembled patterns. A dispersion of magnetic microparticles confined at the air–liquid interface and energized by a uniform uniaxial alternating magnetic field exhibits dynamic arrays of self-assembled spinners rotating in either direction. Here, we report on experimental and simulation studies of active turbulence and transport in a gas of self-assembled spinners. We show that the spinners, emerging as a result of spontaneous symmetry breaking of clock/counterclockwise rotation of self-assembled particle chains, generate vigorous vortical flows at the interface. An ensemble of spinners exhibits chaotic dynamics due to self-generated advection flows. The same-chirality spinners (clockwise or counterclockwise) show a tendency to aggregate and form dynamic clusters. Emergent self-induced interface currents promote active diffusion that could be tuned by the parameters of the external excitation field. Furthermore, the erratic motion of spinners at the interface generates chaotic fluid flow reminiscent of 2D turbulence. Our work provides insight into fundamental aspects of collective transport in active spinner materials and yields rules for particle manipulation at the microscale. PMID:29158382
Watch and Learn: Seeing Is Better than Doing when Acquiring Consecutive Motor Tasks
Larssen, Beverley C.; Ong, Nicole T.; Hodges, Nicola J.
2012-01-01
During motor adaptation learning, consecutive physical practice of two different tasks compromises the retention of the first. However, there is evidence that observational practice, while still effectively aiding acquisition, will not lead to interference and hence prove to be a better practice method. Observers and Actors practised in a clockwise (Task A) followed by a counterclockwise (Task B) visually rotated environment, and retention was immediately assessed. An Observe-all and Act-all group were compared to two groups who both physically practised Task A, but then only observed (ObsB) or did not see or practice Task B (NoB). The two observer groups and the NoB control group better retained Task A than Actors, although importantly only the observer groups learnt Task B. RT data and explicit awareness of the rotation suggested that the observers had acquired their respective tasks in a more strategic manner than Actor and Control groups. We conclude that observational practice benefits learning of multiple tasks more than physical practice due to the lack of updating of implicit, internal models for aiming in the former. PMID:22723909
Detection and correction for EPID and gantry sag during arc delivery using cine EPID imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rowshanfarzad, Pejman; Sabet, Mahsheed; O'Connor, Daryl J.
2012-02-15
Purpose: Electronic portal imaging devices (EPIDs) have been studied and used for pretreatment and in-vivo dosimetry applications for many years. The application of EPIDs for dosimetry in arc treatments requires accurate characterization of the mechanical sag of the EPID and gantry during rotation. Several studies have investigated the effects of gravity on the sag of these systems but each have limitations. In this study, an easy experiment setup and accurate algorithm have been introduced to characterize and correct for the effect of EPID and gantry sag during arc delivery. Methods: Three metallic ball bearings were used as markers in themore » beam: two of them fixed to the gantry head and the third positioned at the isocenter. EPID images were acquired during a 360 deg. gantry rotation in cine imaging mode. The markers were tracked in EPID images and a robust in-house developed MATLAB code was used to analyse the images and find the EPID sag in three directions as well as the EPID + gantry sag by comparison to the reference gantry zero image. The algorithm results were then tested against independent methods. The method was applied to compare the effect in clockwise and counter clockwise gantry rotations and different source-to-detector distances (SDDs). The results were monitored for one linear accelerator over a course of 15 months and six other linear-accelerators from two treatment centers were also investigated using this method. The generalized shift patterns were derived from the data and used in an image registration algorithm to correct for the effect of the mechanical sag in the system. The Gamma evaluation (3%, 3 mm) technique was used to investigate the improvement in alignment of cine EPID images of a fixed field, by comparing both individual images and the sum of images in a series with the reference gantry zero image. Results: The mechanical sag during gantry rotation was dependent on the gantry angle and was larger in the in-plane direction, although the patterns were not identical for various linear-accelerators. The reproducibility of measurements was within 0.2 mm over a period of 15 months. The direction of gantry rotation and SDD did not affect the results by more than 0.3 mm. Results of independent tests agreed with the algorithm within the accuracy of the measurement tools. When comparing summed images, the percentage of points with Gamma index <1 increased from 85.4% to 94.1% after correcting for the EPID sag, and to 99.3% after correction for gantry + EPID sag. Conclusions: The measurement method and algorithms introduced in this study use cine-images, are highly accurate, simple, fast, and reproducible. It tests all gantry angles and provides a suitable automatic analysis and correction tool to improve EPID dosimetry and perform comprehensive linac QA for arc treatments.« less
NASA Astrophysics Data System (ADS)
Wuyts, Floris; Clement, Gilles; Naumov, Ivan; Kornilova, Ludmila; Glukhikh, Dmitriy; Hallgren, Emma; MacDougall, Hamish; Migeotte, Pierre-Francois; Delière, Quentin; Weerts, Aurelie; Moore, Steven; Diedrich, Andre
In 13 cosmonauts, the vestibulo-autonomic reflex was investigated before and after 6 months duration spaceflight. Cosmonauts were rotated on the mini-centrifuge VVIS, which is installed in Star City. Initially, this mini-centrifuge flew on board of the Neurolab mission (STS-90), and served to generate intermittent artificial gravity during that mission, with apparent very positive effects on the preservation of the orthostatic tolerance upon return to earth in the 4 crew members that were subjected to the rotations in space. The current experiments SPIN and GAZE-SPIN are control experiments to test the hypothesis that intermittent artificial gravity in space can serve as a counter measure against several deleterious effects of microgravity. Additionally, the effect of microgravity on the gaze holding system is studied as well. Cosmonauts from a long duration stay in the International Space Station were tested on the VVIS (1 g centripetal interaural acceleration; consecutive right-ear-out anti-clockwise and left-ear-out clockwise measurement) on 5 different days. Two measurements were scheduled about one month and a half prior to launch and the remaining three immediately after their return from space (typically on R+2, R+4, R+9; R = return day from space). The ocular counter roll (OCR) as a measure of otolith function was measured on before, during and after the rotation in the mini centrifuge, using infrared video goggles. The perception of verticality was monitored using an ultrasound system. Gaze holding was tested before, during and after rotation. After the centrifugation part, the crew was installed on a tilt table, and instrumented with several cardiovascular recording equipment (ECG, continuous blood pressure monitoring, respiratory monitoring), as well as with impedance measurement devices to investigate fluid redistribution throughout the operational tilt test. To measure heart rate variability parameters, imposed breathing periods were included in the test protocol. The subjects were subjected to a passive tilt test of 60 degrees, during 15 minutes. The results show that cosmonauts clearly have a statistically significantly reduced ocular counter rolling during rotation upon return from space, when compared to the pre-flight condition, indicating a reduced sensitivity of the otolith system to gravito intertial acceleration. None of the subjects fainted or even approached presyncope. However, the resistance in the calf, measured with the impedance method, showed a significant increased pooling in the lower limbs. Additionally, this was statistically significantly correlated (p=0.024) with a reduced otolith response, when comparing for each subject the vestibular and autonomic data. This result shows that the vestibulo-autonomic reflex is reduced after 6 months of spaceflight. When compared with Neurolab, the otolith response in the current group of crew members that were not subjected to in-flight centrifugation is significantly reduced, corroborating the hypothesis that in-flight artificial gravity may be of great importance to mitigate the deleterious effects of microgravity. Projects are funded by PRODEX-BELSPO, ESA, IBMP
Dynamic Receptor Team Formation Can Explain the High Signal Transduction Gain in Escherichia coli
Albert, Réka; Chiu, Yu-wen; Othmer, Hans G.
2004-01-01
Evolution has provided many organisms with sophisticated sensory systems that enable them to respond to signals in their environment. The response frequently involves alteration in the pattern of movement, either by directed movement, a process called taxis, or by altering the speed or frequency of turning, which is called kinesis. Chemokinesis has been most thoroughly studied in the peritrichous bacterium Escherichia coli, which has four helical flagella distributed over the cell surface, and swims by rotating them. When rotated counterclockwise the flagella coalesce into a propulsive bundle, producing a relatively straight “run,” and when rotated clockwise they fly apart, resulting in a “tumble” which reorients the cell with little translocation. A stochastic process generates the runs and tumbles, and in a chemoeffector gradient, runs that carry the cell in a favorable direction are extended. The cell senses spatial gradients as temporal changes in receptor occupancy and changes the probability of counterclockwise rotation (the bias) on a fast timescale, but adaptation returns the bias to baseline on a slow timescale, enabling the cell to detect and respond to further concentration changes. The overall structure of the signal transduction pathways is well characterized in E. coli, but important details are still not understood. Only recently has a source of gain in the signal transduction network been identified experimentally, and here we present a mathematical model based on dynamic assembly of receptor teams that can explain this observation. PMID:15111386
Dynamic receptor team formation can explain the high signal transduction gain in Escherichia coli.
Albert, Réka; Chiu, Yu-Wen; Othmer, Hans G
2004-05-01
Evolution has provided many organisms with sophisticated sensory systems that enable them to respond to signals in their environment. The response frequently involves alteration in the pattern of movement, either by directed movement, a process called taxis, or by altering the speed or frequency of turning, which is called kinesis. Chemokinesis has been most thoroughly studied in the peritrichous bacterium Escherichia coli, which has four helical flagella distributed over the cell surface, and swims by rotating them. When rotated counterclockwise the flagella coalesce into a propulsive bundle, producing a relatively straight "run," and when rotated clockwise they fly apart, resulting in a "tumble" which reorients the cell with little translocation. A stochastic process generates the runs and tumbles, and in a chemoeffector gradient, runs that carry the cell in a favorable direction are extended. The cell senses spatial gradients as temporal changes in receptor occupancy and changes the probability of counterclockwise rotation (the bias) on a fast timescale, but adaptation returns the bias to baseline on a slow timescale, enabling the cell to detect and respond to further concentration changes. The overall structure of the signal transduction pathways is well characterized in E. coli, but important details are still not understood. Only recently has a source of gain in the signal transduction network been identified experimentally, and here we present a mathematical model based on dynamic assembly of receptor teams that can explain this observation.
NASA Astrophysics Data System (ADS)
Kareem, Ali Khaleel; Gao, Shian
2018-02-01
The aim of the present numerical investigation is to comprehensively analyse and understand the heat transfer enhancement process using a roughened, heated bottom wall with two artificial rib types (R-s and R-c) due to unsteady mixed convection heat transfer in a 3D moving top wall enclosure that has a central rotating cylinder, and to compare these cases with the smooth bottom wall case. These different cases (roughened and smooth bottom walls) are considered at various clockwise and anticlockwise rotational speeds, -5 ≤ Ω ≤ 5, and Reynolds numbers of 5000 and 10 000. The top and bottom walls of the lid-driven cavity are differentially heated, whilst the remaining cavity walls are assumed to be stationary and adiabatic. A standard k-ɛ model for the Unsteady Reynolds-Averaged Navier-Stokes equations is used to deal with the turbulent flow. The heat transfer improvement is carefully considered and analysed through the detailed examinations of the flow and thermal fields, the turbulent kinetic energy, the mean velocity profiles, the wall shear stresses, and the local and average Nusselt numbers. It has been concluded that artificial roughness can strongly affect the thermal fields and fluid flow patterns. Ultimately, the heat transfer rate has been dramatically increased by involving the introduced artificial rips. Increasing the cylinder rotational speed or Reynolds number can enhance the heat transfer process, especially when the wall roughness exists.
Efficiency of extracting stereo-driven object motions
Jain, Anshul; Zaidi, Qasim
2013-01-01
Most living things and many nonliving things deform as they move, requiring observers to separate object motions from object deformations. When the object is partially occluded, the task becomes more difficult because it is not possible to use two-dimensional (2-D) contour correlations (Cohen, Jain, & Zaidi, 2010). That leaves dynamic depth matching across the unoccluded views as the main possibility. We examined the role of stereo cues in extracting motion of partially occluded and deforming three-dimensional (3-D) objects, simulated by disk-shaped random-dot stereograms set at randomly assigned depths and placed uniformly around a circle. The stereo-disparities of the disks were temporally oscillated to simulate clockwise or counterclockwise rotation of the global shape. To dynamically deform the global shape, random disparity perturbation was added to each disk's depth on each stimulus frame. At low perturbation, observers reported rotation directions consistent with the global shape, even against local motion cues, but performance deteriorated at high perturbation. Using 3-D global shape correlations, we formulated an optimal Bayesian discriminator for rotation direction. Based on rotation discrimination thresholds, human observers were 75% as efficient as the optimal model, demonstrating that global shapes derived from stereo cues facilitate inferences of object motions. To complement reports of stereo and motion integration in extrastriate cortex, our results suggest the possibilities that disparity selectivity and feature tracking are linked, or that global motion selective neurons can be driven purely from disparity cues. PMID:23325345
Attentional Modulation of Eye Torsion Responses
NASA Technical Reports Server (NTRS)
Stevenson, Scott B.; Mahadevan, Madhumitha S.; Mulligan, Jeffrey B.
2016-01-01
Eye movements generally have both reflexive and voluntary aspects, but torsional eye movements are usually thought of as a reflexive response to image rotation around the line of sight (torsional OKN) or to head roll (torsional VOR). In this study we asked whether torsional responses could be modulated by attention in a case where two stimuli rotated independently, and whether attention would influence the latency of responses. The display consisted of rear-projected radial "pinwheel" gratings, with an inner annulus segment extending from the center to 22 degrees eccentricity, and an outer annulus segment extending from 22 degrees out to 45 degrees eccentricity. The two segments rotated around the center in independent random walks, stepping randomly 4 degrees clockwise or counterclockwise at 60 Hz. Subjects were asked to attend to one or the other while keeping fixation steady at the center of the display. To encourage attention on one or the other segment of the display, subjects were asked to move a joystick in synchrony with the back and forth rotations of one part of the image while ignoring the other. Eye torsion was recorded with the scleral search coil technique, sampled at 500 Hz. All four subjects showed roughly 50% stronger torsion responses to the attended compared to unattended segments. Latency varied from 100 to 150 msec across subjects and was unchanged by attention. These findings suggest that attention can influence eye movement responses that are not typically under voluntary control.
Topological phononic states of underwater sound based on coupled ring resonators
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Cheng; Li, Zheng; Ni, Xu
We report a design of topological phononic states for underwater sound using arrays of acoustic coupled ring resonators. In each individual ring resonator, two degenerate acoustic modes, corresponding to clockwise and counter-clockwise propagation, are treated as opposite pseudospins. The gapless edge states arise in the bandgap resulting in protected pseudospin-dependent sound transportation, which is a phononic analogue of the quantum spin Hall effect. We also investigate the robustness of the topological sound state, suggesting that the observed pseudospin-dependent sound transportation remains unless the introduced defects facilitate coupling between the clockwise and counter-clockwise modes (in other words, the original mode degeneracymore » is broken). The topological engineering of sound transportation will certainly promise unique design for next generation of acoustic devices in sound guiding and switching, especially for underwater acoustic devices.« less
Misslisch, H; Hess, B J M
2002-11-01
This study examined two kinematical features of the rotational vestibulo-ocular reflex (VOR) of the monkey in near vision. First, is there an effect of eye position on the axes of eye rotation during yaw, pitch and roll head rotations when the eyes are converged to fixate near targets? Second, do the three-dimensional positions of the left and right eye during yaw and roll head rotations obey the binocular extension of Listing's law (L2), showing eye position planes that rotate temporally by a quarter as far as the angle of horizontal vergence? Animals fixated near visual targets requiring 17 or 8.5 degrees vergence and placed at straight ahead, 20 degrees up, down, left, or right during yaw, pitch, and roll head rotations at 1 Hz. The 17 degrees vergence experiments were performed both with and without a structured visual background, the 8.5 degrees vergence experiments with a visual background only. A 40 degrees horizontal change in eye position never influenced the axis of eye rotation produced by the VOR during pitch head rotation. Eye position did not affect the VOR eye rotation axes, which stayed aligned with the yaw and roll head rotation axes, when torsional gain was high. If torsional gain was low, eccentric eye positions produced yaw and roll VOR eye rotation axes that tilted somewhat in the directions predicted by Listing's law, i.e., with or opposite to gaze during yaw or roll. These findings were seen in both visual conditions and in both vergence experiments. During yaw and roll head rotations with a 40 degrees vertical change in gaze, torsional eye position followed on average the prediction of L2: the left eye showed counterclockwise (ex-) torsion in down gaze and clockwise (in-) torsion in up gaze and vice versa for the right eye. In other words, the left and right eye's position plane rotated temporally by about a quarter of the horizontal vergence angle. Our results indicate that torsional gain is the central mechanism by which the brain adjusts the retinal image stabilizing function of the VOR both in far and near vision and the three dimensional eye positions during yaw and roll head rotations in near vision follow on average the predictions of L2, a kinematic pattern that is maintained by the saccadic/quick phase system.
The Central Eurasia collision zone: insights from a neotectonic study
NASA Astrophysics Data System (ADS)
Tunini, Lavinia; Jiménez-Munt, Ivone; Fernandez, Manel; Vergés, Jaume
2017-04-01
In this study, we explore the neotectonic deformation in the whole Central Eurasia, including both the India-Eurasia and the Arabia-Eurasia collision zones, by using the thin-sheet approach in which the lithosphere strength is calculated from the lithosphere structure and thermal regime. We investigate the relative contributions of the lithospheric structure, rheology, boundary conditions, and friction coefficient on faults on the predicted velocity and stress fields. The resulting models have been evaluated by comparing the predictions with available data on seismic deformation, stress directions and GPS velocities. A first order approximation of the velocity and stress directions is obtained, reproducing the counter-clockwise rotation of Arabia and Iran, the westward escape of Anatolia, and the eastward extrusion of the northern Tibetan Plateau. To simulate the observed extensional faults within Tibet a weaker lithosphere is required, provided by a change in the rheological parameters or a reduction of the lithosphere thickness in NE-Tibet. The temperature increase generated by the lithospheric thinning below the Tibetan Plateau would also allow reconciling the model with the high heat flow and low mantle seismic velocities observed in the area. Besides the large scale, this study offers a coherent result in regions with little or no data coverage, as in the case of the Arabia-India inter-collision zone, over large areas of Pakistan and entire Afghanistan. The study is supported by MITE (CGL2014-59516-P) and WE-ME (PIE-CSIC-201330E111) projects.
Mechanisms underlying interlimb transfer of visuomotor rotations
Wang, Jinsung; Sainburg, Robert L.
2013-01-01
We previously reported that opposite arm training improved the initial direction of dominant arm movements, whereas it only improved the final position accuracy of non-dominant arm movements. We now ask whether each controller accesses common, or separate, short-term memory resources. To address this question, we investigated interlimb transfer of learning for visuomotor rotations that were directed oppositely [clockwise (CW)/counterclockwise (CCW)] for the two arms. We expected that if information obtained by initial training was stored in the same short-term memory space for both arms, opposite arm training of a CW rotation would interfere with subsequent adaptation to a CCW rotation. All subjects first adapted to a 30° rotation (CW) in the visual display during reaching movements. Following this, they adapted to a 30° rotation in the opposite direction (CCW) with the other arm. In contrast to our previous findings for interlimb transfer of same direction rotations (CCW/CCW), no effects of opposite arm adaptation were indicated in the initial trials performed. This indicates that interlimb transfer is not obligatory, and suggests that short-term memory resources for the two limbs are independent. Through single trial analysis, we found that the direction and final position errors of the first trial of movement, following opposite arm training, were always the same as those of naive performance. This was true whether the opposite arm was trained with the same or the opposing rotation. When trained with the same rotation, transfer of learning did not occur until the second trial. These findings suggest that the selective use of opposite arm information is dependent on the first trial to probe current movement conditions. Interestingly, the final extent of adaptation appeared to be reduced by opposite arm training of opposing rotations. Thus, the extent of adaptation, but not initial information transfer, appears obligatorily affected by prior opposite arm adaptation. According to our findings, it is plausible that the initiation and the final extent of adaptation involve two independent neural processes. Theoretical implications of these findings are discussed. PMID:12677333
NASA Astrophysics Data System (ADS)
Ribeiro, Mónica; Taborda, Rui; Lira, Cristina; Bizarro, Aurora; Oliveira, Anabela
2014-05-01
Headland sediment bypassing plays a major role in definition of coastal sedimentary budget and consequently in coastal management. This process is particularity important at headland-bay beaches on rocky coasts. However, headland-bay beach research is usually focused on the beach rotation since these beaches are generally regarded as closed systems. The sediment bypassing mechanisms have been extensively studied in the context of artificial structures (e.g. groins and jetties) but studies of natural headland sediment bypassing are scarce and usually applied to decadal time scales. This work aims to contribute to the understanding of headland sediment bypassing processes in non-artificial environments, taking as a case study a natural coastal stretch at the Portuguese west coast. The study is supported on the analysis of planform beach changes using Landsat satellite images (with an acquisition frequency of 16 days) complemented with field surveys with DGPS-RTK and ground-based photographic monitoring. The study area can be described as a cliffed rocky coast that accommodates a series of headland-bay beaches with different geometries: some are encased in the dependence of fluvial streams, while others correspond to a narrow and elongated thin sand strip that covers a rocky shore platform. This coast is generally characterized by a weak, but active, sediment supply and high levels of wave energy due to the exposure to the swells generated in the North Atlantic. The long-term stability of the beaches in conjunction with active sediment supply along the study area (from streams and cliff erosion) and a sink at the downdrift end of this coastal stretch (an active dune system) support the existence of headland sediment bypassing. The analysis of planform beach changes show a coherent signal in time but with a range that depends on the orientation of the stretch where each beach is included. In general, beaches displays a clockwise rotation during summer related to the NW (less energetic) incident wave conditions. The persistence of these conditions induces an enlargement of the beach downdrift (southward) and eventually sediment bypassing. This process can result in a continuous inner bar along the headland coast, which migrates downdrift in the surf zone and weld to the downdrift beach. The counter-clockwise rotation observed in the winter is more variable being in agreement with the less persistent W and SW incident wave conditions, suggesting that sediment bypassing occurs only southwards. The work was funded by FEDER funds through the Operational Programme for Competitiveness Factors - COMPETE and FCT National Funds - Portuguese Foundation for Science and Technology under the project Beach to Canyon Head Sedimentary Processes (PTDC/MAR/114674/2009). First author benefits from a PhD grant funded by FCT (SFRH/BD/79126/2011).
NASA Astrophysics Data System (ADS)
Saria, E.; Calais, E.; Altamimi, Z.; Willis, P.; Farah, H.
2013-04-01
We analyzed 16 years of GPS and 17 years of Doppler orbitography and radiopositioning integrated by satellite (DORIS) data at continuously operating geodetic sites in Africa and surroundings to describe the present-day kinematics of the Nubian and Somalian plates and constrain relative motions across the East African Rift. The resulting velocity field describes horizontal and vertical motion at 133 GPS sites and 9 DORIS sites. Horizontal velocities at sites located on stable Nubia fit a single plate model with a weighted root mean square residual of 0.6 mm/yr (maximum residual 1 mm/yr), an upper bound for plate-wide motions and for regional-scale deformation in the seismically active southern Africa and Cameroon volcanic line. We confirm significant southward motion ( ˜ 1.5 mm/yr) in Morocco with respect to Nubia, consistent with earlier findings. We propose an updated angular velocity for the divergence between Nubia and Somalia, which provides the kinematic boundary conditions to rifting in East Africa. We update a plate motion model for the East African Rift and revise the counterclockwise rotation of the Victoria plate and clockwise rotation of the Rovuma plate with respect to Nubia. Vertical velocities range from - 2 to +2 mm/yr, close to their uncertainties, with no clear geographic pattern. This study provides the first continent-wide position/velocity solution for Africa, expressed in International Terrestrial Reference Frame (ITRF2008), a contribution to the upcoming African Reference Frame (AFREF). Except for a few regions, the African continent remains largely under-sampled by continuous space geodetic data. Efforts are needed to augment the geodetic infrastructure and openly share existing data sets so that the objectives of AFREF can be fully reached.
NASA Astrophysics Data System (ADS)
AlAnezi, Ghunaim; Kasahara, Junzo; AlDamegh, Khaled S.; Lafouza, Omar; AlYousef, Khaled; Almalki, Fahad; Nishiyama, Eichiro
2015-04-01
We have developed the time lapse technology for EOR (enhanced oil recovery) and CCS (Carbon Capture and Storage) using a very stable and continuous seismic source called ACROSS (Accurately Controlled Routinely Operated Signal System) with multi-geophones. Since 2011, we have tested this technology in the context of carbonate rocks in Saudi Arabia. The Al Wasee water pumping site approximately 120 km east of Riyadh city has been selected as a trail-site. The intention is to observe the changes in aquifers induced by pumping operations. One ACROSS source unit was installed at the Al Wasee site in December 2011 and we are continuing the field test. The instrument has been operated from 10 to 50 Hz with 40 tons-f at 50 Hz. Using alternatively clockwise and counter-clockwise rotations we can synthesize vertical and horizontal forces, respectively. 31 3C-geophones in 2 km x 3 km area and four nearby 3Cgeophones have been used to monitor the seismic changes from pumping the water. The one and half month data between December 2012 and February 2013 show continuous and clear change of observed waveforms for all 31 stations while the source signature did not change. The change is closest and fastest at the station #42. The cause of continuous change with time is interpreted as pumping of water by 64 wells located in this field.
Resistive switching characteristics of thermally oxidized TiN thin films
NASA Astrophysics Data System (ADS)
Biju, K. P.
2018-04-01
Resistive switching characteristics of thermally oxidized TiN thin films and mechanisms were investigated.XPS results indicates Ti-O content decreases with sputter etching and Ti 2p peak shift towards lower binding energy due to formation of Ti-O-N and Ti-N. Pt/TiO2/TiON/TiN stack exhibits both clockwise switching (CWS) and counter clockwise switching(CCWS) characteristic depending on polarity of the applied voltage. However the transition from CCWS to CWS is irreversible. Two stable switching modes with opposite switching polarity and different electrical characteristics are found to coexist in the same memory cell. Clockwise switching shows filamentary characteristics that lead to faster switching with excellent retention at high temperature. Counter-clockwise switching exhibits homogeneous conduction with slower switching and moderate retention. The field-induced switching in both CCWS and CWS might be due to inhomogeneous defect distribution due to thermal oxidation.
Short- and medium-term response to storms on three Mediterranean coarse-grained beaches
NASA Astrophysics Data System (ADS)
Grottoli, Edoardo; Bertoni, Duccio; Ciavola, Paolo
2017-10-01
The storm response of three Italian coarse-grained beaches was investigated to better understand the morphodynamics of coarse-clastic beaches in a microtidal context. Two of the studied sites are located on the eastern side of the country (Portonovo and Sirolo) and the third one (Marina di Pisa) is on the western side. Portonovo and Sirolo are mixed sand and gravel beaches where the storms approach from two main directions, SE and NE. Marina di Pisa is a coarse-grained, gravel-dominated beach, exposed to storms driven by SW winds. Gravel nourishments were undertaken in recent years on the three sites. Beach topography was monitored measuring the same network of cross sections at a monthly (i.e. short-term) to seasonal frequency (i.e. medium-term). Geomorphic changes were examined before and after storm occurrences by means of profile analyses and shoreline position evaluations. The beach orientation and the influence of hard structures are the main factors controlling the transport and accumulation of significant amount of sediments and the consequent high variability of beach morphology over the medium-term. For Marina di Pisa, storms tend to accumulate material towards the upper part of the beach with no shoreline rotation and no chance to recover the initial configuration. Sirolo and Portonovo showed a similar behaviour that is more typical of pocket beaches. Both beaches show shoreline rotation after storms in a clockwise or counter-clockwise direction according to the incoming wave direction. The wider and longer beach at Sirolo allows the accumulation of a thin layer of sediment during storms, rather than at Portonovo where, given its longshore and landward boundaries, the beach material tends to accumulate in greater thickness. After storms, Sirolo and especially Portonovo can quickly recover the initial beach configuration, as soon as another storm of comparable energy approaches from the opposite direction of the previous one. Large morphological variations after the storm on mixed sand and gravel beaches do not necessarily mean a slower recovery of surface topography and shoreline position. Considering that all the three beaches were recently nourished with gravel, it emerged that the differences between the nourishment and the native material, in terms of size and composition, seem to have an important influence on the dynamics of the sediment stock. Considering that recent studies have remarked the high abrasion rate of gravel, further understanding of the evolution of nourishment material with time is needed. The peculiar behaviour of gravel material artificially added to an originally sandy beach suggests the need to modify the widely used classification of Jennings and Shulmeister (2002) adding a fourth additional beach typology, which could represent human-altered beaches.
Solar system constraints on planetary Coriolis-type effects induced by rotation of distant masses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iorio, Lorenzo, E-mail: lorenzo.iorio@libero.it
We phenomenologically put local constraints on the rotation of distant masses by using the planets of the solar system. First, we analytically compute the orbital secular precessions induced on the motion of a test particle about a massive primary by a Coriolis-like force, treated as a small perturbation, in the case of a constant angular velocity vector Ψ directed along a generic direction in space. The semimajor axis a and the eccentricity e of the test particle do not secularly change, contrary to the inclination I, the longitude of the ascending node Ω, the longitude of the pericenter varpi andmore » the mean anomaly M. Then, we compare our prediction for (dot varpi) with the corrections Δdot varpi to the usual perihelion precessions of the inner planets recently estimated by fitting long data sets with different versions of the EPM ephemerides. We obtain as preliminary upper bounds |Ψ{sub z}| ≤ 0.0006−0.013 arcsec cty{sup −1}, |Ψ{sub x}| ≤ 0.1−2.7 arcsec cty{sup −1}, |Ψ{sub y}| ≤ 0.3−2.3 arcsec cty{sup −1}. Interpreted in terms of models of space-time involving cosmic rotation, our results are able to yield constraints on cosmological parameters like the cosmological constant Λ and the Hubble parameter H{sub 0} not too far from their values determined with cosmological observations and, in some cases, several orders of magnitude better than the constraints usually obtained so far from space-time models not involving rotation. In the case of the rotation of the solar system throughout the Galaxy, occurring clockwise about the North Galactic Pole, our results for Ψ{sub z} are in disagreement with the expected value of it at more than 3−σ level. Modeling the Oort cloud as an Einstein-Thirring slowly rotating massive shell inducing Coriolis-type forces inside yields unphysical results for its putative rotation.« less
Occlusal plane rotation: aesthetic enhancement in mandibular micrognathia.
Rosen, H M
1993-06-01
Patients afflicted with extreme degrees of mandibular micrognathia typically have vertically deficient rami as well as sagittally deficient mandibular bodies. This results in deficient posterior facial height, an obtuse gonial angle, excessively steep occlusal and mandibular planes, and a compensatory increase in anterior facial height. The entire maxillomandibular complex is overrotated in a clockwise direction. Standard orthognathic surgical correction fails to address this rotational deformity. As a consequence, the achieved projection of the lower face is inadequate, posterior facial height is further reduced, and occlusal and mandibular planes remain steep. Eleven patients with severe mandibular micrognathia underwent a surgical correction involving occlusal plane rotation to its normal orientation relative to Frankfort horizontal. This was accomplished by Le Fort I osteotomy to shorten the anterior maxilla (creating open bites in seven patients and making preexisting open bites worse in four patients) and sagittal split ramus osteotomies to advance and rotate the mandibular body counterclockwise, thus closing the surgically produced open bite. Counterclockwise rotation of the mandible afforded significantly greater sagittal displacement at the B point (mean 17 mm) than at the first molar (mean 10 mm) and produced adequate degrees of projection of the lower face when accompanied by a modest sliding genioplasty (mean 6.9 mm). Total advancement at the pogonion was a mean of 25.2 mm. In addition, posterior facial height was preserved, and mandibular and occlusal planes were normalized to mean angles of 27 and 10 degrees, respectively. At follow-up, which ranged from 9 to 24 months with a mean of 14.1 months, the mean sagittal relapse at the B point was 1.9 mm. Although heretofore considered unstable and therefore not clinically accepted, maxillomandibular counterclockwise rotation to normalize the occlusal plane rotational deformity provides stable, aesthetically superior results in patients with extreme degrees of mandibular micrognathia. Extended follow-up will be necessary to document long-term stability.
Rolled-up TiO₂ optical microcavities for telecom and visible photonics.
Madani, Abbas; Böttner, Stefan; Jorgensen, Matthew R; Schmidt, Oliver G
2014-01-15
The fabrication of high-quality-factor polycrystalline TiO₂ vertically rolled-up microcavities (VRUMs) by the controlled release of differentially strained TiO₂ bilayered nanomembranes, operating at both telecom and visible wavelengths, is reported. Optical characterization of these resonators reveals quality factors as high as 3.8×10³ in the telecom wavelength range (1520-1570 nm) by interfacing a TiO₂ VRUMs with a tapered optical fiber. In addition, a splitting in the fundamental modes is experimentally observed due to the broken rotational symmetry in our resonators. This mode splitting indicates coupling between clockwise and counterclockwise traveling whispering gallery modes of the VRUMs. Moreover, we show that our biocompatible rolled-up TiO₂ resonators function at several positions along the tube, making them promising candidates for multiplexing and biosensing applications.
Active chiral control of GHz acoustic whispering-gallery modes
NASA Astrophysics Data System (ADS)
Mezil, Sylvain; Fujita, Kentaro; Otsuka, Paul H.; Tomoda, Motonobu; Clark, Matt; Wright, Oliver B.; Matsuda, Osamu
2017-10-01
We selectively generate chiral surface-acoustic whispering-gallery modes in the gigahertz range on a microscopic disk by means of an ultrafast time-domain technique incorporating a spatial light modulator. Active chiral control is achieved by making use of an optical pump spatial profile in the form of a semicircular arc, positioned on the sample to break the symmetry of clockwise- and counterclockwise-propagating modes. Spatiotemporal Fourier transforms of the interferometrically monitored two-dimensional acoustic fields measured to micron resolution allow individual chiral modes and their azimuthal mode order, both positive and negative, to be distinguished. In particular, for modes with 15-fold rotational symmetry, we demonstrate ultrafast chiral control of surface acoustic waves in a micro-acoustic system with picosecond temporal resolution. Applications include nondestructive testing and surface acoustic wave devices.
Anatomy of a Venusian hot spot - Geology, gravity, and mantle dynamics of Eistla Regio
NASA Technical Reports Server (NTRS)
Grimm, Robert E.; Phillips, Roger J.
1992-01-01
Results of a study of the western and central portions of the Venusian hot spot Eistla Regio are presented. Magellan radar images were mapped to elucidate the general geologic history of the region. Radial fracture systems both on the rises and volcanoes indicate that uplift and associated faulting accompanied volcanic construction. Prominent fracture zones strike WNW to NW, parallel to the long axis of the highlands. The largest of these, Guor Linea, exhibits a progressive deformation history that may include minor clockwise rotation in addition to bulk NNE-SSW extension. Pioneer Venus line-of-sight accelerations were inverted for vertical gravity which, when combined with topography, were used to solve for mass anomalies on the crust-mantle boundary and in the upper levels of the mantle convective system.
Architecture and mineral deposit settings of the Altaid orogenic collage: a revised model
NASA Astrophysics Data System (ADS)
Yakubchuk, Alexander
2004-09-01
The Altaids are an orogenic collage of Neoproterozoic-Paleozoic rocks located in the center of Eurasia. This collage consists of only three oroclinally bent Neoproterozoic-Early Paleozoic magmatic arcs (Kipchak, Tuva-Mongol, and Mugodzhar-Rudny Altai), separated by sutures of their former backarc basins, which were stitched by new generations of overlapping magmatic arcs. In addition, the Altaids host accreted fragments of the Neoproterozoic to Early Paleozoic oceanic island chains and Neoproterozoic to Cenozoic plume-related magmatic rocks superimposed on the accreted fragments. All these assemblages host important, many world-class, Late Proterozoic to Early Mesozoic gold, copper-molybdenum, lead-zinc, nickel and other deposits of various types. In the Late Proterozoic, during breakup of the supercontinent Rodinia, the Kipchak and Tuva-Mongol magmatic arcs were rifted off Eastern Europe-Siberia and Laurentia to produce oceanic backarc basins. In the Late Ordovician, the Siberian craton began its clockwise rotation with respect to Eastern Europe and this coincides with the beginning of formation of the Mugodzhar-Rudny Altai arc behind the Kipchak arc. These earlier arcs produced mostly Cu-Pb-Zn VMS deposits, although some important intrusion-related orogenic Au deposits formed during arc-arc collision events in the Middle Cambrian and Late Ordovician. The clockwise rotation of Siberia continued through the Paleozoic until the Early Permian producing several episodes of oroclinal bending, strike-slip duplication and reorganization of the magmatic arcs to produce the overlapping Kazakh-Mongol and Zharma-Saur-Valerianov-Beltau-Kurama arcs that welded the extinct Kipchak and Tuva-Mongol arcs. This resulted in amalgamation of the western portion of the Altaid orogenic collage in the Late Paleozoic. Its eastern portion amalgamated only in the early Mesozoic and was overlapped by the Transbaikal magmatic arc, which developed in response to subduction of the oceanic crust of the Paleo-Pacific Ocean. Several world-class Cu-(Mo)-porphyry, Cu-Pb-Zn VMS and intrusion-related Au mineral camps, which formed in the Altaids at this stage, coincided with the episodes of plate reorganization and oroclinal bending of magmatic arcs. Major Pb-Zn and Cu sedimentary rock-hosted deposits of Kazakhstan and Central Asia formed in backarc rifts, which developed on the earlier amalgamated fragments. Major orogenic gold deposits are intrusion-related deposits, often occurring within black shale-bearing sutured backarc basins with oceanic crust. After amalgamation of the western Altaids, this part of the collage and adjacent cratons were affected by the Siberian superplume, which ascended at the Permian-Triassic transition. This plume-related magmatism produced various deposits, such as famous Ni-Cu-PGE deposits of Norilsk in the northwest of the Siberian craton. In the early Mesozoic, the eastern Altaids were oroclinally bent together with the overlapping Transbaikal magmatic arc in response to the northward migration and anti-clockwise rotation of the North China craton. The following collision of the eastern portion of the Altaid collage with the Siberian craton formed the Mongol-Okhotsk suture zone, which still links the accretionary wedges of central Mongolia and Circum-Pacific belts. In the late Mesozoic, a system of continent-scale conjugate northwest-trending and northeast-trending strike-slip faults developed in response to the southward propagation of the Siberian craton with subsequent post-mineral offset of some metallogenic belts for as much as 70-400 km, possibly in response to spreading in the Canadian basin. India-Asia collision rejuvenated some of these faults and generated a system of impact rifts.
NASA Astrophysics Data System (ADS)
Gürer, Derya; Darin, Michael H.; van Hinsbergen, Douwe J. J.; Umhoefer, Paul J.
2017-04-01
Because subduction is a destructive process, the surface record of subduction-dominated systems is naturally incomplete. Sedimentary basins may hold the most complete record of processes related to subduction, accretion, collision, and ocean closure, and thus provide key information for understanding the kinematic evolution of orogens. In central and eastern Anatolia, the Late Cretaceous-Paleogene stratigraphic record of the Ulukışla and Sivas basins supports the hypothesis that these once formed a contiguous basin. Importantly, their age and geographic positions relative to their very similar basement units and ahead of the Arabian indenter provide a critical record of pre-, syn- and post-collisional processes in the Anatolian Orogen. The Ulukışla-Sivas basin was dissected and translated along the major left-lateral Ecemiş fault zone. Since then, the basins on either side of the fault evolved independently, with considerably more plate convergence accommodated to the east in the Sivas region (eastern Anatolia) than in the Ulukışla region (central Anatolia). This led to the deformation of marine sediments and underlying ophiolites and structural growth of the Sivas Fold-and-Thrust Belt (SSFTB) since latest Eocene time, which played a major role in marine basin isolation and disconnection, along with a regionally important transition to continental conditions with evaporite deposition starting in the early Oligocene. We use geologic mapping, fault kinematic analysis, paleomagnetism, apatite fission track (AFT) thermochronology, and 40Ar/39Ar geochronology to characterize the architecture, deformation style, and structural evolution of the region. In the Ulukışla basin, dominantly E-W trending normal faults became folded or inverted due to N-S contraction since the Lutetian (middle Eocene). This was accompanied by significant counter-clockwise rotations, and post-Lutetian burial of the Niǧde Massif along the transpressional Ecemiş fault zone. Since Miocene time, the Ecemiş fault zone has been active as an extensional structure responsible for the re-exhumation of the Niǧde Massif in its footwall. To the east and in front of the Arabian indenter, the Sivas Basin evolved during Paleogene collision of the Tauride micro-continent (Africa) with the Pontides (Eurasia), but prior to Arabia collision. The thin-skinned SSFTB is a >300 km-long by 30 km-wide E-W-elongate, convex-north arcuate belt of compressional structures in Late Cretaceous to Miocene strata. It is characterized by NE- to E-trending upright folds with slight northward asymmetry, south-dipping thrust faults, and overturned folds in Paleogene strata indicating predominantly northward vergence. Several thrusts are south-vergent, typically displacing younger (Miocene) units. Structural relationships and AFT data reveal a sequence of initial crustal shortening and rapid exhumation in the late Eocene and Oligocene, an early-middle Miocene phase of relative tectonic quiescence and regional unconformity development, and a final episode of contraction during the late Miocene. Pliocene and younger units are only locally deformed by either halokinesis or transpression along diffuse and low-strain faults. Paleomagnetic data from the SSFTB reveal significant counter-clockwise rotations since Eocene time. Miocene strata north of the SSFTB consistently show moderate clockwise rotations. Our results indicate that collision-related growth of the orogen ended by the latest Miocene, coeval with or shortly after initiation of the North Anatolian fault zone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reid, J.A.; Plumley, P.W.; Schellekens, J.H.
1991-03-01
A paleomagnetic study of the essentially undeformed middle Tertiary carbonate sequence along the north coast of Puerto Rico reveals statistically significant pre-Pliocene discordance of characteristic component directions against those expected from cratonic North America for much of the section. Despite generally weak to moderately weak magnetic intensities, confirmation of the magnetization as primary in origin comes from the presence of two distinct components of magnetization, intrasite bipolarity, and/or the reproducibility of measurements. The mean geographic direction for the upper Oligocene to middle Miocene strata is 335.2{degree}/32.9{degree} and the corrected mean paleomagnetic pole is 207.6{degree}/66.5{degree}, (N = 3, {alpha}95 = 4.3{degree}).more » This suggests a counter-clockwise (CCW) block rotation of Puerto Rico and its microplate of 24.5{degrees} ({plus minus} 5.8{degrees}) during the late Miocene. Using a width of 250 km for the Northern Caribbean Plate Boundary Zone (NCPBZ) between the North American Plate and Caribbean Plate, the mean left lateral displacement implied is 1.8 to 2.4 cm/yr, which agrees fairly well with published relative motion rates for the two plates. Average rotation rate for 50 Ma to 20 Ma was 0.7{degree}/my but perhaps as great as 4{degree}/my in the Miocene. Resolution of mean paleolatitude indicates northward motion of a degree or less during the period of rotation. Causes of this short-lived rotation may include (1) tectonic escape from the inhibiting presence of the Bahama Banks and Beata Ridge during eastward motion of Puerto Rico along the sinistral transpressive Puerto Rico Trench and Muertos Trough fault systems or (2) changes in relative plate motions of the Caribbean and North American Plate during the late Miocene.« less
Motoji, Yoshiki; Tanaka, Hidekazu; Fukuda, Yuko; Sano, Hiroyuki; Ryo, Keiko; Sawa, Takuma; Miyoshi, Tatsuya; Imanishi, Junichi; Mochizuki, Yasuhide; Tatsumi, Kazuhiro; Matsumoto, Kensuke; Emoto, Noriaki; Hirata, Ken-ichi
2016-02-01
Current guidelines recommend the routine use of tricuspid annular plane systolic excursion (TAPSE) as a simple method for estimating right ventricular (RV) function. However, when ventricular apical longitudinal rotation (apical-LR) occurs in pulmonary hypertension (PH) patients, it may result in overestimated TAPSE. We studied 105 patients with PH defined as mean pulmonary artery pressure >25 mmHg at rest measured by right heart cardiac catheterization. TAPSE was defined as the maximum displacement during systole in the RV-focused apical four-chamber view. RV free-wall longitudinal speckle tracking strain (RV-free) was calculated by averaging 3 regional peak systolic strains. The apical-LR was measured at the peak rotation in the apical region including both left and right ventricle. The eccentricity index (EI) was defined as the ratio of the length of 2 perpendicular minor-axis diameters, one of which bisected and was perpendicular to the interventricular septum, and was obtained at end-systole (EI-sys) and end-diastole (EI-dia). Twenty age-, gender-, and left ventricular ejection fraction-matched normal controls were studied for comparison. The apical-LR in PH patients was significantly lower than that in normal controls (-3.4 ± 2.7° vs. -1.3 ± 1.9°, P = 0.001). Simple linear regression analysis showed that gender, TAPSE, EI-sys, and EI-dia/EI-sys were associated with apical-LR, but RV-free was not. Multiple regression analysis demonstrated that gender, EI-dia/EI-sys, and TAPSE were independent determinants of apical-LR. TAPSE may be overestimated in PH patients with clockwise rotation resulting from left ventricular compression. TAPSE should thus be evaluated carefully in PH patients with marked apical rotation. © 2015, Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Ilhan, I.; Coakley, B.
2016-12-01
A stratigraphic framework for offshore northwest of Alaska has been developed from multi-channel seismic reflection data and direct seismic-well ties to the late 80's Crackerjack and Popcorn exploration wells along the late Cretaceous middle Brookian unconformity. This unconformity is characterized by downlap, onlap, and bi-directional onlap of the overlying upper Brookian strata in high accommodation, and erosional incision of the underlying lower Brookian strata in low accommodation. This surface links multiple basins across the southwestern Chukchi Borderland, Arctic Ocean. The lower Brookian strata are characterized by pinch out basin geometry in which parallel-continuous reflectors show north-northeasterly progressive onlap of the younger strata onto a lower Cretaceous unconformity. These strata are subdivided into Aptian-Albian and Upper Cretaceous sections along a middle Cretaceous unconformity. The north-northeasterly thinning-by-onlap is consistent across hundreds of kilometers along the southwestern Chukchi Borderland. While this suggests a south-southwesterly regional source of sediment and transport from the Early Cretaceous Arctic Alaska-Chukotka orogens, pre-Brookian clinoform strata, underlying the lower Cretaceous unconformity angularly, have been observed for the first time in southeastern margin of the Chukchi Abyssal Plain. This suggests a change in sediment source and transport direction between the pre-Brookian and the lower Brookian strata. Although the mechanism for the accommodation is not well understood, we interpret the pre-Brookian strata as passive-margin slope deposits due to the fact that we have not observed any evidence for upper crustal tectonic deformation or syn-tectonic "growth" strata in the area. Thus, this implies that depositional history of the southwestern Chukchi Borderland post-dates the accommodation. This interpretation puts a new substantial constrain on the pre-Valanginian clockwise rotation of the Chukchi Borderland away from the East Siberian continental shelf, associated with the antecedent counter-clockwise rotation of the Arctic Alaska-Chukotka microplate away from the Canadian Arctic Islands and extensional deformation of the Amerasia Basin.
NASA Astrophysics Data System (ADS)
Grow, J. S.; Geissman, J. W.; Oldow, J. S.
2008-12-01
The Walker Lane Belt (WLB) transfer zone, which initiated in the mid-Miocene, presently links the Eastern California Shear Zone (ECSZ) in the south to the Central Nevada Seismic Belt (CNSB) and WLB to the east and north, respectively. This transfer zone is part of a diffuse intracontinental deformation zone that accommodates some 25 percent of the current motion between the North American and Pacific plates. The boundary of the transfer system is clear on the northern and western margins but the extent of the system to the south and east is only inferred. The extent of deformation and development of the WLB transfer zone since the mid-Miocene is being examined by a paleomagnetic study of 125 sites that includes Miocene to mid-Pliocene volcanic and shallow intrusive rocks near the inferred southern and eastern boundaries. Results from 39 sites inside and along the southern boundary (i.e. Goldfield Hills, Montezuma Range, Clayton Ridge) show about 30° of clockwise rotation (D = 028.3°, I = 57.8°, α95 = 3.9°, discordant from the expected Neogene direction of D = 358°, I = 55°). The area where 13 of these 39 sites are located (i.e. northern Amargosa Range, eastern Slate Ridge) was previously thought to lie outside of the inferred boundary, yet it also shows about 30° of clockwise rotation (D = 031.2°, I = 52.4°, α95 = 6.7°). Areas along the eastern boundary (i.e. southern San Antonio Range) of the transfer zone are still under investigation; data obtained to date are not internally consistent. Overall, the available paleomagnetic data suggest that the southern extent of the WLB transfer zone was larger than previously expected during the mid-Miocene to mid-Pliocene, and based on previous paleomagnetic, structural, and geodetic studies of the area, support a transition from more diffuse to localized deformation (forming the Mina Deflection) at about 3 Ma.
NASA Astrophysics Data System (ADS)
Edey, Alex; Allen, Mark B.
2017-04-01
Many fold-and-thrust belts are curved in plan view, but the origins of this curvature are debated. Understanding which mechanism(s) is appropriate is important to constrain the behaviour of the lithosphere during compressional deformation. Here we analyse the active deformation of the Fars Arc region in the eastern part of the Zagros, Iran, including slip vectors of 92 earthquakes, published GPS and palaeomagnetism data, and the distributions of young and/or active folds. The fold-and-thrust belt in the Fars Arc shows pronounced curvature, convex southwards. Folds trends vary from NW-SE in the west to ENE-WSW in the east. The GPS-derived velocity field shows NNE to SSW convergence, towards the foreland on the Arabian Plate, without dispersion. Earthquake slip vectors are highly variable, spanning a range of azimuths from SW to SSE in an Arabian Plate reference frame. The full variation of azimuths occurs within small (10s of km) sub-regions, but this variation is superimposed on a radial pattern, whereby slip vectors tend to be parallel to the regional topographic gradient. Given the lack of variation in the GPS vectors, we conclude that the Fars Arc is not curved as a result of gravitational spreading over the adjacent foreland, but as a result of deformation being restricted at tectonic boundaries at the eastern and western margins of the Arc. Fault blocks and folds within the Fars Arc, each 20-40 km long, rotate about vertical axes to achieve the overall curvature, predominantly clockwise in the west and counter-clockwise in the east. Active folds of different orientations may intersect and produce dome-and-basin interference patterns, without the need for a series of separate deformation phases of different stress orientations. The Fars Arc clearly contrasts with the Himalayas, where both GPS and earthquake slip vectors display radial patterns towards the foreland, and gravitational spreading is a viable mechanism for producing fold-and-thrust belt curvature.
Evaluation of the magnitude of EBT Gafchromic film polarization effects.
Butson, M J; Cheung, T; Yu, P K N
2009-03-01
Gafchromic EBT film, has become a main dosimetric tools for quantitative evaluation of radiation doses in radiation therapy application. One aspect of variability using EBT Gafchromic film is the magnitude of the orientation effect when analysing the film in landscape or portrait mode. This work has utilized a > 99% plane polarized light source and a non-polarized diffuse light source to investigate the absolute magnitude of EBT Gafchromic films polarization or orientation effects. Results have shown that using a non-polarized light source produces a negligible orientation effect for EBT Gafchromic film and thus the angle of orientation is not important. However, the film exhibits a significant variation in transmitted optical density with angle of orientation to polarized light producing more than 100% increase, or over a doubling of measured OD for films irradiated with x-rays up to dose levels of 5 Gy. The maximum optical density was found to be in a plane at an angle of 14 degrees +/- 7 degrees (2 SD) when the polarizing sheet is turned clockwise with respect to the film. As the magnitude of the orientation effect follows a sinusoidal shape it becomes more critical for alignment accuracy of the film with respect to the polarizing direction in the anticlockwise direction as this will place the alignment of the polarizing axes on the steeper gradient section of the sinusoidal pattern. An average change of 4.5% per 5 degrees is seen for an anticlockwise polarizer rotation where as the effect is 1.2% per 5 degrees for an clockwise polarizer rotation. This may have consequences to the positional accuracy of placement of the EBT Gafchromic film on a scanner as even a 1 degree alignment error can cause an approximate 1% error in analysis. The magnitude of the orientation effect is therefore dependant on the degree of polarization of the scanning light source and can range from negligible (diffuse LED light source) through to more than 100% or doubling of OD variation with a fully linear polarized light source.
NASA Astrophysics Data System (ADS)
Tanaka, Kenji; Mu, Chuanlong; Sato, Ken; Takemoto, Kazuhiro; Miura, Daisuke; Liu, Yuyan; Zaman, Haider; Yang, Zhenyu; Yokoyama, Masahiko; Iwamoto, Hisanori; Uno, Koji; Otofuji, Yo-ichiro
2008-11-01
Lower to Middle Cretaceous red sandstones were sampled at four localities in the Lanpin-Simao fold belt of the Shan-Thai Block to describe its regional deformational features. Most of the samples revealed a characteristic remanent magnetization with unblocking temperatures around 680 °C. Primary natures of magnetization are ascertained through positive fold test. A tilt-corrected formation-mean direction for the Jingdong (24.5°N, 100.8°E) locality, which is located at a distance of 25 km from the Ailaoshan-Red River Fault, revealed northerly declination with steep inclination (Dec./Inc. = 8.3°/48.8°, α95 = 7.7°, N = 13). However, mean directions obtained from the Zhengyuan (24.0°N, 101.1°E), West Zhengyuan (24.0°N, 101.1°E) and South Mengla (21.4°N, 101.6°E) localities indicate an easterly deflection in declination; such as Dec./Inc. = 61.8°/46.1°, α95 = 8.1° (N = 7), Dec./Inc. = 324.2°/-49.4°, α95 = 6.4° (N = 4) and Dec./Inc. = 51.2°/46.4°, α95 = 5.6° (N = 13), respectively. The palaeomagnetic directions obtained from these four localities are incorporated into a palaeomagnetic database for the Shan-Thai Block. When combined with geological, geochronological and GPS data, the processes of deformation in the Shan-Thai Block is described as follows: Subsequent to its rigid block clockwise rotation of about 20° in the early stage of India-Asia collision, the Shan-Thai Block experienced a coherent but southward displacement along the Red River Fault prior to 32 Ma. This block was then subjected to a north-south compressive stresses during the 32-27 Ma period, which played a key role in shaping the structure of Chongshan-Lancang-Chiang Mai Belt. Following this some local clockwise rotational motion has occurred during the Pliocene-Quaternary time in central part of the Shan-Thai Block as a result of internal block movements along the reactivated network of faults.
Whittaker, Jackie L; Warner, Martin B; Stokes, Maria J
2009-11-01
The use of ultrasound imaging (USI) by physiotherapists to assess muscle behavior in clinical settings is increasing. However, there is relatively little evidence of whether the clinical environment is conducive to valid and reliable measurements. Accurate USI measurements depend on maintaining a relatively stationary transducer position, because motion may distort the image and lead to erroneous conclusions. This would seem particularly important during dynamic studies typical of a physiotherapy assessment. What is not known is how much transducer motion can occur before error is introduced. The aim of this study is to shed some light on this question. Eight healthy volunteers (19 to 52 y) participated. USI images were taken of the lateral abdominal wall (LAW) and bladder base (midline suprapubic) at various manually induced transducer orientations (approximately -10 to 10 degrees about 3 axes of rotation), which were quantified by a digital optical motion capture system. Measurements of transversus abdominis (TrA) thickness and bladder base position (cranial /caudal and anterior/posterior) were calculated. Repeated measures analysis of variance was performed to determine if the measurements obtained at the induced transducer orientations were statistically different (p<0.05) from an image corresponding to a reference or starting transducer orientation. Motion analysis data corresponding to measurements that did not differ from reference image measurements were summarized to provide a range of acceptable transducer motion (relative to the pelvis) for clockwise (CW)/counter-clockwise (CCW) rotation, cranial/caudal tilting, medial/lateral tilting and inward/outward displacement. There were no significant changes in TrA thickness measurements if CW/CCW transducer motion was <9 degrees and cranial/caudal or medial/lateral transducer tilting was <5 degrees . Further, there were no significant changes in measurements of bladder base position if CW/CCW transducer motion was <10 degrees , cranial/caudal or medial/lateral transducer tilting was <10 degrees and 8 degrees , respectively and inward/outward motion was <8 mm. These findings provide guidance on acceptable amounts of transducer motion relative to the pelvis when generating measurements of TrA thickness and bladder base position. Future sonographic studies and clinical assessment investigating these parameters could take these findings into account to improve imaging technique reliability.
Temperature of the Gulf Stream
NASA Technical Reports Server (NTRS)
2002-01-01
The Gulf Stream is one of the strong ocean currents that carries warm water from the sunny tropics to higher latitudes. The current stretches from the Gulf of Mexico up the East Coast of the United States, departs from North America south of the Chesapeake Bay, and heads across the Atlantic to the British Isles. The water within the Gulf Stream moves at the stately pace of 4 miles per hour. Even though the current cools as the water travels thousands of miles, it remains strong enough to moderate the Northern European climate. The image above was derived from the infrared measurements of the Moderate-resolution Imaging Spectroradiometer (MODIS) on a nearly cloud-free day over the east coast of the United States. The coldest waters are shown as purple, with blue, green, yellow, and red representing progressively warmer water. Temperatures range from about 7 to 22 degrees Celsius. The core of the Gulf Stream is very apparent as the warmest water, dark red. It departs from the coast at Cape Hatteras, North Carolina. The cool, shelf water from the north entrains the warmer outflows from the Chesapeake and Delaware Bays. The north wall of the Gulf Stream reveals very complex structure associated with frontal instabilities that lead to exchanges between the Gulf Stream and inshore waters. Several clockwise-rotating warm core eddies are evident north of the core of the Gulf Stream, which enhance the exchange of heat and water between the coastal and deep ocean. Cold core eddies, which rotate counter clockwise, are seen south of the Gulf Stream. The one closest to Cape Hatteras is entraining very warm Gulf Stream waters on its northwest circumference. Near the coast, shallower waters have warmed due to solar heating, while the deeper waters offshore are markedly cooler (dark blue). MODIS made this observation on May 8, 2000, at 11:45 a.m. EDT. For more information, see the MODIS-Ocean web page. The sea surface temperature image was created at the University of Miami using the 11- and 12-micron bands, by Bob Evans, Peter Minnett, and co-workers.
Hemmatpour, Siamak; Mokhtar, Ali; Rakhshan, Vahid
2017-01-01
The aim of this study was to evaluate the therapeutic effects of the Sabbagh Universal Spring 2 (SUS 2) fixed functional appliance compared to the premolar extraction method in correcting class II/1 malocclusion in patients who had passed their peak of postpubertal growth (stages 4-6 of Cervical Vertebral Maturation Index). In all, 40 class II/1 patients were randomized to receive SUS 2 application (7 males, 13 females, age 15.75 ± 1.02 years) or maxillary premolar extraction (8 males, 12 females, age 15.40 ± 0.99 years). Pre- and posttreatment digital cephalographs were traced at least twice. A paired t test was used to compare the pre- and posttreatment measurements. Treatment changes were compared using an independent samples t test (P ≤ 0.05). The extent of change was significant in the following variables: ANB, nasolabial angle, Mand1-ML, 1L-NB, anterior and posterior facial heights, N-A-Pog, 1U-NF, 6L-MP, Ar-Go, OP-HP, A-B, A-Sn, B-Sm, APDI, NAPog, AB-NPog, POr-DOP, SN-OcP, POr-OcP, Wits, 1 l-APog, 1LMeLm, S-Go:N-Me, N-ANS-Pog, Ap1LAp1u-DOP, ANS-Cond, Pog-Cond, SS-Ls, A-N-Pog, Pog-Pog', MeGoOcP, 1L-Npog, Go-Me, Go-Me:N-S, S-Me, Ls-(Sn-Pog'), Stms-Stmi, N'-Gn', N'NsPog', 6u-PTV, 1u-NA, FMIA, and IMPA. SUS 2 corrected class II/1 malocclusion of patients in the postpubertal growth period by inhibiting the maxilla's forward growth, advancing the mandible, decreasing the nasolabial and interincisal angles, proclining the incisors, increasing the facial height, and clockwise rotation of the occlusal plane. Extraction reduced the interincisal angle and protruded the lower incisors. However, it did not change the soft tissue thickness and did not cause a clockwise rotation in the occlusal plane.
NASA Astrophysics Data System (ADS)
Stotz, Ingo; Iaffaldano, Giampiero; Rhodri Davies, D.
2017-04-01
Knowledge of the evolution of continents, inferred from a variety of geological data, as well as observations of the ocean-floor magnetization pattern provide an increasingly-detailed picture of past and present-day plate motions. These are key to study the evolving balance of shallow- and deep-rooted forces acting upon plates and to unravel the dynamics of the coupled plates/mantle system. Here we focus on the clockwise rotation of the Pacific plate motion relative to the hotspots reference frame between 10 and 5 Ma, which is evidenced by a bend in the Hawaiian sea mount chain (Cox & Engebretson, 1985) as well as by marine magnetic and bathymetric data along the Pacific/Antarctica Ridge (Croon et al., 2008). It has been suggested that such a kinematic change owes to the arrival of the Ontong-Java plateau, the biggest oceanic plateau on the Pacific plate, at the Australia/Pacific subducting margin between 10 and 5 Ma, and to its collision with the Melanesian arc. This could have changed the local buoyancy forces and/or sparked a redistribution of the forces already acting within the Pacific realm, causing the Pacific plate to rotate clockwise. Such hypotheses have never been tested explicitly against the available kinematic reconstructions. We do so by using global numerical models of the coupled plates/mantle system. Our models build on the available codes Terra and Shells. Terra is a global, spherical finite-element code for mantle convection, developed by Baumgardner (1985) and Bunge et al. (1996), and further advanced by Yang (1997; 2000) and Davies et al. (2013), among others. Shells is a thin-sheet, finite-element code for lithosphere dynamics (e.g., Bird, 1998). By merging these two independent models we are able to simulate the rheological behavior of the brittle lithosphere and viscous mantle. We compare the plate velocities output by our models with the available kinematic reconstructions to test the above-mentioned hypotheses, and simulate the impact of the evolving mantle buoyancy-field and plate-boundary forces on the Pacific plate motion. Our approach allows linking geodynamical models and observations on the recent dynamics of the Pacific plate.
NASA Astrophysics Data System (ADS)
Austin, James; Geuna, Silvana; Clark, David; Hillan, Dean
2014-10-01
Magnetic modelling can be a powerful tool for understanding the architecture of numerous types of mineralized systems; e.g., iron ore, IOCG and porphyry deposits. In such modelling, the induced component is generally assumed to be dominant, whereas remanent magnetization is often neglected and, furthermore, the effects of self-demagnetization are commonly ignored. We present rock property measurements (magnetic susceptibility and remanent magnetization) from the Candelaria IOCG deposit in northern Chile. The results demonstrate that remanence is relatively weak (< 20% of induced) and that the causative lithologies have very high magnetic susceptibilities (3-4 SI), which makes them highly prone to self-demagnetization. The rock property results were used to constrain a simplified forward model in which the causative bodies are modelled as a series of sub-horizontal highly magnetic sheets, corresponding to “mantos”. These “mantos” occur north and south of Candelaria, sub-perpendicular to a splay off the Atacama Fault Zone. We demonstrate that Candelaria's unusual magnetic anomaly is due to a combination of its highly magnetic sub-horizontal architecture, and self-demagnetization effects. A further simplified model was used to calculate two synthetic anomalies, one ignoring and the other incorporating the self-demagnetization effect. These synthetic anomalies demonstrate that the magnetic anomaly amplitude is suppressed by up to approximately 50% at Candelaria due to self-demagnetization, and that the induced magnetization is also slightly rotated from the regional inducing field towards the plane of the “mantos”. The dominant paleomagnetic component recorded by the Candelaria deposit and host rocks is a normal polarity remanence of moderate to high stability which is interpreted to have been acquired during the mid-Cretaceous alteration and mineralisation event(s) that generated the magnetic minerals (predominantly magnetite). However, the presence of a reversed polarity overprint component in some samples suggests that the Candelaria deposit and its immediate environs have experienced a post 83 Ma thermal or thermochemical event that has not been previously recognised. The remanence directions of both polarities are rotated clockwise with respect to the expected directions for mid-Cretaceous/Early Tertiary fields, indicating clockwise rotation of the Candelaria area, including the adjacent batholith, through at least 45° since the acquisition of the normal and reversed remanence components, i.e. since 83 Ma. This case study illustrates the importance of understanding the magnetic behaviour of different ore types, and incorporating self-demagnetization into modelling procedures for highly magnetic targets in mineral exploration.
Detection technology research on the one-way clutch of automatic brake adjuster
NASA Astrophysics Data System (ADS)
Jiang, Wensong; Luo, Zai; Lu, Yi
2013-10-01
In this article, we provide a new testing method to evaluate the acceptable quality of the one-way clutch of automatic brake adjuster. To analysis the suitable adjusting brake moment which keeps the automatic brake adjuster out of failure, we build a mechanical model of one-way clutch according to the structure and the working principle of one-way clutch. The ranges of adjusting brake moment both clockwise and anti-clockwise can be calculated through the mechanical model of one-way clutch. Its critical moment, as well, are picked up as the ideal values of adjusting brake moment to evaluate the acceptable quality of one-way clutch of automatic brake adjuster. we calculate the ideal values of critical moment depending on the different structure of one-way clutch based on its mechanical model before the adjusting brake moment test begin. In addition, an experimental apparatus, which the uncertainty of measurement is ±0.1Nm, is specially designed to test the adjusting brake moment both clockwise and anti-clockwise. Than we can judge the acceptable quality of one-way clutch of automatic brake adjuster by comparing the test results and the ideal values instead of the EXP. In fact, the evaluation standard of adjusting brake moment applied on the project are still using the EXP provided by manufacturer currently in China, but it would be unavailable when the material of one-way clutch changed. Five kinds of automatic brake adjusters are used in the verification experiment to verify the accuracy of the test method. The experimental results show that the experimental values of adjusting brake moment both clockwise and anti-clockwise are within the ranges of theoretical results. The testing method provided by this article vividly meet the requirements of manufacturer's standard.
NASA Astrophysics Data System (ADS)
Wu, You-Lin; Lin, Jing-Jenn; Lin, Shih-Hung; Sung, Yi-Hsing
2017-11-01
Hysteretic current-voltage (I-V) characteristics are quite common in metal-insulator-metal (MIM) devices used for resistive switching random access memory (RRAM). Two types of hysteretic I-V curves are usually observed, figure eight and counter figure eight (counter-clockwise and clockwise in the positive voltage sweep direction, respectively). In this work, a clockwise hysteretic I-V curve was found for an MIM device with polystyrene (PS)/ZnO nanorods stack as an insulator layer. Three distinct regions I ∼ V, I ∼ V2, and I ∼ V0.6 are observed in the double logarithmic plot of the I-V curves, which cannot be explained completely with the conventional trap-controlled space-charge-limited-current (SCLC) model. A model based on the energy band with two separate traps plus local energy variation and trap-controlled SCLC has been developed, which can successfully describe the behavior of the clockwise hysteretic I-V characteristics obtained in this work.
Crustal Deformation of the Central Walker Lane from GPS velocities: Block Rotations and Slip Rates
NASA Astrophysics Data System (ADS)
Bormann, J. M.; Hammond, W. C.; Kreemer, C. W.; Blewitt, G.; Wesnousky, S. G.
2010-12-01
The Walker Lane is a complex zone of active intracontinental transtension between the Sierra Nevada/Great Valley (SNGV) microplate and the Basin and Range in the western United States. Collectively, this ~100 km wide zone accommodates ~20% of the Pacific-North American relative plate motion. The Central Walker Lane (CWL) extends from the southern boundary of the Mina Deflection (~38.0°N) to the latitude of Lake Tahoe (~39.5°N) and encompasses the transition from Basin and Range style faulting in the east to the stable block motion of the SNGV microplate in the West. We combine GPS data from the Mobile Array of GPS for Nevada Transtension (MAGNET, http://geodesy.unr.edu/networks) with continuous observations from the EarthScope Plate Boundary Observatory to solve for rates of crustal deformation in the CWL through a block modeling approach. The GPS coordinate time series are derived in this region as part of a 7000-station global network solution using the latest JPL reanalysis of GPS orbits, and the latest antenna models for stations and satellites. The data were processed by precise point positioning using JPL's GIPSY OASIS II software followed by our custom Ambizap3 software, to produce a globally-consistent, ambiguity-resolved network solution. GPS time series in the western United States are rotated into a North America-fixed reference frame and are spatially filtered with respect to the secular motions of reference stations that demonstrate long-term secular stability. In the study region, we use 130 GPS velocities that are corrected for viscoelastic postseismic relaxation following 19th and 20th century earthquakes in the Central Nevada Seismic Belt to constrain rates of long-term fault slip and block rotation. The spatial density and precision of our velocity field (average station spacing of ~20 km with uncertainties well below 1 mm/yr) allow us to compare geodetically estimated slip rates with geologic observations as well as address specific questions about how shear is transferred from the Southern Walker Lane through the Mina Deflection and evaluate along-strike variation of the slip rate on the Sierra Nevada range front fault. Preliminary results confirm a pattern of deformation consistent with geological observations. Deformation zones are characterized by 1) left-lateral slip on east-northeast trending faults and clockwise block rotations in the Mina Deflection, 2) right-lateral slip on northwest trending faults along the eastern margin of the CWL, 3) east-west extension along north trending faults in the western portion of the CWL with right lateral slip increasing toward the SNGV microplate boundary, 4) clockwise rotation of blocks in the Carson Domain, and 5) northwest directed extension in the Basin and Range. Estimates of fault slip rates along the eastern boundary of the SNGV block find that slip is oblique with preliminary rates ranging between 0.4-0.8(±0.1) mm/yr horizontal extension and 0.9-1.5(±0.1) mm/yr right lateral.
Fukai, Manami; Kamisawa, Terumi; Horiguchi, Shin-Ichirou; Hishima, Tsunekazu; Kuruma, Sawako; Chiba, Kazuro; Koizumi, Satomi; Tabata, Taku; Nagao, Sayaka; Kikuyama, Masataka; Honda, Goro; Kurata, Masanao
2017-06-01
We present a resected case of annular pancreas in which Wirsung's duct encircled the duodenum and continued directly to the main pancreatic duct in the body and tail. Furthermore, Wirsung's duct coursed along the right side of the lower bile duct near the major duodenal papilla. Histologically, the islets of Langerhans in the annular pancreas were irregular in shape and were characterized by a striking abundance of pancreatic polypeptide (PP)-positive cells. The PP-rich area that encircled the duodenum was fused with the PP-poor area in the head of the pancreas. The following embryological hypothesis is proposed. The tip of the ventral pancreatic anlage adhered to the duodenal wall and stretched to form a ring during clockwise rotation. The rotation was incomplete, and the pancreatic duct did not cross over the lower bile duct. Since there was adequate ventral anlage in the lower part of the head of the pancreas, fusion between the ducts of the ventral and dorsal anlagen did not occur. The tip of the ventral anlage overgrew and adhered to the dorsal anlage, and the annular duct fused with the main duct of the dorsal anlage.
Active turbulence in a gas of self-assembled spinners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kokot, Gasper; Das, Shibananda; Winkler, Roland G.
Colloidal particles subject to an external periodic forcing exhibit complex collective behavior and self-assembled patterns. A dispersion of magnetic microparticles confined at the air-liquid interface and energized by a uniform uniaxial alternating magnetic field exhibits dynamic arrays of self-assembled spinners rotating in either direction. Here, we report on experimental and simulation studies of active turbulence and transport in a gas of self-assembled spinners. We show that the spinners, emerging as a result of spontaneous symmetry breaking of clock/counterclockwise rotation of self-assembled particle chains, generate vigorous vortical flows at the interface. An ensemble of spinners exhibits chaotic dynamics due to self-generatedmore » advection flows. The same-chirality spinners (clockwise or counterclock-wise) show a tendency to aggregate and form dynamic clusters. Emergent self-induced interface currents promote active diffusion that could be tuned by the parameters of the external excitation field. Furthermore, the erratic motion of spinners at the interface generates chaotic fluid flow reminiscent of 2D turbulence. As a result, our work provides insight into fundamental aspects of collective transport in active spinner materials and yields rules for particle manipulation at the microscale.« less
Hagstrum, J.T.; Swanson, D.A.; Snee, L.W.
1998-01-01
Paleomagnetic study of the intrusive suite of Kidd Creek in the southern Washington Cascades (23 sites in dikes and sills) was undertaken to help determine if these rocks are comagmatic and whether they postdate regional folding of the volcanic arc. Fission track and 40Ar-39Ar age determinations indicate an age of ???12.7 Ma (middle Miocene) for these rocks. The similarity of normal-polarity characteristic directions for most samples corroborate the available geochemical data indicating that these rocks are most likely comagmatic. Reversed-polarity directions for samples from four sites, however, show that emplacement of Kidd Creek intrusions spanned at least one reversal of the geomagnetic field. The paleomagnetic directions for the dikes and sills fail a fold test at the 99% confidence level indicating that the Kidd Creek rocks postdate regional folding. The mean in situ direction also indicates that the Kidd Creek and older rocks have been rotated 22?? ?? 6?? clockwise about a vertical or near-vertical axis from the expected Miocene direction. Compression and regional folding of the Cascade arc in southern Washington therefore had ended by ???12 Ma prior to the onset of deformation resulting in rotation of these rocks.
Active turbulence in a gas of self-assembled spinners
Kokot, Gasper; Das, Shibananda; Winkler, Roland G.; ...
2017-11-20
Colloidal particles subject to an external periodic forcing exhibit complex collective behavior and self-assembled patterns. A dispersion of magnetic microparticles confined at the air-liquid interface and energized by a uniform uniaxial alternating magnetic field exhibits dynamic arrays of self-assembled spinners rotating in either direction. Here, we report on experimental and simulation studies of active turbulence and transport in a gas of self-assembled spinners. We show that the spinners, emerging as a result of spontaneous symmetry breaking of clock/counterclockwise rotation of self-assembled particle chains, generate vigorous vortical flows at the interface. An ensemble of spinners exhibits chaotic dynamics due to self-generatedmore » advection flows. The same-chirality spinners (clockwise or counterclock-wise) show a tendency to aggregate and form dynamic clusters. Emergent self-induced interface currents promote active diffusion that could be tuned by the parameters of the external excitation field. Furthermore, the erratic motion of spinners at the interface generates chaotic fluid flow reminiscent of 2D turbulence. As a result, our work provides insight into fundamental aspects of collective transport in active spinner materials and yields rules for particle manipulation at the microscale.« less
Principal components of wrist circumduction from electromagnetic surgical tracking.
Rasquinha, Brian J; Rainbow, Michael J; Zec, Michelle L; Pichora, David R; Ellis, Randy E
2017-02-01
An electromagnetic (EM) surgical tracking system was used for a functionally calibrated kinematic analysis of wrist motion. Circumduction motions were tested for differences in subject gender and for differences in the sense of the circumduction as clockwise or counter-clockwise motion. Twenty subjects were instrumented for EM tracking. Flexion-extension motion was used to identify the functional axis. Subjects performed unconstrained wrist circumduction in a clockwise and counter-clockwise sense. Data were decomposed into orthogonal flexion-extension motions and radial-ulnar deviation motions. PCA was used to concisely represent motions. Nonparametric Wilcoxon tests were used to distinguish the groups. Flexion-extension motions were projected onto a direction axis with a root-mean-square error of [Formula: see text]. Using the first three principal components, there was no statistically significant difference in gender (all [Formula: see text]). For motion sense, radial-ulnar deviation distinguished the sense of circumduction in the first principal component ([Formula: see text]) and in the third principal component ([Formula: see text]); flexion-extension distinguished the sense in the second principal component ([Formula: see text]). The clockwise sense of circumduction could be distinguished by a multifactorial combination of components; there were no gender differences in this small population. These data constitute a baseline for normal wrist circumduction. The multifactorial PCA findings suggest that a higher-dimensional method, such as manifold analysis, may be a more concise way of representing circumduction in human joints.
2016-09-02
This image from NASA's Juno spacecraft provides a never-before-seen perspective on Jupiter's south pole. The JunoCam instrument acquired the view on August 27, 2016, when the spacecraft was about 58,700 miles (94,500 kilometers) above the polar region. At this point, the spacecraft was about an hour past its closest approach, and fine detail in the south polar region is clearly resolved. Unlike the equatorial region's familiar structure of belts and zones, the poles are mottled by clockwise and counterclockwise rotating storms of various sizes, similar to giant versions of terrestrial hurricanes. The south pole has never been seen from this viewpoint, although the Cassini spacecraft was able to observe most of the polar region at highly oblique angles as it flew past Jupiter on its way to Saturn in 2000. http://photojournal.jpl.nasa.gov/catalog/PIA21032
On the period of the periodic orbits of the restricted three body problem
NASA Astrophysics Data System (ADS)
Perdomo, Oscar
2017-09-01
We will show that the period T of a closed orbit of the planar circular restricted three body problem (viewed on rotating coordinates) depends on the region it encloses. Roughly speaking, we show that, 2 T=kπ +\\int _Ω g where k is an integer, Ω is the region enclosed by the periodic orbit and g:R^2→ R is a function that only depends on the constant C known as the Jacobian constant; it does not depend on Ω . This theorem has a Keplerian flavor in the sense that it relates the period with the space "swept" by the orbit. As an application we prove that there is a neighborhood around L_4 such that every periodic solution contained in this neighborhood must move clockwise. The same result holds true for L_5.
Physical Sensing of Surface Properties by Microswimmers--Directing Bacterial Motion via Wall Slip.
Hu, Jinglei; Wysocki, Adam; Winkler, Roland G; Gompper, Gerhard
2015-05-20
Bacteria such as Escherichia coli swim along circular trajectories adjacent to surfaces. Thereby, the orientation (clockwise, counterclockwise) and the curvature depend on the surface properties. We employ mesoscale hydrodynamic simulations of a mechano-elastic model of E. coli, with a spherocylindrical body propelled by a bundle of rotating helical flagella, to study quantitatively the curvature of the appearing circular trajectories. We demonstrate that the cell is sensitive to nanoscale changes in the surface slip length. The results are employed to propose a novel approach to directing bacterial motion on striped surfaces with different slip lengths, which implies a transformation of the circular motion into a snaking motion along the stripe boundaries. The feasibility of this approach is demonstrated by a simulation of active Brownian rods, which also reveals a dependence of directional motion on the stripe width.
Unsteady aerodynamic force mechanisms of a hoverfly hovering with a short stroke-amplitude
NASA Astrophysics Data System (ADS)
Zhu, Hao Jie; Sun, Mao
2017-08-01
Hovering insects require a rather large lift coefficient. Many insects hover with a large stroke amplitude (120°-170°), and it has been found that the high lift is mainly produced by the delayed-stall mechanism. However, some insects hover with a small stroke amplitude (e.g., 65°). The delayed-stall mechanism might not work for these insects because the wings travel only a very short distance in a stroke, and other aerodynamic mechanisms must be operating. Here we explore the aerodynamic mechanisms of a hoverfly hovering with an inclined stroke plane and a small stroke amplitude (65.6°). The Navier-Stokes equations are numerically solved to give the flows and forces and the theory of vorticity dynamics used to reveal the aerodynamic mechanisms. The majority of the weight-supporting vertical force is produced in the mid portion of the downstroke, a short period (about 26% of the stroke cycle) in which the vertical force coefficient is larger than 4. The force is produced using a new mechanism, the "paddling mechanism." During the short period, the wing moves rapidly downward and forward at a large angle of attack (about 48°), and strong counter clockwise vorticity is produced continuously at the trailing edge and clockwise vorticity at the leading edge, resulting in a large time rate of change in the first moment of vorticity, hence the large aerodynamic force. It is interesting to note that with the well known delayed stall mechanism, the force is produced by the relative motion of two vortices of opposite sign, while in the "paddling mechanism," it is produced by generating new vortices of opposite sign at different locations.
NASA Astrophysics Data System (ADS)
Zhang, X. L.; Zhang, Q.; Werner, A. D.; Tan, Z. Q.
2017-10-01
A previous modeling study of the lake-floodplain system of Poyang Lake (China) revealed complex hysteretic relationships between stage, storage volume and surface area. However, only hypothetical causal factors were presented, and the reasons for the occurrence of both clockwise and counterclockwise hysteretic functions were unclear. The current study aims to address this by exploring further Poyang Lake's hysteretic behavior, including consideration of stage-flow relationships. Remotely sensed imagery is used to validate the water surface areas produced by hydrodynamic modeling. Stage-area relationships obtained using the two methods are in strong agreement. The new results reveal a three-phase hydrological regime in stage-flow relationships, which assists in developing improved physical interpretation of hysteretic stage-area relationships for the lake-floodplain system. For stage-area relationships, clockwise hysteresis is the result of classic floodplain hysteretic processes (e.g., restricted drainage of the floodplain during recession), whereas counterclockwise hysteresis derives from the river hysteresis effect (i.e., caused by backwater effects). The river hysteresis effect is enhanced by the time lag between the peaks of catchment inflow and Yangtze discharge (i.e., the so-called Yangtze River blocking effect). The time lag also leads to clockwise hysteresis in the relationship between Yangtze River discharge and lake stage. Thus, factors leading to hysteresis in other rivers, lakes and floodplains act in combination within Poyang Lake to create spatial variability in hydrological hysteresis. These effects dominate at different times, in different parts of the lake, and during different phases of the lake's water level fluctuations, creating the unique hysteretic hydrological behavior of Poyang Lake.
McCulloh, Thane H.; Beyer, Larry A.
2004-01-01
Opening of the Neogene Los Angeles Basin began abruptly about 17.4 Ma. Extensional rifting, with local basaltic volcanism, began the process and accompanied its early stages. Crustal detachment, followed by clockwise tectonic rotation and translation of large crustal blocks has been shown by previous paleomagnetic declination measurements in the western Transverse Ranges Province northwest of the basin and by large strike-slip and dip-slip separations on several major faults transecting it. Successful palinspastic reconstruction of the region to its arrangement before 17.4 Ma depends on understanding and integration of many stratigraphic and structural components. Before 17.4 Ma, fluviatile, alluvial and floodplain deposits, interstratified in the younger part with shallow marine to deeper shelf transgressive equivalents, accumulated to thicknesses as great as several kilometers. This report maps the surface and subsurface extents, thickness variations, and facies patterns of these strata, the Sespe plus Vaqueros and Trancas Formations or equivalents. Separate southeast and northwest sectors are revealed, each with distinctive internal thickness and facies patterns, which must have been related before rifting and transrotation. Terrestrial vertebrate and marine molluscan and foraminiferal fossils, plus magnetostratigraphic profiles of other workers and a few dates of igneous rocks, provide timing for key depositional and structural events. Our preliminary reconstruction of the region brings the internal patterns of the northwest and southeast sectors toward congruity but leaves unsatisfied discrepancies that suggest important information is missing. The reconstruction focuses attention on critical elements, specific uncertainties, and deficiencies of prior reconstructions. It also provides a new foundation for further work
2004-09-17
AeroVironment's test director Jim Daley, backup pilot Rik Meininger, stability and controls engineer Derek Lisoski and pilot Wyatt Sadler (clockwise from bottom left) closely monitor systems testing of the Pathfinder-Plus solar aircraft from the control station.
Yuasa, Tomoko; Takahashi, Osamu
2014-04-01
Reproductive swarmers of the polycystine radiolarian Sphaerozoum punctatum (Huxley) collected from the East China Sea were examined using light, scanning and transmission electron microscopy. The swarmer cells were about 8-10 μm in length with a pear-like shape and a conical end with two flagella. A nucleus, mitochondria, Golgi body, lipid droplets and, characteristically, a single, large, vacuole-bound SrSO₄ crystal were present in the cytoplasm. Centering on the crystal inclusion, swarmers swam in a rapid rotational movement both clockwise and anticlockwise. Small subunit (SSU) rDNA sequences obtained for the reproductive swarmer cells from S. punctatum show a monophyletic group together with colonial spumellarians and grouped with S. punctatum from Bermuda in the clade. The morphological features and molecular phylogeny of the reproductive swarmers of S. punctatum show evidence of ancestral traits of radiolarians; acantharians and polycystines have a common ancestry. In addition, SrSO₄ inclusion of the swarmer cell may be a form of ballast deposited by the swarmer to allow proper positioning in the water column. We hypothesize that radiolarian-affiliated sequences from SSU rDNA clone libraries of marine picoeukaryotes may be derived from the picoplanktonic cells of radiolarians; i.e., small flagellated life stages such as reproductive swarmers or gametes. Copyright © 2013 Elsevier GmbH. All rights reserved.
Exploring Kupffer's Vescicle Through Self Propelled Particle Simulations
NASA Astrophysics Data System (ADS)
Lundy, Kassidy; Dasgupta, Agnik; Amack, Jeff; Manning, M. Lisa
Early development is an important stage in the formation of functional, relatively healthy organisms. In zebrafish embryos, a transient organ in the tailbud called Kupffer's Vescicle (KV) is responsible for the initial left-right (L-R) asymmetry that results in asymmetric organ and tissue placement in the adult zebrafish. Originating as a collection of symmetrically organized monociliated cells, the KV experiences a shift in cell shapes over time that leaves more cells on the anterior or top side of the KV. This arrangement helps to generate a stronger counter-clockwise fluid flow across the anterior side of the organ, which is required for L-R asymmetry. In seeking to understand the source of the shape changes occurring within the KV, we simulate a Self Propelled Particle (SPP) model that includes parameters for cell polarization and speed. We model the KV as a large particle moving in a straight line with constant velocity to mimic the physical forces of the notochord acting on this organ, and we model the surrounding tailbud cells as smaller, slower active particles with an orientation that changes over time due to rotational noise. Our goal is to calculate the forces exerted on the KV by the surrounding tissue, to see if they are sufficient to explain the shape changes we observe in the KV that lead to L-R asymmetry.
NASA Astrophysics Data System (ADS)
Sturner, Andrew P.; Eriksson, Stefan; Nakamura, Takuma; Gershman, Daniel J.; Plaschke, Ferdinand; Ergun, Robert E.; Wilder, Frederick D.; Giles, Barbara; Pollock, Craig; Paterson, William R.; Strangeway, Robert J.; Baumjohann, Wolfgang; Burch, James L.
2018-02-01
Two magnetopause current sheet crossings with tripolar guide magnetic field signatures were observed by multiple Magnetosphere Multiscale (MMS) spacecraft during Kelvin-Helmholtz wave activity. The two out-of-plane magnetic field depressions of the tripolar guide magnetic field are largely supported by the observed in-plane electron currents, which are reminiscent of two clockwise Hall current loop systems. A comparison with a three-dimensional kinetic simulation of Kelvin-Helmholtz waves and vortex-induced reconnection suggests that MMS likely encountered the two Hall magnetic field depressions on either side of a magnetic reconnection X-line. Moreover, MMS observed an out-of-plane current reversal and a corresponding in-plane magnetic field rotation at the center of one of the current sheets, suggesting the presence of two adjacent flux ropes. The region inside one of the ion-scale flux ropes was characterized by an observed decrease of the total magnetic field, a strong axial current, and significant enhancements of electron density and parallel electron temperature. The flux rope boundary was characterized by currents opposite this axial current, strong in-plane and converging electric fields, parallel electric fields, and weak electron-frame Joule dissipation. These return current region observations may reflect a need to support the axial current rather than representing local reconnection signatures in the absence of any exhausts.
Vortex formation and instability in the left ventricle
NASA Astrophysics Data System (ADS)
Le, Trung Bao; Sotiropoulos, Fotis; Coffey, Dane; Keefe, Daniel
2012-09-01
We study the formation of the mitral vortex ring during early diastolic filling in a patient-specific left ventricle (LV) using direct numerical simulation. The geometry of the left ventricle is reconstructed from Magnetic Resonance Imaging (MRI) data of a healthy human subject. The left ventricular kinematics is modeled via a cell-based activation methodology, which is inspired by cardiac electro-physiology and yields physiologic LV wall motion. In the fluid dynamics videos, we describe in detail the three-dimensional structure of the mitral vortex ring, which is formed during early diastolic filling. The ring starts to deform as it propagates toward the apex of the heart and becomes inclined. The trailing secondary vortex tubes are formed as the result of interaction between the vortex ring and the LV wall. These vortex tubes wrap around the circumference and begin to interact with and destabilize the mitral vortex ring. At the end of diastole, the vortex ring impinges on the LV wall and the large-scale intraventricular flow rotates in clockwise direction. We show for the first time that the mitral vortex ring evolution is dominated by a number of vortex-vortex and vortex-wall interactions, including lateral straining and deformation of vortex ring, the interaction of two vortex tubes with unequal strengths, helicity polarization of vortex tubes and twisting instabilities of the vortex cores.
Capar, Ismail Davut; Gok, Tuba; Orhan, Ezgi
2015-12-01
The purpose of the present study was to investigate the amount of root canal filling material after root canal filling removal with 360° rotary instrumentation or reciprocating motion with the same file sequence. Root canals of the 36 mandibular premolars were shaped with ProTaper Universal instruments up to size F2 and filled with corresponding single gutta-percha cone and sealer. The teeth were assigned to two retreatment groups (n = 18): group 1 360° rotational motion and group 2 reciprocating motion of ATR Tecnika motors (1310° clockwise and 578° counterclockwise). Retreatment procedure was performed with ProTaper Universal retreatment files with a sequence of D1-3 and ProTaper Universal F3 instruments. Total time required to remove filling material were recorded. Remaining filling material was examined under stereomicroscope at ×8 magnification. The data were analysed statistically using the Mann-Whitney U test, and testing was performed at 95 % confidence level (p < 0.05). There were no significant differences between the groups (p > 0.05) in terms of remaining filling material. The total time required for retreatment was shorter in 360° rotational motion group compared to reciprocating motion group (p < 0.05). Both continuous rotation and reciprocating motion showed similar effectiveness in terms of root canal filling material removal. Using ProTaper Universal retreatment instruments with reciprocating motion of ATR motor and conventional rotary motion have similar efficacy in root canal filling removal.
NASA Astrophysics Data System (ADS)
Osmaston, M. F.
2012-04-01
Introduction. The 'deep-keeled cratons' frame for global dynamics is the result of seeking Earth-behaviour answers to the following outside-the-box proposition:- "If cratons have tectospheric keels that reach or approach the 660 km discontinuity, AND the 660 level is an effective barrier to mantle circulation, then obviously (i) when two cratons separate, the upper mantle to put under the nascent ocean must arrive by a circuitous route and, conversely, (ii) if they approach one another, the mantle volume that was in between them must get extruded sideways." Surprisingly it has turned out [1 - 4] that Earth dynamical behaviour for at least the past 150 Ma provides persuasive affirmation of both these expectations and that there is a rational petrological explanation for the otherwise-unexpected immobility of subcratonic material to such depths [5 - 7]. Clockwise rotation of Antarctica? This contribution greatly amplifies my original plate dynamical arguments for suggesting [8] that such rotation is ongoing. Convection is unsuited to causing rotation about a pole within the plate so, as noted then, a gearwheel-like linkage to Africa at the SWIR would provide its clearly CCW (Biscay-Caucasus) relationship to the Mediterranean belt for the past 100 Ma, also seen in its separation from South America. Gearwheel-like linkage of motion requires the presence of some kind of E-W restraint further north. In that case it was the N Africa/Arabia involvement in the Alpide belt, but the earlier opening of the central Atlantic by the eastward motion of Africa, suggests its rigid Gondwanan attachment to Antarctica rotation at that time, with little constraint in the north. Further east, the seafloor data show that Australia-Antarctica separation involved no such opposite rotational linkage, so, with no E-W mechanical constraint in the north by Indonesia, they must have rotated together, as is recorded by Australia's eastward motion to generate the Mesozoic seafloor at its western side. Moving east again, the sigmoidal fracture-zone pattern between W Antarctica and Tonga Trench seems consistent with a gearwheel-linked relative rotation of the Pacific plate by about 35o CCW since about 120 Ma, so about half that (clockwise) by Antarctica. The triangular Cocos plate is then in the position where the two gearwheels separate. Further north, the dextral slip on the San Andreas Fault and the opening of the Gorda Ridge are broadly consistent with such rotation. Note that with our two-layer mantle all reference to 'absolute', lower mantle-related, positions is inappropriate. Our sole concern now is with relative motions of plates. Driving torque on the cratonic keel of East Antarctica. I maintain here my suggestion [8] that this keel, in actual contact with the lower mantle at its boundary, is picking up an electromagnetically generated torque, transmitted up from the polar zone of the CMB through the higher viscosity lower mantle. The reality of the rotation now invites more attention to this mechanism. The involvement of the cratonic keel is supported, as noted [8], by the apparent absence of rotational effects in the Arctic, where there is no keel in the polar position, although a similar CMB coupling to the lower mantle seems likely. The involvement of geomagnetism is supported by the sharp changes in central Pacific fracture zone orientation and the onset of the Ontong Java magmatism, correlating with the start and end of the Cretaceous long normal geochron [8, 9]. Such a change is also seen at M0 time in the Weddell Sea. Presumably the speed of Antarctica rotation was affected. Gondwanaland break-up. In view of these abundant tectonic effects attributable to Antarctica rotation, I propose that this was what broke up Gondwanaland, not a plume, as no such things are recognized in this thick-plate, two-layer mantle, version of the Earth-function paradigm. In this version, magmas with apparently lower mantle chemical signatures can be sourced within the upper mantle [10] and flood basalts can be generated by splitting cratons [11]. So the ~176 Ma age of the Ferrar Dolerite in Antarctica is a record of one of those splits. Gaps in the PalaeoPacific rim. If we restore Australia both westward to before the spreading at its western side and southward to its position against Antarctica, the Pacific rim was a fair approximation to a great circle, so it covered a hemisphere. Spreading of the other oceans, initiated by Gondwanaland break-up, must have been at the expense of the size of the Pacific, so it must formerly have covered much more than a hemisphere, and had a periphery correspondingly rather shorter than a great circle. Thus we have the surprising result that reducing the area of the Pacific actually required that its rim be made longer, by making gaps between the previously defining cratonic keels. A further result was that now-excess upper mantle material from below the Pacific had to flow through those gaps to put beneath the widening 'new' oceans. For all four of the obvious gaps - Caribbean, Scotia, Australia-Antarctica, Bering - there is evidence to support the presence of that outflow, and in two of the cases there is evidence that motions to open the gaps began very soon after Gondwana began to break up. Subduction and a two-layer mantle? In another contribution at this meeting (GD5.1) I explain that, in the thick-plate frame adopted here, subduction is neither a motivating player (for break-up purposes) in plate dynamics nor does it breach significantly our 2-layer mantle picture. The underlying reason is that oceanic 'tectosphere' is actually thicker for the same reason [5 - 7] as that of cratons, giving it ex-LVZ heat content which transforms the subduction picture. Three Conclusions. (1) The thick-plate, 2-layer mantle version of the earth-function paradigm [1 - 7] is alive and well. (2) The break-up of Gondwanaland was caused by Antarctica's clockwise rotation. (3) Such rotation is now to be considered a major agent in plate motion dynamics for the period during which East Antarctica, or any other sufficiently deep-keeled craton previously, was located at one of the Earth's poles. [1] Osmaston M. F. (2006) Global tectonic actions emanating from Arctic opening in the circumstances of a two-layer mantle and a thick-plate paradigm involving deep cratonic tectospheres: the Eurekan (Eocene) compressive motion of Greenland and other examples. In Proc. ICAM IV, 2003 (ed. R. Scott & D. Thurston). OCS Study MMS 2006-003, p.105-124: Also at: http://www.mms.gov/alaska/icam. [2] Osmaston M. (2005) Interrelationships between large-scale plate motions as indicators of mantle structure: new constraints on mantle modelling and compositional layout. In 3rd Workshop on "Earth's mantle composition, structure and phase transitions" St Malo, France. http://deep.earth.free.fr/participants.php. [3] Osmaston M. F. (2007) Cratonic keels and a two-layer mantle tested: mantle expulsion during Arabia-Russia closure linked to westward enlargement of the Black Sea, formation of the Western Alps and subduction of the Tyrrhenian (not the Ionian) Sea. XXIV IUGG, Session JSS 011, Abstr #2105 http://www.iugg2007perugia.it/webbook/. [4] Osmaston M. F. (2009) Deep cratonic keels and a 2-layer mantle? Tectonic basis for some far-reaching new insights on the dynamical properties of the Earth's mantle: example motions from Mediterranean, Atlantic-Arctic and India. Geophys. Res. Abstr. 11, EGU2009-6359 (Solicited). [5] Karato S. (1986) Does partial melting reduce the creep strength of the upper mantle? Nature 319, 309-310. [6] Hirth G. & Kohlstedt D. L. (1996) Water in the oceanic upper mantle: implication for rheology, melt extraction, and the evolution of the lithosphere. EPSL 144, 93-108. [7] Osmaston M. F. (2010) On the actual variety of plate dynamical mechanisms and how mantle evolution affected them through time, from core formation to the Indian collision. Geophys. Res. Abstr. 12, EGU2010-6101. [8] Osmaston M. F. (2003) What drives plate tectonics? Slab pull, ridge push or geomagnetic torque from the CMB? A new look at the old players vis-a-vis an exciting new one. In XXIII IUGG 2003, B129, Abstr no 016795-2. [9] Atwater T., Sclater J., Sandwell D., Severinghaus J., & Marlow M. S. (1993) Fracture zone traces across the North Pacific Cretaceous quiet zone and their tectonic implications. In The Mesozoic Pacific: geology, tectonics and volcanism, (ed. Pringle, Sager, Sliter, & Stein) AGU Geophys. Monogr. 77, 137-154. [10] Osmaston M. F. (2000) An upper mantle source for plumes and Dupal; result of processes and history that have shaped the Earth's interior from core to crust. Goldschmidt 2000, J. Conf. Abstr. 5 (2), 763. [11] Osmaston M. F. (2008) Extra-thick plates: basis for a single model of mantle magmagenesis, all the way from MORB to kimberlite. Goldschmidt 2008. Geochim.Cosmochim. Acta 72(12S), A711.
NASA Astrophysics Data System (ADS)
Lee, S. M.; Parq, J. H.
2017-12-01
An accurate measurement of magnetic field inside the borehole, together with a right set of paleomagnetic measurements on the recovered core samples, should allow one to resolve important elements such as the rotation of the basin or the plate on which the basin is located. The ability to resolve the rotation of the basin can be crucial during drilling experiments by International Continental Scientific Drilling Program (ICDP) and International Ocean Discovery Program (IODP). A good example where the rotation is a central question is the Philippine Sea Plate, which is thought to have rotated about 90° clockwise during the last 55 million years. Despite the significance, previous borehole magnetometers were not accurate enough to achieve such a goal because, among various technical issues, determining the orientation of the sensor inside the borehole to a very high level of accuracy was not easy. The next-generation (third-generation) borehole magnetometer (3GBM) was developed to overcome this difficulty and to bring paleomagnetic investigations to a new level. Even with the new development, however, there are still concerns whether the new instrument can really resolve the rotation because the magnetic field anomalies generated by the sediment is generally very low. In this paper, we present numerical simulations based on finite element method of the magnetic field inside the borehole that were conducted as part of a test to demonstrate that, despite low levels of magnetization, the magnetic fields can be resolved. The results also served as an important input on the design requirements of the borehole magnetometer. Various cases were considered, including the situation where the sedimentary layer is horizontal and inclined. We also explored the cases where volcanic sills were present within the sedimentary layer as they may provide a greater magnetic signature than having sediment alone, and thus improving our chances of determining the rotation. Simulations are necessary because they provide us useful guidelines for planning a future drill experiment as well as on the first-hand interpretation of the borehole measurement results.
NASA Astrophysics Data System (ADS)
Zhang, Tuo; Gordon, Richard G.; Mishra, Jay K.; Wang, Chengzu
2017-08-01
Using global multiresolution topography, we estimate new transform-fault azimuths along the Cocos-Nazca plate boundary and show that the direction of relative plate motion is 3.3° ± 1.8° (95% confidence limits) clockwise of prior estimates. The new direction of Cocos-Nazca plate motion is, moreover, 4.9° ± 2.7° (95% confidence limits) clockwise of the azimuth of the Panama transform fault. We infer that the plate east of the Panama transform fault is not the Nazca plate but instead is a microplate that we term the Malpelo plate. With the improved transform-fault data, the nonclosure of the Nazca-Cocos-Pacific plate motion circuit is reduced from 15.0 mm a-1 ± 3.8 mm a-1 to 11.6 mm a-1 ± 3.8 mm a-1 (95% confidence limits). The nonclosure seems too large to be due entirely to horizontal thermal contraction of oceanic lithosphere and suggests that one or more additional plate boundaries remain to be discovered.
Gautam, Pawan; Valiathan, Ashima; Adhikari, Raviraj
2007-07-01
The purpose of this finite element study was to evaluate stress distribution along craniofacial sutures and displacement of various craniofacial structures with rapid maxillary expansion (RME) therapy. The analytic model for this study was developed from sequential computed tomography scan images taken at 2.5-mm intervals of a dry young human skull. Subsequently, a finite element method model was developed from computed tomography images by using AutoCAD software (2004 version, Autodesk, Inc, San Rafael, Calif) and ANSYS software (version 10, Belcan Engineering Group, Downers Grove, Ill). The maxilla moved anteriorly and downward and rotated clockwise in response to RME. The pterygoid plates were displaced laterally. The distant structures of the craniofacial skeleton--zygomatic bone, temporal bone, and frontal bone--were also affected by transverse orthopedic forces. The center of rotation of the maxilla in the X direction was somewhere between the lateral and the medial pterygoid plates. In the frontal plane, the center of rotation of the maxilla was approximately at the superior orbital fissure. The maximum von Mises stresses were found along the frontomaxillary, nasomaxillary, and frontonasal sutures. Both tensile and compressive stresses could be demonstrated along the same suture. RME facilitates expansion of the maxilla in both the molar and the canine regions. It also causes downward and forward displacement of the maxilla and thus can contribute to the correction of mild Class III malocclusion. The downward displacement and backward rotation of the maxilla could be a concern in patients with excessive lower anterior facial height. High stresses along the deep structures and the various sutures of the craniofacial skeleton signify the role of the circummaxillary sutural system in downward and forward displacement of the maxilla after RME.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, M.D.; Reed, W.E.
1993-04-01
Most workers currently working on the problem of Southern California tectonic history and development are in agreement that the Western Transverse Ranges are allochthonous. The major point of contention revolves around the question of the distance the various terranes have traveled and their point of origin. Two tectonic models have been developed over the years to explain the emplacement of the WTRM: (1) accretion of exotic, far-traveled terranes; or (2) rotation, possibly with a small amount of translation, of a native or locally-derived terrane. Both of these reconstructions rely heavily on paleomagnetic data, with minimal input from field studies ofmore » sediment provenance or depositional systems. Examination of published reconstructions and models reveals that each would require a totally different provenance for sediments, and radically divergent transport directions for these sediments. Thus, examination of Cretaceous sediments exposed in the Western Transverse Ranges provides an independent test of the models, and will contribute to the resolution of the controversy. Paleocurrent measurements from several different tectonic blocks all yield a northerly flow direction. Removal of approximately 90[degree] of clockwise rotation and 70 km of right-lateral slip would align these data with westerly flow indicators in Cretaceous conglomeratic fan deposits in the San Diego area. Analysis of point count data indicate a mixed provenance for these rocks, both the conglomerates, and the associated sandstone units. Data indicate mixed magmatic arc/recycled orogen, as well as dissected/transitional arc as the dominant provenance terranes. These data are consistent with deposition in a Cretaceous forearc basin, which, in the reconstruction, would have been located immediately west of the San Diego area. Tertiary rotation and right-lateral offset have slivered the margin, and transported the forearc basin northward, forming the present Western Transverse Ranges.« less
Godlewski, Guilhem; Gaubert, Jacques; Cristol-Gaubert, Renée; Radi, Maïada; Baecker, Volker; Travo, Pierre; Prudhomme, Michel; Prat-Pradal, Dominique
2011-10-01
The purpose of the present study was to illustrate the modality of rotation of ventral and dorsal pancreatic buds by three-dimensional (3D) reconstructions in the rat embryos, during the Carnegie stages 13-17. Serial sections of thirty rat embryos stages 13-17, were observed. The embryos were fixed in Bouin's solution, dehydrated, and paraffin embedded. The sections, 7 μm thick, were cut in longitudinal or transverse planes and were stained alternately by hematoxylin-eosin or Heindenhain' azan. The images were digitalized by Canon Camera 350 EOS D. The 3D reconstruction was performed by computer using Cell Image Analyser software. The two pancreatic buds ventral and dorsal, were clearly identified at stage 13, in anterior and posterior position, respectively, in relation to the duodenum. In stage 15, the duodenum started its rotation of 90° clockwise. The ventral bud moved 90° from the midline to the right. In stage 16, the ventral pancreas continued its rotation until 180° in posterior position behind the duodenum. In stage 17, the two pancreatic buds were related closely to the ventral part of the portal vein. The two buds began to merge. The anterior face of the pancreas's head was arising from the dorsal pancreatic bud. The rest of the head including the omental tuberosity and the uncinate process emanated from the ventral pancreatic bud. The use of 3D reconstruction of the pancreas of rat embryos illustrates the modality of the two pancreatic buds rotation and fusion. This method explains the final position of the pancreas.
Ishida, Hisashi; Matsumoto, Atsushi
2014-01-01
To understand the mechanism of reverse tRNA translocation in the ribosome, all-atom molecular dynamics simulations of the ribosome-tRNAs-mRNA-EFG complex were performed. The complex at the post-translocational state was directed towards the translocational and pre-translocational states by fitting the complex into cryo-EM density maps. Between a series of the fitting simulations, umbrella sampling simulations were performed to obtain the free-energy landscape. Multistep structural changes, such as a ratchet-like motion and rotation of the head of the small subunit were observed. The free-energy landscape showed that there were two main free-energy barriers: one between the post-translocational and intermediate states, and the other between the pre-translocational and intermediate states. The former corresponded to a clockwise rotation, which was coupled to the movement of P-tRNA over the P/E-gate made of G1338, A1339 and A790 in the small subunit. The latter corresponded to an anticlockwise rotation of the head, which was coupled to the location of the two tRNAs in the hybrid state. This indicates that the coupled motion of the head rotation and tRNA translocation plays an important role in opening and closing of the P/E-gate during the ratchet-like movement in the ribosome. Conformational change of EF-G was interpreted to be the result of the combination of the external motion by L12 around an axis passing near the sarcin-ricin loop, and internal hinge-bending motion. These motions contributed to the movement of domain IV of EF-G to maintain its interaction with A/P-tRNA. PMID:24999999
Hashimoto, Sho; Takahashi, Akihiko; Yamada, Takeshi; Mizuguchi, Yukio; Taniguchi, Norimasa; Hata, Tetsuya; Nakajima, Shunsuke
2017-11-20
The extension support guiding catheter has been used to perform complex percutaneous coronary intervention to increase back-up support for the guiding catheter or to ensure deep intubation for device delivery. However, because of its monorail design, advancement of the stent into the distal extension tubing segment is sometimes problematic. Although this problem is considered due to simple collision of the stent, operators have observed tangling between a monorail extension catheter and coronary guidewire in some patients. To examine movement of the collar of the extension guide catheter during advancement of the guiding catheter, we set up an in vitro model in which the guiding catheter had two curves. Rotation of the extension guide catheter was examined by both fluoroscopic imaging and movement of the hub of the proximal end of the catheter. During advancement in the first curve, the collar moved toward the outer side of the curve of the guiding catheter as the operator pushed the shaft of the extension guiding catheter, which overrode the guidewire. After crossing the first curve, the collar moved again to the outer side of the second curve (the inner side of the first curve) of the mother catheter, and then, another clockwise rotation was observed in the proximal hub. Consequently, the collar and tubing portion of the extension guide catheter rotated 360° around the coronary guidewire, and the monorail extension catheter and guidewire became tangled. There is a potential risk of unintentional twisting with the guidewire during advancement into the curved guiding catheter because of its monorail design.
Ogura, Hiroshi; Evans, John P; de Montellano, Paul R Ortiz; La Mar, Gerd N
2008-01-08
The triple mutant of the solubilized, 265-residue construct of human heme oxygenase, K18E/E29K/R183E-hHO, has been shown to redirect the exclusive alpha-regioselectivity of wild-type hHO to primarily beta,delta-selectivity in the cleavage of heme (Wang, J., Evans, J. P., Ogura, H., La Mar, G. N., and Ortiz de Montellano, P. R. (2006) Biochemistry 45, 61-73). The 1H NMR hyperfine shift pattern for the substrate and axial His CbetaH's and the substrate-protein contacts of the cyanide-inhibited protohemin and 2,4-dimethyldeuterohemin complexes of the triple mutant have been analyzed in detail and compared to data for the WT complex. It is shown that protein contacts for the major solution isomers for both substrates in the mutant dictate approximately 90 degrees in-plane clockwise rotation relative to that in the WT. The conventional interpretation of the pattern of substrate methyl hyperfine shifts, however, indicates substrate rotations of only approximately 50 degrees . This paradox is resolved by demonstrating that the axial His25 imidazole ring also rotates counterclockwise with respect to the protein matrix in the mutant relative to that in the WT. The axial His25 CbetaH hyperfine shifts are shown to serve as independent probes of the imidazole plane orientation relative to the protein matrix. The analysis indicates that the pattern of heme methyl hyperfine shifts cannot be used alone to determine the in-plane orientation of the substrate as it relates to the stereospecificity of heme cleavage, without explicit consideration of the orientation of the axial His imidazole plane relative to the protein matrix.
Ishida, Hisashi; Matsumoto, Atsushi
2014-01-01
To understand the mechanism of reverse tRNA translocation in the ribosome, all-atom molecular dynamics simulations of the ribosome-tRNAs-mRNA-EFG complex were performed. The complex at the post-translocational state was directed towards the translocational and pre-translocational states by fitting the complex into cryo-EM density maps. Between a series of the fitting simulations, umbrella sampling simulations were performed to obtain the free-energy landscape. Multistep structural changes, such as a ratchet-like motion and rotation of the head of the small subunit were observed. The free-energy landscape showed that there were two main free-energy barriers: one between the post-translocational and intermediate states, and the other between the pre-translocational and intermediate states. The former corresponded to a clockwise rotation, which was coupled to the movement of P-tRNA over the P/E-gate made of G1338, A1339 and A790 in the small subunit. The latter corresponded to an anticlockwise rotation of the head, which was coupled to the location of the two tRNAs in the hybrid state. This indicates that the coupled motion of the head rotation and tRNA translocation plays an important role in opening and closing of the P/E-gate during the ratchet-like movement in the ribosome. Conformational change of EF-G was interpreted to be the result of the combination of the external motion by L12 around an axis passing near the sarcin-ricin loop, and internal hinge-bending motion. These motions contributed to the movement of domain IV of EF-G to maintain its interaction with A/P-tRNA.
Scharf, Birgit
2002-01-01
The soil bacterium Rhizobium lupini H13-3 has complex right-handed flagellar filaments with unusual ridged, grooved surfaces. Clockwise (CW) rotation propels the cells forward, and course changes (tumbling) result from changes in filament speed instead of the more common change in direction of rotation. In view of these novelties, fluorescence labeling was used to analyze the behavior of single flagellar filaments during swimming and tumbling, leading to a model for directional changes in R. lupini. Also, flagellar filaments were investigated for helical conformational changes, which have not been previously shown for complex filaments. During full-speed CW rotation, the flagellar filaments form a propulsive bundle that pushes the cell on a straight path. Tumbling is caused by asynchronous deceleration and stops of individual filaments, resulting in dissociation of the propulsive bundle. R. lupini tumbles were not accompanied by helical conformational changes as are tumbles in other organisms including enteric bacteria. However, when pH was experimentally changed, four different polymorphic forms were observed. At a physiological pH of 7, normal flagellar helices were characterized by a pitch angle of 30°, a pitch of 1.36 μm, and a helical diameter of 0.50 μm. As pH increased from 9 to 11, the helices transformed from normal to semicoiled to straight. As pH decreased from 5 to 3, the helices transformed from normal to curly to straight. Transient conformational changes were also noted at high viscosity, suggesting that the R. lupini flagellar filament may adapt to high loads in viscous environments (soil) by assuming hydrodynamically favorable conformations. PMID:12374832
Aksu, Muge; Saglam-Aydinatay, Banu; Akcan, Cenk Ahmet; El, Hakan; Taner, Tulin; Kocadereli, Ilken; Tuncbilek, Gokhan; Mavili, Mehmet Emin
2010-02-01
To evaluate skeletal and dental stability in adult cleft lip and palate patients treated with a rigid external distraction system at the end of distraction and during the postdistraction period. Lateral cephalograms of 7 patients were obtained before distraction, at the end of distraction, and during the postdistraction period. The mean age before distraction was 21.56 +/- 4.73 years. The mean follow-up was 37.3 +/- 12.4 months. The assessment of findings showed that skeletal maxillary sagittal movement was achieved in a superoanterior direction. The maxillary depth angle and effective maxillary length increased significantly (2 degrees and 9 mm, respectively) after distraction, whereas the palatal plane angle increased by 8 degrees , resulting in an anterior movement of the maxilla with a counterclockwise rotation. The lower facial height showed no significant changes after distraction. The sagittal movement of the upper incisors and the angulation of the upper first molars increased significantly (4.5 mm and 5.5 degrees , respectively). During the postdistraction period, the maxilla showed a slight relapse (22%). The effective maxillary length decreased by 2 mm. The palatal plane angle almost returned to its original position, showing 7 degrees of clockwise rotation. The lower facial height remained stable. The upper incisors moved anteriorly and the upper first molars showed a significant mesioangular change during follow-up. After distraction, significant maxillary advancement was achieved with a counterclockwise rotation. The upper incisors moved labially, and the upper first molars angulated mesially. After 3 years, a 22% relapse rate was seen in the maxilla. The counterclockwise rotation of the maxilla was returned to its original position. The upper incisors moved more anteriorly. Copyright 2010 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Paleomagnetic study of an active arc-continent collision, Finisterre Arc Terrane, Papua New Guinea
NASA Astrophysics Data System (ADS)
Weiler, Peter Donald
1999-12-01
This dissertation includes 3 studies from the active collision zone between the Finisterre volcanic arc and Papua New Guinea. Chapter 1 is a paleomagnetic study of thrust sheets of the fold and thrust belt north of the Ramu-Markham suture indicating very rapid vertical-axis rotations related to tectonic transport of thrust units. Our data indicate that rotations as great as 90° since 1 Ma have occurred locally in the Erap Valley area. Such rapid rotations during thrust sheet emplacement may be more common in fold and thrust belts than is presently recognized. Anisotropy of magnetic susceptibility (AMS) lineations are rendered parallel by the same rotations used to restore the paleomagnetic remanence to N-S thus independently confirming the rapid rotations. In Chapter 2, we compare the AMS fabrics from the Erap Valley with microscopic shape fabrics obtained through digital image analysis. We find that the orientations of principal axes found by the two techniques agree very well, but that the maximum and intermediate axes of the magnetic fabric are inverted relative to the grain shape. We interpret the shape fabric as a primary depositional fabric, and the magnetic fabric as the result of a weak tectonic strain overprinting a depositional fabric. Thus, comparison of these fabrics detects the earliest transition from depositional to tectonic strain fabric. Finally, in Chapter 3, we turn to larger scale paleomagnetic results from the colliding Finisterre Arc. Hemipelagic rocks possess a syn-collisional remagnetization indicating a clockwise rotation of the colliding terrane through about 40° in post-Miocene time. Decreasing paleomagnetic declination anomalies as a function of along-strike distance in the Finisterre Terrane, analyzed by our preferred model of a linear remagnetization and a migrating Euler pole, suggests an average rotation rate of 8°/Ma. Thus, we propose that the rotation results from a rigid-body rotation of the Finisterre Terrane rather than from sequential docking of independently colliding blocks. We examine models of a syn-collisional remagnetization with both fixed and migrating Euler poles, and suggest that the Euler pole describing Bismarck/Australia plate motion may have migrated 675 km through post-Miocene time to its present location at the collision suture.
Stress Study on Southern Segment of Longmenshan Fault Constrained by Focal Mechanism Data
NASA Astrophysics Data System (ADS)
Yang, Y.; Liang, C.; Su, J.; Zhou, L.
2016-12-01
The Longmenshan fault (LMSF) lies at the eastern margin of Tibetan plateau and constitutes the boundary of the active Bayankala block and rigid Sichuan basin. This fault was misinterpreted as an inactive fault before the great Wenchuan earthquake. Five years after the devastating event, the Lushan MS 7.0 stroke the southern segment of the LMSF but fractured in a very limited scale and formed a seismic gap between the two earthquakes. In this study, we determined focal mechanisms of earthquakes with magnitude M≥3 from Jan 2008 to July 2014 in the southern segment of LMSF, and then applied the damped linear inversion to derive the regional stress field based on the focal mechanisms. Focal mechanisms of 755 earthquakes in total were determined. We further used a damped linear inversion technique to produce a 2D stress map in upper crust in the study region. A dominant thrust regime is determined south of the seismic gap, with a horizontal maximum compression oriented in NWW-SEE. But in the area to the north of the seismic gap is characterized as a much more complex stress environment. To the west of the Dujiangyan city, there appear to be a seismic gap in the Pengguan complex. The maximum compressions show the anti-clockwise and clockwise patterns to the south and north of this small gap. Thus the small gap seems to be an asperity that causes the maximum compression to rotate around it. While combined the maximum compression pattern with the focal solutions of strong earthquakes (Mw≥5) in this region, two of those strong earthquakes located near the back-range-fault have strikes parallel to the Miyaluo fault. Considering a large amount of earthquakes in Lixian branch, the Miyaluo fault may be extended to LMSF following the great Wenchuan earthquake. Investigations on the stress field of different depths indicate complex spatial variations. The Pengguan complex is almost aseismic in shallow depth in its central part. In deeper depth, the maximum compressions show the NNW-SSE and NE-SW directions to the north and south of the seismic gap respectively, this are surprisingly different from that of the shallower depth. Thus the maximum compressions vary with depth may imply the movement in depth is decoupled from the movement in shallow depth. This work was partially supported by National Natural Science Foundation of China (41340009).
Vortex-induced vibrations of a flexible cylinder at large inclination angle
Bourguet, Rémi; Triantafyllou, Michael S.
2015-01-01
The free vibrations of a flexible circular cylinder inclined at 80° within a uniform current are investigated by means of direct numerical simulation, at Reynolds number 500 based on the body diameter and inflow velocity. In spite of the large inclination angle, the cylinder exhibits regular in-line and cross-flow vibrations excited by the flow through the lock-in mechanism, i.e. synchronization of body motion and vortex formation. A profound reconfiguration of the wake is observed compared with the stationary body case. The vortex-induced vibrations are found to occur under parallel, but also oblique vortex shedding where the spanwise wavenumbers of the wake and structural response coincide. The shedding angle and frequency increase with the spanwise wavenumber. The cylinder vibrations and fluid forces present a persistent spanwise asymmetry which relates to the asymmetry of the local current relative to the body axis, owing to its in-line bending. In particular, the asymmetrical trend of flow–body energy transfer results in a monotonic orientation of the structural waves. Clockwise and counter-clockwise figure eight orbits of the body alternate along the span, but the latter are found to be more favourable to structure excitation. Additional simulations at normal incidence highlight a dramatic deviation from the independence principle, which states that the system behaviour is essentially driven by the normal component of the inflow velocity. PMID:25512586
An Anisotropic Contrast in the Lithosphere Across the Central San Andreas Fault
NASA Astrophysics Data System (ADS)
Jiang, Chengxin; Schmandt, Brandon; Clayton, Robert W.
2018-05-01
Seismic anisotropy of the lithosphere and asthenosphere was investigated with a dense broadband seismic transect nearly orthogonal to the central San Andreas fault (SAF). A contrast in SK(K)S splitting was found across the SAF, with a clockwise rotation of the fast orientation 26° closer to the strike of the SAF and greater delay times for stations located within 35 km to the east. Dense seismograph spacing requires heterogeneous anisotropy east of the SAF in the uppermost mantle or crust. Based on existing station coverage, such a contrast in splitting orientations across the SAF may be unusual along strike and its location coincides with the high-velocity Isabella anomaly in the upper mantle. If the Isabella anomaly is a fossil slab fragment translating with the Pacific plate, the anomalous splitting east of the SAF could indicate a zone of margin-parallel shear beneath the western edge of North America.
An oilspill trajectory analysis model with a variable wind deflection angle
Samuels, W.B.; Huang, N.E.; Amstutz, D.E.
1982-01-01
The oilspill trajectory movement algorithm consists of a vector sum of the surface drift component due to wind and the surface current component. In the U.S. Geological Survey oilspill trajectory analysis model, the surface drift component is assumed to be 3.5% of the wind speed and is rotated 20 degrees clockwise to account for Coriolis effects in the Northern Hemisphere. Field and laboratory data suggest, however, that the deflection angle of the surface drift current can be highly variable. An empirical formula, based on field observations and theoretical arguments relating wind speed to deflection angle, was used to calculate a new deflection angle at each time step in the model. Comparisons of oilspill contact probabilities to coastal areas calculated for constant and variable deflection angles showed that the model is insensitive to this changing angle at low wind speeds. At high wind speeds, some statistically significant differences in contact probabilities did appear. ?? 1982.
Shariat, M H; Gazor, S; Redfearn, D
2015-08-01
Atrial fibrillation (AF), the most common sustained cardiac arrhythmia, is an extremely costly public health problem. Catheter-based ablation is a common minimally invasive procedure to treat AF. Contemporary mapping methods are highly dependent on the accuracy of anatomic localization of rotor sources within the atria. In this paper, using simulated atrial intracardiac electrograms (IEGMs) during AF, we propose a computationally efficient method for localizing the tip of the electrical rotor with an Archimedean/arithmetic spiral wavefront. The proposed method deploys the locations of electrodes of a catheter and their IEGMs activation times to estimate the unknown parameters of the spiral wavefront including its tip location. The proposed method is able to localize the spiral as soon as the wave hits three electrodes of the catheter. Our simulation results show that the method can efficiently localize the spiral wavefront that rotates either clockwise or counterclockwise.
Mariner 10 magnetic field observations of the Venus wake
NASA Technical Reports Server (NTRS)
Lepping, R. P.; Behannon, K. W.
1977-01-01
Magnetic field measurements made over a 21-hour interval during the Mariner 10 encounter with Venus were used to study the down-stream region of the solar wind-Venus interaction over a distance of approximately 100 R sub v. For most of the day before closest approach the spacecraft was located in a sheath-like region which was apparently bounded by planetary bow shock on the outer side and either a planetary wake boundary or transient boundary-like feature on the inner side. The spacecraft made multiple encounters with the wake-like boundary during the 21-hour interval with an increasing frequency as it approached the planet. Each pass into the wake boundary from the sheath region was consistently characterized by a slight decrease in magnetic field magnitude, a marked increase in the frequency and amplitude of field fluctuations, and a systematic clockwise rotation of the field direction when viewed from above the plane of the planet orbit.
Paleomagnetism of the Mesozoic in Alaska. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Packer, D. R.
1972-01-01
Over 400 oriented cores of Permian, Triassic, Jurassic, and Cretaceous sedimentary and igneous rocks were collected from 34 sites at 10 areas throughout southern Alaska. After magnetic cleaning in successively higher alternating fields 179 samples were considered to be stable and to give statistically consistent results within each site and age group. Due to the lack of a sufficient number of stable samples, the results from Permian, Triassic, and Cretaceous rocks were inconclusive. The nine remaining Jurassic sites represent 100 samples from three general areas in southern Alaska. The southern Alaskan Jurassic paleomagnetic pole is significantly different from the North American Jurassic pole. This suggests that since the Jurassic, southern Alaska must have moved approximately 18 degrees north and rotated 52 degrees clockwise to reach its present position. Tectonic interpretation of these results give a possible explanation for many of the geologic features observed in southern Alaska.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, X. L.; Xue, Z. K.; Wang, J. C.
2016-11-20
We present a detailed study of the formation of an inverse S-shaped filament prior to its eruption in active region NOAA 11884 from 2013 October 31 to November 2. In the initial stage, clockwise rotation of a small positive sunspot around the main negative trailing sunspot formed a curved filament. Then the small sunspot cancelled with the negative magnetic flux to create a longer active-region filament with an inverse S-shape. At the cancellation site a brightening was observed in UV and EUV images and bright material was transferred to the filament. Later the filament erupted after cancellation of two oppositemore » polarities below the upper part of the filament. Nonlinear force-free field extrapolation of vector photospheric fields suggests that the filament may have a twisted structure, but this cannot be confirmed from the current observations.« less
The Valencia trough and the origin of the western Mediterranean basins
NASA Astrophysics Data System (ADS)
Vegas, R.
1992-03-01
Evolutionary models for the Valencia trough must be necessarily related to the Neogene-Present geodynamics of the western Mediterranean basins. All these basins occupy new space created in the wake of the westward translation of the Alboran block and the counter-clockwise rotation of the Corso-Sardinian block. This escape-tectonics, microplate dispersal, model can account for the co-existence and progressive migration of compressional and extensional strain fields within the Africa-Europe broad zone of convergence. In this escape-tectonics model, the Valencia trough has resulted in a complex evolution which includes: (1) latest Oligocene-Early Miocene rifting along the Catalan-Valencian margin due to the opening of the Gulf of Lions; (2) almost simultaneous, Early Miocene, transpressive thrusting in the Balearic margin related to the initiation of displacement of the Alboran block; and (3) Late Miocene generalized extension as a consequence of the opening of the South Balearic basin.
Physical Sensing of Surface Properties by Microswimmers – Directing Bacterial Motion via Wall Slip
Hu, Jinglei; Wysocki, Adam; Winkler, Roland G.; Gompper, Gerhard
2015-01-01
Bacteria such as Escherichia coli swim along circular trajectories adjacent to surfaces. Thereby, the orientation (clockwise, counterclockwise) and the curvature depend on the surface properties. We employ mesoscale hydrodynamic simulations of a mechano-elastic model of E. coli, with a spherocylindrical body propelled by a bundle of rotating helical flagella, to study quantitatively the curvature of the appearing circular trajectories. We demonstrate that the cell is sensitive to nanoscale changes in the surface slip length. The results are employed to propose a novel approach to directing bacterial motion on striped surfaces with different slip lengths, which implies a transformation of the circular motion into a snaking motion along the stripe boundaries. The feasibility of this approach is demonstrated by a simulation of active Brownian rods, which also reveals a dependence of directional motion on the stripe width. PMID:25993019
NASA Astrophysics Data System (ADS)
Kinsland, G. L.
2017-12-01
Within the last several years new types of geophysical data of the southern margin of the North American Craton and the Northern Gulf of Mexico Basin (NGoMB) have become available, e.g., results from the USArray experiment, high resolution satellite gravity data of the GoM itself and new heat flow data. These data when combined with previously existing geophysical data (gravity, magnetic and seismic) and shallow structural data offer new insights into the boundaries and sub-regions of the NGoMB. I offer hypotheses for the development of the structures of the buried crust and upper mantle which cause these features. Of particular interest might be my suggestion that the NGoMB might have extended in a southeasterly direction prior to the counter-clockwise rotation of the Yucatan Peninsula which ultimately resulted in the GoM.
NASA Astrophysics Data System (ADS)
Zielińska, Agnieszka; Paradowska, Katarzyna; Jakowski, Jacek; Wawer, Iwona
2008-02-01
13C CP MAS NMR spectra of the flavonoids: morin, kaempferol, 3,7-dihydroxyflavone, tricin and isoflavones: genistein and formononetin were recorded to characterize solid-state conformations. Intramolecular hydrogen bonds forming five-, six- and seven-membered rings are present in the two morin molecules in the crystals - their 13C resonances have been assigned with the aid of the calculated shielding constants. Linear relationships between the calculated shielding constants σDFT (ppm) and chemical shifts ( δCPMAS, ppm) were obtained for all studied compounds. Higher correlation coefficients suggest that the conformation with "clockwise" orientation of both OH groups is more probable in the solid 3,7-dihydroxyflavone, whereas in the solid formononetin the OH and OCH 3 substituents are directed "anticlockwise". The barrier to the rotation of phenyl ring B decreases in the order: morin (2'-OH, 3-OH) > kaempferol (3-OH) > tricin.
NASA Astrophysics Data System (ADS)
Grow, J. S.; Geissman, J. W.; Oldow, J. S.
2007-12-01
In west-central Nevada, a transfer zone, which initiated in the mid-Miocene, presently links, via the Mina Deflection, right-lateral faults of the Eastern California Shear Zone to the south and the Central Nevada Seismic Belt and Walker Lane to the north. This transfer zone, the early inception of which is characterized by moderate (20-30°) clockwise crustal rotations previously identified (e.g., Candelaria Hills and surrounding ranges), along with right-lateral structures to the south and north, are part of a diffuse zone of intracontinental deformation that accommodates some 25 percent of the motion between the Pacific and North American plates. Although the northern and western boundaries of the transfer zone are relatively well defined by paleomagnetic data, the eastern and southeastern boundaries remain poorly constrained. Additional paleomagnetic data are being obtained from mid-to-late Tertiary volcanic rocks, presumably lying within (e.g., Montezuma Range, Palmetto Mountains, Monte Cristo Range) and outside (e.g., Goldfield Hills, San Antonio Mountains, Slate Ridge) of the transfer zone. Areas outside of the transfer zone are inferred to have not undergone any appreciable rotation since its inception. Volcanic rocks as well as shallow intrusions ranging in age from Oligocene to mid-Pliocene have been sampled (N=187) from inside and outside of the inferred southern and eastern boundaries of the transfer zone. Overall, the collection responds very favorably to progressive demagnetization; initial results are tentatively interpreted as suggesting the absence of appreciable rotation of the San Antonio Range (Tonopah, Nevada area and farther north). The extent to which areas near the eastern and southeastern boundaries have been rotated is under investigation. These data will aid in a better understanding of differential block rotation and tilting throughout the development of the west-central Nevada transfer system from the mid-Miocene to late Pliocene.
Kantermann, Thomas; Duboutay, Françoise; Haubruge, Damien; Hampton, Shelagh; Darling, Andrea L; Berry, Jacqueline L; Kerkhofs, Myriam; Boudjeltia, Karim Zouaoui; Skene, Debra J
2014-12-01
The aim of this pilot study was to explore the risk of metabolic abnormalities in steel workers employed in different shift-work rotations. Male workers in a steel factory [16 employed in a fast clockwise rotation (CW), 18 in slow counterclockwise rotation (CC), 9 day workers (DW); mean age 43.3 ± SD 6.8 years] with at least 5 years experience in their current work schedule participated. All workers provided fasting blood samples between 06:00 and 08:00 h for plasma glucose, insulin, apo-lipoproteins A and B (ApoA, ApoB), high- and low-density lipoproteins (HDL and LDL), total cholesterol (tCH), triglycerides (TG), minimally oxidized (mox) LDL, C-reactive protein (CRP), interleukin-8 (IL-8) and serum 25-hydroxyvitamin D (25(OH)D). HOMA index (homeostatic model assessment) was calculated to evaluate insulin resistance, beta cell function and risk of diabetes. Information on demographics, health, stimulants, sleep, social and work life, chronotype (phase of entrainment) and social jetlag (difference between mid-sleep on workdays and free days) as a surrogate for circadian disruption was collected by questionnaire. Neither chronotype nor social jetlag was associated with any of the metabolic risk blood markers. There were no significant differences in 25(OH)D, ApoA, ApoB, CRP, HDL, IL-8, insulin, LDL, mox-LDL, mox-LDL/ApoB ratio, tCH and TG levels between the three work groups. Although we did observe absolute differences in some of these markers, the small sample size of our study population might prevent these differences being statistically significant. Fasting glucose and HOMA index were significantly lower in CW compared to DW and CC, indicating lower metabolic risk. Reasons for the lower fasting glucose and HOMA index in CW workers remains to be clarified. Future studies of workers in different shift rotations are warranted to understand better the differential effects of shift-work on individual workers and their health indices.
Fast calibration of electromagnetically tracked oblique-viewing rigid endoscopes.
Liu, Xinyang; Rice, Christina E; Shekhar, Raj
2017-10-01
The oblique-viewing (i.e., angled) rigid endoscope is a commonly used tool in conventional endoscopic surgeries. The relative rotation between its two moveable parts, the telescope and the camera head, creates a rotation offset between the actual and the projection of an object in the camera image. A calibration method tailored to compensate such offset is needed. We developed a fast calibration method for oblique-viewing rigid endoscopes suitable for clinical use. In contrast to prior approaches based on optical tracking, we used electromagnetic (EM) tracking as the external tracking hardware to improve compactness and practicality. Two EM sensors were mounted on the telescope and the camera head, respectively, with considerations to minimize EM tracking errors. Single-image calibration was incorporated into the method, and a sterilizable plate, laser-marked with the calibration pattern, was also developed. Furthermore, we proposed a general algorithm to estimate the rotation center in the camera image. Formulas for updating the camera matrix in terms of clockwise and counterclockwise rotations were also developed. The proposed calibration method was validated using a conventional [Formula: see text], 5-mm laparoscope. Freehand calibrations were performed using the proposed method, and the calibration time averaged 2 min and 8 s. The calibration accuracy was evaluated in a simulated clinical setting with several surgical tools present in the magnetic field of EM tracking. The root-mean-square re-projection error averaged 4.9 pixel (range 2.4-8.5 pixel, with image resolution of [Formula: see text] for rotation angles ranged from [Formula: see text] to [Formula: see text]. We developed a method for fast and accurate calibration of oblique-viewing rigid endoscopes. The method was also designed to be performed in the operating room and will therefore support clinical translation of many emerging endoscopic computer-assisted surgical systems.
Karataş, Ertuğrul; Arslan, Hakan; Alsancak, Meltem; Kırıcı, Damla Özsu; Ersoy, İbrahim
2015-07-01
The purpose of the present study was to assess the effect of root canal instrumentation using Twisted File Adaptive instruments (Axis/SybronEndo, Orange, CA) with different kinematics (adaptive motion, 90° clockwise [CW]-30° counterclockwise [CCW], 150° CW-30° CCW, 210° CW-30° CCW, and continuous rotation) on crack formation. One hundred five mandibular central incisor teeth were selected. Fifteen teeth were left unprepared (control group), and the remaining 90 teeth were assigned to the 5 root canal shaping groups as follows (n = 15): adaptive motion, 90° CW-30° CCW, 150° CW-30° CCW, 210° CW-30° CCW, continuous rotation, and hand file. All the roots were sectioned horizontally at 3, 6, and 9 mm from the apex with a low-speed saw under water cooling, and the slices were then viewed through a stereomicroscope at 25× magnification. Digital images of each slice were captured using a camera to determine the presence of dentinal cracks. No cracks were observed in the control group, and the continuous rotation group had more cracks than the reciprocation groups (90° CW-30° CCW, 150° CW-30° CCW, and 210° CW-30° CCW) (P < .05). Both the continuous rotation and adaptive motion groups had significantly more dentinal cracks than the hand file group (P < .05). Regarding the different sections (3, 6, and 9 mm), there was a significant difference between the experimental groups at the 9-mm level (P < .05). The incidence of dentinal cracks is less with TF Adaptive instruments working in 210° CW-30° CCW reciprocating motion compared with working in continuous rotation and adaptive motion. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Position, Attitude, and Fault-Tolerant Control of Tilting-Rotor Quadcopter
NASA Astrophysics Data System (ADS)
Kumar, Rumit
The aim of this thesis is to present algorithms for autonomous control of tilt-rotor quadcopter UAV. In particular, this research work describes position, attitude and fault tolerant control in tilt-rotor quadcopter. Quadcopters are one of the most popular and reliable unmanned aerial systems because of the design simplicity, hovering capabilities and minimal operational cost. Numerous applications for quadcopters have been explored all over the world but very little work has been done to explore design enhancements and address the fault-tolerant capabilities of the quadcopters. The tilting rotor quadcopter is a structural advancement of traditional quadcopter and it provides additional actuated controls as the propeller motors are actuated for tilt which can be utilized to improve efficiency of the aerial vehicle during flight. The tilting rotor quadcopter design is accomplished by using an additional servo motor for each rotor that enables the rotor to tilt about the axis of the quadcopter arm. Tilting rotor quadcopter is a more agile version of conventional quadcopter and it is a fully actuated system. The tilt-rotor quadcopter is capable of following complex trajectories with ease. The control strategy in this work is to use the propeller tilts for position and orientation control during autonomous flight of the quadcopter. In conventional quadcopters, two propellers rotate in clockwise direction and other two propellers rotate in counter clockwise direction to cancel out the effective yawing moment of the system. The variation in rotational speeds of these four propellers is utilized for maneuvering. On the other hand, this work incorporates use of varying propeller rotational speeds along with tilting of the propellers for maneuvering during flight. The rotational motion of propellers work in sync with propeller tilts to control the position and orientation of the UAV during the flight. A PD flight controller is developed to achieve various modes of the flight. Further, the performance of the controller and the tilt-rotor design has been compared with respect to the conventional quadcopter in the presence of wind disturbances and sensor uncertainties. In this work, another novel feed-forward control design approach is presented for complex trajectory tracking during autonomous flight. Differential flatness based feed-forward position control is employed to enhance the performance of the UAV during complex trajectory tracking. By accounting for differential flatness based feed-forward control input parameters, a new PD controller is designed to achieve the desired performance in autonomous flight. The results for tracking complex trajectories have been presented by performing numerical simulations with and without environmental uncertainties to demonstrate robustness of the controller during flight. The conventional quadcopters are under-actuated systems and, upon failure of one propeller, the conventional quadcopter would have a tendency of spinning about the primary axis fixed to the vehicle as an outcome of the asymmetry in resultant yawing moment in the system. In this work, control of tilt-rotor quadcopter is presented upon failure of one propeller during flight. The tilt-rotor quadcopter is capable of handling a propeller failure and hence is a fault-tolerant system. The dynamic model of tilting-rotor quadcopter with one propeller failure is derived and a controller has been designed to achieve hovering and navigation capability. The simulation results of way point navigation, complex trajectory tracking and fault-tolerance are presented.
EEG-based research on brain functional networks in cognition.
Wang, Niannian; Zhang, Li; Liu, Guozhong
2015-01-01
Recently, exploring the cognitive functions of the brain by establishing a network model to understand the working mechanism of the brain has become a popular research topic in the field of neuroscience. In this study, electroencephalography (EEG) was used to collect data from subjects given four different mathematical cognitive tasks: recite numbers clockwise and counter-clockwise, and letters clockwise and counter-clockwise to build a complex brain function network (BFN). By studying the connectivity features and parameters of those brain functional networks, it was found that the average clustering coefficient is much larger than its corresponding random network and the average shortest path length is similar to the corresponding random networks, which clearly shows the characteristics of the small-world network. The brain regions stimulated during the experiment are consistent with traditional cognitive science regarding learning, memory, comprehension, and other rational judgment results. The new method of complex networking involves studying the mathematical cognitive process of reciting, providing an effective research foundation for exploring the relationship between brain cognition and human learning skills and memory. This could help detect memory deficits early in young and mentally handicapped children, and help scientists understand the causes of cognitive brain disorders.
NASA Astrophysics Data System (ADS)
Lee, J.; Stockli, D.; Gosse, J.
2007-12-01
Two different mechanisms have been proposed for fault slip transfer between the subparallel NW-striking dextral- slip faults that dominant the Eastern California Shear Zone (ECSZ)-Walker Lane Belt (WLB). In the northern WLB, domains of sinistral-slip along NE-striking faults and clockwise block rotation within a zone of distributed deformation accommodated NW-dextral shear. A somewhat modified version of this mechanism was also proposed for the Mina deflection, southern WLB, whereby NE-striking sinistral faults formed as conjugate faults to the primary zone of NW-dextral shear; clockwise rotation of the blocks bounding the sinistral faults accommodated dextral slip. In contrast, in the northern ECSZ and Mina deflection, domains of NE-striking pure dip-slip normal faults, bounded by NW-striking dextral-slip faults, exhibited no rotation; the proposed mechanism of slip transfer was one of right-stepping, high angle normal faults in which the magnitude of extension was proportional to the amount of strike-slip motion transferred. New geologic mapping, tectonic geomorphologic, and geochronologic data from the Queen Valley area, southern Mina deflection constrain Pliocene to late Quaternary fault geometries, slip orientations, slip magnitudes, and slip rates that bear on the mechanism of fault slip transfer from the relatively narrow northern ECSZ to the broad deformation zone that defines the Mina deflection. Four different fault types and orientations cut across the Queen Valley area: (1) The NE-striking normal-slip Queen Valley fault; (2) NE-striking sinistral faults; (3) the NW-striking dextral Coyote Springs fault, which merges into (4) a set of EW-striking thrust faults. (U-Th)/He apatite and cosmogenic radionuclide data, combined with magnitude of fault offset measurements, indicate a Pliocene to late Pleistocene horizontal extension rate of 0.2-0.3 mm/yr across the Queen Valley fault. Our results, combined with published slip rates for the dextral White Mountain fault zone (0.3-0.8 mm/yr) and the eastern sinistral Coaldale fault (0.4 mm/yr) suggest that transfer of dextral slip from the narrow White Mountains fault zone is explained best by a simple shear couple whereby slip is partitioned into three different components: horizontal extension along the Queen Valley fault, dominantly dextral slip along the Coyote Springs fault, and dominantly sinistral slip along the Coaldale fault. A velocity vector diagram illustrating fault slip partitioning predicts contraction rates of <0.1 to 0.5 mm/yr across the Coyote Springs and western Coaldale faults. The predicted long-term contraction across the Mina deflection is consistent with present-day GPS data.