Effects of Engineered Wettability on the Efficiency of Dew Collection.
Gerasopoulos, Konstantinos; Luedeman, William L; Ölçeroglu, Emre; McCarthy, Matthew; Benkoski, Jason J
2018-01-31
Surface wettability plays an important role in dew collection. Nucleation is faster on hydrophilic surfaces, while droplets slide more readily on hydrophobic surfaces. Plants and animals in coastal desert environments appear to overcome this trade-off through biphilic surfaces with patterned wettability. In this study, we investigate the effects of millimeter-scale wettability patterns, mimicking those of the Stenocara beetle, on the rate of water collection from humid air. The rate of water collection per unit area is measured as a function of subcooling (ΔT = 1, 7, and 27 °C) and angle of inclination (from 10° to 90°). It is then compared for superbiphilic, hydrophilic, hydrophobic, and surperhydrophobic surfaces. For large subcooling, neither wettability nor tilt angle has a significant effect because the rate of condensation is so great. For 1 °C subcooling and large angles, hydrophilic surfaces perform best because condensation is the rate-limiting step. For low angles of inclination, superhydrophobic samples are best because droplet sliding is the rate-limiting step. Superbiphilic surfaces, in contrast to their superior fog collecting capabilities, generally collected dew at the slowest rate due to their inherent contact angle hysteresis. Theoretical considerations suggest that this finding may apply more generally to surfaces with patterned wettability.
Plasma drag on a dust grain due to Coulomb collisions
NASA Technical Reports Server (NTRS)
Northrop, T. G.; Birmingham, T. J.
1990-01-01
Expressions are given for the drag due to Coulomb collisions on a charged dust grain moving through a plasma. The commonly used Chandrasekhar (1943) result does not include large scattering angles or plasma collective effects. An equation given by Morfill et al. (1980) which does include large scattering angles, is limited to one-dimensional plasma particle motion and can give at least an order of magnitude too much drag. This paper also makes use of an analogy between the drag problem and problems in electrostatics. This analogy permits generalization to any isotropic plasma of an observation made by Chandrasekhar for a Maxwellian, namely, that the drag is independent of the presence or absence of plasma particles moving faster than the grain. Finally, the contribution of plasma collective effects to the drag is studied with the inclusion of large scattering angles.
Switching speeds in NCAP displays: dependence on collection angle and wavelength
NASA Astrophysics Data System (ADS)
Reamey, Robert H.; Montoya, Wayne; Wartenberg, Mark
1991-06-01
The on and off switching speeds of nematic droplet-polymer films (NCAP) are shown to depend on the collection angle (f/#) and the wavelength of the light used in the measurement. Conventional twisted nematic liquid crystal displays have switching speeds which depend little on these factors. The switching speed dependence on collection angle (f/#) and wavelength for nematic droplet-polymer films is inherent to the mechanism by which light is modulated in these films. This mechanism is the scattering of light by the nematic droplets. The on times become faster and the off times become slower as the collection angle of detection is increased. The overall change in switching speed can be large. Greater than 100X changes in off time have been observed. As the wavelength of the light used to interrogate the sample is increased (blue yields green yields red) the on times become faster and the off times become slower. This dependence of switching speed on wavelength is apparent at all collection angles. An awareness of these effects is necessary when developing nematic droplet-polymer films for display applications and when comparing switching speed data from different sources.
Design of blade-shaped-electrode linear ion traps with reduced anharmonic contributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, K.; Che, H.; Ge, Y. P.
2015-09-21
RF quadrupole linear Paul traps are versatile tools in quantum physics experiments. Linear Paul traps with blade-shaped electrodes have the advantages of larger solid angles for fluorescence collection. But with these kinds of traps, the existence of higher-order anharmonic terms of the trap potentials can cause large heating rate for the trapped ions. In this paper, we theoretically investigate the dependence of higher-order terms of trap potentials on the geometry of blade-shaped traps, and offer an optimized design. A modified blade electrodes trap is proposed to further reduce higher-order anharmonic terms while still retaining large fluorescence collection angle.
A mathematical procedure to predict optical performance of CPCs
NASA Astrophysics Data System (ADS)
Yu, Y. M.; Yu, M. J.; Tang, R. S.
2016-08-01
To evaluate the optical performance of a CPC based concentrating photovoltaic system, it is essential to find the angular dependence of optical efficiency of compound parabolic concentrator (CPC-θe ) where the incident angle of solar rays on solar cells is restricted within θe for the radiation over its acceptance angle. In this work, a mathematical procedure was developed to calculate the optical efficiency of CPC-θe for radiation incident at any angle based radiation transfer within CPC-θe . Calculations show that, given the acceptance half-angle (θa ), the annual radiation of full CPC-θe increases with the increase of θe and the CPC without restriction of exit angle (CPC-90) annually collects the most radiation due to large geometry (Ct ); whereas for truncated CPCs with identical θa and Ct , the annual radiation collected by CPC-θe is almost identical to that by CPC-90, even slightly higher. Calculations also indicate that the annual radiation on the absorber of CPC-θe at the angle larger than θe decrease with the increase of θe but always less than that of CPC-90, and this implies that the CPC-θe based PV system is more efficient than CPC-90 based PV system because the radiation on solar cells incident at large angle is poorly converted into electricity.
Intense source of slow positrons
NASA Astrophysics Data System (ADS)
Perez, P.; Rosowsky, A.
2004-10-01
We describe a novel design for an intense source of slow positrons based on pair production with a beam of electrons from a 10 MeV accelerator hitting a thin target at a low incidence angle. The positrons are collected with a set of coils adapted to the large production angle. The collection system is designed to inject the positrons into a Greaves-Surko trap (Phys. Rev. A 46 (1992) 5696). Such a source could be the basis for a series of experiments in fundamental and applied research and would also be a prototype source for industrial applications, which concern the field of defect characterization in the nanometer scale.
A Study of TRMM Static Earth Sensor Performance Using On-Orbit Sensor Data
NASA Technical Reports Server (NTRS)
Natanson, Gregory; Glickman, Jonathan
2000-01-01
This paper presents the results of a study of the Barnes static Earth sensor assembly (ESA) using on-orbit data collected from the Tropical Rainfall Measuring Mission (TRMM) spacecraft. It is shown that there exist strong correlations between the large penetration angle residuals and the voltages produced by the Offset Radiation Source (ORS). It is conjectured that at certain times in the TRMM orbit the ORS is operating out of its calibrated range, and consequently corrupts the penetration angle information observed and processed by the ESA. The observed yaw drift between Digital Sun Sensor (DSS) observations is shown to be consistent with predictions by a simple roll-yaw coupling computation. This would explain the large drifts seen on TRMM, where the propagation of the yaw angle between DSS updates does not take into account the possibility of a non-zero roll angle error. Finally, the accuracy of the onboard algorithm used when only three of the four quadrants supply valid penetration angles is assessed. In terms of procedures used to perform this study, the analysis of ESA penetration angle residuals is discovered to be a very useful and insightful tool for assessing, the health and functionality of the ESA.
NASA Astrophysics Data System (ADS)
Zhang, G.; McFarquhar, G.; Poellot, M.; Verlinde, J.; Heymsfield, A.; Kok, G.
2005-12-01
Arctic stratus clouds play an important role in the energy balance of the Arctic region. Previous studies have suggested that Arctic stratus persist due to a balance among cloud top radiation cooling, latent heating, ice crystal fall out and large scale forcing. In this study, radiative heating profiles through Arctic stratus are computed using cloud, surface and thermodynamic observations obtained during the Mixed-Phase Arctic Cloud Experiment (M-PACE) as input to the radiative transfer model STREAMER. In particular, microphysical and macrophycial cloud properties such as phase, water content, effective particle size, particle shape, cloud height and cloud thickness were derived using data collected by in-situ sensors on the University of North Dakota (UND) Citation and ground-based remote sensors at Barrow and Oliktok Point. Temperature profiles were derived from radiosonde launches and a fresh snow surface was assumed. One series of sensitivity studies explored the dependence of the heating profile on the solar zenith angle. For smaller solar zenith angles, more incoming solar radiation is received at cloud top acting to counterbalance infrared cooling. As solar zenith angle in the Arctic is large compared to low latitudes, a large solar zenith angle may contribute to the longevity of these clouds.
Kodek, Timotej; Munih, Marko
2003-01-01
The goal of this study was an assessment of the shoulder and elbow joint passive moments in the sagittal plane for six healthy individuals. Either the shoulder or elbow joints were moved at a constant speed, very slowly throughout a large portion of their range by means of an industrial robot. During the whole process the arm was held fully passively, while the end point force data and the shoulder, elbow and wrist angle data were collected. The presented method unequivocally reveals a large passive moment adjacent angle dependency in the central angular range, where most everyday actions are performed. It is expected to prove useful in the future work when examining subjects with neuromuscular disorders. Their passive moments may show a fully different pattern than the ones obtained in this study.
NASA Astrophysics Data System (ADS)
Breves, E. A.; Lepore, K.; Dyar, M. D.; Bender, S. C.; Tokar, R. L.; Boucher, T.
2017-11-01
Laser-induced breakdown spectroscopy has become a popular tool for rapid elemental analysis of geological materials. However, quantitative applications of LIBS are plagued by variability in collected spectra that cannot be attributed to differences in geochemical composition. Even under ideal laboratory conditions, variability in LIBS spectra creates a host of difficulties for quantitative analysis. This is only exacerbated during field work, when both the laser-sample distance and the angle of ablation/collection are constantly changing. A primary goal of this study is to use empirical evidence to provide a more accurate assessment of uncertainty in LIBS-derived element predictions. We hope to provide practical guidance regarding the angles of ablation and collection that can be tolerated without substantially increasing prediction uncertainty beyond that which already exists under ideal laboratory conditions. Spectra were collected from ten geochemically diverse samples at angles of ablation and collection ranging from 0° to ± 60°. Ablation and collection angles were changed independently and simultaneously in order to isolate spectral changes caused by differences in ablation angle from those due to differences in collection angle. Most of the variability in atomic and continuum spectra is attributed to changes in the ablation angle, rather than the collection angle. At higher angles, the irradiance of the laser beam is lower and produces smaller, possibly less dense plasmas. Simultaneous changes in the collection angle do not appear to affect the collected spectra, possibly because smaller plasmas are still within the viewing area of the collection optics, even though this area is reduced at higher collection angles. A key observation is that changes in the magnitude of atomic and total emission are < 5% and 10%, respectively, in spectra collected with the configuration that most closely resembles field measurements (VV) at angles < 20°. In addition, variability in atomic and continuum emission is strongly dependent upon sample composition. Denser, more Fe/Mg-rich rocks exhibited much less variability with changes in ablation and collection angles than Si-rich felsic rocks. Elemental compositions of our variable angle data that were predicted using a much larger but conventionally-collected calibration suite show that accuracy generally suffers when the incidence and collection angles are high. Prediction accuracy (for measurements acquired with varying collection and ablation angles) varies from ± 1.28-1.86 wt% for Al2O3, ± 1.25-1.66 wt% for CaO, ± 1.90-2.21 wt% for Fe2O3T, ± 0.76-0.94 wt% for K2O, ± 2.85-3.61 wt% MgO, ± 0.15-0.17 wt% for MnO, ± 0.68-0.78 wt% for Na2O, ± 0.33-0.42 wt% for TiO2, and ± 2.94-4.34 wt% SiO2. The ChemCam team is using lab data acquired under normal incidence and collection angles to predict the compositions of Mars targets at varying angles. Thus, the increased errors noted in this study for high incidence angle measurements are likely similar to additional, unacknowledged errors on ChemCam results for non-normal targets analyzed on Mars. Optimal quantitative analysis of LIBS spectra must include some knowledge of the angle of ablation and collection so the approximate increase in uncertainty introduced by a departure from normal angles can be accurately reported.
TILT ANGLE AND FOOTPOINT SEPARATION OF SMALL AND LARGE BIPOLAR SUNSPOT REGIONS OBSERVED WITH HMI
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClintock, B. H.; Norton, A. A., E-mail: u1049686@umail.usq.edu.au, E-mail: aanorton@stanford.edu
2016-02-10
We investigate bipolar sunspot regions and how tilt angle and footpoint separation vary during emergence and decay. The Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory collects data at a higher cadence than historical records and allows for a detailed analysis of regions over their lifetimes. We sample the umbral tilt angle, footpoint separation, and umbral area of 235 bipolar sunspot regions in Helioseismic and Magnetic Imager—Debrecen Data with an hourly cadence. We use the time when the umbral area peaks as time zero to distinguish between the emergence and decay periods of each region and we limitmore » our analysis of tilt and separation behavior over time to within ±96 hr of time zero. Tilt angle evolution is distinctly different for regions with small (≈30 MSH), midsize (≈50 MSH), and large (≈110 MSH) maximum umbral areas, with 45 and 90 MSH being useful divisions for separating the groups. At the peak umbral area, we determine median tilt angles for small (7.°6), midsize (5.°9), and large (9.°3) regions. Within ±48 hr of the time of peak umbral area, large regions steadily increase in tilt angle, midsize regions are nearly constant, and small regions show evidence of negative tilt during emergence. A period of growth in footpoint separation occurs over a 72-hr period for all of the regions from roughly 40 to 70 Mm. The smallest bipoles (<9 MSH) are outliers in that they do not obey Joy's law and have a much smaller footpoint separation. We confirm the Muñoz-Jaramillo et al. results that the sunspots appear to be two distinct populations.« less
Polarization Techniques for Mitigation of Low Grazing Angle Sea Clutter
2017-01-01
Lincoln Laboratory funded an experimental data collection using a fully polarimetic X-band radar assembled largely from COTS components. The Point de Chene...applications and environments in which experimental polarimet- ric radar has proven invaluable. Most notably, the imaging and mapping applications of synthetic...polarimetric analysis, as discussed in Chapter 1. Another part is due to the experimental SAR community’s collective recognition of polarimetry’s value
A short working distance multiple crystal x-ray spectrometer
Dickinson, B.; Seidler, G.T.; Webb, Z.W.; Bradley, J.A.; Nagle, K.P.; Heald, S.M.; Gordon, R.A.; Chou, I.-Ming
2008-01-01
For x-ray spot sizes of a few tens of microns or smaller, a millimeter-sized flat analyzer crystal placed ???1 cm from the sample will exhibit high energy resolution while subtending a collection solid angle comparable to that of a typical spherically bent crystal analyzer (SBCA) at much larger working distances. Based on this observation and a nonfocusing geometry for the analyzer optic, we have constructed and tested a short working distance (SWD) multicrystal x-ray spectrometer. This prototype instrument has a maximum effective collection solid angle of 0.14 sr, comparable to that of 17 SBCA at 1 m working distance. We find good agreement with prior work for measurements of the Mn K?? x-ray emission and resonant inelastic x-ray scattering for MnO, and also for measurements of the x-ray absorption near-edge structure for Dy metal using L??2 partial-fluorescence yield detection. We discuss future applications at third- and fourth-generation light sources. For concentrated samples, the extremely large collection angle of SWD spectrometers will permit collection of high-resolution x-ray emission spectra with a single pulse of the Linac Coherent Light Source. The range of applications of SWD spectrometers and traditional multi-SBCA instruments has some overlap, but also is significantly complementary. ?? 2008 American Institute of Physics.
Speciation Mapping of Environmental Samples Using XANES Imaging
Fast X-ray detectors with large solid angles and high dynamic ranges open the door to XANES imaging, in which millions of spectra are collected to image the speciation of metals at micrometre resolution, over areas up to several square centimetres. This paper explores how such mu...
A reconstruction algorithm for helical CT imaging on PI-planes.
Liang, Hongzhu; Zhang, Cishen; Yan, Ming
2006-01-01
In this paper, a Feldkamp type approximate reconstruction algorithm is presented for helical cone-beam Computed Tomography. To effectively suppress artifacts due to large cone angle scanning, it is proposed to reconstruct the object point-wisely on unique customized tilted PI-planes which are close to the data collecting helices of the corresponding points. Such a reconstruction scheme can considerably suppress the artifacts in the cone-angle scanning. Computer simulations show that the proposed algorithm can provide improved imaging performance compared with the existing approximate cone-beam reconstruction algorithms.
Theory of a cylindrical probe in a collisionless magnetoplasma
NASA Technical Reports Server (NTRS)
Laframboise, J. G.; Rubinstein, J.
1976-01-01
A theory is presented for a cylindrical electrostatic probe in a collisionless plasma in the case where the probe axis is inclined at an angle to a uniform magnetic field. The theory is applicable to electron collection, and under more restrictive conditions, to ion collection. For a probe at space potential, the theory is exact in the limit where probe radius is much less than Debye length. At attracting probe potentials, the theory yields an upper bound and an adiabatic limit for current collection. At repelling probe potentials, it provides a lower bound. The theory is valid if the ratios of probe radius to Debye length and probe radius to mean gyroradius are not simultaneously large enough to produce extrema in the probe sheath potential. The numerical current calculations are based on the approximation that particle orbits are helices near the probe, together with the use of kinetic theory to relate velocity distributions near the probe to those far from it. Probe characteristics are presented for inclination angles from 0 to 90 deg and for probe-radius mean-gyroradius ratios from 0.1 to infinity. For an angle of 0 deg, the end-effect current is calculated separately.
Truncation of CPC solar collectors and its effect on energy collection
NASA Astrophysics Data System (ADS)
Carvalho, M. J.; Collares-Pereira, M.; Gordon, J. M.; Rabl, A.
1985-01-01
Analytic expressions are derived for the angular acceptance function of two-dimensional compound parabolic concentrator solar collectors (CPC's) of arbitrary degree of truncation. Taking into account the effect of truncation on both optical and thermal losses in real collectors, the increase in monthly and yearly collectible energy is also evaluated. Prior analyses that have ignored the correct behavior of the angular acceptance function at large angles for truncated collectors are shown to be in error by 0-2 percent in calculations of yearly collectible energy for stationary collectors.
NASA Technical Reports Server (NTRS)
Donovan, Sheila
1985-01-01
A full evaluation of the bidirectional reflectance properties of different vegetated surfaces was limited in past studies by instrumental inadequacies. With the development of the PARABOLA, it is now possible to sample reflectances from a large number of view angles in a short period of time, maintaining an almost constant solar zenith angle. PARABOLA data collected over five different canopies in Texas are analyzed. The objective of this investigation was to evaluate the intercanopy and intracanopy differences in bidirectional reflectance patterns. Particular attention was given to the separability of canopy types using different view angles for the red and the near infrared (NIR) spectral bands. Comparisons were repeated for different solar zenith angles. Statistical and other quantitative techniques were used to assess these differences. For the canopies investigated, the greatest reflectances were found in the backscatter direction for both bands. Canopy discrimination was found to vary with both view angle and the spectral reflectance band considered, the forward scatter view angles being most suited to observations in the NIR and backscatter view angles giving better results in the red band. Because of different leaf angle distribution characteristics, discrimination was found to be better at small solar zenith angles in both spectral bands.
High prevalence of narrow angles among Chinese-American glaucoma and glaucoma suspect patients.
Seider, Michael I; Pekmezci, Melike; Han, Ying; Sandhu, Simi; Kwok, Shiu Y; Lee, Roland Y; Lin, Shan C
2009-01-01
To evaluate the prevalence of gonioscopically narrow angles in a Chinese-American population with glaucoma or glaucoma suspicion. Charts from all Chinese-American patients seen in a comprehensive ophthalmology clinic in the Chinatown district of San Francisco in 2002 were reviewed. One eye from each patient with glaucoma or glaucoma suspicion that met inclusion criteria was included (n=108). Data were collected for sex, age, race (self-declared), refraction (spherical equivalent), intraocular pressure, gonioscopy, and vertical cup-to-disk ratio. Sixty percent (n=65) of Chinese-American eyes with glaucoma or glaucoma suspicion had gonioscopically narrow angles (Shaffer grade < or = 2 in 3 or more quadrants). Those with narrow angles were significantly older (P=0.004) than their open angle counterparts, but the 2 groups did not differ in terms of sex, refraction, intraocular pressure, or cup-to-disk ratio (all, P > or = 0.071). In a multivariate model including age, sex, and refraction as predictors of angle grade (open or narrow), only age was a significant predictor of angle grade (P=0.004). A large proportion of Chinese-Americans in our study population with glaucoma or glaucoma suspicion had gonioscopically narrow angles. In multivariate analysis, patients with narrow angles were older than those with open angles but did not differ from them in terms of sex or refraction. Continued evaluation of angle closure glaucoma risk among Chinese-Americans is needed.
Imaging of earthquake faults using small UAVs as a pathfinder for air and space observations
Donnellan, Andrea; Green, Joseph; Ansar, Adnan; Aletky, Joseph; Glasscoe, Margaret; Ben-Zion, Yehuda; Arrowsmith, J. Ramón; DeLong, Stephen B.
2017-01-01
Large earthquakes cause billions of dollars in damage and extensive loss of life and property. Geodetic and topographic imaging provide measurements of transient and long-term crustal deformation needed to monitor fault zones and understand earthquakes. Earthquake-induced strain and rupture characteristics are expressed in topographic features imprinted on the landscapes of fault zones. Small UAVs provide an efficient and flexible means to collect multi-angle imagery to reconstruct fine scale fault zone topography and provide surrogate data to determine requirements for and to simulate future platforms for air- and space-based multi-angle imaging.
Aad, G.; Abbott, B.; Abdallah, J.; ...
2016-01-13
A measurement of the correlations between the polar angles of leptons from the decay of pair-produced t andmore » $$\\bar{t}$$ quarks in the helicity basis is reported, using proton-proton collision data collected by the ATLAS detector at the LHC. The dataset corresponds to an integrated luminosity of 4.6 fb -1 at a center-of-mass energy of √s=7 TeV collected during 2011. Candidate events are selected in the dilepton topology with large missing transverse momentum and at least two jets. The angles θ1 and θ2 between the charged leptons and the direction of motion of the parent quarks in the t$$\\bar{t}$$ rest frame are sensitive to the spin information, and the distribution of cosθ 1•cosθ 2 is sensitive to the spin correlation between the t and $$\\bar{t}$$ quarks. The distribution is unfolded to parton level and compared to the next-to-leading order prediction. A good agreement is observed.« less
Wide-Field Optic for Autonomous Acquisition of Laser Link
NASA Technical Reports Server (NTRS)
Page, Norman A.; Charles, Jeffrey R.; Biswas, Abhijit
2011-01-01
An innovation reported in Two-Camera Acquisition and Tracking of a Flying Target, NASA Tech Briefs, Vol. 32, No. 8 (August 2008), p. 20, used a commercial fish-eye lens and an electronic imaging camera for initially locating objects with subsequent handover to an actuated narrow-field camera. But this operated against a dark-sky background. An improved solution involves an optical design based on custom optical components for the wide-field optical system that directly addresses the key limitations in acquiring a laser signal from a moving source such as an aircraft or a spacecraft. The first challenge was to increase the light collection entrance aperture diameter, which was approximately 1 mm in the first prototype. The new design presented here increases this entrance aperture diameter to 4.2 mm, which is equivalent to a more than 16 times larger collection area. One of the trades made in realizing this improvement was to restrict the field-of-view to +80 deg. elevation and 360 azimuth. This trade stems from practical considerations where laser beam propagation over the excessively high air mass, which is in the line of sight (LOS) at low elevation angles, results in vulnerability to severe atmospheric turbulence and attenuation. An additional benefit of the new design is that the large entrance aperture is maintained even at large off-axis angles when the optic is pointed at zenith. The second critical limitation for implementing spectral filtering in the design was tackled by collimating the light prior to focusing it onto the focal plane. This allows the placement of the narrow spectral filter in the collimated portion of the beam. For the narrow band spectral filter to function properly, it is necessary to adequately control the range of incident angles at which received light intercepts the filter. When this angle is restricted via collimation, narrower spectral filtering can be implemented. The collimated beam (and the filter) must be relatively large to reduce the incident angle down to only a few degrees. In the presented embodiment, the filter diameter is more than ten times larger than the entrance aperture. Specifically, the filter has a clear aperture of about 51 mm. The optical design is refractive, and is comprised of nine custom refractive elements and an interference filter. The restricted maximum angle through the narrow-band filter ensures the efficient use of a 2-nm noise equivalent bandwidth spectral width optical filter at low elevation angles (where the range is longest), at the expense of less efficiency for high elevations, which can be tolerated because the range at high elevation angles is shorter. The image circle is 12 mm in diameter, mapped to 80 x 360 of sky, centered on the zenith.
Dual-axis confocal microscope for high-resolution in vivo imaging
Wang, Thomas D.; Mandella, Michael J.; Contag, Christopher H.; Kino, Gordon S.
2007-01-01
We describe a novel confocal microscope that uses separate low-numerical-aperture objectives with the illumination and collection axes crossed at angle θ from the midline. This architecture collects images in scattering media with high transverse and axial resolution, long working distance, large field of view, and reduced noise from scattered light. We measured transverse and axial (FWHM) resolution of 1.3 and 2.1 μm, respectively, in free space, and confirm subcellular resolution in excised esophageal mucosa. The optics may be scaled to millimeter dimensions and fiber coupled for collection of high-resolution images in vivo. PMID:12659264
Further Refinement of the LEWICE SLD Model
NASA Technical Reports Server (NTRS)
Wright, William B.
2006-01-01
A research project is underway at NASA Glenn Research Center to produce computer software that can accurately predict ice growth for any meteorological conditions for any aircraft surface. This report will present results from version 3.2 of this software, which is called LEWICE. This version differs from previous releases in that it incorporates additional thermal analysis capabilities, a pneumatic boot model, interfaces to external computational fluid dynamics (CFD) flow solvers and has an empirical model for the supercooled large droplet (SLD) regime. An extensive comparison against the database of ice shapes and collection efficiencies that have been generated in the NASA Glenn Icing Research Tunnel (IRT) has also been performed. The complete set of data used for this comparison will eventually be available in a contractor report. This paper will show the differences in collection efficiency and ice shape between LEWICE 3.2 and experimental data. This report will first describe the LEWICE 3.2 SLD model. A semi-empirical approach was used to incorporate first order physical effects of large droplet phenomena into icing software. Comparisons are then made to every two-dimensional case in the water collection database and the ice shape database. Each collection efficiency condition was run using the following four assumptions: 1) potential flow, no splashing; 2) potential flow, with splashing; 3) Navior-Stokes, no splashing; 4) Navi r-Stokes, with splashing. All cases were run with 21 bin drop size distributions and a lift correction (angle of attack adjustment). Quantitative comparisons are shown for impingement limit, maximum water catch, and total collection efficiency. Due to the large number of ice shape cases, comprehensive comparisons were limited to potential flow cases with and without splashing. Quantitative comparisons are shown for horn height, horn angle, icing limit, area, and leading edge thickness. The results show that the predicted results for both ice shape and water collection are within the accuracy limits of the experimental data for the majority of cases.
Zhang, Ning; Yu, Hong; Yu, Hao; Cai, Yueyue; Huang, Linzhou; Xu, Cao; Xiong, Guosheng; Meng, Xiangbing; Wang, Jiyao; Chen, Haofeng; Liu, Guifu; Jing, Yanhui; Yuan, Yundong; Liang, Yan; Li, Shujia; Smith, Steven M; Li, Jiayang; Wang, Yonghong
2018-06-18
Tiller angle in cereals is a key shoot architecture trait that strongly influences grain yield. Studies in rice (Oryza sativa L.) have implicated shoot gravitropism in the regulation of tiller angle. However, the functional link between shoot gravitropism and tiller angle is unknown. Here, we conducted a large-scale transcriptome analysis of rice shoots in response to gravistimulation and identified two new nodes of a shoot gravitropism regulatory gene network that also controls rice tiller angle. We demonstrate that HEAT STRESS TRANSCRIPTION FACTOR 2D (HSFA2D) is an upstream positive regulator of the LAZY1-mediated asymmetric auxin distribution pathway. We also show that two functionally redundant transcription factor genes, WUSCHEL RELATED HOMEOBOX6 (WOX6) and WOX11, are expressed asymmetrically in response to auxin to connect gravitropism responses with the control of rice tiller angle. These findings define upstream and downstream genetic components that link shoot gravitropism, asymmetric auxin distribution, and rice tiller angle. The results highlight the power of the high-temporal-resolution RNA-seq dataset, and its use to explore further genetic components controlling tiller angle. Collectively these approaches will identify genes to improve grain yields by facilitating the optimization of plant architecture. © 2018 American Society of Plant Biologists. All rights reserved.
Performance comparison of flat static and adjustable angle solar panels for sunny weather
NASA Astrophysics Data System (ADS)
Chua, Yaw Long; Yong, Yoon Kuang
2017-04-01
Nowadays solar panels are commonly used to collect sunlight so that it could convert solar energy into electrical energy. The power generated by the solar panels depends on the amount of sunlight collected on the solar panels. This paper presents a study that was carried out to study how changing the angle of the solar panels will impact the amount of electrical energy collected after conversion and the efficiencies of the solar panels. In this paper, the solar panels were placed at 30°, 35° and 40° angles throughout different days. The energy collected is then compared with energy collected by a flat static solar panel. It turns out that the solar panels with 40° angle performed best among the other angle solar panels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshida, Makoto
A new muon channel, MUSIC, is being constructed at the Research Center for Nuclear Physics (RCNP) at Osaka University in Japan. The muon channel utilizes a strong solenoidal magnetic field to collect pions and to transport muons. A large-bore superconducting coil encloses the pion-production target to capture pions with a large solid angle. A long solenoid magnet transports pions and muons with the capability to select the charge and momentum of the particles. The design of the solenoid channel is described in this paper.
High Prevalence of Narrow Angles among Chinese-American Glaucoma and Glaucoma Suspect Patients
Seider, Michael I; Pekmezci, Melike; Han, Ying; Sandhu, Simi; Kwok, Shiu Y; Lee, Roland Y; Lin, Shan C
2009-01-01
Purpose To evaluate the prevalence of gonioscopically narrow angles in a Chinese-American population with glaucoma or glaucoma suspicion. Patients and Methods Charts from all Chinese-American patients seen in a comprehensive ophthalmology clinic in the Chinatown district of San Francisco in 2002 were reviewed. One eye from each patient with glaucoma or glaucoma suspicion that met inclusion criteria was included (n=108). Data was collected for gender, age, race (self-declared), refraction (spherical equivalent), intraocular pressure (IOP), gonioscopy and vertical cup-to-disk ratio (CDR). Results Sixty percent (n=65) of Chinese-American eyes with glaucoma or glaucoma suspicion had gonioscopically narrow angles (Shaffer grade ≤2 in three or more quadrants). Those with narrow angles were significantly older (P=0.004) than their open angle counterparts, but the two groups did not differ in terms of gender, refraction, IOP or CDR (all, P≥0.071). In a multivariate model including age, gender and refraction as predictors of angle grade (open or narrow), only age was a significant predictor of angle grade (P=0.004). Conclusions A large proportion of Chinese-Americans in our study population with glaucoma or glaucoma suspicion had gonioscopically narrow angles. In multivariate analysis, patients with narrow angles were older than those with open angles but did not differ from them in terms of gender or refraction. Continued evaluation of angle closure glaucoma risk among Chinese-Americans is needed. PMID:19826385
NASA Astrophysics Data System (ADS)
Sieradzan, Adam K.; Makowski, Mariusz; Augustynowicz, Antoni; Liwo, Adam
2017-03-01
A general and systematic method for the derivation of the functional expressions for the effective energy terms in coarse-grained force fields of polymer chains is proposed. The method is based on the expansion of the potential of mean force of the system studied in the cluster-cumulant series and expanding the all-atom energy in the Taylor series in the squares of interatomic distances about the squares of the distances between coarse-grained centers, to obtain approximate analytical expressions for the cluster cumulants. The primary degrees of freedom to average about are the angles for collective rotation of the atoms contained in the coarse-grained interaction sites about the respective virtual-bond axes. The approach has been applied to the revision of the virtual-bond-angle, virtual-bond-torsional, and backbone-local-and-electrostatic correlation potentials for the UNited RESidue (UNRES) model of polypeptide chains, demonstrating the strong dependence of the torsional and correlation potentials on virtual-bond angles, not considered in the current UNRES. The theoretical considerations are illustrated with the potentials calculated from the ab initio potential-energy surface of terminally blocked alanine by numerical integration and with the statistical potentials derived from known protein structures. The revised torsional potentials correctly indicate that virtual-bond angles close to 90° result in the preference for the turn and helical structures, while large virtual-bond angles result in the preference for polyproline II and extended backbone geometry. The revised correlation potentials correctly reproduce the preference for the formation of β-sheet structures for large values of virtual-bond angles and for the formation of α-helical structures for virtual-bond angles close to 90°.
Wen, Bin; Peng, Junhui; Zuo, Xiaobing; Gong, Qingguo; Zhang, Zhiyong
2014-01-01
Large-scale flexibility within a multidomain protein often plays an important role in its biological function. Despite its inherent low resolution, small-angle x-ray scattering (SAXS) is well suited to investigate protein flexibility and determine, with the help of computational modeling, what kinds of protein conformations would coexist in solution. In this article, we develop a tool that combines SAXS data with a previously developed sampling technique called amplified collective motions (ACM) to elucidate structures of highly dynamic multidomain proteins in solution. We demonstrate the use of this tool in two proteins, bacteriophage T4 lysozyme and tandem WW domains of the formin-binding protein 21. The ACM simulations can sample the conformational space of proteins much more extensively than standard molecular dynamics (MD) simulations. Therefore, conformations generated by ACM are significantly better at reproducing the SAXS data than are those from MD simulations. PMID:25140431
Using X-ray Thomson Scattering to Characterize Highly Compressed, Near-Degenerate Plasmas at the NIF
NASA Astrophysics Data System (ADS)
Doeppner, Tilo; Kraus, D.; Neumayer, P.; Bachmann, B.; Divol, L.; Kritcher, A. L.; Landen, O. L.; Fletcher, L.; Glenzer, S. H.; Falcone, R. W.; MacDonald, M. J.; Saunders, A.; Witte, B.; Redmer, R.; Chapman, D.; Baggott, R.; Gericke, D. O.; Yi, S. A.
2017-10-01
We are developing x-ray Thomson scattering for implosion experiments at the National Ignition Facility to characterize plasma conditions in plastic and beryllium capsules near stagnation, reaching more than 20x compression and electron densities of 1025 cm-3, corresponding to a Fermi energy of 170 eV. Using a zinc He- α x-ray source at 9 keV, experiments at a large scattering angle of 120° measure non-collective scattering spectra with high sensitivity to K-shell ionization, and find higher charge states than predicted by widely used ionization models. Reducing the scattering angle to 30° probes the collective scattering regime with sensitivity to collisions and conductivity. We will discuss recent results and future plans. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
An Investigation into the Relation between the Technique of Movement and Overload in Step Aerobics
Wysocka, Katarzyna
2017-01-01
The aim of this research was to determine the features of a step workout technique which may be related to motor system overloading in step aerobics. Subjects participating in the research were instructors (n = 15) and students (n = 15) without any prior experience in step aerobics. Kinematic and kinetic data was collected with the use of the BTS SMART system comprised of 6 calibrated video cameras and two Kistler force plates. The subjects' task was to perform basic steps. The following variables were analyzed: vertical, anteroposterior, and mediolateral ground reaction forces; foot flexion and abduction and adduction angles; knee joint flexion angle; and trunk flexion angle in the sagittal plane. The angle of a foot adduction recorded for the instructors was significantly smaller than that of the students. The knee joint angle while stepping up was significantly higher for the instructors compared to that for the students. Our research confirmed that foot dorsal flexion and adduction performed while stepping up increased load on the ankle joint. Both small and large angles of knee flexion while stepping up and down resulted in knee joint injuries. A small trunk flexion angle in the entire cycle of step workout shut down dorsal muscles, which stopped suppressing the load put on the spine. PMID:28348501
Capillary Driven Flows Along Differentially Wetted Interior Corners
NASA Technical Reports Server (NTRS)
Golliher, Eric L. (Technical Monitor); Nardin, C. L.; Weislogel, M. M.
2005-01-01
Closed-form analytic solutions useful for the design of capillary flows in a variety of containers possessing interior corners were recently collected and reviewed. Low-g drop tower and aircraft experiments performed at NASA to date show excellent agreement between theory and experiment for perfectly wetting fluids. The analytical expressions are general in terms of contact angle, but do not account for variations in contact angle between the various surfaces within the system. Such conditions may be desirable for capillary containment or to compute the behavior of capillary corner flows in containers consisting of different materials with widely varying wetting characteristics. A simple coordinate rotation is employed to recast the governing system of equations for flows in containers with interior corners with differing contact angles on the faces of the corner. The result is that a large number of capillary driven corner flows may be predicted with only slightly modified geometric functions dependent on corner angle and the two (or more) contact angles of the system. A numerical solution is employed to verify the new problem formulation. The benchmarked computations support the use of the existing theoretical approach to geometries with variable wettability. Simple experiments to confirm the theoretical findings are recommended. Favorable agreement between such experiments and the present theory may argue well for the extension of the analytic results to predict fluid performance in future large length scale capillary fluid systems for spacecraft as well as for small scale capillary systems on Earth.
Observing Mode Attitude Controller for the Lunar Reconnaissance Orbiter
NASA Technical Reports Server (NTRS)
Calhourn, Philip C.; Garrick, Joseph C.
2007-01-01
The Lunar Reconnaissance Orbiter (LRO) mission is the first of a series of lunar robotic spacecraft scheduled for launch in Fall 2008. LRO will spend at least one year in a low altitude polar orbit around the Moon, collecting lunar environment science and mapping data to enable future human exploration. The LRO employs a 3-axis stabilized attitude control system (ACS) whose primary control mode, the "Observing mode", provides Lunar Nadir, off-Nadir, and Inertial fine pointing for the science data collection and instrument calibration. The controller combines the capability of fine pointing with that of on-demand large angle full-sky attitude reorientation into a single ACS mode, providing simplicity of spacecraft operation as well as maximum flexibility for science data collection. A conventional suite of ACS components is employed in this mode to meet the pointing and control objectives. This paper describes the design and analysis of the primary LRO fine pointing and attitude re-orientation controller function, known as the "Observing mode" of the ACS subsystem. The control design utilizes quaternion feedback, augmented with a unique algorithm that ensures accurate Nadir tracking during large angle yaw maneuvers in the presence of high system momentum and/or maneuver rates. Results of system stability analysis and Monte Carlo simulations demonstrate that the observing mode controller can meet fine pointing and maneuver performance requirements.
A multiphoton objective design with incorporated beam splitter for enhanced fluorescence collection
McMullen, Jesse D.; Zipfel, Warren R.
2010-01-01
We present a de novo design of an objective for use in multi-photon (MPM) and second harmonic generation (SHG) microscopy. This objective was designed to have a large field of view (FOV), while maintaining a moderate numerical aperture (NA) and relative straight forward construction. A dichroic beam splitter was incorporated within the objective itself allowing for an increase in the front aperture of the objective and corresponding enhancement of the solid angle of collected emission by an order of magnitude over existing designs. PMID:20389554
A multiphoton objective design with incorporated beam splitter for enhanced fluorescence collection.
McMullen, Jesse D; Zipfel, Warren R
2010-03-15
We present a de novo design of an objective for use in multi-photon (MPM) and second harmonic generation (SHG) microscopy. This objective was designed to have a large field of view (FOV), while maintaining a moderate numerical aperture (NA) and relative straight forward construction. A dichroic beam splitter was incorporated within the objective itself allowing for an increase in the front aperture of the objective and corresponding enhancement of the solid angle of collected emission by an order of magnitude over existing designs.
Use of a miniature diamond-anvil cell in high-pressure single-crystal neutron Laue diffraction
Binns, Jack; Kamenev, Konstantin V.; McIntyre, Garry J.; Moggach, Stephen A.; Parsons, Simon
2016-01-01
The first high-pressure neutron diffraction study in a miniature diamond-anvil cell of a single crystal of size typical for X-ray diffraction is reported. This is made possible by modern Laue diffraction using a large solid-angle image-plate detector. An unexpected finding is that even reflections whose diffracted beams pass through the cell body are reliably observed, albeit with some attenuation. The cell body does limit the range of usable incident angles, but the crystallographic completeness for a high-symmetry unit cell is only slightly less than for a data collection without the cell. Data collections for two sizes of hexamine single crystals, with and without the pressure cell, and at 300 and 150 K, show that sample size and temperature are the most important factors that influence data quality. Despite the smaller crystal size and dominant parasitic scattering from the diamond-anvil cell, the data collected allow a full anisotropic refinement of hexamine with bond lengths and angles that agree with literature data within experimental error. This technique is shown to be suitable for low-symmetry crystals, and in these cases the transmission of diffracted beams through the cell body results in much higher completeness values than are possible with X-rays. The way is now open for joint X-ray and neutron studies on the same sample under identical conditions. PMID:27158503
NASA Astrophysics Data System (ADS)
Zhang, Kexiong; Liao, Meiyong; Sumiya, Masatomo; Koide, Yasuo; Sang, Liwen
2016-11-01
The interfacial chemical state and the band alignment of the sputtering-deposited CaF2/p-GaN hetero-structure were investigated by angle-resolved X-ray photoelectron spectroscopy. The dependence of Ga 3p core-level positions on the collection angles proves that the downward band bending of p-GaN is reduced from 1.51 to 0.85 eV after the deposition of CaF2, which may be due to the reduction of Mg-Ga-O-related interface states by the oxygen-free deposition of CaF2. The band gap of sputtering-deposited CaF2 is estimated to be about 7.97 eV with a potential gradient of 0.48 eV obtained by the variation of the Ca 2p3/2 position on different collection angles. By taking into account the p-GaN surface band bending and potential gradient in the CaF2 layer, large valence and conduction band offsets of 2.66 ± 0.20 and 1.92 ± 0.20 eV between CaF2 and p-GaN are obtained. These results indicate that CaF2 is a promising gate dielectric layer on the p-GaN for the application of metal-insulator-semiconductor devices.
Oettlé, Anna C; Becker, Piet J; de Villiers, Elzabe; Steyn, Maryna
2009-08-01
The mandibular angle is measured in physical anthropological assessments of human remains to possibly assist with the determination of sex and population affinity. The purpose of this investigation was to establish how the mandibular angle changes with age and loss of teeth among the sexes in South African population groups. The angles of 653 dried adult mandibles from the Pretoria Bone Collection were measured with a mandibulometer. Males and females of both South African whites and blacks were included. To compensate for imbalances in numbers among subgroups, type IV ANOVA testing was applied. No association was found between age and angle within either of the populations, within sexes, or within dentition groups. The angle was the most obtuse in individuals without molars and with an uneven distribution of molars, and most acute in the group with an even distribution of molars on both sides. Statistically significant differences (P < 0.001) were found in the angle between the two population groups and sexes in the overall sample as well as in the subgroup with absent molar teeth (P = 0.003 for sex, males more acute angle, and P = 0.001 for population group, blacks more acute angle), although a very large overlap existed. No significant differences could be demonstrated between the sexes or populations within the subgroups with molars. We concluded that the loss of molars, especially if complete or uneven, has a considerable effect on the mandibular angle. In the assessment of human remains, the mandibular angle is not very usable in determining sex.
NASA Astrophysics Data System (ADS)
Antonov, N. N.; Baldin, A. A.; Viktorov, V. A.; Gapienko, V. A.; Gapienko, G. S.; Gres', V. N.; Ilyushin, M. A.; Korotkov, V. A.; Mysnik, A. I.; Prudkoglyad, A. F.; Semak, A. A.; Terekhov, V. I.; Uglekov, V. Ya.; Ukhanov, M. N.; Chuiko, B. V.; Shimanskii, S. S.
2016-11-01
Formation of the d and t cumulative light nuclear fragments emitted from the nucleus with large transverse momenta at an angle of 35° in the laboratory frame is investigated. The data on collisions of 50-GeV protons with the C, Al, Cu, and W nuclei are collected using the extracted proton beam of the IHEP accelerator and the SPIN detector. The results indicate that the dominant contribution to formation of nuclear fragments comes from the local process of direct knockout from the nucleus.
Linkage studies in primary open angle glaucoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avramopoulos, D.; Grigoriadu, M.; Kitsos, G.
1994-09-01
Glaucoma is a leading cause of blindness worldwide. The majority of glaucoma is associated with an open, normal appearing anterior chamber angle and is termed primary open angle glaucoma (POAG, MIM 137760). It is characterized by elevated intraocular pressure and onset in middle age or later. A subset of POAG with juvenile onset has recently been linked to chromosome 1q in two families with autosomal dominant inheritance. Eleven pedigrees with autosomal dominant POG (non-juvenile-onset) have been identified in Epirus, Greece. In the present study DNA samples have been collected from 50 individuals from one large pedigree, including 12 affected individuals.more » Preliminary results of linkage analysis with chromosome 1 microsatellites using the computer program package LINKAGE Version 5.1 showed no linkage with the markers previously linked to juvenile-onset POAG. Further linkage analysis is being pursued, and the results will be presented.« less
Powder collection apparatus/method
Anderson, I.E.; Terpstra, R.L.; Moore, J.A.
1994-01-11
Device for separating and collecting ultrafine atomized powder from the gas stream of a gas atomizing apparatus comprises a housing having an interior wall oriented at an angle relative to horizontal so as to form a downwardly converging, conical expansion chamber, an inlet conduit communicated to the expansion chamber proximate an upper region thereof for receiving the gas stream, and an outlet proximate a lower region of the expansion chamber. The inlet conduit is oriented at a compound inclined angle (with respect to horizontal) selected to promote separation and collection of powder from the gas stream in the expansion chamber. The compound angle comprises a first entrance angle that is greater than the angle of repose of the powder on the housing interior wall such that any powder accumulation in the inlet conduit tends to flow down the wall toward the outlet. The second angle is selected generally equal to the angle of the housing interior wall measured from the same horizontal plane so as to direct the gas stream into the expansion chamber generally tangent to the housing interior wall to establish a downward swirling gas stream flow in the expansion chamber. A powder collection container is communicated to the outlet of the expansion chamber to collect the powder for further processing. 4 figures.
Powder collection apparatus/method
Anderson, Iver E.; Terpstra, Robert L.; Moore, Jeffery A.
1994-01-11
Device for separating and collecting ultrafine atomized powder from the gas stream of a gas atomizing apparatus comprises a housing having an interior wall oriented at an angle relative to horizontal so as to form a downwardly converging, conical expansion chamber, an inlet conduit communicated to the expansion chamber proximate an upper region thereof for receiving the gas stream, and an outlet proximate a lower region of the expansion chamber. The inlet conduit is oriented at a compound inclined angle (with respect to horizontal) selected to promote separation and collection of powder from the gas stream in the expansion chamber. The compound angle comprises a first entrance angle that is greater than the angle of repose of the powder on the housing interior wall such that any powder accumulation in the inlet conduit tends to flow down the wall toward the outlet. The second angle is selected generally equal to the angle of the housing interior wall measured from the same horizontal plane so as to direct the gas stream into the expansion chamber generally tangent to the housing interior wall to establish a downward swirling gas stream flow in the expansion chamber. A powder collection container is communicated to the outlet of the expansion chamber to collect the powder for further processing.
Hyperspectral Analysis for Standoff Detection of Dimethyl ...
Journal Article Detecting organophosphates in indoor settings requires more efficient and faster methods of surveying large surface areas than conventional approaches, which sample small surface areas followed by extraction and analysis. This study examined a standoff detection technique utilizing hyperspectral imaging for analysis of building materials in near-real time. In this proof-of-concept study, dimethyl methylphosphonate (DMMP) was applied to stainless steel and laminate coupons and spectra were collected during active illumination. Absorbance bands at approximately 1275 cm-1 and 1050 cm-1 were associated with phosphorus-oxygen double bond (P=O) and phosphorus-oxygen-carbon (P-O-C) bond stretches of DMMP, respectively. The magnitude of these bands increased linearly (r2 = 0.93) with DMMP across the full absorbance spectrum, between ν1 = 877 cm-1 to ν2 = 1262 cm-1. Comparisons between bare and contaminated surfaces on stainless steel using the spectral contrast angle technique indicated that the bare samples showed no sign of contamination, with large uniformly distributed contrast angles of 45˚-55˚, while the contaminated samples had smaller spectral contact angles of 40° in the uncontaminated region. The laminate contaminated region exhibited contact angles of < 25°. To the best of our knowledge, this is the first report to demonstrate that hyperspectral imaging can be used to detect DMMP on building materials, with detection levels similar to c
NASA Astrophysics Data System (ADS)
Speicher, Andy; Matin, Mohammad; Tippets, Roger; Chun, Francis; Strong, David
2015-05-01
In order to protect critical military and commercial space assets, the United States Space Surveillance Network must have the ability to positively identify and characterize all space objects. Unfortunately, positive identification and characterization of space objects is a manual and labor intensive process today since even large telescopes cannot provide resolved images of most space objects. The objective of this study was to collect and analyze visible-spectrum polarization data from unresolved images of geosynchronous satellites taken over various solar phase angles. Different collection geometries were used to evaluate the polarization contribution of solar arrays, thermal control materials, antennas, and the satellite bus as the solar phase angle changed. Since materials on space objects age due to the space environment, their polarization signature may change enough to allow discrimination of identical satellites launched at different times. Preliminary data suggests this optical signature may lead to positive identification or classification of each satellite by an automated process on a shorter timeline. The instrumentation used in this experiment was a United States Air Force Academy (USAFA) Department of Physics system that consists of a 20-inch Ritchey-Chrétien telescope and a dual focal plane optical train fed with a polarizing beam splitter. Following a rigorous calibration, polarization data was collected during two nights on eight geosynchronous satellites built by various manufacturers and launched several years apart. When Stokes parameters were plotted against time and solar phase angle, the data indicates that a polarization signature from unresolved images may have promise in classifying specific satellites.
On the relativistic large-angle electron collision operator for runaway avalanches in plasmas
NASA Astrophysics Data System (ADS)
Embréus, O.; Stahl, A.; Fülöp, T.
2018-02-01
Large-angle Coulomb collisions lead to an avalanching generation of runaway electrons in a plasma. We present the first fully conservative large-angle collision operator, derived from the relativistic Boltzmann operator. The relation to previous models for large-angle collisions is investigated, and their validity assessed. We present a form of the generalized collision operator which is suitable for implementation in a numerical kinetic equation solver, and demonstrate the effect on the runaway-electron growth rate. Finally we consider the reverse avalanche effect, where runaways are slowed down by large-angle collisions, and show that the choice of operator is important if the electric field is close to the avalanche threshold.
NASA Astrophysics Data System (ADS)
Roosjen, Peter P. J.; Brede, Benjamin; Suomalainen, Juha M.; Bartholomeus, Harm M.; Kooistra, Lammert; Clevers, Jan G. P. W.
2018-04-01
In addition to single-angle reflectance data, multi-angular observations can be used as an additional information source for the retrieval of properties of an observed target surface. In this paper, we studied the potential of multi-angular reflectance data for the improvement of leaf area index (LAI) and leaf chlorophyll content (LCC) estimation by numerical inversion of the PROSAIL model. The potential for improvement of LAI and LCC was evaluated for both measured data and simulated data. The measured data was collected on 19 July 2016 by a frame-camera mounted on an unmanned aerial vehicle (UAV) over a potato field, where eight experimental plots of 30 × 30 m were designed with different fertilization levels. Dozens of viewing angles, covering the hemisphere up to around 30° from nadir, were obtained by a large forward and sideways overlap of collected images. Simultaneously to the UAV flight, in situ measurements of LAI and LCC were performed. Inversion of the PROSAIL model was done based on nadir data and based on multi-angular data collected by the UAV. Inversion based on the multi-angular data performed slightly better than inversion based on nadir data, indicated by the decrease in RMSE from 0.70 to 0.65 m2/m2 for the estimation of LAI, and from 17.35 to 17.29 μg/cm2 for the estimation of LCC, when nadir data were used and when multi-angular data were used, respectively. In addition to inversions based on measured data, we simulated several datasets at different multi-angular configurations and compared the accuracy of the inversions of these datasets with the inversion based on data simulated at nadir position. In general, the results based on simulated (synthetic) data indicated that when more viewing angles, more well distributed viewing angles, and viewing angles up to larger zenith angles were available for inversion, the most accurate estimations were obtained. Interestingly, when using spectra simulated at multi-angular sampling configurations as were captured by the UAV platform (view zenith angles up to 30°), already a huge improvement could be obtained when compared to solely using spectra simulated at nadir position. The results of this study show that the estimation of LAI and LCC by numerical inversion of the PROSAIL model can be improved when multi-angular observations are introduced. However, for the potato crop, PROSAIL inversion for measured data only showed moderate accuracy and slight improvements.
Corrections for the geometric distortion of the tube detectors on SANS instruments at ORNL
He, Lilin; Do, Changwoo; Qian, Shuo; ...
2014-11-25
Small-angle neutron scattering instruments at the Oak Ridge National Laboratory's High Flux Isotope Reactor were upgraded in area detectors from the large, single volume crossed-wire detectors originally installed to staggered arrays of linear position-sensitive detectors (LPSDs). The specific geometry of the LPSD array requires that approaches to data reduction traditionally employed be modified. Here, two methods for correcting the geometric distortion produced by the LPSD array are presented and compared. The first method applies a correction derived from a detector sensitivity measurement performed using the same configuration as the samples are measured. In the second method, a solid angle correctionmore » is derived that can be applied to data collected in any instrument configuration during the data reduction process in conjunction with a detector sensitivity measurement collected at a sufficiently long camera length where the geometric distortions are negligible. Furthermore, both methods produce consistent results and yield a maximum deviation of corrected data from isotropic scattering samples of less than 5% for scattering angles up to a maximum of 35°. The results are broadly applicable to any SANS instrument employing LPSD array detectors, which will be increasingly common as instruments having higher incident flux are constructed at various neutron scattering facilities around the world.« less
Roth-Nebelsick, A.; Ebner, M.; Miranda, T.; Gottschalk, V.; Voigt, D.; Gorb, S.; Stegmaier, T.; Sarsour, J.; Linke, M.; Konrad, W.
2012-01-01
The Namib grass Stipagrostis sabulicola relies, to a large degree, upon fog for its water supply and is able to guide collected water towards the plant base. This directed irrigation of the plant base allows an efficient and rapid uptake of the fog water by the shallow roots. In this contribution, the mechanisms for this directed water flow are analysed. Stipagrostis sabulicola has a highly irregular surface. Advancing contact angle is 98° ± 5° and the receding angle is 56° ± 9°, with a mean of both values of approximately 77°. The surface is thus not hydrophobic, shows a substantial contact angle hysteresis and therefore, allows the development of pinned drops of a substantial size. The key factor for the water conduction is the presence of grooves within the leaf surface that run parallel to the long axis of the plant. These grooves provide a guided downslide of drops that have exceeded the maximum size for attachment. It also leads to a minimum of inefficient drop scattering around the plant. The combination of these surface traits together with the tall and upright stature of S. sabulicola contributes to a highly efficient natural fog-collecting system that enables this species to thrive in a hyperarid environment. PMID:22356817
Roth-Nebelsick, A; Ebner, M; Miranda, T; Gottschalk, V; Voigt, D; Gorb, S; Stegmaier, T; Sarsour, J; Linke, M; Konrad, W
2012-08-07
The Namib grass Stipagrostis sabulicola relies, to a large degree, upon fog for its water supply and is able to guide collected water towards the plant base. This directed irrigation of the plant base allows an efficient and rapid uptake of the fog water by the shallow roots. In this contribution, the mechanisms for this directed water flow are analysed. Stipagrostis sabulicola has a highly irregular surface. Advancing contact angle is 98° ± 5° and the receding angle is 56° ± 9°, with a mean of both values of approximately 77°. The surface is thus not hydrophobic, shows a substantial contact angle hysteresis and therefore, allows the development of pinned drops of a substantial size. The key factor for the water conduction is the presence of grooves within the leaf surface that run parallel to the long axis of the plant. These grooves provide a guided downslide of drops that have exceeded the maximum size for attachment. It also leads to a minimum of inefficient drop scattering around the plant. The combination of these surface traits together with the tall and upright stature of S. sabulicola contributes to a highly efficient natural fog-collecting system that enables this species to thrive in a hyperarid environment.
Mist collection on parallel fiber arrays
NASA Astrophysics Data System (ADS)
Labbé, Romain; Duprat, Camille
2016-11-01
Fog is an important source of fresh water in specific arid regions such as the Atacama Desert in Chile. The method used to collect water passively from fog, either for domestic consumption or research purposes, consists in erecting large porous fiber nets on which the mist droplets impact. The two main mechanisms involved with this process are the impact of the drops on the fibers and the drainage of the fluid from the net, while the main limiting factor is the clogging of the mesh by accumulated water. We consider a novel collection system, made of an array of parallel fibers, that we study experimentally with a wind mist tunnel. In addition, we develop theoretical models considering the coupling of wind flow, droplet trajectories and wetting of the fibers. We find that the collection efficiency strongly depends on the size and distribution of the drops formed on the fibers, and thus on the fibers diameter, inclination angle and wetting properties. In particular, we show that the collection efficiency is greater when large drops are formed on the fibers. By adjusting the fibers diameter and the inter-fiber spacing, we look for an optimal structure that maximizes the collection surface and the drainage, while avoiding flow deviations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Junjun; Feng, Tongtong; Gu, Qiang, E-mail: qgu@ustb.edu.cn
Understanding the collective dynamics in a many-body system has been a central task in condensed matter physics. To achieve this task, we develop a Hartree–Fock theory to study the collective oscillations of spinor Fermi system, motivated by recent experiment on spin-9/2 fermions. We observe an oscillation period shoulder for small rotation angles. Different from previous studies, where the shoulder is found connected to the resonance from periodic to running phase, here the system is always in a running phase in the two-body phase space. This shoulder survives even in the many-body oscillations, which could be tested in the experiments. Wemore » also show how these collective oscillations evolve from two- to many-body. Our theory provides an alternative way to understand the collective dynamics in large-spin Fermi systems.« less
NASA Astrophysics Data System (ADS)
Knippling, K.; Nava, O.; Emmons, D. J., II; Dao, E. V.
2017-12-01
Geolocation techniques are used to track the source of uncooperative high frequency emitters. Traveling ionospheric disturbances (TIDs) make geolocation particularly difficult due to large perturbations in the local ionospheric electron density profiles. Angle of arrival(AoA) and ionosonde virtual height measurements collected at White Sands Missile Range, New Mexico in January, 2014 are analyzed during a medium scale TID (MSTID). MSTID characteristics are extracted from the measurements, and a comparison between the data sets is performed, providing a measure of the correlation as a function of distance between the ionosonde and AoA circuit midpoints. The results of this study may advance real-time geolocation techniques through the implementation of a time varying mirror model height.
Rapidly converging multigrid reconstruction of cone-beam tomographic data
NASA Astrophysics Data System (ADS)
Myers, Glenn R.; Kingston, Andrew M.; Latham, Shane J.; Recur, Benoit; Li, Thomas; Turner, Michael L.; Beeching, Levi; Sheppard, Adrian P.
2016-10-01
In the context of large-angle cone-beam tomography (CBCT), we present a practical iterative reconstruction (IR) scheme designed for rapid convergence as required for large datasets. The robustness of the reconstruction is provided by the "space-filling" source trajectory along which the experimental data is collected. The speed of convergence is achieved by leveraging the highly isotropic nature of this trajectory to design an approximate deconvolution filter that serves as a pre-conditioner in a multi-grid scheme. We demonstrate this IR scheme for CBCT and compare convergence to that of more traditional techniques.
A three-dimensional orthogonal laser velocimeter for the NASA Ames 7- by 10-foot wind tunnel
NASA Technical Reports Server (NTRS)
Dunagan, Stephen E.; Cooper, Donald L.
1995-01-01
A three-component dual-beam laser-velocimeter system has been designed, fabricated, and implemented in the 7-by 10-Foot Wind Tunnel at NASA Ames Research Center. The instrument utilizes optical access from both sides and the top of the test section, and is configured for uncoupled orthogonal measurements of the three Cartesian coordinates of velocity. Bragg cell optics are used to provide fringe velocity bias. Modular system design provides great flexibility in the location of sending and receiving optics to adapt to specific experimental requirements. Near-focus Schmidt-Cassegrain optic modules may be positioned for collection of forward or backward scattered light over a large solid angle, and may be clustered to further increase collection solid angle. Multimode fiber optics transmit collected light to the photomultiplier tubes for processing. Counters are used to process the photomultiplier signals and transfer the processed data digitally via buffered interface controller to the host MS-DOS computer. Considerable data reduction and graphical display programming permit on-line control of data acquisition and evaluation of the incoming data. This paper describes this system in detail and presents sample data illustrating the system's capability.
Underwater wireless optical communication using a lens-free solar panel receiver
NASA Astrophysics Data System (ADS)
Kong, Meiwei; Sun, Bin; Sarwar, Rohail; Shen, Jiannan; Chen, Yifei; Qu, Fengzhong; Han, Jun; Chen, Jiawang; Qin, Huawei; Xu, Jing
2018-11-01
In this paper, we first propose that self-powered solar panels featuring large receiving area and lens-free operation have great application prospect in underwater vehicles or underwater wireless sensor networks (UWSNs) for data collection. It is envisioned to solve the problem of link alignment. The low-cost solar panel used in the experiment has a large receiving area of 5 cm2 and a receiving angle of 20°. Over a 1-m air channel, a 16-quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) signal at a data rate of 20.02 Mb/s is successfully transmitted within the receiving angle of 20°. Over a 7-m tap water channel, we achieve data rates of 20.02 Mb/s using 16-QAM, 18.80 Mb/s using 32-QAM and 22.56 Mb/s using 64-QAM, respectively. By adding different quantities of Mg(OH)2 powders into the water, the impact of water turbidity on the solar panel-based underwater wireless optical communication (UWOC) is also investigated.
Shape accuracy requirements on starshades for large and small apertures
NASA Astrophysics Data System (ADS)
Shaklan, Stuart B.; Marchen, Luis; Cady, Eric
2017-09-01
Starshades have been designed to work with large and small telescopes alike. With smaller telescopes, the targets tend to be brighter and closer to the Solar System, and their putative planetary systems span angles that require starshades with radii of 10-30 m at distances of 10s of Mm. With larger apertures, the light-collecting power enables studies of more numerous, fainter systems, requiring larger, more distant starshades with radii >50 m at distances of 100s of Mm. Characterization using infrared wavelengths requires even larger starshades. A mitigating approach is to observe planets between the petals, where one can observe regions closer to the star but with reduced throughput and increased instrument scatter. We compare the starshade shape requirements, including petal shape, petal positioning, and other key terms, for the WFIRST 26m starshade and the HABEX 72 m starshade concepts, over a range of working angles and telescope sizes. We also compare starshades having rippled and smooth edges and show that their performance is nearly identical.
Performance of a Commercial Silicon Drift Detector for X-ray Microanalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenik, Edward A
2008-01-01
Silicon drift detectors (SDDs) are rapidly becoming the energy dispersive spectrometer of choice especially for scanning electron microscopy applications. The complementary features of large active areas (i.e., collection angle) and high count rate capability of these detector contribute to their popularity, as well as the absence of liquid nitrogen cooling of the detector. The performance of an EDAX Apollo 40 SDD on a JEOL 6500F SEM will be discussed.
Micromirror with large-tilting angle using Fe-based metallic glass.
Lee, Jae-Wung; Lin, Yu-Ching; Kaushik, Neelam; Sharma, Parmanand; Makino, Akihiro; Inoue, Akihisa; Esashi, Masayoshi; Gessner, Thomas
2011-09-01
For enhancing the micromirror properties like tilting angle and stability during actuation, Fe-based metallic glass (MG) was applied for torsion bar material. A micromirror with mirror-plate diameter of 900 μm and torsion bar dimensions length 250 μm, width 30 μm and thickness 2.5 μm was chosen for the tilting angle tests, which were performed by permanent magnets and electromagnet setup. An extremely large tilting angle of over -270° was obtained from an activation test by permanent magnet that has approximately 0.2 T of magnetic strength. A large mechanical tilting angle of over -70° was obtained by applying approximately 1.1 mT to the mirror when 93 mAwas applied to solenoid setup. The large-tilting angle of the micromirror is due to the torsion bar, which was fabricated with Fe-based MG thin film that has large elastic strain limit, fracture toughness, and excellent magnetic property.
Enhanced Conformational Sampling Using Replica Exchange with Collective-Variable Tempering.
Gil-Ley, Alejandro; Bussi, Giovanni
2015-03-10
The computational study of conformational transitions in RNA and proteins with atomistic molecular dynamics often requires suitable enhanced sampling techniques. We here introduce a novel method where concurrent metadynamics are integrated in a Hamiltonian replica-exchange scheme. The ladder of replicas is built with different strengths of the bias potential exploiting the tunability of well-tempered metadynamics. Using this method, free-energy barriers of individual collective variables are significantly reduced compared with simple force-field scaling. The introduced methodology is flexible and allows adaptive bias potentials to be self-consistently constructed for a large number of simple collective variables, such as distances and dihedral angles. The method is tested on alanine dipeptide and applied to the difficult problem of conformational sampling in a tetranucleotide.
Tricritical points in a Vicsek model of self-propelled particles with bounded confidence
NASA Astrophysics Data System (ADS)
Romensky, Maksym; Lobaskin, Vladimir; Ihle, Thomas
2014-12-01
We study the orientational ordering in systems of self-propelled particles with selective interactions. To introduce the selectivity we augment the standard Vicsek model with a bounded-confidence collision rule: a given particle only aligns to neighbors who have directions quite similar to its own. Neighbors whose directions deviate more than a fixed restriction angle α are ignored. The collective dynamics of this system is studied by agent-based simulations and kinetic mean-field theory. We demonstrate that the reduction of the restriction angle leads to a critical noise amplitude decreasing monotonically with that angle, turning into a power law with exponent 3/2 for small angles. Moreover, for small system sizes we show that upon decreasing the restriction angle, the kind of the transition to polar collective motion changes from continuous to discontinuous. Thus, an apparent tricritical point with different scaling laws is identified and calculated analytically. We investigate the shifting and vanishing of this point due to the formation of density bands as the system size is increased. Agent-based simulations in small systems with large particle velocities show excellent agreement with the kinetic theory predictions. We also find that at very small interaction angles, the polar ordered phase becomes unstable with respect to the apolar phase. We derive analytical expressions for the dependence of the threshold noise on the restriction angle. We show that the mean-field kinetic theory also permits stationary nematic states below a restriction angle of 0.681 π . We calculate the critical noise, at which the disordered state bifurcates to a nematic state, and find that it is always smaller than the threshold noise for the transition from disorder to polar order. The disordered-nematic transition features two tricritical points: At low and high restriction angle, the transition is discontinuous but continuous at intermediate α . We generalize our results to systems that show fragmentation into more than two groups and obtain scaling laws for the transition lines and the corresponding tricritical points. A numerical method to evaluate the nonlinear Fredholm integral equation for the stationary distribution function is also presented. This method is shown to give excellent agreement with agent-based simulations, even in strongly ordered systems at noise values close to zero.
Self absorption of alpha and beta particles in a fiberglass filter.
Luetzelschwab, J W; Storey, C; Zraly, K; Dussinger, D
2000-10-01
Environmental air sampling uses fiberglass filters to collect particulate matter from the air and then a gas flow detector to measure the alpha and beta activity on the filter. When counted, the filter is located close to the detector so the alpha and beta particles emerging from the filter travel toward the detector at angles ranging from zero to nearly 90 degrees to the normal to the filter surface. The particles at small angles can readily pass through the filter, but particles at large angles pass through a significant amount of filter material and can be totally absorbed. As a result, counting losses can be great. For 4 MeV alpha particles, the filter used in this experiment absorbs 43% of the alpha particles; for 7.5 MeV alphas, the absorption is 13%. The measured beta activities also can have significant counting losses. Beta particles with maximum energies of 0.2 and 2.0 MeV have absorptions of 44 and 2%, respectively.
Monaghan, Gail M; Hsu, Wen-Hao; Lewis, Cara L; Saltzman, Elliot; Hamill, Joseph; Holt, Kenneth G
2014-09-01
Clinically, foot structures are assessed intrinsically - relation of forefoot to rearfoot and rearfoot to leg. We have argued that, from a biomechanical perspective, the interaction of the foot with the ground may influence forces and torques that are propagated through the lower extremity. We proposed that a more appropriate measure is an extrinsic one that may predict the angle the foot makes with ground at contact. The purposes of this study were to determine if the proposed measure predicts contact angles of the forefoot and rearfoot and assess if the magnitude of those angles influences amplitude and duration of foot eversion during running. With the individual in prone, extrinsic clinical forefoot and rearfoot angles were measured relative to the caudal edge of the examination table. Participants ran over ground while frontal plane forefoot and rearfoot contact angles, forefoot and rearfoot eversion amplitude and duration were measured. Participants were grouped twice, once based on forefoot contact inversion angle (moderate
Sweeping Jet Actuators - A New Design Tool for High Lift Generation
NASA Technical Reports Server (NTRS)
Graff, Emilio; Seele, Roman; Lin, John C.; Wygnanski, Israel
2013-01-01
Active Flow Control (AFC) experiments performed at the Caltech Lucas Wind Tunnel on a generic airplane vertical tail model proved the effectiveness of sweeping jets in improving the control authority of a rudder. The results indicated that a momentum coefficient (C(sub u)) of approximately 2% increased the side force in excess of 50% at the maximum conventional rudder deflection angle in the absence of yaw. However, sparsely distributed actuators providing a collective C(sub u) approx. = 0.1% were able to increase the side force in excess of 20%. This result is achieved by reducing the spanwise flow along the swept back rudder and its success is attributed to the large sweep back angle of the vertical tail. This current effort was sponsored by the NASA Environmentally Responsible Aviation (ERA) project.
Area utilization efficiency of a sloping heliostat system for solar concentration.
Wei, L Y
1983-02-15
Area utilization efficiency (AUE) is formulated for a sloping heliostat system facing any direction. The effects of slope shading, incidence factor, sun shading, and tower blocking by the mirrors are all taken into account. Our results show that annually averaged AUEs calculated for heliostat systems (1) increase with tower height at low slope angles but less rapidly at high slopes, (2) increase monotonically with slope angle and saturate at large slopes for systems facing due south, (3) reach a maximum at a certain slope for systems facing other directions than due south, and (4) drop sharply at slopes greater than a certain value for systems facing due east or west due to slope shading effect. The results are useful for solar energy collection on nonflat terrains.
A flavor symmetry model for bilarge leptonic mixing and the lepton masses
NASA Astrophysics Data System (ADS)
Ohlsson, Tommy; Seidl, Gerhart
2002-11-01
We present a model for leptonic mixing and the lepton masses based on flavor symmetries and higher-dimensional mass operators. The model predicts bilarge leptonic mixing (i.e., the mixing angles θ12 and θ23 are large and the mixing angle θ13 is small) and an inverted hierarchical neutrino mass spectrum. Furthermore, it approximately yields the experimental hierarchical mass spectrum of the charged leptons. The obtained values for the leptonic mixing parameters and the neutrino mass squared differences are all in agreement with atmospheric neutrino data, the Mikheyev-Smirnov-Wolfenstein large mixing angle solution of the solar neutrino problem, and consistent with the upper bound on the reactor mixing angle. Thus, we have a large, but not close to maximal, solar mixing angle θ12, a nearly maximal atmospheric mixing angle θ23, and a small reactor mixing angle θ13. In addition, the model predicts θ 12≃ {π}/{4}-θ 13.
Large Area Solid Radiochemistry (LASR) collector at the National Ignition Facility
NASA Astrophysics Data System (ADS)
Waltz, Cory; Gharibyan, Narek; Hardy, Mike; Shaughnessy, Dawn; Jedlovec, Don; Smith, Cal
2017-08-01
The flux of neutrons and charged particles produced from inertial confinement fusion experiments at the National Ignition Facility (NIF) induces measurable concentrations of nuclear reaction products in various target materials. The collection and radiochemical analysis of the post-shot debris can be utilized as an implosion diagnostic to obtain information regarding fuel areal density and ablator-fuel mixing. Furthermore, assessment of the debris from specially designed targets, material doped in capsules or mounted on the external surface of the target assembly, can support experiments relevant to nuclear forensic research. To collect the shot debris, we have deployed the Large Area Solid Radiochemistry Collector (LASR) at NIF. LASR uses a main collector plate that contains a large collection foil with an exposed 20 cm diameter surface located ˜50 cm from the NIF target. This covers ˜0.12 steradians, or about 1% of the total solid angle. We will describe the design, analysis, and operation of this experimental platform as well as the initial results. To speed up the design process 3-dimensional printing was utilized. Design analysis includes the dynamic loading of the NIF target vaporized mass, which was modeled using LS-DYNA.
Reflective properties of randomly rough surfaces under large incidence angles.
Qiu, J; Zhang, W J; Liu, L H; Hsu, P-f; Liu, L J
2014-06-01
The reflective properties of randomly rough surfaces at large incidence angles have been reported due to their potential applications in some of the radiative heat transfer research areas. The main purpose of this work is to investigate the formation mechanism of the specular reflection peak of rough surfaces at large incidence angles. The bidirectional reflectance distribution function (BRDF) of rough aluminum surfaces with different roughnesses at different incident angles is measured by a three-axis automated scatterometer. This study used a validated and accurate computational model, the rigorous coupled-wave analysis (RCWA) method, to compare and analyze the measurement BRDF results. It is found that the RCWA results show the same trend of specular peak as the measurement. This paper mainly focuses on the relative roughness at the range of 0.16<σ/λ<5.35. As the relative roughness decreases, the specular peak enhancement dramatically increases and the scattering region significantly reduces, especially under large incidence angles. The RCWA and the Rayleigh criterion results have been compared, showing that the relative error of the total integrated scatter increases as the roughness of the surface increases at large incidence angles. In addition, the zero-order diffractive power calculated by RCWA and the reflectance calculated by Fresnel equations are compared. The comparison shows that the relative error declines sharply when the incident angle is large and the roughness is small.
Radial response of the burst and transient source experiment
NASA Technical Reports Server (NTRS)
Lestrade, John Patrick
1989-01-01
The Gamma Ray Observatory (GRO) includes four experiments designed for observe the gamma-ray universe, one of which is the Burst And Transient Source Experiment (BATSE). During the first summer with the BATSE team in 1988, laboratory measurements were completed which test the response of the BATSE modules to gamma-ray sources that are non-axial. The results of these observations are necessary for the correct interpretation of BATSE data obtained after it is put in earth orbit. Subsequent analysis of the data revealed a shift in the centroids of the full-energy photopeaks for angles of incidence between about 70 and 110 degrees. This effect was diagnosed as being due to a radial dependence of the light collecting efficiency of the large-area detector (LAD). Energy-depositing events that occur near the perimeter of the 10-inch radius NaI disc are not as efficiently collected as those events that occur near the disc's center. This radial response is analyzed and in so doing the non-Gaussian shape of the photopeaks seen in the spectra taken at all angles is explained.
NASA Astrophysics Data System (ADS)
Cannaday, Ashley E.; Draham, Robert; Berger, Andrew J.
2016-04-01
The goal of this project is to estimate non-nuclear organelle size distributions in single cells by measuring angular scattering patterns and fitting them with Mie theory. Simulations have indicated that the large relative size distribution of organelles (mean:width≈2) leads to unstable Mie fits unless scattering is collected at polar angles less than 20 degrees. Our optical system has therefore been modified to collect angles down to 10 degrees. Initial validations will be performed on polystyrene bead populations whose size distributions resemble those of cell organelles. Unlike with the narrow bead distributions that are often used for calibration, we expect to see an order-of-magnitude improvement in the stability of the size estimates as the minimum angle decreases from 20 to 10 degrees. Scattering patterns will then be acquired and analyzed from single cells (EMT6 mouse cancer cells), both fixed and live, at multiple time points. Fixed cells, with no changes in organelle sizes over time, will be measured to determine the fluctuation level in estimated size distribution due to measurement imperfections alone. Subsequent measurements on live cells will determine whether there is a higher level of fluctuation that could be attributed to dynamic changes in organelle size. Studies on unperturbed cells are precursors to ones in which the effects of exogenous agents are monitored over time.
A precise laboratory goniometer system to collect spectral BRDF data of materials
NASA Astrophysics Data System (ADS)
Jiao, Guangping; Jiao, Ziti; Wang, Jie; Zhang, Hu; Dong, Yadong
2014-11-01
This paper presents a precise laboratory goniometer system to quickly collect bidirectional reflectance distribution factor(BRDF)of typical materials such soil, canopy and artificial materials in the laboratory. The system consists of the goniometer, SVC HR1024 spectroradiometer, and xenon long-arc lamp as light source. the innovation of cantilever slab can reduce the shadow of the goniometer in the principle plane. The geometric precision of the footprint centre is better than +/-4cm in most azimuth directions, and the angle-controlling accuracy is better than 0.5°. The light source keeps good stability, with 0.8% irradiance decrease in 3 hours. But the large areal heterogeneity of the light source increase the data processing difficulty to capture the accurate BRDF. First measurements are taken from soil in a resolution of 15° and 30° in zenith and azimuth direction respectively, with the +/-50° biggest view angle. More observations are taken in the hot-spot direction. The system takes about 40 minutes to complete all measurements. A spectralon panel is measured at the beginning and end of the whole period. A simple interactive interface on the computer can automatically control all operations of the goniometer and data-processing. The laboratory experiment of soil layer and grass lawn shows that the goniometer can capture the the multi-angle variation of BRDF.
ERIC Educational Resources Information Center
Johannessen, Kim
2010-01-01
An analytic approximation of the solution to the differential equation describing the oscillations of a simple pendulum at large angles and with initial velocity is discussed. In the derivation, a sinusoidal approximation has been applied, and an analytic formula for the large-angle period of the simple pendulum is obtained, which also includes…
Large displacement spherical joint
Bieg, Lothar F.; Benavides, Gilbert L.
2002-01-01
A new class of spherical joints has a very large accessible full cone angle, a property which is beneficial for a wide range of applications. Despite the large cone angles, these joints move freely without singularities.
Fat fraction bias correction using T1 estimates and flip angle mapping.
Yang, Issac Y; Cui, Yifan; Wiens, Curtis N; Wade, Trevor P; Friesen-Waldner, Lanette J; McKenzie, Charles A
2014-01-01
To develop a new method of reducing T1 bias in proton density fat fraction (PDFF) measured with iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL). PDFF maps reconstructed from high flip angle IDEAL measurements were simulated and acquired from phantoms and volunteer L4 vertebrae. T1 bias was corrected using a priori T1 values for water and fat, both with and without flip angle correction. Signal-to-noise ratio (SNR) maps were used to measure precision of the reconstructed PDFF maps. PDFF measurements acquired using small flip angles were then compared to both sets of corrected large flip angle measurements for accuracy and precision. Simulations show similar results in PDFF error between small flip angle measurements and corrected large flip angle measurements as long as T1 estimates were within one standard deviation from the true value. Compared to low flip angle measurements, phantom and in vivo measurements demonstrate better precision and accuracy in PDFF measurements if images were acquired at a high flip angle, with T1 bias corrected using T1 estimates and flip angle mapping. T1 bias correction of large flip angle acquisitions using estimated T1 values with flip angle mapping yields fat fraction measurements of similar accuracy and superior precision compared to low flip angle acquisitions. Copyright © 2013 Wiley Periodicals, Inc.
Enhanced Conformational Sampling Using Replica Exchange with Collective-Variable Tempering
2015-01-01
The computational study of conformational transitions in RNA and proteins with atomistic molecular dynamics often requires suitable enhanced sampling techniques. We here introduce a novel method where concurrent metadynamics are integrated in a Hamiltonian replica-exchange scheme. The ladder of replicas is built with different strengths of the bias potential exploiting the tunability of well-tempered metadynamics. Using this method, free-energy barriers of individual collective variables are significantly reduced compared with simple force-field scaling. The introduced methodology is flexible and allows adaptive bias potentials to be self-consistently constructed for a large number of simple collective variables, such as distances and dihedral angles. The method is tested on alanine dipeptide and applied to the difficult problem of conformational sampling in a tetranucleotide. PMID:25838811
View angle effect in LANDSAT imagery
NASA Technical Reports Server (NTRS)
Kaneko, T.; Engvall, J. L.
1977-01-01
The view angle effect in LANDSAT 2 imagery was investigated. The LANDSAT multispectral scanner scans over a range of view angles of -5.78 to 5.78 degrees. The view angle effect, which is caused by differing view angles, could be studied by comparing data collected at different view angles over a fixed location at a fixed time. Since such LANDSAT data is not available, consecutive day acquisition data were used as a substitute: they were collected over the same geographical location, acquired 24 hours apart, with a view angle change of 7 to 8 degrees at a latitude of 35 to 45 degrees. It is shown that there is approximately a 5% reduction in the average sensor response on the second-day acquisitions as compared with the first-day acquisitions, and that the view angle effect differs field to field and crop to crop. On false infrared color pictures the view angle effect causes changes primarily in brightness and to a lesser degree in color (hue and saturation). An implication is that caution must be taken when images with different view angles are combined for classification and a signature extension technique needs to take the view angle effect into account.
Vibration and buckling of rotating, pretwisted, preconed beams including Coriolis effects
NASA Technical Reports Server (NTRS)
Subrahmanyam, K. B.; Kaza, K. R. V.
1985-01-01
The effects of pretwist, precone, setting angle and Coriolis forces on the vibration and buckling behavior of rotating, torsionally rigid, cantilevered beams were studied. The beam is considered to be clamped on the axis of rotation in one case, and off the axis of rotation in the other. Two methods are employed for the solution of the vibration problem: (1) one based upon a finite-difference approach using second order central differences for solution of the equations of motion, and (2) based upon the minimum of the total potential energy functional with a Ritz type of solution procedure making use of complex forms of shape functions for the dependent variables. The individual and collective effects of pretwist, precone, setting angle, thickness ratio and Coriolis forces on the natural frequencies and the buckling boundaries are presented. It is shown that the inclusion of Coriolis effects is necessary for blades of moderate to large thickness ratios while these effects are not so important for small thickness ratio blades. The possibility of buckling due to centrifugal softening terms for large values of precone and rotation is shown.
Vibration and buckling of rotating, pretwisted, preconed beams including Cooriolis effects
NASA Technical Reports Server (NTRS)
Subrahmanyam, K. B.; Kaza, K. R. V.
1985-01-01
The effects of pretwist, precone, setting angle and Coriolis forces on the vibration and buckling behavior of rotating, torsionally rigid, cantilevered beams were studied. The beam is considered to be clamped on the axis of rotation in one case, and off the axis of rotation in the other. Two methods are employed for the solution of the vibration problem: (1) one based upon a finite-difference approach using second order central differences for solution of the equations of motion, and (2) based upon the minimum of the total potential energy functional with a Ritz type of solution procedure making use of complex forms of shape functions for the dependent variables. The individual and collective effects of pretwist, precone, setting angle, thickness ratio and Coriolis forces on the natural frequencies and the buckling boundaries are presented. It is shown that the inclusion of Coriolis effects is necessary for blades of moderate to large thickness ratios while these effects are not so important for small thickness ratio blades. The possibility of buckling due to centrifugal softening terms for large values of precone and rotation is shown.
NASA Astrophysics Data System (ADS)
Li, Yugang; Fu, Gaoyong
2018-01-01
A floater allowing large-angle motion supporting a large payload (wind turbine and nacelle) with large aerodynamic loads high above the water surface is a great challenge because of the raised center of gravity and large overturning moment. In this paper, the conversion formulas between Euler angles and quaternions were derived, the research offered an efficient methodology without singularity to compute large-angle rigid body rotations of a FOWT, which laid the foundation for quaternion-based attitude kinematic model introduced to describe the dynamic response of the FOWT system and further solution.
Walker, V A; Tranquille, C A; Newton, J R; Dyson, S J; Brandham, J; Northrop, A J; Murray, R C
2017-09-01
Dressage horses are often asked to work in lengthened paces during training and competition, but to date there is limited information about the biomechanics of dressage-specific paces. Preliminary work has shown increased fetlock extension in extended compared with collected paces, but further investigation of the kinematic differences between collected, medium and extended trot in dressage horses is warranted. Investigation of the effect of collected vs. medium/extended trot on limb kinematics of dressage horses. Prospective kinematic evaluation. Twenty clinically sound horses in active dressage training were used. Group 1: Ten young horses (≤6 years) were assessed at collected and medium trot and Group 2: Ten mature horses (≥9 years) were assessed at collected and extended trot. All horses were evaluated on two different surfaces. High speed motion capture (240 Hz) was used to determine kinematic variables. Fore- and hindlimb angles were measured at mid-stance. Descriptive statistics and mixed effect multilevel regression analyses were performed. Speed and stride length were reduced and stride duration increased at collected compared with medium/extended trot. Lengthened trot (medium/extended trot) was associated with increased fetlock extension in both the fore- and hindlimbs in both groups of horses. Changes were greater in mature horses compared with young horses. Shoulder and carpus angles were associated with forelimb fetlock angle. Hock angle was not significantly influenced by pace. Surface had no effect on fetlock or hock angles. Only 2D motion analysis was carried out. Results may have differed in horses with more extreme gait characteristics. Medium/extended trot increases extension of the fore- and hindlimb fetlock joints compared with collected trot in both young and mature dressage horses, respectively. © 2017 EVJ Ltd.
NASA Technical Reports Server (NTRS)
Braswell, F. M.
1981-01-01
An energetic experiment using the Z80 family of microcomputer components is described. Data collected from the experiment allowed fast and efficient postprocessing, yielding both energy-spectrum and pitch-angle distribution of energetic particles in the D and E regions. Advanced microprocessor system architecture and software concepts were used in the design to cope with the large amount of data being processed. This required the Z80 system to operate at over 80% of its total capacity. The microprocessor system was included in the payloads of three rockets launched during the Energy Budget Campaign at ESRANGE, Kiruna, Sweden in November 1980. Based on preliminary examination of the data, the performance of the experiment was satisfactory and good data were obtained on the energy spectrum and pitch-angle distribution of the particles.
High-throughput and automated SAXS/USAXS experiment for industrial use at BL19B2 in SPring-8
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osaka, Keiichi, E-mail: k-osaka@spring8.or.jp; Inoue, Daisuke; Sato, Masugu
A highly automated system combining a sample transfer robot with focused SR beam has been established for small-angle and ultra small-angle X-ray scattering (SAXS/USAXS) measurement at BL19B2 for industrial use of SPring-8. High-throughput data collection system can be realized by means of X-ray beam of high photon flux density concentrated by a cylindrical mirror, and a two-dimensional pixel detector PILATUS-2M. For SAXS measurement, we can obtain high-quality data within 1 minute for one exposure using this system. The sample transfer robot has a capacity of 90 samples with a large variety of shapes. The fusion of high-throughput and robotic systemmore » has enhanced the usability of SAXS/USAXS capability for industrial application.« less
A method on error analysis for large-aperture optical telescope control system
NASA Astrophysics Data System (ADS)
Su, Yanrui; Wang, Qiang; Yan, Fabao; Liu, Xiang; Huang, Yongmei
2016-10-01
For large-aperture optical telescope, compared with the performance of azimuth in the control system, arc second-level jitters exist in elevation under different speeds' working mode, especially low-speed working mode in the process of its acquisition, tracking and pointing. The jitters are closely related to the working speed of the elevation, resulting in the reduction of accuracy and low-speed stability of the telescope. By collecting a large number of measured data to the elevation, we do analysis on jitters in the time domain, frequency domain and space domain respectively. And the relation between jitter points and the leading speed of elevation and the corresponding space angle is concluded that the jitters perform as periodic disturbance in space domain and the period of the corresponding space angle of the jitter points is 79.1″ approximately. Then we did simulation, analysis and comparison to the influence of the disturbance sources, like PWM power level output disturbance, torque (acceleration) disturbance, speed feedback disturbance and position feedback disturbance on the elevation to find that the space periodic disturbance still exist in the elevation performance. It leads us to infer that the problems maybe exist in angle measurement unit. The telescope employs a 24-bit photoelectric encoder and we can calculate the encoder grating angular resolution as 79.1016'', which is as the corresponding angle value in the whole encoder system of one period of the subdivision signal. The value is approximately equal to the space frequency of the jitters. Therefore, the working elevation of the telescope is affected by subdivision errors and the period of the subdivision error is identical to the period of encoder grating angular. Through comprehensive consideration and mathematical analysis, that DC subdivision error of subdivision error sources causes the jitters is determined, which is verified in the practical engineering. The method that analyze error sources from time domain, frequency domain and space domain respectively has a very good role in guiding to find disturbance sources for large-aperture optical telescope.
Large-scale wind tunnel tests of a sting-supported V/STOL fighter model at high angles of attack
NASA Technical Reports Server (NTRS)
Stoll, F.; Minter, E. A.
1981-01-01
A new sting model support has been developed for the NASA/Ames 40- by 80-Foot Wind Tunnel. This addition to the facility permits testing of relatively large models to large angles of attack or angles of yaw depending on model orientation. An initial test on the sting is described. This test used a 0.4-scale powered V/STOL model designed for testing at angles of attack to 90 deg and greater. A method for correcting wake blockage was developed and applied to the force and moment data. Samples of this data and results of surface-pressure measurements are presented.
NASA Astrophysics Data System (ADS)
Okumura, A.; Dang, T. V.; Ono, S.; Tanaka, S.; Hayashida, M.; Hinton, J.; Katagiri, H.; Noda, K.; Teshima, M.; Yamamoto, T.; Yoshida, T.
2017-12-01
We have developed a prototype hexagonal light concentrator for the Large-Sized Telescopes of the Cherenkov Telescope Array. To maximize the photodetection efficiency of the focal-plane camera pixels for atmospheric Cherenkov photons and to lower the energy threshold, a specular film with a very high reflectance of 92-99% has been developed to cover the inner surfaces of the light concentrators. The prototype has a relative anode sensitivity (which can be roughly regarded as collection efficiency) of about 95 to 105% at the most important angles of incidence. The design, simulation, production procedure, and performance measurements of the light-concentrator prototype are reported.
A see-through holographic head-mounted display with the large viewing angle
NASA Astrophysics Data System (ADS)
Chen, Zhidong; sang, Xinzhu; Lin, Qiaojun; Li, Jin; Yu, Xunbo; Gao, Xin; Yan, Binbin; Wang, Kuiru; Yu, Chongxiu; Xie, Songlin
2017-02-01
A novel solution for the large view angle holographic head-mounted display (HHMD) is presented. Divergent light is used for the hologram illumination to construct a large size three-dimensional object outside the display in a short distance. A designed project-type lens with large numerical aperture projects the object constructed by the hologram to its real location. The presented solution can realize a compact HHMD system with a large field of view. The basic principle and the structure of the system are described. An augmented reality (AR) prototype with the size of 50 mm×40 mm and the view angle above 60° is demonstrated.
Freeform solar concentrator with a highly asymmetric acceptance cone
NASA Astrophysics Data System (ADS)
Wheelwright, Brian; Angel, J. Roger P.; Coughenour, Blake; Hammer, Kimberly
2014-10-01
A solar concentrator with a highly asymmetric acceptance cone is investigated. Concentrating photovoltaic systems require dual-axis sun tracking to maintain nominal concentration throughout the day. In addition to collecting direct rays from the solar disk, which subtends ~0.53 degrees, concentrating optics must allow for in-field tracking errors due to mechanical misalignment of the module, wind loading, and control loop biases. The angular range over which the concentrator maintains <90% of on-axis throughput is defined as the optical acceptance angle. Concentrators with substantial rotational symmetry likewise exhibit rotationally symmetric acceptance angles. In the field, this is sometimes a poor match with azimuth-elevation trackers, which have inherently asymmetric tracking performance. Pedestal-mounted trackers with low torsional stiffness about the vertical axis have better elevation tracking than azimuthal tracking. Conversely, trackers which rotate on large-footprint circular tracks are often limited by elevation tracking performance. We show that a line-focus concentrator, composed of a parabolic trough primary reflector and freeform refractive secondary, can be tailored to have a highly asymmetric acceptance angle. The design is suitable for a tracker with excellent tracking accuracy in the elevation direction, and poor accuracy in the azimuthal direction. In the 1000X design given, when trough optical errors (2mrad rms slope deviation) are accounted for, the azimuthal acceptance angle is +/- 1.65°, while the elevation acceptance angle is only +/-0.29°. This acceptance angle does not include the angular width of the sun, which consumes nearly all of the elevation tolerance at this concentration level. By decreasing the average concentration, the elevation acceptance angle can be increased. This is well-suited for a pedestal alt-azimuth tracker with a low cost slew bearing (without anti-backlash features).
Optical metasurfaces for high angle steering at visible wavelengths
Lin, Dianmin; Melli, Mauro; Poliakov, Evgeni; ...
2017-05-23
Metasurfaces have facilitated the replacement of conventional optical elements with ultrathin and planar photonic structures. Previous designs of metasurfaces were limited to small deflection angles and small ranges of the angle of incidence. Here, we have created two types of Si-based metasurfaces to steer visible light to a large deflection angle. These structures exhibit high diffraction efficiencies over a broad range of angles of incidence. We have demonstrated metasurfaces working both in transmission and reflection modes based on conventional thin film silicon processes that are suitable for the large-scale fabrication of high-performance devices.
Barnett, Patrick D; Lamsal, Nirmal; Angel, S Michael
2017-04-01
A spatial heterodyne spectrometer (SHS) is described for standoff laser-induced breakdown spectroscopy (LIBS) measurements. The spatial heterodyne LIBS spectrometer (SHLS) is a diffraction grating based interferometer with no moving parts that offers a very large field of view, high light throughput, and high spectral resolution in a small package. The field of view of the SHLS spectrometer is shown to be ∼1° in standoff LIBS measurements. In the SHLS system described here, the collection aperture was defined by the 10 mm diffraction gratings in the SHS and standoff LIBS measurements were made up to 20 m with no additional collection optics, corresponding to a collection solid angle of 0.2 μsr, or f/2000, and also using a small telescope to increase the collection efficiency. The use of a microphone was demonstrated to rapidly optimize laser focus for 20 m standoff LIBS measurements.
Multiple incidence angle SIR-B experiment over Argentina
NASA Technical Reports Server (NTRS)
Cimino, Jobea; Casey, Daren; Wall, Stephen; Brandani, Aldo; Domik, Gitta; Leberl, Franz
1986-01-01
The Shuttle Imaging Radar (SIR-B), the second synthetic aperture radar (SAR) to fly aboard a shuttle, was launched on October 5, 1984. One of the primary goals of the SIR-B experiment was to use multiple incidence angle radar images to distinguish different terrain types through the use of their characteristic backscatter curves. This goal was accomplished in several locations including the Chubut Province of southern Argentina. Four descending image acquisitions were collected providing a multiple incidence angle image set. The data were first used to assess stereo-radargrammetric techniques. A digital elevation model was produced using the optimum pair of multiple incidence angle images. This model was then used to determine the local incidence angle of each picture element to generate curves of relative brightness vs. incidence angle. Secondary image products were also generated using the multi-angle data. The results of this work indicate that: (1) various forest species and various structures of a single species may be discriminated using multiple incidence angle radar imagery, and (2) it is essential to consider the variation in backscatter due to a variable incidence angle when analyzing and comparing data collected at varying frequencies and polarizations.
Development of an x-ray prism for analyzer based imaging systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bewer, Brian; Chapman, Dean
Analyzer crystal based imaging techniques such as diffraction enhanced imaging (DEI) and multiple imaging radiography (MIR) utilize the Bragg peak of perfect crystal diffraction to convert angular changes into intensity changes. These x-ray techniques extend the capability of conventional radiography, which derives image contrast from absorption, by providing large intensity changes for small angle changes introduced from the x-ray beam traversing the sample. Objects that have very little absorption contrast may have considerable refraction and ultrasmall angle x-ray scattering contrast improving visualization and extending the utility of x-ray imaging. To improve on the current DEI technique an x-ray prism (XRP)more » was designed and included in the imaging system. The XRP allows the analyzer crystal to be aligned anywhere on the rocking curve without physically moving the analyzer from the Bragg angle. By using the XRP to set the rocking curve alignment rather than moving the analyzer crystal physically the needed angle sensitivity is changed from submicroradians for direct mechanical movement of the analyzer crystal to tens of milliradians for movement of the XRP angle. However, this improvement in angle positioning comes at the cost of absorption loss in the XRP and depends on the x-ray energy. In addition to using an XRP for crystal alignment it has the potential for scanning quickly through the entire rocking curve. This has the benefit of collecting all the required data for image reconstruction in a single measurement thereby removing some problems with motion artifacts which remain a concern in current DEI/MIR systems especially for living animals.« less
Development of an x-ray prism for analyzer based imaging systems
NASA Astrophysics Data System (ADS)
Bewer, Brian; Chapman, Dean
2010-08-01
Analyzer crystal based imaging techniques such as diffraction enhanced imaging (DEI) and multiple imaging radiography (MIR) utilize the Bragg peak of perfect crystal diffraction to convert angular changes into intensity changes. These x-ray techniques extend the capability of conventional radiography, which derives image contrast from absorption, by providing large intensity changes for small angle changes introduced from the x-ray beam traversing the sample. Objects that have very little absorption contrast may have considerable refraction and ultrasmall angle x-ray scattering contrast improving visualization and extending the utility of x-ray imaging. To improve on the current DEI technique an x-ray prism (XRP) was designed and included in the imaging system. The XRP allows the analyzer crystal to be aligned anywhere on the rocking curve without physically moving the analyzer from the Bragg angle. By using the XRP to set the rocking curve alignment rather than moving the analyzer crystal physically the needed angle sensitivity is changed from submicroradians for direct mechanical movement of the analyzer crystal to tens of milliradians for movement of the XRP angle. However, this improvement in angle positioning comes at the cost of absorption loss in the XRP and depends on the x-ray energy. In addition to using an XRP for crystal alignment it has the potential for scanning quickly through the entire rocking curve. This has the benefit of collecting all the required data for image reconstruction in a single measurement thereby removing some problems with motion artifacts which remain a concern in current DEI/MIR systems especially for living animals.
Development of an x-ray prism for analyzer based imaging systems.
Bewer, Brian; Chapman, Dean
2010-08-01
Analyzer crystal based imaging techniques such as diffraction enhanced imaging (DEI) and multiple imaging radiography (MIR) utilize the Bragg peak of perfect crystal diffraction to convert angular changes into intensity changes. These x-ray techniques extend the capability of conventional radiography, which derives image contrast from absorption, by providing large intensity changes for small angle changes introduced from the x-ray beam traversing the sample. Objects that have very little absorption contrast may have considerable refraction and ultrasmall angle x-ray scattering contrast improving visualization and extending the utility of x-ray imaging. To improve on the current DEI technique an x-ray prism (XRP) was designed and included in the imaging system. The XRP allows the analyzer crystal to be aligned anywhere on the rocking curve without physically moving the analyzer from the Bragg angle. By using the XRP to set the rocking curve alignment rather than moving the analyzer crystal physically the needed angle sensitivity is changed from submicroradians for direct mechanical movement of the analyzer crystal to tens of milliradians for movement of the XRP angle. However, this improvement in angle positioning comes at the cost of absorption loss in the XRP and depends on the x-ray energy. In addition to using an XRP for crystal alignment it has the potential for scanning quickly through the entire rocking curve. This has the benefit of collecting all the required data for image reconstruction in a single measurement thereby removing some problems with motion artifacts which remain a concern in current DEI/MIR systems especially for living animals.
Method and apparatus for controlling pitch and flap angles of a wind turbine
Deering, Kenneth J [Seattle, WA; Wohlwend, Keith P [Issaquah, WA
2009-05-12
A wind turbine with improved response to wind conditions is provided. Blade flap angle motion is accompanied by a change in pitch angle by an amount defining a pitch/flap coupling ratio. The coupling ratio is non-constant as a function of a flap angle and is preferably a substantially continuous, non-linear function of flap angle. The non-constant coupling ratio can be provided by mechanical systems such as a series of linkages or by configuring electronic or other control systems and/or angle sensors. A link with a movable proximal end advantageously is part of the mechanical system. The system can provide relatively large coupling ratios and relatively large rates of coupling ratio changes especially for near-feather pitches and low flap angles.
Qin, Zong; Wang, Kai; Chen, Fei; Luo, Xiaobing; Liu, Sheng
2010-08-02
In this research, the condition for uniform lighting generated by array of LEDs with large view angle was studied. The luminous intensity distribution of LED is not monotone decreasing with view angle. A LED with freeform lens was designed as an example for analysis. In a system based on LEDs designed in house with a thickness of 20mm and rectangular arrangement, the condition for uniform lighting was derived and the analytical results demonstrated that the uniformity was not decreasing monotonously with the increasing of LED-to-LED spacing. The illuminance uniformities were calculated with Monte Carlo ray tracing simulations and the uniformity was found to increase with the increasing of certain LED-to-LED spacings anomalously. Another type of large view angle LED and different arrangements were discussed in addition. Both analysis and simulation results showed that the method is available for LED array lighting system design on the basis of large view angle LED..
NASA Astrophysics Data System (ADS)
Cheng, Z.; Shi, J.; Zhang, J.; Kistler, L. M.
2017-12-01
The influence of the interplanetary magnetic field (IMF) cone angle θ (the angle between the IMF direction and the Sun-Earth line) on the invariant latitudes (ILATs) of the footprints of the field-aligned currents (FACs) in the magnetotail has been investigated. We performed a statistic study of 542 FAC cases observed by the four Cluster spacecraft in the northern hemisphere. The results show that the large FAC (>10 nA/m2) cases occur at the low ILATs (<71 º) and mainly occur when the IMF cone angle θ>60º, which implies the footprints of the large FACs mainly expand equatorward with large IMF cone angle. The equatorward boundary of the FAC footprints in the polar region decreases with the IMF cone angle especially when IMF Bz is positive. There is almost no correlation or a weak positive correlation of the poleward boundary and IMF cone angle no matter IMF is northward or southward. The equatorward boundary is more responsive to the IMF cone angle. Compared to the equatorward boundary, the center of the FAC projected location changes very little. This is the first time a correlation between FAC projected location and IMF cone angle has been determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Runsheng; Yu, Yamei
2010-09-15
A new design concept, called one axis three positions sun-tracking polar-axis aligned CPCs (3P-CPCs, in short), was proposed and theoretically studied in this work for photovoltaic applications. The proposed trough-like CPC is oriented in the polar-axis direction, and the aperture is daily adjusted eastward, southward, and westward in the morning, noon and afternoon, respectively, by rotating the CPC trough, to ensure efficient collection of beam radiation nearly all day. To investigate the optical performance of such CPCs, an analytical mathematical procedure is developed to estimate daily and annual solar gain captured by such CPCs based on extraterrestrial radiation and monthlymore » horizontal radiation. Results show that the acceptance half-angle of 3P-CPCs is a unique parameter to determine their optical performance according to extraterrestrial radiation, and the annual solar gain stays constant if the acceptance half-angle, {theta}{sub a}, is less than one third of {omega}{sub 0,min}, the sunset hour angle in the winter solstice, otherwise decreases with the increase of {theta}{sub a}. For 3P-CPCs used in China, the annual solar gain, depending on the climatic conditions in site, decreased with the acceptance half-angle, but such decrease was slow for the case of {theta}{sub a}{<=}{omega}{sub 0,min}/3, indicating that the acceptance half-angle should be less than one third of {omega}{sub 0,min} for maximizing annual energy collection. Compared to fixed east-west aligned CPCs (EW-CPCs) with a yearly optimal acceptance half-angle, the fixed south-facing polar-axis aligned CPCs (1P-CPCs) with the same acceptance half-angle as the EW-CPCs annually collected about 65-74% of that EW-CPCs did, whereas 3P-CPCs annually collected 1.26-1.45 times of that EW-CPCs collected, indicating that 3P-CPCs were more efficient for concentrating solar radiation onto their coupling solar cells. (author)« less
Multipole expansion method for supernova neutrino oscillations
Duan, Huaiyu; Shalgar, Shashank
2014-10-31
Here, we demonstrate a multipole expansion method to calculate collective neutrino oscillations in supernovae using the neutrino bulb model. We show that it is much more efficient to solve multi-angle neutrino oscillations in multipole basis than in angle basis. The multipole expansion method also provides interesting insights into multi-angle calculations that were accomplished previously in angle basis.
Measurement of the dipole in the cross-correlation function of galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaztanaga, Enrique; Bonvin, Camille; Hui, Lam, E-mail: gazta@ice.cat, E-mail: camille.bonvin@unige.ch, E-mail: lhui@astro.columbia.edu
It is usually assumed that in the linear regime the two-point correlation function of galaxies contains only a monopole, quadrupole and hexadecapole. Looking at cross-correlations between different populations of galaxies, this turns out not to be the case. In particular, the cross-correlations between a bright and a faint population of galaxies contain also a dipole. In this paper we present the first attempt to measure this dipole. We discuss the four types of effects that contribute to the dipole: relativistic distortions, evolution effect, wide-angle effect and large-angle effect. We show that the first three contributions are intrinsic anti-symmetric contributions thatmore » do not depend on the choice of angle used to measure the dipole. On the other hand the large-angle effect appears only if the angle chosen to extract the dipole breaks the symmetry of the problem. We show that the relativistic distortions, the evolution effect and the wide-angle effect are too small to be detected in the LOWz and CMASS sample of the BOSS survey. On the other hand with a specific combination of angles we are able to measure the large-angle effect with high significance. We emphasise that this large-angle dipole does not contain new physical information, since it is just a geometrical combination of the monopole and the quadrupole. However this measurement, which is in excellent agreement with theoretical predictions, validates our method for extracting the dipole from the two-point correlation function and it opens the way to the detection of relativistic effects in future surveys like e.g. DESI.« less
Large-viewing-angle electroholography by space projection
NASA Astrophysics Data System (ADS)
Sato, Koki; Obana, Kazuki; Okumura, Toshimichi; Kanaoka, Takumi; Nishikawa, Satoko; Takano, Kunihiko
2004-06-01
The specification of hologram image is the full parallax 3D image. In this case we can get more natural 3D image because focusing and convergence are coincident each other. We try to get practical electro-holography system because for conventional electro-holography the image viewing angle is very small. This is due to the limited display pixel size. Now we are developing new method for large viewing angle by space projection method. White color laser is irradiated to single DMD panel ( time shared CGH of RGB three colors ). 3D space screen constructed by very small water particle is used to reconstruct the 3D image with large viewing angle by scattering of water particle.
NASA Astrophysics Data System (ADS)
Ni, Yingxue; Wu, Jiabin; San, Xiaogang; Gao, Shijie; Ding, Shaohang; Wang, Jing; Wang, Tao
2018-02-01
A deflection angle detecting system (DADS) using a quadrant detector (QD) is developed to achieve the large deflection angle and high linearity for the fast steering mirror (FSM). The mathematical model of the DADS is established by analyzing the principle of position detecting and error characteristics of the QD. Based on this mathematical model, the method of optimizing deflection angle and linearity of FSM is demonstrated, which is proved feasible by simulation and experimental results. Finally, a QD-based FSM is designed and tested. The results show that it achieves 0.72% nonlinearity, ±2.0 deg deflection angle, and 1.11-μrad resolution. Therefore, the application of this method will be beneficial to design the FSM.
Multi-objective Optimization of Solar Irradiance and Variance at Pertinent Inclination Angles
NASA Astrophysics Data System (ADS)
Jain, Dhanesh; Lalwani, Mahendra
2018-05-01
The performance of photovoltaic panel gets highly affected bychange in atmospheric conditions and angle of inclination. This article evaluates the optimum tilt angle and orientation angle (surface azimuth angle) for solar photovoltaic array in order to get maximum solar irradiance and to reduce variance of radiation at different sets or subsets of time periods. Non-linear regression and adaptive neural fuzzy interference system (ANFIS) methods are used for predicting the solar radiation. The results of ANFIS are more accurate in comparison to non-linear regression. These results are further used for evaluating the correlation and applied for estimating the optimum combination of tilt angle and orientation angle with the help of general algebraic modelling system and multi-objective genetic algorithm. The hourly average solar irradiation is calculated at different combinations of tilt angle and orientation angle with the help of horizontal surface radiation data of Jodhpur (Rajasthan, India). The hourly average solar irradiance is calculated for three cases: zero variance, with actual variance and with double variance at different time scenarios. It is concluded that monthly collected solar radiation produces better result as compared to bimonthly, seasonally, half-yearly and yearly collected solar radiation. The profit obtained for monthly varying angle has 4.6% more with zero variance and 3.8% more with actual variance, than the annually fixed angle.
Optimization design of the angle detecting system used in the fast steering mirror
NASA Astrophysics Data System (ADS)
Ni, Ying-xue; Wu, Jia-bin; San, Xiao-gang; Gao, Shi-jie; Ding, Shao-hang; Wang, Jing; Wang, Tao; Wang, Hui-xian
2018-01-01
In this paper, in order to design a fast steering mirror (FSM) with large deflection angle and high linearity, a deflection angle detecting system (DADS) using quadrant detector (QD) is developed. And the mathematical model describing DADS is established by analyzing the principle of position detecting and error characteristics of QD. Based on this mathematical model, the variation tendencies of deflection angle and linearity of FSM are simulated. Then, by changing the parameters of the DADS, the optimization of deflection angle and linearity of FSM is demonstrated. Finally, a QD-based FSM is designed based on this method, which achieves ±2° deflection angle and 0.72% and 0.68% linearity along x and y axis, respectively. Moreover, this method will be beneficial to the design of large deflection angle and high linearity FSM.
Luminosity measurements for the R scan experiment at BESIII
Ablikim, M.; Achasov, M. N.; Ahmed, S.; ...
2017-02-08
By analyzing the large-angle Bhabha scattering events e +e - → (γ)e +e - and diphoton events e +e - → (γ)γγ for the data sets collected at center-of-mass (c.m.) energies between 2.2324 and 4.5900 GeV (131 energy points in total) with the upgraded Beijing Spectrometer (BESIII) at the Beijing Electron-Positron Collider (BEPCII), the integrated luminosities have been measured at the different c.m. energies, individually. Finally, the results are important inputs for the R value and J/ψ resonance parameter measurements.
Effect of blade outlet angle on radial thrust of single-blade centrifugal pump
NASA Astrophysics Data System (ADS)
Nishi, Y.; Fukutomi, J.; Fujiwara, R.
2012-11-01
Single-blade centrifugal pumps are widely used as sewage pumps. However, a large radial thrust acts on a single blade during pump operation because of the geometrical axial asymmetry of the impeller. This radial thrust causes vibrations of the pump shaft, reducing the service life of bearings and shaft seal devices. Therefore, to ensure pump reliability, it is necessary to quantitatively understand the radial thrust and clarify the behavior and generation mechanism. This study investigated the radial thrust acting on two kinds of single-blade centrifugal impellers having different blade outlet angles by experiments and computational fluid dynamics (CFD) analysis. Furthermore, the radial thrust was modeled by a combination of three components, inertia, momentum, and pressure, by applying an unsteady conservation of momentum to this impeller. As a result, the effects of the blade outlet angle on both the radial thrust and the modeled components were clarified. The total head of the impeller with a blade outlet angle of 16 degrees increases more than the impeller with a blade outlet angle of 8 degrees at a large flow rate. In this case, since the static pressure of the circumference of the impeller increases uniformly, the time-averaged value of the radial thrust of both impellers does not change at every flow rate. On the other hand, since the impeller blade loading becomes large, the fluctuation component of the radial thrust of the impeller with the blade outlet angle of 16 degrees increases. If the blade outlet angle increases, the fluctuation component of the inertia component will increase, but the time-averaged value of the inertia component is located near the origin despite changes in the flow rate. The fluctuation component of the momentum component becomes large at all flow rates. Furthermore, although the time-averaged value of the pressure component is almost constant, the fluctuation component of the pressure component becomes large at a large flow rate. In addition to the increase of the fluctuation component of this pressure component, because the fluctuation component of the inertia and momentum components becomes large (as mentioned above), the radial thrust increases at a large flow rate, as is the case for the impeller with a large blade outlet angle.
Tojo, H; Yamada, I; Yasuhara, R; Ejiri, A; Hiratsuka, J; Togashi, H; Yatsuka, E; Hatae, T; Funaba, H; Hayashi, H; Takase, Y; Itami, K
2016-09-01
This paper evaluates the accuracy of electron temperature measurements and relative transmissivities of double-pass Thomson scattering diagnostics. The electron temperature (T e ) is obtained from the ratio of signals from a double-pass scattering system, then relative transmissivities are calculated from the measured T e and intensity of the signals. How accurate the values are depends on the electron temperature (T e ) and scattering angle (θ), and therefore the accuracy of the values was evaluated experimentally using the Large Helical Device (LHD) and the Tokyo spherical tokamak-2 (TST-2). Analyzing the data from the TST-2 indicates that a high T e and a large scattering angle (θ) yield accurate values. Indeed, the errors for scattering angle θ = 135° are approximately half of those for θ = 115°. The method of determining the T e in a wide T e range spanning over two orders of magnitude (0.01-1.5 keV) was validated using the experimental results of the LHD and TST-2. A simple method to provide relative transmissivities, which include inputs from collection optics, vacuum window, optical fibers, and polychromators, is also presented. The relative errors were less than approximately 10%. Numerical simulations also indicate that the T e measurements are valid under harsh radiation conditions. This method to obtain T e can be considered for the design of Thomson scattering systems where there is high-performance plasma that generates harsh radiation environments.
2007-03-01
front of a large area blackbody as background. The viewing angle , defined as the angle between surface normal and camera line of sight, was varied by...and polarization angle were derived from the Stokes parameters. The dependence of these polarization characteristics on viewing angle was investigated
Properties of solar generators with reflectors and radiators
NASA Astrophysics Data System (ADS)
Ebeling, W. D.; Rex, D.; Bierfischer, U.
1980-06-01
Radiation cooled concentrator systems using silicon and GaAs cells were studied. The principle of radiation cooling by the reflector surfaces is discussed for cylindrical parabolic reflectors (SARA), truncated hexagonal pyramids, and a small trough configuration. Beam paths, collection properties for imperfect orientation, and thermal optimization parameters were analyzed. The three concentrating systems with radiation cooling offer advantages over the plane panel and over the large trough. With silicon solar cells they exhibit considerably lower solar cell consumption per Kw and also lower mass per kW. With GaAs cells the SARA system reduces the number of solar cells needed per kW to less than 10%. Also in all other cases SARA offers the best values for alpha and F sub sol, as long as narrow angular tolerances of the panel orientation can be met. Analysis of the energy collecting properties for imperfect orientation shows the superiority of the hexagonal concentrator. This device can produce power for even large angles between the sun and the panel normal.
Chen, Mo; Liu, Chao; Rui, Daoman; Xian, Hao
2018-02-19
Although there is an urgent demand, it is still a tremendous challenge to use the coherent optical communication technology to the satellite-to-ground data transmission system especially at large zenith angle due to the influence of atmospheric turbulence. Adaptive optics (AO) is a considerable scheme to solve the problem. In this paper, we integrate the adaptive optics (AO) to the coherent laser communications and the performances of mixing efficiency as well as bit-error-rate (BER) at different zenith angles are studied. The analytical results show that the increasing of zenith angle can severely decrease the performances of the coherent detection, and increase the BER to higher than 10 -3 , which is unacceptable. The simulative results of coherent detection with AO compensation indicate that the larger mixing efficiency and lower BER can be performed by the coherent receiver with a high-mode AO compensation. The experiment of correcting the atmospheric turbulence wavefront distortion using a 249-element AO system at large zenith angles is carried out. The result demonstrates that the AO system has a significant improvement on satellite-to-ground coherent optical communication system at large zenith angle. It also indicates that the 249-element AO system can only meet the needs of coherent communication systems at zenith angle smaller than 65̊ for the 1.8m telescope under weak and moderate turbulence.
Analysis of Large-scale Anisotropy of Ultra-high Energy Cosmic Rays in HiRes Data
NASA Astrophysics Data System (ADS)
Abbasi, R. U.; Abu-Zayyad, T.; Allen, M.; Amann, J. F.; Archbold, G.; Belov, K.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Brusova, O. A.; Burt, G. W.; Cannon, C.; Cao, Z.; Deng, W.; Fedorova, Y.; Findlay, J.; Finley, C. B.; Gray, R. C.; Hanlon, W. F.; Hoffman, C. M.; Holzscheiter, M. H.; Hughes, G.; Hüntemeyer, P.; Ivanov, D.; Jones, B. F.; Jui, C. C. H.; Kim, K.; Kirn, M. A.; Koers, H.; Loh, E. C.; Maestas, M. M.; Manago, N.; Marek, L. J.; Martens, K.; Matthews, J. A. J.; Matthews, J. N.; Moore, S. A.; O'Neill, A.; Painter, C. A.; Perera, L.; Reil, K.; Riehle, R.; Roberts, M. D.; Rodriguez, D.; Sasaki, M.; Schnetzer, S. R.; Scott, L. M.; Sinnis, G.; Smith, J. D.; Sokolsky, P.; Song, C.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Thomas, J. R.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tupa, D.; Wiencke, L. R.; Zech, A.; Zhang, X.; High Resolution Fly's Eye Collaboration
2010-04-01
Stereo data collected by the HiRes experiment over a six-year period are examined for large-scale anisotropy related to the inhomogeneous distribution of matter in the nearby universe. We consider the generic case of small cosmic-ray deflections and a large number of sources tracing the matter distribution. In this matter tracer model the expected cosmic-ray flux depends essentially on a single free parameter, the typical deflection angle θ s . We find that the HiRes data with threshold energies of 40 EeV and 57 EeV are incompatible with the matter tracer model at a 95% confidence level unless θ s > 10° and are compatible with an isotropic flux. The data set above 10 EeV is compatible with both the matter tracer model and an isotropic flux.
Large incidence angle and defocus influence cat's eye retro-reflector
NASA Astrophysics Data System (ADS)
Zhang, Lai-xian; Sun, Hua-yan; Zhao, Yan-zhong; Yang, Ji-guang; Zheng, Yong-hui
2014-11-01
Cat's eye lens make the laser beam retro-reflected exactly to the opposite direction of the incidence beam, called cat's eye effect, which makes rapid acquiring, tracking and pointing of free space optical communication possible. Study the influence of cat's eye effect to cat's eye retro-reflector at large incidence angle is useful. This paper analyzed the process of how the incidence angle and focal shit affect effective receiving area, retro-reflected beam divergence angle, central deviation of cat's eye retro-reflector at large incidence angle and cat's eye effect factor using geometrical optics method, and presented the analytic expressions. Finally, numerical simulation was done to prove the correction of the study. The result shows that the efficiency receiving area of cat's eye retro-reflector is mainly affected by incidence angle when the focal shift is positive, and it decreases rapidly when the incidence angle increases; the retro-reflected beam divergence and central deviation is mainly affected by focal shift, and within the effective receiving area, the central deviation is smaller than beam divergence in most time, which means the incidence beam can be received and retro-reflected to the other terminal in most time. The cat's eye effect factor gain is affected by both incidence angle and focal shift.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abreu, P.; /Lisbon, IST; Aglietta, M.
2011-11-01
We present a comprehensive study of the influence of the geomagnetic field on the energy estimation of extensive air showers with a zenith angle smaller than 60{sup o}, detected at the Pierre Auger Observatory. The geomagnetic field induces an azimuthal modulation of the estimated energy of cosmic rays up to the {approx} 2% level at large zenith angles. We present a method to account for this modulation of the reconstructed energy. We analyse the effect of the modulation on large scale anisotropy searches in the arrival direction distributions of cosmic rays. At a given energy, the geomagnetic effect is shownmore » to induce a pseudo-dipolar pattern at the percent level in the declination distribution that needs to be accounted for. In this work, we have identified and quantified a systematic uncertainty affecting the energy determination of cosmic rays detected by the surface detector array of the Pierre Auger Observatory. This systematic uncertainty, induced by the influence of the geomagnetic field on the shower development, has a strength which depends on both the zenith and the azimuthal angles. Consequently, we have shown that it induces distortions of the estimated cosmic ray event rate at a given energy at the percent level in both the azimuthal and the declination distributions, the latter of which mimics an almost dipolar pattern. We have also shown that the induced distortions are already at the level of the statistical uncertainties for a number of events N {approx_equal} 32 000 (we note that the full Auger surface detector array collects about 6500 events per year with energies above 3 EeV). Accounting for these effects is thus essential with regard to the correct interpretation of large scale anisotropy measurements taking explicitly profit from the declination distribution.« less
GROUP DECISIONS. Shared decision-making drives collective movement in wild baboons.
Strandburg-Peshkin, Ariana; Farine, Damien R; Couzin, Iain D; Crofoot, Margaret C
2015-06-19
Conflicts of interest about where to go and what to do are a primary challenge of group living. However, it remains unclear how consensus is achieved in stable groups with stratified social relationships. Tracking wild baboons with a high-resolution global positioning system and analyzing their movements relative to one another reveals that a process of shared decision-making governs baboon movement. Rather than preferentially following dominant individuals, baboons are more likely to follow when multiple initiators agree. When conflicts arise over the direction of movement, baboons choose one direction over the other when the angle between them is large, but they compromise if it is not. These results are consistent with models of collective motion, suggesting that democratic collective action emerging from simple rules is widespread, even in complex, socially stratified societies. Copyright © 2015, American Association for the Advancement of Science.
A Microbeam Small-Angle X-ray Scattering Study on Enamel Crystallites in Subsurface Lesion
NASA Astrophysics Data System (ADS)
Yagi, N.; Ohta, N.; Matsuo, T.; Tanaka, T.; Terada, Y.; Kamasaka, H.; Kometani, T.
2010-10-01
The early caries lesion in bovine tooth enamel was studied by two different X-ray diffraction systems at the SPring-8 third generation synchrotron radiation facility. Both allowed us simultaneous measurement of the small and large angle regions. The beam size was 6μm at BL40XU and 50μm at BL45XU. The small-angle scattering from voids in the hydroxyapatite crystallites and the wide-angle diffraction from the hydroxyapatite crystals were observed simultaneously. At BL40XU an X-ray image intensifier was used for the small-angle and a CMOS flatpanel detector for the large-angle region. At BL45XU, a large-area CCD detector was used to cover both regions. A linear microbeam scan at BL40XU showed a detailed distribution of voids and crystals and made it possible to examine the structural details in the lesion. The two-dimensional scan at BL45XU showed distribution of voids and crystals in a wider region in the enamel. The simultaneous small- and wide-angle measurement with a microbeam is a powerful tool to elucidate the mechanisms of demineralization and remineralization in the early caries lesion.
Optimization of radar imaging system parameters for geological analysis
NASA Technical Reports Server (NTRS)
Waite, W. P.; Macdonald, H. C.; Kaupp, V. H.
1981-01-01
The use of radar image simulation to model terrain variation and determine optimum sensor parameters for geological analysis is described. Optimum incidence angle is determined by the simulation, which evaluates separately the discrimination of surface features possible due to terrain geometry and that due to terrain scattering. Depending on the relative relief, slope, and scattering cross section, optimum incidence angle may vary from 20 to 80 degrees. Large incident angle imagery (more than 60 deg) is best for the widest range of geological applications, but in many cases these large angles cannot be achieved by satellite systems. Low relief regions require low incidence angles (less than 30 deg), so a satellite system serving a broad range of applications should have at least two selectable angles of incidence.
NASA Astrophysics Data System (ADS)
Li, Jing; Song, Ningfang; Yang, Gongliu; Jiang, Rui
2016-07-01
In the initial alignment process of strapdown inertial navigation system (SINS), large misalignment angles always bring nonlinear problem, which can usually be processed using the scaled unscented Kalman filter (SUKF). In this paper, the problem of large misalignment angles in SINS alignment is further investigated, and the strong tracking scaled unscented Kalman filter (STSUKF) is proposed with fixed parameters to improve convergence speed, while these parameters are artificially constructed and uncertain in real application. To further improve the alignment stability and reduce the parameters selection, this paper proposes a fuzzy adaptive strategy combined with STSUKF (FUZZY-STSUKF). As a result, initial alignment scheme of large misalignment angles based on FUZZY-STSUKF is designed and verified by simulations and turntable experiment. The results show that the scheme improves the accuracy and convergence speed of SINS initial alignment compared with those based on SUKF and STSUKF.
Synthetic aperture radar imagery of airports and surrounding areas: Philadelphia Airport
NASA Technical Reports Server (NTRS)
Onstott, Robert G.; Gineris, Denise J.
1990-01-01
The statistical description of ground clutter at an airport and in the surrounding area is addressed. These data are being utilized in a program to detect microbursts. Synthetic Aperture Radar (SAR) data were collected at the Philadelphia Airport. These data and the results of the clutter study are described. This 13 km x 10 km scene was imaged at 9.38 GHz and HH-polarization and contained airport grounds and facilities (6 percent), industrial (14 percent), residential (14 percent), fields (10 percent), forest (8 percent), and water (33 percent). Incidence angles ranged from 40 to 84 deg. Even at the smallest incidence angles, the distributed targets such as forest, fields, water, and residential rarely had mean scattering coefficients greater than -10 dB. Eighty-seven percent of the image had scattering coefficients less than -17.5 dB. About 1 percent of the scattering coefficients exceeded 0 dB, with about 0.1 percent above 10 dB. Sources which produced the largest cross sections were largely confined to the airport grounds and areas highly industrialized. The largest cross sections were produced by observing broadside large buildings surrounded by smooth surfaces.
NASA Astrophysics Data System (ADS)
Waggoner, William Tracy
1990-01-01
Experimental capture cross sections d sigma / dtheta versus theta , are presented for various ions incident on neutral targets. First, distributions are presented for Ar ^{rm 8+} ions incident on H_{rm 2}, D _{rm 2}, and Ar targets. Energy gain studies indicate that capture occurs to primarily a 5d,f final state of Ar^{rm 7+} with some contributions from transfer ionization (T.I.) channels. Angular distribution spectra for all three targets are similar, with spectra having a main peak located at forward angles which is attributed to single capture events, and a secondary structure occurring at large angles which is attributed to T.I. contributions. A series of Ar^{rm 8+} on Ar spectra were collected using a retarding grid system as a low resolution energy spectrometer to resolve single capture events from T.I. events. The resulting single capture and T.I. angular distributions are presented. Results are discussed in terms of a classical deflection function employing a simple two state curve crossing model. Angular distributions for electron capture from He by C, N, O, F, and Ne ions with charge states from 5 ^+-8^+ are presented for projectile energies between 1.2 and 2.0 kV. Distributions for the same charge state but different ion species are simlar, but not identical with distributions for the 5 ^+ and 7^+ ions being strongly forward peaked, the 6^+ distributions are much less forward peaked with the O^{6+} distributions showing structure, the Ne^{8+} ion distribution appears to be an intermediate case between forward peaking and large angle scattering. These results are discussed in terms of classical deflection functions which utilize two state Coulomb diabatic curve crossing models. Finally, angular distributions are presented for electron capture from He by Ar^{rm 6+} ions at energies between 1287 eV and 296 eV. At large projectile energies the distribution is broad. As the energy decreases below 523 eV, distributions shift to forward angles with a second peak appearing outside the Coulomb angle, theta_{c} = Q/2E, which continues to grow in magnitude as the projectile energy decreases further. Results are compared with a model calculation employing a two state diabatic Coulomb curve crossing model and the classical deflection function.
Precision determination of electron scattering angle by differential nuclear recoil energy method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liyanage, N.; Saenboonruang, K.
2015-12-01
The accurate determination of the scattered electron angle is crucial to electron scattering experiments, both with open-geometry large-acceptance spectrometers and ones with dipole-type magnetic spectrometers for electron detection. In particular, for small central-angle experiments using dipole-type magnetic spectrometers, in which surveys are used to measure the spectrometer angle with respect to the primary electron beam, the importance of the scattering angle determination is emphasized. However, given the complexities of large experiments and spectrometers, the accuracy of such surveys is limited and insufficient to meet demands of some experiments. In this article, we present a new technique for determination of themore » electron scattering angle based on an accurate measurement of the primary beam energy and the principle of differential nuclear recoil. This technique was used to determine the scattering angle for several experiments carried out at the Experimental Hall A, Jefferson Lab. Results have shown that the new technique greatly improved the accuracy of the angle determination compared to surveys.« less
Precision Determination of Electron Scattering Angle by Differential Nuclear Recoil Energy Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liyanage, Nilanga; Saenboonruang, Kiadtisak
2015-09-01
The accurate determination of the scattered electron angle is crucial to electron scattering experiments, both with open-geometry large-acceptance spectrometers and ones with dipole-type magnetic spectrometers for electron detection. In particular, for small central-angle experiments using dipole-type magnetic spectrometers, in which surveys are used to measure the spectrometer angle with respect to the primary electron beam, the importance of the scattering angle determination is emphasized. However, given the complexities of large experiments and spectrometers, the accuracy of such surveys is limited and insufficient to meet demands of some experiments. In this article, we present a new technique for determination of themore » electron scattering angle based on an accurate measurement of the primary beam energy and the principle of differential nuclear recoil. This technique was used to determine the scattering angle for several experiments carried out at the Experimental Hall A, Jefferson Lab. Results have shown that the new technique greatly improved the accuracy of the angle determination compared to surveys.« less
Radar signatures of road vehicles: airborne SAR experiments
NASA Astrophysics Data System (ADS)
Palubinskas, G.; Runge, H.; Reinartz, P.
2005-10-01
The German radar satellite TerraSAR-X is a high resolution, dual receive antenna SAR satellite, which will be launched in spring 2006. Since it will have the capability to measure the velocity of moving targets, the acquired interferometric data can be useful for traffic monitoring applications on a global scale. DLR has started already the development of an automatic and operational processing system which will detect cars, measure their speed and assign them to a road. Statistical approaches are used to derive the vehicle detection algorithm, which require the knowledge of the radar signatures of vehicles, especially under consideration of the geometry of the radar look direction and the vehicle orientation. Simulation of radar signatures is a very difficult task due to the lack of realistic models of vehicles. In this paper the radar signatures of the parking cars are presented. They are estimated experimentally from airborne E-SAR X-band data, which have been collected during flight campaigns in 2003-2005. Several test cars of the same type placed in carefully selected orientation angles and several over-flights with different heading angles made it possible to cover the whole range of aspect angles from 0° to 180°. The large synthetic aperture length or beam width angle of 7° can be divided into several looks. Thus processing of each look separately allows to increase the angle resolution. Such a radar signature profile of one type of vehicle over the whole range of aspect angles in fine resolution can be used further for the verification of simulation studies and for the performance prediction for traffic monitoring with TerraSAR-X.
NASA Astrophysics Data System (ADS)
Hamidi, S. M.; Behjati, S.
2018-02-01
Here we introduce large area plasmonic touching triangular dimers by angle controlled colloidal nanolithography to use them as an efficient multi channel absorber and also high figure of merit sensors. For this purpose, we coated gold thin films onto nanometric and also micrometric polystyrene hexagonal closed packed masks in different deposition angles and also diverse substrate polar angles. Our prepared samples, after remove masks, show large area touching triangular pattern with different inter particle distances in greater polar angles. To get more sense about optical response of the samples such as transmittance and also electric field distribution, we use finite difference time domain method in simulation part. The transmittance plot shows one narrow or multi-channel adjustable deep depend on inter-particle distances which can be controlled by azimuthally angle in nano lithography process. Also, due to the isoelliptical points in the transmittance spectra; we can see the bright and dark plasmon modes coupling and thus the Fano like resonance takes place in the optical spectral region which is very useful for refractive index measurement.
Optimal attitude maneuver execution for the Advanced Composition Explorer (ACE) mission
NASA Technical Reports Server (NTRS)
Woodard, Mark A.; Baker, David
1995-01-01
The Advanced Composition Explorer (ACE) spacecraft will require frequent attitude reorientations in order to maintain the spacecraft high gain antenna (HGA) within 3 deg of earth-pointing. These attitude maneuvers will be accomplished by employing a series of ground-commanded thruster pulses, computed by ground operations personnel, to achieve the desired change in the spacecraft angular momentum vector. With each maneuver, attitude nutation will be excited. Large nutation angles are undesirable from a science standpoint. It is important that the thruster firings be phased properly in order to minimize the nutation angle at the end of the maneuver so that science collection time is maximized. The analysis presented derives a simple approximation for the nutation contribution resulting from a series of short thruster burns. Analytic equations are derived which give the induced nutation angle as a function of the number of small thruster burns used to execute the attitude maneuver and the phasing of the burns. The results show that by properly subdividing the attitude burns, the induced nutation can be kept low. The analytic equations are also verified through attitude dynamics simulation and simulation results are presented. Finally, techniques for quantifying the post-maneuver nutation are discussed.
Vélez-de Lachica, J C; Valdez-Jiménez, L A; Inzunza-Sánchez, J M
2017-01-01
Hallux valgus is considered the most common musculoskeletal deformity, with a prevalence of 88%. There are more than 130 surgical techniques for its treatment; currently, percutaneous ones are popular; however, they do not take into account the metatarsal-phalangeal correction angle. The aim of this study is to propose a modified technique for the correction of the percutaneous metatarsal-phalangeal and inter-metatarsal angles and to evaluate its clinical and radiological results. An experimental, prospective and longitudinal study in 10 patients with moderate to severe hallux valgus according to the classification of Coughlin and Mann were collected; the results were evaluated with the AOFAS scale at 15, 30, 60 and 90 days. The McBride technique and the technique of percutaneous anchor with the proposed amendment were performed. The AOFAS scale was applied as described, finding a progressive increase of the rating; the average correction of the inter-metatarsal angle was 8.8 degrees and of the metatarsal-phalangeal, 9.12. The modified technique of percutaneous anchor showed clear clinical and radiographic improvements in the short term. Our modified technique is proposed for future projects, including a large sample with long-term follow-up.
Morphology and Growth Kinetics of Straight and Kinked Tin Whiskers
NASA Astrophysics Data System (ADS)
Susan, Donald; Michael, Joseph; Grant, Richard P.; McKenzie, Bonnie; Yelton, W. Graham
2013-03-01
Time-lapse SEM studies of Sn whiskers were conducted to estimate growth kinetics and document whisker morphologies. For straight whiskers, growth rates of 3 to 4 microns per day were measured at room temperature. Two types of kinked whiskers were observed. For Type A kinks, the original growth segment spatial orientation remains unchanged, there are no other changes in morphology or diameter, and growth continues. For Type B kinks, the spatial orientation of the original segment changes and it appears that the whisker bends over. Whiskers with Type B kinks show changes in morphology and diameter at the base, indicating grain boundary motion in the film, which eliminates the conditions suitable for long-term whisker growth. To estimate the errors in the whisker growth measurements, a technique is presented to correct for SEM projection effects. With this technique, the actual growth angles and lengths of a large number of whiskers were collected. It was found that most whiskers grow at moderate or shallow angles with respect to the surface; few straight whiskers grow nearly normal to the surface. In addition, there is no simple correlation between growth angles and lengths for whiskers observed over an approximate 2-year period.
Investigation on adaptive wing structure based on shape memory polymer composite hinge
NASA Astrophysics Data System (ADS)
Yu, Yuemin; Li, Xinbo; Zhang, Wei; Leng, Jinsong
2007-07-01
This paper describes the design and investigation of the SMP composite hinge and the morphing wing structure. The SMP composite hinge was based on SMP and carbon fiber fabric. The twisting recoverability of it was investigated by heating and then cooling repeatedly above and below the Tg. The twisting recoverability characterized by the twisting angle. Results show that the SMP composite hinge have good shape recoverability, Recovery time has a great influence on the twisting recoverability. The twisting recovery ratio became large with the increment of recovery time. The morphing wing can changes shape for different tasks. For the advantages of great recovery force and stable performances, we adopt SMP composite hinge as actuator to apply into the structure of the wing which can realize draw back wings to change sweep angle according to the speed and other requirements of military airplanes. Finally, a series of simulations and experiments are performed to investigate the deformations of morphing wings have been performed successfully. It can be seen that the sweep angle change became large with the increment of initial angle. The area reduction became large with the increment of initial angle, but after 75° the area reduction became smaller and smaller. The deformations of the triangle wing became large with the increment of temperature. The area and the sweep angle of wings can be controlled by adjusting the stimulate temperature and the initial twisting angle of shape memory polymer composite hinge.
NASA Astrophysics Data System (ADS)
Cheng, Z. W.; Shi, J. K.; Zhang, J. C.; Torkar, K.; Kistler, L. M.; Dunlop, M.; Carr, C.; Rème, H.; Dandouras, I.; Fazakerley, A.
2018-04-01
The influence of the interplanetary magnetic field (IMF) cone angle θ (the angle between the IMF direction and the Sun-Earth line) on the invariant latitudes of the footprints of the field-aligned currents (FACs) in the magnetotail has been investigated. We performed a statistical study of 542 FAC cases observed by the four Cluster spacecraft in the Northern Hemisphere. The results show that there are almost no FACs when the IMF cone angle is less than 10°, and there are indications of the FACs in the plasma sheet boundary layers being weak under the radial IMF conditions. The footprints of the large FAC (>10 nA/m2) cases are within invariant latitudes <71° and mainly within IMF cone angles θ > 60°, which implies that the footprints of the large FACs mainly expand equatorward with large IMF cone angle. The equatorward boundary of the FAC footprints in the polar region decreases with increasing IMF cone angle (and has a better correlation for northward IMF), which shows that the IMF cone angle plays an important controlling role in FAC distributions in the magnetosphere-ionosphere coupling system. There is almost no correlation between the poleward boundary and the IMF cone angle for both northward and southward IMF. This is because the poleward boundary movement is limited by an enhanced lobe magnetic flux. This is the first time a correlation between FAC footprints in the polar region and IMF cone angles has been determined.
NASA Astrophysics Data System (ADS)
Yuter, S. E.; Garrett, T. J.; Fallgatter, C.; Shkurko, K.; Howlett, D.; Dean, J.; Hardin, N.
2012-12-01
We introduce a new instrument, the Fallgatter Technologies Multi-Angle Snowflake Camera (MASC), that provides <30 micron resolution stereoscopic photographic images of individual large falling hydrometeors with accurate measurements of their fallspeed. Previously, identification of hydrometeor form has required initial collection on a flat surface, a process that is somewhat subjective and remarkably finicky due to the fragile nature of the particles. Other hydrometeor instruments such as the 2DVD, are automated and leave the particle untouched and provide fallspeed data. However, they provide only 200 micron resolution silhouettes, which can be insufficient for habit and riming identification and the requirements of microwave scattering calculations. The MASC is like the 2DVD but uses a sensitive IR motion sensor for a trigger and actually photographs the particle surface from multiple angles. Field measurements from Alta Ski Area near Salt Lake City are providing beautiful images and fallspeed data, suggesting that MASC measurements may help development of improved parameterizations for hydrometeor microwave scattering. Hundreds of thousands of images have been collected enabling comparisons of hydrometeor development, morphology and fallspeed with a co-located vertically pointing 24 GHz MicroRainRadar radar. Here we show multi-angle images from the MASC, size fallspeed relationships, and discrete dipole approximation scattering calculations for a range of hydrometeor forms at the frequencies of 24 GHz, 94 GHz and 183 GHz. The scattering calculations indicate that complex, aggregated snowflake shapes appear to be more strongly forward scattering, at the expense of reduced back-scatter, than graupel particles of similar size.
A small-angle large-acceptance detection system for hadrons
NASA Astrophysics Data System (ADS)
Kalantar-Nayestanaki, N.; Bacelar, J. C. S.; Brandenburg, S.; Huisman, H.; Messchendorp, J. G.; Mul, F. A.; Schadmand, S.; van der Schaaf, K.; Schippers, J. M.; Volkerts, M.
2000-04-01
The performance of a segmented large-acceptance detector, capable of measuring particles at small forward angles, is presented. The Small-Angle Large-Acceptance Detector (SALAD), was built to handle very high rates of particles impinging on the detector. Particles down to a few MeV can be detected with it. The position of charged particles is measured by two Multi-Wire Proportional Chambers while scintillator blocks are used to measure the energy of the detected particle. A stack of thin scintillators placed behind the energy detectors allows for a hardware rejection (veto) of high-energy particles going through the scintillator blocks.
Efficacy of using data from angler-caught Burbot to estimate population rate functions
Brauer, Tucker A.; Rhea, Darren T.; Walrath, John D.; Quist, Michael C.
2018-01-01
The effective management of a fish population depends on the collection of accurate demographic data from that population. Since demographic data are often expensive and difficult to obtain, developing cost‐effective and efficient collection methods is a high priority. This research evaluates the efficacy of using angler‐supplied data to monitor a nonnative population of Burbot Lota lota. Age and growth estimates were compared between Burbot collected by anglers and those collected in trammel nets from two Wyoming reservoirs. Collection methods produced different length‐frequency distributions, but no difference was observed in age‐frequency distributions. Mean back‐calculated lengths at age revealed that netted Burbot grew faster than angled Burbot in Fontenelle Reservoir. In contrast, angled Burbot grew slightly faster than netted Burbot in Flaming Gorge Reservoir. Von Bertalanffy growth models differed between collection methods, but differences in parameter estimates were minor. Estimates of total annual mortality (A) of Burbot in Fontenelle Reservoir were comparable between angled (A = 35.4%) and netted fish (33.9%); similar results were observed in Flaming Gorge Reservoir for angled (29.3%) and netted fish (30.5%). Beverton–Holt yield‐per‐recruit models were fit using data from both collection methods. Estimated yield differed by less than 15% between data sources and reservoir. Spawning potential ratios indicated that an exploitation rate of 20% would be required to induce recruitment overfishing in either reservoir, regardless of data source. Results of this study suggest that angler‐supplied data are useful for monitoring Burbot population dynamics in Wyoming and may be an option to efficiently monitor other fish populations in North America.
High prevalence of narrow angles among Filipino-American patients.
Seider, Michael I; Sáles, Christopher S; Lee, Roland Y; Agadzi, Anthony K; Porco, Travis C; Weinreb, Robert N; Lin, Shan C
2011-03-01
To determine the prevalence of gonioscopically narrow anterior chamber angles in a Filipino-American clinic population. The records of 122 consecutive, new, self-declared Filipino-American patients examined in a comprehensive ophthalmology clinic in Vallejo, California were reviewed retrospectively. After exclusion, 222 eyes from 112 patients remained for analysis. Data were collected for anterior chamber angle grade as determined by gonioscopy (Shaffer system), age, sex, manifest refraction (spherical equivalent), intraocular pressure, and cup-to-disk ratio. Data from both eyes of patients were included and modeled using standard linear mixed-effects regression. As a comparison, data were also collected from a group of 30 consecutive White patients from the same clinic. After exclusion, 50 eyes from 25 White patients remained for comparison. At least 1 eye of 24% of Filipino-American patients had a narrow anterior chamber angle (Shaffer grade ≤ 2). Filipino-American angle grade significantly decreased with increasingly hyperopic refraction (P=0.007) and larger cup-to-disk ratio (P=0.038). Filipino-American women had significantly decreased angle grades compared with men (P=0.028), but angle grade did not vary by intraocular pressure or age (all, P≥ 0.059). Narrow anterior chamber angles are highly prevalent in Filipino-American patients in our clinic population.
NASA Astrophysics Data System (ADS)
Zhang, Qian; Fan, Yifeng; Zhang, Yongguang; Chou, Shuren; Ju, Weimin; Chen, Jing M.
2016-09-01
An automated spectroscopy system, which is divided into fix-angle and multi-angle subsystems, for collecting simultaneous, continuous and long-term measurements of canopy hyper-spectra in a crop ecosystem is developed. The fix-angle subsystem equips two spectrometers: one is HR2000+ (OceanOptics) covering the spectral range 200-1100 nm with 1.0 nm spectral resolution, and another one is QE65PRO (OceanOptics) providing 0.1 nm spectral resolution within the 730-780 nm spectral range. Both spectrometers connect a cosine-corrected fiber-optic fixed up-looking to collect the down-welling irradiance and a bare fiber-optic to measure the up-welling radiance from the vegetation. An inline fiber-optic shutter FOS-2x2-TTL (OceanOptics) is used to switch between input fibers to collect the signal from either the canopy or sky at one time. QE65PRO is used to permit estimation of vegetation Sun-Induced Fluorescence (SIF) in the O2-A band. The data collection scheme includes optimization of spectrometer integration time to maximize the signal to noise ratio and measurement of instrument dark currency. The multi-angle subsystem, which can help understanding bidirectional reflectance effects, alternatively use HR4000 (OceanOptics) providing 0.1 nm spectral resolution within the 680-800 nm spectral range to measure multi-angle SIF. This subsystem additionally includes a spectrometer Unispec-DC (PPSystems) featuring both up-welling and down-welling channels with 3 nm spectral resolution covering the 300-1100 nm spectral range. Two down-looking fiber-optics are mounted on a rotating device PTU-D46 (FLIR Systems), which can rotate horizontally and vertically at 10° angular step widths. Observations can be used to calculate canopy reflectance, vegetation indices and SIF for monitoring plant physiological processes.
Thilak, Vimal; Voelz, David G; Creusere, Charles D
2007-10-20
A passive-polarization-based imaging system records the polarization state of light reflected by objects that are illuminated with an unpolarized and generally uncontrolled source. Such systems can be useful in many remote sensing applications including target detection, object segmentation, and material classification. We present a method to jointly estimate the complex index of refraction and the reflection angle (reflected zenith angle) of a target from multiple measurements collected by a passive polarimeter. An expression for the degree of polarization is derived from the microfacet polarimetric bidirectional reflectance model for the case of scattering in the plane of incidence. Using this expression, we develop a nonlinear least-squares estimation algorithm for extracting an apparent index of refraction and the reflection angle from a set of polarization measurements collected from multiple source positions. Computer simulation results show that the estimation accuracy generally improves with an increasing number of source position measurements. Laboratory results indicate that the proposed method is effective for recovering the reflection angle and that the estimated index of refraction provides a feature vector that is robust to the reflection angle.
NASA Astrophysics Data System (ADS)
Thilak, Vimal; Voelz, David G.; Creusere, Charles D.
2007-10-01
A passive-polarization-based imaging system records the polarization state of light reflected by objects that are illuminated with an unpolarized and generally uncontrolled source. Such systems can be useful in many remote sensing applications including target detection, object segmentation, and material classification. We present a method to jointly estimate the complex index of refraction and the reflection angle (reflected zenith angle) of a target from multiple measurements collected by a passive polarimeter. An expression for the degree of polarization is derived from the microfacet polarimetric bidirectional reflectance model for the case of scattering in the plane of incidence. Using this expression, we develop a nonlinear least-squares estimation algorithm for extracting an apparent index of refraction and the reflection angle from a set of polarization measurements collected from multiple source positions. Computer simulation results show that the estimation accuracy generally improves with an increasing number of source position measurements. Laboratory results indicate that the proposed method is effective for recovering the reflection angle and that the estimated index of refraction provides a feature vector that is robust to the reflection angle.
Stumm, Frederick; Chu, Anthony; Como, Michael D.; Noll, Michael L.; Joesten, Peter K.
2015-01-01
Advanced borehole-geophysical methods were used to investigate the hydrogeology of the crystalline bedrock in three boreholes on Roosevelt Island, New York County, New York. Cornell University was evaluating the feasibility of using geothermal energy for a future campus at the site. The borehole-logging techniques were used to delineate bedrock fractures, foliation, and groundwater-flow zones of the Fordham Gneiss in test boreholes at the site. Three fracture populations dominated by small (0.04 in or less) fractures were delineated in the three boreholes. A sub-horizontal population with low to moderate dipping fractures, a northeast dipping population with moderate to high angle fractures, and a small northwest dipping high angle fracture population. One large southwest dipping transmissive fracture underlies the entire study area with a mean dip azimuth of 235º southwest and a dip angle of 31º (N325ºW 31ºSW). The mean foliation dip azimuth was 296º northwest with a mean dip angle of 73º (N26ºE 73ºNW). Groundwater appears to flow through a network of fractures dominated by a large fracture underlying the site that is affected by tidal variations from the nearby East River. The total number of fractures penetrated by each borehole was 95, 63, and 68, with fracture indices of 0.26, 0.20, and 0.20 in GT-1 (NY292), GT-2 (NY293), and GT-3 (NY294), respectively. Aquifer test data indicate the specific capacity of boreholes GT-1 (NY292), GT-2 (NY293), and GT-3 (NY294) was 1.9, 1.5, and 3.7 gal/min/ft, respectively. The large contribution of flow from the leaking casing in borehole GT-3 (NY294) caused the doubling in specific capacity compared to boreholes GT-1 (NY292) and GT-2 (NY293). The transmissivities of the large fracture intersected by the three boreholes tested (GT-1, GT-2, and GT-3), calculated from aquifer-test analyses of time-drawdown data and flowmeter differencing, were 133, 124, and 65 feet squared per day (ft2/d), respectively. Gringarten analysis indicated the large fracture intersects a low transmissivity boundary or distant fracture network with an average transmissivity of 69 ft2/d, this distant hydraulic boundary averages about 200 ft away from boreholes GT-1 and GT-2. Field measurements of specific conductance of the three boreholes under ambient conditions at the site indicate an increase in conductivity toward the southwest part of the site. Specific conductance was 5, 6, and 23 millisiemens per centimeter (mS/cm) in boreholes GT-2, GT-3, and GT-1, respectively. Three borehole radar reflection logs collected at each of the boreholes indicated increased penetration with depth and the large fracture intersecting all three boreholes was imaged as far as 80 ft from the boreholes. A borehole radar attenuation tomogram from GT-1 to GT-2 indicated the large fracture intersected by the boreholes extends between the boreholes with a low angle southwest dip.
NASA Astrophysics Data System (ADS)
Korenaga, Jun
2011-05-01
The seismic structure of large igneous provinces provides unique constraints on the nature of their parental mantle, allowing us to investigate past mantle dynamics from present crustal structure. To exploit this crust-mantle connection, however, it is prerequisite to quantify the uncertainty of a crustal velocity model, as it could suffer from considerable velocity-depth ambiguity. In this contribution, a practical strategy is suggested to estimate the model uncertainty by explicitly exploring the degree of velocity-depth ambiguity in the model space. In addition, wide-angle seismic data collected over the Ontong Java Plateau are revisited to provide a worked example of the new approach. My analysis indicates that the crustal structure of this gigantic plateau is difficult to reconcile with the melting of a pyrolitic mantle, pointing to the possibility of large-scale compositional heterogeneity in the convecting mantle.
ANALYSIS OF LARGE-SCALE ANISOTROPY OF ULTRA-HIGH ENERGY COSMIC RAYS IN HiRes DATA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbasi, R. U.; Abu-Zayyad, T.; Allen, M.
2010-04-10
Stereo data collected by the HiRes experiment over a six-year period are examined for large-scale anisotropy related to the inhomogeneous distribution of matter in the nearby universe. We consider the generic case of small cosmic-ray deflections and a large number of sources tracing the matter distribution. In this matter tracer model the expected cosmic-ray flux depends essentially on a single free parameter, the typical deflection angle {theta} {sub s}. We find that the HiRes data with threshold energies of 40 EeV and 57 EeV are incompatible with the matter tracer model at a 95% confidence level unless {theta} {sub s}more » > 10 deg. and are compatible with an isotropic flux. The data set above 10 EeV is compatible with both the matter tracer model and an isotropic flux.« less
NASA Astrophysics Data System (ADS)
Guzzo, M. M.; Holanda, P. C.; Reggiani, N.
2003-08-01
The neutrino energy spectrum observed in KamLAND is compatible with the predictions based on the Large Mixing Angle realization of the MSW (Mikheyev-Smirnov-Wolfenstein) mechanism, which provides the best solution to the solar neutrino anomaly. From the agreement between solar neutrino data and KamLAND observations, we can obtain the best fit values of the mixing angle and square difference mass. When doing the fitting of the MSW predictions to the solar neutrino data, it is assumed the solar matter do not have any kind of perturbations, that is, it is assumed the the matter density monothonically decays from the center to the surface of the Sun. There are reasons to believe, nevertheless, that the solar matter density fluctuates around the equilibrium profile. In this work, we analysed the effect on the Large Mixing Angle parameters when the density matter randomically fluctuates around the equilibrium profile, solving the evolution equation in this case. We find that, in the presence of these density perturbations, the best fit values of the mixing angle and the square difference mass assume smaller values, compared with the values obtained for the standard Large Mixing Angle Solution without noise. Considering this effect of the random perturbations, the lowest island of allowed region for KamLAND spectral data in the parameter space must be considered and we call it very-low region.
The electron drift velocity, ion acoustic speed and irregularity drifts in high-latitude E-region
NASA Astrophysics Data System (ADS)
Uspensky, M. V.; Pellinen, R. J.; Janhunen, P.
2008-10-01
The purpose of this study is to examine the STARE irregularity drift velocity dependence on the EISCAT line-of-sight (los or l-o-s) electron drift velocity magnitude, VE×Blos, and the flow angle ΘN,F (superscript N and/or F refer to the STARE Norway and Finland radar). In the noon-evening sector the flow angle dependence of Doppler velocities, VirrN,F, inside and outside the Farley-Buneman (FB) instability cone (|VE×Blos|>Cs and |VE×Blos|
NASA Astrophysics Data System (ADS)
Nguyen, Ha; Kang, Sungmin; Tokita, Masatoshi; Watanabe, Junji
2011-07-01
New homologs of bent molecules with a large bent-angle central core of 4,6-dichloro benzene and an alkylthio terminal tail have been synthesized. Although the corresponding alkoxy-tail homologs show only the calamitic phases because of its large bent angles around 160°, the new homologs with an alkylthio tail exhibit the antiferroelectric smectic APA (SmAPA) banana phase that is transformed on cooling from the calamitic smectic A (SmA) phase. The biaxial polar packing of bent molecules in the SmAPA phase is considered to arise from the hindered rotation around the molecular long axis due to the expansion of the mesophase temperatures to a lower temperature region. This study indicates that the bent molecules, even with a large bent angle, have the potential to form a switchable banana phase with a remarkable decrease in its phase temperature range to around 60 °C.
Large area optical mapping of surface contact angle.
Dutra, Guilherme; Canning, John; Padden, Whayne; Martelli, Cicero; Dligatch, Svetlana
2017-09-04
Top-down contact angle measurements have been validated and confirmed to be as good if not more reliable than side-based measurements. A range of samples, including industrially relevant materials for roofing and printing, has been compared. Using the top-down approach, mapping in both 1-D and 2-D has been demonstrated. The method was applied to study the change in contact angle as a function of change in silver (Ag) nanoparticle size controlled by thermal evaporation. Large area mapping reveals good uniformity for commercial Aspen paper coated with black laser printer ink. A demonstration of the forensic and chemical analysis potential in 2-D is shown by uncovering the hidden CsF initials made with mineral oil on the coated Aspen paper. The method promises to revolutionize nanoscale characterization and industrial monitoring as well as chemical analyses by allowing rapid contact angle measurements over large areas or large numbers of samples in ways and times that have not been possible before.
NASA Technical Reports Server (NTRS)
Stoll, F.; Koenig, D. G.
1983-01-01
Data obtained through very high angles of attack from a large-scale, subsonic wind-tunnel test of a close-coupled canard-delta-wing fighter model are analyzed. The canard delays wing leading-edge vortex breakdown, even for angles of attack at which the canard is completely stalled. A vortex-lattice method was applied which gave good predictions of lift and pitching moment up to an angle of attack of about 20 deg, where vortex-breakdown effects on performance become significant. Pitch-control inputs generally retain full effectiveness up to the angle of attack of maximum lift, beyond which, effectiveness drops off rapidly. A high-angle-of-attack prediction method gives good estimates of lift and drag for the completely stalled aircraft. Roll asymmetry observed at zero sideslip is apparently caused by an asymmetry in the model support structure.
Coanda-Assisted Spray Manipulation Collar for a Commercial Plasma Spray Gun
NASA Astrophysics Data System (ADS)
Mabey, K.; Smith, B. L.; Whichard, G.; McKechnie, T.
2011-06-01
A Coanda-assisted Spray Manipulation (CSM) collar was retrofitted to a Praxair SG-100 plasma spray gun. The CSM device makes it possible to change the direction of (vector) the plasma jet and powder without moving the gun. The two-piece retrofit device replaces the standard faceplate. Two separate collars were tested: one designed for small vector angles and one for larger vector angles. It was demonstrated that the small-angle device could modify the trajectory of zirconia powder up to several degrees. Doing so could realign the plasma with the powder resulting in increased powder temperature and velocity. The large-angle device was capable of vectoring the plasma jet up to 45°. However, the powder did not vector as much. Under large-angle vectoring, the powder velocity and temperature decreased steadily with vector angle. Both devices were tested using a supersonic configuration to demonstrate that CSM is capable of vectoring supersonic plasmas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tojo, H., E-mail: tojo.hiroshi@qst.go.jp; Hiratsuka, J.; Yatsuka, E.
2016-09-15
This paper evaluates the accuracy of electron temperature measurements and relative transmissivities of double-pass Thomson scattering diagnostics. The electron temperature (T{sub e}) is obtained from the ratio of signals from a double-pass scattering system, then relative transmissivities are calculated from the measured T{sub e} and intensity of the signals. How accurate the values are depends on the electron temperature (T{sub e}) and scattering angle (θ), and therefore the accuracy of the values was evaluated experimentally using the Large Helical Device (LHD) and the Tokyo spherical tokamak-2 (TST-2). Analyzing the data from the TST-2 indicates that a high T{sub e} andmore » a large scattering angle (θ) yield accurate values. Indeed, the errors for scattering angle θ = 135° are approximately half of those for θ = 115°. The method of determining the T{sub e} in a wide T{sub e} range spanning over two orders of magnitude (0.01–1.5 keV) was validated using the experimental results of the LHD and TST-2. A simple method to provide relative transmissivities, which include inputs from collection optics, vacuum window, optical fibers, and polychromators, is also presented. The relative errors were less than approximately 10%. Numerical simulations also indicate that the T{sub e} measurements are valid under harsh radiation conditions. This method to obtain T{sub e} can be considered for the design of Thomson scattering systems where there is high-performance plasma that generates harsh radiation environments.« less
A unified model for transfer alignment at random misalignment angles based on second-order EKF
NASA Astrophysics Data System (ADS)
Cui, Xiao; Mei, Chunbo; Qin, Yongyuan; Yan, Gongmin; Liu, Zhenbo
2017-04-01
In the transfer alignment process of inertial navigation systems (INSs), the conventional linear error model based on the small misalignment angle assumption cannot be applied to large misalignment situations. Furthermore, the nonlinear model based on the large misalignment angle suffers from redundant computation with nonlinear filters. This paper presents a unified model for transfer alignment suitable for arbitrary misalignment angles. The alignment problem is transformed into an estimation of the relative attitude between the master INS (MINS) and the slave INS (SINS), by decomposing the attitude matrix of the latter. Based on the Rodriguez parameters, a unified alignment model in the inertial frame with the linear state-space equation and a second order nonlinear measurement equation are established, without making any assumptions about the misalignment angles. Furthermore, we employ the Taylor series expansions on the second-order nonlinear measurement equation to implement the second-order extended Kalman filter (EKF2). Monte-Carlo simulations demonstrate that the initial alignment can be fulfilled within 10 s, with higher accuracy and much smaller computational cost compared with the traditional unscented Kalman filter (UKF) at large misalignment angles.
Zhao, Yongjia; Zhou, Suiping
2017-02-28
The widespread installation of inertial sensors in smartphones and other wearable devices provides a valuable opportunity to identify people by analyzing their gait patterns, for either cooperative or non-cooperative circumstances. However, it is still a challenging task to reliably extract discriminative features for gait recognition with noisy and complex data sequences collected from casually worn wearable devices like smartphones. To cope with this problem, we propose a novel image-based gait recognition approach using the Convolutional Neural Network (CNN) without the need to manually extract discriminative features. The CNN's input image, which is encoded straightforwardly from the inertial sensor data sequences, is called Angle Embedded Gait Dynamic Image (AE-GDI). AE-GDI is a new two-dimensional representation of gait dynamics, which is invariant to rotation and translation. The performance of the proposed approach in gait authentication and gait labeling is evaluated using two datasets: (1) the McGill University dataset, which is collected under realistic conditions; and (2) the Osaka University dataset with the largest number of subjects. Experimental results show that the proposed approach achieves competitive recognition accuracy over existing approaches and provides an effective parametric solution for identification among a large number of subjects by gait patterns.
Zhao, Yongjia; Zhou, Suiping
2017-01-01
The widespread installation of inertial sensors in smartphones and other wearable devices provides a valuable opportunity to identify people by analyzing their gait patterns, for either cooperative or non-cooperative circumstances. However, it is still a challenging task to reliably extract discriminative features for gait recognition with noisy and complex data sequences collected from casually worn wearable devices like smartphones. To cope with this problem, we propose a novel image-based gait recognition approach using the Convolutional Neural Network (CNN) without the need to manually extract discriminative features. The CNN’s input image, which is encoded straightforwardly from the inertial sensor data sequences, is called Angle Embedded Gait Dynamic Image (AE-GDI). AE-GDI is a new two-dimensional representation of gait dynamics, which is invariant to rotation and translation. The performance of the proposed approach in gait authentication and gait labeling is evaluated using two datasets: (1) the McGill University dataset, which is collected under realistic conditions; and (2) the Osaka University dataset with the largest number of subjects. Experimental results show that the proposed approach achieves competitive recognition accuracy over existing approaches and provides an effective parametric solution for identification among a large number of subjects by gait patterns. PMID:28264503
Magnetically Filtered Faraday Probe for Measuring the Ion Current Density Profile of a Hall Thruster
2006-01-01
Hall thruster is investigated. The MFFP is designed to eliminate the collection of low-energy, charge-exchange (CEX) ions by using a variable magnetic field as an ion filter. In this study, a MFFP, Faraday probe with a reduced acceptance angle (BFP), and nude Faraday probe are used to measure the ion current density profile of a 5 kW Hall thruster operating over the range of 300-500 V and 5-10 mg/s. The probes are evaluated on a xenon propellant Hall thruster in the University of Michigan Large Vacuum Test Facility at operating
Solid-dielectric compound parabolic concentrators: on their use with photovoltaic devices.
Goodman, N B; Ignatius, R; Wharton, L; Winston, R
1976-10-01
Prototype solid dielectric compound parabolic concentrators have been made and tested. By means of the geometry and refractive properties of a transparent solid they provide a technique for increasing the power output of silicon solar cells exposed to the sun by an amount nearly equal to the increase in effective collecting area. The response is uniform over a large angle which eliminates the necessity of diurnal tracking of the sun. The technique can be applied to the construction of thin panels and has the potential for significantly reducing, their cost per unit area.
Cylindrically symmetric Fresnel lens for high concentration photovoltaic
NASA Astrophysics Data System (ADS)
Hung, Yu-Ting; Su, Guo-Dung
2009-08-01
High concentration photovoltaic (HCPV) utilizes point-focus cost-effective plastic Fresnel lens. And a millimeter-sized Ill-V compound multi-junction solar cell is placed underneath focusing optics which can achieve cell efficiency potential of up to 40.7 %. The advantage of HCPV makes less solar cell area and higher efficiency; however, the acceptance angle of HCPV is about +/-1°, which is very small and the mechanical tracking of the sun is necessary. In order to reduce the power consumption and the angle tracking error of tracking systems, a light collector model with larger acceptance angle is designed with ZEMAX®. In this model, the original radially symmetric Fresnel lens of HCPV is replaced by cylindrically symmetric Fresnel lens and a parabolic reflective surface. Light is collected in two dimensions separately. And a couple of lenses and a light pipe are added before the solar cell chip in order to collect more light when sun light deviates from incident angle of 00. An acceptance angle of +/-10° is achieved with GCR 400.
Predicting the Rate of River Bank Erosion Caused by Large Wood Log
NASA Astrophysics Data System (ADS)
Zhang, N.; Rutherfurd, I.; Ghisalberti, M.
2016-12-01
When a single tree falls into a river channel, flow is deflected and accelerated between the tree roots and the bank face, increasing shear stress and scouring the bank. The scallop shaped erosion increases the diversity of the channel morphology, but also causes concern for adjacent landholders. Concern about increased bank erosion is one of the main reasons for large wood to still be removed from channels in SE Australia. Further, the hydraulic effect of many logs in the channel can reduce overall bank erosion rates. Although both phenomena have been described before, this research develops a hydraulic model that estimates their magnitude, and tests and calibrates this model with flume and field measurements, with logs with various configurations and sizes. Specifically, the model estimates the change in excess shear stress on the bank associated . The model addresses the effect of the log angle, distance from bank, and log size and flow condition by solving the mass continuity and energy conservation between the cross section at the approaching flow and contracted flow. Then, we evaluate our model against flume experiment preformed with semi-realistic log models to represent logs in different sizes and decay stages by comparing the measured and simulated velocity increase in the gap between the log and the bank. The log angle, distance from bank, and flow condition are systemically varied for each log model during the experiment. Final, the calibrated model is compared with the field data collected in anabranching channels of Murray River in SE Australia where there are abundant instream logs and regulated and consistent high flow for irrigation. Preliminary results suggest that a log can significantly increase the shear stress on the bank, especially when it positions perpendicular to the flow. The shear stress increases with the log angle in a rising curve (The log angle is the angle between log trunk and flow direction. 0o means log is parallel to flow with canopy pointing downstream). However, the shear stress shows insignificant changes as the log is being moved close to the bank.
Validation Results for LEWICE 3.0
NASA Technical Reports Server (NTRS)
Wright, William B.
2005-01-01
A research project is underway at NASA Glenn to produce computer software that can accurately predict ice growth under any meteorological conditions for any aircraft surface. This report will present results from version 3.0 of this software, which is called LEWICE. This version differs from previous releases in that it incorporates additional thermal analysis capabilities, a pneumatic boot model, interfaces to computational fluid dynamics (CFD) flow solvers and has an empirical model for the supercooled large droplet (SLD) regime. An extensive comparison of the results in a quantifiable manner against the database of ice shapes and collection efficiency that have been generated in the NASA Glenn Icing Research Tunnel (IRT) has also been performed. The complete set of data used for this comparison will eventually be available in a contractor report. This paper will show the differences in collection efficiency between LEWICE 3.0 and experimental data. Due to the large amount of validation data available, a separate report is planned for ice shape comparison. This report will first describe the LEWICE 3.0 model for water collection. A semi-empirical approach was used to incorporate first order physical effects of large droplet phenomena into icing software. Comparisons are then made to every single element two-dimensional case in the water collection database. Each condition was run using the following five assumptions: 1) potential flow, no splashing; 2) potential flow, no splashing with 21 bin drop size distributions and a lift correction (angle of attack adjustment); 3) potential flow, with splashing; 4) Navier-Stokes, no splashing; and 5) Navier-Stokes, with splashing. Quantitative comparisons are shown for impingement limit, maximum water catch, and total collection efficiency. The results show that the predicted results are within the accuracy limits of the experimental data for the majority of cases.
Bottiglione, F; Carbone, G
2015-01-14
The apparent contact angle of large 2D drops with randomly rough self-affine profiles is numerically investigated. The numerical approach is based upon the assumption of large separation of length scales, i.e. it is assumed that the roughness length scales are much smaller than the drop size, thus making it possible to treat the problem through a mean-field like approach relying on the large-separation of scales. The apparent contact angle at equilibrium is calculated in all wetting regimes from full wetting (Wenzel state) to partial wetting (Cassie state). It was found that for very large values of the roughness Wenzel parameter (r(W) > -1/ cos θ(Y), where θ(Y) is the Young's contact angle), the interface approaches the perfect non-wetting condition and the apparent contact angle is almost equal to 180°. The results are compared with the case of roughness on one single scale (sinusoidal surface) and it is found that, given the same value of the Wenzel roughness parameter rW, the apparent contact angle is much larger for the case of a randomly rough surface, proving that the multi-scale character of randomly rough surfaces is a key factor to enhance superhydrophobicity. Moreover, it is shown that for millimetre-sized drops, the actual drop pressure at static equilibrium weakly affects the wetting regime, which instead seems to be dominated by the roughness parameter. For this reason a methodology to estimate the apparent contact angle is proposed, which relies only upon the micro-scale properties of the rough surface.
Zhang, Enzheng; Chen, Benyong; Zheng, Hao; Teng, Xueying; Yan, Liping
2018-04-01
A laser heterodyne interferometer for angle measurement based on the Faraday effect is proposed. A novel optical configuration, designed by using the orthogonal return method for a linearly polarized beam based on the Faraday effect, guarantees that the measurement beam can return effectively even though an angular reflector has a large lateral displacement movement. The optical configuration and measurement principle are presented in detail. Two verification experiments were performed; the experimental results show that the proposed interferometer can achieve a large lateral displacement tolerance of 7.4 mm and also can realize high precision angle measurement with a large measurement range.
NASA Astrophysics Data System (ADS)
Zhang, Enzheng; Chen, Benyong; Zheng, Hao; Teng, Xueying; Yan, Liping
2018-04-01
A laser heterodyne interferometer for angle measurement based on the Faraday effect is proposed. A novel optical configuration, designed by using the orthogonal return method for a linearly polarized beam based on the Faraday effect, guarantees that the measurement beam can return effectively even though an angular reflector has a large lateral displacement movement. The optical configuration and measurement principle are presented in detail. Two verification experiments were performed; the experimental results show that the proposed interferometer can achieve a large lateral displacement tolerance of 7.4 mm and also can realize high precision angle measurement with a large measurement range.
The Uses of a Polarimetric Camera
2008-09-01
are displayed in this thesis the author used two different lenses . One of the lenses is an ARSAT H 20mm with an F number of 2.8. This lens was used...for all the wide angle images collected. For the telephoto images collected, the author used a NIKKOR 200mm lenses which has an F number of 4.0...16 K. DEGREE OF LINEAR POLARIZATION (DOLP) ..................................17 L. PHASE ANGLE OF POLARIZATION
Practical Tests with the "auto Control Slot." Part II : Discussion
NASA Technical Reports Server (NTRS)
Lachmann, G
1930-01-01
For some time the D.V.L. has been investigating the question of applicability of Handley Page slotted wings to German airplanes. Comparitive gliding tests were made with open and closed slots on an Albatros L 75 airplane equipped with the Handley Page "auto control slots." This investigation served to determine the effect of the auto control slot on the properties and performances of airplanes at large angles of attack. The most important problems were whether the angle of glide at small angles of attack can be increased by the adoption of the auto control slot and, in particular, as to whether the flight characteristics at large angles of attack are improved thereby and equilibrium in gliding flight is guaranteed even at larger than ordinary angles of attack.
Practical Tests with the "auto Control Slot." Part I : Lecture
NASA Technical Reports Server (NTRS)
Lachmann, G
1930-01-01
For some time the D.V.L. has been investigating the question of applicability of Handley Page slotted wings to German airplanes. Comparitive gliding tests were made with open and closed slots on an Albatros L 75 airplane equipped with the Handley Page "auto control slots." This investigation served to determine the effect of the auto control slot on the properties and performances of airplanes at large angles of attack. The most important problems were whether the angle of glide at small angles of attack can be increased by the adoption of the auto control slot and, in particular, as to whether the flight characteristics at large angles of attack are improved thereby and equilibrium in gliding flight is guaranteed even at larger than ordinary angles of attack.
Active Planning, Sensing and Recognition Using a Resource-Constrained Discriminant POMDP
2014-06-28
classes of military vehicles, with sample images shown in Fig. 1. The vehicles were captured from various angles. 4785 images with depression angles 17...and 30◦ are used for training, and 4351 images with depression angles 15◦ and 45◦ are used for testing. The azimuth angles are quantized into 12...selection by collecting the engine sounds for the 8 vehicle classes from the Youtube . The sounds are attenuated differently in 6 view directions
NASA Astrophysics Data System (ADS)
Tan, Xianhua; Zhu, Yiying; Shi, Tielin; Tang, Zirong; Liao, Guanglan
2016-11-01
We demonstrate spontaneous droplet transportation and water collection on wedge-shaped gradient surfaces consisting of alternating hydrophilic and hydrophobic regions. Droplets on the surfaces are modeled and simulated to analyze the Gibbs free energy and free energy gradient distributions. Big half-apex angle and great wettability difference result in considerable free energy gradient, corresponding to large driving force for spontaneous droplet transportation, thus causing the droplets to move towards the open end of the wedge-shaped hydrophilic regions, where the Gibbs free energy is low. Gradient surfaces are then fabricated and tested. Filmwise condensation begins on the hydrophilic regions, forming wedge-shaped tracks for water collection. Dropwise condensation occurs on the hydrophobic regions, where the droplet size distribution and departure diameters are controlled by the width of the regions. Condensate water from both the hydrophilic and hydrophobic regions are collected directionally to the open end of the wedge-shaped hydrophilic regions, agreeing with the simulations. Directional droplet transport and controllable departure diameters make the branched gradient surfaces more efficient than smooth surfaces for water collection, which proves that gradient surfaces are potential in water collection, microfluidic devices, anti-fogging and self-cleaning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarepisheh, M; Li, R; Xing, L
Purpose: Station Parameter Optimized Radiation Therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital LINACs, in which the station parameters of a delivery system, (such as aperture shape and weight, couch position/angle, gantry/collimator angle) are optimized altogether. SPORT promises to deliver unprecedented radiation dose distributions efficiently, yet there does not exist any optimization algorithm to implement it. The purpose of this work is to propose an optimization algorithm to simultaneously optimize the beam sampling and aperture shapes. Methods: We build a mathematical model whose variables are beam angles (including non-coplanar and/or even nonisocentric beams) andmore » aperture shapes. To solve the resulting large scale optimization problem, we devise an exact, convergent and fast optimization algorithm by integrating three advanced optimization techniques named column generation, gradient method, and pattern search. Column generation is used to find a good set of aperture shapes as an initial solution by adding apertures sequentially. Then we apply the gradient method to iteratively improve the current solution by reshaping the aperture shapes and updating the beam angles toward the gradient. Algorithm continues by pattern search method to explore the part of the search space that cannot be reached by the gradient method. Results: The proposed technique is applied to a series of patient cases and significantly improves the plan quality. In a head-and-neck case, for example, the left parotid gland mean-dose, brainstem max-dose, spinal cord max-dose, and mandible mean-dose are reduced by 10%, 7%, 24% and 12% respectively, compared to the conventional VMAT plan while maintaining the same PTV coverage. Conclusion: Combined use of column generation, gradient search and pattern search algorithms provide an effective way to optimize simultaneously the large collection of station parameters and significantly improves quality of resultant treatment plans as compared with conventional VMAT or IMRT treatments.« less
Monte Carlo calculation of large and small-angle electron scattering in air
NASA Astrophysics Data System (ADS)
Cohen, B. I.; Higginson, D. P.; Eng, C. D.; Farmer, W. A.; Friedman, A.; Grote, D. P.; Larson, D. J.
2017-11-01
A Monte Carlo method for angle scattering of electrons in air that accommodates the small-angle multiple scattering and larger-angle single scattering limits is introduced. The algorithm is designed for use in a particle-in-cell simulation of electron transport and electromagnetic wave effects in air. The method is illustrated in example calculations.
The vertex and large angle detectors of a spectrometer system for high energy muon physics
NASA Astrophysics Data System (ADS)
Albanese, J. P.; Allkofer, O. C.; Arneodo, M.; Aubert, J. J.; Becks, K. H.; Bee, C.; Benchouk, C.; Bernaudin, B.; Bertsch, Y.; Bianchi, F.; Bibby, J.; Bird, I.; Blum, D.; Böhm, E.; Botterill, D.; De Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Callebaut, D.; Carr, J.; Clifft, R.; Cobb, J. H.; Coignet, G.; Combley, F.; Cornelssen, M.; Costa, F.; Coughlan, J.; Court, G. R.; D'Agostini, G.; Dau, W. D.; Davies, J. K.; Davis, A.; Dengler, F.; Derado, I.; Dobinson, R. W.; Dosselli, U.; Drees, J.; Dumont, J. J.; Eckardt, V.; Edwards, A.; Edwards, M.; Falley, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Gabathuler, E.; Gamet, R.; Gayler, J.; Gebauer, H. J.; Gössling, C.; Haas, J.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffré, M.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kahl, T.; Kellner, G.; Koll, J.; Korbel, V.; Krüger, J.; Landgraf, U.; Lanske, D.; Lebeau, M.; Loken, J.; Maire, M.; Manz, A.; Mermet-Guyennet, M.; Minssieux, H.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Moser, K.; Mount, R. P.; Moynot, M.; Müller, H.; Nagy, E.; Nassalski, J.; Noppe, J. M.; Norton, P. R.; Osborne, A. M.; Pascaud, C.; Paul, L.; Payre, P.; Peroni, C.; Perrot, G.; Pessard, H.; Pettingale, J.; Pötsch, M.; Preissner, H.; Renton, P.; Ribarics, P.; Rith, K.; Röhner, F.; Rondio, E.; Rousseau, M. D.; Schlagböhmer, A.; Schmitz, N.; Scaramelli, A.; Schneegans, M.; Schultze, K.; Scory, M.; Shiers, J.; Singer, G.; Sloan, T.; Smith, R.; Sproston, M.; Stier, H. E.; Stockhausen, W.; Studt, M.; Thénard, J. M.; Thiele, K.; Thompson, J. C.; De La Torre, A.; Wahlen, H.; Wallucks, W.; Watson, E.; Whalley, M.; Williams, D. A.; Williams, W. S. C.; Wimpenny, S.; Windmolders, R.; Winklmüller, G.; Wolf, G.; Zank, P.; European Muon Collaboration
1983-07-01
A description is given of the detector system which forms the large angle spectrometer and vertex detector of the EMC spectrometer. The apparatus is used in the NA9 experiment which studies the complete hadronic final state from the interaction of high energy muons.
Kinematics and Flow Evolution of a Flexible Wing in Stall Flutter
NASA Astrophysics Data System (ADS)
Farnsworth, John; Akkala, James; Buchholz, James; McLaughlin, Thomas
2014-11-01
Large amplitude stall flutter limit cycle oscillations were observed on an aspect ratio six finite span NACA0018 flexible wing model at a free stream velocity of 23 m/s and an initial angle of attack of six degrees. The wing motion was characterized by periodic oscillations of predominately a torsional mode at a reduced frequency of k = 0.1. The kinematics were quantified via stereoscopic tracking of the wing surface with high speed camera imaging and direct linear transformation. Simultaneously acquired accelerometer measurements were used to track the wing motion and trigger the collection of two-dimensional particle image velocimetry field measurements to the phase angle of the periodic motion. Aerodynamically, the flutter motion is driven by the development and shedding of a dynamic stall vortex system, the evolution of which is characterized and discussed. This work was supported by the AFOSR Flow Interactions and Control Portfolio monitored by Dr. Douglas Smith and the AFOSR/ASEE Summer Faculty Fellowship Program (JA and JB).
Formation of energetic electron butterfly distributions by magnetosonic waves via Landau resonance
Li, Jinxing; Ni, Binbin; Ma, Qianli; ...
2016-03-06
Radiation belt electrons can exhibit different types of pitch angle distributions in response to various magnetospheric processes. Butterfly distributions, characterized by flux minima at pitch angles around 90°, are broadly observed in both the outer and inner belts and the slot region. Butterfly distributions close to the outer magnetospheric boundary have been attributed to drift shell splitting and losses to the magnetopause. However, their occurrence in the inner belt and the slot region has hitherto not been resolved. In this study, by analyzing the particle and wave data collected by the Van Allen Probes during a geomagnetic storm, we combinemore » test particle calculations and Fokker-Planck simulations to reveal that scattering by equatorial magnetosonic waves is a significant cause for the formation of energetic electron butterfly distributions in the inner magnetosphere. Finally, another event shows that a large-amplitude magnetosonic wave in the outer belt can create electron butterfly distributions in just a few minutes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ablikim, M.; Achasov, M. N.; Ambrose, D. J.
2012-08-31
The decays J/ψ→pp̄ and J/ψ→nn̄ have been investigated with a sample of 225.2×10⁶ J/ψ events collected with the BESIII detector at the BEPCII e⁺e⁻ collider. The branching fractions are determined to be B(J/ψ→pp̄)=(2.112±0.004±0.031)×10⁻³ and B(J/ψ→nn̄)=(2.07±0.01±0.17)×10⁻³. Distributions of the angle θ between the proton or antineutron and the beam direction are well described by the form 1+αcos²θ, and we find α=0.595±0.012±0.015 for J/ψ→pp̄ and α=0.50±0.04±0.21 for J/ψ→nn̄. Our branching-fraction results suggest a large phase angle between the strong and electromagnetic amplitudes describing the J/ψ→NN¯¯¯ decay.
McCarthy, J.; Larkin, S.P.; Fuis, G.S.; Simpson, R.W.; Howard, K.A.
1991-01-01
The metamorphic core complex belt in southeastern California and western Arizona is a NW-SE trending zone of unusually large Tertiary extension and uplift. Midcrustal rocks exposed in this belt raise questions about the crustal thickness, crustal structure, and the tectonic evolution of the region. Three seismic refraction/wide-angle reflection profiles were collected to address these issues. The results presented here, which focus on the Whipple and Buckskin-Rawhide mountains, yield a consistent three-dimensiional image of this part of the metamorphic core complex belt. The final model consists of a thin veneer (<2 km) of upper plate and fractured lower plate rocks (1.5-5.5 km s-1) overlying a fairly homogeneous basement (~6.0 km s-1) and a localized high-velocity (6.4 km s -1) body situated beneath the western Whipple Mountains. A prominent midcrustal reflection is identified beneath the Whipple and Buckskin Rawhide mountains between 10 and 20km depth. -from Authors
Food waste impact on municipal solid waste angle of internal friction.
Cho, Young Min; Ko, Jae Hac; Chi, Liqun; Townsend, Timothy G
2011-01-01
The impact of food waste content on the municipal solid waste (MSW) friction angle was studied. Using reconstituted fresh MSW specimens with different food waste content (0%, 40%, 58%, and 80%), 48 small-scale (100-mm-diameter) direct shear tests and 12 large-scale (430 mm × 430 mm) direct shear tests were performed. A stress-controlled large-scale direct shear test device allowing approximately 170-mm sample horizontal displacement was designed and used. At both testing scales, the mobilized internal friction angle of MSW decreased considerably as food waste content increased. As food waste content increased from 0% to 40% and from 40% to 80%, the mobilized internal friction angles (estimated using the mobilized peak (ultimate) shear strengths of the small-scale direct shear tests) decreased from 39° to 31° and from 31° to 7°, respectively, while those of large-scale tests decreased from 36° to 26° and from 26° to 15°, respectively. Most friction angle measurements produced in this study fell within the range of those previously reported for MSW. Copyright © 2010 Elsevier Ltd. All rights reserved.
Chatrchyan, Serguei
2014-07-23
Dijet production has been measured in pPb collisions at a nucleon-nucleon centre-of-mass energy of 5.02 TeV. A data sample corresponding to an integrated luminosity of 35 inverse-nanobarns was collected using the Compact Muon Solenoid detector at the Large Hadron Collider. The dijet transverse momentum balance, azimuthal angle correlations, and pseudorapidity distributions are studied as a function of the transverse energy in the forward calorimeters (more » $$E_T^{4\\lt |\\eta| \\lt 5.2}$$). For pPb collisions, the dijet transverse momentum ratio and the width of the distribution of dijet azimuthal angle difference are comparable to the same quantities obtained from a simulated pp reference and insensitive to $$E_T^{4\\lt |\\eta| \\lt 5.2}$$. In contrast, the mean value of the dijet pseudorapidity is found to change monotonically with increasing $$E_T^{4\\lt |\\eta| \\lt 5.2}$$, indicating a correlation between the energy emitted at large pseudorapidity and the longitudinal motion of the dijet frame. As a result, the pseudorapidity distribution of the dijet system is compared with next-to-leading-order perturbative QCD predictions obtained from both nucleon and nuclear parton distribution functions, and the data more closely match the latter.« less
Daily quality assurance software for a satellite radiometer system
NASA Technical Reports Server (NTRS)
Keegstra, P. B.; Smoot, G. F.; Bennett, C. L.; Aymon, J.; Backus, C.; Deamici, G.; Hinshaw, G.; Jackson, P. D.; Kogut, A.; Lineweaver, C.
1992-01-01
Six Differential Microwave Radiometers (DMR) on COBE (Cosmic Background Explorer) measure the large-angular-scale isotropy of the cosmic microwave background (CMB) at 31.5, 53, and 90 GHz. Quality assurance software analyzes the daily telemetry from the spacecraft to ensure that the instrument is operating correctly and that the data are not corrupted. Quality assurance for DMR poses challenging requirements. The data are differential, so a single bad point can affect a large region of the sky, yet the CMB isotropy requires lengthy integration times (greater than 1 year) to limit potential CMB anisotropies. Celestial sources (with the exception of the moon) are not, in general, visible in the raw differential data. A 'quicklook' software system was developed that, in addition to basic plotting and limit-checking, implements a collection of data tests as well as long-term trending. Some of the key capabilities include the following: (1) stability analysis showing how well the data RMS averages down with increased data; (2) a Fourier analysis and autocorrelation routine to plot the power spectrum and confirm the presence of the 3 mK 'cosmic' dipole signal; (3) binning of the data against basic spacecraft quantities such as orbit angle; (4) long-term trending; and (5) dipole fits to confirm the spacecraft attitude azimuth angle.
Factors affecting the shear strength behavior of municipal solid wastes.
Pulat, Hasan Firat; Yukselen-Aksoy, Yeliz
2017-11-01
In this study, the shear strength behavior of European (E-1), Turkey (T-1), and United States of America (U-1) average synthetic municipal solid waste (MSW) compositions were investigated. The large-scale direct shear tests were conducted using fresh and aged MSW samples collected from the Manisa Landfill. The natural samples' test results were compared with synthetic samples. The affecting factors such as ageing, waste composition, and waste type (synthetic and natural) on the shear strength of MSWs were investigated. The effect of composition was evaluated using three main and six modified synthetic MSW compositions. In addition to the synthetic fresh MSW samples, synthetic aged samples were also used. Angle of shearing resistance decreased with increasing organic content whereas cohesion intercept increased with increasing organic content. The fresh and aged wastes with higher coarse fraction lead to a higher angle of shearing resistance. The synthetic aged samples had higher internal friction angles but lower cohesion values than the synthetic fresh samples. Waste with average European composition had the highest internal friction angle as it has the highest fibrous content. On the other hand, the highest cohesion belonged to the Turkey composition, which had the highest organic matter ratio. The main differences between E-1, T-1 and U-1 samples in terms of compositions were observed. The results of this study indicated that shear strength of waste significantly depends on composition and hence a site specific evaluation is recommended. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bufon, J.; Schillani, S.; Altissimo, M.; Bellutti, P.; Bertuccio, G.; Billè, F.; Borghes, R.; Borghi, G.; Cautero, G.; Cirrincione, D.; Fabiani, S.; Ficorella, F.; Gandola, M.; Gianoncelli, A.; Giuressi, D.; Kourousias, G.; Mele, F.; Menk, R. H.; Picciotto, A.; Rachevski, A.; Rashevskaya, I.; Sammartini, M.; Stolfa, A.; Zampa, G.; Zampa, N.; Zorzi, N.; Vacchi, A.
2018-03-01
Low-energy X-ray fluorescence (LEXRF) is an essential tool for bio-related research of organic samples, whose composition is dominated by light elements. Working at energies below 2 keV and being able to detect fluorescence photons of lightweight elements such as carbon (277 eV) is still a challenge, since it requires in-vacuum operations to avoid in-air photon absorption. Moreover, the detectors must have a thin entrance window and collect photons at an angle of incidence near 90 degrees to minimize the absorption by the protective coating. Considering the low fluorescence yield of light elements, it is important to cover a substantial part of the solid angle detecting ideally all emitted X-ray fluorescence (XRF) photons. Furthermore, the energy resolution of the detection system should be close to the Fano limit in order to discriminate elements whose XRF emission lines are often very close within the energy spectra. To ensure all these features, a system consisting of four monolithic multi-element silicon drift detectors was developed. The use of four separate detector units allows optimizing the incidence angle on all the sensor elements. The multi-element approach in turn provides a lower leakage current on each anode, which, in combination with ultra-low noise preamplifiers, is necessary to achieve an energy resolution close to the Fano limit. The potential of the new detection system and its applicability for typical LEXRF applications has been proved on the Elettra TwinMic beamline.
Observation of LPI Thresholds for the Nike Laser
NASA Astrophysics Data System (ADS)
Weaver, J. L.; Oh, J.; Afeyan, B.; Charbonneau-Lefort, M.; Phillips, L.; Seely, J.; Kehne, D.; Brown, C.; Obenschain, S.; Schmitt, A. J.; Feldman, U.; Holland, G.; Lehmberg, R. H.; McLean, E.; Manka, C.
2008-11-01
The Nike laser is being used to study thresholds for laser plasma instabilities (LPI) at intensities (10^15-10^16 W/cm^2) relevant to advanced implosion designs for direct drive inertial confinement fusion. The combination of short wavelength (248 nm), large bandwidth (1-2 THz), and beam smoothing by induced spatial incoherence available with this krypton-fluoride laser make these experiments unique among current facilities. This talk will present an overview of results with an emphasis on the two-plasmon decay instability (2φp). Measurements of x-rays and emission near ^1/2φo and ^3/2 φo harmonics of the laser wavelength have been collected over a wide range of intensities for both solid and foam targets. Data indicate collective multiple-angle driven excitation compatible with previous observations using solid planar targets.
Controlling soliton excitations in Heisenberg spin chains through the magic angle.
Lu, Jing; Zhou, Lan; Kuang, Le-Man; Sun, C P
2009-01-01
We study the nonlinear dynamics of collective excitation in an N -site XXZ quantum spin chain, which is manipulated by an oblique magnetic field. We show that, when the tilted field is applied along the magic angle, theta_{0}=+/-arccossqrt[13] , the anisotropic Heisenberg spin chain becomes isotropic and thus an freely propagating spin wave is stimulated. Also, in the regime of tilted angles larger and smaller than the magic angle, two types of nonlinear excitations appear: bright and dark solitons.
BOREAS RSS-2 Level-1B ASAS Image Data: At-Sensor Radiance in BSQ Format
NASA Technical Reports Server (NTRS)
Russell, C.; Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Dabney, P. W.; Kovalick, W.; Graham, D.; Bur, Michael; Irons, James R.; Tierney, M.
2000-01-01
The BOREAS RSS-2 team used the ASAS instrument, mounted on the NASA C-130 aircraft, to create at-sensor radiance images of various sites as a function of spectral wavelength, view geometry (combinations of view zenith angle, view azimuth angle, solar zenith angle, and solar azimuth angle), and altitude. The level-1b ASAS images of the BOREAS study areas were collected from April to September 1994 and March to July 1996.
The combined control algorithm for large-angle maneuver of HITSAT-1 small satellite
NASA Astrophysics Data System (ADS)
Zhaowei, Sun; Yunhai, Geng; Guodong, Xu; Ping, He
2004-04-01
The HITSAT-1 is the first small satellite developed by Harbin Institute of Technology (HIT) whose mission objective is to test several pivotal techniques. The large angle maneuver control is one of the pivotal techniques of HITSAT-1 and the instantaneous Eulerian axis control algorithm (IEACA) has been applied. Because of using the reaction wheels and magnetorquer as the control actuators, the combined control algorithm has been adopted during the large-angle maneuver course. The computer simulation based on the MATRIX×6.0 software has finished and the results indicated that the combined control algorithm reduced the reaction wheel speeds obviously, and the IEACA algorithm has the advantages of simplicity and efficiency.
Reconditioning of Cassini Narrow-Angle Camera
2002-07-23
These five images of single stars, taken at different times with the narrow-angle camera on NASA Cassini spacecraft, show the effects of haze collecting on the camera optics, then successful removal of the haze by warming treatments.
Yamada, Akihiro; Wang, Yanbin; Inoue, Toru; Yang, Wenge; Park, Changyong; Yu, Tony; Shen, Guoyin
2011-01-01
An experimental setup for high-pressure liquid structure studies with synchrotron x-ray diffraction using the Paris-Edinburgh press has been installed at station 16-BM-B (HPCAT) of the Advanced Photon Source, Argonne National Laboratory. By collecting energy-dispersive data with a synchrotron white beam at various 2θ angles, the present device allows us to obtain the structure factor, S(Q), over a wide range of Q ( = 4πsinθ∕λ) owing to the excellent angular accessibility up to 37° in 2θ and high energy photons well beyond 100 keV. We have successfully collected XRD data on silicate (albite, NaAlSi(3)O(8)) liquids with Q up to ∼22 Å(-1) and pressure up to 5.3 GPa and temperature 1873 K, and obtained the radial distribution function, G(r), with a reasonable resolution. The T-O bond length (where T = Al, Si), which is a fundamental measure of local structure for aluminous silicate consisting of SiO(n) and AlO(n) polyhedra (tetrahedra at 1 atm condition), was found to be slightly shortened to 1.626 Å compared to that of glass at 1 atm. The T-O-T bound angle, which is the linkage of the above polyhedra, is the most responsible for densification. The T-O-T peak in G(r) splits into two peaks, suggesting a differentiation of the bond angle at high-pressure. The present technical development demonstrates that the Paris-Edinburgh press is suitable for studies of silicate liquids under high-pressure conditions.
Zhou, Jun; Wang, Chao
2017-01-01
Intelligent sensing is drastically changing our everyday life including healthcare by biomedical signal monitoring, collection, and analytics. However, long-term healthcare monitoring generates tremendous data volume and demands significant wireless transmission power, which imposes a big challenge for wearable healthcare sensors usually powered by batteries. Efficient compression engine design to reduce wireless transmission data rate with ultra-low power consumption is essential for wearable miniaturized healthcare sensor systems. This paper presents an ultra-low power biomedical signal compression engine for healthcare data sensing and analytics in the era of big data and sensor intelligence. It extracts the feature points of the biomedical signal by window-based turning angle detection. The proposed approach has low complexity and thus low power consumption while achieving a large compression ratio (CR) and good quality of reconstructed signal. Near-threshold design technique is adopted to further reduce the power consumption on the circuit level. Besides, the angle threshold for compression can be adaptively tuned according to the error between the original signal and reconstructed signal to address the variation of signal characteristics from person to person or from channel to channel to meet the required signal quality with optimal CR. For demonstration, the proposed biomedical compression engine has been used and evaluated for ECG compression. It achieves an average (CR) of 71.08% and percentage root-mean-square difference (PRD) of 5.87% while consuming only 39 nW. Compared to several state-of-the-art ECG compression engines, the proposed design has significantly lower power consumption while achieving similar CRD and PRD, making it suitable for long-term wearable miniaturized sensor systems to sense and collect healthcare data for remote data analytics. PMID:28783079
Zhou, Jun; Wang, Chao
2017-08-06
Intelligent sensing is drastically changing our everyday life including healthcare by biomedical signal monitoring, collection, and analytics. However, long-term healthcare monitoring generates tremendous data volume and demands significant wireless transmission power, which imposes a big challenge for wearable healthcare sensors usually powered by batteries. Efficient compression engine design to reduce wireless transmission data rate with ultra-low power consumption is essential for wearable miniaturized healthcare sensor systems. This paper presents an ultra-low power biomedical signal compression engine for healthcare data sensing and analytics in the era of big data and sensor intelligence. It extracts the feature points of the biomedical signal by window-based turning angle detection. The proposed approach has low complexity and thus low power consumption while achieving a large compression ratio (CR) and good quality of reconstructed signal. Near-threshold design technique is adopted to further reduce the power consumption on the circuit level. Besides, the angle threshold for compression can be adaptively tuned according to the error between the original signal and reconstructed signal to address the variation of signal characteristics from person to person or from channel to channel to meet the required signal quality with optimal CR. For demonstration, the proposed biomedical compression engine has been used and evaluated for ECG compression. It achieves an average (CR) of 71.08% and percentage root-mean-square difference (PRD) of 5.87% while consuming only 39 nW. Compared to several state-of-the-art ECG compression engines, the proposed design has significantly lower power consumption while achieving similar CRD and PRD, making it suitable for long-term wearable miniaturized sensor systems to sense and collect healthcare data for remote data analytics.
Time-Dependent Response Versus Scan Angle for MODIS Reflective Solar Bands
NASA Technical Reports Server (NTRS)
Sun, Junqiang; Xiong, Xiaoxiong; Angal, Amit; Chen, Hongda; Wu, Aisheng; Geng, Xu
2014-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) instruments currently operate onboard the National Aeronautics and Space Administration (NASA's) Terra and Aqua spacecraft, launched on December 18, 1999 and May 4, 2002, respectively. MODIS has 36 spectral bands, among which 20 are reflective solar bands (RSBs) covering a spectral range from 0.412 to 2.13 µm. The RSBs are calibrated on orbit using a solar diffuser (SD) and an SD stability monitor and with additional measurements from lunar observations via a space view (SV) port. Selected pseudo-invariant desert sites are also used to track the RSB on-orbit gain change, particularly for short-wavelength bands. MODIS views the Earth surface, SV, and the onboard calibrators using a two-sided scan mirror. The response versus scan angle (RVS) of the scan mirror was characterized prior to launch, and its changes are tracked using observations made at different angles of incidence from onboard SD, lunar, and Earth view (EV) measurements. These observations show that the optical properties of the scan mirror have experienced large wavelength-dependent degradation in both the visible and near infrared spectral regions. Algorithms have been developed to track the on-orbit RVS change using the calibrators and the selected desert sites. These algorithms have been applied to both Terra and Aqua MODIS Level 1B (L1B) to improve the EV data accuracy since L1B Collection 4, refined in Collection 5, and further improved in the latest Collection 6 (C6). In C6, two approaches have been used to derive the time-dependent RVS for MODIS RSB. The first approach relies on data collected from sensor onboard calibrators and mirror side ratios from EV observations. The second approach uses onboard calibrators and EV response trending from selected desert sites. This approach is mainly used for the bands with much larger changes in their time-dependent RVS, such as the Terra MODIS bands 1-4, 8, and 9 and the Aqua MODIS bands 8- and 9. In this paper, the algorithms of these approaches are described, their performance is demonstrated, and their impact on L1B products is discussed. In general, the shorter wavelength bands have experienced a larger on-orbit RVS change, which, in general, are mirror side and detector dependent. The on-orbit RVS change due to the degradation of band 8 can be as large as 35 percent for Terra MODIS and 20 percent for Aqua MODIS. Vital to maintaining the accuracy of the MODIS L1B products is an accurate characterization of the on-orbit RVS change. The derived time-independent RVS, implemented in C6, makes an important improvement to the quality of the MODIS L1B products.
Monte Carlo calculation of large and small-angle electron scattering in air
Cohen, B. I.; Higginson, D. P.; Eng, C. D.; ...
2017-08-12
A Monte Carlo method for angle scattering of electrons in air that accommodates the small-angle multiple scattering and larger-angle single scattering limits is introduced. In this work, the algorithm is designed for use in a particle-in-cell simulation of electron transport and electromagnetic wave effects in air. The method is illustrated in example calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, T.F.; Lee, A.Y.; Ruck, G.W.
A feasible compact poloidal divertor system has been designed as an impurity control and vacuum vessel first-wall protection option for the TNS tokamak. The divertor coils are inside the TF coil array and vacuum vessel. The poloidal divertor is formed by a pair of coil sets with zero net current. Each set consists of a number of coils forming a dish-shaped washer-like ring. The magnetic flux in the space between the coil sets is compressed vertically to limit the height and to expand the horizontal width of the particle and energy burial chamber which is located in the gap betweenmore » the coil sets. The intensity of the poloidal field is increased to make the pitch angle of the flux lines very large so that the diverted particles can be intercepted by a large number of panels oriented at a small angle with respect to the flux lines. They are carefully shaped and designed such that the entire surfaces are exposed to the incident particles and are not shadowed by each other. Large collecting surface areas can be obtained. Flowing liquid lithium film and solid metal panels have been considered as the particle collectors. The power density for the former is designed at 1 MW/m/sup 2/ and for the latter 0.5 MW/m/sup 2/. The major mechanical, thermal, and vacuum problems have been evaluated in sufficient detail so that the advantages and difficulties are identified. A complete functional picture is presented.« less
A Two-Dimensional Micro Scanner Integrated with a Piezoelectric Actuator and Piezoresistors
Zhang, Chi; Zhang, Gaofei; You, Zheng
2009-01-01
A compact two-dimensional micro scanner with small volume, large deflection angles and high frequency is presented and the two-dimensional laser scanning is achieved by specular reflection. To achieve large deflection angles, the micro scanner excited by a piezoelectric actuator operates in the resonance mode. The scanning frequencies and the maximum scanning angles of the two degrees of freedom are analyzed by modeling and simulation of the structure. For the deflection angle measurement, piezoresistors are integrated in the micro scanner. The appropriate directions and crystal orientations of the piezoresistors are designed to obtain the large piezoresistive coefficients for the high sensitivities. Wheatstone bridges are used to measure the deflection angles of each direction independently and precisely. The scanner is fabricated and packaged with the piezoelectric actuator and the piezoresistors detection circuits in a size of 28 mm×20 mm×18 mm. The experiment shows that the two scanning frequencies are 216.8 Hz and 464.8 Hz, respectively. By an actuation displacement of 10 μm, the scanning range of the two-dimensional micro scanner is above 26° × 23°. The deflection angle measurement sensitivities for two directions are 59 mV/deg and 30 mV/deg, respectively. PMID:22389621
A two-dimensional micro scanner integrated with a piezoelectric actuator and piezoresistors.
Zhang, Chi; Zhang, Gaofei; You, Zheng
2009-01-01
A compact two-dimensional micro scanner with small volume, large deflection angles and high frequency is presented and the two-dimensional laser scanning is achieved by specular reflection. To achieve large deflection angles, the micro scanner excited by a piezoelectric actuator operates in the resonance mode. The scanning frequencies and the maximum scanning angles of the two degrees of freedom are analyzed by modeling and simulation of the structure. For the deflection angle measurement, piezoresistors are integrated in the micro scanner. The appropriate directions and crystal orientations of the piezoresistors are designed to obtain the large piezoresistive coefficients for the high sensitivities. Wheatstone bridges are used to measure the deflection angles of each direction independently and precisely. The scanner is fabricated and packaged with the piezoelectric actuator and the piezoresistors detection circuits in a size of 28 mm×20 mm×18 mm. The experiment shows that the two scanning frequencies are 216.8 Hz and 464.8 Hz, respectively. By an actuation displacement of 10 μm, the scanning range of the two-dimensional micro scanner is above 26° × 23°. The deflection angle measurement sensitivities for two directions are 59 mV/deg and 30 mV/deg, respectively.
Optical properties (bidirectional reflectance distribution function) of shot fabric.
Lu, R; Koenderink, J J; Kappers, A M
2000-11-01
To study the optical properties of materials, one needs a complete set of the angular distribution functions of surface scattering from the materials. Here we present a convenient method for collecting a large set of bidirectional reflectance distribution function (BRDF) samples in the hemispherical scattering space. Material samples are wrapped around a right-circular cylinder and irradiated by a parallel light source, and the scattered radiance is collected by a digital camera. We tilted the cylinder around its center to collect the BRDF samples outside the plane of incidence. This method can be used with materials that have isotropic and anisotropic scattering properties. We demonstrate this method in a detailed investigation of shot fabrics. The warps and the fillings of shot fabrics are dyed different colors so that the fabric appears to change color at different viewing angles. These color-changing characteristics are found to be related to the physical and geometrical structure of shot fabric. Our study reveals that the color-changing property of shot fabrics is due mainly to an occlusion effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, X. Z.; Shen, W. Z., E-mail: wzshen@sjtu.edu.cn; Laboratory of Condensed Matter Spectroscopy and Opto-Electronic Physics, and Key Laboratory of Artificial Structures and Quantum Control
2015-06-14
Composite photoanode comprising nanoparticles and one-dimensional (1D) nanostructure is a promising alternative to conventional photoanode for dye-sensitized solar cells (DSCs). Besides fast electron transport channels, the 1D nanostructure also plays as light scattering centers. Here, we theoretically investigate the light scattering properties of capsule-shaped 1D nanostructure and their influence on the light collection of DSCs. It is found that the far-field light scattering of a single capsule depends on its volume, shape, and orientation: capsules with bigger equivalent spherical diameter, smaller aspect ratio, and horizontal orientation demonstrate stronger light scattering especially at large scattering angle. Using Monte Carlo approach, wemore » simulated and optimized the light harvesting efficiency of the cell. Two multilayer composite photoanodes containing orderly or randomly oriented capsules are proposed. DSCs composed of these two photoanodes are promising for higher efficiencies because of their efficient light collection and superior electron collection. These results will provide practical guidance to the design and optimization of the photoanodes for DSCs.« less
Biphilic Surfaces for Enhanced Water Collection from Humid Air
NASA Astrophysics Data System (ADS)
Benkoski, Jason; Gerasopoulos, Konstantinos; Luedeman, William
Surface wettability plays an important role in water recovery, distillation, dehumidification, and heat transfer. The efficiency of each process depends on the rate of droplet nucleation, droplet growth, and mass transfer. Unfortunately, hydrophilic surfaces are good at nucleation but poor at shedding. Hydrophobic surfaces are the reverse. Many plants and animals overcome this tradeoff through biphilic surfaces with patterned wettability. For example, the Stenocara beetle uses hydrophilic patches on a superhydrophobic background to collect fog from air. Cribellate spiders similarly collect fog on their webs through periodic spindle-knot structures. In this study, we investigate the effects of wettability patterns on the rate of water collection from humid air. The steady state rate of water collection per unit area is measured as a function of undercooling, angle of inclination, water contact angle, hydrophilic patch size, patch spacing, area fraction, and patch height relative to the hydrophobic background. We then model each pattern by comparing the potential and kinetic energy of a droplet as it rolls downwards at a fixed angle. The results indicate that the design rules for collecting fog differ from those for condensation from humid air. The authors gratefully acknowledge the Office of Naval Research for financial support through Grant Number N00014-15-1-2107.
A static investigation of the thrust vectoring system of the F/A-18 high-alpha research vehicle
NASA Technical Reports Server (NTRS)
Mason, Mary L.; Capone, Francis J.; Asbury, Scott C.
1992-01-01
A static (wind-off) test was conducted in the static test facility of the Langley 16-foot Transonic Tunnel to evaluate the vectoring capability and isolated nozzle performance of the proposed thrust vectoring system of the F/A-18 high alpha research vehicle (HARV). The thrust vectoring system consisted of three asymmetrically spaced vanes installed externally on a single test nozzle. Two nozzle configurations were tested: A maximum afterburner-power nozzle and a military-power nozzle. Vane size and vane actuation geometry were investigated, and an extensive matrix of vane deflection angles was tested. The nozzle pressure ratios ranged from two to six. The results indicate that the three vane system can successfully generate multiaxis (pitch and yaw) thrust vectoring. However, large resultant vector angles incurred large thrust losses. Resultant vector angles were always lower than the vane deflection angles. The maximum thrust vectoring angles achieved for the military-power nozzle were larger than the angles achieved for the maximum afterburner-power nozzle.
On the impact of large angle CMB polarization data on cosmological parameters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lattanzi, Massimiliano; Mandolesi, Nazzareno; Natoli, Paolo
We study the impact of the large-angle CMB polarization datasets publicly released by the WMAP and Planck satellites on the estimation of cosmological parameters of the ΛCDM model. To complement large-angle polarization, we consider the high resolution (or 'high-ℓ') CMB datasets from either WMAP or Planck as well as CMB lensing as traced by Planck 's measured four point correlation function. In the case of WMAP, we compute the large-angle polarization likelihood starting over from low resolution frequency maps and their covariance matrices, and perform our own foreground mitigation technique, which includes as a possible alternative Planck 353 GHz datamore » to trace polarized dust. We find that the latter choice induces a downward shift in the optical depth τ, roughly of order 2σ, robust to the choice of the complementary high resolution dataset. When the Planck 353 GHz is consistently used to minimize polarized dust emission, WMAP and Planck 70 GHz large-angle polarization data are in remarkable agreement: by combining them we find τ = 0.066 {sup +0.012}{sub −0.013}, again very stable against the particular choice for high-ℓ data. We find that the amplitude of primordial fluctuations A {sub s} , notoriously degenerate with τ, is the parameter second most affected by the assumptions on polarized dust removal, but the other parameters are also affected, typically between 0.5 and 1σ. In particular, cleaning dust with Planck 's 353 GHz data imposes a 1σ downward shift in the value of the Hubble constant H {sub 0}, significantly contributing to the tension reported between CMB based and direct measurements of the present expansion rate. On the other hand, we find that the appearance of the so-called low ℓ anomaly, a well-known tension between the high- and low-resolution CMB anisotropy amplitude, is not significantly affected by the details of large-angle polarization, or by the particular high-ℓ dataset employed.« less
A Vision-Based Dynamic Rotational Angle Measurement System for Large Civil Structures
Lee, Jong-Jae; Ho, Hoai-Nam; Lee, Jong-Han
2012-01-01
In this paper, we propose a vision-based rotational angle measurement system for large-scale civil structures. Despite the fact that during the last decade several rotation angle measurement systems were introduced, they however often required complex and expensive equipment. Therefore, alternative effective solutions with high resolution are in great demand. The proposed system consists of commercial PCs, commercial camcorders, low-cost frame grabbers, and a wireless LAN router. The calculation of rotation angle is obtained by using image processing techniques with pre-measured calibration parameters. Several laboratory tests were conducted to verify the performance of the proposed system. Compared with the commercial rotation angle measurement, the results of the system showed very good agreement with an error of less than 1.0% in all test cases. Furthermore, several tests were conducted on the five-story modal testing tower with a hybrid mass damper to experimentally verify the feasibility of the proposed system. PMID:22969348
A vision-based dynamic rotational angle measurement system for large civil structures.
Lee, Jong-Jae; Ho, Hoai-Nam; Lee, Jong-Han
2012-01-01
In this paper, we propose a vision-based rotational angle measurement system for large-scale civil structures. Despite the fact that during the last decade several rotation angle measurement systems were introduced, they however often required complex and expensive equipment. Therefore, alternative effective solutions with high resolution are in great demand. The proposed system consists of commercial PCs, commercial camcorders, low-cost frame grabbers, and a wireless LAN router. The calculation of rotation angle is obtained by using image processing techniques with pre-measured calibration parameters. Several laboratory tests were conducted to verify the performance of the proposed system. Compared with the commercial rotation angle measurement, the results of the system showed very good agreement with an error of less than 1.0% in all test cases. Furthermore, several tests were conducted on the five-story modal testing tower with a hybrid mass damper to experimentally verify the feasibility of the proposed system.
[Clinical significance of Q-angle under different conditions in recurrent patellar dislocation].
Wang, Zhijie; Chen, You; Li, Anping; Long, Yi
2014-01-01
To investigate the clinical significance of Q-angle measuring under different conditions in female recurrent patellar dislocation female patients. Between August 2012 and March 2013, 10 female patients (11 knees) with recurrent patellar dislocation were collected as trial group; 20 female patients (20 knees) with simple meniscus injury were collected as control group at the same time. Q-angle was measured in extension, 30 degrees flexion, 30 degrees flexion with manual correction, and surgical correction in the trial group, and only in extension and 30 degrees flexion in the control group. Then the difference value of Q-angle between extension and 30 degrees flexion (Q-angle in extension subtracts Q-angle in 30 flexion) were calculated. Independent sample t-test was used to analyze Q-angle degrees in extension, 30 degrees flexion, and the changed degrees of 2 groups. The Q-angle between manual correction and surgical correction of the trial group was analyzed by paired t-test. The Q-angle in extension, Q-angle in 30 degrees flexion, and difference value of Q-angle between extension and 30 degrees flexion were (17.2 +/- 3.6), (14.3 +/- 3.0), and (2.9 +/- 1.9) degrees in the trial group and were (15.2 +/- 3.4), (14.4 +/- 3.5), and (0.8 +/- 1.7) degrees in the control group. No significant difference was found in Q-angle of extension or Q-angle of 30 degrees flexion between 2 groups (P > 0.05), but the difference value of Q-angle between extension and 30 degrees flexion in the trial group was significantly larger than that in the control group (t = 3.253, P = 0.003). The Q-angle in 30 degrees flexion with manual correction and surgical correction in the trial group was (19.8 +/- 3.4) degrees and (18.9 +/- 3.8) degrees respectively, showing no significant difference (t = 2.193, P = 0.053). When a female patient's Q-angle in 30 degrees flexion knee changes obviously compared with Q-angle in extension position, recurrent patellar dislocation should be considered. For female patients with recurrent patellar dislocation, the preoperative Q-angle in 30 degrees flexion with manual correction should be measured, which can help increasing the accuracy of evaluation whether rearrangement should be performed.
Preliminary eddy current modelling for the large angle magnetic suspension test fixture
NASA Technical Reports Server (NTRS)
Britcher, Colin
1994-01-01
This report presents some recent developments in the mathematical modeling of the Large Angle Magnetic Suspension Test Fixture (LAMSTF) at NASA Langley Research Center. It is shown that these effects are significant, but may be amenable to analysis, modeling and measurement. A theoretical framework is presented, together with a comparison of computed and experimental data.
Development of image mappers for hyperspectral biomedical imaging applications
Kester, Robert T.; Gao, Liang; Tkaczyk, Tomasz S.
2010-01-01
A new design and fabrication method is presented for creating large-format (>100 mirror facets) image mappers for a snapshot hyperspectral biomedical imaging system called an image mapping spectrometer (IMS). To verify this approach a 250 facet image mapper with 25 multiple-tilt angles is designed for a compact IMS that groups the 25 subpupils in a 5 × 5 matrix residing within a single collecting objective's pupil. The image mapper is fabricated by precision diamond raster fly cutting using surface-shaped tools. The individual mirror facets have minimal edge eating, tilt errors of <1 mrad, and an average roughness of 5.4 nm. PMID:20357875
Measurement of the integrated luminosities of the data taken by BESIII at √s = 3.650 and 3.773 GeV
NASA Astrophysics Data System (ADS)
Ablikim, M.; N. Achasov, M.; Albayrak, O.; J. Ambrose, D.; F. An, F.; Q., An; Z. Bai, J.; R. Baldini, Ferroli; Ban, Y.; Becker, J.; V. Bennett, J.; Bertani, M.; M. Bian, J.; Boger, E.; Bondarenko, O.; Boyko, I.; Braun, S.; A. Briere, R.; Bytev, V.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; F. Cao, G.; A. Cetin, S.; F. Chang, J.; Chelkov, G.; G., Chen; S. Chen, H.; C. Chen, J.; L. Chen, M.; J. Chen, S.; R. Chen, X.; B. Chen, Y.; P. Cheng, H.; P. Chu, Y.; Cronin-Hennessy, D.; L. Dai, H.; P. Dai, J.; Dedovich, D.; Y. Deng, Z.; Denig, A.; Denysenko, I.; Destefanis, M.; M. Ding, W.; Y., Ding; Y. Dong, L.; Y. Dong, M.; X. Du, S.; J., Fang; S. Fang, S.; Fava, L.; Q. Feng, C.; Friedel, P.; D. Fu, C.; L. Fu, J.; Fuks, O.; Gao, Y.; C., Geng; Goetzen, K.; X. Gong, W.; Gradl, W.; Greco, M.; H. Gu, M.; T. Gu, Y.; H. Guan, Y.; Q. Guo, A.; B. Guo, L.; T., Guo; P. Guo, Y.; L. Han, Y.; A. Harris, F.; L. He, K.; M., He; Y. He, Z.; Held, T.; K. Heng, Y.; L. Hou, Z.; C., Hu; M. Hu, H.; F. Hu, J.; T., Hu; M. Huang, G.; S. Huang, G.; S. Huang, J.; L., Huang; T. Huang, X.; Y., Huang; Hussain, T.; S. Ji, C.; Q., Ji; P. Ji, Q.; B. Ji, X.; L. Ji, X.; L. Jiang, L.; S. Jiang, X.; B. Jiao, J.; Jiao, Z.; P. Jin, D.; S., Jin; F. Jing, F.; Kalantar-Nayestanaki, N.; Kavatsyuk, M.; Kloss, B.; Kopf, B.; Kornicer, M.; Kuehn, W.; Lai, W.; S. Lange, J.; M., Lara; Larin, P.; Leyhe, M.; H. Li, C.; Cheng, Li; Cui, Li; M. Li, D.; F., Li; G., Li; B. Li, H.; C. Li, J.; K., Li; Lei, Li; R. Li, P.; J. Li, Q.; D. Li, W.; G. Li, W.; L. Li, X.; N. Li, X.; Q. Li, X.; R. Li, X.; B. Li, Z.; H., Liang; F. Liang, Y.; T. Liang, Y.; R. Liao, G.; X. Lin(Lin, D.; J. Liu, B.; L. Liu, C.; X. Liu, C.; H. Liu, F.; Fang, Liu; Feng, Liu; B. Liu, H.; H. Liu, H.; M. Liu, H.; P. Liu, J.; K., Liu; Y. Liu, K.; L. Liu, P.; Q., Liu; B. Liu, S.; X., Liu; B. Liu, Y.; A. Liu, Z.; Zhiqiang, Liu; Zhiqing, Liu; Loehner, H.; C. Lou, X.; R. Lu, G.; J. Lu, H.; G. Lu, J.; R. Lu, X.; P. Lu, Y.; L. Luo, C.; X. Luo, M.; Luo, T.; L. Luo, X.; Lv, M.; C. Ma, F.; L. Ma, H.; M. Ma, Q.; Ma, S.; Ma, T.; Y. Ma, X.; E. Maas, F.; Maggiora, M.; A. Malik, Q.; J. Mao, Y.; P. Mao, Z.; G. Messchendorp, J.; J., Min; J. Min, T.; E. Mitchell, R.; H. Mo, X.; Moeini, H.; C. Morales, Morales; Moriya, K.; Yu. Muchnoi, N.; Muramatsu, H.; Nefedov, Y.; B. Nikolaev, I.; Z., Ning; Nisar, S.; L. Olsen, S.; Ouyang, Q.; Pacetti, S.; W. Park, J.; Pelizaeus, M.; P. Peng, H.; Peters, K.; L. Ping, J.; G. Ping, R.; Poling, R.; Prencipe, E.; M., Qi; Qian, S.; F. Qiao, C.; Q. Qin, L.; S. Qin, X.; Y., Qin; H. Qin, Z.; F. Qiu, J.; H. Rashid, K.; F. Redmer, C.; G., Rong; D. Ruan, X.; Sarantsev, A.; Shao, M.; P. Shen, C.; Y. Shen, X.; Y. Sheng, H.; R. Shepherd, M.; M. Song, W.; Y. Song, X.; Spataro, S.; Spruck, B.; X. Sun, G.; F. Sun, J.; S. Sun, S.; J. Sun, Y.; Z. Sun, Y.; J. Sun, Z.; T. Sun, Z.; J. Tang, C.; Tang, X.; Tapan, I.; H. Thorndike, E.; Toth, D.; Ullrich, M.; Uman, I.; S. Varner, G.; B., Wang; D., Wang; Y. Wang, D.; K., Wang; L. Wang, L.; S. Wang, L.; M., Wang; P., Wang; L. Wang, P.; J. Wang, Q.; G. Wang, S.; F. Wang, X.; L. Wang, X.; D. Wang, Y.; F. Wang, Y.; Q. Wang, Y.; Z., Wang; G. Wang, Z.; H. Wang, Z.; Y. Wang, Z.; H. Wei, D.; B. Wei, J.; Weidenkaff, P.; G. Wen, Q.; P. Wen, S.; M., Werner; Wiedner, U.; H. Wu, L.; N., Wu; X. Wu, S.; W., Wu; Z., Wu; G. Xia, L.; X Xia, Y.; J. Xiao, Z.; G. Xie, Y.; L. Xiu, Q.; F. Xu, G.; J. Xu, Q.; N. Xu, Q.; P. Xu, X.; R. Xu, Z.; Xue, Z.; L., Yan; B. Yan, W.; C Yan, W.; H. Yan, Y.; X. Yang, H.; Y., Yang; X. Yang, Y.; Ye, H.; Ye, M.; H. Ye, M.; X. Yu, B.; X. Yu, C.; W. Yu, H.; S. Yu, J.; P. Yu, S.; Z. Yuan, C.; Y., Yuan; A. Zafar, A.; Zallo, A.; L. Zang, S.; Zeng, Y.; X. Zhang, B.; Y. Zhang, B.; Zhang, C.; C. Zhang, C.; H. Zhang, D.; H. Zhang, H.; Y. Zhang, H.; Q. Zhang, J.; W. Zhang, J.; Y. Zhang, J.; Z. Zhang, J.; Lili, Zhang; H. Zhang, S.; J. Zhang, X.; Y. Zhang, X.; Zhang, Y.; H. Zhang, Y.; P. Zhang, Z.; Y. Zhang, Z.; Zhenghao, Zhang; Zhao, G.; W. Zhao, J.; Lei, Zhao; Ling, Zhao; G. Zhao, M.; Zhao, Q.; J. Zhao, S.; C. Zhao, T.; H. Zhao, X.; B. Zhao, Y.; G. Zhao, Z.; Zhemchugov, A.; B., Zheng; P. Zheng, J.; H. Zheng, Y.; B., Zhong; L., Zhou; X., Zhou; K. Zhou, X.; R. Zhou, X.; Zhu, K.; J. Zhu, K.; L. Zhu, X.; C. Zhu, Y.; S. Zhu, Y.; A. Zhu, Z.; J., Zhuang; S. Zou, B.; H. Zou, J.
2013-12-01
Data sets were collected with the BESIII detector at the BEPCII collider at the center-of-mass energy of √s = 3.650 GeV during May 2009 and at √s = 3.773 GeV from January 2010 to May 2011. By analyzing the large angle Bhabha scattering events, the integrated luminosities of the two data sets are measured to be (44.49±0.02±0.44) pb-1 and (2916.94±0.18±29.17) pb-1, respectively, where the first error is statistical and the second error is systematic.
A laser technique for characterizing the geometry of plant canopies
NASA Technical Reports Server (NTRS)
Vanderbilt, V. C.; Silva, L. F.; Bauer, M. E.
1977-01-01
The interception of solar power by the canopy is investigated as a function of solar zenith angle (time), component of the canopy, and depth into the canopy. The projected foliage area, cumulative leaf area, and view factors within the canopy are examined as a function of the same parameters. Two systems are proposed that are capable of describing the geometrical aspects of a vegetative canopy and of operation in an automatic mode. Either system would provide sufficient data to yield a numerical map of the foliage area in the canopy. Both systems would involve the collection of large data sets in a short time period using minimal manpower.
Double-tailored nonimaging reflector optics for maximum-performance solar concentration.
Goldstein, Alex; Gordon, Jeffrey M
2010-09-01
A nonimaging strategy that tailors two mirror contours for concentration near the étendue limit is explored, prompted by solar applications where a sizable gap between the optic and absorber is required. Subtle limitations of this simultaneous multiple surface method approach are derived, rooted in the manner in which phase space boundaries can be tailored according to the edge-ray principle. The fundamental categories of double-tailored reflective optics are identified, only a minority of which can pragmatically offer maximum concentration at high collection efficiency. Illustrative examples confirm that acceptance half-angles as large as 30 mrad can be realized at a flux concentration of approximately 1000.
NASA Astrophysics Data System (ADS)
Razansky, R. Nika; Rozental, Amir; Mueller, Mathias S.; Deliolanis, Nikolaos; Jaffer, Farouc A.; Koch, Alexander W.; Ntziachristos, Vasilis
2011-03-01
Early detection of high-risk coronary atherosclerosis remains an unmet clinical challenge. We have previously demonstrated a near-infrared fluorescence catheter system for two-dimensional intravascular detection of fluorescence molecular probes [1]. In this work we improve the system performance by introducing a novel high resolution sensor. The main challenge of the intravascular sensor is to provide a highly focused spot at an application relevant distance on one hand and a highly efficient collection of emitted light on the other. We suggest employing a double cladding optical fiber (DCF) in combination with focusing optics to provide a sensor with both highly focused excitation light and highly efficient fluorescent light collection. The excitation laser is coupled into the single mode core of DCF and guided through a focusing element and a right angle prism. The resulting side-fired beam exhibits a small spot diameter (50 μm) throughout a distance of up to 2 mm from the sensor. This is the distance of interest for intravascular coronary imaging application, determined by an average human coronary artery diameter. At the blood vessel wall, an activatable fluorescence molecular probe is excited in the diseased lesions. Next light of slightly shifted wavelength emits only in the places of the inflammations, associated with dangerous plaques [2]. The emitted light is collected by the cladding of the DCF, with a large collection angle (NA=0.4). The doublecladding acts as multimodal fiber and guides the collected light to the photo detection elements. The sensor automatically rotates and pulled-back, while each scanned point is mapped according to the amount of detected fluorescent emission. The resulting map of fluorescence activity helps to associate the atherosclerotic plaques with the inflammation process. The presented detection system is a valuable tool in the intravascular plaque detection and can help to differentiate the atherosclerotic plaques based on their biological activity, identify the ones that prone to rupture and therefore require more medical attention.
Joint design of large-tip-angle parallel RF pulses and blipped gradient trajectories.
Cao, Zhipeng; Donahue, Manus J; Ma, Jun; Grissom, William A
2016-03-01
To design multichannel large-tip-angle kT-points and spokes radiofrequency (RF) pulses and gradient waveforms for transmit field inhomogeneity compensation in high field magnetic resonance imaging. An algorithm to design RF subpulse weights and gradient blip areas is proposed to minimize a magnitude least-squares cost function that measures the difference between realized and desired state parameters in the spin domain, and penalizes integrated RF power. The minimization problem is solved iteratively with interleaved target phase updates, RF subpulse weights updates using the conjugate gradient method with optimal control-based derivatives, and gradient blip area updates using the conjugate gradient method. Two-channel parallel transmit simulations and experiments were conducted in phantoms and human subjects at 7 T to demonstrate the method and compare it to small-tip-angle-designed pulses and circularly polarized excitations. The proposed algorithm designed more homogeneous and accurate 180° inversion and refocusing pulses than other methods. It also designed large-tip-angle pulses on multiple frequency bands with independent and joint phase relaxation. Pulses designed by the method improved specificity and contrast-to-noise ratio in a finger-tapping spin echo blood oxygen level dependent functional magnetic resonance imaging study, compared with circularly polarized mode refocusing. A joint RF and gradient waveform design algorithm was proposed and validated to improve large-tip-angle inversion and refocusing at ultrahigh field. © 2015 Wiley Periodicals, Inc.
Analysis of the flight dynamics of the Solar Maximum Mission (SMM) off-sun scientific pointing
NASA Technical Reports Server (NTRS)
Pitone, D. S.; Klein, J. R.
1989-01-01
Algorithms are presented which were created and implemented by the Goddard Space Flight Center's (GSFC's) Solar Maximum Mission (SMM) attitude operations team to support large-angle spacecraft pointing at scientific objectives. The mission objective of the post-repair SMM satellite was to study solar phenomena. However, because the scientific instruments, such as the Coronagraph/Polarimeter (CP) and the Hard X ray Burst Spectrometer (HXRBS), were able to view objects other than the Sun, attitude operations support for attitude pointing at large angles from the nominal solar-pointing attitudes was required. Subsequently, attitude support for SMM was provided for scientific objectives such as Comet Halley, Supernova 1987A, Cygnus X-1, and the Crab Nebula. In addition, the analysis was extended to include the reverse problem, computing the right ascension and declination of a body given the off-Sun angles. This analysis led to the computation of the orbits of seven new solar comets seen in the field-of-view (FOV) of the CP. The activities necessary to meet these large-angle attitude-pointing sequences, such as slew sequence planning, viewing-period prediction, and tracking-bias computation are described. Analysis is presented for the computation of maneuvers and pointing parameters relative to the SMM-unique, Sun-centered reference frame. Finally, science data and independent attitude solutions are used to evaluate the large-angle pointing performance.
Analysis of the flight dynamics of the Solar Maximum Mission (SMM) off-sun scientific pointing
NASA Technical Reports Server (NTRS)
Pitone, D. S.; Klein, J. R.; Twambly, B. J.
1990-01-01
Algorithms are presented which were created and implemented by the Goddard Space Flight Center's (GSFC's) Solar Maximum Mission (SMM) attitude operations team to support large-angle spacecraft pointing at scientific objectives. The mission objective of the post-repair SMM satellite was to study solar phenomena. However, because the scientific instruments, such as the Coronagraph/Polarimeter (CP) and the Hard X-ray Burst Spectrometer (HXRBS), were able to view objects other than the Sun, attitude operations support for attitude pointing at large angles from the nominal solar-pointing attitudes was required. Subsequently, attitude support for SMM was provided for scientific objectives such as Comet Halley, Supernova 1987A, Cygnus X-1, and the Crab Nebula. In addition, the analysis was extended to include the reverse problem, computing the right ascension and declination of a body given the off-Sun angles. This analysis led to the computation of the orbits of seven new solar comets seen in the field-of-view (FOV) of the CP. The activities necessary to meet these large-angle attitude-pointing sequences, such as slew sequence planning, viewing-period prediction, and tracking-bias computation are described. Analysis is presented for the computation of maneuvers and pointing parameters relative to the SMM-unique, Sun-centered reference frame. Finally, science data and independent attitude solutions are used to evaluate the larg-angle pointing performance.
Analysis of Slug Test Response in a Fracture of a Large Dipping Angle
NASA Astrophysics Data System (ADS)
Chen, C.
2013-12-01
A number of cross-borehole slug tests were conducted in a Cenozoic folded sandstone formation, where a fracture has a dipping angle as large as 47°. As all the slug test models available in literature assume the formation to be horizontal, a slug test model taking into account the dipping angle effect is developed herein. Due to the presence of the dipping angle, there is a uniform regional groundwater flow, and the flow field generated by the test is not raidally symmetrical with respect to the test well. When the fracture hydraulic conductivity is relatively low, a larger dipping angle causes larger wellbore flow rates, leading to a faster recovery of the non-oscillatory test response. When the fracture hydraulic conductivity is relatively high, a larger dipping angle causes smaller wellbore heads, resulting in an increase of amplitude of the oscillatory test response; yet little influence on the frequency of oscillation. In general, neglecting the dipping angle may lead to an overestimate of hydraulic conductivity and an underestimate of the storage coefficient. The dipping angle effect is more pronounced for a larger storage coefficient, being less sensitive to transmissivity. An empirical relationship is developed for the minimum dipping angle, smaller than which the dipping angle effect can be safely neglected, as a function of the dimensionless storage coefficient. This empirical relationship helps evaluate whether or not the dipping angle needs to be considered in data analysis. The slug test data in the fracture of a 47°dipping angle is analyzed using the current model, and it is found that neglecting the dip angle can result in a 30% overestimate of transmissivity and a 61% underestimate of the storage coefficient.
Modelling of eddy currents related to large angle magnetic suspension test fixture
NASA Technical Reports Server (NTRS)
Britcher, Colin P.; Foster, Lucas E.
1994-01-01
This report presents a preliminary analysis of the mathematical modelling of eddy current effects in a large-gap magnetic suspension system. It is shown that eddy currents can significantly affect the dynamic behavior and control of these systems, but are amenable to measurement and modelling. A theoretical framework is presented, together with a comparison of computed and experimental data related to the Large Angle Magnetic Suspension Test Fixture at NASA Langley Research Center.
NASA Astrophysics Data System (ADS)
Sega, M.; Autieri, E.; Pederiva, F.
2011-01-01
Although completely equivalent for the description of puckered ring conformers, the two popular coordinates sets of Strauss-Pickett dihedral angles and Cremer-Pople spherical coordinates are shown to have contrasting features when employed as collective variables in free-energy calculations with accelerated sampling techniques. Results from a 100 ns molecular dynamics simulation at conformational equilibrium and from combined metadynamics/umbrella sampling calculations of glucose are exploited to elucidate these differences.
A Reynolds Number Study of Wing Leading-Edge Effects on a Supersonic Transport Model at Mach 0.3
NASA Technical Reports Server (NTRS)
Williams, M. Susan; Owens, Lewis R., Jr.; Chu, Julio
1999-01-01
A representative supersonic transport design was tested in the National Transonic Facility (NTF) in its original configuration with small-radius leading-edge flaps and also with modified large-radius inboard leading-edge flaps. Aerodynamic data were obtained over a range of Reynolds numbers at a Mach number of 0.3 and angles of attack up to 16 deg. Increasing the radius of the inboard leading-edge flap delayed nose-up pitching moment to a higher lift coefficient. Deflecting the large-radius leading-edge flap produced an overall decrease in lift coefficient and delayed nose-up pitching moment to even higher angles of attack as compared with the undeflected large- radius leading-edge flap. At angles of attack corresponding to the maximum untrimmed lift-to-drag ratio, lift and drag coefficients decreased while lift-to-drag ratio increased with increasing Reynolds number. At an angle of attack of 13.5 deg., the pitching-moment coefficient was nearly constant with increasing Reynolds number for both the small-radius leading-edge flap and the deflected large-radius leading-edge flap. However, the pitching moment coefficient increased with increasing Reynolds number for the undeflected large-radius leading-edge flap above a chord Reynolds number of about 35 x 10 (exp 6).
Rutowski, Ronald L; Warrant, Eric J
2002-02-01
Male Empress Leilia butterflies ( Asterocampa leilia) use a sit-and-wait tactic to locate mates. To see how vision might influence male behavior, we studied the morphology, optics, and receptor physiology of their eyes and found the following. (1) Each eye's visual field is approximately hemispherical with at most a 10 degrees overlap in the fields of the eyes. There are no large sexual differences in visual field dimensions. (2) In both sexes, rhabdoms in the frontal and dorsal ommatidia are longer than those in other eye regions. (3) Interommatidial angles are smallest frontally and around the equator of the eye. Minimum interommatidial angles are 0.9-1 degrees in males and 1.3-1.4 degrees in females. (4) Acceptance angles of ommatidia closely match interommatidial angles in the frontal region of the eye. We conclude that vision in these butterflies is mostly monocular and that males have more acute vision than females, especially in the frontal region (large facets, small interommatidial angles, small acceptance angles, long rhabdoms, and a close match between interommatidial angles and acceptance angles). This study also suggests that perched males direct their most acute vision where females are likely to appear but show no eye modifications that appear clearly related to a mate-locating tactic.
3D superwide-angle one-way propagator and its application in seismic modeling and imaging
NASA Astrophysics Data System (ADS)
Jia, Xiaofeng; Jiang, Yunong; Wu, Ru-Shan
2018-07-01
Traditional one-way wave-equation based propagators have been widely used in past decades. Comparing to two-way propagators, one-way methods have higher efficiency and lower memory demands. These two features are especially important in solving large-scale 3D problems. However, regular one-way propagators cannot simulate waves that propagate in large angles within 90° because of their inherent wide angle limitation. Traditional one-way can only propagate along the determined direction (e.g., z-direction), so simulation of turning waves is beyond the ability of one-way methods. We develop 3D superwide-angle one-way propagator to overcome angle limitation and to simulate turning waves with superwide-angle propagation angle (>90°) for modeling and imaging complex geological structures. Wavefields propagating along vertical and horizontal directions are combined using typical stacking scheme. A weight function related to the propagation angle is used for combining and updating wavefields in each propagating step. In the implementation, we use graphics processing units (GPU) to accelerate the process. Typical workflow is designed to exploit the advantages of GPU architecture. Numerical examples show that the method achieves higher accuracy in modeling and imaging steep structures than regular one-way propagators. Actually, superwide-angle one-way propagator can be applied based on any one-way method to improve the effects of seismic modeling and imaging.
NASA Astrophysics Data System (ADS)
Idier, Déborah; Falqués, Albert; Rohmer, Jérémy; Arriaga, Jaime
2017-09-01
The instability mechanisms for self-organized kilometer-scale shoreline sand waves have been extensively explored by modeling. However, while the assumed bathymetric perturbation associated with the sand wave controls the feedback between morphology and waves, its effect on the instability onset has not been explored. In addition, no systematic investigation of the effect of the physical parameters has been done yet. Using a linear stability model, we investigate the effect of wave conditions, cross-shore profile, closure depth, and two perturbation shapes (P1: cross-shore bathymetric profile shift, and P2: bed level perturbation linearly decreasing offshore). For a P1 perturbation, no instability occurs below an absolute critical angle θc0≈ 40-50°. For a P2 perturbation, there is no absolute critical angle: sand waves can develop also for low-angle waves. In fact, the bathymetric perturbation shape plays a key role in low-angle wave instability: such instability only develops if the curvature of the depth contours offshore the breaking zone is larger than the shoreline one. This can occur for the P2 perturbation but not for P1. The analysis of bathymetric data suggests that both curvature configurations could exist in nature. For both perturbation types, large wave angle, small wave period, and large closure depth strongly favor instability. The cross-shore profile has almost no effect with a P1 perturbation, whereas large surf zone slope and gently sloping shoreface strongly enhance instability under low-angle waves for a P2 perturbation. Finally, predictive statistical models are set up to identify sites prone to exhibit either a critical angle close to θc0 or low-angle wave instability.
Aerodynamic Investigation of Incidence Angle Effects in a Large Scale Transonic Turbine Cascade
NASA Technical Reports Server (NTRS)
McVetta, Ashlie B.; Giel, Paul W.; Welch, Gerard E.
2013-01-01
Aerodynamic measurements showing the effects of large incidence angle variations on an HPT turbine blade set are presented. Measurements were made in NASA's Transonic Turbine Blade Cascade Facility which has been used in previous studies to acquire detailed aerodynamic and heat transfer measurements for CFD code validation. The current study supports the development of variable-speed power turbine (VSPT) speed-change technology for the NASA Large Civil Tilt Rotor (LCTR) vehicle. In order to maintain acceptable main rotor propulsive efficiency, the VSPT operates over a nearly 50 percent speed range from takeoff to altitude cruise. This results in 50deg or more variations in VSPT blade incidence angles. The cascade facility has the ability to operate over a wide range of Reynolds numbers and Mach numbers, but had to be modified in order to accommodate the negative incidence angle variation required by the LCTR VSPT operation. Using existing blade geometry with previously acquired aerodynamic data, the tunnel was re-baselined and the new incidence angle range was exercised. Midspan exit total pressure and flow angle measurements were obtained at seven inlet flow angles. For each inlet angle, data were obtained at five flow conditions with inlet Reynolds numbers varying from 6.83×10(exp 5) to 0.85×10(exp 5) and two isentropic exit Mach numbers of 0.74 and 0.34. The midspan flowfield measurements were acquired using a three-hole pneumatic probe located in a survey plane 8.6 percent axial chord downstream of the blade trailing edge plane and covering three blade passages. Blade and endwall static pressure distributions were also acquired for each flow condition.
NASA Technical Reports Server (NTRS)
McVetta, Ashlie B.; Giel, Paul W.; Welch, Gerard E.
2014-01-01
Aerodynamic measurements showing the effects of large incidence angle variations on an HPT turbine blade set are presented. Measurements were made in NASA's Transonic Turbine Blade Cascade Facility which has been used in previous studies to acquire detailed aerodynamic and heat transfer measurements for CFD code validation. The current study supports the development of variable-speed power turbine (VSPT) speed-change technology for the NASA Large Civil Tilt Rotor (LCTR) vehicle. In order to maintain acceptable main rotor propulsive efficiency, the VSPT operates over a nearly 50 percent speed range from takeoff to altitude cruise. This results in 50 deg or more variations in VSPT blade incidence angles. The cascade facility has the ability to operate over a wide range of Reynolds numbers and Mach numbers, but had to be modified in order to accommodate the negative incidence angle variation required by the LCTR VSPT operation. Using existing blade geometry with previously acquired aerodynamic data, the tunnel was re-baselined and the new incidence angle range was exercised. Midspan exit total pressure and flow angle measurements were obtained at seven inlet flow angles. For each inlet angle, data were obtained at five flow conditions with inlet Reynolds numbers varying from 6.83×10 (exp 5) to 0.85×10(exp 5) and two isentropic exit Mach numbers of 0.74 and 0.34. The midspan flowfield measurements were acquired using a three-hole pneumatic probe located in a survey plane 8.6 percent axial chord downstream of the blade trailing edge plane and covering three blade passages. Blade and endwall static pressure distributions were also acquired for each flow condition.
Aerodynamic Investigation of Incidence Angle Effects in a Large Scale Transonic Turbine Cascade
NASA Technical Reports Server (NTRS)
McVetta, Ashlie B.; Giel, Paul W.; Welch, Gerard E.
2012-01-01
Aerodynamic measurements showing the effects of large incidence angle variations on an HPT turbine blade set are presented. Measurements were made in NASA's Transonic Turbine Blade Cascade Facility which has been used in previous studies to acquire detailed aerodynamic and heat transfer measurements for CFD code validation. The current study supports the development of variable-speed power turbine (VSPT) speed-change technology for the NASA Large Civil Tilt Rotor (LCTR) vehicle. In order to maintain acceptable main rotor propulsive efficiency, the VSPT operates over a nearly 50% speed range from takeoff to altitude cruise. This results in 50 degrees or more variations in VSPT blade incidence angles. The cascade facility has the ability to operate over a wide range of Reynolds numbers and Mach numbers, but had to be modified in order to accommodate the negative incidence angle variation required by the LCTR VSPT operation. Using existing blade geometry with previously acquired aerodynamic data, the tunnel was re-baselined and the new incidence angle range was exercised. Midspan exit total pressure and flow angle measurements were obtained at seven inlet flow angles. For each inlet angle, data were obtained at five flow conditions with inlet Reynolds numbers varying from 6.83 × 10(exp 5) to 0.85 ×10(exp 5) and two isentropic exit Mach numbers of 0.74 and 0.34. The midspan flowfield measurements were acquired using a three-hole pneumatic probe located in a survey plane 8.6% axial chord downstream of the blade trailing edge plane and covering three blade passages. Blade and endwall static pressure distributions were also acquired for each flow condition
Geometric correction and digital elevation extraction using multiple MTI datasets
Mercier, Jeffrey A.; Schowengerdt, Robert A.; Storey, James C.; Smith, Jody L.
2007-01-01
Digital Elevation Models (DEMs) are traditionally acquired from a stereo pair of aerial photographs sequentially captured by an airborne metric camera. Standard DEM extraction techniques can be naturally extended to satellite imagery, but the particular characteristics of satellite imaging can cause difficulties. The spacecraft ephemeris with respect to the ground site during image collects is the most important factor in the elevation extraction process. When the angle of separation between the stereo images is small, the extraction process typically produces measurements with low accuracy, while a large angle of separation can cause an excessive number of erroneous points in the DEM from occlusion of ground areas. The use of three or more images registered to the same ground area can potentially reduce these problems and improve the accuracy of the extracted DEM. The pointing capability of some sensors, such as the Multispectral Thermal Imager (MTI), allows for multiple collects of the same area from different perspectives. This functionality of MTI makes it a good candidate for the implementation of a DEM extraction algorithm using multiple images for improved accuracy. Evaluation of this capability and development of algorithms to geometrically model the MTI sensor and extract DEMs from multi-look MTI imagery are described in this paper. An RMS elevation error of 6.3-meters is achieved using 11 ground test points, while the MTI band has a 5-meter ground sample distance.
Technical Note: An investigation of polarity effects for wide-angle free-air chambers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, H., E-mail: Hong.Shen@nrc-cnrc.gc.ca; Ross,
2016-07-15
Purpose: Wide-angle free-air chambers (WAFACs) are used as primary standard measurement devices for establishing the air-kerma strength of low-energy, low-dose rate brachytherapy seeds. The National Research Council of Canada (NRC) is commissioning a primary standard wide-angle free-air chamber (NRC WAFAC) to serve the calibration needs of Canadian clients. The University of Wisconsin has developed a similar variable-aperture free-air chamber (UW VAFAC) to be used as a research tool. As part of the NRC commissioning, measurements were carried out for both polarities of the applied bias voltage and the resulting effects were observed to be very large. Similar effects were identifiedmore » with the UW VAFAC. The authors describe the measurements carried out to determine the underlying causes of the polarity effect and the approach used to eliminate it. Methods: The NRC WAFAC is based on the WAFAC design developed at the National Institute of Standards and Technology in the USA. Charge measurements for {sup 125}I and {sup 241}Am sources were carried out for both negative and positive polarities on the NRC WAFAC and UW VAFAC. Two aperture sizes were also investigated with the UW VAFAC. In addition, measurements on the NRC WAFAC were carried out with a small bias between the collecting electrode and the shield foil at the downstream end of the chamber. To mitigate all of the polarity effects, the downstream surface of the collecting electrode was covered with a thin layer of graphite on both the NRC and UW chambers. Results: Both chamber designs showed a difference of more than 30 % between the charge collected with positive and negative bias voltages for the smallest electrode separation. It was shown for the NRC WAFAC that charge could be collected in the small gap downstream of the collecting volume by applying a voltage between the shield foil and the collecting electrode, even though an insulating foil (Mylar or polyimide film) separated the conducting surface from the small gap region. The unwanted additional current was shown to be proportional to the size of the aperture for the UW VAFAC. The extra ionization produced in the small gap region was eliminated for both chambers by covering the insulating side of the collecting electrode with a grounded conducting layer. Conclusions: The small gap region downstream of the collecting electrode in the NRC WAFAC and UW VAFAC can serve as an unwanted source of ion current. It is concluded that a residual electric field in the small gap region may lead to ion transport and to charge being trapped on the surface of the foil. The foil then acts as a capacitor with an equal charge, but of opposite sign, being attracted to the conducting surface. Covering the back of the collecting electrode surface with a grounded conducting layer eliminated the polarity effect.« less
Large angle nonmechanical laser beam steering at 4.6 μm using a digital micromirror device
NASA Astrophysics Data System (ADS)
Lindle, James Ryan; Watnik, Abbie T.
2018-02-01
Large angle, nonmechanical beam steering is demonstrated at 4.62 μm using the digital light processing technology. A 42-deg steering range is demonstrated, limited by the field-of-view of the recollimating lens. The measured diffraction efficiency is 8.1% on-axis and falls-off with a sin2 dependence with the steering angle. However, within the 42-deg steering range, the power varied less than 25%. The profile of the steered laser beam is Gaussian with a divergence of 5.2 mrad. Multibeam, randomly addressable beam steering, is also demonstrated.
Study and optimization of key parameters of a laser ablation ion mobility spectrometer
NASA Astrophysics Data System (ADS)
Ni, Kai; Li, Jianan; Tang, Binchao; Shi, Yuan; Yu, Quan; Qian, Xiang; Wang, Xiaohao
2016-11-01
Ion Mobility Spectrometry (IMS), having an advantage in real-time and on-line detection, is an atmospheric pressure detecting technique. LA-IMS (Laser Ablation Ion Mobility Spectrometry) uses Nd-YAG laser as ionization source, whose energy is high enough to ionize metal. In this work, we tested the signal in different electric field intensity by a home-made ion mobility spectrometer, using silicon wafers the sample. The transportation of metal ions was match with the formula: Td = d/K • 1/E, when the electric field intensity is greater than 350v/cm. The relationship between signal intensity and collection angle (the angle between drift tube and the surface of the sample) was studied. With the increasing of the collection angle, signal intensity had a significant increase; while the variation of incident angle of the laser had no significant influence. The signal intensity had a 140% increase when the collection angle varied from 0 to 45 degree, while the angle between the drift tube and incident laser beam keeping the same as 90 degree. The position of ion gate in LA-IMS(Laser Ablation Ion Mobility Spectrometry) is different from the traditional ones for the kinetic energy of the ions is too big, if the distance between ion gate and sampling points less than 2.5cm the ion gate will not work, the ions could go through ion gate when it closed. The SNR had been improved by define the signal when the ion gate is closed as background signal, the signal noise including shock wave and electrical field perturbation produced during the interaction between laser beam and samples is eliminated when the signal that the ion gate opened minus the background signal.
Numerical simulations of regolith sampling processes
NASA Astrophysics Data System (ADS)
Schäfer, Christoph M.; Scherrer, Samuel; Buchwald, Robert; Maindl, Thomas I.; Speith, Roland; Kley, Wilhelm
2017-07-01
We present recent improvements in the simulation of regolith sampling processes in microgravity using the numerical particle method smooth particle hydrodynamics (SPH). We use an elastic-plastic soil constitutive model for large deformation and failure flows for dynamical behaviour of regolith. In the context of projected small body (asteroid or small moons) sample return missions, we investigate the efficiency and feasibility of a particular material sampling method: Brushes sweep material from the asteroid's surface into a collecting tray. We analyze the influence of different material parameters of regolith such as cohesion and angle of internal friction on the sampling rate. Furthermore, we study the sampling process in two environments by varying the surface gravity (Earth's and Phobos') and we apply different rotation rates for the brushes. We find good agreement of our sampling simulations on Earth with experiments and provide estimations for the influence of the material properties on the collecting rate.
Ku, Judy Y; Nongpiur, Monisha E; Park, Judy; Narayanaswamy, Arun K; Perera, Shamira A; Tun, Tin A; Kumar, Rajesh S; Baskaran, Mani; Aung, Tin
2014-12-01
To qualitatively analyze anterior chamber structures imaged by ultrasound biomicroscopy (UBM) in primary angle-closure patients. Subjects diagnosed as primary angle-closure suspect (PACS), primary angle-closure glaucoma (PACG), and previous acute primary angle closure (APAC) were recruited prospectively along with a group of normal controls. UBM was performed under standardized dark room conditions and qualitative assessment was carried out using a set of reference photographs of standard UBM images to categorize the various anatomic features related to angle configuration. These included overall and basal iris thicknesses, iris convexity, iris angulation, ciliary body size, and ciliary sulcus. A total of 60 PACS, 114 PACG, 41 APAC, and 33 normal controls were included. Patients were predominantly older Chinese females. After controlling the confounding effect of age and sex, eyes with overall thicker irides [medium odds ratio (OR) 3.58, thick OR 2.84] when compared with thin irides have a significantly higher likelihood of having PACS/PACG/APAC versus controls. Thicker basal iris component (medium OR 4.13, thick OR 3.39) also have higher likelihood of having angle closure when compared with thin basal iris thickness. Subjects with basal iris insertion, mild iris angulation, and large ciliary body have a higher OR of having angle closure. In contrast, the presence/absence of a ciliary sulcus did not influence the likelihood of angle closure. Eyes with thicker overall and basal iris thicknesses are more likely to have angle closure than controls. Other features that increase the likelihood of angle closure include basal iris insertion, mild iris angulation, and large ciliary body.
In plane oscillation of a bifilar pendulum
NASA Astrophysics Data System (ADS)
Hinrichsen, Peter F.
2016-11-01
The line tensions, the horizontal and vertical accelerations as well as the period of large angle oscillations parallel to the plane of a bifilar suspension are presented and have been experimentally investigated using strain gauges and a smart phone. This system has a number of advantages over the simple pendulum for studying large angle oscillations, and for measuring the acceleration due to gravity.
Initial Alignment of Large Azimuth Misalignment Angles in SINS Based on Adaptive UPF
Sun, Jin; Xu, Xiao-Su; Liu, Yi-Ting; Zhang, Tao; Li, Yao
2015-01-01
The case of large azimuth misalignment angles in a strapdown inertial navigation system (SINS) is analyzed, and a method of using the adaptive UPF for the initial alignment is proposed. The filter is based on the idea of a strong tracking filter; through the introduction of the attenuation memory factor to effectively enhance the corrections of the current information residual error on the system, it reduces the influence on the system due to the system simplification, and the uncertainty of noise statistical properties to a certain extent; meanwhile, the UPF particle degradation phenomenon is better overcome. Finally, two kinds of non-linear filters, UPF and adaptive UPF, are adopted in the initial alignment of large azimuth misalignment angles in SINS, and the filtering effects of the two kinds of nonlinear filter on the initial alignment were compared by simulation and turntable experiments. The simulation and turntable experiment results show that the speed and precision of the initial alignment using adaptive UPF for a large azimuth misalignment angle in SINS under the circumstance that the statistical properties of the system noise are certain or not have been improved to some extent. PMID:26334277
46 CFR 172.195 - Survival conditions.
Code of Federal Regulations, 2011 CFR
2011-10-01
.... The final waterline, in the final condition of sinkage, heel, and trim, must be below the lower edge...) Heel angle. The maximum angle of heel must not exceed 30 degrees. (c) Range of stability. Through an... lines may not be considered for reducing the angle of heel. Spaces joined by ducts of large cross...
46 CFR 172.195 - Survival conditions.
Code of Federal Regulations, 2010 CFR
2010-10-01
.... The final waterline, in the final condition of sinkage, heel, and trim, must be below the lower edge...) Heel angle. The maximum angle of heel must not exceed 30 degrees. (c) Range of stability. Through an... lines may not be considered for reducing the angle of heel. Spaces joined by ducts of large cross...
Structural analysis of three space crane articulated-truss joint concepts
NASA Technical Reports Server (NTRS)
Wu, K. Chauncey; Sutter, Thomas R.
1992-01-01
Three space crane articulated truss joint concepts are studied to evaluate their static structural performance over a range of geometric design parameters. Emphasis is placed on maintaining the four longeron reference truss performance across the joint while allowing large angle articulation. A maximum positive articulation angle and the actuator length ratio required to reach the angle are computed for each concept as the design parameters are varied. Configurations with a maximum articulation angle less than 120 degrees or actuators requiring a length ratio over two are not considered. Tip rotation and lateral deflection of a truss beam with an articulated truss joint at the midspan are used to select a point design for each concept. Deflections for one point design are up to 40 percent higher than for the other two designs. Dynamic performance of the three point design is computed as a function of joint articulation angle. The two lowest frequencies of each point design are relatively insensitive to large variations in joint articulation angle. One point design has a higher maximum tip velocity for the emergency stop than the other designs.
Vijayalakshmi, I B; Chitra, N; Rajasri, R; Prabhudeva, A N
2005-01-01
Transcatheter closure of patent ductus arteriosus (PDA) by Amplatzer duct occluder is the treatment of choice. However, closure of very large ducts in infants with low weight is a challenge for the interventionalist because a large device may obstruct the aorta or left pulmonary artery. Difficulty is also encountered in advancing the device around the curve of the right ventricular outflow tract toward the pulmonary artery; this curve is tight, more or less at a right angle in infants, leading to kinking of the sheath, which increases fluoroscopic time. This is the first reported case of a very large PDA (8.7 mm), larger than the aorta (8.2 mm), successfully closed by an Amplatzer angled duct occluder in an infant weighing 5 kg.
NASA Astrophysics Data System (ADS)
Liu, Jing; Skidmore, Andrew K.; Jones, Simon; Wang, Tiejun; Heurich, Marco; Zhu, Xi; Shi, Yifang
2018-02-01
Gap fraction (Pgap) and vertical gap fraction profile (vertical Pgap profile) are important forest structural metrics. Accurate estimation of Pgap and vertical Pgap profile is therefore critical for many ecological applications, including leaf area index (LAI) mapping, LAI profile estimation and wildlife habitat modelling. Although many studies estimated Pgap and vertical Pgap profile from airborne LiDAR data, the scan angle was often overlooked and a nadir view assumed. However, the scan angle can be off-nadir and highly variable in the same flight strip or across different flight strips. In this research, the impact of off-nadir scan angle on Pgap and vertical Pgap profile was evaluated, for several forest types. Airborne LiDAR data from nadir (0°∼7°), small off-nadir (7°∼23°), and large off-nadir (23°∼38°) directions were used to calculate both Pgap and vertical Pgap profile. Digital hemispherical photographs (DHP) acquired during fieldwork were used as references for validation. Our results show that angular Pgap from airborne LiDAR correlates well with angular Pgap from DHP (R2 = 0.74, 0.87, and 0.67 for nadir, small off-nadir and large off-nadir direction). But underestimation of Pgap from LiDAR amplifies at large off-nadir scan angle. By comparing Pgap and vertical Pgap profiles retrieved from different directions, it is shown that scan angle impact on Pgap and vertical Pgap profile differs amongst different forest types. The difference is likely to be caused by different leaf angle distribution and canopy architecture in these forest types. Statistical results demonstrate that the scan angle impact is more severe for plots with discontinuous or sparse canopies. These include coniferous plots, and deciduous or mixed plots with between-crown gaps. In these discontinuous plots, Pgap and vertical Pgap profiles are maximum when observed from nadir direction, and then rapidly decrease with increasing scan angle. The results of this research have many important practical implications. First, it is suggested that large off-nadir scan angle of airborne LiDAR should be avoided to ensure a more accurate Pgap and LAI estimation. Second, the angular dependence of vertical Pgap profiles observed from airborne LiDAR should be accounted for, in order to improve the retrieval of LAI profiles, and other quantitative canopy structural metrics. This is especially necessary when using multi-temporal datasets in discontinuous forest types. Third, the anisotropy of Pgap and vertical Pgap profile observed by airborne LiDAR, can potentially help to resolve the anisotropic behavior of canopy reflectance, and refine the inversion of biophysical and biochemical properties from passive multispectral or hyperspectral data.
The weight and angle of depression detection and control system of a large portal crane
NASA Astrophysics Data System (ADS)
Shi, Lian-Wen; Xie, Hongxia; Wang, Meijing; Guan, Yankui; Leng, Gengxin
2008-12-01
In order to prevent overturning accidents, the lifted weight and the angle of depression should be detected when a large portal crane is working in a shipyard. However, the locations of the weight sensor and the angle of depression detection part are far away from the central control room. The long signal transmitting distance is so long that it results in a lot of interferences, even the breaking down of the system. In order to solve the above mentioned problems, a high precision analog signal amplifier and a voltage / current (V / I) transforming circuit is set at the place of the sensor to detect the weight. After the sensor signals have been amplified, they will be transformed into 4 to 20 mA current signals for transmission. Thus the interferences in the long transmitting process can be overcome. A WXJ-3 potentiometer is applied to detect the angle of depression. This device has the advantages of a high accuracy of repeated positions, a good stability and a strong anti-fatigue property. After processed by the current-strengthened circuit, the transmitted signals representing voltage value can have the characteristics of transmitting currents because of the large current value. Then the anti-jamming capability is stronger. Send the weight and the angle of depression detection signals to A/D converter, then the signals turn into digital representation and are sent to the control system composed of a PLC. The PLC calculates the current rated lifting weight depending on the different angles of depression, and when the weight is greater than the rated one, the PLC sends control signals to stop the lifting; hence the crane can only put down the weights. So the safety of the large portal crane is effectively guaranteed. At present ,the system has been applied to the 70-ton large portal cranes of the Tianjin Xingang Shipyard with a safe operation of 10 years.
NASA Technical Reports Server (NTRS)
McCarty, John Locke; Brooks, George W.; Maglieri, Domenic J.
1959-01-01
A two-blade rotor having a diameter of 4 feet and a solidity of 0.037 was tested in the Langley 300-MPH 7- by 10-foot tunnel to obtain information on the effect of certain rotor variables on the blade periodic bending moments and flapping angles during the various stages of transformation between the helicopter and autogiro configuration. Variables studied included collective pitch angle, flapping-hinge offset, rotor angle of attack, and tip-speed ratio. The results show that the blade periodic bending moments generally increase with tip-speed ratio up into the transition region, diminish over a certain range of tip-speed ratio, and increase again at higher tip-speed ratios. Above the transition region, the bending moments increase with collective pitch angle and rotor angle of attack. The absence of a flapping hinge results in a significant amplification of the periodic bending moments, the magnitudes of which increase with tip-speed ratio. When the flapping hinge is used, an increase in flapping-hinge offset results in reduced period bending moments. The aforementioned trends exhibited by the bending moments for changes in the variables are essentially duplicated by the periodic flapping motions. The existence of substantial amounts of blade stall increased both the periodic bending moments and the flapping angles. Harmonic analysis of the bending moments shows significant contributions of the higher harmonics, particularly in the transition region.
Identification of geostationary satellites using polarization data from unresolved images
NASA Astrophysics Data System (ADS)
Speicher, Andy
In order to protect critical military and commercial space assets, the United States Space Surveillance Network must have the ability to positively identify and characterize all space objects. Unfortunately, positive identification and characterization of space objects is a manual and labor intensive process today since even large telescopes cannot provide resolved images of most space objects. Since resolved images of geosynchronous satellites are not technically feasible with current technology, another method of distinguishing space objects was explored that exploits the polarization signature from unresolved images. The objective of this study was to collect and analyze visible-spectrum polarization data from unresolved images of geosynchronous satellites taken over various solar phase angles. Different collection geometries were used to evaluate the polarization contribution of solar arrays, thermal control materials, antennas, and the satellite bus as the solar phase angle changed. Since materials on space objects age due to the space environment, it was postulated that their polarization signature may change enough to allow discrimination of identical satellites launched at different times. The instrumentation used in this experiment was a United States Air Force Academy (USAFA) Department of Physics system that consists of a 20-inch Ritchey-Chretien telescope and a dual focal plane optical train fed with a polarizing beam splitter. A rigorous calibration of the system was performed that included corrections for pixel bias, dark current, and response. Additionally, the two channel polarimeter was calibrated by experimentally determining the Mueller matrix for the system and relating image intensity at the two cameras to Stokes parameters S0 and S1. After the system calibration, polarization data was collected during three nights on eight geosynchronous satellites built by various manufacturers and launched several years apart. Three pairs of the eight satellites were identical buses to determine if identical buses could be correctly differentiated. When Stokes parameters were plotted against time and solar phase angle, the data indicates that there were distinguishing features in S0 (total intensity) and S1 (linear polarization) that may lead to positive identification or classification of each satellite.
Barhoum, Erek; Johnston, Richard; Seibel, Eric
2005-09-19
An optical model of an ultrathin scanning fiber endoscope was constructed using a non-sequential ray tracing program and used to study the relationship between fiber deflection and collection efficiency from tissue. The problem of low collection efficiency of confocal detection through the scanned single-mode optical fiber was compared to non-confocal cladding detection. Collection efficiency is 40x greater in the non-confocal versus the confocal geometry due to the majority of rays incident on the core being outside the numerical aperture. Across scan angles of 0 to 30o, collection efficiency decreases from 14.4% to 6.3% for the non-confocal design compared to 0.34% to 0.10% for the confocal design. Non-confocality provides higher and more uniform collection efficiencies at larger scan angles while sacrificing the confocal spatial filter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furushima, Yuho; Nakamura, Atsutomo, E-mail: nakamura@numse.nagoya-u.ac.jp; Toyoura, Kazuaki
Dislocations in crystalline materials constitute unique, atomic-scale, one-dimensional structure and have a potential to induce peculiar physical properties that are not found in the bulk. In this study, we fabricated LiNbO{sub 3} bicrystals with low angle tilt grain boundaries and investigated the relationship between the atomic structure of the boundary dislocations and their electrical conduction properties. Observations by using transmission electron microscopy revealed that dislocation structures at the (0001) low angle tilt grain boundaries depend on the tilt angle of the boundaries. Specifically, the characteristic dislocation structures with a large Burgers vector were formed in the boundary with the tiltmore » angle of 2°. It is noteworthy that only the grain boundary of 2° exhibits distinct electrical conductivity after reduction treatment, although LiNbO{sub 3} is originally insulating. This unique electrical conductivity is suggested to be due to the characteristic dislocation structures with a large Burgers vector.« less
NASA Astrophysics Data System (ADS)
Uchiyama, H.; Watanabe, M.; Shaw, D. M.; Bahia, J. E.; Collins, G. J.
1999-10-01
Accurate measurement of plasma source impedance is important for verification of plasma circuit models, as well as for plasma process characterization and endpoint detection. Most impedance measurement techniques depend in some manner on the cosine of the phase angle to determine the impedance of the plasma load. Inductively coupled plasmas are generally highly inductive, with the phase angle between the applied rf voltage and the rf current in the range of 88 to near 90 degrees. A small measurement error in this phase angle range results in a large error in the calculated cosine of the angle, introducing large impedance measurement variations. In this work, we have compared the measured impedance of a planar inductively coupled plasma using three commercial plasma impedance monitors (ENI V/I probe, Advanced Energy RFZ60 and Advanced Energy Z-Scan). The plasma impedance is independently verified using a specially designed match network and a calibrated load, representing the plasma, to provide a measurement standard.
Mark Chopping; Gretchen G. Moisen; Lihong Su; Andrea Laliberte; Albert Rango; John V. Martonchik; Debra P. C. Peters
2008-01-01
A rapid canopy reflectance model inversion experiment was performed using multi-angle reflectance data from the NASA Multi-angle Imaging Spectro-Radiometer (MISR) on the Earth Observing System Terra satellite, with the goal of obtaining measures of forest fractional crown cover, mean canopy height, and aboveground woody biomass for large parts of south-eastern Arizona...
NASA Technical Reports Server (NTRS)
Mcginnies, W. G. (Principal Investigator); Conn, J. S.; Haase, E. F.; Lepley, L. K.; Musick, H. B.; Foster, K. E.
1975-01-01
The author has identified the following significant results. Research results include a method for determining the reflectivities of natural areas from ERTS data taking into account sun angle and atmospheric effects on the radiance seen by the satellite sensor. Ground truth spectral signature data for various types of scenes, including ground with and without annuals, and various shrubs were collected. Large areas of varnished desert pavement are visible and mappable on ERTS and high altitude aircraft imagery. A large scale and a small scale vegetation pattern were found to be correlated with presence of desert pavement. A comparison of radiometric data with video recordings shows quantitatively that for most areas of desert vegetation, soils are the most influential factor in determining the signature of a scene. Additive and subtractive image processing techniques were applied in the dark room to enhance vegetational aspects of ERTS.
AGARD Flight Test Techniques Series. Volume 7. Air-to-Air Radar Flight Testing
1988-06-01
enters the beam ), a different tilt angle should be used. The emphasis on setting the tilt angle may require a non - standard high accuracy tilt angle...is: the time from pilot designation on a non -maneuvering target to the time that the system achieves target range, range rate and angle tracking...minimal attenuation, distortion, or boresight Shift effects on the radar beam . Thus, radome design for airborne application io largely a process of
Moore, H Justin; Colorado, Ramon; Lee, Han Ju; Jamison, Andrew C; Lee, T Randall
2013-08-27
A series of self-assembled monolayers (SAMs) on gold were generated by the adsorption of n-alkyl xanthic acids (NAXAs) having the general formula CH3(CH2)nOCS2H (n = 12-15). The structural features of these SAMs were characterized by optical ellipsometry, contact angle goniometry, polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS), and X-ray photoelectron spectroscopy (XPS). This series of xanthate SAMs were compared to SAMs generated from the corresponding n-alkanethiols and aliphatic dithiocarboxylic acids (ADTCAs). The collected data indicate that the NAXAs generate densely packed and well-ordered monolayers. The contact angles of hexadecane on the xanthate monolayers exhibited a large "odd-even" effect similar to that produced by the ADTCA SAMs. The relative stability of these bidentate xanthate SAMs was evaluated by monitoring the changes in ellipsometric thicknesses and wettability as a function of time under various conditions. The results demonstrate that SAMs formed from NAXAs are much less stable than analogous n-alkanethiolate and ADTCA SAMs.
High-resolution neutron powder diffractometer SPODI at research reactor FRM II
NASA Astrophysics Data System (ADS)
Hoelzel, M.; Senyshyn, A.; Juenke, N.; Boysen, H.; Schmahl, W.; Fuess, H.
2012-03-01
SPODI is a high-resolution thermal neutron diffractometer at the research reactor Heinz Maier-Leibnitz (FRM II) especially dedicated to structural studies of complex systems. Unique features like a very large monochromator take-off angle of 155° and a 5 m monochromator-sample distance in its standard configuration achieve both high-resolution and a good profile shape for a broad scattering angle range. Two dimensional data are collected by an array of 80 vertical position sensitive 3He detectors. SPODI is well suited for studies of complex structural and magnetic order and disorder phenomena at non-ambient conditions. In addition to standard sample environment facilities (cryostats, furnaces, magnet) specific devices (rotatable load frame, cell for electric fields, multichannel potentiostat) were developed. Thus the characterisation of functional materials at in-operando conditions can be achieved. In this contribution the details of the design and present performance of the instrument are reported along with its specifications. A new concept for data reduction using a 2 θ dependent variable height for the intensity integration along the Debye-Scherrer lines is introduced.
Reeling in the damages: Harmful algal blooms' impact on Lake Erie's recreational fishing industry.
Wolf, David; Georgic, Will; Klaiber, H Allen
2017-09-01
Lake Erie is one of the most valuable natural resources in the United States, providing billions of dollars in benefits each year to recreationalists, homeowners and local governments. The ecosystem services provided by Lake Erie, however, are under threat due to harmful algal blooms. This paper provides recreational damage estimates using spatially and temporally varying algae measures and monthly fishing permit sales collected between 2011 and 2014. Results indicate that fishing license sales drop between 10% and 13% when algal conditions surpass the World Health's Organization's moderate health risk advisory threshold of 20,000 cyanobacteria cells/mL. For Lake Erie adjacent counties experiencing a large, summer-long algal bloom, this would result in approximately 3600 fewer fishing licenses issued and approximately $2.25 million to $5.58 million in lost fishing expenditures. Our results show a discrete jump in reduced angling activity upon crossing this threshold, with limited additional impacts associated with more severe algal blooms. This suggests that policies aimed at eliminating, rather than mitigating, algal levels are most beneficial to the Ohio angling industry. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Careccia, Sharon L.
The single and double spin asymmetries At and Aet have been measured in pi- electro-production off the deuteron using a longitudinally polarized electron beam and a polarized ND3 target. The electron beam was polarized using a strained GaAs cathode and the target was polarized using Dynamic Nuclear Polarization. The data were collected at beam energies of 1.6, 1.7, 2.5 and 4.2 GeV in Hall B at Jefferson Lab in the spring of 2001. The final state particles were detected in the CEBAF Large Acceptance Spectrometer (CLAS). The d(e,e'pi-p)p exclusive channel was identified using the missing mass technique and the asymmetries were extracted as a function of the momentum transfer Q2, invariant mass W, and center of mass pion angles cos(theta*) and φ*. The results are generally in agreement with the phenomenological model MAID at low energies, but there are discrepancies in the 2nd and 3rd resonance regions, as well as at forward angles.
Modeling the Effects of Mirror Misalignment in a Ring Imaging Cherenkov Detector
NASA Astrophysics Data System (ADS)
Hitchcock, Tawanda; Harton, Austin; Garcia, Edmundo
2012-03-01
The Very High Momentum Particle Identification Detector (VHMPID) has been proposed for the ALICE experiment at the Large Hadron Collider (LHC). This detector upgrade is considered necessary to study jet-matter interaction at high energies. The VHMPID identifies charged hadrons in the 5 GeV/c to 25 GeV/c momentum range. The Cherenkov photons emitted in the VHMPID radiator are collected by spherical mirrors and focused onto a photo-detector plane forming a ring image. The radius of this ring is related to the Cherenkov angle, this information coupled with the particle momentum allows the particle identification. A major issue in the RICH detector is that environmental conditions can cause movements in mirror position. In addition, chromatic dispersion causes the refractive index to shift, altering the Cherenkov angle. We are modeling a twelve mirror RICH detector taking into account the effects of mirror misalignment and chromatic dispersion using a commercial optical software package. This will include quantifying the effects of both rotational and translational mirror misalignment for the initial assembly of the module and later on particle identification.
New techniques for the detection and capture of micrometeoroids
NASA Astrophysics Data System (ADS)
Wolfe, J. H.
1987-11-01
In order to understand the origin and distribution of the biogenic elements and their compounds in the solar system, it will be necessary to study materials from many classes of objects. Chemical, elemental, and isotopic measurements of returned samples of comets, asteroids, and possibly extra-solar system dust clouds would provide information on a particularly important class: primitive objects. Extraterrestrial micron-sized particles in the vicinity of Earth are one source of such materials that might otherwise be inaccessible. The Space Station appears to be an eminently suitable platform from which to collect and detect these various particles. The primary challenge, however, is to collect intact, uncontaminated particles which will be encountered at tens of kilometers per seconds. A concept for a micrometeoroid detector that could be deployed from the Space Station was developed which uses a large area detector plate implanted with acoustic transducers. When an impact event occurs, the resulting signal is subjected to spectral analysis providing positive detection, momentum information, and angle of incidence. The primary advantage of this detector is the large area which increases the probability of measuring events. A concept of a nondestuctive micrometeoroid collector for use from a Space Station was also developed. The collector utilizes input port charging of the incoming particle followed by staged high voltage deceleration for nondestructive capture. Low velocity particles (local contamination) would be rejected due to insufficient energy and only uncontaminated micrometeoroids would be collected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertacca, Daniele; Maartens, Roy; Raccanelli, Alvise
We extend previous analyses of wide-angle correlations in the galaxy power spectrum in redshift space to include all general relativistic effects. These general relativistic corrections to the standard approach become important on large scales and at high redshifts, and they lead to new terms in the wide-angle correlations. We show that in principle the new terms can produce corrections of nearly 10% on Gpc scales over the usual Newtonian approximation. General relativistic corrections will be important for future large-volume surveys such as SKA and Euclid, although the problem of cosmic variance will present a challenge in observing this.
Aerodynamic characteristics at high angles of attack
NASA Technical Reports Server (NTRS)
Chambers, J. R.
1977-01-01
An overview is presented of the aerodynamic inputs required for analysis of flight dynamics in the high-angle-of-attack regime wherein large-disturbance, nonlinear effects predominate. An outline of the presentation is presented. The discussion includes: (1) some important fundamental phenomena which determine to a large extent the aerodynamic characteristics of airplanes at high angles of attack; (2) static and dynamic aerodynamic characteristics near the stall; (3) aerodynamics of the spin; (4) test techniques used in stall/spin studies; (5) applications of aerodynamic data to problems in flight dynamics in the stall/spin area; and (6) the outlook for future research in the area.
NASA Technical Reports Server (NTRS)
Zoby, E. V.
1981-01-01
An engineering method has been developed for computing the windward-symmetry plane convective heat-transfer rates on Shuttle-like vehicles at large angles of attack. The engineering code includes an approximate inviscid flowfield technique, laminar and turbulent heating-rate expressions, an approximation to account for the variable-entropy effects on the surface heating and the concept of an equivalent axisymmetric body to model the windward-ray flowfields of Shuttle-like vehicles at angles of attack from 25 to 45 degrees. The engineering method is validated by comparing computed heating results with corresponding experimental data measured on Shuttle and advanced transportation models over a wide range of flow conditions and angles of attack from 25 to 40 degrees and also with results of existing prediction techniques. The comparisons are in good agreement.
Tunable angle absorption of hyperbolic metamaterials based on plasma photonic crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiao, Zheng; Ning, Renxia, E-mail: nrxxiner@hsu.edu.cn; Xu, Yuan
2016-06-15
We present the design of a multilayer structure of hyperbolic metamaterials based on plasma photonic crystals which composed of two kinds of traditional dielectric and plasma. The relative permittivity of hyperbolic metamaterials has been studied at certain frequency range. The absorption and reflection of the multilayer period structure at normal and oblique incident have been investigated by the transfer matrix method. We discussed that the absorption is affected by the thickness of material and the electron collision frequency γ of the plasma. The results show that an absorption band at the low frequency can be obtained at normal incident anglemore » and another absorption band at the high frequency can be found at a large incident angle. The results may be applied by logical gate, stealth, tunable angle absorber, and large angle filter.« less
Rolling Moments Due to Rolling and Yaw for Four Wing Models in Rotation
NASA Technical Reports Server (NTRS)
Knight, Montgomery; Wenzinger, Carl J
1932-01-01
This report presents the results of a series of autorotation and torque tests on four different rotating wing systems at various rates of roll and at several angles of yaw. The investigation covered an angle of attack range up to 90 degrees and angles of yaw of 0 degree, 5 degrees, 10 degrees, and 20 degrees. The tests were made in a 5-foot, closed-throat atmospheric wind tunnel. The object of the tests was primarily to determine the effects of various angles of yaw on the rolling moments of the rotating wings up to large angles of attack. It was found that at angles of attack above that of maximum lift the rolling moments on the wings due to yaw (or side slip) from 5 degrees to 20 degrees were roughly of the same magnitude as those due to rolling. There was a wide variation in magnitude of the rolling moment due to yaw angle. The rates and ranges of stable autorotation for the monoplane models were considerably increased by yaw, whereas for an unstaggered biplane they were little affected. The immediate cause of the rolling moment due to yaw is apparently the building up of large loads on the forward wing tip and the reduction of loads on the rearward wing tip.
NASA Technical Reports Server (NTRS)
Lamb, M.; Stallings, R. L., Jr.
1976-01-01
An experimental investigation was conducted in the Langley Unitary Plan wind tunnel to estimate the peak aerodynamic heating on the space shuttle solid rocket booster during the descent phase of its flight. Heat transfer measurements were obtained using 0.013 scale models instrumented with thermocouples at a Mach number of 3.70, Reynolds number per meter of 11.48 million, and angles of attack from 0 to 180 deg. At angles of attack of 0 and 180 deg, heat transfer measurements on the cylindrical section of the model between the conical nose and ring interaction region were in good agreement with flat plate strip theory for laminar and turbulent flow. At angles of attack up to 30 deg, measurements on this section of the model were in good agreement with laminar swept-cylinder theory, whereas at angles of attack from 120 to 180 deg, the measurements were in good agreement with turbulent swept-cylinder theory. The good agreement with turbulent theory indicated that large flow disturbances created by the nozzle and afterbody flare at these large angles of attack influenced the downstream heating primarily by promoting boundary layer transition. Measurements obtained at 90 deg angle of attack were indicative of laminar flow.
The ASTRO-H SXT Performance to the Large Off-Set Angles
NASA Technical Reports Server (NTRS)
Sato, Toshiki; Iizuka, Ryo; Mori, Hideyuki; Hayashi, Takayuki; Maeda, Yoshitomo; Ishida, Manabu; Kikuchi, Naomichi; Kurashima, Sho; Nakaniwa, Nozomi; Okajima, Takashi;
2016-01-01
The X-ray astronomy satellite ASTRO-H, which is the 6th Japanese X-ray astronomy satellite and is renamed Hitomi after launch, is designed to observe celestial X-ray objects in a wide energy band from a few hundred eV to 600 keV. The Soft X-ray Telescopes (SXTs) onboard ASTRO-H play a role of collecting and imaging X-rays up to approximately 12 keV. Although the field of view of the SXT is approximately 15' (FWHM), due to the thin-foil-nested Wolter-I type optics adopted in the SXTs, X-rays out of the field of view can reach the focal plane without experiencing a normal double reflection. This component is referred to as 'stray light'. Owing to investigation of the stray light so far, 'secondary reflection' is now identified as the main component of the stray light, which is composed of X-rays reflected only by secondary reflectors. In order to cut the secondary reflections, a 'pre-collimator' is equipped on top of the SXTs. However, we cannot cut all the stray lights with the pre-collimator in some off-axis angle domain. In this study, we measure the brightness of the stray light of the SXTs at some representative off-axis angles by using the ISAS X-ray beam line. ASTRO-H is equipped with two modules of the SXT; one is for the Soft X-ray Spectrometer (SXS), an X-ray calorimeter, and the other is for the Soft X-ray Imager (SXI), an X-ray CCD camera. These SXT modules are called SXT-S and SXT-I, respectively. Of the two detector systems, the SXI has a large field of view, a square with 38' on a side. To cope with this, we have made a mosaic mapping of the stray light at a representative off-axis angle of 30' in the X-ray beam line at the Institute of Space and Astronautical Science. The effective area of the brightest secondary reflection is found of order approximately 0.1% of the on-axis effective area at the energy of 1.49 keV. The other components are not so bright (less than 5 x 10(exp -4) times smaller than the on-axis effective area). On the other hand, we have found that the effective area of the stray light in the SXS field of view (approximately 3' x 3') at large off-axis angles (greater than 15') are approximately 1(exp -4) times smaller than the on-axis effective area (approximately 590 sq cm at 1.49 keV).
Gravitational Wakes Sizes from Multiple Cassini Radio Occultations of Saturn's Rings
NASA Astrophysics Data System (ADS)
Marouf, E. A.; Wong, K. K.; French, R. G.; Rappaport, N. J.; McGhee, C. A.; Anabtawi, A.
2016-12-01
Voyager and Cassini radio occultation extinction and forward scattering observations of Saturn's C-Ring and Cassini Division imply power law particle size distributions extending from few millimeters to several meters with power law index in the 2.8 to 3.2 range, depending on the specific ring feature. We extend size determination to the elongated and canted particle clusters (gravitational wakes) known to permeate Saturn's A- and B-Rings. We use multiple Cassini radio occultation observations over a range of ring opening angle B and wake viewing angle α to constrain the mean wake width W and thickness/height H, and average ring area coverage fraction. The rings are modeled as randomly blocked diffraction screen in the plane normal to the incidence direction. Collective particle shadows define the blocked area. The screen's transmittance is binary: blocked or unblocked. Wakes are modeled as thin layer of elliptical cylinders populated by random but uniformly distributed spherical particles. The cylinders can be immersed in a "classical" layer of spatially uniformly distributed particles. Numerical simulations of model diffraction patterns reveal two distinct components: cylindrical and spherical. The first dominates at small scattering angles and originates from specific locations within the footprint of the spacecraft antenna on the rings. The second dominates at large scattering angles and originates from the full footprint. We interpret Cassini extinction and scattering observations in the light of the simulation results. We compute and remove contribution of the spherical component to observed scattered signal spectra assuming known particle size distribution. A large residual spectral component is interpreted as contribution of cylindrical (wake) diffraction. Its angular width determines a cylindrical shadow width that depends on the wake parameters (W,H) and the viewing geometry (α,B). Its strength constrains the mean fractional area covered (optical depth), hence constrains the mean wakes spacing. Self-consistent (W,H) are estimated using least-square fit to results from multiple occultations. Example results for observed scattering by several inner A-Ring features suggest particle clusters (wakes) that are few tens of meters wide and several meters thick.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, C.G.; De Geronimo, G.; Kirkham, R.
2009-11-13
The fundamental parameter method for quantitative SXRF and PIXE analysis and imaging using the dynamic analysis method is extended to model the changing X-ray yields and detector sensitivity with angle across large detector arrays. The method is implemented in the GeoPIXE software and applied to cope with the large solid-angle of the new Maia 384 detector array and its 96 detector prototype developed by CSIRO and BNL for SXRF imaging applications at the Australian and NSLS synchrotrons. Peak-to-background is controlled by mitigating charge-sharing between detectors through careful optimization of a patterned molybdenum absorber mask. A geological application demonstrates the capabilitymore » of the method to produce high definition elemental images up to {approx}100 M pixels in size.« less
Thermalization after/during reheating
NASA Astrophysics Data System (ADS)
Harigaya, Keisuke; Mukaida, Kyohei
2014-05-01
If reheating of the Universe takes place via Planck-suppressed decay, it seems that the thermalization of produced particles might be delayed, since they have large energy/small number densities and number violating large angle scatterings which decrease the momentum of particles by large amount are inefficient correspondingly. In this paper, we study the thermalization of such "under occupied" decay products in detail, following recent developments in understanding the thermalization of non-abelian plasma. Contrary to the above naive expectation, it is shown that in most cases thermalization after/during reheating occurs instantaneously by properly taking account of scatterings with small angles and of particles with small momenta. In particular, the condition for instantaneous thermalization before the completion of reheating is found to be , which is much milder than that obtained in previous works with small angle scatterings taken into account.
Effect of knee angle on neuromuscular assessment of plantar flexor muscles: A reliability study
Cornu, Christophe; Jubeau, Marc
2018-01-01
Introduction This study aimed to determine the intra- and inter-session reliability of neuromuscular assessment of plantar flexor (PF) muscles at three knee angles. Methods Twelve young adults were tested for three knee angles (90°, 30° and 0°) and at three time points separated by 1 hour (intra-session) and 7 days (inter-session). Electrical (H reflex, M wave) and mechanical (evoked and maximal voluntary torque, activation level) parameters were measured on the PF muscles. Intraclass correlation coefficients (ICC) and coefficients of variation were calculated to determine intra- and inter-session reliability. Results The mechanical measurements presented excellent (ICC>0.75) intra- and inter-session reliabilities regardless of the knee angle considered. The reliability of electrical measurements was better for the 90° knee angle compared to the 0° and 30° angles. Conclusions Changes in the knee angle may influence the reliability of neuromuscular assessments, which indicates the importance of considering the knee angle to collect consistent outcomes on the PF muscles. PMID:29596480
NASA Astrophysics Data System (ADS)
Morley, Chris K.
2009-10-01
At least eight examples of large (5-35 km heave), low-angle normal faults (LANFs, 20°-30° dip) occur in the Cenozoic rift basins of Thailand and laterally pass into high-angle extensional fault systems. Three large-displacement LANFs are found in late Oligocene-Miocene onshore rift basins (Suphan Buri, Phitsanulok, and Chiang Mai basins), they have (1) developed contemporaneous with, or after the onset of, high-angle extension, (2) acted as paths for magma and associated fluids, and (3) impacted sedimentation patterns. Displacement on low-angle faults appears to be episodic, marked by onset of lacustrine conditions followed by axial progradation of deltaic systems that infilled the lakes during periods of low or no displacement. The Chiang Mai LANF is a low-angle (15°-25°), high-displacement (15-35 km heave), ESE dipping LANF immediately east of the late early Miocene Doi Inthanon and Doi Suthep metamorphic core complexes. Early Cenozoic transpressional crustal thickening followed by the northward motion of India coupled with Burma relative to east Burma and Thailand (˜40-30 Ma) caused migmatization and gneiss dome uplift in the late Oligocene of the core complex region, followed by LANF activity. LANF displacement lasted 4-6 Ma during the early Miocene and possibly transported a late Oligocene-early Miocene high-angle rift system 35 km east. Other LANFs in Thailand have lower displacements and no associated metamorphic core complexes. The three LANFs were initiated as low-angle faults, not by isostatic rotation of high-angle faults. The low-angle dips appear to follow preexisting low-angle fabrics (thrusts, shear zones, and other low-angle ductile foliations) predominantly developed during Late Paleozoic and early Paleogene episodes of thrusting and folding.
Emission-angle and polarization-rotation effects in the lensed CMB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Antony; Hall, Alex; Challinor, Anthony, E-mail: antony@cosmologist.info, E-mail: ahall@roe.ac.uk, E-mail: a.d.challinor@ast.cam.ac.uk
Lensing of the CMB is an important effect, and is usually modelled by remapping the unlensed CMB fields by a lensing deflection. However the lensing deflections also change the photon path so that the emission angle is no longer orthogonal to the background last-scattering surface. We give the first calculation of the emission-angle corrections to the standard lensing approximation from dipole (Doppler) sources for temperature and quadrupole sources for temperature and polarization. We show that while the corrections are negligible for the temperature and E-mode polarization, additional large-scale B-modes are produced with a white spectrum that dominates those from post-Bornmore » field rotation (curl lensing). On large scales about one percent of the total lensing-induced B-mode amplitude is expected to be due to this effect. However, the photon emission angle does remain orthogonal to the perturbed last-scattering surface due to time delay, and half of the large-scale emission-angle B modes cancel with B modes from time delay to give a total contribution of about half a percent. While not important for planned observations, the signal could ultimately limit the ability of delensing to reveal low amplitudes of primordial gravitational waves. We also derive the rotation of polarization due to multiple deflections between emission and observation. The rotation angle is of quadratic order in the deflection angle, and hence negligibly small: polarization typically rotates by less than an arcsecond, orders of magnitude less than a small-scale image rotates due to post-Born field rotation (which is quadratic in the shear). The field-rotation B modes dominate the other effects on small scales.« less
Estimation of gloss from rough surface parameters
NASA Astrophysics Data System (ADS)
Simonsen, Ingve; Larsen, Åge G.; Andreassen, Erik; Ommundsen, Espen; Nord-Varhaug, Katrin
2005-12-01
Gloss is a quantity used in the optical industry to quantify and categorize materials according to how well they scatter light specularly. With the aid of phase perturbation theory, we derive an approximate expression for this quantity for a one-dimensional randomly rough surface. It is demonstrated that gloss depends in an exponential way on two dimensionless quantities that are associated with the surface randomness: the root-mean-square roughness times the perpendicular momentum transfer for the specular direction, and a correlation function dependent factor times a lateral momentum variable associated with the collection angle. Rigorous Monte Carlo simulations are used to access the quality of this approximation, and good agreement is observed over large regions of parameter space.
Miniature Rotorcraft Flight Control Stabilization System
2008-05-30
The first algorithm is based on the well known QUEST algorithm used for spacecraft and satellites. Due to large vibration in sensors a pseudo...for spacecraft and satellites. Due to large vibration in sensors a pseudo-measurement is developed from gyroscope measurements and rotational...using any valid set of orientation map. Note, in Eq. (6) Euler angles were used to describe . A common alternative to Euler angles is a quaternion
High-performance axicon lenses based on high-contrast, multilayer gratings
NASA Astrophysics Data System (ADS)
Doshay, Sage; Sell, David; Yang, Jianji; Yang, Rui; Fan, Jonathan A.
2018-01-01
Axicon lenses are versatile optical elements that can convert Gaussian beams to Bessel-like beams. In this letter, we demonstrate that axicons operating with high efficiencies and at large angles can be produced using high-contrast, multilayer gratings made from silicon. Efficient beam deflection of incident monochromatic light is enabled by higher-order optical modes in the silicon structure. Compared to diffractive devices made from low-contrast materials such as silicon dioxide, our multilayer devices have a relatively low spatial profile, reducing shadowing effects and enabling high efficiencies at large deflection angles. In addition, the feature sizes of these structures are relatively large, making the fabrication of near-infrared devices accessible with conventional optical lithography. Experimental lenses with deflection angles as large as 40° display field profiles that agree well with theory. Our concept can be used to design optical elements that produce higher-order Bessel-like beams, and the combination of high-contrast materials with multilayer architectures will more generally enable new classes of diffractive photonic structures.
The Rings Survey. I. Hα and H I Velocity Maps of Galaxy NGC 2280
NASA Astrophysics Data System (ADS)
Mitchell, Carl J.; Williams, T. B.; Spekkens, Kristine; Lee-Waddell, K.; Kuzio de Naray, Rachel; Sellwood, J. A.
2015-03-01
Precise measurements of gas kinematics in the disk of a spiral galaxy can be used to estimate its mass distribution. The Southern African Large Telescope has a large collecting area and field of view, and is equipped with a Fabry-Pérot (FP) interferometer that can measure gas kinematics in a galaxy from the Hα line. To take advantage of this capability, we have constructed a sample of 19 nearby spiral galaxies, the RSS Imaging and Spectroscopy Nearby Galaxy Survey, as targets for detailed study of their mass distributions and have collected much of the needed data. In this paper, we present velocity maps produced from Hα FP interferometry and H i aperture synthesis for one of these galaxies, NGC 2280, and show that the two velocity measurements are generally in excellent agreement. Minor differences can mostly be attributed to the different spatial distributions of the excited and neutral gas in this galaxy, but we do detect some anomalous velocities in our Hα velocity map of the kind that have previously been detected in other galaxies. Models produced from our two velocity maps agree well with each other and our estimates of the systemic velocity and projection angles confirm previous measurements of these quantities for NGC 2280. Based in part on observations obtained with the Southern African Large Telescope (SALT) program 2011-3-RU-003.
Seismic behavior of outrigger truss-wall shear connections using multiple steel angles
NASA Astrophysics Data System (ADS)
Li, Xian; Wang, Wei; Lü, Henglin; Zhang, Guangchang
2016-06-01
An experimental investigation on the seismic behavior of a type of outrigger truss-reinforced concrete wall shear connection using multiple steel angles is presented. Six large-scale shear connection models, which involved a portion of reinforced concrete wall and a shear tab welded onto a steel endplate with three steel angles, were constructed and tested under combined actions of cyclic axial load and eccentric shear. The effects of embedment lengths of steel angles, wall boundary elements, types of anchor plates, and thicknesses of endplates were investigated. The test results indicate that properly detailed connections exhibit desirable seismic behavior and fail due to the ductile fracture of steel angles. Wall boundary elements provide beneficial confinement to the concrete surrounding steel angles and thus increase the strength and stiffness of connections. Connections using whole anchor plates are prone to suffer concrete pry-out failure while connections with thin endplates have a relatively low strength and fail due to large inelastic deformations of the endplates. The current design equations proposed by Chinese Standard 04G362 and Code GB50011 significantly underestimate the capacities of the connection models. A revised design method to account for the influence of previously mentioned test parameters was developed.
2009-09-01
the cyclic behavior of the rotor angle of attack. The last form of pilot command is the rudder pedal . The rudder pedal provides collective input...response of [1, p. 112], as expected. The yaw angle increases in a counter-clockwise direction with right pedal input and damps down to almost zero yaw...FORCES.........................................................................45 1. Determination of Drag and Main Rotor Tip-Path Plane Angle ....45
Baker, Katherine M; Foutz, Timothy L; Johnsen, Kyle J; Budsberg, Steven C
2014-09-01
To quantify the 3-D kinematics and collateral ligament strain of stifle joints in cadaveric canine limbs before and after cranial cruciate ligament transection followed by total knee replacement (TKR) involving various tibial plateau angles and spacer thicknesses. 6 hemi-pelvises collected from clinically normal nonchondrodystrophic dogs (weight range, 25 to 35 kg). Hemi-pelvises were mounted on a modified Oxford knee rig that allowed 6 degrees of freedom of the stifle joint but prevented mechanical movement of the hip and tarsal joints. Kinematics and collateral ligament strain were measured continuously while stifle joints were flexed. Data were again collected after cranial cruciate ligament transection and TKR with combinations of 3 plateau angles (0°, 4°, and 8°) and spacer thicknesses (5, 7, and 9 mm). Presurgical (ie, normal) stifle joint rotations were comparable to those previously documented for live dogs. After TKR, kinematics recorded for the 8°, 5-mm implant most closely resembled those of unaltered stifle joints. Decreasing the plateau angle and increasing spacer thickness altered stifle joint adduction, internal rotation, and medial translation. Medial collateral ligament strain was minimal in unaltered stifle joints and was unaffected by TKR. Lateral collateral ligament strain decreased with steeper plateau angles but returned to a presurgical level at the flattest plateau angle. Among the constructs tested, greatest normalization of canine stifle joint kinematics in vitro was achieved with the steepest plateau angle paired with the thinnest spacer. Furthermore, results indicated that strain to the collateral ligaments was not negatively affected by TKR.
UAVSAR Active Electronically Scanned Array
NASA Technical Reports Server (NTRS)
Sadowy, Gregory, A.; Chamberlain, Neil F.; Zawadzki, Mark S.; Brown, Kyle M.; Fisher, Charles D.; Figueroa, Harry S.; Hamilton, Gary A.; Jones, Cathleen E.; Vorperian, Vatche; Grando, Maurio B.
2011-01-01
The Uninhabited Airborne Vehicle Synthetic Aperture Radar (UAVSAR) is a pod-based, L-band (1.26 GHz), repeatpass, interferometric, synthetic aperture radar (InSAR) used for Earth science applications. Repeat-pass interferometric radar measurements from an airborne platform require an antenna that can be steered to maintain the same angle with respect to the flight track over a wide range of aircraft yaw angles. In order to be able to collect repeat-pass InSAR data over a wide range of wind conditions, UAVSAR employs an active electronically scanned array (AESA). During data collection, the UAVSAR flight software continuously reads the aircraft attitude state measured by the Embedded GPS/INS system (EGI) and electronically steers the beam so that it remains perpendicular to the flight track throughout the data collection
Fredericks, William; Swank, Seth; Teisberg, Madeline; Hampton, Bethany; Ridpath, Lance; Hanna, Jandy B
2015-06-01
Minimalist running footwear has grown increasingly popular. Prior studies that have compared lower extremity biomechanics in minimalist running to traditional running conditions are largely limited to a single running velocity. This study compares the effects of running at various speeds on foot strike pattern, stride length, knee angles and ankle angles in traditional, barefoot, and minimalist running conditions. Twenty-six recreational runners (19-46 years of age) ran on a treadmill at a range of speeds (2.5-4.0 m·sec(-1)). Subjects ran with four different footwear conditions: personal, standard, and minimalist shoes and barefoot. 3D coordinates from video data were collected. The relationships between speed, knee and ankle angles at foot strike and toe-off, relative step length, and footwear conditions were evaluated by ANCOVA, with speed as the co-variate. Distribution of non-rearfoot strike was compared across shod conditions with paired t-tests. Non-rearfoot strike distribution was not significantly affected by speed, but was different between shod conditions (p < 0.05). Footwear condition and speed significantly affected ankle angle at touchdown, independent of one another (F [3,71] = 10.28, p < 0.001), with barefoot and minimalist running exhibiting greater plantarflexion at foot strike. When controlling for foot strike style, barefoot and minimalist runners exhibited greater plantarflexion than other conditions (p < 0.05). Ankle angle at lift-off and relative step length exhibited a significant interaction between speed and shod condition. Knee angles had a significant relationship with speed, but not with footwear. There is a clear influence of footwear, but not speed, on foot strike pattern. Additionally, speed and footwear predict ankle angles (greater plantarflexion at foot strike) and may have implications for minimalist runners and their risk of injury. Long-term studies utilizing various speeds and habituation times are needed. Key pointsFoot strike style does not change with speed, but does change with shod condition, with minimalist shoes exhibiting an intermediate distribution of forefoot strikes between barefoot and traditional shoes.Plantarflexion at touchdown does change with speed and with shoe type, with barefoot and minimalist shoes exhibiting a greater plantarflexion angle than traditional running shoes.Knee angles change with speed in all shod conditions, but knee flexion at touchdown is not different between shod conditions.Relative step length changes with speed and shod condition, but there is an interaction between these variables such that step length increases more quickly in traditional shoes as speed increases.
Fredericks, William; Swank, Seth; Teisberg, Madeline; Hampton, Bethany; Ridpath, Lance; Hanna, Jandy B.
2015-01-01
Minimalist running footwear has grown increasingly popular. Prior studies that have compared lower extremity biomechanics in minimalist running to traditional running conditions are largely limited to a single running velocity. This study compares the effects of running at various speeds on foot strike pattern, stride length, knee angles and ankle angles in traditional, barefoot, and minimalist running conditions. Twenty-six recreational runners (19-46 years of age) ran on a treadmill at a range of speeds (2.5-4.0 m·sec-1). Subjects ran with four different footwear conditions: personal, standard, and minimalist shoes and barefoot. 3D coordinates from video data were collected. The relationships between speed, knee and ankle angles at foot strike and toe-off, relative step length, and footwear conditions were evaluated by ANCOVA, with speed as the co-variate. Distribution of non-rearfoot strike was compared across shod conditions with paired t-tests. Non-rearfoot strike distribution was not significantly affected by speed, but was different between shod conditions (p < 0.05). Footwear condition and speed significantly affected ankle angle at touchdown, independent of one another (F [3,71] = 10.28, p < 0.001), with barefoot and minimalist running exhibiting greater plantarflexion at foot strike. When controlling for foot strike style, barefoot and minimalist runners exhibited greater plantarflexion than other conditions (p < 0.05). Ankle angle at lift-off and relative step length exhibited a significant interaction between speed and shod condition. Knee angles had a significant relationship with speed, but not with footwear. There is a clear influence of footwear, but not speed, on foot strike pattern. Additionally, speed and footwear predict ankle angles (greater plantarflexion at foot strike) and may have implications for minimalist runners and their risk of injury. Long-term studies utilizing various speeds and habituation times are needed. Key points Foot strike style does not change with speed, but does change with shod condition, with minimalist shoes exhibiting an intermediate distribution of forefoot strikes between barefoot and traditional shoes. Plantarflexion at touchdown does change with speed and with shoe type, with barefoot and minimalist shoes exhibiting a greater plantarflexion angle than traditional running shoes. Knee angles change with speed in all shod conditions, but knee flexion at touchdown is not different between shod conditions. Relative step length changes with speed and shod condition, but there is an interaction between these variables such that step length increases more quickly in traditional shoes as speed increases. PMID:25983575
NASA Technical Reports Server (NTRS)
Spahr, J. R.
1954-01-01
The lift, pitching-moment, and drag characteristics of a missile configuration having a body of fineness ratio 9.33 and a cruciform triangular wing and tail of aspect ratio 4 were measured at a Mach number of 1.99 and a Reynolds number of 6.0 million, based on the body length. The tests were performed through an angle-of-attack range of -5 deg to 28 deg to investigate the effects on the aerodynamic characteristics of roll angle, wing-tail interdigitation, wing deflection, and interference among the components (body, wing, and tail). Theoretical lift and moment characteristics of the configuration and its components were calculated by the use of existing theoretical methods which have been modified for application to high angles of attack, and these characteristics are compared with experiment. The lift and drag characteristics of all combinations of the body, wing, and tail were independent of roll angle throughout the angle-of-attack range. The pitching-moment characteristics of the body-wing and body-wing-tail combinations, however, were influenced significantly by the roll angle at large angles of attack (greater than 10 deg). A roll from 0 deg (one pair of wing panels horizontal) to 45 deg caused a forward shift in the center of pressure which was of the same magnitude for both of these combinations, indicating that this shift originated from body-wing interference effects. A favorable lift-interference effect (lift of the combination greater than the sum of the lifts of the components) and a rearward shift in the center of pressure from a position corresponding to that for the components occurred at small angles of attack when the body was combined with either the exposed wing or tail surfaces. These lift and center-of-pressure interference effects were gradually reduced to zero as the angle of attack was increased to large values. The effect of wing-tail interference, which influenced primarily the pitching-moment characteristics, is dependent on the distance between the wing trailing vortex wake and the tail surfaces and thus was a function of angle of attack, angle of roll, and wing-tail interdigitation. Although the configuration at zero roll with the wing and tail in line exhibited the least center-of-pressure travel, the configuration with the wing and tail interdigitated had the least change in wing-tail interference over the angle-of-attack range. The lift effectiveness of the variable-incidence wing was reduced by more than 70 percent as a result of an increase in the combined angle of attack and wing incidence from 0 deg to 40 deg. The wing-tail interference (effective downwash at the tail) due to wing deflection was nearly zero as a result of a region of negative vorticity shed from the inboard portion of the wing. The lift characteristics of the configuration and its components were satisfactorily predicted by the calculated results, but the pitching moments at large angles of attack were not because of the influence of factors for which no adequate theory is available, such as the variation of the crossflow drag coefficient along the body and the effect of the wing downwash field on the afterbody loading.
NASA Technical Reports Server (NTRS)
Paulson, John W.; Shanks, Robert E.
1961-01-01
An investigation of the low-subsonic flight characteristics of a thick 70 deg delta reentry configuration having a diamond cross section has been made in the Langley full-scale tunnel over an angle-of-attack range from 20 to 45 deg. Flight tests were also made at angles of attack near maximum lift (alpha = 40 deg) with a radio-controlled model dropped from a helicopter. Static and dynamic force tests were made over an angle-of-attack range from 0 to 90 deg. The longitudinal stability and control characteristics were considered satisfactory when the model had positive static longitudinal stability. It was possible to fly the model with a small amount of static instability, but the longitudinal characteristics were considered unsatisfactory in this condition. At angles of attack above the stall the model developed a large, constant-amplitude pitching oscillation. The lateral stability characteristics were considered to be only fair at angles of attack from about 20 to 35 deg because of a lightly damped Dutch roll oscillation. At higher angles of attack the oscillation was well damped and the lateral stability was generally satisfactory. The Dutch roll damping at the lower angles of attack was increased to satisfactory values by means of a simple rate-type roll damper. The lateral control characteristics were generally satisfactory throughout the angle- of-attack range, but there was some deterioration in aileron effectiveness in the high angle-of-attack range due mainly to a large increase in damping in roll.
NASA Technical Reports Server (NTRS)
Holleman, E. C.
1976-01-01
An unpowered, large, dynamically scaled airplane model was test flown by remote pilot to investigate the stability and controllability of the configuration at high angles of attack. The configuration proved to be departure/spin resistant; however, spins were obtained by using techniques developed on a flight support simulator. Spin modes at high and medium high angles of attack were identified, and recovery techniques were investigated. A flight support simulation of the airplane model mechanized with low speed wind tunnel data over an angle of attack range of + or - 90 deg. and an angle of sideslip range of + or - 40 deg. provided insight into the effects of altitude, stability, aerodynamic damping, and the operation of the augmented flight control system on spins. Aerodynamic derivatives determined from flight maneuvers were used to correlate model controllability with two proposed departure/spin design criteria.
Dielectric-based subwavelength metallic meanders for wide-angle band absorbers.
Shen, Su; Qiao, Wen; Ye, Yan; Zhou, Yun; Chen, Linsen
2015-01-26
We propose nano-meanders that can achieve wide-angle band absorption in visible regime. The nano-meander consists of a subwavelength dielectric grating covered by continuous ultra-thin Aluminum film (less than one tenth of the incident wavelength). The excited photonic resonant modes, such as cavity mode, surface plasmonic mode and Rayleigh-Wood anomaly, are discussed in detail. Nearly total resonant absorption due to funneling mechanism in the air nano-groove is almost invariant with large incident angle in transverse magnetic polarization. From both the structural geometry and the nanofabrication point of view, the light absorber has a very simple geometrical structure and it is easy to be integrated into complex photonic devices. The highly efficient angle-robust light absorber can be potential candidate for a range of passive and active photonic applications, including solar-energy harvesting as well as producing artificial colors on a large scale substrate.
Li, Yixiang; Qiu, Chunyin; Xu, Shengjun; Ke, Manzhu; Liu, Zhengyou
2015-08-17
Conventional microparticle transports by light or sound are realized along a straight line. Recently, this limit has been overcome in optics as the growing up of the self-accelerating Airy beams, which are featured by many peculiar properties, e.g., bending propagation, diffraction-free and self-healing. However, the bending angles of Airy beams are rather small since they are only paraxial solutions of the two-dimensional (2D) Helmholtz equation. Here we propose a novel micromanipulation by using acoustic Half-Bessel beams, which are strict solutions of the 2D Helmholtz equation. Compared with that achieved by Airy beams, the bending angle of the particle trajectory attained here is much steeper (exceeding 90(o)). The large-angle bending transport of microparticles, which is robust to complex scattering environment, enables a wide range of applications from the colloidal to biological sciences.
Large Angle Reorientation of a Solar Sail Using Gimballed Mass Control
NASA Astrophysics Data System (ADS)
Sperber, E.; Fu, B.; Eke, F. O.
2016-06-01
This paper proposes a control strategy for the large angle reorientation of a solar sail equipped with a gimballed mass. The algorithm consists of a first stage that manipulates the gimbal angle in order to minimize the attitude error about a single principal axis. Once certain termination conditions are reached, a regulator is employed that selects a single gimbal angle for minimizing both the residual attitude error concomitantly with the body rate. Because the force due to the specular reflection of radiation is always directed along a reflector's surface normal, this form of thrust vector control cannot generate torques about an axis normal to the plane of the sail. Thus, in order to achieve three-axis control authority a 1-2-1 or 2-1-2 sequence of rotations about principal axes is performed. The control algorithm is implemented directly in-line with the nonlinear equations of motion and key performance characteristics are identified.
Performance Characteristics of Plane-Wall Two-Dimensional Diffusers
NASA Technical Reports Server (NTRS)
Reid, Elliott G
1953-01-01
Experiments have been made at Stanford University to determine the performance characteristics of plane-wall, two-dimensional diffusers which were so proportioned as to insure reasonable approximation of two-dimensional flow. All of the diffusers had identical entrance cross sections and discharged directly into a large plenum chamber; the test program included wide variations of divergence angle and length. During all tests a dynamic pressure of 60 pounds per square foOt was maintained at the diffuser entrance and the boundary layer there was thin and fully turbulent. The most interesting flow characteristics observed were the occasional appearance of steady, unseparated, asymmetric flow - which was correlated with the boundary-layer coalescence - and the rapid deterioration of flow steadiness - which occurred as soon as the divergence angle for maximum static pressure recovery was exceeded. Pressure efficiency was found to be controlled almost exclusively by divergence angle, whereas static pressure recovery was markedly influenced by area ratio (or length) as well as divergence angle. Volumetric efficiency. diminished as area ratio increased, and at a greater rate with small lengths than with large ones. Large values of the static-pressure-recovery coefficient were attained only with long diffusers of large area ratio; under these conditions pressure efficiency was high and. volumetric efficiency low. Auxiliary tests with asymmetric diffusers demonstrated that longitudinal pressure gradient, rather than wall divergence angle, controlled flow separation. Others showed that the addition of even a short exit duct of uniform section augmented pressure recovery. Finally, it was found that the installation of a thin, central, longitudinal partition suppressed flow separation in short diffusers and thereby improved pressure recovery
Optical performance effects of the misalignment of nonimaging optics solar collectors
NASA Astrophysics Data System (ADS)
Ferry, Jonathan; Ricketts, Melissa; Winston, Roland
2017-09-01
The use of non-imaging optics in the application of high temperature solar thermal collectors can be extremely advantageous in eliminating the need to track the sun. The stationary nature of non-imaging optics collectors, commonly called compound parabolic concentrators (CPC's), present a unique design challenge when orienting them to collect sunlight. Many facilities throughout the world that adopt CPCs are not situated to orient the collectors in the ideal angle facing the sun. This East-West misalignment can adversely affect the optical and power performance of the CPC collector. To characterize how this misalignment effects CPCs, reverse raytracing simulations are conducted for varying offset angles of the collectors from solar South. Optical performance is analyzed for an ideal East-West oriented CPC with a 40-degree acceptance angle. Direction cosine plots are used to develop a ratio of annual solar collection by the CPC over the total annual solar input. From these simulations, average annual collector performance is given for offset angles ranging from 0 to 90 degrees for different Earth Latitudes in 10 degree increments.
Angles-only relative orbit determination in low earth orbit
NASA Astrophysics Data System (ADS)
Ardaens, Jean-Sébastien; Gaias, Gabriella
2018-06-01
The paper provides an overview of the angles-only relative orbit determination activities conducted to support the Autonomous Vision Approach Navigation and Target Identification (AVANTI) experiment. This in-orbit endeavor was carried out by the German Space Operations Center (DLR/GSOC) in autumn 2016 to demonstrate the capability to perform spaceborne autonomous close-proximity operations using solely line-of-sight measurements. The images collected onboard have been reprocessed by an independent on-ground facility for precise relative orbit determination, which served as ultimate instance to monitor the formation safety and to characterize the onboard navigation and control performances. During two months, several rendezvous have been executed, generating a valuable collection of images taken at distances ranging from 50 km to only 50 m. Despite challenging experimental conditions characterized by a poor visibility and strong orbit perturbations, angles-only relative positioning products could be continuously derived throughout the whole experiment timeline, promising accuracy at the meter level during the close approaches. The results presented in the paper are complemented with former angles-only experience gained with the PRISMA satellites to better highlight the specificities induced by different orbits and satellite designs.
Valgus-varus motion of the knee in normal level walking and stair climbing.
Yu, B; Stuart, M J; Kienbacher, T; Growney, E S; An, K-N
1997-07-01
OBJECTIVE: The knee valgus-varus moment and the knee angles were compared between normal level walking and stair climbing. DESIGN: Ten healthy subjects were tested for ascent, descent, and level walking. BACKGROUND: An understanding of the normal valgus-varus motion of the knee during stair climbing is needed to apply biomechanical analysis of stair climbing as a evaluation tool for knee osteoarthritis patients. METHODS: A motion analysis system, three force plates, and a flight of stairs were used to collect kinematic and kinetic data. The knee angles and moments were calculated from the collected kinematic and kinetic data. RESULTS: The knee varus angle for the maximum knee valgus moments in stair climbing was significantly greater than that in level walking. The knee valgus moment was significantly correlated to ground reaction forces and knee valgus-varus angle during stair climbing and level walking. CONCLUSIONS: There is a coupling between the knee valgus-varus motion and flexion-extension motion. Ground reaction forces are the major contributors to the within-subject variation in the knee valgus-varus moment during stair climbing and level walking. The knee valgus-varus angle is a major contributor to the between-subject variation in the knee valgus moment during stair climbing and level walking.
On the equilibrium charge density at tilt grain boundaries
NASA Astrophysics Data System (ADS)
Srikant, V.; Clarke, D. R.
1998-05-01
The equilibrium charge density and free energy of tilt grain boundaries as a function of their misorientation is computed using a Monte Carlo simulation that takes into account both the electrostatic and configurational energies associated with charges at the grain boundary. The computed equilibrium charge density increases with the grain-boundary angle and approaches a saturation value. The equilibrium charge density at large-angle grain boundaries compares well with experimental values for large-angle tilt boundaries in GaAs. The computed grain-boundary electrostatic energy is in agreement with the analytical solution to a one-dimensional Poisson equation at high donor densities but indicates that the analytical solution overestimates the electrostatic energy at lower donor densities.
NASA Astrophysics Data System (ADS)
Davydov, B. L.
2006-05-01
New crystal anisotropic prisms for splitting orthogonally polarised components of laser radiation by large angles with minimal reflection losses caused by the Brewster refraction and total internal reflection of polarised waves from the crystal—air interface are considered and the method for their calculation is described. It is shown that, by assembling glue-free combinations of two or three prisms, thermally stable beamsplitters can be fabricated, which are free from the beam astigmatism and the wave dispersion of the output angles of the beams. The parameters and properties of new beamsplitters are presented in a convenient form in figures and tables.
NASA Astrophysics Data System (ADS)
Bewer, Brian E.
Analyzer crystal based imaging techniques such as diffraction enhanced imaging (DEI) and multiple imaging radiography (MIR) utilize the Bragg peak of perfect crystal diffraction to convert angular changes into intensity changes. These X-ray techniques extend the capability of conventional radiography, which derives image contrast from absorption, by providing a large change in intensity for a small angle change introduced by the X-ray beam traversing the sample. Objects that have very little absorption contrast may have considerable refraction and ultra small angle X-ray scattering (USAXS) contrast thus improving visualization and extending the utility of X-ray imaging. To improve on the current DEI technique this body of work describes the design of an X-ray prism (XRP) included in the imaging system which allows the analyzer crystal to be aligned anywhere on the rocking curve without moving the analyzer from the Bragg angle. By using the XRP to set the rocking curve alignment rather than moving the analyzer crystal physically the needed angle sensitivity is changed from muradians for direct mechanical movement of the analyzer crystal to milliradian control for movement the XRP angle. In addition to using an XRP for the traditional DEI acquisition method of two scans on opposite sides of the rocking curve preliminary tests will be presented showing the potential of using an XRP to scan quickly through the entire rocking curve. This has the benefit of collecting all the required data for image reconstruction in a single fast measurement thus removing the occurrence of motion artifacts for each point or line used during a scan. The XRP design is also intended to be compatible with combined imaging systems where more than one technique is used to investigate a sample. Candidates for complimentary techniques are investigated and measurements from a combined X-ray imaging system are presented.
Investigating Mars: Russell Crater
2017-08-10
This image shows the central part of the dune field on the floor of Russell Crater, including the large dune ridge. Comparing this image to yesterday's you will see a significant difference in appearance. This image was collected at a higher incidence angle, so the sun is at a different angle to the surface. Russell Crater is located in Noachis Terra. A spectacular dune ridge and other dune forms on the crater floor have caused extensive imaging. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 39723 Latitude: -54.4434 Longitude: 13.0526 Instrument: VIS Captured: 2010-11-28 01:47 https://photojournal.jpl.nasa.gov/catalog/PIA21807
The Design of an Adaptive Attitude Control System
1992-09-01
spacecraft to reorient itself by rotating about the eigenaxis will be executing an optimal maneuver . [Ref. 9: pp. 375-3761 2. Quaternion Feedback Regulator...34% The below program will simulate the CER Control System for Large "% Angle (Slewing) Motion. The Control Law is a Quaternion Feedback "% Regulator...Equipment/Retriever (CER) during autonomous attitude hold and large angle or slewing maneuvers . The CER is a proposed space robot that deploys from
2011-01-01
plus important, comparativement à une échelle plus large. Les résultats indiquent qu’un effet de cette nature est attribuable à des facteurs...par un angle de contact à l’avancement plus petit et un angle de contact au retrait plus important, comparativement à une échelle plus large. Les...Methods ............................................................................................................ 10 3.1 Experimental Design
Wang, Wei; Chen, Xiyuan
2018-02-23
In view of the fact the accuracy of the third-degree Cubature Kalman Filter (CKF) used for initial alignment under large misalignment angle conditions is insufficient, an improved fifth-degree CKF algorithm is proposed in this paper. In order to make full use of the innovation on filtering, the innovation covariance matrix is calculated recursively by an innovative sequence with an exponent fading factor. Then a new adaptive error covariance matrix scaling algorithm is proposed. The Singular Value Decomposition (SVD) method is used for improving the numerical stability of the fifth-degree CKF in this paper. In order to avoid the overshoot caused by excessive scaling of error covariance matrix during the convergence stage, the scaling scheme is terminated when the gradient of azimuth reaches the maximum. The experimental results show that the improved algorithm has better alignment accuracy with large misalignment angles than the traditional algorithm.
NASA Technical Reports Server (NTRS)
Knight, Montgomery; Wenzinger, Carl J
1930-01-01
This investigation covers force tests through a large range of angle of attack on a series of monoplane and biplane wing models. The tests were conducted in the atmospheric wind tunnel of the National Advisory Committee for Aeronautics. The models were arranged in such a manner as to make possible a determination of the effects of variations in tip shape, aspect ratio, flap setting, stagger, gap, decalage, sweep back, and airfoil profile. The arrangements represented most of the types of wing systems in use on modern airplanes. The effect of each variable is illustrated by means of groups of curves. In addition, there are included approximate autorotational characteristics in the form of calculated ranges of "rotary instability." a correction for blocking in this tunnel which applies to monoplanes at large angles of attack has been developed, and is given in an appendix. (author)
Large-Angle Scattering of Multi-GeV Muons on Thin Lead Targets
NASA Astrophysics Data System (ADS)
Longhin, A.; Paoloni, A.; Pupilli, F.
2015-10-01
The probability of large-angle scattering for multi-GeV muons in lead targets with a thickness of O(10 - 1) radiation lengths is studied. The new estimates presented here are based both on simulation programs (GEANT4 libraries) and theoretical calculations. In order to validate the results provided by simulation, a comparison is drawn with experimental data from the literature. This study is particularly relevant when applied to muons originating from νμ CC interactions of CNGS beam neutrinos. In that circumstance the process under study represents the dominant background for the νμ → ντ search in the τ→ μ channel for the OPERA experiment at LNGS. Finally we also investigate, in the CNGS context, possible contributions from the muon photo-nuclear process which might in principle also produce a large-angle muon scattering signature in the detector.
Enhanced spin–orbit torques by oxygen incorporation in tungsten films
Demasius, Kai-Uwe; Phung, Timothy; Zhang, Weifeng; Hughes, Brian P.; Yang, See-Hun; Kellock, Andrew; Han, Wei; Pushp, Aakash; Parkin, Stuart S. P.
2016-01-01
The origin of spin–orbit torques, which are generated by the conversion of charge-to-spin currents in non-magnetic materials, is of considerable debate. One of the most interesting materials is tungsten, for which large spin–orbit torques have been found in thin films that are stabilized in the A15 (β-phase) structure. Here we report large spin Hall angles of up to approximately –0.5 by incorporating oxygen into tungsten. While the incorporation of oxygen into the tungsten films leads to significant changes in their microstructure and electrical resistivity, the large spin Hall angles measured are found to be remarkably insensitive to the oxygen-doping level (12–44%). The invariance of the spin Hall angle for higher oxygen concentrations with the bulk properties of the films suggests that the spin–orbit torques in this system may originate dominantly from the interface rather than from the interior of the films. PMID:26912203
Aerodynamic features of a two-airfoil arrangement
NASA Astrophysics Data System (ADS)
Faure, Thierry M.; Hétru, Laurent; Montagnier, Olivier
2017-10-01
The interaction between two foils occurs in many aerodynamic or hydrodynamic applications. Although the characteristics of many airfoils are well documented, there is a limited amount of data for multiple airfoils in interaction and for large values of the angle of attack. This paper presents measurements of the turbulent flow around a two-airfoil T-tail type arrangement and the aerodynamic coefficients, for an incompressible flow at moderate Reynolds number. The study focuses mainly on large angles of attack, corresponding to detached flows on the airfoils, large wakes and involving vortex shedding. Phase averages of velocity fields are made building the flow time development relative to the vortex shedding. The understanding of the change in the tail lift coefficient versus angle of attack, between a two-airfoil arrangement and a single airfoil, is discussed in relation with the position and width of the wing wake and the pathlines of the shedding vortices.
NASA Astrophysics Data System (ADS)
Hu, Hao; Wei, Taoyuan; Yang, Zhongyong; Hackney, Christopher R.; Parsons, Daniel R.
2018-05-01
It has long been highlighted that important feedbacks exist between river bed morphology, sediment transport and the turbulent flow field and that these feedbacks change in response to forcing mechanisms. However, our current understanding of bedform dynamics is largely based on studies of steady flow environments and cohesionless bed conditions. Few investigations have been made under rapidly changing flows. Here, we examine flow and sediment dynamics over low-angle dunes in unsteady flows in the Changjiang (Yangtze) Estuary, China. Topography, flow and sediment data were collected over a reach ca 1.8 km long through a semi-diurnal tidal cycle in a moderate tide of flood season. The results show that: (1) roughness length derived from the upper flow changes little with the flow reversing and displays the same value on both the ebb and flood tide. Moreover, the variability of individual bedform features plays an important role in roughness length variation. (2) Shear stress over the crest of low-angle dunes roughly represents the total spatially averaged stress over dunes in this study area, which has significant implications for advancing numerical models. (3) Changes in morphology, flow and sediment dynamics over dunes through time reveal how low-angle dunes evolve within a tidal cycle. (4) The clockwise hysteresis loops between flow dynamics and bedform features (height and aspect ratio) are also observed. The combination of suspended sediment transport and bedload transport on dune transformation and migration attributes to the clockwise hysteresis. The specific sediment composition of the riverbed, in some extent, affects the mechanism of sediment transport related to the exchange between suspended sediment and riverbed, but further investigation is needed to figure out the mechanism behind this for extended series of tides, such as spring/neap tide and tides in flooding and dry season.
NASA Technical Reports Server (NTRS)
Keener, E. R.; Chapman, G. T.; Taleghani, J.; Cohen, L.
1977-01-01
An experimental investigation was conducted in the Ames 12-Foot Wind Tunnel to determine the subsonic aerodynamic characteristics of four forebodies at high angles of attack. The forebodies tested were a tangent ogive with fineness ratio of 5, a paraboloid with fineness ratio of 3.5, a 20 deg cone, and a tangent ogive with an elliptic cross section. The investigation included the effects of nose bluntness and boundary-layer trips. The tangent-ogive forebody was also tested in the presence of a short afterbody and with the afterbody attached. Static longitudinal and lateral/directional stability data were obtained. The investigation was conducted to investigate the existence of large side forces and yawing moments at high angles of attack and zero sideslip. It was found that all of the forebodies experience steady side forces that start at angles of attack of from 20 deg to 35 deg and exist to as high as 80 deg, depending on forebody shape. The side is as large as 1.6 times the normal force and is generally repeatable with increasing and decreasing angle of attack and, also, from test to test. The side force is very sensitive to the nature of the boundary layer, as indicated by large changes with boundary trips. The maximum side force caries considerably with Reynolds number and tends to decrease with increasing Mach number. The direction of the side force is sensitive to the body geometry near the nose. The angle of attack of onset of side force is not strongly influenced by Reynolds number or Mach number but varies with forebody shape. Maximum normal force often occurs at angles of attack near 60 deg. The effect of the elliptic cross section is to reduce the angle of onset by about 10 deg compared to that of an equivalent circular forebody with the same fineness ratio. The short afterbody reduces the angle of onset by about 5 deg.
NASA Astrophysics Data System (ADS)
Tseng, V. F.-G.; Xie, H.
2015-11-01
This paper presents a frequency detection based inductive eddy current sensing mechanism to simultaneously sense the piston position and tilt angle of the mirror plate of large vertical displacement micromirrors that exhibit piston scan ranges above 100 μm. This is accomplished by sensing the inductance change, and thus resonant frequency shift, of two microfabricated sensing coils packaged underneath the mirror plate. For demonstration purpose, the coils were paired with discrete circuit components to oscillate at 11.9 MHz and 12.5 MHz, respectively. The piston position and tilt angle of the mirror plate could be simultaneously monitored over a 500 μm piston scan range, achieving a maximum piston sensitivity of 4.15 kHz/μm with a piston sensing resolution of 96 nm and a maximum tilt angle sensitivity of 60.5 kHz/° with a tilt angle sensing resolution of 0.0013°. Analytical modeling of the coil inductance change via image theory was also conducted, showing that the sensor sensitivity and resolution could be improved by increasing the coil oscillation frequency and decreasing the coil size.
Propagation characteristics of 20/30 GHz links with a 40 deg masking angle
NASA Technical Reports Server (NTRS)
Davarian, Faramaz; Kantak, Anil V.; Le, Choung
1994-01-01
An effective means of reducing Ka-band propagation loss is the use of high elevation angle paths, i.e., a large masking angle, between earth stations and the space platform. Experimental data have shown that the signal loss associated with most atmospheric effects is inversely proportional to sin(theta), where theta denotes the path elevation angle. A large masking angle and a generous link margin are the primary tools used in the Teledesic Corporation network to minimize atmospheric-related signal outages. This report documents the results of a study sponsored by Teledesic Corporation to characterize the effect of radiowave propagation on Teledesic's links. The recent Olympus campaign in Europe and the U.S. has provided new information that is not included. Therefore, CCIR recommendations and NASA Propagation Handbook models constitute the base of this study, and, when applicable, data from other sources have been used to improve the predictions. Furthermore, attention has been given to data from the Olympus campaign. The effects investigated during this study include gas, rain, fog, sand, and cloud attenuation; diversity gain; scintillation; and depolarization.
Dependency of the apparent contact angle on nonisothermal conditions
NASA Astrophysics Data System (ADS)
Krahl, Rolf; Gerstmann, Jens; Behruzi, Philipp; Bänsch, Eberhard; Dreyer, Michael E.
2008-04-01
The dynamic behavior of liquids in partly filled containers is influenced to a large extend by the angle between the gas-liquid phase boundary and the solid container wall at the contact line. This contact angle in turn is influenced by nonisothermal conditions. In the case of a cold liquid meniscus spreading over a hot solid wall, the contact angle apparently becomes significantly larger. In this paper we want to establish a quantitative equation for this enlargement, both from experimental and numerical data. Our findings can be used to build a subgrid model for computations, where the resolution is not sufficient to resolve the boundary layers. This might be the case for large containers which are exposed to low accelerations and where the contact angle boundary condition determines the position of the free surface. These types of computation are performed, for example, to solve propellant management problems in launcher and satellite tanks. In this application, the knowledge of the position of the free surface is very important for the withdrawal of liquid and the calculation of heat and mass transfer.
NASA Technical Reports Server (NTRS)
Buffum, Daniel H.; King, Aaron J.; Capece, Vincent R.; El-Aini, Yehia M.
1996-01-01
The aerodynamics of a cascade of airfoils oscillating in torsion about the midchord is investigated experimentally at a large mean incidence angle and, for reference, at a low mean incidence angle. The airfoil section is representative of a modern, low aspect ratio, fan blade tip section. Time-dependent airfoil surface pressure measurements were made for reduced frequencies up to 0.8 for out-of-phase oscillations at Mach numbers up to 0.8 and chordal incidence angles of 0 deg and 10 deg. For the 10 deg chordal incidence angle, a separation bubble formed at the leading edge of the suction surface. The separated flow field was found to have a dramatic effect on the chordwise distribution of the unsteady pressure. In this region, substantial deviations from the attached flow data were found with the deviations becoming less apparent in the aft region of the airfoil for all reduced frequencies. In particular, near the leading edge the separated flow had a strong destabilizing influence while the attached flow had a strong stabilizing influence.
Surface Parameters of Titan Feature Classes From Cassini RADAR Backscatter Measurements
NASA Astrophysics Data System (ADS)
Wye, L. C.; Zebker, H. A.; Lopes, R. M.; Peckyno, R.; Le Gall, A.; Janssen, M. A.
2008-12-01
Multimode microwave measurements collected by the Cassini RADAR instrument during the spacecraft's first four years of operation form a fairly comprehensive set of radar backscatter data over a variety of Titan surface features. We use the real-aperture scatterometry processor to analyze the entire collection of active data, creating a uniformly-calibrated dataset that covers 93% of Titan's surface at a variety of viewing angles. Here, we examine how the measured backscatter response (radar reflectivity as a function of incidence angle) varies with surface feature type, such as dunes, cryovolcanic areas, and anomalous albedo terrain. We identify the feature classes using a combination of maps produced by the RADAR, ISS, and VIMS instruments. We then derive surface descriptors including roughness, dielectric constant, and degree of volume scatter. Radar backscatter on Titan is well-modeled as a superposition of large-scale surface scattering (quasispecular scattering) together with a combination of small-scale surface scattering and subsurface volume scattering (diffuse scattering). The viewing geometry determines which scattering mechanism is strongest. At low incidence angles, quasispecular scatter dominates the radar backscatter return. At higher incidence angles (angles greater than ~30°), diffuse scatter dominates the return. We use a composite model to separate the two scattering regimes; we model the quasispecular term with a combination of two traditional backscatter laws (we consider the Hagfors, Gaussian, and exponential models), following a technique developed by Sultan-Salem and Tyler [1], and we model the diffuse term, which encompasses both diffuse mechanisms, with a simple cosine power law. Using this total composite model, we analyze the backscatter curves of all features classes on Titan for which we have adequate angular coverage. In most cases, we find that the superposition of the Hagfors law with the exponential law best models the quasispecular response. A generalized geometric optics approach permits us to combine the best-fit parameters from each component of the composite model to yield a single value for the surface dielectric constant and RMS slope [1]. In this way, we map the relative variation of composition and wavelength-scale structure across the surface. We also map the variation of radar albedo across the analyzed features, as well as the relative prevalence of the different scattering mechanisms through the measured ratio of diffuse power to quasispecular power. These map products help to constrain how different geological processes might be interacting on a global scale. [1] A. K. Sultan-Salem, G. L. Tyler, JGR 112, 2007.
Whittaker, Rachel L; Park, Woojin; Dickerson, Clark R
2018-04-27
Efficient and holistic identification of fatigue-induced movement strategies can be limited by large between-subject variability in descriptors of joint angle data. One promising alternative to traditional, or computationally intensive methods is the symbolic motion structure representation algorithm (SMSR), which identifies the basic spatial-temporal structure of joint angle data using string descriptors of temporal joint angle trajectories. This study attempted to use the SMSR to identify changes in upper extremity time series joint angle data during a repetitive goal directed task causing muscle fatigue. Twenty-eight participants (15 M, 13 F) performed a seated repetitive task until fatigued. Upper extremity joint angles were extracted from motion capture for representative task cycles. SMSRs, averages and ranges of several joint angles were compared at the start and end of the repetitive task to identify kinematic changes with fatigue. At the group level, significant increases in the range of all joint angle data existed with large between-subject variability that posed a challenge to the interpretation of these fatigue-related changes. However, changes in the SMSRs across participants effectively summarized the adoption of adaptive movement strategies. This establishes SMSR as a viable, logical, and sensitive method of fatigue identification via kinematic changes, with novel application and pragmatism for visual assessment of fatigue development. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Moul, T. M.
1983-01-01
The nature of corrections for flow direction measurements obtained with a wing-tip mounted sensor was investigated. Corrections for the angle of attack and sideslip, measured by sensors mounted in front of each wing tip of a general aviation airplane, were determined. These flow corrections were obtained from both wind-tunnel and flight tests over a large angle-of-attack range. Both the angle-of-attack and angle-of-sideslip flow corrections were found to be substantial. The corrections were a function of the angle of attack and angle of sideslip. The effects of wing configuration changes, small changes in Reynolds number, and spinning rotation on the angle-of-attack flow correction were found to be small. The angle-of-attack flow correction determined from the static wind-tunnel tests agreed reasonably well with the correction determined from flight tests.
NASA Technical Reports Server (NTRS)
Hahne, D. E.
1985-01-01
A wind tunnel investigation of concepts to improve the high angle-of-attack stability and control characteristics of a high performance aircraft was conducted. The effect of vertical tail geometry on stability and the effectiveness of several conventional and unusual control concepts was determined. These results were obtained over a large angle-of-attack range. Vertical tail location, cant angle and leading edge sweep could influence both longitudinal and lateral-directional stability. The control concepts tested were found to be effective and to provide control into the post stall angle-of-attack region.
Development and Application of STEM for the Biological Sciences
Sousa, Alioscka A.; Leapman, Richard D.
2012-01-01
The design of the scanning transmission electron microscope (STEM), as conceived originally by Crewe and coworkers, enables the highly efficient and flexible collection of different elastic and inelastic signals resulting from the interaction of a focused probe of incident electrons with a specimen. In the present paper we provide a brief review for how the STEM today can be applied towards a range of different problems in the biological sciences, emphasizing four main areas of application. (1) For three decades, the most widely used STEM technique has been the mass determination of proteins and other macromolecular assemblies. Such measurements can be performed at low electron dose by collecting the high-angle dark-field signal using an annular detector. STEM mass mapping has proven valuable for characterizing large protein assemblies such as filamentous proteins with a well-defined mass per length. (2) The annular dark-field signal can also be used to image ultrasmall, functionalized nanoparticles of heavy atoms for labeling specific aminoacid sequences in protein assemblies. (3) By acquiring electron energy loss spectra (EELS) at each pixel in a hyperspectral image, it is possible to map the distributions of specific bound elements like phosphorus, calcium and iron in isolated macromolecular assemblies or in compartments within sectioned cells. Near single atom sensitivity is feasible provided that the specimen can tolerate a very high incident electron dose. (4) Electron tomography is a new application of STEM that enables three-dimensional reconstruction of micrometer-thick sections of cells. In this technique a probe of small convergence angle gives a large depth of field throughout the thickness of the specimen while maintaining a probe diameter of < 2 nm; and the use of an on-axis bright-field detector reduces the effects of beam broadening and thus improves the spatial resolution compared to that attainable by STEM dark-field tomography. PMID:22749213
NASA Astrophysics Data System (ADS)
Pratt, P.
2012-12-01
Ocean color bands on VIIRS span the visible spectrum and include two NIR bands. There are sixteen detectors per band and two HAM (Half-angle mirror) sides giving a total of thirty two independent systems. For each scan, thirty two hundred pixels are collected and each has a fixed specific optical path and a dynamic position relative to the earth geoid. For a given calibration target where scene variation is minimized, sensor characteristics can be observed. This gives insight into the performance and calibration of the instrument from a sensor-centric perspective. Calibration of the blue bands is especially challenging since there are few blue targets on land. An ocean region called the South Pacific Gyre (SPG) was chosen for its known stability and large area to serve as a calibration target for this investigation. Thousands of pixels from every granule that views the SPG are collected daily through an automated system and tabulated along with the detector, HAM and scan position. These are then collated and organized in a sensor-centric set of tables. The data are then analyzed by slicing by each variable and then plotted in a number of ways over time. Trends in the data show that the VIIRS sensor is largely behaving as expected according to heritage data and also reveals weaknesses where additional characterization of the sensor is possible. This work by Northrop Grumman NPP CalVal Team is supporting the VIIRS on-orbit calibration and validation teams for the sensor and ocean color as well as providing scientists interested in performing ground truth with results that show which detectors and scan angles are the most reliable over time. This novel approach offers a comprehensive sensor-centric on-orbit characterization of the VIIRS instrument on the NASA Suomi NPP mission.
Nongpiur, Monisha E; George, Ronnie; Chen, Li-Jia; Do, Tan; Abu-Amero, Khaled; Huang, Chor Kai; Low, Sancy; Tajudin, Liza-Sharmini A; Perera, Shamira A; Cheng, Ching-Yu; Xu, Liang; Jia, Hongyan; Ho, Ching-Lin; Sim, Kar Seng; Wu, Ren-Yi; Tham, Clement C Y; Chew, Paul T K; Su, Daniel H; Oen, Francis T; Sarangapani, Sripriya; Soumittra, Nagaswamy; Osman, Essam A; Wong, Hon-Tym; Tang, Guangxian; Fan, Sujie; Meng, Hailin; Huong, Dao T L; Wang, Hua; Feng, Bo; Baskaran, Mani; Shantha, Balekudaru; Ramprasad, Vedam L; Kumaramanickavel, Govindasamy; Iyengar, Sudha K; How, Alicia C; Lee, Kelvin Y; Sivakumaran, Theru A; Yong, Victor H K; Ting, Serena M L; Li, Yang; Wang, Ya-Xing; Tay, Wan-Ting; Sim, Xueling; Lavanya, Raghavan; Cornes, Belinda K; Zheng, Ying-Feng; Wong, Tina T; Loon, Seng-Chee; Yong, Vernon K Y; Waseem, Naushin; Yaakub, Azhany; Chia, Kee-Seng; Allingham, R Rand; Hauser, Michael A; Lam, Dennis S C; Hibberd, Martin L; Bhattacharya, Shomi S; Zhang, Mingzhi; Teo, Yik Ying; Tan, Donald T; Jonas, Jost B; Tai, E-Shyong; Saw, Seang-Mei; Hon, Do Nhu; Al-Obeidan, Saleh A; Liu, Jianjun; Chau, Tran Nguyen Bich; Simmons, Cameron P; Bei, Jin-Xin; Zeng, Yi-Xin; Foster, Paul J; Vijaya, Lingam; Wong, Tien-Yin; Pang, Chi-Pui
2014-01-01
Primary angle closure glaucoma (PACG) is a major cause of blindness worldwide. We conducted a genome-wide association study including 1,854 PACG cases and 9,608 controls across 5 sample collections in Asia. Replication experiments were conducted in 1,917 PACG cases and 8,943 controls collected from a further 6 sample collections. We report significant associations at three new loci: rs11024102 in PLEKHA7 (per-allele odds ratio (OR) = 1.22; P = 5.33 × 10−12), rs3753841 in COL11A1 (per-allele OR = 1.20; P = 9.22 × 10−10) and rs1015213 located between PCMTD1 and ST18 on chromosome 8q (per-allele OR = 1.50; P = 3.29 × 10−9). Our findings, accumulated across these independent worldwide collections, suggest possible mechanisms explaining the pathogenesis of PACG. PMID:22922875
Experimental study of separator effect and shift angle on crossflow wind turbine performance
NASA Astrophysics Data System (ADS)
Fahrudin, Tjahjana, Dominicus Danardono Dwi Prija; Santoso, Budi
2018-02-01
This paper present experimental test results of separator and shift angle influence on Crossflow vertical axis wind turbine. Modification by using a separator and shift angle is expected to improve the thrust on the blade so as to improve the efficiency. The design of the wind turbine is tested at different wind speeds. There are 2 variations of crossflow turbine design which will be analyzed using an experimental test scheme that is, 3 stage crossflow and 2 stage crossflow with the shift angle. Maximum power coefficient obtained as Cpmax = 0.13 at wind speed 4.05 m/s for 1 separator and Cpmax = 0.12 for 12° shear angle of wind speed 4.05 m/s. In this study, power characteristics of the crossflow rotor with separator and shift angle have been tested. The experimental data was collected by variation of 2 separator and shift angle 0°, 6°, 12° and wind speed 3.01 - 4.85 m/s.
NASA Astrophysics Data System (ADS)
Maeda, M.; Yamamoto, K.; Mizokawa, T.; Saini, N. L.; Arita, M.; Namatame, H.; Taniguchi, M.; Tan, G.; Zhao, L. D.; Kanatzidis, M. G.
2018-03-01
We have studied the electronic structure of SnSe and Na-doped SnSe by means of angle-resolved photoemission spectroscopy. The valence-band top reaches the Fermi level by the Na doping, indicating that Na-doped SnSe can be viewed as a degenerate semiconductor. However, in the Na-doped system, the chemical potential shift with temperature is unexpectedly large and is apparently inconsistent with the degenerate semiconductor picture. The large chemical potential shift and anomalous spectral shape are key ingredients for an understanding of the novel metallic state with the large thermoelectric performance in Na-doped SnSe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maeda, M.; Yamamoto, K.; Mizokawa, T.
In this work, we have studied the electronic structure of SnSe and Na-doped SnSe by means of angle-resolved photoemission spectroscopy. The valence-band top reaches the Fermi level by the Na doping, indicating that Na-doped SnSe can be viewed as a degenerate semiconductor. However, in the Na-doped system, the chemical potential shift with temperature is unexpectedly large and is apparently inconsistent with the degenerate semiconductor picture. Lastly, the large chemical potential shift and anomalous spectral shape are key ingredients for an understanding of the novel metallic state with the large thermoelectric performance in Na-doped SnSe.
Maeda, M.; Yamamoto, K.; Mizokawa, T.; ...
2018-03-23
In this work, we have studied the electronic structure of SnSe and Na-doped SnSe by means of angle-resolved photoemission spectroscopy. The valence-band top reaches the Fermi level by the Na doping, indicating that Na-doped SnSe can be viewed as a degenerate semiconductor. However, in the Na-doped system, the chemical potential shift with temperature is unexpectedly large and is apparently inconsistent with the degenerate semiconductor picture. Lastly, the large chemical potential shift and anomalous spectral shape are key ingredients for an understanding of the novel metallic state with the large thermoelectric performance in Na-doped SnSe.
Dong, Jian; Jin, Yanli; Dong, He; Liu, Jiawei; Ye, Senbin
2018-06-26
The profile, apparent contact angle (ACA), contact angle hysteresis (CAH), and wetting state transmission energy barrier (WSTEB) are important static and dynamic properties of a large-volume droplet on the hierarchical surface. Understanding them can provide us with important insights into functional surfaces and promote the application in corresponding areas. In this paper, we establish three theoretical models (models 1-3) and the corresponding numerical methods, which were obtained by the free energy minimization and the nonlinear optimization algorithm, to predict the profile, ACA, CAH, and WSTEB of a large-volume droplet on the horizontal regular dual-rough surface. In consideration of the gravity, the energy barrier on the contact circle, the dual heterogeneous structures and their roughness on the surface, the models are more universal and accurate than the previous models. It showed that the predictions of the models were in good agreement with the results from the experiment or literature. The models are promising to become novel design approaches of functional surfaces, which are frequently applied in microfluidic chips, water self-catchment system, and dropwise condensation heat transfer system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snoek, Hella Leonie
2009-06-02
This thesis describes the measurement of the branching fractions of the suppressed charmed B 0 → D *- a 0 + decays and the non-resonant B 0 → D *- ηπ + decays in approximately 230 million Υ(4S) → Bmore » $$\\bar{B}$$ events. The data have been collected with the BABAR detector at the PEP-II B factory at the Stanford Linear Accelerator Center in California. Theoretical predictions of the branching fraction of the B 0 → D *- a{sub 0} + decays show large QCD model dependent uncertainties. Non-factorizing terms, in the naive factorization model, that can be calculated by QCD factorizing models have a large impact on the branching fraction of these decay modes. The predictions of the branching fractions are of the order of 10 -6. The measurement of the branching fraction gives more insight into the theoretical models. In general a better understanding of QCD models will be necessary to conduct weak interaction physics at the next level. The presence of CP violation in electroweak interactions allows the differentiation between matter and antimatter in the laws of physics. In the Standard Model, CP violation is incorporated in the CKM matrix that describes the weak interaction between quarks. Relations amongst the CKM matrix elements are used to present the two relevant parameters as the apex of a triangle (Unitarity Triangle) in a complex plane. The over-constraining of the CKM triangle by experimental measurements is an important test of the Standard Model. At this moment no stringent direct measurements of the CKM angle γ, one of the interior angles of the Unitarity Triangle, are available. The measurement of the angle γ can be performed using the decays of neutral B mesons. The B 0 → D *- a 0 + decay is sensitive to the angle γ and, in comparison to the current decays that are being employed, could significantly enhance the measurement of this angle. However, the low expected branching fraction for the B 0 → D *- a 0 + decay channels could severely impact the measurement. A prerequisite of the measurement of the CKM angle is the observation of the B 0 → D *- a 0 + decay on which this thesis reports. The BABAR experiment consists of the BABAR detector and the PEP-II e +e - collider. The design of the experiment has been optimized for the study of CP violation in the decays of neutral B mesons but is also highly suitable for the search for rare B decays such as the B0 → D *- a 0 + decay. The PEP-II collider operates at the Υ(4S) resonance and is a clean source of B$$\\bar{B}$$ meson pairs.« less
NASA Technical Reports Server (NTRS)
Schlegel, Todd T.; Cortez, Daniel
2010-01-01
Our primary objective was to ascertain which commonly used 12-to-Frank-lead transformation yields spatial QRS-T angle values closest to those obtained from simultaneously collected true Frank-lead recordings. Simultaneous 12-lead and Frank XYZ-lead recordings were analyzed for 100 post-myocardial infarction patients and 50 controls. Relative agreement, with true Frank-lead results, of 12-to-Frank-lead transformed results for the spatial QRS-T angle using Kors regression versus inverse Dower was assessed via ANOVA, Lin s concordance and Bland-Altman plots. Spatial QRS-T angles from the true Frank leads were not significantly different than those derived from the Kors regression-related transformation but were significantly smaller than those derived from the inverse Dower-related transformation (P less than 0.001). Independent of method, spatial mean QRS-T angles were also always significantly larger than spatial maximum (peaks) QRS-T angles. Spatial QRS-T angles are best approximated by regression-related transforms. Spatial mean and spatial peaks QRS-T angles should also not be used interchangeably.
Hua, Dong-dong; Li, He-ran; Yang, Bai-xue; Song, Li-na; Liu, Tiao-tiao; Cong, Yu-tang; Li, San-ming
2015-10-01
To study the effects of surfactants on wettability of excipients, the contact angles of six types of surfactants on the surface of two common excipients and mixture of three surfactants with excipients were measured using hypsometry method. The results demonstrated that contact angle of water on the surface of excipients was associated with hydrophilcity of excipients. Contact angle was lowered with increase in hydrophilic groups of excipient molecules. The sequence of contact angle from small to large was starch < sodium benzoate < polyvinylpyrrolidone < sodium carboxymethylcellulose < sodium alginate < chitosan < hydroxypropyl methyl cellulose
The monitoring and data quality assessment of the ATLAS liquid argon calorimeter
NASA Astrophysics Data System (ADS)
Simard, Olivier; ATLAS Liquid Argon Calorimeter Group
2015-02-01
The ATLAS experiment is designed to study the proton-proton (pp) collisions produced at the Large Hadron Collider (LHC) at CERN. Liquid argon (LAr) sampling calorimeters are used for all electromagnetic calorimetry in the pseudo-rapidity region |η| < 3.2, as well as for hadronic calorimetry in the range 1.5 < |η| < 4.9. The electromagnetic calorimeters use lead as passive material and are characterized by an accordion geometry that allows a fast and uniform response without azimuthal gaps. Copper and tungsten were chosen as passive material for the hadronic calorimetry; while a classic parallel-plate geometry was adopted at large polar angles, an innovative design based on cylindrical electrodes with thin liquid argon gaps is employed at low angles, where the particle flux is higher. All detectors are housed in three cryostats maintained at about 88.5 K. The 182,468 cells are read out via front-end boards housed in on-detector crates that also contain monitoring, calibration, trigger and timing boards. In the first three years of LHC operation, approximately 27 fb-1 of pp collision data were collected at centre-of-mass energies of 7-8 TeV. Throughout this period, the calorimeter consistently operated with performances very close to specifications, with high data-taking efficiency. This is in large part due to a sophisticated data monitoring procedure designed to quickly identify issues that would degrade the detector performance, to ensure that only the best quality data are used for physics analysis. After a description of the detector design, main characteristics and operation principles, this paper details the data quality assessment procedures developed during the 2011 and 2012 LHC data-taking periods, when more than 98% of the luminosity recorded by ATLAS had high quality LAr calorimeter data suitable for physics analysis.
Continuity diaphragm for skewed continuous span precast prestressed concrete girder bridges.
DOT National Transportation Integrated Search
2004-10-01
Continuity diaphragms used on skewed bents in prestressed girder bridges cause difficulties in detailing and : construction. Details for bridges with large diaphragm skew angles (>30) have not been a problem for LA DOTD. : However, as the skew angl...
Impact of large field angles on the requirements for deformable mirror in imaging satellites
NASA Astrophysics Data System (ADS)
Kim, Jae Jun; Mueller, Mark; Martinez, Ty; Agrawal, Brij
2018-04-01
For certain imaging satellite missions, a large aperture with wide field-of-view is needed. In order to achieve diffraction limited performance, the mirror surface Root Mean Square (RMS) error has to be less than 0.05 waves. In the case of visible light, it has to be less than 30 nm. This requirement is difficult to meet as the large aperture will need to be segmented in order to fit inside a launch vehicle shroud. To reduce this requirement and to compensate for the residual wavefront error, Micro-Electro-Mechanical System (MEMS) deformable mirrors can be considered in the aft optics of the optical system. MEMS deformable mirrors are affordable and consume low power, but are small in size. Due to the major reduction in pupil size for the deformable mirror, the effective field angle is magnified by the diameter ratio of the primary and deformable mirror. For wide field of view imaging, the required deformable mirror correction is field angle dependant, impacting the required parameters of a deformable mirror such as size, number of actuators, and actuator stroke. In this paper, a representative telescope and deformable mirror system model is developed and the deformable mirror correction is simulated to study the impact of the large field angles in correcting a wavefront error using a deformable mirror in the aft optics.
Creveaux, Thomas; Sevrez, Violaine; Dumas, Raphaël; Chèze, Laurence; Rogowski, Isabelle
2018-03-01
The aim of this study was to examine the respective aptitudes of three rotation sequences (Y t X f 'Y h '', Z t X f 'Y h '', and X t Z f 'Y h '') to effectively describe the orientation of the humerus relative to the thorax during a movement involving a large horizontal abduction/adduction component: the tennis forehand drive. An optoelectronic system was used to record the movements of eight elite male players, each performing ten forehand drives. The occurrences of gimbal lock, phase angle discontinuity and incoherency in the time course of the three angles defining humerothoracic rotation were examined for each rotation sequence. Our results demonstrated that no single sequence effectively describes humerothoracic motion without discontinuities throughout the forehand motion. The humerothoracic joint angles can nevertheless be described without singularities when considering the backswing/forward-swing and the follow-through phases separately. Our findings stress that the sequence choice may have implications for the report and interpretation of 3D joint kinematics during large shoulder range of motion. Consequently, the use of Euler/Cardan angles to represent 3D orientation of the humerothoracic joint in sport tasks requires the evaluation of the rotation sequence regarding singularity occurrence before analysing the kinematic data, especially when the task involves a large shoulder range of motion in the horizontal plane.
Optimal Control of Airfoil Flow Separation using Fluidic Excitation
NASA Astrophysics Data System (ADS)
Shahrabi, Arireza F.
This thesis deals with the control of flow separation around a symmetric airfoils with the aid of multiple synthetic jet actuators (SJAs). CFD simulation methods have been implemented to uncover the flow separation regimes and associated properties such as frequencies and momentum ratio. In the first part of the study, the SJA was studied thoroughly. Large Eddy Simulations (LES) were performed for one individual cavity; the time history of SJA of the outlet velocity profile and the net momentum imparted to the flow were analyzed. The studied SJA is asymmetrical and operates with the aid of a piezoelectric (PZT) ceramic circular plate actuator. A three-dimensional mesh for the computational domain of the SJA and the surrounding volume was developed and was used to evaluate the details of the airflow conditions inside the SJA as well as at the outlet. The vibration of the PZT ceramic actuator was used as a boundary condition in the computational model to drive the SJA. Particular attention was given to developing a predictive model of the SJA outlet velocity. Results showed that the SJA velocity output is correlated to the PZT ceramic plate vibration, especially for the first frequency mode. SJAs are a particular class of zero net mass flux (ZNMF) fluidic devices with net imparted momentum to the flow. The net momentum imparted to the flow in the separated region is such that positive enhancement during AFC operations is achieved. Flows around the NACA 0015 airfoil were simulated for a range of operating conditions. Attention was given to the active open and closed loop control solutions for an airfoil with SJA at different angles of attack and flap angles. A large number of simulations using RANS & LES models were performed to study the effects of the momentum ratio (Cμ) in the range of 0 to 11% and of the non-dimensional frequency, F+, in the range of 0 to 2 for the control of flow separation at a practical angle of attack and flap angle. The optimum value of Cμ as well as F+ were evaluated and discussed. The computational model predictions showed good agreement with the experimental data. It was observed that different angles of attack and flap angles have different requirements for the minimum value of the momentum coefficient, Cμ, in order for the SJA to be effective for control of separation. It was also found that the variation of F + noticeably affects the lift and drag forces acting on the airfoil. The optimum values of parameters during open loop control simulations have been applied in order to introduce the optimal open loop control outcome. An innovative approach has been implemented to formulate optimal frequencies and momentum ratios of vortex shedding which depends on angle of attack and static pressure of the separation zone in the upper chord. Optimal open loop results have been compared with the optimal closed loop results. Cumulative case studies in the matter of angle of attacks, flap angles, Re, Cμ and F+ provide a convincing collection of evidence to the following conclusion. An improvement of a direct closed loop control was demonstrated, and an analytical formula describing the properties of a separated flow and vortex shedding was proposed. Best AFC solutions are offered by providing optimal frequencies and momentum ratios at a variety of flow conditions.
Biscarini, Andrea; Botti, Fabio M; Pettorossi, Vito E
2013-02-01
We developed a biomechanical model to determine the joint torques and loadings during squatting with a backward/forward-inclined Smith machine. The Smith squat allows a large variety of body positioning (trunk tilt, foot placement, combinations of joint angles) and easy control of weight distribution between forefoot and heel. These distinctive aspects of the exercise can be managed concurrently with the equipment inclination selected to unload specific joint structures while activating specific muscle groups. A backward (forward) equipment inclination decreases (increases) knee torque, and compressive tibiofemoral and patellofemoral forces, while enhances (depresses) hip and lumbosacral torques. For small knee flexion angles, the strain-force on the posterior cruciate ligament increases (decreases) with a backward (forward) equipment inclination, whereas for large knee flexion angles, this behavior is reversed. In the 0 to 60 degree range of knee flexion angles, loads on both cruciate ligaments may be simultaneously suppressed by a 30 degree backward equipment inclination and selecting, for each value of the knee angle, specific pairs of ankle and hip angles. The anterior cruciate ligament is safely maintained unloaded by squatting with backward equipment inclination and uniform/forward foot weight distribution. The conditions for the development of anterior cruciate ligament strain forces are clearly explained.
Evolution of chemically processed air parcels in the lower stratosphere
NASA Technical Reports Server (NTRS)
Stolarski, Richard S.; Douglass, Anne R.; Schoeberl, Mark R.
1994-01-01
Aircraft, ground-based, and satellite measurements indicate large concentrations of ClO in the lower stratosphere in and near the polar vortex. The amount of local ozone depletion caused by these large ClO concentrations will depend on the relative rates of ozone loss and ClO recovery. ClO recovery occurs when NO(x), from HNO3 photolysis, reacts with ClO to form ClONO2. We show that air parcels with large amounts of ClO will experience a subsequent ozone depletion that depends on the solar zenith angle. When the solar zenith angle is large in the middle of winter, the recovery of the ClO concentration in the parcel is slow relative to ozone depletion. In the spring, when the solar zenith angle is smaller, the ClO recovery is much faster. After ClO recovery, the chlorine chemistry has not returned to normal. The ClO has been converted to ClONO2. ClO production from further encounters with PSCs will be limited by the heterogeneous reaction of ClONO2 with water. Large ozone depletions, of the type seen in the Antarctic, occur only if there is significant irreversible denitrification in the air parcel.
Sforza, Chiarella; Dolci, Claudia; Gibelli, Daniele M; Codari, Marina; Pucciarelli, Valentina; Ferrario, Virgilio F; Elamin, Fadil
2016-02-01
Information about age-related and sex-related normative measurements of the nasolabial region in native Northern Sudanese subjects is scanty. We have therefore used a hand-held laser scanner to measure nasolabial angles and distances, and collected the 3-dimensional coordinates of seven landmarks on the facial soft tissues from 654 healthy native Northern Sudanese subjects (327 male and 327 female, aged 4-30 years). From these we calculated five angles and two linear distances and took the mean (SD) for age and sex, and compared them using factorial analysis of variance. All measurements analysed were significantly modified by age in both sexes (p < 0.01) except for the distance from the lower lip to Ricketts' E-line. Sex had a significant effect on the mentolabial and maxillary prominence angles and both distances (p < 0.005). Nasal convexity and the interlabial angle became more obtuse with growth, while the nasolabial and mentolabial angles reduced progressively with female subjects having significantly more obtuse mentolabial angles (p < 0.001). The maxillary prominence angle progressively decreased during childhood, and increased after adolescence, with larger values in male subjects. The upper and lower lip distances from Ricketts' E-line were also significantly larger in male subjects (p < 0.003), but the difference reduced with age. Overall, there were several differences when we compared our data with published data for African and white subjects, which points to the need for ethnic-specific data. Measurements collected in the current study could be used for the quantitative description of facial morphology in native Northern Sudanese children, adolescents, and young adults. Copyright © 2015 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Tam, Nicholas; Astephen Wilson, Janie L; Coetzee, Devon R; van Pletsen, Leanri; Tucker, Ross
2016-05-01
The purpose of this study was to examine the effect of barefoot running on initial loading rate (LR), lower extremity joint kinematics and kinetics, and neuromuscular control in habitually shod runners with an emphasis on the individual response to this unfamiliar condition. Kinematics and ground reaction force data were collected from 51 habitually shod runners during overground running in a barefoot and shod condition. Joint kinetics and stiffness were calculated with inverse dynamics. Inter-individual initial LR variability was explored by separating individuals by a barefoot/shod ratio to determine acute responders/non-responders. Mean initial LR was 54.1% greater in the barefoot when compared to the shod condition. Differences between acute responders/non-responders were found at peak and initial contact sagittal ankle angle and at initial ground contact. Correlations were found between barefoot sagittal ankle angle at initial ground contact and barefoot initial LR. A large variability in biomechanical responses to an acute exposure to barefoot running was found. A large intra-individual variability was found in initial LR but not ankle plantar-dorsiflexion between footwear conditions. A majority of habitually shod runners do not exhibit previously reported benefits in terms of reduced initial LRs when barefoot. Lastly, runners who increased LR when barefoot reduced LRs when wearing shoes to levels similar seen in habitually barefoot runners who do adopt a forefoot-landing pattern, despite increased dorsiflexion. Copyright © 2016 Elsevier B.V. All rights reserved.
Large-angle production of charged pions with 3-12.9 GeV/c incident protons on nuclear targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catanesi, M. G.; Radicioni, E.; Edgecock, R.
2008-05-15
Measurements of the double-differential {pi}{sup {+-}} production cross section in the momentum range 100{<=}p{<=}800 MeV/c and angle range 0.35{<=}{theta}{<=}2.15 rad in proton-beryllium, proton-carbon, proton-aluminium, proton-copper, proton-tin, proton-tantalum, and proton-lead collisions are presented. The data were taken with the large-acceptance HARP detector in the T9 beam line of the CERN PS. The pions were produced by proton beams in a momentum range from 3 to 12.9 GeV/c hitting a target with a thickness of 5% of a nuclear interaction length. Tracking and identification of the produced particles was performed by using a small-radius cylindrical Time Projection Chamber (TPC) placed inside amore » solenoidal magnet. Incident particles were identified by an elaborate system of beam detectors. Results are obtained for the double-differential cross sections d{sup 2}{sigma}/(dpd{theta}) at six incident proton beam momenta [3, 5, 8, and 8.9 GeV/c (Be only) and 12 and 12.9 GeV/c (Al only)]. They are based on a complete correction of static and dynamic distortions of tracks in the HARP TPC, which allows the complete statistics of the collected data set to be used. The results include and supersede our previously published results and are compatible with these. Results are compared with the GEANT4 and MARS Monte Carlo simulation.« less
NASA Astrophysics Data System (ADS)
Zhang, Linna; Ding, Hongyan; Lin, Ling; Wang, Yimin; Guo, Xin
2017-12-01
A fiber is usually used as a probe in visible and near-infrared diffuse spectra measurement. However, the use of different fiber probes in the same measurement may cause data mismatch problems. Our group has researched the influence of the parameters of fiber probe, including the aperture angle, on the diffuse spectrum by a modified Monte Carlo model. To eliminate the influence of the aperture angle, we proposed a fitted equation of correction coefficient to correct its difference in practical range. However, we did not discuss the limitation of this method. In this work, we explored the collection efficiency in different optical environment with Monte Carlo simulation method, and find the suitable conditions-weak absorbing and strong scattering media, for the proposed collection efficiency. Furthermore, we tried to explain the stability of the collection efficiency in this condition. This work gives suitable conditions for the collection efficiency. The use of collection efficiency can help reduce the influence of different measurement systems and is also helpful to the model translation.
Characteristics of mist 3D screen for projection type electro-holography
NASA Astrophysics Data System (ADS)
Sato, Koki; Okumura, Toshimichi; Kanaoka, Takumi; Koizumi, Shinya; Nishikawa, Satoko; Takano, Kunihiko
2006-01-01
The specification of hologram image is the full parallax 3D image. In this case we can get more natural 3D image because focusing and convergence are coincident each other. We try to get practical electro-holography system because for conventional electro-holography the image viewing angle is very small. This is due to the limited display pixel size. Now we are developing new method for large viewing angle by space projection method. White color laser is irradiated to single DMD panel (time shared CGH of RGB three colors). 3D space screen constructed by very small water particle is used to reconstruct the 3D image with large viewing angle by scattering of water particle.
Effects of large-angle Coulomb collisions on inertial confinement fusion plasmas.
Turrell, A E; Sherlock, M; Rose, S J
2014-06-20
Large-angle Coulomb collisions affect the rates of energy and momentum exchange in a plasma, and it is expected that their effects will be important in many plasmas of current research interest, including in inertial confinement fusion. Their inclusion is a long-standing problem, and the first fully self-consistent method for calculating their effects is presented. This method is applied to "burn" in the hot fuel in inertial confinement fusion capsules and finds that the yield increases due to an increase in the rate of temperature equilibration between electrons and ions which is not predicted by small-angle collision theories. The equilibration rate increases are 50%-100% for number densities of 10(30) m(-3) and temperatures around 1 keV.
Design data for radars based on 13.9 GHz Skylab scattering coefficient measurements
NASA Technical Reports Server (NTRS)
Moore, R. K. (Principal Investigator)
1974-01-01
The author has identified the following significant results. Measurements made at 13.9 GHz with the radar scatterometer on Skylab have been combined to produce median curves of the variation of scattering coefficient with angle of incidence out to 45 deg. Because of the large number of observations, and the large area averaged for each measured data point, these curves may be used as a new design base for radars. A reasonably good fit at larger angles is obtained using the theoretical expression based on an exponential height correlation function and also using Lambert's law. For angles under 10 deg, a different fit based on the exponential correlation function, and a fit based on geometric optics expressions are both reasonably valid.
Buratti, B.J.; Faulk, S.P.; Mosher, J.; Baines, K.H.; Brown, R.H.; Clark, R.N.; Nicholson, P.D.
2011-01-01
Cassini Visual Infrared Mapping Spectrometer (VIMS) observations of Mimas, Tethys, and Dione obtained during the nominal and extended missions at large solar phase angles were analyzed to search for plume activity. No forward scattered peaks in the solar phase curves of these satellites were detected. The upper limit on water vapor production for Mimas and Tethys is one order of magnitude less than the production for Enceladus. For Dione, the upper limit is two orders of magnitude less, suggesting this world is as inert as Rhea (Pitman, K.M., Buratti, B.J., Mosher, J.A., Bauer, J.M., Momary, T., Brown, R.H., Nicholson, P.D., Hedman, M.M. [2008]. Astrophys. J. Lett. 680, L65-L68). Although the plumes are best seen at ???2.0. ??m, Imaging Science Subsystem (ISS) Narrow Angle Camera images obtained at the same time as the VIMS data were also inspected for these features. None of the Cassini ISS images shows evidence for plumes. The absence of evidence for any Enceladus-like plumes on the medium-sized saturnian satellites cannot absolutely rule out current geologic activity. The activity may below our threshold of detection, or it may be occurring but not captured on the handful of observations at large solar phase angles obtained for each moon. Many VIMS and ISS images of Enceladus at large solar phase angles, for example, do not contain plumes, as the active "tiger stripes" in the south pole region are pointed away from the spacecraft at these times. The 7-year Cassini Solstice Mission is scheduled to gather additional measurements at large solar phase angles that are capable of revealing activity on the saturnian moons. ?? 2011 Elsevier Inc.
NASA Astrophysics Data System (ADS)
Liu, Lei; Huang, Chuanhui; Yu, Ping; Zhang, Lei
2017-10-01
To improve the dynamic characteristics and cavitation characteristics of large-flow pilot operated check valve, consider the pilot poppet as the research object, analyses working principle and design three different kinds of pilot poppets. The vibration characteristics and impact characteristics are analyzed. The simulation model is established through flow field simulation software. The cavitation characteristics of large-flow pilot operated check valve are studied and discussed. On this basis, high-pressure large-flow impact experimental system is used for impact experiment, and the cavitation index is discussed. Then optimal structure is obtained. Simulation results indicate that the increase of pilot poppet half cone angle can effectively reduce the cavitation area, reducing the generation of cavitation. Experimental results show that the pressure impact is not decreasing with increasing of pilot poppet half cone angle in process of unloading, but the unloading capacity, response speed and pilot poppet half cone angle are positively correlated. The impact characteristics of 60° pilot poppet, and its cavitation index is lesser, which indicates 60° pilot poppet is the optimal structure, with the theory results are basically identical.
Measurements of 12C ions beam fragmentation at large angle with an Emulsion Cloud Chamber
NASA Astrophysics Data System (ADS)
Alexandrov, A.; De Lellis, G.; Di Crescenzo, A.; Lauria, A.; Montesi, M. C.; Pastore, A.; Patera, V.; Sarti, A.; Tioukov, V.
2017-08-01
Hadron radiotherapy is a powerful technique for the treatment of deep-seated tumours. The physical dose distribution of hadron beams is characterized by a small dose delivered in the entrance channel and a large dose in the Bragg peak area. Fragmentation of the incident particles and struck nuclei occurs along the hadron path. Knowledge of the fragment energies and angular distributions is crucial for the validation of the models used in treatment planning systems. We report on large angle fragmentation measurements of a 400 MeV/n 12C beam impinging on a composite target at the GSI laboratory in Germany. The detector was made of 300 micron thick nuclear emulsion films, with sub-micrometric spatial resolution and large angle track detection capability, interleaved with passive material. Thanks to newly developed techniques in the automated scanning of emulsions it was possible to extend the angular range of detected particles. This resulted in the first measurement of the angular and momentum spectrum for fragments emitted in the range from 34o to 81o.
Large Angle Transient Dynamics (LATDYN) user's manual
NASA Technical Reports Server (NTRS)
Abrahamson, A. Louis; Chang, Che-Wei; Powell, Michael G.; Wu, Shih-Chin; Bingel, Bradford D.; Theophilos, Paula M.
1991-01-01
A computer code for modeling the large angle transient dynamics (LATDYN) of structures was developed to investigate techniques for analyzing flexible deformation and control/structure interaction problems associated with large angular motions of spacecraft. This type of analysis is beyond the routine capability of conventional analytical tools without simplifying assumptions. In some instances, the motion may be sufficiently slow and the spacecraft (or component) sufficiently rigid to simplify analyses of dynamics and controls by making pseudo-static and/or rigid body assumptions. The LATDYN introduces a new approach to the problem by combining finite element structural analysis, multi-body dynamics, and control system analysis in a single tool. It includes a type of finite element that can deform and rotate through large angles at the same time, and which can be connected to other finite elements either rigidly or through mechanical joints. The LATDYN also provides symbolic capabilities for modeling control systems which are interfaced directly with the finite element structural model. Thus, the nonlinear equations representing the structural model are integrated along with the equations representing sensors, processing, and controls as a coupled system.
Impact of Sensor Degradation on the MODIS NDVI Time Series
NASA Technical Reports Server (NTRS)
Wang, Dongdong; Morton, Douglas Christopher; Masek, Jeffrey; Wu, Aisheng; Nagol, Jyoteshwar; Xiong, Xiaoxiong; Levy, Robert; Vermote, Eric; Wolfe, Robert
2012-01-01
Time series of satellite data provide unparalleled information on the response of vegetation to climate variability. Detecting subtle changes in vegetation over time requires consistent satellite-based measurements. Here, the impact of sensor degradation on trend detection was evaluated using Collection 5 data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on the Terra and Aqua platforms. For Terra MODIS, the impact of blue band (Band 3, 470 nm) degradation on simulated surface reflectance was most pronounced at near-nadir view angles, leading to a 0.001-0.004 yr-1 decline in Normalized Difference Vegetation Index (NDVI) under a range of simulated aerosol conditions and surface types. Observed trends in MODIS NDVI over North America were consistentwith simulated results,with nearly a threefold difference in negative NDVI trends derived from Terra (17.4%) and Aqua (6.7%) MODIS sensors during 2002-2010. Planned adjustments to Terra MODIS calibration for Collection 6 data reprocessing will largely eliminate this negative bias in detection of NDVI trends.
Impact of Sensor Degradation on the MODIS NDVI Time Series
NASA Technical Reports Server (NTRS)
Wang, Dongdong; Morton, Douglas; Masek, Jeffrey; Wu, Aisheng; Nagol, Jyoteshwar; Xiong, Xiaoxiong; Levy, Robert; Vermote, Eric; Wolfe, Robert
2011-01-01
Time series of satellite data provide unparalleled information on the response of vegetation to climate variability. Detecting subtle changes in vegetation over time requires consistent satellite-based measurements. Here, we evaluated the impact of sensor degradation on trend detection using Collection 5 data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on the Terra and Aqua platforms. For Terra MODIS, the impact of blue band (Band 3, 470nm) degradation on simulated surface reflectance was most pronounced at near-nadir view angles, leading to a 0.001-0.004/yr decline in Normalized Difference Vegetation Index (NDVI) under a range of simulated aerosol conditions and surface types. Observed trends MODIS NDVI over North America were consistent with simulated results, with nearly a threefold difference in negative NDVI trends derived from Terra (17.4%) and Aqua (6.7%) MODIS sensors during 2002-2010. Planned adjustments to Terra MODIS calibration for Collection 6 data reprocessing will largely eliminate this negative bias in NDVI trends over vegetation.
Evaluating the Performance of a Commercial Silicon Drift Detector for X-ray Microanalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenik, Edward A
2011-01-01
Silicon drift detectors (SDDs) are rapidly becoming the energy dispersive spectrometer (EDS) of choice, especially for scanning electron microscopy x-ray microanalysis. The complementary features of large active areas (i.e., high collection angle) and high count rate capability of these detector contribute to their popularity, as well as the absence of liquid nitrogen cooling and good energy resolution of these detectors. The performance of an EDAX Apollo 40 SDD on a JEOL 6500F SEM is discussed. The larger detector resulted in an significant increase (~3.5x) in geometric collection efficiency compared to the original 10mm2 Si(Li) detector that it replaced. The SEMmore » can provide high beam currents (up to 200nA in some conditions) at small probe diameters. The high count rate capability of the SDD and the high current capability of the SEM compliment each other and provide excellent EDS analytical capabilities for both single point and spectrum imaging applications.« less
NASA Technical Reports Server (NTRS)
Onstott, Robert G.; Gineris, Denise J.
1990-01-01
This is the third in a series of three reports which address the statistical description of ground clutter at an airport and in the surrounding area. These data are being utilized in a program to detect microbursts. Synthetic aperture radar (SAR) data were collected at the Denver Stapleton Airport using a set of parameters which closely match those which are anticipated to be utilized by an aircraft on approach to an airport. These data and the results of the clutter study are described. Scenes of 13 x 10 km were imaged at 9.38 GHz and HH-, VV-, and HV-polarizations, and contain airport grounds and facilities (up to 14 percent), cultural areas (more than 50 percent), and rural areas (up to 6 percent). Incidence angles range from 40 to 84 deg. At the largest depression angles the distributed targets, such as forest, fields, water, and residential, rarely had mean scattering coefficients greater than -10 dB. From 30 to 80 percent of an image had scattering coefficients less than -20 dB. About 1 to 10 percent of the scattering coefficients exceeded 0 dB, and from 0 to 1 percent above 10 dB. In examining the average backscatter coefficients at large angles, the clutter types cluster according to the following groups: (1) terminals (-3 dB), (2) city and industrial (-7 dB), (3) warehouse (-10 dB), (4) urban and residential (-14 dB), and (5) grass (-24 dB).
The SMS3D photovoltaic concentrator
NASA Astrophysics Data System (ADS)
Cvetković, Aleksandra; Hernandez, Maikel; Benítez, Pablo; Miñano, Juan Carlos; Schwartz, Joel; Plesniak, Adam; Jones, Russ; Whelan, David
2008-08-01
A novel photovoltaic concentrator is presented. The goal is to achieve high concentration design with high efficiency and high acceptance angle that in the same time is compact and convenient for thermal and mechanical management [1]. This photovoltaic system is based on 1 cm2 multi-junction tandem solar cells and an XR concentrator. The XR concentrator in this system is an SMS 3D design formed by one reflective (X) and one refractive (R) free-form surfaces (i.e., without rotational or linear symmetry) and has been chosen for its excellent aspect ratio and for its ability to perform near the thermodynamic limit. It is a mirror-lens device that has no shadowing elements and has square entry aperture (the whole system aperture area is used for collecting light). This large acceptance angle relaxes the manufacturing tolerances of all the optical and mechanical components of the system included the concentrator itself and is one of the keys to get a cost competitive photovoltaic generator. For the geometrical concentration of 1000x the simulation results show the acceptance angle of +/-1.8 deg. The irradiance distribution on the cell is achieved with ultra-short homogenizing prism, whose size is optimised to keep the maximum values under the ones that the cell can accept. The application of the XR optics to high-concentration is being developed in a consortium leaded by The Boeing Company, which has been awarded a project by US DOE in the framework of the Solar America Initiative.
The free form XR photovoltaic concentrator: a high performance SMS3D design
NASA Astrophysics Data System (ADS)
Cvetkovic, Aleksandra; Hernandez, Maikel; Benítez, Pablo; Miñano, Juan C.; Schwartz, Joel; Plesniak, Adam; Jones, Russ; Whelan, David
2008-08-01
A novel photovoltaic concentrator is presented. The goal is to achieve high concentration design with high efficiency and high acceptance angle that in the same time is compact and convenient for thermal and mechanical management. This photovoltaic system is based on 1 cm2 multi-junction tandem solar cells and an XR concentrator. The XR concentrator in this system is an SMS 3D design formed by one reflective (X) and one refractive (R) free-form surfaces (i.e., without rotational or linear symmetry) and has been chosen for its excellent aspect ratio and for its ability to perform near the thermodynamic limit. It is a mirror-lens device that has no shadowing elements and has square entry aperture (the whole system aperture area is used for collecting light). This large acceptance angle relaxes the manufacturing tolerances of all the optical and mechanical components of the system included the concentrator itself and is one of the keys to get a cost competitive photovoltaic generator. For the geometrical concentration of 1000x the simulation results show the acceptance angle of +/-1.8 deg. The irradiance distribution on the cell is achieved with ultra-short homogenizing prism, whose size is optimised to keep the maximum values under the ones that the cell can accept. The application of the XR optics to high-concentration is being developed in a consortium leaded by The Boeing Company, which has been awarded a project by US DOE in the framework of the Solar America Initiative.
Development and operation of a high-throughput accurate-wavelength lens-based spectrometer a)
Bell, Ronald E.
2014-07-11
A high-throughput spectrometer for the 400-820 nm wavelength range has been developed for charge exchange recombination spectroscopy or general spectroscopy. A large 2160 mm -1 grating is matched with fast f /1.8 200 mm lenses, which provide stigmatic imaging. A precision optical encoder measures the grating angle with an accuracy ≤ 0.075 arc seconds. A high quantum efficiency low-etaloning CCD detector allows operation at longer wavelengths. A patch panel allows input fibers to interface with interchangeable fiber holders that attach to a kinematic mount behind the entrance slit. The computer-controlled hardware allows automated control of wavelength, timing, f-number, automated datamore » collection, and wavelength calibration.« less
Motion of a Drop on a Solid Surface Due to a Wettability Gradient
NASA Technical Reports Server (NTRS)
Subramanian, R.; Moumen, Nadjoua; McLaughlin, John B.
2005-01-01
The hydrodynamic force experienced by a spherical-cap drop moving on a solid surface is obtained from two approximate analytical solutions and used to predict the quasi-steady speed of the drop in a wettability gradient. One solution is based on approximation of the shape of the drop as a collection of wedges, and the other is based on lubrication theory. Also, asymptotic results from both approximations for small contact angles, as well as an asymptotic result from lubrication theory that is good when the length scale of the drop is large compared with the slip length, are given. The results for the hydrodynamic force also can be used to predict the quasi-steady speed of a drop sliding down an incline.
Highlights on Hadronic Physics at KLOE
NASA Astrophysics Data System (ADS)
Giovannella, S.
2006-11-01
The KLOE experiment has just collected 2.5 fb-1 of e+e- collisions at center of mass energy around the φ mass. Radiative decays are used to produce large statistical samples of light scala and pseudoscalar mesons. The analysis of the first 450 pb-1 is almost completed. For the scala sector we have investigated the properties of these particles by studying their invariant mass shapes or the event density in the Dalitz plot. With the same data set, the η mass and the ratio BR(φ → η'γ)/BR(φ → ηγ) have been measured. From this last quantity we extract the most precise determination of the η/η' mixing angle, which is strictly related to the η' gluon content.
The experimental electron mean-free-path in Si under typical (S)TEM conditions.
Potapov, P L
2014-12-01
The electron mean-free-path in Si was measured by EELS using the test structure with the certified dimensions as a calibration standard. In a good agreement with the previous CBED measurements, the mean-free-path is 150nm for 200keV and 179nm for 300keV energy of primary electrons at large collection angles. These values are accurately predicted by the model of Iakoubovskii et al. while the model of Malis et al. incorporated in common microscopy software underestimates the mean-free-path by 15% at least. Correspondingly, the thickness of TEM samples reported in many studies of the Si-based materials last decades might be noticeably underestimated. Copyright © 2014 Elsevier B.V. All rights reserved.
Nonlinearity in the effect of an inhomogeneous Hall angle
NASA Astrophysics Data System (ADS)
Koon, Daniel W.
2007-03-01
The differential equation for the electric potential in a conducting material with an inhomogeneous Hall angle is extended to the large-field limit. This equation is solved for a square specimen, using a successive over-relaxation [SOR] technique for matrices of up to 101x101 size, and the Hall weighting function -- the effect of local pointlike perturbations on the measured Hall angle -- is calculated as both the unperturbed Hall angle, θH, and the perturbation, δθH, exceed the linear, small angle limit. Preliminary results show that the Hall angle varies by no more than 5% if both | θH |<1 and | δθH |<1. Thus, previously calculated results for the Hall weighting function can be used for most materials in all but the most extreme magnetic fields.
NASA Technical Reports Server (NTRS)
Burgin, G. H.; Eggleston, D. M.
1976-01-01
A flight control system for use in air-to-air combat simulation was designed. The input to the flight control system are commanded bank angle and angle of attack, the output are commands to the control surface actuators such that the commanded values will be achieved in near minimum time and sideslip is controlled to remain small. For the longitudinal direction, a conventional linear control system with gains scheduled as a function of dynamic pressure is employed. For the lateral direction, a novel control system, consisting of a linear portion for small bank angle errors and a bang-bang control system for large errors and error rates is employed.
Berry phase and Hannay angle of an interacting boson system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, S. C.; Graduate School, China Academy of Engineering Physics, Beijing 100088; Liu, J.
2011-04-15
In the present paper, we investigate the Berry phase and the Hannay angle of an interacting two-mode boson system and obtain their analytic expressions in explicit forms. The relation between the Berry phase and the Hannay angle is discussed. We find that, in the large-particle-number limit, the classical Hannay angle equals the particle number derivative of the quantum Berry phase except for a sign. This relationship is applicable to other many-body boson systems where the coherent-state description is available and the total particle number is conserved. The measurement of the classical Hannay angle in the many-body systems is briefly discussedmore » as well.« less
Multiple incidence angle SIR-B experiment over Argentina Mapping of forest units
NASA Technical Reports Server (NTRS)
Cimino, J.; Casey, D.; Wall, S. D.; Brandani, A.; Rabassa, J.
1986-01-01
Multiple incidence angle SIR-B data of the Cordon la Grasa region of the Chubut Province of Argentina are used to discriminate various forest types by their relative brightness versus incidence angle signatures. The region consists of several species of Nothofagas which change in canopy structure with elevation, slope, and exposure. In general, the factors that appear to impact the radar response most are canopy structure, density, and ground cover (presence or absence of dead trunks and branches in particular). The results of this work indicate that (1) different forest species, and structures of a single species, may be discriminated using multiple incidence angle radar imagery and (2) it is essential to consider the variation in backscatter due to incidence angle when analyzing the comparing data collected at varying frequencies and polarizations.
The ISW effect and the lack of large-angle CMB temperature correlations
NASA Astrophysics Data System (ADS)
Copi, Craig J.; O'Dwyer, Márcio; Starkman, Glenn D.
2016-12-01
It is by now well established that the magnitude of the two-point angular-correlation function of the cosmic microwave background temperature anisotropies is anomalously low for angular separations greater than about 60°. Physics explanations of this anomaly typically focus on the properties of the Universe at the surface of last scattering, relying on the fact that large-angle temperature fluctuations are dominated by the Sachs-Wolfe effect (SW). However, these fluctuations also receive important contributions from the integrated Sachs-Wolfe effect (ISW) at both early (eISW) and late (ℓISW) times. Here, we study the correlations in those large-angle temperature fluctuations and their relative contributions to S1/2- the standard measure of the correlations on large angular scales. We find that in the best-fitting lambda cold dark matter (ΛCDM) cosmology, while the autocorrelation of the early contributions (SW plus eISW) dominates S1/2, there are also significant contributions originating from cross-terms between the early and late contributions. In particular, realizations of ΛCDM with low S1/2 are typically produced from a combination of somewhat low pure-early correlations and accidental cancellations among early-late correlations. We also find that if the pure ℓISW autocorrelations were the only contribution to S1/2 in ΛCDM, then the p-value of the observed cut-sky S1/2 would be unremarkable. This suggests that the physical mechanisms operating only at or near the last scattering surface could explain the observed lack of large-angle correlations, though this is not the typical resolution within ΛCDM.
NASA Astrophysics Data System (ADS)
Hasegawa, K.; Lim, C. S.; Ogure, K.
2003-09-01
We propose a two-zero-texture general Zee model, compatible with the large mixing angle Mikheyev-Smirnov-Wolfenstein solution. The washing out of the baryon number does not occur in this model for an adequate parameter range. We check the consistency of a model with the constraints coming from flavor changing neutral current processes, the recent cosmic microwave background observation, and the Z-burst scenario.
View angle dependence of cloud optical thicknesses retrieved by MODIS
NASA Technical Reports Server (NTRS)
Marshak, Alexander; Varnai, Tamas
2005-01-01
This study examines whether cloud inhomogeneity influences the view angle dependence of MODIS cloud optical thickness (tau) retrieval results. The degree of cloud inhomogeneity is characterized through the local gradient in 11 microns brightness temperature. The analysis of liquid phase clouds in a one year long global dataset of Collection 4 MODIS data reveals that while optical thickness retrievals give remarkably consistent results for all view directions if clouds are homogeneous, they give much higher tau-values for oblique views than for overhead views if clouds are inhomogeneous and the sun is fairly oblique. For solar zenith angles larger than 55deg, the mean optical thickness retrieved for the most inhomogeneous third of cloudy pixels is more than 30% higher for oblique views than for overhead views. After considering a variety of possible scenarios, the paper concludes that the most likely reason for the increase lies in three-dimensional radiative interactions that are not considered in current, one-dimensional retrieval algorithms. Namely, the radiative effect of cloud sides viewed at oblique angles seems to contribute most to the enhanced tau-values. The results presented here will help understand cloud retrieval uncertainties related to cloud inhomogeneity. They complement the uncertainty estimates that will start accompanying MODIS cloud products in Collection 5 and may eventually help correct for the observed view angle dependent biases.
A thermodynamic model of contact angle hysteresis.
Makkonen, Lasse
2017-08-14
When a three-phase contact line moves along a solid surface, the contact angle no longer corresponds to the static equilibrium angle but is larger when the liquid is advancing and smaller when the liquid is receding. The difference between the advancing and receding contact angles, i.e., the contact angle hysteresis, is of paramount importance in wetting and capillarity. For example, it determines the magnitude of the external force that is required to make a drop slide on a solid surface. Until now, fundamental origin of the contact angle hysteresis has been controversial. Here, this origin is revealed and a quantitative theory is derived. The theory is corroborated by the available experimental data for a large number of solid-liquid combinations. The theory is applied in modelling the contact angle hysteresis on a textured surface, and these results are also in quantitative agreement with the experimental data.
Effect of reflection losses on stationary dielectric-filled nonimaging concentrators
NASA Astrophysics Data System (ADS)
Madala, Srikanth; Boehm, Robert F.
2016-10-01
The effect of Fresnel reflection and total internal reflection (TIR) losses on the performance parameters in refractive solar concentrators has often been downplayed because most refractive solar concentrators are traditionally the imaging type, yielding a line or point image on the absorber surface when solely interacted with paraxial etendue ensured by solar tracking. Whereas, with refractive-type nonimaging solar concentrators that achieve two-dimensional (rectangular strip) focus or three-dimensional (circular or elliptical) focus through interaction with both paraxial and nonparaxial etendue within the acceptance angle, the Fresnel reflection and TIR losses are significant as they will affect the performance parameters and, thereby, energy collection. A raytracing analysis has been carried out to illustrate the effects of Fresnel reflection and TIR losses on four different types of stationary dielectric-filled nonimaging concentrators, namely V-trough, compound parabolic concentrator, compound elliptical concentrator, and compound hyperbolic concentrator. The refractive index (RI) of a dielectric fill material determines the acceptance angle of a solid nonimaging collector. Larger refractive indices yield larger acceptance angles and, thereby, larger energy collection. However, they also increase the Fresnel reflection losses. This paper also assesses the relative benefit of increasing RI from an energy collection standpoint.
Flare angles measured with ball gage
NASA Technical Reports Server (NTRS)
Cleghorn, D.; Wall, W. A.
1968-01-01
Precision tungsten carbide balls measure the internal angle of flared joints. Measurements from small and large balls in the flare throat to an external reference point are made. The difference in distances and diameters determine the average slope of the flare between the points of ball contact.
NASA Technical Reports Server (NTRS)
Parzych, D.; Boyd, L.; Meissner, W.; Wyrostek, A.
1991-01-01
An experiment was performed by Hamilton Standard, Division of United Technologies Corporation, under contract by LeRC, to measure the blade surface pressure of a large scale, 8 blade model prop-fan in flight. The test bed was the Gulfstream 2 Prop-Fan Test Assessment (PTA) aircraft. The objective of the test was to measure the steady and periodic blade surface pressure resulting from three different Prop-Fan air inflow angles at various takeoff and cruise conditions. The inflow angles were obtained by varying the nacelle tilt angles, which ranged from -3 to +2 degrees. A range of power loadings, tip speeds, and altitudes were tested at each nacelle tilt angle over the flight Mach number range of 0.30 to 0.80. Unsteady blade pressure data tabulated as Fourier coefficients for the first 35 harmonics of shaft rotational frequency and the steady (non-varying) pressure component are presented.
Multi-group Fokker-Planck proton transport in MCNP{trademark}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, K.J.
1997-11-01
MCNP has been enhanced to perform proton transport using a multigroup Fokker Planck (MGFP) algorithm with primary emphasis on proton radiography simulations. The new method solves the Fokker Planck approximation to the Boltzmann transport equation for the small angle multiple scattering portion of proton transport. Energy loss is accounted for by applying a group averaged stopping power over each transport step. Large angle scatter and non-inelastic events are treated as extinction. Comparisons with the more rigorous LAHET code show agreement to a few per cent for the total transmitted currents. The angular distributions through copper and low Z compounds showmore » good agreement between LAHET and MGFP with the MGFP method being slightly less forward peaked and without the large angle tails apparent in the LAHET simulation. Suitability of this method for proton radiography simulations is shown for a simple problem of a hole in a copper slab. LAHET and MGFP calculations of position, angle and energy through more complex objects are presented.« less
Calibration Errors in Interferometric Radio Polarimetry
NASA Astrophysics Data System (ADS)
Hales, Christopher A.
2017-08-01
Residual calibration errors are difficult to predict in interferometric radio polarimetry because they depend on the observational calibration strategy employed, encompassing the Stokes vector of the calibrator and parallactic angle coverage. This work presents analytic derivations and simulations that enable examination of residual on-axis instrumental leakage and position-angle errors for a suite of calibration strategies. The focus is on arrays comprising alt-azimuth antennas with common feeds over which parallactic angle is approximately uniform. The results indicate that calibration schemes requiring parallactic angle coverage in the linear feed basis (e.g., the Atacama Large Millimeter/submillimeter Array) need only observe over 30°, beyond which no significant improvements in calibration accuracy are obtained. In the circular feed basis (e.g., the Very Large Array above 1 GHz), 30° is also appropriate when the Stokes vector of the leakage calibrator is known a priori, but this rises to 90° when the Stokes vector is unknown. These findings illustrate and quantify concepts that were previously obscure rules of thumb.
Plane wave analysis of coherent holographic image reconstruction by phase transfer (CHIRPT).
Field, Jeffrey J; Winters, David G; Bartels, Randy A
2015-11-01
Fluorescent imaging plays a critical role in a myriad of scientific endeavors, particularly in the biological sciences. Three-dimensional imaging of fluorescent intensity often requires serial data acquisition, that is, voxel-by-voxel collection of fluorescent light emitted throughout the specimen with a nonimaging single-element detector. While nonimaging fluorescence detection offers some measure of scattering robustness, the rate at which dynamic specimens can be imaged is severely limited. Other fluorescent imaging techniques utilize imaging detection to enhance collection rates. A notable example is light-sheet fluorescence microscopy, also known as selective-plane illumination microscopy, which illuminates a large region within the specimen and collects emitted fluorescent light at an angle either perpendicular or oblique to the illumination light sheet. Unfortunately, scattering of the emitted fluorescent light can cause blurring of the collected images in highly turbid biological media. We recently introduced an imaging technique called coherent holographic image reconstruction by phase transfer (CHIRPT) that combines light-sheet-like illumination with nonimaging fluorescent light detection. By combining the speed of light-sheet illumination with the scattering robustness of nonimaging detection, CHIRPT is poised to have a dramatic impact on biological imaging, particularly for in vivo preparations. Here we present the mathematical formalism for CHIRPT imaging under spatially coherent illumination and present experimental data that verifies the theoretical model.
NASA Astrophysics Data System (ADS)
Rinindra, A. M.; Zizlavsky, S.; Bashiruddin, J.; Aman, R. A.; Wulani, V.; Bardosono, S.
2017-08-01
Tumor in the cerebellopontine angle (CPA) accurs for approximately 5-10% of all intracranial tumors, where unilateral hearing loss and tinnitus are the most frequent symptoms. This study aimed to collect data on sensorineural hearing loss in CPA tumor patients in Dr. Cipto Mangunkusumo Hospital (CMH) using pure tone audiometry and brainstem-evoked response audiometry (BERA). It also aimed to obtaine data on CPA-tumor imaging through magnetic resonance imaging (MRI). This was a descriptive, analytic, and cross-sectional study. The subjects of this study were gathered using a total sampling method from secondary data between July 2012 and November 2016. From 104 patients, 30 matched the inclusion criteria. The CPA-tumor patients in the ENT CMH outpatient clinic were mostly female, middle-aged patients (41-60 years) whose clinical presentation was mostly tinnitus and severe, asymmetric sensorineural hearing loss in 10 subjects. From 30 subjects, 29 showed ipsilaterally impaired BERA results, and 17 subjects showed contralaterally impaired BERA results. There were 24 subjects who with large-sized tumors and 19 subjects who had intracanal tumors that had spread until they were extracanal in 19 subjects.
Experimental characterization of Fresnel-Köhler concentrators
NASA Astrophysics Data System (ADS)
Zamora, Pablo; Benítez, Pablo; Mohedano, Rubén; Cvetković, Aleksandra; Vilaplana, Juan; Li, Yang; Hernández, Maikel; Chaves, Julio; Miñano, Juan C.
2012-01-01
Most cost-effective concentrated photovoltaics (CPV) systems are based on an optical train comprising two stages, the first being a Fresnel lens. Among them, the Fresnel-Köhler (FK) concentrator stands out owing to both performance and practical reasons. We describe the experimental measurements procedure for FK concentrator modules. This procedure includes three main types of measurements: electrical efficiency, acceptance angle, and irradiance uniformity at the solar cell plane. We have collected here the performance features of two different FK prototypes (ranging different f-numbers, concentration ratios, and cell sizes). The electrical efficiencies measured in both prototypes are high and fit well with the models, achieving values up to 32.7% (temperature corrected, and with no antireflective coating on SOE or POE surfaces) in the best case. The measured angular transmission curves show large acceptance angles, again perfectly matching the expected values [measured concentration acceptance product (CAP) values over 0.56]. The irradiance pattern on the cell (obtained with a digital camera) shows an almost perfectly uniform distribution, as predicted by raytrace simulations. All these excellent on-sun results confirm the FK concentrator as a potentially cost-effective solution for the CPV market.
Double-grooved nanofibre surfaces with enhanced anisotropic hydrophobicity.
Liang, Meimei; Chen, Xin; Xu, Yang; Zhu, Lei; Jin, Xiangyu; Huang, Chen
2017-11-02
This study reports a facile method for fabricating double-grooved fibrous surfaces. The primary grooves of the surface are formed by aligned fibres, while the secondary grooves are achieved by oriented nanogrooves on the fibre surface. Investigation into the formation mechanism reveals that the nanogrooves can be readily tailored through adjusting the solvent ratio and relative humidity. With this understanding, a variety of polymers have been successfully electrospun into fibres having the same nanogrooved feature. These fibres show high resemblance to natural hierarchical structures, and thereby endowing the corresponding double-grooved surface with enhanced anisotropic hydrophobicity. A water droplet at a parallel direction to the grooves exhibits a much higher contact angle and a lower roll-off angle than the droplet at a perpendicular direction. The application potential of such anisotropic hydrophobicity has been demonstrated via a fog collection experiment, in which the double-grooved surface can harvest the largest amount of water. Moreover, the fabrication method requires neither post-treatment nor sophisticated equipment, making us anticipate that the double-grooved surface would be competitive in areas where a highly ordered surface, a large surface area and an anisotropic hydrophobicity are preferred.
Measurement of Critical Contact Angle in a Microgravity Space Experiment
NASA Technical Reports Server (NTRS)
Concus, P.; Finn, R.; Weislogel, M.
1998-01-01
Mathematical theory predicts that small changes in container shape or in contact angle can give rise to large shifts of liquid in a microgravity environment. This phenomenon was investigated in the Interface Configuration Experiment on board the USML-2 Space Shuttle flight. The experiment's "double proboscis" containers were designed to strike a balance between conflicting requirements of sizable volume of liquid shift (for ease of observation) and abruptness of the shift (for accurate determination of critical contact angle). The experimental results support the classical concept of macroscopic contact angle and demonstrate the role of hysteresis in impeding orientation toward equilibrium.
Measurement of Critical Contact Angle in a Microgravity Space Experiment
NASA Technical Reports Server (NTRS)
Concus, P.; Finn, R.; Weislogel, M.
1998-01-01
Mathematical theory predicts that small changes in container shape or in contact angle can give rise to large shifts of liquid in a microgravity environment. This phenomenon was investigated in the Interface Configuration Experiment on board the USMT,2 Space Shuttle flight. The experiment's "double proboscis" containers were designed to strike a balance between conflicting requirements of sizable volume of liquid shift (for ease of observation) and abruptness of the shift (for accurate determination of critical contact angle). The experimental results support the classical concept of macroscopic contact angle and demonstrate the role of hysteresis in impeding orientation toward equilibrium.
NASA Technical Reports Server (NTRS)
Foster, Lucas E.; Britcher, Colin P.
1995-01-01
The Large Angle Magnetic Suspension Test Fixture (LAMSTF) is a laboratory scale proof-of-concept system. The configuration is unique in that the electromagnets are mounted in a circular planar array. A mathematical model of the system had previously been developed, but was shown to have inaccuracies. These inaccuracies showed up in the step responses. Eddy currents were found to be the major cause of the modeling errors. In the original system, eddy currents existed in the aluminum baseplate, iron cores, and the sensor support frame. An attempt to include the eddy current dynamics in the system model is presented. The dynamics of a dummy sensor ring were added to the system. Adding the eddy current dynamics to the simulation improves the way it compares to the actual experiment. Also presented is a new method of determining the yaw angle of the suspended element. From the coil currents the yaw angle can be determined and the controller can be updated to suspend at the new current. This method has been used to demonstrate a 360 degree yaw angle rotation.
Yes, one can obtain better quality structures from routine X-ray data collection.
Sanjuan-Szklarz, W Fabiola; Hoser, Anna A; Gutmann, Matthias; Madsen, Anders Østergaard; Woźniak, Krzysztof
2016-01-01
Single-crystal X-ray diffraction structural results for benzidine dihydrochloride, hydrated and protonated N,N,N,N-peri(dimethylamino)naphthalene chloride, triptycene, dichlorodimethyltriptycene and decamethylferrocene have been analysed. A critical discussion of the dependence of structural and thermal parameters on resolution for these compounds is presented. Results of refinements against X-ray data, cut off to different resolutions from the high-resolution data files, are compared to structural models derived from neutron diffraction experiments. The Independent Atom Model (IAM) and the Transferable Aspherical Atom Model (TAAM) are tested. The average differences between the X-ray and neutron structural parameters (with the exception of valence angles defined by H atoms) decrease with the increasing 2θmax angle. The scale of differences between X-ray and neutron geometrical parameters can be significantly reduced when data are collected to the higher, than commonly used, 2θmax diffraction angles (for Mo Kα 2θmax > 65°). The final structural and thermal parameters obtained for the studied compounds using TAAM refinement are in better agreement with the neutron values than the IAM results for all resolutions and all compounds. By using TAAM, it is still possible to obtain accurate results even from low-resolution X-ray data. This is particularly important as TAAM is easy to apply and can routinely be used to improve the quality of structural investigations [Dominiak (2015 ▸). LSDB from UBDB. University of Buffalo, USA]. We can recommend that, in order to obtain more adequate (more accurate and precise) structural and displacement parameters during the IAM model refinement, data should be collected up to the larger diffraction angles, at least, for Mo Kα radiation to 2θmax = 65° (sin θmax/λ < 0.75 Å(-1)). The TAAM approach is a very good option to obtain more adequate results even using data collected to the lower 2θmax angles. Also the results of translation-libration-screw (TLS) analysis and vibrational entropy values are more reliable for 2θmax > 65°.
Study of the Unsteady Flow Features on a Stalled Wing
NASA Technical Reports Server (NTRS)
Yon, Steven A.; Katz, Joseph
1997-01-01
The occurrence of large scale structures in the post stall flow over a rectangular wing at high angles of attack was investigated in a small-scale subsonic wind tunnel. Mean and time dependent measurements within the separated flow field suggest the existence of two distinct angle of attack regimes beyond wing stall. The shallow stall regime occurs over a narrow range of incidence angles (2-3 deg.) immediately following the inception of leading edge separation. In this regime, the principal mean flow structures, termed stall cells, are manifested as a distinct spanwise periodicity in the chordwise extent of the separated region on the model surface with possible lateral mobility not previously reported. Within the stall cells and on the wing surface, large amplitude pressure fluctuations occur with a frequency much lower than anticipated for bluff body shedding, and with minimum effect in the far wake. In the deep stall regime, stall cells are not observed and the separated region near the model is relatively free of large amplitude pressure disturbances.
Wang, Wei; Chen, Xiyuan
2018-01-01
In view of the fact the accuracy of the third-degree Cubature Kalman Filter (CKF) used for initial alignment under large misalignment angle conditions is insufficient, an improved fifth-degree CKF algorithm is proposed in this paper. In order to make full use of the innovation on filtering, the innovation covariance matrix is calculated recursively by an innovative sequence with an exponent fading factor. Then a new adaptive error covariance matrix scaling algorithm is proposed. The Singular Value Decomposition (SVD) method is used for improving the numerical stability of the fifth-degree CKF in this paper. In order to avoid the overshoot caused by excessive scaling of error covariance matrix during the convergence stage, the scaling scheme is terminated when the gradient of azimuth reaches the maximum. The experimental results show that the improved algorithm has better alignment accuracy with large misalignment angles than the traditional algorithm. PMID:29473912
Lack of large-angle TT correlations persists in WMAP and Planck
NASA Astrophysics Data System (ADS)
Copi, Craig J.; Huterer, Dragan; Schwarz, Dominik J.; Starkman, Glenn D.
2015-08-01
The lack of large-angle correlations in the observed microwave background temperature fluctuations persists in the final-year maps from Wilkinson Microwave Anisotropy Probe (WMAP) and the first cosmological data release from Planck. We find a statistically robust and significant result: p-values for the missing correlations lying below 0.24 per cent (i.e. evidence at more than 3σ) for foreground cleaned maps, in complete agreement with previous analyses based upon earlier WMAP data. A cut-sky analysis of the Planck HFI 100 GHz frequency band, the `cleanest CMB channel' of this instrument, returns a p-value as small as 0.03 per cent, based on the conservative mask defined by WMAP. These findings are in stark contrast to expectations from the inflationary Lambda cold dark matter model and still lack a convincing explanation. If this lack of large-angle correlations is a true feature of our Universe, and not just a statistical fluke, then the cosmological dipole must be considerably smaller than that predicted in the best-fitting model.
Measuring contact angle and meniscus shape with a reflected laser beam.
Eibach, T F; Fell, D; Nguyen, H; Butt, H J; Auernhammer, G K
2014-01-01
Side-view imaging of the contact angle between an extended planar solid surface and a liquid is problematic. Even when aligning the view perfectly parallel to the contact line, focusing one point of the contact line is not possible. We describe a new measurement technique for determining contact angles with the reflection of a widened laser sheet on a moving contact line. We verified this new technique measuring the contact angle on a cylinder, rotating partially immersed in a liquid. A laser sheet is inclined under an angle φ to the unperturbed liquid surface and is reflected off the meniscus. Collected on a screen, the reflection image contains information to determine the contact angle. When dividing the laser sheet into an array of laser rays by placing a mesh into the beam path, the shape of the meniscus can be reconstructed from the reflection image. We verified the method by measuring the receding contact angle versus speed for aqueous cetyltrimethyl ammonium bromide solutions on a smooth hydrophobized as well as on a rough polystyrene surface.
Description and evaluation of the CASA dual-Doppler system
NASA Astrophysics Data System (ADS)
Martinez, Matthew
2011-12-01
Long range weather surveillance radars are designed for observing weather events for hundreds of kilometers from the radar and operate over a large coverage domain independently of weather conditions. As a result a loss in spatial resolution and limited temporal sampling of the weather phenomenon occurs. Due to the curvature of the Earth, long-range weather radars tend to make the majority of their precipitation and wind observations in the middle to upper troposphere, resulting in missed features associates with severe weather occurring in the lowest three kilometers of the troposphere. The spacing of long-range weather radars in the United States limits the feasibility of using dual-Doppler wind retrievals that would provide valuable information on the kinematics of weather events to end-users and researchers. The National Science Foundation Center for Collaborative Adapting Sensing of the Atmosphere (CASA) aims to change the current weather sensing model by increasing coverage of the lowest three kilometers of the troposphere by using densely spaced networked short-range weather radars. CASA has deployed a network of these radars in south-western Oklahoma, known as Integrated Project 1 (IP1). The individual radars are adaptively steered by an automated system known as the Meteorological Command and Control (MCC). The geometry of the IP1 network is such that the coverage domains of the individual radars are overlapping. A dual-Doppler system has been developed for the IP1 network which takes advantage of the overlapping coverage domains. The system is comprised of two subsystems, scan optimization and wind field retrieval. The scan strategy subsystem uses the DCAS model and the number of dual-Doppler pairs in the IP1 network to minimizes the normalized standard deviation in the wind field retrieval. The scan strategy subsystem also minimizes the synchronization error between two radars. The retrieval itself is comprised of two steps, data resampling and the retrieval process. The resampling step map data collected in radar coordinates to a common Cartesian grid. The retrieval process uses the radial velocity measurements to estimate the northward, eastward, and vertical component of the wind. The error in the retrieval is related to the beam crossing angle. The best retrievals occur at beam crossing angles greater than 30 degrees. During operations statistics on the scan strategy and wind field retrievals are collected in real-time. For the scan strategy subsystem statistics on the beam crossing angels, maximum elevation angle, number of elevation angles, maximum observable height, and synchronization time between radars in a pair are collected by the MCC. These statistics are used to evaluate the performance of the scan strategy subsystem. Observations of a strong wind event occurring on April 2, 2010 are used to evaluate the decision process associated with the scan strategy optimization. For the retrieval subsystem, the normalized standard deviation for the wind field retrieval is used to evaluate the quality of the retrieval. Wind fields from an EF2 tornado observed on May 14, 2009 are used to evaluate the quality of the wind field retrievals in hazardous wind events. Two techniques for visualizing vector fields are available, streamlines and arrows. Each visualization technique is evaluated based on the task of visualizing small and large scale phenomenon. Applications of the wind field retrievals include the computation of the vorticity and divergence fields. Vorticity and divergence for an EF2 tornado observed on May 14, 2009 are evaluated against vorticity and divergence for other observed tornadoes.
Bite angle effects of diphosphines in C-C and C-X bond forming cross coupling reactions.
Birkholz, Mandy-Nicole; Freixa, Zoraida; van Leeuwen, Piet W N M
2009-04-01
Catalytic reactions of C-C and C-X bond formation are discussed in this critical review with particular emphasis on cross coupling reactions catalyzed by palladium and wide bite angle bidentate diphosphine ligands. Especially those studies have been collected that allow comparison of the ligand bite angles for the selected ligands: dppp, BINAP, dppf, DPEphos and Xantphos. Similarities with hydrocyanation and CO/ethene/MeOH reactions have been highlighted, while rhodium hydroformylation has been mentioned as a contrasting example, in which predictability is high and steric and electronic effects follow smooth trends. In palladium catalysis wide bite angles and bulkiness of the ligands facilitate generally the reductive elimination thus giving more efficient cross coupling catalysis (174 references).
NASA Technical Reports Server (NTRS)
Shivers, J. P.; Mclemore, H. C.; Coe, P. L., Jr.
1976-01-01
Tests have been conducted in a full scale tunnel to determine the low speed aerodynamic characteristics of a large scale advanced arrow wing supersonic transport configuration with engines mounted above the wing for upper surface blowing. Tests were made over an angle of attack range of -10 deg to 32 deg, sideslip angles of + or - 5 deg, and a Reynolds number range of 3,530,000 to 7,330,000. Configuration variables included trailing edge flap deflection, engine jet nozzle angle, engine thrust coefficient, engine out operation, and asymmetrical trailing edge boundary layer control for providing roll trim. Downwash measurements at the tail were obtained for different thrust coefficients, tail heights, and at two fuselage stations.
Relationships between clubshaft motions and clubface orientation during the golf swing.
Takagi, Tokio; Yokozawa, Toshiharu; Inaba, Yuki; Matsuda, Yuji; Shiraki, Hitoshi
2017-09-01
Since clubface orientation at impact affects ball direction and ball spin, the ability to control clubface orientation is one of the most important skills for golfers. This study presents a new method to describe clubface orientation as a function of the clubshaft motions (i.e., swing plane orientation, clubshaft angle in the swing plane, and clubshaft rolling angle) during a golf swing and investigates the relationships between the clubshaft motions and clubface orientation at impact. The club motion data of driver shots were collected from eight skilled golfers using a three-dimensional motion capture system. The degrees of influence of the clubshaft motions on the clubface orientation were investigated using sensitivity analysis. The sensitivity analysis revealed that the swing plane horizontal angle affected the clubface horizontal angle to an extent of 100%, that the clubshaft angle in the swing plane affected both the clubface vertical and horizontal angles to extents of 74 and 68%, respectively, and that the clubshaft rolling angle affected both the clubface vertical and horizontal angles to extents of -67 and 75%, respectively. Since the method presented here relates clubface orientation to clubshaft motions, it is useful for understanding the clubface control of a golfer.
Ostrofsky, Justin; Kozbelt, Aaron; Cohen, Dale J
2015-01-01
We tested the misperception hypothesis of drawing errors, which states that drawing accuracy is strongly influenced by the perceptual encoding of a to-be-drawn stimulus. We used a highly controlled experimental paradigm in which nonartist participants made perceptual judgements and drawings of angles under identical stimulus exposure conditions. Experiment 1 examined the isosceles/scalene triangle angle illusion; congruent patterns of bias in the perception and drawing tasks were found for 40 and 60° angles, but not for 20 or 80° angles, providing mixed support for the misperception hypothesis. Experiment 2 examined shape constancy effects with respect to reproductions of single acute or obtuse angles; congruent patterns of bias in the perception and drawing tasks were found across a range of angles from 29 to 151°, providing strong support for the misperception hypothesis. In both experiments, perceptual and drawing biases were positively correlated. These results are largely consistent with the misperception hypothesis, suggesting that inaccurate perceptual encoding of angles is an important reason that nonartists err in drawing angles from observation.
RELATIVISTIC DOPPLER BEAMING AND MISALIGNMENTS IN AGN JETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singal, Ashok K., E-mail: asingal@prl.res.in
Radio maps of active galactic nuclei often show linear features, called jets, on both parsec and kiloparsec scales. These jets supposedly possess relativistic motion and are oriented close to the line of sight of the observer, and accordingly the relativistic Doppler beaming makes them look much brighter than they really are in their respective rest frames. The flux boosting due to the relativistic beaming is a very sensitive function of the jet orientation angle, as seen by the observer. Sometimes, large bends are seen in these jets, with misalignments being 90° or more, which might imply a change in themore » orientation angle that should cause a large change in the relativistic beaming factor. Hence, if relativistic beaming does play an important role in these jets such large bends should usually show high contrast in the brightness of the jets before and after the bend. It needs to be kept in mind that sometimes a small intrinsic change in the jet angle might appear as a much larger misalignment due to the effects of geometrical projection, especially when seen close to the line of sight. What really matters are the initial and final orientation angles of the jet with respect to the observer’s line of sight. Taking the geometrical projection effects properly into account, we calculate the consequences of the presumed relativistic beaming and demonstrate that there ought to be large brightness ratios in jets before and after the observed misalignments.« less
Relativistic Doppler Beaming and Misalignments in AGN Jets
NASA Astrophysics Data System (ADS)
Singal, Ashok K.
2016-08-01
Radio maps of active galactic nuclei often show linear features, called jets, on both parsec and kiloparsec scales. These jets supposedly possess relativistic motion and are oriented close to the line of sight of the observer, and accordingly the relativistic Doppler beaming makes them look much brighter than they really are in their respective rest frames. The flux boosting due to the relativistic beaming is a very sensitive function of the jet orientation angle, as seen by the observer. Sometimes, large bends are seen in these jets, with misalignments being 90° or more, which might imply a change in the orientation angle that should cause a large change in the relativistic beaming factor. Hence, if relativistic beaming does play an important role in these jets such large bends should usually show high contrast in the brightness of the jets before and after the bend. It needs to be kept in mind that sometimes a small intrinsic change in the jet angle might appear as a much larger misalignment due to the effects of geometrical projection, especially when seen close to the line of sight. What really matters are the initial and final orientation angles of the jet with respect to the observer’s line of sight. Taking the geometrical projection effects properly into account, we calculate the consequences of the presumed relativistic beaming and demonstrate that there ought to be large brightness ratios in jets before and after the observed misalignments.
Undetected angle closure in patients with a diagnosis of open-angle glaucoma.
Varma, Devesh K; Simpson, Sarah M; Rai, Amandeep S; Ahmed, Iqbal Ike K
2017-08-01
The aim of this study was to identify the proportion of patients referred to a tertiary glaucoma centre with a diagnosis of open-angle glaucoma (OAG) who were found to have angle closure glaucoma. Retrospective chart review. Consecutive new patients referred for glaucoma management to a tertiary centre between July 2010 and December 2011 were reviewed. Patients whose referrals for glaucoma assessment specified angle status as "open" were included. The data collected included glaucoma specialist's angle assessment, diagnosis, and glaucoma severity. The status of those with 180 degrees or more Shaffer angle grading of 0 was classified as "closed." From 1234 glaucoma referrals, 179 cases were specified to have a diagnosis of OAG or when angles were known to be open. Of these, 16 (8.9%) were found on examination by the glaucoma specialist to have angle closure. Pseudoexfoliation was present in 4 of 16 patients (25%) in the missed angle-closure glaucoma (ACG) group and 22 of 108 patients (13.5%) in the remaining OAG group. There was no difference found in demographic or ocular biometric parameters between those with confirmed OAG versus those with missed ACG. Almost 1 in 11 patients referred by ophthalmologists to a tertiary glaucoma centre with a diagnosis of OAG were in fact found to have angle closure. Given the different treatment approaches for ACG versus OAG, this study suggests a need to strengthen angle evaluations. Copyright © 2017 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.
Yao, Caroline A; Imahiyerobo, Thomas; Swanson, Jordan; Auslander, Allyn; De Cardenas, Diego; Figueiredo, Jane C; McCullough, Meghan; Costa, Melinda; Vanderburg, Richard; Magee, William P
2018-01-01
Unilateral cleft lip has a spectrum of disease morphology, but severity classifications are difficult given the absence of accessible, objective assessment tools or reference data. The authors characterize the spectrum of cleft morphology before and after surgical repair for a large, multi-ethnic population using easily identifiable facial landmarks collected through a novel smart phone-based application. Anthropometric measurements and standardized photographs were prospectively collected in Morocco, Bolivia, Vietnam, and Madagascar during medical missions in 2015 using an application designed specifically for the study. After data collection, two experienced cleft surgeons and two laypersons subjectively ranked photographs based on the degree of deformity/aesthetics. One hundred forty-seven patients were analyzed. Mean preoperative cleft width ratio was 0.4 ± 0.12. Nasolabial symmetry improved significantly from preoperatively to postoperatively for the following measurements: columellar angle (65 ± 17 degrees to 87 ± 8 degrees), nostril width ratio (1.7 ± 0.68 to 1.0 ± 0.22), philtral height ratio (0.8 ± 0.14 to 1.0 ± 0.14), and lip length ratio (0.9 ± 0.26 to 1.0 ± 0.11) (p < 0.001). Surgeon and layperson rankings showed high inter-rater reliability (r = 0.64, p < 0.001). Preoperatively, multivariate regression showed that cleft width ratio, nostril width ratio, and philtral height ratio were predictive of rank (p < 0.01). Postoperatively, philtral height ratio was most predictive of rank (p = 0.0097). Most cleft characteristics were not significantly different between countries. The authors present simpler, more straightforward measures to quantify preoperative and postoperative morphology/aesthetics and introduce a novel technology to streamline and standardize measurements to make data collection more accessible.
A Water Droplet Pinning and Heat Transfer Characteristics on an Inclined Hydrophobic Surface.
Al-Sharafi, Abdullah; Yilbas, Bekir Sami; Ali, Haider; AlAqeeli, N
2018-02-15
A water droplet pinning on inclined hydrophobic surface is considered and the droplet heat transfer characteristics are examined. Solution crystallization of polycarbonate is carried out to create hydrophobic characteristics on the surface. The pinning state of the water droplet on the extreme inclined hydrophobic surface (0° ≤ δ ≤ 180°, δ being the inclination angle) is assessed. Heat transfer from inclined hydrophobic surface to droplet is simulated for various droplet volumes and inclination angles in line with the experimental conditions. The findings revealed that the hydrophobic surface give rise to large amount of air being trapped within texture, which generates Magdeburg like forces between the droplet meniscus and the textured surface while contributing to droplet pinning at extreme inclination angles. Two counter rotating cells are developed for inclination angle in the range of 0° < δ < 20° and 135° < δ < 180°; however, a single circulation cell is formed inside the droplet for inclination angle of 25° ≤ δ ≤ 135°. The Nusselt number remains high for the range of inclination angle of 45° ≤ δ ≤ 135°. Convection and conduction heat transfer enhances when a single and large circulation cell is formed inside the droplet.
Deleurence, Rémi; Parneix, Caroline; Monteux, Cécile
2014-09-28
We investigate the stabilization of air-water interfaces by mixtures of negatively charged latex particles (sulfate polystyrene) and cationic surfactants (alkyl trimethylammonium bromides). First we report results concerning the binding of surfactant molecules to the latex particles. As the surfactant concentration increases, the charge of the particles reverses, from negative to positive, because CnTAB first binds electrostatically to the latex particles and then through hydrophobic interaction with the monolayer already adsorbed on the particles as well as directly with the hydrophobic surface of the latex. Over a large range of surfactant concentrations around the charge inversion, a strong flocculation is observed and 100 μm large aggregates form in the suspension. Unlike previous studies published on mixtures of inorganic particles with oppositely charged surfactants, we show that we can vary the sign of the zeta potential of the particles without changing the contact angle of the particles over a large range of surfactant concentrations. Indeed, the latex particles that we study are more hydrophobic than inorganic particles, hence adding moderate concentrations of the surfactant results in a weak variation of the contact angle while the charge of the particles can be reversed. This enables decoupling of the effect of zeta potential and contact angle on the interfacial properties of the mixtures. Our study shows that the contact angle and the charge of the particles are not sufficient parameters to control the foam properties, and the key-parameters are the flocculation state and the shear energy applied to produce the foam. Indeed, flocculated samples, whatever the sign of the zeta potential, enable production of a stable armour at the interface. The large aggregates do not adsorb spontaneously at the interface because of their large size, however when a large shear energy is used to produce the foam very stable foam is obtained, where particles are trapped at interfaces. We suggest that the large aggregates may be broken during shear and may reform at the interface to form a solid armour. A simple calculation taking into account the adsorption dynamics of the aggregates as a function of their size is consistent with this hypothesis.
NASA Astrophysics Data System (ADS)
Yermolaev, Y. I.; Lodkina, I. G.; Yermolaev, M. Y.
2018-06-01
This work is a continuation of our previous articles (Yermolaev et al. in J. Geophys. Res. 120, 7094, 2015 and Yermolaev et al. in Solar Phys. 292, 193, 2017), which describe the average temporal profiles of interplanetary plasma and field parameters in large-scale solar-wind (SW) streams: corotating interaction regions (CIRs), interplanetary coronal mass ejections (ICMEs, including both magnetic clouds (MCs) and ejecta), and sheaths as well as interplanetary shocks (ISs). Changes in the longitude angle, φ, in CIRs from -2 to 2° agree with earlier results ( e.g. Gosling and Pizzo, 1999). We have also analyzed the average temporal profiles of the bulk velocity angles in sheaths and ICMEs. We have found that the angle φ in ICMEs changes from 2 to -2°, while in sheaths it changes from -2 to 2° (similar to the change in CIRs), i.e. the angle in CIRs and sheaths deflects in the opposite sense to ICMEs. When averaging the latitude angle θ on all the intervals of the chosen SW types, the angle θ is almost constant at {˜} 1°. We made for the first time a selection of SW events with increasing and decreasing θ and found that the average θ temporal profiles in the selected events have the same "integral-like" shape as for φ. The difference in φ and θ average profiles is explained by the fact that most events have increasing profiles for the angle in the ecliptic plane as a result of solar rotation, while for the angle in the meridional plane, the numbers of events with increasing and decreasing profiles are equal.
May, O; Graversen, C B; Johansen, M Ø; Arildsen, H
2018-06-09
Cardiovascular autonomic neuropathy (CAN) is a well known prognostic marker in diabetes. A large angle between the QRS- and the T-wave vector (QRS-T angle) in the electrocardiogram (ECG) has recently been introduced as another marker of poor prognosis. To assess and compare the long-term predictive power of the frontal plane QRS-T angle with CAN in people with diabetes. In 1992-93 people with diabetes in the municipality of Horsens, Denmark, were identified by the prescription method andan age and gender stratified sample of 240 individuals with diabetes were randomly selected. The presence of CAN was defined using the heart rate response to Valsalva manoeuvre. The QRS-T angle was read using the method described by Gandhi. In July 2015 vital statistics were obtained fromthe Danish Civil Registration System. 178 individuals accepted to participate in the study, of which 153 (86%) completed the Valsalva manoeuvre and had sinus rhythm. Total observation time was 21.5 (0.18) years, in which 99 (65%) individuals died. An elevated QRS-T angle and the presence of cardiovascular autonomic neuropathy were both found to be significant predictors of death. In Cox regression analyses, adjusting for the effect of gender, age, duration of diabetes, BMI, total-cholesterol, diabetes type, haemoglobin A1c, smoking status, hypertension and previous MI, an independent prognostic value was found for the QRS-T angle as well as the Valsalva ratio. A large QRS-T angle and the presence of cardiovascular autonomic neuropathy are both strong and independent long-term predictors of all-cause mortality in people with diabetes. Copyright © 2018. Published by Elsevier B.V.
Kim, Jaejin; Hwang, Jinyoung; Woo, Young-Ah; Chung, Hoeil
2016-11-30
To investigate Raman spectral features of a coated biconvex tablet under variation of its orientation respective to laser illumination, spectra of the tablet were collected by illuminating laser on 12 different locations on the tablet with 3 different illumination angles of 45, 75 and 90°. The spectral variations were more substantial when the tablet faces with engraved letters and greater surface curvature were measured, since the sampled volume of coating relative to that of a core tablet changed significantly under these circumstances as the illumination angle varied. The preliminary examination confirmed that the acquisition of tablet-representative spectra was the requisite for reliable measurement of coating thickness. Then, to mimic real monitoring of coating process, Raman spectra were directly collected on a packing of 30 tablets with repetition of random tablet packing up to 15 times and univariate models utilizing the intensity of coating peak at 638cm -1 were developed using the cumulatively averaged spectra with an average weight of the 30 tablets as a reference. To acquire less tablet orientation-sensitive spectra, a wide area illumination (WAI) scheme providing a large sampling area (28.3mm 2 ) on a tablet with a long focal length (∼25cm) was employed. The averaging of the first to seventh spectra, equivalently utilizing more packing-representative spectra for quantitative analysis, made the measurement of nominal coating thickness of packed tablets accurate. Copyright © 2016 Elsevier B.V. All rights reserved.
Dataglove measurement of joint angles in sign language handshapes
Eccarius, Petra; Bour, Rebecca; Scheidt, Robert A.
2012-01-01
In sign language research, we understand little about articulatory factors involved in shaping phonemic boundaries or the amount (and articulatory nature) of acceptable phonetic variation between handshapes. To date, there exists no comprehensive analysis of handshape based on the quantitative measurement of joint angles during sign production. The purpose of our work is to develop a methodology for collecting and visualizing quantitative handshape data in an attempt to better understand how handshapes are produced at a phonetic level. In this pursuit, we seek to quantify the flexion and abduction angles of the finger joints using a commercial data glove (CyberGlove; Immersion Inc.). We present calibration procedures used to convert raw glove signals into joint angles. We then implement those procedures and evaluate their ability to accurately predict joint angle. Finally, we provide examples of how our recording techniques might inform current research questions. PMID:23997644
Relating ground truth collection to model sensitivity
NASA Technical Reports Server (NTRS)
Amar, Faouzi; Fung, Adrian K.; Karam, Mostafa A.; Mougin, Eric
1993-01-01
The importance of collecting high quality ground truth before a SAR mission over a forested area is two fold. First, the ground truth is used in the analysis and interpretation of the measured backscattering properties; second, it helps to justify the use of a scattering model to fit the measurements. Unfortunately, ground truth is often collected based on visual assessment of what is perceived to be important without regard to the mission itself. Sites are selected based on brief surveys of large areas, and the ground truth is collected by a process of selecting and grouping different scatterers. After the fact, it may turn out that some of the relevant parameters are missing. A three-layer canopy model based on the radiative transfer equations is used to determine, before hand, the relevant parameters to be collected. Detailed analysis of the contribution to scattering and attenuation of various forest components is carried out. The goal is to identify the forest parameters which most influence the backscattering as a function of frequency (P-, L-, and C-bands) and incident angle. The influence on backscattering and attenuation of branch diameters, lengths, angular distribution, and permittivity; trunk diameters, lengths, and permittivity; and needle sizes, their angular distribution, and permittivity are studied in order to maximize the efficiency of the ground truth collection efforts. Preliminary results indicate that while a scatterer may not contribute to the total backscattering, its contribution to attenuation may be significant depending on the frequency.
A Model of the Acoustic Interactions Occurring Under Arctic Ice
1990-05-22
agreement at angles near ecrit - Finally there is undoubtedly some error in the collected data as any temperature variations were not accounted for...acoustic attenuation in various media will supplement the overall comprehension of reflection and transmission phenomena as well. Continued collection of
Hansen, Bruce P.; Stone, Janet Radway; Lane, John W.
1999-01-01
Surface and borehole geophysical methods were used to determine fracture orientation in crystalline bedrock at the Eastern Surplus Superfund Site in Meddybemps, Maine. Fracture-orientation information is needed to address concerns about the fate of contaminants in ground water at the site. Azimuthal square-array resistivity surveys were conducted at 3 locations at the site, borehole-acoustic televiewer and borehole-video logs were collected in 10 wells, and single-hole directional radar surveys were conducted in 9 wells. Borehole-video logs were used to supplement the results of other geophysical techniques and are not described in this report. Analysis of azimuthal square-array resistivity data indicated that high-angle fracturing generally strikes northeast-southwest at the three locations. Borehole-acoustic televiewer logs detected one prominent low-angle and two prominent high-angle fracture sets. The low-angle fractures strike generally north-northeast and dip about 20 degrees west-northwest. One high-angle fracture set strikes north-northeast and dips east-southeast; the other high-angle set strikes east-northeast and dips south-southeast. Single-hole directional radar surveys identified two prominent fracture sets: a low-angle set striking north-northeast, dipping west-northwest; and a high-angle fracture set striking north-northeast, dipping east-southeast. Two additional high-angle fracture sets are defined weakly, one striking east-west, dipping north; and a second striking east-west, dipping south. Integrated results from all of the geophysical surveys indicate the presence of three primary fracture sets. A low-angle set strikes north-northeast and dips west-northwest. Two high-angle sets strike north-northeast and east-northeast and dip east-southeast and south-southeast. Statistical correction of the fracture data for orientation bias indicates that high-angle fractures are more numerous than observed in the data but are still less numerous than the low-angle fractures. The orientation and distribution of water-yielding fractures sets were determined by correlating the fracture data from this study with previously collected borehole-flowmeter data. The water-yielding fractures are generally within the three prominent fracture sets observed for the total fracture population. The low-angle water-yielding fractures primarily strike north-northeast to west-northwest and dip west-northwest to south-southwest. Most of the high-angle water-yielding fractures strike either north-northeast or east-west and dip east-southeast or south. The spacing between water-yielding fractures varies but the probable average spacing is estimated to be 30 feet for low-angle fractures; 27 feet for the east-southeast dipping, high-angle fractures; and 43 feet for the south-southeast dipping, high-angle fractures. The median estimated apparent transmissivity of individual water-yielding fractures or fracture zones was 0.3 feet squared per day and ranged from 0.01 to 382 feet squared per day. Ninety-five percent of the water-yielding fractures or fracture zones had an estimated apparent transmissivity of 19.5 feet squared per day or less. The orientation, spacing, and hydraulic properties of water-yielding fractures identified during this study can be used to help estimate recharge, flow, and discharge of ground water contaminants. High-angle fractures provide vertical pathways for ground water to enter the bedrock, interconnections between low-angle fractures, and, subsequently, pathways for water flow within the bedrock along fracture planes. Low-angle fractures may allow horizontal ground-water flow in all directions. The orientation of fracturing and the hydraulic properties of each fracture set strongly affect changes in ground-water flow under stress (pumping) conditions.
ERIC Educational Resources Information Center
Zebas, Carole J.
This study focuses on changes occurring in selected mechanical components of high school girls performing the standing broad jump, and collects data pertaining to the effects of monetary reward and videotape feedback upon the following components: (a) distance jumped, (b) maximum angle of knee flexion, (c) maximum angle of hip flexion, (d) hip…
Solar concentrator with restricted exit angles
Rabl, Arnulf; Winston, Roland
1978-12-19
A device is provided for the collection and concentration of radiant energy and includes at least one reflective side wall. The wall directs incident radiant energy to the exit aperture thereof or onto the surface of energy absorber positioned at the exit aperture so that the angle of incidence of radiant energy at the exit aperture or on the surface of the energy absorber is restricted to desired values.
Wide angle view of the Flight control room of Mission control center
1984-10-06
Wide angle view of the flight control room (FCR) of the Mission Control Center (MCC). Some of the STS 41-G crew can be seen on a large screen at the front of the MCC along with a map tracking the progress of the orbiter.
B-737 flight test of curved-path and steep-angle approaches using MLS guidance
NASA Technical Reports Server (NTRS)
Branstetter, J. R.; White, W. F.
1989-01-01
A series of flight tests were conducted to collect data for jet transport aircraft flying curved-path and steep-angle approaches using Microwave Landing System (MLS) guidance. During the test, 432 approaches comprising seven different curved-paths and four glidepath angles varying from 3 to 4 degrees were flown in NASA Langley's Boeing 737 aircraft (Transport Systems Research Vehicle) using an MLS ground station at the NASA Wallops Flight Facility. Subject pilots from Piedmont Airlines flew the approaches using conventional cockpit instrumentation (flight director and Horizontal Situation Indicator (HSI). The data collected will be used by FAA procedures specialists to develop standards and criteria for designing MLS terminal approach procedures (TERPS). The use of flight simulation techniques greatly aided the preliminary stages of approach development work and saved a significant amount of costly flight time. This report is intended to complement a data report to be issued by the FAA Office of Aviation Standards which will contain all detailed data analysis and statistics.
Effect of dividing daylight in symmetric prismatic daylight collector
NASA Astrophysics Data System (ADS)
Yeh, Shih-Chuan; Lu, Ju-Lin; Cheng, Yu-Chin
2017-04-01
This paper presented a symmetric prismatic daylight collector to collect daylight for the natural light illumination system. We analyzed the characteristics of the emerging light when the parallel light beam illuminate on the horizontally placed symmetric prismatic daylight collector. The ratio of the relative intensities of collected daylight that emerging from each surface of the daylight collector shown that the ratio is varied with the incident angle during a day. The simulation of the emerging light of the daylight collector shown that the ratio of emerging light is varied with the tilted angle when sunshine illuminated on a symmetric prismatic daylight collector which was not placed horizontally. The integration of normalized intensity is also varied with the tilted angle. The symmetric prismatic daylight collector with the benefits of reducing glare and dividing intensity of incident daylight, it is applicable to using in the natural light illumination system and hybrid system for improving the efficiency of utilizing of solar energy.
Full-frame, programmable hyperspectral imager
DOE Office of Scientific and Technical Information (OSTI.GOV)
Love, Steven P.; Graff, David L.
A programmable, many-band spectral imager based on addressable spatial light modulators (ASLMs), such as micro-mirror-, micro-shutter- or liquid-crystal arrays, is described. Capable of collecting at once, without scanning, a complete two-dimensional spatial image with ASLM spectral processing applied simultaneously to the entire image, the invention employs optical assemblies wherein light from all image points is forced to impinge at the same angle onto the dispersing element, eliminating interplay between spatial position and wavelength. This is achieved, as examples, using telecentric optics to image light at the required constant angle, or with micro-optical array structures, such as micro-lens- or capillary arrays,more » that aim the light on a pixel-by-pixel basis. Light of a given wavelength then emerges from the disperser at the same angle for all image points, is collected at a unique location for simultaneous manipulation by the ASLM, then recombined with other wavelengths to form a final spectrally-processed image.« less
Yang, Yi Isaac; Parrinello, Michele
2018-06-12
Collective variables are used often in many enhanced sampling methods, and their choice is a crucial factor in determining sampling efficiency. However, at times, searching for good collective variables can be challenging. In a recent paper, we combined time-lagged independent component analysis with well-tempered metadynamics in order to obtain improved collective variables from metadynamics runs that use lower quality collective variables [ McCarty, J.; Parrinello, M. J. Chem. Phys. 2017 , 147 , 204109 ]. In this work, we extend these ideas to variationally enhanced sampling. This leads to an efficient scheme that is able to make use of the many advantages of the variational scheme. We apply the method to alanine-3 in water. From an alanine-3 variationally enhanced sampling trajectory in which all the six dihedral angles are biased, we extract much better collective variables able to describe in exquisite detail the protein complex free energy surface in a low dimensional representation. The success of this investigation is helped by a more accurate way of calculating the correlation functions needed in the time-lagged independent component analysis and from the introduction of a new basis set to describe the dihedral angles arrangement.
Porous Materials with Ultralow Optical Constants for Integrated Optical Device Applications
NASA Astrophysics Data System (ADS)
Chen, Hsuen-Li; Hsieh, Chung-I; Cheng, Chao-Chia; Chang, Chia-Pin; Hsu, Wen-Hau; Wang, Way-Seen; Liu, Po-Tsun
2005-07-01
Ultralow dielectric constant (<2.0) porous materials have received much attention as next-generation dielectric materials. In this study, optical properties of porous-methyl-silsesquioxane(MSQ)-like films (porous polysilazane, PPSZ) were characterized for optical waveguide devices applications. Measured results indicate that the refractive index is decreased to approximately 1.320 as the hydration time exceeds 24 h. The measured refractive index is about 1.163 at a wavelength of 1550 nm. PPSZ films have low absorption in the 500 to 2000 nm wavelength regime. Because of their relatively low refractive index and low absorption over a large spectral regime, PPSZ films can be good cladding materials for use in optically integrated devices with many high-refractive-index materials such as silicon oxide, silicon nitride, silicon, and polymers. We demonstrate two structures, ridge waveguides and large-angle Y-branch power splitters, composed of PPSZ and SU8 films to illustrate the use of low dielectric constant (K) cladding materials. The simulation results indicate that the PPSZ films provide better confinement of light. Experimentally, a large-angle Y-branch power splitter with PPSZ cladding can be used to guide waves with the large branching angle of 33.58°.
Banuprasad, Theneyur Narayanaswamy; Vinay, Thamarasseril Vijayan; Subash, Cherumannil Karumuthil; Varghese, Soney; George, Sajan D; Varanakkottu, Subramanyan Namboodiri
2017-08-23
In spite of the reported temperature dependent tunability in wettability of poly(N-isopropylacrylamide) (PNIPAAm) surfaces for below and above lower critical solution temperature (32 °C), the transport of water droplets is inhibited by the large contact angle hysteresis. Herein, for the first time, we report on-demand, fast, and reconfigurable droplet manipulation over a PNIPAAm grafted structured polymer surface using temperature-induced wettability gradient. Our study reveals that the PNIPAAm grafted on intrinsically superhydrophobic surfaces exhibit hydrophilic nature with high contact angle hysteresis below 30 °C and superhydrophobic nature with ultralow contact angle hysteresis above 36 °C. The transition region between 30 and 36 °C is characterized by a large change in water contact angle (∼100°) with a concomitant change in contact angle hysteresis. By utilizing this "transport zone" wherein driving forces overcome the frictional forces, we demonstrate macroscopic transport of water drops with a maximum transport velocity of approximately 40 cm/s. The theoretical calculations on the force measurements concur with dominating behavior of driving forces across the transport zone. The tunability in transport velocity by varying the temperature gradient along the surface or the inclination angle of the surface (maximum angle of 15° with a reduced velocity 0.4 mm/s) is also elucidated. In addition, as a practical application, coalescence of water droplets is demonstrated by using the temperature controlled wettability gradient. The presented results are expected to provide new insights on the design and fabrication of smart multifunctional surfaces for applications such as biochemical analysis, self-cleaning, and microfluidics.
NASA Astrophysics Data System (ADS)
Nielsen, S. K.; Bindslev, H.; Salewski, M.; Bürger, A.; Delabie, E.; Furtula, V.; Kantor, M.; Korsholm, S. B.; Leipold, F.; Meo, F.; Michelsen, P. K.; Moseev, D.; Oosterbeek, J. W.; Stejner, M.; Westerhof, E.; Woskov, P.; TEXTOR Team
2010-09-01
Here we present collective Thomson scattering measurements of 1D fast-ion velocity distribution functions in neutral beam heated TEXTOR plasmas with sawtooth oscillations. Up to 50% of the fast ions in the centre are redistributed as a consequence of a sawtooth crash. We resolve various directions to the magnetic field. The fast-ion distribution is found to be anisotropic as expected. For a resolved angle of 39° to the magnetic field we find a drop in the fast-ion distribution of 20-40%. For a resolved angle of 83° to the magnetic field the drop is no larger than 20%.
Detection of expansion at large angle grain boundaries using electron diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balluffi, R.W.; Bristowe, P.D.
1984-02-01
Lamarre and Sass (LS) (Scripta Metall. 17: 1141(1983)) observed a grain boundary electron diffraction effect from a large angle twist boundary which they claim can be used to obtain the volume expansion at the grain boundary in a direction normal to it. This paper considers the case where the intensity from the grain boundary region, is close to lattice reflections on the same element of the boundary diffraction lattice. Analysis of this complex problem show that the simplified model of LS is misleading in this case. (DLC)
Mach-like capillary-gravity wakes.
Moisy, Frédéric; Rabaud, Marc
2014-08-01
We determine experimentally the angle α of maximum wave amplitude in the far-field wake behind a vertical surface-piercing cylinder translated at constant velocity U for Bond numbers Bo(D)=D/λ(c) ranging between 0.1 and 4.2, where D is the cylinder diameter and λ(c) the capillary length. In all cases the wake angle is found to follow a Mach-like law at large velocity, α∼U(-1), but with different prefactors depending on the value of Bo(D). For small Bo(D) (large capillary effects), the wake angle approximately follows the law α≃c(g,min)/U, where c(g,min) is the minimum group velocity of capillary-gravity waves. For larger Bo(D) (weak capillary effects), we recover a law α∼√[gD]/U similar to that found for ship wakes at large velocity [Rabaud and Moisy, Phys. Rev. Lett. 110, 214503 (2013)]. Using the general property of dispersive waves that the characteristic wavelength of the wave packet emitted by a disturbance is of order of the disturbance size, we propose a simple model that describes the transition between these two Mach-like regimes as the Bond number is varied. We show that the new capillary law α≃c(g,min)/U originates from the presence of a capillary cusp angle (distinct from the usual gravity cusp angle), along which the energy radiated by the disturbance accumulates for Bond numbers of order of unity. This model, complemented by numerical simulations of the surface elevation induced by a moving Gaussian pressure disturbance, is in qualitative agreement with experimental measurements.
The physical demands of Olympic yacht racing.
Mackie, H; Sanders, R; Legg, S
1999-12-01
The primary purpose of this study was to quantify the up wards forces of the feet on the hiking strap and the forces in the mainsheet of four Olympic classes of racing dinghies (Europe, Laser. Finn and 470) during realistic on-water sailing in varying wind conditions. The secondary aim of the study was to measure the joint angles adopted by the sailors and boat heel angles. The tertiary aim was to identify events and sailing conditions associated with large or patterned force production. Forces in the hiking strap and mainsheet of four classes of Olympic sailing dinghies were measured on eleven New Zealand sailors during simulated on-water racing in a range of wind conditions. Up-wind hiking strap forces reached an average of 73-87% of predicted maximal voluntary contraction (pred MVC), with peak forces exceeding 100% pred MVC. Mainsheet forces reached 25-35% pred MVC, with peak forces reaching 40-50% pred MVC. Off-wind hiking strap and mainsheet forces were considerably lower than up-wind forces. Ankle and hip joint angles increased and knee joint angles decreased with increasing wind speed during up-wind sailing. Large forces occurred in the hiking strap and mainsheet when boats reached the tops of wave during up-wind sailing in high wind speeds and when a gust of wind hit the boat. During off-wind sailing large forces were observed in the mainsheet when surfing down waves. It is recommended that the intensities and joint angles found in this study be used as a basis for the development of class specific off-water physical conditioning programmes.
Friction pull plug welding: chamfered heat sink pull plug design
NASA Technical Reports Server (NTRS)
Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)
2005-01-01
The average strength of a pull plug weld is increased and weak bonding eliminated by providing a dual included angle at the top one third of the pull plug. Plugs using the included angle of the present invention had consistent high strength, no weak bonds and were substantially defect free. The dual angle of the pull plug body increases the heat and pressure of the weld in the region of the top one third of the plug. This allows the plug to form a tight high quality solid state bond. The dual angle was found to be successful in elimination of defects on both small and large plugs.
NASA Technical Reports Server (NTRS)
Weller, T.
1977-01-01
The applicability and adequacy of several computer techniques in predicting satisfactorily the nonlinear/inelastic response of angle ply laminates were evaluated. The analytical predictions were correlated with the results of a test program on the inelastic response under axial compression of a large variety of graphite-epoxy and boron-epoxy angle ply laminates. These comparison studies indicate that neither of the abovementioned analyses can satisfactorily predict either the mode of response or the ultimate stress value corresponding to a particular angle ply laminate configuration. Consequently, also the simple failure mechanisms assumed in the analytical models were not verified.
A new Brewster angle microscope
NASA Astrophysics Data System (ADS)
Lheveder, C.; Hénon, S.; Mercier, R.; Tissot, G.; Fournet, P.; Meunier, J.
1998-03-01
We present a new Brewster angle microscope for the study of very thin layers as thin as monolayers, using a custom-made objective. This objective avoids the drawbacks of the models existing at the present time. Its optical axis is perpendicular to the studied layer and consequently gives an image in focus in all the plane contrary to the existing models which give images in focus along a narrow strip. The objective allows one to obtain images with a good resolution (less than 1 μm) without scanning the surface, at the video frequency, allowing for dynamic studies. A large frontal distance associated with a very large aperture is obtained by using a large lens at the entrance of the objective.
A kinematic model to assess spinal motion during walking.
Konz, Regina J; Fatone, Stefania; Stine, Rebecca L; Ganju, Aruna; Gard, Steven A; Ondra, Stephen L
2006-11-15
A 3-dimensional multi-segment kinematic spine model was developed for noninvasive analysis of spinal motion during walking. Preliminary data from able-bodied ambulators were collected and analyzed using the model. Neither the spine's role during walking nor the effect of surgical spinal stabilization on gait is fully understood. Typically, gait analysis models disregard the spine entirely or regard it as a single rigid structure. Data on regional spinal movements, in conjunction with lower limb data, associated with walking are scarce. KinTrak software (Motion Analysis Corp., Santa Rosa, CA) was used to create a biomechanical model for analysis of 3-dimensional regional spinal movements. Measuring known angles from a mechanical model and comparing them to the calculated angles validated the kinematic model. Spine motion data were collected from 10 able-bodied adults walking at 5 self-selected speeds. These results were compared to data reported in the literature. The uniaxial angles measured on the mechanical model were within 5 degrees of the calculated kinematic model angles, and the coupled angles were within 2 degrees. Regional spine kinematics from able-bodied subjects calculated with this model compared well to data reported by other authors. A multi-segment kinematic spine model has been developed and validated for analysis of spinal motion during walking. By understanding the spine's role during ambulation and the cause-and-effect relationship between spine motion and lower limb motion, preoperative planning may be augmented to restore normal alignment and balance with minimal negative effects on walking.
Modeling granular material flows: The angle of repose, fluidization and the cliff collapse problem
NASA Astrophysics Data System (ADS)
Holsapple, Keith A.
2013-07-01
I discuss theories of granular material flows, with application to granular flows on the earth and planets. There are two goals. First, there is a lingering belief of some that the standard continuum plasticity Mohr-Coulomb and/or Drucker-Prager models are not adequate for many large-scale granular flow problems. The stated reason for those beliefs is the fact that the final slopes of the run-outs in collapse, landslide problems, and large-scale cratering are well below the angle of repose of the material. That observation, combined with the supposition that in those models flow cannot occur with slopes less than the angle of repose, has led to a number of researchers suggesting a need for lubrication or fluidization mechanisms and modeling. That issue is investigated in detail and shown to be false. A complete analysis of slope failures according to the Mohr-Coulomb model is presented, with special attention to the relations between the angle of repose and slope failures. It is shown that slope failure can occur for slope angles both larger than and smaller than the angle of repose. Second, to study the details of landslide run-outs, finite-difference continuum code simulations of the prototypical cliff collapse problem, using the classical plasticity models, are presented, analyzed and compared to experiments. Although devoid of any additional fluidization models, those simulations match experiments in the literature extremely well. The dynamics of this problem introduces additional important features relating to the run-out and final slope angles. The vertical free surface begins to fall at the initial 90° and flow continues to a final slope less than 10°. The detail in the calculation is examined to show why flow persists at slope angles that appear to be less than the angle of repose. The motions include regions of solid-like, fluid-like, and gas-like flows without invoking any additional models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penninkhof, Joan, E-mail: j.penninkhof@erasmusmc.nl; Spadola, Sara; Department of Physics and Astronomy, Alma Mater Studiorum, University of Bologna, Bologna
Purpose and Objective: Propose a novel method for individualized selection of beam angles and treatment isocenter in tangential breast intensity modulated radiation therapy (IMRT). Methods and Materials: For each patient, beam and isocenter selection starts with the fully automatic generation of a large database of IMRT plans (up to 847 in this study); each of these plans belongs to a unique combination of isocenter position, lateral beam angle, and medial beam angle. The imposed hard planning constraint on patient maximum dose may result in plans with unacceptable target dose delivery. Such plans are excluded from further analyses. Owing to differencesmore » in beam setup, database plans differ in mean doses to organs at risk (OARs). These mean doses are used to construct 2-dimensional graphs, showing relationships between: (1) contralateral breast dose and ipsilateral lung dose; and (2) contralateral breast dose and heart dose (analyzed only for left-sided). The graphs can be used for selection of the isocenter and beam angles with the optimal, patient-specific tradeoffs between the mean OAR doses. For 30 previously treated patients (15 left-sided and 15 right-sided tumors), graphs were generated considering only the clinically applied isocenter with 121 tangential beam angle pairs. For 20 of the 30 patients, 6 alternative isocenters were also investigated. Results: Computation time for automatic generation of 121 IMRT plans took on average 30 minutes. The generated graphs demonstrated large variations in tradeoffs between conflicting OAR objectives, depending on beam angles and patient anatomy. For patients with isocenter optimization, 847 IMRT plans were considered. Adding isocenter position optimization next to beam angle optimization had a small impact on the final plan quality. Conclusion: A method is proposed for individualized selection of beam angles in tangential breast IMRT. This may be especially important for patients with cardiac risk factors or an enhanced risk for the development of contralateral breast cancer.« less
The SIR-B science investigations plan: Introduction
NASA Technical Reports Server (NTRS)
1984-01-01
The Shuttle Imaging Radar-B (SIR-B) and its capabilities are described. The SIR-B instrument is an upgraded version of SIR-A that has the additional capability of tilting the antenna mechanically to acquire data at incidence angles that vary from 15 to 60 deg. Like SEASAT and SIR-A, SIR-B will be an L-band (23-cm) HH polarized radar. The variable-incidence-angle capability will allow several experiments. A specific area may be imaged with a variety of incidence angles on successive days. These images can then be registered and used to produce curves of backscatter as a function of incidence angle for various terrain types. These curves can be used ultimately to characterize the terrain. Stereoimaging may also be done in the multiple-incidence-angle mode. In addition, large areas may be imaged and mosaicked together with only slight variations in incidence angle with each swath.
NASA Technical Reports Server (NTRS)
Larson, T. J.
1984-01-01
The measurement performance of a hemispherical flow-angularity probe and a fuselage-mounted pitot-static probe was evaluated at high flow angles as part of a test program on an F-14 airplane. These evaluations were performed using a calibrated pitot-static noseboom equipped with vanes for reference flow direction measurements, and another probe incorporating vanes but mounted on a pod under the fuselage nose. Data are presented for angles of attack up to 63, angles of sideslip from -22 deg to 22 deg, and for Mach numbers from approximately 0.3 to 1.3. During maneuvering flight, the hemispherical flow-angularity probe exhibited flow angle errors that exceeded 2 deg. Pressure measurements with the pitot-static probe resulted in very inaccurate data above a Mach number of 0.87 and exhibited large sensitivities with flow angle.
Automated contact angle estimation for three-dimensional X-ray microtomography data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klise, Katherine A.; Moriarty, Dylan; Yoon, Hongkyu
2015-11-10
Multiphase flow in capillary regimes is a fundamental process in a number of geoscience applications. The ability to accurately define wetting characteristics of porous media can have a large impact on numerical models. In this paper, a newly developed automated three-dimensional contact angle algorithm is described and applied to high-resolution X-ray microtomography data from multiphase bead pack experiments with varying wettability characteristics. The algorithm calculates the contact angle by finding the angle between planes fit to each solid/fluid and fluid/fluid interface in the region surrounding each solid/fluid/fluid contact point. Results show that the algorithm is able to reliably compute contactmore » angles using the experimental data. The in situ contact angles are typically larger than flat surface laboratory measurements using the same material. Furthermore, wetting characteristics in mixed-wet systems also change significantly after displacement cycles.« less
Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering in Outer RB
NASA Technical Reports Server (NTRS)
Khazanov, G. V.; Gamayunov, K. V.
2007-01-01
We present the equatorial and bounce average pitch angle diffusion coefficients for scattering of relativistic electrons by the H+ mode of EMIC waves. Both the model (prescribed) and self consistent distributions over the wave normal angle are considered. The main results of our calculation can be summarized as follows: First, in comparison with field aligned waves, the intermediate and highly oblique waves reduce the pitch angle range subject to diffusion, and strongly suppress the scattering rate for low energy electrons (E less than 2 MeV). Second, for electron energies greater than 5 MeV, the |n| = 1 resonances operate only in a narrow region at large pitch-angles, and despite their greatest contribution in case of field aligned waves, cannot cause electron diffusion into the loss cone. For those energies, oblique waves at |n| greater than 1 resonances are more effective, extending the range of pitch angle diffusion down to the loss cone boundary, and increasing diffusion at small pitch angles by orders of magnitude.
NASA Astrophysics Data System (ADS)
Kalashnikova, O. V.; Garay, M. J.; Xu, F.; Seidel, F.; Diner, D. J.; Seinfeld, J.; Bates, K. H.; Kong, W.; Kenseth, C.; Cappa, C. D.
2017-12-01
We introduce and evaluate an approach for obtaining closure between in situ and polarimetric remote sensing observations of smoke properties obtained during the collocated CIRPAS Twin Otter and ER-2 aircraft measurements of the Lebec fire event on July 8, 2016. We investigate the utility of multi-angle, spectropolarimetric remote sensing imagery to evaluate the relative contribution of organics, non-organic and black carbon particles to smoke particulate composition. The remote sensing data were collected during the Imaging Polarimetric and Characterization of Tropospheric Particular Matter (ImPACT-PM) field campaign by the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI), which flew on NASA's high-altitude ER-2 aircraft. The ImPACT-PM field campaign was a joint JPL/Caltech effort to combine measurements from the Terra Multi-angle Imaging SpectroRadiometer (MISR), AirMSPI, in situ airborne measurements, and a chemical transport model to validate remote sensing retrievals of different types of airborne particulate matter with a particular emphasis on carbonaceous aerosols. The in-situ aerosol data were collected with a suite of Caltech instruments on board the CIRPAS Twin Otter aircraft and included the Aerosol Mass Spectrometer (AMS), the Differential Mobility Analyzer (DMA), and the Single Particle Soot Photometer (SP-2). The CIRPAS Twin Otter aircraft was also equipped with the Particle Soot Absorption Photometer (PSAP), nephelometer, a particle counter, and meteorological sensors. We found that the multi-angle polarimetric observations are capable of fire particulate emission monitoring by particle type as inferred from the in-situ airborne measurements. Modeling of retrieval sensitivities show that the characterization of black carbon is the most challenging. The work aims at evaluating multi-angle, spectropolarimetric capabilities for particulate matter characterization in support of the Multi-Angle Imager for Aerosols (MAIA) satellite investigation, which is currently in development under NASA's third Earth Venture Instrument Program.
Experimental Evaluation of Stagnation Point Collection Efficiency of the NACA 0012 Swept Wing Tip
NASA Technical Reports Server (NTRS)
Tsao, Jen-Ching; Kreeger, Richard E.
2010-01-01
This paper presents the experimental work of a number of icing tests conducted in the Icing Research Tunnel at NASA Glenn Research Center to develop a test method for measuring the local collection efficiency of an impinging cloud at the leading edge of a NACA 0012 swept wing and with the data obtained to further calibrate a proposed correlation for such impingement efficiency calculation as a function of the modified inertia parameter and the sweep angle. The preliminary results showed that there could be some limitation of the test method due to the ice erosion problem when encountered, and also found that, for conditions free of such problem, the stagnation point collection efficiency measurement for sweep angles up to 45 could be well approximated by the proposed correlation. Further evaluation of this correlation is recommended in order to assess its applicability for swept-wing icing scaling analysis.
Azimuthal correlation and collective behavior in nucleus-nucleus collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mali, P.; Mukhopadhyay, A., E-mail: amitabha-62@rediffmail.com; Sarkar, S.
2015-03-15
Various flow effects of nuclear and hadronic origin are investigated in nucleus-nucleus collisions. Nuclear emulsion data collected from {sup 84}Kr + Ag/Br interaction at an incident energy of 1.52 GeV per nucleon and from {sup 28}Si + Ag/Br interaction at an incident energy of 14.5 GeV per nucleon are used in the investigation. The transverse momentum distribution and the flow angle analysis show that collective behavior, like a bounce-off effect of the projectile spectators and a sidesplash effect of the target spectators, are present in our event samples. From an azimuthal angle analysis of the data we also see amore » direct flow of the projectile fragments and of the produced charged particles. On the other hand, for both data samples the target fragments exhibit a reverse flow, while the projectile fragments exhibit an elliptic flow. Relevant flow parameters are measured.« less
NASA Technical Reports Server (NTRS)
Coe, P. L., Jr.; Newsom, W. A., Jr.
1974-01-01
An investigation was conducted to determine the low-speed yawing stability derivatives of a twin-jet fighter airplane model at high angles of attack. Tests were performed in a low-speed tunnel utilizing variable-curvature walls to simulate pure yawing motion. The results of the study showed that at angles of attack below the stall the yawing derivatives were essentially independent of the yawing velocity and sideslip angle. However, at angles of attack above the stall some nonlinear variations were present and the derivatives were strongly dependent upon sideslip angle. The results also showed that the rolling moment due to yawing was primarily due to the wing-fuselage combination, and that at angles of attack below the stall both the vertical and horizontal tails produced significant contributions to the damping in yaw. Additionally, the tests showed that the use of the forced-oscillation data to represent the yawing stability derivatives is questionable, at high angles of attack, due to large effects arising from the acceleration in sideslip derivatives.
Contact angle adjustment in equation-of-state-based pseudopotential model.
Hu, Anjie; Li, Longjian; Uddin, Rizwan; Liu, Dong
2016-05-01
The single component pseudopotential lattice Boltzmann model has been widely applied in multiphase simulation due to its simplicity and stability. In many studies, it has been claimed that this model can be stable for density ratios larger than 1000. However, the application of the model is still limited to small density ratios when the contact angle is considered. The reason is that the original contact angle adjustment method influences the stability of the model. Moreover, simulation results in the present work show that, by applying the original contact angle adjustment method, the density distribution near the wall is artificially changed, and the contact angle is dependent on the surface tension. Hence, it is very inconvenient to apply this method with a fixed contact angle, and the accuracy of the model cannot be guaranteed. To solve these problems, a contact angle adjustment method based on the geometry analysis is proposed and numerically compared with the original method. Simulation results show that, with our contact angle adjustment method, the stability of the model is highly improved when the density ratio is relatively large, and it is independent of the surface tension.
Contact angle adjustment in equation-of-state-based pseudopotential model
NASA Astrophysics Data System (ADS)
Hu, Anjie; Li, Longjian; Uddin, Rizwan; Liu, Dong
2016-05-01
The single component pseudopotential lattice Boltzmann model has been widely applied in multiphase simulation due to its simplicity and stability. In many studies, it has been claimed that this model can be stable for density ratios larger than 1000. However, the application of the model is still limited to small density ratios when the contact angle is considered. The reason is that the original contact angle adjustment method influences the stability of the model. Moreover, simulation results in the present work show that, by applying the original contact angle adjustment method, the density distribution near the wall is artificially changed, and the contact angle is dependent on the surface tension. Hence, it is very inconvenient to apply this method with a fixed contact angle, and the accuracy of the model cannot be guaranteed. To solve these problems, a contact angle adjustment method based on the geometry analysis is proposed and numerically compared with the original method. Simulation results show that, with our contact angle adjustment method, the stability of the model is highly improved when the density ratio is relatively large, and it is independent of the surface tension.
Data analysis and interpretation of lunar dust exosphere
NASA Technical Reports Server (NTRS)
Andrews, George A., Jr.
1992-01-01
The lunar horizon glow observed by Apollo astronauts and captured on film during the Surveyor mission is believed to result from the scattering of sunlight off lunar fines suspended in a dust layer over the lunar surface. For scale heights on the order of tens of kilometers, it is anticipated that the size of the dust particles will be small enough to admit Rayleigh scattering. Such events would result in scattered light which is polarized to a degree which is a function of observation angle and produce spectra containing large high frequency components ('bluing'). Believing these signatures to be observable from ground based telescopes, observational data has been collected from McDonald Observatory and the task of reduction and analysis of this data is the focus of the present report.
Online 3D Ear Recognition by Combining Global and Local Features.
Liu, Yahui; Zhang, Bob; Lu, Guangming; Zhang, David
2016-01-01
The three-dimensional shape of the ear has been proven to be a stable candidate for biometric authentication because of its desirable properties such as universality, uniqueness, and permanence. In this paper, a special laser scanner designed for online three-dimensional ear acquisition was described. Based on the dataset collected by our scanner, two novel feature classes were defined from a three-dimensional ear image: the global feature class (empty centers and angles) and local feature class (points, lines, and areas). These features are extracted and combined in an optimal way for three-dimensional ear recognition. Using a large dataset consisting of 2,000 samples, the experimental results illustrate the effectiveness of fusing global and local features, obtaining an equal error rate of 2.2%.
Online 3D Ear Recognition by Combining Global and Local Features
Liu, Yahui; Zhang, Bob; Lu, Guangming; Zhang, David
2016-01-01
The three-dimensional shape of the ear has been proven to be a stable candidate for biometric authentication because of its desirable properties such as universality, uniqueness, and permanence. In this paper, a special laser scanner designed for online three-dimensional ear acquisition was described. Based on the dataset collected by our scanner, two novel feature classes were defined from a three-dimensional ear image: the global feature class (empty centers and angles) and local feature class (points, lines, and areas). These features are extracted and combined in an optimal way for three-dimensional ear recognition. Using a large dataset consisting of 2,000 samples, the experimental results illustrate the effectiveness of fusing global and local features, obtaining an equal error rate of 2.2%. PMID:27935955
Measuring Theta_13 at Daya Bay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, Kwong
2014-03-14
We measured the neutrino mixing angle, theta13, presumably related to the preponderance of matter over antimatter in our universe with high precision. We determined theta13 by measuring the disappearance of neutrinos from a group of six nuclear reactors. The target, located inside a mountain at about 2 km from the reactors, is 80 tons of liquid scintillator doped with trace amount of Gadolinium to increase its neutron detection efficiency. The neutrino flux is measured by the inverse beta-decay reaction where the final-state particles are detected by the liquid scintillator. The measured value of theta13, based on data collected over 3more » years, is large, around 8 degrees, rendering the measurement of the parameter related to matter-antimatter asymmetry in future long baseline neutrino experiments easier.« less
Doutch, James; Gilbert, Elliot P
2013-01-02
Small angle scattering (SAS) techniques have a distinguished track record in illuminating the semi-crystalline lamellar structure of the starch granule. To date, there have been few attempts to use SAS techniques to characterise larger-scale structures reported from imaging techniques such as growth rings, blocklets or pores, nor how these structures would modulate the well-known scattering arising from the semi-crystalline lamellar structure. In this study, SAS data collected over an extended q range were gathered from dry and hydrated starch powders from varied botanical sources. The use of neutrons and X-rays, as well as comparing dry and hydrated granules, allowed different levels of contrast in scattering length density to be probed and therefore selected structural regions to be highlighted. The lowest q range, 0.002-0.04 Å(-1), was found to be dominated by scattering from the starch granules themselves, especially in the dry powders; however an inflection point from a low contrast structure was observed at 0.035 Å(-1). The associated scattering was interpreted within a unified scattering framework with the inflexion point correlating with a structure with radius of gyration ~90 Å - a size comparable to small blocklets or superhelices. In hydrated starches, it is observed that there is an inflection point between lamellar and q(-4) power-law scattering regions at approximately 0.004 Å(-1) which may correlate with growth rings and large blocklets. The implications of these findings on existing models of starch lamellar scattering are discussed. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
Improvements in hip flexibility do not transfer to mobility in functional movement patterns.
Moreside, Janice M; McGill, Stuart M
2013-10-01
The purpose of this study was to analyze the transference of increased passive hip range of motion (ROM) and core endurance to functional movement. Twenty-four healthy young men with limited hip mobility were randomly assigned to 4 intervention groups: group 1, stretching; group 2, stretching plus hip/spine disassociation exercises; group 3, core endurance; and group 4, control. Previous work has documented the large increase in passive ROM and core endurance that was attained over the 6-week interventions, but whether these changes transferred to functional activities was unclear. Four dynamic activities were analyzed before and after the 6-week interventions: active standing hip extension, lunge, a standing twist/reach maneuver, and exercising on an elliptical trainer. A Vicon motion capture system collected body segment kinematics, with hip and lumbar spine angles subsequently calculated in Visual 3D. Repeated measures analyses of variance determined group effects on various hip and spine angles, with paired t-tests on specific pre/post pairs. Despite the large increases in passive hip ROM, there was no evidence of increased hip ROM used during functional movement testing. Similarly, the only significant change in lumbar motion was a reduction in lumbar rotation during the active hip extension maneuver (p < 0.05). These results indicate that changes in passive ROM or core endurance do not automatically transfer to changes in functional movement patterns. This implies that training and rehabilitation programs may benefit from an additional focus on 'grooving' new motor patterns if newfound movement range is to be used.
NASA Astrophysics Data System (ADS)
Li, Haijun; Li, Gaoming; Duan, Xiyu; Wang, Thomas D.
2017-02-01
Aimed to build a dual-axes confocal endomicroscope with an outer diameter of 5.5mm for in-vivo imaging applications, an electrostatic MEMS scanner has been developed to enable two dimensional (2D) light scanning in either horizontal plane or vertical cross-sectional plane. The device has a compact structure design to match the dual axes confocal architecture in the probe without blocking the collimated light beams of excitation and collection, and a cutting-free silicon-on-insulator(SOI) micromachining process is used for the fabrication. A novel lever-based gimbal-like mechanism is employed to enable three degrees of freedom motions for lateral and axial light scanning, and its geometry is optimized for achieving large deflection with high scanning speed. Based on parametric excitation, the device can work in resonant modes. Testing result shows that, up to +/-27° optical deflection angle for inner axis torsion motion with a frequency of 4.9kHz, up to +/-28.5° optical deflection angle for outer axis torsion motion with a frequency of 0.65kHz and 360μm stroke for out-of-plane translation motion with a frequency of 0.53kHz are achieved with <60V driving voltage. Based on these results, 2D imaging with frame rate of 5 10Hz and large field of view (1000μm x 1000μm in horizontal plane and 1000μm x 400μm in vertical plane) can be enabled by this scanner.
A novel non-imaging optics based Raman spectroscopy device for transdermal blood analyte measurement
Kong, Chae-Ryon; Barman, Ishan; Dingari, Narahara Chari; Kang, Jeon Woong; Galindo, Luis; Dasari, Ramachandra R.; Feld, Michael S.
2011-01-01
Due to its high chemical specificity, Raman spectroscopy has been considered to be a promising technique for non-invasive disease diagnosis. However, during Raman excitation, less than one out of a million photons undergo spontaneous Raman scattering and such weakness in Raman scattered light often require highly efficient collection of Raman scattered light for the analysis of biological tissues. We present a novel non-imaging optics based portable Raman spectroscopy instrument designed for enhanced light collection. While the instrument was demonstrated on transdermal blood glucose measurement, it can also be used for detection of other clinically relevant blood analytes such as creatinine, urea and cholesterol, as well as other tissue diagnosis applications. For enhanced light collection, a non-imaging optical element called compound hyperbolic concentrator (CHC) converts the wide angular range of scattered photons (numerical aperture (NA) of 1.0) from the tissue into a limited range of angles accommodated by the acceptance angles of the collection system (e.g., an optical fiber with NA of 0.22). A CHC enables collimation of scattered light directions to within extremely narrow range of angles while also maintaining practical physical dimensions. Such a design allows for the development of a very efficient and compact spectroscopy system for analyzing highly scattering biological tissues. Using the CHC-based portable Raman instrument in a clinical research setting, we demonstrate successful transdermal blood glucose predictions in human subjects undergoing oral glucose tolerance tests. PMID:22125761
Comparison of Force and Moment Coefficients for the Same Test Article in Multiple Wind Tunnels
NASA Technical Reports Server (NTRS)
Deloach, Richard
2013-01-01
This paper compares the results of force and moment measurements made on the same test article and with the same balance in three transonic wind tunnels. Comparisons are made for the same combination of Reynolds number, Mach number, sideslip angle, control surface configuration, and angle of attack range. Between-tunnel force and moment differences are quantified. An analysis of variance was performed at four unique sites in the design space to assess the statistical significance of between-tunnel variation and any interaction with angle of attack. Tunnel to tunnel differences too large to attribute to random error were detected were observed for all forces and moments. In some cases these differences were independent of angle of attack and in other cases they changed with angle of attack.
Hyperon photoproduction in the nucleon resonance region
NASA Astrophysics Data System (ADS)
McNabb, J. W.; Schumacher, R. A.; Todor, L.; Adams, G.; Anciant, E.; Anghinolfi, M.; Asavapibhop, B.; Audit, G.; Auger, T.; Avakian, H.; Bagdasaryan, H.; Ball, J. P.; Barrow, S.; Battaglieri, M.; Beard, K.; Bektasoglu, M.; Bellis, M.; Berman, B. L.; Bianchi, N.; Biselli, A. S.; Boiarinov, S.; Bonner, B. E.; Bouchigny, S.; Bradford, R.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Carman, D. S.; Carnahan, B.; Cetina, C.; Ciciani, L.; Cole, P. L.; Coleman, A.; Cords, A. D.; Corvisiero, P.; Crabb, D.; Crannell, H.; Cummings, J. P.; de Sanctis, E.; Devita, R.; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Dharmawardane, K. V.; Dhuga, K. S.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dragovitsch, P.; Dugger, M.; Dytman, S.; Eckhause, M.; Egiyan, H.; Egiyan, K. S.; Elouadrhiri, L.; Empl, A.; Eugenio, P.; Fatemi, R.; Feuerbach, R. J.; Ficenec, J.; Forest, T. A.; Funsten, H.; Gaff, S. J.; Gavalian, G.; Gilad, S.; Gilfoyle, G. P.; Giovanetti, K. L.; Girard, P.; Gordon, C. I.; Griffioen, K.; Guidal, M.; Guillo, M.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hakobyan, R.; Hardie, J.; Heddle, D.; Heimberg, P.; Hersman, F. W.; Hicks, K.; Hicks, R. S.; Holtrop, M.; Hu, J.; Hyde-Wright, C. E.; Ilieva, Y.; Ito, M. M.; Jenkins, D.; Joo, K.; Kelley, J. H.; Khandaker, M.; Kim, K. Y.; Kim, K.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A. V.; Klusman, M.; Kossov, M.; Kramer, L. H.; Kuang, Y.; Kuhn, S. E.; Lachniet, J.; Laget, J. M.; Lawrence, D.; Li, Ji; Lukashin, K.; Manak, J. J.; Marchand, C.; McAleer, S.; McCarthy, J.; Mecking, B. A.; Mehrabyan, S.; Melone, J. J.; Mestayer, M. D.; Meyer, C. A.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Morand, L.; Morrow, S. A.; Muccifora, V.; Mueller, J.; Mutchler, G. S.; Napolitano, J.; Nasseripour, R.; Nelson, S. O.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niyazov, R. A.; Nozar, M.; O'Brien, J. T.; O'Rielly, G. V.; Osipenko, M.; Park, K.; Pasyuk, E.; Peterson, G.; Philips, S. A.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Quinn, B. P.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rossi, P.; Rowntree, D.; Rubin, P. D.; Sabatié, F.; Sabourov, K.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Serov, V. S.; Shafi, A.; Sharabian, Y. G.; Shaw, J.; Simionatto, S.; Skabelin, A. V.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Spraker, M.; Stavinsky, A.; Stepanyan, S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Taylor, S.; Tedeschi, D. J.; Thoma, U.; Thompson, R.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Wang, K.; Weinstein, L. B.; Weisberg, A.; Weller, H.; Weygand, D. P.; Whisnant, C. S.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.; Zhang, B.; Zhao, J.; Zhou, Z.
2004-04-01
High-statistics cross sections and recoil polarizations for the reactions γ+p→ K+ +Λ and γ+p→ K+ + Σ0 have been measured at CLAS for center-of-mass energies between 1.6 and 2.3 GeV . In the K+ Λ channel we confirm a resonance-like structure near W=1.9 GeV at backward kaon angles. Our data show more complex s - and u - channel behavior than previously seen, since structure is also present at forward angles, but not at central angles. The position and width change with angle, indicating that more than one resonance is playing a role. Large positive Λ polarization at backward angles, which is also energy dependent, is consistent with sizable s - or u -channel contributions. Presently available model calculations cannot explain these aspects of the data.
System for determining the angle of impact of an object on a structure
NASA Technical Reports Server (NTRS)
Prosser, William H. (Inventor); Gorman, Michael R. (Inventor)
1993-01-01
A method for determining the angle of impact of an object on a thin-walled structure which determines the angle of impact through analysis of the acoustic waves which result when an object impacts a structure is presented. Transducers are placed on and in the surface of the structure which sense the wave caused in the structure by impact. The waves are recorded and saved for analysis. For source motion normal to the surface, the antisymmetric mode has a large amplitude while that of the symmetric mode is very small. As the source angle increases with respect to the surface normal, the symmetric mode amplitude increases while the antisymmetric mode amplitude decreases. Thus, the angle of impact is determined by measuring the relative amplitudes of these two lowest order modes.
Petrovic, Igor; Hip, Ivan; Fredlund, Murray D
2016-09-01
The variability of untreated municipal solid waste (MSW) shear strength parameters, namely cohesion and shear friction angle, with respect to waste stability problems, is of primary concern due to the strong heterogeneity of MSW. A large number of municipal solid waste (MSW) shear strength parameters (friction angle and cohesion) were collected from published literature and analyzed. The basic statistical analysis has shown that the central tendency of both shear strength parameters fits reasonably well within the ranges of recommended values proposed by different authors. In addition, it was established that the correlation between shear friction angle and cohesion is not strong but it still remained significant. Through use of a distribution fitting method it was found that the shear friction angle could be adjusted to a normal probability density function while cohesion follows the log-normal density function. The continuous normal-lognormal bivariate density function was therefore selected as an adequate model to ascertain rational boundary values ("confidence interval") for MSW shear strength parameters. It was concluded that a curve with a 70% confidence level generates a "confidence interval" within the reasonable limits. With respect to the decomposition stage of the waste material, three different ranges of appropriate shear strength parameters were indicated. Defined parameters were then used as input parameters for an Alternative Point Estimated Method (APEM) stability analysis on a real case scenario of the Jakusevec landfill. The Jakusevec landfill is the disposal site of the capital of Croatia - Zagreb. The analysis shows that in the case of a dry landfill the most significant factor influencing the safety factor was the shear friction angle of old, decomposed waste material, while in the case of a landfill with significant leachate level the most significant factor influencing the safety factor was the cohesion of old, decomposed waste material. The analysis also showed that a satisfactory level of performance with a small probability of failure was produced for the standard practice design of waste landfills as well as an analysis scenario immediately after the landfill closure. Copyright © 2015 Elsevier Ltd. All rights reserved.
What can the dihedral angle of conjugate-faults tell us?
NASA Astrophysics Data System (ADS)
Ismat, Zeshan
2015-04-01
Deformation within the upper crust (elastico-frictional regime) is largely accommodated by fractures and conjugate faults. The Coulomb fracture criterion leads us to expect that the average dihedral angle of conjugate-fault sets is expected to be ∼60°. Experiments, however, reveal a significant amount of scatter from this 60° average. The confining pressure under which these rocks are deformed is a contributing factor to this scatter. The Canyon Range syncline, Sevier fold-thrust belt (USA) and the Jebel Bani, Anti-Atlas fold-belt (Morocco) both folded under different depths, within the elastico-frictional regime, by cataclastic flow. Conjugate-fault sets assisted deformation by cataclastic flow. The Canyon Range syncline and the Jebel Bani are used here as natural examples to test the relationship between the dihedral angle of conjugate-faults and confining pressure. Variations is confining pressure are modeled by the difference in depth of deformation and position within the folds. Results from this study show that the dihedral angle increases with an increase in depth and within the hinge regions of folds, where space problems commonly occur. Moreover, the shortening directions based on the acute bisectors of conjugate-faults may not be accurately determined if the dihedral angles are unusually large or small, leading to incorrect kinematic analyses.
Zhang, H H; Gao, S; Chen, W; Shi, L; D'Souza, W D; Meyer, R R
2013-03-21
An important element of radiation treatment planning for cancer therapy is the selection of beam angles (out of all possible coplanar and non-coplanar angles in relation to the patient) in order to maximize the delivery of radiation to the tumor site and minimize radiation damage to nearby organs-at-risk. This category of combinatorial optimization problem is particularly difficult because direct evaluation of the quality of treatment corresponding to any proposed selection of beams requires the solution of a large-scale dose optimization problem involving many thousands of variables that represent doses delivered to volume elements (voxels) in the patient. However, if the quality of angle sets can be accurately estimated without expensive computation, a large number of angle sets can be considered, increasing the likelihood of identifying a very high quality set. Using a computationally efficient surrogate beam set evaluation procedure based on single-beam data extracted from plans employing equallyspaced beams (eplans), we have developed a global search metaheuristic process based on the nested partitions framework for this combinatorial optimization problem. The surrogate scoring mechanism allows us to assess thousands of beam set samples within a clinically acceptable time frame. Tests on difficult clinical cases demonstrate that the beam sets obtained via our method are of superior quality.
Zhang, H H; Gao, S; Chen, W; Shi, L; D’Souza, W D; Meyer, R R
2013-01-01
An important element of radiation treatment planning for cancer therapy is the selection of beam angles (out of all possible coplanar and non-coplanar angles in relation to the patient) in order to maximize the delivery of radiation to the tumor site and minimize radiation damage to nearby organs-at-risk. This category of combinatorial optimization problem is particularly difficult because direct evaluation of the quality of treatment corresponding to any proposed selection of beams requires the solution of a large-scale dose optimization problem involving many thousands of variables that represent doses delivered to volume elements (voxels) in the patient. However, if the quality of angle sets can be accurately estimated without expensive computation, a large number of angle sets can be considered, increasing the likelihood of identifying a very high quality set. Using a computationally efficient surrogate beam set evaluation procedure based on single-beam data extracted from plans employing equally-spaced beams (eplans), we have developed a global search metaheuristic process based on the Nested Partitions framework for this combinatorial optimization problem. The surrogate scoring mechanism allows us to assess thousands of beam set samples within a clinically acceptable time frame. Tests on difficult clinical cases demonstrate that the beam sets obtained via our method are superior quality. PMID:23459411
Image Processing Techniques for Assessment of Dental Trays
2001-10-25
170 patients having Angle Class I molar relationships with minor malocclusions and teeth including second molars fully erupted without loss of tooth...Abstract-A tray selected for the dental patient must adapt to the curvature of the teeth and allow the impression material to be in appropriate...brands of perforated metal trays with 170 lower arch cast models collected from patients having Angle Class 1 type occlusion with minor malocclusions
75 FR 33531 - Atlantic Highly Migratory Species; Atlantic Bluefin Tuna Fisheries
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-14
... also closes the southern area Angling category fishery for large medium and giant (``trophy'') BFT, and... Management Plan and to prevent overharvest of the 2010 Angling category quota. DATES: Effective June 12, 2010... Management Plan (2006 Consolidated HMS FMP) (71 FR 58058, October 2, 2006). The 2010 BFT fishing year, which...
Repulsive force actuated rotary micromirror
NASA Astrophysics Data System (ADS)
He, Siyuan; Ben Mrad, Ridha
2004-09-01
In this paper, a novel repulsive force based rotary micromirror is proposed. A repulsive force is produced in the rotary micromirror and the mirror plate is pushed up and away from the substrate. Therefore the rotation angle of the micromirror is not limited to the space underneath the mirror plate and thus the "pull-in" effect is completely circumvented. The novel rotary micromirror can achieve a large rotation angle with a large mirror plate. In addition the novel micromirror has a very simple structure and can be fabricated by standard surface micromachining technology. Numerical simulation is used to verify the working principle of the novel micromirror. A prototype of the novel rotary micromirror is fabricated by a commercially available surface microfabrication process called MUMPs. The prototype has a mirror size of 300μm x 300μm. The experimental measurements show that the prototype can achieve a mechanical rotation of 2.25 degrees (an optical angle of 4.5 degrees) at a driving voltage of 170 volts. A conventional surface micromachined attractive force based rotary micromirror of the same size can only achieve an angle of 0.1~0.2 degree.
Optical levitation of a non-spherical particle in a loosely focused Gaussian beam.
Chang, Cheong Bong; Huang, Wei-Xi; Lee, Kyung Heon; Sung, Hyung Jin
2012-10-08
The optical force on a non-spherical particle subjected to a loosely focused laser beam was calculated using the dynamic ray tracing method. Ellipsoidal particles with different aspect ratios, inclination angles, and positions were modeled, and the effects of these parameters on the optical force were examined. The vertical component of the optical force parallel to the laser beam axis decreased as the aspect ratio decreased, whereas the ellipsoid with a small aspect ratio and a large inclination angle experienced a large vertical optical force. The ellipsoids were pulled toward or repelled away from the laser beam axis, depending on the inclination angle, and they experienced a torque near the focal point. The behavior of the ellipsoids in a viscous fluid was examined by analyzing a dynamic simulation based on the penalty immersed boundary method. As the ellipsoids levitated along the direction of the laser beam propagation, they moved horizontally with rotation. Except for the ellipsoid with a small aspect ratio and a zero inclination angle near the focal point, the ellipsoids rotated until the major axis aligned with the laser beam axis.
Xu, Chunyun; Cheng, Haobo; Feng, Yunpeng; Jing, Xiaoli
2016-09-01
A type of laser semiactive angle measurement system is designed for target detecting and tracking. Only one detector is used to detect target location from four distributed aperture optical systems through a 4×1 imaging fiber bundle. A telecentric optical system in image space is designed to increase the efficiency of imaging fiber bundles. According to the working principle of a four-quadrant (4Q) detector, fiber diamond alignment is adopted between an optical system and a 4Q detector. The structure of the laser semiactive angle measurement system is, we believe, novel. Tolerance analysis is carried out to determine tolerance limits of manufacture and installation errors of the optical system. The performance of the proposed method is identified by computer simulations and experiments. It is demonstrated that the linear region of the system is ±12°, with measurement error of better than 0.2°. In general, this new system can be used with large field of view and high accuracy, providing an efficient, stable, and fast method for angle measurement in practical situations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashida, Misa; Malac, Marek; Egerton, Ray F.
Electron tomography is a method whereby a three-dimensional reconstruction of a nanoscale object is obtained from a series of projected images measured in a transmission electron microscope. We developed an electron-diffraction method to measure the tilt and azimuth angles, with Kikuchi lines used to align a series of diffraction patterns obtained with each image of the tilt series. Since it is based on electron diffraction, the method is not affected by sample drift and is not sensitive to sample thickness, whereas tilt angle measurement and alignment using fiducial-marker methods are affected by both sample drift and thickness. The accuracy ofmore » the diffraction method benefits reconstructions with a large number of voxels, where both high spatial resolution and a large field of view are desired. The diffraction method allows both the tilt and azimuth angle to be measured, while fiducial marker methods typically treat the tilt and azimuth angle as an unknown parameter. The diffraction method can be also used to estimate the accuracy of the fiducial marker method, and the sample-stage accuracy. A nano-dot fiducial marker measurement differs from a diffraction measurement by no more than ±1°.« less
Does boldness explain vulnerability to angling in Eurasian perch Perca fluviatilis?
Vainikka, Anssi; Tammela, Ilkka; Hyvärinen, Pekka
2016-04-01
Consistent individual differences (CIDs) in behavior are of interest to both basic and applied research, because any selection acting on them could induce evolution of animal behavior. It has been suggested that CIDs in the behavior of fish might explain individual differences in vulnerability to fishing. If so, fishing could impose selection on fish behavior. In this study, we assessed boldness-indicating behaviors of Eurasian perch Perca fluviatilis using individually conducted experiments measuring the time taken to explore a novel arena containing predator (burbot, Lota lota ) cues. We studied if individual differences in boldness would explain vulnerability of individually tagged perch to experimental angling in outdoor ponds, or if fishing would impose selection on boldness-indicating behavior. Perch expressed repeatable individual differences in boldness-indicating behavior but the individual boldness-score (the first principal component) obtained using principal component analysis combining all the measured behavioral responses did not explain vulnerability to experimental angling. Instead, large body size appeared as the only statistically significant predictor of capture probability. Our results suggest that angling is selective for large size, but not always selective for high boldness.
Does boldness explain vulnerability to angling in Eurasian perch Perca fluviatilis?
Vainikka, Anssi; Tammela, Ilkka; Hyvärinen, Pekka
2016-01-01
Abstract Consistent individual differences (CIDs) in behavior are of interest to both basic and applied research, because any selection acting on them could induce evolution of animal behavior. It has been suggested that CIDs in the behavior of fish might explain individual differences in vulnerability to fishing. If so, fishing could impose selection on fish behavior. In this study, we assessed boldness-indicating behaviors of Eurasian perch Perca fluviatilis using individually conducted experiments measuring the time taken to explore a novel arena containing predator (burbot, Lota lota) cues. We studied if individual differences in boldness would explain vulnerability of individually tagged perch to experimental angling in outdoor ponds, or if fishing would impose selection on boldness-indicating behavior. Perch expressed repeatable individual differences in boldness-indicating behavior but the individual boldness-score (the first principal component) obtained using principal component analysis combining all the measured behavioral responses did not explain vulnerability to experimental angling. Instead, large body size appeared as the only statistically significant predictor of capture probability. Our results suggest that angling is selective for large size, but not always selective for high boldness. PMID:29491897
Spherical Ornstein-Uhlenbeck Processes
NASA Astrophysics Data System (ADS)
Wilkinson, Michael; Pumir, Alain
2011-10-01
The paper considers random motion of a point on the surface of a sphere, in the case where the angular velocity is determined by an Ornstein-Uhlenbeck process. The solution is fully characterised by only one dimensionless number, the persistence angle, which is the typical angle of rotation during the correlation time of the angular velocity. We first show that the two-dimensional case is exactly solvable. When the persistence angle is large, a series for the correlation function has the surprising property that its sum varies much more slowly than any of its individual terms. In three dimensions we obtain asymptotic forms for the correlation function, in the limits where the persistence angle is very small and very large. The latter case exhibits a complicated transient, followed by a much slower exponential decay. The decay rate is determined by the solution of a radial Schrödinger equation in which the angular momentum quantum number takes an irrational value, namely j=1/2(sqrt{17}-1). Possible applications of the model to objects tumbling in a turbulent environment are discussed.
Microstructure study of ZnO thin films on Si substrate grown by MOCVD
NASA Astrophysics Data System (ADS)
Huang, Jingyun; Ye, Zhizhen; Lu, Huanming; Wang, Lei; Zhao, Binghui; Li, Xianhang
2007-08-01
The microstructure of zinc oxide thin films on silicon substrates grown by metalorganic chemical vapour deposition (MOCVD) was characterized. The cross-sectional bright-field transmission electron microscopy (TEM) image showed that small ZnO columnar grains were embedded into large columnar grains, and the selected-area electron diffraction pattern showed that the ZnO/Si thin films were nearly c-axis oriented. The deviation angle along the ZnO (0 0 0 1) direction with respect to the growth direction of Si (1 0 0) was no more than 5°. The [0 0 0 1]-tilt grain boundaries in ZnO/Si thin films were investigated symmetrically by plan-view high resolution TEM. The boundaries can be classified into three types: low-angle boundaries described as an irregular array of edge dislocations, boundaries of near 30° angle with (1\\,0\\,\\bar{1}\\,0) facet structures and large-angle boundaries with symmetric structure which could be explained by a low Σ coincident site lattice structure mode. The research was useful to us for finding optimized growth conditions to improve ZnO/Si thin film quality.
Flutter performance of bend-twist coupled large-scale wind turbine blades
NASA Astrophysics Data System (ADS)
Hayat, Khazar; de Lecea, Alvaro Gorostidi Martinez; Moriones, Carlos Donazar; Ha, Sung Kyu
2016-05-01
The bend-twist coupling (BTC) is proven to be effective in mitigating the fatigue loads for large-scale wind turbine blades, but at the same time it may cause the risk of flutter instability. The BTC is defined as a feature of twisting of the blade induced by the primary bending deformation. In the classical flutter, the BTC arises from the aerodynamic loads changing with the angle of attack. In this study, the effects of the structural BTC on the flutter are investigated by considering the layup unbalances (ply angle, material and thickness of the composite laminates) in the NREL 5-MW wind turbine rotor blade of glass fiber/epoxy [02/+45/-45]S laminates. It is numerically shown that the flutter speed may decrease by about 5 percent with unbalanced ply-angle only (one side angle, from 45° to 25°). It was then demonstrated that the flutter performance of the wind turbine blade can be increased by using lighter and stiffer carbon fibers which ensures the higher structural BTC at the same time.
Oscillating cascade aerodynamics at large mean incidence
NASA Technical Reports Server (NTRS)
Buffum, Daniel H.; King, Aaron J.; El-Aini, Yehia M.; Capece, Vincent R.
1996-01-01
The aerodynamics of a cascade of airfoils oscillating in torsion about the midchord is investigated experimentally at a large mean incidence angle and, for reference, at a low mean incidence angle. The airfoil section is representative of a modern, low aspect ratio, fan blade tip section. Time-dependent airfoil surface pressure measurements were made for reduced frequencies of up to 1.2 for out-of-phase oscillations at a Mach number of 0.5 and chordal incidence angles of 0 deg and 10 deg; the Reynolds number was 0.9 x l0(exp 6). For the 10 deg chordal incidence angle, a separation bubble formed at the leading edge of the suction surface. The separated flow field was found to have a dramatic effect on the chordwise distribution of the unsteady pressure. In this region, substantial deviations from the attached flow data were found with the deviations becoming less apparent in the aft region of the airfoil for all reduced frequencies. In particular, near the leading edge the separated flow had a strong destabilizing influence while the attached flow had a strong stabilizing influence.
Hatfield, Jessie R; Samuelson, Don A; Lewis, Patricia A; Chisholm, Mae
2003-03-01
The iridocorneal angles of prepared eyes from the West Indian manatee, short-finned pilot whale, hippopotamus and African elephant were examined and compared using light microscopy. The manatee and pilot whale demonstrated capacity for a large amount of aqueous outflow, probably as part of a system compensating for lack of ciliary musculature, and possibly also related to environmental changes associated with life at varying depths. The elephant angle displayed many characteristics of large herbivores, but was found to have relatively low capacity for aqueous outflow via both primary and secondary routes. The hippopotamus shared characteristics with both land- and water-dwelling mammals; uveoscleral aqueous outflow may be substantial as in the marine mammals, but the angular aqueous plexus was less extensive and a robust pectinate ligament was present. The angles varied greatly in size and composition among the four species, and most structures were found to be uniquely suited to the habitat of each animal.
Adaptability of solar energy conversion systems on ships
NASA Astrophysics Data System (ADS)
Visa, I.; Cotorcea, A.; Neagoe, M.; Moldovan, M.
2016-08-01
International trade of goods largely uses maritime/transoceanic ships driven by engines using fossil fuels. This two centuries tradition is technologically mature but significantly adds to the CO2 emissions; therefore, recent trends focus on on-board implementation of systems converting the solar energy into power (photovoltaic systems) or heat (solar-thermal systems). These systems are carbon-emissions free but are still under research and plenty of effort is devoted to fast reach maturity and feasibility. Unlike the systems implemented in a specific continental location, the design of solar energy conversion systems installed on shipboard has to face the problem generated by the system base motion along with the ship travelling on routes at different latitudes: the navigation direction and sense and roll-pitch combined motion with reduced amplitude, but with relatively high frequency. These raise highly interesting challenges in the design and development of mechanical systems that support the maximal output in terms of electricity or heat. The paper addresses the modelling of the relative position of a solar energy conversion surface installed on a ship according to the current position of the sun; the model is based on the navigation trajectory/route, ship motion generated by waves and the relative sun-earth motion. The model describes the incidence angle of the sunray on the conversion surface through five characteristic angles: three used to define the ship orientation and two for the solar angles; based on, their influence on the efficiency in solar energy collection is analyzed by numerical simulations and appropriate recommendations are formulated for increasing the solar energy conversion systems adaptability on ships.
A Metalens with a Near-Unity Numerical Aperture.
Paniagua-Domínguez, Ramón; Yu, Ye Feng; Khaidarov, Egor; Choi, Sumin; Leong, Victor; Bakker, Reuben M; Liang, Xinan; Fu, Yuan Hsing; Valuckas, Vytautas; Krivitsky, Leonid A; Kuznetsov, Arseniy I
2018-03-14
The numerical aperture (NA) of a lens determines its ability to focus light and its resolving capability. Having a large NA is a very desirable quality for applications requiring small light-matter interaction volumes or large angular collections. Traditionally, a large NA lens based on light refraction requires precision bulk optics that ends up being expensive and is thus also a specialty item. In contrast, metasurfaces allow the lens designer to circumvent those issues producing high-NA lenses in an ultraflat fashion. However, so far, these have been limited to numerical apertures on the same order of magnitude as traditional optical components, with experimentally reported NA values of <0.9. Here we demonstrate, both numerically and experimentally, a new approach that results in a diffraction-limited flat lens with a near-unity numerical aperture (NA > 0.99) and subwavelength thickness (∼λ/3), operating with unpolarized light at 715 nm. To demonstrate its imaging capability, the designed lens is applied in a confocal configuration to map color centers in subdiffractive diamond nanocrystals. This work, based on diffractive elements that can efficiently bend light at angles as large as 82°, represents a step beyond traditional optical elements and existing flat optics, circumventing the efficiency drop associated with the standard, phase mapping approach.
A Metalens with a Near-Unity Numerical Aperture
NASA Astrophysics Data System (ADS)
Paniagua-Domínguez, Ramón; Yu, Ye Feng; Khaidarov, Egor; Choi, Sumin; Leong, Victor; Bakker, Reuben M.; Liang, Xinan; Fu, Yuan Hsing; Valuckas, Vytautas; Krivitsky, Leonid A.; Kuznetsov, Arseniy I.
2018-03-01
The numerical aperture (NA) of a lens determines its ability to focus light and its resolving capability. Having a large NA is a very desirable quality for applications requiring small light-matter interaction volumes or large angular collections. Traditionally, a large NA lens based on light refraction requires precision bulk optics that ends up being expensive and is thus also a specialty item. In contrast, metasurfaces allow the lens designer to circumvent those issues producing high NA lenses in an ultra-flat fashion. However, so far, these have been limited to numerical apertures on the same order of traditional optical components, with experimentally reported values of NA <0.9. Here we demonstrate, both numerically and experimentally, a new approach that results in a diffraction limited flat lens with a near-unity numerical aperture (NA>0.99) and sub-wavelength thickness (~{\\lambda}/3), operating with unpolarized light at 715 nm. To demonstrate its imaging capability, the designed lens is applied in a confocal configuration to map color centers in sub-diffractive diamond nanocrystals. This work, based on diffractive elements able to efficiently bend light at angles as large as 82{\\deg}, represents a step beyond traditional optical elements and existing flat optics, circumventing the efficiency drop associated to the standard, phase mapping approach.
NASA Technical Reports Server (NTRS)
Burrows, Dale L; Newman, Ernest E
1954-01-01
An investigation at medium to high subsonic speeds has been conducted in the Langley low-turbulence pressure tunnel to determine the static stability and control characteristics and to measure the fin normal forces and moments for a model of a wingless fin-controlled missile. The data were obtained at Reynolds number of 2.1 x 10(6) based on the missile maximum diameter or 17.7 x 10(6) based on missile length; this Reynolds number was found to be large enough to avoid any large scale effects between the test and the expected flight Reynolds number. With the horizontal-fin deflection limited to a maximum of 6 degrees, longitudinally stable and trimmed flight could not be maintained beyond an angle of attack of 17 degrees for a Mach number of 0.88 and beyond 20 degrees for a Mach number of 0.50 for any center-of-gravity location without the use of some auxiliary stability or control device such as jet vanes. Mach number had no appreciable effect on the center-of-pressure positions and only a slight effect on neutral-point position. There was a shift in neutral-point position of about 1 caliber as the angle of attack was varied through the range for which the neutral point could be determined. Yawing the model to angles of sideslip up to 7 degrees had little effect on the longitudinal stability at angles of attack up to 15 degrees; however, above 15 degrees, the effect of sideslip was destabilizing. With the vertical fins at a plus-or-minus 6 degree roll deflection, the rolling moment caused by yawing the model at high angles of attack could be trimmed out up to angles of sideslip of 6.5 degrees and an angle of attack of 26 degrees for a Mach number of 0.50; this range of sideslip angles was reduced to 3 degrees at a Mach number of 0.88. The data indicated that, at lower angles of attack, the trim range extended to higher angles of sideslip. The total normal-force and hinge-moment coefficients for both horizontal fins were slightly nonlinear with both angle-of-attack and fin deflection. The effect of Mach number was to reduce the slopes of the hinge-moment coefficient with angle of attack and deflection angle. In general, the effort of increasing the sideslip angle was to reduce the values of the fin normal-force and hinge-moment coefficients.
A Full-Maxwell Approach for Large-Angle Polar Wander of Viscoelastic Bodies
NASA Astrophysics Data System (ADS)
Hu, H.; van der Wal, W.; Vermeersen, L. L. A.
2017-12-01
For large-angle long-term true polar wander (TPW) there are currently two types of nonlinear methods which give approximated solutions: those assuming that the rotational axis coincides with the axis of maximum moment of inertia (MoI), which simplifies the Liouville equation, and those based on the quasi-fluid approximation, which approximates the Love number. Recent studies show that both can have a significant bias for certain models. Therefore, we still lack an (semi)analytical method which can give exact solutions for large-angle TPW for a model based on Maxwell rheology. This paper provides a method which analytically solves the MoI equation and adopts an extended iterative procedure introduced in Hu et al. (2017) to obtain a time-dependent solution. The new method can be used to simulate the effect of a remnant bulge or models in different hydrostatic states. We show the effect of the viscosity of the lithosphere on long-term, large-angle TPW. We also simulate models without hydrostatic equilibrium and show that the choice of the initial stress-free shape for the elastic (or highly viscous) lithosphere of a given model is as important as its thickness for obtaining a correct TPW behavior. The initial shape of the lithosphere can be an alternative explanation to mantle convection for the difference between the observed and model predicted flattening. Finally, it is concluded that based on the quasi-fluid approximation, TPW speed on Earth and Mars is underestimated, while the speed of the rotational axis approaching the end position on Venus is overestimated.
NASA Astrophysics Data System (ADS)
Moraru, Ciprian G.
The ability to predict the onset of boundary-layer transition is critical for hypersonic flight vehicles. The development of prediction methods depends on a thorough comprehension of the mechanisms that cause transition. In order to improve the understanding of hypersonic boundary-layer transition, tests were conducted on a large 7° half-angle cone at Mach 10 in the Arnold Engineering Development Complex Wind Tunnel 9. Twenty-four runs were performed at varying unit Reynolds numbers and angles of attack for sharp and blunt nosetip configurations. Heat-transfer measurements were used to determine the start of transition on the cone. Increasing the unit Reynolds number caused a forward movement of transition on the sharp cone at zero angle of attack. Increasing nosetip radius delayed transition up to a radius of 12.7 mm. Larger nose radii caused the start of transition to move forward. At angles of attack up to 10°, transition was leeside forward for nose radii up to 12.7 mm and windside forward for nose radii of 25.4 mm and 50.8 mm. Second-mode instability waves were measured on the sharp cone and cones with small nose radii. At zero angle of attack, waves at a particular streamwise location on the sharp cone were in earlier stages of development as the unit Reynolds number was decreased. The same trend was observed as the nosetip radius was increased. No second-mode waves were apparent for the cones with large nosetip radii. As the angle of attack was increased, waves at a particular streamwise location on the sharp cone moved to earlier stages of growth on the windward ray and later stages of growth on the leeward ray. RMS amplitudes of second-mode waves were computed. Comparison between maximum second-mode amplitudes and edge Mach numbers showed good correlation for various nosetip radii and unit Reynolds numbers. Using the e N method, initial amplitudes were estimated and compared to freestream noise in the second-mode frequency band. Correlations indicate that freestream noise likely has a significant influence on initial second-mode amplitudes.
Low-speed wind tunnel performance of high-speed counterrotation propellers at angle-of-attack
NASA Technical Reports Server (NTRS)
Hughes, Christopher E.; Gazzaniga, John A.
1989-01-01
The low-speed aerodynamic performance characteristics of two advanced counterrotation pusher-propeller configurations with cruise design Mach numbers of 0.72 were investigated in the NASA Lewis 9- by 15-Foot Low-Speed Wind Tunnel. The tests were conducted at Mach number 0.20, which is representative of the aircraft take-off/landing flight regime. The investigation determined the effect of nonuniform inflow on the propeller performance characteristics for several blade angle settings and a range of rotational speeds. The inflow was varied by yawing the propeller model to angle-of-attack by as much as plus or minus 16 degrees and by installing on the counterrotation propeller test rig near the propeller rotors a model simulator of an aircraft engine support pylon and fuselage. The results of the investigation indicated that the low-speed performance of the counterrotation propeller configurations near the take-off target operating points were reasonable and were fairly insensitive to changes in model angle-of-attack without the aircraft pylon/fuselage simulators installed on the propeller test rig. When the aircraft pylon/fuselage simulators were installed, small changes in propeller performance were seen at zero angle-of-attack, but fairly large changes in total power coefficient and very large changes of aft-to-forward-rotor torque ratio were produced when the propeller model was taken to angle-of-attack. The propeller net efficiency, though, was fairly insensitive to any changes in the propeller flowfield conditions near the take-off target operating points.
Fisher, Harry; Stephenson, Mitchell L; Graves, Kyle K; Hinshaw, Taylour J; Smith, Derek T; Zhu, Qin; Wilson, Margaret A; Dai, Boyi
2016-06-01
Decreased knee flexion angles during landing are associated with increased anterior cruciate ligament loading. The underlying mechanisms associated with decreased self-selected knee flexion angles during landing are still unclear. The purpose of this study was to establish the relationship between the peak force production at various knee flexion angles (35, 55, 70, and 90°) during isometric squats and the actual knee flexion angles that occur during landing in both men and women. A total of 18 men and 18 women recreational/collegiate athletes performed 4 isometric squats at various knee flexion angles while vertical ground reaction forces were recorded. Participants also performed a jump-landing-jump task while lower extremity kinematics were collected. For women, significant correlations were found between the peak force production at 55 and 70° of knee flexion during isometric squats and the knee flexion angle at initial contact of landing. There were also significant correlations between the peak force production at 55, 70, and 90° of knee flexion during isometric squats and the peak knee flexion angle during landing. These correlations tended to be stronger during isometric squats at greater knee flexion compared with smaller knee flexion. No significant correlations were found for men. Posture-specific strength may play an important role in determining self-selected knee flexion angles during landing for women.
Sung, Ho-Kun; Qiang, Tian; Yao, Zhao; Li, Yang; Wu, Qun; Lee, Hee-Kwan; Park, Bum-Doo; Lim, Woong-Sun; Park, Kyung-Ho; Wang, Cong
2017-06-20
This study presents a detailed fabrication method, together with validation, discussion, and analysis, for state-of-the-art silicon carbide (SiC) etching of vertical and bevelled structures by using inductively coupled plasma reactive ion etching (ICP-RIE) for microelectronic applications. Applying different gas mixtures, a maximum bevel angle of 87° (almost vertical), large-angle bevels ranging from 40° to 80°, and small-angel bevels ranging from 7° to 17° were achieved separately using distinct gas mixtures at different ratios. We found that SF 6 with additive O 2 was effective for vertical etching, with a best etching rate of 3050 Å/min. As for the large-angle bevel structures, BCl 3 + N 2 gas mixtures show better characteristics, exhibiting a controllable and large etching angle range from 40° to 80° through the adjustment of the mixture ratio. Additionally, a Cl 2 + O 2 mixture at different ratios is applied to achieve a small-angel bevels ranging from 7° to 17°. A minimum bevel angel of approximately 7° was achieved under the specific volume of 2.4 sccm Cl 2 and 3.6 sccm O 2 . These results can be used to improve performance in various microelectronic applications including MMIC via holes, PIN diodes, Schottky diodes, JFETs' bevel mesa, and avalanche photodiode fabrication.
Giant spin Hall angle from topological insulator BixSe(1 - x) thin films
NASA Astrophysics Data System (ADS)
Dc, Mahendra; Jamali, Mahdi; Chen, Junyang; Hickey, Danielle; Zhang, Delin; Zhao, Zhengyang; Li, Hongshi; Quarterman, Patrick; Lv, Yang; Mkhyon, Andre; Wang, Jian-Ping
Investigation on the spin-orbit torque (SOT) from large spin-orbit coupling materials has been attracting interest because of its low power switching of the magnetization and ultra-fast driving of the domain wall motion that can be used in future spin based memory and logic devices. We investigated SOT from topological insulator BixSe(1 - x) thin film in BixSe(1 - x) /CoFeB heterostructure by using the dc planar Hall method, where BixSe(1 - x) thin films were prepared by a unique industry-compatible deposition process. The angle dependent Hall resistance was measured in the presence of a rotating external in-plane magnetic field at bipolar currents. The spin Hall angle (SHA) from this BixSe(1 - x) thin film was found to be as large as 22.41, which is the largest ever reported at room temperature (RT). The giant SHA and large spin Hall conductivity (SHC) make this BixSe(1 - x) thin film a very strong candidate as an SOT generator in SOT based memory and logic devices.
Wang, Yunji; Qiu, Ye; Liu, Henglang; He, Jinlong; Fan, Xiaoping
2017-01-01
Objectives: To quantitatively evaluate palatal bone thickness in adults with different facial types using cone beam computed tomography (CBCT). Methods: The CBCT volumetric data of 123 adults (mean age, 26.8 years) collected between August 2014 and August 2016 was retrospectively studied. The subjects were divided into a low-angle group (39 subjects), a normal-angle group (48 subjects) and a high-angle group (36 subjects) based on facial types assigned by cephalometric radiography. The thickness of the palatal bone was assessed at designated points. A repeated-measure analysis of variance (rm-ANOVA) test was used to test the relationship between facial types and palatal bone thickness. Results: Compared to the low-angle group, the high-angle group had significantly thinner palatal bones (p<0.05), except for the anterior-midline, anterior-medial and middle-midline areas. Conclusion: The safest zone for the placement of microimplants is the anterior part of the paramedian palate. Clinicians should pay special attention to the probability of thinner bone plates and the risk of perforation in high-angle patients. PMID:28917071
The natural alpha angle of the femoral head-neck junction.
Gollwitzer, H; Suren, C; Strüwind, C; Gottschling, H; Schröder, M; Gerdesmeyer, L; Prodinger, P M; Burgkart, R
2018-05-01
Aims Asphericity of the femoral head-neck junction is common in cam-type femoroacetabular impingement (FAI) and usually quantified using the alpha angle on radiographs or MRI. The aim of this study was to determine the natural alpha angle in a large cohort of patients by continuous circumferential analysis with CT. Methods CT scans of 1312 femurs of 656 patients were analyzed in this cross-sectional study. There were 362 men and 294 women. Their mean age was 61.2 years (18 to 93). All scans had been performed for reasons other than hip disease. Digital circumferential analysis allowed continuous determination of the alpha angle around the entire head-neck junction. All statistical tests were conducted two-sided; a p-value < 0.05 was considered statistically significant. Results The mean maximum alpha angle for the cohort was 59.0° (sd 9.4). The maximum was located anterosuperiorly at 01:36 on the clock face, with two additional maxima of asphericity at the posterior and inferior head-neck junction. The mean alpha angle was significantly larger in men (59.4°, sd 8.0) compared with women (53.5°, sd 7.4°; p = 0.0005), and in Caucasians (60.7°, sd 9.0°) compared with Africans (56.3°, sd 8.0; p = 0.007) and Asians (50.8°, sd 7.2; p = 0.0005). The alpha angle showed a weak positive correlation with age (p < 0.05). If measured at commonly used planes of the radially reconstructed CT or MRI, the alpha angle was largely underestimated; measurement at the 01:30 and 02:00 positions showed a mean underestimation of 4° and 6°, respectively. Conclusion This study provides important data on the normal alpha angle dependent on age, gender, and ethnic origin. The normal alpha angle in men is > 55°, and this should be borne in mind when making a diagnosis of cam-type morphology. Cite this article: Bone Joint J 2018;100-B:570-8.
NASA Astrophysics Data System (ADS)
Jouybari, A.; Ardalan, A. A.; Rezvani, M.-H.
2017-09-01
The accurate measurement of platform orientation plays a critical role in a range of applications including marine, aerospace, robotics, navigation, human motion analysis, and machine interaction. We used Mahoney filter, Complementary filter and Xsens Kalman filter for achieving Euler angle of a dynamic platform by integration of gyroscope, accelerometer, and magnetometer measurements. The field test has been performed in Kish Island using an IMU sensor (Xsens MTi-G-700) that installed onboard a buoy so as to provide raw data of gyroscopes, accelerometers, magnetometer measurements about 25 minutes. These raw data were used to calculate the Euler angles by Mahoney filter and Complementary filter, while the Euler angles collected by XSense IMU sensor become the reference of the Euler angle estimations. We then compared Euler angles which calculated by Mahoney Filter and Complementary Filter with reference to the Euler angles recorded by the XSense IMU sensor. The standard deviations of the differences between the Mahoney Filter, Complementary Filter Euler angles and XSense IMU sensor Euler angles were about 0.5644, 0.3872, 0.4990 degrees and 0.6349, 0.2621, 2.3778 degrees for roll, pitch, and heading, respectively, so the numerical result assert that Mahoney filter is precise for roll and heading angles determination and Complementary filter is precise only for pitch determination, it should be noted that heading angle determination by Complementary filter has more error than Mahoney filter.
Surfactant Facilitated Spreading of Aqueous Drops on Hydrophobic Surfaces
NASA Technical Reports Server (NTRS)
Kumar, Nitin; Couzis, Alex; Maldarelli, Charles; Singh, Bhim S. (Technical Monitor)
2000-01-01
Microgravity technologies often require aqueous phases to spread over nonwetting hydrophobic solid/surfaces. At a hydrophobic surface, the air/hydrophobic solid tension is low, and the solid/aqueous tension is high. A large contact angle forms as the aqueous/air tension acts together with the solid/air tension to balance the large solid/aqueous tension. The aqueous phase, instead of spreading, is held in a meniscus by the large angle. Surfactants facilitate the wetting of water on hydrophobic surfaces by adsorbing on the water/air and hydrophobic solid/water interfaces and lowering the surface tensions of these interfaces. The tension reductions decrease the contact angle, which increases the equilibrium wetted area. Hydrocarbon surfactants (i.e. amphiphiles with a hydrophobic chain of methylene groups attached to a large polar group to give aqueous solubility) do not reduce significantly the contact angles of the very hydrophobic surfaces such as parafilm or polyethylene. Trisiloxane surfactants (amphiphiles with a hydrophobe consisting of methyl groups linked to a trisiloxane backbone in the form of a disk ((CH3)3-Si-O-Si-O-Si(CH3)3)) and an extended ethoxylate (-(OCH2CH2)n-) polar group in the form of a chain with seven or eight units) can significantly reduce the contact angle of water on a very hydrophobic surface and cause rapid and complete (or nearly complete) spreading (lermed superspreading). The overall goal of the research described in this proposal is to establish and verify a theory for how trisiloxanes cause superspreading, and then use this knowledge as a guide to developing more general hydrocarbon based surfactant systems which superspread and can be used in microgravity. We propose that the trisiloxane surfactants superspread when the siloxane adsorbs, the hydrophobic disk parts of the molecule adsorb onto the surface removing the surface water. Since the cross sectional area of the disk is larger than that of the extended ethoxylate chain, the disks can form a space filling mat on the surface which removes a significant amount of the surface water. The water adjacent to the hydrophobic solid surface is of high energy due to incomplete hydrogen bonding; its removal significantly lowers the tension and reduces the contact angle. Hydrocarbon surfactants cannot remove as much surface water because their large polar groups prevent the chains from cohering lengthwise. In our report last year we presented a poster describing the preparation of model very hydrophobic surfaces which are homogeneous and atomically smooth using self assembled monolayers of octadecyl trichlorosilane (OTS). In this poster we will use these surfaces as test substrates in developing hydrocarbon based surfactant systems which superspread. We studied a binary hydrocarbon surfactant systems consisting of a very soluble large polar group polyethylene oxide surfactant (C12E6 (CH3(CH2)11(OCH2CH2)6OH) and a long chain alcohol dodecanol. By mixing the alcohol with this soluble surfactant we have found that the contact angle of the mixed system on our test hydrophobic surfaces is very low. We hypothesize that the alcohol fills in the gaps between adjacent adsorbed chains of the large polar group surfactant. This filling in removes the surface water and effects the decrease in contact angle. We confirm this hypothesis by demonstrating that at the air/water interface the mixed layer forms condensed phases while the soluble large polar group surfactant by itself does not. We present drop impact experiments which demonstrate that the dodecanol/C12E6 mixture is effective in causing impacting drops to spread on the very hydrophobic model OTS surfaces.
NASA Astrophysics Data System (ADS)
Amiruddin
2018-03-01
This study entitled "Distribution of Bedload Transport Against Coastline Changes in Donggala Coast", the formulation of the problem (1) how much of the estimated bedload transport in Donggala Bodies; (2) where were the location of erosion and sedimentation strong point based on the estimation of bed load transport; (3) the extent to which the prediction of shoreline change rate of transport of sediments in coastal areas Donggala. This study aims to: (1) the calculation of estimated bed load transport in Donggala waters; (2) determining the location of the point of erosion and sedimentation strong basis of estimated bedload transport; (3) the prediction of shoreline change rate of transport of sediments in coastal areas Donggala.The survey method used in this research to collect primary data include: (1) decision point waypoint coordinates of each location of measurement; (2) measurement of height, period and direction of the waves; (3) a large measurement of sediment transport; (4) The angle measurement coastline, angle of attack and wave direction, and secondary data include: (1) information from the public; (2) the physical condition data field. The results showed that: (1) general estimate sediment transport base in each location data collection is varied. This is due to the different points of the coastline as well as the angle of attack of the shoreline waters broke Donggala; (2) strong abrasion at the study site occurs at the point Ts4 (622.75 m3/yr) and TS11 (755.25 m3/yr) located in the Village Tosale and point Tw7 and Tw17 (649.25 m3/yr) in Village of Towale. As for the strong sedimentation occurs at the point Ts3 (450.50 m3/yr) located in the Village Tosale and Tg3 point (357.75 m3/yr) located in the Village Tolonggano; (3) of the predicted outcome coastline changes based on the input data estimate sediment transport, beaches and waves parameters is seen that the changes in the location prophyl coastline tends toward research into or undergo a process of abrasion.
Angle imaging: Advances and challenges
Quek, Desmond T L; Nongpiur, Monisha E; Perera, Shamira A; Aung, Tin
2011-01-01
Primary angle closure glaucoma (PACG) is a major form of glaucoma in large populous countries in East and South Asia. The high visual morbidity from PACG is related to the destructive nature of the asymptomatic form of the disease. Early detection of anatomically narrow angles is important and the subsequent prevention of visual loss from PACG depends on an accurate assessment of the anterior chamber angle (ACA). This review paper discusses the advantages and limitations of newer ACA imaging technologies, namely ultrasound biomicroscopy, Scheimpflug photography, anterior segment optical coherence tomography and EyeCam, highlighting the current clinical evidence comparing these devices with each other and with clinical dynamic indentation gonioscopy, the current reference standard. PMID:21150037
C-band backscattering from corn canopies
NASA Technical Reports Server (NTRS)
Daughtry, C. S. T.; Ranson, K. J.; Biehl, L. L.
1991-01-01
A frequency-modulatad continuous-wave C-band (4.8 GHz) scatterometer was mounted on an aerial lift truck, and backscatter coefficients of corn (Zea mays L.) were acquired as functions of polarizations, view angles, and row directions. As phytomass and green-leaf area index increased, the backscatter also increased. Near anthesis, when the canopies were fully developed, the major scattering elements were located in the upper 1 m of the 2.8 m tall canopy and little backscatter was measured below that level for view angles of 30 deg or greater. C-band backscatter data could provide information to monitor tillage operations at small view zenith angles and vegetation at large view zenith angles.
Oscillating Cascade Aerodynamics at Large Mean Incidence Angles
NASA Technical Reports Server (NTRS)
Buffum, Daniel H.
1997-01-01
In a cooperative program with Pratt & Whitney, researchers obtained fundamental separated flow unsteady aerodynamic data in the NASA Lewis Research Center's Oscillating Cascade. These data fill a void that has hindered the understanding and prediction of subsonic and transonic stall flutter. For small-amplitude torsional oscillations, unsteady pressure distributions were measured on airfoils with cross sections representative of an advanced, low-aspect-ratio fan blade. Data were obtained for two mean incidence angles with a subsonic inflow. At high mean incidence angles (alpha = 10 deg), the mean flow separated at the leading edge and reattached at about 40 percent of the chord. For comparison purposes, data were also obtained for a low incidence angle (a = 0 deg) attached flow.
Short-focus and ultra-wide-angle lens design in wavefront coding
NASA Astrophysics Data System (ADS)
Zhang, Jiyan; Huang, Yuanqing; Xiong, Feibing
2016-10-01
Wavefront coding (WFC) is a hybrid technology designed to increase depth of field of conventional optics. The goal of our research is to apply this technology to the short-focus and ultra-wide-angle lens which suffers from the aberration related with large field of view (FOV) such as coma and astigmatism. WFC can also be used to compensate for other aberration which is sensitive to the FOV. Ultra-wide-angle lens has a little depth of focus because it has small F number and short-focus. We design a hybrid lens combing WFC with the ultra-wide-angle lens. The full FOV and relative aperture of the final design are up to170° and 1/1.8 respectively. The focal length is 2 mm. We adopt the cubic phase mask (CPM) in the design. The conventional design will have a wide variation of the point spread function (PSF) across the FOV and it is very sensitive with the variation of the FOV. The new design we obtain the PSF is nearly invariant over the whole FOV. But the result of the design also shows the little difference between the horizontal and vertical length of the PSF. We analyze that the CPM is non-symmetric phase mask and the FOV is so large, which will generate variation in the final image quality. For that reason, we apply a new method to avoid that happened. We try to make the rays incident on the CPM with small angle and decrease the deformation of the PSF. The experimental result shows the new method to optimize the CPM is fit for the ultra-wide-angle lens. The research above will be a helpful instruction to design the ultra-wide-angle lens with WFC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marion, William F; Deline, Christopher A; Asgharzadeh, Amir
In this paper, we present the effect of installation parameters (tilt angle, height above ground, and albedo) on the bifacial gain and energy yield of three south-facing photovoltaic (PV) system configurations: a single module, a row of five modules, and five rows of five modules utilizing RADIANCE-based ray tracing model. We show that height and albedo have a direct impact on the performance of bifacial systems. However, the impact of the tilt angle is more complicated. Seasonal optimum tilt angles are dependent on parameters such as height, albedo, size of the system, weather conditions, and time of the year. Formore » a single bifacial module installed in Albuquerque, NM, USA (35 degrees N) with a reasonable clearance (~1 m) from the ground, the seasonal optimum tilt angle is lowest (~5 degrees) for the summer solstice and highest (~65 degrees) for the winter solstice. For larger systems, seasonal optimum tilt angles are usually higher and can be up to 20 degrees greater than that for a single module system. Annual simulations also indicate that for larger fixed-tilt systems installed on a highly reflective ground (such as snow or a white roofing material with an albedo of ~81%), the optimum tilt angle is higher than the optimum angle of the smaller size systems. We also show that modules in larger scale systems generate lower energy due to horizon blocking and large shadowing area cast by the modules on the ground. For albedo of 21%, the center module in a large array generates up to 7% less energy than a single bifacial module. To validate our model, we utilize measured data from Sandia National Laboratories' fixed-tilt bifacial PV testbed and compare it with our simulations.« less
Koishi, Takahiro; Yasuoka, Kenji; Fujikawa, Shigenori; Zeng, Xiao Cheng
2011-09-27
We perform large-scale molecular dynamics simulations to measure the contact-angle hysteresis for a nanodroplet of water placed on a nanopillared surface. The water droplet can be in either the Cassie state (droplet being on top of the nanopillared surface) or the Wenzel state (droplet being in contact with the bottom of nanopillar grooves). To measure the contact-angle hysteresis in a quantitative fashion, the molecular dynamics simulation is designed such that the number of water molecules in the droplets can be systematically varied, but the number of base nanopillars that are in direct contact with the droplets is fixed. We find that the contact-angle hysteresis for the droplet in the Cassie state is weaker than that in the Wenzel state. This conclusion is consistent with the experimental observation. We also test a different definition of the contact-angle hysteresis, which can be extended to estimate hysteresis between the Cassie and Wenzel state. The idea is motivated from the appearance of the hysteresis loop typically seen in computer simulation of the first-order phase transition, which stems from the metastability of a system in different thermodynamic states. Since the initial shape of the droplet can be controlled arbitrarily in the computer simulation, the number of base nanopillars that are in contact with the droplet can be controlled as well. We show that the measured contact-angle hysteresis according to the second definition is indeed very sensitive to the initial shape of the droplet. Nevertheless, the contact-angle hystereses measured based on the conventional and new definition seem converging in the large droplet limit. © 2011 American Chemical Society
A superconducting large-angle magnetic suspension
NASA Technical Reports Server (NTRS)
Downer, James; Goldie, James; Torti, Richard
1991-01-01
The component technologies were developed required for an advanced control moment gyro (CMG) type of slewing actuator for large payloads. The key component of the CMG is a large-angle magnetic suspension (LAMS). The LAMS combines the functions of the gimbal structure, torque motors, and rotor bearings of a CMG. The LAMS uses a single superconducting source coil and an array of cryoresistive control coils to produce a specific output torque more than an order of magnitude greater than conventional devices. The designed and tested LAMS system is based around an available superconducting solenoid, an array of twelve room-temperature normal control coils, and a multi-input, multi-output control system. The control laws were demonstrated for stabilizing and controlling the LAMS system.
A fracture criterion for widespread cracking in thin-sheet aluminum alloys
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.; Dawicke, D. S.; Sutton, M. A.; Bigelow, C. A.
1993-01-01
An elastic-plastic finite-element analysis was used with a critical crack-tip-opening angle (CTOA) fracture criterion to model stable crack growth in thin-sheet 2024-T3 aluminum alloy panels with single and multiple-site damage (MSD) cracks. Comparisons were made between critical angles determined from the analyses and those measured with photographic methods. Calculated load against crack extension and load against crack-tip displacement on single crack specimens agreed well with test data even for large-scale plastic deformations. The analyses were also able to predict the stable tearing behavior of large lead cracks in the presence of stably tearing MSD cracks. Small MSD cracks significantly reduced the residual strength for large lead cracks.
Can cosmic shear shed light on low cosmic microwave background multipoles?
Kesden, Michael; Kamionkowski, Marc; Cooray, Asantha
2003-11-28
The lowest multipole moments of the cosmic microwave background (CMB) are smaller than expected for a scale-invariant power spectrum. One possible explanation is a cutoff in the primordial power spectrum below a comoving scale of k(c) approximately equal to 5.0 x 10(-4) Mpc(-1). Such a cutoff would increase significantly the cross correlation between the large-angle CMB and cosmic-shear patterns. The cross correlation may be detectable at >2sigma which, combined with the low CMB moments, may tilt the balance between a 2sigma result and a firm detection of a large-scale power-spectrum cutoff. The cutoff also increases the large-angle cross correlation between the CMB and the low-redshift tracers of the mass distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, C.E.; Spencer, R.B.; Burger, V.T.
1984-01-01
Solid-state cross-polarization/magic-angle sample-spinning /sup 13/C NMR spectra have been recorded on chlorophyll a-water aggregates, methyl pyrochlorophyllide a, and methyl pyropheophorbide a. Spectra have also been collected under a decoupling regime in which resonances of certain hydrogen-bearing carbon atoms are suppressed. These observations are used to assign the solid-state spectra. 18 references, 2 figures, 1 table.
Monitoring Bio-Optical Processes Using NPP-VIIRS and MODIS-Aqua Ocean Color Products
2013-01-01
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number...account for satellite sensor and solar zenith angles. Additionally, the Bidirectional Reflectance Distribution Function ( BRDF ) of the water particles is...similarly dependent on satellite and solar zenith and azimuth angles 4 . The influence of BRDF is more pronounced in a high scattering environment
Weiss, C; Torosyan, G; Avetisyan, Y; Beigang, R
2001-04-15
Generation of tunable narrow-band terahertz (THz) radiation perpendicular to the surface of periodically poled lithium niobate by optical rectification of femtosecond pulses is reported. The generated THz radiation can be tuned by use of different poling periods and different observation angles, limited only by the available bandwidth of the pump pulse. Typical bandwidths were 50-100 GHz, depending on the collection angle and the number of periods involved.
Analysis and Design of Launch Vehicle Flight Control Systems
NASA Technical Reports Server (NTRS)
Wie, Bong; Du, Wei; Whorton, Mark
2008-01-01
This paper describes the fundamental principles of launch vehicle flight control analysis and design. In particular, the classical concept of "drift-minimum" and "load-minimum" control principles is re-examined and its performance and stability robustness with respect to modeling uncertainties and a gimbal angle constraint is discussed. It is shown that an additional feedback of angle-of-attack or lateral acceleration can significantly improve the overall performance and robustness, especially in the presence of unexpected large wind disturbance. Non-minimum-phase structural filtering of "unstably interacting" bending modes of large flexible launch vehicles is also shown to be effective and robust.
Brown, Andrea M; Hahn, Daniel V; Brown, David M; Rolander, Nathan W; Bair, Chun-Huei; Sluz, Joseph E
2012-06-20
A gimbal-free wide field-of-regard (FOR) optical receiver has been built in a laboratory setting for proof-of-concept testing. Multiple datasets are presented that examine the overall FOR of the system and the receiver's ability to track and collect a signal from a moving source. The design is not intended to compete with traditional free space optical communication systems, but rather offer an alternative design that minimizes the number and complexity of mechanical components required at the surface of a small mobile platform. The receiver is composed of a micro-lens array and hexagonal bundles of large core optical fibers that route the optical signal to remote detectors and electronics. Each fiber in the bundle collects power from a distinct solid angle of space and a piezo-electric transducer is used to translate the micro-lens array and optimize coupling into a given fiber core in the bundle. The micro-lens to fiber bundle design is scalable, modular, and can be replicated in an array to increase aperture size.
NASA Astrophysics Data System (ADS)
Aleksanyan, Grayr; Shcherbakov, Ivan; Kucher, Artem; Sulyz, Andrew
2018-04-01
With continuous monitoring of the lungs using multi-angle electric impedance tomography method, a large array of images of impedance changes in the patient's chest cavity is accumulated. This article proposes a method for evaluating the regional ventilation function of lungs based on the results of continuous monitoring using the multi-angle electric impedance tomography method, which allows one image of the thoracic cavity to be formed on the basis of a large array of images of the impedance change in the patient's chest cavity. In the presence of pathologies in the lungs (neoplasms, fluid, pneumothorax, etc.) in these areas, air filling will be disrupted, which will be displayed on the generated image. When conducting continuous monitoring in several sections, a three-dimensional pattern of air filling of the thoracic cavity is possible.
Aab, Alexander
2015-03-30
In this study, we present the results of an analysis of the large angular scale distribution of the arrival directions of cosmic rays with energy above 4 EeV detected at the Pierre Auger Observatory including for the first time events with zenith angle between 60° and 80°. We perform two Rayleigh analyses, one in the right ascension and one in the azimuth angle distributions, that are sensitive to modulations in right ascension and declination, respectively. The largest departure from isotropy appears in themore » $$E\\gt 8$$ EeV energy bin, with an amplitude for the first harmonic in right ascension $$r_{1}^{\\alpha }=(4.4\\pm 1.0)\\times {{10}^{-2}}$$, that has a chance probability $$P(\\geqslant r_{1}^{\\alpha })=6.4\\times {{10}^{-5}}$$, reinforcing the hint previously reported with vertical events alone.« less
Crew Exploration Vehicle (CEV) Water Landing Simulation
NASA Technical Reports Server (NTRS)
Littell, Justin D.; Lawrence, Charles; Carney, Kelly S.
2007-01-01
Crew Exploration Vehicle (CEV) water splashdowns were simulated in order to find maximum acceleration loads on the astronauts and spacecraft under various landing conditions. The acceleration loads were used in a Dynamic Risk Index (DRI) program to find the potential risk for injury posed on the astronauts for a range of landing conditions. The DRI results showed that greater risks for injury occurred for two landing conditions; when the vertical velocity was large and the contact angle between the spacecraft and the water impact surface was zero, and when the spacecraft was in a toe down configuration and both the vertical and horizontal landing velocities were large. Rollover was also predicted to occur for cases where there is high horizontal velocity and low contact angles in a toe up configuration, and cases where there was a high horizontal velocity with high contact angles in a toe down configuration.
Non-periodic high-index contrast gratings reflector with large-angle beam forming ability
NASA Astrophysics Data System (ADS)
Fang, Wenjing; Huang, Yongqing; Duan, Xiaofeng; Fei, Jiarui; Ren, Xiaomin; Mao, Min
2016-05-01
A non-periodic high-index contrast gratings (HCGs) reflector on SOI wafer with large-angle beam forming ability has been proposed and fabricated. The proposed reflector was designed using rigorous coupled-wave analysis (RCWA) and finite-element-method (FEM). A deflection angle of 17.35° and high reflectivity of 92.31% are achieved under transverse magnetic (TM) polarized light in numerical simulation. Experimental results show that the reflected power peaked at 17.2° under a 1550 nm incident light, which is in good accordance with the simulation results. Moreover, the reflected power spectrum was also measured. Under different incident wavelengths around 1550 nm, reflected powers all peaked at 17.2°. The results show that the proposed non-periodic HCGs reflector has a good reflection and beam forming ability in a wavelength range as wide as 40 nm around 1550 nm.
Zhi, Dong; Ma, Yanxing; Chen, Zilun; Wang, Xiaolin; Zhou, Pu; Si, Lei
2016-05-15
We report on the development of a monolithic adaptive fiber optics collimator, with a large deflection angle and preserved near-diffraction-limited beam quality, that has been tested at a maximal output power at the 300 W level. Additionally, a new measurement method of beam quality (M2 factor) is developed. Experimental results show that the deflection angle of the collimated beam is in the range of 0-0.27 mrad in the X direction and 0-0.19 mrad in the Y direction. The effective working frequency of the device is about 710 Hz. By employing the new measurement method of the M2 factor, we calculate that the beam quality is Mx2=1.35 and My2=1.24, which is in agreement with the result from the beam propagation analyzer and is preserved well with the increasing output power.
Reynolds number invariance of the structure inclination angle in wall turbulence.
Marusic, Ivan; Heuer, Weston D C
2007-09-14
Cross correlations of the fluctuating wall-shear stress and the streamwise velocity in the logarithmic region of turbulent boundary layers are reported over 3 orders of magnitude change in Reynolds number. These results are obtained using hot-film and hot-wire anemometry in a wind tunnel facility, and sonic anemometers and a purpose-built wall-shear stress sensor in the near-neutral atmospheric surface layer on the salt flats of Utah's western desert. The direct measurement of fluctuating wall-shear stress in the atmospheric surface layer has not been available before. Structure inclination angles are inferred from the cross correlation results and are found to be invariant over the large range of Reynolds number. The findings justify the prior use of low Reynolds number experiments for obtaining structure angles for near-wall models in the large-eddy simulation of atmospheric surface layer flows.
Turbulent properties under sloping Ice-wall in polar water
NASA Astrophysics Data System (ADS)
Mondal, Mainak; Gayen, Bishakhdatta; Griffiths, Ross W.; Kerr, Ross C.
2017-11-01
Ice-shelves around West Antarctic basins are the most vulnerable to melting in the presence of warmer continental shelf water. A large extent of slope exists under these ice-shelves, where turbulent transport of salt and heat into the ice wall drives a convective melt-water plume against it. Large scale ice-ocean models neglect the effect of convection which can lead to a wrong estimation of melt rate. We perform direct numerical simulations under sloping ice-shelves with realistic ambient conditions. We estimated the melt rates, boundary layer thicknesses and entrainment coefficients as a function of slope angle. The numerical results are further supported by theoretical predictions. Over the range of slope angles, different mechanisms are active for sustaining turbulence. For near vertical case, buoyancy production is the primary source of turbulent kinetic energy whereas for shallower angles turbulence is produced by velocity shear in the meltwater plume. Australian Research Council.
NASA Technical Reports Server (NTRS)
Eckert, W. T.; Maki, R. L.
1973-01-01
The low-speed characteristics of a large-scale model of the F-14A aircraft were studied in tests conducted in the Ames Research Center 40- by 80-Foot Wind Tunnel. The primary purpose of the present tests was the determination of lateral-directional stability levels and control effectiveness of the aircraft in its high-lift configuration. Tests were conducted at wing angles of attack between minus 2 deg and 30 deg and with sideslip angles between minus 12 deg and 12 deg. Data were taken at a Reynolds number of 8.0 million based on a wing mean aerodynamic chord of 2.24 m (7.36 ft). The model configuration was changed as required to show the effects of direct lift control (spoilers) at yaw, yaw angle with speed brake deflected, and various amounts and combinations of roll control.
Global Curvature Buckling and Snapping of Spherical Shells.
NASA Astrophysics Data System (ADS)
Pezzulla, Matteo; Stoop, Norbert; Steranka, Mark; Bade, Abdikhalaq; Trejo, Miguel; Holmes, Douglas
A spherical shell under external pressure will eventually buckle locally through the development of a dimple. However, when a free spherical shell is subject to variations in natural curvature, it will either buckle globally or snap towards a buckled configuration. We study the similarities and differences between pressure and curvature instabilities in spherical shells. We show how the critical buckling natural curvature is largely independent of the thinness and half-angle of the shell, while the critical snapping natural curvature grows linearly with the half-angle. As a result, we demonstrate how a critical half-angle, depending only on the thinness of the shell, sets the threshold between two different kinds of snapping: as a rule of thumb, shallow shells snap into everted shells, while deep shells snap into buckled shells. As the developed models are purely geometrical, the results are applicable to a large variety of stimuli and scales. NSF CAREER CMMI-1454153.
NASA Technical Reports Server (NTRS)
Blumenthal, George R.; Johnston, Kathryn V.
1994-01-01
The Sachs-Wolfe effect is known to produce large angular scale fluctuations in the cosmic microwave background radiation (CMBR) due to gravitational potential fluctuations. We show how the angular correlation function of the CMBR can be expressed explicitly in terms of the mass autocorrelation function xi(r) in the universe. We derive analytic expressions for the angular correlation function and its multipole moments in terms of integrals over xi(r) or its second moment, J(sub 3)(r), which does not need to satisfy the sort of integral constraint that xi(r) must. We derive similar expressions for bulk flow velocity in terms of xi and J(sub 3). One interesting result that emerges directly from this analysis is that, for all angles theta, there is a substantial contribution to the correlation function from a wide range of distance r and that radial shape of this contribution does not vary greatly with angle.
Nonimaging secondary concentrators for large rim angle parabolic troughs with tubular absorbers.
Ries, H; Spirkl, W
1996-05-01
For parabolic trough solar collectors with tubular absorbers, we design new tailored secondary concentrators. The design is applicable for any rim angle of a parabolic reflector. With the secondary, the concentration can be increased by a factor of more than 2 with a compact secondary reflector consisting of a single piece, even for the important case of a rim angle of 90 deg. The parabolic reflector can be used without changes; the reduced absorber is still tubular but smaller than the original absorber and slightly displaced toward the primary.
Numerical simulation of the flow about the F-18 HARV at high angle of attack
NASA Technical Reports Server (NTRS)
Murman, Scott M.
1994-01-01
As part of NASA's High Alpha Technology Program, research has been aimed at developing and extending numerical methods to accurately predict the high Reynolds number flow about the NASA F-18 High Alpha Research Vehicle (HARV) at large angles of attack. The HARV aircraft is equipped with a bidirectional thrust vectoring unit which enables stable, controlled flight through 70 deg angle of attack. Currently, high-fidelity numerical solutions for the flow about the HARV have been obtained at alpha = 30 deg, and validated against flight-test data. It is planned to simulate the flow about the HARV through alpha = 60 deg, and obtain solutions of the same quality as those at the lower angles of attack. This report presents the status of work aimed at extending the HARV computations to the extreme angle of attack range.
High resolution miniaturized stepper ultrasonic motor using differential composite motion.
Chu, Xiangcheng; Xing, Zengping; Li, Longtu; Gui, Zhilun
2004-03-01
Experiments show that there is a limited minimum stepped angle in ultrasonic motors (USM). The research on the minimum angle of stepper USM with 15 mm in diameter and wobbling mode is being carried out. This paper presents a novel way to decrease the minimum stepped angle of USM based on the principle of differential composite motion (DCM), i.e. clockwise and counterclockwise rotation. The prototype was fabricated and experiments proved that this method is useful and also keeps a high torque for a large stepped angle. The stator of the prototype is steel, and rotor is fiberglass, antifriction material or steel. The prototype can operate well over 150 h with a 5 kHz wide frequency band. The minimum stepped angle is 46" using a coventional method while 12" using DCM method proposed in this paper.
NASA Technical Reports Server (NTRS)
Page, Norman A.; Tubbs, Eldred F.
1994-01-01
Retroreflectors made of concentric spherical optical elements developed for use in interferometric metrological systems. Used to provide reference point on structure to be aligned precisely in two or three dimensions by use of intersecting laser beams. Acceptance angle much larger than that of cat's-eye or corner-cube retroreflector: Simultaneously reflects laser beams separated by angles as large as 180 degrees.
Method for high resolution magnetic resonance analysis using magic angle technique
Wind, Robert A.; Hu, Jian Zhi
2003-12-30
A method of performing a magnetic resonance analysis of a biological object that includes placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. The object may be reoriented about the magic angle axis between three predetermined positions that are related to each other by 120.degree.. The main magnetic field may be rotated mechanically or electronically. Methods for magnetic resonance imaging of the object are also described.
Method for high resolution magnetic resonance analysis using magic angle technique
Wind, Robert A.; Hu, Jian Zhi
2004-12-28
A method of performing a magnetic resonance analysis of a biological object that includes placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. The object may be reoriented about the magic angle axis between three predetermined positions that are related to each other by 120.degree.. The main magnetic field may be rotated mechanically or electronically. Methods for magnetic resonance imaging of the object are also described.
The Small-Angle Neutron Scattering Data Analysis of the Phospholipid Transport Nanosystem Structure
NASA Astrophysics Data System (ADS)
Zemlyanaya, E. V.; Kiselev, M. A.; Zhabitskaya, E. I.; Aksenov, V. L.; Ipatova, O. M.; Ivankov, O. I.
2018-05-01
The small-angle neutron scattering technique (SANS) is employed for investigation of structure of the phospholipid transport nanosystem (PTNS) elaborated in the V.N.Orekhovich Institute of Biomedical Chemistry (Moscow, Russia). The SANS spectra have been measured at the YuMO small-angle spectrometer of IBR-2 reactor (Joint Institute of Nuclear Research, Dubna, Russia). Basic characteristics of polydispersed population of PTNS unilamellar vesicles (average radius of vesicles, polydispersity, thickness of membrane, etc.) have been determined in three cases of the PTNS concentrations in D2O: 5%, 10%, and 25%. Numerical analysis is based on the separated form factors method (SFF). The results are discussed in comparison with the results of analysis of the small-angle X-ray scattering spectra collected at the Kurchatov Synchrotron Radiation Source of the National Research Center “Kurchatov Institute” (Moscow, Russia).
Schreurs, Mervin J; Benjaminse, Anne; Lemmink, Koen A P M
2017-10-03
Cutting is an important skill in team-sports, but unfortunately is also related to non-contact ACL injuries. The purpose was to examine knee kinetics and kinematics at different cutting angles. 13 males and 16 females performed cuts at different angles (45°, 90°, 135° and 180°) at maximum speed. 3D kinematics and kinetics were collected. To determine differences across cutting angles (45°, 90°, 135° and 180°) and sex (female, male), a 4×2 repeated measures ANOVA was conducted followed by post hoc comparisons (Bonferroni) with alpha level set at α≤0.05a priori. At all cutting angles, males showed greater knee flexion angles than females (p<0.01). Also, where males performed all cutting angles with no differences in the amount of knee flexion -42.53°±8.95°, females decreased their knee flexion angle from -40.6°±7.2° when cutting at 45° to -36.81°±9.10° when cutting at 90°, 135° and 180° (p<0.01). Knee flexion moment decreased for both sexes when cutting towards sharper angles (p<0.05). At 90°, 135° and 180°, males showed greater knee valgus moments than females. For both sexes, knee valgus moment increased towards the sharper cutting angles and then stabilized compared to the 45° cutting angle (p<0.01). Both females and males showed smaller vGRF when cutting to sharper angles (p<0.01). It can be concluded that different cutting angles demand different knee kinematics and kinetics. Sharper cutting angles place the knee more at risk. However, females and males handle this differently, which has implications for injury prevention. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Vandermeulen, J.; Nasseri, S. A.; Van de Wiele, B.; Durin, G.; Van Waeyenberge, B.; Dupré, L.
2018-03-01
Lagrangian-based collective coordinate models for magnetic domain wall (DW) motion rely on an ansatz for the DW profile and a Lagrangian approach to describe the DW motion in terms of a set of time-dependent collective coordinates: the DW position, the DW magnetization angle, the DW width and the DW tilting angle. Another approach was recently used to derive similar equations of motion by averaging the Landau-Lifshitz-Gilbert equation without any ansatz, and identifying the relevant collective coordinates afterwards. In this paper, we use an updated version of the semi-analytical equations to compare the Lagrangian-based collective coordinate models with micromagnetic simulations for field- and STT-driven (spin-transfer torque-driven) DW motion in Pt/CoFe/MgO and Pt/Co/AlOx nanostrips. Through this comparison, we assess the accuracy of the different models, and provide insight into the deviations of the models from simulations. It is found that the lack of terms related to DW asymmetry in the Lagrangian-based collective coordinate models significantly contributes to the discrepancy between the predictions of the most accurate Lagrangian-based model and the micromagnetic simulations in the field-driven case. This is in contrast to the STT-driven case where the DW remains symmetric.
NASA Astrophysics Data System (ADS)
Norsworthy, Mark A.; Ruch, Marc L.; Hamel, Michael C.; Clarke, Shaun D.; Hausladen, Paul A.; Pozzi, Sara A.
2018-03-01
We present the first measurements of energy-dependent light output from carbon recoils in the liquid organic scintillator EJ-309. For this measurement, neutrons were produced by an associated particle deuterium-tritium generator and scattered by a volume of EJ-309 scintillator into stop detectors positioned at four fixed angles. Carbon recoils in the scintillator were isolated using triple coincidence among the associated particle detector, scatter detector, and stop detectors. The kinematics of elastic and inelastic scatter allowed data collection at eight specific carbon recoil energies between 2.86 and 3.95 MeV. We found the light output caused by carbon recoils in this energy range to be approximately 1.14% of that caused by electrons of the same energy, which is comparable to the values reported for other liquid organic scintillators. A comparison of the number of scattered neutrons at each angle to a Monte Carlo N-Particle eXtended simulation indicates that the ENDF/B-VII.1 evaluation of differential cross sections for 14.1 MeV neutrons on carbon has discrepancies with the experiment as large as 55%, whereas those reported in the JENDL-4.0u evaluation agree with experiment.
Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings
NASA Astrophysics Data System (ADS)
Li, Zhongyang; Palacios, Edgar; Butun, Serkan; Kocer, Hasan; Aydin, Koray
2015-10-01
Resonant absorbers based on nanostructured materials are promising for variety of applications including optical filters, thermophotovoltaics, thermal emitters, and hot-electron collection. One of the significant challenges for such micro/nanoscale featured medium or surface, however, is costly lithographic processes for structural patterning which restricted from industrial production of complex designs. Here, we demonstrate lithography-free, broadband, polarization-independent optical absorbers based on a three-layer ultrathin film composed of subwavelength chromium (Cr) and oxide film coatings. We have measured almost perfect absorption as high as 99.5% across the entire visible regime and beyond (400-800 nm). In addition to near-ideal absorption, our absorbers exhibit omnidirectional independence for incidence angle over ±60 degrees. Broadband absorbers introduced in this study perform better than nanostructured plasmonic absorber counterparts in terms of bandwidth, polarization and angle independence. Improvements of such “blackbody” samples based on uniform thin-film coatings is attributed to extremely low quality factor of asymmetric highly-lossy Fabry-Perot cavities. Such broadband absorber designs are ultrathin compared to carbon nanotube based black materials, and does not require lithographic processes. This demonstration redirects the broadband super absorber design to extreme simplicity, higher performance and cost effective manufacturing convenience for practical industrial production.
Humeral torsion revisited: a functional and ontogenetic model for populational variation.
Cowgill, Libby W
2007-12-01
Anthropological interest in humeral torsion has a long history, and several functional explanations for observed variation in the orientation of the humeral head have been proposed. Recent clinical studies have revived this topic by linking patterns of humeral torsion to habitual activities such as overhand throwing. However, the precise functional implications and ontogenetic history of humeral torsion remain unclear. This study examines the ontogeny of humeral torsion in a large sample of primarily immature remains from six different skeletal collections (n = 407). The results of this research confirm that humeral torsion displays consistent developmental variation within all populations of growing children; neonates display relatively posteriorly oriented humeral heads, and the level of torsion declines steadily into adulthood. As in adults, variation in the angle of humeral torsion in immature individuals varies by population, and these differences arise early in development. However, when examined in the context of the developing muscles of the shoulder complex, it becomes apparent that variation in the angle of humeral torsion is not necessarily related to specific habitual activities. Variability in this feature is more likely caused by a generalized functional imbalance between muscles of medial and lateral rotation that can be produced by a wide variety of upper limb activity patterns during growth. (c) 2007 Wiley-Liss, Inc.
Multi-objective trajectory optimization for the space exploration vehicle
NASA Astrophysics Data System (ADS)
Qin, Xiaoli; Xiao, Zhen
2016-07-01
The research determines temperature-constrained optimal trajectory for the space exploration vehicle by developing an optimal control formulation and solving it using a variable order quadrature collocation method with a Non-linear Programming(NLP) solver. The vehicle is assumed to be the space reconnaissance aircraft that has specified takeoff/landing locations, specified no-fly zones, and specified targets for sensor data collections. A three degree of freedom aircraft model is adapted from previous work and includes flight dynamics, and thermal constraints.Vehicle control is accomplished by controlling angle of attack, roll angle, and propellant mass flow rate. This model is incorporated into an optimal control formulation that includes constraints on both the vehicle and mission parameters, such as avoidance of no-fly zones and exploration of space targets. In addition, the vehicle models include the environmental models(gravity and atmosphere). How these models are appropriately employed is key to gaining confidence in the results and conclusions of the research. Optimal trajectories are developed using several performance costs in the optimal control formation,minimum time,minimum time with control penalties,and maximum distance.The resulting analysis demonstrates that optimal trajectories that meet specified mission parameters and constraints can be quickly determined and used for large-scale space exloration.
A Different Approach to Design.
ERIC Educational Resources Information Center
Sabo, Sandra R.
1996-01-01
Describes an approach to new school design that looks at architectural issues from a different angle: channeling a wide range of information into a targeted collection of ideas on which the architect can then base a design. It includes the collection of both factual and emotional components that are brought together into a final design. (GR)
Associations between Narrow Angle and Adult Anthropometry: The Liwan Eye Study
Jiang, Yuzhen; He, Mingguang; Friedman, David S.; Khawaja, Anthony P.; Lee, Pak Sang; Nolan, Winifred P.; Yin, Qiuxia; Foster, Paul J.
2015-01-01
Purpose To assess the associations between narrow angle and adult anthropometry. Methods Chinese adults aged 50 years and older were recruited from a population-based survey in the Liwan District of Guangzhou, China. Narrow angle was defined as the posterior trabecular meshwork not visible under static gonioscopy in at least three quadrants (i.e. a circumference of at least 270°). Logistic regression models were used to examine the associations between narrow angle and anthropomorphic measures (height, weight and body mass index, BMI). Results Among the 912 participants, lower weight, shorter height, and lower BMI were significantly associated with narrower angle width (tests for trend: mean angle width in degrees vs weight p<0.001; vs height p<0.001; vs BMI p = 0.012). In univariate analyses, shorter height, lower weight and lower BMI were all significantly associated with greater odds of narrow angle. The crude association between height and narrow angle was largely attributable to a stronger association with age and sex. Lower BMI and weight remained significantly associated with narrow angle after adjustment for height, age, sex, axial ocular biometric measures and education. In analyses stratified by sex, the association between BMI and narrow angle was only observed in women. Conclusion Lower BMI and weight were associated with significantly greater odds of narrow angle after adjusting for age, education, axial ocular biometric measures and height. The odds of narrow angle increased 7% per 1 unit decrease in BMI. This association was most evident in women. PMID:24707840
Associations between narrow angle and adult anthropometry: the Liwan Eye Study.
Jiang, Yuzhen; He, Mingguang; Friedman, David S; Khawaja, Anthony P; Lee, Pak Sang; Nolan, Winifred P; Yin, Qiuxia; Foster, Paul J
2014-06-01
To assess the associations between narrow angle and adult anthropometry. Chinese adults aged 50 years and older were recruited from a population-based survey in the Liwan District of Guangzhou, China. Narrow angle was defined as the posterior trabecular meshwork not visible under static gonioscopy in at least three quadrants (i.e. a circumference of at least 270°). Logistic regression models were used to examine the associations between narrow angle and anthropomorphic measures (height, weight and body mass index, BMI). Among the 912 participants, lower weight, shorter height, and lower BMI were significantly associated with narrower angle width (tests for trend: mean angle width in degrees vs weight p < 0.001; vs height p < 0.001; vs BMI p = 0.012). In univariate analyses, shorter height, lower weight and lower BMI were all significantly associated with greater odds of narrow angle. The crude association between height and narrow angle was largely attributable to a stronger association with age and sex. Lower BMI and weight remained significantly associated with narrow angle after adjustment for height, age, sex, axial ocular biometric measures and education. In analyses stratified by sex, the association between BMI and narrow angle was only observed in women. Lower BMI and weight were associated with significantly greater odds of narrow angle after adjusting for age, education, axial ocular biometric measures and height. The odds of narrow angle increased 7% per 1 unit decrease in BMI. This association was most evident in women.
Geometry of the Large Magellanic Cloud Using Multi- wavelength Photometry of Classical Cepheids
NASA Astrophysics Data System (ADS)
Deb, Sukanta; Ngeow, Chow-Choong; Kanbur, Shashi M.; Singh, Harinder P.; Wysocki, Daniel; Kumar, Subhash
2018-05-01
We determine the geometrical and viewing angle parameters of the Large Magellanic Cloud (LMC) using the Leavitt law based on a sample of more than 3500 common classical Cepheids (FU and FO) in optical (V, I), near-infrared (JHKs) and mid-infrared ([3.6] μm and [4.5] μm) photometric bands. Statistical reddening and distance modulus free from the effect of reddening to each of the individual Cepheids are obtained using the simultaneous multi-band fit to the apparent distance moduli from the analysis of the resulting Leavitt laws in these seven photometric bands. A reddening map of the LMC obtained from the analysis shows good agreement with the other maps available in the literature. Extinction free distance measurements along with the information of the equatorial coordinates (α, δ) for individual stars are used to obtain the corresponding Cartesian coordinates with respect to the plane of the sky. By fitting a plane solution of the form z = f(x, y) to the observed three dimensional distribution, the following viewing angle parameters of the LMC are obtained: inclination angle i = 25°.110 ± 0°.365, position angle of line of nodes θlon = 154°.702 ± 1°.378. On the other hand, modelling the observed three dimensional distribution of the Cepheids as a triaxial ellipsoid, the following values of the geometrical axes ratios of the LMC are obtained: 1.000 ± 0.003: 1.151 ± 0.003: 1.890 ± 0.014 with the viewing angle parameters: inclination angle of i = 11°.920 ± 0°.315 with respect to the longest axis from the line of sight and position angle of line of nodes θlon = 128°.871 ± 0°.569. The position angles are measured eastwards from north.
Aad, G.
2014-10-31
In addition jet activity in dijet events is measured using pp collisions at ATLAS at a centre-of-mass energy of 7TeV, for jets reconstructed using the anti-k t algorithm with radius parameter R=0.6. This is done using variables such as the fraction of dijet events without an additional jet in the rapidity interval bounded by the dijet subsystem and correlations between the azimuthal angles of the dijet s. They are presented, both with and without a veto on additional jet activity in the rapidity interval, as a function of the scalar average of the transverse momenta of the dijet s andmore » of the rapidity interval size. The double differential dijet cross section is also measured as a function of the interval size and the azimuthal angle between the dijet s. These variables probe differences in the approach to resummation of large logarithms when performing QCD calculations. The data are compared to POWERHEG, interfaced to the PYTHIA 8 and HERWIG parton shower generators, as well as to HEJ with and without interfacing it to the ARIADNE parton shower generator. None of the theoretical predictions agree with the data across the full phase-space considered; however, POWERHEG+ PYTHIA 8 and HEJ+ ARIADNE are found to provide the best agreement with the data. These measurements use the full data sample collected with the ATLAS detector in 7TeV pp collisions at the LHC and correspond to integrated luminosities of 36.1pb –1 and 4.5fb –1 for data collected during 2010 and 2011, respectively.« less
Klein, Thomas; André, Raphael; Wieser, Wolfgang; Pfeiffer, Tom; Huber, Robert
2013-01-01
Joint-aperture optical coherence tomography (JA-OCT) is an angle-resolved OCT method, in which illumination from an active channel is simultaneously probed by several passive channels. JA-OCT increases the collection efficiency and effective sensitivity of the OCT system without increasing the power on the sample. Additionally, JA-OCT provides angular scattering information about the sample in a single acquisition, so the OCT imaging speed is not reduced. Thus, JA-OCT is especially suitable for ultra high speed in-vivo imaging. JA-OCT is compared to other angle-resolved techniques, and the relation between joint aperture imaging, adaptive optics, coherent and incoherent compounding is discussed. We present angle-resolved imaging of the human retina at an axial scan rate of 1.68 MHz, and demonstrate the benefits of JA-OCT: Speckle reduction, signal increase and suppression of specular and parasitic reflections. Moreover, in the future JA-OCT may allow for the reconstruction of the full Doppler vector and tissue discrimination by analysis of the angular scattering dependence. PMID:23577296
NASA Technical Reports Server (NTRS)
Onstott, Robert G.; Gineris, Denise J.; Clinthorne, James T.
1991-01-01
The statistical description of ground clutter at an airport and in the surrounding area is addressed. These data are being utilized in a program to detect microbursts. Synthetic aperture radar data were collected at the Denver Stapleton Airport. Mountain terrain data were examined to determine if they may potentially contribute to range ambiguity problems and degrade microburst detection. Results suggest that mountain clutter may not present a special problem source. The examination of clutter at small grazing angles was continued by examining data collected at especially low altitudes. Cultural objects such as buildings produce strong sources of backscatter at angles of about 85 deg, with responses of 30 dB to 60 dB above the background. Otherwise there are a few sources which produce significant scatter. The polarization properties of hydrospheres and clutter were examined with the intent of determining the optimum polarization. This polarization was determined to be dependent upon the ratio of VV and HH polarizations of both rain and ground clutter.
Analysis of an unswept propfan blade with a semiempirical dynamic stall model
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Kaza, K. R. V.
1989-01-01
The time history response of a propfan wind tunnel model with dynamic stall is studied analytically. The response obtained from the analysis is compared with available experimental data. The governing equations of motion are formulated in terms of blade normal modes which are calculated using the COSMIC-NASTRAN computer code. The response analysis considered the blade plunging and pitching motions. The lift, drag and moment coefficients for angles of attack below the static stall angle are obtained from a quasi-steady theory. For angles above static stall angles, a semiempirical dynamic stall model based on a correction to angle of attack is used to obtain lift, drag and moment coefficients. Using these coefficients, the aerodynamic forces are calculated at a selected number of strips, and integrated to obtain the total generalized forces. The combined momentum-blade element theory is used to calculate the induced velocity. The semiempirical stall model predicted a limit cycle oscillation near the setting angle at which large vibratory stresses were observed in an experiment. The predicted mode and frequency of oscillation also agreed with those measured in the experiment near the setting angle.
NASA Technical Reports Server (NTRS)
Rainey, A Gerald
1957-01-01
The oscillating air forces on a two-dimensional wing oscillating in pitch about the midchord have been measured at various mean angles of attack and at Mach numbers of 0.35 and 0.7. The magnitudes of normal-force and pitching-moment coefficients were much higher at high angles of attack than at low angles of attack for some conditions. Large regions of negative damping in pitch were found, and it was shown that the effect of increasing the Mach number 0.35 to 0.7 was to decrease the initial angle of attack at which negative damping occurred. Measurements of the aerodynamic damping of a 10-percent-thick and of a 3-percent-thick finite-span wing oscillating in the first bending mode indicate no regions of negative damping for this type of motion over the range of variables covered. The damping measured at high angles of attack was generally larger than that at low angles of attack. (author)
NASA Astrophysics Data System (ADS)
Powell, C. J.; Werner, W. S. M.; Smekal, W.
2007-09-01
We report on the use of the NIST Database for the Simulation of Electron Spectra for Surface Analysis (SESSA) to determine N 1s, O 1s, and Si 2p3/2 photoelectron intensities for a 25 Å SiON film on a Si substrate with different distributions of N in the film. These simulations were made to assess the distinguishability of angle-resolved x-ray photoelectron spectroscopy (ARXPS) signals for each N distribution. Our approach differs from conventional simulations of ARXPS data in that we do not neglect elastic scattering of the photoelectrons and the finite solid angle of the analyzer. Appreciable dispersion of the photoelectron intensities was found only for the N 1s intensities at an emission angle of 75° (with respect to the surface normal). Conventional analyses of ARXPS data that include such large emission angles are unlikely to be valid due to angle-dependent changes of the attenuation length. We demonstrate the magnitude of elastic-scattering and analyzer solid-angle effects on the calculated angular distributions.
Large- and Very-Large-Scale Motions in Katabatic Flows Over Steep Slopes
NASA Astrophysics Data System (ADS)
Giometto, M. G.; Fang, J.; Salesky, S.; Parlange, M. B.
2016-12-01
Evidence of large- and very-large-scale motions populating the boundary layer in katabatic flows over steep slopes is presented via direct numerical simulations (DNSs). DNSs are performed at a modified Reynolds number (Rem = 967), considering four sloping angles (α = 60°, 70°, 80° and 90°). Large coherent structures prove to be strongly dependent on the inclination of the underlying surface. Spectra and co-spectra consistently show signatures of large-scale motions (LSMs), with streamwise extension on the order of the boundary layer thickness. A second low-wavenumber mode characterizes pre-multiplied spectra and co-spectra when the slope angle is below 70°, indicative of very-large-scale motions (VLSMs). In addition, conditional sampling and averaging shows how LSMs and VLSMs are induced by counter-rotating roll modes, in agreement with findings from canonical wall-bounded flows. VLSMs contribute to the stream-wise velocity variance and shear stress in the above-jet regions up to 30% and 45% respectively, whereas both LSMs and VLSMs are inactive in the near-wall regions.
Atmospheric Science Data Center
2013-04-19
article title: Closed Large Cell Clouds in the South Pacific ... the Multi-angle Imaging SpectroRadiometer (MISR) provide an example of very large scale closed cells, and can be contrasted with the ... MD. The MISR data were obtained from the NASA Langley Research Center Atmospheric Science Data Center in Hampton, VA. Image ...
NASA Astrophysics Data System (ADS)
Jiang, Shanchao; Wang, Jing; Sui, Qingmei
2018-03-01
In order to achieve rotation angle measurement, one novel type of miniaturization fiber Bragg grating (FBG) rotation angle sensor with high measurement precision and temperature self-compensation is proposed and studied in this paper. The FBG rotation angle sensor mainly contains two core sensitivity elements (FBG1 and FBG2), triangular cantilever beam, and rotation angle transfer element. In theory, the proposed sensor can achieve temperature self-compensation by complementation of the two core sensitivity elements (FBG1 and FBG2), and it has a boundless angel measurement range with 2π rad period duo to the function of the rotation angle transfer element. Based on introducing the joint working processes, the theory calculation model of the FBG rotation angel sensor is established, and the calibration experiment on one prototype is also carried out to obtain its measurement performance. After experimental data analyses, the measurement precision of the FBG rotation angle sensor prototype is 0.2 ° with excellent linearity, and the temperature sensitivities of FBG1 and FBG2 are 10 pm/° and 10.1 pm/°, correspondingly. All these experimental results confirm that the FBG rotation angle sensor can achieve large-range angle measurement with high precision and temperature self-compensation.
Complete 360° circumferential SSOCT gonioscopy of the iridocorneal angle
NASA Astrophysics Data System (ADS)
McNabb, Ryan P.; Kuo, Anthony N.; Izatt, Joseph A.
2014-02-01
The ocular iridocorneal angle is generally an optically inaccessible area when viewed directly through the cornea due to the high angle of incidence required and the large index of refraction difference between air and cornea (nair = 1.000 and ncornea = 1.376) resulting in total internal reflection. Gonioscopy allows for viewing of the angle by removing the aircornea interface through the use of a special contact lens on the eye. Gonioscopy is used clinically to visualize the angle directly but only en face. Optical coherence tomography (OCT) has been used to image the angle and deeper structures via an external approach. Typically, this imaging technique is performed by utilizing a conventional anterior segment OCT scanning system. However, instead of imaging the apex of the cornea, either the scanner or the subject is tilted such that the corneoscleral limbus is orthogonal to the optical axis of the scanner requiring multiple volumes to obtain complete circumferential coverage of the ocular angle. We developed a novel gonioscopic OCT (GOCT) system that images the entire ocular angle within a single volume via an "internal" approach through the use of a custom radially symmetric gonioscopic contact lens. We present, to our knowledge, the first complete 360° circumferential volumes of the iridocorneal angle from a direct, internal approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldstein, Adam; Connaughton, Valerie; Briggs, Michael S.
We present a method to estimate the jet opening angles of long duration gamma-ray bursts (GRBs) using the prompt gamma-ray energetics and an inversion of the Ghirlanda relation, which is a correlation between the time-integrated peak energy of the GRB prompt spectrum and the collimation-corrected energy in gamma-rays. The derived jet opening angles using this method and detailed assumptions match well with the corresponding inferred jet opening angles obtained when a break in the afterglow is observed. Furthermore, using a model of the predicted long GRB redshift probability distribution observable by the Fermi Gamma-ray Burst Monitor (GBM), we estimate themore » probability distributions for the jet opening angle and rest-frame energetics for a large sample of GBM GRBs for which the redshifts have not been observed. Previous studies have only used a handful of GRBs to estimate these properties due to the paucity of observed afterglow jet breaks, spectroscopic redshifts, and comprehensive prompt gamma-ray observations, and we potentially expand the number of GRBs that can be used in this analysis by more than an order of magnitude. In this analysis, we also present an inferred distribution of jet breaks which indicates that a large fraction of jet breaks are not observable with current instrumentation and observing strategies. We present simple parameterizations for the jet angle, energetics, and jet break distributions so that they may be used in future studies.« less