NASA Astrophysics Data System (ADS)
Shellnutt, J. G.; Pham, Thuy T.
2018-05-01
The Late Permian Emeishan large igneous province (ELIP) is considered to be one of the best examples of a mantle plume derived large igneous province. One of the primary observations that favour a mantle plume regime is the presence of ultramafic volcanic rocks. The picrites suggest primary mantle melts erupted and that mantle potential temperatures (TP) of the ELIP were > 200oC above ambient mantle conditions. However, they may represent a mixture of liquid and cumulus olivine and pyroxene rather than primary liquids. Consequently, temperature estimates based on the picrite compositions may not be accurate. Here we calculate mantle potential temperature (TP) estimates and primary liquids compositions using PRIMELT3 for the low-Ti (Ti/Y < 500) Emeishan basalt as they represent definite liquid compositions. The calculated TP yield a range from 1400oC to 1550oC, which is consistent with variability across a mantle plume axis. The primary melt compositions of the basalts are mostly picritic. The results of this study indicate that the Emeishan basalt was produced by a high temperature regime and that a few of the ultramafic volcanic rocks may be indicative of primary liquids.
ACEE composite structures technology
NASA Technical Reports Server (NTRS)
Klotzsche, M. (Compiler)
1984-01-01
The NASA Aircraft Energy Efficiency (ACEE) Composite Primary Aircraft Structures Program has made significant progress in the development of technology for advanced composites in commercial aircraft. Commercial airframe manufacturers have demonstrated technology readiness and cost effectiveness of advanced composites for secondary and medium primary components and have initiated a concerted program to develop the data base required for efficient application to safety-of-flight wing and fuselage structures. Oral presentations were compiled into five papers. Topics addressed include: damage tolerance and failsafe testing of composite vertical stabilizer; optimization of composite multi-row bolted joints; large wing joint demonstation components; and joints and cutouts in fuselage structure.
System concept for a moderate cost Large Deployable Reflector (LDR)
NASA Technical Reports Server (NTRS)
Swanson, P. N.; Breckinridge, J. B.; Diner, A.; Freeland, R. E.; Irace, W. R.; Mcelroy, P. M.; Meinel, A. B.; Tolivar, A. F.
1986-01-01
A study was carried out at JPL during the first quarter of 1985 to develop a system concept for NASA's LDR. Major features of the concept are a four-mirror, two-stage optical system; a lightweight structural composite segmented primary reflector; and a deployable truss backup structure with integral thermal shield. The two-stage optics uses active figure control at the quaternary reflector located at the primary reflector exit pupil, allowing the large primary to be passive. The lightweight composite reflector panels limit the short-wavelength operation to approximately 30 microns but reduce the total primary reflector weight by a factor of 3 to 4 over competing technologies. On-orbit thermal analysis indicates a primary reflector equilibrium temperature of less than 200 K with a maximum gradient of about 5 C across the 20-m aperture. Weight and volume estimates are consistent with a single Shuttle launch, and are based on Space Station assembly and checkout.
Carkovic, Athena B; Pastén, Pablo A; Bonilla, Carlos A
2015-04-15
Water erosion is a leading cause of soil degradation and a major nonpoint source pollution problem. Many efforts have been undertaken to estimate the amount and size distribution of the sediment leaving the field. Multi-size class water erosion models subdivide eroded soil into different sizes and estimate the aggregate's composition based on empirical equations derived from agricultural soils. The objective of this study was to evaluate these equations on soil samples collected from natural landscapes (uncultivated) and fire-affected soils. Chemical, physical, and soil fractions and aggregate composition analyses were performed on samples collected in the Chilean Patagonia and later compared with the equations' estimates. The results showed that the empirical equations were not suitable for predicting the sediment fractions. Fine particles, including primary clay, primary silt, and small aggregates (<53 μm) were over-estimated, and large aggregates (>53 μm) and primary sand were under-estimated. The uncultivated and fire-affected soils showed a reduced fraction of fine particles in the sediment, as clay and silt were mostly in the form of large aggregates. Thus, a new set of equations was developed for these soils, where small aggregates were defined as particles with sizes between 53 μm and 250 μm and large aggregates as particles>250 μm. With r(2) values between 0.47 and 0.98, the new equations provided better estimates for primary sand and large aggregates. The aggregate's composition was also well predicted, especially the silt and clay fractions in the large aggregates from uncultivated soils (r(2)=0.63 and 0.83, respectively) and the fractions of silt in the small aggregates (r(2)=0.84) and clay in the large aggregates (r(2)=0.78) from fire-affected soils. Overall, these new equations proved to be better predictors for the sediment and aggregate's composition in uncultivated and fire-affected soils, and they reduce the error when estimating soil loss in natural landscapes. Copyright © 2015 Elsevier B.V. All rights reserved.
Nondestructive Evaluation of Large Scale Composite Components.
1988-01-01
primary aircraft structure. Composites are now used in critical wing and fuselage...but are still very fuctional . 28 .",’ , ’. --’. .- % .’’-,,’ . ’-.’. .- ",-’,2" - ’-.% ’_’ .’- ’" -,’ ,.,’ . ,- .’ %’%’%’% % -"%"% " "% % % ", ’ r...geometry does not permit the MAUS to scan. For those flaws which were difficult to detect or which we were not able to detect, the primary
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Starnes, James H., Jr.; Shuart, Mark J.
2001-01-01
The results of an assessment of the state-of-the-art in the design and manufacturing of large composite structures are described. The focus of the assessment is on the use of polymeric matrix composite materials for large airframe structural components. such as those in commercial and military aircraft and space transportation vehicles. Applications of composite materials for large commercial transport aircraft, general aviation aircraft, rotorcraft, military aircraft. and unmanned rocket launch vehicles are reviewed. The results of the assessment of the state-of-the-art include a summary of lessons learned, examples of current practice, and an assessment of advanced technologies under development. The results of the assessment conclude with an evaluation of the future technology challenges associated with applications of composite materials to the primary structures of commercial transport aircraft and advanced space transportation vehicles.
Requisite to Great Undertakings: Impacts of Self-Efficacy Beliefs in College Composition Instructors
ERIC Educational Resources Information Center
Sanchez, Kendall
2017-01-01
This dissertation addresses the problem of teacher self-efficacy theory being largely absent as a concept of study in composition studies, despite the field maintaining a primary focus on issues like teacher development and effective composition pedagogy. This absence of the study of teacher self-efficacy, defined as "a [teacher's] judgment…
Progress in manufacturing large primary aircraft structures using the stitching/RTM process
NASA Technical Reports Server (NTRS)
Markus, Alan; Thrash, Patrick; Rohwer, Kim
1993-01-01
The Douglas Aircraft/NASA Act contract has been focused over the past three years at developing a materials, manufacturing, and cost base for stitched/Resin Transfer Molded (RTM) composites. The goal of the program is to develop RTM and stitching technology to provide enabling technology for application of these materials in primary aircraft structure with a high degree of confidence. Presented in this paper will be the progress to date in the area of manufacturing and associated cost values of stitched/RTM composites.
Solomon, Daniel H; Katz, Jeffrey N; Finkelstein, Joel S; Polinski, Jennifer M; Stedman, Margaret; Brookhart, M Alan; Arnold, Marilyn; Gauthier, Suzanne; Avorn, Jerry
2007-11-01
We conducted a randomized controlled trial within the setting of a large drug benefit plan for Medicare beneficiaries. Primary care physicians and their patients were randomized to usual care, patient intervention only, physician intervention only, or both interventions. There was no difference in the probability of the primary composite endpoint (BMD test or osteoporosis medication) or in either of its components comparing the combined intervention group with usual care (risk ratio = 1.04; 95% CI, 0.85-1.26). Fractures from osteoporosis are associated with substantial morbidity, mortality, and cost. However, only a minority of at-risk older adults receives screening and/or treatment for this condition. We evaluated the effect of educational interventions for osteoporosis targeting at-risk patients, primary care physicians, or both. We conducted a randomized controlled trial within the setting of a large drug benefit plan for Medicare beneficiaries. Primary care physicians and their patients were randomized to usual care, patient intervention only, physician intervention only, or both interventions. The at-risk patients were women >or=65 yr of age, men and women >or=65 yr of age with a prior fracture, and men and women >or=65 yr of age who used oral glucocorticoids. The primary outcome studied was a composite of either undergoing a BMD test or initiating a medication used for osteoporosis. The secondary outcome was a hip, humerus, spine, or wrist fracture. We randomized 828 primary care physicians and their 13,455 eligible at-risk patients into four study arms. Physician and patient characteristics were very similar across all four groups. Across all four groups, the rate of the composite outcome was 10.3 per 100 person-years and did not differ between the usual care and the combined intervention groups (p = 0.5). In adjusted Cox proportional hazards models, there was no difference in the probability of the primary composite endpoint comparing the combined intervention group with usual care (risk ratio = 1.04; 95% CI, 0.85-1.26). There was also no difference in either of the components of the composite endpoint. The probability of fracture during follow-up was 4.2 per 100 person-years and did not differ by treatment assignment (p = 0.9). In this trial, a relatively brief program of patient and/or physician education did not work to improve the management of osteoporosis. More intensive efforts should be considered for future quality improvement programs for osteoporosis.
Fabrication of the V-22 composite AFT fuselage using automated fiber placement
NASA Technical Reports Server (NTRS)
Pinckney, Robert L.
1991-01-01
Boeing Helicopters and its subcontractors are working together under an Air Force Wright Research and Development Center (WRDC)-Manufacturing-Technology Large-Composite Primary Structure Fuselage program to develop and demonstrate new manufacturing techniques for producing composite fuselage skin and frame structures. Three sets of aft fuselage skins and frames have been fabricated and assembled, and substantial reductions in fabrication and assembly costs demonstrated.
Load Diffusion in Composite Structures
NASA Technical Reports Server (NTRS)
Horgan, Cornelius O.; Simmonds, J. G.
2000-01-01
This research has been concerned with load diffusion in composite structures. Fundamental solid mechanics studies were carried out to provide a basis for assessing the complicated modeling necessary for large scale structures used by NASA. An understanding of the fundamental mechanisms of load diffusion in composite subcomponents is essential in developing primary composite structures. Analytical models of load diffusion behavior are extremely valuable in building an intuitive base for developing refined modeling strategies and assessing results from finite element analyses. The decay behavior of stresses and other field quantities provides a significant aid towards this process. The results are also amendable to parameter study with a large parameter space and should be useful in structural tailoring studies.
Anomalous swelling behavior of FM 5055 carbon phenolic composite
NASA Technical Reports Server (NTRS)
Stokes, E. H.
1992-01-01
The swelling response of a typical carbon phenolic composite was measured in the three primary material directions. The data obtained sugrest that at low and high relative humidities the incremental increase in moisture absorption can be attributed primarily to the resin. At intermediate relative humidities, the water is moving largely into the carbonized fibers.
NASA Technical Reports Server (NTRS)
Sandifer, J. P.
1983-01-01
Technical problems associated with fuel containment and damage tolerance of composite material wings for transport aircraft were identified. The major tasks are the following: (1) the preliminary design of damage tolerant wing surface using composite materials; (2) the evaluation of fuel sealing and lightning protection methods for a composite material wing; and (3) an experimental investigation of the damage tolerant characteristics of toughened resin graphite/epoxy materials. The test results, the test techniques, and the test data are presented.
Thermal expansion of composites: Methods and results. [large space structures
NASA Technical Reports Server (NTRS)
Bowles, D. E.; Tenney, D. R.
1981-01-01
The factors controlling the dimensional stability of various components of large space structures were investigated. Cyclic, thermal and mechanical loading were identified as the primary controlling factors of the dimensional stability of cables. For organic matrix composites, such as graphite-epoxy, it was found that these factors include moisture desorption in the space environment, thermal expansion as the structure moves from the sunlight to shadow in its orbit, mechanical loading, and microyielding of the material caused by microcracking of the matrix material. The major focus was placed on the thermal expansion of composites and in particular the development and testing of a method for its measurement.
Health-related quality-of-life as co-primary endpoint in randomized clinical trials in oncology.
Fiteni, Frédéric; Pam, Alhousseiny; Anota, Amélie; Vernerey, Dewi; Paget-Bailly, Sophie; Westeel, Virginie; Bonnetain, Franck
2015-01-01
Overall survival (OS) has been considered as the most relevant primary endpoint but trials using OS often require large numbers of patients and long-term follow-up. Therefore composite endpoints, which are assessed earlier, are frequently used as primary endpoint but suffer from important limitations specially a lack of validation as surrogate of OS. Therefore, Health-related quality of life (HRQoL) could be considered as an outcome to judge efficacy of a treatment. An alternative approach would be to combine HRQoL with composite endpoints as co-primary endpoint to ensure a clinical benefit for patients of a new therapy. The decision rules of such design, the procedure to control the Type I error and the determination of sample size remain questions to debate. Here, we discusses HRQoL as co-primary endpoints in randomized clinical trials in oncology and provide some solutions to promote such design.
Size-velocity distribution of large ejecta fragments
NASA Technical Reports Server (NTRS)
Vickery, A. M.
1986-01-01
The characteristics of three primary extraterrestrial craters and the associated craters were examined to generate a size-velocity distribution for large ejecta fragments. The lunar craters Copernicus and Aristillus and the Martian crater Dv on Olympus Mons were used. Attention was focused on the radial distances between the primary and secondary crater centers and the diameters of the secondaries. The primary craters selected are all relatively young, which avoided contamination of the data from secondaries from other primaries. Attempts were made to account for the speed of the hypervelocity impacts and the elemental compositions of the impactors. An apparent velocity cutoff of about 1 km/sec was observed for the secondaries, which implies that no meteoroid impacts can accelerate ejecta to escape velocities from the moon or Mars.
Narayanasamy, Ganesh; Avila, Gabrielle; Mavroidis, Panayiotis; Papanikolaou, Niko; Gutierrez, Alonso; Baacke, Diana; Shi, Zheng; Stathakis, Sotirios
2016-09-01
Prostate cases commonly consist of dual phase planning with a primary plan followed by a boost. Traditionally, the boost phase is planned independently from the primary plan with the risk of generating hot or cold spots in the composite plan. Alternatively, boost phase can be planned taking into account the primary dose. The aim of this study was to compare the composite plans from independently and dependently planned boosts using dosimetric and radiobiological metrics. Ten consecutive prostate patients previously treated at our institution were used to conduct this study on the Raystation™ 4.0 treatment planning system. For each patient, two composite plans were developed: a primary plan with an independently planned boost and a primary plan with a dependently planned boost phase. The primary plan was prescribed to 54 Gy in 30 fractions to the primary planning target volume (PTV1) which includes prostate and seminal vesicles, while the boost phases were prescribed to 24 Gy in 12 fractions to the boost planning target volume (PTV2) that targets only the prostate. PTV coverage, max dose, median dose, target conformity, dose homogeneity, dose to OARs, and probabilities of benefit, injury, and complication-free tumor control (P+) were compared. Statistical significance was tested using either a 2-tailed Student's t-test or Wilcoxon signed-rank test. Dosimetrically, the composite plan with dependent boost phase exhibited smaller hotspots, lower maximum dose to the target without any significant change to normal tissue dose. Radiobiologically, for all but one patient, the percent difference in the P+ values between the two methods was not significant. A large percent difference in P+ value could be attributed to an inferior primary plan. The benefits of considering the dose in primary plan while planning the boost is not significant unless a poor primary plan was achieved.
NASA Technical Reports Server (NTRS)
Frank, D. R.; Huss, G. R.; Nagashima, K.; Zolensky, M. E.; Le, L.
2017-01-01
CI chondrites are thought to approximate the bulk solar system composition since they closely match the composition of the solar photosphere. Thus, chemical differences between a planetary object and the CI composition are interpreted to result from fractionations of a CI starting composition. This interpretation is often made despite the secondary mineralogy of CI chondrites, which resulted from low-T aqueous alteration on the parent asteroid(s). Prevalent alteration and the relatively large uncertainties in the photospheric abundances (approx. +/-5-10%) permit chemical fractionation of CI chondrites from the bulk solar system, if primary chondrules and/or CAIs have been altered beyond recognition. Isolated olivine and pyroxene grains that range from approx. 5 microns to several hundred microns have been reported in CI chondrites, and acid residues of Orgueil were found to contain refractory oxides with oxygen isotopic compositions matching CAIs. However, the only CAI found to be unambiguously preserved in a CI chondrite was identified in Ivuna. The Ivuna CAI's primary mineralogy, small size (approx.170 microns), and fine-grained igneous texture classify it as a compact type A. Aqueous alteration infiltrated large portions of the CAI, but other regions remain pristine. The major primary phases are melilite (Ak 14-36 ), grossmanite (up to 20.8 wt.% TiO 2 ), and spinel. Both melilite and grossmanite have igneous textures and zoning patterns. An accretionary rim consists primarily of olivine (Fa 2-17 ) and low-Ca pyroxene (Fs 2-10 ), which could be either surviving CI2 material or a third lithology.
Impact of nuclear transmutations on the primary damage production: The example of Ni based steels
NASA Astrophysics Data System (ADS)
Luneville, Laurence; Sublet, Jean Christphe; Simeone, David
2018-07-01
The recent nuclear evaluations describe more accurately the elastic and inelastic neutron-atoms interactions and allow calculating more realistically primary damage induced by nuclear reactions. Even if these calculations do not take into account relaxation processes occurring at the end of the displacement cascade (calculations are performed within the Binary Collision Approximation), they can accurately describe primary and recoil spectra in different reactors opening the door for simulating aging of nuclear materials with Ion Beam facilities. Since neutrons are only sensitive to isotopes, these spectra must be calculated weighting isotope spectra by the isotopic composition of materials under investigation. To highlight such a point, primary damage are calculated in pure Ni exhibiting a meta-stable isotope produced under neutron flux by inelastic neutron-isotope processes. These calculations clearly point out that the instantaneous primary damage production, the displacement per atom rate (dpa/s), responsible for the micro-structure evolution, strongly depends on the 59N i isotopic fractions closely related to the inelastic neutron isotope processes. Since the isotopic composition of the meta-stable isotope vanishes for large fluences, the long term impact of this isotope does not largely modify drastically the total dpa number in Ni based steels materials irradiate in nuclear plants.
Jansen, Tessa; Zwaanswijk, Marieke; Hek, Karin; de Bakker, Dinny
2015-05-06
In the Netherlands, primary out-of-hours (OOH) care is provided by large scale General Practitioner (GP) cooperatives. GP cooperatives can be contacted by patients living in the area surrounding the GP cooperative (catchment area) at hours when the patient's own general practice is closed. The frequency of primary OOH care use substantially differs between GP cooperative catchment areas. To enable a better match between supply and demand of OOH services, understanding of the factors associated with primary OOH care use is essential. The present study evaluated the contribution of sociodemographic composition of the neighbourhood in explaining differences in primary OOH care use between GP cooperative catchment areas. Data about patients' contacts with primary OOH services (n = 1,668,047) were derived from routine electronic health records of 21 GP cooperatives participating in the NIVEL Primary Care Database in 2012. The study sample is representative for the Dutch population (for age and gender). Data were matched with sociodemographic characteristics (e.g. gender, age, low-income status, degree of urbanisation) on postcode level. Multilevel linear regression models included postcode level (first level), nested within GP cooperative catchment areas (second level). We investigated whether contacts in primary OOH care were associated with neighbourhood sociodemographic characteristics. The demand of primary OOH care was significantly higher in neighbourhoods with more women, low-income households, non-Western immigrants, neighbourhoods with a higher degree of urbanisation, and low neighbourhood socioeconomic status. Conversely, lower demand was associated with neighbourhoods with more 5 to 24 year old inhabitants. Sociodemographic neighbourhood characteristics explained a large part of the variation between GP cooperatives (R-squared ranging from 8% to 52%). Nevertheless, the multilevel models also showed that a considerable amount of variation in demand between GP cooperatives remained unexplained by sociodemographic characteristics, particularly regarding high-urgency contacts. Although part of the variation between GP cooperatives could not be attributed to neighbourhood characteristics, the sociodemographic composition of the neighbourhood is a fair predictor of the demand of primary OOH care. Accordingly, this study provides a useful starting point for an improved planning of the supply of primary OOH care.
NASA Technical Reports Server (NTRS)
Griffin, Charles F.; James, Arthur M.
1985-01-01
The damage-tolerance characteristics of high strain-to-failure graphite fibers and toughened resins were evaluated. Test results show that conventional fuel tank sealing techniques are applicable to composite structures. Techniques were developed to prevent fuel leaks due to low-energy impact damage. For wing panels subjected to swept stroke lightning strikes, a surface protection of graphite/aluminum wire fabric and a fastener treatment proved effective in eliminating internal sparking and reducing structural damage. The technology features developed were incorporated and demonstrated in a test panel designed to meet the strength, stiffness, and damage tolerance requirements of a large commercial transport aircraft. The panel test results exceeded design requirements for all test conditions. Wing surfaces constructed with composites offer large weight savings if design allowable strains for compression can be increased from current levels.
Design Study for the Asteroid Redirect Vehicle (ARV) Composite Primary Bulkhead
NASA Technical Reports Server (NTRS)
Cressman, Thomas O.; Paddock, David A.
2017-01-01
A design study was undertaken of a carbon fiber primary bulkhead for a large solar electric propulsion (SEP) spacecraft. The bulkhead design, supporting up to 16 t of xenon propellant, progressed from one consisting of many simple parts with many complex joints, to one consisting of a few complex parts with a few simple joints. The unique capabilities of composites led to a topology that transitioned loads from bending to in-plane tension and shear, with low part count. This significantly improved bulkhead manufacturability, cost, and mass. The stiffness-driven structure utilized high-modulus M55J fiber unidirectional prepregs. A full-scale engineering demonstration unit (EDU) of the concept was used to demonstrate manufacturability of the concept. Actual labor data was obtained, which could be extrapolated to a full bulkhead. The effort demonstrated the practicality of using high-modulus fiber (HMF) composites for unique shape topologies that minimize mass and cost. The lessons are applicable to primary and secondary aerospace structures that are stiffness driven.
Double-trace flows and the swampland
NASA Astrophysics Data System (ADS)
Giombi, Simone; Perlmutter, Eric
2018-03-01
We explore the idea that large N, non-supersymmetric conformal field theories with a parametrically large gap to higher spin single-trace operators may be obtained as infrared fixed points of relevant double-trace deformations of superconformal field theories. After recalling the AdS interpretation and some potential pathologies of such flows, we introduce a concrete example that appears to avoid them: the ABJM theory at finite k, deformed by \\int O^2, where O is the superconformal primary in the stress-tensor multiplet. We address its relation to recent conjectures based on weak gravity bounds, and discuss the prospects for a wider class of similarly viable flows. Next, we proceed to analyze the spectrum and correlation functions of the putative IR CFT, to leading non-trivial order in 1 /N. This includes analytic computations of the change under double-trace flow of connected four-point functions of ABJM superconformal primaries; and of the IR anomalous dimensions of infinite classes of double-trace composite operators. These would be the first analytic results for anomalous dimensions of finite-spin composite operators in any large N CFT3 with an Einstein gravity dual.
Dobson, P.F.; O'Neil, J.R.
1987-01-01
Measurements of stable isotope compositions and water contents of boninite series volcanic rocks from the island of Chichi-jima, Bonin Islands, Japan, confirm that a large amount (1.6-2.4 wt.%) of primary water was present in these unusual magmas. An enrichment of 0.6??? in 18O during differentiation is explained by crystallization of 18O-depleted mafic phases. Silicic glasses have elevated ??18O values and relatively low ??D values indicating that they were modified by low-temperature alteration and hydration processes. Mafic glasses, on the other hand, have for the most part retained their primary isotopic signatures since Eocene time. Primary ??D values of -53 for boninite glasses are higher than those of MORB and suggest that the water was derived from subducted oceanic lithosphere. ?? 1987.
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Elderidge, Jeffrey I.
1998-01-01
Celsian matrix composites reinforced with Hi-Nicalon fibers, precoated with a dual layer of BN/SiC by chemical vapor deposition in two separate batches, were fabricated. Mechanical properties of the composites were measured in three-point flexure. Despite supposedly identical processing, the composite panels fabricated with fibers coated in two batches exhibited substantially different mechanical behavior. The first matrix cracking stresses (sigma(sub mc)) of the composites reinforced with fibers coated in batch 1 and batch 2 were 436 and 122 MPa, respectively. This large difference in sigma(sub mc) was attributed to differences in fiber sliding stresses(tau(sub friction)), 121.2+/-48.7 and 10.4+/-3.1 MPa, respectively, for the two composites as determined by the fiber push-in method. Such a large difference in values of tau(sub friction) for the two composites was found to be due to the difference in the compositions of the interface coatings. Scanning Auger microprobe analysis revealed the presence of carbon layers between the fiber and BN, and also between the BN and SiC coatings in the composite showing lower tau(sub friction). This resulted in lower sigma(sub mc) in agreement with the ACK theory. The ultimate strengths of the two composites, 904 and 759 MPa, depended mainly on the fiber volume fraction and were not significantly effected by tau(sub friction) values, as expected. The poor reproducibility of the fiber coating composition between the two batches was judged to be the primary source of the large differences in performance of the two composites.
Oxygen isotope composition of mafic magmas at Vesuvius
NASA Astrophysics Data System (ADS)
Dallai, L.; Cioni, R.; Boschi, C.; D'Oriano, C.
2009-12-01
The oxygen isotope composition of olivine and clinopyroxene from four plinian (AD 79 Pompeii, 3960 BP Avellino), subplinian (AD 472 Pollena) and violent strombolian (Middle Age activity) eruptions were measured to constrain the nature and evolution of the primary magmas of the last 4000 years of Mt. Vesuvius activity. A large set of mm-sized crystals was accurately separated from selected juvenile material of the four eruptions. Crystals were analyzed for their major and trace element compositions (EPMA, Laser Ablation ICP-MS), and for 18O/16O ratios. As oxygen isotope composition of uncontaminated mantle rocks on world-wide scale is well constrained (δ18Oolivine = 5.2 ± 0.3; δ18Ocpx = 5.6 ± 0.3 ‰), the measured values can be conveniently used to monitor the effects of assimilation/contamination of crustal rocks in the evolution of the primary magmas. Instead, typically uncontaminated mantle values are hardly recovered in Italian Quaternary magmas, mostly due to the widespread occurrence of crustal contamination of the primary magmas during their ascent to the surface (e.g. Alban Hills, Ernici Mts., and Aeolian Islands). Low δ18O values have been measured in olivine from Pompeii eruption (δ18Oolivine = 5.54 ± 0.03‰), whereas higher O-compositions are recorded in mafic minerals from pumices or scoria of the other three eruptions. Measured olivine and clinopyroxene share quite homogeneous chemical compositions (Olivine Fo 85-90 ; Diopside En 45-48, respectively), and represent phases crystallized in near primary mafic magmas, as also constrained by their trace element compositions. Data on melt inclusions hosted in crystals of these compositions have been largely collected in the past demonstrating that they crystallized from mafic melt, basaltic to tephritic in composition. Published data on volatile content of these melt inclusions reveal the coexistence of dissolved water and carbon dioxide, and a minimum trapping pressure around 200-300 MPa, suggesting that crystal growth possibly occurred during magma ascent from the source region or in a shallow reservoir at about 8-10 km depth. Recently, experimental data have suggested massive carbonate assimilation (up to about 20%) to derive potassic alkali magmas from trachybasaltic melts. Accordingly, the δ18O variability and the trace element contents of the studied minerals suggest possible contamination of primary melts by an O-isotope enriched, REE-poor contaminant like the limestone of Vesuvius basement. The δ18Oolivine and δ18Ocpx of the studied minerals define variable degrees of carbonate assimilation and magma crystallization for the different eruptions, and possibly within the same eruption, and show evidence of oxygen isotope equilibrium at high temperature. However, energy-constrained AFC model suggest that carbonate contamination was limited. On the basis of our data, we suggest that interaction between magma and a fluxing, decarbonation-derived CO2 fluid may be partly accounted for the measured O-isotope compositions.
Stress Free Temperature Testing and Residual Stress Calculations on Out-of-Autoclave Composites
NASA Technical Reports Server (NTRS)
Cox, Sarah; Tate, LaNetra C.; Danley, Susan; Sampson, Jeff; Taylor, Brian; Miller, Sandi
2012-01-01
Future launch vehicles will require the incorporation large composite parts that will make up primary and secondary components of the vehicle. NASA has explored the feasibility of manufacturing these large components using Out-of-Autoclave impregnated carbon fiber composite systems through many composites development projects. Most recently, the Composites for Exploration Project has been looking at the development of a 10 meter diameter fairing structure, similar in size to what will be required for a heavy launch vehicle. The development of new material systems requires the investigation of the material properties and the stress in the parts. Residual stress is an important factor to incorporate when modeling the stresses that a part is undergoing. Testing was performed to verify the stress free temperature with two-ply asymmetric panels. A comparison was done between three newly developed out of autoclave IM7 /Bismalieimide (BMI) systems. This paper presents the testing results and the analysis performed to determine the residual stress of the materials.
Stress Free Temperature Testing and Calculations on Out-of-Autoclave Composites
NASA Technical Reports Server (NTRS)
Cox, Sarah B.; Tate, LeNetra C.; Danley, Susan E.; Sampson, Jeffrey W.; Taylor, Brian J.; Sutter, James K.; Miller, Sandi G.
2013-01-01
Future launch vehicles will require the incorporation of large composite parts that will make up primary and secondary components of the vehicle. NASA has explored the feasibility of manufacturing these large components using Out-of-Autoclave impregnated carbon fiber composite systems through many composites development projects. Most recently, the Composites for Exploration Project has been looking at the development of a 10 meter diameter fairing structure, similar in size to what will be required for a heavy launch vehicle. The development of new material systems requires the investigation of the material properties and the stress in the parts. Residual stress is an important factor to incorporate when modeling the stresses that a part is undergoing. Testing was performed to verify the stress free temperature with two-ply asymmetric panels. A comparison was done between three newly developed out of autoclave IM7/Bismaleimide (BMI) systems. This paper presents the testing results and the analysis performed to determine the stress free temperature of the materials
NASA Technical Reports Server (NTRS)
Bunin, Bruce L.
1985-01-01
A program was conducted to develop the technology for critical structural joints in composite wing structure that meets all the design requirements of a 1990 commercial transport aircraft. The results of four large composite multirow bolted joint tests are presented. The tests were conducted to demonstrate the technology for critical joints in highly loaded composite structure and to verify the analytical methods that were developed throughout the program. The test consisted of a wing skin-stringer transition specimen representing a stringer runout and skin splice on the wing lower surface at the side of the fuselage attachment. All tests were static tension tests. The composite material was Toray T-300 fiber with Ciba-Geigy 914 resin in 10 mil tape form. The splice members were metallic, using combinations of aluminum and titanium. Discussions are given of the test article, instrumentation, test setup, test procedures, and test results for each of the four specimens. Some of the analytical predictions are also included.
Bartrons, Mireia; Grimalt, Joan O.; de Mendoza, Guillermo; Catalan, Jordi
2012-01-01
Organohalogen compounds are some of the most notorious persistent pollutants disturbing the Earth biosphere. Although human-made, these chemicals are not completely alien to living systems. A large number of natural organohalogens, part of the secondary metabolism, are involved in chemical trophic interactions. Surprisingly, the relationship between organisms’ trophic position and synthetic organohalogen biotransformation capability has not been investigated. We studied the case for polybromodiphenyl ethers (PBDE), a group of flame-retardants of widespread use in the recent years, in aquatic food webs from remote mountain lakes. These relatively simple ecosystems only receive pollution by atmospheric transport. A large predominance of the PBDE congener currently in use in Europe, BDE-209, largely dominated the PBDE composition of the basal resources of the food web. In contrast, primary consumers (herbivores and detritivores) showed a low proportion of BDE-209, and dominance of several less brominated congeners (e.g. BDE-100, BDE47). Secondary consumers (predators) showed large biomagnification of BDE-209 compare to other congeners. Finally, top predator fish characterized by low total PBDE concentrations. Examination of the bromine stable isotopic composition indicates that primary consumers showed higher PBDE biotransformation capability than secondary consumers. We suggest that the evolutionary response of primary consumers to feeding deterrents would have pre-adapted them for PBDE biotransformation. The observed few exceptions, some insect taxa, can be interpreted in the light of the trophic history of the evolutionary lineage of the organisms. Bromine isotopic composition in fish indicates that low PBDE values are due to not only biotransformation but also to some other process likely related to transport. Our finding illustrates that organohalogen compounds may strongly disturb ecosystems even at low concentrations, since the species lacking or having scarce biotransformation capability may be selectively more exposed to these halogenated hydrophobic semi-volatile organic pollutants due to their high bioaccumulation potential. PMID:22848624
Primary production in a tropical large lake: the role of phytoplankton composition.
Darchambeau, F; Sarmento, H; Descy, J-P
2014-03-01
Phytoplankton biomass and primary production in tropical large lakes vary at different time scales, from seasons to centuries. We provide a dataset made of 7 consecutive years of phytoplankton biomass and production in Lake Kivu (Eastern Africa). From 2002 to 2008, bi-weekly samplings were performed in a pelagic site in order to quantify phytoplankton composition and biomass, using marker pigments determined by HPLC. Primary production rates were estimated by 96 in situ (14)C incubations. A principal component analysis showed that the main environmental gradient was linked to a seasonal variation of the phytoplankton assemblage, with a clear separation between diatoms during the dry season and cyanobacteria during the rainy season. A rather wide range of the maximum specific photosynthetic rate (PBm) was found, ranging between 1.15 and 7.21 g carbong(-1)chlorophyll ah(-1), and was best predicted by a regression model using phytoplankton composition as an explanatory variable. The irradiance at the onset of light saturation (Ik) ranged between 91 and 752 μE m(-2)s(-1) and was linearly correlated with the mean irradiance in the mixed layer. The inter-annual variability of phytoplankton biomass and production was high, ranging from 53 to 100 mg chlorophyll am(-2) (annual mean) and from 143 to 278 g carbon m(-2)y(-1), respectively. The degree of seasonal mixing determined annual production, demonstrating the sensitivity of tropical lakes to climate variability. A review of primary production of other African great lakes allows situating Lake Kivu productivity in the same range as that of lakes Tanganyika and Malawi, even if mean phytoplankton biomass was higher in Lake Kivu. Copyright © 2013 Elsevier B.V. All rights reserved.
Belfi, Barbara; Haelermans, Carla; De Fraine, Bieke
2016-12-01
The effects of school socio-economic composition on student achievement growth trajectories have been a hot topic of discussion among politicians around the world for many years. However, the bulk of research investigating school socio-economic composition effects has been limited in important ways. In an attempt to overcome the flaws in earlier research on school socio-economic composition effects, this study used data from a large sample, followed students throughout primary education, addressed selection bias problems, identified the grade(s) in which school socio-economic composition mattered the most, and studied the differential effects of school socio-economic composition by individual socio-economic status (SES). In a longitudinal design with seven occasions of data collection, the authors drew on a sample of N = 3,619 students (age at T1 about 5 years, age at T7 about 12 years) from 151 primary schools in Flanders (the northern part of Belgium). Students in low-, medium-, high-, and mixed-SES schools were matched using propensity scores. To compare students' achievement growth trajectories in the different school compositions, multilevel regression modelling with repeated measurements was applied. The results showed that students had more positive achievement growth in high-SES as compared to low-SES and mixed-SES schools. In two of the three comparisons, students in mixed-SES schools showed the lowest math development. The negative effects of mixed-SES schools on math achievement growth were the strongest for high-SES students. Our findings contribute to the ongoing discussion on the effects of school socio-economic composition on student achievement growth. © 2016 The British Psychological Society.
NASA Technical Reports Server (NTRS)
Townsend, Lawrence W.; Nealy, John E.; Wilson, John W.
1988-01-01
Preliminary estimates of radiation exposures for manned interplanetary missions resulting from anomalously large solar flare events are presented. The calculations use integral particle fluences for the February 1956, November 1960, and August 1972 events as inputs into the Langley Research Center nucleon transport code BRYNTRN. This deterministic code transports primary and secondary nucleons (protons and neutrons) through any number of layers of target material of arbitrary thickness and composition. Contributions from target nucleus fragmentation and recoil are also included. Estimates of 5 cm depth doses and dose equivalents in tissue are presented behind various thicknesses of aluminum, water, and composite aluminum/water shields for each of the three solar flare events.
Liu, Huiying; Mi, Zhaorong; Lin, Li; Wang, Yonghui; Zhang, Zhenhua; Zhang, Fawei; Wang, Hao; Liu, Lingli; Zhu, Biao; Cao, Guangmin; Zhao, Xinquan; Sanders, Nathan J; Classen, Aimée T; Reich, Peter B; He, Jin-Sheng
2018-04-17
The structure and function of alpine grassland ecosystems, including their extensive soil carbon stocks, are largely shaped by temperature. The Tibetan Plateau in particular has experienced significant warming over the past 50 y, and this warming trend is projected to intensify in the future. Such climate change will likely alter plant species composition and net primary production (NPP). Here we combined 32 y of observations and monitoring with a manipulative experiment of temperature and precipitation to explore the effects of changing climate on plant community structure and ecosystem function. First, long-term climate warming from 1983 to 2014, which occurred without systematic changes in precipitation, led to higher grass abundance and lower sedge abundance, but did not affect aboveground NPP. Second, an experimental warming experiment conducted over 4 y had no effects on any aspect of NPP, whereas drought manipulation (reducing precipitation by 50%), shifted NPP allocation belowground without affecting total NPP. Third, both experimental warming and drought treatments, supported by a meta-analysis at nine sites across the plateau, increased grass abundance at the expense of biomass of sedges and forbs. This shift in functional group composition led to deeper root systems, which may have enabled plant communities to acquire more water and thus stabilize ecosystem primary production even with a changing climate. Overall, our study demonstrates that shifting plant species composition in response to climate change may have stabilized primary production in this high-elevation ecosystem, but it also caused a shift from aboveground to belowground productivity.
Feng, Yangju; Zhang, Wencong; Zeng, Li; Cui, Guorong; Chen, Wenzhen
2017-01-01
In this paper, the microstructure, the room-temperature and high-temperature tensile mechanical properties of monolithic TA15 alloy and TiB whisker-reinforced TA15 titanium matrix composites (TiBw/TA15) fabricated by vacuum hot-pressing sintering were investigated. The microstructure results showed that there were no obvious differences in the microstructure between monolithic TA15 alloy and TiBw/TA15 composites, except whether or not the grain boundaries contained TiBw. After sintering, the matrix microstructure presented a typical Widmanstätten structure and the size of primary β grain was consistent with the size of spherical TA15 titanium metallic powders. This result demonstrated that TiBw was not the only factor limiting grain coarsening of the primary β grain. Moreover, the grain coarsening of α colonies was obvious, and high-angle grain boundaries (HAGBs) were distributed within the primary β grain. In addition, TiBw played an important role in the microstructure evolution. In the composites, TiBw were randomly distributed in the matrix and surrounded by a large number of low-angle grain boundaries (LAGBs). Globularization of α phase occurred prior, near the TiBw region, because TiBw provided the nucleation site for the equiaxed α phase. The room-temperature and high-temperature tensile results showed that TiBw distributed at the primary β grain boundaries can strengthen the grain boundary, but reduce the connectivity of the matrix. Therefore, compared to the monolithic TA15 alloy fabricated by the same process, the tensile strength of the composites increased, and the tensile elongation decreased. Moreover, with the addition of TiBw, the fracture mechanism was changed to a mixture of brittle fracture and ductile failure (composites) from ductile failure (monolithic TA15 alloy). The fracture surfaces of TiBw/TA15 composites were the grain boundaries of the primary β grain where the majority of TiB whiskers distributed, i.e., the surfaces of the spherical TA15 titanium metallic powders. PMID:28772786
Feng, Yangju; Zhang, Wencong; Zeng, Li; Cui, Guorong; Chen, Wenzhen
2017-04-18
In this paper, the microstructure, the room-temperature and high-temperature tensile mechanical properties of monolithic TA15 alloy and TiB whisker-reinforced TA15 titanium matrix composites (TiBw/TA15) fabricated by vacuum hot-pressing sintering were investigated. The microstructure results showed that there were no obvious differences in the microstructure between monolithic TA15 alloy and TiBw/TA15 composites, except whether or not the grain boundaries contained TiBw. After sintering, the matrix microstructure presented a typical Widmanstätten structure and the size of primary β grain was consistent with the size of spherical TA15 titanium metallic powders. This result demonstrated that TiBw was not the only factor limiting grain coarsening of the primary β grain. Moreover, the grain coarsening of α colonies was obvious, and high-angle grain boundaries (HAGBs) were distributed within the primary β grain. In addition, TiBw played an important role in the microstructure evolution. In the composites, TiBw were randomly distributed in the matrix and surrounded by a large number of low-angle grain boundaries (LAGBs). Globularization of α phase occurred prior, near the TiBw region, because TiBw provided the nucleation site for the equiaxed α phase. The room-temperature and high-temperature tensile results showed that TiBw distributed at the primary β grain boundaries can strengthen the grain boundary, but reduce the connectivity of the matrix. Therefore, compared to the monolithic TA15 alloy fabricated by the same process, the tensile strength of the composites increased, and the tensile elongation decreased. Moreover, with the addition of TiBw, the fracture mechanism was changed to a mixture of brittle fracture and ductile failure (composites) from ductile failure (monolithic TA15 alloy). The fracture surfaces of TiBw/TA15 composites were the grain boundaries of the primary β grain where the majority of TiB whiskers distributed, i.e., the surfaces of the spherical TA15 titanium metallic powders.
The temperature of primary melts and mantle sources of komatiites, OIBs, MORBs and LIPs
NASA Astrophysics Data System (ADS)
Sobolev, Alexander
2015-04-01
There is general agreement that the convecting mantle, although mostly peridotitic in composition, is compositionally and thermally heterogeneous on different spatial scales. The amount, sizes, temperatures and compositions of these heterogeneities significantly affect mantle dynamics because they may diverge greatly from dominant peridotites in their density and fusibility. Differences in potential temperature and composition of mantle domains affect magma production and cannot be easily distinguished from each other. This has led to radically different interpretations of the melting anomalies that produce ocean-island basalts, large igneous provinces and komatiites: most scientists believe that they originate as hot, deep-sourced mantle plumes; but a small though influential group (e.g. Anderson 2005, Foulger, 2010) propose that they derive from high proportions of easily fusible recycled or delaminated crust, or in the case of komatiites contain large amount of H2O (e.g. Grove & Parman, 2004). The way to resolve this ambiguity is an independent estimation of temperature and composition of mantle sources of various types of magma. In this paper I report application of newly developed olivine-spinel-melt geothermometers based on partition of Al, Cr, Sc and Y for different primitive lavas from mid-ocean ridges, ocean-island basalts, large igneous provinces and komatiites. The results suggest significant variations of crystallization temperature for the same Fo of high magnesium olivines of different types of mantle-derived magmas: from the lowest (down to 1220 degree C) for MORB to the highest (up to over 1500 degree C) for komatiites and Siberian meimechites. These results match predictions from Fe-Mg olivine-melt equilibrium and confirm the relatively low temperature of the mantle source of MORB and higher temperatures in the mantle plumes that produce the OIB of Iceland, Hawaii, Gorgona, Archean komatiites and several LIPs (e.g Siberian and NAMP). The established liquidus temperatures and compositions of primary melts allow estimating potential temperatures and compositions of their mantle sources. The results strongly confirm mantle plume theory and presence of variable amounts of recycled crustal material in the mantle sources. This study has been founded by Russian Science Foundation grant 14-17-00491.
Occupational Stress, Mental Health and Satisfaction in the Canadian Multicultural Workplace
ERIC Educational Resources Information Center
Pasca, Romana; Wagner, Shannon L.
2012-01-01
Workplaces are becoming increasingly multicultural and therefore, include a large variety of employees from more than one ethnicity, nationality, religious and/or cultural background. In the context of this new global economy, Canadian workplace structure and composition has also permanently changed. Consequently, the primary purpose of this…
Compensation of ocean acidification effects in Arctic phytoplankton assemblages
NASA Astrophysics Data System (ADS)
Hoppe, Clara Jule Marie; Wolf, Klara K. E.; Schuback, Nina; Tortell, Philippe D.; Rost, Björn
2018-06-01
The Arctic and subarctic shelf seas, which sustain large fisheries and contribute to global biogeochemical cycling, are particularly sensitive to ongoing ocean acidification (that is, decreasing seawater pH due to anthropogenic CO2 emissions). Yet, little information is available on the effects of ocean acidification on natural phytoplankton assemblages, which are the main primary producers in high-latitude waters. Here we show that coastal Arctic and subarctic primary production is largely insensitive to ocean acidification over a large range of light and temperature levels in different experimental designs. Out of ten CO2-manipulation treatments, significant ocean acidification effects on primary productivity were observed only once (at temperatures below 2 °C), and shifts in the species composition occurred only three times (without correlation to specific experimental conditions). These results imply a high capacity to compensate for environmental variability, which can be understood in light of the environmental history, tolerance ranges and intraspecific diversity of the dominant phytoplankton species.
Telescope Array UHECR composition measurement via stereoscopic fluorescence observation
NASA Astrophysics Data System (ADS)
Stroman, Thomas; Bergman, Douglas; Telescope Array Collaboration
2016-03-01
When entering Earth's atmosphere at ultra-high energies, cosmic rays (UHECRs) produce extensive air showers whose longitudinal development is influenced by the incident primary particle's mass. Each longitudinal shower profile reaches its maximum particle count at an atmospheric slant depth Xmax, and the distributions of observed Xmax values can be compared to those predicted by detailed simulations of the air-shower physics and the detector; accurately simulated compositions that most closely resemble that found in nature will produce the best agreement between predicted and observed Xmax distributions. This is the basis of composition measurement at the Telescope Array experiment, the largest and most sensitive UHECR detector in the northern hemisphere. At the perimeter of a large surface-detector array are three fluorescence telescope stations, whose overlapping apertures enable high-precision reconstruction of Xmax from stereoscopic observation of air-shower longitudinal profiles. We present the distribution of Xmax observed during eight years of operation, and from comparisons with several simulated combinations of composition and high-energy hadronic physics, we show that a low primary mass is favored at E >10 18 . 2 eV.
NASA Astrophysics Data System (ADS)
Olofsson, Malin; Karlberg, Maria; Lage, Sandra; Ploug, Helle
2017-07-01
Maputo Bay is highly affected by large tidal changes and riverine freshwater input with a phytoplankton biomass peak during March each year. Microscopy analysis was used to describe how the phytoplankton community composition was affected by tidal changes, during four in situ incubation experiments. Using stable isotope tracers, new and total primary production, based on nitrate (15NO3-)- and carbon (13C-bicarbonate)-assimilation were estimated. The highest biovolume of phytoplankton (> 2 μm) and also the highest C- and NO3--assimilation rates (nM h-1) were found at spring-high tide. The C:N (mol:mol) ratio of particulate organic matter (POM) varied between 6.0 and 8.2. The proportion of diatoms in the phytoplankton community was higher at spring-high tide as compared to neap-low tide, whereas dinoflagellates were found in a reverse pattern. New production ranged between 6.3% and 10.4% of total primary production and was thus within the range previously reported for tropical regions. The largest proportion of NO3--based new production relative to total production was estimated during calm conditions and spring-high tide. Concordantly, a large fraction of the microplanktonic community covered their N-demand by other sources of N than NO3-.
Carten, R.B.; Geraghty, E.P.; Walker, B.M.
1988-01-01
The Henderson porphyry molybdenum deposit was formed by the superposition of coupled alteration and mineralization events, of varying intensity and size, that were associated with each of at least 11 intrusions. Deposition of molybdenite was accompanied by time-equivalent silicic and potassic alteration. High-temperature alteration and mineralization are spatially and temporally linked to the crystallization of compositionally zoned magma in the apex of stocks. Differences in hydrothermal features associated with each intrusion (e.g., mass of ore, orientation and type of veins, density of veins, and intensity of alteration) correlate with differences in primary igneous features (e.g., composition, texture, morphology, and size). The systematic relations between hydrothermal and magmatic features suggest that primary magma compositions, including volatile contents, largely control the geometry, volume, level of emplacement, and mechanisms of crystallization of stocks. These elements in turn govern the orientations and densities of fractures, which ultimately determine the distribution patterns of hydrothermal alteration and mineralization. -from Authors
Liu, Huiying; Mi, Zhaorong; Lin, Li; Wang, Yonghui; Zhang, Zhenhua; Zhang, Fawei; Wang, Hao; Liu, Lingli; Zhu, Biao; Cao, Guangmin; Zhao, Xinquan; Sanders, Nathan J.; Reich, Peter B.
2018-01-01
The structure and function of alpine grassland ecosystems, including their extensive soil carbon stocks, are largely shaped by temperature. The Tibetan Plateau in particular has experienced significant warming over the past 50 y, and this warming trend is projected to intensify in the future. Such climate change will likely alter plant species composition and net primary production (NPP). Here we combined 32 y of observations and monitoring with a manipulative experiment of temperature and precipitation to explore the effects of changing climate on plant community structure and ecosystem function. First, long-term climate warming from 1983 to 2014, which occurred without systematic changes in precipitation, led to higher grass abundance and lower sedge abundance, but did not affect aboveground NPP. Second, an experimental warming experiment conducted over 4 y had no effects on any aspect of NPP, whereas drought manipulation (reducing precipitation by 50%), shifted NPP allocation belowground without affecting total NPP. Third, both experimental warming and drought treatments, supported by a meta-analysis at nine sites across the plateau, increased grass abundance at the expense of biomass of sedges and forbs. This shift in functional group composition led to deeper root systems, which may have enabled plant communities to acquire more water and thus stabilize ecosystem primary production even with a changing climate. Overall, our study demonstrates that shifting plant species composition in response to climate change may have stabilized primary production in this high-elevation ecosystem, but it also caused a shift from aboveground to belowground productivity. PMID:29666319
Oxygen isotope geochemistry of mafic magmas at Mt. Vesuvius
NASA Astrophysics Data System (ADS)
Dallai, Luigi; Raffaello, Cioni; Chiara, Boschi; Claudia, D'oriano
2010-05-01
Pumice and scoria from different eruptive layers of Mt. Vesuvius volcanic products contain mafic minerals consisting of High-Fo olivine and Diopsidic Pyroxene. These phases were crystallized in unerupted trachibasaltic to tephritic magmas, and were brought to surface by large phonolitic/tephri-phonolitic (e.g. Avellino and Pompei) and/or of tephritic and phono-tephritic (Pollena) eruptions. A large set of these mm-sized crystals was accurately separated from selected juvenile material and measured for their chemical compositions (EPMA, Laser Ablation ICP-MS) and 18O/16O ratios (conventional laser fluorination) to constrain the nature and evolution of the primary magmas at Mt. Vesuvius. Uncontaminated mantle δ18O values are hardly recovered in Italian Quaternary magmas, mostly due to the widespread occurrence of crustal contamination of the primary melts during their ascent to the surface (e.g. Alban Hills, Ernici Mts., and Aeolian Islands). At Mt. Vesuvius, measured olivine and clinopyroxene share quite homogeneous chemical compositions (Olivine Fo 85-90 ; Diopside En 45-48, respectively), and represent phases crystallized in near primary mafic magmas. Trace element composition constrains the near primary nature of the phases. Published data on volatile content of melt inclusions hosted in these crystals reveal the coexistence of dissolved water and carbon dioxide, and a minimum trapping pressure around 200-300 MPa, suggesting that crystal growth occurred in a reservoir at about 8-10 km depth. Recently, experimental data have suggested massive carbonate assimilation (up to about 20%) to derive potassic alkali magmas from trachybasaltic melts. Accordingly, the δ18O variability and the trace element content of the studied minerals suggest possible contamination of primary melts by an O-isotope enriched, REE-poor contaminant like the limestone of Vesuvius basement. Low, nearly primitive δ18O values are observed for olivine from Pompeii eruption, although still above the range of typical mantle minerals. The δ18Oolivine and δ18Ocpxof the minerals from all the studied eruptions define variable degrees of carbonate interaction and magma crystallization for the different eruptions, and possibly within the same eruption, and show evidence of oxygen isotope equilibrium at high temperature. However, energy-constrained AFC model suggest that carbonate assimilation was limited. On the basis of our data, we suggest that interaction between magma and a fluxing, decarbonation-derived CO2 fluid may be partly accounted for the measured O-isotope compositions.
Simons, Theodore R.; Shriner, Susan A.; Farnsworth, George L.
2006-01-01
We compared breeding bird communities and vegetation characteristics at paired point locations in primary (undisturbed) and mature secondary forest (70-100 years old) sites in Great Smoky Mountains National Park, USA to understand how sites logged prior to creation of the park compare to undisturbed sites following 70 years of protection from human disturbance. We found that bird and vegetation communities are currently similar, but retain some differences in species composition. Rank abundance curves for primary and secondary forest bird communities showed very similar patterns of species dominance. Species composition was also similar on the two sites which shared 24 of the 25 most frequently recorded species. Nonetheless, comparisons of density estimates derived from distance sampling showed three bird species were more abundant on primary forest sites and that one bird species was significantly more abundant on secondary forest sites. Notably, comparisons based on raw counts (unadjusted for potential differences in detectability) produced somewhat different results. Analyses of vegetation samples for the paired sites also showed relative similarity, but with some differences between primary and secondary forests. Primary forest sites had more large trees (trees greater than 50 cm diameter at breast height) and late successional species. Primary forest sites had a denser tall shrub layer while secondary forest sites had a denser canopy layer. Nonetheless, tree species richness, basal area of live trees and number of standing snags did not differ between primary and secondary forest sites. Results indicate that breeding bird communities on sites within the park that were logged commercially 70 years ago are currently quite similar to bird communities on sites with no history of human disturbance. Similarities between the bird communities on previously disturbed and undisturbed sites in Great Smoky Mountains National Park may exceed those on more fragmented landscapes because large patches of primary forest, adjacent to commercially logged sites, remained in the park when it was established in 1935. These patches of primary forest may have served as source areas for commercially logged sites.
End Effects and Load Diffusion in Composite Structures
NASA Technical Reports Server (NTRS)
Horgan, Cornelius O.; Ambur, D. (Technical Monitor); Nemeth, M. P. (Technical Monitor)
2002-01-01
The research carried out here builds on our previous NASA supported research on the general topic of edge effects and load diffusion in composite structures. Further fundamental solid mechanics studies were carried out to provide a basis for assessing the complicated modeling necessary for large scale structures used by NASA. An understanding of the fundamental mechanisms of load diffusion in composite subcomponents is essential in developing primary composite structures. Specific problems recently considered were focussed on end effects in sandwich structures and for functionally graded materials. Both linear and nonlinear (geometric and material) problems have been addressed. Our goal is the development of readily applicable design formulas for the decay lengths in terms of non-dimensional material and geometric parameters. Analytical models of load diffusion behavior are extremely valuable in building an intuitive base for developing refined modeling strategies and assessing results from finite element analyses. The decay behavior of stresses and other field quantities provides a significant aid towards this process. The analysis is also amenable to parameter study with a large parameter space and should be useful in structural tailoring studies.
Andrew Gray
2008-01-01
Invasions of nonnative plants into new regions have a tremendous impact on many natural and managed ecosystems affecting their composition and function. Nonnative invasive species have a large economic impact through lost or degraded land costs, and are a primary cause of extinction of native species.
Silvicultural aspects intermediate cuttings
Kenneth L. Carvell
1971-01-01
Correct timing of the first thinning in mixed oak stands depends largely on the composition and condition of the stands and on available markets for small wood products. Delaying first thinnings in high-quality seedling-origin stands until a long, straight, clear bole has developed is of primary importance in assuring high quality of the final crop trees. However, many...
NASA Astrophysics Data System (ADS)
Villemant, B.; Salaün, A.; Staudacher, T.
2009-07-01
Magmas erupted at Piton de la Fournaise volcano since 0.5 Ma, display a large petrological and chemical range (picrites, 2 types of transitional basalts and differentiated magmas) and low amplitude isotopic heterogeneities. The recent activity (1998-2008) includes all magma types except evolved magmas. Matrix glass compositions from quenched lavas and Pélé's hairs of the whole 1998-2008 period define a single differentiation trend from a common basaltic melt (MgO ~ 9%) for the first time identified in the 2007 magmas. More primitive melt compositions (MgO ~ 12.5%) are only evidenced by olivine crystals with high Fo contents (Fo 85-88.4). Evolutions of major and trace element of glass and mineral compositions are consistently modelled by a unique low pressure crystal fractionation process. The composition range of olivine melt inclusions is distinct from that of matrix glass and Pélé's hair and corresponds to equilibrium crystallisation in closed system of melts trapped from the main differentiation series at high temperature. The range of basaltic types at Piton de la Fournaise is the result of large variations in the differentiation degree (10 to 35% crystallisation) of a single primary basaltic melt and the addition in highly variable amounts (up to 50% in picrites) of co-genetic olivine or gabbroic cumulates. These cumulates may represent the shallow and dense bodies identified by seismic tomography and have likely been produced by the repetitive intrusion and differentiation of basalts along Piton de la Fournaise history. Depending on the shallow transfer paths, ascending magmas may disaggregate and incorporate various types of cumulates, explaining all particular features of basaltic magmas and picrites. These results emphasize the exceptional chemical homogeneity of the primary basaltic melt and of the differentiation process involved in volcanic activity of La Réunion hotspot since 0.5 Ma and the increasingly recognised role of melt-wall rock interactions in compositional and petrological diversity of erupted magmas.
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Eldridge, Jeffrey I.
1999-01-01
To evaluate the effects of fiber coatings on composite mechanical properties. unidirectional celsian matrix composites reinforced with uncoated Hi-Nicalon fibers and those precoated with a dual BN/SiC layer in two separate batches (batch 1 and batch 2) were tested in three-point flexure. The uncoated-fiber reinforced composites showed catastrophic failure with strength of 210+/-35 MPa and a flat fracture surface. In contrast, composites reinforced with coated fibers exhibited graceful failure with extensive fiber pullout and showed significantly higher ultimate strengths, 904 and 759 MPa for the batch 1 and 2 coatings. respectively. Fiber push-in tests and microscopic examination indicated no chemical reaction at the uncoated or coated fiber-matrix interfaces that might be responsible for fiber strength degradation. Instead, the low strength of composite with uncoated fibers was due to degradation of the fiber strength from mechanical damage during composite processing. Despite identical processing, the first matrix cracking stresses (Sigma(sub mc)) of the composites reinforced with fibers coated in batch 1 and batch 2 were quite different, 436 and 122 MPa, respectively. The large difference in Sigma(sub mc) of the coated-fiber composites was attributed to differences in fiber sliding stresses (Tau(sub friction)), 121.2+/-48.7 and 10.4+/-3.1 MPa, respectively. for the two composites as determined by the fiber push-in method. Such a large difference in Tau(sub friction). for the two composites was found to be due to the difference in the compositions of the interface coatings. Scanning Auger microprobe analysis revealed the presence of carbon layers between the fiber and BN. and also between the BN and SiC coatings in the composite showing lower Tau(sub friction). This resulted in lower Sigma(sub mc) in agreement with the ACK theory. The ultimate strengths of the two composites depended mainly on the fiber volume fraction and were not significantly effected by Tau(sub friction) values, as expected. The poor reproducibility of the fiber coating composition between the two batches was judged to be the primary source of the large differences in performance of the two composites.
Responding to the Marketplace: Workforce Balance and Financial Risk at Academic Health Centers.
Retchin, Sheldon M
2016-07-01
Elsewhere in this issue, Welch and Bindman present research demonstrating that academic health centers (AHCs) continue to disproportionately comprise specialists and subspecialist faculty physicians compared with community-based physician groups. This workforce composition has served AHCs well through the years-specialists fuel the clinical engine of the major tertiary and quaternary missions of AHCs, and they also dominate much of the clinical and translational research enterprise. AHCs are not alone-less than one-third of U.S. physicians practice primary care. However, health reform has prompted many health systems to reconsider this configuration. Payers, employers, and policy makers are shifting away from fee-for-service toward value-based care. Large community-based physician groups and their parent health systems appear to be far ahead of AHCs with a more balanced physician workforce. Many are leveraging their emphasis on primary care to participate in population health initiatives, such as accountable care organizations, and some own their own health plans. These approaches largely assume some element of financial risk and require both a more balanced workforce and an infrastructure to accommodate the management of covered lives. It remains to be seen whether AHCs will reconsider their own physician specialty composition to emphasize primary care-and, if they do, whether the traditional academic model, or a more community-based approach, will prevail.
NASA Astrophysics Data System (ADS)
Rodgers, John P.; Bent, Aaron A.; Hagood, Nesbitt W.
1996-05-01
The primary objective of this work is to develop a standard methodology for characterizing structural actuation systems intended for operation in high electrical and mechanical loading environments. The designed set of tests evaluates the performance of the active materials system under realistic operating conditions. The tests are also used to characterize piezoelectric fiber composites which have been developed as an alternative to monolithic piezoceramic wafers for structural actuation applications. The performance of this actuator system has been improved using an interdigitated electrode pattern, which orients the primary component of the electric field into the plane of the structure, enabling the use of the primary piezoelectric effect along the active fibers. One possible application of this technology is in the integral twist actuation of helicopter rotor blades for higher harmonic control. This application requires actuators which can withstand the harsh rotor blade operating environment. This includes large numbers of electrical and mechanical cycles with considerable centripetal and bending loads. The characterization tests include standard active material tests as well as application-driven tests which evaluate the performance of the actuators during simulated operation. Test results for several actuator configurations are provided, including S2 glass- reinforced and E-glass laminated actuators. The study concludes that the interdigitated electrode piezoelectric fiber composite actuator has great potential for high loading applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Junsong; Liu, Yinong; Huan, Yong
The concept of transformation-induced plasticity effect is introduced in this work to improve the plasticity of brittle intermetallic compound Ti3Sn, which is a potent high damping material. This concept is achieved in an in situ NiTi/Ti3Sn composite. The composite is composed of primary Ti3Sn phase and (NiTi + Ti3Sn) eutectic structure formed via hypereutectic solidification. The composite exhibits a high damping capacity of 0.075 (indexed by tan δ), a high ultimate compressive strength of 1350 MPa, and a large plasticity of 27.5%. In situ synchrotron high-energy X-ray diffraction measurements revealed clear evidence of the stress-induced martensitic transformation (B2 → B19)more » of the NiTi component during deformation. The strength of the composite mainly stems from the Ti3Sn, whereas the NiTi component is responsible for the excellent plasticity of the composite.« less
Composite structural materials
NASA Technical Reports Server (NTRS)
Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.
1982-01-01
The promise of filamentary composite materials, whose development may be considered as entering its second generation, continues to generate intense interest and applications activity. Fiber reinforced composite materials offer substantially improved performance and potentially lower costs for aerospace hardware. Much progress has been achieved since the initial developments in the mid 1960's. Rather limited applications to primary aircraft structure have been made, however, mainly in a material-substitution mode on military aircraft, except for a few experiments currently underway on large passenger airplanes in commercial operation. To fulfill the promise of composite materials completely requires a strong technology base. NASA and AFOSR recognize the present state of the art to be such that to fully exploit composites in sophisticated aerospace structures, the technology base must be improved. This, in turn, calls for expanding fundamental knowledge and the means by which it can be successfully applied in design and manufacture.
Characterization and manufacture of braided composites for large commercial aircraft structures
NASA Technical Reports Server (NTRS)
Fedro, Mark J.; Willden, Kurtis
1992-01-01
Braided composite materials, one of the advanced material forms which is under investigation in Boeing's ATCAS program, have been recognized as a potential cost-effective material form for fuselage structural elements. Consequently, there is a strong need for more knowledge in the design, manufacture, test, and analysis of textile structural composites. The overall objective of this work is to advance braided composite technology towards applications to a large commercial transport fuselage. This paper summarizes the mechanics of materials and manufacturing demonstration results which have been obtained in order to acquire an understanding of how braided composites can be applied to a commercial fuselage. Textile composites consisting of 1D, 2D triaxial, and 3D braid patterns with thermoplastic and two RTM resin systems were investigated. The structural performance of braided composites was evaluated through an extensive mechanical test program. Analytical methods were also developed and applied to predict the following: internal fiber architectures, stiffnesses, fiber stresses, failure mechanisms, notch effects, and the entire history of failure of the braided composites specimens. The applicability of braided composites to a commercial transport fuselage was further assessed through a manufacturing demonstration. Three foot fuselage circumferential hoop frames were manufactured to demonstrate the feasibility of consistently producing high quality braided/RTM composite primary structures. The manufacturing issues (tooling requirements, processing requirements, and process/quality control) addressed during the demonstration are summarized. The manufacturing demonstration in conjunction with the mechanical test results and developed analytical methods increased the confidence in the ATCAS approach to the design, manufacture, test, and analysis of braided composites.
Performance of lightweight large C/SiC mirror
NASA Astrophysics Data System (ADS)
Yui, Yukari Y.; Goto, Ken; Kaneda, Hidehiro; Katayama, Haruyoshi; Kotani, Masaki; Miyamoto, Masashi; Naitoh, Masataka; Nakagawa, Takao; Saruwatari, Hideki; Suganuma, Masahiro; Sugita, Hiroyuki; Tange, Yoshio; Utsunomiya, Shin; Yamamoto, Yasuji; Yamawaki, Toshihiko
2017-11-01
Very lightweight mirror will be required in the near future for both astronomical and earth science/observation missions. Silicon carbide is becoming one of the major materials applied especially to large and/or light space-borne optics, such as Herschel, GAIA, and SPICA. On the other hand, the technology of highly accurate optical measurement of large telescopes, especially in visible wavelength or cryogenic circumstances is also indispensable to realize such space-borne telescopes and hence the successful missions. We have manufactured a very lightweight Φ=800mm mirror made of carbon reinforced silicon carbide composite that can be used to evaluate the homogeneity of the mirror substrate and to master and establish the ground testing method and techniques by assembling it as the primary mirror into an optical system. All other parts of the optics model are also made of the same material as the primary mirror. The composite material was assumed to be homogeneous from the mechanical tests of samples cut out from the various areas of the 800mm mirror green-body and the cryogenic optical measurement of the mirror surface deformation of a 160mm sample mirror that is also made from the same green-body as the 800mm mirror. The circumstance and condition of the optical testing facility has been confirmed to be capable for the highly precise optical measurements of large optical systems of horizontal light axis configuration. Stitching measurement method and the algorithm for analysis of the measurement is also under study.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-06
...-pulp or composite panel, primary wood-using mills, including small, part-time mills, as well as large... 1978 require the Forest Service to evaluate trends in the use of logs and wood chips, to forecast anticipated levels of logs and wood chips, and to analyze changes in the harvest of these resources from the...
Heat treated 9 Cr-1 Mo steel material for high temperature application
Jablonski, Paul D.; Alman, David; Dogan, Omer; Holcomb, Gordon; Cowen, Christopher
2012-08-21
The invention relates to a composition and heat treatment for a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650.degree. C. The novel combination of composition and heat treatment produces a heat treated material containing both large primary titanium carbides and small secondary titanium carbides. The primary titanium carbides contribute to creep strength while the secondary titanium carbides act to maintain a higher level of chromium in the finished steel for increased oxidation resistance, and strengthen the steel by impeding the movement of dislocations through the crystal structure. The heat treated material provides improved performance at comparable cost to commonly used high-temperature steels such as ASTM P91 and ASTM P92, and requires heat treatment consisting solely of austenization, rapid cooling, tempering, and final cooling, avoiding the need for any hot-working in the austenite temperature range.
Processing and Properties of SiC/MoSi2-SiC Composites Fabricated by Melt Infiltration
NASA Technical Reports Server (NTRS)
Bhatt, Ramakrishna T.; Hebsur, Mohan G.
2000-01-01
Hi-Nicalon SiC fiber reinforced MoSi2-SiC matrix composites (SiC/MoSi2-SiC) have been fabricated by the melt infiltration approach. The composite consists of approximately 60 vol%, 2-D woven BN/SiC coated Hi-Nicalon SiC fibers and approximately 40 vol% MoSi2-SiC matrix. The room temperature tensile properties and thermal conductivity of the SiC/MoSi2-SiC composites were measured and compared with those of the melt infiltrated SiC/SiC composites. The influence oi fiber architecture on tensile properties was also evaluated. Results indicate that the primary modulus, stress corresponding to deviation from linearity, and transverse thermal conductivity values for the SiC/MoSi2-SiC composites are significantly lower than those for the SiC/SiC composites. Microcracking of the matrix due to the large difference in thermal expansion between MoSi2 and SiC appears to be the reason for the lower matrix dominated properties of SiC/MoSi2-SiC composites.
NASA Astrophysics Data System (ADS)
Harmon, N.; Rychert, C.
2013-12-01
Billions of years ago primary mantle magmas evolved to form the continental crust, although no simple magmatic differentiation process explains the progression to average andesitic crustal compositions observed today. A multiple stage process is often invoked, involving subduction and or oceanic plumes, to explain the strong depletion observed in Archean xenoliths and as well as pervasive tonalite-trondhjemite-granodiorite and komatiite protoliths in the greenstone belts in the crust in the cratons. Studying modern day analogues of oceanic plateaus that are currently interacting with subductions zones can provide insights into continental crust formation. Here we use surface waves to image crustal isotropic and radially anisotropic shear velocity structure above the central American subduction system in Nicaragua and Costa Rica, which juxtaposes thickened ocean island plateau crust in Costa Rica with continental/normal oceanic crust in Nicaragua. We find low velocities beneath the active arc regions (3-6% slower than the surrounding region) and up to 6% radially anisotropic structures within the oceanic crust of the Caribbean Large Igneous Province beneath Costa Rica. The low velocities and radial anisotropy suggest the anomalies are due to pervasive deep crustal magma sills. The inferred sill structures correlate spatially with increased silicic outputs in northern Costa Rica, indicating that deep differentiation of primary magmas is more efficient beneath Costa Rica relative to Nicaragua. Subduction zone alteration of large igneous provinces promotes efficient, deep processing of primary basalts to continental crust. This scenario can explain the formation of continental lithosphere and crust, by both providing strongly depleted mantle lithosphere and a means for rapidly generating a silicic crustal composition.
MAVEN Mission Primary Structure Complete
2017-12-08
NASA's Mars Atmosphere and Volatile EvolutioN (MAVEN) mission has reached a new milestone. Lockheed Martin has completed building the primary structure of the MAVEN spacecraft at its Space Systems Company facility near Denver. The MAVEN spacecraft is scheduled to launch in November 2013 and will be the first mission devoted to understanding the Martian upper atmosphere. The mission's principal investigator is Bruce Jakosky from the Laboratory for Atmospheric and Space Physics at the University of Colorado. In the photo taken on Sept. 8, technicians from Lockheed Martin are inspecting the MAVEN primary structure following its recent completion at the company’s Composites Lab. The primary structure is cube shaped at 7.5 feet x 7.5 feet x 6.5 feet high (2.3 meters x 2.3 meters x 2 meters high). Built out of composite panels comprised of aluminum honeycomb sandwiched between graphite composite face sheets and attached to one another with metal fittings, the entire structure only weighs 275 pounds (125 kilograms). At the center of the structure is the 4.25 feet (1.3 meters) diameter core cylinder that encloses the hydrazine propellant tank and serves as the primary vertical load-bearing structure. The large tank will hold approximately 3,615 pounds (1640 kilograms) of fuel. To read more go to: www.nasa.gov/mission_pages/maven/news/maven-structure.html Credit: Lockheed Martin NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Chattopadhaya, Soumi; Ghosh, Biswajit; Morishita, Tomoaki; Nandy, Sandip; Tamura, Akihiro; Bandyopadhyay, Debaditya
2017-05-01
The onset of the end-Mesozoic continental rift magmatism in the Deccan volcanic province (DVP), India is marked by alkali magmatism. Lithospheric fragments occurring as xenoliths/xenocrysts entrapped in alkaline basalts from the Kutch area of the DVP preserve reaction microtextures giving an insight into the processes linked to their origin. We interpret the flower texture, an aggregate of systematically arranged tiny diopside crystals, as a product of interactions between ghost quartz xenocrysts with alkaline silica-undersaturated melt. The mantle xenoliths, mostly represented by spinel lherzolites and wehrlites have been infiltrated by melt. The orthopyroxenes present at the margin of the xenoliths or in contact with infiltrated melt exhibit a coronal texture composed of olivine, clinopyroxene and glass around them. The compositions of cores of primary olivines at places retain mantle signatures, whereas, the margins are reequilibrated. Secondary olivines and clinopyroxenes at reaction coronas have a wide range of compositions. Primary clinopyroxenes and spinels in close vicinity to the orthopyroxene corona display a sieve texture defined by clear inclusion-free cores and a compositionally different spongy altered rim with worm-shaped or bubbly inclusions dominantly filled with glass. The rims are marked with higher Ca, Mg-lower Na, Al for clinopyroxenes and higher Ti, Cr-lower Mg, Al for spinels in comparison to their cores. The coronal texture around orthopyroxenes and spongy texture in clinopyroxenes and spinels in these xenoliths are interpreted to be genetically linked. The silicate glasses in the xenoliths show large compositional variations and they are much more siliceous and alkali-rich in comparison to the host basalts. The petrography and mineral chemistry suggest host magma-peridotite interaction during or after the entrainment of the xenoliths, corroborating well with the experimental findings.
NASA Technical Reports Server (NTRS)
Hayes, J. M.; Freeman, K. H.; Popp, B. N.; Hoham, C. H.
1990-01-01
Patterns of isotopic fractionation in biogeochemical processes are reviewed and it is suggested that isotopic fractionations will be small when substrates are large. If so, isotopic compositions of biomarkers will reflect those of their biosynthetic precursors. This prediction is tested by consideration of results of analyses of geoporphyrins and geolipids from the Greenhorn Formation (Cretaceous, Western Interior Seaway of North America) and the Messel Shale (Eocene, lacustrine, southern Germany). It is shown (i) that isotopic compositions of porphyrins that are related to a common source, but which have been altered structurally, cluster tightly and (ii) that isotopic differences between geolipids and porphyrins related to a common source are equal to those observed in modern biosynthetic products. Both of these observations are consistent with preservation of biologically controlled isotopic compositions during diagenesis. Isotopic compositions of individual compounds can thus be interpreted in terms of biogeochemical processes in ancient depositional environments. In the Cretaceous samples, isotopic compositions of n-alkanes are covariant with those of total organic carbon, while delta values for pristane and phytane are covariant with those of porphyrins. In this unit representing an open marine environment, the preserved acyclic polyisoprenoids apparently derive mainly from primary material, while the extractable, n-alkanes derive mainly from lower levels of the food chain. In the Messel Shale, isotopic compositions of individual biomarkers range from -20.9 to -73.4% vs PDB. Isotopic compositions of specific compounds can be interpreted in terms of origin from methylotrophic, chemautotrophic, and chemolithotrophic microorganisms as well as from primary producers that lived in the water column and sediments of this ancient lake.
Sulfur Isotope Composition of Putative Primary Troilite in Chondrules
NASA Technical Reports Server (NTRS)
Tachibana, Shogo; Huss, Gary R.
2002-01-01
Sulfur isotope compositions of putative primary troilites in chondrules from Bishunpur were measured by ion probe. These primary troilites have the same S isotope compositions as matrix troilites and thus appear to be isotopically unfractionated. Additional information is contained in the original extended abstract.
Krüger, Claudia; Kohout, Petr; Janoušková, Martina; Püschel, David; Frouz, Jan; Rydlová, Jana
2017-01-01
Arbuscular mycorrhizal fungal (AMF) community assembly during primary succession has so far received little attention. It remains therefore unclear, which of the factors, driving AMF community composition, are important during ecosystem development. We addressed this question on a large spoil heap, which provides a mosaic of sites in different successional stages under different managements. We selected 24 sites of c. 12, 20, 30, or 50 years in age, including sites with spontaneously developing vegetation and sites reclaimed by alder plantations. On each site, we sampled twice a year roots of the perennial rhizomatous grass Calamagrostis epigejos (Poaceae) to determine AMF root colonization and diversity (using 454-sequencing), determined the soil chemical properties and composition of plant communities. AMF taxa richness was unaffected by site age, but AMF composition variation increased along the chronosequences. AMF communities were unaffected by soil chemistry, but related to the composition of neighboring plant communities of the sampled C. epigejos plants. In contrast, the plant communities of the sites were more distinctively structured than the AMF communities along the four successional stages. We conclude that AMF and plant community successions respond to different factors. AMF communities seem to be influenced by biotic rather than by abiotic factors and to diverge with successional age. PMID:28473828
Studies of the cosmic ray spectrum and large scale anisotropies with the KASCADE-Grande experiment
NASA Astrophysics Data System (ADS)
Chiavassa, A.; Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Cossavella, F.; Curcio, C.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Fuchs, B.; Fuhrmann, D.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Zabierowski, J.
2014-08-01
KASCADE-Grande is an air shower observatory devoted to the detection of cosmic rays in the 1016 - 1018eV energy range. For each event the arrival direction, the total number of charged particles (Nch) and the total number of muons (Nμ), at detection level (i.e. 110 m a.s.l.), are measured. The detection of these observarbles, with high accuracy, allows the study of the primary spectrum, chemical composition and large scale anisotropies, that are the relevant informations to investigate the astrophysics of cosmic rays in this energy range. These studies are of main importance to deeply investigate the change of slope of the primary spectrum detected at ~ 4 × 1015 eV, also known as the knee, and to search for the transition from galactic to extra-galactic cosmic rays.
Coupling mammalian demography to climate through satellite time series of plant phenology
NASA Astrophysics Data System (ADS)
Stoner, D.; Sexton, J. O.; Nagol, J. R.; Ironside, K.; Choate, D.; Longshore, K.; Edwards, T., Jr.
2016-12-01
The seasonality of plant productivity governs the demography of primary and secondary consumers, and in arid ecosystems primary production is constrained by water availability. We relate the behavior, demography, and spatial distribution of large mammalian herbivores and their principal predator to remotely sensed indices of climate and vegetation across the western United States from 2000-2014. Terrain and plant community composition moderate the effects of climatological drought on primary productivity, resulting in spatial variation in ecosystem susceptibility to water stress. Herbivores track these patterns through habitat selection during key periods such as birthing and migration. Across a broad climatological gradient, timing of the start of growing season explains 75% of the variation in herbivore birth timing and 56% of the variation in neonatal survival rates. Initiation of autumn migration corresponds with the end of the growing season. Although indirectly coupled to primary production, carnivore home range size and population density are strongly correlated with plant productivity and growing-season length. Satellite measures of green reflectance during the peak of the growing season explain over 84% of the variation in carnivore home range size and 59% of the variation in density. Climate projections for the western United States predict warming temperatures and shifts in the timing and form of precipitation. Our analyses suggest that increased climatological variability will contribute to fluctuations in the composition and phenology of plant communities. These changes will propagate through consumer trophic levels, manifesting as increased home range area, shifts in the timing of migration, and greater volatility in large mammal populations. Combined with expansion and amplification of human land uses, these changes will likely have economic implications stemming from increased human-wildlife conflict and loss of ecosystem services.
Test and Analysis of a Buckling-Critical Large-Scale Sandwich Composite Cylinder
NASA Technical Reports Server (NTRS)
Schultz, Marc R.; Sleight, David W.; Gardner, Nathaniel W.; Rudd, Michelle T.; Hilburger, Mark W.; Palm, Tod E.; Oldfield, Nathan J.
2018-01-01
Structural stability is an important design consideration for launch-vehicle shell structures and it is well known that the buckling response of such shell structures can be very sensitive to small geometric imperfections. As part of an effort to develop new buckling design guidelines for sandwich composite cylindrical shells, an 8-ft-diameter honeycomb-core sandwich composite cylinder was tested under pure axial compression to failure. The results from this test are compared with finite-element-analysis predictions and overall agreement was very good. In particular, the predicted buckling load was within 1% of the test and the character of the response matched well. However, it was found that the agreement could be improved by including composite material nonlinearity in the analysis, and that the predicted buckling initiation site was sensitive to the addition of small bending loads to the primary axial load in analyses.
Critical Joints in Large Composite Primary Aircraft Structures. Volume 3: Ancillary Test Results
NASA Technical Reports Server (NTRS)
Bunin, Bruce L.; Sagui, R. L.
1985-01-01
A program was conducted to develop the technology for critical structural joints for composite wing structure that meets all the design requirements of a 1990 commercial transport aircraft. The results of a comprehensive ancillary test program are summarized, consisting of single-bolt composite joint specimens tested in a variety of configurations. These tests were conducted to characterize the strength and load deflection properties that are required for multirow joint analysis. The composite material was Toray 300 fiber and Ciba-Geigy 914 resin, in the form of 0.005 and 0.01 inch thick unidirectional tape. Tests were conducted in single and double shear for loaded and unloaded hole configurations under both tensile and compressive loading. Two different layup patterns were examined. All tests were conducted at room temperature. In addition, the results of NASA Standard Toughness Test (NASA RP 1092) are reported, which were conducted for several material systems.
Evidence for crustal recycling during the Archean: The parental magmas of the stillwater complex
NASA Technical Reports Server (NTRS)
Mccallum, I. S.
1988-01-01
The petrology and geochemistry of the Stillwater Complex, an Archean (2.7 Ga) layered mafic intrusion in the Beartooth Mountains of Montana is discussed. Efforts to reconstruct the compositions of possible parental magmas and thereby place some constraints on the composition and history of their mantle source regions was studied. A high-Mg andesite or boninite magma best matches the crystallization sequences and mineral compositions of Stillwater cumulates, and represents either a primary magma composition or a secondary magma formed, for example, by assimilation of crustal material by a very Mg-rich melt such as komatiite. Isotopic data do not support the extensive amounts of assimilation required by the komatiite parent hypothesis, and it is argued that the Stillwater magma was generated from a mantle source that had been enriched by recycling and homogenization of older crustal material over a large area.
Signal Attenuation Curve for Different Surface Detector Arrays
NASA Astrophysics Data System (ADS)
Vicha, J.; Travnicek, P.; Nosek, D.; Ebr, J.
2014-06-01
Modern cosmic ray experiments consisting of large array of particle detectors measure the signals of electromagnetic or muon components or their combination. The correction for an amount of atmosphere passed is applied to the surface detector signal before its conversion to the shower energy. Either Monte Carlo based approach assuming certain composition of primaries or indirect estimation using real data and assuming isotropy of arrival directions can be used. Toy surface arrays of different sensitivities to electromagnetic and muon components are assumed in MC simulations to study effects imposed on attenuation curves for varying composition or possible high energy anisotropy. The possible sensitivity of the attenuation curve to the mass composition is also tested for different array types focusing on a future apparatus that can separate muon and electromagnetic component signals.
Composites of 3D-Printed Polymers and Textile Fabrics*
NASA Astrophysics Data System (ADS)
Martens, Yasmin; Ehrmann, Andrea
2017-08-01
3D printing belongs to the rapidly emerging technologies of our time. Due to its recent drawback - the technology is relatively slow compared with other primary shaping methods, such as injection molding -, 3D printing is often not used for creating complete large components but to add specific features to existing larger objects. One of the possibilities to create such composites with an additional value consists in combining 3D printed polymers with textile fabrics. Several attempts have been made to enhance the adhesion between both materials, a task which is still challenging for diverse material combinations. Our paper reports about new experiments combining 3D printed embossed designs, snap fasteners and zip fasteners with different textile base materials, showing the possibilities and technical limits of these novel composites.
NASA Astrophysics Data System (ADS)
Lorenzo, Luisa M.; Arbones, Belén; Tilstone, Gavin H.; Figueiras, Francisco G.
2005-02-01
Hydrographic conditions, phytoplankton composition and biomass, photosynthetic parameters and primary production were determined in the Ría de Vigo and adjacent shelf waters during April-May 1997 and September 1998. The sampling was designed to find the seasonal downwelling-upwelling and upwelling-downwelling transition periods characteristic of spring and autumn phytoplankton blooms. There was upwelling relaxation event followed by downwelling during both spring and autumn cruises. Temperature and salinity distributions showed that ría and shelf waters formed two distinct domains, which were separated by a thermohaline front at the mouth of the ría. The phytoplankton composition was completely different in the two environments. Cyanobacteria dominated on the shelf and constituted 46-66% of total phytoplankton biomass, while large phytoplankton (diatoms and dinoflagellates) were more abundant in the ría, especially during upwelling relaxation. However, the high shelf-ría exchange induced by a strong downwelling event on 7 September 1998 removed large phytoplankton (mainly diatoms) from the water column in the ría. Chlorophyll-specific maximum photosynthetic rates ( PmB) were significantly higher in the ría domain during upwelling relaxation, when autotrophic microplankton dominated in the interior. Primary production varied from 0.63 to 2.6 g C m -2 day -1 during the spring cruise and between 0.32 and 2.09 g C m -2 day -1 during the autumn cruise, with the highest values in the ría during both cruises. Primary production was relatively constant on the shelf with no significant differences between cruises, whereas differences were significant in the ría, with higher values during upwelling relaxation periods and lower values during downwelling. Analysis of light saturation parameters and light absorbed by phytoplanton in the water column suggests that photosynthesis was not light-limited either on the shelf or in the ría. It is concluded that upwelling-downwelling cycles were the main driving force, through changes in autotrophic microplankton biomass in the ría, that caused the variability observed in the ría-shelf system.
Recent progress in NASA Langley Research Center textile reinforced composites program
NASA Technical Reports Server (NTRS)
Dexter, H. Benson; Harris, Charles E.; Johnston, Norman J.
1992-01-01
Research was conducted to explore the benefits of textile reinforced composites for transport aircraft primary structures. The objective is to develop and demonstrate the potential of affordable textile reinforced composite materials to meet design properties and damage tolerance requirements of advanced aircraft structural concepts. Some program elements include development of textile preforms, processing science, mechanics of materials, experimental characterization of materials, and development and evaluation of textile reinforced composite structural elements and subcomponents. Textile 3-D weaving, 3-D braiding, and knitting and/or stitching are being compared with conventional laminated tape processes for improved damage tolerance. Through-the-thickness reinforcements offer significant damage tolerance improvements. However, these gains must be weighted against potential loss in in-plane properties such as strength and stiffness. Analytical trade studies are underway to establish design guidelines for the application of textile material forms to meet specific loading requirements. Fabrication and testing of large structural parts are required to establish the potential of textile reinforced composite materials.
The effects of composition and thermal path on hot ductility of forging steels
NASA Astrophysics Data System (ADS)
Connolly, Brendan M.
This work examines the effects of composition and thermal path on the hot ductility of several forging steels with varied aluminum and nitrogen content. The primary mechanisms and controlling factors related to hot ductility are identified with a focus on the role of precipitates and segregation. The unique thermal paths and solidification structures of large cross-section forging ingots are discussed. Hot ductility testing is performed in a manner that approximates industrial conditions experienced by large cross-section forging ingots. A computer model for precipitation of aluminum nitride and vanadium nitride in austenite is presented. Industrial material is examined for comparison to experimental findings. It is found that increased aluminum and nitrogen content coarsens the as-solidified structure. The combined effects of microsegregation and uphill diffusion during deformation allow for carbide precipitation at prior austenite grain boundaries which reduces the hot ductility.
Samples for estimating primary volatiles in Martian magmas and ancient atmospheric pressures on Mars
NASA Technical Reports Server (NTRS)
Anderson, A. T., Jr.
1988-01-01
Inclusions of glass are likely to be present in phenocrysts in volcanic rocks from Mars, because these occur in volcanic rocks from both Earth and Moon. The usefulness of the inclusions depends upon their size and composition. The compositions of tiny inclusions may be modified by diffusion during growth of the enclosing crystal, the modifications increasing with melt viscosity (silica). Slow cooling results in crystallization and possible redistribution of volatiles, the effects increasing with decreasing silica. Primary volatile concentrations are best sought in inclusions larger than about 50 micrometer diameter in olivine or chromite crystals from quickly cooled basaltic scoria. Such crystals may be present in sands, but it would be preferable to extract them from individual rocks which could be dated and compositionally characterized. This would allow eventual understanding of the role of time and place in outgassing and volcanism on Mars. Analyses of volatiles in inclusions of more siliceous glass in non-basaltic rocks will reveal whether deep outgassing occurs and whether surface volatiles are recycled. Most volcanic crystals contain inclusions, but large inclusions can be uncommon. In the case of terrestrial basalts sample masses of several hundred grams are generally sufficient.
Liu, Lei; Kong, Shaofei; Zhang, Yinxiao; Wang, Yuanyuan; Xu, Liang; Yan, Qin; Lingaswamy, A P; Shi, Zongbo; Lv, Senlin; Niu, Hongya; Shao, Longyi; Hu, Min; Zhang, Daizhou; Chen, Jianmin; Zhang, Xiaoye; Li, Weijun
2017-07-11
Morphology, composition, and mixing state of individual particles emitted from crop residue, wood, and solid waste combustion in a residential stove were analyzed using transmission electron microscopy (TEM). Our study showed that particles from crop residue and apple wood combustion were mainly organic matter (OM) in smoldering phase, whereas soot-OM internally mixed with K in flaming phase. Wild grass combustion in flaming phase released some Cl-rich-OM/soot particles and cardboard combustion released OM and S-rich particles. Interestingly, particles from hardwood (pear wood and bamboo) and softwood (cypress and pine wood) combustion were mainly soot and OM in the flaming phase, respectively. The combustion of foam boxes, rubber tires, and plastic bottles/bags in the flaming phase released large amounts of soot internally mixed with a small amount of OM, whereas the combustion of printed circuit boards and copper-core cables emitted large amounts of OM with Br-rich inclusions. In addition, the printed circuit board combustion released toxic metals containing Pb, Zn, Sn, and Sb. The results are important to document properties of primary particles from combustion sources, which can be used to trace the sources of ambient particles and to know their potential impacts in human health and radiative forcing in the air.
Gamma-ray astronomy with a large muon detector in the ARGO-YBJ experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Sciascio, G.; Di Girolamo, T.; Megna, R.
2005-02-21
The ARGO-YBJ experiment, currently under construction at the YangBaJing Laboratory (Tibet, P.R. China, 4300 m a.s.l.), could be upgraded with a large ({approx} 2500 m2) muon detector both to extend the sensitivity to {gamma}-ray sources to energies greater than {approx} 20 TeV and to perform a cosmic ray primary composition study. In this paper we present an evaluation of the rejection power for proton-induced showers achievable with the upgraded ARGO-YBJ detector. Minimum detectable {gamma}-ray fluxes are calculated for different experimental setups.
Effect of Stone Size and Composition on Ultrasonic Propulsion Ex Vivo.
Janssen, Karmon M; Brand, Timothy C; Bailey, Michael R; Cunitz, Bryan W; Harper, Jonathan D; Sorensen, Mathew D; Dunmire, Barbrina
2018-01-01
To evaluate in more detail the effectiveness of a new designed more efficient ultrasonic propulsion for large stones and specific stone compositions in a tissue phantom model. In the first clinical trial of noninvasive ultrasonic propulsion, urinary stones of unknown compositions and sizes up to 10 mm were successfully repositioned. The study included 8- to 12-mm stones of 4 different primary compositions (calcium oxalate monohydrate, ammonium acid urate, calcium phosphate, and struvite) and a renal calyx phantom consisting of a 12 mm × 30 mm well in a 10-cm block of tissue-mimicking material. Primary outcome was the number of times a stone was expelled over 10 attempts, with ultrasonic propulsion burst duration varying from 0.5 seconds to 5 seconds. Overall success rate at expelling stones was 95%. All calcium oxalate monohydrate and ammonium acid urate stones were expelled 100% of the time. The largest stone (12 mm) became lodged within the 12-mm phantom calyx 25% of the time regardless of the burst duration. With the 0.5-second burst, there was insufficient energy to expel the heaviest stone (0.88 g), but there was sufficient energy at the longer burst durations. With a single burst, ultrasonic propulsion successfully moved most stones at least 3 cm and, regardless of size or composition, expelled them from the calyx. Ultrasonic propulsion is limited to the stones smaller than the calyceal space, and for each burst duration, related to maximum stone mass. Published by Elsevier Inc.
Effect of Stone Size and Composition on Ultrasonic Propulsion Ex Vivo
Janssen, Karmon M.; Brand, Timothy C.; Bailey, Michael R.; Cunitz, Bryan W.; Harper, Jonathan D.; Sorensen, Mathew D.; Dunmire, Barbrina
2018-01-01
OBJECTIVE To evaluate in more detail the effectiveness of a new designed more efficient ultrasonic propulsion for large stones and specific stone compositions in a tissue phantom model. In the first clinical trial of noninvasive ultrasonic propulsion, urinary stones of unknown compositions and sizes up to 10 mm were successfully repositioned. MATERIALS AND METHODS The study included 8- to 12-mm stones of 4 different primary compositions (calcium oxalate monohydrate, ammonium acid urate, calcium phosphate, and struvite) and a renal calyx phantom consisting of a 12 mm × 30 mm well in a 10-cm block of tissue-mimicking material. Primary outcome was the number of times a stone was expelled over 10 attempts, with ultrasonic propulsion burst duration varying from 0.5 seconds to 5 seconds. RESULTS Overall success rate at expelling stones was 95%. All calcium oxalate monohydrate and ammonium acid urate stones were expelled 100% of the time. The largest stone (12 mm) became lodged within the 12-mm phantom calyx 25% of the time regardless of the burst duration. With the 0.5-second burst, there was insufficient energy to expel the heaviest stone (0.88 g), but there was sufficient energy at the longer burst durations. CONCLUSION With a single burst, ultrasonic propulsion successfully moved most stones at least 3 cm and, regardless of size or composition, expelled them from the calyx. Ultrasonic propulsion is limited to the stones smaller than the calyceal space, and for each burst duration, related to maximum stone mass. PMID:28964820
NASA Technical Reports Server (NTRS)
Duffy, Stephen F.
1998-01-01
The development of modeling approaches for the failure analysis of ceramic-based material systems used in high temperature environments was the primary objective of this research effort. These materials have the potential to support many key engineering technologies related to the design of aeropropulsion systems. Monolithic ceramics exhibit a number of useful properties such as retention of strength at high temperatures, chemical inertness, and low density. However, the use of monolithic ceramics has been limited by their inherent brittleness and a large variation in strength. This behavior has motivated material scientists to reinforce the monolithic material with a ceramic fiber. The addition of a second ceramic phase with an optimized interface increases toughness and marginally increases strength. The primary purpose of the fiber is to arrest crack growth, not to increase strength. The material systems of interest in this research effort were laminated ceramic matrix composites, as well as two- and three- dimensional fabric reinforced ceramic composites. These emerging composite systems can compete with metals in many demanding applications. However, the ongoing metamorphosis of ceramic composite material systems, and the lack of standardized design data has in the past tended to minimize research efforts related to structural analysis. Many structural components fabricated from ceramic matrix composites (CMC) have been designed by "trial and error." The justification for this approach lies in the fact that during the initial developmental phases for a material system fabrication issues are paramount. Emphasis is placed on demonstrating feasibility rather than fully understanding the processes controlling mechanical behavior. This is understandable during periods of rapid improvements in material properties for any composite system. But to avoid the ad hoc approach, the analytical methods developed under this effort can be used to develop rational structural design protocols.
NASA Composite Materials Development: Lessons Learned and Future Challenges
NASA Technical Reports Server (NTRS)
Tenney, Darrel R.; Davis, John G., Jr.; Pipes, R. Byron; Johnston, Norman
2009-01-01
Composite materials have emerged as the materials of choice for increasing the performance and reducing the weight and cost of military, general aviation, and transport aircraft and space launch vehicles. Major advancements have been made in the ability to design, fabricate, and analyze large complex aerospace structures. The recent efforts by Boeing and Airbus to incorporate composite into primary load carrying structures of large commercial transports and to certify the airworthiness of these structures is evidence of the significant advancements made in understanding and use of these materials in real world aircraft. NASA has been engaged in research on composites since the late 1960 s and has worked to address many development issues with these materials in an effort to ensure safety, improve performance, and improve affordability of air travel for the public good. This research has ranged from synthesis of advanced resin chemistries to development of mathematical analyses tools to reliably predict the response of built-up structures under combined load conditions. The lessons learned from this research are highlighted with specific examples to illustrate the problems encountered and solutions to these problems. Examples include specific technologies related to environmental effects, processing science, fabrication technologies, nondestructive inspection, damage tolerance, micromechanics, structural mechanics, and residual life prediction. The current state of the technology is reviewed and key issues requiring additional research identified. Also, grand challenges to be solved for expanded use of composites in aero structures are identified.
Measurement of the TeV atmospheric muon charge ratio with the full OPERA data set
NASA Astrophysics Data System (ADS)
Mauri, N.; OPERA Collaboration
2016-04-01
The OPERA detector, designed to search for νμ →ντ oscillations in direct appearance mode, is located in the underground Gran Sasso laboratory, a privileged location to study TeV-scale cosmic rays. Given the large rock depth and the detector's wide acceptance, the apparatus was used to measure the atmospheric muon charge ratio in the TeV energy region. The muon charge ratio, defined as the number of positive over negative charged muons, provides an understanding of the mechanism of multiparticle production in the atmosphere in kinematic regions not accessible to accelerators, as well as information on the primary cosmic ray composition. We present the results obtained with the full statistics collected by OPERA from 2008 to 2012. The combination of two data sets with opposite magnet polarities allows minimizing systematic uncertainties and reaching an accurate determination of the muon charge ratio. Relevant parameters on the composition of primary cosmic rays and the associated kaon production in the forward fragmentation region are obtained.
Coordinate metrology of a primary surface composite panel from the Large Millimeter Telescope
NASA Astrophysics Data System (ADS)
Gale, David M.; Lucero Álvarez, Maribel; Cabrera Cuevas, Lizeth; Leon-Huerta, Andrea; Arizmendi Reyes, Edgar; Icasio Hernández, Octavio; Castro Santos, David; Hernández Ríos, Emilio; Tecuapetla Sosa, Esteban; Tzile Torres, Carlos; Viliesid Alonso, Miguel
2016-07-01
The Large Millimeter Telescope (LMT) is a single-dish fully-steerable radio telescope presently operating with a 32.5 m parabolic primary reflector, in the process of extension to 50 m. The project is managed by the Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) in México, and the University of Massachusetts Amherst, USA. A laminated surface panel from the LMT primary reflector has been subjected to a surface measurement assay at Mexico's National Metrology Center (CENAM). Data obtained using a coordinate measuring machine and laser tracker owned by CENAM is compared with measurements using an identical model laser tracker and the photogrammetry technique, the latter systems owned and operated by the LMT. All measurements were performed within the controlled metrology environment at CENAM. The measurement exercise is intended to prepare the groundwork for converting this spare surface panel into a calibrated work-piece. The establishment of a calibrated work-piece provides quality assurance for metrology through measurement traceability. It also simplifies the evaluation of measurement uncertainty for coordinate metrology procedures used by the LMT project during reflector surface qualification.
[Study of spectrum drifting of primary colors and its impact on color rendering properties].
Cui, Xiao-yan; Zhang, Xiao-dong
2012-08-01
LEDs are currently used widely to display text, graphics and images in large screens. With red, green and blue LEDs as three primary colors, color rendition will be realized through color mixing. However, LEDs' spectrum will produce drifts with the changes in the temperature environment. With the changes in the driving current simulating changes in the temperature, the three primary color LEDs' spectral drifts were tested, and the drift characteristics of the three primary colors were obtained respectively. Based on the typical characteristics of the LEDs and the differences between LEDs with different colors in composition and molecular structure, the paper analyzed the reason for the spectrum drifts and the drift characteristics of different color LEDs, and proposed the equations of spectrum drifts. Putting the experimental data into the spectrum drift equations, the paper analyzed the impacts of primary colors on the mixed color, pointed out a way to reduce the chromatic aberration, and provided the theory for engineering application of color LEDs.
NASA Astrophysics Data System (ADS)
Lebreton, Benoit; Beseres Pollack, Jennifer; Blomberg, Brittany; Palmer, Terence A.; Adams, Leslie; Guillou, Gaël; Montagna, Paul A.
2016-03-01
South Texas has a semi-arid climate with a large interannual variability of freshwater inflows. This study sought to define how changes in freshwater inflow affect the composition, quantity and quality of suspended particulate organic matter (SPOM) in a South Texas estuary: the Mission-Aransas estuary. The study was implemented 1.5 months after a large rain event in September 2010 and continued for 10 months of drought conditions. The composition of SPOM originating from rivers, the Gulf of Mexico and the estuary were determined using stable isotopes (δ13C, δ15N and δ34S). The quantity and quality of SPOM were assessed using organic carbon content, chlorophyll a concentrations and C/chl a ratios. Our results demonstrated that autochthonous phytoplankton was the dominant component of SPOM in the Mission-Aransas estuary during droughts. Benthic organic matter from local primary producers (i.e., seagrass, salt marsh plants, benthic microalgae) did not influence SPOM composition, either as fresh material or as detritus. A comparison with a positive estuary (i.e., Sabine-Neches estuary, TX) indicates that decreases in freshwater inflow may lead to decreases of terrestrial organic matter inputs and to increase the ratio of autochtonous phytoplanktonic material in SPOM.
Buoyancy-driven melt segregation in the earth's moon. I - Numerical results
NASA Technical Reports Server (NTRS)
Delano, J. W.
1990-01-01
The densities of lunar mare magmas have been estimated at liquidus temperatures for pressures from 0 to 47 kbar (0.4 GPa; center of the moon) using a third-order Birch-Murnaghan equation and compositionally dependent parameters from Large and Carmichael (1987). Results on primary magmatic compositions represented by pristine volcanic glasses suggest that the density contrast between very-high-Ti melts and their liquidus olivines may approach zero at pressures of about 25 kbar (2.5 GPa). Since this is the pressure regime of the mantle source regions for these magmas, a compositional limit of eruptability for mare liquids may exist that is similar to the highest Ti melt yet observed among the lunar samples. Although the moon may have generated magmas having greater than 16.4 wt pct TiO2, those melts would probably not have reached the lunar surface due to their high densities, and may have even sunk deeper into the moon's interior as negatively buoyant diapirs. This process may have been important for assimilative interactions in the lunar mantle. The phenomenon of melt/solid density crossover may therefore occur not only in large terrestrial-type objects but also in small objects where, despite low pressures, the range of melt compositions is extreme.
NASA Technical Reports Server (NTRS)
Simon, J. I.; Jordan, M. K.; Tappa, M. J.; Kohl, I. E.; Young, E. D.
2016-01-01
The chemical and isotopic compositions of calcium-aluminum-rich inclusions (CAIs) can be used to understand the conditions present in the protoplantary disk where they formed. The isotopic compositions of these early-formed nebular materials are largely controlled by chemical volatility. The isotopic effects of evaporation/sublimation, which are well explained by both theory and experimental work, lead to enrichments of the heavy isotopes that are often exhibited by the moderately refractory elements Mg and Si. Less well understood are the isotopic effects of condensation, which limits our ability to determine whether a CAI is a primary condensate and/or retains any evidence of its primordial formation history.
Preservation of Earth-forming events in the tungsten isotopic composition of modern flood basalts.
Rizo, Hanika; Walker, Richard J; Carlson, Richard W; Horan, Mary F; Mukhopadhyay, Sujoy; Manthos, Vicky; Francis, Don; Jackson, Matthew G
2016-05-13
How much of Earth's compositional variation dates to processes that occurred during planet formation remains an unanswered question. High-precision tungsten isotopic data from rocks from two large igneous provinces, the North Atlantic Igneous Province and the Ontong Java Plateau, reveal preservation to the Phanerozoic of tungsten isotopic heterogeneities in the mantle. These heterogeneities, caused by the decay of hafnium-182 in mantle domains with high hafnium/tungsten ratios, were created during the first ~50 million years of solar system history, indicating that portions of the mantle that formed during Earth's primary accretionary period have survived to the present. Copyright © 2016, American Association for the Advancement of Science.
NASA Technical Reports Server (NTRS)
Chu, Robert L.; Bayha, Tom D.; Davis, HU; Ingram, J. ED; Shukla, Jay G.
1992-01-01
Composite Wing and Fuselage Structural Design/Manufacturing Concepts have been developed and evaluated. Trade studies were performed to determine how well the concepts satisfy the program goals of 25 percent cost savings, 40 percent weight savings with aircraft resizing, and 50 percent part count reduction as compared to the aluminum Lockheed L-1011 baseline. The concepts developed using emerging technologies such as large scale resin transfer molding (RTM), automatic tow placed (ATP), braiding, out-of-autoclave and automated manufacturing processes for both thermoset and thermoplastic materials were evaluated for possible application in the design concepts. Trade studies were used to determine which concepts carry into the detailed design development subtask.
Dolomite clumped isotope constraints on the oxygen isotope composition of the Phanerozoic Sea
NASA Astrophysics Data System (ADS)
Ryb, U.; Eiler, J. M.
2017-12-01
The δ18O value of the Phanerozoic Sea has been debated several decades, largely motivated by an 8‰ increase in δ18O of sedimentary carbonates between the Cambrian and the present. Some previous studies have interpreted this increase to be a primary depositional signal, resulting from an increase in the 18O content of ocean water over time, or from a decrease in ocean temperature increasing the oxygen isotope fractionation between seawater and carbonates. In contrast, other studies have interpreted lower δ18O compositions as the products of diagenetic alteration at elevated burial temperatures. Here, we show that the Phanerozoic dolomite δ18O record overlaps with that of well-preserved calcite fossils, and use carbonate clumped isotope measurements of Cambrian to Pleistocene dolomites to calculate their formation temperatures and the isotopic compositions of their parent-waters. The observed variation in dolomite δ18O is largely explained by dolomite formation at burial temperatures of up to 158°C. The δ18O values of dolomite parent-waters range -2 to +12‰ and are correlated with formation temperatures. Such correlation is consistent with the modification of seawater (0±2‰, VSMOW) toward isotopically heavier compositions through water-rock reactions at elevated burial temperatures. The similarity between the dolomite and calcite δ18O records, and published clumped isotope-based calculations of water compositions, suggests that like dolomite, temporal variations of the calcite δ18O record may also be largely driven by diagenetic alteration. Finally, the relationship we observe between temperature of dolomitization and d18O of dolomite suggests platform carbonates generally undergo dolomitization through reaction with modified marine waters, and that there is no evidence those waters were ever significantly lower in d18O than the modern ocean.
Compositional layering within the large low shear-wave velocity provinces in the lower mantle
NASA Astrophysics Data System (ADS)
Ballmer, Maxim D.; Schumacher, Lina; Lekic, Vedran; Thomas, Christine; Ito, Garrett
2016-12-01
The large low shear-wave velocity provinces (LLSVP) are thermochemical anomalies in the deep Earth's mantle, thousands of km wide and ˜1800 km high. This study explores the hypothesis that the LLSVPs are compositionally subdivided into two domains: a primordial bottom domain near the core-mantle boundary and a basaltic shallow domain that extends from 1100 to 2300 km depth. This hypothesis reconciles published observations in that it predicts that the two domains have different physical properties (bulk-sound versus shear-wave speed versus density anomalies), the transition in seismic velocities separating them is abrupt, and both domains remain seismically distinct from the ambient mantle. We here report underside reflections from the top of the LLSVP shallow domain, supporting a compositional origin. By exploring a suite of two-dimensional geodynamic models, we constrain the conditions under which well-separated "double-layered" piles with realistic geometry can persist for billions of years. Results show that long-term separation requires density differences of ˜100 kg/m3 between LLSVP materials, providing a constraint for origin and composition. The models further predict short-lived "secondary" plumelets to rise from LLSVP roofs and to entrain basaltic material that has evolved in the lower mantle. Long-lived, vigorous "primary" plumes instead rise from LLSVP margins and entrain a mix of materials, including small fractions of primordial material. These predictions are consistent with the locations of hot spots relative to LLSVPs, and address the geochemical and geochronological record of (oceanic) hot spot volcanism. The study of large-scale heterogeneity within LLSVPs has important implications for our understanding of the evolution and composition of the mantle.
NASA Technical Reports Server (NTRS)
Takahashi, Yoshiyuki; Gregory, John C.; Tominaga, Taka; Dong, Bei Lei
1997-01-01
The research developed the fundamental techniques of the emulsion chamber methods that permit measurements of the composition and energy spectra of cosmic rays at energies ranging from 1 GeV/n to over 1,000 TeV/n. The research program consisted of exploring new principles and techniques in measuring very high energy cosmic nuclei with large-area emulsion chambers for high statistics experiments. These tasks have been accomplished and their use was essential in successful analysis of the balloon-borne emulsion chamber experiments up to 10(exp 14) eV. It also provided the fundamental technologies for designing large-area detectors that are aimed at measuring the composition at above 1015 eV region. The latter is now partially succeeded by a NASA Mission Concept, Advanced Cosmic Composition Experiments on the Space Station (ACCESS). The cosmic ray group at the University of Alabama in Huntsville has performed technological R & D as well as contributing to the Japanese-American-Emulsion-Chamber-Experiments (JACEE) Collaboration with the regular data analysis. While primary research support for other institutions' efforts in the JACEE experiments came from NSF and DOE, primary support for the University of Alabama in Huntsville was this contract. Supplemental tasks to standardize the data base and hardware upgrades (automatized microscope) had this institutions cooperation. Investigation of new techniques in this program consisted of development of a fast calorimetry, magnetic/scattering selection of high momentum tracks for a pairmeter, and high statistics momentum measurements for low energy nuclei (E < 1 TeV/n). The highest energy calorimetry and a pairmeter have been considered as strawman instruments by the GOAL (Galactic Origin and Acceleration Limit) proposal of the NASA Cosmic Ray Working Group for long- duration balloon flights. We accomplished the objectives of the GOAL program with three circumpolar, Antarctic JACEE balloon flights during 1992 - 1994.
Mehta, Shamir R; Yusuf, Salim; Granger, Christopher B; Wallentin, Lars; Peters, Ron J G; Bassand, Jean-Pierre; Budaj, Andrzej; Joyner, Campbell; Chrolavicius, Susan; Fox, Keith A A
2005-12-01
Factor Xa plays a central role in the generation of thrombin, making it a novel target for treatment of arterial thrombosis. Fondaparinux, a synthetic pentasaccharide, is a factor Xa inhibitor, which has been shown to be superior to enoxaparin for the prevention of venous thrombosis. We designed a large, phase III, randomized trial to evaluate the efficacy and safety of fondaparinux compared with enoxaparin in acute coronary syndromes. The OASIS-5 trial is a randomized, double-blind trial of fondaparinux versus enoxaparin in 20,000 patients with unstable angina or non-ST-segment elevation myocardial infarction. The primary objective is to determine whether fondaparinux is noninferior to enoxaparin in preventing the composite of death, new myocardial infarction, and refractory ischemia at 9 days (primary outcome) and at 30 days (secondary outcome) after randomization. There will be additional follow-up of all patients for 3 to 6 months after randomization. If noninferiority is established at 9 days, superiority will be tested. The primary safety outcome is to evaluate the rates of major bleeds in the 2 groups with the balance of benefit and risk assessed by comparing the impact on the composite of the primary and safety outcomes. Secondary outcomes are each component of the composite primary outcome separately at days 9, 30, and up to 6 months. The TIMACS, a major substudy using a partial 2x2 factorial design evaluating whether early angiography and intervention (within 24 hours) are superior to a more delayed approach (after 36 hours) in reducing major ischemic events at 6 months after randomization. The MICHELANGELO OASIS 5 program will provide a comprehensive and reliable evaluation of fondaparinux in a broad spectrum of patients with ACS.
Internal constitution and evolution of the moon.
NASA Technical Reports Server (NTRS)
Solomon, S. C.; Toksoz, M. N.
1973-01-01
The composition, structure and evolution of the moon's interior are narrowly constrained by a large assortment of physical and chemical data. Models of the thermal evolution of the moon that fit the chronology of igneous activity on the lunar surface, the stress history of the lunar lithosphere implied by the presence of mascons, and the surface concentrations of radioactive elements, involve extensive differentiation early in lunar history. This differentiation may be the result of rapid accretion and large-scale melting or of primary chemical layering during accretion; differences in present-day temperatures for these two possibilities are significant only in the inner 1000 km of the moon and may not be resolvable.
The Stratigraphy and Evolution of the Lunar Crust
NASA Technical Reports Server (NTRS)
McCallum, I. Stewart
1998-01-01
Reconstruction of stratigraphic relationships in the ancient lunar crust has proved to be a formidable task. The intense bombardment during the first 700 m.y. of lunar history has severely perturbed the original stratigraphy and destroyed the primary textures of all but a few nonmare rocks. However, a knowledge of the crustal stratigraphy as it existed prior to the cataclysmic bombardment about 3.9 Ga is essential to test the major models proposed for crustal origin, i.e., crystal fractionation in a global magmasphere or serial magmatism in a large number of smaller bodies. Despite the large difference in scale implicit in these two models, both require an efficient separation of plagioclase and mafic minerals to form the anorthositic crust and the mafic mantle. Despite the havoc wreaked by the large body impactors, these same impact processes have brought to the lunar surface crystalline samples derived from at least the upper half of the lunar crust, thereby providing an opportunity to reconstruct the stratigraphy in areas sampled by the Apollo missions. As noted, ejecta from the large multiring basins are dominantly, or even exclusively, of crustal origin. Given the most recent determinations of crustal thicknesses, this implies an upper limit to the depth of excavation of about 60 km. Of all the lunar samples studied, a small set has been recognized as "pristine", and within this pristine group, a small fraction have retained some vestiges of primary features formed during the earliest stages of crystallization or recrystallization prior to 4.0 Ga. We have examined a number of these samples that have retained some record of primary crystallization to deduce thermal histories from an analysis of structural, textural, and compositional features in minerals from these samples. Specifically, by quantitative modeling of (1) the growth rate and development of compositional profiles of exsolution lamellae in pyroxenes and (2) the rate of Fe-Mg ordering in orthopyroxenes, we can constrain the cooling rates of appropriate lunar samples. These cooling rates are used to compute depths of burial at the time of crystallization, which enable us to reconstruct parts of the crustal stratigraphy as it existed during the earliest stages of lunar history.
Experimental Study of the Compression Response of Fluted-Core Composite Panels with Joints
NASA Technical Reports Server (NTRS)
Schultz, Marc R.; Rose, Cheryl A.; Guzman, J. Carlos; McCarville, Douglas; Hilburger, Mark W.
2012-01-01
Fluted-core sandwich composites consist of integral angled web members spaced between laminate face sheets, and may have the potential to provide benefits over traditional sandwich composites for certain aerospace applications. However, fabrication of large autoclave-cured fluted-core cylindrical shells with existing autoclaves will require that the shells be fabricated in segments, and joined longitudinally to form a complete barrel. Two different longitudinal fluted-core joint designs were considered experimentally in this study. In particular, jointed fluted-core-composite panels were tested in longitudinal compression because longitudinal compression is the primary loading condition in dry launch-vehicle barrel sections. One of the joint designs performed well in comparison with unjointed test articles, and the other joint design failed at loads approximately 14% lower than unjointed test articles. The compression-after-impact (CAI) performance of jointed fluted-core composites was also investigated by testing test articles that had been subjected to 6 ft-lb impacts. It was found that such impacts reduced the load-carrying capability by 9% to 40%. This reduction is dependent on the joint concept, component flute size, and facesheet thickness.
Matsuzaki, Shin-Ichiro S; Suzuki, Kenta; Kadoya, Taku; Nakagawa, Megumi; Takamura, Noriko
2018-06-09
Nutrient supply is a key bottom-up control of phytoplankton primary production in lake ecosystems. Top-down control via grazing pressure by zooplankton also constrains primary production, and primary production may simultaneously affect zooplankton. Few studies have addressed these bidirectional interactions. We used convergent cross-mapping (CCM), a numerical test of causal associations, to quantify the presence and direction of the causal relationships among environmental variables (light availability, surface water temperature, NO 3 -N, and PO 4 -P), phytoplankton community composition, primary production, and the abundances of five functional zooplankton groups (large-cladocerans, small-cladocerans, rotifers, calanoids, and cyclopoids) in Lake Kasumigaura, a shallow, hypereutrophic lake in Japan. CCM suggested that primary production was causally influenced by NO 3 -N and phytoplankton community composition; there was no detectable evidence of a causal effect of zooplankton on primary production. Our results also suggest that rotifers and cyclopoids were forced by primary production, and cyclopoids were further influenced by rotifers. However, our CCM suggested that primary production was weakly influenced by rotifers (i.e., bidirectional interaction). These findings may suggest complex linkages between nutrients, primary production, and rotifers and cyclopoids, a pattern that has not been previously detected or has been neglected. We used linear regression analysis to examine the relationships between the zooplankton community and pond smelt (Hypomesus nipponensis), the most abundant planktivore and the most important commercial fish species in Lake Kasumigaura. The relative abundance of pond smelt was significantly and positively correlated with the abundances of rotifers and cyclopoids, which were causally influenced by primary production. This finding suggests that bottom-up linkages between nutrient, primary production, and zooplankton abundance might be a key mechanism supporting high planktivore abundance in eutrophic lakes. Because increases in primary production and cyanobacteria blooms are likely to occur simultaneously in hypereutrophic lakes, our study highlights the need for ecosystem management to resolve the conflict between good water quality and high fishery production. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Development of stitched/RTM composite primary structures
NASA Technical Reports Server (NTRS)
Kullerd, Susan M.; Dow, Marvin B.
1992-01-01
The goal of the NASA Advanced Composites Technology (ACT) Program is to provide the technology required to gain the full benefit of weight savings and performance offered by composite primary structures. Achieving the goal is dependent on developing composite materials and structures which are damage tolerant and economical to manufacture. Researchers at NASA LaRC and Douglas Aircraft Company are investigating stitching reinforcement combined with resin transfer molding (RTM) to create structures meeting the ACT program goals. The Douglas work is being performed under a NASA contract entitled Innovative Composites Aircraft Primary Structures (ICAPS). The research is aimed at materials, processes and structural concepts for application in both transport wings and fuselages. Empirical guidelines are being established for stitching reinforcement in primary structures. New data are presented in this paper for evaluation tests of thick (90-ply) and thin (16-ply) stitched laminates, and from selection tests of RTM composite resins. Tension strength, compression strength and post-impact compression strength data are reported. Elements of a NASA LaRC program to expand the science base for stitched/RTM composites are discussed.
HIGH EFFICIENCY STRUCTURAL FLOWTHROUGH ROTOR WITH ACTIVE FLAP CONTROL: VOLUME THREE: MARKET & TEAM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuteck, Michael D.; Jackson, Kevin L.; Santos, Richard A.
The Zimitar one-piece rotor primary structure is integrated, so balanced thrust and gravity loads flow through the hub region without transferring out of its composite material. Large inner rotor geometry is used since there is no need to neck down to a blade root region and pitch bearing. Rotor control is provided by a highly redundant, five flap system on each blade, sized so that easily handled standard electric linear actuators are sufficient.
Characteristics and large bulk density of the C-type main-belt triple asteroid (93) Minerva
NASA Astrophysics Data System (ADS)
Marchis, F.; Vachier, F.; Ďurech, J.; Enriquez, J. E.; Harris, A. W.; Dalba, P. A.; Berthier, J.; Emery, J. P.; Bouy, H.; Melbourne, J.; Stockton, A.; Fassnacht, C. D.; Dupuy, T. J.; Strajnic, J.
2013-05-01
From a set of adaptive optics (AO) observations collected with the W.M. Keck telescope between August and September 2009, we derived the orbital parameters of the most recently discovered satellites of the large C-type asteroid (93) Minerva. The satellites of Minerva, which are approximately 3 and 4 km in diameter, orbit very close to the primary (˜5 and ˜8 × Rp and ˜1% and ˜2% × RHill) in a circular manner, sharing common characteristics with most of the triple asteroid systems in the main-belt. Combining these AO observations with lightcurve data collected since 1980 and two stellar occultations in 2010 and 2011, we removed the ambiguity of the pole solution of Minerva's primary and showed that it has an almost regular shape with an equivalent diameter Deq = 154 ± 6 km in agreement with IRAS observations. The surprisingly high bulk density of 1.75 ± 0.30 g/cm3 for this C-type asteroid, suggests that this taxonomic class is composed of asteroids with different compositions, For instance, Minerva could be made of the same material as dry CR, CO, and CV meteorites. We discuss possible scenarios on the origin of the system and conclude that future observations may shine light on the nature and composition of this fifth known triple main-belt asteroid.
Isotopic Effects in Nuclear Fragmentation and GCR Transport Problems
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.
2002-01-01
Improving the accuracy of the galactic cosmic ray (GCR) environment and transport models is an important goal in preparing for studies of the projected risks and the efficiency of potential mitigations methods for space exploration. In this paper we consider the effects of the isotopic composition of the primary cosmic rays and the isotopic dependence of nuclear fragmentation cross sections on GCR transport models. Measurements are used to describe the isotopic composition of the GCR including their modulation throughout the solar cycle. The quantum multiple-scattering approach to nuclear fragmentation (QMSFRG) is used as the data base generator in order to accurately describe the odd-even effect in fragment production. Using the Badhwar and O'Neill GCR model, the QMSFRG model and the HZETRN transport code, the effects of the isotopic dependence of the primary GCR composition and on fragment production for transport problems is described for a complete GCR isotopic-grid. The principle finding of this study is that large errors ( 100%) will occur in the mass-flux spectra when comparing the complete isotopic-grid (141 ions) to a reduced isotopic-grid (59 ions), however less significant errors 30%) occur in the elemental-flux spectra. Because the full isotopic-grid is readily handled on small computer work-stations, it is recommended that they be used for future GCR studies.
Petrology of Impact-Melt Rocks at the Chicxulub Multiring Basin, Yucatan, Mexico
NASA Technical Reports Server (NTRS)
Schuraytz, Benjamin C.; Sharpton, Virgil L.; Marin, Luis E.
1994-01-01
Compositions and textures of melt rocks from the upper part of the Chicxulub structure are typical of melt rocks at other large terrestrial impact structures. Apart from variably elevated iridium concentrations (less than 1.5 to 13.5 +/- 0.9 ppb) indicating nonuniform dissemination of a meteoritic component, bulk rock and phenocryst compositions imply that these melt rocks were derived exclusively from continental crust and platform-sediment target lithologies. Modest differences in bulk chemistry among samples from wells located approximately 40 km apart suggest minor variations in relative contributions of these target lithologies to the melts. Subtle variations in the compositions of early-formed pyroxene and plagioclase also support minor primary differences in chemistry between the melts. Evidence for pervasive hydrothermal alteration of the porous mesostasis includes albite, K-feldspar, quartz, epidote, chlorite, and other phyllosilicates, as well as siderophile element-enriched sulfides, suggesting the possibility that Chicxulub, like Sudbury, may host important ore deposits.
Open-label placebo treatment in chronic low back pain: a randomized controlled trial
Carvalho, Cláudia; Caetano, Joaquim Machado; Cunha, Lidia; Rebouta, Paula; Kaptchuk, Ted J.; Kirsch, Irving
2016-01-01
Abstract This randomized controlled trial was performed to investigate whether placebo effects in chronic low back pain could be harnessed ethically by adding open-label placebo (OLP) treatment to treatment as usual (TAU) for 3 weeks. Pain severity was assessed on three 0- to 10-point Numeric Rating Scales, scoring maximum pain, minimum pain, and usual pain, and a composite, primary outcome, total pain score. Our other primary outcome was back-related dysfunction, assessed on the Roland–Morris Disability Questionnaire. In an exploratory follow-up, participants on TAU received placebo pills for 3 additional weeks. We randomized 97 adults reporting persistent low back pain for more than 3 months' duration and diagnosed by a board-certified pain specialist. Eighty-three adults completed the trial. Compared to TAU, OLP elicited greater pain reduction on each of the three 0- to 10-point Numeric Rating Scales and on the 0- to 10-point composite pain scale (P < 0.001), with moderate to large effect sizes. Pain reduction on the composite Numeric Rating Scales was 1.5 (95% confidence interval: 1.0-2.0) in the OLP group and 0.2 (−0.3 to 0.8) in the TAU group. Open-label placebo treatment also reduced disability compared to TAU (P < 0.001), with a large effect size. Improvement in disability scores was 2.9 (1.7-4.0) in the OLP group and 0.0 (−1.1 to 1.2) in the TAU group. After being switched to OLP, the TAU group showed significant reductions in both pain (1.5, 0.8-2.3) and disability (3.4, 2.2-4.5). Our findings suggest that OLP pills presented in a positive context may be helpful in chronic low back pain. PMID:27755279
Open-label placebo treatment in chronic low back pain: a randomized controlled trial.
Carvalho, Cláudia; Caetano, Joaquim Machado; Cunha, Lidia; Rebouta, Paula; Kaptchuk, Ted J; Kirsch, Irving
2016-12-01
This randomized controlled trial was performed to investigate whether placebo effects in chronic low back pain could be harnessed ethically by adding open-label placebo (OLP) treatment to treatment as usual (TAU) for 3 weeks. Pain severity was assessed on three 0- to 10-point Numeric Rating Scales, scoring maximum pain, minimum pain, and usual pain, and a composite, primary outcome, total pain score. Our other primary outcome was back-related dysfunction, assessed on the Roland-Morris Disability Questionnaire. In an exploratory follow-up, participants on TAU received placebo pills for 3 additional weeks. We randomized 97 adults reporting persistent low back pain for more than 3 months' duration and diagnosed by a board-certified pain specialist. Eighty-three adults completed the trial. Compared to TAU, OLP elicited greater pain reduction on each of the three 0- to 10-point Numeric Rating Scales and on the 0- to 10-point composite pain scale (P < 0.001), with moderate to large effect sizes. Pain reduction on the composite Numeric Rating Scales was 1.5 (95% confidence interval: 1.0-2.0) in the OLP group and 0.2 (-0.3 to 0.8) in the TAU group. Open-label placebo treatment also reduced disability compared to TAU (P < 0.001), with a large effect size. Improvement in disability scores was 2.9 (1.7-4.0) in the OLP group and 0.0 (-1.1 to 1.2) in the TAU group. After being switched to OLP, the TAU group showed significant reductions in both pain (1.5, 0.8-2.3) and disability (3.4, 2.2-4.5). Our findings suggest that OLP pills presented in a positive context may be helpful in chronic low back pain.
NASA Astrophysics Data System (ADS)
Coyle, Kenneth O.; Pinchuk, Alexei I.; Eisner, Lisa B.; Napp, Jeffrey M.
2008-08-01
The southeastern Bering Sea sustains one of the largest fisheries in the United States, as well as wildlife resources that support valuable tourist and subsistence economies. The fish and wildlife populations in turn are sustained by a food web linking primary producers to apex predators through the zooplankton community. Recent shifts in climate toward warmer conditions may threaten these resources by altering productivity and trophic relationships in the ecosystem on the southeastern Bering Sea shelf. We examined the zooplankton community near the Pribilof Islands and on the middle shelf of the southeastern Bering Sea in summer of 1999 and 2004 to document differences and similarities in species composition, abundance and biomass by region and year. Between August 1999 and August 2004, the summer zooplankton community of the middle shelf shifted from large to small species. Significant declines were observed in the biomass of large scyphozoans ( Chrysaora melanaster), large copepods ( Calanus marshallae), arrow worms ( Sagitta elegans) and euphausiids ( Thysanoessa raschii, T. inermis) between 1999 and 2004. In contrast, significantly higher densities of the small copepods ( Pseudocalanus spp., Oithona similis) and small hydromedusae ( Euphysa flammea) were observed in 2004 relative to 1999. Stomach analyses of young-of-the-year (age 0) pollock ( Theragra chalcogramma) from the middle shelf indicated a dietary shift from large to small copepods in 2004 relative to 1999. The shift in the zooplankton community was accompanied by a 3-fold increase in water-column stability in 2004 relative to 1999, primarily due to warmer water above the thermocline, with a mean temperature of 7.3 °C in 1999 and 12.6 °C in 2004. The elevated water-column stability and warmer conditions may have influenced the zooplankton composition by lowering summer primary production and selecting for species more tolerant of a warm, oligotrophic environment. A time series of temperature from the middle shelf indicates that the warmer conditions in 2004 are part of a trend rather than an expression of interannual variability. These results suggest that if climate on the Bering Sea shelf continues to warm, the zooplankton community may shift from large to small taxa which could strongly impact apex predators and the economies they support.
Ecosystem vs. community recovery 25 years after grass invasions and fire in a subtropical woodland
D'Antonio, Carla M.; Yelenik, Stephanie G.; Mack, Michelle C.
2017-01-01
Despite a large body of research documenting invasive plant impacts, few studies have followed individual invaded sites over decades to observe how they change, and none have contrasted how compositional impacts from invasion compare to ecosystem-process impacts over a multi-decadal time-scale. Using direct measurements of plant density and composition and of ecosystems processes, we evaluate how ecosystem structure, above-ground net primary production (ANPP), and above-ground and soil nutrient pools compare over 25 years since fire and C4 grass invasions disrupted seasonally dry Hawaiian woodlands. We compare structure and function between primary woodland that has never burned and is largely native species-dominated, with sites that had been the same woodland type but burned in alien-grass-fuelled fires in the 1970s and 1980s. The sites have not experienced fires since 1987. We report here that woody plant composition and structure continue to be dramatically changed by the initial invasions and fires that occurred 25 years ago and invaders continue to dominate in burned sites. This is reflected in continued low plant carbon pools in burned compared to unburned sites. Yet ANPP and N storage, which were dramatically lower in the initial decade after invasive-grass fuelled fires, have increased and are now indistinguishable from values measured in intact woodlands. Soil carbon pools were resilient to both invasion and fire initially and over time. Above-ground net primary production has recovered because of invasion of burned sites by a non-native N-fixing tree rather than because of recovery of native species. This invasive N-fixing tree is unlikely to return C storage of the invaded sites to those of unburned woodland because of its tissue and growth characteristics and its interactions with invasive grasses. It does not facilitate native species but rather promotes a persistent invasive grass/N-fixer savanna. Synthesis. We conclude that fire, an unusual disturbance in this system, has perpetuated the dominance of these sites by invasive species and that despite the dramatic recovery of above-ground net primary production and N pools, the ecosystem continues to be in a distinctly different state than the pre-fire, pre-Melinis community. Thus, despite the absence of further disturbance (fire), there is no evidence that succession towards the original ecosystem is occurring. The fact that N pools and above-ground net primary production recover because of a new invader (Morella faya), highlights the unpredictability of ecosystem trajectories in the face of altered regional species pools.
NASA Astrophysics Data System (ADS)
Taheri-Behrooz, Fathollah; Kiani, Ali
2017-04-01
Shape memory alloys (SMAs) are a type of shape memory materials that recover large deformation and return to their primary shape by rising temperature. In the current research, the effect of embedding SMA wires on the macroscopic mechanical behavior of glass-epoxy composites is investigated through finite element simulations. A perfect interface between SMA wires and the host composite is assumed. Effects of various parameters such as SMA wires volume fraction, SMA wires pre-strain and temperature are investigated during loading-unloading and reloading steps by employing ANSYS software. In order to quantify the extent of induced compressive stress in the host composite and residual tensile stress in the SMA wires, a theoretical approach is presented. Finally, it was shown that smart structures fabricated using composite layers and pre-strained SMA wires exhibited overall stiffness reduction at both ambient and elevated temperatures which were increased by adding SMA volume fraction. Also, the induced compressive stress on the host composite was increased remarkably using 4% pre-strained SMA wires at elevated temperature. Results obtained by FE simulations were in good correlation with the rule of mixture predictions and available experimental data in the literature.
Anker, Stefan D; Schroeder, Stefan; Atar, Dan; Bax, Jeroen J; Ceconi, Claudio; Cowie, Martin R; Crisp, Adam; Dominjon, Fabienne; Ford, Ian; Ghofrani, Hossein-Ardeschir; Gropper, Savion; Hindricks, Gerhard; Hlatky, Mark A; Holcomb, Richard; Honarpour, Narimon; Jukema, J Wouter; Kim, Albert M; Kunz, Michael; Lefkowitz, Martin; Le Floch, Chantal; Landmesser, Ulf; McDonagh, Theresa A; McMurray, John J; Merkely, Bela; Packer, Milton; Prasad, Krishna; Revkin, James; Rosano, Giuseppe M C; Somaratne, Ransi; Stough, Wendy Gattis; Voors, Adriaan A; Ruschitzka, Frank
2016-05-01
Composite endpoints are commonly used as the primary measure of efficacy in heart failure clinical trials to assess the overall treatment effect and to increase the efficiency of trials. Clinical trials still must enrol large numbers of patients to accrue a sufficient number of outcome events and have adequate power to draw conclusions about the efficacy and safety of new treatments for heart failure. Additionally, the societal and health system perspectives on heart failure have raised interest in ascertaining the effects of therapy on outcomes such as repeat hospitalization and the patient's burden of disease. Thus, novel methods for using composite endpoints in clinical trials (e.g. clinical status composite endpoints, recurrent event analyses) are being applied in current and planned trials. Endpoints that measure functional status or reflect the patient experience are important but used cautiously because heart failure treatments may improve function yet have adverse effects on mortality. This paper discusses the use of traditional and new composite endpoints, identifies qualities of robust composites, and outlines opportunities for future research. © 2016 The Authors. European Journal of Heart Failure © 2016 European Society of Cardiology.
Lee-Cruz, Larisa; Edwards, David P; Tripathi, Binu M; Adams, Jonathan M
2013-12-01
Tropical forests are being rapidly altered by logging and cleared for agriculture. Understanding the effects of these land use changes on soil bacteria, which constitute a large proportion of total biodiversity and perform important ecosystem functions, is a major conservation frontier. Here we studied the effects of logging history and forest conversion to oil palm plantations in Sabah, Borneo, on the soil bacterial community. We used paired-end Illumina sequencing of the 16S rRNA gene, V3 region, to compare the bacterial communities in primary, once-logged, and twice-logged forest and land converted to oil palm plantations. Bacteria were grouped into operational taxonomic units (OTUs) at the 97% similarity level, and OTU richness and local-scale α-diversity showed no difference between the various forest types and oil palm plantations. Focusing on the turnover of bacteria across space, true β-diversity was higher in oil palm plantation soil than in forest soil, whereas community dissimilarity-based metrics of β-diversity were only marginally different between habitats, suggesting that at large scales, oil palm plantation soil could have higher overall γ-diversity than forest soil, driven by a slightly more heterogeneous community across space. Clearance of primary and logged forest for oil palm plantations did, however, significantly impact the composition of soil bacterial communities, reflecting in part the loss of some forest bacteria, whereas primary and logged forests did not differ in composition. Overall, our results suggest that the soil bacteria of tropical forest are to some extent resilient or resistant to logging but that the impacts of forest conversion to oil palm plantations are more severe.
Application of close-packed structures in dental resin composites.
Wang, Ruili; Habib, Eric; Zhu, X X
2017-03-01
The inorganic filler particles in dental resin composites serve to improve their mechanical properties and reduce polymerization shrinkage during their use. Efforts have been made in academia and industry to increase the filler particle content, but, few studies examine the theoretical basis for the maximum particle loading. This work evaluates the packing of spherical particles in a close-packed state for highly loaded composites. Calculations show that for low dispersity particles, the maximum amount of particles is 74.05vol%, regardless of the particle size. This can be further improved by using a mix of large and small particles or by the use of non-spherical particles. For representative spherical particles with a diameter of 1000nm, two types of secondary particles with respective sizes of 414nm (d I ) and 225nm (d II ) are selected. The results show that after embedding secondary particles I & II into primary spherical particles, the packing factor is increased to 81.19% for the close-packed structures, which shows an improvement of 9.64%, compared to the 74.05% obtained only with primary spherical particles. This packing factor is also higher than either structure with the embedded secondary particles I or II. Examples of these mixtures with different spherical particle sizes are shown as a theoretical estimation, serving as a guideline for the design and formulation of new dental resin composites with better properties and improved performance. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Impact of muon detection thresholds on the separability of primary cosmic rays
NASA Astrophysics Data System (ADS)
Müller, S.; Engel, R.; Pierog, T.; Roth, M.
2018-01-01
Knowledge of the mass composition of cosmic rays in the transition region of galactic to extragalactic cosmic rays is needed to discriminate different astrophysical models on their origin, acceleration, and propagation. An important observable to separate different mass groups of cosmic rays is the number of muons in extensive air showers. We performed a CORSIKA simulation study to analyze the impact of the detection threshold of muons on the separation quality of different primary cosmic rays in the energy region of the ankle. Using only the number of muons as the composition-sensitive observable, we find a clear dependence of the separation power on the detection threshold for ideal measurements. Although the number of detected muons increases when lowering the threshold, the discrimination power is reduced. If statistical fluctuations for muon detectors of limited size are taken into account, the threshold dependence remains qualitatively the same for small distances to the shower core but is reduced for large core distances. We interpret the impact of the detection threshold of muons on the composition sensitivity in terms of a change of the correlation of the number of muons nμ with the shower maximum Xmax as function of the muon energy as a result of the underlying hadronic interactions and the shower geometry. We further investigate the role of muons produced in a shower by photon-air interactions and conclude that, in addition to the effect of the nμ -Xmax correlation, the separability of primaries is reduced as a consequence of the presence of more muons from photonuclear reactions in proton than in iron showers.
Climate change decouples oceanic primary and export productivity and organic carbon burial
Lopes, Cristina; Kucera, Michal; Mix, Alan C.
2015-01-01
Understanding responses of oceanic primary productivity, carbon export, and burial to climate change is essential for model-based projection of biological feedbacks in a high-CO2 world. Here we compare estimates of productivity based on the composition of fossil diatom floras with organic carbon burial off Oregon in the Northeast Pacific across a large climatic transition at the last glacial termination. Although estimated primary productivity was highest during the Last Glacial Maximum, carbon burial was lowest, reflecting reduced preservation linked to low sedimentation rates. A diatom size index further points to a glacial decrease (and deglacial increase) in the fraction of fixed carbon that was exported, inferred to reflect expansion, and contraction, of subpolar ecosystems that today favor smaller plankton. Thus, in contrast to models that link remineralization of carbon to temperature, in the Northeast Pacific, we find dominant ecosystem and sea floor control such that intervals of warming climate had more efficient carbon export and higher carbon burial despite falling primary productivity. PMID:25453073
Mechanistic Selection and Growth of Twinned Bicrystalline Primary Si in Near Eutectic Al-Si Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Choonho
2006-01-01
Morphological evolution and selection of angular primary silicon is investigated in near-eutectic Al-Si alloys. Angular silicon arrays are grown directionally in a Bridgman furnace at velocities in the regime of 10 -3 m/sec and with a temperature gradient of 7.5 x 10 3 K/m. Under these conditions, the primary Si phase grows as an array of twinned bicrystalline dendrites, where the twinning gives rise to a characteristic 8-pointed star-shaped primary morphology. While this primary Si remains largely faceted at the growth front, a complex structure of coherent symmetric twin boundaries enables various adjustment mechanisms which operate to optimize the characteristicmore » spacings within the primary array. In the work presented here, this primary silicon growth morphology is examined in detail. In particular, this thesis describes the investigation of: (1) morphological selection of the twinned bicrystalline primary starshape morphology; (2) primary array behavior, including the lateral propagation of the starshape grains and the associated evolution of a strong <100> texture; (3) the detailed structure of the 8-pointed star-shaped primary morphology, including the twin boundary configuration within the central core; (4) the mechanisms of lateral propagation and spacing adjustment during array evolution; and (5) the thermosolutal conditions (i.e. operating state) at the primary growth front, including composition and phase fraction in the vicinity of the primary tip.« less
Zeolite-Templated Mesoporous Silicon Particles for Advanced Lithium-Ion Battery Anodes.
Kim, Nahyeon; Park, Hyejeong; Yoon, Naeun; Lee, Jung Kyoo
2018-04-24
For the practical use of high-capacity silicon anodes in high-energy lithium-based batteries, key issues arising from the large volume change of silicon during cycling must be addressed by the facile structural design of silicon. Herein, we discuss the zeolite-templated magnesiothermic reduction synthesis of mesoporous silicon (mpSi) (mpSi-Y, -B, and -Z derived from commercial zeolite Y, Beta, and ZSM-5, respectively) microparticles having large pore volume (0.4-0.5 cm 3 /g), wide open pore size (19-31 nm), and small primary silicon particles (20-35 nm). With these appealing mpSi particle structural features, a series of mpSi/C composites exhibit outstanding performance including excellent cycling stabilities for 500 cycles, high specific and volumetric capacities (1100-1700 mAh g -1 and 640-1000 mAh cm -3 at 100 mA g -1 ), high Coulombic efficiencies (approximately 100%), and remarkable rate capabilities, whereas conventional silicon nanoparticles (SiNP)/C demonstrate limited cycle life. These enhanced electrochemical responses of mpSi/C composites are further manifested by low impedance build-up, high Li ion diffusion rate, and small electrode thickness changes after cycling compared with those of SiNP/C composite. In addition to the outstanding electrochemical properties, the low-cost materials and high-yield processing make the mpSi/C composites attractive candidates for high-performance and high-energy Li-ion battery anodes.
Monitoring the levels of important nutrients in the food supply.
Neal, B; Sacks, G; Swinburn, B; Vandevijvere, S; Dunford, E; Snowdon, W; Webster, J; Barquera, S; Friel, S; Hawkes, C; Kelly, B; Kumanyika, S; L'Abbé, M; Lee, A; Lobstein, T; Ma, J; Macmullan, J; Mohan, S; Monteiro, C; Rayner, M; Sanders, D; Walker, C
2013-10-01
A food supply that delivers energy-dense products with high levels of salt, saturated fats and trans fats, in large portion sizes, is a major cause of non-communicable diseases (NCDs). The highly processed foods produced by large food corporations are primary drivers of increases in consumption of these adverse nutrients. The objective of this paper is to present an approach to monitoring food composition that can both document the extent of the problem and underpin novel actions to address it. The monitoring approach seeks to systematically collect information on high-level contextual factors influencing food composition and assess the energy density, salt, saturated fat, trans fats and portion sizes of highly processed foods for sale in retail outlets (with a focus on supermarkets and quick-service restaurants). Regular surveys of food composition are proposed across geographies and over time using a pragmatic, standardized methodology. Surveys have already been undertaken in several high- and middle-income countries, and the trends have been valuable in informing policy approaches. The purpose of collecting data is not to exhaustively document the composition of all foods in the food supply in each country, but rather to provide information to support governments, industry and communities to develop and enact strategies to curb food-related NCDs. © 2013 The Authors. Obesity Reviews published by John Wiley & Sons Ltd on behalf of the International Association for the Study of Obesity.
An overview of the NASA textile composites program
NASA Technical Reports Server (NTRS)
Dexter, H. Benson
1993-01-01
The NASA Langley Research Center is conducting and sponsoring research to explore the benefits of textile reinforced composites for civil transport aircraft primary structures. The objective of this program is to develop and demonstrate the potential of affordable textile reinforced composite materials to meet design properties and damage tolerance requirements of advanced aircraft structures. In addition to in-house research, the program includes major participation by the aircraft industry and aerospace textile companies. The major program elements include development of textile preforms, processing science, mechanics of materials, experimental characterization of materials, and development and evaluation of textile reinforced composite structural elements and subcomponents. The NASA Langley in-house research is focused on science-based understanding of resin transfer molding (RTM), development of powder-coated towpreg processes, analysis methodology, and development of a performance database on textile reinforced composites. The focus of the textile industry participation is on development of multidirectional, damage-tolerant preforms, and the aircraft industry participation is in the areas of innovative design concepts, cost-effective fabrication, and testing of textile reinforced composite structural elements and subcomponents. Textile processes such as 3-D weaving, 2-D and 3-D braiding, and knitting/stitching are being compared with conventional laminated tape processes for improved damage tolerance. Through-the-thickness reinforcements offer significant damage tolerance improvements. However, these gains must be weighed against potential loss in in-plane properties such as strength and stiffness. Analytical trade studies are underway to establish design guidelines for the application of textile material forms to meet specific loading requirements. Fabrication and testing of large structural components are required to establish the full potential of textile reinforced composite materials. The goals of the NASA Langley-sponsored research program are to demonstrate technology readiness with subscale composite components by 1995 and to verify the performance of full-scale composite primary aircraft structural components by 1997. The status of textile reinforced composite structural elements under development by Boeing, Douglas, Lockheed, and Grumman are presented. Included are braided frames and woven/stitched wing and fuselage panels.
NASA Astrophysics Data System (ADS)
Herrmann, Kelsey M.
Research to date indicates that traditional composite material failure analysis methods are not appropriate for thin laminates in flexure. Thin composite structures subjected to large bending deformations often attain significantly higher strain-to-failure than previously anticipated tensile and compression coupon test data and linear material model assumption predict. At NASA Langley Research Center, a new bend test method is being developed for High Strain Composite (HSC) structures. This method provides an adequate approximation of a pure moment, large deformation bend test for thin-ply, high strain composites to analyze the large strain flexure response of the laminates. The objective of this research was to further develop this new test method to measure the true bending stiffness and strain-to-failure of high strain composite materials. Of primary importance is the ability to characterize composite laminates that are of interest for current NASA deployable structures in both materials and layups. Two separate testing campaigns were performed for the development of the testing procedure. Initially six laminates were bend tested in three different fiber orientations. These laminates were some combination of unidirectional intermediate modulus (IM) carbon, high tenacity (HT) carbon plain weave, and astroquartz plain weave composite materials. The second test campaign was performed as a more detailed look into the simplest composite laminates at thicknesses that better represented deployable boom structures. The second campaign tested three basic, thinner laminates, again in three different fiber orientations. All testing was monotonic loading to failure. The thickness of the laminates tested ranged from 0.166mm (campaign 2) to 0.45mm (campaign 1). The measured strains at failure for the unidirectional material were approximately 2.1% and 1.4% at the compression and tension sides, respectively, failing as fiber tensile fracture. Both of these values differ from what would be expected from considering much thicker coupons tested under pure compression and tension, that show a strain-to-failure of 1.0-1.1% and 1.6-1.7%, respectively. The significant differences in strain values obtained at the outer surfaces of the coupon is thought to be related to the shift in neutral axis that the specimen experiences during the large deformation bending test as a result of fiber material nonlinearities at higher strains. The vertical test nature of the CBT when compared to other test methods proves to be helpful for visually capturing with Digital Image Correlation the distinct behavior of the flexure on both the compressive and tensile sides. It was found that the thinner the laminate tested, the more confirmation of a nonlinear response of this classification of composites. The moment versus curvature curves were predominantly nonlinear resulting in a near linear bending stiffness versus curvature response. At these large strains, carbon fibers are highly nonlinear resulting in the laminate flexure modulus increasing by up to 5x. The theoretical bending stiffness values calculated using Classical Lamination Theory analysis are within small differences with respect to the experimentally measured values: errors of approximately 5-10% for both D11 and D22. The error between the finite element model computed strain response and the experimental values was on average around 22%, with 35% of the laminates and orientation having errors less than 7%. Comparison between CLT, FEA, and experimentation show that the Column Bend Test appears to be a promising candidate for characterization of large deformation bending behavior of thin-ply high strain composite laminates.
Composite propulsion feedlines for cryogenic space vehicles, volume 1
NASA Technical Reports Server (NTRS)
Hall, C. A.; Laintz, D. J.; Phillips, J. M.
1973-01-01
Thin metallic liners that provide leak-free service in cryogenic propulsion systems are overwrapped with a glass-fiber composite that provides strength and protection from handling damage. The resultant tube is lightweight, strong and has a very low thermal flux. Several styles of tubing ranging from 5 to 38 cm in diameter and up to 305 cm long were fabricated and tested at operating temperatures from 294 to 21 K and operating pressures up to 259 N/sq cm. The primary objective for the smaller sizes was thermal performance optimization of the propulsion system while the primary objective of the larger sizes was weight optimization and to prove fabricability. All major program objectives were met resulting in a design concept that is adaptable to a wide range of aerospace vehicle requirements. Major items of development included: bonding large diameter aluminum end fittings to the thin Inconel liner; fabrication of a 38 cm diameter tube from 0.008 cm thick Inconel; and evaluation of tubing which provides essentially zero quality propellant in a very short period of time resulting in a lower mass of propellant expended in chilldown.
Zampa, Andrea; Silvi, Stefania; Fabiani, Roberto; Morozzi, Guido; Orpianesi, Carla; Cresci, Alberto
2004-02-01
The main source of carbon in the human large intestine comes from carbohydrates like starches and oligosaccharides which remain unchanged by gastric digestion. These polysaccharides are metabolised in the colon by saccharolytic bacteria whose composition is dependent upon the substrate availability. Among the metabolites produced, the short-chain fatty acids (SCFA) are important for colon function and to prevent diseases. In particular, butyrate affects several cellular functions (proliferation, membrane synthesis, sodium absorption), and it has been shown to be protective against colorectal cancer. In addition, faecal bacteria are responsible for the conversion of primary bile acids (BA) to secondary BA, which are considered tumor promoters. In this study we investigated the in vitro effect of different substrates (CrystaLean starch, xylo-oligosaccharides, corn starch) supplied to human faecal micro-flora, on the SCFA production, on the bowel micro-flora composition and on the primary BA conversion rate. In addition, with corn starch as substrate, we considered the effect of enriching normal human faecal micro-flora with lactobacilli and bifidobacteria, on the above reported parameters.
Sherrard, Heather; Duchesne, Lloyd; Wells, George; Kearns, Sharon Ann; Struthers, Christine
2015-01-01
There is evidence from large clinical trials that compliance with standardized best practice guidelines (BPGs) improves survival of acute coronary syndrome (ACS) patients. However, their application is often suboptimal. In this study, the researchers evaluated whether the use of an interactive voice response (IVR) follow-up system improved ACS BPG compliance. This was a single-centre randomized control trial (RCT) of 1,608 patients (IVR=803; usual care=805). The IVR group received five automated calls in 12 months. The primary composite outcome was increased medication compliance and decreased adverse events. A significant improvement of 60% in the IVR group for the primary composite outcome was found (RR 1.60, 95% CI: 1.29 to 2.00, p <0.001). There was significant improvement in medication compliance (p <0.001) and decrease in unplanned medical visits (p = 0.023). At one year, the majority of patients ( 85%) responded positively to using the system again. Follow-up by IVR produced positive outcomes in ACS patients.
Where and What Is Pristine Marine Aerosol?
NASA Astrophysics Data System (ADS)
Russell, L. M.; Frossard, A. A.; Long, M. S.; Burrows, S. M.; Elliott, S.; Bates, T. S.; Quinn, P.
2014-12-01
The sources and composition of atmospheric marine aerosol particles have been measured by functional group composition (from Fourier transform infrared spectroscopy) to identify the organic composition of the pristine primary marine (ocean-derived) particles as 65% hydroxyl, 21% alkane, 6% amine, and 7% carboxylic acid functional groups [Frossard et al., 2014a,b]. Pristine but non-primary components from photochemical reactions (likely from biogenic marine vapor emissions) add carboxylic acid groups. Non-pristine contributions include shipping effluent in seawater and ship emissions, which add additional alkane groups (up to 70%), and coastal or continental emissions mix in alkane and carboxylic acid groups. The pristine primary marine (ocean-derived) organic aerosol composition is nearly identical to model generated primary marine aerosol particles from bubbled seawater, indicating that its overall functional group composition is the direct consequence of the organic constituents of the seawater source. While the seawater organic functional group composition was nearly invariant across all three ocean regions studied and the ratio of organic carbon to sodium (OC/Na+) in the generated primary marine aerosol particles remained nearly constant over a broad range of chlorophyll-a concentrations, the generated primary marine aerosol particle alkane group fraction increased with chlorophyll-a concentrations. In addition, the generated primary marine aerosol particles have a hydroxyl group absorption peak location characteristic of monosaccharides and disaccharides, where the seawater hydroxyl group peak location is closer to that of polysaccharides. References Cited Frossard, Amanda A., Lynn M. Russell, Paola Massoli, Timothy S. Bates, and Patricia K. Quinn, "Side-by-Side Comparison of Four Techniques Explains the Apparent Differences in the Organic Composition of Generated and Ambient Marine Aerosol Particles," Aerosol Science and Technology - Aerosol Research Letter, 48:v-x, doi10.1080/02786826.2013.879979, 2014a. Frossard, A.A., L.M. Russell, M.S. Long, S.M. Burrows, S.M. Elliot, T.S. Bates, and P.K. Quinn, "Sources and Composition of Submicron Organic Mass in Marine Aerosol Particles," Journal of Geophysical Research - Atmospheres, submitted 2014b.
NASA Technical Reports Server (NTRS)
Narayana, B. L.; Natarajan, R.; Govil, P. K.
1988-01-01
Calc-silicate rocks comprising quartz, plagioclase, diopside, sphene, scapolite, grossularite-andradite and wollastonite occur as lensoid enclaves within the greasy migmatitic and charnockitic gneisses of the Archaean amphibolite- to granulite-facies transition zone in Dharmapuri district, Tamil Nadu. The calc-silicate rocks are characterized by the absence of K-feldspar and primary calcite, presence of large modal quartz and plagioclase and formation of secondary garnet and zoisite rims around scapolite and wollastonite. The mineral distributions suggest compositional layering. The chemical composition and mineralogy of the calc-silicate rocks indicate that they were derived from impure silica-rich calcareous sediments whose composition is similar to that of pelite-limestone mixtures. From the mineral assemblages the temperature, pressure and fluid composition during metamorphism were estimated. The observed mineral reaction sequences require a range of X sub CO2 values demonstrating that an initially CO2-rich metamorphic fluid evolved with time towards considerably more H2O-rich compositions. These variations in fluid composition suggest that there were sources of water-rich fluids external to the calc-silicate rocks and that mixing of these fluids with those of calc-silicate rocks was important in controlling fluid composition in calc-silicate rocks and some adjacent rock types as well.
NASA Astrophysics Data System (ADS)
Hang, Chun-Liang; Yang, Li-Xia; Sun, Chang-Mei; Liang, Ying
2018-03-01
Monodisperse and porous nonstoichiometric Zn ferrite can be prepared by a solvothermal method. Such non-Zn ferrite was used to be the precursor for synthesis of ZnFe2O4/Fe2O3 composite via calcination at 600°C for 3 h in air. X-ray powder diffractometer (XRD) and Energy Dispersive Spectrometer (EDS) proved the nonstoichiometry of Zn ferrite synthesized by solvothermal method and the formation of ZnFe2O4/Fe2O3 composite via calcination. TEM image showed that non-Zn ferrite spheres with wormlike nanopore structure were made of primary nanocrystals. BET surface area of non-Zn ferrite was much higher than that of ZnFe2O4/Fe2O3 composite. Saturation magnetization of non-Zn ferrites was significantly higher than that of ZnFe2O4/Fe2O3 composites. Calcination of non-Zn ferrite resulted in the formation of large amount of non-magnetic Fe2O3,which caused a low magnetization of composite. Because of higher BET surface area and higher saturation magnetization, non-Zn ferrite presented better Cr6+ adsorption property than ZnFe2O4/Fe2O3 composites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuteck, Michael D.; Jackson, Kevin L.; Santos, Richard A.
The Zimitar one-piece rotor primary structure is integrated, so balanced thrust and gravity loads flow through the hub region without transferring out of its composite material. Large inner rotor geometry is used since there is no need to neck down to a blade root region and pitch bearing. Rotor control is provided by a highly redundant, five flap system on each blade, sized so that easily handled standard electric linear actuators are sufficient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuteck, Michael D.; Jackson, Kevin L.; Santos, Richard A.
The Zimitar one-piece rotor primary structure is integrated, so balanced thrust and gravity loads flow through the hub region without transferring out of its composite material. Large inner rotor geometry is used since there is no need to neck down to a blade root region and pitch bearing. Rotor control is provided by a highly redundant, five flap system on each blade, sized so that easily handled standard electric linear actuators are sufficient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuteck, Michael D.; Jackson, Kevin L.; Santos, Richard A.
The Zimitar one-piece rotor primary structure is integrated, so balanced thrust and gravity loads flow through the hub region without transferring out of its composite material. Large inner rotor geometry is used since there is no need to neck down to a blade root region and pitch bearing. Rotor control is provided by a highly redundant, five flap system on each blade, sized so that easily handled standard electric linear actuators are sufficient.
Pristine nonmare rocks and the nature of the lunar crust
NASA Technical Reports Server (NTRS)
Warren, P. H.; Wasson, J. T.
1977-01-01
It is shown that the interdisciplinary study of the nonmare lunar rocks based on trace element, major element, and isotopic data plus petrographic evidence can succeed in amassing a large suite of demonstrably pristine rocks, and that the relative numbers of these rocks are not in accord with statistics amassed on soil fragments and glasses. The term 'pristine' is taken to mean rocks with primary compositions (albeit not necessarily textures) produced by lunar endogenous igneous processes. Melt rocks and crystalline matrix breccias produced by impact processes are excluded. A petrographic synonym for pristine would be 'unremelted, monomict'. It is found that anorthositic norites and noritic anorthosites were rare as primary nonmare rocks. Mechanical mixing appears to have been the dominant petrogenetic process on the highlands.
NASA Astrophysics Data System (ADS)
Poillucci, Richard
Advanced composites manufacturing broadly encapsulates topics ranging from matrix chemistries to automated machines that lay-up fiber-reinforced materials. Environmental regulations are stimulating research to reduce matrix resin formulation toxicity. At present, composites fabricated with polyester resins expose workers to the risk of contact with and inhalation of styrene monomer, which is a potential carcinogen, neurotoxin, and respiratory irritant. The first primary goal of this thesis is to reduce the toxicity associated with polyester resins by: (1) identification of potential monomers to replace styrene, (2) determination of monomer solubility within the polyester, and (3) investigation of approaches to rapidly screen a large resin composition parameter space. Monomers are identified based on their ability to react with polyester and their toxicity as determined by the Globally Harmonized System (GHS) and a green screen method. Solubilities were determined by the Hoftyzer -- Van Krevelen method, Hansen solubility parameter database, and experimental mixing of monomers. A combinatorial microfluidic mixing device is designed and tested to obtain distinct resin compositions from two input chemistries. The push for safer materials is complemented by a thrust for multifunctional composites. The second primary goal of this thesis is to design and implement the manufacture of sacrificial fiber materials suitable for use in automated fiber placement of microvascaular multifunctional composites. Two key advancements are required to achieve this goal: (1) development of a roll-to-roll method to place sacrificial fibers onto carbon fiber pre-preg tape; and (2) demonstration of feasible manufacture of microvascular carbon fiber plates with automated fiber placement. An automated method for placing sacrificial fibers onto carbon fiber tapes is designed and a prototype implemented. Carbon fiber tows with manual placement of sacrificial fibers is implemented within an automated fiber placement machine and the successful fabrication of a carbon fiber plate with an integrated microvascular channel is demonstrated.
Sreekar, Rachakonda; Zhang, Kai; Xu, Jianchu; Harrison, Rhett D
2015-01-01
The primary approach used to conserve tropical biodiversity is in the establishment of protected areas. However, many tropical nature reserves are performing poorly and interventions in the broader landscape may be essential for conserving biodiversity both within reserves and at large. Between October 2010 and 2012, we conducted bird surveys in and around a recently established nature reserve in Xishuangbanna, China. We constructed a checklist of observed species, previously recorded species, and species inferred to have occurred in the area from their distributions and habitat requirements. In addition, we assessed variation in community composition and habitat specificity at a landscape-scale. Despite the fact that the landscape supports a large area of natural forest habitat (~50,000 ha), we estimate that >40% of the bird fauna has been extirpated and abundant evidence suggests hunting is the primary cause. A large proportion (52%) of the bigger birds (>20 cm) were extirpated and for large birds there was a U-shaped relationship between habitat breadth and extirpation probability. Habitat specificity was low and bird communities were dominated by widespread species of limited conservation concern. We question whether extending tropical protected area networks will deliver desired conservation gains, unless much greater effort is channeled into addressing the hunting problem both within existing protected areas and in the broader landscape.
Aspects of porosity prediction using multivariate linear regression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byrnes, A.P.; Wilson, M.D.
1991-03-01
Highly accurate multiple linear regression models have been developed for sandstones of diverse compositions. Porosity reduction or enhancement processes are controlled by the fundamental variables, Pressure (P), Temperature (T), Time (t), and Composition (X), where composition includes mineralogy, size, sorting, fluid composition, etc. The multiple linear regression equation, of which all linear porosity prediction models are subsets, takes the generalized form: Porosity = C{sub 0} + C{sub 1}(P) + C{sub 2}(T) + C{sub 3}(X) + C{sub 4}(t) + C{sub 5}(PT) + C{sub 6}(PX) + C{sub 7}(Pt) + C{sub 8}(TX) + C{sub 9}(Tt) + C{sub 10}(Xt) + C{sub 11}(PTX) + C{submore » 12}(PXt) + C{sub 13}(PTt) + C{sub 14}(TXt) + C{sub 15}(PTXt). The first four primary variables are often interactive, thus requiring terms involving two or more primary variables (the form shown implies interaction and not necessarily multiplication). The final terms used may also involve simple mathematic transforms such as log X, e{sup T}, X{sup 2}, or more complex transformations such as the Time-Temperature Index (TTI). The X term in the equation above represents a suite of compositional variable and, therefore, a fully expanded equation may include a series of terms incorporating these variables. Numerous published bivariate porosity prediction models involving P (or depth) or Tt (TTI) are effective to a degree, largely because of the high degree of colinearity between p and TTI. However, all such bivariate models ignore the unique contributions of P and Tt, as well as various X terms. These simpler models become poor predictors in regions where colinear relations change, were important variables have been ignored, or where the database does not include a sufficient range or weight distribution for the critical variables.« less
Persson, Martina; Fadl, Helena; Hanson, Ulf; Pasupathy, Dharmintra
2013-11-01
High birth weight is a risk factor for neonatal complications. It is not known if the risk differs with body proportionality. The primary aim of this study was to determine the risk of adverse pregnancy outcome in relation to body proportionality in large-for-gestational-age (LGA) infants stratified by maternal gestational diabetes mellitus (GDM). Population-based study of all LGA (birth weight [BW] >90th percentile) infants born to women with GDM (n = 1,547) in 1998-2007. The reference group comprised LGA infants (n = 83,493) born to mothers without diabetes. Data were obtained from the Swedish Birth Registry. Infants were categorized as proportionate (P-LGA) if ponderal index (PI) (BW in grams/length in cm(3)) was ≤90th percentile and as disproportionate (D-LGA) if PI >90th percentile. The primary outcome was a composite morbidity: Apgar score 0-3 at 5 min, birth trauma, respiratory disorders, hypoglycemia, or hyperbilirubinemia. Logistic regression analysis was used to obtain odds ratios (ORs) for adverse outcomes. The risk of composite neonatal morbidity was increased in GDM pregnancies versus control subjects but comparable between P- and D-LGA in both groups. D-LGA infants born to mothers without diabetes had significantly increased risk of birth trauma (OR 1.19 [95% CI 1.09-1.30]) and hypoglycemia (1.23 [1.11-1.37]). D-LGA infants in both groups had significantly increased odds of Cesarean section. The risk of composite neonatal morbidity is significantly increased in GDM offspring. In pregnancies both with and without GDM, the risk of composite neonatal morbidity is comparable between P- and D-LGA.
Impact Testing and Analysis of Composites for Aircraft Engine Fan Cases
NASA Technical Reports Server (NTRS)
Roberts, Gary D.; Revilock, Duane M.; Binienda, Wieslaw K.; Nie, Walter Z.; Mackenzie, S. Ben; Todd, Kevin B.
2002-01-01
The fan case in a jet engine is a heavy structure because of its size and because of the requirement that it contain a blade released during engine operation. Composite materials offer the potential for reducing the weight of the case. Efficient design, test, and analysis methods are needed to efficiently evaluate the large number of potential composite materials and design concepts. The type of damage expected in a composite case under blade-out conditions was evaluated using a subscale test in which a glass/epoxy composite half-ring target was impacted with a wedge-shaped titanium projectile. Fiber shearing occurred near points of contact between the projectile and target. Delamination and tearing occurred on a larger scale. These damage modes were reproduced in a simpler test in which flat glass/epoxy composites were impacted with a blunt cylindrical projectile. A surface layer of ceramic eliminated fiber shear fracture but did not reduce delamination. Tests on 3D woven carbon/epoxy composites indicated that transverse reinforcement is effective in reducing delamination. A 91 cm (36 in.) diameter full-ring sub-component was proposed for larger scale testing of these and other composite concepts. Explicit, transient, finite element analyses indicated that a full-ring test is needed to simulate complete impact dynamics, but simpler tests using smaller ring sections are adequate when evaluation of initial impact damage is the primary concern.
Stormwater runoff drives viral community composition changes in inland freshwaters.
Williamson, Kurt E; Harris, Jamie V; Green, Jasmin C; Rahman, Faraz; Chambers, Randolph M
2014-01-01
Storm events impact freshwater microbial communities by transporting terrestrial viruses and other microbes to freshwater systems, and by potentially resuspending microbes from bottom sediments. The magnitude of these impacts on freshwater ecosystems is unknown and largely unexplored. Field studies carried out at two discrete sites in coastal Virginia (USA) were used to characterize the viral load carried by runoff and to test the hypothesis that terrestrial viruses introduced through stormwater runoff change the composition of freshwater microbial communities. Field data gathered from an agricultural watershed indicated that primary runoff can contain viral densities approximating those of receiving waters. Furthermore, viruses attached to suspended colloids made up a large fraction of the total load, particularly in early stages of the storm. At a second field site (stormwater retention pond), RAPD-PCR profiling showed that the viral community of the pond changed dramatically over the course of two intense storms while relatively little change was observed over similar time scales in the absence of disturbance. Comparisons of planktonic and particle-associated viral communities revealed two completely distinct communities, suggesting that particle-associated viruses represent a potentially large and overlooked portion of aquatic viral abundance and diversity. Our findings show that stormwater runoff can quickly change the composition of freshwater microbial communities. Based on these findings, increased storms in the coastal mid-Atlantic region predicted by most climate change models will likely have important impacts on the structure and function of local freshwater microbial communities.
Stormwater runoff drives viral community composition changes in inland freshwaters
Williamson, Kurt E.; Harris, Jamie V.; Green, Jasmin C.; Rahman, Faraz; Chambers, Randolph M.
2014-01-01
Storm events impact freshwater microbial communities by transporting terrestrial viruses and other microbes to freshwater systems, and by potentially resuspending microbes from bottom sediments. The magnitude of these impacts on freshwater ecosystems is unknown and largely unexplored. Field studies carried out at two discrete sites in coastal Virginia (USA) were used to characterize the viral load carried by runoff and to test the hypothesis that terrestrial viruses introduced through stormwater runoff change the composition of freshwater microbial communities. Field data gathered from an agricultural watershed indicated that primary runoff can contain viral densities approximating those of receiving waters. Furthermore, viruses attached to suspended colloids made up a large fraction of the total load, particularly in early stages of the storm. At a second field site (stormwater retention pond), RAPD-PCR profiling showed that the viral community of the pond changed dramatically over the course of two intense storms while relatively little change was observed over similar time scales in the absence of disturbance. Comparisons of planktonic and particle-associated viral communities revealed two completely distinct communities, suggesting that particle-associated viruses represent a potentially large and overlooked portion of aquatic viral abundance and diversity. Our findings show that stormwater runoff can quickly change the composition of freshwater microbial communities. Based on these findings, increased storms in the coastal mid-Atlantic region predicted by most climate change models will likely have important impacts on the structure and function of local freshwater microbial communities. PMID:24672520
Effects of thermal cycling on graphie-fiber-reinforced 6061 aluminum
NASA Technical Reports Server (NTRS)
Dries, G. A.; Tompkins, S. S.
1986-01-01
Graphite-reinforced aluminum alloy metal-matrix composites are among materials being considered for structural components in dimensionally stable space structures. This application requires materials with low values of thermal expansions and high specific stiffnesses. They must remain stable during exposures to the space environment for periods extending to 20 years. The effects of thermal cycling on the thermal expansion behavior and mechanical properties of Thornel P100 graphite 6061 aluminum composites, as fabricated and after thermal processing to eliminate thermal strain hysteresis, have been investigated. Two groups of composites were studied: one was fabricated by hot roll bonding and the other by diffusion bonding. Processing significantly reduced strain hysteresis during thermal cycling in both groups and improved the ultimate tensile strength and modulus in the diffusion-bonded composites. Thermal cycling stabilized the as-fabricated composites by reducing the residual fabrication stress and increased the matrix strength by metallurgical aging. Thermal expansion behavior of both groups after processing was insensitive to thermal cycling. Data scatter was too large to determine effects of thermal cycling on the mechanical properties. The primary effects of processing and thermal cycling can be attributed to changes in the metallurgical condition and stress state of the matrix.
Load Diffusion in Composite and Smart Structures
NASA Technical Reports Server (NTRS)
Horgan, Cornelius O.; Ambur, D. (Technical Monitor); Nemeth, M. P. (Technical Monitor)
2003-01-01
The research carried out here builds on our previous NASA supported research on the general topic of edge effects and load diffusion in composite structures. Further fundamental solid mechanics studies were carried out to provide a basis for assessing the complicated modeling necessary for the multi-functional large scale structures used by NASA. An understanding of the fundamental mechanisms of load diffusion in composite subcomponents is essential in developing primary composite structures. Some specific problems recently considered were those of end effects in smart materials and structures, study of the stress response of pressurized linear piezoelectric cylinders for both static and steady rotating configurations, an analysis of the effect of pre-stressing and pre-polarization on the decay of end effects in piezoelectric solids and investigation of constitutive models for hardening rubber-like materials. Our goal in the study of load diffusion is the development of readily applicable results for the decay lengths in terms of non-dimensional material and geometric parameters. Analytical models of load diffusion behavior are extremely valuable in building an intuitive base for developing refined modeling strategies and assessing results from finite element analyses.
Test results for composite specimens and elements containing joints and cutouts
NASA Technical Reports Server (NTRS)
Sumida, P. T.; Madan, R. C.; Hawley, A. V.
1988-01-01
A program was conducted to develop the technology for joints and cutouts in a composite fuselage that meets all design requirements of a large transport aircraft for the 1990s. An advanced trijet derivative of the DC-10 was selected as the baseline aircraft. Design and analysis of a 30-foot-long composite fuselage barrel provided a realistic basis for the test effort. The primary composite material was Hexcel F584 resin on 12 K IM6 fiber, in tape and broadgoods form. Fiberglass broadgoods were used in E-glass and S-glass fiber form in the cutout region of some panels. Additionally, injection-molded chopped graphite fiber/PEEK was used for longeron-to-frame shear clips. The test effort included four groups of test specimens, beginning with coupon specimens of mono-layer and cross-piled laminates, progressing through increasingly larger and more complex specimens, and ending with two 4- by 5-foot curved fuselage side panels. One of the side panels incorporated a transverse skin splice, while the second included two cabin window cutouts.
Viswanathan, R; Shashibhushan, K K; Subba Reddy, V V
2011-12-01
To evaluate and compare shear bond strengths of composite resins to primary enamel and dentine when the adhesives are pre-cured (light cured before the application of the resin) or co-cured (adhesive and the resin light cured together). Buccal surfaces of 80 caries-free primary molars were wet ground to create bonding surfaces on enamel and dentine and specimens mounted on acrylic blocks. Two bonding agents (Prime and Bond NT® and Xeno III®) were applied to either enamel or dentine as per manufacturer's instructions. In 40 specimens, the bonding agent was light cured immediately after the application (pre-cured). The other 40 specimens were not light cured until the composite resin application (co-cured). Resin composite cylinders were made incrementally using acrylic moulds over the adhesives and light cured. Specimens were stored in deionised water for 24 hours at room temperature. Shear bond strength was measured using an Instron universal testing machine (in MPa) and was analysed with Student's unpaired t test. Light curing the adhesive separately produced significantly higher bond strengths to primary dentine than co-curing (p<0.001). At the same time light curing the adhesive separately did not produce significantly different bond strengths to primary enamel (p>0.05). Curing sequence had no significant effect on shear bond strength of adhesives on the primary enamel. Pre-curing adhesives before curing composite resins produced greater shear bond strength to primary dentine.
NASA Astrophysics Data System (ADS)
Elsaß, M.; Frommherz, M.; Oechsner, M.
2018-02-01
In this work, interdiffusion between two nickel-based superalloys and two MCrAlY bond coats is investigated. The MCrAlY bond coats were applied using two different spraying processes, high velocity oxygen fuel spraying (HVOF) and low-pressure plasma spraying. Of primary interest is the evolution of Kirkendall porosity, which can form at the interface between substrate and bond coat and depends largely on the chemical compositions of the coating and substrate. Experimental evidence further suggested that the formation of Kirkendall porosity depends on the coating deposition process. Formation of porosity at the interface causes a degradation of the bonding strength between substrate and coating. After coating deposition, the samples were annealed at 1050 °C for up to 2000 h. Microstructural and compositional analyses were performed to determine and evaluate the Kirkendall porosity. The results reveal a strong influence of both the coating deposition process and the chemical compositions. The amount of Kirkendall porosity formed, as well as the location of appearance, is largely influenced by the coating deposition process. In general, samples with bond coats applied by means of HVOF show accelerated element diffusion. It is hypothesized that recrystallization of the substrate material is a main root cause for these observations.
Yakimov, Michail M; La Cono, Violetta; Denaro, Renata; D'Auria, Giuseppe; Decembrini, Franco; Timmis, Kenneth N; Golyshin, Peter N; Giuliano, Laura
2007-12-01
Meso- and bathypelagic ecosystems represent the most common marine ecological niche on Earth and contain complex communities of microorganisms that are for the most part ecophysiologically poorly characterized. Gradients of physico-chemical factors (for example, depth-related gradients of light, temperature, salinity, nutrients and pressure) constitute major forces shaping ecosystems at activity 'hot spots' on the ocean floor, such as hydrothermal vents, cold seepages and mud volcanoes and hypersaline lakes, though the relationships between community composition, activities and environmental parameters remain largely elusive. We report here results of a detailed study of primary producing microbial communities in the deep Eastern Mediterranean Sea. The brine column of the deep anoxic hypersaline brine lake, L'Atalante, the overlying water column and the brine-seawater interface, were characterized physico- and geochemically, and microbiologically, in terms of their microbial community compositions, functional gene distributions and [(14)C]bicarbonate assimilation activities. The depth distribution of genes encoding the crenarchaeal ammonia monooxygenase alpha subunit (amoA), and the bacterial ribulose-1,5-biphosphate carboxylase/oxygenase large subunit (RuBisCO), was found to coincide with two different types of chemoautotrophy. Meso- and bathypelagic microbial communities were enriched in ammonia-oxidizing Crenarchaeota, whereas the autotrophic community at the oxic/anoxic interface of L'Atalante lake was dominated by Epsilonproteobacteria and sulfur-oxidizing Gammaproteobacteria. These autotrophic microbes are thus the basis of the food webs populating these deep-sea ecosystems.
Pariyani, Raghunath; Ismail, Intan Safinar; Ahmad Azam, Amalina; Abas, Faridah; Shaari, Khozirah
2017-09-01
Java tea is a well-known herbal infusion prepared from the leaves of Orthosiphon stamineus (OS). The biological properties of tea are in direct correlation with the primary and secondary metabolite composition, which in turn largely depends on the choice of drying method. Herein, the impact of three commonly used drying methods, i.e. shade, microwave and freeze drying, on the metabolite composition and antioxidant activity of OS leaves was investigated using proton nuclear magnetic resonance ( 1 H NMR) spectroscopy combined with multivariate classification and regression analysis tools. A total of 31 constituents comprising primary and secondary metabolites belonging to the chemical classes of fatty acids, amino acids, sugars, terpenoids and phenolic compounds were identified. Shade-dried leaves were identified to possess the highest concentrations of bioactive secondary metabolites such as chlorogenic acid, caffeic acid, luteolin, orthosiphol and apigenin, followed by microwave-dried samples. Freeze-dried leaves had higher concentrations of choline, amino acids leucine, alanine and glutamine and sugars such as fructose and α-glucose, but contained the lowest levels of secondary metabolites. Metabolite profiling coupled with multivariate analysis identified shade drying as the best method to prepare OS leaves as Java tea or to include in traditional medicine preparation. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Challenges and payoff of composites in transport aircraft: 777 empennage and future applications
NASA Technical Reports Server (NTRS)
Quinlivan, John
1993-01-01
The Boeing 777 is the first of a new family of wide body airplanes. The new large twin is sized to accommodate 360 to 390 passengers in typical two-class configurations and planned growth beyond that. The 777 offers airlines three engine options, extremely attractive operating costs, and compatibility with existing airport gates and taxiways. The 777 has a wingspan of nearly 197 feet and is offered with a wing-tip folding mechanism that will reduce the span to 156 feet. Extensive use of advance composite is included in the 777. The application range from fiberglass fairing to primary structures. The 777 empennage includes vertical fin and a horizontal stabilizer. The material used for the empennage is a new, toughened epoxy materials. The material provides outstanding resistance to impact damage.
Arikan, Volkan; Sari, Saziye
2011-01-01
This case report describes the repositioning of a laterally luxated primary central incisor with occlusal interference, using a composite inclined plane. The patient was a 4-year-old girl who applied to our clinic three days after the injury. Because of the time delay between injury and presentation, it was not possible to reposition the tooth with pressure. Following a root-canal treatment, an inclined plane was prepared on the lower primary incisors, using composite resin. The tooth was repositioned in two weeks, and the inclined plane was then removed. After 1 year of follow-up, the treatment was found to be successful, both clinically and radiographically. The use of a composite inclined plane, accompanied by careful follow-up, is an effective alternative to extraction for laterally luxated primary incisors with occlusal interference. PMID:21228962
Resin transfer molding for advanced composite primary wing and fuselage structures
NASA Technical Reports Server (NTRS)
Markus, Alan
1992-01-01
The stitching and resin transfer molding (RTM) processes developed at Douglas Aircraft Co. are successfully demonstrating significant cost reductions with good damage tolerance properties. These attributes were identified as critical to application of advanced composite materials to commercial aircraft primary structures. The RTM/stitching developments, cost analyses, and test results are discussed of the NASA Advanced Composites Technology program.
A large area cosmic muon detector located at Ohya stone mine
NASA Technical Reports Server (NTRS)
Nii, N.; Mizutani, K.; Aoki, T.; Kitamura, T.; Mitsui, K.; Matsuno, S.; Muraki, Y.; Ohashi, Y.; Okada, A.; Kamiya, Y.
1985-01-01
The chemical composition of the primary cosmic rays between 10 to the 15th power eV and 10 to the 18th power eV were determined by a Large Area Cosmic Muon Detector located at Ohya stone mine. The experimental aims of Ohya project are; (1) search for the ultra high-energy gamma-rays; (2) search for the GUT monopole created by Big Bang; and (3) search for the muon bundle. A large number of muon chambers were installed at the shallow underground near Nikko (approx. 100 Km north of Tokyo, situated at Ohya-town, Utsunomiya-city). At the surface of the mine, very fast 100 channel scintillation counters were equipped in order to measure the direction of air showers. These air shower arrays were operated at the same time, together with the underground muon chamber.
NASA Technical Reports Server (NTRS)
Lheureux, J.; Fan, C. Y.; Mainardi, R.; Gloeckler, G.
1974-01-01
A 6500 sq cm-ster cosmic-ray detector consisting of 12 gas counter trays sandwiched between two large-area circular scintillation counters was flown from Palestine, Texas in November 1972 to study the composition of primary particles greater than 1.5 GeV/nucleon in the charge range from 3 to 30. For each analyzed event, the particle trajectory was recorded, using four 20-wire proportional counter trays. Also recorded were the energy loss in each of the solid counters and the dE/dx losses in each of the 12 gas counters. The large dynamic range of the detector is established by operating six of the gas counters in the ionization mode. A description of the instrument and some preliminary results are given.
NASA Technical Reports Server (NTRS)
Lheureux, J.; Fan, C. Y.; Gloeckler, G.; Mainardi, R.
1973-01-01
A 6500 sq cm-ster cosmic ray detector consisting of twelve gas counter trays sandwiched between two large area circular scintillation counters was flown from Palestine, Texas in November of 1972 to study the composition of primary particles 1.5 GeV/nucleon in the charge range 3 to 30. For each analyzed event, a recording was made of (1) the particle trajectory using four 20 wire proportional counter trays, (2) the energy loss in each of the solid counters, and (3) the dE/dx losses in each of the twelve gas counters. The large dynamic range of the detector is established by operating six of the gas counters in the ionization mode. A description of the instrument and some preliminary results are given.
Koyama, Akihiro; Wallenstein, Matthew D.; Simpson, Rodney T.; Moore, John C.
2014-01-01
The pool of soil organic carbon (SOC) in the Arctic is disproportionally large compared to those in other biomes. This large quantity of SOC accumulated over millennia due to slow rates of decomposition relative to net primary productivity. Decomposition is constrained by low temperatures and nutrient concentrations, which limit soil microbial activity. We investigated how nutrients limit bacterial and fungal biomass and community composition in organic and mineral soils within moist acidic tussock tundra ecosystems. We sampled two experimental arrays of moist acidic tussock tundra that included fertilized and non-fertilized control plots. One array included plots that had been fertilized annually since 1989 and the other since 2006. Fertilization significantly altered overall bacterial community composition and reduced evenness, to a greater degree in organic than mineral soils, and in the 1989 compared to the 2006 site. The relative abundance of copiotrophic α-Proteobacteria and β-Proteobacteria was higher in fertilized than control soils, and oligotrophic Acidobacteria were less abundant in fertilized than control soils at the 1989 site. Fungal community composition was less sensitive to increased nutrient availability, and fungal responses to fertilization were not consistent between soil horizons and sites. We detected two ectomycorrhizal genera, Russula and Cortinarius spp., associated with shrubs. Their relative abundance was not affected by fertilization despite increased dominance of their host plants in the fertilized plots. Our results indicate that fertilization, which has been commonly used to simulate warming in Arctic tundra, has limited applicability for investigating fungal dynamics under warming. PMID:25324836
Fluid retention, muscle damage, and altered body composition at the Ultraman triathlon.
Baur, Daniel A; Bach, Christopher W; Hyder, William J; Ormsbee, Michael J
2016-03-01
The primary purpose of this investigation was to determine the effects of participation in a 3-day multistage ultraendurance triathlon (stage 1 = 10 km swim, 144.8 km bike; stage 2 = 275.4 km bike; stage 3 = 84.4 km run) on body mass and composition, hydration status, hormones, muscle damage, and blood glucose. Eighteen triathletes (mean ± SD; age 41 ± 7.5 years; height 175 ± 9 cm; weight 73.5 ± 9.8 kg; male n = 14, female n = 4) were assessed before and after each stage of the race. Body mass and composition were measured via bioelectrical impedance, hydration status via urine specific gravity, hormones and muscle damage via venous blood draw, and blood glucose via fingerstick. Following the race, significant changes included reductions in body mass (qualified effect size: trivial), fat mass (moderate), and percent body fat (small); increases in percent total body water (moderate) and urine specific gravity (large); and unchanged absolute total body water and fat-free mass. There were also extremely large increases in creatine kinase, C-reactive protein, aldosterone and cortisol combined with reductions in testosterone (small) and the testosterone:cortisol ratio (moderate). There were associations between post-race aldosterone and total body water (r = -0.504) and changes in cortisol and fat-free mass (r = -0.536). Finally, blood glucose increased in a stepwise manner prior to each stage. Participation in Ultraman Florida leads to fluid retention and dramatic alterations in body composition, muscle health, hormones, and metabolism.
NASA Technical Reports Server (NTRS)
DiCarlo, James A.; Yun, Hee Mann; Hurst, Janet B.; Viterna, L. (Technical Monitor)
2002-01-01
The successful application of SiC/SiC ceramic matrix composites as high-temperature structural materials depends strongly on maximizing the fracture or rupture life of the load-bearing fiber and matrix constituents. Using high-temperature data measured under stress-rupture test conditions, this study examines in a mechanistic manner the effects of various intrinsic and extrinsic factors on the creep and fracture behavior of a variety of SiC fiber types. It is shown that although some fiber types fracture during a large primary creep stage, the fiber creep rate just prior to fracture plays a key role in determining fiber rupture time (Monkman-Grant theory). If it is assumed that SiC matrices rupture in a similar manner as fibers with the same microstructures, one can develop simple mechanistic models to analyze and optimize the stress-rupture behavior of SiC/SiC composites for applied stresses that are initially below matrix cracking.
Ion Composition in Titan's Exosphere from the Cassini Plasma Spectrometer
NASA Astrophysics Data System (ADS)
Woodson, A.; Smith, H. T.; Johnson, R. E.
2013-12-01
A primary goal of the Cassini mission has been to characterize the complex interaction between Saturn's magnetosphere and Titan's ionosphere. To this end, the Cassini spacecraft carries two instruments-the Ion and Neutral Mass Spectrometer (INMS) and the Cassini Plasma Spectrometer (CAPS)-capable of energy- and mass-analysis. The Ion Mass Spectrometer (IMS), one of three instruments composing CAPS, is designed to characterize diffuse plasmas throughout the magnetosphere while the INMS is optimized for measurements within Titan's upper atmosphere. As such, mass-resolved ion compositions confirming a variety of hydrocarbons and nitriles have been extracted from INMS data for numerous Titan encounters. Similar analysis of IMS data, however, has largely been resolution-limited to the identification of 'light' and 'heavy' ion groups in the wake. Herein we present a technique for extracting Dalton-resolved ion compositions from IMS spectra acquired below ~5 Titan radii. The method is then applied to data from the T40 encounter and the resulting relative abundances compared with those derived from the INMS data for the same encounter.
Study design of ASPirin in Reducing Events in the Elderly (ASPREE): a randomized, controlled trial.
2013-11-01
Cost-effective strategies to maintain healthy active lifestyle in aging populations are required to address the global burden of age-related diseases. ASPREE will examine whether the potential primary prevention benefits of low dose aspirin outweigh the risks in older healthy individuals. Our primary hypothesis is that daily oral 100 mg enteric-coated aspirin will extend a composite primary endpoint termed 'disability-free life' including onset of dementia, total mortality, or persistent disability in at least one of the Katz Activities of Daily Living in 19,000 healthy participants aged 65 years and above ('US minorities') and 70 years and above (non-'US minorities'). ASPREE is a double-blind, randomized, placebo-controlled trial of oral 100mg enteric-coated acetyl salicylic acid (ASA) or matching placebo being conducted in Australian and US community settings on individuals free of dementia, disability and cardiovascular disease (CVD) events. Secondary endpoints are all-cause and cause specific mortality, fatal and non-fatal cardiovascular events, fatal and non-fatal cancer (excluding non-melanoma skin cancer), dementia, mild cognitive impairment, depression, physical disability, and clinically significant bleeding. To 20 September 2013 14,383 participants have been recruited. Recruitment and study completion are anticipated in July 2014 and December 2018 respectively. In contrast to other aspirin trials that have largely focused on cardiovascular endpoints, ASPREE has a unique composite primary endpoint to better capture the overall risk and benefit of aspirin to extend healthy independent lifespan in older adults in the US and Australia. © 2013. Published by Elsevier Inc. All rights reserved.
Effects of climate change and shifts in forest composition on forest net primary production
Jyh-Min Chiang; Louts [Louis] R. Iverson; Anantha Prasad; Kim J. Brown
2008-01-01
Forests are dynamic in both structure and species composition, and these dynamics are strongly influenced by climate. However, the net effects of future tree species composition on net primary production (NPP) are not well understood. The objective of this work was to model the potential range shifts of tree species (DISTRIB Model) and predict their impacts on NPP (...
Elemental composition of normal primary tooth enamel analyzed with XRMA and SIMS.
Sabel, Nina; Dietz, Wolfram; Lundgren, Ted; Nietzsche, Sandor; Odelius, Hans; Rythén, Marianne; Rizell, Sara; Robertson, Agneta; Norén, Jörgen G; Klingberg, Gunilla
2009-01-01
There is an interest to analyze the chemical composition of enamel in teeth from patients with different developmental disorders or syndromes and evaluate possible differences compared to normal composition. For this purpose, it is essential to have reference material. The aim of this study was to, by means of X-ray micro analyses (XRMA) and secondary ion mass spectrometry (SIMS), present concentration gradients for C, O, P and Ca and F, Na, Mg, Cl, K and Sr in normal enamel of primary teeth from healthy individuals. 36 exfoliated primary teeth from 36 healthy children were collected, sectioned, and analyzed in the enamel and dentin with X-ray micro analyses for the content of C, O, P and Ca and F, Na MgCl, K and Sr. This study has supplied reference data for C, O, P and Ca in enamel in primary teeth from healthy subjects. No statistically significant differences in the elemental composition were found between incisors and molars.The ratio Ca/P is in concordance with other studies. Some elements have shown statistically significant differences between different levels of measurement. These results may be used as reference values for research on the chemical composition of enamel and dentin in primary teeth from patients with different conditions and/or syndromes.
NASA Astrophysics Data System (ADS)
Belle, Simon; Freiberg, Rene; Poska, Anneli; Agasild, Helen; Alliksaar, Tiiu; Tõnno, Ilmar
2018-05-01
The study of lake sediments and archived biological remains is a promising approach to better understand the impacts of climate change on aquatic ecosystems. Small lakes have been shown to be strongly sensitive to past climate change, but similar information is lacking for large lakes. By identifying responses to climate change of carbon flows through benthic food web in two different sized lakes, we aimed to understand how lake morphometry can mediate the effects of climate change. We reconstructed the dynamics of phytoplankton community composition and carbon resources sustaining chironomid biomass during the Holocene from the combined analysis of sedimentary pigment quantification and carbon stable isotopic composition of subfossil chironomid head capsules (δ13CHC) in a large lake in the Baltic area (Estonia). Our results showed that chironomid biomass in the large lake was mainly sustained by phytoplankton, with no significant relationship between δ13CHC values and temperature fluctuations. We suggest that lake morphometry (including distance of the sampling zone to the shoreline, and lake volume for primary producers) mediates the effects of climate change, making large lakes less sensitive to climate change. Complementary studies are needed to better understand differences in organic matter dynamics in different sized lakes and to characterize the response of the aquatic carbon cycle to past climate change.
Report of the Asilomar 3 LDR Workshop
NASA Technical Reports Server (NTRS)
Mahoney, M. J. (Editor)
1988-01-01
The conclusions and recommendations of the workshop held to study technology development issues critical to the Large Deployable Reflector (LDR) are summarized. LDR is to be a dedicated, orbiting, astronomical observatory, operating at wavelengths from 30 to 1000 microns, a spectral region where the Earth's atmosphere is almost completely opaque. Because it will have a large, segmented, passively cooled aperture, LDR addresses a wide range of technology areas. These include lightweight, low cost, structural composite reflector panels, primary support structures, wavefront sensing and adaptive optics, thermal background management, and integrated vibration and pointing control systems. The science objectives for LDR present instrument development challenges for coherent and direct arrayed detectors which can operate effectively at far infrared and submillimeter wavelengths, and for sub-Kelvin cryogenic systems.
Design development of graphite primary structures enables SSTO success
NASA Astrophysics Data System (ADS)
Biagiotti, V. A.; Yahiro, J. S.; Suh, Daniel E.; Hodges, Eric R.; Prior, Donald J.
1997-01-01
This paper describes the development of a graphite composite wing and a graphite composite intertank primary structure for application toward Single-Stage to Orbit space vehicles such as those under development in NASA's X-33/Reusable Launch Vehicle (RLV) Program. The trade study and designs are based on a Rockwell vertical take-off and horizontal landing (VTHL) wing-body RLV vehicle. Northrop Grumman's approach using a building block development technique is described. Composite Graphite/Bismaleimide (Gr/BMI) material characterization test results are presented. Unique intertank and wing composite subcomponent test article designs are described and test results to date are presented. Wing and intertank Full Scale Section Test Article (FSTA) objectives and designs are outlined. Trade studies, supporting building block testing, and FSTA demonstrations combine to develop graphite primary structure composite technology that enables developing X-33/RLV design programs to meet critical SSTO structural weight and operations performance criteria.
Prediction of response of aircraft panels subjected to acoustic and thermal loads
NASA Technical Reports Server (NTRS)
Mei, Chuh
1992-01-01
The primary effort of this research project has been focused on the development of analytical methods for the prediction of random response of structural panels subjected to combined and intense acoustic and thermal loads. The accomplishments on various acoustic fatigue research activities are described first, then followed by publications and theses. Topics covered include: transverse shear deformation; finite element models of vibrating composite laminates; large deflection vibration modeling; finite element analysis of thermal buckling; and prediction of three dimensional duct using boundary element method.
NASA Astrophysics Data System (ADS)
Zhu, Yafei; McCowan, Andrew; Cook, Perran L. M.
2017-10-01
The effects of changes in catchment nutrient loading and composition on the phytoplankton dynamics, development of hypoxia and internal nutrient dynamics in a stratified coastal lagoon system (the Gippsland Lakes) were investigated using a 3-D coupled hydrodynamic biogeochemical water quality model. The study showed that primary production was equally sensitive to changed dissolved inorganic and particulate organic nitrogen loads, highlighting the need for a better understanding of particulate organic matter bioavailability. Stratification and sediment carbon enrichment were the main drivers for the hypoxia and subsequent sediment phosphorus release in Lake King. High primary production stimulated by large nitrogen loading brought on by a winter flood contributed almost all the sediment carbon deposition (as opposed to catchment loads), which was ultimately responsible for summer bottom-water hypoxia. Interestingly, internal recycling of phosphorus was more sensitive to changed nitrogen loads than total phosphorus loads, highlighting the potential importance of nitrogen loads exerting a control over systems that become phosphorus limited (such as during summer nitrogen-fixing blooms of cyanobacteria). Therefore, the current study highlighted the need to reduce both total nitrogen and total phosphorus for water quality improvement in estuarine systems.
Petrology of some oceanic island basalts: PRIMELT2.XLS software for primary magma calculation
NASA Astrophysics Data System (ADS)
Herzberg, C.; Asimow, P. D.
2008-09-01
PRIMELT2.XLS software is introduced for calculating primary magma composition and mantle potential temperature (TP) from an observed lava composition. It is an upgrade over a previous version in that it includes garnet peridotite melting and it detects complexities that can lead to overestimates in TP by >100°C. These are variations in source lithology, source volatile content, source oxidation state, and clinopyroxene fractionation. Nevertheless, application of PRIMELT2.XLS to lavas from a wide range of oceanic islands reveals no evidence that volatile-enrichment and source fertility are sufficient to produce them. All are associated with thermal anomalies, and this appears to be a prerequisite for their formation. For the ocean islands considered in this work, TP maxima are typically ˜1450-1500°C in the Atlantic and 1500-1600°C in the Pacific, substantially greater than ˜1350°C for ambient mantle. Lavas from the Galápagos Islands and Hawaii record in their geochemistry high TP maxima and large ranges in both TP and melt fraction over short horizontal distances, a result that is predicted by the mantle plume model.
Summary of Cosmic Ray Spectrum and Composition Below 1018 eV
NASA Astrophysics Data System (ADS)
Chiavassa, Andrea
In this contribution I will review the main results recently obtained in the study of the cosmic ray spectrum and composition below 1018 eV. The interest in this range is growing being related to the search of the knee of the iron component of cosmic ray and to the study of the transition between galactic and extra-galactic primaries. The all particle spectrum measured in this energy range is more structured than previously thought, showing some faint features: a hardening slightly above 1016 eV and a steepening below 1017 eV. The studies of the primary chemical composition are quickly evolving towards the measurements of the primary spectra of different mass groups: light and heavy primaries. A steepening of the heavy primary spectrum and a hardening of the light ones has been claimed. I will review these measurements and I will try to discuss the main sources of systematic errors still affecting them.
Microbial stress-response physiology and its implications for ecosystem function.
Schimel, Joshua; Balser, Teri C; Wallenstein, Matthew
2007-06-01
Microorganisms have a variety of evolutionary adaptations and physiological acclimation mechanisms that allow them to survive and remain active in the face of environmental stress. Physiological responses to stress have costs at the organismal level that can result in altered ecosystem-level C, energy, and nutrient flows. These large-scale impacts result from direct effects on active microbes' physiology and by controlling the composition of the active microbial community. We first consider some general aspects of how microbes experience environmental stresses and how they respond to them. We then discuss the impacts of two important ecosystem-level stressors, drought and freezing, on microbial physiology and community composition. Even when microbial community response to stress is limited, the physiological costs imposed on soil microbes are large enough that they may cause large shifts in the allocation and fate of C and N. For example, for microbes to synthesize the osmolytes they need to survive a single drought episode they may consume up to 5% of total annual net primary production in grassland ecosystems, while acclimating to freezing conditions switches Arctic tundra soils from immobilizing N during the growing season to mineralizing it during the winter. We suggest that more effectively integrating microbial ecology into ecosystem ecology will require a more complete integration of microbial physiological ecology, population biology, and process ecology.
Sreekar, Rachakonda; Zhang, Kai; Xu, Jianchu; Harrison, Rhett D.
2015-01-01
The primary approach used to conserve tropical biodiversity is in the establishment of protected areas. However, many tropical nature reserves are performing poorly and interventions in the broader landscape may be essential for conserving biodiversity both within reserves and at large. Between October 2010 and 2012, we conducted bird surveys in and around a recently established nature reserve in Xishuangbanna, China. We constructed a checklist of observed species, previously recorded species, and species inferred to have occurred in the area from their distributions and habitat requirements. In addition, we assessed variation in community composition and habitat specificity at a landscape-scale. Despite the fact that the landscape supports a large area of natural forest habitat (~50,000 ha), we estimate that >40% of the bird fauna has been extirpated and abundant evidence suggests hunting is the primary cause. A large proportion (52%) of the bigger birds (>20 cm) were extirpated and for large birds there was a U-shaped relationship between habitat breadth and extirpation probability. Habitat specificity was low and bird communities were dominated by widespread species of limited conservation concern. We question whether extending tropical protected area networks will deliver desired conservation gains, unless much greater effort is channeled into addressing the hunting problem both within existing protected areas and in the broader landscape. PMID:25668338
Fernandez-Tendero, Eva; Day, Arnaud; Legros, Sandrine; Habrant, Anouck; Hawkins, Simon
2017-01-01
Interest in hemp (Cannabis sativa L.) is increasing due to the development of a new range of industrial applications based on bast fibers. However the variability of bast fiber yield and quality represents an important barrier to further exploitation. Primary and secondary fiber content was examined in two commercial hemp varieties (Fedora 17, Santhica 27) grown under contrasted sowing density and irrigation conditions. Both growing conditions and hemp varieties impact stem tissue architecture with a large effect on the proportion of secondary fibers but not primary fibers. Attenuated total reflectance infrared spectroscopy allowed the discrimination of manually-isolated native primary fibers and secondary fibers but did not reveal any clustering according to growing conditions and variety. Infrared data were confirmed by wet chemistry analyses that revealed slight but significant differences between primary and secondary fiber cell wall composition. Infrared spectroscopy of technical fibers obtained after mechanical defibering revealed differences with native primary, but not secondary fibers and also discriminated samples obtained from plants grown under different conditions. Altogether the results suggested that the observed variability of hemp technical fibers could be partially explained by i) differences in secondary fiber production and ii) differential behavior during mechanical defibering resulting in unequal separation of primary and secondary fibers. PMID:28640922
Fernandez-Tendero, Eva; Day, Arnaud; Legros, Sandrine; Habrant, Anouck; Hawkins, Simon; Chabbert, Brigitte
2017-01-01
Interest in hemp (Cannabis sativa L.) is increasing due to the development of a new range of industrial applications based on bast fibers. However the variability of bast fiber yield and quality represents an important barrier to further exploitation. Primary and secondary fiber content was examined in two commercial hemp varieties (Fedora 17, Santhica 27) grown under contrasted sowing density and irrigation conditions. Both growing conditions and hemp varieties impact stem tissue architecture with a large effect on the proportion of secondary fibers but not primary fibers. Attenuated total reflectance infrared spectroscopy allowed the discrimination of manually-isolated native primary fibers and secondary fibers but did not reveal any clustering according to growing conditions and variety. Infrared data were confirmed by wet chemistry analyses that revealed slight but significant differences between primary and secondary fiber cell wall composition. Infrared spectroscopy of technical fibers obtained after mechanical defibering revealed differences with native primary, but not secondary fibers and also discriminated samples obtained from plants grown under different conditions. Altogether the results suggested that the observed variability of hemp technical fibers could be partially explained by i) differences in secondary fiber production and ii) differential behavior during mechanical defibering resulting in unequal separation of primary and secondary fibers.
NASA Astrophysics Data System (ADS)
Herzberg, C.; Asimow, P. D.
2015-02-01
An upgrade of the PRIMELT algorithm for calculating primary magma composition is given together with its implementation in PRIMELT3 MEGA.xlsm software. It supersedes PRIMELT2.xls in correcting minor mistakes in melt fraction and computed Ni content of olivine, it identifies residuum mineralogy, and it provides a thorough analysis of uncertainties in mantle potential temperature and olivine liquidus temperature. The uncertainty analysis was made tractable by the computation of olivine liquidus temperatures as functions of pressure and partial melt MgO content between the liquidus and solidus. We present a computed anhydrous peridotite solidus in T-P space using relations amongst MgO, T and P along the solidus; it compares well with experiments on the solidus. Results of the application of PRIMELT3 to a wide range of basalts shows that the mantle sources of ocean islands and large igneous provinces were hotter than oceanic spreading centers, consistent with earlier studies and expectations of the mantle plume model.
Glass Fibre-Reinforced Composite Post and Core Used in Decayed Primary Anterior Teeth: A Case Report
Verma, Leena; Passi, Sidhi
2011-01-01
Aesthetic requirement of severely mutilated primary anterior teeth in the case of early childhood caries has been a challenge to pediatric dentist. Among restorative treatment options, prefabricated crown and biological and resin composite restoration either by means of direct or indirect technique are mentioned in the literature. This paper presents the clinical sequence of rehabilitation of maxillary anterior primary teeth. Endodontic treatment was followed by the placement of a glass fibre-reinforced composite resin post. The crown reconstruction was done with composite restoration. Resin glass fibre post has best properties in elasticity, translucency, adaptability, tenaciousness, and resistance to traction and to impact. Along with ease of application, fiber can be used as an alternative to traditionally used materials in the management of early childhood caries. PMID:22567447
Arndt, N.; Chauvel, C.; Czamanske, G.; Fedorenko, V.
1998-01-01
Rocks of two distinctly different magma series are found in a ???4000-m-thick sequence of lavas and tuffs in the Maymecha River basin which is part of the Siberian flood-volcanic province. The tholeiites are typical low-Ti continental flood basalts with remarkably restricted, petrologically evolved compositions. They have basaltic MgO contents, moderate concentrations of incompatible trace elements, moderate fractionation of incompatible from compatible elements, distinct negative Ta(Nb) anomalies, and ??Nd values of 0 to + 2. The primary magmas were derived from a relatively shallow mantle source, and evolved in large crustal magma chambers where they acquired their relatively uniform compositions and became contaminated with continental crust. An alkaline series, in contrast, contains a wide range of rock types, from meymechite and picrite to trachytes, with a wide range of compositions (MgO from 0.7 to 38 wt%, SiO2 from 40 to 69 wt%, Ce from 14 to 320 ppm), high concentrations of incompatible elements and extreme fractionation of incompatible from compatible elements (Al2O3/TiO2 ??? 1; Sm/Yb up to 11). These rocks lack Ta(Nb) anomalies and have a broad range of ??Nd values, from -2 to +5. The parental magmas are believed to have formed by low-degree melting at extreme mantle depths (>200 km). They bypassed the large crustal magma chambers and ascended rapidly to the surface, a consequence, perhaps, of high volatile contents in the primary magmas. The tholeiitic series dominates the lower part of the sequence and the alkaline series the upper part; at the interface, the two types are interlayered. The succession thus provides evidence of a radical change in the site of mantle melting, and the simultaneous operation of two very different crustal plumbing systems, during the evolution of this flood-volcanic province. ?? Springer-Verlag 1998.
Ulrich, Werner; Piwczyński, Marcin; Zaplata, Markus Klemens; Winter, Susanne; Schaaf, Wolfgang; Fischer, Anton
2014-07-01
During early plant succession, the phylogenetic structure of a community changes in response to important environmental filters and emerging species interactions. We traced the development of temperate-zone plant communities during the first 7 years of primary succession on catchment soils to explore patterns of initial species assembly. We found pronounced small-scale differences in the phylogenetic composition of neighbouring plant assemblages and a large-scale trend towards phylogenetic evenness. This small-scale variability appears to be mediated by soil properties, particularly carbonate content. Therefore, abiotic environmental conditions might counteract or even supersede the effects of interspecific competition among closely related species, which are usually predicted to exhibit patterns of phylogenetic evenness. We conclude that theories on phylogenetic community composition need to incorporate effects of small-scale variability of environmental factors.
Bryson-Morrison, Nicola; Matsuzawa, Tetsuro; Humle, Tatyana
2016-12-01
Many primate populations occur outside protected areas in fragmented anthropogenic landscapes. Empirical data on the ecological characteristics that define an anthropogenic landscape are urgently required if conservation initiatives in such environments are to succeed. The main objective of our study was to determine the composition and availability of chimpanzee (Pan troglodytes verus) food resources across fine spatial scales in the anthropogenic landscape of Bossou, Guinea, West Africa. We examined food resources in all habitat types available in the chimpanzees' core area. We surveyed resource composition, structure and heterogeneity (20 m × 20 m quadrats, N = 54) and assessed temporal availability of food from phenology trails (total distance 5951 m; 1073 individual trees) over 1 year (2012-2013). Over half of Bossou consists of regenerating forest and is highly diverse in terms of chimpanzee food species; large fruit bearing trees are rare and confined to primary and riverine forest. Moraceae (mulberries and figs) was the dominant family, trees of which produce drupaceous fruits favored by chimpanzees. The oil palm occurs at high densities throughout and is the only species found in all habitat types except primary forest. Our data suggest that the high densities of oil palm and fig trees, along with abundant terrestrial herbaceous vegetation and cultivars, are able to provide the chimpanzees with widely available resources, compensating for the scarcity of large fruit trees. A significant difference was found between habitat types in stem density/ha and basal area m 2 /ha of chimpanzee food species. Secondary, young secondary, and primary forest emerged as the most important habitat types for availability of food tree species. Our study emphasizes the importance of examining ecological characteristics of an anthropogenic landscape as each available habitat type is unlikely to be equally important in terms of spatial and temporal availability of resources. Am. J. Primatol. 78:1237-1249, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Effect of Zirconium Addition on Microstructure and Mechanical Property of TiC/Ti6A14V Composites
NASA Astrophysics Data System (ADS)
Ma, Xuliang; Wang, Xiang; Li, Li; Gai, Pengtao; Zhu, Chengwu
TiC/Ti6A14V composites with different Zr additions were prepared successfully in a consumable vacuum arc furnace equipped with a water-cooled copper crucible and the effect of the Zr content on the microstructure and mechanical property of 15 vol.%TiC/Ti6A14V composites was investigated by XRD, SEM and hardness testing. The results show that when the level of Zr addition is less than 4 wt.%, the morphology of the primary TiC in the composites is dendrite, and the petal-shape, piece-shape or palpus-shape eutectic TiC separates out around the primary TiC. The average size of the primary TiC decreases and the amount of eutectic TiC increases gradually with increasing Zr content. The effects of Zr on morphology of the primary TiC weaken with further addition of Zr. And the hardness (HRC) of composites was obviously increased in the whole range of Zr addition. The refinement mechanism of Zr was attributed to the combined effects of increase in nucleation rate at the constitutionally supercooled zone ahead of the solidification front and reduction in growth rate.
Advanced Technology Composite Fuselage - Repair and Damage Assessment Supporting Maintenance
NASA Technical Reports Server (NTRS)
Flynn, B. W.; Bodine, J. B.; Dopker, B.; Finn, S. R.; Griess, K. H.; Hanson, C. T.; Harris, C. G.; Nelson, K. M.; Walker, T. H.; Kennedy, T. C.;
1997-01-01
Under the NASA-sponsored contracts for Advanced Technology Composite Aircraft Structures (ATCAS) and Materials Development Omnibus Contract (MDOC), Boeing is studying the technologies associated with the application of composite materials to commercial transport fuselage structure. Included in the study is the incorporation of maintainability and repairability requirements of composite primary structure into the design. This contractor report describes activities performed to address maintenance issues in composite fuselage applications. A key aspect of the study was the development of a maintenance philosophy which included consideration of maintenance issues early in the design cycle, multiple repair options, and airline participation in design trades. Fuselage design evaluations considered trade-offs between structural weight, damage resistance/tolerance (repair frequency), and inspection burdens. Analysis methods were developed to assess structural residual strength in the presence of damage, and to evaluate repair design concepts. Repair designs were created with a focus on mechanically fastened concepts for skin/stringer structure and bonded concepts for sandwich structure. Both a large crown (skintstringer) and keel (sandwich) panel were repaired. A compression test of the keel panel indicated the demonstrated repairs recovered ultimate load capability. In conjunction with the design and manufacturing developments, inspection methods were investigated for their potential to evaluate damaged structure and verify the integrity of completed repairs.
Moore, J G; Bocklage, T
1998-07-01
Primary undifferentiated carcinoma of the salivary glands is a rare, high-grade neoplasm which accounts for a very small number (1-5.5%) of malignant salivary gland tumors. The large-cell variant (LCU) is less well-characterized than the small-cell form. We report on the fine-needle aspiration (FNA) biopsy findings of 2 cases of LCU, one arising in the parotid gland, and the other in a buccal mucosa accessory salivary gland. The 2 cases were similar in composition: isolated and loosely cohesive large cells with abundant cytoplasm, and variability pleomorphic nuclei with prominent nucleoli. One case also featured multinucleated tumor giant cells and macrophage polykaryons; the latter has not previously been described in FNA biopsies of LCU. There was no evidence of squamous, myoepithelial, or widespread mucinous differentiation by morphological, cytochemical, or immunohistochemical analyses (focal rare mucin production identified on special stains in one case). The differential diagnosis is lengthy and consists of other high-grade primary salivary gland malignancies as well as metastatic lesions, including melanoma. The pattern of immunohistochemical reactivity (positive keratin, negative S-100, and HMB-45 antigens), and lack of conspicuous mucin production of significant lymphoidinfiltrate, were useful in establishing the correct diagnosis.
Stabilisation of Ce-Cu-Fe amorphous alloys by addition of Al
NASA Astrophysics Data System (ADS)
Kelhar, Luka; Ferčič, Jana; Boulet, Pascal; Maček-Kržmanc, Marjeta; Šturm, Sašo; Lamut, Martin; Markoli, Boštjan; Kobe, Spomenka; Dubois, Jean-Marie
2016-10-01
The present work describes the formation of amorphous alloys in the (Al1-xCex)62Cu25Fe13 quaternary system (0 ≤ x ≤ 1). When the amount of Ce falls in the range 0.67 ≤ x ≤ 0.83, the alloys obtained exhibit a completely amorphous structure confirmed by powder X-ray diffraction. Otherwise, at compositions x = 0.5, 0.58, 0.92 and 1, a primary crystalline phase forms together with an amorphous matrix. The crystallisation temperature (Tx) decreases with increasing Ce content, varying from 593 K for x = 0.5-383 K for x = 1. Composition x = 0.75 is considered as the best glass former, exhibiting a large supercooled liquid region of 40 K width that precedes crystallisation. In order to form bulk amorphous alloys, ribbons with this later composition were consolidated into few millimetre thick discs using pulsed electric current sintering at different temperatures, yet preserving the amorphous structure. Meanwhile, increasing temperature above 483 K triggers crystallisation of a primary phase isostructural to AlCe3. Further increase in the temperature up to 573 K yields a higher fraction of the crystalline phase. Testing mechanical properties, using nanoindentation, revealed that both elastic modulus (E) and hardness (H) depend on the Al content, ranging from E = 85.6 ± 3.7 GPa and H = 6.2 ± 0.7 GPa for x = 0.5 down to E = 39.8 ± 1.0 GPa and H = 3.1 ± 0.2 GPa for x = 0.92.
Ion composition variety and variability around perihelion
NASA Astrophysics Data System (ADS)
Beth, Arnaud; Altwegg, Kathrin; Behar, Étienne; Broiles, Tom; Burch, Jim; Carr, Christopher; Eriksson, Anders; Galand, Marina; Goetz, Charlotte; Henri, Pierre; Heritier, Kévin; Nilsson, Hans; Odelstad, Elias; Richter, Ingo; Rubin, Martin; Vallieres, Xavier
2017-04-01
For two years, the Double Focusing Mass Spectrometer (DFMS), one of the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) onboard Rosetta probed the neutral gas and the plasma composition of the comet 67P/Churyumov-Gerasimenko's coma (67P). Major ion species detected include water ions (e.g, H2O+, H3O+, HO+) observed throughout the escorting phase. The analysis of DFMS data revealed a large zoo of ion species near perihelion (summer 2015). In particular, protonated versions of high proton affinity neutrals (e.g., NH4+) were detected, but also hydrocarbon and organic ion species. Near perihelion, ion composition was also highly variable and showed interesting variations in the complexity of the observed ion species. We will first present an overview of the rich variety of ion species observed during perihelion. This study will be supported by ionospheric modeling of ion composition below the ion exobase. We will then show an intercomparison between DFMS data and Rosetta Plasma Consortium (RPC) plasma and particle data to interpret the DFMS ion composition variability. Our primary goal is to highlight any correlation between observations from these different instruments (i.e. ion composition, ion and electron number density, energy distribution, magnetic field) and to find relevant signatures of physical processes which can affect the chemistry and dynamics (e.g., acceleration and deflection) of the involved neutral and ion species.
Chappell, P. Dreux; Whitney, LeAnn P.; Haddock, Traci L.; Menden-Deuer, Susanne; Roy, Eric G.; Wells, Mark L.; Jenkins, Bethany D.
2013-01-01
Diatoms are genetically diverse unicellular photosynthetic eukaryotes that are key primary producers in the ocean. Many of the over 100 extant diatom species in the cosmopolitan genus Thalassiosira are difficult to distinguish in mixed populations using light microscopy. Here, we examine shifts in Thalassiosira spp. composition along a coastal to open ocean transect that encountered a 3-month-old Haida eddy in the northeast Pacific Ocean. To quantify shifts in Thalassiosira species composition, we developed a targeted automated ribosomal intergenic spacer analysis (ARISA) method to identify Thalassiosira spp. in environmental samples. As many specific fragment lengths are indicative of individual Thalassiosira spp., the ARISA method is a useful screening tool to identify changes in the relative abundance and distribution of specific species. The method also enabled us to assess changes in Thalassiosira community composition in response to chemical and physical forcing. Thalassiosira spp. community composition in the core of a 3-month-old Haida eddy remained largely (>80%) similar over a 2-week period, despite moving 24 km southwestward. Shifts in Thalassiosira species correlated with changes in dissolved iron (Fe) and temperature throughout the sampling period. Simultaneously tracking community composition and relative abundance of Thalassiosira species within the physical and chemical context they occurred allowed us to identify quantitative linkages between environmental conditions and community response. PMID:24065961
Diamond growth on copper rods from polymer composite nanofibres
NASA Astrophysics Data System (ADS)
Varga, M.; Potocky, S.; Tesarek, P.; Babchenko, O.; Davydova, M.; Kromka, A.
2014-09-01
The potential uses of diamond films can be found in a diverse range of industrial applications. However, deposition of diamond films onto some foreign materials is still not a simple task. Here we present the growth of adherent diamond films on copper rods with the focus on substrate pre-treatment by polyvinyl alcohol composite nanofibres. The primary role of the polymer fibres substantially act as a carbon source which enhances the diamond nucleation and accelerates a homogenous CVD growth. Diamond growth was carried out in pulsed linear antenna microwave chemical vapour deposition system, which is characterized by cold plasma due to larger distance of hot plasma region from the substrate, at various gas compositions. The large distance between plasma source and the substrate holder also allows the uniform deposition of diamond on a large number of substrates with complex geometry (3D objects) as well as for the vertically positioned substrates. Moreover, the inhomogeneity in diamond film thickness deposited on vertically positioned substrates was suppressed by using polyvinyl alcohol nanofibre textile. Combination of PVA polymer fibres use together with this unique deposition system leads to a successful overcoating of the copper rods by continuous diamond film without the film cracking or delamination. We propose that the sequence of plasma-chemical reactions enhances the transformation of certain number of carbon atoms into the sp3-bonded form which further are stabilized by atomic hydrogen coming from plasma.
The Balmat-Edwards zinc-lead deposits-synsedimentary ore from Mississippi valley-type fluids.
Whelan, J.F.; Rye, R.O.; Delorraine, W.
1984-01-01
The Balmat-Edwards Zn-Pb district in New York is in Mid-Proterozoic Grenville marbles. Tabular to podiform, generally conformable massive sphalerite-galena orebodies occur at various horizons in the approx 1 km-thick marbles. Metamorphism obscured or obliterated most primary characteristics, whose reconstruction is attempted through detailed S, C, and O isotope studies of the Fowler orebody, and trace element and S isotope studies of sphalerite concentrates and composite ore samples from 22 orebodies. Sulphur isotope data reflect equilibration at near peak metamorphism with some indication of re-equilibration during retrograde metamorphism. The carbon and oxygen isotope composition of gangue carbonates suggests derivation from the host marbles. The oxygen isotope composition of gangue quartz is compatible with a chert origin or metamorphism-equilibration with other minerals. Sulphur and lead isotopes and sulphide mineralogy suggests that the ore fluids were evolved basin brines, chemically like those responsible for Mississippi Valley-type deposits. The large stratigraphic span (> 600 m) of the Balmat orebodies may be due to basin dewatering of million-year intervals. Stratigraphically increasing 34S values of evaporite-anhydrite are postulated to record hydrothermal events and to imply bacterial sulphate reduction on an unusually large scale. Such a stratigraphic increase may be a general exploration guide where sediment-hosted exhalative deposits or Mississippi Valley-type deposits occur.-G.J.N.
Väänänen, J; Memet, S; Günther, T; Lilja, M; Cimbritz, M; la Cour Jansen, J
2017-10-01
For chemically enhanced primary treatment (CEPT) with microsieving, a feedback proportional integral controller combined with a feedforward compensator was used in large pilot scale to control effluent water turbidity to desired set points. The effluent water turbidity from the microsieve was maintained at various set points in the range 12-80 NTU basically independent for a number of studied variations in influent flow rate and influent wastewater compositions. Effluent turbidity was highly correlated with effluent chemical oxygen demand (COD). Thus, for CEPT based on microsieving, controlling the removal of COD was possible. Thereby incoming carbon can be optimally distributed between biological nitrogen removal and anaerobic digestion for biogas production. The presented method is based on common automation and control strategies; therefore fine tuning and optimization for specific requirements are simplified compared to model-based dosing control.
Multi-objective/loading optimization for rotating composite flexbeams
NASA Technical Reports Server (NTRS)
Hamilton, Brian K.; Peters, James R.
1989-01-01
With the evolution of advanced composites, the feasibility of designing bearingless rotor systems for high speed, demanding maneuver envelopes, and high aircraft gross weights has become a reality. These systems eliminate the need for hinges and heavily loaded bearings by incorporating a composite flexbeam structure which accommodates flapping, lead-lag, and feathering motions by bending and twisting while reacting full blade centrifugal force. The flight characteristics of a bearingless rotor system are largely dependent on hub design, and the principal element in this type of system is the composite flexbeam. As in any hub design, trade off studies must be performed in order to optimize performance, dynamics (stability), handling qualities, and stresses. However, since the flexbeam structure is the primary component which will determine the balance of these characteristics, its design and fabrication are not straightforward. It was concluded that: pitchcase and snubber damper representations are required in the flexbeam model for proper sizing resulting from dynamic requirements; optimization is necessary for flexbeam design, since it reduces the design iteration time and results in an improved design; and inclusion of multiple flight conditions and their corresponding fatigue allowables is necessary for the optimization procedure.
NASA Astrophysics Data System (ADS)
Brown, Steven S.; Thornton, Joel A.; Keene, William C.; Pszenny, Alexander A. P.; Sive, Barkley C.; Dubé, William P.; Wagner, Nicholas L.; Young, Cora J.; Riedel, Theran P.; Roberts, James M.; VandenBoer, Trevor C.; Bahreini, Roya; Öztürk, Fatma; Middlebrook, Ann M.; Kim, Saewung; Hübler, Gerhard; Wolfe, Daniel E.
2013-07-01
The Nitrogen, Aerosol Composition, and Halogens on a Tall Tower (NACHTT) field experiment took place during late winter, 2011, at a site 33 km north of Denver, Colorado. The study included fixed-height measurements of aerosols, soluble trace gases, and volatile organic compounds near surface level, as well as vertically resolved measurements of nitrogen oxides, aerosol composition, soluble gas-phase acids, and halogen species from 3 to 270 m above ground level. There were 1928 individual profiles during the three-week campaign to characterize trace gas and aerosol distributions in the lower levels of the boundary layer. Nitrate and ammonium dominated the ionic composition of aerosols and originated primarily from local or regional sources. Sulfate and organic matter were also significant and were associated primarily with longer-range transport to the region. Aerosol chloride was associated primarily with supermicron size fractions and was always present in excess of gas-phase chlorine compounds. The nighttime radical reservoirs, nitryl chloride, ClNO2, and nitrous acid, HONO, were both consistently present in nighttime urban air. Nitryl chloride was especially pronounced in plumes from large point sources sampled aloft at night. Nitrous acid was typically most concentrated near the ground surface and was the dominant contributor (80%) to diurnally averaged primary OH radical production in near-surface air. Large observed mixing ratios of light alkanes, both in near-surface air and aloft, were attributable to local emissions from oil and gas activities.
NASA Astrophysics Data System (ADS)
Johnson, J. J.; Polito, M. J.; Olin, J.
2016-02-01
Determining the relative contributions of primary producers to salt marsh food webs is fundamental to understanding how these systems are structured. Biomarkers such as bulk carbon isotopes (13C/12C) and fatty acids have become popular tracers of trophic dynamics, based on the principle that the composition of biomarkers in consumer tissues is a reflection of the composition of these same biomarkers in a consumer's diet. However, the use of bulk stable isotope and fatty acid analyses to assess carbon flow in food webs is often hampered by confounding factors such as isotopic fractionation and fatty acid modifications that can occur between trophic levels. In contrast, compound-specific stable isotope analysis of amino acids may offer a more precise tracking of carbon flow through complex food webs. This is because the isotopic values of essential amino acids in consumer tissues are assimilated largely unchanged from their primary sources at the base of the food web. The aim of this study was to test the consistency of three different methods (bulk carbon stable isotope, fatty acid and compound-specific stable isotope analyses) while examining the carbon source pool underlying the diet of a common marsh consumer, the seaside sparrow (A. maritimus). This comparison allows us to gain a better idea of the relative merits of these analytical methods and contribute to a clearer model of overall trophic dynamics in a salt marsh food web.
Richman, Julie D.; Livi, Kenneth J.T.; Geyh, Alison S.
2011-01-01
Increasing evidence suggests that the physicochemical properties of inhaled nanoparticles influence the resulting toxicokinetics and toxicodynamics. This report presents a method using scanning transmission electron microscopy (STEM) to measure the Mn content throughout the primary particle size distribution of welding fume particle samples collected on filters for application in exposure and health research. Dark field images were collected to assess the primary particle size distribution and energy-dispersive X-ray and electron energy loss spectroscopy were performed for measurement of Mn composition as a function of primary particle size. A manual method incorporating imaging software was used to measure the primary particle diameter and to select an integration region for compositional analysis within primary particles throughout the size range. To explore the variation in the developed metric, the method was applied to 10 gas metal arc welding (GMAW) fume particle samples of mild steel that were collected under a variety of conditions. The range of Mn composition by particle size was −0.10 to 0.19 %/nm, where a positive estimate indicates greater relative abundance of Mn increasing with primary particle size and a negative estimate conversely indicates decreasing Mn content with size. However, the estimate was only statistically significant (p<0.05) in half of the samples (n=5), which all had a positive estimate. In the remaining samples, no significant trend was measured. Our findings indicate that the method is reproducible and that differences in the abundance of Mn by primary particle size among welding fume samples can be detected. PMID:21625364
Richman, Julie D; Livi, Kenneth J T; Geyh, Alison S
2011-06-01
Increasing evidence suggests that the physicochemical properties of inhaled nanoparticles influence the resulting toxicokinetics and toxicodynamics. This report presents a method using scanning transmission electron microscopy (STEM) to measure the Mn content throughout the primary particle size distribution of welding fume particle samples collected on filters for application in exposure and health research. Dark field images were collected to assess the primary particle size distribution and energy-dispersive X-ray and electron energy loss spectroscopy were performed for measurement of Mn composition as a function of primary particle size. A manual method incorporating imaging software was used to measure the primary particle diameter and to select an integration region for compositional analysis within primary particles throughout the size range. To explore the variation in the developed metric, the method was applied to 10 gas metal arc welding (GMAW) fume particle samples of mild steel that were collected under a variety of conditions. The range of Mn composition by particle size was -0.10 to 0.19 %/nm, where a positive estimate indicates greater relative abundance of Mn increasing with primary particle size and a negative estimate conversely indicates decreasing Mn content with size. However, the estimate was only statistically significant (p<0.05) in half of the samples (n=5), which all had a positive estimate. In the remaining samples, no significant trend was measured. Our findings indicate that the method is reproducible and that differences in the abundance of Mn by primary particle size among welding fume samples can be detected.
Design development of graphite primary structures enables SSTO success
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biagiotti, V.A.; Yahiro, J.S.; Suh, D.E.
1997-01-01
This paper describes the development of a graphite composite wing and a graphite composite intertank primary structure for application toward Single-Stage to Orbit space vehicles such as those under development in NASA{close_quote}s X-33/Reusable Launch Vehicle (RLV) Program. The trade study and designs are based on a Rockwell vertical take-off and horizontal landing (VTHL) wing-body RLV vehicle. Northrop Grumman{close_quote}s approach using a building block development technique is described. Composite Graphite/Bismaleimide (Gr/BMI) material characterization test results are presented. Unique intertank and wing composite subcomponent test article designs are described and test results to date are presented. Wing and intertank Full Scale Sectionmore » Test Article (FSTA) objectives and designs are outlined. Trade studies, supporting building block testing, and FSTA demonstrations combine to develop graphite primary structure composite technology that enables developing X-33/RLV design programs to meet critical SSTO structural weight and operations performance criteria. {copyright} {ital 1997 American Institute of Physics.}« less
Durability of commercial aircraft and helicopter composite structures
NASA Technical Reports Server (NTRS)
Dexter, H. B.
1982-01-01
The development of advanced composite technology during the past decade is discussed. Both secondary and primary components fabricated with boron, graphite, and Kevlar composites are evaluated. Included are spoilers, rudders, and fairings on commercial transports, boron/epoxy reinforced wing structure on C-130 military transports, and doors, fairings, tail rotors, vertical fins, and horizontal stabilizers on commercial helicopters. The development of composite structures resulted in advances in design and manufacturing technology for secondary and primary composite structures for commercial transports. Design concepts and inspection and maintenance results for the components in service are reported. The flight, outdoor ground, and controlled laboratory environmental effects on composites were also determined. Effects of moisture absorption, ultraviolet radiation, aircraft fuels and fluids, and sustained tensile stress are included. Critical parameters affecting the long term durability of composite materials are identified.
Cloern, J.E.; Canuel, E.A.; Harris, D.
2002-01-01
We report measurements of seasonal variability in the C-N stable isotope ratios of plants collected across the habitat mosaic of San Francisco Bay, its marshes, and its tributary river system. Analyses of 868 plant samples were binned into 10 groups (e.g., terrestrial riparian, freshwater phytoplankton, salt marsh) to determine whether C-N isotopes can be used as biomarkers for tracing the origins of organic matter in this river-marsh-estuary complex. Variability of ??13C and ??15N was high (???5-10???) within each plant group, and we identified three modes of variability: (1) between species and their microhabitats, (2) over annual cycles of plant growth and senescence, and (3) between living and decomposing biomass. These modes of within-group variability obscure any source-specific isotopic signatures, confounding the application of C-N isotopes for identifying the origins of organic matter. A second confounding factor was large dissimilarity between the ??13C-??15N of primary producers and the organic-matter pools in the seston and sediments. Both confounding factors impede the application of C-N isotopes to reveal the food supply to primary consumers in ecosystems supporting diverse autotrophs and where the isotopic composition of organic matter has been transformed and become distinct from that of its parent plant sources. Our results support the advice of others: variability of C-N stable isotopes within all organic-matter pools is high and must be considered in applications of these isotopes to trace trophic linkages from primary producers to primary consumers. Isotope-based approaches are perhaps most powerful when used to complement other tools, such as molecular biomarkers, bioassays, direct measures of production, and compilations of organic-matter budgets.
Strontium stable isotope behaviour accompanying basalt weathering
NASA Astrophysics Data System (ADS)
Burton, K. W.; Parkinson, I. J.; Gíslason, S. G. R.
2016-12-01
The strontium (Sr) stable isotope composition of rivers is strongly controlled by the balance of carbonate to silicate weathering (Krabbenhöft et al. 2010; Pearce et al. 2015). However, rivers draining silicate catchments possess distinctly heavier Sr stable isotope values than their bedrock compositions, pointing to significant fractionation during weathering. Some have argued for preferential release of heavy Sr from primary phases during chemical weathering, others for the formation of secondary weathering minerals that incorporate light isotopes. This study presents high-precision double-spike Sr stable isotope data for soils, rivers, ground waters and estuarine waters from Iceland, reflecting both natural weathering and societal impacts on those environments. The bedrock in Iceland is dominantly basaltic, d88/86Sr ≈ +0.27, extending to lighter values for rhyolites. Geothermal waters range from basaltic Sr stable compositions to those akin to seawater. Soil pore waters reflect a balance of input from primary mineral weathering, precipitation and litter recycling and removal into secondary phases and vegetation. Rivers and ground waters possess a wide range of d88/86Sr compositions from +0.101 to +0.858. Elemental and isotope data indicate that this fractionation primarily results from the formation or dissolution of secondary zeolite (d88/86Sr ≈ +0.10), but also carbonate (d88/86Sr ≈ +0.22) and sometimes anhydrite (d88/86Sr ≈ -0.73), driving the residual waters to heavier or lighter values, respectively. Estuarine waters largely reflect mixing with seawater, but are also be affected by adsorption onto particulates, again driving water to heavy values. Overall, these data indicate that the stability and nature of secondary weathering phases, exerts a strong control on the Sr stable isotope composition of silicate rivers. [1] Krabbenhöft et al. (2010) Geochim. Cosmochim. Acta 74, 4097-4109. [2] Pearce et al. (2015) Geochim. Cosmochim. Acta 157, 125-146.
NASA Astrophysics Data System (ADS)
Kellerman, A.; Hawkings, J.; Marshall, M.; Spencer, R.; Wadham, J.
2017-12-01
The Greenland Ice Sheet (GrIS) is losing mass at a remarkable rate. This loss of mass coincides with the export of dissolved organic matter (DOM) and other nutrients from the ice sheet and exerts a primary control on secondary production in downstream ecosystems. However, little is known about the source and composition of DOM exported from these dilute, yet immense, systems. Samples were collected from May 11, 2015 to July 29, 2015 from the outflow of Leverett Glacier, a large, land-terminating glacier of the southwest GrIS. Dissolved organic carbon (DOC) concentrations were measured and the optical properties of DOM were characterized using absorbance and fluorescence spectroscopy. At the beginning of the season, when discharge is <5 m3 sec-1, red-shifted fluorescence suggests terrestrial inputs from either overridden soils or proglacial inputs dominate the DOM pool. With the onset of melt, after an initial pulse in both DOC quantity and red-shifted fluorescence intensity, the DOC concentration and fluorescence intensity is diluted, with little change in DOM composition. The terrestrial signal is lost with the first outburst event in late June, and a single protein-like fluorophore is exhibited for three weeks. On July 10th, a fourth outburst event introduces a second protein-like fluorophore, indicative of production on the ice sheet, and this signature is maintained until the end of the July. These results suggest that subglaical drainage flowpaths and water source influence the exported DOC concentration and DOM composition over a summer melt season. As glacial outflow shifts from higher DOC concentrations early in the season to low DOC concentrations later in the summer, these results impact estimates of carbon export from glaciers. Furthermore, as composition is related to reactivity, the compositional changes observed may indicate shifts in the bioavailability of the DOM upon delivery to coastal systems, a result of changing DOM sources over the course of the season.
Constraints on the Magnitude of Vertical and Lateral Mass Transport on the Moon
NASA Technical Reports Server (NTRS)
Mustard, John F.
1997-01-01
The role of vertical and lateral mass transport of crustal materials on the observed patterns of lunar surface composition, and the effects on our understanding of the geologic evolution of the planet, have been the subject of much debate in the lunar science community. The primary consensus that emerged from analyses of these processes in the 1970's and 1980's was that vertical and lateral mixing through impact gardening was a relatively inefficient process, and not likely to have contributed significantly to compositional units and variations on the Moon. The supporting evidence for this view is that unit boundaries (e.g. mare-highland contacts, contacts between mare color units) are still apparently quite distinct and sharp despite several aeons of impact activity, and cores from the Apollo landing sites did not show any evidence of widespread homogenization of the surface composition, nor distinct compositional gradients across geologic boundaries. In addition, modeling of vertical and lateral transport generally showed that the effects on composition should be confined to horizontal scales of about a kilometer and vertical scales of a meter. The problem with this consensus is that there is ample contradictory evidence. The fundamental discovery of Wood et al. (1970) was made possible by significant horizontal transport of highland material to the center of Mare Tranquillitatis. The continuous and discontinuous ejecta from the crater Copernicus has clearly influenced the surface composition of a large area of the lunar maria, while rays and ejecta from many highland craters are easily recognized in and around the nearside maria. Despite this contrary evidence, there have been few detailed studies to quantify the amount and rate of material redistribution through impact processes (a notable exception is reported in the paper by Pieters et al, 1985), largely because data adequate to critically analyze this process were lacking. However, the multispectral images acquired by the Galileo and Clementine missions now permit the investigation of this process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collica, Laura
The Pierre Auger Observatory (Auger) in Argentina studies Ultra High Energy Cosmic Rays (UHECRs) physics. The flux of cosmic rays at these energies (above 1018 eV) is very low (less than 100 particle/km2-year) and UHECR properties must be inferred from the measurements of the secondary particles that the cosmic ray primary produces in the atmosphere. These particles cascades are called Extensive Air Showers (EAS) and can be studied at ground by deploying detectors covering large areas. The EAS physics is complex, and the properties of secondary particles depend strongly on the first interaction, which takes place at an energy beyondmore » the ones reached at accelerators. As a consequence, the analysis of UHECRs is subject to large uncertainties and hence many of their properties, in particular their composition, are still unclear. Two complementary techniques are used at Auger to detect EAS initiated by UHE- CRs: a 3000 km2 surface detector (SD) array of water Cherenkov tanks which samples particles at ground level and fluorescence detectors (FD) which collect the ultraviolet light emitted by the de-excitation of nitrogen nuclei in the atmosphere, and can operate only in clear, moonless nights. Auger is the largest cosmic rays detector ever built and it provides high-quality data together with unprecedented statistics. The main goal of this thesis is the measurement of UHECR mass composition using data from the SD of the Pierre Auger Observatory. Measuring the cosmic ray composition at the highest energies is of fundamental importance from the astrophysical point of view, since it could discriminate between different scenarios of origin and propagation of cosmic rays. Moreover, mass composition studies are of utmost importance for particle physics. As a matter of fact, knowing the composition helps in exploring the hadronic interactions at ultra-high energies, inaccessible to present accelerator experiments.« less
Development, Evaluation, and Application of a Primary Aerosol Model.
Wang, I T; Chico, T; Huang, Y H; Farber, R J
1999-09-01
The Segmented-Plume Primary Aerosol Model (SPPAM) has been developed over the past several years. The earlier model development goals were simply to generalize the widely used Industrial Source Complex Short-Term (ISCST) model to simulate plume transport and dispersion under light wind conditions and to handle a large number of roadway or line sources. The goals have been expanded to include development of improved algorithm for effective plume transport velocity, more accurate and efficient line and area source dispersion algorithms, and recently, a more realistic and computationally efficient algorithm for plume depletion due to particle dry deposition. A performance evaluation of the SPPAM has been carried out using the 1983 PNL dual tracer experimental data. The results show the model predictions to be in good agreement with observations in both plume advection-dispersion and particulate matter (PM) depletion by dry deposition. For PM 2.5 impact analysis, the SPPAM has been applied to the Rubidoux area of California. Emission sources included in the modeling analysis are: paved road dust, diesel vehicular exhaust, gasoline vehicular exhaust, and tire wear particles from a large number of roadways in Rubidoux and surrounding areas. For the selected modeling periods, the predicted primary PM 2.5 to primary PM10 concentration ratios for the Rubidoux sampling station are in the range of 0.39-0.46. The organic fractions of the primary PM 2.5 impacts are estimated to be at least 34-41%. Detailed modeling results indicate that the relatively high organic fractions are primarily due to the proximity of heavily traveled roadways north of the sampling station. The predictions are influenced by a number of factors; principal among them are the receptor locations relative to major roadways, the volume and composition of traffic on these roadways, and the prevailing meteorological conditions.
Alternatives to silver amalgam and resin composite in pediatric dentistry.
Croll, T P
1998-11-01
Silver amalgam has become a less attractive dental restorative material for restoration of primary teeth. After many decades of scientific and nonscientific controversy, use of silver amalgam for primary teeth is waning, not because of its mercury content but because dentistry has come up with more suitable materials. This article reviews the development and use of glass-ionomer silver-cermet cements, resin-modified glass-ionomer cements, and polyacid-modified resin composites (compomers) for restoration of primary teeth.
Relative importance of local- and large-scale drivers of alpine soil microarthropod communities.
Mitchell, Ruth J; Urpeth, Hannah M; Britton, Andrea J; Black, Helaina; Taylor, Astrid R
2016-11-01
Nitrogen (N) deposition and climate are acknowledged drivers of change in biodiversity and ecosystem function at large scales. However, at a local scale, their impact on functions and community structure of organisms is filtered by drivers like habitat quality and food quality/availability. This study assesses the relative impact of large-scale factors, N deposition and climate (rainfall and temperature), versus local-scale factors of habitat quality and food quality/availability on soil fauna communities at 15 alpine moss-sedge heaths along an N deposition gradient in the UK. Habitat quality and food quality/availability were the primary drivers of microarthropod communities. No direct impacts of N deposition on the microarthropod community were observed, but induced changes in habitat quality (decline in moss cover and depth) and food quality (decreased vegetation C:N) associated with increased N deposition strongly suggest an indirect impact of N. Habitat quality and climate explained variation in the composition of the Oribatida, Mesostigmata, and Collembola communities, while only habitat quality significantly impacted the Prostigmata. Food quality and prey availability were important in explaining the composition of the oribatid and mesostigmatid mite communities, respectively. This study shows that, in alpine habitats, soil microarthropod community structure responds most strongly to local-scale variation in habitat quality and food availability rather than large-scale variation in climate and pollution. However, given the strong links between N deposition and the key habitat quality parameters, we conclude that N deposition indirectly drives changes in the soil microarthropod community, suggesting a mechanism by which large-scale drivers indirectly impacts these functionally important groups.
Primary succession on a Hawaiian dryland chronosequence
Kealohanuiopuna M. Kinney; Gregory P. Asner; Susan Cordell; Oliver A. Chadwick; Katherine Heckman; Sara Hotchkiss; Marjeta Jeraj; Ty Kennedy-Bowdoin; David E. Knapp
2015-01-01
We used measurements from airborne imaging spectroscopy and LiDAR to quantify the biophysical structure and composition of vegetation on a dryland substrate age gradient in Hawaii. Both vertical stature and species composition changed during primary succession, and reveal a progressive increase in vertical stature on younger substrates followed by a collapse on...
NASA Astrophysics Data System (ADS)
Grieshop, A. P.; Reece, S. M.; Sinha, A.; Wathore, R.
2016-12-01
Combustion in rudimentary and improved cook-stoves used by billions in developing countries can be a regionally dominant contributor to black carbon (BC), primary organic aerosols (POA) and precursors for secondary organic aerosol (SOA). Recent studies suggest that SOA formed during photo-oxidation of primary emissions from biomass burning may make important contribution to its atmospheric impacts. However, the extent to which stove type and operating conditions affect the amount, composition and characteristics of SOA formed from the aging of cookstoves emissions is still largely undetermined. Here we present results from experiments with a field portable oxidation flow reactor (F-OFR) designed to assess aging of cook-stove emissions in both laboratory and field settings. Laboratory tests results are used to compare the quantity and properties of fresh and aged emissions from a traditional open fire and twp alternative stove designs operated on the standard and alternate testing protocols. Diluted cookstove emissions were exposed to a range of oxidant concentrations in the F-OFR. Primary emissions were aged both on-line, to study the influence of combustion variability, and sampled from batched emissions in a smog chamber to examine different aging conditions. Data from real-time particle- and gas-phase instruments and integrated filter samples were collected up and down stream of the OFR. The properties of primary emissions vary strongly with stove type and combustion conditions (e.g. smoldering versus flaming). Experiments aging diluted biomass emissions from distinct phases of stove operation (smoldering and flaming) showed peak SOA production for both phases occurred between 3 and 6 equivalent days of aging with slightly greater production observed in flaming phase emissions. Changing combustion conditions had a stronger influence than aging on POA+SOA `emission factors'. Aerosol Chemical Speciation Monitor data show a substantial evolution of aerosol composition with aging. These results highlight the importance of both stoves' operating conditions and aging on composition and characteristics of emissions, which have important implications for regional air quality and climate forcing.
Sobczak, W.V.; Cloern, J.E.; Jassby, A.D.; Cole, B.E.; Schraga, T.S.; Arnsberg, A.
2005-01-01
Detritus from terrestrial ecosystems is the major source of organic matter in many streams, rivers, and estuaries, yet the role of detritus in supporting pelagic food webs is debated. We examined the importance of detritus to secondary productivity in the Sacramento and San Joaquin River Delta (California, United States), a large complex of tidal freshwater habitats. The Delta ecosystem has low primary productivity but large detrital inputs, so we hypothesized that detritus is the primary energy source fueling production in pelagic food webs. We assessed the sources, quantity, composition, and bioavailability of organic matter among a diversity of habitats (e.g., marsh sloughs, floodplains, tidal lakes, and deep river channels) over two years to test this hypothesis. Our results support the emerging principle that detritus dominates riverine and estuarine organic matter supply and supports the majority of ecosystem metabolism. Yet in contrast to prevailing ideas, we found that detritus was weakly coupled to the Delta's pelagic food web. Results from independent approaches showed that phytoplankton production was the dominant source of organic matter for the Delta's pelagic food web, even though primary production accounts for a small fraction of the Delta's organic matter supply. If these results are general, they suggest that the value of organic matter to higher trophic levels, including species targeted by programs of ecosystem restoration, is a function of phytoplankton production. ?? 2005 Estuarine Research Federation.
Mechanical Properties of Cu-Cr-Nb Alloys
NASA Technical Reports Server (NTRS)
Ellis, David L.
1997-01-01
The chemical compositions of the alloys are listed. The alloying levels were near the values for stochiometric Cr2Nb. A slight excess of Cr was chosen for increased hydrogen embrittlement resistance. The microstructures of all Cu-Cr-Nb alloys were very similar. Two typical transmission electron microscope (TEM) micrographs are presented. The images show the presence of large mount of Cr2Nb precipitates in a nearly pure Cu matrix. The interactions between dislocations and precipitates are currently under investigations, but as the images demonstrates, the extremely fine (less then 15 nm) Cr2Nb are the primary strengtheners for the alloy.
Comparison of numerical simulation and experimental data for steam-in-place sterilization
NASA Technical Reports Server (NTRS)
Young, Jack H.; Lasher, William C.
1993-01-01
A complex problem involving convective flow of a binary mixture containing a condensable vapor and noncondensable gas in a partially enclosed chamber was modelled and results compared to transient experimental values. The finite element model successfully predicted transport processes in dead-ended tubes with inside diameters of 0.4 to 1.0 cm. When buoyancy driven convective flow was dominant, temperature and mixture compositions agreed with experimental data. Data from 0.4 cm tubes indicate diffusion to be the primary air removal method in small diameter tubes and the diffusivity value in the model to be too large.
Wilshire, H.G.; McGuire, A.V.
1996-01-01
Xenoliths of lower crustal and upper mantle rocks from the Cima volcanic field (CVF) commonly contain glass pockets, veins, and planar trains of glass and/or fluid inclusions in primary minerals. Glass pockets occupy spaces formerly occupied by primary minerals of the host rocks, but there is a general lack of correspondence between the composition of the glass and that of the replaced primary minerals. The melting is considered to have been induced by infiltration of basaltic magma and differentiates of basaltic magma from complex conduits formed by hydraulic fracturing of the mantle and crustal rocks, and to have occurred during the episode of CVF magmatism between ???7.5 Ma and present. Variable compositions of quenched melts resulted from mixing of introduced melts and products of melting of primary minerals, reaction with primary minerals, partial crystallization, and fractionation resulting from melt and volatile expulsion upon entrainment of the xenoliths. High silica melts (> ??? 60% SiO2) may result by mixing introduced melts with siliceous melts produced by reaction of orthopyroxene. Other quenched melt compositions range from those comparable to the host basalts to those with intermediate Si compositions and elevated Al, alkalis, Ti, P, and S; groundmass compositions of CVF basalts are consistent with infiltration of fractionates of those basalts, but near-solidus melting may also contribute to formation of glass with intermediate silica contents with infiltration only of volatile constituents.
The emotional power of poetry: neural circuitry, psychophysiology and compositional principles
Koelsch, Stefan; Wagner, Valentin; Jacobsen, Thomas; Menninghaus, Winfried
2017-01-01
Abstract It is a common experience—and well established experimentally—that music can engage us emotionally in a compelling manner. The mechanisms underlying these experiences are receiving increasing scrutiny. However, the extent to which other domains of aesthetic experience can similarly elicit strong emotions is unknown. Using psychophysiology, neuroimaging and behavioral responses, we show that recited poetry can act as a powerful stimulus for eliciting peak emotional responses, including chills and objectively measurable goosebumps that engage the primary reward circuitry. Importantly, while these responses to poetry are largely analogous to those found for music, their neural underpinnings show important differences, specifically with regard to the crucial role of the nucleus accumbens. We also go beyond replicating previous music-related studies by showing that peak aesthetic pleasure can co-occur with physiological markers of negative affect. Finally, the distribution of chills across the trajectory of poems provides insight into compositional principles of poetry. PMID:28460078
HZE reactions and data-base development
NASA Technical Reports Server (NTRS)
Townsend, Lawrence W.; Cucinotta, Francis A.; Wilson, John W.
1993-01-01
The primary cosmic rays are dispersed over a large range of linear energy transfer (LET) values and their distribution over LET is a determinant of biological response. This LET distribution is modified by radiation shielding thickness and shield material composition. The current uncertainties in nuclear cross sections will not allow the composition of the shield material to be distinguished in order to minimize biological risk. An overview of the development of quantum mechanical models of heavy ion reactions will be given and computational results compared with experiments. A second approach is the development of phenomenological models from semi-classical considerations. These models provide the current data base in high charge and energy (HZE) shielding studies. They will be compared with available experimental data. The background material for this lecture will be available as a review document of over 30 years of research at Langley but will include new results obtained over the last year.
NASA Technical Reports Server (NTRS)
Desai, Tapan G.; Lawson, John W.; Keblinski, Pawel
2010-01-01
Reactive molecular dynamics simulations are used to study initial stage of pyrolysis of ablation materials and their composites with carbon nanotubes and carbon fibers. The products formed during pyrolysis are characterized and water is found as the primary product in all cases. The water formation mechanisms are analyzed and the value of the activation energy for water formation is estimated. A detailed study on graphitic precursor formation reveals the presence of two temperature zones. In the lower temperature zone (less than 2000 K) polymerization occurs resulting in formation of large, stable graphitic precursors, and in the high temperature zone (greater than 2000 K) polymer scission results in formation of short polymer chains/molecules. Simulations performed in the high temperature zone on the phenolic resin composites (with carbon nanotubes and carbon fibers) shows that the presence of interfaces had no substantial effect on the chain scission rate or the activation energy value for water formation.
Compositional variability in Mediterranean archaeofaunas from Upper Paleolithic Southwest Europe
NASA Astrophysics Data System (ADS)
Jones, Emily Lena
2018-03-01
Recent meta-analyses of Upper Paleolithic Southwestern European archaeofaunas (Jones, 2015, 2016) have identified a consistent "Mediterranean" cluster from the Last Glacial Maximum through the early Holocene, suggesting similarities in environment and/or consistency in hunting strategy across this region through time despite radical changes in climate. However, while these archaeofaunas from this cluster all derive from sites located within today's Mediterranean bioclimatic region, many of them are from locations far from the Mediterranean Sea - Atlantic Portugal, the Spanish Meseta - which today differ significantly from each other in biotic composition. In this paper, I explore clustering (through cluster analysis and non-metric multidimensional scaling) within the Mediterranean archaeofaunal group. I test for the influence of sample size as well as the geographic variables of site elevation, latitude, and longitude on variability in the large mammal portions of archaeofaunal assemblages. ANOVA shows no relationship between cluster-defined groups and site elevation or longitude; instead, site latitude appears to be a primary contributor to patterning. However, the overall compositional similarity of the Mediterranean archaeofaunas in this dataset suggests more consistency than variability in Upper Paleolithic hunting strategy in this region.
The post-Paleozoic chronology and mechanism of 13C depletion in primary marine organic matter
NASA Technical Reports Server (NTRS)
Popp, B. N.; Takigiku, R.; Hayes, J. M.; Louda, J. W.; Baker, E. W.
1989-01-01
Carbon-isotopic compositions of geoporphyrins have been measured from marine sediments of Mesozoic and Cenozoic age in order to elucidate the timing and extent of depletion of 13C in marine primary producers. These results indicate that the difference in isotopic composition of coeval marine carbonates and marine primary photosynthate was approximately 5 to 7 permil greater during the Mesozoic and early Cenozoic than at present. In contrast to the isotopic record of marine primary producers, isotopic compositions of terrestrial organic materials have remained approximately constant for this same interval of time. This difference in the isotopic records of marine and terrestrial organic matter is considered in terms of the mechanisms controlling the isotopic fractionation associated with photosynthetic fixation of carbon. We show that the decreased isotopic fractionation between marine carbonates and organic matter from the Early to mid-Cenozoic may record variations in the abundance of atmospheric CO2.
Impacts of Vegetation on CO2 exchange, permafrost thaw depth, and NDVI in Alaskan tundra.
NASA Astrophysics Data System (ADS)
Kerr, L.; Steltzer, H.; Natali, S.; Schade, J. D.; Mann, P. J.; Holmes, R. M.; Melton, S.
2017-12-01
Changes in terrestrial carbon cycling in response to a warming climate in the Arctic will, in large part, be driven by current and future composition of the plant community. To better understand the variation in plant community structure and impacts on carbon cycling, we examined relationships between vegetation composition, NDVI, CO2 exchange, and permafrost thaw depth in the Yukon Kuskokwim Delta (YKD) in southwest Alaska. Our study sites included lichen-dominated peat plateaus, tussock tundra, fens, and drained lakes. We found a significant and positive relationship between NDVI and net ecosystem exchange across sites. Dominant functional groups across sites included lichen, moss, and graminoid vegetation, but variability in vegetation cover was high both within and across sites. Tussock-dominated tundra, peat plateaus, and drained lakes shared many of the same species, while the fen site had several unique species. Areas with higher lichen cover were associated with low NDVI, low gross primary productivity (GPP), and low net ecosystem exchange (NEE) in comparison with areas with little or no lichen cover. Because lichen comprises a large portion of this region's biomass, it is an important variable to consider in the context of CO2 exchange in the arctic tundra.
Meroño, Tomás; Brites, Fernando; Dauteuille, Carolane; Lhomme, Marie; Menafra, Martín; Arteaga, Alejandra; Castro, Marcelo; Saez, María Soledad; Ballerga, Esteban González; Sorroche, Patricia; Rey, Jorge; Lesnik, Philippe; Sordá, Juan Andrés; Chapman, M John; Kontush, Anatol; Daruich, Jorge
2015-05-01
Iron overload (IO) has been associated with glucose metabolism alterations and increased risk of cardiovascular disease (CVD). Primary IO is associated with mutations in the HFE gene. To which extent HFE gene mutations and metabolic alterations contribute to the presence of atherogenic lipoprotein modifications in primary IO remains undetermined. The present study aimed to assess small, dense low-density lipoprotein (LDL) levels, chemical composition of LDL and high-density lipoprotein (HDL) particles, and HDL functionality in IO patients. Eighteen male patients with primary IO and 16 sex- and age-matched controls were recruited. HFE mutations (C282Y, H63D and S65C), measures of insulin sensitivity and secretion (calculated from the oral glucose tolerance test), chemical composition and distribution profile of LDL and HDL subfractions (isolated by gradient density ultracentrifugation) and HDL functionality (as cholesterol efflux and antioxidative activity) were studied. IO patients compared with controls exhibited insulin resistance (HOMA-IR (homoeostasis model assessment-estimated insulin resistance): +93%, P< 0.001). Metabolic profiles differed across HFE genotypes. C282Y homozygotes (n=7) presented a reduced β-cell function and insulin secretion compared with non-C282Y patients (n=11) (-58% and -73%, respectively, P< 0.05). In addition, C282Y homozygotes featured a predominance of large, buoyant LDL particles (C282Y: 43±5; non-C282Y: 25±8; controls: 32±7%; P< 0.001), whereas non-C282Y patients presented higher amounts of small, dense LDL (C282Y: 23±5; non-C282Y: 39±10; controls: 26±4%; P< 0.01). HDL particles were altered in C282Y homozygotes. However, HDL functionality was conserved. In conclusion, metabolic alterations and HFE gene mutations are involved in the presence of atherogenic lipoprotein modifications in primary IO. To what extent such alterations could account for an increase in CVD risk remains to be determined.
Double-hit or dual expression of MYC and BCL2 in primary cutaneous large B-cell lymphomas.
Menguy, Sarah; Frison, Eric; Prochazkova-Carlotti, Martina; Dalle, Stephane; Dereure, Olivier; Boulinguez, Serge; Dalac, Sophie; Machet, Laurent; Ram-Wolff, Caroline; Verneuil, Laurence; Gros, Audrey; Vergier, Béatrice; Beylot-Barry, Marie; Merlio, Jean-Philippe; Pham-Ledard, Anne
2018-03-26
In nodal diffuse large B-cell lymphoma, the search for double-hit with MYC and BCL2 and/or BCL6 rearrangements or for dual expression of BCL2 and MYC defines subgroups of patients with altered prognosis that has not been evaluated in primary cutaneous large B-cell lymphoma. Our objectives were to assess the double-hit and dual expressor status in a cohort of 44 patients with primary cutaneous large B-cell lymphoma according to the histological subtype and to evaluate their prognosis relevance. The 44 cases defined by the presence of more than 80% of large B-cells in the dermis corresponded to 21 primary cutaneous follicle centre lymphoma with large cell morphology and 23 primary cutaneous diffuse large B-cell lymphoma, leg type. Thirty-one cases (70%) expressed BCL2 and 29 (66%) expressed MYC. Dual expressor profile was observed in 25 cases (57%) of either subtypes (n = 6 or n = 19, respectively). Only one primary cutaneous follicle centre lymphoma, large-cell case had a double-hit status (2%). Specific survival was significantly worse in primary cutaneous diffuse large B-cell lymphoma, leg type than in primary cutaneous follicle centre lymphoma, large cell (p = 0.021) and for the dual expressor primary cutaneous large B-cell lymphoma group (p = 0.030). Both overall survival and specific survival were worse for patients belonging to the dual expressor primary cutaneous diffuse large B-cell lymphoma, leg type subgroup (p = 0.001 and p = 0.046, respectively). Expression of either MYC and/or BCL2 negatively impacted overall survival (p = 0.017 and p = 0.018 respectively). As the differential diagnosis between primary cutaneous follicle centre lymphoma, large cell and primary cutaneous diffuse large B-cell lymphoma, leg type has a major impact on prognosis, dual-expression of BCL2 and MYC may represent a new diagnostic criterion for primary cutaneous diffuse large B-cell lymphoma, leg type subtype and further identifies patients with impaired survival. Finally, the double-hit assessment does not appear clinically relevant in primary cutaneous large B-cell lymphoma.
NASA Astrophysics Data System (ADS)
1995-03-01
This volume is the first of a three volume set that discusses the structural arrangement trade study plan that will identify the most suitable configuration for an SSTO winged vehicle capable of delivering 25,000 lbs to a 220 nm circular orbit at 51.6 deg inclination. The Reusable Hydrogen Composite Tank System (RHCTS), and Graphite Composite Primary Structures most suitable for intertank, wing and thrust structures are identified. This executive summary presents the trade study process, the selection process, requirements used, analysis performed and data generated. Conclusions and recommendations are also presented.
NASA Technical Reports Server (NTRS)
1995-01-01
This volume is the first of a three volume set that discusses the structural arrangement trade study plan that will identify the most suitable configuration for an SSTO winged vehicle capable of delivering 25,000 lbs to a 220 nm circular orbit at 51.6 deg inclination. The Reusable Hydrogen Composite Tank System (RHCTS), and Graphite Composite Primary Structures most suitable for intertank, wing and thrust structures are identified. This executive summary presents the trade study process, the selection process, requirements used, analysis performed and data generated. Conclusions and recommendations are also presented.
NASA Astrophysics Data System (ADS)
Miller, J. A.; Peterson, W. T.; Copeman, L. A.; Du, X.; Morgan, C. A.; Litz, M. N. C.
2017-06-01
There is strong correlative evidence that variation in the growth and survival of secondary consumers is related to the copepod species composition within the Northern California Current. Potential mechanisms driving these correlations include: (1) enhanced growth and survival of secondary consumers when lipid-rich, boreal copepod species are abundant, with cascading effects on higher trophic levels; (2) the regulation of growth and condition of primary and secondary consumers by the relative proportion of certain essential fatty acids (FAs) in primary producers; or (3) a combination of these factors. Disentangling the relative importance of taxonomic composition, lipid quantity, and FA composition on the nutritional quality of copepods requires detailed information on both the consumer and primary producers. Therefore, we collected phytoplankton and copepods at an oceanographic station for 19 months and completed species community analyses and generated detailed lipid profiles, including lipid classes and FAs, for both groups. There was strong covariation between species and biochemistry within and across trophic levels and distinct seasonal differences. The amount of total lipid within both the phytoplankton and copepod communities was twice as high in spring and summer than in fall and winter, and certain FAs, such as diatom indicators 20:5ω3 and 16:1ω7, comprised a greater proportion of the FA pool in spring and summer. Indicators of bacterial production within the copepod community were proportionally twice as high during fall and winter than spring and summer. Seasonal transitions in copepod FA composition were consistently offset from transitions in copepod species composition by approximately two weeks. The timing of the seasonal transition in copepod FAs reflected seasonal shifts in the species composition and/or biochemistry of primary producers more than seasonal shifts in the copepod species composition. These results emphasize the importance of interactions between the copepod community and their available phytoplankton prey in regulating the nutritional quality of primary consumers.
Thermodynamics of Mixing Primary Alkanolamines with Water.
Idrissi, Abdenacer; Jedlovszky, Pal
2018-05-17
The volume, energy, entropy, and Helmholtz free energy of mixing of the seven simplest primary alkanolamine molecules, i.e., MEA, MIPA, 2A1P, ABU, AMP, AMP2, and 1A2B with water is investigated by extensive computer simulations and thermodynamic integration. To check the force field dependence of the results, all calculations are repeated with two commonly used water models, namely SPC/E and TIP4P. The obtained results show that the thermodynamics of mixing of alkanolamines and water is largely independent from the type of the alkanolamine molecule. The Helmholtz free energy of mixing is found to be negative for all alkanolamines at every composition, in accordance with the experimentally known full miscibility of these molecules and water. This free energy decrease occurring upon mixing is found to be clearly of energetic origin, as the energy of mixing always turns out to be negative in the entire composition range, while the entropy of mixing is also negative up to high alkanolamine mole fractions. The obtained results suggest that alkanolamines form, on average, stronger hydrogen bonds with water than what is formed by two water molecules, and they induce some ordering of the hydrating water molecules both through the hydrophobic hydration of their side chains and through the strong hydrogen bonding.
Towards an Effective Freeware Resource for Music Composition in the Primary Classroom
ERIC Educational Resources Information Center
Hart, Adam
2017-01-01
This paper presents an ongoing project to develop a freeware resource for music composition in the primary classroom. The national curriculum for music at Key Stages 1 and 2 calls for students to "compose music for a range of purposes using the inter-related dimensions of music", a challenging aim that demands significant guidance,…
Correlation of high energy muons with primary composition in extensive air shower
NASA Technical Reports Server (NTRS)
Chou, C.; Higashi, S.; Hiraoka, N.; Ozaki, S.; Sato, T.; Suwada, T.; Takahasi, T.; Umeda, H.
1985-01-01
An experimental investigation of high energy muons above 200 GeV in extensive air showers has been made for studying high energy interaction and primary composition of cosmic rays of energies in the range 10 to the 14th power approx. 10 to the 15th power eV. The muon energies are estimated from the burst sizes initiated by the muons in the rock, which are measured by four layers of proportional counters, each of area 5 x 2.6 sq m, placed at 30 m.w.e. deep, Funasaka tunnel vertically below the air shower array. These results are compared with Monte Carlo simulations based on the scaling model and the fireball model for two primary compositions, all proton and mixed.
Development and Sizing of the JWST Integrated Science Instrument Module (ISIM) Metering Structure
NASA Technical Reports Server (NTRS)
Johnston, John; Kunt, Cengiz; Bartoszyk, Andrew; Hendricks, Steve; Cofie, Emmanuel
2006-01-01
The JWST Integrated Science Instrument Module (ISIM) includes a large metering structure (approx. 2m x 2m x 1.5m) that houses the science instruments and guider. Stringent dimensional stability and repeatability requirements combined with mass limitations led to the selection of a composite bonded frame design comprised of biased laminate tubes. Even with the superb material specific stiffness, achieving the required frequency for the given mass allocations in conjunction with severe spatial limitations imposed by the instrument complement has proven challenging. In response to the challenge, the ISIM structure team considered literally over 100 primary structure topology and kinematic mount configurations, and settled on a concept comprised of over 70 m of tubes, over 50 bonded joint assemblies, and a "split bi-pod" kinematic mount configuration. In this paper, we review the evolution of the ISIM primary structure topology and kinematic mount configuration to the current baseline concept.
Measurement of the Muon Content of Air Showers with IceTop
NASA Astrophysics Data System (ADS)
Gonzalez, JG;
2016-05-01
IceTop, the surface component of the IceCube detector, has measured the energy spectrum of cosmic ray primaries in the range between 1.6 PeV and 1.3 EeV. IceTop can also be used to measure the average density of GeV muons in the shower front at large radial distances (> 300 m) from the shower axis. Wei present the measurement of the muon lateral distribution function for primary cosmic rays with energies between 1.6 PeV and about 0.1 EeV, and compare it to proton and iron simulations. We also discuss how this information can be exploited in the reconstruction of single air shower events. By combining the information on the muon component with that of the electromagnetic component of the air shower, we expect to reduce systematic uncertainties in the inferred mass composition of cosmic rays arising from theoretical uncertainties in hadronic interaction models.
An experiment to study the nuclear component of primary cosmic rays
NASA Technical Reports Server (NTRS)
Paul, J. M.; Verma, S. D.
1971-01-01
An apparatus has been designed and is being fabricated to study the charge composition, fluxes, and energy spectra of light nuclei in the energy region from 1 GeV to 100 GeV. The apparatus essentially consists of an array of a large number of particle detectors operated in coincidence and serving as a charged particle telescope. A mosaic silicon semiconductor detector, a plastic scintillation counter and a lucite Cerenkov detector are used to measure the charges of the incident nuclei. Two one-inch thick CsI detectors are used to study low energy particles. An ionization spectrometer is utilized to measure primary energies in the 1 to 100 GeV energy interval. A gas Cerenkov counter is being designed to distinguish between electrons and protons. It is planned to calibrate the apparatus at an accelerator using particles of known energy.
Fernandes, Fátima; Ferreres, Federico; Gil-Izquierdo, Angel; Oliveira, Andreia P; Valentão, Patrícia; Andrade, Paula B
2017-10-15
Studies involving jackfruit tree (Artocarpus heterophyllus Lam.) focus on its fruit. Nevertheless a considerable part of jackfruit weight is represented by its seeds. Despite being consumed in several countries, knowledge about the chemical composition of these seeds is scarce. In this work, the accumulation of primary and secondary metabolites in jackfruit seed kernel and seed coating membrane was studied. Sixty-seven compounds were identified, sixty of them being reported for the first time in jackfruit seed. Both tissues had a similar qualitative profile, but significant quantitative differences were found. The capacity of aqueous extracts from jackfruit seed kernel and seed coating membranes to scavenge nitric oxide radical was also evaluated for the first time, the extract prepared from the seed coating membrane being the most potent. This work increases the potential revenue from a food that is still largely wasted. Copyright © 2017 Elsevier Ltd. All rights reserved.
Statistical issues in the design, conduct and analysis of two large safety studies.
Gaffney, Michael
2016-10-01
The emergence, post approval, of serious medical events, which may be associated with the use of a particular drug or class of drugs, is an important public health and regulatory issue. The best method to address this issue is through a large, rigorously designed safety study. Therefore, it is important to elucidate the statistical issues involved in these large safety studies. Two such studies are PRECISION and EAGLES. PRECISION is the primary focus of this article. PRECISION is a non-inferiority design with a clinically relevant non-inferiority margin. Statistical issues in the design, conduct and analysis of PRECISION are discussed. Quantitative and clinical aspects of the selection of the composite primary endpoint, the determination and role of the non-inferiority margin in a large safety study and the intent-to-treat and modified intent-to-treat analyses in a non-inferiority safety study are shown. Protocol changes that were necessary during the conduct of PRECISION are discussed from a statistical perspective. Issues regarding the complex analysis and interpretation of the results of PRECISION are outlined. EAGLES is presented as a large, rigorously designed safety study when a non-inferiority margin was not able to be determined by a strong clinical/scientific method. In general, when a non-inferiority margin is not able to be determined, the width of the 95% confidence interval is a way to size the study and to assess the cost-benefit of relative trial size. A non-inferiority margin, when able to be determined by a strong scientific method, should be included in a large safety study. Although these studies could not be called "pragmatic," they are examples of best real-world designs to address safety and regulatory concerns. © The Author(s) 2016.
NASA Technical Reports Server (NTRS)
1984-01-01
The NASA Aircraft Energy Efficiency (ACEE) Composite Primary Aircraft Structures Program was designed to develop technology for advanced composites in commercial aircraft. Research on composite materials, aircraft structures, and aircraft design is presented herein. The following parameters of composite materials were addressed: residual strength, damage tolerance, toughness, tensile strength, impact resistance, buckling, and noise transmission within composite materials structures.
Advanced composite structural concepts and material technologies for primary aircraft structures
NASA Technical Reports Server (NTRS)
Jackson, Anthony
1991-01-01
Structural weight savings using advanced composites have been demonstrated for many years. Most military aircraft today use these materials extensively and Europe has taken the lead in their use in commercial aircraft primary structures. A major inhibiter to the use of advanced composites in the United States is cost. Material costs are high and will remain high relative to aluminum. The key therefore lies in the significant reduction in fabrication and assembly costs. The largest cost in most structures today is assembly. As part of the NASA Advanced Composite Technology Program, Lockheed Aeronautical Systems Company has a contract to explore and develop advanced structural and manufacturing concepts using advanced composites for transport aircraft. Wing and fuselage concepts and related trade studies are discussed. These concepts are intended to lower cost and weight through the use of innovative material forms, processes, structural configurations and minimization of parts. The approach to the trade studies and the downselect to the primary wing and fuselage concepts is detailed. The expectations for the development of these concepts is reviewed.
Yeolekar, Tapan Satish; Mukunda, KS; Kiran, NK
2015-01-01
ABSTRACT Composite restorations are popular because of their superior esthetics and acceptable clinical performance. But shrinkage is still a drawback. Polymerization shrinkage results in volumetric contraction, leading to deformation of the cusps, microleakage, decrease of marginal adaptation, enamel micro-cracks and postoperative sensitivity. A new class of ring opening resin composite based on silorane chemistry has been introduced with claims of less than 1% shrinkage during polymerization. The present study was conducted to evaluate and compare the ability of low shrink silorane based material, a packable composite and a compomer to resist microleakage in class II restorations on primary molars and evaluate marginal ridge fracture resistance of these materials. Sixty human primary molars were selected. Class II cavities were prepared and the teeth were divided into three groups of twenty each. Groups were as follows group I: low shrink composite resin (Filtek P90). Group II: packable composite (Filtek P60) and Group III: compomer (Compoglass F). Half of the teeth were used for microleakage and the rest for marginal ridge fracture resistance. For microleakage testing, dye penetration method was used with 1% methylene blue dye. Followed by evaluation and grading under stereomicroscope at 10* magnification. Fracture resistance was tested with universal testing machine. It was concluded that low shrink silorane based composite resin showed the least amount of microleakage, whereas compomer showed the highest microleakage. Packable composite resisted fracture of marginal ridge better than other composite resins. Marginal ridge fracture resistance of packable composite was comparable to the intact side. How to cite this article: Yeolekar TS, Chowdhary NR, Mukunda KS, Kiran NK. Evaluation of Microleakage and Marginal Ridge Fracture Resistance of Primary Molars Restored with Three Restorative Materials: A Comparative in vitro Study. Int J Clin Pediatr Dent 2015;8(2):108-113. PMID:26379377
In Situ and Ex Situ Estimates of Benthic Silica Fluxes in NGOM Shelf Sediments
NASA Astrophysics Data System (ADS)
Ebner, B. C.; Ghaisas, N. A.; Maiti, K.
2017-12-01
Biogenic silica (bSi), plays an important role in regulating primary productivity of diatoms in coastal and shelf ecosystems fed by major rivers. In the Northern Gulf of Mexico (NGOM), loading of nitrogen (N) and phosphorous (P) have increased compared to a decline in silicic acid in the Mississippi River (MR). Continued decreasing in silicic acid concentration could lead to limited diatom growth and production, therefore, it is important understand the role of benthic fluxes in providing silica to the overlying water column. The benthic flux of Si from shelf sediments can thus represent an important source of Si to be utilized by diatoms. Sediment core incubations and benthic chamber deployments were conducted at 5 sites in the Mississippi river plume with varying salinities during periods of high river discharge (May 2017), low river discharge (August 2016) and peak in hypoxia (July 2017). Preliminary data indicates large spatial and temporal variability in benthic silica fluxes ranging between 1.1 to 5.9 mmol/m2/d. This large variability in benthic silica flux is probably related to the seasonal changes in river discharge, primary production, community composition and sediment biogeochemistry in the region.
Li, Bo; Cantino, Philip D.; Olmstead, Richard G.; Bramley, Gemma L. C.; Xiang, Chun-Lei; Ma, Zhong-Hui; Tan, Yun-Hong; Zhang, Dian-Xiang
2016-01-01
Lamiaceae, the sixth largest angiosperm family, contains more than 7000 species distributed all over the world. However, although considerable progress has been made in the last two decades, its phylogenetic backbone has never been well resolved. In the present study, a large-scale phylogenetic reconstruction of Lamiaceae using chloroplast sequences was carried out with the most comprehensive sampling of the family to date (288 species in 191 genera, representing approximately 78% of the genera of Lamiaceae). Twelve strongly supported primary clades were inferred, which form the phylogenetic backbone of Lamiaceae. Six of the primary clades correspond to the current recognized subfamilies Ajugoideae, Lamioideae, Nepetoideae, Prostantheroideae, Scutellarioideae, and Symphorematoideae, and one corresponds to a portion of Viticoideae. The other five clades comprise: 1) Acrymia and Cymaria; 2) Hymenopyramis, Petraeovitex, Peronema, and Garrettia; 3) Premna, Gmelina, and Cornutia; 4) Callicarpa; and 5) Tectona. Based on these results, three new subfamilies—Cymarioideae, Peronematoideae, and Premnoideae—are described, and the compositions of other subfamilies are updated based on new findings from the last decade. Furthermore, our analyses revealed five strongly supported, more inclusive clades that contain subfamilies, and we give them phylogenetically defined, unranked names: Cymalamiina, Scutelamiina, Perolamiina, Viticisymphorina, and Calliprostantherina. PMID:27748362
Eruption style at Kīlauea Volcano in Hawai‘i linked to primary melt composition
Sides. I.R.,; Edmonds, M.; Maclennan, J.; Swanson, Don; Houghton, Bruce F.
2014-01-01
Explosive eruptions at basaltic volcanoes have been linked to gas segregation from magmas at shallow depths in the crust. The composition of primary melts formed at greater depths was thought to have little influence on eruptive style. Ocean island basaltic volcanoes are the product of melting of a geochemically heterogeneous mantle plume and are expected to give rise to heterogeneous primary melts. This range in primary melt composition, particularly with respect to the volatile components, will profoundly influence magma buoyancy, storage and eruption style. Here we analyse the geochemistry of a suite of melt inclusions from 25 historical eruptions at the ocean island volcano of Kīlauea, Hawai‘i, over the past 600 years. We find that more explosive styles of eruption at Kīlauea Volcano are associated statistically with more geochemically enriched primary melts that have higher volatile concentrations. These enriched melts ascend faster and retain their primary nature, undergoing little interaction with the magma reservoir at the volcano’s summit. We conclude that the eruption style and magma-supply rate at Kīlauea are fundamentally linked to the geochemistry of the primary melts formed deep below the volcano. Magmas might therefore be predisposed towards explosivity right at the point of formation in their mantle source region.
Improving Interlaminar Shear Strength
NASA Technical Reports Server (NTRS)
Jackson, Justin
2015-01-01
To achieve NASA's mission of space exploration, innovative manufacturing processes are being applied to the fabrication of complex propulsion elements.1 Use of fiber-reinforced, polymeric composite tanks are known to reduce weight while increasing performance of propulsion vehicles. Maximizing the performance of these materials is needed to reduce the hardware weight to result in increased performance in support of NASA's missions. NASA has partnered with the Mississippi State University (MSU) to utilize a unique scalable approach of locally improving the critical properties needed for composite structures. MSU is responsible for the primary development of the concept with material and engineering support provided by NASA. The all-composite tank shown in figure 1 is fabricated using a prepreg system of IM7 carbon fiber/CYCOM 5320-1 epoxy resin. This is a resin system developed for out-of-autoclave applications. This new technology is needed to support the fabrication of large, all composite structures and is currently being evaluated on a joint project with Boeing for the Space Launch System (SLS) program. In initial efforts to form an all composite pressure vessel using this prepreg system, a 60% decrease in properties was observed in scarf joint regions. Inspection of these areas identified interlaminar failure in the adjacent laminated structure as the main failure mechanism. This project seeks to improve the interlaminar shear strength (ILSS) within the prepreg layup by locally modifying the interply region shown in figure 2.2
Henderson, Clark M.
2014-01-01
Yeast (Saccharomyces cerevisiae) has an innate ability to withstand high levels of ethanol that would prove lethal to or severely impair the physiology of other organisms. Significant efforts have been undertaken to elucidate the biochemical and biophysical mechanisms of how ethanol interacts with lipid bilayers and cellular membranes. This research has implicated the yeast cellular membrane as the primary target of the toxic effects of ethanol. Analysis of model membrane systems exposed to ethanol has demonstrated ethanol's perturbing effect on lipid bilayers, and altering the lipid composition of these model bilayers can mitigate the effect of ethanol. In addition, cell membrane composition has been correlated with the ethanol tolerance of yeast cells. However, the physical phenomena behind this correlation are likely to be complex. Previous work based on often divergent experimental conditions and time-consuming low-resolution methodologies that limit large-scale analysis of yeast fermentations has fallen short of revealing shared mechanisms of alcohol tolerance in Saccharomyces cerevisiae. Lipidomics, a modern mass spectrometry-based approach to analyze the complex physiological regulation of lipid composition in yeast and other organisms, has helped to uncover potential mechanisms for alcohol tolerance in yeast. Recent experimental work utilizing lipidomics methodologies has provided a more detailed molecular picture of the relationship between lipid composition and ethanol tolerance. While it has become clear that the yeast cell membrane composition affects its ability to tolerate ethanol, the molecular mechanisms of yeast alcohol tolerance remain to be elucidated. PMID:24610851
Next Generation Space Telescope Ultra-Lightweight Mirror Program
NASA Technical Reports Server (NTRS)
Bilbro, James W.
1998-01-01
The Next Generation Space Telescope is currently envisioned as a eight meter diameter cryogenic deployable telescope that will operate at the earth sun libration point L2. A number of different designs are being examined within NASA and under industry studies by Ball Aerospace, Lockheed-Martin and TRW. Although these designs differ in many respects, they all require significant advancements in the state-of-the-art with respect to large diameter, ultra-lightweight, mirrors. The purpose of this paper is to provide insight into the current status of the mirror development program NGST is a tremendously ambitious undertaking that sets the mark for new NASA missions. In order to achieve the weight, cost and performance requirements of NGST, the primary mirror must be made lighter, cheaper and better than anything that has ever been done. In order to accomplish this an aggressive technology program has been put in place. The scope of the program was determined by examining historically what has been accomplished; assessing recent technological advances in fabrication and testing; and evaluating the effect of these advances relative to enabling the manufacture of lightweight mirrors that meet NGST requirements. As it is currently envisioned, the primary mirror for NGST is on the order of eight meters in diameter, it is to be diffraction limited at a wave length of 2 microns and has an overall weight requirement of 15 kilograms per square meter. Two large scale demonstration projects are under way along with a number of smaller scale demonstrations on a variety of mirror materials and concepts. The University of Arizona (UA) mirror concept is based around a 2mm thick Borosilicate glass face sheet mounted to a composite backplane structure via actuators for mirror figure correction. The Composite Optics Inc.(COI) concept consists of a 3.2mm thick Zerodur face sheet bonded to a composite support structure which in turn is mounted to a composite backplane structure via actuators for mirror phasing. These mirrors are due to be performance tested in ambient conditions in the fall of '98, and cryogenically tested in the spring of '99. The smaller scale efforts include the following: Beryllium is being investigated at Ball Aerospace, Electroform nickel is being investigated in-house at MSFC, Chemical Vapor Deposition (CVD) Silicon Carbide (SiC) is being investigated at Morton International Silicon mirrors are being investigated at Schafer, Carbon Fiber Reinforced Silicon Carbide (CSIC) is being investigated at IABG. SiC at SSG, Composite mirrors at COI, pyrolyzed graphite mirrors at Ultramet, reaction bonded SiC mirrors at Xinetics, along with techniques for lightweighting using waterjets at Waterjet Technology Inc. are all being investigated under the Small Business innovative Research Program SBIR program. A procurement for a third large scale demonstration (nominally 1.5m in diameter) is being planned for release this fall.
Tuya, Fernando; Png-Gonzalez, Lydia; Riera, Rodrigo; Haroun, Ricardo; Espino, Fernando
2014-07-01
Marine vegetated habitats, e.g. seagrass meadows, deliver essential functions and services to coastal ecosystems and human welfare. Impacts induced by humans, however, have facilitated the replacement of seagrasses by alternative vegetation, e.g. green rhizophytic seaweeds. The implications of habitat shifts for ecosystem attributes and processes and the services they deliver remain poorly known. In this study, we compared ecosystem structure and function between Cymodocea nodosa seagrass meadows and bottoms dominated by Caulerpa prolifera, a green, native, rhizophytic seaweed, through 5 ecological proxies: (i) primary production (via community metabolism), (ii) composition and abundance of epifauna (a proxy for provision of habitat for epifauna), composition and abundance of (iii) small-sized (juvenile) and (iv) large-sized (adult) fishes (proxies for provision of habitat for fishes), and (v) sediment retention (a proxy for sediment stabilization). Four of these proxies were greater in C. nodosa seagrass meadows than in C. prolifera beds: gross primary productivity (∼1.4 times), the total abundance, species density and biomass of small-sized fishes (∼2.1, 1.3 and 1.3 times, respectively), the total abundance and species density of large-sized fishes (∼3.6 and 1.5 times, respectively), and sediment stabilization (∼1.4 times). In contrast, the total abundance and species density of epifauna was larger (∼3.1 and 1.7 times, respectively) in C. prolifera than in C. nodosa seagrass beds. These results suggest that ecosystem structure and function may differ if seagrasses are replaced by green rhizophytic seaweeds. Importantly, ecosystem functions may not be appropriate surrogates for one another. As a result, assessments of ecosystem services associated with ecosystem functions cannot be based on exclusively one service that is expected to benefit other services. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lorrain, Anne; Graham, Brittany S.; Popp, Brian N.; Allain, Valérie; Olson, Robert J.; Hunt, Brian P. V.; Potier, Michel; Fry, Brian; Galván-Magaña, Felipe; Menkes, Christophe E. R.; Kaehler, Sven; Ménard, Frédéric
2015-03-01
Assessment of isotopic compositions at the base of food webs is a prerequisite for using stable isotope analysis to assess foraging locations and trophic positions of marine organisms. Our study represents a unique application of stable-isotope analyses across multiple trophic levels (primary producer, primary consumer and tertiary consumer) and over a large spatial scale in two pelagic marine ecosystems. We found that δ15N values of particulate organic matter (POM), barnacles and phenylalanine from the muscle tissue of yellowfin tuna all showed similar spatial patterns. This consistency suggests that isotopic analysis of any of these can provide a reasonable proxy for isotopic variability at the base of the food web. Secondly, variations in the δ15N values of yellowfin tuna bulk-muscle tissues paralleled the spatial trends observed in all of these isotopic baseline proxies. Variation in isotopic composition at the base of the food web, rather than differences in tuna diet, explained the 11‰ variability observed in the bulk-tissue δ15N values of yellowfin tuna. Evaluating the trophic position of yellowfin tuna using amino-acid isotopic compositions across the western Indian and equatorial Pacific Oceans strongly suggests these tuna occupy similar trophic positions, albeit absolute trophic positions estimated by this method were lower than expected. This study reinforces the importance of considering isotopic baseline variability for diet studies, and provides new insights into methods that can be applied to generate nitrogen isoscapes for worldwide comparisons of top predators in marine ecosystems.
Marine biogenic source of atmospheric organic nitrogen in the subtropical North Atlantic
Altieri, Katye E.; Fawcett, Sarah E.; Peters, Andrew J.; Sigman, Daniel M.; Hastings, Meredith G.
2016-01-01
Global models estimate that the anthropogenic component of atmospheric nitrogen (N) deposition to the ocean accounts for up to a third of the ocean’s external N supply and 10% of anthropogenic CO2 uptake. However, there are few observational constraints from the marine atmospheric environment to validate these findings. Due to the paucity of atmospheric organic N data, the largest uncertainties related to atmospheric N deposition are the sources and cycling of organic N, which is 20–80% of total N deposition. We studied the concentration and chemical composition of rainwater and aerosol organic N collected on the island of Bermuda in the western North Atlantic Ocean over 18 mo. Here, we show that the water-soluble organic N concentration ([WSON]) in marine aerosol is strongly correlated with surface ocean primary productivity and wind speed, suggesting a marine biogenic source for aerosol WSON. The chemical composition of high-[WSON] aerosols also indicates a primary marine source. We find that the WSON in marine rain is compositionally different from that in concurrently collected aerosols, suggesting that in-cloud scavenging (as opposed to below-cloud “washout”) is the main contributor to rain WSON. We conclude that anthropogenic activity is not a significant source of organic N to the marine atmosphere over the North Atlantic, despite downwind transport from large pollution sources in North America. This, in conjunction with previous work on ammonium and nitrate, leads to the conclusion that only 27% of total N deposition to the global ocean is anthropogenic, in contrast to the 80% estimated previously. PMID:26739561
Spengler, Richard W.; Peterman, Zell E.; ,
1991-01-01
Variations in concentrations of trace elements Rb, Sr, and Zr within the sequence of high-silica tuff and dacitic lava beneath Yucca Mountain reflect both primary composition and secondary alteration. Rb and K concentrations have parallel trends. Rb concentrations are significantly lower within intervals containing zeolitic nonwelded to partially welded and bedded tuffs and are higher in thick moderately to densely welded zones. Sr concentrations increase with depth from about 30 ppm in the Topopah Spring Member of the Paintbrush Tuff to almost 300 ppm in the older tuffs. Zr concentrations are about 100 ppm in the Topopah Spring Member and also increase with depth to about 150 ppm in the Lithic Ridge Tuff and upper part of the older tuffs. Conspicuous local high concentrations of Sr in the lower part of the Tram Member, in the dacite lava, and in unit c of the older tuffs in USW G-1, and in the densely welded zone of the Bullfrog Member in USW GU-3/G-3 closely correlate with high concentrations of less-mobile Zr and may reflect either primary composition or elemental redistribution resulting largely from smectitic alteration. Initial 87Sr/86Sr values from composite samples increase upward in units above the Bullfrog Member of the Crater Flat Tuff. The progressive tenfold increase in Sr with depth coupled with the similarity of initial 87Sr/86Sr values within the Bullfrog Member and older units to those of Paleozoic marine carbonates are consistent with a massive influx of Sr from water derived from a Paleozoic carbonate aquifer.
Shenk, Eleni E; Bondi, Deborah S; Pellerite, Matthew M; Sriram, Sudhir
2018-01-01
The aim of this study was to evaluate the timing and dosing of caffeine therapy in relation to the development of bronchopulmonary dysplasia (BPD). This was a single-center, retrospective cohort study comparing early (days of life 0-2) to late (day of life 3 or greater) caffeine initiation in extremely low birth weight neonates, with a secondary analysis of large (10 mg/kg/day) to small dose (5 mg/kg/day) caffeine. There were 138 patients in the primary timing analysis. The early caffeine group had a lower incidence and reduced odds of the composite outcome of BPD or all-cause mortality, compared with the late caffeine group (64% vs. 88%, respectively; adjusted p < 0.05; adjusted OR 0.36 [95% CI 0.13-0.98]). No statistically significant difference was found between dosing groups (p = 0.29) in the primary outcome; however, there was a lower rate of patent ductus arteriosus requiring treatment (p = 0.05) and decreased likelihood of discharging home on oxygen (p = 0.02) in the large-dose group compared with the small-dose group. Early caffeine initiation significantly decreased the incidence of BPD or all-cause mortality in extremely low birth weight neonates. Patients receiving large-dose caffeine had improved secondary outcomes, although no difference in BPD was noted. Further studies are needed to determine the optimal dosing of caffeine.
Experimental constraints on mantle metasomatism caused by silicate and carbonate melts
NASA Astrophysics Data System (ADS)
Gervasoni, Fernanda; Klemme, Stephan; Rohrbach, Arno; Grützner, Tobias; Berndt, Jasper
2017-06-01
Metasomatic processes are responsible for many of the heterogeneities found in the upper mantle. To better understand the metasomatism in the lithospheric mantle and to illustrate the differences between metasomatism caused by hydrous silicate and carbonate-rich melts, we performed various interaction experiments: (1) Reactions between hydrous eclogite-derived melts and peridotite at 2.2-2.5 GPa and 900-1000 °C reproduce the metasomatism in the mantle wedge above subduction zones. (2) Reactions between carbonate-rich melts and peridotite at 2.5 GPa and 1050-1000 °C, and at 6 GPa and 1200-1250 °C simulate metasomatism of carbonatite and ultramafic silicate-carbonate melts in different regions of cratonic lithosphere. Our experimental results show that partial melting of hydrous eclogite produces hydrous Si- and Al-rich melts that react with peridotite and form bi-mineralic assemblages of Al-rich orthopyroxene and Mg-rich amphibole. We also found that carbonate-rich melts with different compositions react with peridotite and form new metasomatic wehrlitic mineral assemblages. Metasomatic reactions caused by Ca-rich carbonatite melt consume the primary peridotite and produce large amounts of metasomatic clinopyroxene; on the other hand, metasomatism caused by ultramafic silicate-carbonate melts produces less clinopyroxene. Furthermore, our experiments show that ultramafic silicate-carbonate melts react strongly with peridotite and cause crystallization of large amounts of metasomatic Fe-Ti oxides. The reactions of metasomatic melts with peridotite also change the melt composition. For instance, if the carbonatite melt is not entirely consumed during the metasomatic reactions, its melt composition may change dramatically, generating an alkali-rich carbonated silicate melt that is similar in composition to type I kimberlites.
Assessing the use of remotely sensed measurements for characterizing rangeland condition
NASA Astrophysics Data System (ADS)
Folker, Geoffrey P.
There are over 233 million hectares (ha) of nonfederal grazing lands in the United States. Conventional field observation and sampling techniques are insufficient methods to monitor such large areas frequently enough to confidently quantify the biophysical state and assess rangeland condition over large geographic areas. In an attempt to enhance rangeland resource managers' abilities to monitor and assess these factors, remote sensing scientists and land resource managers have worked together to determine whether remotely sensed measurements can improve the ability to measure rangeland response to land management practices. The relationship between spectral reflectance patterns and plant species composition was investigated on six south-central Kansas ranches. Airborne multispectral color infrared images for 2002 through 2004 were collected at multiple times in the growing season over the study area. Concurrent with the image acquisition periods, ground cover estimates of plant species composition and biomass by growth form were collected. Correlation analysis was used to examine relationships among spectral and biophysical field measurements. Results indicate that heavily grazed sites exhibited the highest spectral vegetation index values. This was attributed to increases in low forage quality broadleaf forbs such as annual ragweed (Ambrosia artemisiifolia L.). Although higher vegetation index values have a positive correlation with overall above ground primary productivity, species composition may be the best indicator of healthy rangeland condition. A Weediness Index, which was found to be correlated with range condition, was also strongly linked to spectral reflectance patterns recorded in the airborne imagery.
Schibille, Nadine; Freestone, Ian C.
2013-01-01
136 glasses from the ninth-century monastery of San Vincenzo and its workshops have been analysed by electron microprobe in order to situate the assemblage within the first millennium CE glass making tradition. The majority of the glass compositions can be paralleled by Roman glass from the first to third centuries, with very few samples consistent with later compositional groups. Colours for trailed decoration on vessels, for vessel bodies and for sheet glass for windows were largely produced by melting the glass tesserae from old Roman mosaics. Some weakly-coloured transparent glass was obtained by re-melting Roman window glass, while some was produced by melting and mixing of tesserae, excluding the strongly coloured cobalt blues. Our data suggest that to feed the needs of the glass workshop, the bulk of the glass was removed as tesserae and windows from a large Roman building. This is consistent with a historical account according to which the granite columns of the monastic church were spolia from a Roman temple in the region. The purported shortage of natron from Egypt does not appear to explain the dependency of San Vincenzo on old Roman glass. Rather, the absence of contemporary primary glass may reflect the downturn in long-distance trade in the later first millennium C.E., and the role of patronage in the “ritual economy” founded upon donations and gift-giving of the time. PMID:24146876
Schibille, Nadine; Freestone, Ian C
2013-01-01
136 glasses from the ninth-century monastery of San Vincenzo and its workshops have been analysed by electron microprobe in order to situate the assemblage within the first millennium CE glass making tradition. The majority of the glass compositions can be paralleled by Roman glass from the first to third centuries, with very few samples consistent with later compositional groups. Colours for trailed decoration on vessels, for vessel bodies and for sheet glass for windows were largely produced by melting the glass tesserae from old Roman mosaics. Some weakly-coloured transparent glass was obtained by re-melting Roman window glass, while some was produced by melting and mixing of tesserae, excluding the strongly coloured cobalt blues. Our data suggest that to feed the needs of the glass workshop, the bulk of the glass was removed as tesserae and windows from a large Roman building. This is consistent with a historical account according to which the granite columns of the monastic church were spolia from a Roman temple in the region. The purported shortage of natron from Egypt does not appear to explain the dependency of San Vincenzo on old Roman glass. Rather, the absence of contemporary primary glass may reflect the downturn in long-distance trade in the later first millennium C.E., and the role of patronage in the "ritual economy" founded upon donations and gift-giving of the time.
Genomic Data Quality Impacts Automated Detection of Lateral Gene Transfer in Fungi
Dupont, Pierre-Yves; Cox, Murray P.
2017-01-01
Lateral gene transfer (LGT, also known as horizontal gene transfer), an atypical mechanism of transferring genes between species, has almost become the default explanation for genes that display an unexpected composition or phylogeny. Numerous methods of detecting LGT events all rely on two fundamental strategies: primary structure composition or gene tree/species tree comparisons. Discouragingly, the results of these different approaches rarely coincide. With the wealth of genome data now available, detection of laterally transferred genes is increasingly being attempted in large uncurated eukaryotic datasets. However, detection methods depend greatly on the quality of the underlying genomic data, which are typically complex for eukaryotes. Furthermore, given the automated nature of genomic data collection, it is typically impractical to manually verify all protein or gene models, orthology predictions, and multiple sequence alignments, requiring researchers to accept a substantial margin of error in their datasets. Using a test case comprising plant-associated genomes across the fungal kingdom, this study reveals that composition- and phylogeny-based methods have little statistical power to detect laterally transferred genes. In particular, phylogenetic methods reveal extreme levels of topological variation in fungal gene trees, the vast majority of which show departures from the canonical species tree. Therefore, it is inherently challenging to detect LGT events in typical eukaryotic genomes. This finding is in striking contrast to the large number of claims for laterally transferred genes in eukaryotic species that routinely appear in the literature, and questions how many of these proposed examples are statistically well supported. PMID:28235827
NASA Technical Reports Server (NTRS)
Matano, T.; Machida, M.; Tsuchima, I.; Kawasumi, N.; Honda, K.; Hashimoto, K.; Martinic, N.; Zapata, J.; Navia, C. E.; Aquirre, C.
1985-01-01
Size distributions of air showers accompanied with bundle of high energy gamma rays and/or large size bursts under emulsion chambers, to study the composition of primary cosmic rays and also characteristics of high energy nuclear interaction. Air showers initiated by particles with a large cross section of interaction may develop from narrow region of the atmosphere near the top. Starting levels of air showers by particles with smaller cross section fluctuate in wider region of the atmosphere. Air showers of extremely small size accompanied with bundle of gamma rays may be ones initiated by protons at lower level after penetrating deep atmosphere without interaction. It is determined that the relative size distribution according to the total energy of bundle of gamma rays and the total burst size observed under 15 cm lead absorber.
NASA Technical Reports Server (NTRS)
1976-01-01
An orbiter and a multiprobe spacecraft will be sent to Venus in 1978 to conduct a detailed examination of the planet's atmosphere and weather. The spin-stabilized multiprobe spacecraft consists of a bus, a large probe and three identical small probes, each carrying a complement of scientific instruments. The large probe will conduct a detailed sounding of the lower atmosphere, obtaining measurements of the clouds, atmospheric structure, wind speed, and atmospheric composition. Primary emphasis will be placed on the planet's energy balance and clouds. The three small probes will provide information on the circulation pattern of the lower atmosphere. The probe bus will provide data on the upper atmosphere and ionosphere down to an altitude of about 120 km. The orbiter is designed to globally map the atmosphere, ionosphere, and the solar wind/ionosphere interaction. In addition, it will utilize radar mapping techniques to study the surface.
2018-06-11
Recurrent Diffuse Large B-Cell Lymphoma; Recurrent Primary Mediastinal (Thymic) Large B-Cell Cell Lymphoma; Refractory Diffuse Large B-Cell Lymphoma; Refractory Primary Mediastinal (Thymic) Large B-Cell Cell Lymphoma
ERIC Educational Resources Information Center
Hornstra, Lisette; van der Veen, Ineke; Peetsma, Thea; Volman, Monique
2015-01-01
The present study investigated the effects of socioeconomic and ethnic classroom composition on developments in students' motivation, sense of classroom belonging, and achievement. A sample of 722 primary school students completed questionnaires from 3rd to 6th grade. Latent growth curve analyses revealed that the reading comprehension scores of…
Resin transfer molding for advanced composite primary aircraft structures
NASA Technical Reports Server (NTRS)
Markus, Alan; Palmer, Ray
1991-01-01
Resin Transfer Molding (RTM) has been identified by Douglas Aircraft Company (DAC) and industry to be one of the promising processes being developed today which can break the cost barrier of implementing composite primary structures into a commercial aircraft production environment. The RTM process developments and scale-up plans Douglas Aircrart will be conducting under the NASA ACT contract are discussed.
Introducing a Mentor into a Children's Composition Project: Reflections on a Process
ERIC Educational Resources Information Center
Locke, Millie; Locke, Terry
2012-01-01
This article reports on a case study where a professional musician was assigned to a primary school as mentor in a project where 14 primary-aged children, with their teacher's direction, were involved in the composition of a piece of music that would act as prologue to the school's major production. The researchers were interested in aspects of…
Liandratite from Karkonosze pegmatites, Sudetes, Southwestern Poland
NASA Astrophysics Data System (ADS)
Matyszczak, Witold
2018-06-01
The chemical composition of liandratite, U6+(Nb,Ta)2O8, was determined from material collected in Niobium, Yttrium, Fluorine type (NYF) pegmatites of the Karkonosze intrusion (Sudetes, SW Poland). Liandratite occurs mainly as rims, up to 40 µm thick, and fracture infillings in fergusonite-(Y) and other Nb-Ta-Ti minerals. Its formation was related to the fluid-driven alteration of primary minerals by three potential mechanisms: (i) direct replacement of a primary mineral by liandratite; (ii) breakdown of the primary mineral to liandratite and a product with the composition of minerals of the pyrochlore group; (iii) multistage alteration, which involved: removal of A-site cations (mostly Y + REE with the exception of U4+) and formation of phases with the composition of pyrochlore group minerals; then crystallization of U-, Bi-, Pb-rich pyrochlores and their replacement by liandratite. The chemical compositions of liandratite formed by the breakdown of different primary minerals are also different, mainly in their U, Ti and Nb contents. Excess Ti, relative to the U6+Nb2O8 end-member, is incorporated into the structure together with additional U. The Ti content of liandratite, and partially through this the U content, are dependent on the nature of the precursor mineral.
Composite biaxially textured substrates using ultrasonic consolidation
Blue, Craig A; Goyal, Amit
2013-04-23
A method of forming a composite sheet includes disposing an untextured metal or alloy first sheet in contact with a second sheet in an aligned opposing position; bonding the first sheet to the second sheet by applying an oscillating ultrasonic force to at least one of the first sheet and the second sheet to form an untextured intermediate composite sheet; and annealing the untextured intermediate composite sheet at a temperature lower than a primary re-crystallization temperature of the second sheet and higher than a primary re-crystallization temperature of the first sheet to convert the untextured first sheet into a cube textured sheet, wherein the cube texture is characterized by a .phi.-scan having a FWHM of no more than 15.degree. in all directions, the second sheet remaining untextured, to form a composite sheet.
Concepts for the Next Generation Space Telescope
NASA Astrophysics Data System (ADS)
Margulis, M.; Tenerelli, D.
1996-12-01
In collaboration with NASA GSFC, we have examined a wide range of potential concepts for a large, passively cooled space telescope. Our design goals were to achieve a theoretical imaging sensitivity in the near-IR of 1 nJy and an angular resolution at 1 micron of 0.06 arcsec. Concepts examined included a telescope/spacecraft system with a 6-m diameter monolithic primary mirror, a variety of telescope/spacecraft systems with deployable primary mirror segments to achieve an 8-m diameter aperture, and a 12-element sparse aperture phased array telescope. Trade studies indicate that all three concept categories can achieve the required sensitivity and resolution, but that considerable technology development is required to bring any of the concepts to fruition. One attractive option is the system with the 6-m diameter monolithic primary. This option achieves high sensitivity without telescope deployments and includes a stiff structure for robust attitude and figure control. This system capitalizes on coming advances in launch vehicle and shroud technology, which should enable launch of large, monolithic payloads into orbit positions where background noise due to zodiacal dust is low. Our large space telescope study was performed by a consortium of organizations and individuals including: Domenick Tenerelli et al. (Lockheed Martin Corp.), Roger Angel et al. (U. Ariz.), Tom Casey et al. (Eastman Kodak Co.), Jim Gunn (Princeton), Shel Kulick (Composite Optics, Inc.), Jim Westphal (CIT), Johnny Batache et al. (Harris Corp.), Costas Cassapakis et al. (L'Garde, Inc.), Dave Sandler et al. (ThermoTrex Corp.), David Miller et al. (MIT), Ephrahim Garcia et al. (Garman Systems Inc.), Mark Enright (New Focus Inc.), Chris Burrows (STScI), Roc Cutri (IPAC), and Art Bradley (Allied Signal Aerospace).
NASA Astrophysics Data System (ADS)
Li, Mingliang; Deng, Mingxi; Gao, Guangjian; Xiang, Yanxun
2018-05-01
This paper investigated modeling of second-harmonic generation (SHG) of circumferential guided wave (CGW) propagation in a composite circular tube, and then analyzed the influences of interfacial properties on the SHG effect of primary CGW. Here the effect of SHG of primary CGW propagation is treated as a second-order perturbation to its linear wave response. Due to the convective nonlinearity and the inherent elastic nonlinearity of material, there are second-order bulk driving forces and surface/interface driving stresses in the interior and at the surface/interface of a composite circular tube, when a primary CGW mode propagates along its circumference. Based on the approach of modal expansion analysis for waveguide excitation, the said second-order driving forces/stresses are regarded as the excitation sources to generate a series of double-frequency CGW modes that constitute the second-harmonic field of the primary CGW propagation. It is found that the modal expansion coefficient of each double-frequency CGW mode is closely related to the interfacial stiffness constants that are used to describe the interfacial properties between the inner and outer circular parts of the composite tube. Furthermore, changes in the interfacial stiffness constants essentially influence the dispersion relation of CGW propagation. This will remarkably affect the efficiency of cumulative SHG of primary CGW propagation. Some finite element simulations have been implemented of response characteristics of cumulative SHG to the interfacial properties. Both the theoretical analyses and numerical simulations indicate that the effect of cumulative SHG is found to be much more sensitive to changes in the interfacial properties than primary CGW propagation. The potential of using the effect of cumulative SHG by primary CGW propagation to characterize a minor change in the interfacial properties is considered.
Derelioglu, Sera
2016-01-01
Objective. The aim of this study was to compare to fracture resistance test of inlay restorations prepared using direct inlay technique (Gradia® Direct Composite) and Indirect Restoration System® (Gradia Indirect Composite) and CAD/CAD system (Vita Enamic® Block). Study Design. 48 noncarious extracted maxillary second primary molars were randomly divided into 4 groups with 12 in each group. All the teeth were prepared based on inlay class II preparations except for the control group. Other groups were restored with Gradia Direct Composite, Gradia Indirect Composite, and Vita Enamic Block, respectively. All restorations were cemented self-adhesive dual cure resin (3M Espe, RelyX™ Unicem Aplicap). A fracture test was performed using a compressive load. Results were analyzed using one-way analysis of variance and Duncan's post hoc multiple comparison tests (α = 0.05). Results. Vita Enamic Block and Gradia Indirect Composite showed significantly higher fracture resistance than Gradia Direct Composite (p < 0.05). There was no significant difference fracture resistance between Vita Enamic Block and Gradia Indirect Composite (p > 0.05). All restorations tested led to a significant reduction in fracture resistance (p < 0.05). Conclusion. In inlay restorations, Indirect Restoration Systems and CAD/CAM systems were applied successfully together with the self-adhesive dual cure resin cements in primary molars. PMID:27830145
Baert, Jan M; De Laender, Frederik; Sabbe, Koen; Janssen, Colin R
2016-12-01
There is now ample evidence that biodiversity stabilizes aggregated ecosystem functions, such as primary production, in changing environments. In primary producer systems, this stabilizing effect is found to be driven by higher functional resistance (i.e., reduced changes in functions by environmental changes) rather than through higher functional resilience (i.e., rapid recovery following environmental changes) in more diverse systems. The stability of aggregated ecosystem functions directly depends on changes in species composition and by consequence their functional contributions to ecosystem functions. Still, it remains only theoretically explored how biodiversity can stabilize ecosystem functions by affecting compositional stability. Here, we demonstrate how biodiversity effects on compositional stability drive biodiversity effects on functional stability in diatom communities. In a microcosm experiment, we exposed 39 communities of five different levels of species richness (1, 2, 4, 6, and 8 species) to three concentrations of a chemical stressor (0, 25, and 250 μg/L atrazine) for four weeks, after which all communities were transferred to atrazine-free medium for three more weeks. Biodiversity simultaneously increased, increasing functional and compositional resistance, but decreased functional and compositional resilience. These results confirm the theoretically proposed link between biodiversity effects on functional and compositional stability in primary producer systems, and provide a mechanistic underpinning for observed biodiversity-stability relationships. Finally, we discuss how higher compositional stability can be expected to become increasingly important in stabilizing ecosystem functions under field conditions when multiple environmental stressors fluctuate simultaneously. © 2016 by the Ecological Society of America.
NASA Technical Reports Server (NTRS)
Burnett, T. H.; Dake, S.; Derrickson, J. H.; Fountain, W. F.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Holynski, R.; Iwai, J.; Jones, W. V.
1985-01-01
The composition and energy spectra of charge groups (C - 0), (Ne - S), and (Z approximately 17) above 500 GeV/nucleon from the experiments of JACEE series balloonborne emulsion chambers are reported. Studies of cosmic ray elemental composition at higher energies provide information on propagation through interstellar space, acceleration mechanisms, and their sources. One of the present interests is the elemental composition at energies above 100 GeV/nucleon. Statistically sufficient data in this energy region can be decisive in judgment of propagation models from the ratios of SECONDARY/PRIMARY and source spectra (acceleration mechanism), as well as speculative contributions of different sources from the ratios of PRIMARY/PRIMARY. At much higher energies, i.e., around 10 to the 15th power eV, data from direct observation will give hints on the knee problem, as to whether they favor an escape effect possibly governed by magnetic rigidity above 10 to the 16th power eV.
Laminate behavior for SiC fiber-reinforced reaction-bonded silicon nitride matrix composites
NASA Technical Reports Server (NTRS)
Rhatt, R. T.; Phillips, R. E.
1988-01-01
The room temperature mechanical properties of SiC fiber reinforced reaction-bonded silicon nitride matrix composite laminates (SiC/RBSN) have been measured. The laminates contained approx 30 volume fraction of aligned 142-micron diameter SiC fiber in a porous RBSN matrix. Three types of laminate studied were unidirectional: (1) (0) sub 8, (2) (10) sub 8, and (3) (45) sub 8, and (90) sub 8; cross plied laminates (0 sub 2/90 sub 2); and angle plied laminates: (+45 sub 2/-45 sub 2). Each laminate contained eight fiber plies. Results of the unidirectionally reinforced composites tested at various angles to the reinforcement direction indicate large anisotropy in in-plane properties. In addition, strength properties of these composites along the fiber direction were independent of specimen gage length and were unaffected by notches normal to the fiber direction. Splitting parallel to the fiber at the notch tip appears to be the dominant crack blunting mechanism responsible for notch insensitive behavior of these composites. In-plane properties of the composites can be improved by 2-D laminate construction. Mechanical property results for (0 sub 2/90 sub 2)sub s and (+45/-45 sub 2) sub s laminates showed that their matrix failure strains were similar to that for (0) sub 8 laminates, but their primary elastic moduli, matrix cracking strengths, and ultimate composite strengths were lower. The elastic properties of unidirectional, cross-ply, and angle-ply composites can be predicted from modified constitutive equations and laminate theory. Further improvements in laminate properties may be achieved by reducing the matrix porosity and by optimizing the bond strength between the SiC fiber and RBSN matrix.
Laminate behavior for SiC fiber-reinforced reaction-bonded silicon nitride matrix composites
NASA Technical Reports Server (NTRS)
Bhatt, Ramakrishna T.; Phillips, Ronald E.
1990-01-01
The room temperature mechanical properties of SiC fiber reinforced reaction-bonded silicon nitride matrix composite laminates (SiC/RBSN) have been measured. The laminates contained approx 30 volume fraction of aligned 142-micron diameter SiC fiber in a porous RBSN matrix. Three types of laminate studied were unidirectional: (1) (0) sub 8, (2) (10) sub 8, and (3) (45) sub 8, and (90) sub 8; cross plied laminates (0 sub 2/90 sub 2); and angle plied laminates: (+45 sub 2/-45 sub 2). Each laminate contained eight fiber plies. Results of the unidirectionally reinforced composites tested at various angles to the reinforcement direction indicate large anisotropy in in-plane properties. In addition, strength properties of these composites along the fiber direction were independent of specimen gage length and were unaffected by notches normal to the fiber direction. Splitting parallel to the fiber at the notch tip appears to be the dominant crack blunting mechanism responsible for notch insensitive behavior of these composites. In-plane properties of the composites can be improved by 2-D laminate construction. Mechanical property results for (0 sub 2/90 sub 2) sub s and (+45/-45 sub 2) sub s laminates showed that their matrix failure strains were similar to that for (0) sub 8 laminates, but their primary elastic moduli, matrix cracking strengths, and ultimate composite strengths were lower. The elastic properties of unidirectional, cross-ply, and angle-ply composites can be predicted from modified constitutive equations and laminate theory. Further improvements in laminate properties may be achieved by reducing the matrix porosity and by optimizing the bond strength between the SiC fiber and RBSN matrix.
NASA Astrophysics Data System (ADS)
Wagner, Christiane; Deloule, Etienne
2016-04-01
Mantle xenoliths from the sub-continental lithospheric mantle (SCLM) frequently display evidence of metasomatism by melts or fluids of variable composition, e.g. alkali-basaltic, alkali-carbonate or carbonate melts. Carbonate-bearing mantle xenoliths are particularly interesting as highly mobile carbonate melts are likely prominent metasomatic agents of the mantle. This study presents detailed petrographic descriptions and major and trace element compositions of minerals in protogranular spinel lherzolites from the Mont Coupet occurrence (Devès province, French Massif Central), with focus on the carbonate phases to discuss their possible link to carbonatite melt. Two representative samples are described here. MC9 shows no evidence for infiltration of the host basanitic magma. Carbonates occur (1) as large (100 μm - 200 μm) anhedral crystals in interstitial pockets at triple point of primary olivine grains, (2) in a few cross-cutting veins (up to 200 μm width), (3) along grain boundaries and (4) in composite carbonate-silicate pockets from well-developed reaction zones, in which carbonates fill globular vesicles. The reaction zone contains secondary subhedral to euhedral phases: Al- and Ti-rich clinopyroxene, Ca-rich olivine, Cr-rich spinel and quenched plagioclase and relict sieved-textured primary spinel. MC2 shows carbonate-bearing thin (< 50 μm width) interconnected veinlets and only a few poorly-developed reaction zones around primary spinel. Large carbonate crystals (1), as in sample MC9, occur associated with (2) fibrous carbonate with a well-formed meniscus at the boundary between the two carbonate types. In some reaction zones the carbonate patches (3) show well-developed concentric carbonate structures, similar to those observed in the globular vesicles from the host basanite. In sample MC9, the carbonate is an alkali-free Mg-poor calcite (XCa = 0.95 - 0.98; with 0.5 - 1.8 wt. % MgO) whatever the occurrence. In sample MC2, carbonates are Mg-richer, particularly the type 2 and 3 carbonates (XCa = 0.88 - 0.91; 3 - 5 wt. % MgO), a composition similar to that of the carbonates from the vesicles in the basanite (XCa = 0.86 - 0.88; 4 - 5 wt. % MgO). In both xenoliths, the carbonates have low REE abundances (mostly below the detection limit except La and Ce), similar to those reported for carbonates from mantle xenoliths. Moreover, the carbonate globules in the basanite have the same REE composition. Although the presence of rounded vesicles of calcite was originally interpreted as an evidence for silicate-carbonate liquid immiscibility, experimental studies have shown that alkali-free immiscible carbonates cannot be almost pure calcite. Textural features and composition (high XCa, low alkali contents and low REE abundances) of carbonates rule out their origin as quenched carbonatitic melts or immiscible carbonate liquids and favor, thus, an origin as crystal cumulates from mantle-derived carbonate-rich melts (e.g. alkali-carbonate melts). A possible scenario is the injection of small amounts of a carbonate-rich melt at mantle level shortly before the eruption to preserve the calcite crystals. Carbonate-rich melt or emanated fluids may have permeated the xenoliths (MC2) during the ascent and precipitated calcite crystals in the xenolith as well as in the entraining basanitic magma.
Cohen, Bat-Chen; Shamay, Avi; Argov-Argaman, Nurit
2015-01-01
Milk fat globule size is determined by the size of its precursors—intracellular lipid droplets—and is tightly associated with its composition. We examined the relationship between phospholipid composition of mammary epithelial cells and the size of both intracellular and secreted milk fat globules. Primary culture of mammary epithelial cells was cultured in medium without free fatty acids (control) or with 0.1 mM free capric, palmitic or oleic acid for 24 h. The amount and composition of the cellular lipids and the size of the lipid droplets were determined in the cells and medium. Mitochondrial quantity and expression levels of genes associated with mitochondrial biogenesis and polar lipid composition were determined. Cells cultured with oleic and palmitic acids contained similar quantities of triglycerides, 3.1- and 3.8-fold higher than in controls, respectively (P < 0.0001). When cultured with oleic acid, 22% of the cells contained large lipid droplets (>3 μm) and phosphatidylethanolamine concentration was higher by 23 and 63% compared with that in the control and palmitic acid treatments, respectively (P < 0.0001). In the presence of palmitic acid, only 4% of the cells contained large lipid droplets and the membrane phosphatidylcholine concentration was 22% and 16% higher than that in the control and oleic acid treatments, respectively (P < 0.0001). In the oleic acid treatment, approximately 40% of the lipid droplets were larger than 5 μm whereas in that of the palmitic acid treatment, only 16% of the droplets were in this size range. Triglyceride secretion in the oleic acid treatment was 2- and 12-fold higher compared with that in the palmitic acid and control treatments, respectively. Results imply that membrane composition of bovine mammary epithelial cells plays a role in controlling intracellular and secreted lipid droplets size, and that this process is not associated with cellular triglyceride content. PMID:25756421
Ion microprobe analyses of aluminous lunar glasses - A test of the 'rock type' hypothesis
NASA Technical Reports Server (NTRS)
Meyer, C., Jr.
1978-01-01
Previous soil survey investigations found that there are natural groupings of glass compositions in lunar soils and that the average major element composition of some of these groupings is the same at widely separated lunar landing sites. This led soil survey enthusiasts to promote the hypothesis that the average composition of glass groupings represents the composition of primary lunar 'rock types'. In this investigation the trace element composition of numerous aluminous glass particles was determined by the ion microprobe method as a test of the above mentioned 'rock type' hypothesis. It was found that within any grouping of aluminous lunar glasses by major element content, there is considerable scatter in the refractory trace element content. In addition, aluminous glasses grouped by major elements were found to have different average trace element contents at different sites (Apollo 15, 16 and Luna 20). This evidence argues that natural groupings in glass compositions are determined by regolith processes and may not represent the composition of primary lunar 'rock types'.
Evolution of Primary Fe-Rich Compounds in Secondary Al-Si-Cu Alloys
NASA Astrophysics Data System (ADS)
Fabrizi, Alberto; Capuzzi, Stefano; Timelli, Giulio
Although iron is usually added in die cast Al-Si foundry alloys to prevent die soldering, primary Fe-rich particles are generally considered as "hardspot" inclusions which compromise the mechanical properties of the alloy, namely ductility and toughness. As there is no economical methods to remove the Fe excess in secondary Al-Si alloys at this time, the control of solidification process and chemical composition of the alloy is a common industrial practice to overcome the negative effects connected with the presence of Fe-rich particles. In this work, the size and morphology as well as the nucleation density of primary Fe-rich particles have been studied as function of cooling rate and alloy chemical composition for secondary Al-Si-Cu alloys. The solidification experiments were carried out using differential scanning calorimetry whereas morphology investigations were conducted using optical and scanning electron microscopy. Mcrosegregations and chemical composition of primary Fe-rich particles were examined by energy dispersive spectroscopy.
Observation of CO2 in Comet C/2012 K5 LINEAR
NASA Astrophysics Data System (ADS)
McKay, Adam; Kelley, Michael; DiSanti, Michael; Chanover, Nancy
2012-12-01
The study of cometary composition is important to understanding the formation and evolution of our solar system. Comets have undergone very little thermal evolution in their lifetimes, which results in their near pristine composition. The nucleus of a comet is very rarely detected directly. Instead, we observe the coma that surrounds the nucleus. Physical and chemical processes in the coma affect its composition, and therefore coma composition is not a direct representation of nuclear composition. An important trend is the observed variation of coma composition with heliocentric distance, most likely influenced by the volatility of the main surface ices, H2O, CO2, and CO. Infrared studies of these molecules are complicated by telluric features, so often daughter molecules of these species such as OH are observed instead. A potentially effective tracer for these primary ices is atomic oxygen in the coma. However, the relationship between these ices and atomic oxygen is only understood at a qualitative level. We propose to use Spitzer observations in IRAC's 4.5 micron band pass to observe the CO2 v3 band at 4.26 microns in comet C/2012 K5 LINEAR. These observations will be coordinated with observations of atomic oxygen obtained at Apache Point Observatory and observations of H2O at Keck. These near simultaneous observations of H2O, CO2, and atomic oxygen in a cometary coma will increase our understanding of the link between these primary ices and atomic oxygen. With a complete understanding of the relationship between atomic oxygen and the primary ices on the nucleus, observations of atomic oxygen can serve as a powerful proxy for the production of these primary volatiles and aid our understanding of the variation in coma composition as a function of heliocentric distance, and therefore the composition of the nucleus and how our solar system was formed.
Prebiotics and Inflammatory Bowel Disease.
Rasmussen, Heather E; Hamaker, Bruce R
2017-12-01
Dietary fiber, specifically prebiotics, is the primary source of energy for the gut microbiota and thus has the potential to beneficially modify microbiota composition. Prebiotics have been used in both in vitro studies and with animal models of colitis with largely positive results. Human studies are few and have been conducted with only a few select prebiotics, primarily fructan-containing fibers. Although disease activity and inflammatory markers have improved, more needs to be learned about the specific prebiotic compounds and how they can be used to best improve the gut microbiota to counter changes induced by inflammatory bowel disease. Copyright © 2017 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Kilfoil, Carrie Byars
2017-01-01
This article analyzes the decline of linguistics in rhetoric and composition PhD programs in terms of the "linguistic memory" (Trimbur) of composition. Since the field of linguistics once offered the primary means for composition to address the structural, psychological, sociohistorical, and cultural dimensions of language in student…
Czeppe, T; Ochin, P; Sypień, A; Major, L
2010-03-01
The results of investigation of two different Ni-based glasses with compositions Ni(58)Nb(10)Zr(13)Ti(12)Al(7) and Ni(58)Nb(25)Zr(8)Ti(6)Al(3) are presented. The structure of the melt spun ribbons was amorphous. The supercooled liquid range decreased and primary crystallization temperature increased with increasing Nb content while the parameter T(g)/T(m) slightly increased. The crystallization process proceeded in a different way. The ribbon containing 10 at.% Nb showed typical primary crystallization of the 50 nm grains of the NiTi(Nb) cubic phase; the ribbon containing 25 at.% of Nb revealed high thermal stability of the amorphous phase, which crystallized only in a small amount in the range of primary crystallization, preserving large fraction of the amorphous phase even high above the end of the crystallization. The tensile load-displacement curves were also different. In both cases, the ribbons revealed quite a large range of the plastic elongation. The ribbon containing 10% Nb showed stress relaxation and was maximally elongated up to 0.6. The ribbon with 25 at.% Nb revealed a hardening effect and the slightly smaller maximal elongation following it. The microstructure of the deformed specimens showed deformation bands parallel to the tensile axis, microcracks formation along shear bands and river-like pattern at the fracture surfaces. In both cases, high resolution electron microscope did not reveal any crystallization after deformation.
Composite Crew Module: Primary Structure
NASA Technical Reports Server (NTRS)
Kirsch, Michael T.
2011-01-01
In January 2007, the NASA Administrator and Associate Administrator for the Exploration Systems Mission Directorate chartered the NASA Engineering and Safety Center to design, build, and test a full-scale crew module primary structure, using carbon fiber reinforced epoxy based composite materials. The overall goal of the Composite Crew Module project was to develop a team from the NASA family with hands-on experience in composite design, manufacturing, and testing in anticipation of future space exploration systems being made of composite materials. The CCM project was planned to run concurrently with the Orion project's baseline metallic design within the Constellation Program so that features could be compared and discussed without inducing risk to the overall Program. This report discusses the project management aspects of the project including team organization, decision making, independent technical reviews, and cost and schedule management approach.
Investigation of Collapse Characteristics of Cylindrical Composite Panels with Large Cutouts
1989-12-01
COLLAPSE CHARACTERISTICS OF CYLINDRICAL COMPOSITE PANELS WITH LARGE CUTOUTS THESIS Scott A. Schimmels Captain, USAF AFIT/GAE/ENY/89D-33 Approved for...public release, distribution unlimited AFIT/GAE/ENY/89D-33 INVESTIGATION OF COLLAPSE * CHARACTERISTICS OF CYLINDRICAL COMPOSITE PANELS WITH LARGE...you would not be reading this. * This thesis research is part of an overall effort in composite nonlinear shell analysis sponsored by AFOSR, Dr
Development of the 1990 Kalapana Flow Field, Kilauea Volcano, Hawaii
Mattox, T.N.; Heliker, C.; Kauahikaua, J.; Hon, K.
1993-01-01
The 1990 Kalapana flow field is a complex patchwork of tube-fed pahoehoe flows erupted from the Kupaianaha vent at a low effusion rate (approximately 3.5 m3/s). These flows accumulated over an 11-month period on the coastal plain of Kilauea Volcano, where the pre-eruption slope angle was less than 2??. the composite field thickened by the addition of new flows to its surface, as well as by inflation of these flows and flows emplaced earlier. Two major flow types were identified during the development of the flow field: large primary flows and smaller breakouts that extruded from inflated primary flows. Primary flows advanced more quickly and covered new land at a much higher rate than breakouts. The cumulative area covered by breakouts exceeded that of primary flows, although breakouts frequently covered areas already buried by recent flows. Lava tubes established within primary flows were longer-lived than those formed within breakouts and were often reoccupied by lava after a brief hiatus in supply; tubes within breakouts were never reoccupied once the supply was interrupted. During intervals of steady supply from the vent, the daily areal coverage by lava in Kalapana was constant, whereas the forward advance of the flows was sporadic. This implies that planimetric area, rather than flow length, provides the best indicator of effusion rate for pahoehoe flow fields that form on lowangle slopes. ?? 1993 Springer-Verlag.
Adhesive compositions and methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, Scott D.; Sendijarevic, Vahid; O'Connor, James
The present invention encompasses polyurethane adhesive compositions comprising aliphatic polycarbonate chains. In one aspect, the present invention encompasses polyurethane adhesives derived from aliphatic polycarbonate polyols and polyisocyanates wherein the polyol chains contain a primary repeating unit having a structure:. In another aspect, the invention provides articles comprising the inventive polyurethane compositions as well as methods of making such compositions.
Metal-matrix composites: Status and prospects
NASA Technical Reports Server (NTRS)
1974-01-01
Applications of metal matrix composites for air frames and jet engine components are discussed. The current state of the art in primary and secondary fabrication is presented. The present and projected costs were analyzed to determine the cost effectiveness of metal matrix composites. The various types of metal matrix composites and their characteristics are described.
The calcium isotope evolution of Lake Lisan, the Dead Sea glacial precursor
NASA Astrophysics Data System (ADS)
Bradbury, H. J.; Turchyn, A. V.; Wong, K.; Torfstein, A.
2016-12-01
Calcium is a stoichiometric component of carbonate minerals whose calcium isotopic composition reflects changes in the calcium isotope composition of the water from which it precipitates as well as the calcium isotope fractionation factor during precipitation. The lacustrine deposits of the last glacial Dead Sea (Lisan Formation) are dominated by carbonate minerals (aragonite) that record the geochemical history of the lake. The sediment sequence comprises alternating laminae of aragonite and clay-rich marls, interspersed with primary gypsum beds and disseminated secondary gypsum crystals. The aragonite precipitated annually during high lake stands associated with wet periods, while the primary gypsum precipitated during low lake conditions (arid periods). We report the calcium isotopic composition (δ44Ca in ‰ relative to bulk silicate earth) of primary aragonite laminae, primary gypsum and secondary gypsum at 1-5kyr resolution throughout the Lisan Formation sampled at the Masada section (70 - 14.5 ka). The δ44Ca of the primary gypsum averages +0.29‰, and displays smaller temporal variations than the aragonite, which averages -0.35‰ but ranges between +0.18‰ and -0.68‰. The aragonite δ44Ca changes temporally in sync with the previously reconstructed lake level suggesting the aragonite δ44Ca reflects changes in the lake calcium balance during lake level changes. The secondary gypsum composition (-0.3‰) corresponds to coeval aragonite samples. For the secondary gypsum to have a similar δ44Ca to the aragonite it is likely that the calcium derived from the aragonite in a near quantitative fashion through recrystallization of the aragonite to gypsum. A numerical box model is used to explore the effect of changing lake water levels on the calcium isotope composition of the aragonite and gypsum over the time interval studied.
NASA Astrophysics Data System (ADS)
Aglietta, M.; Alessandro, B.; Antonioli, P.; Arneodo, F.; Bergamasco, L.; Bertaina, M.; Castagnoli, C.; Castellina, A.; Chiavassa, A.; Cini, G.; D'Ettorre Piazzoli, B.; di Sciascio, G.; Fulgione, W.; Galeotti, P.; Ghia, P. L.; Iacovacci, M.; Mannocchi, G.; Morello, C.; Navarra, G.; Saavedra, O.; Stamerra, A.; Trinchero, G. C.; Valchierotti, S.; Vallania, P.; Vernetto, S.; Vigorito, C.; Ambrosio, M.; Antolini, R.; Baldini, A.; Barbarino, G. C.; Barish, B. C.; Battistoni, G.; Becherini, Y.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bower, C.; Brigida, M.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Carboni, M.; Caruso, R.; Cecchini, S.; Cei, F.; Chiarella, V.; Choudhary, B. C.; Coutu, S.; Cozzi, M.; de Cataldo, G.; Dekhissi, H.; de Marzo, C.; de Mitri, I.; Derkaoui, J.; de Vincenzi, M.; di Credico, A.; Erriquez, O.; Favuzzi, C.; Forti, C.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Giorgini, M.; Grassi, M.; Grillo, A.; Guarino, F.; Gustavino, C.; Habig, A.; Hanson, K.; Heinz, R.; Iarocci, E.; Katsavounidis, E.; Katsavounidis, I.; Kearns, E.; Kim, H.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Levin, D. S.; Lipari, P.; Longley, N. P.; Longo, M. J.; Loparco, F.; Maaroufi, F.; Mancarella, G.; Mandrioli, G.; Margiotta, A.; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M. N.; Michael, D. G.; Monacelli, P.; Montaruli, T.; Monteno, M.; Mufson, S.; Musser, J.; Nicolò, D.; Nolty, R.; Orth, C.; Osteria, G.; Palamara, O.; Patera, V.; Patrizii, L.; Pazzi, R.; Peck, C. W.; Perrone, L.; Petrera, S.; Popa, V.; Rainò, A.; Reynoldson, J.; Ronga, F.; Satriano, C.; Scapparone, E.; Scholberg, K.; Sciubba, A.; Serra, P.; Sioli, M.; Sirri, G.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steinberg, R.; Stone, J. L.; Sulak, L. R.; Surdo, A.; Tarlè, G.; Togo, V.; Vakili, M.; Walter, C. W.; Webb, R.
2004-03-01
The cosmic ray primary composition in the energy range between 1015 and 1016 eV, i.e., around the ``knee'' of the primary spectrum, has been studied through the combined measurements of the EAS-TOP air shower array (2005 m a.s.l., 105 m2 collecting area) and the MACRO underground detector (963 m a.s.l., 3100 m w.e. of minimum rock overburden, 920 m2 effective area) at the National Gran Sasso Laboratories. The used observables are the air shower size (Ne) measured by EAS-TOP and the muon number (Nμ) recorded by MACRO. The two detectors are separated on average by 1200 m of rock, and located at a respective zenith angle of about 30°. The energy threshold at the surface for muons reaching the MACRO depth is approximately 1.3 TeV. Such muons are produced in the early stages of the shower development and in a kinematic region quite different from the one relevant for the usual Nμ-Ne studies. The measurement leads to a primary composition becoming heavier at the knee of the primary spectrum, the knee itself resulting from the steepening of the spectrum of a primary light component (p, He) of Δγ=0.7+/-0.4 at E0~4×1015 eV. The result confirms the ones reported from the observation of the low energy muons at the surface (typically in the GeV energy range), showing that the conclusions do not depend on the production region kinematics. Thus, the hadronic interaction model used (CORSIKA/QGSJET) provides consistent composition results from data related to secondaries produced in a rapidity region exceeding the central one. Such an evolution of the composition in the knee region supports the ``standard'' galactic acceleration/propagation models that imply rigidity dependent breaks of the different components, and therefore breaks occurring at lower energies in the spectra of the light nuclei.
On the composition dependence of faceting behaviour of primary phases during solidification
NASA Astrophysics Data System (ADS)
Saroch, Mamta; Dubey, K. S.; Ramachandrarao, P.
1993-02-01
The entropy of solution of the primary aluminium-rich phase in the aluminium-tin melts has been evaluated as a function of temperature using available thermodynamic and phase equilibria data with a view to understand the faceting behaviour of this phase. It was noticed that the range of compositions in which alloys of aluminium and tin yield a faceted primary phase is correlated with the domain of compositions over which the entropy of solution shows a strong temperature dependence. It is demonstrated that both a high value of the entropy of solution and a strong temperature dependence of it are essential for providing faceting. A strong temperature dependence of the entropy of solution is in turn a consequence of negligible liquidus slope and existence of retrograde solubility. The AgBi and AgPb systems have similar features.
Adam, J.
2016-01-19
ALICE is one of four large experiments at the CERN Large Hadron Collider near Geneva, specially designed to study particle production in ultra-relativistic heavy-ion collisions. Located 52 meters underground with 28 meters of overburden rock, it has also been used to detect muons produced by cosmic ray interactions in the upper atmosphere. Here, we present the multiplicity distribution of these atmospheric muons and its comparison with Monte Carlo simulations. Our analysis exploits the large size and excellent tracking capability of the ALICE Time Projection Chamber. A special emphasis is given to the study of high multiplicity events containing more thanmore » 100 reconstructed muons and corresponding to a muon areal density rho(mu) > 5.9 m(-2). Similar events have been studied in previous underground experiments such as ALEPH and DELPHI at LEP. While these experiments were able to reproduce the measured muon multiplicity distribution with Monte Carlo simulations at low and intermediate multiplicities, their simulations failed to describe the frequency of the highest multiplicity events. In this work we show that the high multiplicity events observed in ALICE stem from primary cosmic rays with energies above 10(16) eV and that the frequency of these events can be successfully described by assuming a heavy mass composition of primary cosmic rays in this energy range. Furthermore, the development of the resulting air showers was simulated using the latest version of QGSJET to model hadronic interactions. This observation places significant constraints on alternative, more exotic, production mechanisms for these events.« less
Larson, James H; Richardson, William B; Knights, Brent C; Bartsch, Lynn A; Bartsch, Michelle R; Nelson, John C; Veldboom, Jason A; Vallazza, Jon M
2013-01-01
Spatial variation in food resources strongly influences many aspects of aquatic consumer ecology. Although large-scale controls over spatial variation in many aspects of food resources are well known, others have received little study. Here we investigated variation in the fatty acid (FA) composition of seston and primary consumers within (i.e., among habitats) and among tributary systems of Lake Michigan, USA. FA composition of food is important because all metazoans require certain FAs for proper growth and development that cannot be produced de novo, including many polyunsaturated fatty acids (PUFAs). Here we sampled three habitat types (river, rivermouth and nearshore zone) in 11 tributaries of Lake Michigan to assess the amount of FA in seston and primary consumers of seston. We hypothesize that among-system and among-habitat variation in FAs at the base of food webs would be related to algal production, which in turn is influenced by three land cover characteristics: 1) combined agriculture and urban lands (an indication of anthropogenic nutrient inputs that fuel algal production), 2) the proportion of surface waters (an indication of water residence times that allow algal producers to accumulate) and 3) the extent of riparian forested buffers (an indication of stream shading that reduces algal production). Of these three land cover characteristics, only intense land use appeared to strongly related to seston and consumer FA and this effect was only strong in rivermouth and nearshore lake sites. River seston and consumer FA composition was highly variable, but that variation does not appear to be driven by the watershed land cover characteristics investigated here. Whether the spatial variation in FA content at the base of these food webs significantly influences the production of economically important species higher in the food web should be a focus of future research.
Larson, James H.; Richardson, William B.; Knights, Brent C.; Bartsch, Lynn; Bartsch, Michelle; Nelson, J. C.; Veldboom, Jason A.; Vallazza, Jonathan M.
2013-01-01
Spatial variation in food resources strongly influences many aspects of aquatic consumer ecology. Although large-scale controls over spatial variation in many aspects of food resources are well known, others have received little study. Here we investigated variation in the fatty acid (FA) composition of seston and primary consumers within (i.e., among habitats) and among tributary systems of Lake Michigan, USA. FA composition of food is important because all metazoans require certain FAs for proper growth and development that cannot be produced de novo, including many polyunsaturated fatty acids (PUFAs). Here we sampled three habitat types (river, rivermouth and nearshore zone) in 11 tributaries of Lake Michigan to assess the amount of FA in seston and primary consumers of seston. We hypothesize that among-system and among-habitat variation in FAs at the base of food webs would be related to algal production, which in turn is influenced by three land cover characteristics: 1) combined agriculture and urban lands (an indication of anthropogenic nutrient inputs that fuel algal production), 2) the proportion of surface waters (an indication of water residence times that allow algal producers to accumulate) and 3) the extent of riparian forested buffers (an indication of stream shading that reduces algal production). Of these three land cover characteristics, only intense land use appeared to strongly related to seston and consumer FA and this effect was only strong in rivermouth and nearshore lake sites. River seston and consumer FA composition was highly variable, but that variation does not appear to be driven by the watershed land cover characteristics investigated here. Whether the spatial variation in FA content at the base of these food webs significantly influences the production of economically important species higher in the food web should be a focus of future research.
Rawlik, Mateusz; Kasprowicz, Marek; Jagodziński, Andrzej M; Kaźmierowski, Cezary; Łukowiak, Remigiusz; Grzebisz, Witold
2018-09-01
According facilitative models of succession, trees are great forest ecosystem engineers. The strength of tree stand influences on habitat were tested in rather homogenous conditions where heterogeneity of site condition was not an important influence. We hypothesized that canopy composition affects total aboveground vascular herb layer biomass (THB) and species composition of herb layer plant biomass (SCHB) more significantly than primary soil fertility or slope exposure. The study was conducted in 227 randomly selected research plots in seven types of forest stands: pure with Alnus glutinosa, Betula pendula, Pinus sylvestris, Quercus petraea and Robinia pseudoacacia, and mixed with dominance of Acer pseudoplatanus or Betula pendula located on hilltop and northern, eastern, western, and southern slopes on a reclaimed, afforested post-mining spoil heap of the Bełchatów Brown Coal Mine (Poland). Generalized linear models (GLZ) showed that tree stand species were the best predictors of THB. Non-parametric variance tests showed significantly higher (nearly four times) THB under canopies of A. glutinosa, R. pseudoacacia, B. pendula and Q. petraea, compared to the lowest THB found under canopies of P. sylvestris and mixed with A. pseudoplatanus. Redundancy Analysis (RDA) showed that SCHB was significantly differentiated along gradients of light-nutrient herb layer species requirements. RDA and non-parametric variance tests showed that SCHB under canopies of A. glutinosa, R. pseudoacacia and mixed with A. pseudoplatanus had large shares of nitrophilous ruderal species (32%, 31% and 11%, respectively), whereas SCHB under B. pendula, Q. petraea, mixed with B. pendula and P. sylvestris were dominated by light-demanding meadow (49%, 51%, 51% and 36%, respectively) and Poaceae species. The results indicated the dominant role of tree stand composition in habitat-forming processes, and although primary site properties had minor importance, they were also modified by tree stand species. Copyright © 2018. Published by Elsevier B.V.
Salami, A; Walia, T; Bashiri, R
2015-01-01
To evaluate and compare the parental satisfaction among resin composite strip crown, preveneered stainless steel crown (PVSSC) and the newly introduced pre-fabricated primary zirconia crown for restoring maxillary primary incisors. A prospective clinical study on 39 children with carious or traumatized primary maxillary incisors. They were randomly and equally distributed in three groups and received one of the full-coronal restorations. Children were recalled to evaluate and compare parental satisfaction about performance of crowns after one year through a questionnaire. Parents were satisfied with all three tooth colored full-coronal restoration techniques. A significant relationship was found between colour of PVSSC (p=0.003) and durability of resin strip crowns (p=0.009) with the overall parental satisfaction levels. Parents who gave poor ratings in these two variables however rated their overall acceptance levels as being satisfied. Parental overall satisfaction was highest for zirconia primary crowns followed by resin composite strip crowns and lowest satisfaction was reported for pre-veneered SSCs. Parents were least satisfied with durability of resin composite strip crowns and colour of pre-veneered stainless steel crowns. However, this did not affect their overall satisfaction with these crowns.
NASA Astrophysics Data System (ADS)
Pedentchouk, Nikolai; Eley, Yvette; Frizell-Armitage, Amelia; Uauy, Cristobal
2015-04-01
The use of the 2H/1H composition of terrestrial plants in climate and ecology studies depends on fundamental understanding of the processes within the plant that control fractionation of these two isotopes. Little is currently known about the extent of 2H/1H fractionation at different steps of biosynthesis, after the initial H uptake following leaf water photolysis. Knowing this effect is particularly important when seeking to interpret the 2H/1H composition of leaf wax biomarkers from plants that differ in the amount and type of individual compound classes in their leaf waxes. The purpose of this study was to investigate the link between the quantity and distribution of n-alkyl lipids in leaf waxes and their isotopic composition. We used a genetic approach to suppress glaucousness in 2 varieties of wheat (Alchemy and Malacca), which resulted in glaucous and non-glaucous phenotypes of both varieties. Both phenotypes were then grown outdoors under identical environmental conditions in central Norfolk, UK. At the end of the growing season, the plants were sampled for soil water, leaf water, and leaf wax isotopic measurements. Comparison of the leaf wax composition of the non-glaucous and glaucous phenotypes revealed that the non-glaucous varieties were characterised by the absence of diketones and a greater concentration of n-alkanes and primary alcohols.. Our results showed very small differences between glaucous and non-glaucous varieties with regard to soil (mean values, <2 per mil) and leaf (<1 per mil) water 2H/1H. Conversely, there was 15-20 and 10-15 per mil 2H-depletion in the C29 and C31 n-alkanes, respectively, from the non-glaucous phenotype. This 2H-depletion in the non-glaucous phenotype demonstrated that the suppression of diketone production and the increase in n-alkane and primary alcohol concentrations are linked with a shift in the 2H/1H composition of n-alkanes. The initial results of this work suggest that plants using the same environmental water, subjected to the same effects of evapotranspiration, but which differ in the amount and composition of leaf wax compounds, can exhibit large variation in their n-alkane 2H/1H. Our current work on determining the 2H/1H composition of other n-alkyl lipids from these plants will provide further details regarding the role of biosynthesis in controlling 2H/1H fractionation within leaf waxes.
Lian, Qin; Zhuang, Pei; Li, Changhai; Jin, Zhongmin; Li, Dichen
2014-03-01
To improve the poor mechanical strength of porous ceramic scaffold, an integrated method based on three-dimensional (3-D) printing technique is developed to incorporate the controlled double-channel porous structure into the polylactic acid/beta-tricalcium phosphate (PLA/beta-TCP) reinforced composite scaffolds (double-channel composite scaffold) to improve their tissue regeneration capability and the mechanical properties. The designed double-channel structure inside the ceramic scaffold consisted of both primary and secondary micropipes, which parallel but un-connected. The set of primary channels was used for cell ingrowth, while the set of secondary channels was used for the PLA perfusion. Integration technology of 3-D printing technique and gel-casting was firstly used to fabricate the double-channel ceramic scaffolds. PLA/beta-TCP composite scaffolds were obtained by the polymer gravity perfusion process to pour PLA solution into the double-channel ceramic scaffolds through the secondary channel set. Microscope, porosity, and mechanical experiments for the standard samples were used to evaluate the composite properties. The ceramic scaffold with only the primary channel (single-channel scaffold) was also prepared as a control. Morphology observation results showed that there was no PLA inside the primary channels of the double-channel composite scaffolds but a dense interface layer between PLA and beta-TCP obviously formed on the inner wall of the secondary channels by the PLA penetration during the perfusion process. Finite element simulation found that the compressive strength of the double-channel composite scaffold was less than that of the single-channel scaffold; however, mechanical tests found that the maximum compressive strength of the double-channel composite scaffold [(21.25 +/- 1.15) MPa] was higher than that of the single-channel scaffold[ (9.76 +/- 0.64) MPa]. The double-channel composite scaffolds fabricated by 3-D printing technique have controlled complex micropipes and can significantly enhance mechanical properties, which is a promising strategy to solve the contradiction of strength and high-porosity of the ceramic scaffolds for the bone tissue engineering application.
NASA Astrophysics Data System (ADS)
Lu, Yang; Liu, Xianming; Wang, Weixiao; Cheng, Jinbing; Yan, Hailong; Tang, Chengchun; Kim, Jang-Kyo; Luo, Yongsong
2015-11-01
Carbon nanotubes (CNTs) incorporated porous 3-dimensional (3D) CuS microspheres have been successfully synthesized via a simple refluxing method assisted by PVP. The composites are composed of flower-shaped CuS secondary microspheres, which in turn are assembled with primary nanosheets of 15-30 nm in thickness and fully integrated with CNT. The composites possess a large specific surface area of 189.6 m2 g-1 and a high conductivity of 0.471 S cm-1. As electrode materials for supercapacitors, the nanocomposites show excellent cyclability and rate capability and deliver an average reversible capacitance as high as 1960 F g-1 at a current density of 10 mA cm-2 over 10000 cycles. The high electrochemical performance can be attributed to the synergistic effect of CNTs and the unique microstructure of CuS. The CNTs serve as not only a conductive agent to accelerate the transfer of electrons in the composites, but also as a buffer matrix to restrain the volume change and stabilize the electrode structure during the charge/discharge process. The porous structure of CuS also helps to stabilize the electrode structure and facilitates the transport for electrons.
Lu, Yang; Liu, Xianming; Wang, Weixiao; Cheng, Jinbing; Yan, Hailong; Tang, Chengchun; Kim, Jang-Kyo; Luo, Yongsong
2015-11-16
Carbon nanotubes (CNTs) incorporated porous 3-dimensional (3D) CuS microspheres have been successfully synthesized via a simple refluxing method assisted by PVP. The composites are composed of flower-shaped CuS secondary microspheres, which in turn are assembled with primary nanosheets of 15-30 nm in thickness and fully integrated with CNT. The composites possess a large specific surface area of 189.6 m(2) g(-1) and a high conductivity of 0.471 S cm(-1). As electrode materials for supercapacitors, the nanocomposites show excellent cyclability and rate capability and deliver an average reversible capacitance as high as 1960 F g(-1) at a current density of 10 mA cm(-2) over 10000 cycles. The high electrochemical performance can be attributed to the synergistic effect of CNTs and the unique microstructure of CuS. The CNTs serve as not only a conductive agent to accelerate the transfer of electrons in the composites, but also as a buffer matrix to restrain the volume change and stabilize the electrode structure during the charge/discharge process. The porous structure of CuS also helps to stabilize the electrode structure and facilitates the transport for electrons.
NASA Technical Reports Server (NTRS)
Rojdev, Kristina; Graves, Russell; Golden, John; Atwell, William; O'Rouke, Mary Jane; Hill, Charles; Alred, John
2011-01-01
NASA's exploration goals include extending human presence beyond low earth orbit (LEO). As a result, habitation for crew is a critical requirement for meeting this goal. However, habitats are very large structures that contain a multitude of subsystems to sustain human life over long-durations in space, and one of the key challenges has been keeping weight to a minimum in order to reduce costs. Thus, light-weight and multifunctional structural materials are of great interest for habitation. NASA has started studying polymeric composite materials as potential lightweight and multifunctional structural materials for use in long-duration spaceflight. However, little is known about the survivability of these materials when exposed to the space environment outside of LEO for long durations. Thus, a study has been undertaken to investigate the durability of composite materials when exposed to long-duration radiation. Furthermore, as an addition to the primary study, a secondary preliminary investigation has been started on the micrometeoroid and orbital debris (MMOD) susceptibility of these materials after radiation exposure. The combined effects of radiation and MMOD impacts are the focus of this paper.
NASA Astrophysics Data System (ADS)
Detzer, J.; Loikith, P. C.; Mechoso, C. R.; Barkhordarian, A.; Lee, H.
2017-12-01
South America's climate varies considerably owing to its large geographic range and diverse topographical features. Spanning the tropics to the mid-latitudes and from high peaks to tropical rainforest, the continent experiences an array of climate and weather patterns. Due to this considerable spatial extent, assessing temperature variability at the continent scale is particularly challenging. It is well documented in the literature that temperatures have been increasing across portions of South America in recent decades, and while there have been many studies that have focused on precipitation variability and change, temperature has received less scientific attention. Therefore, a more thorough understanding of the drivers of temperature variability is critical for interpreting future change. First, k-means cluster analysis is used to identify four primary modes of temperature variability across the continent, stratified by season. Next, composites of large scale meteorological patterns (LSMPs) are calculated for months assigned to each cluster. Initial results suggest that LSMPs, defined using meteorological variables such as sea level pressure (SLP), geopotential height, and wind, are able to identify synoptic scale mechanisms important for driving temperature variability at the monthly scale. Some LSMPs indicate a relationship with known recurrent modes of climate variability. For example, composites of geopotential height suggest that the Southern Annular Mode is an important, but not necessarily dominant, component of temperature variability over southern South America. This work will be extended to assess the drivers of temperature extremes across South America.
Larson, James H.; Richardson, William B.; Vallazza, Jonathan M.; Nelson, J. C.
2012-01-01
Rivermouth ecosystems are areas where tributary waters mix with lentic near-shore waters and provide habitat for many Laurentian Great Lakes fish and wildlife species. Rivermouths are the interface between terrestrial activities that influence rivers and the ecologically important nearshore. Stable isotopes of nitrogen (N) and carbon (C) in consumers were measured from a range of rivermouths systems to address two questions: 1) What is the effect of rivermouth ecosystems and land cover on the isotopic composition of N available to rivermouth consumers? 2) Are rivermouth consumers composed of lake-like or river-like C? For question 1, data suggest that strong relationships between watershed agriculture and consumer N are weakened or eliminated at the rivermouth, in favor of stronger relationships between consumer N and depositional areas that may favor denitrification. For question 2, despite apparently large riverine inputs, consumers only occasionally appear river-like. More often consumers seem to incorporate large amounts of C from either the nearshore or primary production within the rivermouth itself. Rivermouths appear to be active C and N processing environments, thus necessitating their explicit incorporation into models estimating nearshore loading and possibly contributing to their importance to Great Lakes biota.
Watt, Hilary; Harris, Matthew; Noyes, Jane; Whitaker, Rhiannon; Hoare, Zoe; Edwards, Rhiannon Tudor; Haines, Andy
2015-03-21
In health services research, composite scores to measure changes in health-seeking behaviour and uptake of services do not exist. We describe the rationale and analytical considerations for a composite primary outcome for primary care research. We simulate its use in a large hypothetical population and use it to calculate sample sizes. We apply it within the context of a proposed cluster randomised controlled trial (RCT) of a Community Health Worker (CHW) intervention. We define the outcome as the proportion of the services (immunizations, screening tests, stop-smoking clinics) received by household members, of those that they were eligible to receive. First, we simulated a population household structure (by age and sex), based on household composition data from the 2011 England and Wales census. The ratio of eligible to received services was calculated for each simulated household based on published eligibility criteria and service uptake rates, and was used to calculate sample size scenarios for a cluster RCT of a CHW intervention. We assume varying intervention percentage effects and varying levels of clustering. Assuming no disease risk factor clustering at the household level, 11.7% of households in the hypothetical population of 20,000 households were eligible for no services, 26.4% for 1, 20.7% for 2, 15.3% for 3 and 25.8% for 4 or more. To demonstrate a small CHW intervention percentage effect (10% improvement in uptake of services out of those who would not otherwise have taken them up, and additionally assuming intra-class correlation of 0.01 between households served by different CHWs), around 4,000 households would be needed in each of the intervention and control arms. This equates to 40 CHWs (each servicing 100 households) needed in the intervention arm. If the CHWs were more effective (20%), then only 170 households would be needed in each of the intervention and control arms. This is a useful first step towards a process-centred composite score of practical value in complex community-based interventions. Firstly, it is likely to result in increased statistical power compared with multiple outcomes. Second, it avoids over-emphasis of any single outcome from a complex intervention.
Liu, Qian; Zhang, Jianhua; He, Shu-Ang; Zou, Rujia; Xu, Chaoting; Cui, Zhe; Huang, Xiaojuan; Guan, Guoqiang; Zhang, Wenlong; Xu, Kaibing; Hu, Junqing
2018-04-17
Lithium-sulfur (Li-S) batteries are investigated intensively as a promising large-scale energy storage system owing to their high theoretical energy density. However, the application of Li-S batteries is prevented by a series of primary problems, including low electronic conductivity, volumetric fluctuation, poor loading of sulfur, and shuttle effect caused by soluble lithium polysulfides. Here, a novel composite structure of sulfur nanoparticles attached to porous-carbon nanotube (p-CNT) encapsulated by hollow MnO 2 nanoflakes film to form p-CNT@Void@MnO 2 /S composite structures is reported. Benefiting from p-CNTs and sponge-like MnO 2 nanoflake film, p-CNT@Void@MnO 2 /S provides highly efficient pathways for the fast electron/ion transfer, fixes sulfur and Li 2 S aggregation efficiently, and prevents polysulfide dissolution during cycling. Besides, the additional void inside p-CNT@Void@MnO 2 /S composite structure provides sufficient free space for the expansion of encapsulated sulfur nanoparticles. The special material composition and structural design of p-CNT@Void@MnO 2 /S composite structure with a high sulfur content endow the composite high capacity, high Coulombic efficiency, and an excellent cycling stability. The capacity of p-CNT@Void@MnO 2 /S electrode is ≈599.1 mA h g -1 for the fourth cycle and ≈526.1 mA h g -1 after 100 cycles, corresponding to a capacity retention of ≈87.8% at a high current density of 1.0 C. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Clinical efficacy of composite versus ceramic inlays and onlays: a systematic review.
Fron Chabouis, Hélène; Smail Faugeron, Violaine; Attal, Jean-Pierre
2013-12-01
Large tooth substance losses are frequent in posterior teeth because of primary caries or aging restorations. Inlays and onlays are often the minimal invasive solution in such cases, but the efficacy of the composite and ceramic materials used is unknown. We performed a systematic review of randomized controlled trials comparing the efficacy of composite and ceramic inlays or onlays. MEDLINE, Embase and the Cochrane Central Register of Controlled Trials were searched without any restriction on date or language, as were references of eligible studies and ClinicalTrials.gov. Eligible studies were randomized trials comparing the clinical efficacy of composite to ceramic inlays or onlays in adults with any clinical outcome for at least 6 months. From 172 records identified, we examined reports of 2 randomized controlled trials involving 138 inlays (no onlays evaluated) in 80 patients and exhibiting a high-risk of bias. Outcomes were clinical scores and major failures. The 3-year overall failure risk ratio was 2 [0.38-10.55] in favor of ceramic inlays although not statistically significant. The reported clinical scores (United States Public Health Services and Californian Dental Association) showed considerable heterogeneity between trials and could not be combined. We have very limited evidence that ceramics perform better than composite material for inlays in the short term. However, this result may not be valid in the long term, and other trials are needed. Trials should follow Fédération dentaire internationale recommendations and enhance their methodology. Trials comparing composite and ceramic onlays are needed. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
THE PUZZLING MUTUAL ORBIT OF THE BINARY TROJAN ASTEROID (624) HEKTOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchis, F.; Cuk, M.; Durech, J.
Asteroids with satellites are natural laboratories to constrain the formation and evolution of our solar system. The binary Trojan asteroid (624) Hektor is the only known Trojan asteroid to possess a small satellite. Based on W. M. Keck adaptive optics observations, we found a unique and stable orbital solution, which is uncommon in comparison to the orbits of other large multiple asteroid systems studied so far. From lightcurve observations recorded since 1957, we showed that because the large Req = 125 km primary may be made of two joint lobes, the moon could be ejecta of the low-velocity encounter, which formedmore » the system. The inferred density of Hektor's system is comparable to the L5 Trojan doublet (617) Patroclus but due to their difference in physical properties and in reflectance spectra, both captured Trojan asteroids could have a different composition and origin.« less
Degenerate stars and gravitational collapse in AdS/CFT
NASA Astrophysics Data System (ADS)
Arsiwalla, Xerxes; de Boer, Jan; Papadodimas, Kyriakos; Verlinde, Erik
2011-01-01
We construct composite CFT operators from a large number of fermionic primary fields corresponding to states that are holographically dual to a zero temperature Fermi gas in AdS space. We identify a large N regime in which the fermions behave as free particles. In the hydrodynamic limit the Fermi gas forms a degenerate star with a radius determined by the Fermi level, and a mass and angular momentum that exactly matches the boundary calculations. Next we consider an interacting regime, and calculate the effect of the gravitational back-reaction on the radius and the mass of the star using the Tolman-Oppenheimer-Volkoff equations. Ignoring other interactions, we determine the "Chandrasekhar limit" beyond which the degenerate star (presumably) undergoes gravitational collapse towards a black hole. This is interpreted on the boundary as a high density phase transition from a cold baryonic phase to a hot deconfined phase.
2018-06-11
ALK-Positive Large B-Cell Lymphoma; Atypical Burkitt/Burkitt-Like Lymphoma; Burkitt-Like Lymphoma With 11q Aberration; Diffuse Large B-Cell Lymphoma Activated B-Cell Type; Diffuse Large B-Cell Lymphoma Associated With Chronic Inflammation; Diffuse Large B-Cell Lymphoma Germinal Center B-Cell Type; Diffuse Large B-Cell Lymphoma, Not Otherwise Specified; EBV-Positive Diffuse Large B-Cell Lymphoma, Not Otherwise Specified; EBV-Positive Mucocutaneous Ulcer; High-Grade B-Cell Lymphoma With MYC, BCL2, and BCL6 Rearrangements; Human Herpesvirus 8-Positive Neoplastic Cells Present; Intravascular Large B-Cell Lymphoma; Large B-Cell Lymphoma With IRF4 Rearrangement; Plasmablastic Lymphoma; Primary Cutaneous Diffuse Large B-Cell Lymphoma; Primary Cutaneous Diffuse Large B-Cell Lymphoma, Leg Type; Primary Diffuse Large B-Cell Lymphoma of the Central Nervous System; Primary Effusion Lymphoma; Recurrent B-Cell Lymphoma, Unclassifiable, With Features Intermediate Between Diffuse Large B-Cell Lymphoma and Classic Hodgkin Lymphoma; Recurrent Burkitt Lymphoma; Recurrent Diffuse Large B-Cell Lymphoma; Recurrent Lymphomatoid Granulomatosis; Recurrent Primary Mediastinal (Thymic) Large B-Cell Cell Lymphoma; Refractory B-Cell Lymphoma, Unclassifiable, With Features Intermediate Between Diffuse Large B-Cell Lymphoma and Classic Hodgkin Lymphoma; Refractory Burkitt Lymphoma; Refractory Diffuse Large B-Cell Lymphoma; Refractory Primary Mediastinal (Thymic) Large B-Cell Cell Lymphoma; Small Intestinal High Grade B-Cell Lymphoma, Not Otherwise Specified; T-Cell/Histiocyte-Rich Large B-Cell Lymphoma
Silicone-Polytetrafluoroethylene Composite Implants for Asian Rhinoplasty.
Zelken, Jonathan A; Hong, Joon Pio; Chang, Chun-Shin; Hsiao, Yen-Chang
2017-02-01
Silicone and Gore-Tex implants are mainstays of Asian rhinoplasty. Silicone implants are inexpensive and wieldy, but may elicit a foreign-body reaction and are prone to migration. Gore-Tex implants are more biocompatible and capable of ingrowth but expensive. Silicone-polytetrafluoroethylene (PTFE) composites have a silicone core and PTFE liner. Composite implants have been marketed for several years, but are not yet established alternatives for rhinoplasty because of a lack of relevant reports. From February 2012 to June 2015, 177 Asian patients underwent primary (n = 63) or secondary (n = 114) rhinoplasty using an I-shaped composite implant. One hundred fifty-nine women and 18 men were 19 to 72 years old (mean, 34 years) at the time of surgery. Composite implants were 1.5 to 5 mm thick and 3.8 to 4.5 cm long. Autologous cartilage from the septum, concha, or both was used for tip refinement in every case. Glabellar augmentation was performed in 19 (10.7%) cases. Follow-up was 6.0 months (range, 1-36 months). There were 19 (10.7%) complications including malposition/deviation (4.5%), erythema (2.3%), and infection (1.1%). Four patients were unsatisfied, citing inadequate dorsal height correction. There was an 8.8% revision rate; 7 of 12 revisions were for malposition/deviation. We did not observe implant step-offs or extrusion. There were no differences in outcomes after primary or secondary rhinoplasty, although there was a trend toward higher infection rate after primary rhinoplasty (P = 0.06). I-shaped silicone-PTFE composite implants are feasible for both primary and secondary augmentation rhinoplasty in Asians. Early outcomes data suggest an overall complication rate that is comparable to PTFE alone.
Low conductivity and sintering-resistant thermal barrier coatings
NASA Technical Reports Server (NTRS)
Zhu, Dongming (Inventor); Miller, Robert A. (Inventor)
2007-01-01
A thermal barrier coating composition is provided. The composition has a base oxide, a primary stabilizer, and at least two additional cationic oxide dopants. Preferably, a pair of group A and group B defect cluster-promoting oxides is used in conjunction with the base and primary stabilizer oxides. The new thermal barrier coating is found to have significantly lower thermal conductivity and better sintering resistance. In preferred embodiments, the base oxide is selected from zirconia and hafnia. The group A and group B cluster-promoting oxide dopants preferably are selected such that the group A dopant has a smaller cationic radius than the primary stabilizer oxide, and so that the primary stabilizer oxide has a small cationic radius than that of the group B dopant.
Low conductivity and sintering-resistant thermal barrier coatings
NASA Technical Reports Server (NTRS)
Zhu, Dongming (Inventor); Miller, Robert A. (Inventor)
2006-01-01
A thermal barrier coating composition is provided. The composition has a base oxide, a primary stabilizer, and at least two additional cationic oxide dopants. Preferably, a pair of group A and group B defect cluster-promoting oxides is used in conjunction with the base and primary stabilizer oxides. The new thermal barrier coating is found to have significantly lower thermal conductivity and better sintering resistance. In preferred embodiments, the base oxide is selected from zirconia and hafnia. The group A and group B cluster-promoting oxide dopants preferably are selected such that the group A dopant has a smaller cationic radius than the primary stabilizer oxide, and so that the primary stabilizer oxide has a small cationic radius than that of the group B dopant.
Thermal Stability of a 4 Meter Primary Reflector for the Scanning Microwave Limb Sounder
NASA Technical Reports Server (NTRS)
Cofield, Richard E.; Kasl, Eldon P.
2011-01-01
The Scanning Microwave Limb Sounder (SMLS) is a space-borne heterodyne radiometer which will measure pressure, temperature and atmospheric constituents from thermal emission in [180,680] GHz. SMLS, planned for the NRC Decadal Survey's Global Atmospheric Composition Mission, uses a novel toric Cassegrain antenna to perform both elevation and azimuth scanning. This provides better horizontal and temporal resolution and coverage than were possible with elevation-only scanning in the two previous MLS satellite instruments. SMLS is diffraction-limited in the vertical plane but highly astigmatic in the horizontal (beam aspect ratio approx. 1:20). Nadir symmetry ensures that beam shape is nearly invariant over plus or minus 65 deg azimuth. A low-noise receiver FOV is swept over the reflector system by a small azimuth-scanning mirror. We describe the fabrication and thermal-stability test of a composite demonstration primary reflector, having full 4m height and 1/3 the width planned for flight. Using finite-element models of reflectors and structure, we evaluate thermal deformations and optical performance for 4 orbital environments and isothermal soak. We compare deformations with photogrammetric measurements made during soak tests in a chamber. The test temperature range exceeds predicted orbital ranges by large factors, implying in-orbit thermal stability of 0.21 micron rms (root mean square)/C, which meets SMLS requirements.
Schuetzle, D; Siegl, W O; Jensen, T E; Dearth, M A; Kaiser, E W; Gorse, R; Kreucher, W; Kulik, E
1994-01-01
The purpose of this paper is to review current studies concerning the relationship of fuel composition to vehicle engine-out and tail-pipe emissions and to outline future research needed in this area. A number of recent combustion experiments and vehicle studies demonstrated that reformulated gasoline can reduce vehicle engine-out, tail-pipe, running-loss, and evaporative emissions. Some of these studies were extended to understand the fundamental relationships between fuel composition and emissions. To further establish these relationships, it was necessary to develop advanced analytical methods for the qualitative and quantitative analysis of hydrocarbons in fuels and vehicle emissions. The development of real-time techniques such as Fourier transform infrared spectroscopy, laser diode spectroscopy, and atmospheric pressure ionization mass spectrometry were useful in studying the transient behavior of exhaust emissions under various engine operating conditions. Laboratory studies using specific fuels and fuel blends were carried out using pulse flame combustors, single- and multicylinder engines, and vehicle fleets. Chemometric statistical methods were used to analyze the large volumes of emissions data generated from these studies. Models were developed that were able to accurately predict tail-pipe emissions from fuel chemical and physical compositional data. Some of the primary fuel precursors for benzene, 1,3-butadiene, formaldehyde, acetaldehyde and C2-C4 alkene emissions are described. These studies demonstrated that there is a strong relationship between gasoline composition and tail-pipe emissions. PMID:7529705
Schuetzle, D; Siegl, W O; Jensen, T E; Dearth, M A; Kaiser, E W; Gorse, R; Kreucher, W; Kulik, E
1994-10-01
The purpose of this paper is to review current studies concerning the relationship of fuel composition to vehicle engine-out and tail-pipe emissions and to outline future research needed in this area. A number of recent combustion experiments and vehicle studies demonstrated that reformulated gasoline can reduce vehicle engine-out, tail-pipe, running-loss, and evaporative emissions. Some of these studies were extended to understand the fundamental relationships between fuel composition and emissions. To further establish these relationships, it was necessary to develop advanced analytical methods for the qualitative and quantitative analysis of hydrocarbons in fuels and vehicle emissions. The development of real-time techniques such as Fourier transform infrared spectroscopy, laser diode spectroscopy, and atmospheric pressure ionization mass spectrometry were useful in studying the transient behavior of exhaust emissions under various engine operating conditions. Laboratory studies using specific fuels and fuel blends were carried out using pulse flame combustors, single- and multicylinder engines, and vehicle fleets. Chemometric statistical methods were used to analyze the large volumes of emissions data generated from these studies. Models were developed that were able to accurately predict tail-pipe emissions from fuel chemical and physical compositional data. Some of the primary fuel precursors for benzene, 1,3-butadiene, formaldehyde, acetaldehyde and C2-C4 alkene emissions are described. These studies demonstrated that there is a strong relationship between gasoline composition and tail-pipe emissions.
Schmidutz, Florian; Woiczinski, Mathias; Kistler, Manuel; Schröder, Christian; Jansson, Volkmar; Fottner, Andreas
2017-01-01
For the biomechanical evaluation of cementless stems different sizes of composite femurs have been used in the literature. However, the impact of different specimen sizes on test results is unknown. To determine the potential effect of femur size the biomechanical properties of a conventional stem (CLS Spotorno) were examined in 3 different sizes (small, medium and large composite Sawbones®). Primary stability was tested under physiologically adapted dynamic loading conditions measuring 3-dimensional micromotions. For the small composite femur the dynamic load needed to be adapted since fractures occurred when reaching 1700N. Additionally, surface strain distribution was recorded before and after implantation to draw conclusions about the tendency for stress shielding. All tested sizes revealed similar micromotions only reaching a significant different level at one measurement point. The highest micromotions were observed at the tip of the stems exceeding the limit for osseous integration of 150μm. Regarding strain distribution the highest strain reduction after implantation was registered in all sizes at the level of the lesser trochanter. Specimen size seems to be a minor influence factor for biomechanical evaluation of cementless stems. However, the small composite femur is less suitable for biomechanical testing since this size failed under physiological adapted loads. For the CLS Spotorno osseous integration is unlikely at the tip of the stem and the tendency for stress shielding is the highest at the level of the lesser trochanter. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Stück, H. L.; Siegesmund, S.
2012-04-01
Sandstones are a popular natural stone due to their wide occurrence and availability. The different applications for these stones have led to an increase in demand. From the viewpoint of conservation and the natural stone industry, an understanding of the material behaviour of this construction material is very important. Sandstones are a highly heterogeneous material. Based on statistical analyses with a sufficiently large dataset, a systematic approach to predicting the material behaviour should be possible. Since the literature already contains a large volume of data concerning the petrographical and petrophysical properties of sandstones, a large dataset could be compiled for the statistical analyses. The aim of this study is to develop constraints on the material behaviour and especially on the weathering behaviour of sandstones. Approximately 300 samples from historical and presently mined natural sandstones in Germany and ones described worldwide were included in the statistical approach. The mineralogical composition and fabric characteristics were determined from detailed thin section analyses and descriptions in the literature. Particular attention was paid to evaluating the compositional and textural maturity, grain contact respectively contact thickness, type of cement, degree of alteration and the intergranular volume. Statistical methods were used to test for normal distributions and calculating the linear regression of the basic petrophysical properties of density, porosity, water uptake as well as the strength. The sandstones were classified into three different pore size distributions and evaluated with the other petrophysical properties. Weathering behavior like hygric swelling and salt loading tests were also included. To identify similarities between individual sandstones or to define groups of specific sandstone types, principle component analysis, cluster analysis and factor analysis were applied. Our results show that composition and porosity evolution during diagenesis is a very important control on the petrophysical properties of a building stone. The relationship between intergranular volume, cementation and grain contact, can also provide valuable information to predict the strength properties. Since the samples investigated mainly originate from the Triassic German epicontinental basin, arkoses and feldspar-arenites are underrepresented. In general, the sandstones can be grouped as follows: i) quartzites, highly mature with a primary porosity of about 40%, ii) quartzites, highly mature, showing a primary porosity of 40% but with early clay infiltration, iii) sublitharenites-lithic arenites exhibiting a lower primary porosity, higher cementation with quartz and Fe-oxides ferritic and iv) sublitharenites-lithic arenites with a higher content of pseudomatrix. However, in the last two groups the feldspar and lithoclasts can also show considerable alteration. All sandstone groups differ with respect to the pore space and strength data, as well as water uptake properties, which were obtained by linear regression analysis. Similar petrophysical properties are discernible for each type when using principle component analysis. Furthermore, strength as well as the porosity of sandstones shows distinct differences considering their stratigraphic ages and the compositions. The relationship between porosity, strength as well as salt resistance could also be verified. Hygric swelling shows an interrelation to pore size type, porosity and strength but also to the degree of alteration (e.g. lithoclasts, pseudomatrix). To summarize, the different regression analyses and the calculated confidence regions provide a significant tool to classify the petrographical and petrophysical parameters of sandstones. Based on this, the durability and the weathering behavior of the sandstone groups can be constrained. Keywords: sandstones, petrographical & petrophysical properties, predictive approach, statistical investigation
Recent progress in NASA Langley textile reinforced composites program
NASA Technical Reports Server (NTRS)
Dexter, H. Benson; Harris, Charles E.; Johnston, Norman J.
1992-01-01
The NASA LaRC is conducting and sponsoring research to explore the benefits of textile reinforced composites for civil transport aircraft primary structures. The objective of this program is to develop and demonstrate the potential of affordable textile reinforced composite materials to meet design properties and damage tolerance requirements of advanced aircraft structural concepts. In addition to in-house research, the program was recently expanded to include major participation by the aircraft industry and aerospace textile companies. The major program elements include development of textile preforms, processing science, mechanics of materials, experimental characterization of materials, and development and evaluation of textile reinforced composite structural elements and subcomponents. The NASA Langley in-house focus is as follows: development of a science-based understanding of resin transfer molding (RTM), development of powder-coated towpreg processes, analysis methodology, and development of a performance database on textile reinforced composites. The focus of the textile industry participation is on development of multidirectional, damage-tolerant preforms, and the aircraft industry participation is in the areas of design, fabrication and testing of textile reinforced composite structural elements and subcomponents. Textile processes such as 3D weaving, 2D and 3D braiding, and knitting/stitching are being compared with conventional laminated tape processes for improved damage tolerance. Through-the-thickness reinforcements offer significant damage tolerance improvements. However, these gains must be weighed against potential loss in in-plane properties such as strength and stiffness. Analytical trade studies are underway to establish design guidelines for the application of textile material forms to meet specific loading requirements. Fabrication and testing of large structural components are required to establish the full potential of textile reinforced composite materials.
Gong, Jun; Wu, Daniel; Chuang, Jeremy; Tuli, Richard; Simard, John; Hendifar, Andrew
2017-11-01
This review highlights the evidence supporting symptom control and quality-of-life (QOL) measures as predictors of survival in treatment-refractory metastatic colorectal cancer (mCRC) and describes a composite symptom control and QOL end point recently reported in a Phase III trial that may serve as a more reasonable end point of efficacy in this population. A literature search was conducted using MEDLINE to identify clinical studies (including case series and observational, retrospective, and prospective studies) that reported the predictive value of QOL measures for survival in mCRC. The search was limited by the following key words: quality of life, survival, and colorectal cancer. We then performed a second search limited to studies of randomized and Phase III design in mCRC to identify studies that used QOL assessments as their primary end points. A manual search was also performed to include additional studies of potential relevance. There is increasing evidence to support that symptom control and QOL measures are predictors of survival in treatment-refractory mCRC and can serve as an alternative but equally as important end point to survival in this population. A recent large, randomized Phase III trial using a composite primary end point of lean body mass, pain, anorexia, and fatigue reported the feasibility in evaluating benefit in mCRC beyond conventional clinical trial end points. Future studies in treatment-refractory mCRC may be better served by evaluating improvement in symptom control and QOL, which may otherwise serve as the best predictor of survival in last-line treatment settings. Copyright © 2017 Elsevier HS Journals, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Süveges, Maria; Anderson, Richard I.
2018-04-01
Detailed knowledge of the variability of classical Cepheids, in particular their modulations and mode composition, provides crucial insight into stellar structure and pulsation. However, tiny modulations of the dominant radial-mode pulsation were recently found to be very frequent, possibly ubiquitous in Cepheids, which makes secondary modes difficult to detect and analyse, since these modulations can easily mask the potentially weak secondary modes. The aim of this study is to re-investigate the secondary mode content in the sample of OGLE-III and -IV single-mode classical Cepheids using kernel regression with adaptive kernel width for pre-whitening, instead of using a constant-parameter model. This leads to a more precise removal of the modulated dominant pulsation, and enables a more complete survey of secondary modes with frequencies outside a narrow range around the primary. Our analysis reveals that significant secondary modes occur more frequently among first overtone Cepheids than previously thought. The mode composition appears significantly different in the Large and Small Magellanic Clouds, suggesting a possible dependence on chemical composition. In addition to the formerly identified non-radial mode at P2 ≈ 0.6…0.65P1 (0.62-mode), and a cluster of modes with near-primary frequency, we find two more candidate non-radial modes. One is a numerous group of secondary modes with P2 ≈ 1.25P1, which may represent the fundamental of the 0.62-mode, supposed to be the first harmonic of an l ∈ {7, 8, 9} non-radial mode. The other new mode is at P2 ≈ 1.46P1, possibly analogous to a similar, rare mode recently discovered among first overtone RR Lyrae stars.
Physics of the Isotopic Dependence of Galactic Cosmic Ray Fluence Behind Shielding
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Saganti, Premkumar B.; Hu, Xiao-Dong; Kim, Myung-Hee Y.; Cleghorn, Timothy F.; Wilson, John W.; Tripathi, Ram K.; Zeitlin, Cary J.
2003-01-01
For over 25 years, NASA has supported the development of space radiation transport models for shielding applications. The NASA space radiation transport model now predicts dose and dose equivalent in Earth and Mars orbit to an accuracy of plus or minus 20%. However, because larger errors may occur in particle fluence predictions, there is interest in further assessments and improvements in NASA's space radiation transport model. In this paper, we consider the effects of the isotopic composition of the primary galactic cosmic rays (GCR) and the isotopic dependence of nuclear fragmentation cross-sections on the solution to transport models used for shielding studies. Satellite measurements are used to describe the isotopic composition of the GCR. Using NASA's quantum multiple-scattering theory of nuclear fragmentation (QMSFRG) and high-charge and energy (HZETRN) transport code, we study the effect of the isotopic dependence of the primary GCR composition and secondary nuclei on shielding calculations. The QMSFRG is shown to accurately describe the iso-spin dependence of nuclear fragmentation. The principal finding of this study is that large errors (plus or minus 100%) will occur in the mass-fluence spectra when comparing transport models that use a complete isotope grid (approximately 170 ions) to ones that use a reduced isotope grid, for example the 59 ion-grid used in the HZETRN code in the past, however less significant errors (less than 20%) occur in the elemental-fluence spectra. Because a complete isotope grid is readily handled on small computer workstations and is needed for several applications studying GCR propagation and scattering, it is recommended that they be used for future GCR studies.
NASA Astrophysics Data System (ADS)
Larsen, Jessica F.
2016-11-01
The magmatic systems feeding arc volcanoes are complex, leading to a rich diversity in eruptive products and eruption styles. This review focuses on examples from the Aleutian subduction zone, encompassed within the state of Alaska, USA because it exhibits a rich diversity in arc structure and tectonics, sediment and volatile influx feeding primary magma generation, crustal magma differentiation processes, with the resulting outcome the production of a complete range in eruption styles from its diverse volcanic centers. Recent and ongoing investigations along the arc reveal controls on magma production that result in diversity of eruptive products, from crystal-rich intermediate andesites to phenocryst-poor, melt-rich silicic and mafic magmas and a spectrum in between. Thus, deep to shallow crustal "processing" of arc magmas likely greatly influences the physical and chemical character of the magmas as they accumulate in the shallow crust, the flow physics of the magmas as they rise in the conduit, and eruption style through differences in degassing kinetics of the bubbly magmas. The broad spectrum of resulting eruption styles thus depends on the bulk magma composition, melt phase composition, and the bubble and crystal content (phenocrysts and/or microlites) of the magma. Those fundamental magma characteristics are in turn largely determined by the crustal differentiation pathway traversed by the magma as a function of tectonic location in the arc, and/or the water content and composition of the primary magmas. The physical and chemical character of the magma, set by the arc differentiation pathway, as it ascends towards eruption determines the kinetic efficiency of degassing versus the increasing internal gas bubble overpressure. The balance between degassing rate and the rate at which gas bubble overpressure builds then determines the conditions of fragmentation, and ultimately eruption intensity.
2009-09-01
The protease-activated receptor 1 (PAR-1), the main platelet receptor for thrombin, represents a novel target for treatment of arterial thrombosis, and SCH 530348 is an orally active, selective, competitive PAR-1 antagonist. We designed TRA*CER to evaluate the efficacy and safety of SCH 530348 compared with placebo in addition to standard of care in patients with non-ST-segment elevation (NSTE) acute coronary syndromes (ACS) and high-risk features. TRA*CER is a prospective, randomized, double-blind, multicenter, phase III trial with an original estimated sample size of 10,000 subjects. Our primary objective is to demonstrate that SCH 530348 in addition to standard of care will reduce the incidence of the composite of cardiovascular death, myocardial infarction (MI), stroke, recurrent ischemia with rehospitalization, and urgent coronary revascularization compared with standard of care alone. Our key secondary objective is to determine whether SCH 530348 will reduce the composite of cardiovascular death, MI, or stroke compared with standard of care alone. Secondary objectives related to safety are the composite of moderate and severe GUSTO bleeding and clinically significant TIMI bleeding. The trial will continue until a predetermined minimum number of centrally adjudicated primary and key secondary end point events have occurred and all subjects have participated in the study for at least 1 year. The TRA*CER trial is part of the large phase III SCH 530348 development program that includes a concomitant evaluation in secondary prevention. TRA*CER will define efficacy and safety of the novel platelet PAR-1 inhibitor SCH 530348 in the treatment of high-risk patients with NSTE ACS in the setting of current treatment strategies.
Flight service environmental effects on composite materials and structures
NASA Technical Reports Server (NTRS)
Dexter, H. Benson; Baker, Donald J.
1992-01-01
NASA Langley and the U.S. Army have jointly sponsored programs to assess the effects of realistic flight environments and ground-based exposure on advanced composite materials and structures. Composite secondary structural components were initially installed on commercial transport aircraft in 1973; secondary and primary structural components were installed on commercial helicopters in 1979; and primary structural components were installed on commercial aircraft in the mid-to-late 1980's. Service performance, maintenance characteristics, and residual strength of numerous components are reported. In addition to data on flight components, 10 year ground exposure test results on material coupons are reported. Comparison between ground and flight environmental effects for several composite material systems are also presented. Test results indicate excellent in-service performance with the composite components during the 15 year period. Good correlation between ground-based material performance and operational structural performance has been achieved.
Key technologies for manufacturing and processing sheet materials: A global perspective
NASA Astrophysics Data System (ADS)
Demeri, Mahmoud Y.
2001-02-01
Modern industrial technologies continue to seek new materials and processes to produce products that meet design and functional requirements. Sheet materials made from ferrous and non-ferrous metals, laminates, composites, and reinforced plastics constitute a large percentage of today’s products, components, and systems. Major manufacturers of sheet products include automotive, aerospace, appliance, and food-packaging industries. The Second Global Symposium on Innovations in Materials Processing & Manufacturing: Sheet Materials is organized to provide a forum for presenting advances in sheet processing and manufacturing by worldwide researchers and engineers from industrial, research, and academic centers. The symposium, sponsored by the TMS Materials Processing & Manufacturing Division (MPMD), was planned for the 2001 TMS Annual Meeting, New Orleans, Louisiana, February 11 15, 2001. This article is a review of key papers submitted for publication in the concurrent volume. The selected papers present significant developments in the rapidly expanding areas of advanced sheet materials, innovative forming methods, industrial applications, primary and secondary processing, composite processing, and numerical modeling of manufacturing processes.
NASA Technical Reports Server (NTRS)
Lloyd-Evans, J.
1985-01-01
The discovery of primary ultrahigh energy (UHE) gamma-rays has spawned plans for a new generation of air shower experiments with unprecedented directional resolution. Such accuracy permits observation of a cosmic ray shadow due to the solar disc. Particle trajectory simulations through models of the large scale solar magnetic field were performed. The shadow is apparent above 10 to the 15th power eV for all cosmic ray charges /Z/ 26; at lower energies, trajectories close to the Sun are bent sufficiently for this shadow to be lost. The onset of the shadow is rigidity dependent, and occurs at an energy per nucleus of approx. Z x 10 to the 13th power eV. The possibility of determining the average mass composition near 10 to the 14th power eV from 1 year's observation at a mountain altitude array is investigated.
AugerPrime: the upgrade of the Pierre Auger Observatory
NASA Astrophysics Data System (ADS)
Sarazin, Frederic; Pierre Auger Collaboration Collaboration
2017-01-01
The nature and origin of ultra-high energy cosmic-rays (UHECRs) remain largely a mystery despite a wealth of new information obtained in recent years at the Pierre Auger Observatory and elsewhere. Mass composition studies performed at Auger appear to challenge the historical view that the UHECR primaries (at least for energies greater than 1019 eV) are all protons, and the observation of a GZK-like flux suppression in the cosmic-ray spectrum is counterbalanced by the absence of point source observations and the relatively weak anisotropy of the UHECR sky. In order to resolve this apparent contradiction, the Pierre Auger collaboration is embarking in an upgrade of the Observatory (``AugerPrime'') with the goal of extending the mass composition measurements beyond the observed flux suppression. In this presentation, the science case for the upgrade and its technical realization will be described and discussed especially with regards to the existence of GZK photons and neutrinos. NSF PHY-1506486.
Tukey, Melissa H; Wiener, Renda Soylemez
2014-03-01
At some academic hospitals, medical procedure services are being developed to provide supervision for residents performing bedside procedures in hopes of improving patient safety and resident education. There is limited knowledge of the impact of such services on procedural complication rates and resident procedural training opportunities. To determine the impact of a medical procedure service (MPS) on patient safety and resident procedural training opportunities. Retrospective cohort analysis comparing characteristics and outcomes of procedures performed by the MPS versus the primary medical service. Consecutive adults admitted to internal medicine services at a large academic hospital who underwent a bedside medical procedure (central venous catheterization, thoracentesis, paracentesis, lumbar puncture) between 1 July 2010 and 31 December 2011. The primary outcome was a composite rate of major complications. Secondary outcomes included resident participation in bedside procedures and use of "best practice" safety process measures. We evaluated 1,707 bedside procedures (548 by the MPS, 1,159 by the primary services). There were no differences in the composite rate of major complications (1.6 % vs. 1.9 %, p = 0.71) or resident participation in bedside procedures (57.0 % vs. 54.3 %, p = 0.31) between the MPS and the primary services. Procedures performed by the MPS were more likely to be successfully completed (95.8 % vs. 92.8 %, p = 0.02) and to use best practice safety process measures, including use of ultrasound guidance when appropriate (96.8 % vs. 90.0 %, p = 0.0004), avoidance of femoral venous catheterization (89.5 vs. 82.7 %, p = 0.02) and involvement of attending physicians (99.3 % vs. 57.0 %, p < 0.0001). Although use of a MPS did not significantly affect the rate of major complications or resident opportunities for training in bedside procedures, it was associated with increased use of best practice safety process measures.
Zilberman, Uri; Lasilla, Lippo
2014-01-01
Very few modalities can be used for restoring missing primary anterior teeth, although the impact of missing anterior teeth during early childhood can be harmful. In the permanent dentition the use of glass-fibers ribbon and composite materials are frequently used for restoring missing teeth with no or minimal preparation. The purpose of this study was to examine the possibility to use the glass-fibers ribbon (ever-Stick from GC Corporation, Japan) together with esthetic composite materials (G-aenial A1 from GC Corporation, Japan) for restoring anterior primary teeth and to determine the best methodology and bonding system to be used. The effect of etching time was analyzed using 20-80 sec on primary buccal enamel with SEM and the results showed that at least 60 second is necessary in order to remove the prismless layer and to affect the prismatic layer similar (as observed by SEM) to the 20 sec etching time on permanent enamel. Three bonding systems (SE Bond by Kurary, Japan, Scotchbond Universal by 3M/ESPE, Germany and G-aenial bond by GC Company, Japan) were compared for bonding the glass-fibers ribbon to the primary enamel and microtensile strength analyses were performed. Mean tensile strength ranged from 10.9 to 13 MPa with no statistically significant differences between all three systems. Based on the laboratory results it can be concluded that the glass-fibers ribbon together with the composite material can be used clinically to restore missing primary teeth for esthetic and functional reasons. Two clinical cases are presented that show favorable results. PMID:25553140
Ford, Paul A; Perkins, Gill; Swaine, Ian
2013-01-01
The purpose of this study was to establish whether an accumulated brisk walking programme, performed during the school day, is effective in changing body composition in primary school children aged 5-11 years. Altogether, 152 participants (79 boys and 73 girls) took part in this repeated-measures intervention study, divided into groups of walkers and controls. The walkers took part in the intervention during school time, which involved brisk walking around the school grounds for 15 min in the morning and afternoon, at least three times a week for 15 weeks. This represented an additional 90 min of moderate physical activity per week. The controls undertook their usual school day activities. Pre- and post-intervention anthropometric and body composition measures were taken. Body fat (-1.95 ± 2.6%) and fat mass (-0.49 ± 1.0 kg) were significantly reduced in the walkers after the intervention, whereas the controls showed no significant changes in these measures. Our results show that regular accumulated bouts of brisk walking during the school day can positively affect body composition in primary school children.
NASA Astrophysics Data System (ADS)
Estrada, Paul R.; Cuzzi, Jeffrey N.; Morgan, Demitri A.
2016-02-01
We model particle growth in a turbulent, viscously evolving protoplanetary nebula, incorporating sticking, bouncing, fragmentation, and mass transfer at high speeds. We treat small particles using a moments method and large particles using a traditional histogram binning, including a probability distribution function of collisional velocities. The fragmentation strength of the particles depends on their composition (icy aggregates are stronger than silicate aggregates). The particle opacity, which controls the nebula thermal structure, evolves as particles grow and mass redistributes. While growing, particles drift radially due to nebula headwind drag. Particles of different compositions evaporate at “evaporation fronts” (EFs) where the midplane temperature exceeds their respective evaporation temperatures. We track the vapor and solid phases of each component, accounting for advection and radial and vertical diffusion. We present characteristic results in evolutions lasting 2 × 105 years. In general, (1) mass is transferred from the outer to the inner nebula in significant amounts, creating radial concentrations of solids at EFs; (2) particle sizes are limited by a combination of fragmentation, bouncing, and drift; (3) “lucky” large particles never represent a significant amount of mass; and (4) restricted radial zones just outside each EF become compositionally enriched in the associated volatiles. We point out implications for millimeter to submillimeter SEDs and the inference of nebula mass, radial banding, the role of opacity on new mechanisms for generating turbulence, the enrichment of meteorites in heavy oxygen isotopes, variable and nonsolar redox conditions, the primary accretion of silicate and icy planetesimals, and the makeup of Jupiter’s core.
The importance of agricultural lands for Himalayan birds in winter.
Elsen, Paul R; Kalyanaraman, Ramnarayan; Ramesh, Krishnamurthy; Wilcove, David S
2017-04-01
The impacts of land-use change on biodiversity in the Himalayas are poorly known, notwithstanding widespread deforestation and agricultural intensification in this highly biodiverse region. Although intact primary forests harbor many Himalayan birds during breeding, a large number of bird species use agricultural lands during winter. We assessed how Himalayan bird species richness, abundance, and composition during winter are affected by forest loss stemming from agriculture and grazing. Bird surveys along 12 elevational transects within primary forest, low-intensity agriculture, mixed subsistence agriculture, and intensively grazed pastures in winter revealed that bird species richness and abundance were greatest in low-intensity and mixed agriculture, intermediate in grazed pastures, and lowest in primary forest at both local and landscape scales; over twice as many species and individuals were recorded in low-intensity agriculture than in primary forest. Bird communities in primary forests were distinct from those in all other land-use classes, but only 4 species were unique to primary forests. Low-, medium-, and high-intensity agriculture harbored 32 unique species. Of the species observed in primary forest, 80% had equal or greater abundance in low-intensity agricultural lands, underscoring the value of these lands in retaining diverse community assemblages at high densities in winter. Among disturbed landscapes, bird species richness and abundance declined as land-use intensity increased, especially in high-intensity pastures. Our results suggest that agricultural landscapes are important for most Himalayan bird species in winter. But agricultural intensification-especially increased grazing-will likely result in biodiversity losses. Given that forest reserves alone may inadequately conserve Himalayan birds in winter, comprehensive conservation strategies in the region must go beyond protecting intact primary forests and ensure that low-intensity agricultural lands are not extensively converted to high-intensity pastures. © 2016 Society for Conservation Biology.
Composite Overwrap Fragmentation Observations, Concerns, and Recommendations
NASA Technical Reports Server (NTRS)
Bangham, Mike; Hovater, Mary
2017-01-01
A series of test activities has raised some concerns about the generation of orbital debris caused by failures of composite overwrapped pressure vessels (COPVs). These tests have indicated that a large number of composite fragments can be produced by either pressure burst failures or by high-speed impacts. A review of prior high-speed tests with COPV indicates that other tests have produced large numbers of composite fragments. As was the case with the test referenced here, the tests tended to produce a large number of small composite fragments with relatively low velocities induced by the impact and or gas expansion.
Compression Strength of Composite Primary Structural Components
NASA Technical Reports Server (NTRS)
Johnson, Eric R.; Starnes, James H., Jr. (Technical Monitor)
2000-01-01
The focus of research activities under NASA Grant NAG-1-2035 was the response and failure of thin-walled structural components. The research is applicable to the primary load carrying structure of flight vehicles, with particular emphasis on fuselage and wing'structure. Analyses and tests were performed that are applicable to the following structural components an aft pressure bulkhead, or a composite pressure dome, pressure cabin damage containment, and fuselage frames subject to crash-type loads.
Johansen, Odd Erik; Neubacher, Dietmar; von Eynatten, Maximilian; Patel, Sanjay; Woerle, Hans-Juergen
2012-01-10
This study investigated the cardiovascular (CV) safety profile of the dipeptidyl peptidase (DPP)-4 inhibitor linagliptin versus comparator treatments. This was a pre-specified meta-analysis of CV events in linagliptin or comparator-treated patients with type 2 diabetes mellitus (T2DM) from eight Phase 3 studies. All suspected CV events were prospectively adjudicated by a blinded independent expert committee. The primary endpoint was a composite of CV death, stroke, myocardial infarction, and hospitalization for unstable angina. Three secondary composite endpoints derived from the adjudicated CV events were also pre-specified. Risk estimates were calculated using several statistical methods including Cox regression analysis. Of 5239 treated patients (mean ± SD HbA1c 65 ± 10 mmol/mol [8.0 ± 0.9%], age 58 ± 10 years, BMI 29 ± 5 kg/m2), 3319 received linagliptin once daily (5 mg, 3159; 10 mg, 160) and 1920 received comparators (placebo, 977; glimepiride 1-4 mg, 781; voglibose 0.6 mg, 162). Cumulative exposure (patient-years) was 2060 for linagliptin and 1372 for comparators. Primary CV events occurred in 11 (0.3%) patients receiving linagliptin and 23 (1.2%) receiving comparators. The hazard ratio (HR) for the primary endpoint showed significantly lower risk with linagliptin than comparators (HR 0.34 [95% confidence interval (CI) 0.16-0.70]) as did estimates for all secondary endpoints (HR ranging from 0.34 to 0.55 [all upper 95% CIs < 1.0]). These results from a large Phase 3 programme support the hypothesis that linagliptin may have CV benefits in patients with T2DM. © 2012 Johansen et al; licensee BioMed Central Ltd.
NASA Astrophysics Data System (ADS)
Stoll, Heather; Moreno, Ana; Cacho, Isabel; Mendez Vicence, Ana; Gonzalez Lemos, Saul; Pirla Casasayas, Gemma; Cheng, Hai; Wang, Xianfeng; Edwards, R. Lawrence
2015-04-01
The oxygen isotopic signature may be the most widely used climate indicator in stalagmites, but recent experimental and theoretical studies indicate the potential for kinetic fractionation effects which may be significant, especially in situations where the primary signal from rainfall isotopic composition and cave temperature is limited to a few permil. Here we use a natural set of stalagmites to illustrate the magnitude of such effects and the potential for deconvolving kinetic signals from the primary temperature and rainfall signals. We compare isotopic records from 6 coeval stalagmites covering the interval 140 to 70 ka, from two proximal caves in NW Spain which experienced the same primary variations in temperature and rainfall d18O, but exhibit a large range in growth rates and temporal trends in growth rate. Stalagmites growing at faster rates near 50 microns/year have oxygen isotopic ratios more than 1 permil more negative than coeval stalagmites with very slow (5 micron/year) growth rates. Because growth rate variations also occur over time within any given stalagmite, the measured oxygen isotopic time series for a given stalagmite includes both climatic and kinetic components. Removal of the kinetic component of variation in each stalagmite, based on the dependence of the kinetic component on growth rate, is effective at distilling a common temporal evolution among the oxygen isotopic records of the multiple stalagmites. However, this approach is limited by the quality of the age model. For time periods characterized by very slow growth and long durations between dates, the presence of crypto-hiatus may result in average growth rates which underestimate the instantaneous speleothem deposition rates and which therefore underestimate the magnitude of kinetic effects. We compare the composite corrected oxygen isotopic record with other records of the timing of glacial inception in the North Atlantic realm.
Thermal Stability of a 4 Meter Primary Reflector for the Scanning Microwave Limb Sounder
NASA Technical Reports Server (NTRS)
Cofield, Richard; Kasl, Eldon P.
2010-01-01
We describe the fabrication and thermal-stability analysis and test of a composite demonstration model of the Scanning Microwave Limb Sounder (SMLS) primary reflector, having full 4m height and 1/3 the width planned for flight. SMLS is a space-borne heterodyne radiometer which will measure pressure, temperature and atmospheric constituents from thermal emission between 180 and 660 GHz. Current MLS instruments in low Earth orbit scan pencil-beam antennas (sized to resolve about one scale height) vertically over the atmospheric limb. SMLS, planned for the Global Atmospheric Composition Mission of the NRC Decadal Survey, adds azimuthal scanning for better horizontal and temporal resolution and coverage than typical orbit spacing provides. SMLS combines the wide scan range of the parabolic torus with unblocked offset Cassegrain optics. The resulting system is diffraction-limited in the vertical plane but highly astigmatic in the horizontal, having a beam aspect ratio [tilde operator]1:20. Symmetry about the nadir axis ensures that beam shape is nearly invariant over +/-65(white bullet) azimuth. The a feeds a low-noise SIS receiver whose FOV is swept over the reflector system by a small scanning mirror. Using finiteelement models of antenna reflectors and structure, we evaluate thermal deformations and the resulting optical performance for 4 orbital environments and isothermal soak. We compare deformations with photogrammetric measurements made during wide-range (ambient+[-97,+75](white bullet) C) thermal soak tests of the primary in a chamber. This range exceeds predicted orbital soak ranges by large factors, implying in-orbit thermal stability of 0.21(mu)m rms/(white bullet)C, which meets SMLS requirements.
NASA Astrophysics Data System (ADS)
Dick, H.; Natland, J.
2003-04-01
No. With few exceptions, lower ocean crust sampled by dredge or submersible in tectonic windows such as Atlantis Bank in the Indian Ocean or the MARK area on the Mid-Atlantic Ridge are not representative of the ocean crust. They represent tectonic mixing of rocks from the mantle and crust on large faults that also localize late magmatic intrusion. Where this can be sorted out, the in-situ crustal sections may generally represent a sub-horizontal cross-section through the lower crust and mantle and not a vertical one. The gabbroic rocks exposed represent largely high-level intrusions, highly hybridized by late melt flow along deep faults, or highly evolved gabbro at the distal ends of larger intrusions emplaced into the mantle near transforms. Oceanic gabbros have average compositions that lie outside the range of primary MORB compositions, and rarely are equivalent to spatially associated MORB either as a parent to, or as a residue of their crystallization. Oceanic gabbros sampled from these complexes generally are very coarse-grained, and are unlike those seen in nearly all ophiolites and layered intrusions. In addition, there are few exposures of gabbro and lower ocean crust and mantle in Pacific tectonic windows, though there the possibility of more representative sections is greater due to their exposure in propagating rifts. Limited samples of the mantle from near the midpoints of ocean ridge segments at slow-spreading rifts are from anomalous crustal environments such as ultra-slow spreading ridges or failed rifts. These include abundant dunites, as opposed to samples from fracture zones, which contain only about 1% dunite. While this indicates focused mantle flow towards the midpoint of a ridge, it also shows that fracture zone peridotites are not fully representative of the oceanic upper mantle. Major classes of rocks common in ophiolites, such as fine to medium grained layered primitive olivine gabbros, troctolites, wherlites and dunites, sheeted dikes, and epidosites are rarely or even not exposed. Models of lower ocean crust stratigraphy drawn from deep sea sampling, certainly from slow spreading ridges, do not match those for major intact ophiolites. Thus the ophiolite hypothesis remains unconfirmed for the lower ocean crust and shallow mantle, and it is nearly impossible to accurately identify the ocean ridge environment of any one ophiolite. The one deep drill hole that exists in lower ocean crust, 1.5 km Hole 735B, has a bulk composition too fractionated to mass balance MORB back to a primary mantle melt composition. Thus, a large mass of primitive cumulates is missing and could be situated in the crust below the base of the hole or in the underlying mantle. This is an unresolved question that is critical to understanding the evolution of the most common magma on earth: MORB. Since lower ocean crust and mantle represent a major portion of the crust and the exchange of mass, heat and volatiles from the earth's interior to its exterior this leaves a major hole in our understanding of the global geochemical and tectonic cycle which can only be filled by deep drilling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dongyu, Xu; Department of Mechanical Engineering, University of South Carolina, Columbia, South Carolina 29208; Xin, Cheng
2014-12-28
The laminated 2-2 connectivity cement/polymer based piezoelectric composites with varied piezoelectric phase distribution were fabricated by employing Lead Zirconium Titanate ceramic as active phase, and mixture of cement powder, epoxy resin, and hardener as matrix phase with a mass proportion of 4:4:1. The dielectric, piezoelectric, and electromechanical coupling properties of the composites were studied. The composites with large total volume fraction of piezoelectric phase have large piezoelectric strain constant and relative permittivity, and the piezoelectric and dielectric properties of the composites are independent of the dimensional variations of the piezoelectric ceramic layer. The composites with small total volume fraction ofmore » piezoelectric phase have large piezoelectric voltage constant, but also large dielectric loss. The composite with gradually increased dimension of piezoelectric ceramic layer has the smallest dielectric loss, and that with the gradually increased dimension of matrix layer has the largest piezoelectric voltage constant. The novel piezoelectric composites show potential applications in fabricating ultrasonic transducers with varied surface vibration amplitude of the transducer.« less
Asztalos, Elizabeth V; Church, Paige T; Riley, Patricia; Fajardo, Carlos; Shah, Prakesh S
2017-03-01
Objective This study aims to explore the association between primary caregiver education and cognitive and language composite scores of the Bayley Scales of Infant and Toddler Development, 3rd ed. (Bayley-III) in preterm infants at 18 to 21 months corrected age. Design An observational study was performed on preterm infants born before 29 weeks' gestation between 2010 and 2011. Primary caregivers were categorized by their highest education level and cognitive and language composite scores of the Bayley-III were compared among infants between these groups with adjustment for perinatal and neonatal factors. Results In total, 1,525 infants/caregivers were included in the multivariate analysis. Compared with those with less than a high school education, infants with primary caregivers who received partial college/specialized training displayed higher cognitive (adjusted difference [AD]: 4.6, 95% confidence interval [CI]: 1.8-7.4) and language scores (AD: 4.0, 95% CI: 0.8-7.1); infants with primary caregivers with university graduate education or above also demonstrated higher cognitive (AD: 6.4, 95% CI: 2.6-10.1) and language scores (AD: 9.9, 95% CI: 5.7-14.1). Conclusion Higher levels of education of the primary caregiver were associated with increased cognitive and language composite scores at 18 to 21 months corrected age in preterm infants. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Martin, Belinda C.; Gleeson, Deirdre; Statton, John; Siebers, Andre R.; Grierson, Pauline; Ryan, Megan H.; Kendrick, Gary A.
2018-01-01
Seagrass roots host a diverse microbiome that is critical for plant growth and health. Composition of microbial communities can be regulated in part by root exudates, but the specifics of these interactions in seagrass rhizospheres are still largely unknown. As light availability controls primary productivity, reduced light may impact root exudation and consequently the composition of the root microbiome. Hence, we analyzed the influence of light availability on root exudation and community structure of the root microbiome of three co-occurring seagrass species, Halophila ovalis, Halodule uninervis and Cymodocea serrulata. Plants were grown under four light treatments in mesocosms for 2 weeks; control (100% surface irradiance (SI), medium (40% SI), low (20% SI) and fluctuating light (10 days 20% and 4 days 100%). 16S rDNA amplicon sequencing revealed that microbial diversity, composition and predicted function were strongly influenced by the presence of seagrass roots, such that root microbiomes were unique to each seagrass species. Reduced light availability altered seagrass root exudation, as characterized using fluorescence spectroscopy, and altered the composition of seagrass root microbiomes with a reduction in abundance of potentially beneficial microorganisms. Overall, this study highlights the potential for above-ground light reduction to invoke a cascade of changes from alterations in root exudation to a reduction in putative beneficial microorganisms and, ultimately, confirms the importance of the seagrass root environment – a critical, but often overlooked space. PMID:29375529
Polymer compositions and methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, Scott D.; Willkomm, Wayne R.
The present invention encompasses polyurethane compositions comprising aliphatic polycarbonate chains. In one aspect, the present invention encompasses polyurethane foams, thermoplastics and elastomers derived from aliphatic polycarbonate polyols and polyisocyanates wherein the polyol chains contain a primary repeating unit having a structure: ##STR00001## In another aspect, the invention provides articles comprising the inventive foam and elastomer compositions as well as methods of making such compositions.
Polymer compositions and methods
Allen, Scott D.; Willkomm, Wayne R.
2016-09-27
The present invention encompasses polyurethane compositions comprising aliphatic polycarbonate chains. In one aspect, the present invention encompasses polyurethane foams, thermoplastics and elastomers derived from aliphatic polycarbonate polyols and polyisocyanates wherein the polyol chains contain a primary repeating unit having a structure: ##STR00001## In another aspect, the invention provides articles comprising the inventive foam and elastomer compositions as well as methods of making such compositions.
A Method to Access Absolute fIPAR fo Vegetation in Spatially Complex Ecosystems
NASA Technical Reports Server (NTRS)
Wessman, Carol A.; Nel, Elizabeth M.; Bateson, C. Ann; Asner, Gregory P.
1998-01-01
Arid and semi-arid lands compose a large fraction of the earth's terrestrial vegetation, and thereby contribute significantly to global atmospheric-biospheric interactions. The thorny shrubs and small trees in these semi-arid shrub lands have counterparts throughout much of the world's tropical and subtropical zones and have captured substantial areas of the world's former grasslands. The objective of our field and remotely sensed measurements in the semi-arid shrublands of Texas is to monitor interannual variability and directional change in landscape structure, ecosystem processes and atmosphere-biosphere exchanges. To understand the role ecosystems play in controlling the composition of the atmosphere, it is necessary to quantify processes such as photosynthesis and primary production, decomposition and soil carbon storage, and trace gas exchanges. Photosynthesis is the link whereby surface-atmosphere exchanges such as the radiation balance and exchange of heat, moisture, and gas can be inferred. It also describes the efficiency of carbon dioxide exchange and is directly related to the primary production of vegetation. Our efforts in this paper focus on the indirect, quantification of photosynthesis, and thereby carbon flux and net primary production, via remote sensing and direct measurements of intercepted photosynthetically active radiation (IPAR).
Bailie, Jodie; Cunningham, Frances Clare; Bainbridge, Roxanne Gwendalyn; Passey, Megan E; Laycock, Alison Frances; Bailie, Ross Stewart; Larkins, Sarah L; Brands, Jenny S M; Ramanathan, Shanthi; Abimbola, Seye; Peiris, David
2018-01-01
Efforts to strengthen health systems require the engagement of diverse, multidisciplinary stakeholder networks. Networks provide a forum for experimentation and knowledge creation, information exchange and the spread of good ideas and practice. They might be useful in addressing complex issues or 'wicked' problems, the solutions to which go beyond the control and scope of any one agency. Innovation platforms are proposed as a novel type of network because of their diverse stakeholder composition and focus on problem solving within complex systems. Thus, they have potential applicability to health systems strengthening initiatives, even though they have been predominantly applied in the international agricultural development sector. In this paper, we compare and contrast the concept of innovation platforms with other types of networks that can be used in efforts to strengthen primary healthcare systems, such as communities of practice, practice-based research networks and quality improvement collaboratives. We reflect on our ongoing research programme that applies innovation platform concepts to drive large-scale quality improvement in primary healthcare for Aboriginal and Torres Strait Islander Australians and outline our plans for evaluation. Lessons from our experience will find resonance with others working on similar initiatives in global health.
Bonded repair of composite aircraft structures: A review of scientific challenges and opportunities
NASA Astrophysics Data System (ADS)
Katnam, K. B.; Da Silva, L. F. M.; Young, T. M.
2013-08-01
Advanced composite materials have gained popularity in high-performance structural designs such as aerospace applications that require lightweight components with superior mechanical properties in order to perform in demanding service conditions as well as provide energy efficiency. However, one of the major challenges that the aerospace industry faces with advanced composites - because of their inherent complex damage behaviour - is structural repair. Composite materials are primarily damaged by mechanical loads and/or environmental conditions. If material damage is not extensive, structural repair is the only feasible solution as replacing the entire component is not cost-effective in many cases. Bonded composite repairs (e.g. scarf patches) are generally preferred as they provide enhanced stress transfer mechanisms, joint efficiencies and aerodynamic performance. With an increased usage of advanced composites in primary and secondary aerospace structural components, it is thus essential to have robust, reliable and repeatable structural bonded repair procedures to restore damaged composite components. But structural bonded repairs, especially with primary structures, pose several scientific challenges with the current existing repair technologies. In this regard, the area of structural bonded repair of composites is broadly reviewed - starting from damage assessment to automation - to identify current scientific challenges and future opportunities.
Multiply charged particles of the primary cosmic rays with energies greater than about 2 TeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanenko, I.P.; Grigorov, N.L.; Shestoperov, V.IA.
1986-08-01
Data on the energy spectra and charge composition of primary cosmic ray particles with energies greater than about 2 TeV are analyzed. The equipment on the Kosmos 1543 satellite used to obtain the data is described. Protons and alpha particles are detected, and the nuclei are separated into H, M, VH, and alpha groups. It is determined that the charge compositions of the primary nuclei with z greater than about 2 at energies greater than about 2 TeV compare well with data obtained at energies greater than about 1-10 GeV/nucleon. 8 references.
Flinn, Kathryn M; Marks, P L
2007-03-01
Temperate deciduous forests across much of Europe and eastern North America reflect legacies of past land use, particularly in the diversity and composition of plant communities. Intense disturbances, such as clearing forests for agriculture, may cause persistent environmental changes that continue to shape vegetation patterns as landscapes recover. We assessed the long-term consequences of agriculture for environmental conditions in central New York forests, including tree community structure and composition, soil physical and chemical properties, and light availability. To isolate the effects of agriculture, we compared 20 adjacent pairs of forests that were never cleared for agriculture (primary forests) and forests that established 85-100 years ago on plowed fields (secondary forests). Tree communities in primary and secondary forests had similar stem density, though secondary forests had 14% greater basal area. Species composition differed dramatically between the two forest types, with primary forests dominated by Acer saccharum and Fagus grandifolia and secondary forests by Acer rubrum and Pinus strobus. Primary and secondary forests showed no consistent differences in soil physical properties or in the principal gradient of soil fertility associated with soil pH. Within stands, however, soil water content and pH were more variable in primary forests. Secondary forest soils had 15% less organic matter, 16% less total carbon, and 29% less extractable phosphorus in the top 10 cm than adjacent primary stands, though the ranges of the forest types mostly overlapped. Understory light availability in primary and secondary forests was similar. These results suggest that, within 100 years, post-agricultural stands have recovered conditions comparable to less disturbed forests in many attributes, including tree size and number, soil physical properties, soil chemical properties associated with pH, and understory light availability. The principal legacies of agriculture that remain in these forests are the reduced levels of soil organic matter, carbon, and phosphorus; the spatial homogenization of soil properties; and the altered species composition of the vegetation.
Alterations of fecal steroid composition induced by changes in dietary fiber consumption.
Ullrich, I H; Lai, H Y; Vona, L; Reid, R L; Albrink, M J
1981-10-01
The short-term effects of high carbohydrate diets of normal foods either high or low in dietary fiber on fecal steroids and fiber was assessed in eight healthy young men. Each subject consumed in random order for 4 days a diet containing 59 g (high fiber) or 21 g (low fiber) neutral detergent fiber. After a 9-day rest period he consumed the other diet. Analysis of random fecal samples during their usual diet and after 4 days of each experimental diet showed an increased in primary bile acids from less than 4 to 32% of total bile acids, and a decreases of coprostanol from 76% (control diet) or 64% (low fiber diet) to 45% of total neutral sterol after the high fiber diet. Fecal fiber concentration doubled after the high fiber diet. We conclude that 4 days of high fiber diet is sufficient to cause a large increase in primary and decrease in secondary fecal steroids. Such changes have implications for prevention of arteriosclerosis and cancer of the colon.
Thermal efficiency and environmental performances of a biogas-diesel stationary engine.
Bilcan, A; Le Corre, O; Delebarre, A
2003-09-01
Municipal and agricultural waste, and sludge from wastewater treatment represent a large source of pollution. Gaseous fuels can be produced from waste decomposition and then used to run internal combustion engines for power and heat generation. The present paper focuses on thermal efficiency and environmental performances of dual-fuel engines fuelled with biogas. Experiments have been carried out on a Lister-Petter single cylinder diesel engine, modified for dual-fuel operation. Natural gas was first used as the primary fuel. An empirical correlation was determined to predict the engine load for a given mass flow rate for the pilot fuel (diesel) and for the primary fuel (natural gas). That correlation has then been tested for three synthesized biogas compositions. Computations were performed and the error was estimated to be less than 10%. Additionally, NOx and CO2 contents were measured from exhaust gases. Based on exhausts gas temperature, the activation energy and the pre-exponential factor of an Arrhenius law were then proposed, resulting in a simpler mean to predict NOx.
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Shuart, Mark J.
2001-01-01
An assessment of the State-of-the-Art in the design and manufacturing of large composite structures has been conducted. The focus of the assessment is large structural components in commercial and military aircraft. Applications of composites are reviewed for commercial transport aircraft, general aviation aircraft, rotorcraft, and military aircraft.
Wood-thermoplastic composites manufactured using beetle-killed spruce from Alaska
V. Yadama; Eini Lowell; N. Petersen; D. Nicholls
2009-01-01
The primary objectives of the study were to characterize the critical properties of wood flour produced using highly deteriorated beetle-killed spruce for wood-plastic composite (WPC) production and evaluate important mechanical and physical properties of WPC extruded using an industry standard formulation. Chemical composition analysis indicated no significant...
NASA Astrophysics Data System (ADS)
Viccaro, Marco; Zuccarello, Francesco
2017-09-01
Mantle ingredients responsible for the signature of Etnean Na- and K-alkaline magmas and their relationships with short-term geochemical changes of the erupted volcanic rocks have been constrained through a partial melting model that considers major, trace elements and water contents in the produced liquids. Characteristics of the Etnean source for alkaline magmas have been supposed similar to those of the mantle accessible at a regional scale, namely below the Hyblean Plateau. The assumption that the Etnean mantle resembles the one beneath the Hyblean Plateau is justified by the large geochemical affinities of the Etnean hawaiites/K-trachybasalts and the Hyblean hawaiites/alkali basalts for what concerns both trace elements and isotope systematics. We have modeled partial melting of a composite source constituted by two rock types, inferred by lithological and geochemical features of the Hyblean xenoliths: 1) a spinel lherzolite bearing metasomatic, hydrous phases and 2) a garnet pyroxenite in form of veins intruded into the spinel lherzolite. The partial melting modeling has been applied to each rock type and the resulting primary liquids have been then mixed in various proportions. These compositions have been compared with some Etnean alkaline magmas of the post ∼60 ka activity, which were firstly re-equilibrated to mantle conditions through mass balance calculations. Our results put into evidence that concentrations of major and trace elements along with the water obtained from the modeling are remarkably comparable with those of Etnean melts re-equilibrated at primary conditions. Different proportions of the spinel lherzolite with variable modal contents of metasomatic phases and of the garnet pyroxenite can therefore account for the signature of a large spectrum of Etnean alkaline magmas and for their geochemical variability through time, emphasizing the crucial role played by compositional small-scale heterogeneity of the source. These heterogeneities are able to produce magmas with variable compositions and volatile contents, which can then undergo distinct histories of ascent and evolution, leading to the wide range of eruptive styles observed at Mt. Etna volcano. Being partial melting confined in the spinel facies of the mantle, our model implies that the source of Mt. Etna magmas might be rather shallow (<2 GPa; i.e., lesser than ca. 60 km), excluding the presence of deep, plume-like mantle structures responsible for magma generation. Partial melting should occur consequently as a response of mantle decompression within the framework of regional tectonics affecting the Eastern Sicily, which could be triggered by extensional tectonics and/or subduction-induced mantle upwelling.
Thermal stability tests of CFRP sandwich panels for far infrared astronomy
NASA Technical Reports Server (NTRS)
Hoffmann, W. F.; Helwig, G.; Scheulen, D.
1986-01-01
An account is given of fabrication methods and low temperature figure tests for CFRP sandwich panels, in order to ascertain their applicability to ultralightweight 3-m aperture primary mirrors for balloon-borne sub-mm and far-IF telescopes that must maintain a 1-2 micron rms surface figure accuracy at -40 to -50 C. Optical figure measurements on the first two of a series of four 0.5-m test panels, replicated to a spherical surface, show a radius-of-curvature change and astigmatism down to -60 C; this approximately follows the composite's theoretical predictions and implies that material and process control is excellent, so that the large scale changes observed can be compensated for.
Advanced solar concentrator: Preliminary and detailed design
NASA Technical Reports Server (NTRS)
Bell, D. M.; Maraschin, R. A.; Matsushita, M. T.; Erskine, D.; Carlton, R.; Jakovcevic, A.; Yasuda, A. K.
1981-01-01
A single reflection point focusing two-axis tracking paraboloidal dish with a reflector aperture diameter of approximately 11 m has a reflective surface made up of 64 independent, optical quality gores. Each gore is a composite of a thin backsilvered mirror glass face sheet continuously bonded to a contoured substrate of lightweight, rigid cellular glass. The use of largely self-supporting gores allows a significant reduction in the weight of the steel support structure as compared to alternate design concepts. Primary emphasis in the preliminary design package for the low-cost, low-weight, mass producible concentrator was placed on the design of the higher cost subsystems. The outer gore element was sufficiently designed to allow fabrication of prototype gores.
Basic materials and structures aspects for hypersonic transport vehicles (HTV)
NASA Astrophysics Data System (ADS)
Steinheil, E.; Uhse, W.
A Mach 5 transport design is used to illustrate structural concepts and criteria for materials selections and also key technologies that must be followed in the areas of computational methods, materials and construction methods. Aside from the primary criteria of low weight, low costs, and conceivable risks, a number of additional requirements must be met, including stiffness and strength, corrosion resistance, durability, and a construction adequate for inspection, maintenance and repair. Current aircraft construction requirements are significantly extended for hypersonic vehicles. Additional consideration is given to long-duration temperature resistance of the airframe structure, the integration of large-volume cryogenic fuel tanks, computational tools, structural design, polymer matrix composites, and advanced manufacturing technologies.
The effects of sacubitril/valsartan on coronary outcomes in PARADIGM-HF.
Mogensen, Ulrik M; Køber, Lars; Kristensen, Søren L; Jhund, Pardeep S; Gong, Jianjian; Lefkowitz, Martin P; Rizkala, Adel R; Rouleau, Jean L; Shi, Victor C; Swedberg, Karl; Zile, Michael R; Solomon, Scott D; Packer, Milton; McMurray, John J V
2017-06-01
Angiotensin converting enzyme inhibitors (ACE-I), are beneficial both in heart failure with reduced ejection fraction (HF-REF) and after myocardial infarction (MI). We examined the effects of the angiotensin-receptor neprilysin inhibitor sacubitril/valsartan, compared with the ACE-I enalapril, on coronary outcomes in PARADIGM-HF. We examined the effect of sacubitril/valsartan compared with enalapril on the following outcomes: i) the primary composite endpoint of cardiovascular (CV) death or HF hospitalization, ii) a pre-defined broader composite including, in addition, MI, stroke, and resuscitated sudden death, and iii) a post hoc coronary composite of CV-death, non-fatal MI, angina hospitalization or coronary revascularization. At baseline, of 8399 patients, 3634 (43.3%) had a prior MI and 4796 (57.1%) had a history of any coronary artery disease. Among all patients, compared with enalapril, sacubitril/valsartan reduced the risk of the primary outcome (HR 0.80 [0.73-0.87], P<.001), the broader composite (HR 0.83 [0.76-0.90], P<.001) and the coronary composite (HR 0.83 [0.75-0.92], P<.001). Although each of the components of the coronary composite occurred less frequently in the sacubitril/valsartan group, compared with the enalapril group, only CV death was reduced significantly. Compared with enalapril, sacubitril/valsartan reduced the risk of both the primary endpoint and a coronary composite outcome in PARADIGM-HF. Additional studies on the effect of sacubitril/valsartan on atherothrombotic outcomes in high-risk patients are merited. Copyright © 2017 Elsevier Inc. All rights reserved.
Kimura, Joe; DaSilva, Karen; Marshall, Richard
2008-02-01
The increasing prevalence of chronic illnesses in the United States requires a fundamental redesign of the primary care delivery system's structure and processes in order to meet the changing needs and expectations of patients. Population management, systems-based practice, and planned chronic illness care are 3 potential processes that can be integrated into primary care and are compatible with the Chronic Care Model. In 2003, Harvard Vanguard Medical Associates, a multispecialty ambulatory physician group practice based in Boston, Massachusetts, began implementing all 3 processes across its primary care practices. From 2004 to 2006, the overall diabetes composite quality measures improved from 51% to 58% for screening (HgA1c x 2, low-density lipoprotein, blood pressure in 12 months) and from 13% to 17% for intermediate outcomes (HgA1c
Automated Cutting And Drilling Of Composite Parts
NASA Technical Reports Server (NTRS)
Warren, Charles W.
1993-01-01
Proposed automated system precisely cuts and drills large, odd-shaped parts made of composite materials. System conceived for manufacturing lightweight composite parts to replace heavier parts in Space Shuttle. Also useful in making large composite parts for other applications. Includes robot locating part to be machined, positions cutter, and positions drill. Gantry-type robot best suited for task.
NASA Astrophysics Data System (ADS)
Wang, Yaying; Zeng, Lingsen; Asimow, Paul D.; Gao, Li-E.; Ma, Chi; Antoshechkina, Paula M.; Guo, Chunli; Hou, Kejun; Tang, Suohan
2018-01-01
The Dala diabase intrusion, at the southeastern margin of the Yardoi gneiss dome, is located within the outcrop area of the 132 Ma Comei Large Igneous Province (LIP), the result of initial activity of the Kerguelen plume. We present new zircon U-Pb geochronology results to show that the Dala diabase was emplaced at 132 Ma and geochemical data (whole-rock element and Sr-Nd isotope ratios, zircon Hf isotopes and Fe-Ti oxide mineral chemistry) to confirm that the Dala diabase intrusion is part of the Comei LIP. The Dala diabase can be divided into a high-Mg/low-Ti series and a low-Mg/high-Ti series. The high-Mg/low-Ti series represents more primitive mafic magma compositions that we demonstrate are parental to the low-Mg/high-Ti series. Fractionation of olivine and clinopyroxene, followed by plagioclase within the low-Mg series, lead to systematic changes in concentrations of mantle compatible elements (Cr, Co, Ni, and V), REEs, HFSEs, and major elements such as Ti and P. Some Dala samples from the low-Mg/high-Ti series contain large ilmenite clusters and show extreme enrichment of Ti with elevated Ti/Y ratios, likely due to settling and accumulation of ilmenite during the magma chamber evolution. However, most samples from throughout the Comei LIP follow the Ti-evolution trend of the typical liquid line of descent (LLD) of primary OIB compositions, showing strong evidence of control of Ti contents by differentiation processes. In many other localities, however, primitive magmas are absent and observed Ti contents of evolved magmas cannot be quantitatively related to source processes. Careful examination of the petrogenetic relationship between co-existing low-Ti and high-Ti mafic rocks is essential to using observed rock chemistry to infer source composition, location, and degree of melting.
Ibrahim, Fowzia; Tom, Brian D M; Scott, David L; Prevost, Andrew Toby
2016-06-02
Most reported outcome measures in rheumatoid arthritis (RA) trials are composite, whose components comprise single measures that are combined into one outcome. The aims of this review were to assess the range of missing data rates in primary composite outcomes and to document the current practice for handling and reporting missing data in published RA trials compared to the Consolidated Standards of Reporting Trials (CONSORT) recommendations. A systematic search for randomised controlled trials was conducted for RA trials published between 2008 and 2013 in four rheumatology and four high impact general medical journals. A total of 51 trials with a composite primary outcome were identified, of which 38 (75 %) used the binary American College of Rheumatology responder index and 13 (25 %) used the Disease Activity Score for 28 joints (DAS28). Forty-four trials (86 %) reported on an intention-to-treat analysis population, while 7 trials (14 %) analysed according to a modified intention-to-treat population. Missing data rates for the primary composite outcome ranged from 2-53 % and were above 30 % in 9 trials, 20-30 % in 11 trials, 10-20 % in 18 trials and below 10 % in 13 trials. Thirty-eight trials (75 %) used non-responder imputation and 10 (20 %) used last observation carried forward to impute missing composite outcome data at the primary time point. The rate of dropout was on average 61 % times higher in the placebo group compared to the treatment group in the 34 placebo controlled trials (relative rate 1.61, 95 % CI: 1.29, 2.02). Thirty-seven trials (73 %) did not report the use of sensitivity analyses to assess the handling of missing data in the primary analysis as recommended by CONSORT guidelines. This review highlights an improvement in rheumatology trial practice since the revision of CONSORT guidelines, in terms of power calculation and participant's flow diagram. However, there is a need to improve the handling and reporting of missing composite outcome data and their components in RA trials. In particular, sensitivity analyses need to be more widely used in RA trials because imputation is widespread and generally uses single imputation methods, and in this area the missing data rates are commonly differentially higher in the placebo group.
Investigation of power-plant plume photochemistry using a reactive plume model
NASA Astrophysics Data System (ADS)
Kim, Y. H.; Kim, H. S.; Song, C. H.
2016-12-01
Emissions from large-scale point sources have continuously increased due to the rapid industrial growth. In particular, primary and secondary air pollutants are directly relevant to atmospheric environment and human health. Thus, we tried to precisely describe the atmospheric photochemical conversion from primary to secondary air pollutants inside the plumes emitted from large-scale point sources. A reactive plume model (RPM) was developed to comprehensively consider power-plant plume photochemistry with 255 condensed photochemical reactions. The RPM can simulate two main components of power-plant plumes: turbulent dispersion of plumes and compositional changes of plumes via photochemical reactions. In order to evaluate the performance of the RPM developed in the present study, two sets of observational data obtained from the TexAQS II 2006 (Texas Air Quality Study II 2006) campaign were compared with RPM-simulated data. Comparison shows that the RPM produces relatively accurate concentrations for major primary and secondary in-plume species such as NO2, SO2, ozone, and H2SO4. Statistical analyses show good correlation, with correlation coefficients (R) ranging from 0.61 to 0.92, and good agreement with the Index of Agreement (IOA) ranging from 0.70 to 0.95. Following evaluation of the performance of the RPM, a demonstration was also carried out to show the applicability of the RPM. The RPM can calculate NOx photochemical lifetimes inside the two plumes (Monticello and Welsh power plants). Further applicability and possible uses of the RPM are also discussed together with some limitations of the current version of the RPM.
Monitoring of PM10 and PM2.5 around primary particulate anthropogenic emission sources
NASA Astrophysics Data System (ADS)
Querol, Xavier; Alastuey, Andrés; Rodriguez, Sergio; Plana, Felicià; Mantilla, Enrique; Ruiz, Carmen R.
Investigations on the monitoring of ambient air levels of atmospheric particulates were developed around a large source of primary anthropogenic particulate emissions: the industrial ceramic area in the province of Castelló (Eastern Spain). Although these primary particulate emissions have a coarse grain-size distribution, the atmospheric transport dominated by the breeze circulation accounts for a grain-size segregation, which results in ambient air particles occurring mainly in the 2.5-10 μm range. The chemical composition of the ceramic particulate emissions is very similar to the crustal end-member but the use of high Al, Ti and Fe as tracer elements as well as a peculiar grain-size distribution in the insoluble major phases allow us to identify the ceramic input in the bulk particulate matter. PM2.5 instead of PM10 monitoring may avoid the interference of crustal particles without a major reduction in the secondary anthropogenic load, with the exception of nitrate. However, a methodology based in PM2.5 measurement alone is not adequate for monitoring the impact of primary particulate emissions (such as ceramic emissions) on air quality, since the major ambient air particles derived from these emissions are mainly in the range of 2.5-10 μm. Consequently, in areas characterised by major secondary particulate emissions, PM2.5 monitoring should detect anthropogenic particulate pollutants without crustal particulate interference, whereas PM10 measurements should be used in areas with major primary anthropogenic particulate emissions.
ERIC Educational Resources Information Center
Boonen, Tinneke; Speybroeck, Sara; de Bilde, Jerissa; Lamote, Carl; Van Damme, Jan; Onghena, Patrick
2014-01-01
Although many studies have focused on the importance of school composition for student achievement, there is still no consensus on "whether" school composition matters to student achievement, and, if so, "why". Therefore, the present study investigates the association between school composition and mathematics achievement at…
Galactic cosmic ray composition
NASA Technical Reports Server (NTRS)
Meyer, J. P.
1986-01-01
An assessment is given of the galactic cosmic ray source (GCRS) elemental composition and its correlation with first ionization potential. The isotopic composition of heavy nuclei; spallation cross sections; energy spectra of primary nuclei; electrons; positrons; local galactic reference abundances; comparison of solar energetic particles and solar coronal compositions; the hydrogen; lead; nitrogen; helium; and germanium deficiency problems; and the excess of elements are among the topics covered.
T-wave area as biomarker of clinical response to cardiac resynchronization therapy.
Végh, Eszter M; Engels, Elien B; van Deursen, Caroline J M; Merkely, Béla; Vernooy, Kevin; Singh, Jagmeet P; Prinzen, Frits W
2016-07-01
There is increasing evidence that left bundle branch block (LBBB) morphology on the electrocardiogram is a positive predictor for response to cardiac resynchronization therapy (CRT). We previously demonstrated that the vectorcardiography (VCG)-derived T-wave area predicts echocardiographic CRT response in LBBB patients. In the present study, we investigate whether the T-wave area also predicts long-term clinical outcome to CRT. This is a retrospective study consisting of 335 CRT recipients. Primary endpoint were the composite of heart failure (HF) hospitalization, heart transplantation, left ventricular assist device implantation or death during a 3-year follow-up period. HF hospitalization and death alone were secondary endpoints. The patient subgroup with a large T-wave area and LBBB 36% reached the primary endpoint, which was considerably less (P < 0.01) than for patients with LBBB and a small T-wave area or non-LBBB patients with a small or large T-wave area (48, 57, and 51%, respectively). Similar differences were observed for the secondary endpoints, HF hospitalization (31 vs. 51, 51, and 38%, respectively, P < 0.01) and death (19 vs. 42, 34, and 42%, respectively, P < 0.01). In multivariate analysis, a large T-wave area and LBBB were the only independent predictors of the combined endpoint besides high creatinine levels and use of diuretics. T-wave area may be useful as an additional biomarker to stratify CRT candidates and improve selection of those most likely to benefit from CRT. A large T-wave area may derive its predictive value from reflecting good intrinsic myocardial properties and a substrate for CRT. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collaboration: ALICE Collaboration
2016-01-01
ALICE is one of four large experiments at the CERN Large Hadron Collider near Geneva, specially designed to study particle production in ultra-relativistic heavy-ion collisions. Located 52 meters underground with 28 meters of overburden rock, it has also been used to detect muons produced by cosmic ray interactions in the upper atmosphere. In this paper, we present the multiplicity distribution of these atmospheric muons and its comparison with Monte Carlo simulations. This analysis exploits the large size and excellent tracking capability of the ALICE Time Projection Chamber. A special emphasis is given to the study of high multiplicity events containingmore » more than 100 reconstructed muons and corresponding to a muon areal density ρ{sub μ} > 5.9 m{sup −2}. Similar events have been studied in previous underground experiments such as ALEPH and DELPHI at LEP. While these experiments were able to reproduce the measured muon multiplicity distribution with Monte Carlo simulations at low and intermediate multiplicities, their simulations failed to describe the frequency of the highest multiplicity events. In this work we show that the high multiplicity events observed in ALICE stem from primary cosmic rays with energies above 10{sup 16} eV and that the frequency of these events can be successfully described by assuming a heavy mass composition of primary cosmic rays in this energy range. The development of the resulting air showers was simulated using the latest version of QGSJET to model hadronic interactions. This observation places significant constraints on alternative, more exotic, production mechanisms for these events.« less
Aggarwal, Rahul; Mirzan, Haares; Chiu, Nicholas; Steinkamp, Jackson
2018-02-26
ACCORD and SPRINT are the best randomized controlled trial data evaluating the effects of blood pressure targets below 140 mmHg. These trials had contradictory results regarding the benefits of intensive antihypertensive therapy. We investigate if this discordance was driven by SPRINT's inclusion of Heart Failure in its primary outcome, as this is a parameter not included in ACCORD's original primary outcome. This analysis helps to resolve a significant area of contention. Individual patient data from 4733 participants in ACCORD were analyzed from time of randomization. All participants were diabetic and at increased cardiovascular risk. Participants were assigned to their original intervention, a standard blood pressure target of less than 140 mmHg or an intensive target of less than 120 mmHg. Primary composite outcome was defined as in SPRINT: a composite of first occurrence of myocardial infarction, stroke, heart failure, death from cardiovascular causes, and other acute coronary syndromes. Primary outcome was not significantly different between standard and intensive groups [HR: 0.89; 95% CI: (0.76-1.03); p = 0.108]. The primary composite outcome occurred in 370 participants in the standard group (15.6%) and 324 participants in the intensive group (13.7%), with an event rate of 3.38% per year for the standard group and 3.01% per year for the intensive group. Differing results between ACCORD and SPRINT are not attributable to ACCORD's exclusion of Heart Failure from its original primary outcome measurement. No significant differences in primary outcome were observed between intensive and standard blood pressure groups in the ACCORD patients under the SPRINT primary outcome definition. Caution should be taken in extrapolating the intensive blood pressure control benefits of SPRINT to the diabetic population.
Radiopharmaceutical stannic Sn-117m chelate compositions and methods of use
Srivastava, Suresh C.; Meinken, George E.
2001-01-01
Radiopharmaceutical compositions including .sup.117m Sn labeled stannic (Sn.sup.4+) chelates are provided. The chelates are preferably polyhydroxycarboxylate, such as oxalates, tartrates, citrates, malonates, gluconates, glucoheptonates and the like. Methods of making .sup.117m Sn-labeled (Sn.sup.4+) polyhydroxycarboxylic chelates are also provided. The foregoing pharmaceutical compositions can be used in methods of preparing bone for scintigraphical analysis, for radiopharmaceutical skeletal imaging, treatment of pain resulting from metastatic bone involvement, treatment of primary bone cancer, treatment of cancer resulting from metastatic spread to bone from other primary cancers, treatment of pain resulting from rheumatoid arthritis, treatment of bone/joint disorders and to monitor radioactively the skeletal system.
Kim, Richard; Schell, Michael J; Teer, Jamie K; Greenawalt, Danielle M; Yang, Mingli; Yeatman, Timothy J
2015-01-01
Metastasis is thought to be a clonal event whereby a single cell initiates the development of a new tumor at a distant site. However the degree to which primary and metastatic tumors differ on a molecular level remains unclear. To further evaluate these concepts, we used next generation sequencing (NGS) to assess the molecular composition of paired primary and metastatic colorectal cancer tissue specimens. 468 colorectal tumor samples from a large personalized medicine initiative were assessed by targeted gene sequencing of 1,321 individual genes. Eighteen patients produced genomic profiles for 17 paired primary:metastatic (and 2 metastatic:metastatic) specimens. An average of 33.3 mutations/tumor were concordant (shared) between matched samples, including common well-known genes (APC, KRAS, TP53). An average of 2.3 mutations/tumor were discordant (unshared) among paired sites. KRAS mutational status was always concordant. The overall concordance rate for mutations was 93.5%; however, nearly all (18/19 (94.7%)) paired tumors showed at least one mutational discordance. Mutations were seen in: TTN, the largest gene (5 discordant pairs), ADAMTS20, APC, MACF1, RASA1, TP53, and WNT2 (2 discordant pairs), SMAD2, SMAD3, SMAD4, FBXW7, and 66 others (1 discordant pair). Whereas primary and metastatic tumors displayed little variance overall, co-evolution produced incremental mutations in both. These results suggest that while biopsy of the primary tumor alone is likely sufficient in the chemotherapy-naïve patient, additional biopsies of primary or metastatic disease may be necessary to precisely tailor therapy following chemotherapy resistance or insensitivity in order to adequately account for tumor evolution.
Kim, Richard; Schell, Michael J.; Teer, Jamie K.; Greenawalt, Danielle M.; Yang, Mingli; Yeatman, Timothy J.
2015-01-01
Introduction Metastasis is thought to be a clonal event whereby a single cell initiates the development of a new tumor at a distant site. However the degree to which primary and metastatic tumors differ on a molecular level remains unclear. To further evaluate these concepts, we used next generation sequencing (NGS) to assess the molecular composition of paired primary and metastatic colorectal cancer tissue specimens. Methods 468 colorectal tumor samples from a large personalized medicine initiative were assessed by targeted gene sequencing of 1,321 individual genes. Eighteen patients produced genomic profiles for 17 paired primary:metastatic (and 2 metastatic:metastatic) specimens. Results An average of 33.3 mutations/tumor were concordant (shared) between matched samples, including common well-known genes (APC, KRAS, TP53). An average of 2.3 mutations/tumor were discordant (unshared) among paired sites. KRAS mutational status was always concordant. The overall concordance rate for mutations was 93.5%; however, nearly all (18/19 (94.7%)) paired tumors showed at least one mutational discordance. Mutations were seen in: TTN, the largest gene (5 discordant pairs), ADAMTS20, APC, MACF1, RASA1, TP53, and WNT2 (2 discordant pairs), SMAD2, SMAD3, SMAD4, FBXW7, and 66 others (1 discordant pair). Conclusions Whereas primary and metastatic tumors displayed little variance overall, co-evolution produced incremental mutations in both. These results suggest that while biopsy of the primary tumor alone is likely sufficient in the chemotherapy-naïve patient, additional biopsies of primary or metastatic disease may be necessary to precisely tailor therapy following chemotherapy resistance or insensitivity in order to adequately account for tumor evolution. PMID:25974029
NASA Astrophysics Data System (ADS)
Carvalho, Matheus C.; Schulz, Kai G.; Eyre, Bradley D.
2017-06-01
New respiration (Rnew, of freshly fixated carbon) and old respiration (Rold, of storage carbon) were estimated for different regions of the global surface ocean using published data on simultaneous measurements of the following: (1) primary productivity using 14C (14PP); (2) gross primary productivity (GPP) based on 18O or O2; and (3) net community productivity (NCP) using O2. The ratio Rnew/GPP in 24 h incubations was typically between 0.1 and 0.3 regardless of depth and geographical area, demonstrating that values were almost constant regardless of large variations in temperature (0 to 27°C), irradiance (surface to 100 m deep), nutrients (nutrient-rich and nutrient-poor waters), and community composition (diatoms, flagellates, etc,). As such, between 10 and 30% of primary production in the surface ocean is respired in less than 24 h, and most respiration (between 55 and 75%) was of older carbon. Rnew was most likely associated with autotrophs, with minor contribution from heterotrophic bacteria. Patterns were less clear for Rold. Short 14C incubations are less affected by respiratory losses. Global oceanic GPP is estimated to be between 70 and 145 Gt C yr-1.
Continuous process for forming sheet metal from an alloy containing non-dendritic primary solid
Flemings, Merton C.; Matsuniya, Tooru
1983-01-01
A homogeneous mixture of liquid-solid metal is shaped by passing the composition from an agitation zone onto a surface moving relative to the exit of the agitation zone. A portion of the composition contacting the moving surface is solidified and the entire composition then is formed.
2011-11-01
correlating with the common use of graphite-epoxy composites in aerospace materials. Ghandi and Lyon identify two primary exposure routes from...Materials, Springer, Dordrecht, The Netherlands, 2006; Chapter 12, “Health Hazards of Composites in Fire”. 5. Sanjeev Ghandi and Richard E. Lyon, Health
Assessment of oceanic productivity with the triple-isotope composition of dissolved oxygen.
Luz, B; Barkan, E
2000-06-16
Plant production in the sea is a primary mechanism of global oxygen formation and carbon fixation. For this reason, and also because the ocean is a major sink for fossil fuel carbon dioxide, much attention has been given to estimating marine primary production. Here, we describe an approach for estimating production of photosynthetic oxygen, based on the isotopic composition of dissolved oxygen of seawater. This method allows the estimation of integrated oceanic productivity on a time scale of weeks.
NASA Technical Reports Server (NTRS)
Price, R. D.
1974-01-01
A detailed study of the charge composition of primary cosmic radiation for about 5000 charged nuclei from neon to iron with energies greater than 1.16 GeV/nucleon is presented. Values are obtained after corrections were made for detector dependences, atmospheric attenuation, and solar modulation. New values of 38.5, 32.4, 23.7, and 16.8 g/sq cm for the attenuation mean free paths in air for the same charge groups are presented.
Load Diffusion in Composite and Smart Structures
NASA Technical Reports Server (NTRS)
Horgan, C. O.
2003-01-01
The research carried out here builds on our previous NASA supported research on the general topic of edge effects and load diffusion in composite structures. Further fundamental solid mechanics studies were carried out to provide a basis for assessing the complicated modeling necessary for the multi-functional large scale structures used by NASA. An understanding of the fundamental mechanisms of load diffusion in composite subcomponents is essential in developing primary composite structures. Some specific problems recently considered were those of end effects in smart materials and structures, study of the stress response of pressurized linear piezoelectric cylinders for both static and steady rotating configurations, an analysis of the effect of pre-stressing and pre-polarization on the decay of end effects in piezoelectric solids and investigation of constitutive models for hardening rubber-like materials. Our goal in the study of load diffusion is the development of readily applicable results for the decay lengths in terms of non-dimensional material and geometric parameters. Analytical models of load diffusion behavior are extremely valuable in building an intuitive base for developing refined modeling strategies and assessing results from finite element analyses. The decay behavior of stresses and other field quantities provides a significant aid towards this process. The analysis is also amenable to parameter study with a large parameter space and should be useful in structural tailoring studies. Special purpose analytical models of load diffusion behavior are extremely valuable in building an intuitive base for developing refined modeling strategies and in assessing results from general purpose finite element analyses. For example, a rational basis is needed in choosing where to use three-dimensional to two-dimensional transition finite elements in analyzing stiffened plates and shells. The decay behavior of stresses and other field quantities furnished by this research provides a significant aid towards this element transition issue. A priori knowledge of the extent of boundary-layers induced by edge effects is also useful in determination of the instrumentation location in structural verification tests or in material characterization tests.
Using GC×GC-ToF-MS to characterise SVOC from diesel exhaust emissions
NASA Astrophysics Data System (ADS)
Alam, M. S.; Ramadhas, A. S.; Stark, C. P.; Liu, D.; Xu, H.; Harrison, R. M.
2014-12-01
Despite intensive research over the last 20 years, a number of major research questions remain concerning the sources and properties of road traffic-generated particulate matter. There are major knowledge gaps concerning the composition of primary vehicle exhaust aerosol, and its contribution to secondary organic aerosol (SOA) formation. These uncertainties relate especially to the semi-volatile component of the particles. Semi-Volatile Organic Compounds (SVOC) are compounds which partition directly between the gas and aerosol phases under ambient conditions, and include compounds with saturation concentrations roughly between 0.1 and 104 μg m-3. The SVOC in engine exhaust are typically hydrocarbons in the C15-C35 range. They are largely uncharacterised, other than the n-alkanes, because they are unresolved by traditional gas chromatography and form a large hump in the chromatogram referred to as Unresolved Complex Mixture (UCM). In this study, samples were collected from the exhaust of a diesel engine with and without abatement devices fitted. Engine exhaust was diluted with air and collected using both filter and impaction (MOUDI), to resolve total mass and size resolved mass respectively. Particle size distribution was evaluated by sampling simultaneously with a Scanning Mobility Particle Sizer (SMPS). 2D Gas-Chromatography Time-of-Flight Mass-Spectrometry (GC×GC-ToF-MS) was exploited to characterise and quantify the composition of SVOC from the exhaust emission. The SVOC was observed to contain predominantly n-alkanes, alkyl-cyclohexanes and aromatics; similar to both fresh lubricating oil and fuel. Preliminary results indicate that the contribution of diesel fuel to the exhaust SVOC composition is dominant at high speeds, and a more pronounced contribution from lubricating oil is observed at low speeds. Differences were also observed in the SVOC composition when using different fuel types, engine lubricants, starting temperatures and collecting samples with and without abatement devices fitted. The wealth of compounds identified and quantified in the C15-C35 range included PAH, esters, carboxylic acids, alkanes, alkenes, alcohols and hopanes.
The characterisation of diesel exhaust particles - composition, size distribution and partitioning.
Alam, Mohammed S; Zeraati-Rezaei, Soheil; Stark, Christopher P; Liang, Zhirong; Xu, Hongming; Harrison, Roy M
2016-07-18
A number of major research questions remain concerning the sources and properties of road traffic generated particulate matter. A full understanding of the composition of primary vehicle exhaust aerosol and its contribution to secondary organic aerosol (SOA) formation still remains elusive, and many uncertainties exist relating to the semi-volatile component of the particles. Semi-Volatile Organic Compounds (SVOCs) are compounds which partition directly between the gas and aerosol phases under ambient conditions. The SVOCs in engine exhaust are typically hydrocarbons in the C15-C35 range, and are largely uncharacterised because they are unresolved by traditional gas chromatography, forming a large hump in the chromatogram referred to as Unresolved Complex Mixture (UCM). In this study, thermal desorption coupled to comprehensive Two Dimensional Gas-Chromatography Time-of-Flight Mass-Spectrometry (TD-GC × GC-ToF-MS) was exploited to characterise and quantify the composition of SVOCs from the exhaust emission. Samples were collected from the exhaust of a diesel engine, sampling before and after a diesel oxidation catalyst (DOC), while testing at steady state conditions. Engine exhaust was diluted with air and collected using both filter and impaction (nano-MOUDI), to resolve total mass and size resolved mass respectively. Adsorption tubes were utilised to collect SVOCs in the gas phase and they were then analysed using thermal desorption, while particle size distribution was evaluated by sampling with a DMS500. The SVOCs were observed to contain predominantly n-alkanes, branched alkanes, alkyl-cycloalkanes, alkyl-benzenes, PAHs and various cyclic aromatics. Particle phase compounds identified were similar to those observed in engine lubricants, while vapour phase constituents were similar to those measured in fuels. Preliminary results are presented illustrating differences in the particle size distribution and SVOCs composition when collecting samples with and without a DOC. The results indicate that the DOC tested is of very limited efficiency, under the studied engine operating conditions, for removal of SVOCs, especially at the upper end of the molecular weight range.
Adamson, David N; Mustafi, Debarshi; Zhang, John X J; Zheng, Bo; Ismagilov, Rustem F
2006-09-01
This paper reports a method for the production of arrays of nanolitre plugs with distinct chemical compositions. One of the primary constraints on the use of plug-based microfluidics for large scale biological screening is the difficulty of fabricating arrays of chemically distinct plugs on the nanolitre scale. Here, using microfluidic devices with several T-junctions linked in series, a single input array of large (approximately 320 nL) plugs was split to produce 16 output arrays of smaller (approximately 20 nL) plugs; the composition and configuration of these arrays were identical to that of the input. This paper shows how the passive break-up of plugs in T-junction microchannel geometries can be used to produce a set of smaller-volume output arrays useful for chemical screening from a single large-volume array. A simple theoretical description is presented to describe splitting as a function of the Capillary number, the capillary pressure, the total pressure difference across the channel, and the geometric fluidic resistance. By accounting for these considerations, plug coalescence and plug-plug contamination can be eliminated from the splitting process and the symmetry of splitting can be preserved. Furthermore, single-outlet splitting devices were implemented with both valve- and volume-based methods for coordinating the release of output arrays. Arrays of plugs containing commercial sparse matrix screens were obtained from the presented splitting method and these arrays were used in protein crystallization trials. The techniques presented in this paper may facilitate the implementation of high-throughput chemical and biological screening.
NASA Astrophysics Data System (ADS)
Kim, H. H.; Babu, J. S. S.; Kang, C. G.
2014-05-01
Over the years, the attention of material scientists and engineers has shifted from conventional composite materials to nanocomposite materials for the development of light weight and high-performance devices. Since the discovery of carbon nanotubes (CNTs), many researchers have tried to fabricate metal matrix composites (MMCs) with CNT reinforcements. However, CNTs exhibit low dispersibility in metal melts owing to their poor wettability and large surface-to-volume ratio. The use of an array of short fibers or hybrid reinforcements in a preform could overcome this problem and enhance the dispersion of CNTs in the matrix. In this study, multi-walled CNT/Al2O3 preform-based aluminum hybrid composites were fabricated using the infiltration method. Then, the composites were extruded to evaluate changes in its mechanical properties. In addition, the dispersion of reinforcements was investigated using a hardness test. The required extrusion pressure of hybrid MMCs increased as the Al2O3/CNT fraction increased. The deformation resistance of hybrid material was over two times that of the original A356 aluminum alloy material due to strengthening by the Al2O3/CNTs reinforcements. In addition, an unusual trend was detected; primary transition was induced by the hybrid reinforcements, as can be observed in the pressure-displacement curve. Increasing temperature of the material can help increase formability. In particular, temperatures under 623 K (350 °C) and over-incorporating reinforcements (Al2O3 20 pct, CNTs 3 pct) are not recommended owing to a significant increase in the brittleness of the hybrid material.
Norris, Tracy B; McDermott, Timothy R; Castenholz, Richard W
2002-03-01
The primary objective of this study was to determine whether the long-term exclusion of ultraviolet (UV) radiation (UVR) from hot-spring microbial mats resulted in an alteration of microbial composition, such as a shift to more UV-sensitive species. Over a 1-3-month period, microbial mats in two alkaline geothermal streams in Yellowstone National Park were covered with filters that excluded or transmitted UVR. Over some, 25% transmission neutral density screens were also used. In the 40-47 degrees C range, there were no apparent changes in community composition during the summer with or without high or low UVR, as assessed by denaturing gradient gel electrophoresis (DGGE) profiles after polymerase chain reaction amplification of 16S-rRNA genes with general Bacteria and Cyanobacteria primers. Major bands were purified from the DGGE gels and sequenced. Only one of the cyanobacterial sequences matched known strains in the database; the others appear to be unique. Although the bacterial composition of these communities was apparently stable, surface layers of cyanobacteria protected from UVR were not as competent photosynthetically as those that had been maintained under UVR. This decrease in competence was expressed as a loss of the ability to perform at a maximum rate under full UVR plus visible irradiance. However, even +UV-maintained cyanobacteria performed better when UVR was excluded during the photosynthesis tests. It is probable that the large differences in photosynthetic competence observed reflect changes at the level of gene expression in the dominant species rather than changes in species composition.
Prager, Case M; Naeem, Shahid; Boelman, Natalie T; Eitel, Jan U H; Greaves, Heather E; Heskel, Mary A; Magney, Troy S; Menge, Duncan N L; Vierling, Lee A; Griffin, Kevin L
2017-04-01
Rapid environmental change at high latitudes is predicted to greatly alter the diversity, structure, and function of plant communities, resulting in changes in the pools and fluxes of nutrients. In Arctic tundra, increased nitrogen (N) and phosphorus (P) availability accompanying warming is known to impact plant diversity and ecosystem function; however, to date, most studies examining Arctic nutrient enrichment focus on the impact of relatively large (>25x estimated naturally occurring N enrichment) doses of nutrients on plant community composition and net primary productivity. To understand the impacts of Arctic nutrient enrichment, we examined plant community composition and the capacity for ecosystem function (net ecosystem exchange, ecosystem respiration, and gross primary production) across a gradient of experimental N and P addition expected to more closely approximate warming-induced fertilization. In addition, we compared our measured ecosystem CO 2 flux data to a widely used Arctic ecosystem exchange model to investigate the ability to predict the capacity for CO 2 exchange with nutrient addition. We observed declines in abundance-weighted plant diversity at low levels of nutrient enrichment, but species richness and the capacity for ecosystem carbon uptake did not change until the highest level of fertilization. When we compared our measured data to the model, we found that the model explained roughly 30%-50% of the variance in the observed data, depending on the flux variable, and the relationship weakened at high levels of enrichment. Our results suggest that while a relatively small amount of nutrient enrichment impacts plant diversity, only relatively large levels of fertilization-over an order of magnitude or more than warming-induced rates-significantly alter the capacity for tundra CO 2 exchange. Overall, our findings highlight the value of measuring and modeling the impacts of a nutrient enrichment gradient, as warming-related nutrient availability may impact ecosystems differently than single-level fertilization experiments.
Marine CCN Activation: A Battle Between Primary and Secondary Sources
NASA Astrophysics Data System (ADS)
Fossum, K. N.; Ovadnevaite, J.; Ceburnis, D.; Preissler, J.; O'Dowd, C. D. D.
2017-12-01
Low-altitude marine clouds are cooling components of the Earth's radiative budget, and the direct measurements of the properties of these cloud forming particles, called cloud condensation nuclei (CCN), helps modellers reconstruct aerosol-to-cloud droplet processes, improving climate predictions. In this study, CCN are directly measured (CCNC commercially available from Droplet Measurement Technologies, Inc.), resolving activation efficiency at varying supersaturated conditions. Previous studies show that sub-micron sea salt particulates activate competitively, reducing the cloud peak supersaturation and inhibiting the activation of sulphate particulates into cloud droplets, making chemical composition an important component in determining cloud droplet number concentration (CDNC). This effect and the sea salt numbers needed to induce it have not been previously studied long-term in the natural environment. As part of this work, data was analysed from a two month marine research ship campaign during the Antarctic Austral summer, in 2015. Ambient aerosol in the Scotia Sea region was sampled continuously, and through the use of multiple aerosol in-situ instruments, this study shows that CCN number in both the open ocean and ice-pack influenced air masses are largely proportionate to secondary aerosol. However, open ocean air masses show a significant primary aerosol influence which changes the aerosol characteristics. Higher sea salt mass concentrations in the open ocean lead to better CCN activation efficiencies. Coupled with high wind speeds and sea surface turbulence, open ocean air masses show a repression of the CDNC number compared with the theoretical values that should be expected with the sub-cloud aerosol number concentration. This is not seen in the ice-pack air masses. Work is ongoing, looking into a long-term North Atlantic marine aerosol data set, but it would appear that chemical composition plays a large role in aerosol to cloud droplet processes, and can initially restrict CDNC when sea salt is abundant and updraft velocities are relatively low.
Curtis, Calvin J [Lakewood, CO; Miedaner, Alexander [Boulder, CO; van Hest, Marinus Franciscus Antonius Maria; Ginley, David S [Evergreen, CO; Leisch, Jennifer [Denver, CO; Taylor, Matthew [West Simsbury, CT; Stanbery, Billy J [Austin, TX
2011-09-20
Precursor compositions containing copper and selenium suitable for deposition on a substrate to form thin films suitable for semi-conductor applications. Methods of forming the precursor compositions using primary amine solvents and methods of forming the thin films wherein the selection of temperature and duration of heating controls the formation of a targeted species of copper selenide.
Wang, Qiong; Wang, Wenjie; He, Xingyuan; Zhang, Wentian; Song, Kaishan; Han, Shijie
2015-01-01
The glycoprotein known as glomalin-related soil protein (GRSP) is abundantly produced on the hyphae and spores of arbuscular mycorrhizal fungi (AMF) in soil and roots. Few studies have focused on its amount, composition and associations with soil properties and possible land-use influences, although the data hints at soil rehabilitation. By choosing a primary forest soil as a non-degraded reference, it is possible to explore whether afforestation can improve degraded farmland soil by altering GRSP. In this paper, close correlations were found between various soil properties (soil organic carbon, nitrogen, pH, electrical conductivity (EC), and bulk density) and the GRSP amount, between various soil properties and GRSP composition (main functional groups, fluorescent substances, and elements). Afforestation on farmland decreased the EC and bulk density (p < 0.05). The primary forest had a 2.35–2.56-fold higher GRSP amount than those in the plantation forest and farmland, and GRSP composition (tryptophan-like and fulvic acid-like fluorescence; functional groups of C–H, C–O, and O–H; elements of Al, O, Si, C, Ca, and N) in primary forest differed from those in plantation forest and farmland (p < 0.05). However, no evident differences in GRSP amount and composition were observed between the farmland and the plantation forest. Our finding highlights that 30 years poplar afforestation on degraded farmland is not enough to change GRSP-related properties. A longer period of afforestation with close-to-nature managements may favor the AMF-related underground recovery processes. PMID:26430896
Making Large Composite Vessels Without Autoclaves
NASA Technical Reports Server (NTRS)
Sigur, W. A.
1989-01-01
Method for making fiber-reinforced composite structure relies on heating and differential thermal expansion to provide temperature and pressure necessary to develop full strength, without having to place structure in large, expensive autoclave. Layers of differentially expanding material squeeze fiber-reinforce composite between them when heated. Method suitable for such cylindrical structures as pressure vessels and tanks. Used for both resin-matrix and metal-matrix composites.
Carbon isotopic evidence for photosynthesis in Early Cambrian oceans
NASA Astrophysics Data System (ADS)
Surge, Donna M.; Savarese, Michael; Dodd, J. Robert; Lohmann, Kyger C.
1997-06-01
Were the first metazoan reefs ecologically similar to modern tropical reefs, enabling them to persist under oligotrophic conditions? We tested the hypothesis of ecological similarity by employing a geochemical approach. Petrography, cathodoluminescence, trace elements, and stable isotope analyses of primary precipitates of the Lower Cambrian Ajax Limestone, South Australia, indicate preservation of original C isotopic composition. All primary carbonate components exhibit C isotopic values similar to the composition of inorganically precipitated fibrous marine cements, suggesting that archaeocyaths and the calcimicrobe Epiphyton precipitated skeletal carbonate in equilibrium with ambient seawater in the absence of vital effects. Such data do not support the contention that archaeocyaths possessed photosymbionts. However, a +0.55‰ shift in δ13C occurs in reefs developed under shallower-water conditions relative to deeper reefs. This shift suggests the stratification of primary production in Early Cambrian oceans. The pattern is similar to that seen in the modern ocean, whereby significant photosynthesis modulates the C isotopic composition of the photic zone.
Large Scale Composite Manufacturing for Heavy Lift Launch Vehicles
NASA Technical Reports Server (NTRS)
Stavana, Jacob; Cohen, Leslie J.; Houseal, Keth; Pelham, Larry; Lort, Richard; Zimmerman, Thomas; Sutter, James; Western, Mike; Harper, Robert; Stuart, Michael
2012-01-01
Risk reduction for the large scale composite manufacturing is an important goal to produce light weight components for heavy lift launch vehicles. NASA and an industry team successfully employed a building block approach using low-cost Automated Tape Layup (ATL) of autoclave and Out-of-Autoclave (OoA) prepregs. Several large, curved sandwich panels were fabricated at HITCO Carbon Composites. The aluminum honeycomb core sandwich panels are segments of a 1/16th arc from a 10 meter cylindrical barrel. Lessons learned highlight the manufacturing challenges required to produce light weight composite structures such as fairings for heavy lift launch vehicles.
Elastic magnetic composites for energy storage flywheels
Martin, James E.; Rohwer, Lauren E. S.; Stupak, Jr., Joseph
2016-05-05
The bearings used in energy storage flywheels dissipate a significant amount of energy and can fail catastrophically. Magnetic bearings would both reduce energy dissipation and increase flywheel reliability. The component of magnetic bearing that creates lift is a magnetically soft material embedded into a rebate cut into top of the inner annulus of the flywheel. Because the flywheels stretch about 1% as they spin up, this magnetic material must also stretch and be more compliant than the flywheel itself, so it does not part from the flywheel during spin up. At the same time, the material needs to be sufficientlymore » stiff that it does not significantly deform in the rebate and must have a sufficiently large magnetic permeability and saturation magnetization to provide the required lift. It must also have high electrical resistivity to prevent heating due to eddy currents. In this paper we investigate whether adequately magnetic, mechanically stiff composites that have the tensile elasticity, high electrical resistivity, permeability and saturation magnetism required for flywheel lift magnet applications can be fabricated. Lastly, we find the best composites are those comprised of bidisperse Fe particles in the resin G/Flex 650. The primary limiting factor of such materials is the fatigue resistance to tensile strain.« less
The cardiovascular safety trials of DPP-4 inhibitors, GLP-1 agonists, and SGLT2 inhibitors.
Secrest, Matthew H; Udell, Jacob A; Filion, Kristian B
2017-04-01
In this paper, we review the results of large, double-blind, placebo-controlled randomized trials mandated by the US Food and Drug Administration to examine the cardiovascular safety of newly-approved antihyperglycemic agents in patients with type 2 diabetes. The cardiovascular effects of dipeptidyl peptidase-4 (DPP-4) inhibitors remain controversial: while these drugs did not reduce or increase the risk of primary, pre-specified composite cardiovascular outcomes, one DPP-4 inhibitor (saxagliptin) increased the risk of hospitalization for heart failure in the overall population; another (alogliptin) demonstrated inconsistent effects on heart failure hospitalization across subgroups of patients, and a third (sitagliptin) demonstrated no effect on heart failure. Evidence for cardiovascular benefits of glucagon-like peptide-1 (GLP-1) agonists has been similarly heterogeneous, with liraglutide and semaglutide reducing the risk of composite cardiovascular outcomes, but lixisenatide having no reduction or increase in cardiovascular risk. The effect of GLP-1 agonists on retinopathy remains a potential concern. In the only completed trial to date to assess a sodium-glucose cotransporter-2 (SGLT2) inhibitor, empagliflozin reduced the risk of composite cardiovascular endpoints, predominantly through its impact on cardiovascular mortality and heart failure hospitalization. Copyright © 2017 Elsevier Inc. All rights reserved.
Lu, Yang; Liu, Xianming; Wang, Weixiao; Cheng, Jinbing; Yan, Hailong; Tang, Chengchun; Kim, Jang-Kyo; Luo, Yongsong
2015-01-01
Carbon nanotubes (CNTs) incorporated porous 3-dimensional (3D) CuS microspheres have been successfully synthesized via a simple refluxing method assisted by PVP. The composites are composed of flower-shaped CuS secondary microspheres, which in turn are assembled with primary nanosheets of 15–30 nm in thickness and fully integrated with CNT. The composites possess a large specific surface area of 189.6 m2 g−1 and a high conductivity of 0.471 S cm−1. As electrode materials for supercapacitors, the nanocomposites show excellent cyclability and rate capability and deliver an average reversible capacitance as high as 1960 F g−1 at a current density of 10 mA cm−2 over 10000 cycles. The high electrochemical performance can be attributed to the synergistic effect of CNTs and the unique microstructure of CuS. The CNTs serve as not only a conductive agent to accelerate the transfer of electrons in the composites, but also as a buffer matrix to restrain the volume change and stabilize the electrode structure during the charge/discharge process. The porous structure of CuS also helps to stabilize the electrode structure and facilitates the transport for electrons. PMID:26568518
Analysis of a Hybrid Wing Body Center Section Test Article
NASA Technical Reports Server (NTRS)
Wu, Hsi-Yung T.; Shaw, Peter; Przekop, Adam
2013-01-01
The hybrid wing body center section test article is an all-composite structure made of crown, floor, keel, bulkhead, and rib panels utilizing the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) design concept. The primary goal of this test article is to prove that PRSEUS components are capable of carrying combined loads that are representative of a hybrid wing body pressure cabin design regime. This paper summarizes the analytical approach, analysis results, and failure predictions of the test article. A global finite element model of composite panels, metallic fittings, mechanical fasteners, and the Combined Loads Test System (COLTS) test fixture was used to conduct linear structural strength and stability analyses to validate the specimen under the most critical combination of bending and pressure loading conditions found in the hybrid wing body pressure cabin. Local detail analyses were also performed at locations with high stress concentrations, at Tee-cap noodle interfaces with surrounding laminates, and at fastener locations with high bearing/bypass loads. Failure predictions for different composite and metallic failure modes were made, and nonlinear analyses were also performed to study the structural response of the test article under combined bending and pressure loading. This large-scale specimen test will be conducted at the COLTS facility at the NASA Langley Research Center.
Deciphering Diversity Indices for a Better Understanding of Microbial Communities.
Kim, Bo-Ra; Shin, Jiwon; Guevarra, Robin; Lee, Jun Hyung; Kim, Doo Wan; Seol, Kuk-Hwan; Lee, Ju-Hoon; Kim, Hyeun Bum; Isaacson, Richard
2017-12-28
The past decades have been a golden era during which great tasks were accomplished in the field of microbiology, including food microbiology. In the past, culture-dependent methods have been the primary choice to investigate bacterial diversity. However, using cultureindependent high-throughput sequencing of 16S rRNA genes has greatly facilitated studies exploring the microbial compositions and dynamics associated with health and diseases. These culture-independent DNA-based studies generate large-scale data sets that describe the microbial composition of a certain niche. Consequently, understanding microbial diversity becomes of greater importance when investigating the composition, function, and dynamics of the microbiota associated with health and diseases. Even though there is no general agreement on which diversity index is the best to use, diversity indices have been used to compare the diversity among samples and between treatments with controls. Tools such as the Shannon- Weaver index and Simpson index can be used to describe population diversity in samples. The purpose of this review is to explain the principles of diversity indices, such as Shannon- Weaver and Simpson, to aid general microbiologists in better understanding bacterial communities. In this review, important questions concerning microbial diversity are addressed. Information from this review should facilitate evidence-based strategies to explore microbial communities.
Ueno, Yuji; Yamashiro, Kazuo; Tanaka, Yasutaka; Watanabe, Masao; Shimada, Yoshiaki; Kuroki, Takuma; Miyamoto, Nobukazu; Daimon, Masao; Tanaka, Ryota; Miyauchi, Katsumi; Daida, Hiroyuki; Hattori, Nobutaka; Urabe, Takao
2014-02-01
Large atheromatous aortic plaques (AAPs) are associated with stroke recurrence. Rosuvastatin is a potent lipid-lowering agent and suppresses carotid and coronary artery atherosclerosis. It is unclear whether rosuvastatin has anti-atherogenic effects against AAPs in stroke patients. We designed a clinical trial in stroke patients to analyze changes in AAPs after rosuvastatin treatment using repeated transesophageal echocardiography (TEE). This trial is a prospective randomized open label study. Inclusion criteria were patients were ischemic stroke with hypercholesterolemia and AAPs ≥ 4 mm in thickness. The patients are randomly assigned to either a group treated with 5 mg/day rosuvastatin or a control group. Primary endpoint is the changes in volume and composition of AAPs after 6 months using transesophageal echocardiography (TEE). Biochemical findings are analyzed. By using repeated TEE and binary image analysis, we will be able to compare the dynamic changes in plaque composition of AAPs before and after therapy in the two groups. The EPISTEME trial will provide information on the changes in plaque volume and composition achieved by improvement of lipid profiles with rosuvastatin therapy in stroke patients with aortic atherosclerosis. The results of the study may provide evidence for a therapeutic strategy for aortogenic brain embolism. This study is registered with UMIN-CTR (UMIN000010548).
NASA Technical Reports Server (NTRS)
Mcgary, M. C.
1986-01-01
The anticipated application of advanced turboprop propulsion systems and use of composite materials in primary structure is expected to increase the interior noise of future aircraft to unacceptability high levels. The absence of technically and economically feasible noise source-path diagnostic tools has been a primer obstacle in the development of efficient noise control treatments for propeller driven aircraft. A new diagnostic method which permits the separation and prediction of the fully coherent airborne and structureborne components of the sound radiated by plates or thin shells has been developed. Analytical and experimental studies of the proposed method were performed on plates constructed of both conventional and composite materials. The results of the study indicate that the proposed method can be applied to a variety of aircraft materials, could be used in flight, and has fewer encumbrances than the other diagnostic tools currently available. The study has also revealed that the noise radiation of vibrating plates in the low frequency regime due to combined airborne and structureborne inputs possesses a strong synergistic nature. The large influence of the interaction between the airborne and structureborne terms has been hitherto ignored by researchers of aircraft interior noise problems.
Meltwater export of prokaryotic cells from the Greenland ice sheet.
Cameron, Karen A; Stibal, Marek; Hawkings, Jon R; Mikkelsen, Andreas B; Telling, Jon; Kohler, Tyler J; Gözdereliler, Erkin; Zarsky, Jakub D; Wadham, Jemma L; Jacobsen, Carsten S
2017-02-01
Microorganisms are flushed from the Greenland Ice Sheet (GrIS) where they may contribute towards the nutrient cycling and community compositions of downstream ecosystems. We investigate meltwater microbial assemblages as they exit the GrIS from a large outlet glacier, and as they enter a downstream river delta during the record melt year of 2012. Prokaryotic abundance, flux and community composition was studied, and factors affecting community structures were statistically considered. The mean concentration of cells exiting the ice sheet was 8.30 × 10 4 cells mL -1 and we estimate that ∼1.02 × 10 21 cells were transported to the downstream fjord in 2012, equivalent to 30.95 Mg of carbon. Prokaryotic microbial assemblages were dominated by Proteobacteria, Bacteroidetes, and Actinobacteria. Cell concentrations and community compositions were stable throughout the sample period, and were statistically similar at both sample sites. Based on our observations, we argue that the subglacial environment is the primary source of the river-transported microbiota, and that cell export from the GrIS is dependent on discharge. We hypothesise that the release of subglacial microbiota to downstream ecosystems will increase as freshwater flux from the GrIS rises in a warming world. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Sandifer, J. P.; Denny, A.; Wood, M. A.
1985-01-01
Technical issues associated with fuel containment and damage tolerance of composite wing structures for transport aircraft were investigated. Material evaluation tests were conducted on two toughened resin composites: Celion/HX1504 and Celion/5245. These consisted of impact, tension, compression, edge delamination, and double cantilever beam tests. Another test series was conducted on graphite/epoxy box beams simulating a wing cover to spar cap joint configuration of a pressurized fuel tank. These tests evaluated the effectiveness of sealing methods with various fastener types and spacings under fatigue loading and with pressurized fuel. Another test series evaluated the ability of the selected coatings, film, and materials to prevent fuel leakage through 32-ply AS4/2220-1 laminates at various impact energy levels. To verify the structural integrity of the technology demonstration article structural details, tests were conducted on blade stiffened panels and sections. Compression tests were performed on undamaged and impacted stiffened AS4/2220-1 panels and smaller element tests to evaluate stiffener pull-off, side load and failsafe properties. Compression tests were also performed on panels subjected to Zone 2 lightning strikes. All of these data were integrated into a demonstration article representing a moderately loaded area of a transport wing. This test combined lightning strike, pressurized fuel, impact, impact repair, fatigue and residual strength.
Leaf ontogeny and demography explain photosynthetic seasonality in Amazon evergreen forests
NASA Astrophysics Data System (ADS)
Wu, J.; Albert, L.; Lopes, A. P.; Restrepo-Coupe, N.; Hayek, M.; Wiedemann, K. T.; Guan, K.; Stark, S. C.; Prohaska, N.; Tavares, J. V.; Marostica, S. F.; Kobayashi, H.; Ferreira, M. L.; Campos, K.; Silva, R. D.; Brando, P. M.; Dye, D. G.; Huxman, T. E.; Huete, A. R.; Nelson, B. W.; Saleska, S. R.
2015-12-01
Photosynthetic seasonality couples the evolutionary ecology of plant leaves to large-scale rhythms of carbon and water exchanges that are important feedbacks to climate. However, the extent, magnitude, and controls on photosynthetic seasonality of carbon-rich tropical forests are poorly resolved, controversial in the remote sensing literature, and inadequately represented in most earth system models. Here we show that ecosystem-scale phenology (measured by photosynthetic capacity), rather than environmental seasonality, is the primary driver of photosynthetic seasonality at four Amazon evergreen forests spanning gradients in rainfall seasonality, forest composition, and flux seasonality. We further demonstrate that leaf ontogeny and demography explain most of this ecosystem phenology at two central Amazon evergreen forests, using a simple leaf-cohort canopy model that integrates eddy covariance-derived CO2 fluxes, novel near-surface camera-detected leaf phenology, and ground observations of litterfall and leaf physiology. The coordination of new leaf growth and old leaf divestment (litterfall) during the dry season shifts canopy composition towards younger leaves with higher photosynthetic efficiency, driving large seasonal increases (~27%) in ecosystem photosynthetic capacity. Leaf ontogeny and demography thus reconciles disparate observations of forest seasonality from leaves to eddy flux towers to satellites. Strategic incorporation of such whole-plant coordination processes as phenology and ontogeny will improve ecological, evolutionary and earth system theories describing tropical forests structure and function, allowing more accurate representation of forest dynamics and feedbacks to climate in earth system models.
2009-01-01
The isotopic composition of mercury (Hg) was determined in cinnabar ore, mine-waste calcine (retorted ore), and leachates obtained from water leaching experiments of calcine from two large Hg mining districts in the U.S. This study is the first to report significant mass-dependent Hg isotopic fractionation between cinnabar ore and resultant calcine. Data indicate that δ202Hg values relative to NIST 3133 of calcine (up to 1.52‰) in the Terlingua district, Texas, are as much as 3.24‰ heavier than cinnabar (−1.72‰) prior to retorting. In addition, δ202Hg values obtained from leachates of Terlingua district calcines are isotopically similar to, or as much as 1.17‰ heavier than associated calcines, most likely due to leaching of soluble, byproduct Hg compounds formed during ore retorting that are a minor component in the calcines. As a result of the large fractionation found between cinnabar and calcine, and because calcine is the dominant source of Hg contamination from the mines studied, δ202Hg values of calcine may be more environmentally important in these mined areas than the primary cinnabar ore. Measurement of the Hg isotopic composition of calcine is necessary when using Hg isotopes for tracing Hg sources from areas mined for Hg, especially mine water runoff. PMID:19848142
Reemtsma, T.; These, A.; Linscheid, M.; Leenheer, J.; Spitzy, A.
2008-01-01
Dissolved organic matter isolated from the deep Atlantic Ocean and fractionated into a so-called hydrophobic (HPO) fraction and a very hydrophilic (HPI) fraction was analyzed for the first time by Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) to resolve the molecular species, to determine their exact masses, and to calculate their molecular formulas. The elemental composition of about 300 molecules was identified. Those in the HPO fraction (14C age of 5100 year) are very similar to much younger freshwater fulvic acids, but less aromatic and more oxygenated molecules are more frequent. This trend continues toward the HPI fraction and may indicate biotic and abiotic aging processes that this material experienced since its primary production thousands of years ago. In the HPI fraction series of nitrogenous molecules containing one, two, or three nitrogens were identified by FTICR-MS. Product ion spectra of the nitrogenous molecules suggest that the nitrogen atoms in these molecules are included in the (alicyclic) backbone of these molecules, possibly in reduced form. These mass spectrometric data suggest that a large set of stable fulvic acids is ubiquitous in all aquatic compartments. Although sources may differ, their actual composition and structure appears to be quite similar and largely independent from their source, because they are the remainder of intensive oxidative degradation processes. ?? 2008 American Chemical Society.
Stetson, S.J.; Gray, J.E.; Wanty, R.B.; Macalady, D.L.
2009-01-01
The isotopic composition of mercury (Hg) was determined in cinnabar ore, mine-waste calcine (retorted ore), and leachates obtained from water leaching experiments of calcine from two large Hg mining districts in the U.S. This study is the first to report significant mass-dependent Hg isotopic fractionation between cinnabar ore and resultant calcine. Data indicate that ??202Hg values relative to NIST 3133 of calcine (up to 1.52???) in the Terlingua district, Texas, are as much as 3.24??? heavier than cinnabar (-1.72???) prior to retorting. In addition, ??202Hg values obtained from leachates of Terlingua district calcines are isotopically similar to, or as much as 1.17??? heavier than associated calcines, most likely due to leaching of soluble, byproduct Hg compounds formed during ore retorting that are a minor component in the calcines. As a result of the large fractionation found between cinnabar and calcine, and because calcine is the dominant source of Hg contamination from the mines studied, ??202Hg values of calcine may be more environmentally important in these mined areas than the primary cinnabar ore. Measurement of the Hg isotopic composition of calcine is necessary when using Hg isotopes for tracing Hg sources from areas mined for Hg, especially mine water runoff. ?? 2009 American Chemical Society.
Telescope Array measurement of UHECR composition from stereoscopic fluorescence detection
NASA Astrophysics Data System (ADS)
Stroman, Thomas; Bergman, Douglas; Abu Zayyad, Tareq
2014-03-01
The chemical composition of ultra-high-energy cosmic rays (UHECRs) is an important constraint on models of UHECR production and propagation, and must be determined experimentally. A UHECR-induced extensive air shower's longitudinal development is dictated by the energy per nucleon of the primary particle. The observed distribution of atmospheric slant depths (Xmax) is therefore sensitive to the composition, facilitating measurement of the relative abundances of ``light'' (proton-like) and ``heavy'' (iron-like) primary UHECR particles. The Telescope Array (TA) experiment, the northern hemisphere's largest UHECR detector, includes three fluorescence detector (FD) stations that record the longitudinal development of the extensive air showers produced by UHECR arrivals. ``Stereo'' observation of individual showers by multiple FDs tightly constrains the trajectory reconstruction, allowing a precise measurement of Xmax as well as energy. We will present the stereo TA data from six years of operation and progress toward a measurement of chemical composition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Estrada, Paul R.; Cuzzi, Jeffrey N.; Morgan, Demitri A., E-mail: Paul.R.Estrada@nasa.gov
2016-02-20
We model particle growth in a turbulent, viscously evolving protoplanetary nebula, incorporating sticking, bouncing, fragmentation, and mass transfer at high speeds. We treat small particles using a moments method and large particles using a traditional histogram binning, including a probability distribution function of collisional velocities. The fragmentation strength of the particles depends on their composition (icy aggregates are stronger than silicate aggregates). The particle opacity, which controls the nebula thermal structure, evolves as particles grow and mass redistributes. While growing, particles drift radially due to nebula headwind drag. Particles of different compositions evaporate at “evaporation fronts” (EFs) where the midplanemore » temperature exceeds their respective evaporation temperatures. We track the vapor and solid phases of each component, accounting for advection and radial and vertical diffusion. We present characteristic results in evolutions lasting 2 × 10{sup 5} years. In general, (1) mass is transferred from the outer to the inner nebula in significant amounts, creating radial concentrations of solids at EFs; (2) particle sizes are limited by a combination of fragmentation, bouncing, and drift; (3) “lucky” large particles never represent a significant amount of mass; and (4) restricted radial zones just outside each EF become compositionally enriched in the associated volatiles. We point out implications for millimeter to submillimeter SEDs and the inference of nebula mass, radial banding, the role of opacity on new mechanisms for generating turbulence, the enrichment of meteorites in heavy oxygen isotopes, variable and nonsolar redox conditions, the primary accretion of silicate and icy planetesimals, and the makeup of Jupiter’s core.« less
Shi, Xiao Li; Marie, Dominique; Jardillier, Ludwig; Scanlan, David J.; Vaulot, Daniel
2009-01-01
Background Photosynthetic picoeukaryotes (PPE) with a cell size less than 3 µm play a critical role in oceanic primary production. In recent years, the composition of marine picoeukaryote communities has been intensively investigated by molecular approaches, but their photosynthetic fraction remains poorly characterized. This is largely because the classical approach that relies on constructing 18S rRNA gene clone libraries from filtered seawater samples using universal eukaryotic primers is heavily biased toward heterotrophs, especially alveolates and stramenopiles, despite the fact that autotrophic cells in general outnumber heterotrophic ones in the euphotic zone. Methodology/Principal Findings In order to better assess the composition of the eukaryotic picophytoplankton in the South East Pacific Ocean, encompassing the most oligotrophic oceanic regions on earth, we used a novel approach based on flow cytometry sorting followed by construction of 18S rRNA gene clone libraries. This strategy dramatically increased the recovery of sequences from putative autotrophic groups. The composition of the PPE community appeared highly variable both vertically down the water column and horizontally across the South East Pacific Ocean. In the central gyre, uncultivated lineages dominated: a recently discovered clade of Prasinophyceae (IX), clades of marine Chrysophyceae and Haptophyta, the latter division containing a potentially new class besides Prymnesiophyceae and Pavlophyceae. In contrast, on the edge of the gyre and in the coastal Chilean upwelling, groups with cultivated representatives (Prasinophyceae clade VII and Mamiellales) dominated. Conclusions/Significance Our data demonstrate that a very large fraction of the eukaryotic picophytoplankton still escapes cultivation. The use of flow cytometry sorting should prove very useful to better characterize specific plankton populations by molecular approaches such as gene cloning or metagenomics, and also to obtain into culture strains representative of these novel groups. PMID:19893617
Black carbon surface oxidation and organic composition of beech-wood soot aerosols
NASA Astrophysics Data System (ADS)
Corbin, J. C.; Lohmann, U.; Sierau, B.; Keller, A.; Burtscher, H.; Mensah, A. A.
2015-10-01
Soot particles are the most strongly light-absorbing particles commonly found in the atmosphere. They are major contributors to the radiative budget of the Earth and to the toxicity of atmospheric pollution. Atmospheric aging of soot may change its health- and climate-relevant properties by oxidizing the primary black carbon (BC) or organic particulate matter (OM) which, together with ash, comprise soot. This atmospheric aging, which entails the condensation of secondary particulate matter as well as the oxidation of the primary OM and BC emissions, is currently poorly understood. In this study, atmospheric aging of wood-stove soot aerosols was simulated in a continuous-flow reactor. The composition of fresh and aged soot particles was measured in real time by a dual-vaporizer aerosol-particle mass spectrometer (SP-AMS). The dual-vaporizer SP-AMS provided information on the OM and BC components of the soot as well as on refractory components internally mixed with BC. By switching the SP-AMS laser vaporizer off and using only the AMS thermal vaporizer (at 600 °C), information on the OM component only was obtained. In both modes, OM appeared to be generated largely by cellulose and/or hemicellulose pyrolysis and was only present in large amounts when new wood was added to the stove. In SP-AMS mode, BC signals otherwise dominated the mass spectrum. These signals consisted of ions related to refractory BC (rBC, C1-5+), oxygenated carbonaceous ions (CO1-2+), potassium (K+), and water (H2O+ and related fragments). The C4+ : C3+ ratio, but not the C1+ : C3+ ratio, was consistent with the BC-structure trends of Corbin et al. (2015c). The CO1-2+ signals likely originated from BC surface groups: upon aging, both CO+ and CO2+ increased relative to C1-3+ while CO2+ simultaneously increased relative to CO+. Factor analysis (positive matrix factorization) of SP-AMS and AMS data, using a modified error model to address peak-integration uncertainties, indicated that the surface composition of the BC was approximately constant across all stages of combustion for both fresh and aged samples. These results represent the first time-resolved measurements of in situ BC surface aging and suggest that the surface of beech-wood BC may be modelled as a single chemical species.
Aging of microstructural compartments in human compact bone
NASA Technical Reports Server (NTRS)
Akkus, Ozan; Polyakova-Akkus, Anna; Adar, Fran; Schaffler, Mitchell B.
2003-01-01
Composition of microstructural compartments in compact bone of aging male subjects was assessed using Raman microscopy. Secondary mineralization of unremodeled fragments persisted for two decades. Replacement of these tissue fragments with secondary osteons kept mean composition constant over age, but at a fully mineralized limit. Slowing of remodeling may increase fracture susceptibility through an increase in proportion of highly mineralized tissue. In this study, the aging process in the microstructural compartments of human femoral cortical bone was investigated and related to changes in the overall tissue composition within the age range of 17-73 years. Raman microprobe analysis was used to assess the mineral content, mineral crystallinity, and carbonate substitution in fragments of primary lamellar bone that survived remodeling for decades. Tissue composition of the secondary osteonal population was investigated to determine the composition of turned over tissue volume. Finally, Raman spectral analysis of homogenized tissue was performed to evaluate the effects of unremodeled and newly formed tissue on the overall tissue composition. The chemical composition of the primary lamellar bone exhibited two chronological stages. Organic matrix became more mineralized and the crystallinity of the mineral improved during the first stage, which lasted for two decades. The mineral content and the mineral crystallinity did not vary during the second stage. The results for the primary lamellar bone demonstrated that physiological mineralization, as evidenced by crystal growth and maturation, is a continuous process that may persist as long as two decades, and the growth and maturation process stops after the organic matrix becomes "fully mineralized." The average mineral content and the average mineral crystallinity of the homogenized tissue did not change with age. It was also observed that the mineral content of the homogenized tissue was consistently greater than the osteons and similar to the "fully mineralized" stage of primary bone. The results of this study demonstrated that unremodeled compartments of bone grow older through maturation and growth of mineral crystals in a protracted fashion. However, the secondary osteonal remodeling impedes this aging process and maintains the mean tissue age fairly constant over decades. Therefore, slowing of remodeling may lead to brittle bone tissue through accumulation of fully mineralized tissue fragments.
NASA Astrophysics Data System (ADS)
Dalton, John A.; Wood, Bernard J.
1993-10-01
We have experimentally determined the composition of near-soldus melts from depleted natural Iherzolite at pressures greater than 25 kbar. The melts are carbontitic with low alkali contents and Ca/(Ca + Mg) ratios of 0.72-0.74. Primary carbonate melts from fertile mantle are more sodic with Ca/(Ca + Mg + Fe + Na) of 0.52 and Na/(Na + Ca + Mg + Fe) up to 0.15. The melt compositions are similar to many natural magnesio-carbonatites, but differ substantially from the more abundant calcio-carbonatites. Experimentally we find that calcio-carbonatites are produced by wallrock reaction of primary melts with harzburgite at pressures of less than 25 kbar. At 15 kbar we have obtained a Ca/(Ca + Mg + Fe + Na) ratio of up to 0.87 and very low Na contents generated by this process. Values of Ca/(Ca + Mg + Fe + Na) up to 0.95 are possible at lower pressures. Low pressure wallrock reaction of primary carbonate melt with fertile Iherzolite produces melts richer in Na2CO3, corresponding to possible parental magmas of natrocarbonatite. Wallrock reaction at low pressures transforms the bulk peridotite composition from that of a harzburgite or Iherzolite to wehrlite. Examples of such carbonatite metasomatism are now widely documented. Our experiments show that the calcium content of olivine and the jadeite content of clinopyroxene may be used to constrain the Ca and Na contents respectively of the cabonatite melt responsible for metasomatism.
Finding Universals through Difference: Disability Theory's Potential to Empower Composition Studies
ERIC Educational Resources Information Center
Stanton, Courtney
2016-01-01
While much attention has been paid to the borders between those within and beyond the discipline of composition, the primary goal of this project is to examine the discourses which exist within composition and, subsequently, how these discourses might work to undermine pedagogy and scholarship. I take the position that even those working directly…
Zavahir, Sifani; Zhu, Huaiyong
2015-01-26
Catalytic oxidation of amine to imine is of intense present interest since imines are important intermediates for the synthesis of fine chemicals, pharmaceuticals, and agricultural chemicals. However, considerable efforts have been made to develop efficient methods for the oxidation of secondary amines to imines, while little attention has until recently been given to the oxidation of primary amines, presumably owing to the high reactivity of generated imines of primary amines that are easily dehydrogenated to nitriles. Herein, we report the oxidative coupling of a series of primary benzylic amines into corresponding imines with dioxygen as the benign oxidant over composite catalysts of TiO2 (anatase)-silicate under visible light irradiation of λ > 460 nm. Visible light response of this system is believed to be as a result of high population of defects and contacts between silicate and anatase crystals in the composite and the strong interaction between benzylic amine and the catalyst. It is found that tuning the intensity and wavelength of the light irradiation and the reaction temperature can remarkably enhance the reaction activity. Water can also act as a green medium for the reaction with an excellent selectivity. This report contributes to the use of readily synthesized, environmentally benign, TiO2 based composite photocatalyst and solar energy to realize the transformation of primary amines to imine compounds.
NASA Astrophysics Data System (ADS)
Baker, J. A.; Thirlwall, M. F.; Menzies, M. A.
1996-07-01
Oligocene flood basalts from western Yemen have a relatively limited range in initial isotopic composition compared with other continental flood basalts: 87Sr/86Sr = 0.70365-0.70555 ; 143Nd/144Nd = 0.5129-0.51248 ( ɛNd = +6.0 to -2.4) ; 206pb/204Pb = 17.9-19.3 . Most compositions lie outside the isotopic ranges of temporally and spatially appropriate mantle source compositions observed in this area, i.e., Red Sea/Gulf of Aden MORB mantle, the Afar plume, and Pan-African lithospheric mantle Correlations between indices of fractionation, silica, and isotope ratios suggest that crustal contamination has substantially modified the primary isotopic and incompatible trace element characteristics of the flood basalts. However, significant scatter in these correlations was produced by: (a) the heterogeneous isotopic composition of Pan-African crust; (b) the difference in susceptibility of magmas to contamination as a result of variable incompatible trace element contents in primary melts produced by differing degrees of partial melting; (c) the presence or absence of plagioclase as a fractionating phase generating complex contamination trajectories for Sr; (d) sampling over a wide area not representing a single coherent magmatic system; and (e) variation in contamination mechanisms from assimilation associated with fractionation (AFC) to assimilation by hot mafic magmas with little concomitant fractionation. The presence of plagioclase as a fractionating phase in some suites that were undergoing AFC requires assimilation to have taken place within the crust and, coupled with the limited LREE-enrichment accompanying isotopic variations, excludes the possibility that an AFC-type process took place during magma transfer through the lithospheric mantle. Isotopic compositions of some of the inferred crustal assimilants are similar to those postulated by other workers for an enriched lithospheric mantle source of many flood basalts in southwestern Yemen, Ethiopia, and Djibouti. The western Yemen flood basalts contain 0-30% crust which largely swamps their primary lead isotopic signature, but the primary SrNd isotopic signature is close to that of the least contaminated and isotopically most depleted flood basalts. LREE/HFSE and LILE/HFSE ratios also correlate with isotopic data as a result of crustal contamination. However, Nb/La and K/Nb ratios of >1.1 and <150, respectively, in least contaminated samples require an OIB-like source. The pre-contamination isotopic signature is estimated to be: 87Sr/86Sr ˜ 0.7036; 143Nd/144Nd ˜ 0.51292 ; 206Pb/204Pb ˜ 18.4-19.0 . This, coupled with low LILE/HFSE ratios, suggest the source has characteristics akin to the Afar plume. A mantle source isotopically more depleted than Bulk Earth, but not as depleted as MORB, coupled with LILE depletion, also characterises other examples of plume-derived flood volcanism. This mantle reservoir is responsible for the second largest outbursts of volcanism on Earth and has radiogenic isotopic characteristics akin to PREMA mantle, but the incompatible trace element signature of HIMU mantle.
Large Composite Structures Processing Technologies for Reusable Launch Vehicles
NASA Technical Reports Server (NTRS)
Clinton, R. G., Jr.; Vickers, J. H.; McMahon, W. M.; Hulcher, A. B.; Johnston, N. J.; Cano, R. J.; Belvin, H. L.; McIver, K.; Franklin, W.; Sidwell, D.
2001-01-01
Significant efforts have been devoted to establishing the technology foundation to enable the progression to large scale composite structures fabrication. We are not capable today of fabricating many of the composite structures envisioned for the second generation reusable launch vehicle (RLV). Conventional 'aerospace' manufacturing and processing methodologies (fiber placement, autoclave, tooling) will require substantial investment and lead time to scale-up. Out-of-autoclave process techniques will require aggressive efforts to mature the selected technologies and to scale up. Focused composite processing technology development and demonstration programs utilizing the building block approach are required to enable envisioned second generation RLV large composite structures applications. Government/industry partnerships have demonstrated success in this area and represent best combination of skills and capabilities to achieve this goal.
Price, Larry R; Raju, Nambury; Lurie, Anna; Wilkins, Charles; Zhu, Jianjun
2006-02-01
A specific recommendation of the 1999 Standards for Educational and Psychological Testing by the American Educational Research Association, the American Psychological Association, and the National Council on Measurement in Education is that test publishers report estimates of the conditional standard error of measurement (SEM). Procedures for calculating the conditional (score-level) SEM based on raw scores are well documented; however, few procedures have been developed for estimating the conditional SEM of subtest or composite scale scores resulting from a nonlinear transformation. Item response theory provided the psychometric foundation to derive the conditional standard errors of measurement and confidence intervals for composite scores on the Wechsler Preschool and Primary Scale of Intelligence-Third Edition.
Sub-seafloor Processes and the Composition of Diffuse Hydrothermal Fluids
NASA Astrophysics Data System (ADS)
Butterfield, D. A.; Lilley, M. D.; Huber, J. A.; Baross, J. A.
2002-12-01
High-temperature water/rock reactions create the primary hydrothermal fluids that are diluted with cool, "crustal seawater" to produce low-temperature, diffuse hydrothermal vent fluids. By knowing the composition of each of the components that combine to produce diffuse fluids, one can compare the composition of calculated mixtures with the composition of sampled fluids, and thereby infer what chemical constituents have been affected by processes other than simple conservative mixing. Although there is always uncertainty in the composition of fluids from the sub-seafloor, some processes are significant enough to alter diffuse fluid compositions from the expected conservative mixtures of hot,primary fluid and "crustal seawater." When hydrothermal vents with a wide range of temperature are sampled, processes occurring in different thermal and chemical environments potentially can be discerned. At Axial Volcano (AV) on the Juan de Fuca ridge, methane clearly is produced in warm sub-seafloor environments at temperatures of ~ 100° or less. Based on culturing and phylogenetic analysis from the same water samples at AV, hyperthermophilic methanogens are present in water samples taken from vents ranging in temperature from 15 to 78° C. Ratios of hydrogen sulfide to pseudo-conservative tracers (dissolved silica or heat) at AV decrease when primary fluids are highly diluted with oxygenated seawater. Phylogenetic signatures of microbes closely related to sulfide-oxidizers are present in these same fluids. Hydrogen sulfide oxidation represents the dominant source of energy for chemosynthesis at AV, as in most hydrothermal systems, but a relatively small proportion of the total hydrogen sulfide available is actually oxidized, except at the very lowest temperatures.
In vitro study of transverse strength of fiber reinforced composites.
Mosharraf, R; Hashemi, Z; Torkan, S
2011-01-01
Reinforcement with fiber is an effective method for considerable improvement in flexural properties of indirect composite resin restorations. The aim of this in-vitro study was to compare the transverse strength of composite resin bars reinforced with pre-impregnated and non-impregnated fibers. Thirty six bar type composite resin specimens (3×2×25 mm) were constructed in three groups. The first group was the control group (C) without any fiber reinforcement. The specimens in the second group (P) were reinforced with pre-impregnated fibers and the third group (N) with non-impregnated fibers. These specimens were tested by the three-point bending method to measure primary transverse strength. Data were statistically analyzed with one way ANOVA and Tukey's tests. There was a significant difference among the mean primary transverse strength in the three groups (P<0.001). The post-hoc (Tukey) test showed that there was a significant difference between the pre-impregnated and control groups in their primary transverse strength (P<0.001). Regarding deflection, there was also a significant difference among the three groups (P=0.001). There were significant differences among the mean deflection of the control group and two other groups (P(C&N)<.001 and P(C&P)=.004), but there was no significant difference between the non-and pre-impregnated groups (P(N&P)=.813). Within the limitations of this study, it was concluded that reinforcement with fiber considerably increased the transverse strength of composite resin specimens, but impregnation of the fiber used implemented no significant difference in the transverse strength of composite resin samples.
[The stamp technique for direct composite restoration].
Perrin, Philippe; Zimmerli, Brigitte; Jacky, Daniel; Lussi, Adrian; Helbling, Christoph; Ramseyer, Simon
2013-01-01
The indications for direct resin composite restorations are nowadays extended due to the development of modern resin materials with improved material properties. However, there are still some difficulties regarding handling of resin composite material, especially in large restorations. The reconstruction of a functional and individual occlusion is difficult to achieve with direct application techniques. The aim of the present publication was to introduce a new "stamp"-technique for placing large composite restorations. The procedure of this "stamp"-technique is presented by three typical indications: large single-tooth restoration, occlusal rehabilitation of a compromised occlusal surface due to erosions and direct fibre-reinforced fixed partial denture. A step-by-step description of the technique and clinical figures illustrates the method. Large single-tooth restorations can be built-up with individual, two- piece silicone stamps. Large occlusal abrasive and/or erosive defects can be restored by copying the wax-up from the dental technician using the "stamp"-technique. Even fiber-reinforced resin-bonded fixed partial dentures can be formed with this intraoral technique with more precision and within a shorter treatment time. The presented "stamp"-technique facilitates the placement of large restoration with composite and can be recommended for the clinical use.
Secondary electron emission from lithium and lithium compounds
Capece, A. M.; Patino, M. I.; Raitses, Y.; ...
2016-07-06
In this work, measurements of electron-induced secondary electron emission ( SEE) yields of lithium as a function of composition are presented. The results are particularly relevant for magnetic fusion devices such as tokamaks, field-reversed configurations, and stellarators that consider Li as a plasma-facing material for improved plasma confinement. SEE can reduce the sheath potential at the wall and cool electrons at the plasma edge, resulting in large power losses. These effects become significant as the SEE coefficient, γ e, approaches one, making it imperative to maintain a low yield surface. This work demonstrates that the yield from Li strongly dependsmore » on chemical composition and substantially increases after exposure to oxygen and water vapor. The total yield was measured using a retarding field analyzer in ultrahigh vacuum for primary electron energies of 20-600 eV. The effect of Li composition was determined by introducing controlled amounts of O 2 and H 2O vapor while monitoring film composition with Auger electron spectroscopy and temperature programmed desorption. The results show that the energy at which γ e = 1 decreases with oxygen content and is 145 eV for a Li film that is 17% oxidized and drops to less than 25 eV for a fully oxidized film. This work has important implications for laboratory plasmas operating under realistic vacuum conditions in which oxidation significantly alters the electron emission properties of Li walls. Published by AIP Publishing.« less
Schranz, Natasha; Tomkinson, Grant; Parletta, Natalie; Petkov, John; Olds, Tim
2014-10-01
Resistance training is an exercise modality at which overweight and obese adolescents can excel and which can therefore positively affect their psychological well-being. The aim of this study was to determine the effect of a 6-month resistance training intervention on the self-concept strength and body composition of overweight and obese adolescent males. 56 overweight and obese males aged 13-17 years were randomly allocated to an Intervention (n=30) or Control (n=26) group. Primary (psychological) and secondary (strength and body composition) outcomes were assessed at baseline as well as at 3 (halfway through the intervention), 6 (immediately postintervention) and 12 months follow-up. Random effects mixed modelling was used to determine the effects of the intervention. Statistically significant differences between the Intervention and Control groups were observed at 3-month and 6-month assessments for exercise self-efficacy, resistance training confidence and self-esteem. Large increases in strength for the Intervention group, relative to Controls, were also observed with no substantial changes in body composition shown for either group. Values for all variables returned to baseline following completion of the programme. A 6-month resistance training intervention can positively affect the self-concept and strength of overweight and obese adolescent boys. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
The Impact of Aerosol Particle Mixing State on the Hygroscopicity of Sea Spray Aerosol.
Schill, Steven R; Collins, Douglas B; Lee, Christopher; Morris, Holly S; Novak, Gordon A; Prather, Kimberly A; Quinn, Patricia K; Sultana, Camille M; Tivanski, Alexei V; Zimmermann, Kathryn; Cappa, Christopher D; Bertram, Timothy H
2015-06-24
Aerosol particles influence global climate by determining cloud droplet number concentrations, brightness, and lifetime. Primary aerosol particles, such as those produced from breaking waves in the ocean, display large particle-particle variability in chemical composition, morphology, and physical phase state, all of which affect the ability of individual particles to accommodate water and grow into cloud droplets. Despite such diversity in molecular composition, there is a paucity of methods available to assess how particle-particle variability in chemistry translates to corresponding differences in aerosol hygroscopicity. Here, an approach has been developed that allows for characterization of the distribution of aerosol hygroscopicity within a chemically complex population of atmospheric particles. This methodology, when applied to the interpretation of nascent sea spray aerosol, provides a quantitative framework for connecting results obtained using molecular mimics generated in the laboratory with chemically complex ambient aerosol. We show that nascent sea spray aerosol, generated in situ in the Atlantic Ocean, displays a broad distribution of particle hygroscopicities, indicative of a correspondingly broad distribution of particle chemical compositions. Molecular mimics of sea spray aerosol organic material were used in the laboratory to assess the volume fractions and molecular functionality required to suppress sea spray aerosol hygroscopicity to the extent indicated by field observations. We show that proper accounting for the distribution and diversity in particle hygroscopicity and composition are important to the assessment of particle impacts on clouds and global climate.
Secondary electron emission from lithium and lithium compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capece, A. M., E-mail: capecea@tcnj.edu; Department of Physics, The College of New Jersey, Ewing, New Jersey 08628; Patino, M. I.
2016-07-04
In this work, measurements of electron-induced secondary electron emission (SEE) yields of lithium as a function of composition are presented. The results are particularly relevant for magnetic fusion devices such as tokamaks, field-reversed configurations, and stellarators that consider Li as a plasma-facing material for improved plasma confinement. SEE can reduce the sheath potential at the wall and cool electrons at the plasma edge, resulting in large power losses. These effects become significant as the SEE coefficient, γ{sub e}, approaches one, making it imperative to maintain a low yield surface. This work demonstrates that the yield from Li strongly depends onmore » chemical composition and substantially increases after exposure to oxygen and water vapor. The total yield was measured using a retarding field analyzer in ultrahigh vacuum for primary electron energies of 20–600 eV. The effect of Li composition was determined by introducing controlled amounts of O{sub 2} and H{sub 2}O vapor while monitoring film composition with Auger electron spectroscopy and temperature programmed desorption. The results show that the energy at which γ{sub e} = 1 decreases with oxygen content and is 145 eV for a Li film that is 17% oxidized and drops to less than 25 eV for a fully oxidized film. This work has important implications for laboratory plasmas operating under realistic vacuum conditions in which oxidation significantly alters the electron emission properties of Li walls.« less
Profiling bacterial diversity in a limestone cave of the western Loess Plateau of China
Wu, Yucheng; Tan, Liangcheng; Liu, Wuxing; Wang, Baozhan; Wang, Jianjun; Cai, Yanjun; Lin, Xiangui
2015-01-01
Bacteria and archaea sustain subsurface cave ecosystems by dominating primary production and fueling biogeochemical cyclings, despite the permanent darkness and shortage of nutrients. However, the heterogeneity and underlying mechanism of microbial diversity in caves, in particular those well connect to surface environment are largely unexplored. In this study, we examined the bacterial abundance and composition in Jinjia Cave, a small and shallow limestone cave located on the western Loess Plateau of China, by enumerating and pyrosequencing small subunit rRNA genes. The results clearly reveal the contrasting bacterial community compositions in relation to cave habitat types, i.e., rock wall deposit, aquatic sediment, and sinkhole soil, which are differentially connected to the surface environment. The deposits on the cave walls were dominated by putative cave-specific bacterial lineages within the γ-Proteobacteria or Actinobacteria that are routinely found on cave rocks around the world. In addition, sequence identity with known functional groups suggests enrichments of chemolithotrophic bacteria potentially involved in autotrophic C fixation and inorganic N transformation on rock surfaces. By contrast, bacterial communities in aquatic sediments were more closely related to those in the overlying soils. This is consistent with the similarity in elemental composition between the cave sediment and the overlying soil, implicating the influence of mineral chemistry on cave microhabitat and bacterial composition. These findings provide compelling molecular evidence of the bacterial community heterogeneity in an East Asian cave, which might be controlled by both subsurface and surface environments. PMID:25870592
Profiling bacterial diversity in a limestone cave of the western Loess Plateau of China.
Wu, Yucheng; Tan, Liangcheng; Liu, Wuxing; Wang, Baozhan; Wang, Jianjun; Cai, Yanjun; Lin, Xiangui
2015-01-01
Bacteria and archaea sustain subsurface cave ecosystems by dominating primary production and fueling biogeochemical cyclings, despite the permanent darkness and shortage of nutrients. However, the heterogeneity and underlying mechanism of microbial diversity in caves, in particular those well connect to surface environment are largely unexplored. In this study, we examined the bacterial abundance and composition in Jinjia Cave, a small and shallow limestone cave located on the western Loess Plateau of China, by enumerating and pyrosequencing small subunit rRNA genes. The results clearly reveal the contrasting bacterial community compositions in relation to cave habitat types, i.e., rock wall deposit, aquatic sediment, and sinkhole soil, which are differentially connected to the surface environment. The deposits on the cave walls were dominated by putative cave-specific bacterial lineages within the γ-Proteobacteria or Actinobacteria that are routinely found on cave rocks around the world. In addition, sequence identity with known functional groups suggests enrichments of chemolithotrophic bacteria potentially involved in autotrophic C fixation and inorganic N transformation on rock surfaces. By contrast, bacterial communities in aquatic sediments were more closely related to those in the overlying soils. This is consistent with the similarity in elemental composition between the cave sediment and the overlying soil, implicating the influence of mineral chemistry on cave microhabitat and bacterial composition. These findings provide compelling molecular evidence of the bacterial community heterogeneity in an East Asian cave, which might be controlled by both subsurface and surface environments.
Wang, Ying; Guo, Shuangshuang
2015-01-01
Primary renal lymphoma is a rare entity. Of these, diffuse large B-cell lymphoma is the most common pathological type and, R-CHOP regimen was the preferred chemotherapy for it. Here we present an adult case of primary renal diffuse large B-cell lymphoma.
NASA Technical Reports Server (NTRS)
Parsons, David S.; Ordway, David; Johnson, Kenneth
2013-01-01
This experimental study seeks to quantify the impact various composite parameters have on the structural response of a composite structure in a pyroshock environment. The prediction of an aerospace structure's response to pyroshock induced loading is largely dependent on empirical databases created from collections of development and flight test data. While there is significant structural response data due to pyroshock induced loading for metallic structures, there is much less data available for composite structures. One challenge of developing a composite pyroshock response database as well as empirical prediction methods for composite structures is the large number of parameters associated with composite materials. This experimental study uses data from a test series planned using design of experiments (DOE) methods. Statistical analysis methods are then used to identify which composite material parameters most greatly influence a flat composite panel's structural response to pyroshock induced loading. The parameters considered are panel thickness, type of ply, ply orientation, and pyroshock level induced into the panel. The results of this test will aid in future large scale testing by eliminating insignificant parameters as well as aid in the development of empirical scaling methods for composite structures' response to pyroshock induced loading.
NASA Technical Reports Server (NTRS)
Parsons, David S.; Ordway, David O.; Johnson, Kenneth L.
2013-01-01
This experimental study seeks to quantify the impact various composite parameters have on the structural response of a composite structure in a pyroshock environment. The prediction of an aerospace structure's response to pyroshock induced loading is largely dependent on empirical databases created from collections of development and flight test data. While there is significant structural response data due to pyroshock induced loading for metallic structures, there is much less data available for composite structures. One challenge of developing a composite pyroshock response database as well as empirical prediction methods for composite structures is the large number of parameters associated with composite materials. This experimental study uses data from a test series planned using design of experiments (DOE) methods. Statistical analysis methods are then used to identify which composite material parameters most greatly influence a flat composite panel's structural response to pyroshock induced loading. The parameters considered are panel thickness, type of ply, ply orientation, and pyroshock level induced into the panel. The results of this test will aid in future large scale testing by eliminating insignificant parameters as well as aid in the development of empirical scaling methods for composite structures' response to pyroshock induced loading.
The Interactive Origin and the Aesthetic Modelling of Image-Schemas and Primary Metaphors.
Martínez, Isabel C; Español, Silvia A; Pérez, Diana I
2018-06-02
According to the theory of conceptual metaphor, image-schemas and primary metaphors are preconceptual structures configured in human cognition, based on sensory-motor environmental activity. Focusing on the way both non-conceptual structures are embedded in early social interaction, we provide empirical evidence for the interactive and intersubjective ontogenesis of image-schemas and primary metaphors. We present the results of a multimodal image-schematic microanalysis of three interactive infant-directed performances (the composition of movement, touch, speech, and vocalization that adults produce for-and-with the infants). The microanalyses show that adults aesthetically highlight the image-schematic structures embedded in the multimodal composition of the performance, and that primary metaphors are also lived as embedded in these inter-enactive experiences. The findings allow corroborating that the psychological domains of cognition and affection are not in rivalry or conflict but rather intertwined in meaningful experiences.
Knelman, Joseph E; Graham, Emily B; Prevéy, Janet S; Robeson, Michael S; Kelly, Patrick; Hood, Eran; Schmidt, Steve K
2018-01-01
Past research demonstrating the importance plant-microbe interactions as drivers of ecosystem succession has focused on how plants condition soil microbial communities, impacting subsequent plant performance and plant community assembly. These studies, however, largely treat microbial communities as a black box. In this study, we sought to examine how emblematic shifts from early successional Alnus viridus ssp. sinuata (Sitka alder) to late successional Picea sitchensis (Sitka spruce) in primary succession may be reflected in specific belowground changes in bacterial community structure and nitrogen cycling related to the interaction of these two plants. We examined early successional alder-conditioned soils in a glacial forefield to delineate how alders alter the soil microbial community with increasing dominance. Further, we assessed the impact of late-successional spruce plants on these early successional alder-conditioned microbiomes and related nitrogen cycling through a leachate addition microcosm experiment. We show how increasingly abundant alder select for particular bacterial taxa. Additionally, we found that spruce leachate significantly alters the composition of these microbial communities in large part by driving declines in taxa that are enriched by alder, including bacterial symbionts. We found these effects to be spruce specific, beyond a general leachate effect. Our work also demonstrates a unique influence of spruce on ammonium availability. Such insights bolster theory relating the importance of plant-microbe interactions with late-successional plants and interspecific plant interactions more generally.
Knelman, Joseph E.; Graham, Emily B.; Prevéy, Janet S.; Robeson, Michael S.; Kelly, Patrick; Hood, Eran; Schmidt, Steve K.
2018-01-01
Past research demonstrating the importance plant–microbe interactions as drivers of ecosystem succession has focused on how plants condition soil microbial communities, impacting subsequent plant performance and plant community assembly. These studies, however, largely treat microbial communities as a black box. In this study, we sought to examine how emblematic shifts from early successional Alnus viridus ssp. sinuata (Sitka alder) to late successional Picea sitchensis (Sitka spruce) in primary succession may be reflected in specific belowground changes in bacterial community structure and nitrogen cycling related to the interaction of these two plants. We examined early successional alder-conditioned soils in a glacial forefield to delineate how alders alter the soil microbial community with increasing dominance. Further, we assessed the impact of late-successional spruce plants on these early successional alder-conditioned microbiomes and related nitrogen cycling through a leachate addition microcosm experiment. We show how increasingly abundant alder select for particular bacterial taxa. Additionally, we found that spruce leachate significantly alters the composition of these microbial communities in large part by driving declines in taxa that are enriched by alder, including bacterial symbionts. We found these effects to be spruce specific, beyond a general leachate effect. Our work also demonstrates a unique influence of spruce on ammonium availability. Such insights bolster theory relating the importance of plant–microbe interactions with late-successional plants and interspecific plant interactions more generally. PMID:29467741
The Characteristics and Generating Mechanism of Large Precipitates in Ti-Containing H13 Tool Steel
NASA Astrophysics Data System (ADS)
Xie, You; Cheng, Guoguang; Chen, Lie; Zhang, Yandong; Yan, Qingzhong
2017-02-01
The characteristics of large precipitates in H13 tool steel with 0.015wt% Ti were studied. The result shows that three types of phases larger than 1 μm exist in the as-cast ingot, that is, (Ti, V) (C, N) type phase, (V, Mo, Cr)C type phase and sulfide. (Ti, V) (C, N) type phase could be further classified as the homogeneous Ti-rich one and the Ti-V-rich one in which Ti/V ratio gradually changes. (V, Mo, Cr)C type phase contains the V-rich one and the Mo-Cr-rich one. The compositional characteristics in all of them have little relation with the cutting position or cooling rate. The precipitating process could be well described through calculation by Thermo-Calc software. During solidification, the primary phase (Ti, V)(C, N) first starts to precipitate in the form of Ti-rich carbonitride. With the development of solidification, the ratio of Ti decreases and that of V increases. Then the primary phase Ti-V-rich (Ti, V)(C, N) and V-rich (V, Mo, Cr)C appears successively. Mo-Cr-rich (V, Mo, Cr)C phase does not precipitate until the solidification process reaches to the end. Sulfide precipitates before (V, Mo, Cr)C type phase and it could act as the nucleus of (V, Mo, Cr)C.
Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests
Wu, Jin; Albert, Lauren; Lopes, Aline; Restrepo-Coupe, Natalia; Hayek, Matthew; Wiedemann, Kenia T.; Guan, Kaiyu; Stark, Scott C.; Christoffersen, Bradley; Prohaska, Neill; Tavares, Julia V.; Marostica, Suelen; Kobayashi, Hideki; Ferreira, Maurocio L.; Campos, Kleber Silva; da Silva, Rodrigo; Brando, Paulo M.; Dye, Dennis G.; Huxman, Travis E.; Huete, Alfredo; Nelson, Bruce; Saleska, Scott
2016-01-01
In evergreen tropical forests, the extent, magnitude, and controls on photosynthetic seasonality are poorly resolved and inadequately represented in Earth system models. Combining camera observations with ecosystem carbon dioxide fluxes at forests across rainfall gradients in Amazônia, we show that aggregate canopy phenology, not seasonality of climate drivers, is the primary cause of photosynthetic seasonality in these forests. Specifically, synchronization of new leaf growth with dry season litterfall shifts canopy composition toward younger, more light-use efficient leaves, explaining large seasonal increases (~27%) in ecosystem photosynthesis. Coordinated leaf development and demography thus reconcile seemingly disparate observations at different scales and indicate that accounting for leaf-level phenology is critical for accurately simulating ecosystem-scale responses to climate change.
Measurement of the Muon Production Depths at the Pierre Auger Observatory
Collica, Laura
2016-09-08
The muon content of extensive air showers is an observable sensitive to the primary composition and to the hadronic interaction properties. The Pierre Auger Observatory uses water-Cherenkov detectors to measure particle densities at the ground and therefore is sensitive to the muon content of air showers. We present here a method which allows us to estimate the muon production depths by exploiting the measurement of the muon arrival times at the ground recorded with the Surface Detector of the Pierre Auger Observatory. The analysis is performed in a large range of zenith angles, thanks to the capability of estimating and subtracting the electromagnetic component, and for energies betweenmore » $$10^{19.2}$$ and $$10^{20}$$ eV.« less
NASA Astrophysics Data System (ADS)
Xu, W. Q.; Sun, Y. L.; Chen, C.; Du, W.; Han, T. T.; Wang, Q. Q.; Fu, P. Q.; Wang, Z. F.; Zhao, X. J.; Zhou, L. B.; Ji, D. S.; Wang, P. C.; Worsnop, D. R.
2015-08-01
The mitigation of air pollution in megacities remains a great challenge because of the complex sources and formation mechanisms of aerosol particles. The 2014 Asia- Pacific Economic Cooperation (APEC) summit in Beijing serves as a unique experiment to study the impacts of emission controls on aerosol composition, size distributions, and oxidative properties. Herein, a high-resolution time-of-flight aerosol mass spectrometer was deployed in urban Beijing for real-time measurements of size-resolved non-refractory submicron aerosol (NR-PM1) species from 14 October to 12 November 2014, along with a range of collocated measurements. The average (±σ) PM1 was 41.6 (±38.9) μg m-3 during APEC, which was decreased by 53 % compared with that before APEC. The aerosol composition showed substantial changes owing to emission controls during APEC. Secondary inorganic aerosols (SIA = sulfate + nitrate + ammonium) showed significant reductions of 62-69 %, whereas organics presented much smaller decreases (35 %). The results from the positive matrix factorization of organic aerosols (OA) indicated that highly oxidized secondary OA (SOA) showed decreases similar to those of SIA during APEC. However, primary OA (POA) from cooking, traffic, and biomass burning sources were comparable to those before APEC, indicating the presence of strong local source emissions. The oxidation properties showed corresponding changes in response to OA composition. The average oxygen-to-carbon level during APEC was 0.36 (±0.10), which is lower than the 0.43 (±0.13) measured before APEC, demonstrating a decrease in the OA oxidation degree. The changes in size distributions of primary and secondary species varied during APEC. SIA and SOA showed significant reductions in large accumulation modes with peak diameters shifting from ~ 650 to 400 nm during APEC, whereas those of POA remained relatively unchanged. The changes in aerosol composition, size distributions, and oxidation degrees during the aging processes were further illustrated in a case study of a severe haze episode. Our results elucidated a complex response of aerosol chemistry to emission controls, which has significant implications that emission controls over regional scales can substantially reduce secondary particulates. However, stricter emission controls for local source emissions are needed for further mitigating air pollution in the megacity of Beijing.
NASA Astrophysics Data System (ADS)
Xu, W. Q.; Sun, Y. L.; Chen, C.; Du, W.; Han, T. T.; Wang, Q. Q.; Fu, P. Q.; Wang, Z. F.; Zhao, X. J.; Zhou, L. B.; Ji, D. S.; Wang, P. C.; Worsnop, D. R.
2015-12-01
The mitigation of air pollution in megacities remains a great challenge because of the complex sources and formation mechanisms of aerosol particles. The 2014 Asia-Pacific Economic Cooperation (APEC) summit in Beijing serves as a unique experiment to study the impacts of emission controls on aerosol composition, size distributions, and oxidation properties. Herein, a high-resolution time-of-flight aerosol mass spectrometer was deployed in urban Beijing for real-time measurements of size-resolved non-refractory submicron aerosol (NR-PM1) species from 14 October to 12 November 2014, along with a range of collocated measurements. The average (±σ) PM1 was 41.6 (±38.9) μg m-3 during APEC, which was decreased by 53 % compared with that before APEC. The aerosol composition showed substantial changes owing to emission controls during APEC. Secondary inorganic aerosol (SIA: sulfate + nitrate + ammonium) showed significant reductions of 62-69 %, whereas organics presented much smaller decreases (35 %). The results from the positive matrix factorization of organic aerosol (OA) indicated that highly oxidized secondary organic aerosol (SOA) showed decreases similar to those of SIA during APEC. However, primary organic aerosol (POA) from cooking, traffic, and biomass-burning sources were comparable to those before APEC, indicating the presence of strong local source emissions. The oxidation properties showed corresponding changes in response to OA composition. The average oxygen-to-carbon level during APEC was 0.36 (±0.10), which is lower than the 0.43 (±0.13) measured before APEC, demonstrating a decrease in the OA oxidation degree. The changes in size distributions of primary and secondary species varied during APEC. SIA and SOA showed significant reductions in large accumulation modes with peak diameters shifting from ~ 650 to 400 nm during APEC, whereas those of POA remained relatively unchanged. The changes in aerosol composition, size distributions, and oxidation degrees during the aging processes were further illustrated in a case study of a severe haze episode. Our results elucidated a complex response of aerosol chemistry to emission controls, which has significant implications that emission controls over regional scales can substantially reduce secondary particulates. However, stricter emission controls for local source emissions are needed for further mitigating air pollution in the megacity of Beijing.
NASA Astrophysics Data System (ADS)
Stapel, D.; Brox, O.; Benninghoven, A.
1999-02-01
The influence of primary ion energy, mass and composition on sputtering and secondary ion emission of arachidic acid Langmuir-Blodgett mono- and multilayers, deposited on gold substrates, has been investigated. Ga +, Ar +, 129Xe+ and SF 5+ in the energy range 5-25 keV were used as primary ions. Yields Y, damage cross-sections σ, and ion formation efficiencies E have been determined for selected secondary ions, characterizing the molecular overlayer, the overlayer substrate interface and the substrate. We found a strong influence of layer thickness and of primary ion energy, mass and composition on Y, σ and E. Information depth increases with increasing ion energy and decreasing mass of primary ions, being higher for SF 5+ than for Xe +. Y, σ and E increase with increasing primary ion mass. They are considerably higher for a molecular (SF 5+) than for atomic ions of comparable mass ( 129Xe+). The experimental results supply information on the extension of impact cascades, generated in different substrate materials by different primary ion species and different energies. They demonstrate that in analytical SIMS application information depths can be minimized and yields and ion formation efficiencies can be maximized by the use of molecular primary ions.
Antrobus, T.J.; Guilfoyle, M.P.; Barrow, W.C.; Hamel, P.B.; Wakeley, J.S.
2000-01-01
Neotropical migrants are birds that breed in North America and winter primarily in Central and South America. Long-term population studies of birds in the Eastern United States indicated declines of some forest-dwelling birds, many of which winter in the Neotropics (Peterjohn and others 1995). These declines were attributed to loss of wintering and breeding habitat due to deforestation and fragmentation, respectively. Many species of Nearctic migrants--birds that breed in the northern regions of North America and winter in the Southern United States--are also experiencing population declines. Because large areas of undistrubed, older, bottomland hardwood forests oftern contain large numbers of habitat specialists, including forest-interior neotropical migrants and wintering Nearctic migrants, these forests may be critical in maintaining avian diversity. This study had two primary objectivs: (1) to create a baseline data set that can be used as a standard against which other bottomland hardwood forests can be compared, and (2) to establish long-term monitoring stations during both breeding and wintering seasons to discern population trends of avian species using bottomland hardwood forests.
On the impact of approximate computation in an analog DeSTIN architecture.
Young, Steven; Lu, Junjie; Holleman, Jeremy; Arel, Itamar
2014-05-01
Deep machine learning (DML) holds the potential to revolutionize machine learning by automating rich feature extraction, which has become the primary bottleneck of human engineering in pattern recognition systems. However, the heavy computational burden renders DML systems implemented on conventional digital processors impractical for large-scale problems. The highly parallel computations required to implement large-scale deep learning systems are well suited to custom hardware. Analog computation has demonstrated power efficiency advantages of multiple orders of magnitude relative to digital systems while performing nonideal computations. In this paper, we investigate typical error sources introduced by analog computational elements and their impact on system-level performance in DeSTIN--a compositional deep learning architecture. These inaccuracies are evaluated on a pattern classification benchmark, clearly demonstrating the robustness of the underlying algorithm to the errors introduced by analog computational elements. A clear understanding of the impacts of nonideal computations is necessary to fully exploit the efficiency of analog circuits.
Erickson, Ariane E.; Edmondson, Dennis; Chang, Fei-Chien; Wood, Dave; Gong, Alex; Levengood, Sheeny Lan; Zhang, Miqin
2016-01-01
The inability to produce large quantities of nanofibers has been a primary obstacle in advancement and commercialization of electrospinning technologies, especially when aligned nanofibers are desired. Here, we present a high-throughput centrifugal electrospinning (HTP-CES) system capable of producing a large number of highly-aligned nanofiber samples with high-yield and tunable diameters. The versatility of the design was revealed when bead-less nanofibers were produced from copolymer chitosan/polycaprolactone (C-PCL) solutions despite variations in polymer blend composition or spinneret needle gauge. Compared to conventional electrospinning techniques, fibers spun with the HTP-CES not only exhibited superior alignment, but also better diameter uniformity. Nanofiber alignment was quantified using Fast Fourier Transform (FFT) analysis. In addition, a concave correlation between the needle diameter and resultant fiber diameter was identified. This system can be easily scaled up for industrial production of highly-aligned nanofibers with tunable diameters that can potentially meet the requirements for various engineering and biomedical applications. PMID:26428148
A Hybrid Approach for Efficient Modeling of Medium-Frequency Propagation in Coal Mines
Brocker, Donovan E.; Sieber, Peter E.; Waynert, Joseph A.; Li, Jingcheng; Werner, Pingjuan L.; Werner, Douglas H.
2015-01-01
An efficient procedure for modeling medium frequency (MF) communications in coal mines is introduced. In particular, a hybrid approach is formulated and demonstrated utilizing ideal transmission line equations to model MF propagation in combination with full-wave sections used for accurate simulation of local antenna-line coupling and other near-field effects. This work confirms that the hybrid method accurately models signal propagation from a source to a load for various system geometries and material compositions, while significantly reducing computation time. With such dramatic improvement to solution times, it becomes feasible to perform large-scale optimizations with the primary motivation of improving communications in coal mines both for daily operations and emergency response. Furthermore, it is demonstrated that the hybrid approach is suitable for modeling and optimizing large communication networks in coal mines that may otherwise be intractable to simulate using traditional full-wave techniques such as moment methods or finite-element analysis. PMID:26478686
Canut, Hervé; Albenne, Cécile; Jamet, Elisabeth
2017-01-01
This chapter describes a method allowing the purification of the cell wall for studying both polysaccharides and proteins. The plant primary cell wall is mainly composed of polysaccharides (90-95 % in mass) and of proteins (5-10 %). At the end of growth, specialized cells may synthesize a lignified secondary wall composed of polysaccharides (about 65 %) and lignin (about 35 %). Due to its composition, the cell wall is the cellular compartment having the highest density and this property is used for its purification. It plays critical roles during plant development and in response to environmental constraints. It is largely used in the food and textile industries as well as for the production of bioenergy. All these characteristics and uses explain why its study as a true cell compartment is of high interest. The proposed method of purification can be used for large amount of material but can also be downscaled to 500 mg of fresh material. Tools for checking the quality of the cell wall preparation, such as protein analysis and microscopy observation, are also provided.
Comprehensive Chemical Characterisation of Byzantine Glass Weights
Schibille, Nadine; Meek, Andrew; Tobias, Bendeguz; Entwistle, Chris; Avisseau-Broustet, Mathilde; Da Mota, Henrique; Gratuze, Bernard
2016-01-01
The understanding of the glass trade in the first millennium CE relies on the characterisation of well-dated compositional groups and the identification of their primary production sites. 275 Byzantine glass weights from the British Museum and the Bibliothèque nationale de France dating to the sixth and seventh century were analysed by LA-ICP-MS. Multivariate statistical and graphical data analysis discriminated between six main primary glass types. Primary glass sources were differentiated based on multi-dimensional comparison of silica-derived elements (MgO, Al2O3, CaO, TiO2, Fe2O3, ZrO2) and components associated with the alkali source (Li2O, B2O3). Along with Egyptian and Levantine origins of the glassmaking sands, variations in the natron source possibly point to the exploitation of two different natron deposits. Differences in strontium to calcium ratios revealed variations in the carbonate fractions in the sand. At least two cobalt sources were employed as colouring agents, one of which shows strong correlations with nickel, indicating a specific post-Roman cobalt source. Typological evidence identified chronological developments in the use of the different glass groups. Throughout the sixth century, Byzantine glass weights were predominately produced from two glasses that are probably of an Egyptian origin (Foy-2 and Foy-2 high Fe). Towards the second half of the sixth century a new but related plant-ash glass type emerged (Magby). Levantine I was likewise found among the late sixth- to early seventh-century samples. The use of different dies for the same batch testifies to large-scale, centralised production of the weights, while the same die used for different primary production groups demonstrates the co-existence of alternative sources of supply. Given the comprehensive design of our study, these results can be extrapolated to the wider early Byzantine glass industry and its changes at large. PMID:27959963
Comprehensive Chemical Characterisation of Byzantine Glass Weights.
Schibille, Nadine; Meek, Andrew; Tobias, Bendeguz; Entwistle, Chris; Avisseau-Broustet, Mathilde; Da Mota, Henrique; Gratuze, Bernard
2016-01-01
The understanding of the glass trade in the first millennium CE relies on the characterisation of well-dated compositional groups and the identification of their primary production sites. 275 Byzantine glass weights from the British Museum and the Bibliothèque nationale de France dating to the sixth and seventh century were analysed by LA-ICP-MS. Multivariate statistical and graphical data analysis discriminated between six main primary glass types. Primary glass sources were differentiated based on multi-dimensional comparison of silica-derived elements (MgO, Al2O3, CaO, TiO2, Fe2O3, ZrO2) and components associated with the alkali source (Li2O, B2O3). Along with Egyptian and Levantine origins of the glassmaking sands, variations in the natron source possibly point to the exploitation of two different natron deposits. Differences in strontium to calcium ratios revealed variations in the carbonate fractions in the sand. At least two cobalt sources were employed as colouring agents, one of which shows strong correlations with nickel, indicating a specific post-Roman cobalt source. Typological evidence identified chronological developments in the use of the different glass groups. Throughout the sixth century, Byzantine glass weights were predominately produced from two glasses that are probably of an Egyptian origin (Foy-2 and Foy-2 high Fe). Towards the second half of the sixth century a new but related plant-ash glass type emerged (Magby). Levantine I was likewise found among the late sixth- to early seventh-century samples. The use of different dies for the same batch testifies to large-scale, centralised production of the weights, while the same die used for different primary production groups demonstrates the co-existence of alternative sources of supply. Given the comprehensive design of our study, these results can be extrapolated to the wider early Byzantine glass industry and its changes at large.
Differences in the spectra of cosmic ray nuclear species below approximately 5 GeV/nuc
NASA Technical Reports Server (NTRS)
Webber, W. R.; Lezniak, J. A.; Kish, J.
1974-01-01
Extension of previous measurements made at high energies, which show clear evidence for energy-dependent changes in cosmic ray composition, to lower energies. The new data point to the fact that these spectral differences extend over the entire energy band from a few hundred MeV/nucleon to several tens of GeV/nucleon. The details of these composition variations are examined by studying in a systematic way the variations of the ratios of secondary to primary and different groups of primary cosmic ray nuclei.
Development of RTM and powder prepreg resins for subsonic aircraft primary structures
NASA Technical Reports Server (NTRS)
Woo, Edmund P.; Groleau, Michael R.; Bertram, James L.; Puckett, Paul M.; Maynard, Shawn J.
1993-01-01
Dow developed a thermoset resin which could be used to produce composites via the RTM process. The composites formed are useful at 200 F service temperatures after moisture saturation, and are tough systems that are suitable for subsonic aircraft primary structure. At NASA's request, Dow also developed a modified version of the RTM resin system which was suitable for use in producing powder prepreg. In the course of developing the RTM and powder versions of these resins, over 50 different new materials were produced and evaluated.
Self-organization of dissolved organic matter to micelle-like microparticles in river water.
Kerner, Martin; Hohenberg, Heinz; Ertl, Siegmund; Reckermann, Marcus; Spitzy, Alejandro
2003-03-13
In aquatic systems, the concept of the 'microbial loop' is invoked to describe the conversion of dissolved organic matter to particulate organic matter by bacteria. This process mediates the transfer of energy and matter from dissolved organic matter to higher trophic levels, and therefore controls (together with primary production) the productivity of aquatic systems. Here we report experiments on laboratory incubations of sterile filtered river water in which we find that up to 25% of the dissolved organic carbon (DOC) aggregates abiotically to particles of diameter 0.4-0.8 micrometres, at rates similar to bacterial growth. Diffusion drives aggregation of low- to high-molecular-mass DOC and further to larger micelle-like microparticles. The chemical composition of these microparticles suggests their potential use as food by planktonic bacterivores. This pathway is apparent from differences in the stable carbon isotope compositions of picoplankton and the microparticles. A large fraction of dissolved organic matter might therefore be channelled through microparticles directly to higher trophic levels--bypassing the microbial loop--suggesting that current concepts of carbon conversion in aquatic systems require revision.
NASA Astrophysics Data System (ADS)
Wallace, William E.; Keane, Michael J.; Murray, David K.; Chisholm, William P.; Maynard, Andrew D.; Ong, Tong-man
2007-01-01
Because of their small size, the specific surface areas of nanoparticulate materials (NP), described as particles having at least one dimension smaller than 100 nm, can be large compared with micrometer-sized respirable particles. This high specific surface area or nanostructural surface properties may affect NP toxicity in comparison with micrometer-sized respirable particles of the same overall composition. Respirable particles depositing on the deep lung surfaces of the respiratory bronchioles or alveoli will contact pulmonary surfactants in the surface hypophase. Diesel exhaust ultrafine particles and respirable silicate micrometer-sized insoluble particles can adsorb components of that surfactant onto the particle surfaces, conditioning the particles surfaces and affecting their in vitro expression of cytotoxicity or genotoxicity. Those effects can be particle surface composition-specific. Effects of particle surface conditioning by a primary component of phospholipid pulmonary surfactant, diacyl phosphatidyl choline, are reviewed for in vitro expression of genotoxicity by diesel exhaust particles and of cytotoxicity by respirable quartz and aluminosilicate kaolin clay particles. Those effects suggest methods and cautions for assaying and interpreting NP properties and biological activities.
Pathophysiology, diagnosis and management of nephrogenic diabetes insipidus.
Bockenhauer, Detlef; Bichet, Daniel G
2015-10-01
Healthy kidneys maintain fluid and electrolyte homoeostasis by adjusting urine volume and composition according to physiological needs. The final urine composition is determined in the last tubular segment: the collecting duct. Water permeability in the collecting duct is regulated by arginine vasopressin (AVP). Secretion of AVP from the neurohypophysis is regulated by a complex signalling network that involves osmosensors, barosensors and volume sensors. AVP facilitates aquaporin (AQP)-mediated water reabsorption via activation of the vasopressin V2 receptor (AVPR2) in the collecting duct, thus enabling concentration of urine. In nephrogenic diabetes insipidus (NDI), inability of the kidneys to respond to AVP results in functional AQP deficiency. Consequently, affected patients have constant diuresis, resulting in large volumes of dilute urine. Primary forms of NDI result from mutations in the genes that encode the key proteins AVPR2 and AQP2, whereas secondary forms are associated with biochemical abnormalities, obstructive uropathy or the use of certain medications, particularly lithium. Treatment of the disease is informed by identification of the underlying cause. Here we review the clinical aspects and diagnosis of NDI, the various aetiologies, current treatment options and potential future developments.
Stauffer, Beth A.; Miksis-Olds, Jennifer; Goes, Joaquim I.
2015-01-01
Variability of hydrographic conditions and primary and secondary productivity between cold and warm climatic regimes in the Bering Sea has been the subject of much study in recent years, while interannual variability within a single regime and across multiple trophic levels has been less well-documented. Measurements from an instrumented mooring on the southeastern shelf of the Bering Sea were analyzed for the spring-to-summer transitions within the cold regime years of 2009–2012 to investigate the interannual variability of hydrographic conditions, primary producer biomass, and acoustically-derived secondary producer and consumer abundance and community structure. Hydrographic conditions in 2012 were significantly different than in 2009, 2010, and 2011, driven largely by increased ice extent and thickness, later ice retreat, and earlier stratification of the water column. Primary producer biomass was more tightly coupled to hydrographic conditions in 2012 than in 2009 or 2011, and shallow and mid-column phytoplankton blooms tended to occur independent of one another. There was a high degree of variability in the relationships between different classes of secondary producers and hydrographic conditions, evidence of significant intra-consumer interactions, and trade-offs between different consumer size classes in each year. Phytoplankton blooms stimulated different populations of secondary producers in each year, and summer consumer populations appeared to determine dominant populations in the subsequent spring. Overall, primary producers and secondary producers were more tightly coupled to each other and to hydrographic conditions in the coldest year compared to the warmer years. The highly variable nature of the interactions between the atmospherically-driven hydrographic environment, primary and secondary producers, and within food webs underscores the need to revisit how climatic regimes within the Bering Sea are defined and predicted to function given changing climate scenarios. PMID:26110822
Stauffer, Beth A; Miksis-Olds, Jennifer; Goes, Joaquim I
2015-01-01
Variability of hydrographic conditions and primary and secondary productivity between cold and warm climatic regimes in the Bering Sea has been the subject of much study in recent years, while interannual variability within a single regime and across multiple trophic levels has been less well-documented. Measurements from an instrumented mooring on the southeastern shelf of the Bering Sea were analyzed for the spring-to-summer transitions within the cold regime years of 2009-2012 to investigate the interannual variability of hydrographic conditions, primary producer biomass, and acoustically-derived secondary producer and consumer abundance and community structure. Hydrographic conditions in 2012 were significantly different than in 2009, 2010, and 2011, driven largely by increased ice extent and thickness, later ice retreat, and earlier stratification of the water column. Primary producer biomass was more tightly coupled to hydrographic conditions in 2012 than in 2009 or 2011, and shallow and mid-column phytoplankton blooms tended to occur independent of one another. There was a high degree of variability in the relationships between different classes of secondary producers and hydrographic conditions, evidence of significant intra-consumer interactions, and trade-offs between different consumer size classes in each year. Phytoplankton blooms stimulated different populations of secondary producers in each year, and summer consumer populations appeared to determine dominant populations in the subsequent spring. Overall, primary producers and secondary producers were more tightly coupled to each other and to hydrographic conditions in the coldest year compared to the warmer years. The highly variable nature of the interactions between the atmospherically-driven hydrographic environment, primary and secondary producers, and within food webs underscores the need to revisit how climatic regimes within the Bering Sea are defined and predicted to function given changing climate scenarios.
Lukewich, Julia; Edge, Dana S; VanDenKerkhof, Elizabeth; Williamson, Tyler; Tranmer, Joan
2018-04-15
Various organizational-level attributes are being implemented in primary healthcare to improve healthcare delivery. There is a need to describe the distribution and nature of these attributes and explore differences across practices.AimThe aim of this study was to better understand organizational attributes of primary care teams, focusing specifically on team composition, nursing roles, and strategies that support chronic disease management. We employed a cross-sectional survey design. Team composition, nursing roles, availability of health services, and chronic disease management activities were described using the 'Measuring Organizational Attributes of Primary Health Care Survey.'FindingsA total of 76% (n=26 out of 34) of practice locations completed the survey, including family health teams (FHT; n=21) and community health centers (CHC; n=4). Nurse practitioners (NPs) and registered nurses (RNs) were the most common non-physician providers, and CHCs had a greater proportion of non-physician providers than FHTs. There was overlap in roles performed by NPs and RNs, and registered practical nurses engaged in fewer roles compared with NPs and RNs. A greater proportion of FHTs had systematic chronic disease management services for hypertension, depression and Alzheimer's disease compared with CHC practices. The 'Measuring Organizational Attributes of Primary Health Care Survey' was a useful tool to highlight variability in organizational attributes across PHC practices. Nurses are prominent within PHC practices, engaging in a wide range of roles related to chronic disease management, suggesting a need to better understand their contributions to patient care to optimize their roles.
Structural Dynamics of Education Reforms and Quality of Primary Education in Uganda
ERIC Educational Resources Information Center
Nyenje, Aida
2016-01-01
This paper examines Uganda's recent undertaking to reform her Primary School education System with a focus on the effect of structural dynamics of education reforms and the quality of primary education. Structural dynamics in the context of this study is in reference to the organizational composition of the education system at the government,…
Conceptual Design Studies of Composite AMST
1974-10-01
WEIGHT OF THE AIRFRAME THE PROPERTIES OF HIGH -STRENGTH GRAPHITE-EPOXY COMPOSITES (REPRESENTATIVE OF THORNEL 300 FIBERS) WERE USED IN THE APPLICATION...The primary advanced composite material selected was a high -strength graphite-epoxy (Thornel 300/Narmco 5208). Boron-infiltrated aluminum extrusions...Figure Page 25 Trimming Irregular Cutouts in Wing Box Attach Angles ...... 71 26 Hydroforming W-Truss Web Beaded Panels ................ 72 27 Exploded
ERIC Educational Resources Information Center
Qiyan, Wang; Kian Chye, Lim; Huay Lit Woo
2006-01-01
Writing picture compositions is part of the requirements for the mother tongue language learning in Singapore primary schools. For Chinese as a mother tongue, the prevailing materials used for learning picture composition are confined to only black-and-white drawn pictures. This has caused some problems: (1) not many good and suitable…
ERIC Educational Resources Information Center
Belfi, Barbara; Haelermans, Carla; De Fraine, Bieke
2016-01-01
Background: The effects of school socio-economic composition on student achievement growth trajectories have been a hot topic of discussion among politicians around the world for many years. However, the bulk of research investigating school socio-economic composition effects has been limited in important ways. Aims: In an attempt to overcome the…
Influence of undersized cementless hip stems on primary stability and strain distribution.
Fottner, Andreas; Woiczinski, Matthias; Kistler, Manuel; Schröder, Christian; Schmidutz, Tobias F; Jansson, Volkmar; Schmidutz, Florian
2017-10-01
Undersizing of cementless hip stems is a risk factor for aseptic loosening and early subsidence. The purpose of this study was to evaluate the effects of undersized stems and determine whether a biomechanical study can predict the clinical results. Three consecutive sizes of a clinically proven stem (CLS Spotorno) were implanted into six composite femora (size large, Sawbones ® ), respectively. According to the Canal Fill Index (CFI), two stems (size 11.25 and 12.5) were undersized (CFI < 80%) and one stem (size 13.75) had an appropriate size (CFI > 80%). The primary stability was evaluated by measurement of 3-dimensional (3D)-micromotions under physiological adapted load and surface strains were recorded before and after implantation to detect stress-shielding processes. Both undersized stems revealed significantly higher micromotions in all regions compared to the appropriate stem. The highest micromotions were registered at the distal tip of the three stem sizes. The changes in surface strain did not show a significant difference between the three stem sizes, but the highest strain reduction was observed proximally indicating a tendency for stress shielding. This study confirms the clinical assumption that undersized stem result in a significantly reduced primary stability. Furthermore, in vitro studies allow to determine the effects of undersizing and stress shielding processes.
Alyahya, A; Khanum, A; Qudeimat, M
2018-02-01
To compare class II resin composite with preformed metal crowns (PMC) in the treatment of proximal dentinal caries in high caries-risk patients. The charts (270) of paediatric patients with proximal caries of their primary molars were reviewed. Success or failure of a procedure was assessed using the dental notes. Survival analysis was used to calculate the mean survival time (MST) for both procedures. The influence of variables on the mean survival time was investigated. A total of 593 class II resin composites and 243 PMCs were placed in patients ranging between 4-13 years of age. The failure percentage of class II resin composites was 22.6% with the majority having been due to recurrent caries, while the failure percentage of PMCs was 15.2% with the majority due to loss of the crown. There was no significant difference between the MST of class II resin composites and PMCs, 41.3 and 45.6 months respectively (p value = 0.06). In class II resin composites, mesial restorations were associated with lower MST compared to distal restorations (p-value < 0.001). The MST of resin composites and PMCs were comparable when performed on high caries-risk patients.
Experimental constraints on CO2 and H2O in the Martian mantle and primary magmas
NASA Technical Reports Server (NTRS)
Holloway, John R.; Domanik, Kenneth J.; Cocheo, Peter A.
1993-01-01
We present new data on the stability of hornblende in a Martian mantle composition, on CO2 solubility in iron-rich basaltic magmas, and on the solubility of H2O in an alkalic basaltic magma. These new data are combined with a summary of data from the literature to present a summary of the current state of our estimates of solubilities of H2O and CO2 in probable Martian magmas and the stability of hornblende in a slightly hydrous mantle. The new results suggest that hornblende stability is not sensitive to the Mg/(Mg+Fe) ratio (mg#) of the mantle, that is the results for terrestrial mantle compositions are similar to the more iron-rich Martian composition. Likewise, CO2 solubility in iron-rich tholeiitic basaltic magmas is similar to iron-poor terrestrial compositions. The solubility of H2O has been measured in an alkalic basaltic (basanite) composition for the first time, and it is significantly lower than predicted for models of water solubility in magmas. The lack of mg# dependence observed in hornblende stability and on CO2 solubility that in many cases terrestrial results can be applied to Martian compositions. This conclusion does not apply to other phenomena such as primary magma compositions and major mantle mineral mineralogy.
Environmental factors associated with primary care access among urban older adults.
Ryvicker, Miriam; Gallo, William T; Fahs, Marianne C
2012-09-01
Disparities in primary care access and quality impede optimal chronic illness prevention and management for older adults. Although research has shown associations between neighborhood attributes and health, little is known about how these factors - in particular, the primary care infrastructure - inform older adults' primary care use. Using geographic data on primary care physician supply and surveys from 1260 senior center attendees in New York City, we examined factors that facilitate and hinder primary care use for individuals living in service areas with different supply levels. Supply quartiles varied in primary care use (visit within the past 12 months), racial and socio-economic composition, and perceived neighborhood safety and social cohesion. Primary care use did not differ significantly after controlling for compositional factors. Individuals who used a community clinic or hospital outpatient department for most of their care were less likely to have had a primary care visit than those who used a private doctor's office. Stratified multivariate models showed that within the lowest-supply quartile, public transit users had a higher odds of primary care use than non-transit users. Moreover, a higher score on the perceived neighborhood social cohesion scale was associated with a higher odds of primary care use. Within the second-lowest quartile, nonwhites had a lower odds of primary care use compared to whites. Different patterns of disadvantage in primary care access exist that may be associated with - but not fully explained by - local primary care supply. In lower-supply areas, racial disparities and inadequate primary care infrastructure hinder access to care. However, accessibility and elder-friendliness of public transit, as well as efforts to improve social cohesion and support, may facilitate primary care access for individuals living in low-supply areas. Copyright © 2012 Elsevier Ltd. All rights reserved.
Characterization of potential security threats in modern automobiles: a composite modeling approach
DOT National Transportation Integrated Search
2014-10-01
The primary objective of the work detailed in this report is to describe a composite modeling approach for potential cybersecurity threats in modern vehicles. Threat models, threat descriptions, and examples of various types of conceivable threats to...
McSween, H.Y.; Murchie, S.L.; Crisp, J.A.; Bridges, N.T.; Anderson, R.C.; Bell, J.F.; Britt, D.T.; Brückner, J.; Dreibus, G.; Economou, T.; Ghosh, A.; Golombek, M.P.; Greenwood, J.P.; Johnson, J. R.; Moore, H.J.; Morris, R.V.; Parker, T.J.; Rieder, R.; Singer, R.; Wänke, H.
1999-01-01
Rocks at the Mars Pathfinder site are probably locally derived. Textures on rock surfaces may indicate volcanic, sedimentary, or impact-generated rocks, but aeolian abration and dust coatings prevent unambiguous interpretation. Multispectral imaging has resolved four spectral classes of rocks: gray and red, which occur on different surfaces of the same rocks; pink, which is probably soil crusts; and maroon, which occurs as large boulders, mostly in the far field. Rocks are assigned to two spectral trends based on the position of peak reflectance: the primary spectral trend contains gray, red, and pink rocks; maroon rocks constitute the secondary spectral trend. The spatial pattern of spectral variations observed is oriented along the prevailing wind direction. The primary spectral trend arises from thin ferric coatings of aeolian dust on darker rocks. The secondary spectral trend is apparently due to coating by a different mineral, probably maghemite or ferrihydrite. A chronology based on rock spectra suggests that rounded maroon boulders constitute the oldest petrologic unit (a flood deposit), succeeded by smaller cobbles possibly deposited by impact, and followed by aeolian erosion and deposition. Nearly linear chemical trends in alpha proton X-ray spectrometer rock compositions are interpreted as mixing lines between rock and adhering dust, a conclusion supported by a correlation between sulfur abundance and red/blue spectral ratio. Extrapolations of regression lines to zero sulfur give the composition of a presumed igneous rock. The chemistry and normative mineralogy of the sulfur-free rock resemble common terrestrial volcanic rocks, and its classification corresponds to andesite. Igneous rocks of this composition may occur with clastic sedimentary rocks or impact melts and breccias. However, the spectral mottling expected on conglomerates or breccias is not observed in any APXS-analyzed rocks. Interpretation of the rocks as andesites is complicated by absence of a "1 μm" pyroxene absorption band. Plausible explanations include impact glass, band masking by magnetite, or presence of calcium- and iron-rich pyroxenes and olivine which push the absorption band minimum past the imager's spectral range. The inferred andesitic composition is most similar to terrestrial anorogenic icelandites, formed by fractionation of tholeiitic basaltic magmas. Early melting of a relatively primitive Martian mantle could produce an appropriate parent magma, supporting the ancient age of Pathfinder rocks inferred from their incorporation in Hesperian flood deposits. Although rocks of andesitic composition at the Pathfinder site may represent samples of ancient Martian crust, inferences drawn about a necessary role for water or plate tectonics in their petrogenesis are probably unwarranted.
Nano-Engineered Catalysts for Direct Methanol Fuel Cells
NASA Technical Reports Server (NTRS)
Myung, Nosang; Narayanan, Sekharipuram; Wiberg, Dean
2008-01-01
Nano-engineered catalysts, and a method of fabricating them, have been developed in a continuing effort to improve the performances of direct methanol fuel cells as candidate power sources to supplant primary and secondary batteries in a variety of portable electronic products. In order to realize the potential for high energy densities (as much as 1.5 W h/g) of direct methanol fuel cells, it will be necessary to optimize the chemical compositions and geometric configurations of catalyst layers and electrode structures. High performance can be achieved when catalyst particles and electrode structures have the necessary small feature sizes (typically of the order of nanometers), large surface areas, optimal metal compositions, high porosity, and hydrophobicity. The present method involves electrodeposition of one or more catalytic metal(s) or a catalytic-metal/polytetrafluoroethylene nanocomposite on an alumina nanotemplate. The alumina nanotemplate is then dissolved, leaving the desired metal or metal/polytetrafluoroethylene-composite catalyst layer. Unlike some prior methods of making fine metal catalysts, this method does not involve processing at elevated temperature; all processing can be done at room temperature. In addition, this method involves fewer steps and is more amenable to scaling up for mass production. Alumina nanotemplates are porous alumina membranes that have been fabricated, variously, by anodizing either pure aluminum or aluminum that has been deposited on silicon by electronbeam evaporation. The diameters of the pores (7 to 300 nm), areal densities of pores (as much as 7 x 10(exp 10)sq cm), and lengths of pores (up to about 100 nm) can be tailored by selection of fabrication conditions. In a given case, the catalytic metal, catalytic metal alloy, or catalytic metal/ polytetrafluoroethylene composite is electrodeposited in the pores of the alumina nanotemplate. The dimensions of the pores, together with the electrodeposition conditions, determine the sizes and surface areas of the catalytic particles. Hence, the small features and large surface areas of the porosity translate to the desired small particle size and large surface area of the catalyst (see figure). When polytetrafluoroethylene is included, it is for the purpose of imparting hydrophobicity in order to prevent water from impeding the desired diffusion of gases through the catalyst layer. To incorporate polytetrafluoroethylene into a catalytic-metal/polytetrafluoroethylene nanocomposite, one suspends polytetrafluoroethylene nanoparticles in the electrodeposition solution. The polytetrafluoroethylene content can be varied to obtain the desired degree of hydrophobicity and permeability by gas.
Ecological and Evolutionary Effects of Stickleback on Community Structure
Des Roches, Simone; Shurin, Jonathan B.; Schluter, Dolph; Harmon, Luke J.
2013-01-01
Species’ ecology and evolution can have strong effects on communities. Both may change concurrently when species colonize a new ecosystem. We know little, however, about the combined effects of ecological and evolutionary change on community structure. We simultaneously examined the effects of top-predator ecology and evolution on freshwater community parameters using recently evolved generalist and specialist ecotypes of three-spine stickleback (Gasterosteus aculeatus). We used a mesocosm experiment to directly examine the effects of ecological (fish presence and density) and evolutionary (phenotypic diversity and specialization) factors on community structure at lower trophic levels. We evaluated zooplankton biomass and composition, periphyton and phytoplankton chlorophyll-a concentration, and net primary production among treatments containing different densities and diversities of stickleback. Our results showed that both ecological and evolutionary differences in the top-predator affect different aspects of community structure and composition. Community structure, specifically the abundance of organisms at each trophic level, was affected by stickleback presence and density, whereas composition of zooplankton was influenced by stickleback diversity and specialization. Primary productivity, in terms of chlorophyll-a concentration and net primary production was affected by ecological but not evolutionary factors. Our results stress the importance of concurrently evaluating both changes in density and phenotypic diversity on the structure and composition of communities. PMID:23573203
Microbiological destruction of composite polymeric materials in soils
NASA Astrophysics Data System (ADS)
Legonkova, O. A.; Selitskaya, O. V.
2009-01-01
Representatives of the same species of microscopic fungi developed on composite materials with similar polymeric matrices independently from the type of soils, in which the incubation was performed. Trichoderma harzianum, Penicillium auranthiogriseum, and Clonostachys solani were isolated from the samples of polyurethane. Fusarium solani, Clonostachys rosea, and Trichoderma harzianum predominated on the surface of ultrathene samples. Ulocladium botrytis, Penicillium auranthiogriseum, and Fusarium solani predominated in the variants with polyamide. Trichoderma harzianum, Penicillium chrysogenum, Aspergillus ochraceus, and Acremonium strictum were isolated from Lentex-based composite materials. Mucor circinelloides, Trichoderma harzianum, and Penicillium auranthiogriseum were isolated from composite materials based on polyvinyl alcohol. Electron microscopy demonstrated changes in the structure of polymer surface (loosening and an increase in porosity) under the impact of fungi. The physicochemical properties of polymers, including their strength, also changed. The following substances were identified as primary products of the destruction of composite materials: stearic acid for polyurethane-based materials; imide of dithiocarbonic acid and 1-nonadecen in variants with ultrathene; and tetraaminopyrimidine and isocyanatodecan in variants with polyamide. N,N-dimethyldodecan amide, 2-methyloximundecanon and 2-nonacosane were identified for composites on the base of Lentex A4-1. Allyl methyl sulfide and imide of dithiocarbonic acid were found in variants with the samples of composites based on polyvinyl alcohol. The identified primary products of the destruction of composite materials belong to nontoxic compounds.
Evidence for a mixed mass composition at the 'ankle' in the cosmic-ray spectrum
NASA Astrophysics Data System (ADS)
Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Biermann, P. L.; Billoir, P.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; Dallier, R.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; del Peral, L.; Deligny, O.; Di Giulio, C.; Di Matteo, A.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.; Dorofeev, A.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; García, B.; Garcia-Pinto, D.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Glass, H.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Hasankiadeh, Q.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; LaHurd, D.; Latronico, L.; Lauscher, M.; Lautridou, P.; Lebrun, P.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Mockler, D.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Müller, G.; Muller, M. A.; Müller, S.; Naranjo, I.; Navas, S.; Nellen, L.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, H.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pȩkala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pereira, L. A. S.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollant, R.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Reinert, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Rosado, J.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sanabria Gomez, J. D.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Scarso, C.; Schauer, M.; Scherini, V.; Schieler, H.; Schmidt, D.; Scholten, O.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanič, S.; Stasielak, J.; Strafella, F.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Torri, M.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valbuena-Delgado, A.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yelos, D.; Younk, P.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.; Pierre Auger Collaboration
2016-11-01
We report a first measurement for ultrahigh energy cosmic rays of the correlation between the depth of shower maximum and the signal in the water Cherenkov stations of air-showers registered simultaneously by the fluorescence and the surface detectors of the Pierre Auger Observatory. Such a correlation measurement is a unique feature of a hybrid air-shower observatory with sensitivity to both the electromagnetic and muonic components. It allows an accurate determination of the spread of primary masses in the cosmic-ray flux. Up till now, constraints on the spread of primary masses have been dominated by systematic uncertainties. The present correlation measurement is not affected by systematics in the measurement of the depth of shower maximum or the signal in the water Cherenkov stations. The analysis relies on general characteristics of air showers and is thus robust also with respect to uncertainties in hadronic event generators. The observed correlation in the energy range around the 'ankle' at lg (E /eV) = 18.5- 19.0 differs significantly from expectations for pure primary cosmic-ray compositions. A light composition made up of proton and helium only is equally inconsistent with observations. The data are explained well by a mixed composition including nuclei with mass A > 4. Scenarios such as the proton dip model, with almost pure compositions, are thus disfavored as the sole explanation of the ultrahigh-energy cosmic-ray flux at Earth.
Evidence for a mixed mass composition at the ‘ankle’ in the cosmic-ray spectrum
Aab, Alexander
2016-09-28
Here, we report a first measurement for ultra-high energy cosmic rays of the correlation between the depth of shower maximum and the signal in the water Cherenkov stations of air-showers registered simultaneously by the fluorescence and the surface detectors of the Pierre Auger Observatory. Such a correlation measurement is a unique feature of a hybrid air-shower observatory with sensitivity to both the electromagnetic and muonic components. It allows an accurate determination of the spread of primary masses in the cosmic-ray flux. Up till now, constraints on the spread of primary masses have been dominated by systematic uncertainties. The present correlation measurement is not affected by systematics in the measurement of the depth of shower maximum or the signal in the water Cherenkov stations. The analysis relies on general characteristics of air showers and is thus robust also with respect to uncertainties in hadronic event generators. The observed correlation in the energy range around the `ankle' atmore » $$\\lg(E/{\\rm eV})=18.5-19.0$$ differs significantly from expectations for pure primary cosmic-ray compositions. A light composition made up of proton and helium only is equally inconsistent with observations. The data are explained well by a mixed composition including nuclei with mass $A > 4$. Scenarios such as the proton dip model, with almost pure compositions, are thus disfavoured as the sole explanation of the ultrahigh-energy cosmic-ray flux at Earth.« less
Dunford, Elizabeth; Webster, Jacqui; Metzler, Adriana Blanco; Czernichow, Sebastien; Ni Mhurchu, Cliona; Wolmarans, Petro; Snowdon, Wendy; L'Abbe, Mary; Li, Nicole; Maulik, Pallab K; Barquera, Simon; Schoj, Verónica; Allemandi, Lorena; Samman, Norma; de Menezes, Elizabete Wenzel; Hassell, Trevor; Ortiz, Johana; Salazar de Ariza, Julieta; Rahman, A Rashid; de Núñez, Leticia; Garcia, Maria Reyes; van Rossum, Caroline; Westenbrink, Susanne; Thiam, Lim Meng; MacGregor, Graham; Neal, Bruce
2012-12-01
Chronic diseases are the leading cause of premature death and disability in the world with overnutrition a primary cause of diet-related ill health. Excess energy intake, saturated fat, sugar, and salt derived from processed foods are a major cause of disease burden. Our objective is to compare the nutritional composition of processed foods between countries, between food companies, and over time. Surveys of processed foods will be done in each participating country using a standardized methodology. Information on the nutrient composition for each product will be sought either through direct chemical analysis, from the product label, or from the manufacturer. Foods will be categorized into 14 groups and 45 categories for the primary analyses which will compare mean levels of nutrients at baseline and over time. Initial commitments to collaboration have been obtained from 21 countries. This collaborative approach to the collation and sharing of data will enable objective and transparent tracking of processed food composition around the world. The information collected will support government and food industry efforts to improve the nutrient composition of processed foods around the world.
Clague, D.A.; Weber, W.S.; Dixon, J.E.
1991-01-01
ESTIMATES of the MgO content of primary Hawaiian tholeiitic melts range from 8wt% to as high as 25wt% (refs 1, 2). In general, these estimates are derived from analysis of the whole-rock composition of lavas, coupled with the compositions of the most magnesian olivine phenocrysts observed. But the best estimate of magma composition comes from volcanic glass, as it represents the liquid composition at the time of quenching; minimal changes occur during the quenching process. Here we report the discovery of tholeiitic basalt glasses, recovered offshore of Kilauea volcano, that contain up to 15.0 wt% MgO. To our knowledge, these are the most magnesian glasses, and have the highest eruption temperatures (??? 1,316 ??C), yet found. The existence of these picritic (high-MgO) liquids provides constraints on the temperature structure of the upper mantle, magma transport and the material and thermal budgets of the Hawaiian volcanoes. Furthermore, picritic melts are affected little by magma-reservoir processes, and it is therefore relatively straightforward to extrapolate back to the composition of the primary melt and its volatile contents.
Murcia, Germán; Fontana, Ariel; Pontin, Mariela; Baraldi, Rita; Bertazza, Gianpaolo; Piccoli, Patricia N
2017-03-01
Plants are able to synthesize a large number of organic compounds. Among them, primary metabolites are known to participate in plant growth and development, whereas secondary metabolites are mostly involved in defense and other facultative processes. In grapevine, one of the major fruit crops in the world, secondary metabolites, mainly polyphenols, are of great interest for the wine industry. Even though there is an extensive literature on the content and profile of those compounds in berries, scarce or no information is available regarding polyphenols in other organs. In addition, little is known about the effect of plant growth regulators (PGRs), ABA and GA 3 (extensively used in table grapes) on the synthesis of primary and secondary metabolites in wine grapes. In table grapes, cultural practices include the use of GA 3 sprays shortly before veraison, to increase berry and bunch size, and sugar content in fruits. Meanwhile, ABA applications to the berries on pre-veraison improve the skin coloring and sugar accumulation, anticipating the onset of veraison. Accordingly, the aim of this study was to assess and characterize primary and secondary metabolites in leaves, berries and roots of grapevine plants cv. Malbec at veraison, and changes in compositions after ABA and GA 3 aerial sprayings. Metabolic profiling was conducted using GC-MS, GC-FID and HPLC-MWD. A large set of metabolites was identified: sugars, alditols, organic acids, amino acids, polyphenols (flavonoids and non-flavonoids) and terpenes (mono-, sesqui-, di- and triterpenes). The obtained results showed that ABA applications elicited synthesis of mono- and sesquiterpenes in all assessed tissues, as well as L-proline, acidic amino acids and anthocyanins in leaves. Additionally, applications with GA 3 elicited synthesis of L-proline in berries, and mono- and sesquiterpenes in all the tissues. However, treatment with GA 3 seemed to block polyphenol synthesis, mainly in berries. In conclusion, ABA and GA 3 applications to grapevine plants cv. Malbec influenced the synthesis of primary and secondary metabolites known to be essential for coping with biotic and abiotic stresses. Copyright © 2016 Elsevier Ltd. All rights reserved.
Treatment of primary Sjögren syndrome: a systematic review.
Ramos-Casals, Manuel; Tzioufas, Athanasios G; Stone, John H; Sisó, Antoni; Bosch, Xavier
2010-07-28
A variety of topical and systemic drugs are available to treat primary Sjögren syndrome, although no evidence-based therapeutic guidelines are currently available. To summarize evidence on primary Sjögren syndrome drug therapy from randomized controlled trials. We searched MEDLINE and EMBASE for articles on drug therapy for primary Sjögren syndrome published between January 1, 1986, and April 30, 2010. Controlled trials of topical and systemic drugs including adult patients with primary Sjögren syndrome were selected as the primary information source. The search strategy yielded 37 trials. A placebo-controlled trial found significant improvement in the Schirmer and corneal staining scores, blurred vision, and artificial tear use in patients treated with topical ocular 0.05% cyclosporine. Three placebo-controlled trials found that pilocarpine was associated with improvements in dry mouth (61%-70% vs 24%-31% in the placebo group) and dry eye (42%-53% vs 26%). Two placebo-controlled trials found that cevimeline was associated with improvement in dry mouth (66%-76% vs 35%-37% in the placebo group) and dry eye (39%-72% vs 24%-30%). Small trials (<20 patients) found no significant improvement in sicca outcomes for oral prednisone or hydroxychloroquine and limited benefits for immunosuppressive agents (azathioprine and cyclosporine). A large trial found limited benefits for oral interferon alfa-2a. Two placebo-controlled trials of infliximab and etanercept did not achieve the primary outcome (a composite visual analog scale measuring joint pain, fatigue, and dryness); neither did 2 small trials (<30 patients) testing rituximab, although significant results were observed in some secondary outcomes and improvement compared with baseline. In primary Sjögren syndrome, evidence from controlled trials suggests benefits for pilocarpine and cevimeline for sicca features and topical cyclosporine for moderate or severe dry eye. Anti-tumor necrosis factor agents have not shown clinical efficacy, and larger controlled trials are needed to establish the efficacy of rituximab.
Three-meter balloon-borne telescope
NASA Technical Reports Server (NTRS)
Hoffmann, William F.; Fazio, G. G.; Harper, D. A.
1988-01-01
The Three-Meter Balloon-Borne Telescope is planned as a general purpose facility for making far-infrared and submillimeter astronomical observations from the stratosphere. It will operate throughout the spectral range 30 microns to 1 millimeter which is largely obscurred from the ground. The design is an f/13.5 Cassegrain telescope with an f/1.33 3-meter primary mirror supported with a 3-axis gimbal and stabilization system. The overall structure is 8.0 m high by 5.5 m in width by 4.0 m in depth and weighs 2000 kg. This low weight is achieved through the use of an ultra lightweight primary mirror of composite construction. Pointing and stabilization are achieved with television monitoring of the star field, flex-pivot bearing supports, gyroscopes, and magnetically levitated reaction wheels. Two instruments will be carried on each flight; generally a photometric camera and a spectrometer. A 64-element bolometer array photometric camera operating from 30 to 300 microns is planned as part of the facility. Additional instruments will be derived from KAO and other development programs.
Optimal design and evaluation of a color separation grating using rigorous coupled wave analysis
NASA Astrophysics Data System (ADS)
Nagayoshi, Mayumi; Oka, Keiko; Klaus, Werner; Komai, Yuki; Kodate, Kashiko
2006-02-01
In recent years, the technology which separates white light into the three primary colors of Red (R), Green (G) and Blue (B) and adjusts each optical intensity and composites R, G and B to display various colors is required in the development and spread of color visual equipments. Various color separation devices have been proposed and have been put to practical use in color visual equipments. We have focused on a small and light grating-type device which has the possibility of reduction in cost and large-scale production and generates only the three primary colors of R, G and B so that a high saturation level can be obtained. To perform a rigorous analysis and design of color separation gratings, our group has developed a program that is based on the Rigorous Coupled Wave Analysis (RCWA). We then calculated the parameters to obtain a diffraction efficiency of higher than 70% and the color gamut of about 70%. We will report on the design, fabrication and evaluation of color separation gratings that have been optimized for fabrication by laser drawing.
Assessing spatiotemporal changes in forest carbon turnover times in observational data and models
NASA Astrophysics Data System (ADS)
Yu, K.; Smith, W. K.; Trugman, A. T.; van Mantgem, P.; Peng, C.; Condit, R.; Anderegg, W.
2017-12-01
Forests influence global carbon and water cycles, biophysical land-atmosphere feedbacks, and atmospheric composition. The capacity of forests to sequester atmospheric CO2 in a changing climate depends not only on the response of carbon uptake (i.e., gross primary productivity) but also on the simultaneous change in carbon residence time. However, changes in carbon residence with climate change are uncertain, impacting the accuracy of predictions of future terrestrial carbon cycle dynamics. Here, we use long-term forest inventory data representative of tropical, temperate, and boreal forests; satellite-based estimates of net primary productivity and vegetation carbon stock; and six models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to investigate spatiotemporal trends in carbon residence time and its relation to climate. Forest inventory and satellite-based estimates of carbon residence time show a pervasive decreasing trend across global forests. In contrast, the CMIP5 models diverge in predicting historical and future trends in carbon residence time. Divergence across CMIP5 models indicate carbon turnover times are not well constrained by observations, which likely contributes to large variability in future carbon cycle projections.
Wilson, Thomas S.; Bearinger, Jane P.
2017-08-29
New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.
Wilson, Thomas S.; Bearinger, Jane P.
2015-06-09
New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxyl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.
Blackberry fruit quality components, composition, and potential health benefits
USDA-ARS?s Scientific Manuscript database
Blackberries have long been a popular small fruit. Their chemical composition data was assembled for this invited book chapter. Briefly, primary and secondary metabolites important to blackberry fruit quality were summarized. Metabolites are involved in many critical aspects of fruit quality includi...
Brubaker, Linda; Litman, Heather J; Kim, Hae-Young; Zimmern, Philippe; Dyer, Keisha; Kusek, John W; Richter, Holly E; Stoddard, Anne
2015-08-01
Missing data is frequently observed in clinical trials; high rates of missing data may jeopardize trial outcome validity. We determined the rates of missing data over time, by type of data collected and compared demographic and clinical factors associated with missing data among women who participated in two large randomized clinical trials of surgery for stress urinary incontinence, the Stress Incontinence Surgical Treatment Efficacy Trial (SISTEr) and the Trial of Midurethral Sling (TOMUS). The proportions of subjects who attended and missed each follow-up visit were calculated. The chi-squared test, Fisher's exact test and t test were used to compare women with and without missing data, as well as the completeness of the data for each component of the composite primary outcome. Data completeness for the primary outcome computation in the TOMUS trial (62.3%) was nearly double that in the SISTEr trial (35.7%). The follow-up visit attendance rate decreased over time. A higher proportion of subjects attended all follow-up visits in the TOMUS trial and overall there were fewer missing data for the period that included the primary outcome assessment at 12 months. The highest levels of complete data for the composite outcome variables were for the symptoms questionnaire (SISTEr 100 %, TOMUS 99.8%) and the urinary stress test (SISTEr 96.1%, TOMUS 96.7%). In both studies, the pad test was associated with the lowest levels of complete data (SISTEr 85.1%, TOMUS 88.3%) and approximately one in ten subjects had incomplete voiding diaries at the time of primary outcome assessment. Generally, in both studies, a higher proportion of younger subjects had missing data. This analysis lacked a patient perspective as to the reasons for missing data that could have provided additional information on subject burden, motivations for adherence and study design. In addition, we were unable to compare the effects of the different primary outcome assessment time-points in an identically designed trial. Missing visits and data increased with time. Questionnaire data and physical outcome data (urinary stress test) that could be assessed during a visit were least prone to missing data, whereas data for variables that required subject effort while away from the research team (pad test, voiding diary) were more likely to be missing. Older subjects were more likely to provide complete data.
NASA Astrophysics Data System (ADS)
Neumann, Hermann; Diekmann, Rabea; Kröncke, Ingrid
2016-02-01
Analysis of ecosystem functioning is essential to describe the ecological status of ecosystems and is therefore directly requested in international directives. There is a lack of knowledge regarding functional aspects of benthic communities and their environmental and anthropogenic driving forces in the southern North Sea. This study linked functional composition of epibenthic communities to environmental conditions and fishing effort and investigated spatial correlations between habitat characteristics to gain insight into potential synergistic and/or cumulative effects. Functional composition of epifauna was assessed by using biological trait analysis (BTA), which considered 15 ecological traits of 54 species. Functional composition was related to ten predictor variables derived from sediment composition, bottom temperature and salinity, hydrodynamics, annual primary production and fishing effort. Our results revealed significantly different functional composition between the Dogger Bank, the Oyster Ground, the West and North Frisian coast. Mobility, feeding type, size and adult longevity were the most important traits differentiating the communities. A high proportion of trait modalities related to an opportunistic life mode were obvious in coastal areas especially at the West Frisian coast and in the area of the Frisian Front indicating disturbed communities. In contrast, functional composition in the Dogger Bank area indicated undisturbed communities with prevalence of large, long-lived and permanently attached species being sensitive towards disturbance such as fishing. Tidal stress, mud content of sediments, salinity, stratification and fishing effort were found to be the most important habitat characteristics shaping functional composition. Strong correlations were found between variables, especially between those which changed gradually from the coast to offshore areas including fishing effort. Unfavourable extremes of these factors in coastal areas resulted in disturbed epibenthic communities, while the relative influence of a single factor on functional composition cannot be quantified. Coastal communities seemed to be well adapted to disturbance and the prevalence of opportunistic trait modalities not necessarily revealed a poor ecological status according to the Marine Strategy Framework Directive (MSFD). The integration of functional aspects into the assessment of ecosystem health is recommended, since widely used structural measures failed in naturally disturbed habitats.
BORGES, Ana Flávia Sanches; SIMONATO, Luciana Estevam; PASCON, Fernanda Miori; KANTOWITZ, Kamila Rosamiglia; RONTANI, Regina Maria Puppin
2011-01-01
Objective The purpose of this study was to provide information regarding the marginal adaptation of composite resin onlays in primary teeth previously treated with 1% sodium hypochlorite (NaOCl) (pulp irrigant) using two different resin luting agents. Material and Methods Forty extracted sound primary molars had their crowns prepared in a standardized machine and were randomly divided into 4 groups (n=10): G1 (1% NaOCl irrigation+EnForce); G2 (EnForce); G3 (1% NaOCl irrigation+Rely X); G4 (Rely X). The onlays were made with Z250 composite resin on plaster models. After luting, the tooth/restoration set was stored in 100% relative humidity at 37ºC for 24 h and finished with Soflex discs. Caries Detector solution was applied at the tooth/restoration interface for 5 s. The specimens were washed and four digital photos of each tooth were then taken. The extents of the gaps were measured with Image Tool 3.0 software. The percentage data were submitted to a Kruskal-Wallis test (α=0.05). The Relative Risk test analyzed the chance of a gap presence correlated to each group. Results There were no statistically significant differences (p>0.05) among the groups. The relative risk test revealed that some groups were more apt to have a presence of gaps than others. Conclusion Neither the 1% NaOCl treatment nor the resin luting agents caused any alterations in the dental substrate that could have influenced the marginal adaptation of composite onlays in primary teeth. PMID:21986649
Bio inspired Magnet-polymer (Magpol) actuators
NASA Astrophysics Data System (ADS)
Ahmed, Anansa S.; Ramanujan, R. V.
2014-03-01
Magnet filler-polymer matrix composites (Magpol) are an emerging class of morphing materials. Magpol composites have an interesting ability to undergo large strains in response to an external magnetic field. The potential to develop Magpol as large strain actuators is due to the ability to incorporate large particle loading into the composite and also due to the increased interaction area at the interface of the nanoparticles and the composite. Mn-Zn ferrite fillers with different saturation magnetizations (Ms) were synthesized. Magpol composites consisting of magnetic ferrite filler particles in an Poly ethylene vinyl acetate (EVA) matrix were prepared. The deformation characteristics of the actuator were determined. The morphing ability of the Magpol composite was studied under different magnetic fields and also with different filler loadings. All films exhibited large strain under the applied magnetic field. The maximum strain of the composite showed an exponential dependence on the Ms. The work output of Magpol was also calculated using the work loop method. Work densities of upto 1 kJ/m3 were obtained which can be compared to polypyrrole actuators, but with almost double the typical strain. Applications of Magpol can include artificial muscles, drug delivery, adaptive optics and self healing structures. Advantages of Magpol include remote contactless actuation, high actuation strain and strain rate and quick response.
NASA Astrophysics Data System (ADS)
Wu, Yanhui; Han, Mangui; Liu, Tao; Deng, Longjiang
2015-07-01
The effective permittivity of composites containing Fe-Cu-Nb-Si-B nanocrystalline micro flakes has been studied within 0.5-10 GHz. Obvious differences in microwave permittivity have been observed for composites consisting of large flakes (size range: 23-111 μm, average thickness: 4.5 μm) and small flakes (size range: 3-21 μm, average thickness: 1.3 μm). Both the real part and imaginary part of permittivity of large flake composite are much larger than these small one in a given frequency. And faster decrease of permittivity with the increasing frequency can be observed for large flake composite than that of small one. These differences in permittivity spectra of different flakes have been explained from the perspective of interfacial polarization and ac conductivity. The assumption that more extensive ohmic contact interface between large flakes and matrix has been validated by the fittings and the calculated percolation threshold. Meanwhile, the permeability spectra of both composites also have been studied by Lorentzian dispersion law. The broadened spectra can be attributed to the distribution of magnetic anisotropy fields of two kinds of ferromagnetic phases in the particles. Finally, the composite containing the small flakes exhibits better electromagnetic wave absorption properties.
The SDSS-III Multi-object Apo Radial-velocity Exoplanet Large-area Survey
NASA Astrophysics Data System (ADS)
Ge, Jian; Mahadevan, S.; Lee, B.; Wan, X.; Zhao, B.; van Eyken, J.; Kane, S.; Guo, P.; Ford, E. B.; Agol, E.; Gaudi, S.; Fleming, S.; Crepp, J.; Cohen, R.; Groot, J.; Galvez, M.; Liu, J.; Ford, H.; Schneider, D.; Seager, S.; Hawley, S. L.; Weinberg, D.; Eisenstein, D.
2007-12-01
As part of SDSS-III survey in 2008-2014, the Multi-object APO Radial-Velocity Exoplanet Large-area Survey (MARVELS) will conduct the largest ground-based Doppler planet survey to date using the SDSS telescope and new generation multi-object Doppler instruments with 120 object capability and 10-20 m/s Doppler precision. The baseline survey plan is to monitor a total of 11,000 V=8-12 stars ( 10,000 main sequence stars and 1000 giant stars) over 800 square degrees over the 6 years. The primary goal is to produce a large, statistically well defined sample of giant planets ( 200) with a wide range of masses ( 0.2-10 Jupiter masses) and orbits (1 day-2 years) drawn from a large of host stars with a diverse set of masses, compositions, and ages for studying the diversity of extrasolar planets and constraining planet formation, migration & dynamical evolution of planetary systems. The survey data will also be used for providing a statistical sample for theoretical comparison and discovering rare systems and identifying signposts for lower-mass or more distant planets. Early science results from the pilot program will be reported. We would like to thank the SDSS MC for allocation of the telescope time and the W.M. Keck Foundation, NSF, NASA and UF for support.
Characterization of the KOI-273 Planetary System with HARPS-N
NASA Astrophysics Data System (ADS)
Gettel, Sara; Charbonneau, David; Harps-N Collaboration
2015-01-01
The NASA Kepler mission detected thousands of planets with radii between 1 and 3 Earth radii, a population with no analog in our own solar system. The composition of these objects is not yet well understood; some of these may be planets that are predominantly rocky and others may be planets with a large fractional composition of volatiles or a substantial hydrogen envelope. There are only seven planets smaller than 2.5 Re with published mass estimates with a precision better than 20%, the minimum required to distinguish between different compositional models.HARPS-N is an ultra-stable, fiber-fed, high-resolution spectrograph optimized for the measurement of very precise radial velocities. A primary goal of the HARPS-N collaboration is to measure precisely the masses of small transiting planets and so constrain their individual compositions.KOI-273 is a solar-like star (Teff = 5783, log(g) = 4.43, V = 11.68) with a 1.8 Earth-radius planet candidate in a 10.5-d orbit. During the 2014 Kepler observing season, we obtained 50 observations of this star, with a median photon-limited radial velocity precision of 1.9 m/s. Our data indicated the presence of an outer, massive companion. We present the orbital solution of this system and measure the bulk density and inferred composition of the inner planet.HARPS-N was funded by the Swiss Space Office, the Harvard Origin of Life Initiative, the Scottish Universities Physics Alliance, the University of Geneva, the Smithsonian Astrophysical Observatory, and the Italian National Astrophysical Institute, University of St. Andrews, Queens University Belfast, and University of Edinburgh. This work was made possible through a grant from the John Templeton Foundation.
Sharp, Koty H; Pratte, Zoe A; Kerwin, Allison H; Rotjan, Randi D; Stewart, Frank J
2017-09-15
Understanding the associations among corals, their photosynthetic zooxanthella symbionts (Symbiodinium), and coral-associated prokaryotic microbiomes is critical for predicting the fidelity and strength of coral symbioses in the face of growing environmental threats. Most coral-microbiome associations are beneficial, yet the mechanisms that determine the composition of the coral microbiome remain largely unknown. Here, we characterized microbiome diversity in the temperate, facultatively symbiotic coral Astrangia poculata at four seasonal time points near the northernmost limit of the species range. The facultative nature of this system allowed us to test seasonal influence and symbiotic state (Symbiodinium density in the coral) on microbiome community composition. Change in season had a strong effect on A. poculata microbiome composition. The seasonal shift was greatest upon the winter to spring transition, during which time A. poculata microbiome composition became more similar among host individuals. Within each of the four seasons, microbiome composition differed significantly from that of surrounding seawater but was surprisingly uniform between symbiotic and aposymbiotic corals, even in summer, when differences in Symbiodinium density between brown and white colonies are the highest, indicating that the observed seasonal shifts are not likely due to fluctuations in Symbiodinium density. Our results suggest that symbiotic state may not be a primary driver of coral microbial community organization in A. poculata, which is a surprise given the long-held assumption that excess photosynthate is of importance to coral-associated microbes. Rather, other environmental or host factors, in this case, seasonal changes in host physiology associated with winter quiescence, may drive microbiome diversity. Additional studies of A. poculata and other facultatively symbiotic corals will provide important comparisons to studies of reef-building tropical corals and therefore help to identify basic principles of coral microbiome assembly, as well as functional relationships among holobiont members.
NASA Astrophysics Data System (ADS)
Tesi, Tommaso; Geibel, Marc C.; Pearce, Christof; Panova, Elena; Vonk, Jorien E.; Karlsson, Emma; Salvado, Joan A.; Kruså, Martin; Bröder, Lisa; Humborg, Christoph; Semiletov, Igor; Gustafsson, Örjan
2017-09-01
Recent Arctic studies suggest that sea ice decline and permafrost thawing will affect phytoplankton dynamics and stimulate heterotrophic communities. However, in what way the plankton composition will change as the warming proceeds remains elusive. Here we investigate the chemical signature of the plankton-dominated fraction of particulate organic matter (POM) collected along the Siberian Shelf. POM (> 10 µm) samples were analysed using molecular biomarkers (CuO oxidation and IP25) and dual-carbon isotopes (δ13C and Δ14C). In addition, surface water chemical properties were integrated with the POM (> 10 µm) dataset to understand the link between plankton composition and environmental conditions. δ13C and Δ14C exhibited a large variability in the POM (> 10 µm) distribution while the content of terrestrial biomarkers in the POM was negligible. In the Laptev Sea (LS), δ13C and Δ14C of POM (> 10 µm) suggested a heterotrophic environment in which dissolved organic carbon (DOC) from the Lena River was the primary source of metabolisable carbon. Within the Lena plume, terrestrial DOC probably became part of the food web via bacteria uptake and subsequently transferred to relatively other heterotrophic communities (e.g. dinoflagellates). Moving eastwards toward the sea-ice-dominated East Siberian Sea (ESS), the system became progressively more autotrophic. Comparison between δ13C of POM (> 10 µm) samples and CO2aq concentrations revealed that the carbon isotope fractionation increased moving towards the easternmost and most productive stations. In a warming scenario characterised by enhanced terrestrial DOC release (thawing permafrost) and progressive sea ice decline, heterotrophic conditions might persist in the LS while the nutrient-rich Pacific inflow will likely stimulate greater primary productivity in the ESS. The contrasting trophic conditions will result in a sharp gradient in δ13C between the LS and ESS, similar to what is documented in our semi-synoptic study.
NASA Astrophysics Data System (ADS)
Foster, I. S.; Agranier, A.; Heubeck, C. E.; Köhler, I.; Homann, M.; Tripati, A. K.; Nonnotte, P.; Ponzevera, E.; Lalonde, S.
2017-12-01
The emergence of continental crust above sea level in the early Precambrian would have created the first terrestrial habitats, and initiated atmosphere-driven weathering of the continents, yet the history of continental emergence is largely unknown[1]. Precambrian chemical sediments, specifically Banded Iron Formation (BIF), appear to have sampled the Hf-Nd isotope composition of ancient seawater, and may preserve a historical record of the emergence of the continental landmass[2] via Lu/Hf fractionation induced by subaerial differential weathering[3,4]. However, paired Hf-Nd isotope data are available for only one BIF to date, indicating appreciable emerged continental landmass ca. 2.7 Ga[2]. Our work extends this record back into the Eo- and Meso-Archean using samples of 3.8 Ga BIF from Isua, Greenland, and 3.2 Ga BIF from the Moodies Group, S. Africa. Isua samples appear to have been altered by amphibolite-grade metamorphism, however Moodies Group samples appear primary, having experienced significantly lower metamorphic grades. Moodies samples appear to retain their primary seawater signatures, however, their range of ˜Hf(i) values, from -54.6 to +40.7, is among the most extreme ever reported. Such extreme values may be indicative of one of several possibilities: unusual and intense sedimentary Lu/Hf fractionation during the Mesoarchean relative to today, sampling of a continuum of compositions from two sources with distinct Hf-compositions, or the result of early diagenetic processes occurring soon after the deposition of the Moodies Group BIF. These results suggest that interpretation of ˜Hf and ˜Nd data from BIF is not as straightforward as previously suggested[2], and positive ˜Hf values are not necessarily indicative of emerged continental crust. [1] Flament et al. (2013), Precambrian Research, 229, 177-188. [2] Veihmann et al. (2014), Geology, 42, 115-118. [3] Bayon et al. (2006), Geology, 34, 433-436. [4] Vervoort et al. (2011), Geochimica et Cosmochimica Acta, 75, 5903-5926.
NASA Astrophysics Data System (ADS)
Gomes, M. L.; Fike, D. A.; Bergmann, K.; Knoll, A. H.
2015-12-01
Sulfur (S) isotope signatures of sedimentary pyrite preserved in marine rocks provide a rich suite of information about changes in biogeochemical cycling associated with the evolution of microbial metabolisms and oxygenation of Earth surface environments. Conventionally, these S isotope records are based on bulk rock measurements. Yet, in modern microbial mat environments, S isotope compositions of sulfide can vary by up to 40‰ over a spatial range of ~ 1 mm. Similar ranges of S isotope variability have been found in Archean pyrite grains using both Secondary Ion Mass Spectrometry and other micro-analytical techniques. These micron-scale patterns have been linked to changes in rates of microbial sulfate reduction and/or sulfide oxidation, isotopic distillation of the sulfate reservoir due to microbial sulfate reduction, and post-depositional alteration. Fine-scale mapping of S isotope compositions of pyrite can thus be used to differentiate primary environmental signals from post-depositional overprinting - improving our understanding of both. Here, we examine micron-scale S isotope patterns of pyrite in microbialites from the Mesoproterozoic-Neoproterozoic Sukhaya Tunguska Formation and Neoproterozoic Draken Formation in order to explore S isotope variability associated with different mat textures and pyrite grain morphologies. A primary goal is to link modern observations of how sulfide spatial isotope distributions reflect active microbial communities present at given depths in the mats to ancient processes driving fine-sale pyrite variability in microbialites. We find large (up to 60‰) S isotope variability within a spatial range of less than 2.5cm. The micron-scale S isotope measurements converge around the S isotope composition of pyrite extracted from bulk samples of the same microbialites. These micron-scale pyrite S isotope patterns have the potential to reveal important information about ancient biogeochemical cycling in Proterozoic mat environments with implications for interpreting S isotope signatures from the geological record.
Tuttle, M.L.W.; Breit, G.N.
2009-01-01
Comprehensive understanding of chemical and mineralogical changes induced by weathering is valuable information when considering the supply of nutrients and toxic elements from rocks. Here minerals that release and fix major elements during progressive weathering of a bed of Devonian New Albany Shale in eastern Kentucky are documented. Samples were collected from unweathered core (parent shale) and across an outcrop excavated into a hillside 40 year prior to sampling. Quantitative X-ray diffraction mineralogical data record progressive shale alteration across the outcrop. Mineral compositional changes reflect subtle alteration processes such as incongruent dissolution and cation exchange. Altered primary minerals include K-feldspars, plagioclase, calcite, pyrite, and chlorite. Secondary minerals include jarosite, gypsum, goethite, amorphous Fe(III) oxides and Fe(II)-Al sulfate salt (efflorescence). The mineralogy in weathered shale defines four weathered intervals on the outcrop-Zones A-C and soil. Alteration of the weakly weathered shale (Zone A) is attributed to the 40-a exposure of the shale. In this zone, pyrite oxidization produces acid that dissolves calcite and attacks chlorite, forming gypsum, jarosite, and minor efflorescent salt. The pre-excavation, active weathering front (Zone B) is where complete pyrite oxidation and alteration of feldspar and organic matter result in increased permeability. Acidic weathering solutions seep through the permeable shale and evaporate on the surface forming abundant efflorescent salt, jarosite and minor goethite. Intensely weathered shale (Zone C) is depleted in feldspars, chlorite, gypsum, jarosite and efflorescent salts, but has retained much of its primary quartz, illite and illite-smectite. Goethite and amorphous FE(III) oxides increase due to hydrolysis of jarosite. Enhanced permeability in this zone is due to a 14% loss of the original mass in parent shale. Denudation rates suggest that characteristics of Zone C were acquired over 1 Ma. Compositional differences between soil and Zone C are largely attributed to illuvial processes, formation of additional Fe(III) oxides and incorporation of modern organic matter.
Mechanical property characterization of intraply hybrid composites
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Lark, R. F.; Sinclair, J. H.
1979-01-01
An investigation was conducted to characterize the mechanical properties of intraply hybrids made from graphite fiber/epoxy matrix (primary composites) hybridized with varying amounts of secondary composites made from S-glass or Kevlar 49 fibers. The tests were conducted using thin laminates having the same thickness. The specimens for these tests were instrumented with strain gages to determine stress-strain behavior. Significant results are included.
Damage Tolerance Characterisitics of Composite Sandwich Structures
2000-02-01
requirements impose strict test program is devised and carried out, with hundreds of tests at constraints on the design of composite aircraft... design A particular effort was dedicated to the study of delamination methodologies, as well as static and fatigue strength and growth under...partition according to the theoretical tools, the industries are more or less forced, for the fundamental modes. design of primary composite structures
Advanced technology composite aircraft structures
NASA Technical Reports Server (NTRS)
Ilcewicz, Larry B.; Walker, Thomas H.
1991-01-01
Work performed during the 25th month on NAS1-18889, Advanced Technology Composite Aircraft Structures, is summarized. The main objective of this program is to develop an integrated technology and demonstrate a confidence level that permits the cost- and weight-effective use of advanced composite materials in primary structures of future aircraft with the emphasis on pressurized fuselages. The period from 1-31 May 1991 is covered.
Sedimentary organic molecules: Origins and information content
NASA Technical Reports Server (NTRS)
Hayes, J. M.; Freeman, K. H.
1991-01-01
To progress in the study of organic geochemistry, we must dissect the processes controlling the composition of sedimentary organic matter. Structurally, this has proven difficult. Individual biomarkers can often be recognized, but their contribution to total organic materials is small, and their presence does not imply that their biochemical cell mates have survived. We are finding, however, that a combination of structural and isotopic lines of evidence provides new information. A starting point is provided by the isotopic compositions of primary products (degradation products of chlorophylls, alkenones derived from coccoliths). We find strong evidence that the isotopic difference between primary carbonate and algal organic material can be interpreted in terms of the concentration of dissolved CO2. Moreover, the isotopic difference between primary and total organic carbon can be interpreted in terms of characteristic isotopic shifts imposed by secondary processes (responsive, for example, to O2 levels in the depositional environment. In favorable cases, isotopic compositions of a variety of secondary products can be interpreted in terms of flows of carbon, and, therefore, in terms of specific processes and environmental conditions within the depositional environment.
Seymour, Jane W; Polsky, Daniel E; Brown, Elizabeth J; Barbu, Corentin M; Grande, David
2017-07-01
Racial minorities are more likely to live in primary care shortage areas. We sought to understand community health centers' (CHCs) role in reducing disparities. We surveyed all primary care practices in an urban area, identified low access areas, and examined how CHCs influence spatial accessibility. Census tracts with higher rates of public insurance (≥40% vs <10%, odds ratio [OR] = 31.06, P < .001; 30-39% vs 10%, OR = 7.84, P = 0.001) were more likely to be near a CHC and those with moderate rates of uninsurance (10%-19% vs <10%, OR = 0.42, P = .045) were less likely. Racial composition was not associated with proximity. Tracts close to a CHC were less likely (OR = 0.11, P < .0001) to be in a low access area. This association did not differ based on racial composition. Although CHCs were more likely to be in areas with a greater fraction of racial minorities, location was more strongly influenced by public insurance rates. CHCs reduced the likelihood of being in low access areas but the effect did not vary by tract racial composition.
Primary School Councils: Organization, Composition and Head Teacher Perceptions and Values
ERIC Educational Resources Information Center
Burnitt, Michael; Gunter, Helen
2013-01-01
School councils have been an integral part of primary school life for the last decade and, despite not being mandatory in England, they are now to be found in the vast majority of primary schools. This research article aims to examine the current position of school councils in terms of their organization, the issues they address and the views held…
NASA Astrophysics Data System (ADS)
Lee, Jinseong; Hahnkee Kim, Richard; Yu, Seunggun; Babu Velusamy, Dhinesh; Lee, Hyeokjung; Park, Chanho; Cho, Suk Man; Jeong, Beomjin; Sol Kang, Han; Park, Cheolmin
2017-12-01
Liquid-phase exfoliation (LPE) of transition metal dichalcogenide (TMD) nanosheets is a facile, cost-effective approach to large-area photoelectric devices including photodetectors and non-volatile memories. Non-destructive exfoliation of nanosheets using macromolecular dispersing agents is beneficial in rendering the TMD nanocomposite films suitable for mechanically flexible devices. Here, an efficient LPE of molybdenum disulfide (MoS2) with an amine modified poly(styrene-co-maleic anhydride) co-polymer (AM-PSMA) is demonstrated, wherein the maleic anhydrides were converted into maleic imides with primary amines using N-Boc-(CH2) n -NH2. The exfoliation of nanosheets was facilitated through Lewis acid-base interaction between the primary amine and transition metal. The results demonstrate that the exfoliation depends upon both the fraction of primary amines in the polymer chain and their distance from the polymer backbone. Under optimized conditions of primary amine content and its distance from the backbone, AM-PSMA gave rise to a highly concentrated MoS2 nanosheet suspension that was stable for over 10 d. Exfoliation of several other TMDs was also achieved using the optimized AM-PSMA, indicating the scope of AM-PSMA applications. Furthermore, a flexible composite film of AM-PSMA and MoS2 nanosheets fabricated by vacuum-assisted filtration showed excellent photoconductive performances including a high I on/I off ratio of 102 and a fast photocurrent switching of 300 ms.
Piezoelectric Characteristics of Chiral Polymer Composite Films Obtained under Strong Magnetic Field
NASA Astrophysics Data System (ADS)
Nakiri, Takuo; Okuno, Masaki; Maki, Nobuyuki; Kanasaki, Masayoshi; Morimoto, Yu; Okamoto, Satoshi; Ishizuka, Masayuki; Fukuda, Kazuyuki; Takaki, Toshihiko; Tajitsu, Yoshiro
2005-09-01
It is difficult to obtain a drawn chiral polymer/inorganic material composite membrane with shear piezoelectricity by the conventional method because the chiral polymer/inorganic material composite membrane breaks during the drawing process by which shear piezoelectricity is realized. Using a strong magnetic field, we propose to manufacture a drawn composite membrane of poly-l-lactic acid (PLLA), a chiral polymer, and hydroxyapatite (Hap), an inoroganic material (PLLA/Hap composite membrane). The manufacturing method used here is effective for obtaining a drawn PLLA/Hap composite membrane with a large uniform area. Also, the shear piezoelectric constant of the drawn PLLA/Hap composite membrane is about 20 pC/N. This value is large for piezoelectric polymers.
Lee, Pil Hyung; Kang, Se Hun; Han, Seungbong; Ahn, Jung-Min; Bae, Jae Seok; Lee, Cheol Hyun; Kang, Soo-Jin; Lee, Seung-Whan; Kim, Young-Hak; Lee, Cheol Whan; Park, Seong-Wook; Park, Duk-Woo; Park, Seung-Jung
2017-12-01
The aim of this study was to determine how trial-based findings of EXCEL and NOBLE might be interpreted and generalizable in 'real-world' settings with comparison of data from the large-scaled, all-comer Interventional Research Incorporation Society-Left MAIN Revascularization (IRIS-MAIN) registry. We compared baseline clinical and procedural characteristics and also determined how the relative treatment effect of percutaneous coronary intervention (PCI) and coronary artery bypass grafting (CABG) was different in EXCEL and NOBLE, compared with those of the multicenter, IRIS-MAIN registry (n=2481). The primary outcome for between-study comparison was a composite of death, myocardial infarction (MI), or stroke. There were between-study differences in patient risk profiles (age, BMI, diabetes, and clinical presentation), lesion complexities, and procedural characteristics (stent type, the use of off-pump surgery, and radial artery); the proportion of diabetes and acute coronary syndrome was particularly lower in NOBLE than in other studies. Although there was interstudy heterogeneity for the protocol definition of MI, the risks for serious composite outcome of death, MI, or stroke were similar between PCI and CABG in EXCEL [hazard ratio (HR): 1.00; 95% confidence interval (CI): 0.79-1.26; P=0.98] and in the matched cohort of IRIS-MAIN (HR: 1.08; 95%CI: 0.85-1.38; P=0.53), whereas it was significantly higher after PCI than after CABG in NOBLE (HR: 1.47; 95%CI: 1.06-2.05; P=0.02), which was driven by more common MI and stroke after PCI. In the comparison of a large-sized, all-comer registry, the EXCEL trial might represent better generalizability with respect to baseline characteristics and observed clinical outcomes compared with the NOBLE trial.
Billard, Hélène; Simon, Laure; Desnots, Emmanuelle; Sochard, Agnès; Boscher, Cécile; Riaublanc, Alain; Alexandre-Gouabau, Marie-Cécile; Boquien, Clair-Yves
2016-08-01
Human milk composition analysis seems essential to adapt human milk fortification for preterm neonates. The Miris human milk analyzer (HMA), based on mid-infrared methodology, is convenient for a unique determination of macronutrients. However, HMA measurements are not totally comparable with reference methods (RMs). The primary aim of this study was to compare HMA results with results from biochemical RMs for a large range of protein, fat, and carbohydrate contents and to establish a calibration adjustment. Human milk was fractionated in protein, fat, and skim milk by covering large ranges of protein (0-3 g/100 mL), fat (0-8 g/100 mL), and carbohydrate (5-8 g/100 mL). For each macronutrient, a calibration curve was plotted by linear regression using measurements obtained using HMA and RMs. For fat, 53 measurements were performed, and the linear regression equation was HMA = 0.79RM + 0.28 (R(2) = 0.92). For true protein (29 measurements), the linear regression equation was HMA = 0.9RM + 0.23 (R(2) = 0.98). For carbohydrate (15 measurements), the linear regression equation was HMA = 0.59RM + 1.86 (R(2) = 0.95). A homogenization step with a disruptor coupled to a sonication step was necessary to obtain better accuracy of the measurements. Good repeatability (coefficient of variation < 7%) and reproducibility (coefficient of variation < 17%) were obtained after calibration adjustment. New calibration curves were developed for the Miris HMA, allowing accurate measurements in large ranges of macronutrient content. This is necessary for reliable use of this device in individualizing nutrition for preterm newborns. © The Author(s) 2015.
Composite Structural Materials
NASA Technical Reports Server (NTRS)
Ansell, G. S.; Loewy, R. G.; Wiberly, S. E.
1984-01-01
The development and application of filamentary composite materials, is considered. Such interest is based on the possibility of using relatively brittle materials with high modulus, high strength, but low density in composites with good durability and high tolerance to damage. Fiber reinforced composite materials of this kind offer substantially improved performance and potentially lower costs for aerospace hardware. Much progress has been made since the initial developments in the mid 1960's. There were only limited applied to the primary structure of operational vehicles, mainly as aircrafts.
Chen, Pengcheng; Shu, Xuewen; Cao, Haoran; Sugden, Kate
2017-08-15
Most sensors face a common trade-off between high sensitivity and a large dynamic range. We demonstrate here an all-fiber refractometer based on a dual-cavity Fabry-Perot interferometer (FPI) that possesses the advantage of both high sensitivity and a large dynamic range. Since the two composite cavities have a large cavity length difference, one can observe both fine and coarse fringes, which correspond to the long cavity and the short cavity, respectively. The short-cavity FPI and the use of an intensity demodulation method mean that the individual fine fringe dips correspond to a series of quasi-continuous highly sensitive zones for refractive index measurement. By calculating the parameters of the composite FPI, we find that the range of the ultra-sensitive zones can be considerably adjusted to suit the end requirements. The experimental trends are in good agreement with the theoretical predictions. The co-existence of high sensitivity and a large dynamic range in a composite FPI is of great significance to practical RI measurements.
Drappier, Julie; Thibon, Cécile; Rabot, Amélie; Geny-Denis, Laurence
2017-10-24
Weather conditions throughout the year have a greater influence than other factors (such as soil and cultivars) on grapevine development and berry composition. Temperature affects gene expression and enzymatic activity of primary and secondary metabolism which determine grape ripening and wine characteristics. In the context of the climate change, temperatures will probably rise between 0.3°C and 1.7°C over the next 20 years. They are already rising and the physiology of grapevines is already changing. These modifications exert a profound shift in primary (sugar and organic acid balance) and secondary (phenolic and aromatic compounds) berry metabolisms and the resulting composition of wine. For example, some Bordeaux wines have a tendency toward reduced freshness and a modification of their ruby color. In this context it is necessary to understand the impact of higher temperatures on grape development, harvest procedures, and wine composition in order to preserve the typicity of the wines and to adapt winemaking processes.
A Review of the NASA Textile Composites Research
NASA Technical Reports Server (NTRS)
Poe, C. C., Jr.; Dexter, H. B.; Raju, I. S.
1997-01-01
During the past 15 years NASA has taken the lead role in exploiting the benefits of textile reinforced composite materials for application to aircraft structures. The NASA Advanced Composites Technology (ACT) program was started in 1989 to develop composite primary structures for commercial transport airplanes with costs that are competitive with metal structures. As part of this program, several contractors investigated the cost, weight, and performance attributes of textile reinforced composites. Textile composites made using resin transfer molding type processes were evaluated for numerous applications. Methods were also developed to predict resin infiltration and flow in textile preforms and to predict and measure mechanical properties of the textile composites. This paper describes the salient results of that program.
Bansilal, Sameer; Vedanthan, Rajesh; Kovacic, Jason C; Soto, Ana Victoria; Latina, Jacqueline; Björkegren, Johan L M; Jaslow, Risa; Santana, Maribel; Sartori, Samantha; Giannarelli, Chiara; Mani, Venkatesh; Hajjar, Roger; Schadt, Eric; Kasarskis, Andrew; Fayad, Zahi A; Fuster, Valentin
2017-05-01
The 2020 American Heart Association Impact Goal aims to improve cardiovascular health of all Americans by 20% while reducing deaths from cardiovascular disease and stroke by 20%. A large step toward this goal would be to better understand and take advantage of the significant intersection between behavior and biology across the entire life-span. In the proposed FAMILIA studies, we aim to directly address this major knowledge and clinical health gap by implementing an integrated family-centric health promotion intervention and focusing on the intersection of environment and behavior, while understanding the genetic and biologic basis of cardiovascular disease. We plan to recruit 600 preschool children and their 600 parents or caregivers from 12-15 Head Start schools in Harlem, NY, and perform a 2:1 (2 intervention/1 control) cluster randomization of the schools. The preschool children will receive our intensive 37-hour educational program as the intervention for 4 months. For the adults, those in the "intervention" group will be randomly assigned to 1 of 2 intervention programs: an "individual-focused" or "peer-to-peer based." The primary outcome in children will be a composite score of knowledge (K), attitudes (A), habits (H), related to body mass index Z score (B), exercise (E), and alimentation (A) (KAH-BEA), using questionnaires and anthropometric measurements. For adults, the primary outcome will be a composite score for behaviors/outcomes related to blood pressure, exercise, weight, alimentation (diet) and tobacco (smoking; Fuster-BEWAT score). Saliva will be collected from the children for SNP genotyping, and blood will be collected from adults for RNA sequencing to identify network models and predictors of primary prevention outcomes. The FAMILIA studies seek to demonstrate that targeting a younger age group (3-5 years) and using a family-based approach may be a critical strategy in promoting cardiovascular health across the life-span. Copyright © 2017 Elsevier Inc. All rights reserved.
Research on graphite reinforced glass matrix composites
NASA Technical Reports Server (NTRS)
Prewo, K. M.; Thompson, E. R.
1981-01-01
A broad group of fibers and matrices were combined to create a wide range of composite properties. Primary material fabrication procedures were developed which readily permit the fabrication of flat plate and shaped composites. Composite mechanical properties were measured under a wide range of test conditions. Tensile, flexure mechanical fatigue, thermal fatigue, fracture toughness, and fatigue crack growth resistance were evaluated. Selected fiber-matrix combinations were shown to maintain their strength at up to 1300 K when tested in an inert atmosphere. Composite high temperature mechanical properties were shown to be limited primarily by the oxidation resistance of the graphite fibers. Composite thermal dimensional stability was measured and found to be excellent.
Local source impacts on primary and secondary aerosols in the Midwestern United States
NASA Astrophysics Data System (ADS)
Jayarathne, Thilina; Rathnayake, Chathurika M.; Stone, Elizabeth A.
2016-04-01
Atmospheric particulate matter (PM) exhibits heterogeneity in composition across urban areas, leading to poor representation of outdoor air pollutants in human exposure assessments. To examine heterogeneity in PM composition and sources across an urban area, fine particulate matter samples (PM2.5) were chemically profiled in Iowa City, IA from 25 August to 10 November 2011 at two monitoring stations. The urban site is the federal reference monitoring (FRM) station in the city center and the peri-urban site is located 8.0 km to the west on the city edge. Measurements of PM2.5 carbonaceous aerosol, inorganic ions, molecular markers for primary sources, and secondary organic aerosol (SOA) tracers were used to assess statistical differences in composition and sources across the two sites. PM2.5 mass ranged from 3 to 26 μg m-3 during this period, averaging 11.2 ± 4.9 μg m-3 (n = 71). Major components of PM2.5 at the urban site included organic carbon (OC; 22%), ammonium (14%), sulfate (13%), nitrate (7%), calcium (2.9%), and elemental carbon (EC; 2.2%). Periods of elevated PM were driven by increases in ammonium, sulfate, and SOA tracers that coincided with hot and dry conditions and southerly winds. Chemical mass balance (CMB) modeling was used to apportion OC to primary sources; biomass burning, vegetative detritus, diesel engines, and gasoline engines accounted for 28% of OC at the urban site and 24% of OC at the peri-urban site. Secondary organic carbon from isoprene and monoterpene SOA accounted for an additional 13% and 6% of OC at the urban and peri-urban sites, respectively. Differences in biogenic SOA across the two sites were associated with enhanced combustion activities in the urban area and higher aerosol acidity at the urban site. Major PM constituents (e.g., OC, ammonium, sulfate) were generally well-represented by a single monitoring station, indicating a regional source influence. Meanwhile, nitrate, biomass burning, food cooking, suspended dust, and biogenic SOA were not well-represented by a single site and demonstrated local influences. For isoprene SOA, product distributions indicated a larger role for the high-NOx pathway at the urban site. These local sources are largely responsible for differences in population exposures to outdoor PM in the study domain located within the Midwestern US.
Guyonnet, Julien P; Vautrin, Florian; Meiffren, Guillaume; Labois, Clément; Cantarel, Amélie A M; Michalet, Serge; Comte, Gilles; Haichar, Feth El Zahar
2017-04-01
The aim of this study was to determine (i) whether plant nutritional strategy affects the composition of primary metabolites exuded into the rhizosphere and (ii) the impact of exuded metabolites on denitrification activity in soil. We answered this question by analysing primary metabolite content extracted from the root-adhering soil (RAS) and the roots of three grasses representing different nutrient management strategies: conservative (Festuca paniculata), intermediate (Bromus erectus) and exploitative (Dactylis glomerata). We also investigated the impact of primary metabolites on soil microbial denitrification enzyme activity without carbon addition, comparing for each plant RAS and bulk soils. Our data show that plant nutritional strategy impacts on primary metabolite composition of root extracts or RAS. Further we show, for the first time, that RAS-extracted primary metabolites are probably better indicators to explain plant nutrient strategy than root-extracted ones. In addition, our results show that some primary metabolites present in the RAS were well correlated with soil microbial denitrification activity with positive relationships found between denitrification and the presence of some organic acids and negative ones with the presence of xylose. We demonstrated that the analysis of primary metabolites extracted from the RAS is probably more pertinent to evaluate the impact of plant on soil microbial community functioning. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Tomilenko, A. A.; Kuzmin, D. V.; Bulbak, T. A.; Timina, T. Yu.; Sobolev, N. V.
2015-11-01
The primary fluid and melt inclusions in regenerated zonal crystals of olivine from kimberlites of the Malokuonapskaya pipe were first examined by means of microthermometry, optic and scanning electron microscopy, and Raman spectroscopy. The high-pressure genesis of homogenous central parts of the olivines was revealed, probably under intense metasomatism at early hypogene stages with subsequent regeneration in the kimberlitic melt. The olivine crystals were regenerated from silicate-carbonate melts at about 1100°C. The composition of the kimberlitic melt was changed by way of an increase in the calcium content.
James, O.B.; Floss, C.; McGee, J.J.
2002-01-01
We present results of a secondary ion mass spectrometry study of the rare earth elements (REEs) in the minerals of two samples of lunar ferroan anorthosite, and the results are applicable to studies of REEs in all igneous rocks, no matter what their planet of origin. Our pyroxene analyses are used to determine solid-solid REE distribution coefficients (D = CREE in low-Ca pyroxene/CREE in augite) in orthopyroxene-augite pairs derived by inversion of pigeonite. Our data and predictions from crystal-chemical considerations indicate that as primary pigeonite inverts to orthopyroxene plus augite and subsolidus reequilibration proceeds, the solid-solid Ds for orthopyroxene-augite pairs progressively decrease for all REEs; the decrease is greatest for the LREEs. The REE pattern of solid-solid Ds for inversion-derived pyroxene pairs is close to a straight line for Sm-Lu and turns upward for REEs lighter than Sm; the shape of this pattern is predicted by the shapes of the REE patterns for the individual minerals. Equilibrium liquids calculated for one sample from the compositions of primary phases, using measured or experimentally determined solid-liquid Ds, have chondrite-normalized REE patterns that are very slightly enriched in LREEs. The plagioclase equilibrium liquid is overall less rich in REEs than pyroxene equilibrium liquids, and the discrepancy probably arises because the calculated plagioclase equilibrium liquid represents a liquid earlier in the fractionation sequence than the pyroxene equilibrium liquids. "Equilibrium" liquids calculated from the compositions of inversion-derived pyroxenes or orthopyroxene derived by reaction of olivine are LREE depleted (in some cases substantially) in comparison with equilibrium liquids calculated from the compositions of primary phases. These discrepancies arise because the inversion-derived and reaction-derived pyroxenes did not crystallize directly from liquid, and the use of solid-liquid Ds is inappropriate. The LREE depletion of the calculated liquids is a relic of formation of these phases from primary LREE-depleted minerals. Thus, if one attempts to calculate the compositions of equilibrium liquids from pyroxene compositions, it is important to establish that the pyroxenes are primary. In addition, our data suggest that experimental studies have underestimated solid-liquid Ds for REEs in pigeonite and that REE contents of liquids calculated using these Ds are overestimates. Our results have implications for Sm-Nd age studies. Our work shows that if pigeonite inversion and/or subsolidus reequilibration between augite and orthopyroxene occured significantly after crystallization, and if pyroxene separates isolated for Sm-Nd studies do not have the bulk composition of the primary pyroxenes, then the Sm-Nd isochron age and ??Nd will be in error. Copyright ?? 2002 Elsevier Science Ltd.
Methodology of phase II clinical trials in metastatic elderly breast cancer: a literature review.
Cabarrou, B; Mourey, L; Dalenc, F; Balardy, L; Kanoun, D; Roché, H; Boher, J M; Rougé-Bugat, M E; Filleron, Thomas
2017-08-01
As the incidence of invasive breast cancer will increase with age, the number of elderly patients with a diagnosis metastatic breast cancer will also rise. But the use of cytotoxic drugs in elderly metastatic breast cancer patients is not systematic and is dreaded by medical oncologists. The need for prospective oncologic data from this population seems increasingly obvious. The main objective of this review is to investigate design and characteristics of phase II trials that assess activity and feasibility of chemotherapies in elderly advanced/metastatic breast cancer patients. An electronic search in PUBMED allowed us to retrieve articles published in English language on phase II trials in elderly metastatic breast cancer between January 2002 and May 2016. Sixteen publications were finally included in this review. The primary endpoint was a simple, a composite, and a co-primary endpoints in 11, three, and two studies, respectively. Efficacy was the primary objective in 15 studies: simple (n = 10), composite (n = 3), co-primary endpoints (n = 2). Composite or co-primary endpoints combined efficacy and toxicity. Thirteen studies used multistage designs. Only five studies evaluated the feasibility, i.e., to jointly assess efficacy and tolerance to treatment (toxicity, quality of life, etc) as primary endpoint. Development of elderly specific phase III clinical trials might be challenging, it therefore seems essential to conduct phase II clinical trials evaluating jointly efficacy and toxicity in a well-defined geriatric population. Use of multistage designs that take into account heterogeneity would allow to identify a subpopulation at interim analysis and to reduce the number of patients exposed to an inefficient or a toxic treatment regimen. It is crucial to evaluate new therapies (targeted therapies, immunotherapies) using adequate methodologies (Study design, endpoint).
NASA Astrophysics Data System (ADS)
Borchard, C.; Engel, A.
2014-11-01
Extracellular release (ER) by phytoplankton is the major source of fresh dissolved organic carbon (DOC) in marine ecosystems and accompanies primary production during all growth phases. Little is known, so far, on size and composition of released molecules, and to which extent ER occurs passively, by leakage, or actively, by exudation. Here, we report on ER by the widespread and bloom-forming coccolithophore Emiliania huxleyi grown under steady state conditions in phosphorus controlled chemostats (N : P = 29, growth rate of μ = 0.2 d-1). 14C incubations were accomplished to determine primary production (PP), comprised by particulate (PO14C) and dissolved organic carbon (DO14C), and the concentration and composition of particulate combined carbohydrates (pCCHO), and of high molecular weight (>1 kDa, HMW) dissolved combined carbohydrates (dCCHO) as major components of ER. Information on size distribution of ER products was obtained by investigating distinct size classes (<0.40 μm, <1000 kDa, <100 kDa and <10 kDa) of DO14C and HMW-dCCHO. Our results revealed relatively low ER during steady state growth, corresponding to ∼4.5% of primary production, and similar ER rates for all size classes. Acidic sugars had a significant share on freshly produced pCCHO as well as on HMW-dCCHO. While pCCHO and the smallest size (<10 kDa) fraction of HMW-dCCHO exhibited a similar sugar composition, dominated by high percentages of glucose (74-80 Mol%), the composition of HMW-dCCHO size-classes >10 kDa was significantly different with higher Mol% of arabinose. Mol% of acidic sugars increased and Mol% glucose decreased with increasing size of HMW-dCCHO. We conclude that larger polysaccharides follow different production and release pathways than smaller molecules, potentially serving distinct ecological and biogeochemical functions.
Grubisic, Maja; van Grunsven, Roy H A; Manfrin, Alessandro; Monaghan, Michael T; Hölker, Franz
2018-05-14
The increasing use of artificial light at night (ALAN) has led to exposure of freshwater ecosystems to light pollution worldwide. Simultaneously, the spectral composition of nocturnal illumination is changing, following the current shift in outdoor lighting technologies from traditional light sources to light emitting diodes (LED). LEDs emit broad-spectrum white light, with a significant amount of photosynthetically active radiation, and typically a high content of blue light that regulates circadian rhythms in many organisms. While effects of the shift to LED have been investigated in nocturnal animals, its impact on primary producers is unknown. We performed three field experiments in a lowland agricultural drainage ditch to assess the impacts of a transition from high-pressure sodium (HPS) to white LED illumination (color temperature 4000 K) on primary producers in periphyton. In all experiments, we compared biomass and pigment composition of periphyton grown under a natural light regime to that of periphyton exposed to nocturnal HPS or, consecutively, LED light of intensities commonly found in urban waters (approximately 20 lux). Periphyton was collected in time series (1-13 weeks). We found no effect of HPS light on periphyton biomass; however, following a shift to LED the biomass decreased up to 62%. Neither light source had a substantial effect on pigment composition. The contrasting effects of the two light sources on biomass may be explained by differences in their spectral composition, and in particular the blue content. Our results suggest that spectral composition of the light source plays a role in determining the impacts of ALAN on periphyton and that the ongoing transition to LED may increase the ecological impacts of artificial lighting on aquatic primary producers. Reduced biomass in the base of the food web can impact ecosystem functions such as productivity and food supply for higher trophic levels in nocturnally-lit ecosystems. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Borchard, C.; Engel, A.
2015-02-01
Extracellular release (ER) by phytoplankton is the major source of fresh dissolved organic carbon (DOC) in marine ecosystems and accompanies primary production during all growth phases. Little is known, so far, on size and composition of released molecules, and to which extent ER occurs passively, by leakage, or actively, by exudation. Here, we report on ER by the widespread and bloom-forming coccolithophore Emiliania huxleyi grown under steady-state conditions in phosphorus-controlled chemostats (N:P = 29, growth rate of μ = 0.2 d-1) at present-day and high-CO2 concentrations. 14C incubations were performed to determine primary production (PP), comprised of particulate (PO14C) and dissolved organic carbon (DO14C). Concentration and composition of particulate combined carbohydrates (pCCHO) and high-molecular-weight (>1 kDa, HMW) dissolved combined carbohydrates (dCCHO) were determined by ion chromatography. Information on size distribution of ER products was obtained by investigating distinct size classes (<0.4 μm (DO14C), <0.45 μm (HMW-dCCHO), <1000, <100 and <10 kDa) of DO14CC and HMW-dCCHO. Our results revealed relatively low ER during steady-state growth, corresponding to ~4.5% of primary production, and similar ER rates for all size classes. Acidic sugars had a significant share on freshly produced pCCHO as well as on HMW-dCCHO. While pCCHO and the smallest size fraction (<10 kDa) of HMW-dCCHO exhibited a similar sugar composition, dominated by high percentage of glucose (74-80 mol%), the composition of HMW-dCCHO size classes >10 kDa was significantly different, with a higher mol% of arabinose. The mol% of acidic sugars increased and that of glucose decreased with increasing size of HMW-dCCHO. We conclude that larger polysaccharides follow different production and release pathways than smaller molecules, potentially serving distinct ecological and biogeochemical functions.
NASA Astrophysics Data System (ADS)
Pachon, Jorge E.; Balachandran, Sivaraman; Hu, Yongtao; Weber, Rodney J.; Mulholland, James A.; Russell, Armistead G.
2010-10-01
In the Southeastern US, organic carbon (OC) comprises about 30% of the PM 2.5 mass. A large fraction of OC is estimated to be of secondary origin. Long-term estimates of SOC and uncertainties are necessary in the evaluation of air quality policy effectiveness and epidemiologic studies. Four methods to estimate secondary organic carbon (SOC) and respective uncertainties are compared utilizing PM 2.5 chemical composition and gas phase data available in Atlanta from 1999 to 2007. The elemental carbon (EC) tracer and the regression methods, which rely on the use of tracer species of primary and secondary OC formation, provided intermediate estimates of SOC as 30% of OC. The other two methods, chemical mass balance (CMB) and positive matrix factorization (PMF) solve mass balance equations to estimate primary and secondary fractions based on source profiles and statistically-derived common factors, respectively. CMB had the highest estimate of SOC (46% of OC) while PMF led to the lowest (26% of OC). The comparison of SOC uncertainties, estimated based on propagation of errors, led to the regression method having the lowest uncertainty among the four methods. We compared the estimates with the water soluble fraction of the OC, which has been suggested as a surrogate of SOC when biomass burning is negligible, and found a similar trend with SOC estimates from the regression method. The regression method also showed the strongest correlation with daily SOC estimates from CMB using molecular markers. The regression method shows advantages over the other methods in the calculation of a long-term series of SOC estimates.
NASA Technical Reports Server (NTRS)
O'D. Alexander, Conel
2003-01-01
The discovery of presolar grains in meteorites is one of the most exciting recent developments in meteoritics. Six types of presolar grain have been discovered: diamond, Sic, graphite, Si3N4, Al2O3 and MgAl2O4. These grains have been identified as presolar because their isotopic compositions are very different from those of Solar System materials. Comparison of their isotopic compositions with astronomical observations and theoretical models indicates most of the grains formed in the envelopes of highly evolved stars. They are, therefore, a new source of information with which to test astrophysical models of the evolution of these stars. In fact, because several elements can often be measured in the same grain, including elements that are not measurable spectroscopically in stars, the grain data provide some very stringent constraints for these models. Our primary goal is to create large, unbiased, multi-isotope databases of single presolar Sic, Si,N,, oxide and graphite grains in meteorites, as well as any new presolar grain types that are identified in the future. These will be used to: (i) test stellar and nucleosynthetic models, (ii) constrain the galactic chemical evolution (GCE) paths of the isotopes of Si, Ti, O and Mg, (iii) establish how many stellar sources contributed to the Solar System, (iv) constrain relative dust production rates of various stellar types and (v) assess how representative of galactic dust production the record in meteorites is. The primary tool for this project is a highly automated grain analysis system on the Carnegie 6f ion probe.
NASA Technical Reports Server (NTRS)
O'D.Alexander, Conel
2004-01-01
The discovery of presolar grains in meteorites is one of the most exciting recent developments in meteoritics. Six types of presolar grain have been discovered: diamond, Sic, graphite, Si3N4, Al2O3 and MgAl2O4. These grains have been identified as presolar because their isotopic compositions are very different from those of Solar System materials. Comparison of their isotopic compositions with astronomical observations and theoretical models indicates most of the grains formed in the envelopes of highly evolved stars. They are, therefore, a new source of information with which to test astrophysical models of the evolution of these stars. In fact, because several elements can often be measured in the same grain, including elements that are not measurable spectroscopically in stars, the grain data provide some very stringent constraints for these models. Our primary goal is to create large, unbiased, multi-isotope databases of single presolar Sic, Si,N,, oxide and graphite grains in meteorites, as well as any new presolar grain types that are identified in the future. These will be used to: (i) test stellar and nucleosynthetic models, (ii) constrain the galactic chemical evolution (GCE) paths of the isotopes of Si, Ti, 0 and Mg, (iii) establish how many stellar sources contributed to the Solar System, (iv) constrain relative dust production rates of various stellar types and (v) assess how representative of galactic dust production the record in meteorites is. The primary tool for this project is a highly automated grain analysis system we have developed for the Carnegie 6f ion probe.
Nutrient and algal responses to winterkilled fish-derived nutrient subsidies in eutrophic lakes
Schoenebeck, Casey W.; Brown, Michael L.; Chipps, Steven R.; German, David R.
2012-01-01
Fishes inhabiting shallow, glacial lakes of the Prairie Pothole Region in the United States and Canada periodically experience hypoxia in severe winters that can lead to extensive fish mortality resulting in high biomasses of dead fish. However, the role of carcass-derived nutrient subsidies in shallow, eutrophic lakes translocated to pelagic primary producers is not well documented. This study quantified the influence of winterkill events on nutrient contributions from decaying fish carcasses of common carp (Cyprinus carpio) and the phytoplankton response among pre- and postwinterkill years and compared seasonal patterns of nutrient limitation and phytoplankton community composition between winterkill and nonwinterkill lakes. We found that fish carcasses contributed an estimated 2.5–4.3 kg/ha of total (Kjeldahl) nitrogen (N) and 0.3–0.5 kg/ha of total phosphorus (P) to lakes that experienced winterkill conditions. Nutrient bioassays showed that winterkill lakes were primarily N limited, congruent with the low N:P ratios produced by fish carcasses corrected for the disproportionate release of N and P (8.6). Nutrient subsidies translocated from decomposed fish to pelagic primary producers seemed to have little immediate influence on the seasonal phytoplankton community composition, but total N and subsequent chlorophyll-a increased the year following the winterkill event. Cyanobacteria density varied seasonally but was higher in winterkill lakes, presumably due to the integration of nutrients released from fish decomposition. This study provides evidence that large inputs of autochthonous fish-derived nutrients contribute to nutrient availability within winterkilled systems and increase the maximum attainable biomass of the phytoplankton community.
Systematic Studies of Cosmic-Ray Anisotropy and Energy Spectrum with IceCube and IceTop
NASA Astrophysics Data System (ADS)
McNally, Frank
Anisotropy in the cosmic-ray arrival direction distribution has been well documented over a large energy range, but its origin remains largely a mystery. In the TeV to PeV energy range, the galactic magnetic field thoroughly scatters cosmic rays, but anisotropy at the part-per-mille level and smaller persists, potentially carrying information about nearby cosmic-ray accelerators and the galactic magnetic field. The IceCube Neutrino Observatory was the first detector to observe anisotropy at these energies in the Southern sky. This work uses 318 billion cosmic-ray induced muon events, collected between May 2009 and May 2015 from both the in-ice component of IceCube as well as the surface component, IceTop. The observed global anisotropy features large regions of relative excess and deficit, with amplitudes on the order of 10-3. While a decomposition of the arrival direction distribution into spherical harmonics shows that most of the power is contained in the low-multipole (ℓ ≤ 4) moments, higher-multipole components are found to be statistically significant down to an angular scale of less than 10°, approaching the angular resolution of the detector. Above 100TeV, a change in the topology of the arrival direction distribution is observed, and the anisotropy is characterized by a wide relative deficit whose amplitude increases with primary energy up to at least 5PeV, the highest energies currently accessible to IceCube with sufficient event statistics. No time dependence of the large- and small-scale structures is observed in the six-year period covered by this analysis within statistical and systematic uncertainties. Analysis of the energy spectrum and composition in the PeV energy range as a function of sky position is performed with IceTop data over a five-year period using a likelihood-based reconstruction. Both the energy spectrum and the composition distribution are found to be consistent with a single source population over declination bands. This work represents an early attempt at understanding the anisotropy through the study of the spectrum and composition. The high-statistics data set reveals more details on the properties of the anisotropy, potentially able to shed light on the various physical processes responsible for the complex angular structure and energy evolution.
Responses of soil fungi to logging and oil palm agriculture in Southeast Asian tropical forests.
McGuire, K L; D'Angelo, H; Brearley, F Q; Gedallovich, S M; Babar, N; Yang, N; Gillikin, C M; Gradoville, R; Bateman, C; Turner, B L; Mansor, P; Leff, J W; Fierer, N
2015-05-01
Human land use alters soil microbial composition and function in a variety of systems, although few comparable studies have been done in tropical forests and tropical agricultural production areas. Logging and the expansion of oil palm agriculture are two of the most significant drivers of tropical deforestation, and the latter is most prevalent in Southeast Asia. The aim of this study was to compare soil fungal communities from three sites in Malaysia that represent three of the most dominant land-use types in the Southeast Asia tropics: a primary forest, a regenerating forest that had been selectively logged 50 years previously, and a 25-year-old oil palm plantation. Soil cores were collected from three replicate plots at each site, and fungal communities were sequenced using the Illumina platform. Extracellular enzyme assays were assessed as a proxy for soil microbial function. We found that fungal communities were distinct across all sites, although fungal composition in the regenerating forest was more similar to the primary forest than either forest community was to the oil palm site. Ectomycorrhizal fungi, which are important associates of the dominant Dipterocarpaceae tree family in this region, were compositionally distinct across forests, but were nearly absent from oil palm soils. Extracellular enzyme assays indicated that the soil ecosystem in oil palm plantations experienced altered nutrient cycling dynamics, but there were few differences between regenerating and primary forest soils. Together, these results show that logging and the replacement of primary forest with oil palm plantations alter fungal community and function, although forests regenerating from logging had more similarities with primary forests in terms of fungal composition and nutrient cycling potential. Since oil palm agriculture is currently the mostly rapidly expanding equatorial crop and logging is pervasive across tropical ecosystems, these findings may have broad applicability.
NASA Astrophysics Data System (ADS)
1995-03-01
This volume is the third of a 3 volume set that addresses the structural trade study plan that will identify the most suitable structural configuration for an SSTO winged vehicle capable of delivering 25,000 lbs to a 220 nm circular orbit at 51.6 deg inclination. The most suitable Reusable Hydrogen Composite Tank System (RHCTS), and Graphite Composite Tank System (GCPS) composite materials for intertank, wing and thrust structures are identified. Vehicle resizing charts, selection criteria and back-up charts, parametric costing approach and the finite element method analysis are discussed.
NASA Technical Reports Server (NTRS)
1995-01-01
This volume is the third of a 3 volume set that addresses the structural trade study plan that will identify the most suitable structural configuration for an SSTO winged vehicle capable of delivering 25,000 lbs to a 220 nm circular orbit at 51.6 deg inclination. The most suitable Reusable Hydrogen Composite Tank System (RHCTS), and Graphite Composite Tank System (GCPS) composite materials for intertank, wing and thrust structures are identified. Vehicle resizing charts, selection criteria and back-up charts, parametric costing approach and the finite element method analysis are discussed.
Zark, Maren; Riebesell, Ulf; Dittmar, Thorsten
2015-10-01
Marine dissolved organic matter (DOM) is one of the largest active organic carbon reservoirs on Earth, and changes in its pool size or composition could have a major impact on the global carbon cycle. Ocean acidification is a potential driver for these changes because it influences marine primary production and heterotrophic respiration. We simulated ocean acidification as expected for a "business-as-usual" emission scenario in the year 2100 in an unprecedented long-term mesocosm study. The large-scale experiments (50 m(3) each) covered a full seasonal cycle of marine production in a Swedish Fjord. Five mesocosms were artificially enriched in CO2 to the partial pressure expected in the year 2100 (900 μatm), and five more served as controls (400 μatm). We applied ultrahigh-resolution mass spectrometry to monitor the succession of 7360 distinct DOM formulae over the course of the experiment. Plankton blooms had a clear effect on DOM concentration and molecular composition. This succession was reproducible across all 10 mesocosms, independent of CO2 treatment. In contrast to the temporal trend, there were no significant differences in DOM concentration and composition between present-day and year 2100 CO2 levels at any time point of the experiment. On the basis of our results, ocean acidification alone is unlikely to affect the seasonal accumulation of DOM in productive coastal environments.
Macallan, Derek C; Baldwin, Christine; Mandalia, Sundihya; Pandol-Kaljevic, Vjera; Higgins, Nadine; Grundy, Alan; Moyle, Graeme J
2008-01-01
Treatment options for HIV-associated lipodystrophy syndrome (HALS) remain limited. The objective of this randomized open-label study was to compare three emerging therapies, rosiglitazone, pravastatin, and growth hormone alone and together, in men and women with HALS. Sixty-four subjects received daily rosiglitazone (4 mg, n = 14), pravastatin (40 mg, n = 11), or rosiglitazone plus pravastatin (n = 13) for 48 weeks or recombinant human growth hormone (rhGH; Serostim 2 mg, 12 weeks, n = 13) alone or combined with rosiglitazone (n = 13). Primary endpoint was body composition change by dual X-ray absorptiometry (DXA) and computed tomography (CT). Rosiglitazone resulted in slow accrual of limb fat detected by DXA (+444 +/- 186 g; p < .05) but not CT. Pravastatin had no consistent significant effects on body composition, although it reduced total and LDL cholesterol. Negative interactions were observed between pravastatin and rosiglitazone. rhGH reduced abdominal fat by CT (-31 +/- 15 cm2, 26%; p < .05) and DXA (-1597 +/- 383 g, 27%; p < .05) and increased trunk and limb lean mass (+10% and +12%, respectively). However, effects largely disappeared within 12 weeks post treatment. rhGH alone impaired insulin sensitivity but not when combined with rosiglitazone. Prolonged rosiglitazone treatment slowly improves lipoatrophy. rhGH rapidly and selectively reduces visceral fat, although effects are short-lived; co-administered rosiglitazone abrogates rhGH-related insulin resistance.
NASA Astrophysics Data System (ADS)
Ivanov, A. A.
2013-02-01
One of the main goals of investigations using present and future giant extensive air shower (EAS) arrays is the mass composition of ultra-high energy cosmic rays (UHECRs). A new approach to the problem is presented, combining the analysis of arrival directions with the statistical test of the paired EAS samples. One of the ideas of the method is to search for possible correlations between UHECR masses and their separate sources; for instance, if there are two sources in different areas of the celestial sphere injecting different nuclei, but the fluxes are comparable so that arrival directions are isotropic, then the aim is to reveal a difference in the mass composition of cosmic-ray fluxes. The method is based on a non-parametric statistical test—the Wilcoxon signed-rank routine—which does not depend on the populations fitting any parameterized distributions. Two particular algorithms are proposed: first, using measurements of the depth of the EAS maximum position in the atmosphere; and second, relying on the age variance of air showers initiated by different primary particles. The formulated method is applied to the Yakutsk array data, in order to demonstrate the possibility of searching for a difference in average mass composition between the two UHECR sets, arriving particularly from the supergalactic plane and a complementary region.