Formation of Large (Approximately 100 micrometers) Ice Crystals Near the Tropical Tropopause
NASA Technical Reports Server (NTRS)
Jensen, E. J.; Pfister, L.; Bui, T. V.; Lawson, P.; Baker, B.; Mo, Q.; Baumgardner, D.; Weinstock, E. M.; Smith, J. B.; Moyer, E. J.;
2008-01-01
Recent high-altitude aircraft measurements with in situ imaging instruments indicated the presence of relatively large (approx.100 microns length), thin (aspect ratios of approx.6:1 or larger) hexagonal plate ice crystals near the tropical tropopause in very low concentrations (<0.01/L). These crystals were not produced by deep convection or aggregation. We use simple growth-sedimentation calculations as well as detailed cloud simulations to evaluate the conditions required to grow the large crystals. Uncertainties in crystal aspect ratio leave a range of possibilities, which could be constrained by knowledge of the water vapor concentration in the air where the crystal growth occurred. Unfortunately, water vapor measurements made in the cloud formation region near the tropopause with different instruments ranged from <2 ppmv to approx.3.5 ppmv. The higher water vapor concentrations correspond to very large ice supersaturations (relative humidities with respect to ice of about 200%). If the aspect ratios of the hexagonal plate crystals are as small as the image analysis suggests (6:1, see companion paper (Lawson et al., 2008)) then growth of the large crystals before they sediment out of the supersaturated layer would only be possible if the water vapor concentration were on the high end of the range indicated by the different measurements (>3 ppmv). On the other hand, if the crystal aspect ratios are quite a bit larger (approx.10:1), then H2O concentrations toward the low end of the measurement range (approx.2-2.5 ppmv) would suffice to grow the large crystals. Gravity-wave driven temperature and vertical wind perturbations only slightly modify the H2O concentrations needed to grow the crystals. We find that it would not be possible to grow the large crystals with water concentrations less than 2 ppmv, even with assumptions of a very high aspect ratio of 15 and steady upward motion of 2 cm/s to loft the crystals in the tropopause region. These calculations would seem to imply that the measurements indicating water vapor concentrations less than 2ppmv are implausible, but we cannot rule out the possibility that higher humidity prevailed upstream of the aircraft measurements and the air was dehydrated by the cloud formation. Simulations of the cloud formation with a detailed model indicate that homogeneous freezing should generate ice concentrations larger than the observed concentrations (20/L), and even concentrations as low as 20/L should have depleted the vapor in excess of saturation and prevented growth of large crystals. It seems likely that the large crystals resulted from ice nucleation on effective heterogeneous nuclei at low ice supersaturations. Improvements in our understanding of detailed cloud microphysical processes require resolution of the water vapor measurement discrepancies in these very cold, dry regions of the atmosphere.
Gillip, Jonathan A.
2014-01-01
The West Gulf Coastal Plain, Mississippi embayment, and underlying Cretaceous aquifers are rich in water resources; however, large parts of the aquifers are largely unusable because of large concentrations of dissolved solids. Cretaceous aquifers are known to have large concentrations of salinity in some parts of Arkansas. The Nacatoch Sand and the Tokio Formation of Upper Cretaceous age were chosen for investigation because these aquifers produce groundwater to wells near their outcrops and have large salinity concentrations away from their outcrop areas. Previous investigations have indicated that dissolved-solids concentrations of groundwater within the Nacatoch Sand, 2–20 miles downdip from the outcrop, render the groundwater as unusable for purposes requiring freshwater. Groundwater within the Tokio Formation also exhibits large concentrations of dissolved solids downdip. Water-quality data showing elevated dissolved-solids concentrations are limited for these Cretaceous aquifers because other shallower aquifers are used for water supply. Although not suitable for many uses, large, unused amounts of saline groundwater are present in these aquifers. Historical borehole geophysical logs were used to determine the geologic and hydrogeologic properties of these Cretaceous aquifers, as well as the quality of the groundwater within the aquifers. Based on the interpretation of borehole geophysical logs, in Arkansas, the altitude of the top of the Nacatoch Sand ranges from more than 200 to less than -4,000 feet; the structural high occurs in the outcrop area and the structural low occurs in southeastern Arkansas near the Desha Basin structural feature. The thickness of the Nacatoch Sand ranges from 0 to over 550 feet. The minimum thickness occurs where the formation pinches out in the outcrop area, and the maximum thickness occurs in the southwestern corner of Arkansas. Other areas of large thickness include the area of the Desha Basin structural feature in southeastern Arkansas and in an area on the border of Cross and St. Francis Counties in eastern Arkansas. The clean-sand percentage of the total Nacatoch Sand thickness ranges from less than 20 percent to more than 60 percent and generally decreases downdip. The Nacatoch Sand contains more than 120.5 million acre-feet of water with a dissolved-solids concentration between 1,000 and 10,000 milligrams per liter (mg/L), more than 57.5 million acre-feet of water with a dissolved-solids concentration between 10,000 and 35,000 mg/L, and more than 122.5 million acre-feet of water with a dissolved-solids concentration more than 35,000 mg/L. The altitude of the top of the Tokio Formation, in Arkansas, ranges from more than 200 feet to less than -4,400 feet; the structural high occurs in the outcrop area and the structural low occurs in southeastern Arkansas near the Desha Basin structural feature. The thickness of the Tokio Formation, in Arkansas, ranges from 0 to over 400 feet. The minimum thickness occurs where the formation pinches out in the outcrop area, and the maximum thickness occurs in the southwestern corner of Arkansas. The clean-sand percentage of the total Tokio Formation thickness ranges from less than 20 percent to more than 60 percent and generally decreases away from the outcrop area. The Tokio Formation contains more than 2.5 million acre-feet of water with a dissolved-solids concentration between 1,000 and 10,000 mg/L, more than 12.5 million acre-feet of water with a dissolved-solids concentration between 10,000 and 35,000 mg/L, and nearly 43.5 million acre-feet of water with a dissolved-solids concentration more than 35,000 mg/L.
Geohydrology and water quality of the Roubidoux Aquifer, northeastern Oklahoma
Christenson, S.C.; Parkhurst, D.L.; Fairchild, R.W.
1990-01-01
The Roubidoux aquifer is an important source of freshwater for public supplies, commerce, industry, and rural water districts in northeastern Oklahoma. Ground-water withdrawals from the aquifer in 1981 were estimated to be 4.8 million gallons per day, of which about 90 percent was withdrawn in Ottawa County. Wells drilled at the beginning of the 20th century originally flowed at the land surface, but in 1981 water levels ranged from 22 to 471 feet below land surface. A large cone of depression has formed as a result of ground water withdrawals near Miami. Wells completed in the Roubidoux aquifer have yields that range from about 100 to more than 1,000 gallons per minute. An aquifer test and a digital ground-water flow model were used to estimate aquifer and confining-layer hydraulic characteristics. Using these methods, the transmissivity of the aquifer was estimated to be within a range of 400 to 700 square feet per day. The leakance of the confining layer was determined to be within a range from 0 to 0.13 per day, with a best estimate value in a range from 4.3 x 10-8 to 7.7 x 10-8 per day. Analyses of water samples collected as part of this study and of water-quality data from earlier work indicate that a large areal change in major-ion chemistry occurs in ground water in the Roubidoux aquifer in northeastern Oklahoma. The ground water in the easternmost part of the study unit has relatively small dissolved-solids concentrations (less than 200 milligrams per liter) with calcium, magnesium, and bicarbonate as the major ions. Ground water in the westernmost part of the study unit has relatively large dissolved-solids concentrations (greater than 800 milligrams per liter) with sodium and chloride as the major ions. A transition zone of intermediate sodium, chloride, and dissolved-solids concentrations exists between the easternmost and westernmost parts of the study unit. Three water-quality problems are apparent in the Roubidoux aquifer in northeast Oklahoma: (1) Contamination by mine water, (2) large concentrations of sodium and chloride, and (3) large radium-226 concentrations. Many wells in the mining area have been affected by mine-water contamination. At present (1990), all instances of ground-water contamination by mine water can be explained by faulty seals or leaky casings in wells that pass through the zone of mine workings and down to the Roubidoux aquifer. None of the data available to date demonstrate that mine water has migrated from the Boone Formation through the pores and fractures of the intervening geologic units to the Roubidoux aquifer. Ground water with large concentrations of sodium and chloride occurs at some depth throughout the study unit. In the eastern part of the study unit, chloride concentrations greater than 250 milligrams per liter are found at depths greater than approximately 1,200 to 1,500 feet. Data are too few to determine the depth to ground water with large concentrations of sodium and chloride in the southern and southwestern parts of the study unit. Large concentrations of gross-alpha radioactivity in ground water occur near the western edge of the transition zone. Generally, ground water with large concentrations of gross-alpha radioactivity was found to exceed the maximum contaminant level for radium-226. (available as photostat copy only)
Mercury data from small lakes in Voyageurs National Park, northern Minnesota, 2000-02
Goldstein, Robert M.; Brigham, Mark E.; Steuwe, Luke; Menheer, Michael A.
2003-01-01
Mercury contamination of aquatic ecosystems is a resource concern in Voyageurs National Park. High concentrations of mercury in fish pose a potential risk to organisms that consume large amounts of those fish. During 2000–02, the U.S. Geological Survey measured mercury in water collected from 20 lakes in Voyageurs National Park. Those lakes span a gradient in fish-mercury concentrations, and also span gradients in other environmental variables that are thought to influence mercury cycling. During 2001, near surface methylmercury concentrations ranged from below the method detection limit of 0.04 nanograms per liter (ng/L) to 0.41 ng/L. Near surface total mercury concentrations ranged from 0.34 ng/L to 3.74 ng/L. Hypolimnetic methylmercury ranged from below detection to 2.69 ng/L, and hypolimnetic total mercury concentrations ranged from 0.34 ng/L to 7.16 ng/L. During 2002, near surface methylmercury concentrations ranged from below the method detection limit to 0.46 ng/L, and near surface total mercury ranged from 0.34 ng/L to 4.81 ng/L.
Domagalski, Joseph L.
1999-01-01
Mercury poses a water-quality problem for California's Sacramento River, a large river with a mean annual discharge of over 650 m3/s. This river discharges into the San Francisco Bay, and numerous fish species of the bay and river contain mercury levels high enough to affect human health if consumed. Two possible sources of mercury are the mercury mines in the Coast Ranges and the gold mines in the Sierra Nevada. Mercury was once mined in the Coast Ranges, west of the Sacramento River, and used to process gold in the Sierra Nevada, east of the river. The mineralogy of the Coast Ranges mercury deposits is mainly cinnabar (HgS), but elemental mercury was used to process gold in the Sierra Nevada. Residual mercury from mineral processing in the Sierra Nevada is mainly in elemental form or in association with oxide particles or organic matter and is biologically available. Recent bed-sediment sampling, at sites below large reservoirs, showed elevated levels of total mercury (median concentration 0.28 ??g/g) in every large river (the Feather, Yuba, Bear, and American rivers) draining the Sierra Nevada gold region. Monthly sampling for mercury in unfiltered water shows relatively low concentrations during the nonrainy season in samples collected throughout the Sacramento River Basin, but significantly higher concentrations following storm-water runoff. Measured concentrations, following storm-water runoff, frequently exceeded the state of California standards for the protection of aquatic life. Results from the first year of a 2-year program of sampling for methyl mercury in unfiltered water showed similar median concentrations (0.1 ng/l) at all sampling locations, but with apparent high seasonal concentrations measured during autumn and winter. Methyl mercury concentrations were not significantly higher in rice field runoff water, even though rice production involves the creation of seasonal wetlands: higher rates of methylation are known to occur in stagnant wetland environments that have high dissolved carbon.Mercury poses a water-quality problem for California's Sacramento River, a large river with a mean annual discharge of over 650 m3/s. This river discharges into the San Francisco Bay, and numerous fish species of the bay and river contain mercury levels high enough to affect human health if consumed. Two possible sources of mercury are the mercury mines in the Coast Ranges and the gold mines in the Sierra Nevada. Mercury was once mined in the Coast Ranges, west of the Sacramento River, and used to process gold in the Sierra Nevada east of the river. The mineralogy of the Coast Ranges mercury deposits is mainly cinnabar (HgS), but elemental mercury was used to process gold in the Sierra Nevada. Residual mercury from mineral processing in the Sierra Nevada is mainly in elemental form or in association with oxide particles or organic matter and is biologically available. Recent bed-sediment sampling, at sites below large reservoirs, showed elevated levels of total mercury (median concentration 0.28 ??g/g) in every large river (the Feather, Yuba, Bear, and American rivers) draining the Sierra Nevada gold region. Monthly sampling for mercury in unfiltered water shows relatively low concentrations during the nonrainy season in samples collected throughout the Sacramento River Basin, but significantly higher concentrations following storm-water runoff. Measured concentrations, following storm-water runoff, frequently exceeded the state of California standards for the protection of aquatic life. Results from the first year of a 2-year program of sampling for methyl mercury in unfiltered water showed similar median concentrations (0.1 ng/l) at all sampling locations, but with apparent high seasonal concentrations measured during autumn and winter. Methyl mercury concentrations were not significantly higher in rice field runoff water, even though rice production involves the creation of seasonal wetlands: higher rates of methylation a
Stock, Philipp; Utzig, Thomas; Valtiner, Markus
2015-05-15
By virtue of its importance for self-organization of biological matter the hydrophobic force law and the range of hydrophobic interactions (HI) have been debated extensively over the last 40 years. Here, we directly measure and quantify the hydrophobic force-distance law over large temperature and concentration ranges. In particular, we study the HI between molecularly smooth hydrophobic self-assembled monolayers, and similarly modified gold-coated AFM tips (radii∼8-50 nm). We present quantitative and direct evidence that the hydrophobic force is both long-ranged and exponential down to distances of about 1-2 nm. Therefore, we introduce a self-consistent radius-normalization for atomic force microscopy data. This approach allows quantitative data fitting of AFM-based experimental data to the recently proposed Hydra-model. With a statistical significance of r(2)⩾0.96 our fitting and data directly reveal an exponential HI decay length of 7.2±1.2 Å that is independent of the salt concentration up to 750 mM. As such, electrostatic screening does not have a significant influence on the HI in electrolyte concentrations ranging from 1 mM to 750 mM. In 1 M solutions the observed instability during approach shifts to longer distances, indicating ion correlation/adsorption effects at high salt concentrations. With increasing temperature the magnitude of HI decreases monotonically, while the range increases slightly. We compare our results to the large body of available literature, and shed new light into range and magnitude of hydrophobic interactions at very close distances and over wide temperature and concentration regimes. Copyright © 2015 Elsevier Inc. All rights reserved.
Elemental carbon and PM(2.5 )levels in an urban community heavily impacted by truck traffic.
Lena, T Suvendrini; Ochieng, Victor; Carter, Majora; Holguín-Veras, José; Kinney, Patrick L
2002-01-01
Hunts Point, a 690-acre peninsula in the South Bronx, New York City, is a hub in the tristate (New York, New Jersey, and Connecticut) freight transportation system. This study was carried out in response to community concerns about potential health effects of exposure to diesel exhaust particulate (DEP). We measured particulate matter < 2.5 microm in aerodynamic diameter (PM(2.5)) and elemental carbon (EC) on sidewalks and tested whether spatial variations in concentrations were related to local truck traffic density. Ten-hour integrated air samples for EC and PM(2.5) were collected for 9 days over a 3-week period in the summer of 1999 at seven geographically distinct intersections. Simultaneous traffic counts were carried out for each sampling event. Traffic was classified into three classes: passenger cars, small trucks, and large trucks (diesel vehicles). Mean diesel vehicle volumes ranged from 9.3 to 276.5 vehicles/hr across sites. Mean EC concentrations by site ranged from 2.6 microg/m(3) at the control site to 7.3 microg/m(3) along a designated truck route. Linear regression of site-specific mean EC concentration on mean large truck counts predicted an increase of 1.69 microg/m(3) EC per 100 large trucks/hr (SE = 0.37; p = 0.01; R(2) = 0.84). Average PM(2.5) concentrations by site ranged 1.6-fold (19.0-29.9 microg/m(3)) and were more weakly associated with local traffic. Variations over time for PM(2.5 )were more pronounced, ranging almost 4-fold (8.9-34.4 microg/m(3)). These results show that airborne EC concentrations, an important component of DEP, are elevated in Hunts Point and that the impact varies across the community as a function of large truck traffic. PMID:12361926
West, A.J.; Findlay, S.E.G.; Burns, Douglas A.; Weathers, K.C.; Lovett, Gary M.
2001-01-01
Forested headwater streams in the Catskill Mountains of New York show significant among-catchment variability in mean annual nitrate (NO3-) concentrations. Large contributions from deep groundwater with high NO3- concentrations have been invoked to explain high NO3- concentrations in stream water during the growing season. To determine whether variable contributions of groundwater could explain among-catchment differences in streamwater, we measured NO3- concentrations in 58 groundwater seeps distributed across six catchments known to have different annual average streamwater concentrations. Seeps were identified based on release from bedrock fractures and bedding planes and had consistently lower temperatures than adjacent streamwaters. Nitrate concentrations in seeps ranged from near detection limits (0.005 mg NO3--N/L) to 0.75 mg NO3--N/L. Within individual catchments, groundwater residence time does not seem to strongly affect NO3- concentrations because in three out of four catchments there were non-significant correlations between seep silica (SiO2) concentrations, a proxy for residence time, and seep NO3- concentrations. Across catchments, there was a significant but weak negative relationship between NO3- and SiO2 concentrations. The large range in NO3- concentrations of seeps across catchments suggests: 1) the principal process generating among-catchment differences in streamwater NO3- concentrations must influence water before it enters the groundwater flow system and 2) this process must act at large spatial scales because among-catchment variability is much greater than intra-catchment variability. Differences in the quantity of groundwater contribution to stream baseflow are not sufficient to account for differences in streamwater NO3- concentrations among catchments in the Catskill Mountains.
Impact of particle concentration and out-of-range sizes on the measurements of the LISST
NASA Astrophysics Data System (ADS)
Zhao, Lin; Boufadel, Michel C.; King, Thomas; Robinson, Brian; Conmy, Robyn; Lee, Kenneth
2018-05-01
The instrument LISST (laser in situ scattering and transmissiometry) has been widely used for measuring the size of oil droplets in relation to oil spills and sediment particles. Major concerns associated with using the instrument include the impact of high concentrations and/or out-of-range particle (droplet) sizes on the LISST reading. These were evaluated experimentally in this study using monosized microsphere particles. The key findings include: (1) When high particle concentration reduced the optical transmission (OT) to below 30%, the measured peak value tended to underestimate the true peak value, and the accuracy of the LISST decreased by ~8% to ~28%. The maximum concentration to reach the 30% OT was about 50% of the theoretical values, suggesting a lower concentration level should be considered during the instrument deployment. (2) The out-of-range sizes of particles affected the LISST measurements when the sizes were close to the LISST measurement range. Fine below-range sizes primarily affected the data in the lowest two bins of the LISST with >75% of the volume at the smallest bin. Large out-of-range particles affected the sizes of the largest 8–10 bins only when very high concentration was present. The out-of-range particles slightly changed the size distribution of the in-range particles, but their concentration was conserved. An approach to interpret and quantify the effects of the out-of-range particles on the LISST measurement was proposed.
NASA Technical Reports Server (NTRS)
Hardrath, Herbert F; Ohman, Lachlan
1953-01-01
Six large 24s-t3 aluminum-alloy-sheet specimens containing various notches or fillets were tested in tension to determine their stress concentration factors in both the elastic and plastic ranges. The elastic stress concentration factors were found to be slightly higher than those calculated by Neuber's method and those obtained photoelastically by Frocht. The results showed further that the stress concentration factor decreases as strains at the discontinuity enter the plastic range. A generalization of Stowell's relation for the plastic stress concentration factor at a circular hole in an infinite plate was applied to the specimen shapes tested and gave good agreement with test results.
The relationship of nitrate concentrations in streams to row crop land use in Iowa
Schilling, K.E.; Libra, R.D.
2000-01-01
The relationship between row crop land use and nitrate N concentrations in surface water was evaluated for 15 Iowa watersheds ranging from 1002 to 2774 km2 and 10 smaller watersheds ranging from 47 to 775 km2 for the period 1996 to 1998. The percentage of land in row crop varied from 24 to >87% in the 15 large watersheds, and mean annual NO3-N concentrations ranged from 0.5 to 10.8 mg/L. In the small watersheds, row crop percentage varied from 28 to 87% and mean annual NO3-N concentrations ranged from 3.0 to 10.5 mg/L. In both cases, nitrate N concentrations were directly related to the percentage of row crop in the watershed (p 87% in the 15 large watersheds, and mean annual NO3-N concentrations ranged from 0.5 to 10.8 mg/L. In the small watersheds, row crop percentage varied from 28 to 87% and mean annual NO3-N concentrations ranged from 3.0 to 10.5 mg/L. In both cases, nitrate N concentrations were directly related to the percentage of row crop in the watershed (p<0.0003). Linear regression showed similar slope for both sets of watersheds (0.11) suggesting that average annual surface water nitrate concentrations in Iowa, and possibly similar agricultural areas in the midwestern USA, can be approximated by multiplying a watershed's row crop percentage by 0.1. Comparing the Iowa watershed data with similar data collected at a subwatershed scale in Iowa (0.1 to 8.1 km2) and a larger midcontinent scale (7300 to 237 100 km2) suggests that watershed scale affects the relationship of nitrate concentration and land use. The slope of nitrate concentration versus row crop percentage decreases with increasing watershed size.Mean nitrate concentrations and row crop land use were summarized for 15 larger and ten smaller watersheds in Iowa, and the relationship between NO3 concentration and land use was examined. Linear regression of mean NO3 concentration and percent row crop was highly significant for both sets of watershed data, but a stronger correlation was noted in the small-watershed data. Both data sets suggested that mean annual surface-water NO3 concentrations in the state could be approximated by multiplying the watershed's percent row crop by 0.1. The slope of NO3 concentration versus row crop percentage appeared to decrease with increasing watershed size.
2015-01-01
Concern regarding the Deepwater Horizon oil crisis has largely focused on oil and dispersants while the threat of genotoxic metals in the oil has gone largely overlooked. Genotoxic metals, such as chromium and nickel, damage DNA and bioaccumulate in organisms, resulting in persistent exposures. We found chromium and nickel concentrations ranged from 0.24 to 8.46 ppm in crude oil from the riser, oil from slicks on surface waters and tar balls from Gulf of Mexico beaches. We found nickel concentrations ranged from 1.7 to 94.6 ppm wet weight with a mean of 15.9 ± 3.5 ppm and chromium concentrations ranged from 2.0 to 73.6 ppm wet weight with a mean of 12.8 ± 2.6 ppm in tissue collected from Gulf of Mexico whales in the wake of the crisis. Mean tissue concentrations were significantly higher than those found in whales collected around the world prior to the spill. Given the capacity of these metals to damage DNA, their presence in the oil, and their elevated concentrations in whales, we suggest that metal exposure is an important understudied concern for the Deepwater Horizon oil disaster. PMID:24552566
Wise, John Pierce; Wise, James T F; Wise, Catherine F; Wise, Sandra S; Gianios, Christy; Xie, Hong; Thompson, W Douglas; Perkins, Christopher; Falank, Carolyne; Wise, John Pierce
2014-01-01
Concern regarding the Deepwater Horizon oil crisis has largely focused on oil and dispersants while the threat of genotoxic metals in the oil has gone largely overlooked. Genotoxic metals, such as chromium and nickel, damage DNA and bioaccumulate in organisms, resulting in persistent exposures. We found chromium and nickel concentrations ranged from 0.24 to 8.46 ppm in crude oil from the riser, oil from slicks on surface waters and tar balls from Gulf of Mexico beaches. We found nickel concentrations ranged from 1.7 to 94.6 ppm wet weight with a mean of 15.9 ± 3.5 ppm and chromium concentrations ranged from 2.0 to 73.6 ppm wet weight with a mean of 12.8 ± 2.6 ppm in tissue collected from Gulf of Mexico whales in the wake of the crisis. Mean tissue concentrations were significantly higher than those found in whales collected around the world prior to the spill. Given the capacity of these metals to damage DNA, their presence in the oil, and their elevated concentrations in whales, we suggest that metal exposure is an important understudied concern for the Deepwater Horizon oil disaster.
Different thresholds for detection and discrimination of odors in the honey bee (Apis mellifera).
Wright, Geraldine A; Smith, Brian H
2004-02-01
Naturally occurring odors used by animals for mate recognition, food identification and other purposes must be detected at concentrations that vary across several orders of magnitude. Olfactory systems must therefore have the capacity to represent odors over a large range of concentrations regardless of dramatic changes in the salience, or perceived intensity, of a stimulus. The stability of the representation of an odor relative to other odors across concentration has not been extensively evaluated. We tested the ability of honey bees to discriminate pure odorants across a range of concentrations at and above their detection threshold. Our study showed that pure odorant compounds became progressively easier for honey bees to discriminate with increasing concentration. Discrimination is, therefore, a function of odorant concentration. We hypothesize that the recruitment of sensory cell populations across a range of concentrations may be important for odor coding, perhaps by changing its perceptual qualities or by increasing its salience against background stimuli, and that this mechanism is a general property of olfactory systems.
Beckwith, Michael A.
2003-01-01
Water-quality samples were collected at 10 sites in the Clark Fork-Pend Oreille and Spokane River Basins in water years 1999 – 2001 as part of the Northern Rockies Intermontane Basins (NROK) National Water-Quality Assessment (NAWQA) Program. Sampling sites were located in varied environments ranging from small streams and rivers in forested, mountainous headwater areas to large rivers draining diverse landscapes. Two sampling sites were located immediately downstream from the large lakes; five sites were located downstream from large-scale historical mining and oreprocessing areas, which are now the two largest “Superfund” (environmental remediation) sites in the Nation. Samples were collected during a wide range of streamflow conditions, more frequently during increasing and high streamflow and less frequently during receding and base-flow conditions. Sample analyses emphasized major ions, nutrients, and selected trace elements. Streamflow during the study ranged from more than 130 percent of the long-term average in 1999 at some sites to 40 percent of the long-term average in 2001. River and stream water in the study area exhibited small values for specific conductance, hardness, alkalinity, and dissolved solids. Dissolved oxygen concentrations in almost all samples were near saturation. Median total nitrogen and total phosphorus concentrations in samples from most sites were smaller than median concentrations reported for many national programs and other NAWQA Program study areas. The only exceptions were two sites downstream from large wastewater-treatment facilities, where median concentrations of total nitrogen exceeded the national median. Maximum concentrations of total phosphorus in samples from six sites exceeded the 0.1 milligram per liter threshold recommended for limiting nuisance aquatic growth. Concentrations of arsenic, cadmium, copper, lead, mercury, and zinc were largest in samples from sites downstream from historical mining and ore-processing areas in the upper Clark Fork in Montana and the South Fork Coeur d’Alene River in Idaho. Concentrations of dissolved lead in all 32 samples from the South Fork Coeur d’Alene River exceeded the Idaho chronic criterion for the protection of aquatic life at the median hardness level measured during the study. Concentrations of dissolved zinc in all samples collected at this site exceeded both the chronic and acute criteria at all hardness levels measured. When all data from all NROK sites were combined, median concentrations of dissolved arsenic, dissolved and total recoverable copper, total recoverable lead, and total recoverable zinc in the NROK study area appeared to be similar to or slightly smaller than median concentrations at sites in other NAWQA Program study areas in the Western United States affected by historical mining activities. Although the NROK median total recoverable lead concentration was the smallest among the three Western study areas compared, concentrations in several NROK samples were an order of magnitude larger than the maximum concentrations measured in the Upper Colorado River and Great Salt Lake Basins. Dissolved cadmium, dissolved lead, and total recoverable zinc concentrations at NROK sites were more variable than in the other study areas; concentrations ranged over almost three orders of magnitude between minimum and maximum values; the range of dissolved zinc concentrations in the NROK study area exceeded three orders of magnitude.
Lopes, Vitor Sergio Almeida; Riente, Roselene Ribeiro; da Silva, Alexsandro Araújo; Torquilho, Delma Falcão; Carreira, Renato da Silva; Marques, Mônica Regina da Costa
2016-09-15
A single method modified for monitoring of emerging contaminants in river water was developed for large sample volumes. Water samples from rivers of the lagoon system in the city of Rio de Janeiro (Brazil) were analyzed by the SPE-HPLC-MS-TOF analytical method. Acetaminophen was detected in four rivers in the concentration range of 0.09μgL(-1) to 0.14μgL(-1). Salicylic acid was also found in the four rivers in the concentration range of 1.65μgL(-1) to 4.81μgL(-1). Bisphenol-A was detected in all rivers in the concentration range of 1.37μgL(-1) to 39.86μgL(-1). Diclofenac was found in only one river, with concentration of 0.22μgL(-1). The levels of emerging organic pollutants in the water samples of the Jacarepaguá hydrographical basin are significant. The compounds are not routinely monitored and present potential risks to environmental health. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kovilakam, Mahesh; Mahajan, Salil
2016-06-28
While black carbon aerosols (BC) are believed to modulate the Indian monsoons, the radiative forcing estimate of BC suffers from large uncertainties globally. In this paper, we analyze a suite of idealized experiments forced with a range of BC concentrations that span a large swath of the latest estimates of its global radiative forcing. Within those bounds of uncertainty, summer precipitation over the Indian region increases nearly linearly with the increase in BC burden. The linearity holds even as the BC concentration is increased to levels resembling those hypothesized in nuclear winter scenarios, despite large surface cooling over India andmore » adjoining regions. The enhanced monsoonal circulation is associated with a linear increase in the large-scale meridional tropospheric temperature gradient. The precipitable water over the region also increases linearly with an increase in BC burden, due to increased moisture transport from the Arabian sea to the land areas. The wide range of Indian monsoon response elicited in these experiments emphasizes the need to reduce the uncertainty in BC estimates to accurately quantify their role in modulating the Indian monsoons. Finally, the increase in monsoonal circulation in response to large BC concentrations contrasts earlier findings that the Indian summer monsoon may break down following a nuclear war.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovilakam, Mahesh; Mahajan, Salil
While black carbon aerosols (BC) are believed to modulate the Indian monsoons, the radiative forcing estimate of BC suffers from large uncertainties globally. In this paper, we analyze a suite of idealized experiments forced with a range of BC concentrations that span a large swath of the latest estimates of its global radiative forcing. Within those bounds of uncertainty, summer precipitation over the Indian region increases nearly linearly with the increase in BC burden. The linearity holds even as the BC concentration is increased to levels resembling those hypothesized in nuclear winter scenarios, despite large surface cooling over India andmore » adjoining regions. The enhanced monsoonal circulation is associated with a linear increase in the large-scale meridional tropospheric temperature gradient. The precipitable water over the region also increases linearly with an increase in BC burden, due to increased moisture transport from the Arabian sea to the land areas. The wide range of Indian monsoon response elicited in these experiments emphasizes the need to reduce the uncertainty in BC estimates to accurately quantify their role in modulating the Indian monsoons. Finally, the increase in monsoonal circulation in response to large BC concentrations contrasts earlier findings that the Indian summer monsoon may break down following a nuclear war.« less
Theory and design of line-to-point focus solar concentrators with tracking secondary optics.
Cooper, Thomas; Ambrosetti, Gianluca; Pedretti, Andrea; Steinfeld, Aldo
2013-12-10
The two-stage line-to-point focus solar concentrator with tracking secondary optics is introduced. Its design aims to reduce the cost per m(2) of collecting aperture by maintaining a one-axis tracking trough as the primary concentrator, while allowing the thermodynamic limit of concentration in 2D of 215× to be significantly surpassed by the implementation of a tracking secondary stage. The limits of overall geometric concentration are found to exceed 4000× when hollow secondary concentrators are used, and 6000× when the receiver is immersed in a dielectric material of refractive index n=1.5. Three exemplary collectors, with geometric concentrations in the range of 500-1500× are explored and their geometric performance is ascertained by Monte Carlo ray-tracing. The proposed solar concentrator design is well-suited for large-scale applications with discrete, flat receivers requiring concentration ratios in the range 500-2000×.
Short-Time Glassy Dynamics in Viscous Protein Solutions with Competing Interactions
Godfrin, P. Douglas; Hudson, Steven; Hong, Kunlun; ...
2015-11-24
Although there have been numerous investigations of the glass transition for colloidal dispersions with only a short-ranged attraction, less is understood for systems interacting with a long-ranged repulsion in addition to this attraction, which is ubiquitous in aqueous protein solutions at low ionic strength. Highly puri ed concentrated lysozyme solutions are used as a model system and investigated over a large range of protein concentrations at very low ionic strength. Newtonian liquid behavior is observed at all concentrations, even up to 480 mg/mL, where the zero shear viscosity increases by more than three orders of magnitude with increasing concentration. Remarkably,more » despite this macroscopic liquid-like behavior, the measurements of the dynamics in the short-time limit shows features typical of glassy colloidal systems. Investigation of the inter-protein structure indicates that the reduced short-time mobility of the protein is caused by localized regions of high density within a heterogeneous density distribution. This structural heterogeneity occurs on intermediate range length scale, driven by the competing potential features, and is distinct from commonly studied colloidal gel systems in which a heterogeneous density distribution tends to extend to the whole system. The presence of long-ranged repulsion also allows for more mobility over large length and long time scales resulting in the macroscopic relaxation of the structure. The experimental results provide evidence for the need to explicitly include intermediate range order in theories for the macroscopic properties of protein solutions interacting via competing potential features.« less
Miki, Shizuho; Uno, Seiichi; Ito, Kazuki; Koyama, Jiro; Tanaka, Hiroyuki
2014-08-30
Contaminations in sediments by polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs were investigated at 44 sites in Osaka Bay, Japan. Concentrations of total PAHs and alkylated PAHs were in the range 6.40-7800 ng/g dry weights and 13.7-1700 ng/g dry weights, respectively. The PAH concentrations tended to be higher along the shoreline in the vicinities of big ports, industrialized areas, and densely populated regions such as the cities of Osaka and Kobe. The major sources appeared to be pyrogenic or both pyrogenic and petrogenic at most of the sites. PAH concentrations were remarkably high at a site near Kobe, where the concentrations of dibenzo(a,h)anthracene and benzo(g,h,i)perylene exceeded the effects-range-medium concentration and eight PAHs were above the corresponding effects-range-low concentrations. Those PAHs may have been derived from the great fire associated with the large earthquake in 1995. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wide-range radioactive-gas-concentration detector
Anderson, D.F.
1981-11-16
A wide-range radioactive-gas-concentration detector and monitor capable of measuring radioactive-gas concentrations over a range of eight orders of magnitude is described. The device is designed to have an ionization chamber sufficiently small to give a fast response time for measuring radioactive gases but sufficiently large to provide accurate readings at low concentration levels. Closely spaced parallel-plate grids provide a uniform electric field in the active region to improve the accuracy of measurements and reduce ion migration time so as to virtually eliminate errors due to ion recombination. The parallel-plate grids are fabricated with a minimal surface area to reduce the effects of contamination resulting from absorption of contaminating materials on the surface of the grids. Additionally, the ionization-chamber wall is spaced a sufficient distance from the active region of the ionization chamber to minimize contamination effects.
Occurrence of nitrous oxide in the central High Plains aquifer, 1999
McMahon, P.B.; Bruch, B.W.; Becker, M.F.; Pope, L.M.; Dennehy, K.F.
2000-01-01
Nitrogen-enriched groundwater has been proposed as an important anthropogenic source of atmospheric nitrous oxide (N2O), yet few measurements of N2O in large aquifer systems have been made. Concentrations of N2O in water samples collected from the 124 000 km2 central High Plains aquifer in 1999 ranged from < 1 to 940 nM, with a median concentration of 29 nM (n = 123). Eighty percent of the N20 concentrations exceeded the aqueous concentration expected from equilibration with atmospheric N2O. Measurements of N2O, NO3-, and 3H in unsaturated-zone sediments, recently recharged groundwater, and older groundwater indicate that concentrations of N2O in groundwater increased over time and will likely continue to increase in the future as N-enriched water recharges the aquifer. Large concentrations of O2 and NO3- and small concentrations of NH4+ and dissolved organic carbon in the aquifer indicate that N2O in the central High Plains aquifer was produced primarily by nitrification. Calculations indicate that the flux of N2O from the central High Plains aquifer to the atmosphere from well pumping and groundwater discharge to streams was not a significant source of atmospheric N2O.Nitrogen-enriched groundwater has been proposed as an important anthropogenic source of atmospheric nitrous oxide (N2O), yet few measurements of N2O in large aquifer systems have been made. Concentrations of N2O in water samples collected from the 124000 km2 central High Plains aquifer in 1999 ranged from < 1 to 940 nM, with a median concentration of 29 nM (n = 123). Eighty percent of the N2O concentrations exceeded the aqueous concentration expected from equilibration with atmospheric N2O. Measurements of N2O, NO3-, and 3H in unsaturated-zone sediments, recently recharged groundwater, and older groundwater indicate that concentrations of N2O in groundwater increased over time and will likely continue to increase in the future as N-enriched water recharges the aquifer. Large concentrations of O2 and NO3- and small concentrations of NH4+ and dissolved organic carbon in the aquifer indicate that N2O in the central High Plains aquifer was produced primarily by nitrification. Calculations indicate that the flux of N2O from the central High Plains aquifer to the atmosphere from well pumping and groundwater discharge to streams was not a significant source of atmospheric N2O.Water samples were collected from 92 domestic wells, 16 monitoring wells and 15 public-supply wells in the High Plains Aquifer in 1999, and concentrations of nitrous oxide were measured. The groundwater concentrations ranged from less than 1 to 940 nM. Concentrations expressed as a percent of saturation in water ranged from less than 10 to 9690%. A significant decrease was noted in N2O concentrations with increasing depth of the well screen below the water table, and a significant positive correlation was found between the concentrations of N2O and nitrate. The small area-averaged N2O emission rate for the aquifer indicated that it was not an important component of the atmospheric N2O budget, but the importance could increase as groundwater N2O concentrations increase.
USING THE AIR QUALITY MODEL TO ANALYZE THE CONCENTRATIONS OF AIR TOXICS OVER THE CONTINENTAL U.S.
The U.S. Environmental Protection Agency is examining the concentrations and deposition of hazardous air pollutants (HAPs), which include a large number of chemicals, ranging from non reactive (i.e. carbon tetrachloride) to reactive (i.e. formaldehyde), exist in gas, aqueous, and...
Spatial use and habitat selection of golden eagles in southwestern Idaho
Marzluff, J.M.; Knick, Steven T.; Vekasy, M.S.; Schueck, Linda S.; Zarriello, T.J.
1997-01-01
We measured spatial use and habitat selection of radio-tagged Golden Eagles (Aquila chrysaetos) at eight to nine territories each year from 1992 to 1994 in the Snake River Birds of Prey National Conservation Area. Use of space did not vary between years or sexes, but did vary among seasons (home ranges and travel distances were larger during the nonbreeding than during the breeding season) and among individuals. Home ranges were large, ranging from 190 to 8,330 ha during the breeding season and from 1,370 to 170,000 ha outside of the breeding season, but activity was concentrated in small core areas of 30 to 1,535 ha and 485 to 6,380 ha during the breeding and nonbreeding seasons, respectively. Eagles selected shrub habitats and avoided disturbed areas, grasslands, and agriculture. This resulted in selection for habitat likely to contain their principal prey, black-tailed jackrabbits (Lepus californicus). Individuals with home ranges in extensive shrubland (n = 3) did not select for shrubs in the placement of their core areas or foraging points, but individuals in highly fragmented or dispersed shrublands (n = 5) concentrated their activities and foraged preferentially in jackrabbit habitats (i.e. areas with abundant and large shrub patches). As home ranges expanded outside of the breeding season, individuals selected jackrabbit habitats within their range. Shrubland fragmentation should be minimized so that remaining shrub patches are large enough to support jackrabbits.
Sillanpää, Markus; Saarikoski, Sanna; Hillamo, Risto; Pennanen, Arto; Makkonen, Ulla; Spolnik, Zoya; Van Grieken, René; Koskentalo, Tarja; Salonen, Raimo O
2005-11-01
Special episodes of long-range transported particulate (PM) air pollution were investigated in a one-month field campaign at an urban background site in Helsinki, Finland. A total of nine size-segregated PM samplings of 3- or 4-day duration were made between August 23 and September 23, 2002. During this warm and unusually dry period there were two (labelled P2 and P5) sampling periods when the PM2.5 mass concentration increased remarkably. According to the hourly-measured PM data and backward air mass trajectories, P2 (Aug 23-26) represented a single, 64-h episode of long-range transported aerosol, whereas P5 (Sept 5-9) was a mixture of two 16- and 14-h episodes and usual seasonal air quality. The large chemical data set, based on analyses made by ion chromatography, inductively coupled plasma mass spectrometry, X-ray fluorescence analysis and smoke stain reflectometry, demonstrated that the PM2.5 mass concentrations of biomass signatures (i.e. levoglucosan, oxalate and potassium) and of some other compounds associated with biomass combustion (succinate and malonate) increased remarkably in P2. Crustal elements (Fe, Al, Ca and Si) and unidentified matter, presumably consisting to a large extent of organic material, were also increased in P2. The PM2.5 composition in P5 was different from that in P2, as the inorganic secondary aerosols (NO3-, SO4(2-), NH4+) and many metals reached their highest concentration in this period. The water-soluble fraction of potassium, lead and manganese increased in both P2 and P5. Mass size distributions (0.035-10 microm) showed that a large accumulation mode mainly caused the episodically increased PM2.5 concentrations. An interesting observation was that the episodes had no obvious impact on the Aitken mode. Finally, the strongly increased concentrations of biomass signatures in accumulation mode proved that the episode in P2 was due to long-range transported biomass combustion aerosol.
Wide range radioactive gas concentration detector
Anderson, David F.
1984-01-01
A wide range radioactive gas concentration detector and monitor which is capable of measuring radioactive gas concentrations over a range of eight orders of magnitude. The device of the present invention is designed to have an ionization chamber which is sufficiently small to give a fast response time for measuring radioactive gases but sufficiently large to provide accurate readings at low concentration levels. Closely spaced parallel plate grids provide a uniform electric field in the active region to improve the accuracy of measurements and reduce ion migration time so as to virtually eliminate errors due to ion recombination. The parallel plate grids are fabricated with a minimal surface area to reduce the effects of contamination resulting from absorption of contaminating materials on the surface of the grids. Additionally, the ionization chamber wall is spaced a sufficient distance from the active region of the ionization chamber to minimize contamination effects.
Center for Electro Optics & Plasma Research
1990-04-01
inversely proportional to the diameter of the plasma ring , the device had a large resistance and thus a large portion of the stored energy dissipated within...which produced an array of plasma rings concentric with the dye tube. These plasma rings emitted intense radiation over a wide range of the spectrum. The
Miller, B.; Jimenez, M.; Bridle, H.
2016-01-01
Inertial focusing is a microfluidic based separation and concentration technology that has expanded rapidly in the last few years. Throughput is high compared to other microfluidic approaches although sample volumes have typically remained in the millilitre range. Here we present a strategy for achieving rapid high volume processing with stacked and cascaded inertial focusing systems, allowing for separation and concentration of particles with a large size range, demonstrated here from 30 μm–300 μm. The system is based on curved channels, in a novel toroidal configuration and a stack of 20 devices has been shown to operate at 1 L/min. Recirculation allows for efficient removal of large particles whereas a cascading strategy enables sequential removal of particles down to a final stage where the target particle size can be concentrated. The demonstration of curved stacked channels operating in a cascaded manner allows for high throughput applications, potentially replacing filtration in applications such as environmental monitoring, industrial cleaning processes, biomedical and bioprocessing and many more. PMID:27808244
Determination of lipid oxidation products in vegetable oils and marine omega-3 supplements.
Halvorsen, Bente Lise; Blomhoff, Rune
2011-01-01
There is convincing evidence that replacing dietary saturated fats with polyunsaturated fats (PUFA) decreases risk of cardiovascular diseases. Therefore, PUFA rich foods such as vegetable oils, fatty fish, and marine omega-3 supplements are recommended. However, PUFA are easily oxidizable and there is concern about possible negative health effects from intake of oxidized lipids. Little is known about the degree of lipid oxidation in such products. To assess the content of lipid oxidation products in a large selection of vegetable oils and marine omega-3 supplements available in Norway. Both fresh and heated vegetable oils were studied. A large selection of commercially available vegetable oils and marine omega-3 supplements was purchased from grocery stores, pharmacies, and health food stores in Norway. The content of lipid oxidation products were measured as peroxide value and alkenal concentration. Twelve different vegetable oils were heated for a temperature (225°C) and time (25 minutes) resembling conditions typically used during cooking. The peroxide values were in the range 1.04-10.38 meq/kg for omega-3 supplements and in the range 0.60-5.33 meq/kg for fresh vegetable oils. The concentration range of alkenals was 158.23-932.19 nmol/mL for omega-3 supplements and 33.24-119.04 nmol/mL for vegetable oils. After heating, a 2.9-11.2 fold increase in alkenal concentration was observed for vegetable oils. The contents of hydroperoxides and alkenals in omega-3 supplements are higher than in vegetable oils. After heating vegetable oils, a large increase in alkenal concentration was observed.
[Pollutants produced in municipal refuse container during transfer process].
Wang, Xiao-Yuan; Liu, Yin-Hua; Wang, Fei; Huang, Chang-Ying; Lu, Feng; Xie, Bing
2014-05-01
The generation and variation of the secondary pollutants in containers during seasons of a year were investigated in a municipal refuse transfer station of Shanghai. The results showed that the primary odors, the concentration of H2S was in a range of 0.3-10.3 mg.m-3, CH4 was in a range of 0.02% -2.97% and NH3 was in a range of 0.7-4.5 mg m-3, and their concentrations all reached the peak in the summer. The pH of the leachate was in a range of 5.4-6. 3, COD was 41 633-84 060 mgL- 1, and BOD, was 18 116-34 130 mg.L , the concentration of pollutants were all higher in winter than that in summer. The ammonia concentration of leachate was in a range of 537-1222 mg.L'', while the TP fluctuated acutely in a range of 17.98-296 mg L-1, exhibiting the relationship with seasonal variation. Extreme temperatures especially the high temperature in summer significantly affected air pollution producing, which indicated that containers should be kept against high temperature exposure and long residence time in order to prevent flammable gases and other pollutants generated largely.
Optimal group size in a highly social mammal
Markham, A. Catherine; Gesquiere, Laurence R.; Alberts, Susan C.; Altmann, Jeanne
2015-01-01
Group size is an important trait of social animals, affecting how individuals allocate time and use space, and influencing both an individual’s fitness and the collective, cooperative behaviors of the group as a whole. Here we tested predictions motivated by the ecological constraints model of group size, examining the effects of group size on ranging patterns and adult female glucocorticoid (stress hormone) concentrations in five social groups of wild baboons (Papio cynocephalus) over an 11-y period. Strikingly, we found evidence that intermediate-sized groups have energetically optimal space-use strategies; both large and small groups experience ranging disadvantages, in contrast to the commonly reported positive linear relationship between group size and home range area and daily travel distance, which depict a disadvantage only in large groups. Specifically, we observed a U-shaped relationship between group size and home range area, average daily distance traveled, evenness of space use within the home range, and glucocorticoid concentrations. We propose that a likely explanation for these U-shaped patterns is that large, socially dominant groups are constrained by within-group competition, whereas small, socially subordinate groups are constrained by between-group competition and predation pressures. Overall, our results provide testable hypotheses for evaluating group-size constraints in other group-living species, in which the costs of intra- and intergroup competition vary as a function of group size. PMID:26504236
NASA Astrophysics Data System (ADS)
Park, M.; Kim, N.; Yum, S. S.; Thornhill, K. L., II; Anderson, B. E.; Kim, D. S.; Kim, H. J.; Jeon, H. E.; Park, Y. S.; Lee, S. B.
2017-12-01
KORUS-AQ is a field campaign aimed at investigating formation of ozone and aerosol and interactions between chemistry, transport and various sources in the Korean Peninsula which is the region affected both by long-range transport and local emission. Aerosol number concentration and size distribution, and CCN number concentration were measured on board the NASA DC-8 research aircraft and at a ground site at Olympic Park in Seoul, capital city of Korea during the KORUS-AQ campaign (May 2nd to June 10th, 2017). There were 20 flights during the KORUS-AQ campaign and total flight time was about 150 hours. CCN counter (CCNC) on the airborne platform was operated at the fixed internal supersaturation of 0.6% and CCNC at the ground site was operated at five different supersaturations (0.2%, 0.4%, 0.6%, 0.8%, and 1.0%). Aerosol hygroscopic parameter κ was also estimated from CCN number concentration and aerosol size distribution. Airborne measurements showed a large spatio-temporal variation of aerosol number concentration and CCN activity in and around the Korean peninsula, and the ground measurements also showed a large temporal variation. The campaign period can be classified into long-range transport dominant cases, local emission dominant cases due to stagnant air mass, and others. Aerosol number concentration in the Korean Peninsula measured in stagnant air mass period was higher than those in long-range transport period, but CCN number concentration showed an opposite tendency. Both aerosol and CCN number concentrations over the Yellow Sea in local emission period were slightly higher than those in long-range transport period. Since CCN activity is different depending on time and space, our focus is on understanding how CCN activity and aerosol hygroscopicity vary with the source of aerosol. Comprehensive analysis results will be shown at the conference.
Naftz, D.L.; Rice, J.A.
1989-01-01
Geochemical data for samples of overburden from three mines in the Powder River Basin indicate a statistically significant (0.01 confidence level) positive correlation (r = 0.74) between Se and organic C. Results of factor analysis with varimax rotation on the major and trace element data from the rock samples indicate large (>50) varimax loadings for Se in two of the three factors. In Factor 1, the association of Se with constituents common to detrital grains indicates that water transporting the detrital particles into the Powder River Basin also carried dissolved Se. The large (>50) varimax loadings of Se and organic C in Factor 2 probably are due to the organic affinities characteristic of Se. Dissolved Se concentrations in water samples collected at one coal mine are directly related to the dissolved organic C concentrations. Hydrophilic acid concentrations in the water samples from the mine ranged from 35 to 43% of the total dissolved organic C, and hydrophobic acid concentrations ranged from 40 to 49% of the total dissolved organic C. The largest dissolved organic C concentrations in water from the same mine (34-302 mg/l), coupled with the large proportion of acidic components, may saturate adsorption sites on geothite and similar minerals that comprise the aquifer material, thus decreasing the extent of selenite (SeO32-) adsorption as a sink for Se as the redox state of ground water decreases. ?? 1989.
Measurement of variation in soil solute tracer concentration across a range of effective pore sizes
Harvey, Judson W.
1993-01-01
Solute transport concepts in soil are based on speculation that solutes are distributed nonuniformly within large and small pores. Solute concentrations have not previously been measured across a range of pore sizes and examined in relation to soil hydrological properties. For this study, modified pressure cells were used to measure variation in concentration of a solute tracer across a range of pore sizes. Intact cores were removed from the site of a field tracer experiment, and soil water was eluted from 10 or more discrete classes of pore size. Simultaneous changes in water content and unsaturated hydraulic conductivity were determined on cores using standard pressure cell techniques. Bromide tracer concentration varied by as much as 100% across the range of pore sizes sampled. Immediately following application of the bromide tracer on field plots, bromide was most concentrated in the largest pores; concentrations were lower in pores of progressively smaller sizes. After 27 days, bromide was most dilute in the largest pores and concentrations were higher in the smaller pores. A sharp, threefold decrease in specific water capacity during elution indicated separation of two major pore size classes at a pressure of 47 cm H2O and a corresponding effective pore diameter of 70 μm. Variation in tracer concentration, on the other hand, was spread across the entire range of pore sizes investigated in this study. A two-porosity characterization of the transport domain, based on water retention criteria, only broadly characterized the pattern of variation in tracer concentration across pore size classes during transport through a macroporous soil.
Clinical biochemistry in healthy manatees (Trichechus manatus latirostris).
Harvey, John W; Harr, Kendal E; Murphy, David; Walsh, Michael T; Chittick, Elizabeth J; Bonde, Robert K; Pate, Melanie G; Deutsch, Charles J; Edwards, Holly H; Haubold, Elsa M
2007-06-01
Florida manatees (Trichechus manatus latirostris) are endangered aquatic mammals living in coastal and riverine waterways of Florida and adjacent states. Serum or plasma biochemical analyses are important tools in evaluating the health of free-ranging and captive manatees. The purpose of this study was to measure diagnostically important analytes in the plasma of healthy manatees and to determine whether there was significant variation with respect to location (free-ranging versus captive), age class (small calves, large calves, subadults, adults), and gender. No significant differences in plasma sodium, potassium, bilirubin, glucose, alanine aminotransferase, or creatine kinase were found among these classes of animals. Compared to free-ranging manatees, captive animals had significantly lower mean concentrations of plasma chloride, phosphate, magnesium, triglycerides, anion gap, and lactate. Captive manatees had significantly higher mean values of total CO2, calcium, urea, creatinine, alkaline phosphatase, gamma-glutamyltransferase, total protein, albumin, and albumin/globulin ratio than did free-ranging animals. Differences in the environments of these two groups, including diet, temperature, salinity, and stress, might account for some of these results. The higher plasma lactate and anion gap concentrations and lower total CO2 concentrations of free-ranging manatees were probably due to greater exertion during capture, but the lack of elevated plasma creatine kinase activity relative to captive animals indicates that there was no serious muscle injury associated with capture. Plasma phosphate decreased and total globulins increased with age. Plasma cholesterol and triglyceride concentrations were highest in small calves. Plasma aspartate aminotransferase was higher in large calves than in adults and subadults, and the albumin/ globulin ratio was higher in subadults than in adults. Plasma total CO2 was higher and chloride was slightly lower in females than in males.
Clinical biochemistry in healthy manatees (Trichechus manatus latirostris)
Harvey, J.W.; Harr, K.E.; Murphy, D.; Walsh, M.T.; Chittick, E.J.; Bonde, R.K.; Pate, M.G.; Deutsch, C.J.; Edwards, H.H.; Haubold, E.M.
2007-01-01
Florida manatees (Trichechus manatus latirostris) are endangered aquatic mammals living in coastal and riverine waterways of Florida and adjacent states. Serum or plasma biochemical analyses are important tools in evaluating the health of free-ranging and captive manatees. The purpose of this study was to measure diagnostically important analytes in the plasma of healthy manatees and to determine whether there was significant variation with respect to location (free-ranging versus captive), age class (small calves, large calves, subadults, adults), and gender. No significant differences in plasma sodium, potassium, bilirubin, glucose, alanine aminotransferase, or creatine kinase were found among these classes of animals. Compared to free-ranging manatees, captive animals had significantly lower mean concentrations of plasma chloride, phosphate, magnesium, triglycerides, anion gap, and lactate. Captive manatees had significantly higher mean values of total CO2, calcium, urea, creatinine, alkaline phosphatase, gamma-glutamyltransferase, total protein, albumin, and albumin/globulin ratio than did free-ranging animals. Differences in the environments of these two groups, including diet, temperature, salinity, and stress, might account for some of these results. The higher plasma lactate and anion gap concentrations and lower total CO2 concentrations of free-ranging manatees were probably due to greater exertion during capture, but the lack of elevated plasma creatine kinase activity relative to captive animals indicates that there was no serious muscle injury associated with capture. Plasma phosphate decreased and total globulins increased with age. Plasma cholesterol and triglyceride concentrations were highest in small calves. Plasma aspartate aminotransferase was higher in large calves than in adults and subadults, and the albumin/ globulin ratio was higher in subadults than in adults. Plasma total CO2 was higher and chloride was slightly lower in females than in males.
Mitigating the Hook Effect in Lateral Flow Sandwich Immunoassays Using Real-Time Reaction Kinetics.
Rey, Elizabeth G; O'Dell, Dakota; Mehta, Saurabh; Erickson, David
2017-05-02
The quantification of analyte concentrations using lateral flow assays is a low-cost and user-friendly alternative to traditional lab-based assays. However, sandwich-type immunoassays are often limited by the high-dose hook effect, which causes falsely low results when analytes are present at very high concentrations. In this paper, we present a reaction kinetics-based technique that solves this problem, significantly increasing the dynamic range of these devices. With the use of a traditional sandwich lateral flow immunoassay, a portable imaging device, and a mobile interface, we demonstrate the technique by quantifying C-reactive protein concentrations in human serum over a large portion of the physiological range. The technique could be applied to any hook effect-limited sandwich lateral flow assay and has a high level of accuracy even in the hook effect range.
Tai, Yi-Ping; Luo, Xiao-Dong; Mo, Ce-Hui; Li, Yan-Wen; Wu, Xiao-Lian; Liu, Xing-Yue
2011-04-01
The occurrence and distribution of four quinolones and four sulfonamides in swine and cattle feces sampled from twenty large-scale feeding operations in different areas of Guangdong province were detected using solid phase extraction (SPE) and high performance liquid chromatography (HPLC). Quinolone and sulfonamide compounds were observed in all pig dung samples. Their total concentrations ranged from 24.5 microg/kg to 1516.2 microg/kg (F. W.) with an average of 581.0 microg/kg and ranged from 1925.9-13399.5 microg/kg with an average of 4403.9 microg/kg respectively. The dominant compounds in pig feces were ciprofloxacin and enrofloxacin for quinolones and sulfamerazine and sulfamethoxazole for sulfonamides. Quinolone compounds which dominated with norfloxacin and ciprofloxacin were also observed in all cattle dung samples, its total concentrations ranged from 73.2 microg/kg to 1328.0 microg/kg which averaged 572.9 microg/kg. While the positive rates of sulfonamide compounds detected in cattle dung samples were above 90%, predominated by sulfamethoxazole and sulfamerazine. Concentration and distribution of both quinolone and sulfonamide compounds in swine and cattle dungs of different feeding operations varied greatly. Relatively high concentrations of the two kinds of antibiotics were found in both swine and cattle dungs from Guangzhou area, while sulfameter and sulfamethazine in cattle dungs from Foshan and Shenzhen areas were below the limit of detection.
Optofluidic laser for dual-mode sensitive biomolecular detection with a large dynamic range
NASA Astrophysics Data System (ADS)
Wu, Xiang; Oo, Maung Kyaw Khaing; Reddy, Karthik; Chen, Qiushu; Sun, Yuze; Fan, Xudong
2014-04-01
Enzyme-linked immunosorbent assay (ELISA) is a powerful method for biomolecular analysis. The traditional ELISA employing light intensity as the sensing signal often encounters large background arising from non-specific bindings, material autofluorescence and leakage of excitation light, which deteriorates its detection limit and dynamic range. Here we develop the optofluidic laser-based ELISA, where ELISA occurs inside a laser cavity. The laser onset time is used as the sensing signal, which is inversely proportional to the enzyme concentration and hence the analyte concentration inside the cavity. We first elucidate the principle of the optofluidic laser-based ELISA, and then characterize the optofluidic laser performance. Finally, we present the dual-mode detection of interleukin-6 using commercial ELISA kits, where the sensing signals are simultaneously obtained by the traditional and the optofluidic laser-based ELISA, showing a detection limit of 1 fg ml-1 (38 aM) and a dynamic range of 6 orders of magnitude.
Effect of Temperature and Nutrient Manipulations on eelgrass ...
Global climate change will have a large impact on the three predominate drivers of estuarine seagrass productivity, temperature, light and nutrients. I experimentally evaluate the response of Pacific Northwest Z. marina to interactive effects of temperature and nutrient conditions. Experimental manipulations were conducted hydroponically in acrylic chambers and spanned a range of temperatures and nutrient concentrations. Preliminary single factor experiments were conducted to evaluate physiological tolerances to temperature and nitrogen concentrations. Eelgrass exhibited a linear increase in specific growth with increasing NH4 concentration (range from 10 to 1000 µM); in contrast, there was no significant relationship between specific growth rate and increasing NO3 concentration over the same concentration range. Leaf growth metrics all exhibited strong linear relationships with increasing water temperature (temperature range 4-25 ºC). In the factorial experiment, plants were exposed to 3 temperatures (10, 18 and 25 ºC) and 3 nitrate concentrations (10, 30 and 100 µM) with 3 replicate chambers per treatment combination. Most metrics (leaf elongation, growth, specific growth, wasting index) exhibited a significant temperature effect indicating the importance of temperature on metabolic rates. Tissue stable isotope ratios and C:N values exhibited a significant nutrient effect and in some cases a significant temperature effect. Whole plant non structur
Tian, Chao; Wang, Lixin; Novick, Kimberly A
2016-10-15
High-precision analysis of atmospheric water vapor isotope compositions, especially δ(17) O values, can be used to improve our understanding of multiple hydrological and meteorological processes (e.g., differentiate equilibrium or kinetic fractionation). This study focused on assessing, for the first time, how the accuracy and precision of vapor δ(17) O laser spectroscopy measurements depend on vapor concentration, delta range, and averaging-time. A Triple Water Vapor Isotope Analyzer (T-WVIA) was used to evaluate the accuracy and precision of δ(2) H, δ(18) O and δ(17) O measurements. The sensitivity of accuracy and precision to water vapor concentration was evaluated using two international standards (GISP and SLAP2). The sensitivity of precision to delta value was evaluated using four working standards spanning a large delta range. The sensitivity of precision to averaging-time was assessed by measuring one standard continuously for 24 hours. Overall, the accuracy and precision of the δ(2) H, δ(18) O and δ(17) O measurements were high. Across all vapor concentrations, the accuracy of δ(2) H, δ(18) O and δ(17) O observations ranged from 0.10‰ to 1.84‰, 0.08‰ to 0.86‰ and 0.06‰ to 0.62‰, respectively, and the precision ranged from 0.099‰ to 0.430‰, 0.009‰ to 0.080‰ and 0.022‰ to 0.054‰, respectively. The accuracy and precision of all isotope measurements were sensitive to concentration, with the higher accuracy and precision generally observed under moderate vapor concentrations (i.e., 10000-15000 ppm) for all isotopes. The precision was also sensitive to the range of delta values, although the effect was not as large compared with the sensitivity to concentration. The precision was much less sensitive to averaging-time than the concentration and delta range effects. The accuracy and precision performance of the T-WVIA depend on concentration but depend less on the delta value and averaging-time. The instrument can simultaneously and continuously measure δ(2) H, δ(18) O and δ(17) O values in water vapor, opening a new window to better understand ecological, hydrological and meteorological processes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hay, M. S.
Savannah River National Laboratory analyzed samples from Tank 38H and Tank 43H to support Enrichment Control Program and Corrosion Control Program. The total uranium in the Tank 38H samples ranged from 20.5 to 34.0 mg/L while the Tank 43H samples ranged from 47.6 to 50.6 mg/L. The U-235 percentage ranged from 0.62% to 0.64% over the four samples. The total uranium and percent U-235 results appear consistent with previous Tank 38H and Tank 43H uranium measurements. The Tank 38H plutonium results show a large difference between the surface and sub-surface sample concentrations and a somewhat higher concentration than previous sub-surfacemore » samples. The two Tank 43H samples show similar plutonium concentrations and are within the range of values measured on previous samples. The plutonium results may be biased high due to the presence of plutonium contamination in the blank samples from the cell sample preparations. The four samples analyzed show silicon concentrations ranging from 47.9 to 105 mg/L.« less
Heavy-metal contamination on training ranges at the Grafenwoehr Training Area, Germany
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zellmer, S.D.; Schneider, J.F.
1993-05-01
Large quantities of lead and other heavy metals are deposited in the environment of weapons ranges during training exercises. This study was conducted to determine the type, degree, and extent of heavy-metal contamination on selected handgun, rifle, and hand-grenade ranges at Grafenwoehr Training Area, Germany. Soil, vegetation, and surface-water samples were collected and analyzed using the inductively-coupled plasma atomic-emission spectroscopy (ICP-AES) method and the toxic characterization leaching procedure (TCLP). The ICP-AES results show that above-normal levels of lead and copper are in the surface soil at the handgun range, high concentrations of lead and copper are in the berm andmore » soil surface at the rifle range, and elevated levels of cadmium and above-normal concentrations of arsenic, copper, and zinc are present in the surface soil at the hand-grenade range. The TCLP results show that surface soils can be considered hazardous waste because of lead content at the rifle range and because of cadmium concentration at the hand-grenade range. Vegetation at the handgun and rifle ranges has above-normal concentrations of lead. At the hand-grenade range, both vegetation and surface water have high levels of cadmium. A hand-held X-ray fluorescence (XRF) spectrum analyzer was used to measure lead concentrations in soils in a field test of the method. Comparison of XRF readings with ICP-AES results for lead indicate that the accuracy and precision of the hand-held XRF unit must improve before the unit can be used as more than a screening tool. Results of this study show that heavy-metal contamination at all three ranges is limited to the surface soil; heavy metals are not being leached into the soil profile or transported into adjacent areas.« less
Highly Concentrated Seed-Mediated Synthesis of Monodispersed Gold Nanorods (Postprint)
2017-07-17
imaging, therapeutics and sensors, to large area coatings, filters , and optical attenuators. Development of the latter technologies has been hindered by...sensors, to large area coatings, filters , and optical attenuators. Development of the latter technologies has been hindered by the lack of cost-effective...challenges the utilization of Au-NRs in a diverse array of technologies, ranging from therapeutics, imaging and sensors, to large area coatings, filters and
Determination of lipid oxidation products in vegetable oils and marine omega-3 supplements
Halvorsen, Bente Lise; Blomhoff, Rune
2011-01-01
Background There is convincing evidence that replacing dietary saturated fats with polyunsaturated fats (PUFA) decreases risk of cardiovascular diseases. Therefore, PUFA rich foods such as vegetable oils, fatty fish, and marine omega-3 supplements are recommended. However, PUFA are easily oxidizable and there is concern about possible negative health effects from intake of oxidized lipids. Little is known about the degree of lipid oxidation in such products. Objective To assess the content of lipid oxidation products in a large selection of vegetable oils and marine omega-3 supplements available in Norway. Both fresh and heated vegetable oils were studied. Design A large selection of commercially available vegetable oils and marine omega-3 supplements was purchased from grocery stores, pharmacies, and health food stores in Norway. The content of lipid oxidation products were measured as peroxide value and alkenal concentration. Twelve different vegetable oils were heated for a temperature (225°C) and time (25 minutes) resembling conditions typically used during cooking. Results The peroxide values were in the range 1.04–10.38 meq/kg for omega-3 supplements and in the range 0.60–5.33 meq/kg for fresh vegetable oils. The concentration range of alkenals was 158.23–932.19 nmol/mL for omega-3 supplements and 33.24–119.04 nmol/mL for vegetable oils. After heating, a 2.9–11.2 fold increase in alkenal concentration was observed for vegetable oils. Conclusions The contents of hydroperoxides and alkenals in omega-3 supplements are higher than in vegetable oils. After heating vegetable oils, a large increase in alkenal concentration was observed. PMID:21691461
Nitrous oxide as an indicator of nitrogen transformation in a septic system plume
NASA Astrophysics Data System (ADS)
Li, L.; Spoelstra, J.; Robertson, W. D.; Schiff, S. L.; Elgood, R. J.
2014-11-01
This study evaluates the use of ground water N2O concentration and stable isotope composition for providing insights into nitrogen cycling processes in a large septic system plume in southern Ontario, Canada. An extremely large range of dissolved N2O concentrations were measured (0.4-1071 μg N/L) that were higher than atmospheric equilibrium values of ∼0.3 μg N/L, demonstrating substantial N2O production in the subsurface. The highest N2O concentrations occurred around the periphery of a mid-depth zone where NO3- attenuation, elevated DOC concentration, and NO3- stable isotope ratios provided evidence that denitrification was occurring. Broad ranges in δ15N-N2O (-45.8‰ to +30.6‰) and δ18O-N2O (+20.4‰ to +96.0‰) were evident. Using literature isotopic enrichment factors, which differ for N2O produced during nitrification and denitrification, and measured ranges of plume NH4+ and NO3- isotopic ratios, zones of both nitrifier-derived N2O (shallow zone) and denitrifier-N2O (mid-depth and deeper zones) could be identified. Time series sampling showed that nitrifier N2O was present early in the summer season (June) but then denitrifier N2O was more dominant later in the season. In a mid-depth NO3- depleted zone, the production of denitrifier-N2O was evident early in the season when 15N and 18O enrichment of NO3- was not sufficiently advanced to be indicative of denitrification, although δ15N and δ18O values of NO3- increased later in the season. The analysis of N2O concentrations and stable isotopic composition, in conjunction with conventional chemical analyses, provides insights into N-cycling processes in the Long Point ground water septic plume. However, large ranges in the isotopic composition of N2O produced by nitrifiers and denitrifiers meant that δ15N and δ18O analysis of ground water N2O provided qualitative, rather than quantitative, information on denitrifier versus nitrifier production of N2O at this site.
Dispersion in Rectangular Networks: Effective Diffusivity and Large-Deviation Rate Function
NASA Astrophysics Data System (ADS)
Tzella, Alexandra; Vanneste, Jacques
2016-09-01
The dispersion of a diffusive scalar in a fluid flowing through a network has many applications including to biological flows, porous media, water supply, and urban pollution. Motivated by this, we develop a large-deviation theory that predicts the evolution of the concentration of a scalar released in a rectangular network in the limit of large time t ≫1 . This theory provides an approximation for the concentration that remains valid for large distances from the center of mass, specifically for distances up to O (t ) and thus much beyond the O (t1 /2) range where a standard Gaussian approximation holds. A byproduct of the approach is a closed-form expression for the effective diffusivity tensor that governs this Gaussian approximation. Monte Carlo simulations of Brownian particles confirm the large-deviation results and demonstrate their effectiveness in describing the scalar distribution when t is only moderately large.
Diffusiophoresis of charged colloidal particles in the limit of very high salinity.
Prieve, Dennis C; Malone, Stephanie M; Khair, Aditya S; Stout, Robert F; Kanj, Mazen Y
2018-06-13
Diffusiophoresis is the migration of a colloidal particle through a viscous fluid, caused by a gradient in concentration of some molecular solute; a long-range physical interaction between the particle and solute molecules is required. In the case of a charged particle and an ionic solute (e.g., table salt, NaCl), previous studies have predicted and experimentally verified the speed for very low salt concentrations at which the salt solution behaves ideally. The current study presents a study of diffusiophoresis at much higher salt concentrations (approaching the solubility limit). At such large salt concentrations, electrostatic interactions are almost completely screened, thus eliminating the long-range interaction required for diffusiophoresis; moreover, the high volume fraction occupied by ions makes the solution highly nonideal. Diffusiophoretic speeds were found to be measurable, albeit much smaller than for the same gradient at low salt concentrations.
Long range transport of air pollutants in Europe and acid precipitation in Norway
Jack Nordo
1976-01-01
Observations show that pollutants from large emission sources may cause significant air concentrations 500 to 1000 miles away. Very acid precipitation occurs in such periods. The scavenging is often intensified by the topography. Case studies will be presented, with special emphasis on acid precipitation in Scandinavia. Large scale dispersion models have been developed...
David, N.; McKee, L.J.; Black, F.J.; Flegal, A.R.; Conaway, C.H.; Schoellhamer, D.H.; Ganju, N.K.
2009-01-01
In order to estimate total mercury (HgT) loads entering San Francisco Bay, USA, via the Sacramento-San Joaquin River system, unfiltered water samples were collected between January 2002 and January 2006 during high flow events and analyzed for HgT. Unfiltered HgT concentrations ranged from 3.2 to 75 ng/L and showed a strong correlation (r2 = 0.8, p < 0.001, n = 78) to suspended sediment concentrations (SSC). During infrequent large floods, HgT concentrations relative to SSC were approximately twice as high as observed during smaller floods. This difference indicates the transport of more Hg-contaminated particles during high discharge events. Daily HgT loads in the Sacramento-San Joaquin River at Mallard Island ranged from below the limit of detection to 35 kg. Annual HgT loads varied from 61 ?? 22 kg (n = 5) in water year (WY) 2002 to 470 ?? 170 kg (n = 25) in WY 2006. The data collected will assist in understanding the long-term recovery of San Francisco Bay from Hg contamination and in implementing the Hg total maximum daily load, the long-term cleanup plan for Hg in the Bay. ?? 2009 SETAC.
Photovoltaics and solar thermal conversion to electricity - Status and prospects
NASA Technical Reports Server (NTRS)
Alper, M. E.
1979-01-01
Photovoltaic power system technology development includes flat-plate silicon solar arrays and concentrating solar cell systems, which use silicon and other cell materials such as gallium arsenide. System designs and applications include small remote power systems ranging in size from tens of watts to tens of kilowatts, intermediate load-center applications ranging in size from tens to hundreds of kilowatts, and large central plant installations, as well as grid-connected rooftop applications. The thermal conversion program is concerned with large central power systems and small power applications.
Taylor, R. Lynn; Ferreira, Rodger F.
1995-01-01
Biological and associated water-quality data were collected from lower Olmos Creek and upper San Antonio River in San Antonio, Texas, during April-September 1989. Benthic macroinvertebrate, periphyton, and phytoplankton communities were sampled at three sites along the Olmos Creek/San Antonio River system. Total mean densities of benthic macroinvertebrates for the three sites ranged from 670 to 10,000 organisms per square meter. The most abundant macroinvertebrates were the class Insecta (insects). Total densities of periphyton ranged from 2,900 to 110,000 cells per square millimeter. Cyanophyta (blue-green algae) and Bacillariophyta (diatoms) were the predominant periphyton organisms. Total densities of phyto- plankton ranged from 5,000 to 47,000 cells per square milliliter. Blue-green algae accounted for more than one- half of the phytoplankton in each sample. Hardness ranged from 160 to 250 milligrams per liter as calcium carbonate, and alkalinity ranged from 130 to 220 milligrams per liter as calcium carbonate. The largest dissolved nitrite concentration was 0.038 milligram per liter. The largest total phosphorus concentration was 0.150 milligram per liter, over one-half of which was dissolved orthophosphate. Total aluminum and total iron were the only trace elements in water to exceed the reporting threshold by large concen- trations. Total aluminum concentrations ranged from 70 to 280 micrograms per liter, and total iron concentrations ranged from 70 to 340 micrograms per liter. Lead was the most prominent trace element in bottom-material samples, with concentrations ranging from 30 to 230 micrograms per gram.
Sulfides from Martian and Lunar Basalts: Comparative Chemistry for Ni Co Cu and Se
DOE Office of Scientific and Technical Information (OSTI.GOV)
J Papike; P Burger; C Shearer
2011-12-31
Here Mars and Moon are used as 'natural laboratories' with Moon displaying lower oxygen fugacities ({approx}IW-1) than Mars ({approx}IW to FMQ). Moon has lower concentrations of Ni and Co in basaltic melts than does Mars. The major sulfides are troilite (FeS) in lunar basalts and pyrrhotite (Fe{sub 1-x}S) in martian basalts. This study focuses on the concentrations of Ni, Co, Cu, and Se. We chose these elements because of their geochemical importance and the feasibility of analyzing them with a combination of synchrotron X-ray fluorescence (SXRF) and electron microprobe (EPMA) techniques. The selenium concentrations could only be analyzed, at highmore » precision, with SXRF techniques as they are <150 ppm, similar to concentrations seen in carbonaceous chondrites and interplanetary dust particles (IDPs). Nickel and Co are in higher concentrations in martian sulfides than lunar and are higher in martian olivine-bearing lithologies than olivine-free varieties. The sulfides in individual samples show very large ranges in concentration (e.g., Ni ranges from 50 000 ppm to <5 ppm). These large ranges are mainly due to compositional heterogeneities within individual grains due to diffusion and phase separation. Electron microprobe wavelength-dispersive (WDS) mapping of Ni, Co, and Cu show the diffusion trajectories. Nickel and Co have almost identical diffusion trajectories leading to the likely nucleation of pentlandite (Ni,Co,Fe){sub 9}S{sub 8}, and copper diffuses along separate pathways likely toward chalcopyrite nucleation sites (CuFeS{sub 2}). The systematics of Ni and Co in lunar and martian sulfides clearly distinguish the two parent bodies, with martian sulfides displaced to higher Ni and Co values.« less
Saiki, Michael K.; Martin, Barbara A.; May, Thomas W.; Alpers, Charles N.
2010-01-01
This study examined mercury concentrations in whole fish from Camp Far West Reservoir, an 830-ha reservoir in northern California, USA, located downstream from lands mined for gold during and following the Gold Rush of 1848–1864. Total mercury (reported as dry weight concentrations) was highest in spotted bass (mean, 0.93 μg/g; range, 0.16–4.41 μg/g) and lower in bluegill (mean, 0.45 μg/g; range, 0.22–1.96 μg/g) and threadfin shad (0.44 μg/g; range, 0.21–1.34 μg/g). Spatial patterns for mercury in fish indicated high concentrations upstream in the Bear River arm and generally lower concentrations elsewhere, including downstream near the dam. These findings coincided with patterns exhibited by methylmercury in water and sediment, and suggested that mercury-laden inflows from the Bear River were largely responsible for contaminating the reservoir ecosystem. Maximum concentrations of mercury in all three fish species, but especially bass, were high enough to warrant concern about toxic effects in fish and consumers of fish.
Cheng, Fei; Betts, Jonathan W; Kelly, Stephen M; Hector, Andrew L
2015-01-01
A simple, environmentally friendly and cost-effective method has been developed to prepare a range of aqueous silver colloidal solutions, using ascorbic acid as a reducing agent, water-soluble starch as a combined crystallising, stabilising and solubilising agent, and water as the solvent. The diameter of silver nanoplatelets increases with higher concentrations of AgNO3 and starch. The silver nanoparticles are also more uniform in shape the greater the diameter of the nanoparticles. Colloidal solutions with a very high concentration of large, flat, hexagonal silver nanoplatelets (~230 nm in breadth) have been used to deposit and fix an antibacterial coating of these large starch-stabilised silver nanoplates on commercial cotton fibres, using a simple dip-coating process using water as the solvent, in order to study the dependence of the antibacterial properties of these nanoplatelets on their size. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Xiaoli; Ding, Kai; Liu, Jian; Gao, Junxuan; Zhang, Weifeng
2018-01-01
Different doped silicon substrates have different device applications and have been used to fabricate solar panels and large scale integrated circuits. The thermal transport in silicon substrates are dominated by lattice vibrations, doping type, and doping concentration. In this paper, a variable-temperature Raman spectroscopic system is applied to record the frequency and linewidth changes of the silicon peak at 520 cm-1 in five chips of silicon substrate with different doping concentration of phosphorus and boron at the 83K to 1473K temperature range. The doping has better heat sensitive to temperature on the frequency shift over the low temperature range from 83K to 300K but on FWHM in high temperature range from 300K to 1473K. The results will be helpful for fundamental study and practical applications of silicon substrates.
The dependence of estuarine turbidity on tidal intrusion length, tidal range and residence time
Uncles, R.J.; Stephens, J.A.; Smith, R.E.
2002-01-01
It is shown that there is a marked tendency for long, strongly tidal estuaries to have greater suspended particulate matter (SPM) concentrations within their high-turbidity regions than shorter estuaries with comparable tidal ranges at their mouths, or weakly tidal estuaries. Using consistently derived data from 44 estuaries in Europe and the Americas, contours of the logarithm of maximum estuarine SPM concentration are shown to be reasonably smooth when plotted against the logarithm of mean spring tidal range (at the estuary mouth) and the logarithm of estuarine tidal length. Predictions from the plot are compared with published observations made in the Delaware, Scheldt, Rio de la Plata, Gironde, Bay of Fundy, Changjiang (Yangtze), Amazon, Paros Lagoon and the Hawkesbury Estuary and it is shown that, qualitatively, there are no serious discrepancies. Short, weakly tidal estuaries are predicted to have very low 'intrinsic' SPM concentrations. High SPM concentrations in these estuaries would most likely be the result of either locally generated wave resuspension, high freshwater sediment loads due to freshets, or intruding seawater carrying suspended sediments derived from wave activity in the coastal zone. Application of a generic tidal model demonstrates that longer estuaries possess faster tidal currents for a given tidal range at their mouth and, in the presence of a supply of erodable fine sediment, therefore (by implication) produce greater concentrations of SPM that can be accumulated within a turbidity maximum. The same is true if the tidal range is increased for estuaries of a given length. These features are illustrated by comparing surveys of SPM data from two large estuaries possessing greatly different tidal ranges (the microtidal, medium turbidity Potomac and the macrotidal, highly turbid Humber-Ouse) and a third, much smaller but strongly tidal estuary (the low-turbidity Tweed). It is demonstrated that longer estuaries tend to have longer flushing times for solutes than shorter systems and that larger tides tend to reduce flushing times, although the tidal influence is secondary. Short, rapidly flushed estuaries quickly lose their erodable fine sediment to the coastal zone during freshets and during the ebbing currents of spring tides. Turbidity is therefore small during low runoff, low wave activity conditions. Very long, very slowly flushed estuaries are unlikely to lose a significant fraction of their resuspended sediments during freshets or individual ebb tides and are therefore able to accumulate large and increasing amounts of fine sediment in the long-term. Turbidity within them is therefore high during the fast currents of large spring tides. ?? 2002 Elsevier Science Ltd. All rights reserved.
The dependence of estuarine turbidity on tidal intrusion length, tidal range and residence time
Uncles, R.J.; Stephens, J.A.; Smith, R.E.
2002-01-01
It is shown that there is a marked tendency for long, strongly tidal estuaries to have greater suspended particulate matter (SPM) concentrations within their high-turbidity regions than shorter estuaries with comparable tidal ranges at their mouths, or weakly tidal estuaries. Using consistently derived data from 44 estuaries in Europe and the Americas, contours of the logarithm of maximum estuarine SPM concentration are shown to be reasonably smooth when plotted against the logarithm of mean spring tidal range (at the estuary mouth) and the logarithm of estuarine tidal length. Predictions from the plot are compared with published observations made in the Delaware, Scheldt, Rio de la Plata, Gironde, Bay of Fundy, Changjiang (Yangtze), Amazon, Patos Lagoon and the Hawkesbury Estuary and it is shown that, qualitatively, there are no serious discrepancies. Short, weakly tidal estuaries are predicted to have very low ‘intrinsic’ SPM concentrations. High SPM concentrations in these estuaries would most likely be the result of either locally generated wave resuspension, high freshwater sediment loads due to freshets, or intruding seawater carrying suspended sediments derived from wave activity in the coastal zone. Application of a generic tidal model demonstrates that longer estuaries possess faster tidal currents for a given tidal range at their mouth and, in the presence of a supply of erodable fine sediment, therefore (by implication) produce greater concentrations of SPM that can be accumulated within a turbidity maximum. The same is true if the tidal range is increased for estuaries of a given length. These features are illustrated by comparing surveys of SPM data from two large estuaries possessing greatly different tidal ranges (the microtidal, medium turbidity Potomac and the macrotidal, highly turbid Humber-Ouse) and a third, much smaller but strongly tidal estuary (the low-turbidity Tweed). It is demonstrated that longer estuaries tend to have longer flushing times for solutes than shorter systems and that larger tides tend to reduce flushing times, although the tidal influence is secondary. Short, rapidly flushed estuaries quickly lose their erodable fine sediment to the coastal zone during freshets and during the ebbing currents of spring tides. Turbidity is therefore small during low runoff, low wave activity conditions. Very long, very slowly flushed estuaries are unlikely to lose a significant fraction of their resuspended sediments during freshets or individual ebb tides and are therefore able to accumulate large and increasing amounts of fine sediment in the long-term. Turbidity within them is therefore high during the fast currents of large spring tides.
Lohr, E.W.; Love, S.K.
1954-01-01
Investigations by others have shown that a definite relationship exists between fluoride in drinking water and the incidence of dental caries in the teeth of children. A total of about 85 percent of the population served from the large public supplies receive water having a fluoride concentration in the range of 0.0 to 0. 5 part per million. Few large public supplies contain fluoride in concentrations in excess of 3 parts per million. A total of 155 places of those included in the report received fluoridated water in 1955.
NASA Astrophysics Data System (ADS)
Stroes-Gascoyne, S.
1992-08-01
A large number of short-term leaching experiments has been performed to determine fission product and actinide release from used CANDU (CANada Deuterium Uranium) fuels and to establish which factors affect release. Results are reported after30 ± 10 d leaching at 100-150°C under oxidizing (air) or reducing (Ar-3% H 2 or Ar) conditions, in various synthetic groundwaters. Cesium-137 release (0.007-6%) was positively correlated with increases in fuel power, leachant temperature and ionic strength. Strontium-90 release (0.0003-0.3%) generally increased with ionic strength, higher temperature and redox conditions. Actinide and Tc concentrations were compared to ranges calculated with a thermodynamic equilibrium model, that accounts for the uncertain geochemical parameters of a nuclear waste vault by calculating concentration ranges based on 40000 hypothetical cases. Experimental U concentrations (10 -8.5 to 10 -3 mol/kg) were higher than the model range, probably because of higher redox potentials in the experiments. Measured Pu concentrations (10 -12.5 to 10 -7 mol/kg) were at the low end of the calculated range. Americium and Cm concentrations (10 -12.5 to 10 -7 and 10 -15 to 10 -9 mol/kg, respectively) were highest under oxidizing conditions and higher temperatures. Technetium-99 concentrations (10 -5.5 to 10 -10.5 mol/kg) covered a much narrower range than calculated by the model.
Nagappan, Raja
2012-09-01
To evaluate aqueous and ethanol extract of Cassia didymobotrya leaves against immature stages of Culex quinquefasciatus. The mortality rate of immature mosquitoes was tested in wide and narrow range concentration of the plant extract based on WHO standard protocol. The wide range concentration tested in the present study was 10 000, 1 000, 100, 10 and 1 mg/L and narrow range concentration was 50, 100, 150, 200 and 250 mg/L. 2nd instar larvae exposed to 100 mg/L and above concentration of ethanol extract showed 100% mortality. Remaining stages such as 3rd, 4th and pupa, 100% mortality was observed at 1 000 mg/L and above concentration after 24 h exposure period. In aqueous extract all the stages 100% mortality was recorded at 1 000 mg/L and above concentration. In narrow range concentration 2nd instar larvae 100% mortality was observed at 150 mg/L and above concentration of ethanol extract. The remaining stages 100% mortality was recorded at 250 mg/L. In aqueous extract all the tested immature stages 100% mortality was observed at 250 mg/L concentration after 24 h exposure period. The results clearly indicate that the rate of mortality was based dose of the plant extract and stage of the mosquitoes. From this study it is confirmed and concluded that Cassia didymobotrya is having active principle which is responsible for controlling Culex quinquefasciatus. The isolation of bioactive molecules and development of simple formulation technique is important for large scale implementation.
Laboratory Study of Air Turbulence-Particle Coupling
NASA Astrophysics Data System (ADS)
Petersen, A.; Baker, L.; Coletti, F.
2017-12-01
Inertial particles suspended in a turbulent flow are unable to follow the fluid's rapid velocity fluctuations, leading to high concentrations in regions where fluid strain dominates vorticity. This phenomenon is known as preferential concentration or clustering and is thought to affect natural processes ranging from the collisional growth of raindrops to the formation of planetesimals in proto-planetary nebulas. In the present study, we use a large jet-stirred chamber to generate homogeneous air turbulence into which we drop particles with an aerodynamic response time comparable to the flow time scales. Using laser imaging we find that turbulence can lead to a multi-fold increase of settling velocity compared to still-air conditions. We then employ Voronoi tessellation to examine the particle spatial distribution, finding strong evidence of turbulence-driven particle clustering over a wide range of experimental conditions. We observe individual clusters of a larger size range than seen previously, sometimes beyond the integral length scale of the turbulence. We also investigate cluster topology and find that they (i) exhibit a fractal structure, (ii) have a nearly constant particle concentration over their entire size range, and (iii) are most often vertically oriented. Furthermore, clustered particles tend to fall faster than those outside clusters, and larger clusters fall faster on average than smaller ones. Finally, by simultaneous measurement of particle and air velocity fields, we provide the first experimental evidence of preferential sweeping, a mechanism previously proposed to explain the increase in particle settling velocity found in numerical simulations, and find it especially effective for clustered particles. These results are significant for the micro-scale physics of atmospheric clouds. The large cluster size range has implications for how droplets will influence the local environment through condensation, evaporation, drag and latent heat effects. Our results also suggest that large collections of droplets will interact due to differential settling, possibly enhancing raindrop formation.
Rhea, Darren T; Farag, Aïda M; Harper, David D; McConnell, Elizabeth; Brumbaugh, William G
2013-01-01
The Yankee Fork is a large tributary of the Salmon River located in central Idaho, USA, with an extensive history of placer and dredge-mining activities. Concentrations of selenium (Se) and mercury (Hg) in various aquatic trophic levels were measured in the Yankee Fork during 2001 and 2002. Various measurements of fish health were also performed. Sites included four on the mainstem of the Yankee Fork and two off-channel sites in partially reclaimed dredge pools used as rearing habitat for cultured salmonid eggs and fry. Hg concentrations in whole mountain whitefish and shorthead sculpin ranged from 0.28 to 0.56 μg/g dry weight (dw), concentrations that are generally less than those reported to have significant impacts on fish. Biofilm and invertebrates ranged from 0.05 to 0.43 μg Hg/g dw. Se concentrations measured in biota samples from the Yankee Fork were greater than many representative samples collected in the Snake and Columbia watersheds and often exceeded literature-based toxic thresholds. Biofilm and invertebrates ranged from 0.58 to 4.66 μg Se/g dw. Whole fish ranged from 3.92 to 7.10 μg Se/g dw, and gonads ranged from 6.91 to 31.84 μg Se/g dw. Whole-body Se concentrations exceeded reported toxicological thresholds at three of four sites and concentrations in liver samples were mostly greater than concentrations shown to have negative impacts on fish health. Histological examinations performed during this study noted liver abnormalities, especially in shorthead sculpin, a bottom-dwelling species.
Rhea, Darren T.; Farag, Aïda M.; Harper, David D.; McConnell, Elizabeth; Brumbaugh, William G.
2013-01-01
The Yankee Fork is a large tributary of the Salmon River located in central Idaho, USA, with an extensive history of placer and dredge-mining activities. Concentrations of selenium (Se) and mercury (Hg) in various aquatic trophic levels were measured in the Yankee Fork during 2001 and 2002. Various measurements of fish health were also performed. Sites included four on the mainstem of the Yankee Fork and two off-channel sites in partially reclaimed dredge pools used as rearing habitat for cultured salmonid eggs and fry. Hg concentrations in whole mountain whitefish and shorthead sculpin ranged from 0.28 to 0.56 μg/g dry weight (dw), concentrations that are generally less than those reported to have significant impacts on fish. Biofilm and invertebrates ranged from 0.05 to 0.43 μg Hg/g dw. Se concentrations measured in biota samples from the Yankee Fork were greater than many representative samples collected in the Snake and Columbia watersheds and often exceeded literature-based toxic thresholds. Biofilm and invertebrates ranged from 0.58 to 4.66 μg Se/g dw. Whole fish ranged from 3.92 to 7.10 μg Se/g dw, and gonads ranged from 6.91 to 31.84 μg Se/g dw. Whole-body Se concentrations exceeded reported toxicological thresholds at three of four sites and concentrations in liver samples were mostly greater than concentrations shown to have negative impacts on fish health. Histological examinations performed during this study noted liver abnormalities, especially in shorthead sculpin, a bottom-dwelling species.
Long-range interaction between heterogeneously charged membranes.
Jho, Y S; Brewster, R; Safran, S A; Pincus, P A
2011-04-19
Despite their neutrality, surfaces or membranes with equal amounts of positive and negative charge can exhibit long-range electrostatic interactions if the surface charge is heterogeneous; this can happen when the surface charges form finite-size domain structures. These domains can be formed in lipid membranes where the balance of the different ranges of strong but short-ranged hydrophobic interactions and longer-ranged electrostatic repulsion result in a finite, stable domain size. If the domain size is large enough, oppositely charged domains in two opposing surfaces or membranes can be strongly correlated by the electrostatic interactions; these correlations give rise to an attractive interaction of the two membranes or surfaces over separations on the order of the domain size. We use numerical simulations to demonstrate the existence of strong attractions at separations of tens of nanometers. Large line tensions result in larger domains but also increase the charge density within the domain. This promotes correlations and, as a result, increases the intermembrane attraction. On the other hand, increasing the salt concentration increases both the domain size and degree of domain anticorrelation, but the interactions are ultimately reduced due to increased screening. The result is a decrease in the net attraction as salt concentration is increased. © 2011 American Chemical Society
Loukas, Christos-Moritz; Mowlem, Matthew C; Tsaloglou, Maria-Nefeli; Green, Nicolas G
2018-05-01
This paper presents a novel portable sample filtration/concentration system, designed for use on samples of microorganisms with very low cell concentrations and large volumes, such as water-borne parasites, pathogens associated with faecal matter, or toxic phytoplankton. The example application used for demonstration was the in-field collection and concentration of microalgae from seawater samples. This type of organism is responsible for Harmful Algal Blooms (HABs), an example of which is commonly referred to as "red tides", which are typically the result of rapid proliferation and high biomass accumulation of harmful microalgal species in the water column or at the sea surface. For instance, Karenia brevis red tides are the cause of aquatic organism mortality and persistent blooms may cause widespread die-offs of populations of other organisms including vertebrates. In order to respond to, and adequately manage HABs, monitoring of toxic microalgae is required and large-volume sample concentrators would be a useful tool for in situ monitoring of HABs. The filtering system presented in this work enables consistent sample collection and concentration from 1 L to 1 mL in five minutes, allowing for subsequent benchtop sample extraction and analysis using molecular methods such as NASBA and IC-NASBA. The microalga Tetraselmis suecica was successfully detected at concentrations ranging from 2 × 10 5 cells/L to 20 cells/L. Karenia brevis was also detected and quantified at concentrations between 10 cells/L and 10 6 cells/L. Further analysis showed that the filter system, which concentrates cells from very large volumes with consequently more reliable sampling, produced samples that were more consistent than the independent non-filtered samples (benchtop controls), with a logarithmic dependency on increasing cell numbers. This filtering system provides simple, rapid, and consistent sample collection and concentration for further analysis, and could be applied to a wide range of different samples and target organisms in situations lacking laboratories. Copyright © 2018. Published by Elsevier B.V.
Contaminants of emerging concern in a large temperate estuary.
Meador, James P; Yeh, Andrew; Young, Graham; Gallagher, Evan P
2016-06-01
This study was designed to assess the occurrence and concentrations of a broad range of contaminants of emerging concern (CECs) from three local estuaries within a large estuarine ecosystem. In addition to effluent from two wastewater treatment plants (WWTP), we sampled water and whole-body juvenile Chinook salmon (Oncorhynchus tshawytscha) and Pacific staghorn sculpin (Leptocottus armatus) in estuaries receiving effluent. We analyzed these matrices for 150 compounds, which included pharmaceuticals, personal care products (PPCPs), and several industrial compounds. Collectively, we detected 81 analytes in effluent, 25 analytes in estuary water, and 42 analytes in fish tissue. A number of compounds, including sertraline, triclosan, estrone, fluoxetine, metformin, and nonylphenol were detected in water and tissue at concentrations that may cause adverse effects in fish. Interestingly, 29 CEC analytes were detected in effluent and fish tissue, but not in estuarine waters, indicating a high potential for bioaccumulation for these compounds. Although concentrations of most detected analytes were present at relatively low concentrations, our analysis revealed that overall CEC inputs to each estuary amount to several kilograms of these compounds per day. This study is unique because we report on CEC concentrations in estuarine waters and whole-body fish, which are both uncommon in the literature. A noteworthy finding was the preferential bioaccumulation of CECs in free-ranging juvenile Chinook salmon relative to staghorn sculpin, a benthic species with relatively high site fidelity. Published by Elsevier Ltd.
Wei, Wei; Chen, Guanying; Baev, Alexander; He, Guang S; Shao, Wei; Damasco, Jossana; Prasad, Paras N
2016-11-23
The phenomenon of luminescence concentration quenching exists widely in lanthanide-based luminescent materials, setting a limit on the content of lanthanide emitter that can be used to hold the brightness. Here, we introduce a concept involving energy harvesting by a strong absorber and subsequent energy transfer to a lanthanide that largely alleviates concentration quenching. We apply this concept to Nd 3+ emitters, and we show both experimentally and theoretically that the optimal doping concentration of Nd 3+ in colloidal NaYF 4 :Nd upconverting nanoparticles is increased from 2 to 20 mol% when an energy harvestor organic dye (indocyanine green, ICG) is anchored onto the nanoparticle surface, resulting in ∼10 times upconversion brightness. Theoretical analysis indicated that a combination of efficient photon harvesting due to the large absorption cross section of ICG (∼30 000 times higher than that of Nd 3+ ), non-radiative energy transfer (efficiency ∼57%) from ICG to the surface bound Nd 3+ ions, and energy migration among the Nd 3+ ions was able to activate Nd 3+ ions inside the nanoparticle at a rate comparable with that of the pronounced short-range quenching interaction at elevated Nd 3+ concentrations. This resulted in the optimal concentration increase to produce significantly enhanced brightness. Theoretical modeling shows a good agreement with the experimental observation. This strategy can be utilized for a wide range of other lanthanide-doped nanomaterials being utilized for bioimaging and solar cell applications.
Distribution of polycyclic aromatic hydrocarbons in Datuo karst Tiankeng of South China.
Theodore, Oramah I; Qi, Shihua; Kong, Xiangsheng; Liu, Huafeng; Li, Jun; Li, Jie; Wang, Xiangqing; Wang, Yinhui
2008-10-01
Levels of polycyclic aromatic hydrocarbons (PAHs) were measured in surface soils of Datuo karst Tiankeng (large sinkholes) in South China with the use of a gas chromatography-mass spectroscopy (GC-MS) system. This paper provides data on the levels and distribution of PAHs from the top to the bottom of the Datuo karst Tiankeng. The results showed that the sum of the 16 EPA priority PAHs from the sampled locations from top to bottom had a relative increment in PAHs concentration. summation operatorPAHs ranged from 16.93 ng/g to 68.07 ng/g with a mean concentration of 42.15 ng/g. The correlated results showed the bottom of the large sinkhole, which accounts for the higher concentrations, probably acts like a trap for the PAHs. Thus, the low evaporation rate at the bottom may play a key role in controlling the high concentration of PAHs at the bottom.
On a PLIF quantification methodology in a nonlinear dye response regime
NASA Astrophysics Data System (ADS)
Baj, P.; Bruce, P. J. K.; Buxton, O. R. H.
2016-06-01
A new technique of planar laser-induced fluorescence calibration is presented in this work. It accounts for a nonlinear dye response at high concentrations, an illumination light attenuation and a secondary fluorescence's influence in particular. An analytical approximation of a generic solution of the Beer-Lambert law is provided and utilized for effective concentration evaluation. These features make the technique particularly well suited for high concentration measurements, or those with a large range of concentration values, c, present (i.e. a high dynamic range of c). The method is applied to data gathered in a water flume experiment where a stream of a fluorescent dye (rhodamine 6G) was released into a grid-generated turbulent flow. Based on these results, it is shown that the illumination attenuation and the secondary fluorescence introduce a significant error into the data quantification (up to 15 and 80 %, respectively, for the case considered in this work) unless properly accounted for.
VOCs Emissions from Multiple Wood Pellet Types and Concentrations in Indoor Air
Soto-Garcia, Lydia; Ashley, William J.; Bregg, Sandar; Walier, Drew; LeBouf, Ryan; Hopke, Philip K.; Rossner, Alan
2016-01-01
Wood pellet storage safety is an important aspect for implementing woody biomass as a renewable energy source. When wood pellets are stored indoors in large quantities (tons) in poorly ventilated spaces in buildings, such as in basements, off-gassing of volatile organic compounds (VOCs) can significantly affect indoor air quality. To determine the emission rates and potential impact of VOC emissions, a series of laboratory and field measurements were conducted using softwood, hardwood, and blended wood pellets manufactured in New York. Evacuated canisters were used to collect air samples from the headspace of drums containing pellets and then in basements and pellet storage areas of homes and small businesses. Multiple peaks were identified during GC/MS and GC/FID analysis, and four primary VOCs were characterized and quantified: methanol, pentane, pentanal, and hexanal. Laboratory results show that total VOCs (TVOCs) concentrations for softwood (SW) were statistically (p < 0.02) higher than blended or hardwood (HW) (SW: 412 ± 25; blended: 203 ± 4; HW: 99 ± 8, ppb). The emission rate from HW was the fastest, followed by blended and SW, respectively. Emissions rates were found to range from 10−1 to 10−5 units, depending upon environmental factors. Field measurements resulted in airborne concentrations ranging from 67 ± 8 to 5000 ± 3000 ppb of TVOCs and 12 to 1500 ppb of aldehydes, with higher concentrations found in a basement with a large fabric bag storage unit after fresh pellet delivery and lower concentrations for aged pellets. These results suggest that large fabric bag storage units resulted in a substantial release of VOCs into the building air. Occupants of the buildings tested discussed concerns about odor and sensory irritation when new pellets were delivered. The sensory response was likely due to the aldehydes. PMID:27022205
Wei, Yan-Li; Bao, Lian-Jun; Wu, Chen-Chou; Zeng, Eddy Y
2016-08-01
Anthropogenic impacts have continuously intensified in mega urban centers with increasing urbanization and growing population. The spatial distribution pattern of such impacts can be assessed with soil halogenated flame retardants (HFRs) as HFRs are mostly derived from the production and use of various consumer products. In the present study, soil samples were collected from the Pearl River Delta (PRD), a large urbanized region in southern China, and its surrounding areas and analyzed for a group of HFRs, i.e., polybrominated diphenyl ethers (PBDEs), decabromodiphenyl ethane, bis(hexachlorocyclopentadieno)cyclooctane (DP) and hexabromobenzene. The sum concentrations of HFRs and PBDEs were in the ranges of 0.66-6500 and 0.37-5700 (mean: 290 and 250) ng g(-1) dry weight, respectively, around the middle level of the global range. BDE-209 was the predominant compound likely due to the huge amounts of usage and its persistence. The concentrations of HFRs were greater in the land-use types of residency, industry and landfill than in agriculture, forestry and drinking water source, and were also greater in the central PRD than in its surrounding areas. The concentrations of HFRs were moderately significantly (r(2) = 0.32-0.57; p < 0.05) correlated with urbanization levels, population densities and gross domestic productions in fifteen administrative districts. The spatial distribution of DP isomers appeared to be stereoselective as indicated by the similarity in the spatial patterns for the ratio of anti-DP versus the sum of DP isomers (fanti-DP) and DP concentrations. Finally, the concentrations of HFRs sharply decreased with increasing distance from an e-waste recycling site, indicating that e-waste derived HFRs largely remained in local soil. Copyright © 2016 Elsevier Ltd. All rights reserved.
Differentiating high priority pathway-based toxicity from non ...
The ToxCast chemical screening approach enables the rapid assessment of large numbers of chemicals for biological effects, primarily at the molecular level. Adverse outcome pathways (AOPs) offer a means to link biomolecular effects with potential adverse outcomes at the level of the individual or population, thus enhancing the utility of the ToxCast effort for hazard assessment. Thus, efforts are underway to develop AOPs relevant to the pathway perturbations detected in ToxCast assays. However, activity (?‘hits’) determined for chemical-assay pairs may reflect target-specific activity relevant to a molecular initiating event of an AOP, or more generalized cell stress and cytotoxicity-mediated effects. Previous work identified a ?‘cytotoxic burst’ phenomenon wherein large numbers of assays begin to respond at or near concentrations that elicit cytotoxicity. The concentration range at which the “burst” occurs is definable, statistically. Consequently, in order to focus AOP development on the ToxCast assay targetswhich are most sensitive and relevant to pathway-specific effects, we conducted a meta-analysis to identify which assays were frequently responding at concentrations well below the cytotoxic burst. Assays were ranked by the fraction of chemical hits below the burst concentration range compared to the number of chemicals tested, resulting in a preliminary list of potentially important, target-specific assays. After eliminating cytotoxicity a
Tarai, Madhumita; Mishra, Ashok Kumar
2016-10-12
The phenomenon of concentration dependent red shift, often observed in synchronous fluorescence spectra (SFS) of monofluorophoric as well as multifluorophoric systems at high chromophore concentrations, is known to have good analytical advantages. This was previously understood in terms of large inner filter effect (IFE) through the introduction of a derived absorption spectral profile that closely corresponds to the SFS profile. Using representative monofluorophoric and multifluorophoric systems, it is now explained how the SF spectral maximum changes with concentration of the fluorophore. For dilute solutions of monofluorophores the maximum is unchanged as expected. It is shown here that the onset of red shift of SFS maximum of both the mono as well as the multifluorophoric systems must occur at the derived absorption spectral parameter value of 0.32 that corresponds to the absorbance value of 0.87. This value is unique irrespective of the nature of the fluorophore under study. For monofluorophoric systems, the wavelength of derived absorption spectral maximum and the wavelength of synchronous fluorescence spectral maximum closely correspond with each other in the entire concentration range. In contrast, for multifluorophoric systems like diesel and aqueous humic acid, large deviations were noted that could be explained as to be due to the presence of non-fluorescing chromophores in the system. This work bridges the entire fluorophore concentration range over which the red shift of SFS maximum sets in; and in the process it establishes the importance of the derived absorption spectral parameter in understanding the phenomenon of concentration dependent red shift of SFS maximum. Copyright © 2016 Elsevier B.V. All rights reserved.
Mass transport in polyelectrolyte solutions
NASA Astrophysics Data System (ADS)
Schipper, F. J. M.; Leyte, J. C.
1999-02-01
The self-diffusion coefficients of the three components of a salt-free heavy-water solution of polymethacrylic acid, completely neutralized with tetra-methylammonium hydroxide, were measured over a broad concentration range. Three concentration regions were observed for the self-diffusion of both the polyions and the counterions. At polyion concentrations below 0.01 mol monomer kg-1, the dilute concentration regime for the polymer, the polyion self-diffusion coefficient approaches the self-diffusion coefficient of a freely diffusing rod upon dilution. At polyelectrolyte concentrations above 0.1 mol monomer kg-1, the self-diffusion coefficients of the solvent, the counterions and the polymer decreased with concentration, suggesting that this decrease is due to a topological constraint on the motions of the components. In the intermediate-concentration region, the self-diffusion coefficients of the polyions and the counterions are independent of the concentration. The polyion dynamic behaviour is, in the intermediate- and high-concentration regions, reasonably well described by that of a hard sphere, with a radius of 3.7 nm. A correct prediction for the solvent dynamics is given by the obstruction effect of this hard sphere on the solvent. The relative counterion self-diffusion coefficient is predicted almost quantitatively over the entire concentration range with the Poisson-Boltzmann-Smoluchowski model for the spherical cell, provided that the sphere radius and the number of charges are chosen appropriately (approximately the number of charges in a persistence length). Using this model, the dependence of the counterion self-diffusion coefficient on the ionic strength, polyion concentration and counterion radius is calculated quantitatively over a large concentration range.
Hierarchical Cluster Formation in Concentrated Monoclonal Antibody Formulations
NASA Astrophysics Data System (ADS)
Godfrin, P. Douglas; Zarzar, Jonathan; Zarraga, Isidro Dan; Porcar, Lionel; Falus, Peter; Wagner, Norman; Liu, Yun
Reversible cluster formation has been identified as an underlying cause of large solution viscosities observed in some concentrated monoclonal antibody (mAb) formulations. As high solution viscosity prevents the use of subcutaneous injection as a delivery method for some mAbs, a fundamental understanding of the interactions responsible for high viscosities in concentrated mAb solutions is of significant relevance to mAb applications in human health care as well as of intellectual interest. Here, we present a detailed investigation of a well-studied IgG1 based mAb to relate the short time dynamics and microstructure to significant viscosity changes over a range of pharmaceutically relevant physiochemical conditions. Using a combination of experimental techniques, it is found that upon adding Na2SO4, these antibodies dimerize in solution. Proteins form strongly bounded reversible dimers at dilute concentrations that, when concentrated, interact with each other to form loosely bounded, large, transient clusters. The combined effect of forming strongly bounded dimers and a large transient network is a significant increase in the solution viscosity. Strongly bounded, reversible dimers may exist in many IgG1 based mAb systems such that these results contribute to a more comprehensive understanding of the physical mechanisms producing high viscosities in concentrated protein solutions.
Klimacka-Nawrot, Ewa; Suchecka, Wanda; Błońska-Fajfrowska, Barbara
2007-01-01
There are various methods of taste substances application in gustometry examination. The Polish Committee of Standards (Polski Komitet Normalizacyjny--PKN) recommends the performance of sensitivity taste examinations with the use of method based on rinsing out the mouth with water solutions of taste substances (sip-and-spit method) at their growing concentrations. The aim of the present research was to assess the usefulness of taste substances dilutions, whose concentrations were consistent with guidelines of the PKN for the evaluation of the results of examination of sweet, salty and sour taste sensitivity. 795 volunteers, i.e. 473 women and 322 men, aged 18-66, were the subject of study. The range of concentrations in sucrose solutions (0.34-12.00 g/l) as well as in sodium chloride solutions (0.16-2.00 g/l) were proper for examination in order to recognize taste threshold with the most volunteers. However, the use of concentrations in citric acid solutions (in the range 0.13-0.60 g/l) did not enable to investigate the taste sensitivity by reason of the large percentage of persons (85.2%) who correctly recognized the sour taste of the solution with the lowest citric acid concentration. The range of citric acid concentration (0.0036-0.2000 g/l) appeared to be more proper for examination of the sour taste sensitivity. The concentrations of sucrose and sodium chloride solutions recommended by PKN are proper for the examination of sweet and salty taste sensitivity with the use of sip-and-spit method however concentrations of citric acid solutions should be lower than recommended.
REFRIGERANT CONCENTRATIONS IN MOTOR VEHICLE PASSENGER COMPARTMENTS
Refrigerant leak rates were measured for faulty air-conditioner evaporators removed from vehicles, and results indicated a range of very small to very large leaks. A survey of automotive air-conditioning service shops was conducted, and leakage scenarios were evaluated to determi...
Skórska, Czesława; Sitkowska, Jolanta; Krysińska-Traczyk, Ewa; Cholewa, Grazyna; Dutkiewicz, Jacek
2005-01-01
The aim of this study was to determine the levels of microorganisms, dust and endotoxin in the air during processing of peppermint (Mentha piperita) and chamomile (Matricaria recutita) by herb farmers, and to examine the species composition of airborne microflora. Air samples were collected on glass fibre filters by use of personal samplers on 13 farms owned by herb cultivating farmers, located in Lublin province (eastern Poland). The concentrations of total viable microorganisms (bacteria + fungi) in the farm air during processing of peppermint herb were large, within a range from 895.1-6,015.8 x 10(3) cfu/m(3) (median 1,055.3 x 10(3) cfu/m(3)). During processing of chamomile herb they were much lower and varied within a range from 0.88-295.6 x 10(3) cfu/m(3) (median 27.3 x 10(3) cfu/m(3)). Gram-negative bacteria distinctly prevailed during processing of peppermint leaves, forming 46.4-88.5 % of the total airborne microflora. During processing of chamomile herb, Gram-negative bacteria were dominant at 3 out of 6 sampling sites forming 54.7-75.3 % of total microflora, whereas at the remaining 3 sites the most common were fungi forming 46.2-99.9 % of the total count. The species Pantoea agglomerans (synonyms: Erwinia herbicola, Enterobacter agglomerans ), having strong allergenic and endotoxic properties, distinctly prevailed among Gram-negative isolates. Among fungi, the most common species was Alternaria alternata. The concentrations of airborne dust and endotoxin determined on the examined herb farms were large. The concentrations of airborne dust during peppermint and chamomile processing ranged from 86.7-958.9 mg/m(3), and from 1.1-499.2 mg/m(3), respectively (medians 552.3 mg/m(3) and 12.3 mg/m(3)). The concentrations of airborne endotoxin determined during peppermint and chamomile processing were within a wide range 1.53-208.33 microg/m(3) and 0.005-2604.19 microg/m(3) respectively (medians 57.3 microg/m(3) and 0.96 microg/m(3)). In conclusion, farmers cultivating peppermint are exposed during processing of this herb to large concentrations of airborne microorganisms, dust and endotoxin posing a risk of work-related respiratory disease. The exposure to bioaerosols during processing of chamomile is lower; nevertheless, peak values create a respiratory risk for exposed farmers.
NASA Astrophysics Data System (ADS)
Allstadt, A. J.; Gorzo, J.; Bateman, B. L.; Heglund, P. J.; Pidgeon, A. M.; Thogmartin, W.; Vavrus, S. J.; Radeloff, V.
2016-12-01
Often, fewer birds are often observed in an area experiencing extreme weather, as local populations tend to leave an area (via out-migration or concentration in refugia) or experience a change in population size (via mortality or reduced fecundity). Further, weather patterns are often coherent over large areas so unsuitable weather may threaten large portions of an entire species range simultaneously. However, beyond a few iconic irruptive species, rarely have studies applied both the necessary scale and sensitivity required to assess avian population responses over entire species range. Here, we examined the effects of pre-breeding season weather on the distribution and abundances of 103 North American bird species from the late 1966-2010 using observed abundance records from the Breeding Bird Survey. We compared abundances with measures of drought and temperature over each species' range, and with three atmospheric teleconnections that describe large-scale circulation patterns influencing conditions on the ground. More than 90% of the species responded to at least one of our five weather variables. Grassland bird species tended to be most responsive to weather conditions and forest birds the least, though we found relations among all habitat types. For most species, the response was movement rather than large effects on the overall population size. Maps of these responses indicate that concentration and out-migration are both common strategies for coping with challenging weather conditions across a species range. The dynamic distribution of many bird species makes clear the need to account for temporal variability in conservation planning, as areas that are less important for a species' breeding success in most years may be very important in years with abnormal weather conditions.
Grandahl, Kasper; Suadicani, Poul; Jacobsen, Peter
2012-08-01
International studies have shown blood lead at levels causing health concern in recreational indoor shooters. We hypothesized that Danish recreational indoor shooters would also have a high level of blood lead, and that this could be explained by shooting characteristics and the physical environment at the shooting range. This was an environmental case study of 58 male and female shooters from two indoor shooting ranges with assumed different ventilation and cleaning conditions. Information was obtained on general conditions including age, gender, tobacco and alcohol use, and shooting conditions: weapon type, number of shots fired, frequency of stays at the shooting range and hygiene habits. A venous blood sample was drawn to determine blood lead concentrations; 14 non-shooters were included as controls. Almost 60% of the shooters, hereof five out of 14 women, had a blood lead concentration above 0.48 micromol/l, a level causing long-term health concern. All controls had blood lead values below 0.17 micromol/l. Independent significant associations with blood lead concentrations above 0.48 micromol/l were found for shooting at a poorly ventilated range, use of heavy calibre weapons, number of shots and frequency of stays at the shooting range. A large proportion of Danish recreational indoor shooters had potentially harmful blood lead concentrations. Ventilation, amounts of shooting, use of heavy calibre weapons and stays at the shooting ranges were independently associated with increased blood lead. The technical check at the two ranges was performed by the Danish Technological Institute and costs were defrayed by the Danish Rifle Association. To pay for the analyses of blood lead, the study was supported by the The Else & Mogens Wedell-Wedellsborg Foundation. The Danish Regional Capital Scientific Ethics Committee approved the study, protocol number H-4-2010-130.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hay, M.; Coleman, C.; Diprete, D.
SRNL analyzed samples from Tank 38H and Tank 43H to support ECP and CCP. The total uranium in the Tank 38H surface sample was 41.3 mg/L while the sub-surface sample was 43.5 mg/L. The Tank 43H samples contained total uranium concentrations of 28.5 mg/L in the surface sample and 28.1 mg/L in the sub-surface sample. The U-235 percentage ranged from 0.62% to 0.63% for the Tank 38H samples and Tank 43H samples. The total uranium and percent U-235 results in the table appear slightly lower than recent Tank 38H and Tank 43H uranium measurements. The plutonium results in the tablemore » show a large difference between the surface and sub-surface sample concentrations for Tank 38H. The Tank 43H plutonium results closely match the range of values measured on previous samples. The Cs-137 results for the Tank 38H surface and sub-surface samples show similar concentrations slightly higher than the concentrations measured in recent samples. The Cs-137 results for the two Tank 43H samples also show similar concentrations within the range of values measured on previous samples. The four samples show silicon concentrations somewhat lower than the previous samples with values ranging from 124 to 168 mg/L.« less
Low-Field-Triggered Large Magnetostriction in Iron-Palladium Strain Glass Alloys.
Ren, Shuai; Xue, Dezhen; Ji, Yuanchao; Liu, Xiaolian; Yang, Sen; Ren, Xiaobing
2017-09-22
Development of miniaturized magnetostriction-associated devices requires low-field-triggered large magnetostriction. In this study, we acquired a large magnetostriction (800 ppm) triggered by a low saturation field (0.8 kOe) in iron-palladium (Fe-Pd) alloys. Magnetostriction enhancement jumping from 340 to 800 ppm was obtained with a slight increase in Pd concentration from 31.3 to 32.3 at. %. Further analysis showed that such a slight increase led to suppression of the long-range ordered martensitic phase and resulted in a frozen short-range ordered strain glass state. This strain glass state possessed a two-phase nanostructure with nanosized frozen strain domains embedded in the austenite matrix, which was responsible for the unique magnetostriction behavior. Our study provides a way to design novel magnetostrictive materials with low-field-triggered large magnetostriction.
Huang, Zhijiong; Hu, Yongtao; Zheng, Junyu; Yuan, Zibing; Russell, Armistead G; Ou, Jiamin; Zhong, Zhuangmin
2017-04-04
The traditional reduced-form model (RFM) based on the high-order decoupled direct method (HDDM), is an efficient uncertainty analysis approach for air quality models, but it has large biases in uncertainty propagation due to the limitation of the HDDM in predicting nonlinear responses to large perturbations of model inputs. To overcome the limitation, a new stepwise-based RFM method that combines several sets of local sensitive coefficients under different conditions is proposed. Evaluations reveal that the new RFM improves the prediction of nonlinear responses. The new method is applied to quantify uncertainties in simulated PM 2.5 concentrations in the Pearl River Delta (PRD) region of China as a case study. Results show that the average uncertainty range of hourly PM 2.5 concentrations is -28% to 57%, which can cover approximately 70% of the observed PM 2.5 concentrations, while the traditional RFM underestimates the upper bound of the uncertainty range by 1-6%. Using a variance-based method, the PM 2.5 boundary conditions and primary PM 2.5 emissions are found to be the two major uncertainty sources in PM 2.5 simulations. The new RFM better quantifies the uncertainty range in model simulations and can be applied to improve applications that rely on uncertainty information.
Lachenmeier, Dirk W; Sohnius, Eva-Maria; Attig, Rainer; López, Mercedes G
2006-05-31
A large collection (n = 95) of Mexican Agave spirits with protected appellations of origin (Tequila, Mezcal, Sotol, and Bacanora) was analyzed using ion and gas chromatography. Because of their production from oxalate-containing plant material, all Agave spirits contained significant concentrations of oxalate (0.1-9.7 mg/L). The two Tequila categories ("100% Agave" and "mixed") showed differences in the methanol, 2-/3-methyl-1-butanol, and 2-phenylethanol concentrations with lower concentrations in the mixed category. Mezcal showed no significant differences in any of the evaluated parameters that would allow a classification. Sotol showed higher nitrate concentrations and lower 2-/3-methyl-1-butanol concentrations. Bacanora was characterized by exceptionally high acetaldehyde concentrations and a relatively low ethyl lactate content. The methanol content was the most problematic compound regarding the Mexican standards: two Tequilas (4%), five Sotols (31%), and six Bacanoras (46%) had levels above the maximum methanol content of 300 g/hL of alcohol. In conclusion, the composition of Mexican Agave spirits was found to vary over a relatively large range.
Quantifying time-varying cellular secretions with local linear models.
Byers, Jeff M; Christodoulides, Joseph A; Delehanty, James B; Raghu, Deepa; Raphael, Marc P
2017-07-01
Extracellular protein concentrations and gradients initiate a wide range of cellular responses, such as cell motility, growth, proliferation and death. Understanding inter-cellular communication requires spatio-temporal knowledge of these secreted factors and their causal relationship with cell phenotype. Techniques which can detect cellular secretions in real time are becoming more common but generalizable data analysis methodologies which can quantify concentration from these measurements are still lacking. Here we introduce a probabilistic approach in which local-linear models and the law of mass action are applied to obtain time-varying secreted concentrations from affinity-based biosensor data. We first highlight the general features of this approach using simulated data which contains both static and time-varying concentration profiles. Next we apply the technique to determine concentration of secreted antibodies from 9E10 hybridoma cells as detected using nanoplasmonic biosensors. A broad range of time-dependent concentrations was observed: from steady-state secretions of 230 pM near the cell surface to large transients which reached as high as 56 nM over several minutes and then dissipated.
Intermolecular Interactions and the Viscosity of Highly Concentrated Monoclonal Antibody Solutions.
Binabaji, Elaheh; Ma, Junfen; Zydney, Andrew L
2015-09-01
The large increase in viscosity of highly concentrated monoclonal antibody solutions can be challenging for downstream processing, drug formulation, and delivery steps. The objective of this work was to examine the viscosity of highly concentrated solutions of a high purity IgG1 monoclonal antibody over a wide range of protein concentrations, solution pH, ionic strength, and in the presence / absence of different excipients. Experiments were performed with an IgG1 monoclonal antibody provided by Amgen. The steady-state viscosity was evaluated using a Rheometrics strain-controlled rotational rheometer with a concentric cylinder geometry. The viscosity data were well-described by the Mooney equation. The data were analyzed in terms of the antibody virial coefficients obtained from osmotic pressure data evaluated under the same conditions. The viscosity coefficient in the absence of excipients was well correlated with the third osmotic virial coefficient, which has a negative value (corresponding to short range attractive interactions) at the pH and ionic strength examined in this work. These results provide important insights into the effects of intermolecular protein-protein interactions on the behavior of highly concentrated antibody solutions.
The male genital tract is not a pharmacological sanctuary from efavirenz.
Avery, L B; Bakshi, R P; Cao, Y J; Hendrix, C W
2011-07-01
Many antiretroviral (ARV) drugs have large blood plasma-to-seminal plasma (BP/SP) concentration ratios. Concern exists that these drugs do not adequately penetrate the male genital tract (MGT), resulting in the MGT becoming a "pharmacological sanctuary" from these agents, with ineffective MGT concentrations despite effective blood concentrations. Efavirenz (EFV) is the most highly protein-bound ARV drug, with >99% binding in blood plasma and the largest BP/SP total EFV concentration ratio, reportedly ranging from 11 to 33. To evaluate protein binding as an explanation for the differences between the drug concentrations in blood and semen, we developed a novel ultrafiltration method, corrected for the duration of centrifugation, to measure protein binding in the two matrices. In six subjects, protein-free EFV concentrations were the same in blood and semen; the median (interquartile range (IQR)) protein-free EFV SP/BP ratio was 1.21 (0.99-1.35); EFV protein binding was 99.82% (99.79-99.86) in BP and 95.26% (93.24-96.67) in SP. This shows that the MGT is not a sanctuary from EFV.
Direct URCA process in neutron stars
NASA Technical Reports Server (NTRS)
Lattimer, James M.; Prakash, Madappa; Pethick, C. J.; Haensel, Pawel
1991-01-01
It is shown that the direct URCA process can occur in neutron stars if the proton concentration exceeds some critical value in the range 11-15 percent. The proton concentration, which is determined by the poorly known symmetry energy of matter above nuclear density, exceeds the critical value in many current calculations. If it occurs, the direct URCA process enhances neutrino emission and neutron star cooling rates by a large factor compared to any process considered previously.
Annual Greenhouse Gas (CO2, CH4, and N2O) Fluxes Via Ebullition from a Temperate Emergent Wetland
NASA Astrophysics Data System (ADS)
Mcnicol, G.; Sturtevant, C. S.; Knox, S. H.; Baldocchi, D. D.; Silver, W. L.
2014-12-01
Quantifying wetland greenhouse gas exchange is necessary to evaluate their potential for mitigating climate change via carbon sequestration. However measuring greenhouse gas fluxes of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) in wetlands is difficult due to high spatial and temporal variability, and multiple transport pathways of emission. Transport of biogenic soil gas via highly sporadic ebullition (bubbling) events is often ignored or quantified poorly in wetland greenhouse gas budgets, but can rapidly release large volumes of gas to the atmosphere. To quantify a robust annual ebullition flux we measured rates continuously for a year (2013-2014) using custom-built chambers deployed in a restored emergent wetland located in the Sacramento-San Joaquin Delta, CA. We combined ebullition flux rates with observations of gas concentrations to estimate annual ebullition emissions of CO2, CH4, and N2O and compare flux rates to whole-ecosystem exchange of CO2 and CH4 measured simultaneously by eddy covariance.Mean ebullition flux rates were 18.3 ± 5.6 L m-2 yr-1. Ebullition CH4 concentrations were very high and ranged from 23-76 % with a mean of 47 ± 2.9 %; CO2 concentrations were lower and ranged from 0.7-6.6 % with a mean of 2.8 ± 0.3 %; N2O concentrations were below atmospheric concentrations and ranged from 130-389 ppb(v) with a mean of 257 ± 13 ppb(v). We calculated well-constrained annual ebullition fluxes of: 6.2 ± 1.9 g CH4 m-2 yr-1, 1.0 ± 0.3 g CO2 m-2 yr-1 and 9.3 ± 2.8 mg N2O m-2 yr-1. Methane emissions via ebullition were very large, representing 15-25 % of total wetland CH4 emissions measured at this site, whereas ebullition released only relatively small quantities of CO2 and N2O. Our results demonstrate that large releases of CH4 via ebullition from open water surfaces can be a significant component of restored wetland greenhouse gas budgets.
Turney, G.L.; Goerlitz, D.F.
1989-01-01
Gas Works Park, in Seattle, Washington, is located on the site of a coal and oil gasification plant that ceased operation in 1956. During operation, many types of wastes, including coal, tar, and oil, accumulated on site. The park soil is presently (1986) contaminated with compounds such as polynuclear aromatic hydrocarbons, volatile organic compounds, trace metals, and cyanide. Analyses of water samples from a network of observation wells in the park indicate that these compounds are also present in the groundwater. Polynuclear aromatic hydrocarbons and volatile organic compounds were identified in groundwater samples in concentrations as large as 200 mg/L. Concentrations of organic compounds were largest where groundwater was in contact with a nonaqueous phase liquid in the soil. Concentrations in groundwater were much smaller where no nonaqueous phase liquid was present, even if the groundwater was in contact with contaminated soils. This condition is attributed to weathering processes at the site, such as dissolution, volatilization, and biodegradation. Soluble, volatile, low-molecular-weight organic compounds are preferentially dissolved from the nonaqueous phase liquid into the groundwater. Where no nonaqueous phase liquid is present, only stained soils containing relatively insoluble, high-molecular-weight compounds remain; therefore, contaminant concentrations in the groundwater are much smaller. Concentrations of organic contaminants in the soils may still remain large. Values of specific conductance were as large as 5,280 microsiemens/cm, well above a background of 242 microsiemens/cm, suggesting large concentrations of minerals in the groundwater. Trace metal concentrations, however , were generally < 0.010 mg/L, and below limits of US EPA drinking water standards. Cyanide was present in groundwater samples from throughout the park, ranging in concentration from 0.01 to 8.6 mg/L. (Author 's abstract)
Temperature Rise and Allowable Carbon Emissions for the RCP2.6 Scenario
NASA Astrophysics Data System (ADS)
Tachiiri, K.; Hargreaves, J. C.; Annan, J. D.; Huntingford, C.; Kawamiya, M.
2012-12-01
Climate research centres are running Earth System Models (ESMs) forced by Representative Concentration Pathway (RCP) scenarios. While these GCM studies increase process based knowledge, the number of simulations is small, making it difficult to interpret the resulting distribution of responses in a probabilistic way. We use a probabilistic framework to estimate the range of future temperature change and allowable emissions for a low mitigation CO2 concentration pathway RCP 2.6. Uncertainty is initially estimated by allowing modelled equilibrium climate sensitivity, aerosol forcing and intrinsic physical and biogeochemical processes to vary within widely accepted ranges. Results are then further constrained by extensive use of contemporary measurements. Despite this, the resulting range of temperatures for RCP 2.6 remains large. The predicted peak global temperature increase, reached around 2100, from pre-industrial is 0.8 - 1.9 K and 1.0 - 1.9 K (95% range) for the unconstrained and the constrained cases, respectively. Allowable emissions at the time of peak emission period is projected as 6.0 - 10.8 PgC yr-1 and 7.4 - 10.2 PgC yr-1 for each case. After year 2100, negative net emissions are required with a probability of some 84 %, and related uncertainty in cumulative emissions is large.
NASA Astrophysics Data System (ADS)
Pan, Huang-Wei; Kuo, Ling-Chi; Huang, Shu-Yu; Wu, Meng-Yun; Juang, Yu-Hang; Lee, Chia-Wei; Chen, Hsin-Chieh; Wen, Ting Ting; Chao, Shiuh
2018-01-01
Silicon is a potential substrate material for the large-areal-size mirrors of the next-generation laser interferometer gravitational wave detector operated in cryogenics. Silicon nitride thin films uniformly deposited by a chemical vapor deposition method on large-size silicon wafers is a common practice in the silicon integrated circuit industry. We used plasma-enhanced chemical vapor deposition to deposit silicon nitride films on silicon and studied the physical properties of the films that are pertinent to application of mirror coatings for laser interferometer gravitational wave detectors. We measured and analyzed the structure, optical properties, stress, Young's modulus, and mechanical loss of the films, at both room and cryogenic temperatures. Optical extinction coefficients of the films were in the 10-5 range at 1550-nm wavelength. Room-temperature mechanical loss of the films varied in the range from low 10-4 to low 10-5 within the frequency range of interest. The existence of a cryogenic mechanical loss peak depended on the composition of the films. We measured the bond concentrations of N - H , Si - H , Si - N , and Si - Si bonds in the films and analyzed the correlations between bond concentrations and cryogenic mechanical losses. We proposed three possible two-level systems associated with the N - H , Si - H , and Si - N bonds in the film. We inferred that the dominant source of the cryogenic mechanical loss for the silicon nitride films is the two-level system of exchanging position between a H+ and electron lone pair associated with the N - H bond. Under our deposition conditions, superior properties in terms of high refractive index with a large adjustable range, low optical absorption, and low mechanical loss were achieved for films with lower nitrogen content and lower N - H bond concentration. Possible pairing of the silicon nitride films with other materials in the quarter-wave stack is discussed.
Wright, Michael T.; Fram, Miranda S.; Belitz, Kenneth
2015-01-01
Concentrations of strontium, which exists primarily in a cationic form (Sr2+), were not significantly correlated with either groundwater age or pH. Strontium concentrations showed a strong positive correlation with total dissolved solids (TDS). Dissolved constituents, such as Sr, that interact with mineral surfaces through outer-sphere complexation become increasingly soluble with increasing TDS concentrations of groundwater. Boron concentrations also showed a significant positive correlation with TDS, indicating the B may interact to a large degree with mineral surfaces through outer-sphere complexation.
Cabo, Rona; Kozik, Karolina; Milanowski, Maciej; Hernes, Sigrunn; Slettan, Audun; Haugen, Margaretha; Ye, Shu; Blomhoff, Rune; Mansoor, M Azam
2014-06-10
Low concentration of plasma pyridoxal-5-phosphate (PLP) is associated with hyperhomocysteinemia and inflammation. Most methods for the measurement of plasma PLP require large specimen volume and involve the use of toxic reagents. We have developed a HPLC method for the measurement of PLP and 4-pyridoxic acid (4-PA) in plasma, which requires small specimen volume. The samples are prepared without adding any toxic reagents. Furthermore, we have examined whether intake of vitamin B6 affects the concentration of plasma PLP and 4-PA. The coefficient of variation of the method was 6% and the recovery of the added vitamin in plasma was about 100%. The concentrations of plasma PLP and 4-PA in 168 healthy subjects were 40.6 (8.4-165.0) nmol/L, median and (range) and 17.5 (3.7-114.79) nmol/L, median and (range) respectively. In the multiple regression analyses, the concentration of plasma PLP was associated with the concentration of plasma 4-PA (p<0.0001), BMI, (p=0.02) and sex, (p=0.0008). The concentration of plasma 4-PA was associated with plasma PLP (p<0.0001), serum folate (p=0.004), smoking (p=0.03) and vitamin B6 intake (p=0.01). The present method is suitable for large clinical studies for the measurement of plasma PLP and 4-PA. Our findings demonstrate that plasma 4-PA, BMI and sex are the major determinants of plasma PLP in healthy individuals. Copyright © 2014 Elsevier B.V. All rights reserved.
Von Guerard, Paul; Weiss, W.B.
1995-01-01
The U.S. Environmental Protection Agency requires that municipalities that have a population of 100,000 or greater obtain National Pollutant Discharge Elimination System permits to characterize the quality of their storm runoff. In 1992, the U.S. Geological Survey, in cooperation with the Colorado Springs City Engineering Division, began a study to characterize the water quality of storm runoff and to evaluate procedures for the estimation of storm-runoff loads, volume and event-mean concentrations for selected properties and constituents. Precipitation, streamflow, and water-quality data were collected during 1992 at five sites in Colorado Springs. Thirty-five samples were collected, seven at each of the five sites. At each site, three samples were collected for permitting purposes; two of the samples were collected during rainfall runoff, and one sample was collected during snowmelt runoff. Four additional samples were collected at each site to obtain a large enough sample size to estimate storm-runoff loads, volume, and event-mean concentrations for selected properties and constituents using linear-regression procedures developed using data from the Nationwide Urban Runoff Program (NURP). Storm-water samples were analyzed for as many as 186 properties and constituents. The constituents measured include total-recoverable metals, vola-tile-organic compounds, acid-base/neutral organic compounds, and pesticides. Storm runoff sampled had large concentrations of chemical oxygen demand and 5-day biochemical oxygen demand. Chemical oxygen demand ranged from 100 to 830 milligrams per liter, and 5.-day biochemical oxygen demand ranged from 14 to 260 milligrams per liter. Total-organic carbon concentrations ranged from 18 to 240 milligrams per liter. The total-recoverable metals lead and zinc had the largest concentrations of the total-recoverable metals analyzed. Concentrations of lead ranged from 23 to 350 micrograms per liter, and concentrations of zinc ranged from 110 to 1,400 micrograms per liter. The data for 30 storms representing rainfall runoff from 5 drainage basins were used to develop single-storm local-regression models. The response variables, storm-runoff loads, volume, and event-mean concentrations were modeled using explanatory variables for climatic, physical, and land-use characteristics. The r2 for models that use ordinary least-squares regression ranged from 0.57 to 0.86 for storm-runoff loads and volume and from 0.25 to 0.63 for storm-runoff event-mean concentrations. Except for cadmium, standard errors of estimate ranged from 43 to 115 percent for storm- runoff loads and volume and from 35 to 66 percent for storm-runoff event-mean concentrations. Eleven of the 30 concentrations collected during rainfall runoff for total-recoverable cadmium were censored (less than) concentrations. Ordinary least-squares regression should not be used with censored data; however, censored data can be included with uncensored data using tobit regression. Standard errors of estimate for storm-runoff load and event-mean concentration for total-recoverable cadmium, computed using tobit regression, are 247 and 171 percent. Estimates from single-storm regional-regression models, developed from the Nationwide Urban Runoff Program data base, were compared with observed storm-runoff loads, volume, and event-mean concentrations determined from samples collected in the study area. Single-storm regional-regression models tended to overestimate storm-runoff loads, volume, and event-mean con-centrations. Therefore, single-storm local- and regional-regression models were combined using model-adjustment procedures to take advantage of the strengths of both models while minimizing the deficiencies of each model. Procedures were used to develop single-stormregression equations that were adjusted using local data and estimates from single-storm regional-regression equations. Single-storm regression models developed using model- adjustment proce
Revegetation Strategies for Kaho’olawe Island, Hawaii
1994-03-01
ighr rtesof ertli- Of the remaining species, only weeping lovegrass [Eragrostis however, appeared to diminish between the 2 higher rates of fertili ...minimalgenerated large volumes of runoff that concentrated primarily on 2 contribution, some of those species consistently out-produced oth- 464 JOURNAL OF RANGE
A Rapid Process for Fabricating Gas Sensors
Hsiao, Chun-Ching; Luo, Li-Siang
2014-01-01
Zinc oxide (ZnO) is a low-toxicity and environmentally-friendly material applied on devices, sensors or actuators for “green” usage. A porous ZnO film deposited by a rapid process of aerosol deposition (AD) was employed as the gas-sensitive material in a CO gas sensor to reduce both manufacturing cost and time, and to further extend the AD application for a large-scale production. The relative resistance change (ΔR/R) of the ZnO gas sensor was used for gas measurement. The fabricated ZnO gas sensors were measured with operating temperatures ranging from 110 °C to 180 °C, and CO concentrations ranging from 100 ppm to 1000 ppm. The sensitivity and the response time presented good performance at increasing operating temperatures and CO concentrations. AD was successfully for applied for making ZnO gas sensors with great potential for achieving high deposition rates at low deposition temperatures, large-scale production and low cost. PMID:25010696
Denton, J S; Murrell, M T; Goldstein, S J; Nunn, A J; Amato, R S; Hinrichs, K A
2013-10-15
Recent advances in high-resolution, rapid, in situ microanalytical techniques present numerous opportunities for the analytical community, provided accurately characterized reference materials are available. Here, we present multicollector thermal ionization mass spectrometry (MC-TIMS) and multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) uranium and thorium concentration and isotopic data obtained by isotope dilution for a suite of newly available Chinese Geological Standard Glasses (CGSG) designed for microanalysis. These glasses exhibit a range of compositions including basalt, syenite, andesite, and a soil. Uranium concentrations for these glasses range from ∼2 to 14 μg g(-1), Th/U weight ratios range from ∼4 to 6, (234)U/(238)U activity ratios range from 0.93 to 1.02, and (230)Th/(238)U activity ratios range from 0.98 to 1.12. Uranium and thorium concentration and isotopic data are also presented for a rhyolitic obsidian from Macusani, SE Peru (macusanite). This glass can also be used as a rhyolitic reference material, has a very low Th/U weight ratio (around 0.077), and is approximately in (238)U-(234)U-(230)Th secular equilibrium. The U-Th concentration data agree with but are significantly more precise than those previously measured. U-Th concentration and isotopic data agree within estimated errors for the two measurement techniques, providing validation of the two methods. The large (238)U-(234)U-(230)Th disequilibria for some of the glasses, along with the wide range in their chemical compositions and Th/U ratios should provide useful reference points for the U-series analytical community.
Kalis, Erwin J J; Weng, Liping; Dousma, Freerk; Temminghoff, Erwin J M; Van Riemsdijk, Willem H
2006-02-01
Metal toxicity is not related to the total but rather to the free or labile metal ion concentration. One of the techniques that can be used to measure several free metal ion concentrations simultaneously is the Donnan Membrane Technique (DMT) in combination with the inductively coupled plasma-mass spectrometer (ICP-MS). However, free metal ion concentrations in natural waters are commonly below the detection limit of ICP-MS. We decreased the detection limit by making use of a ligand, and we developed a field DMT cell that can be applied in situ in natural waters. A kinetic approach can be used to calculate free metal ion concentrations when the equilibrium time becomes too large. The field DMT measured in situ in natural waters a free metal ion concentration ranging from 0.015% (Cu) to 13% (Zn) of a total metal concentration ranging from 0.06 nM (Cd) to 237 nM (Zn). The free metal ion concentrations were difficult to predict using an equilibrium speciation model, probably due to the uncertainty in the nature of the dissolved organic matter or the presence of other reactive colloids. It is shown that DMT can follow changes in the free metal ion concentration on times scales less than a day under certain conditions.
Retrospective Evaluation of Milrinone Pharmacokinetics in Children With Kidney Injury.
Gist, Katja M; Mizuno, Tomoyuki; Goldstein, Stuart L; Vinks, Alexander
2015-12-01
Milrinone is an inotropic agent with vasodilating properties used in the treatment of ventricular dysfunction. Milrinone is predominantly eliminated by the kidneys and accumulates in the setting of acute kidney injury (AKI). The purpose of this study was to evaluate milrinone pharmacokinetics in children with AKI with or without continuous renal replacement therapy (CRRT). Retrospective collection of milrinone therapeutic drug monitoring data in patients with AKI, including those requiring CRRT, through chart review from January 2008 to March 2014. Pharmacokinetic (PK) data were analyzed by Bayesian estimation using a pediatric population PK model (MW/Pharm). Clearance estimates were allometrically scaled to body weight. Data on 11 patients were available for analysis. Three patients required CRRT. Milrinone concentrations during continuous infusion varied 30-fold and ranged from 44 to 1343 ng/mL. Of the 33 samples obtained in 11 patients, 24 were outside the target range (72.7%), with 16 (48.5%) above and 8 (24.2%) below. Patients with AKI had significantly lower milrinone clearance (4.72 ± 2.26 L/h per 70 kg) compared with published data in patients without AKI. There was large between-patient variability in milrinone clearance (range: 2.91-13.6 L/h per 70 kg). Clearance in patients on CRRT ranged from 2.8 to 7.19 L/h per 70 kg. A significant correlation between milrinone clearance and estimated creatinine clearance was observed (r = 0.70, P = 0.0097). Allometrically scaled milrinone clearance was lower in the youngest patients (younger than 2 years), suggestive of ongoing renal maturation and existing AKI. Pediatric patients with AKI have significantly lower milrinone clearance compared with published data in patients without AKI. Large variability was noted in milrinone concentrations, and they were frequently outside the target range. The large between-patient variability in milrinone concentrations suggests that dosing regimens should be individualized in this population of critically ill patients. Evaluation of PK model-based milrinone dose optimization and the use of biomarkers as predictors of changes in clearance warrant further study.
Gerner, Steven J.; Spangler, Lawrence E.
2006-01-01
Water-quality samples were collected from the Bear River during two base-flow periods in 2001: March 11 to 21, prior to snowmelt runoff, and July 30 to August 9, following snowmelt runoff. The samples were collected from 65 sites along the Bear River and selected tributaries and analyzed for dissolved solids and major ions, suspended sediment, nutrients, pesticides, and periphyton chlorophyll a.On the main stem of the Bear River during March, dissolved-solids concentrations ranged from 116 milligrams per liter (mg/L) near the Utah-Wyoming Stateline to 672 mg/L near Corinne, Utah. During July-August, dissolved-solid concentrations ranged from 117 mg/L near the Utah-Wyoming Stateline to 2,540 mg/L near Corinne and were heavily influenced by outflow from irrigation diversions. High concentrations of dissolved solids near Corinne result largely from inflow of mineralized spring water.Suspended-sediment concentrations in the Bear River in March ranged from 2 to 98 mg/L and generally decreased below reservoirs. Tributary concentrations were much higher, as high as 861 mg/L in water from Battle Creek. Streams with high sediment concentrations in March included Whiskey Creek, Otter Creek, and the Malad River. Sediment concentrations in tributaries in July-August generally were lower than in March.The concentrations of most dissolved and suspended forms of nitrogen generally were higher in March than in July-August. Dissolved ammonia concentrations in the Bear River and its tributaries in March ranged from less than 0.021 mg/L to as much as 1.43 mg/L, and dissolved ammonia plus organic nitrogen concentrations ranged from less than 0.1 mg/L to 2.4 mg/L. Spring Creek is the only site where the concentrations of all ammonia species exceeded 1.0 mg/L. In samples collected during March, tributary concentrations of dissolved nitrite plus nitrate ranged from 0.042 mg/L to 5.28 mg/L. In samples collected from tributaries during July-August, concentrations ranged from less than 0.23 mg/L to 3.06 mg/L. Concentrations of nitrite plus nitrate were highest in samples collected from the Whiskey Creek and Spring Creek drainage basins and from main-stem sites below Cutler Reservoir near Collinston (March) and Corinne (July-August).Concentrations of total phosphorus at main-stem sites were fairly similar during both base-flow periods, ranging from less than 0.02 to 0.49 mg/L during March and less than 0.02 to 0.287 mg/L during July-August. In March, concentrations of total phosphorus in the Bear River generally increased from upstream to downstream. Total phosphorus concentrations in tributaries generally were higher in March than in July-August.Concentrations of selected pesticides in samples collected from 20 sites in the Bear River basin in either March or July-August were less than 0.1 microgram per liter. Of the 12 pesticides detected, the most frequently detected insecticide was malathion, and prometon and atrazine were the most frequently detected herbicides.Periphyton samples were collected at 14 sites on the Bear River during August. Chlorophyll a concentrations ranged from 21 milligrams per square meter to 416 milligrams per square meter, with highest concentrations occurring below reservoirs. Samples from 8 of the 14 sites had concentrations of chlorophyll a that exceeded 100 milligrams per square meter, indicating that algal abundance at these sites may represent a nuisance condition.
Trends in trace organic and metal concentrations in the Pechora and Kara Seas and adjacent rivers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brooks, J.M.; Champ, M.A.; Wade, T.L.
1995-12-31
Trace organic (pesticides, PCBs, PAHs and dioxin/furan) and trace metal concentrations have been measured in surficial sediment and tissue (i.e., clam, fish liver and flesh) samples from the Pechora and Kara Seas and their adjacent rivers -- Pechora, Ob and Yenisey Rivers. Total PAH, PCB and total DDT and chlordane concentrations ranged in surficial sediments from n.d. to 810 ppb, n.d.--8.7 ppb, n.d.--1.2 ppb, and n.d.--1.2 ppb, respectively, in a suite of 40 samples from the Kara Sea and its adjacent rivers. The highest concentrations of many of the trace organic and metal contaminants were found in the lower partmore » of the Yenisey River below the salt wedge. Some trace metals (As for example) were elevated in the Pechora River dispositional plume region. Dioxin ranged from 1.36 to 413 ppt in a subset of 20 sediment samples. Higher trace organic contaminant concentrations compared to sediments were found in tissue samples from the region, especially fish liver samples. Concentrations as high as 1,114 ppb total PAHs, 89 ppb chlordane, 1,011 ppb for total DDT and 663 ppb PCBs were found in some fish liver samples. Dioxin concentrations in tissue samples ranged from 11.7 to 61 ppt. Concentrations of many trace organic and metal contaminants in these Russian marginal seas are influenced by inputs from these large Arctic rivers. Many organic contaminant concentrations in sediments are low, however detecting these compounds in tissue show they are bioavailable.« less
Concentration of arsenic in water, sediments and fish species from naturally contaminated rivers.
Rosso, Juan José; Schenone, Nahuel F; Pérez Carrera, Alejo; Fernández Cirelli, Alicia
2013-04-01
Arsenic (As) may occur in surface freshwater ecosystems as a consequence of both natural contamination and anthropogenic activities. In this paper, As concentrations in muscle samples of 10 fish species, sediments and surface water from three naturally contaminated rivers in a central region of Argentina are reported. The study area is one of the largest regions in the world with high As concentrations in groundwater. However, information of As in freshwater ecosystems and associated biota is scarce. An extensive spatial variability of As concentrations in water and sediments of sampled ecosystems was observed. Geochemical indices indicated that sediments ranged from mostly unpolluted to strongly polluted. The concentration of As in sediments averaged 6.58 μg/g ranging from 0.23 to 59.53 μg/g. Arsenic in sediments barely followed (r = 0.361; p = 0.118) the level of contamination of water. All rivers showed high concentrations of As in surface waters, ranging from 55 to 195 μg/L. The average concentration of As in fish was 1.76 μg/g. The level of contamination with As differed significantly between species. Moreover, the level of bioaccumulation of As in fish species related to the concentration of As in water and sediments also differed between species. Whilst some fish species seemed to be able to regulate the uptake of this metalloid, the concentration of As in the large catfish Rhamdia quelen mostly followed the concentration of As in abiotic compartments. The erratic pattern of As concentrations in fish and sediments regardless of the invariable high levels in surface waters suggests the existence of complex biogeochemical processes behind the distribution patterns of As in these naturally contaminated ecosystems.
Savidge, William B; Brink, Jonathan; Blanton, Jackson O
2016-12-01
Oxygen concentrations and oxygen utilization rates were monitored continuously for 23 months on marsh platforms and in small tidal creeks at two sites in coastal Georgia, USA, that receive urban stormwater runoff via an extensive network of drainage canals. These data were compared to nearby control sites that receive no significant surface runoff. Overall, rainfall and runoff per se were not associated with differences in the oxygen dynamics among the different locations. Because of the large tidal range and long tidal excursions in coastal Georgia, localized inputs of stormwater runoff are rapidly mixed with large volumes of ambient water. Oxygen concentrations in tidal creeks and on flooded marsh platforms were driven primarily by balances of respiration and photosynthesis in the surrounding regional network of marshes and open estuarine waters. Local respiration, while measurable, was of relatively minor importance in determining oxygen concentrations in tidal floodwaters. Water residence time on the marshes could explain differences in oxygen concentration between the runoff-influenced and control sites.
NASA Astrophysics Data System (ADS)
Savidge, William B.; Brink, Jonathan; Blanton, Jackson O.
2016-12-01
Oxygen concentrations and oxygen utilization rates were monitored continuously for 23 months on marsh platforms and in small tidal creeks at two sites in coastal Georgia, USA, that receive urban stormwater runoff via an extensive network of drainage canals. These data were compared to nearby control sites that receive no significant surface runoff. Overall, rainfall and runoff per se were not associated with differences in the oxygen dynamics among the different locations. Because of the large tidal range and long tidal excursions in coastal Georgia, localized inputs of stormwater runoff are rapidly mixed with large volumes of ambient water. Oxygen concentrations in tidal creeks and on flooded marsh platforms were driven primarily by balances of respiration and photosynthesis in the surrounding regional network of marshes and open estuarine waters. Local respiration, while measurable, was of relatively minor importance in determining oxygen concentrations in tidal floodwaters. Water residence time on the marshes could explain differences in oxygen concentration between the runoff-influenced and control sites.
Preliminary analysis of long-range aircraft designs for future heavy airlift missions
NASA Technical Reports Server (NTRS)
Nelms, W. P., Jr.; Murphy, R.; Barlow, A.
1976-01-01
A computerized design study of very large cargo aircraft for the future heavy airlift mission was conducted using the Aircraft Synthesis program (ACSYNT). The study was requested by the Air Force under an agreement whereby Ames provides computerized design support to the Air Force Flight Dynamics Laboratory. This effort is part of an overall Air Force program to study advanced technology large aircraft systems. Included in the Air Force large aircraft program are investigations of missions such as heavy airlift, airborne missile launch, battle platform, command and control, and aerial tanker. The Ames studies concentrated on large cargo aircraft of conventional design with payloads from 250,000 to 350,000 lb. Range missions up to 6500 n.mi. and radius missions up to 3600 n.mi. have been considered. Takeoff and landing distances between 7,000 and 10,000 ft are important constraints on the configuration concepts. The results indicate that a configuration employing conventional technology in all disciplinary areas weighs approximately 2 million pounds to accomplish either a 6500-n.mi. range mission or a 3600-n.mi. radius mission with a 350,000-lb payload.
Mid-infrared tunable metamaterials
Brener, Igal; Miao, Xiaoyu; Shaner, Eric A.; Passmore, Brandon Scott
2017-07-11
A mid-infrared tunable metamaterial comprises an array of resonators on a semiconductor substrate having a large dependence of dielectric function on carrier concentration and a semiconductor plasma resonance that lies below the operating range, such as indium antimonide. Voltage biasing of the substrate generates a resonance shift in the metamaterial response that is tunable over a broad operating range. The mid-infrared tunable metamaterials have the potential to become the building blocks of chip based active optical devices in mid-infrared ranges, which can be used for many applications, such as thermal imaging, remote sensing, and environmental monitoring.
Mid-infrared tunable metamaterials
Brener, Igal; Miao, Xiaoyu; Shaner, Eric A; Passmore, Brandon Scott; Jun, Young Chul
2015-04-28
A mid-infrared tunable metamaterial comprises an array of resonators on a semiconductor substrate having a large dependence of dielectric function on carrier concentration and a semiconductor plasma resonance that lies below the operating range, such as indium antimonide. Voltage biasing of the substrate generates a resonance shift in the metamaterial response that is tunable over a broad operating range. The mid-infrared tunable metamaterials have the potential to become the building blocks of chip based active optical devices in mid-infrared ranges, which can be used for many applications, such as thermal imaging, remote sensing, and environmental monitoring.
Improved ATIR concentrator photovoltaic module
NASA Astrophysics Data System (ADS)
Adriani, Paul M.; Mao, Erwang
2013-09-01
Novel aggregated total internal reflection (ATIR) concentrator photovoltaic module design comprises 2-D shaped primary and secondary optics that effectively combine optical efficiency, low profile, convenient range of acceptance angles, reliability, and manufacturability. This novel optical design builds upon previous investigations by improving the shapes of primary and secondary optics to enable improved long-term reliability and manufacturability. This low profile, low concentration (5x to 10x) design fits well with one-axis trackers that are often used for flat plate crystalline silicon photovoltaic modules in large scale ground mount installations. Standard mounting points, materials, and procedures apply without changes from flat plate modules.
The effects of temperature and salinity on phosphate levels in two euryhaline crustacean species
NASA Astrophysics Data System (ADS)
Spaargaren, D. H.; Richard, P.; Ceccaldi, H. J.
Total phoshate, inorganic phosphate and organic (phospholipid) phosphate concentrations were determined in the blood of Carcinus maenas and in whole-animal homogenates of Penaeus japonicus acclimatized to various salinities and a high or a low temperature. In the blood of Carcinus, total and inorganic P concentrations range between 1.0 and 4.5 mmol · l -1; the amount of phospholipids is negligeable. The higher values were found at more extreme salinities. Low temperature is associated with low phosphate concentrations, particularly at intermediate salinities. Total P concentrations in Penaeus homogenates range between 10 and 60 mmol · 1 -1; phospholipid concentrations range between zero and 50 mmol · 1 -1. The higher values are again found at the extreme salinities. Inorganic P concentrations are almost constant — ca 10 mmol · 1 -1. No apparent effect of temperature on phosphate concentrations was observed. The results show clearly that osmotic stress influences severely the phosphate metabolism of the two species studied. Both species are able to accumulate phosphate at all experimental temperature/salinity combinations used, even when deprived of food. At extreme salinities, large quantities of phosphate are accumulated and converted to organic P compounds, most likely as phospholipids associated with the cell membranes. These effects of osmotic conditions in phosphate metabolism may offer an explanation for the effect of Ca ++ on membrane permeability as the regulation of both ions may be strongly interrelated, often under hormonal control.
Odour concentration affects odour identity in honeybees
Wright, Geraldine A; Thomson, Mitchell G.A; Smith, Brian H
2005-01-01
The fact that most types of sensory stimuli occur naturally over a large range of intensities is a challenge to early sensory processing. Sensory mechanisms appear to be optimized to extract perceptually significant stimulus fluctuations that can be analysed in a manner largely independent of the absolute stimulus intensity. This general principle may not, however, extend to olfaction; many studies have suggested that olfactory stimuli are not perceptually invariant with respect to odour intensity. For many animals, absolute odour intensity may be a feature in itself, such that it forms a part of odour identity and thus plays an important role in discrimination alongside other odour properties such as the molecular identity of the odorant. The experiments with honeybees reported here show a departure from odour-concentration invariance and are consistent with a lower-concentration regime in which odour concentration contributes to overall odour identity and a higher-concentration regime in which it may not. We argue that this could be a natural consequence of odour coding and suggest how an ‘intensity feature’ might be useful to the honeybee in natural odour detection and discrimination. PMID:16243694
Van Renterghem, Pieter; Van Eenoo, Peter; Geyer, Hans; Schänzer, Wilhelm; Delbeke, Frans T
2010-02-01
The detection of misuse with naturally occurring steroids is a great challenge for doping control laboratories. Intake of natural anabolic steroids alters the steroid profile. Thus, screening for exogenous use of these steroids can be established by monitoring a range of endogenous steroids, which constitute the steroid profile, and evaluate their concentrations and ratios against reference ranges. Elevated values of the steroid profile constitute an atypical finding after which a confirmatory IRMS procedure is needed to unequivocally establish the exogenous origin of a natural steroid. However, the large inter-individual differences in urinary steroid concentrations and the recent availability of a whole range of natural steroids (e.g. dehydroepiandrosterone and androstenedione) which each exert a different effect on the monitored parameters in doping control complicate the interpretation of the current steroid profile. The screening of an extended steroid profile can provide additional parameters to support the atypical findings and can give specific information upon the steroids which have been administered. The natural concentrations of 29 endogenous steroids and 11 ratios in a predominantly Caucasian population of athletes were determined. The upper reference values at 97.5%, 99% and 99.9% levels were assessed for male (n=2027) and female (n=1004) populations. Monitoring minor metabolites and evaluation of concentration ratios with respect to their natural abundances could improve the interpretation of the steroid profile in doping analysis. Copyright 2009 Elsevier Inc. All rights reserved.
Kim, Hyeong Sang; Hur, Sun Jin
2018-01-15
The objective of this study was to determine the effect of six different starter cultures of enterobacteria on the concentration of residual nitrite in fermented sausages during in vitro human digestion. Before digestion, the concentration of residual nitrite was dependent on starter culture in fermented sausage and ranged from 25.2 to 33.2mg/kg. Among the six starter cultures of enterobacteria, Pediococcus acidilactici, Pediococcus pentosaceus, and Staphylococcus carnosus showed higher nitrite depletion ability than the other three strains in fermented sausages. The concentration of residual nitrite in fermented sausages was significantly (p<0.05) decreased after stomach digestion and ranged from 17.4 to 21.6mg/kg. Enterobacteria Escherichia coli (E. coli) and/or Lactobacillus casei (L. casei) effectively increased the degree of depletion of residual nitrite in large intestine digestion. In conclusion, starter cultures could influence the concentration of residual nitrite during in vitro human digestion. They could deplete residual nitrite in fermented sausages. Copyright © 2017 Elsevier Ltd. All rights reserved.
Becker, Carol J.; Smith, S. Jerrod; Greer, James R.; Smith, Kevin A.
2010-01-01
The U.S. Geological Survey well profiler was used to describe arsenic-related water quality with well depth and identify zones yielding water with high arsenic concentrations in two production wells in central and western Oklahoma that yield water from the Permian-aged Garber-Wellington and Rush Springs aquifers, respectively. In addition, well-head samples were collected from 12 production wells yielding water with historically large concentrations of arsenic (greater than 10 micrograms per liter) from the Garber-Wellington aquifer, Rush Springs aquifer, and two minor aquifers: the Arbuckle-Timbered Hills aquifer in southern Oklahoma and a Permian-aged undefined aquifer in north-central Oklahoma. Three depth-dependent samples from a production well in the Rush Springs aquifer had similar water-quality characteristics to the well-head sample and did not show any substantial changes with depth. However, slightly larger arsenic concentrations in the two deepest depth-dependent samples indicate the zones yielding noncompliant arsenic concentrations are below the shallowest sampled depth. Five depth-dependent samples from a production well in the Garber-Wellington aquifer showed increases in arsenic concentrations with depth. Well-bore travel-time information and water-quality data from depth-dependent and well-head samples showed that most arsenic contaminated water (about 63 percent) was entering the borehole from perforations adjacent to or below the shroud that overlaid the pump. Arsenic concentrations ranged from 10.4 to 124 micrograms per liter in 11 of the 12 production wells sampled at the well head, exceeding the maximum contaminant level of 10 micrograms per liter for drinking water. pH values of the 12 well-head samples ranged from 6.9 to 9. Seven production wells in the Garber-Wellington aquifer had the largest arsenic concentrations ranging from 18.5 to 124 micrograms per liter. Large arsenic concentrations (10.4-18.5) and near neutral to slightly alkaline pH values (6.9-7.4) were detected in samples from one well in the Garber-Wellington aquifer, three production wells in the Rush Springs aquifer, and one well in an undefined Permian-aged aquifer. All well-head samples were oxic and arsenate was the only species of arsenic in water from 10 of the 12 production wells sampled. Arsenite was measured above the laboratory reporting level in water from a production well in the Garber-Wellington aquifer and was the only arsenic species measured in water from the Arbuckle-Timbered Hills aquifer. Fluoride and uranium were the only trace elements, other than arsenic, that exceeded the maximum contaminant level for drinking water in well-head samples collected for the study. Uranium concentrations in four production wells in the Garber-Wellington aquifer ranged from 30.2 to 99 micrograms per liter exceeding the maximum contaminant level of 30 micrograms per liter for drinking water. Water from these four wells also had the largest arsenic concentrations measured in the study ranging from 30 to 124 micrograms
Deleurence, Rémi; Parneix, Caroline; Monteux, Cécile
2014-09-28
We investigate the stabilization of air-water interfaces by mixtures of negatively charged latex particles (sulfate polystyrene) and cationic surfactants (alkyl trimethylammonium bromides). First we report results concerning the binding of surfactant molecules to the latex particles. As the surfactant concentration increases, the charge of the particles reverses, from negative to positive, because CnTAB first binds electrostatically to the latex particles and then through hydrophobic interaction with the monolayer already adsorbed on the particles as well as directly with the hydrophobic surface of the latex. Over a large range of surfactant concentrations around the charge inversion, a strong flocculation is observed and 100 μm large aggregates form in the suspension. Unlike previous studies published on mixtures of inorganic particles with oppositely charged surfactants, we show that we can vary the sign of the zeta potential of the particles without changing the contact angle of the particles over a large range of surfactant concentrations. Indeed, the latex particles that we study are more hydrophobic than inorganic particles, hence adding moderate concentrations of the surfactant results in a weak variation of the contact angle while the charge of the particles can be reversed. This enables decoupling of the effect of zeta potential and contact angle on the interfacial properties of the mixtures. Our study shows that the contact angle and the charge of the particles are not sufficient parameters to control the foam properties, and the key-parameters are the flocculation state and the shear energy applied to produce the foam. Indeed, flocculated samples, whatever the sign of the zeta potential, enable production of a stable armour at the interface. The large aggregates do not adsorb spontaneously at the interface because of their large size, however when a large shear energy is used to produce the foam very stable foam is obtained, where particles are trapped at interfaces. We suggest that the large aggregates may be broken during shear and may reform at the interface to form a solid armour. A simple calculation taking into account the adsorption dynamics of the aggregates as a function of their size is consistent with this hypothesis.
Sources of nitrate contamination and age of water in large karstic springs of Florida
Katz, B.G.
2004-01-01
In response to concerns about the steady increase in nitrate concentrations over the past several decades in many of Florida's first magnitude spring waters (discharge ???2.8 m3/s), multiple isotopic and other chemical tracers were analyzed in water samples from 12 large springs to assess sources and timescales of nitrate contamination. Nitrate-N concentrations in spring waters ranged from 0.50 to 4.2 mg/L, and ??15N values of nitrate in spring waters ranged from 2.6 to 7.9 per mil. Most ??15N values were below 6 per mil indicating that inorganic fertilizers were the dominant source of nitrogen in these waters. Apparent ages of groundwater discharging from springs ranged from 5 to about 35 years, based on multi-tracer analyses (CFC-12, CFC-113, SF6, 3H/3He) and a piston flow assumption; however, apparent tracer ages generally were not concordant. The most reliable spring-water ages appear to be based on tritium and 3He data, because concentrations of CFCs and SF6 in several spring waters were much higher than would be expected from equilibration with modern atmospheric concentrations. Data for all tracers were most consistent with output curves for exponential and binary mixing models that represent mixtures of water in the Upper Floridan aquifer recharged since the early 1960s. Given that groundwater transit times are on the order of decades and are related to the prolonged input of nitrogen from multiple sources to the aquifer, nitrate could persist in groundwater that flows toward springs for several decades due to slow transport of solutes through the aquifer matrix.
Observations in eastern England of elevated methyl iodide concentrations in air of atlantic origin
NASA Astrophysics Data System (ADS)
Oram, D. E.; Penkett, S. A.
Atmospheric methyl iodide (CH 3I) has been measured at a ground-based site in eastern England for two consecutive summers. Maximum values of 43.1 pptv and 28.9 pptv were recorded in 1989 and 1990, respectively. CH 3I was not detectable in the autumn and winter months. Episodes of elevated concentration persisted for periods ranging from a few hours to several days. The origin of much of the observed CH 31 would appear to be the Atlantic Ocean, indicating the presence of large source areas, possibly phytoplankton blooms, in ocean waters. If so, this work provides the first evidence of long-range transport of an important iodine-bearing species at concentrations of hemispheric significance. Estimates are made of the dry deposition velocity of CH 3I and the potential impact of elevated tropospheric levels on the human uptake of iodine.
Analysis of the Glass-Forming Ability of Fe-Er Alloys, Based on Thermodynamic Modeling
NASA Astrophysics Data System (ADS)
Arutyunyan, N. A.; Zaitsev, A. I.; Dunaev, S. F.; Kalmykov, K. B.; El'nyakov, D. D.; Shaposhnikov, N. G.
2018-05-01
The Fe-Er phase diagram and thermodynamic properties of all its phases are assessed by means of self-consistent analysis. To refine the data on phase equilibria in the Fe-Er system, an investigation is performed in the 10-40 at % range of Er concentrations. The temperature-concentration dependences of the thermodynamic properties of a melt are presented using the model of ideal associated solutions. Thermodynamic parameters of each phase are obtained, and the calculated results are in agreement with available experimental data. The correlation between the thermodynamic properties of liquid Fe-Er alloys and their tendency toward amorphization are studied. It is shown that compositions of amorphous alloys prepared by melt quenching coincide with the ranges of concentration with the predominance of Fe3Er and FeEr2 associative groups that have large negative entropies of formation.
Bridging the scales in atmospheric composition simulations using a nudging technique
NASA Astrophysics Data System (ADS)
D'Isidoro, Massimo; Maurizi, Alberto; Russo, Felicita; Tampieri, Francesco
2010-05-01
Studying the interaction between climate and anthropogenic activities, specifically those concentrated in megacities/hot spots, requires the description of processes in a very wide range of scales from local, where anthropogenic emissions are concentrated to global where we are interested to study the impact of these sources. The description of all the processes at all scales within the same numerical implementation is not feasible because of limited computer resources. Therefore, different phenomena are studied by means of different numerical models that can cover different range of scales. The exchange of information from small to large scale is highly non-trivial though of high interest. In fact uncertainties in large scale simulations are expected to receive large contribution from the most polluted areas where the highly inhomogeneous distribution of sources connected to the intrinsic non-linearity of the processes involved can generate non negligible departures between coarse and fine scale simulations. In this work a new method is proposed and investigated in a case study (August 2009) using the BOLCHEM model. Monthly simulations at coarse (0.5° European domain, run A) and fine (0.1° Central Mediterranean domain, run B) horizontal resolution are performed using the coarse resolution as boundary condition for the fine one. Then another coarse resolution run (run C) is performed, in which the high resolution fields remapped on to the coarse grid are used to nudge the concentrations on the Po Valley area. The nudging is applied to all gas and aerosol species of BOLCHEM. Averaged concentrations and variances over Po Valley and other selected areas for O3 and PM are computed. It is observed that although the variance of run B is markedly larger than that of run A, the variance of run C is smaller because the remapping procedure removes large portion of variance from run B fields. Mean concentrations show some differences depending on species: in general mean values of run C lie between run A and run B. A propagation of the signal outside the nudging region is observed, and is evaluated in terms of differences between coarse resolution (with and without nudging) and fine resolution simulations.
Extracting Silicon From Sodium-Process Products
NASA Technical Reports Server (NTRS)
Kapur, V.; Sanjurjo, A.; Sancier, K. M.; Nanis, L.
1982-01-01
New acid leaching process purifies silicon produced in reaction between silicon fluoride and sodium. Concentration of sodium fluoride and other impurities and byproducts remaining in silicon are within acceptable ranges for semi-conductor devices. Leaching process makes sodium reduction process more attractive for making large quantities of silicon for solar cells.
Attitudes to Gender Equality Issues in British and German Academia
ERIC Educational Resources Information Center
Pritchard, Rosalind M. O.
2010-01-01
This paper explores a range of perceived similarities and differences between male and female academics in the context of contemporary European Union "gender mainstreaming" policy. It concentrates upon the higher education systems of Germany and the United Kingdom, and is based upon questionnaire responses. A large majority of…
We present a robust methodology for examining the relationship between synoptic-scale atmospheric transport patterns and pollutant concentration levels observed at a site. Our approach entails calculating a large number of back-trajectories from the observational site over a long...
Hematology of healthy Florida manatees (Trichechus manatus).
Harvey, John W; Harr, Kendal E; Murphy, David; Walsh, Michael T; Nolan, Elizabeth C; Bonde, Robert K; Pate, Melanie G; Deutsch, Charles J; Edwards, Holly H; Clapp, William L
2009-06-01
Hematologic analysis is an important tool in evaluating the general health status of free-ranging manatees and in the diagnosis and monitoring of rehabilitating animals. The purpose of this study was to evaluate diagnostically important hematologic analytes in healthy manatees (Trichechus manatus) and to assess variations with respect to location (free ranging vs captive), age class (small calves, large calves, subadults, and adults), and gender. Blood was collected from 55 free-ranging and 63 captive healthy manatees. Most analytes were measured using a CELL-DYN 3500R; automated reticulocytes were measured with an ADVIA 120. Standard manual methods were used for differential leukocyte counts, reticulocyte and Heinz body counts, and plasma protein and fibrinogen concentrations. Rouleaux, slight polychromasia, stomatocytosis, and low numbers of schistocytes and nucleated RBCs (NRBCs) were seen often in stained blood films. Manual reticulocyte counts were higher than automated reticulocyte counts. Heinz bodies were present in erythrocytes of most manatees. Compared with free-ranging manatees, captive animals had slightly lower MCV, MCH, and eosinophil counts and slightly higher heterophil and NRBC counts, and fibrinogen concentration. Total leukocyte, heterophil, and monocyte counts tended to be lower in adults than in younger animals. Small calves tended to have higher reticulocyte counts and NRBC counts than older animals. Hematologic findings were generally similar between captive and free-ranging manatees. Higher manual reticulocyte counts suggest the ADVIA detects only reticulocytes containing large amounts of RNA. Higher reticulocyte and NRBC counts in young calves probably reflect an increased rate of erythropoiesis compared with older animals.
NASA Astrophysics Data System (ADS)
Smith, Richard W.; Bianchi, Thomas S.; Li, Xinxin
2012-03-01
This study examines estimates of soil organic matter content (%OMsoil) in marine sediments based on the branched/isoprenoid tetraether (BIT) Index, and suggests a new calculation method based on branched GDGT (brGDGT) concentrations. Four sediment cores were collected in 2008 at the 20 m isobath of the Louisiana Continental Shelf. Glycerol dialkyl glycerol tetraether (GDGTs) and cupric oxide (CuO) oxidation products were analyzed down to ˜20 cm depth to examine terrestrially-derived organic matter. BIT Indices ranged from 0.50 to 0.03, and correlated poorly with lignin (mg S, V, and C phenols 10 g-1 sediment; ∑810) and 3,5-dihydroxybenzoic acid (μg 3,5-Bd g-1 sediment; 3,5:g) concentrations, which ranged from 0.01 to 0.87 mg g-1 and 0.00 (below detection limit) to 1.39 μg g-1, respectively. By calculating mass normalized core-lipid branched GDGT (brGDGT) and crenarchaeol mass abundances with the assistance of a surrogate standard, it was shown that overall, large variations in sedimentary crenarchaeol concentrations were responsible for vertical distributions of BIT Indices, due to the relatively smaller range of brGDGT concentrations. brGDGT concentrations produced stronger correlations with terrestrial CuO oxidation products than the BIT Index, which correlated strongly with crenarchaeol concentrations. Variations in the BIT Index may therefore reflect changes in the delivery of marine-derived organic matter to sediments in regions with large seasonal or decadal shifts in productivity, such as stratified continental shelves. An in depth look at conversions of the BIT Index to percent soil organic matter using a binary mixing model with a marine BIT value of 0 and a terrestrial BIT value of 1 (%OMsoil = BIT Index * 100) used in recent literature reveals that this method results in non-linear mixing of marine and terrestrial end-members, and the shape of the mixing line is based on sedimentary crenarchaeol concentrations. An alternative approach is to use sedimentary brGDGT yields as a OMsoil proxy, rather than normalizing them to crenarchaeol. %OMsoil could then be calculated using brGDGT concentrations in a two end-member mixing model as follows:%OMsoil = ([brGDGT]sample * 100)/[brGDGT]soil, where [brGDGT]sample and [brGDGT]soil represent the concentrations of branched GDGTs in the given sediment sample and in the average soil end-member, respectively. However, due to the wide range of brGDGT concentrations found in soils both regionally and globally, assigning a terrestrial end-member may not always be possible. While this method may in some instances also be a misrepresentation of %OMsoil in sediments, both estimation methods should be used with regard to their individual strengths and weaknesses.
Solar Advisor Model User Guide for Version 2.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilman, P.; Blair, N.; Mehos, M.
2008-08-01
The Solar Advisor Model (SAM) provides a consistent framework for analyzing and comparing power system costs and performance across the range of solar technologies and markets, from photovoltaic systems for residential and commercial markets to concentrating solar power and large photovoltaic systems for utility markets. This manual describes Version 2.0 of the software, which can model photovoltaic and concentrating solar power technologies for electric applications for several markets. The current version of the Solar Advisor Model does not model solar heating and lighting technologies.
NASA Astrophysics Data System (ADS)
Leung, Kinson He Yin
Ground-level ozone (O3) is perhaps one of the most familiar pollutants in Ontario, Canada because it is associated with most smog alerts in the province. O3 varies on a number of spatial and temporal scales, primarily due to meteorological variability and the impact of long-range transport of its precursors on the photochemical processes. The goal of this thesis is to project the change in the probability of occurrence of future Extreme Ground-level Ozone Events (EGLOEs) due to changes in atmospheric conditions as a result of climate change for cities located in the southern, eastern and northern parts of Ontario, Canada by using a combination of General Circulation / Global Climate Models (GCMs) and statistical downscaling. These Ontario cities are Toronto, Windsor, London, Kingston, Ottawa, Thunder Bay, Sudbury and North Bay. The successful downscaling method used in this research to generate city-specific climate change scenarios was the Statistical DownScaling Model (SDSM) version 4.2.2, which is a hybrid of regression-based and stochastic weather-generator downscaling methods. The results indicate that the mean values of the daily maximum ground-level ozone concentrations could increase by up to 12-17% in Southern Ontario, 8-16% in Eastern Ontario and 1.5-9% in Northern Ontario by the end of the century due largely to changes in long-range transport. Three important themes emerge from the results: 1) the research successfully model O3 concentration in a region where long-range transport plays a substantial role. 2) The clear confirmation regarding the role of long-range transport in determining O 3 concentration in most areas of Ontario. 3) The projected increase of ozone in Ontario, due largely to an increase of long-range transport, caused by shifting atmospheric dynamics rather than a direct temperature effect on ozone production. Moreover, the results indicate that the future Southern, Eastern and Northern Ontario's EGLOEs with the O3 concentration ≥ 80 ppb (the current Ontario 1-hour Ambient Air Quality criterion for extreme ozone concentration) will have an increase of over 60%, 50% and 62% respectively by the year of 2100 under the different future scenarios in the third version of the Coupled Global Climate Model (CGCM3) and the Hadley Centre's Climate Model (HadCM3).
Methylmercury in dried shark fins and shark fin soup from American restaurants.
Nalluri, Deepthi; Baumann, Zofia; Abercrombie, Debra L; Chapman, Demian D; Hammerschmidt, Chad R; Fisher, Nicholas S
2014-10-15
Consumption of meat from large predatory sharks exposes human consumers to high levels of toxic monomethylmercury (MMHg). There also have been claims that shark fins, and hence the Asian delicacy shark fin soup, contain harmful levels of neurotoxic chemicals in combination with MMHg, although concentrations of MMHg in shark fins are unknown. We measured MMHg in dried, unprocessed fins (n=50) of 13 shark species that occur in the international trade of dried shark fins as well as 50 samples of shark fin soup prepared by restaurants from around the United States. Concentrations of MMHg in fins ranged from 9 to 1720 ng/g dry wt. MMHg in shark fin soup ranged from <0.01 to 34 ng/mL, with MMHg averaging 62 ± 7% of total Hg. The highest concentrations of MMHg and total Hg were observed in both fins and soup from large, high trophic level sharks such as hammerheads (Sphyrna spp.). Consumption of a 240 mL bowl of shark fin soup containing the average concentration of MMHg (4.6 ng/mL) would result in a dose of 1.1 μg MMHg, which is 16% of the U.S. EPA's reference dose (0.1 μg MMHg per 1 kg per day in adults) of 7.4 μg per day for a 74 kg person. If consumed, the soup containing the highest measured MMHg concentration would exceed the reference dose by 17%. While shark fin soup represents a potentially important source of MMHg to human consumers, other seafood products, particularly the flesh of apex marine predators, contain much higher MMHg concentrations and can result in substantially greater exposures of this contaminant for people. Copyright © 2014 Elsevier B.V. All rights reserved.
Wilkison, Donald H.; Armstrong, Daniel J.; Norman, Richard D.; Polton, Barry C.; Furlong, Edward T.; Zaugg, Steven D.
2006-01-01
Water-quality data were collected from sites in the Blue River Basin from July 1998 to October. Sites upstream from wastewater-treatment plants or the combined sewer system area had lower concentrations of total nitrogen, phosphorus, organic wastewater compounds, and pharmaceuticals, and more diverse aquatic communities. Sites downstream from wastewater-treatment plants had the largest concentrations and loads of nutrients, organic wastewater compounds, and pharmaceuticals. Approximately 60 percent of the total nitrogen and phosphorus in Blue River originated from the Indian Creek, smaller amounts from the upper Blue River (from 28 to 16 percent), and less than 5 percent from Brush Creek. Nutrient yields from the Indian Creek and the middle Blue River were significantly greater than yields from the upper Blue River, lower Brush Creek, the outside control site, and other U.S. urban sites. Large concentrations of nutrients led to eutrophication of impounded Brush Creek reaches. Bottom sediment samples collected from impoundments generally had concentrations of organic wastewater and pharmaceutical compounds equivalent to or greater than, concentrations observed in streambed sediments downstream from wastewater-treatment plants. Bacteria in streams largely was the result of nonpoint-source contributions during storms. Based on genetic source-tracking, average contributions of in-stream Esherichia coli bacteria in the basin from dogs ranged from 26-32 percent of the total concentration, and human sources ranged from 28-42 percent. Macro invertebrate diversity was highest at sites with the largest percentage of upstream land use devoted to forests and grasslands. Declines in macro invertebrate community metrics were correlated strongly with increases in several, inter-related urbanization factors.
Wilkison, Donald H.; Armstrong, Daniel J.; Norman, Richard D.; Poulton, Barry C.; Furlong, Edward T.; Zaugg, Steven D.
2006-01-01
Water-quality data were collected from sites in the Blue River Basin from July 1998 to October. Sites upstream from wastewater-treatment plants or the combined sewer system area had lower concentrations of total nitrogen, phosphorus, organic wastewater compounds, and pharmaceuticals, and more diverse aquatic communities. Sites downstream from wastewater-treatment plants had the largest concentrations and loads of nutrients, organic wastewater compounds, and pharmaceuticals. Approximately 60 percent of the total nitrogen and phosphorus in Blue River originated from the Indian Creek, smaller amounts from the upper Blue River (from 28 to 16 percent), and less than 5 percent from Brush Creek. Nutrient yields from the Indian Creek and the middle Blue River were significantly greater than yields from the upper Blue River, lower Brush Creek, the outside control site, and other U.S. urban sites. Large concentrations of nutrients led to eutrophication of impounded Brush Creek reaches. Bottom sediment samples collected from impoundments generally had concentrations of organic wastewater and pharmaceutical compounds equivalent to or greater than, concentrations observed in streambed sediments downstream from wastewater-treatment plants. Bacteria in streams largely was the result of nonpoint-source contributions during storms. Based on genetic source-tracking, average contributions of in-stream Esherichia coli bacteria in the basin from dogs ranged from 26-32 percent of the total concentration, and human sources ranged from 28-42 percent. Macro invertebrate diversity was highest at sites with the largest percentage of upstream land use devoted to forests and grasslands. Declines in macro invertebrate community metrics were correlated strongly with increases in several, inter-related urbanization factors.
Electrical conductivity of electrolytes applicable to natural waters from 0 to 100 degrees C
McCleskey, R. Blaine
2011-01-01
The electrical conductivities of 34 electrolyte solutions found in natural waters ranging from (10-4 to 1) molkg-1 in concentration and from (5 to 90) °C have been determined. High-quality electrical conductivity data for numerous electrolytes exist in the scientific literature, but the data do not span the concentration or temperature ranges of many electrolytes in natural waters. Methods for calculating the electrical conductivities of natural waters have incorporated these data from the literature, and as a result these methods cannot be used to reliably calculate the electrical conductivity over a large enough range of temperature and concentration. For the single-electrolyte solutions, empirical equations were developed that relate electrical conductivity to temperature and molality. For the 942 molar conductivity determinations for single electrolytes from this study, the mean relative difference between the calculated and measured values was 0.1 %. The calculated molar conductivity was compared to literature data, and the mean relative difference for 1978 measurements was 0.2 %. These data provide an improved basis for calculating electrical conductivity for most natural waters.
GEMAS: CNS concentrations and C/N ratios in European agricultural soil.
Matschullat, Jörg; Reimann, Clemens; Birke, Manfred; Dos Santos Carvalho, Debora
2018-06-15
A reliable overview of measured concentrations of TC, TN and TS, TOC/TN ratios, and their regional distribution patterns in agricultural soil at the continental scale and based on measured data has been missing - despite much previous work on local and the European scales. Detection and mapping of natural (ambient) background element concentrations and variability in Europe was the focus of this work. While total C and S data had been presented in the GEMAS atlas already, this work delivers more precise (lower limit of determination) and fully quantitative data, and for the first time high-quality TN data. Samples were collected from the uppermost 20cm of ploughed soil (A p horizon) at 2108 sites with an even sampling density of one site per 2500km 2 for one individual land-use class (agricultural) across Europe (33 countries). Laboratory-independent quality control from sampling to analysis guaranteed very good data reliability and accuracy. Total carbon concentrations ranged from 0.37 to 46.3wt% (median: 2.20wt%) and TOC from 0.40 to 46.0wt% (median: 1.80wt%). Total nitrogen ranged from 0.018 to 2.64wt% (median: 0.169wt%) and TS from 0.008 to 9.74wt% (median: 0.034wt%), all with large variations in most countries. The TOC/TN ratios ranged from 1.8 to 252 (median: 10.1), with the largest variation in Spain and the smallest in some eastern European countries. Distinct and repetitive patterns emerge at the European scale, reflecting mostly geogenic and longer-term climatic influence responsible for the spatial distribution of TC, TN and TS. Different processes become visible at the continental scale when examining TC, TN and TS concentrations in agricultural soil Europe-wide. This facilitates large-scale land-use management and allows specific areas (subregional to local) to be identified that may require more detailed research. Copyright © 2018 Elsevier B.V. All rights reserved.
Size distribution of radon daughter particles in uranium mine atmospheres.
George, A C; Hinchliffe, L; Sladowski, R
1975-06-01
The size distribution of radon daughters was measured in several uranium mines using four compact diffusion batteries and a round jet cascade impactor. Simultaneously, measurements were made of uncombined fractions of radon daughters, radon concentration, working level and particle concentration. The size distributions found for radon daughters were log normal. The activity median diameters ranged from 0.09 mum to 0.3 mum with a mean value of 0.17 mum. Geometric standard deviations were in the range from 1.3 to 4 with a mean value of 2.7. Uncombined fractions expressed in accordance with the ICRP definition ranged from 0.004 to 0.16 with a mean value of 0.04. The radon daughter sizes in these mines are greater than the sizes assumed by various authors in calculating respiratory tract dose. The disparity may reflect the widening use of diesel-powered equipment in large uranium mines.
Zhang, Yueqing; Li, Qifeng; Lu, Yonglong; Jones, Kevin; Sweetman, Andrew J
2016-04-01
Hexabromocyclododecane (HBCDD) is a brominated flame retardant with a wide range of industrial applications, although little is known about its patterns of spatial distribution in soils in relation to industrial emissions. This study has undertaken a large-scale investigation around an industrialized coastal area of China, exploring the concentrations, spatial distribution and diastereoisomer profiles of HBCDD in 188 surface soils from 21 coastal cities in North China. The detection frequency was 100% and concentrations of total HBCDD in the surface soils ranged from 0.123 to 363 ng g(-1) and averaged 7.20 ng g(-1), showing its ubiquitous existence at low levels. The spatial distribution of HBCDD exhibited a correlation with the location of known manufacturing facilities in Weifang, suggesting the production of HBCDD as major emission source. Diastereoisomer profiles varied in different cities. Diastereoisomer compositions in soils were compared with emissions from HBCDD industrial activities, and correlations were found between them, which has the potential for source identification. Although the contemporary concentrations of HBCDD in soils from the study were relatively low, HBCDD-containing products (expanded/extruded polystyrene insulation boards) would be a potential source after its service life, and attention needs to be paid to prioritizing large-scale waste management efforts. Copyright © 2016 Elsevier Ltd. All rights reserved.
Schultz, Melissa M.; Barofsky, Douglas F.; Field, Jennifer A.
2008-01-01
A quantitative method was developed for the determination of fluorinated alkyl substances in municipal wastewater influents and effluents. The method consisted of centrifugation followed by large-volume injection (500 μL) of the supernatant onto a liquid chromatograph with a reverse-phase column and detection by electrospray ionization, and tandem mass spectrometry (LC/MS/MS). The fluorinated analytes studied include perfluoroalkyl sulfonates, fluorotelomer sulfonates, perfluorocarboxylates, and select fluorinated alkyl sulfonamides. Recoveries of the fluorinated analytes from wastewater treatment plant (WWTP) raw influents and final effluent ranged from 77% – 96% and 80% – 99%, respectively. The lower limit of quantitation ranged from 0.5 to 3.0 ng/L depending on the analyte. The method was applied to flow-proportional composites of raw influent and final effluent collected over a 24 hr period from ten WWTPs nationwide. Fluorinated alkyl substances were observed in wastewater at all treatment plants and each plant exhibited unique distributions of fluorinated alkyl substances despite similarities in treatment processes. In nine out of the ten plants sampled, at least one class of fluorinated alkyl substances exhibited increased concentrations in the effluent as compared to the influent concentrations. In some instances, decreases in certain fluorinated analyte concentrations were observed and attributed to sorption to sludge. PMID:16433363
Houser, J.N.; Mulholland, P.J.; Maloney, K.O.
2006-01-01
Because catchment characteristics determine sediment and nutrient inputs to streams, upland disturbance can affect stream chemistry. Catchments at the Fort Benning Military Installation (near Columbus, Georgia) experience a range of upland disturbance intensities due to spatial variability in the intensity of military training. We used this disturbance gradient to investigate the effects of upland soil and vegetation disturbance on stream chemistry. During baseflow, mean total suspended sediment (TSS) concentration and mean inorganic suspended sediment (ISS) concentration increased with catchment disturbance intensity (TSS: R2 = 0.7, p = 0.005, range = 4.0-10.1 mg L-1; ISS: R2 = 0.71, p = 0.004, range = 2.04-7.3 mg L-1); dissolved organic carbon (DOC) concentration (R2 = 0.79, p = 0.001, range = 1.5-4.1 mg L-1) and soluble reactive phosphorus (SRP) concentration (R2 = 0.75, p = 0.008, range = 1.9-6.2 ??g L-1) decreased with increasing disturbance intensity; and ammonia (NH 4+), nitrate (NO3-), and dissolved inorganic nitrogen (DIN) concentrations were unrelated to disturbance intensity. The increase in TSS and ISS during storms was positively correlated with disturbance (R2 = 0.78 and 0.78, p = 0.01 and 0.01, respectively); mean maximum change in SRP during storms increased with disturbance (r = 0.7, p = 0.04); and mean maximum change in NO3- during storms was marginally correlated with disturbance (r = 0.58, p = 0.06). Soil characteristics were significant predictors of baseflow DOC, SRP, and Ca 2+, but were not correlated with suspended sediment fractions, any nitrogen species, or pH. Despite the largely intact riparian zones of these headwater streams, upland soil and vegetation disturbances had clear effects on stream chemistry during baseflow and stormflow conditions. ?? ASA, CSSA, SSSA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houser, Jeffrey N
2006-01-01
Because catchment characteristics determine sediment and nutrient inputs to streams, upland disturbance can affect stream chemistry. Catchments at the Fort Benning Military Installation (near Columbus, Georgia) experience a range of upland disturbance intensities due to spatial variability in the intensity of military training. We used this disturbance gradient to investigate the effects of upland soil and vegetation disturbance on stream chemistry. During baseflow, mean total suspended sediment (TSS) concentration and mean inorganic suspended sediment (ISS) concentration increased with catchment disturbance intensity (TSS: R 2 = 0.7, p = 0.005, range = 4.0-10.1 mg L-1; ISS: R 2 = 0.71, pmore » = 0.004, range = 2.04-7.3 mg L-1); dissolved organic carbon (DOC) concentration (R 2 = 0.79, p = 0.001, range = 1.5-4.1 mg L-1) and soluble reactive phosphorus (SRP) concentration (R 2 = 0.75, p = 0.008, range = 1.9-6.2 {micro}g L-1) decreased with increasing disturbance intensity; and ammonia (NH4 +), nitrate (NO3 -), and dissolved inorganic nitrogen (DIN) concentrations were unrelated to disturbance intensity. The increase in TSS and ISS during storms was positively correlated with disturbance (R 2 = 0.78 and 0.78, p = 0.01 and 0.01, respectively); mean maximum change in SRP during storms increased with disturbance (r = 0.7, p = 0.04); and mean maximum change in NO3 - during storms was marginally correlated with disturbance (r = 0.58, p = 0.06). Soil characteristics were significant predictors of baseflow DOC, SRP, and Ca2+, but were not correlated with suspended sediment fractions, any nitrogen species, or pH. Despite the largely intact riparian zones of these headwater streams, upland soil and vegetation disturbances had clear effects on stream chemistry during baseflow and stormflow conditions.« less
Thejll Kirchhoff, K; Goericke-Pesch, S
2016-10-15
Progesterone (P4) concentrations during canine pregnancy follow a specific pattern. Although the general pattern is similar, it is likely that breed-specific differences exist. Detailed knowledge about the physiological range of P4 concentrations may be helpful in cases of suspected hypoluteoidism. The aim of this study was to investigate P4 changes during pregnancy in a small and a large breed, to obtain reference values for specific intervals during pregnancy and to test for breed- or body weight-specific differences. We studied P4 concentrations in pregnancies from healthy Bernese mountain dogs (BMDs, n = 6) and Cavalier King Charles Spaniels (CKCSs, n = 6) with a normal reproductive history. Blood samples for P4 were taken to determine the day of ovulation and after confirmation of pregnancy in regular intervals from Days 23 to 29 to Days 60 to 64. Bernese mountain dogs delivered 6.2 ± 2.6 puppies (range: 3-9) 63.4 ± 1.5 (range: 61-65) days after ovulation (excluding data from one BMD with elective c-section) and CKCS delivered 3.3 ± 1.9 puppies (range: 1-5) 63.5 ± 1.1 (range: 62-65) days after ovulation. In general, the P4 concentrations of individual dogs continuously decreased from the first to the last sampling during pregnancy. Respective mean concentrations were Days 23 to 29: 19.2 ± 4.3/22.2 ± 3.9 ng/mL (BMD/CKCS), Days 30 to 34: 15.6 ± 2.3/17.7 ± 5.8 ng/mL, Days 35 to 39: 12.5 ± 2.8/14.1 ± 3.4 ng/mL, Days 40 to 44: 8.9 ± 1.4/11.8 ± 3.7 ng/mL, Days 45 to 49: 7.7 ± 1.6/8.9 ± 1.9 ng/mL, Days 50 to 54: 6.0 ± 1.3/8.7 ± 7.1 ng/mL, Days 55 to 59: 4.7 ± 1.2/5.3 ± 2.8 ng/mL, and Days 60 to 64: 3.69 ± 1.86/2.62 ± 0.42 ng/mL. ANOVA indicated significant differences over time within each breed when considered individually (P < 0.0001 each), but not between breeds although mean P4 was slightly lower in BMD until Days 55 to 59. The present data clearly confirm the previously described P4 pattern during canine pregnancy with highest P4 concentrations obtained in the first interval (Days 23-29) and a subsequent decrease of P4. The lack of a significant rapid prepartal P4 drop might be related to methodological issues (time of last collection in regards to parturition). Other than expected, we failed to proof significant differences in P4 between CKCS and BMD. Further studies are required to confirm the results on a larger population of both breeds, but also other large-sized breeds to test for the hypothesis if BMD might have lower P4 concentrations and smaller litter size compared to other large breeds with larger litter size. Copyright © 2016 Elsevier Inc. All rights reserved.
Concentrating light in Cu(In,Ga)Se2 solar cells
NASA Astrophysics Data System (ADS)
Schmid, M.; Yin, G.; Song, M.; Duan, S.; Heidmann, B.; Sancho-Martinez, D.; Kämmer, S.; Köhler, T.; Manley, P.; Lux-Steiner, M. Ch.
2016-09-01
Light concentration has proven beneficial for solar cells, most notably for highly efficient but expensive absorber materials using high concentrations and large scale optics. Here we investigate light concentration for cost efficient thinfilm solar cells which show nano- or microtextured absorbers. Our absorber material of choice is Cu(In,Ga)Se2 (CIGSe) which has a proven stabilized record efficiency of 22.6% and which - despite being a polycrystalline thin-film material - is very tolerant to environmental influences. Taking a nanoscale approach, we concentrate light in the CIGSe absorber layer by integrating photonic nanostructures made from dielectric materials. The dielectric nanostructures give rise to resonant modes and field localization in their vicinity. Thus when inserted inside or adjacent to the absorber layer, absorption and efficiency enhancement are observed. In contrast to this internal absorption enhancement, external enhancement is exploited in the microscale approach: mm-sized lenses can be used to concentrate light onto CIGSe solar cells with lateral dimensions reduced down to the micrometer range. These micro solar cells come with the benefit of improved heat dissipation compared to the large scale concentrators and promise compact high efficiency devices. Both approaches of light concentration allow for reduction in material consumption by restricting the absorber dimension either vertically (ultra-thin absorbers for dielectric nanostructures) or horizontally (micro absorbers for concentrating lenses) and have significant potential for efficiency enhancement.
Concentrating light in Cu(In,Ga)Se2 solar cells
NASA Astrophysics Data System (ADS)
Schmid, Martina; Yin, Guanchao; Song, Min; Duan, Shengkai; Heidmann, Berit; Sancho-Martinez, Diego; Kämmer, Steven; Köhler, Tristan; Manley, Phillip; Lux-Steiner, Martha Ch.
2017-01-01
Light concentration has proven beneficial for solar cells, most notably for highly efficient but expensive absorber materials using high concentrations and large scale optics. Here, we investigate the light concentration for cost-efficient thin-film solar cells that show nano- or microtextured absorbers. Our absorber material of choice is Cu(In,Ga)Se2 (CIGSe), which has a proven stabilized record efficiency of 22.6% and which-despite being a polycrystalline thin-film material-is very tolerant to environmental influences. Taking a nanoscale approach, we concentrate light in the CIGSe absorber layer by integrating photonic nanostructures made from dielectric materials. The dielectric nanostructures give rise to resonant modes and field localization in their vicinity. Thus, when inserted inside or adjacent to the absorber layer, absorption and efficiency enhancement are observed. In contrast to this internal absorption enhancement, external enhancement is exploited in the microscaled approach: mm-sized lenses can be used to concentrate light onto CIGSe solar cells with lateral dimensions reduced down to the micrometer range. These micro solar cells come with the benefit of improved heat dissipation compared with the large scale concentrators and promise compact high-efficiency devices. Both approaches of light concentration allow for reduction in material consumption by restricting the absorber dimension either vertically (ultrathin absorbers for dielectric nanostructures) or horizontally (microabsorbers for concentrating lenses) and have significant potential for efficiency enhancement.
Mercury Contamination in Costa Rica
NASA Astrophysics Data System (ADS)
Varekamp, J. C.; Haynes, A.; Balcom, P. H.
2012-12-01
Recent measurements of Hg in air in the central valley of Costa Rica produced some remarkably high values (up to 700 ng Hg/m3;Castillo et al., 2011), raising concerns for public health. We made a broad assessment of Hg as an environmental contaminant in Costa Rica, and sampled and analyzed lake and wetland sediment and soils to derive atmospheric Hg deposition rates. We also measured Hg(0) in air in three locations, and sampled local fish that were analyzed for Hg. We set up a sampling program of Hg in hair of Costa Ricans, sampling hair from a broad crossection of the population, in combination with dietary and personal information. The lake sediments had Hg concentrations between 34 and 316 ppb Hg, with several lakes at common natural background concentrations (20-100 ppb Hg). Some lakes showed a Hg contamination component with concentrations well above simple background values. These sediments also were very rich in organic matter, and the high Hg concentrations may be a result of Hg focusing from the watersheds into the lake depositional environments. Deduced atmospheric deposition rates of Hg range from 0.16-0.25 ng Hg/cm2 per year, which is at the low end of the global range of measured wet atmospheric deposition rates. The observed Hg concentrations in sediment and soils thus can be characterized as natural background to mildly contaminated, but nothing that would indicate Hg inventories as expected from the reported high Hg air burdens. Some of our Hg(0) in air measurements were done at the same locations as those done earlier and yielded values between 0.6-4.2 ng Hg/m3; these values are similar to the low range measurements of Castillo et al. (their night time values), but we found no evidence in 2011 for their high daytime values. The range of a few ng Hg/m3 in air is compatible with global Hg dispersion modeling. Fish tissue of Trout and Tilapia gave a range of 68-112 ppb Hg (wet weight base), well below the 300 ppb Hg EPA alert level. Overall, these data do not point to a major local source of environmental Hg in Costa Rica, which would be most likely geothermal or volcanic in origin. We sampled hair from 53 people in San Jose, Heredia, and surrounding villages. The Hg(hair) contents ranged from 97-13,840 ppb Hg, with >50% of the subjects sampled above the USEPA alert level of 1000 ppb Hg. Three individuals had Hg> 8000 ppb Hg, which is a matter of concern. From the dietary information we calculated that 76% of the subjects sampled had an Hg intake above the USEPA recommended level of 0.1 microgram/kg bodyweight per day, largely from large marine fish such as tuna, swordfish, and shark. Many of the fish are imported and the local marine fish probably obtained their Hg burden outside the Costa Rica coastal region. In conclusion, there does not seem to be a direct large natural volcanic/geothermal Hg source in Costa Rica that may create public health concerns. However, the Costa Rican people studied by us have overall high Hg(hair) which seems to be related to their level of large marine fish consumption, which in several cases may be a matter of health concern.
Stripes instability of an oscillating non-Brownian iso-dense suspension of spheres
NASA Astrophysics Data System (ADS)
Roht, Y. L.; Ippolito, I.; Hulin, J. P.; Salin, D.; Gauthier, G.
2018-03-01
We analyze experimentally the behavior of a non-Brownian, iso-dense suspension of spheres submitted to periodic square wave oscillations of the flow in a Hele-Shaw cell of gap H. We do observe an instability of the initially homogeneous concentration in the form of concentration variation stripes transverse to the flow. The wavelength of these regular spatial structures scales roughly as the gap of the cell and is independent of the particle concentration and of the period of oscillation. This instability requires large enough particle volume fractions φ≥ 0.25 and a gap large enough compared to the sphere diameter (H/d ≥ 8) . Mapping the domain of the existence of this instability in the space of the control parameters shows that it occurs only in a limited range of amplitudes of the fluid displacement. The analysis of the concentration distribution across the gap supports a scenario of particle migration towards the wall followed by an instability due to a particle concentration gradient with a larger concentration at the walls. In order to account for the main features of this stripes instability, we use the theory of longitudinal instability due to normal stresses difference and recent observations of a dependence of the first normal stresses difference on the particle concentration.
Zonisamide serum concentrations during pregnancy.
Reimers, Arne; Helde, Grethe; Becser Andersen, Noémi; Aurlien, Dag; Surlien Navjord, Elisabeth; Haggag, Kathrine; Christensen, Jakob; Lillestølen, Kari Mette; Nakken, Karl Otto; Brodtkorb, Eylert
2018-05-04
To investigate the change in zonisamide (ZNS) serum concentration and its consequences in pregnant women with epilepsy. Six hospitals in Norway and Denmark screened their records for women who had been using ZNS during pregnancy. Absolute serum concentrations as well as concentration/dose (CD)-ratios were compared to non-pregnant values. Descriptive data on seizure control and obstetrical data were also collected. 144 serum concentrations from 23 pregnancies in 15 individual women with epilepsy were included (six on monotherapy). The mean ZNS serum concentration fell to a minimum of 58.6 ± 15.1%, while the C/D-ratio fell to as low as 55.1 ± 15.3% of the non-pregnant-value. The lowest values were seen in gestational months six to nine, and the individual nadir varied considerably (range: 24-81% of the non-pregnant value). Four out of ten previously seizure-free patients experienced breakthrough seizures. Gestational age, weight at birth and head circumference of the newborns were within the reference ranges. ZNS serum concentrations may fall by over 40% during pregnancy, with large interindividual variability. In some patients, this may lead to worsened seizure control. These findings are in line with reports on other AEDs and suggest that regular therapeutic drug monitoring and dose adjustments may be useful. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhou, Li-Jun; Zhang, Bei-Bei; Zhao, Yong-Gang; Wu, Qinglong L
2016-07-01
Steroids have been frequently detected in surface waters, and might pose adverse effects on aquatic organisms. However, little information is available regarding the occurrence and spatiotemporal distribution of steroids in lake environments. In addition to pollution sources, the occurrence and spatiotemporal distribution of steroids in lake environments might be related to lake types (shallow or deep), lake hydrodynamics, and sorption-desorption processes in the water-sediment systems. In this study, the occurrence, spatiotemporal distribution, and ecological risks of 36 steroids in a large shallow lake were evaluated by investigating surface water and sediment samples at 32 sites in Lake Taihu over two seasons. Twelve and 15 analytes were detected in aqueous and sedimentary phases, respectively, with total concentrations ranging from 0.86 to 116ng/L (water) and from 0.82 to 16.2ng/g (sediment, dry weight). Temporal variations of steroid concentrations in the water and sediments were statistically significant, with higher concentrations in winter. High concentrations of steroids were found in the seriously polluted bays rather than in the pelagic zone of the lake. Strong lake currents might mix pelagic waters, resulting in similar concentrations of steroids in the pelagic zone. Mass balance analysis showed that sediments in shallow lakes are in general an important sink for steroids. Steroids in the surface water and sediments of Lake Taihu might pose potential risks to aquatic organisms. Overall, our study indicated that the concentrations and spatiotemporal distribution of steroids in the large shallow lake are influenced simultaneously by pollution sources and lake hydrodynamics. Steroids in the large shallow Lake Taihu showed clear temporal and spatial variations and lake sediments may be a potential sink of steroids. Copyright © 2016 Elsevier B.V. All rights reserved.
Hong, Youwei; Yu, Shen; Yu, Guangbin; Liu, Yi; Li, Guilin; Wang, Min
2012-06-01
Organic pollutants, especially synthetic organic compounds, can indicate paces of anthropogenic activities. Effects of urbanization on polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) distributions in surface sediment were conducted in urban sections of the Grand Canal, China, consisting of a four-level urbanization gradient. The four-level urbanization gradients include three countryside towns, two small-size cities, three medium-size cities, and a large-size city. Diagnostic ratio analysis and factor analysis-multiple linear regression model were used for source apportionment of PAHs. Sediment quality guidelines (SQGs) of USA and Canada were employed to assess ecological risks of PAHs and PCBs in surface sediments of the Canal. Ranges of PAH and PCB concentrations in surface sediments were 0.66-22 mg/kg and 0.5-93 μg/kg, respectively. Coal-related sources were primary PAH sources and followed by vehicular emission. Total concentration, composition, and source apportionment of PAHs exhibited urbanization gradient effects. Total PCB concentrations increased with the urbanization gradient, while total PAHs concentration in surface sediments presented an inverted U Kuznets curve with the urbanization gradient. Elevated concentrations of both PAHs and PCBs ranged at effect range low levels or interim SQG, assessed by USA and Canadian SQGs. PAHs and PCBs in surface sediments of the Grand Canal showed urbanization gradient effects and low ecological risks.
The assessment of bore-hole water quality of Kakamega County, Kenya
NASA Astrophysics Data System (ADS)
Christine, Adika A.; Kibet, Joshua K.; Kiprop, Ambsrose K.; Were, Munyendo L.
2018-03-01
Numerous deleterious impacts of anthropogenic activities on water quality are typically observed in areas bursting with mineral exploitation, agricultural activities, and industrial processes. Therefore, this contribution details the water quality and water origin in selected hand-dug wells of one the most prominent mining areas in Kenya (Kakamega County). The toxicological impacts of drinking water from a mining site may include cancer and genetic aberrations largely because of the toxic effects of waterborne metals including Hg and As. Accordingly, this study focuses primarily on the investigation of heavy metals, essential elements such as Na and K. Heavy metals and essential elements were determined using spectroscopic and titrimetric techniques. The study revealed that mercury (Hg) concentration ranged between 0.00256 and 0.0611 ± 0.00005 mg/L while arsenic (As) concentration ranged from 0.0103 to 0.0119 ± 0.00005 mg/L. The concentration of potassium ranged from 2.53 to 4.08 ± 0.15 mg/L while that of sodium varied from 6.74 to 9.260 ± 0.2 mg/L. Although the concentration of cadmium was lower than that recommended by W.H.O, the concentrations of Hg, Pb, and As in Kakamega waters were higher than the internationally accepted levels. The generally high level of heavy metals in Kakamega bore-hole waters is, therefore, a public health concern that needs immediate intervention.
Selbig, William R.
2017-01-01
Collection of water-quality samples that accurately characterize average particle concentrations and distributions in channels can be complicated by large sources of variability. The U.S. Geological Survey (USGS) developed a fully automated Depth-Integrated Sample Arm (DISA) as a way to reduce bias and improve accuracy in water-quality concentration data. The DISA was designed to integrate with existing autosampler configurations commonly used for the collection of water-quality samples in vertical profile thereby providing a better representation of average suspended sediment and sediment-associated pollutant concentrations and distributions than traditional fixed-point samplers. In controlled laboratory experiments, known concentrations of suspended sediment ranging from 596 to 1,189 mg/L were injected into a 3 foot diameter closed channel (circular pipe) with regulated flows ranging from 1.4 to 27.8 ft3 /s. Median suspended sediment concentrations in water-quality samples collected using the DISA were within 7 percent of the known, injected value compared to 96 percent for traditional fixed-point samplers. Field evaluation of this technology in open channel fluvial systems showed median differences between paired DISA and fixed-point samples to be within 3 percent. The range of particle size measured in the open channel was generally that of clay and silt. Differences between the concentration and distribution measured between the two sampler configurations could potentially be much larger in open channels that transport larger particles, such as sand.
NASA Astrophysics Data System (ADS)
Bindeman, I. N.; Dixon, J. E.; Langmuir, C. H.; Palandri, J. L.
2015-12-01
The advent and calibration of the Thermal Combustion Element Analyzer (TCEA) continuous flow system coupled with the large-radius mass spectrometer MAT253 permits precise (±0.02 wt.% H2O, ±1-3‰ D/H) measurements in 1-10 mg of volcanic glass (0.1 wt.% H2O requires ~10 mg glass), which permits the targeting of small amounts of the freshest concentrate. This is a >100 factor reduction in sample size over conventional methods, four times over more common Delta series instruments. We investigated in triplicate 115 samples of submarine MORB glasses ranging from water-poor (0.1-0.2wt%) to water-rich (1.2-1.5wt%). These samples were previously investigated for major and trace elements, radiogenic isotopes; a large subset of these samples coming from the FAZAR expedition were studied previously by FTIR for water concentration. We also ran samples previously studied by the conventional off-line technique: MORB glass including those from the Easter Platform and the Alvin 526-1 standard (0.2wt% H2O). We observe excellent 1:1 correspondence (1.02x+0.02, R2=0.94) of wt% water by FTIR and TCEA suggesting complete extraction of water and no dependence on water concentration. We measure 51‰ total range in D/H that correlates with all other chemical and isotopic indicators of mantle enrichment, with the heaviest values occurring in the most enriched samples. When used uncorrected values of H2 gas run against H2 gas of known composition, this range agrees nicely with previous D/H range for MORB (-30 to -90‰), measured for samples run conventionally. Uncorrected analyses of Alvin glass 526-1 gives -66‰. When run against SMOW, SLAP and -41‰ water sealed in silver cups, the range is shifted by -15‰; when standardization is done by with three commonly used mica standards as is done most commonly in different labs, the range is shifted downward by -30-32‰. There are no isotopic offsets related to total water or D/H range requiring different slope or non-linear correction. The NBS30 mica standard has been recently shown to be heavier and more heterogeneous than previously thought, and older conventional methods that relied on Pt reduction unreliable. Based on these new TCEA results, the D/H values of MORB and mantle samples may need to be revised to lighter values by 15‰.
Sun, Meixiu; Chen, Zhuying; Gong, Zhiyong; Zhao, Xiaomeng; Jiang, Chenyu; Yuan, Yuan; Wang, Zhennang; Li, Yingxin; Wang, Chuji
2015-02-01
Over 90% of diabetic patients have Type 2 diabetes. Although an elevated mean breath acetone concentration has been found to exist in Type 1 diabetes (T1D), information on breath acetone in Type 2 diabetes (T2D) has yet to be obtained. In this study, we first used gas chromatography-mass spectrometry (GC-MS) to validate a ringdown breath-acetone analyzer based on the cavity-ringdown-spectroscopy technique, through comparing breath acetone concentrations in the range 0.5-2.5 ppm measured using both methods. The linear fitting of R = 0.99 suggests that the acetone concentrations obtained using both methods are consistent with a largest standard deviation of ±0.4 ppm in the lowest concentration of the range. Next, 620 breath samples from 149 T2D patients and 42 healthy subjects were collected and tested using the breath analyzer. Four breath samples were taken from each subject under each of four different conditions: fasting, 2 h post-breakfast, 2 h post-lunch, and 2 h post-dinner. Simultaneous blood glucose levels were also measured using a standard diabetic-management blood-glucose meter. For the 149 T2D subjects, their exhaled breath acetone concentrations ranged from 0.1 to 19.8 ppm; four different ranges of breath acetone concentration, 0.1-19.8, 0.1-7.1, 0.1-6.3, and 0.1-9.5 ppm, were obtained for the subjects under the four different conditions, respectively. For the 42 healthy subjects, their breath acetone concentration ranged from 0.1 to 2.6 ppm; four different ranges of breath acetone concentration, 0.3-2.6, 0.1-2.6, 0.1-1.7, and 0.3-1.6 ppm, were obtained for the four different conditions. The mean breath acetone concentration of the 149 T2D subjects was determined to be 1.5 ± 1.5 ppm, which was 1.5 times that of 1.0 ± 0.6 ppm for the 42 healthy subjects. No correlation was found between the breath acetone concentration and the blood glucose level of the T2D subjects and the healthy volunteers. This study using a relatively large number of subjects provides new data regarding breath acetone in diabetes (T1D and T2D) and suggests that an elevated mean breath acetone concentration also exists in T2D.
Gale, Robert W.
2007-01-01
The Commonwealth of Virginia Department of Environmental Quality, working closely with the State of West Virginia Department of Environmental Protection and the U.S. Environmental Protection Agency is undertaking a polychlorinated biphenyl source assessment study for the Bluestone River watershed. The study area extends from the Bluefield area of Virginia and West Virginia, targets the Bluestone River and tributaries suspected of contributing to polychlorinated biphenyl, polychlorinated dibenzo-p-dioxin and dibenzofuran contamination, and includes sites near confluences of Big Branch, Brush Fork, and Beaver Pond Creek. The objectives of this study were to gather information about the concentrations, patterns, and distribution of these contaminants at specific study sites to expand current knowledge about polychlorinated biphenyl impacts and to identify potential new sources of contamination. Semipermeable membrane devices were used to integratively accumulate the dissolved fraction of the contaminants at each site. Performance reference compounds were added prior to deployment and used to determine site-specific sampling rates, enabling estimations of time-weighted average water concentrations during the deployed period. Minimum estimated concentrations of polychlorinated biphenyl congeners in water were about 1 picogram per liter per congener, and total concentrations at study sites ranged from 130 to 18,000 picograms per liter. The lowest concentration was 130 picograms per liter, about threefold greater than total hypothetical concentrations from background levels in field blanks. Polychlorinated biphenyl concentrations in water fell into three groups of sites: low (130-350 picogram per liter); medium (640-3,500 picogram per liter; and high (11,000-18,000 picogram per liter). Concentrations at the high sites, Beacon Cave and Beaverpond Branch at the Resurgence, were about four- to sixfold higher than concentrations estimated for the medium group of sites. Minimum estimated concentrations of polychlorinated dibenzo-p-dioxin and dibenzofuran congeners in water were about 0.2 to 1 femtograms per liter. Estimated total concentrations of 2,3,7,8-substituted congeners in water at study sites ranged from less than 1 to 22,000 femtograms per liter and less than 1 to 2,300 femtograms per liter for polychlorinated dibenzo-p-dioxin and dibenzofuran congeners, respectively. Total concentrations of 2,3,7,8-substituted congeners in water were comprised largely of octachlorodibenzo-p-dioxin and dibenzofuran, with less than 10 percent of the total contributed by concentrations of other congeners, mainly 2,3,7,8-heptachlorodibenzo-p-dioxin and dibenzofuran. Of special interest for this study was 2,3,7,8-tetrachlorodibenzo-p-dioxin with a regulatory surface water-quality criterion of 1,200 femtograms per liter. Estimated concentrations in water ranged from 0.5 to 41 femtograms per liter. Concentrations in water were less than 5 femtograms per liter at all study sites, except the Bluefield Westside Sewage Treatment Plan, with an estimated concentration of 41 femtograms per liter. Estimated total concentrations of homologs of polychlorinated dibenzo-p-dioxins and dibenzofurans in water at the study sites ranged from 3,200 to 36,000 femtograms per liter and 210-4,800 femtograms per liter, respectively. Again, homologs of polychlorinated dibenzo-p-dioxins and dibenzofurans in water were comprised largely of octachlorodibenzo-p-dioxin and dibenzofuran.
Space Situational Awareness CubeSat Concept of Operations
2011-12-01
range in altitude from 200 km to 1700 km with a large concentration of debris at 800 km. A large number of spacecraft perform communications and...collaboration between the USAF, the Royal Canadian Air Force (RAF) and the Smithsonian Institution Astrophysics Observatory has evolved dramatically with...6.7 μm Readout Resolution 8 bits Exposure Time 1 s Aperture 85 mm Optics F# 2.65 Dimension < 9.75x9.75x15 cm Mass < 1.83 Kg Output Data Rate < 50 kbp
Polyunsaturated Aldehydes from Large Phytoplankton of the Atlantic Ocean Surface (42°N to 33°S)
Bartual, Ana; Arandia-Gorostidi, Néstor; Cózar, Andrés; Morillo-García, Soledad; Ortega, María Jesús; Vidal, Montserrat; Cabello, Ana María; González-Gordillo, Juan Ignacio; Echevarría, Fidel
2014-01-01
Polyunsaturated aldehydes (PUAs) are organic compounds mainly produced by diatoms, after cell wounding. These compounds are increasingly reported as teratogenic for species of grazers and deleterious for phytoplanktonic species, but there is still scarce information regarding concentration ranges and the composition of PUAs in the open ocean. In this study, we analyzed the spatial distribution and the type of aldehydes produced by the large-sized (>10 μm) phytoplankton in the Atlantic Ocean surface. Analyses were conducted on PUAs released after mechanical disruption of the phytoplankton cells, referred to here as potential PUAs (pPUAs). Results show the ubiquitous presence of pPUA in the open ocean, including upwelling areas, as well as oligotrophic gyres. Total pPUA concentrations ranged from zero to 4.18 pmol from cells in 1 L. Identified PUAs were heptadienal, octadienal and decadienal, with heptadienal being the most common (79% of total stations). PUA amount and composition across the Atlantic Ocean was mainly related to the nitrogen:phosphorus ratio, suggesting nutrient-driven mechanisms of PUA production. Extending the range of trophic conditions considered by adding data reported for productive coastal waters, we found a pattern of PUA variation in relation to trophic status. PMID:24473169
ERIC Educational Resources Information Center
Frandson, Phillip E.
1981-01-01
Provides a conceptual outline of marketing strategies that includes a Flexnerian approach to curriculum development. Concentrates on (1) the medical profession, especially the individual physician, and (2) the nation's large universities, with their science centers and medical schools. (Available from University of California Press, Berkeley, CA…
Parsimonious Development of a Physiologically-Based Pharmacokinetic Model for PFOA
We examine pharmacokinetic (PK) models of varying complexity with respect to a large data set for female CD1 mice (Lau et al.) exposed to a range of single and repeated oral doses of PFOA. These data can be broadly grouped into 1) plasma concentrations 2) liver and kidney concen...
Lino, A S; Kasper, D; Guida, Y S; Thomaz, J R; Malm, O
2018-07-01
This work aimed to evaluate associated risks of fish consumption to human health, concerning mercury (Hg) and selenium (Se) concentrations in fish species largely consumed in the Tapajós River basin in the Brazilian Amazon. Total mercury (THg), methylmercury (MeHg) and Se concentrations were measured in 129 fish specimens from four sites of the Tapajós River basin. Estimated daily intake (EDI) of Hg and Se were reported regarding fish consumption. EDI were compared with the reference value of provisional tolerable daily intake proposed by the World Health Organization (WHO). Se:Hg ratios and selenium health benefit values (Se HBVs) seem to offer a more comprehensive fish safety model. THg concentrations in fishes ranged from 0.03 to 1.51 μg g -1 of wet weight (w.w.) and MeHg concentrations ranged from 0.02 to 1.44 μg g -1 (w.w.). 80% of the samples were below the value of Hg recommended by the WHO for human consumption (0.5 μg g -1 w.w.). However, Hg EDI exceeded the dose suggested by the United States Environmental Protection Agency (0.1 μg kg -1 day -1 ), due to the large level of fish consumption in that area. Se concentrations in fishes ranged from 0.02 to 0.44 μg g -1 w.w. An inverse pattern was observed between Hg and Se concentrations in the trophic chain (highest levels of Se in the lowest trophic levels). The molar ratio Se:Hg and Se HBVs were higher in iliophagous and herbivorous fishes, which is noteworthy to reduce toxic effects of Hg contamination. For planktivores, the content of Se and Hg was almost equimolar. Carnivorous fishes - with the exception of Hemisorubim platyrhynchos and Pseudoplatystoma fasciatum -, showed Se:Hg ratios <1. Thus, they do not act as a favorable source of Se in the diet. Therefore, reduced intake of carnivorous fishes with preferential consumption of iliophages, herbivores and, to some extent, even planktivores should be promoted as part of a healthier diet. Copyright © 2018 Elsevier GmbH. All rights reserved.
Trace Elements and Oxygen Isotope Zoning of the Sidewinder Skarn
NASA Astrophysics Data System (ADS)
Draper, C.; Gevedon, M. L.; Barnes, J.; Lackey, J. S.; Jiang, H.; Lee, C. T.
2016-12-01
Skarns of the Verde Antique Quarry and White Horse Mountain areas of the Sidewinder Range give insight into the paleohydrothermal systems operating in the California's Jurassic arc in the Southwestern Mojave Desert. Garnet from these skarns is iron rich: Xand= 55-100. Laser fluorination measurements show oxygen isotope (δ18O) compositions of garnet crystals and crystals domains have large ranges: -3.1‰ to +4.4‰ and -8.9‰ to +3.4‰, respectively. In general, the garnet cores have more negative δ18O values than rims, although oscillations are present. Negative values have been interpreted as influx of meteoric fluid and positive values as increased magmatic input. Here we report major and trace element concentrations for 17 core to rim Sidewinder garnet transects. REEs concentrations are low in all crystals, with total REE concentrations ranging from 0.710 ppm to 33.7 ppm, values that are lower than Cretaceous skarn garnets in the Sierra Nevada in the White Chief and Empire Mt skarns. Such low concentrations are likely due to the higher fraction of meteoric fluids during formation of the Sidewinder skarns. REE concentrations decrease from core to rim (REE core average=12.2ppm, REE rim average=7.21ppm). This is slightly more pronounced in the LREEs than in the HREEs (LaN/YbN core average= 10.9; rim average= 9.73, normalized to Chondrite). Xand tends to decrease core to rim in the Verde Antique skarn, whereas, Xand of the White Horse skarn does not correlate with distance from core. A large positive Eu anomaly (Eu/Eu* = 3-30) in garnet from both skarns suggests oxidizing fluid conditions. Oxygen isotope data from garnet in these same skarns show periods of time with increased proportion of magmatic derived fluids in the total fluid budget. However, there is no corresponding widespread increase in total REE concentrations. Other studies of skarns from the western Sierra Nevadan arc (White Chief and Empire Mountain) observe complete decoupling of d18O values and trace element compositions. Future modeling should consider modal abundance of fluid soluble minerals in cooling and altering plutons to probe the REE budget.
The Chemical Composition of Fogs and Clouds in Southern California.
NASA Astrophysics Data System (ADS)
Munger, James William
Fog and clouds are frequent occurrences in Southern California. Their chemical composition is of interest due to their potential role in the transformation of sulfur and nitrogen oxides to sulfuric and nitric acid and in the subsequent deposition of those acids. In addition, cloud and fog droplets may be involved in the chemistry of low-molecular-weight carboxylic acids and carbonyl compounds. The major inorganic species in cloud and fogwater samples were NH_4^+, H ^+, NO_3^-, and SO_4^{2-}. Concentrations in fogwater samples were 1-10 times 10^ {-3} M; pH values ranged from ~eq2 to 6. Nitrate usually exceeded sulfate. Acidity depended on the availability of of NH_3 from agricultural operations. Stratus cloudwater had somewhat lower concentrations; pH values were in the range 3-4. The major factors accounting for variation in fog- or cloudwater composition were the preexisting aerosol and gas concentrations and variations in liquid water content. Deposition and entrainment or advection of different air masses were also important during extended cloud or fog episodes. The droplet size dependence of cloudwater composition was investigated on one occasion in an intercepted coastal stratus clouds. The observations were consistent with the hypothesis that small droplets form on small secondary aerosol composed of H_2SO _4, HNO_3, and their NH_4^+ salts, while large droplets form on large sea-salt and soil-dust aerosol. Species that can exist in the gas phase, such as HCl and HNO _3, may be found in either droplet-size fraction. Concentrations of S(IV) and CH_2 O in the range 100-1000 μm were observed in fogwater from urban sites in Southern California. Lower concentrations were observed in stratus clouds. The high levels of S(IV) and CH_2 O were attributed to the formation of hydroxymethanesulfonate (HMSA), the S(IV) adduct of CH_2O. Direct measurement of HMSA in fogwater samples from Bakersfield, CA were made by ion-pairing chromatography. Glyoxal and methylglyoxal were observed at concentrations comparable to CH_2O in fogwater samples from Riverside, CA and in stratus cloudwater samples from sites along the Santa Barbara Channel.
Direct Piezoelectricity of Soft Composite Electrospun Fibers
NASA Astrophysics Data System (ADS)
Varga, Michael; Morvan, Jason; Diorio, Nick; Buyuktanir, Ebru; Harden, John; West, John; Jakli, Antal
2013-03-01
Recently soft fiber mats electrospun from solutions of Barium Titanate (BT) ferroelectric ceramics particles and poly lactic acid (PLA) were found to have large (d33 1nm/V) converse piezoelectric signals offering a myriad of applications ranging from active implants to smart textiles. Here we report direct piezoelectric measurements (electric signals due to mechanical stress) of the BT/PLA composite fiber mats at various BT concentrations. A testing apparatus was designed and constructed solely for these measurements involving AC stresses provided by a speaker in 10Hz-10kHz frequency range. The piezoelectric constant d33 ~1nC/N was found to be in agreement with the prior converse piezoelectric measurements. The largest signals were obtained with 6% BT/PLA composites, probably because the BT particles at higher concentrations could not be dispersed homogeneously. Importantly the direct piezoelectric signal is large enough to power a small LCD by simply pressing a 0.2mm thick 2 cm2 area mat by a finger. We expect to use these mats in active Braille cells and in liquid crystal writing tablets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hay, M.
2016-10-24
SRNL analyzed samples from Tank 38H and Tank 43H to support ECP and CCP. The total uranium in the Tank 38H surface sample was 57.6 mg/L, while the sub-surface sample was 106 mg/L. The Tank 43H samples ranged from 50.0 to 51.9 mg/L total uranium. The U-235 percentage was consistent for all four samples at 0.62%. The total uranium and percent U-235 results appear consistent with recent Tank 38H and Tank 43H uranium measurements. The Tank 38H plutonium results show a large difference between the surface and sub-surface sample concentrations and somewhat higher concentrations than previous samples. The Pu-238 concentrationmore » is more than forty times higher in the Tank 38H sub-surface sample than the surface sample. The surface and sub-surface Tank 43H samples contain similar plutonium concentrations and are within the range of values measured on previous samples. The four samples analyzed show silicon concentrations somewhat higher than the previous sample with values ranging from 104 to 213 mg/L.« less
Stuart, Marilyne; Festarini, Amy; Schleicher, Krista; Tan, Elizabeth; Kim, Sang Bog; Wen, Kendall; Gawlik, Jilian; Ulsh, Brant
2016-10-01
To evaluate whether the current Canadian tritium drinking water limit is protective of aquatic biota, an in vitro study was designed to assess the biological effects of low concentrations of tritium, similar to what would typically be found near a Canadian nuclear power station, and higher concentrations spanning the range of international tritium drinking water standards. Channel catfish peripheral blood B-lymphoblast and fathead minnow testis cells were exposed to 10-100,000 Bq l(-1) of tritium, after which eight molecular and cellular endpoints were assessed. Increased numbers of DNA strand breaks were observed and ATP levels were increased. There were no increases in γH2AX-mediated DNA repair. No differences in cell growth were noted. Exposure to the lowest concentrations of tritium were associated with a modest increase in the viability of fathead minnow testicular cells. Using the micronucleus assay, an adaptive response was observed in catfish B-lymphoblasts. Using molecular endpoints, biological responses to tritium in the range of Canadian and international drinking water standards were observed. At the cellular level, no detrimental effects were noted on growth or cycling, and protective effects were observed as an increase in cell viability and an induced resistance to a large challenge dose.
Effects of ten antibiotics on seed germination and root elongation in three plant species.
Hillis, Derek G; Fletcher, James; Solomon, Keith R; Sibley, Paul K
2011-02-01
We applied a screening-level phytotoxicity assay to evaluate the effects of 10 antibiotics (at concentrations ranging from 1 to 10,000 μg/L) on germination and early plant growth using three plant species: lettuce (Lactuca sativa), alfalfa (Medicago sativa), and carrot (Daucus carota). The range of phytotoxicity of the antibiotics was large, with EC₂₅s ranging from 3.9 μg/L to >10,000 μg/L. Chlortetracycline, levofloxacin, and sulfamethoxazole were the most phytotoxic antibiotics. D. carota was the most sensitive plant species, often by an order of magnitude or more, followed by L. sativa and then M. sativa. Plant germination was insensitive to the antibiotics, with no significant decreases up to the highest treatment concentration of 10,000 μg/L. Compared with shoot and total length measurements, root elongation was consistently the most sensitive end point. Overall, there were few instances where measured soil concentrations, if available in the publicly accessible literature, would be expected to exceed the effect concentrations of the antibiotics evaluated in this study. The use of screening assays as part of a tiered approach for evaluating environmental impacts of antibiotics can provide insight into relative species sensitivity and serve as a basis by which to screen the potential for toxic effects of novel compounds to plants.
Agronomic and environmental consequences of using liquid mineral concentrates on arable farms.
Schils, René L M; Postma, Romke; van Rotterdam, Debby; Zwart, Kor B
2015-12-01
In regions with intensive livestock systems, the processing of manure into liquid mineral concentrates is seen as an option to increase the nutrient use efficiency of manures. The agricultural sector anticipates that these products may in future be regarded as regular mineral fertilisers. We assessed the agronomic suitability and impact on greenhouse gas (GHG) and ammonia emissions of using liquid mineral concentrates on arable farms. The phosphate requirements on arable farms were largely met by raw pig slurry, given its large regional availability. After the initial nutrient input by means of pig slurry, the nitrogen/phosphate ratio of the remaining nutrient crop requirements determined the additional amount of liquid mineral concentrates that can be used. For sandy soils, liquid mineral concentrates could supply 50% of the nitrogen requirement, whereas for clay soils the concentrates did not meet the required nitrogen/phosphate ratio. The total GHG emissions per kg of plant available nitrogen ranged from -65 to 33 kg CO2 -equivalents. It increased in the order digestates < mineral fertiliser < raw slurries. Liquid mineral concentrates had limited added value for arable farms. For an increased suitability it is necessary that liquid mineral concentrates do not contain phosphate and that the nitrogen availability is increased. In the manure-processing chain, anaerobic digestion had a dominant and beneficial effect on GHG emissions. © 2015 Society of Chemical Industry.
Lahvis, G P; Wells, R S; Kuehl, D W; Stewart, J L; Rhinehart, H L; Via, C S
1995-01-01
Since 1987, large-scale mortalities of dolphins have been reported along the Atlantic coast of North America, in the Gulf of Mexico, and in the Mediterranean Sea. Autopsied bottlenose dolphins, Tursiops truncatus, which were collected from the large-scale mortality along the Atlantic coast in 1987 to 1988, exhibited opportunistic infections indicative of immune dysfunction. Further, these animals had high levels of chlorinated hydrocarbons, such as PCBs and DDT, that can suppress immune functions. The purpose of this study was to determine whether there is a relationship between chemical contaminant exposure and immune response in free-ranging dolphins. In June of 1991, peripheral blood was obtained from members of a bottlenose dolphin population that resides along the west coast of Florida. Peripheral blood lymphocyte responses to Concanavalin A (Con A) and phytohemagglutinin (PHA) were determined in vitro and compared by regression analysis with contaminant concentrations in whole blood from a small subset of these animals (n = 5). These data indicate that a reduced immune response in these bottlenose dolphins was correlated with increasing whole blood concentrations of several contaminants. Specifically, inverse correlations were found between Con A-induced lymphocyte proliferation and tetrachlorinated to octachlorinated biphenyls (r2 values ranged from 0.70 to 0.87). Con A-induced lymphocyte responses also correlated inversely with p,p'DDT (r2 values of 0.73 and 0.79); o.p'-DDE (r2 values of 0.93 and 0.96); and p,p'-DDE (r2 values of 0.73 and 0.81). PMID:7556026
NASA Astrophysics Data System (ADS)
Codis, Sandrine; Bernardeau, Francis; Pichon, Christophe
2016-08-01
In order to quantify the error budget in the measured probability distribution functions of cell densities, the two-point statistics of cosmic densities in concentric spheres is investigated. Bias functions are introduced as the ratio of their two-point correlation function to the two-point correlation of the underlying dark matter distribution. They describe how cell densities are spatially correlated. They are computed here via the so-called large deviation principle in the quasi-linear regime. Their large-separation limit is presented and successfully compared to simulations for density and density slopes: this regime is shown to be rapidly reached allowing to get sub-percent precision for a wide range of densities and variances. The corresponding asymptotic limit provides an estimate of the cosmic variance of standard concentric cell statistics applied to finite surveys. More generally, no assumption on the separation is required for some specific moments of the two-point statistics, for instance when predicting the generating function of cumulants containing any powers of concentric densities in one location and one power of density at some arbitrary distance from the rest. This exact `one external leg' cumulant generating function is used in particular to probe the rate of convergence of the large-separation approximation.
The plasticity of extracellular fluid homeostasis in insects.
Beyenbach, Klaus W
2016-09-01
In chemistry, the ratio of all dissolved solutes to the solution's volume yields the osmotic concentration. The present Review uses this chemical perspective to examine how insects deal with challenges to extracellular fluid (ECF) volume, solute content and osmotic concentration (pressure). Solute/volume plots of the ECF (hemolymph) reveal that insects tolerate large changes in all three of these ECF variables. Challenges beyond those tolerances may be 'corrected' or 'compensated'. While a correction simply reverses the challenge, compensation accommodates the challenge with changes in the other two variables. Most insects osmoregulate by keeping ECF volume and osmotic concentration within a wide range of tolerance. Other insects osmoconform, allowing the ECF osmotic concentration to match the ambient osmotic concentration. Aphids are unique in handling solute and volume loads largely outside the ECF, in the lumen of the gut. This strategy may be related to the apparent absence of Malpighian tubules in aphids. Other insects can suspend ECF homeostasis altogether in order to survive extreme temperatures. Thus, ECF homeostasis in insects is highly dynamic and plastic, which may partly explain why insects remain the most successful class of animals in terms of both species number and biomass. © 2016. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Althausen, J. D.; Kjerfve, Björn
1992-11-01
A well-defined turbidity maximum zone (TMZ) exists 15-45 km upstream of the entrance to Charleston Harbor, South Carolina, on the Cooper River, where the salinity varies between 5-15 ppt. The TMZ is characterized by less than 60% light transmission over a 5 cm path-length near the bottom, as compared to 70-90% light transmission elsewhere. The TMZ oscillates along the Cooper River 3-13 km during a tidal cycle. The range of total suspended sediment (TSS) concentration is 40-100 mg l -1 in the TMZ, while 10-30 mg l -1 is the most common TSS concentration elsewhere in the estuarine portion of Charleston Harbor and the Cooper River. Transmissivity is well-correlated with TSS ( r2 = 0·77) throughout the estuary. TSS concentration depends largely on tidal stage and varies significantly from spring to neap tide. Spring tide TSS concentrations are 2-3 times greater than concentrations during neap tides. The net downstream transport of suspended sediment is primarily a function of fresh water discharge, but is particularly large when flood events coincide with spring tides as was evident during the sampling of the TMZ following Hurricane Hugo (22 September 1989).
Mercury exposure in a large subantarctic avian community.
Carravieri, Alice; Cherel, Yves; Blévin, Pierre; Brault-Favrou, Maud; Chastel, Olivier; Bustamante, Paco
2014-07-01
Mercury (Hg) contamination poses potential threats to ecosystems worldwide. In order to study Hg bioavailability in the poorly documented southern Indian Ocean, Hg exposure was investigated in the large avian community of Kerguelen Islands. Adults of 27 species (480 individuals) showed a wide range of feather Hg concentrations, from 0.4 ± 0.1 to 16.6 ± 3.8 μg g(-1) dry weight in Wilson's storm petrels and wandering albatrosses, respectively. Hg concentrations increased roughly in the order crustacean- < fish- ≤ squid- ≤ carrion-consumers, confirming that diet, rather than taxonomy, is an important driver of avian Hg exposure. Adults presented higher Hg concentrations than chicks, due to a longer duration of exposure, with the only exception being the subantarctic skua, likely because of feeding habits' differences of the two age-classes in this species. High Hg concentrations were reported for three species of the poorly known gadfly petrels, which merit further investigation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Does mercury contamination reduce body condition of endangered California clapper rails?
Ackerman, Joshua T.; Overton, Cory T.; Casazza, Michael L.; Takekawa, John Y.; Eagles-Smith, Collin A.; Keister, Robin A.; Herzog, Mark P.
2012-01-01
We examined mercury exposure in 133 endangered California clapper rails (Rallus longirostris obsoletus) within tidal marsh habitats of San Francisco Bay, California from 2006 to 2010. Mean total mercury concentrations were 0.56 μg/g ww in blood (range: 0.15–1.43), 9.87 μg/g fw in head feathers (3.37–22.0), 9.04 μg/g fw in breast feathers (3.68–20.2), and 0.57 μg/g fww in abandoned eggs (0.15–2.70). We recaptured 21 clapper rails and most had low within-individual variation in mercury. Differences in mercury concentrations were largely attributed to tidal marsh site, with some evidence for year and quadratic date effects. Mercury concentrations in feathers were correlated with blood, and slopes differed between sexes (R2 = 0.58–0.76). Body condition was negatively related to mercury concentrations. Model averaged estimates indicated a potential decrease in body mass of 20–22 g (5–7%) over the observed range of mercury concentrations. Our results indicate the potential for detrimental effects of mercury contamination on endangered California clapper rails in tidal marsh habitats.
Marron, Donna C.; Blanchard, Stephen F.
1995-01-01
Data on water velocity, temperature, specific con- ductance, pH, dissolved oxygen concentration, chlorophyll concentration, suspended sediment con- centration, fecal-coliform counts, and the percen- tage of suspended sediment finer than 62 micrometers ranged up to 21 percent; and cross-section coefficients of variation of the concentrations of suspended sediment, fecal coliform, and chlorophyll ranged from 7 to 115 percent. Midchannel measure- ments of temperature, specific conductance, and pH were within 5 percent of mean cross-sectional values of these properties at the eight sampling sites, most of which appear well mixed because of the effect of dams and reservoirs. Measurements of the concentration of dissolved oxygen at various cross- section locations and at variable sampling depths are required to obtain a representative value of this constituent at these sites. The large varia- bility of concentrations of chlorophyll and suspended sediment, and fecal-coliform counts at the eight sampling sites indicates that composite rather than midchannel or mean values of these constituents are likely to be most representative of the channel cross section.
The catalytic removal of ammonia and nitrogen oxides from spacecabin atmospheres
NASA Technical Reports Server (NTRS)
Gully, A. J.; Graham, R. R.; Halligan, J. E.; Bentsen, P. C.
1973-01-01
Investigations were made on methods for the removal of ammonia and to a lesser extent nitrogen oxides in low concentrations from air. The catalytic oxidation of ammonia was studied over a temperature range of 250 F to 600 F and a concentration range 20 ppm to 500 ppm. Of the catalysts studied, 0.5 percent ruthenium supported on alumina was found to be superior. This material is active at temperatures as low as 250 F and was found to produce much less nitrous oxide than the other two active catalysts, platinum on alumina and Hopcalite. A quantitative design model was developed which will permit the performance of an oxidizer to be calculated. The ruthenium was found to be relatively insensitive to low concentrations of water and to oxygen concentration between 21 percent and 100 percent. Hydrogen sulfide was found to be a poison when injected in relatively large quantities. The adsorption of ammonia by copper sulfate treated silica gel was investigated at temperatures of 72 F and 100 F. A quantitative model was developed for predicting adsorption bed behavior.
Using depolarization to quantify ice nucleating particle concentrations: a new method
NASA Astrophysics Data System (ADS)
Zenker, Jake; Collier, Kristen N.; Xu, Guanglang; Yang, Ping; Levin, Ezra J. T.; Suski, Kaitlyn J.; DeMott, Paul J.; Brooks, Sarah D.
2017-12-01
We have developed a new method to determine ice nucleating particle (INP) concentrations observed by the Texas A&M University continuous flow diffusion chamber (CFDC) under a wide range of operating conditions. In this study, we evaluate differences in particle optical properties detected by the Cloud and Aerosol Spectrometer with POLarization (CASPOL) to differentiate between ice crystals, droplets, and aerosols. The depolarization signal from the CASPOL instrument is used to determine the occurrence of water droplet breakthrough (WDBT) conditions in the CFDC. The standard procedure for determining INP concentration is to count all particles that have grown beyond a nominal size cutoff as ice crystals. During WDBT this procedure overestimates INP concentration, because large droplets are miscounted as ice crystals. Here we design a new analysis method based on depolarization ratio that can extend the range of operating conditions of the CFDC. The method agrees reasonably well with the traditional method under non-WDBT conditions with a mean percent error of ±32.1 %. Additionally, a comparison with the Colorado State University CFDC shows that the new analysis method can be used reliably during WDBT conditions.
NASA Astrophysics Data System (ADS)
Booth, B. B. B.; Bernie, D.; McNeall, D.; Hawkins, E.; Caesar, J.; Boulton, C.; Friedlingstein, P.; Sexton, D.
2012-09-01
We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission driven rather than concentration driven perturbed parameter ensemble of a Global Climate Model (GCM). These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration driven simulations (with 10-90 percentile ranges of 1.7 K for the aggressive mitigation scenario up to 3.9 K for the high end business as usual scenario). A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 degrees (RCP8.5) and even under aggressive mitigation (RCP2.6) temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission driven experiments, they do not change existing expectations (based on previous concentration driven experiments) on the timescale that different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in case of SRES A1B and the Representative Concentration Pathways (RCPs), the concentration pathways used to drive GCM ensembles lies towards the lower end of our simulated distribution. This design decision (a legecy of previous assessments) is likely to lead concentration driven experiments to under-sample strong feedback responses in concentration driven projections. Our ensemble of emission driven simulations span the global temperature response of other multi-model frameworks except at the low end, where combinations of low climate sensitivity and low carbon cycle feedbacks lead to responses outside our ensemble range. The ensemble simulates a number of high end responses which lie above the CMIP5 carbon cycle range. These high end simulations can be linked to sampling a number of stronger carbon cycle feedbacks and to sampling climate sensitivities above 4.5 K. This latter aspect highlights the priority in identifying real world climate sensitivity constraints which, if achieved, would lead to reductions on the uppper bound of projected global mean temperature change. The ensembles of simulations presented here provides a framework to explore relationships between present day observables and future changes while the large spread of future projected changes, highlights the ongoing need for such work.
Exposure to airborne culturable microorganisms and endotoxin in two Italian poultry slaughterhouses.
Paba, Emilia; Chiominto, Alessandra; Marcelloni, Anna Maria; Proietto, Anna Rita; Sisto, Renata
2014-01-01
Even if slaughterhouses' workers handle large amounts of organic material and are potentially exposed to a wide range of biological agents, relatively little and not recent data are available. The main objective of this study was to characterize indoor concentrations of airborne bacteria, fungi, and endotoxin mod = Im (endotoxin∼Gram-negative*plant*filter) in two Italian poultry slaughterhouses. Air samples near air handling units inlets were also collected. Since there are not standardized protocols for endotoxin sampling and extraction procedures, an additional aim of the study was to compare the extraction efficiency of three different filter.. The study was also aimed at determining the correlation between concentrations of Gram-negative bacteria and endotoxin. In Plant A bacterial levels ranged from 17.5 to 2.6×10(3) CFU/m3. The highest concentrations were observed in evisceration area of chickens, between the automatic detachment of the neck and washing offal, and near birds coupling before hair-chilling. The highest mean value of Gram-negative (266.5 CFU/m3) was found near the washing offal of turkeys. In Plant B bacterial concentration ranged from 35 to 8×10(3) CFU/m3. The highest concentration. with the highest value of Gram-negative (248 CFU/m3), was found after defeathering. Fungal concentrations were overall lower than those found for bacteria (range: 0-205 CFU/m3 in Plant A and 0-146.2 CFU/m3 in Plant B). The microbial flora was dominated by Gram-negative and coagulase-negative staphylococci for bacteria and by species belonging to Cladosporium, Penicillium and Aspergillus genera for molds. The highest endotoxin concentrations were measured in washing offal for Plant A (range: 122.7-165.9 EU/m3) and after defeathering for Plant B (range: 0.83-38.85 EU/m3). In this study airborne microorganisms concentrations were lower than those found in similar occupational settings and below the occupational limits proposed by some authors. However, these microorganisms may exert adverse effects on exposed workers, in particular for those engaged in the early slaughtering stages, as evidenced by the presence of pathogenic species. The detection of pathogenic bacteria near AHU inlet may constitute a risk to public health and environmental pollution.
Hematology of healthy Florida manatees (Trichechus manatus)
Harvey, J.W.; Harr, K.E.; Murphy, D.; Walsh, M.T.; Nolan, E.C.; Bonde, R.K.; Pate, M.G.; Deutsch, C.J.; Edwards, H.H.; Clapp, W.L.
2009-01-01
Background: Hematologic analysis is an important tool in evaluating the general health status of free-ranging manatees and in the diagnosis and monitoring of rehabilitating animals. Objectives: The purpose of this study was to evaluate diagnostically important hematologic analytes in healthy manatees (Trichechus manatus) and to assess variations with respect to location (free ranging vs captive), age class (small calves, large calves, subadults, and adults), and gender. Methods: Blood was collected from 55 free-ranging and 63 captive healthy manatees. Most analytes were measured using a CELL-DYN 3500R; automated reticulocytes were measured with an ADVIA 120. Standard manual methods were used for differential leukocyte counts, reticulocyte and Heinz body counts, and plasma protein and fibrinogen concentrations. Results: Rouleaux, slight polychromasia, stomatocytosis, and low numbers of schistocytes and nucleated RBCs (NRBCs) were seen often in stained blood films. Manual reticulocyte counts were higher than automated reticulocyte counts. Heinz bodies were present in erythrocytes of most manatees. Compared with free-ranging manatees, captive animals had slightly lower MCV, MCH, and eosinophil counts and slightly higher heterophil and NRBC counts, and fibrinogen concentration. Total leukocyte, heterophil, and monocyte counts tended to be lower in adults than in younger animals. Small calves tended to have higher reticulocyte counts and NRBC counts than older animals. Conclusions: Hematologic findings were generally similar between captive and free-ranging manatees. Higher manual reticulocyte counts suggest the ADVIA detects only reticulocytes containing large amounts of RNA. Higher reticulocyte and NRBC counts in young calves probably reflect an increased rate of erythropoiesis compared with older animals. ?? 2009 American Society for Veterinary Clinical Pathology.
Mercury speciation in sediments at a municipal sewage sludge marine disposal site.
Shoham-Frider, E; Shelef, G; Kress, N
2007-12-01
Mercury speciation was performed in excess activated sewage sludge (ASS) and in marine sediments collected at the AAS disposal site off the Mediterranean coast of Israel in order to characterize the spatial and vertical distribution of different mercury species and assess their environmental impact. Total Hg (HgT) concentrations ranged between 0.19 and 1003ng/g at the polluted stations and 5.7 and 72.8ng/g at the background station, while the average concentration in ASS was 1181+/-273ng/g. Only at the polluted stations did HgT concentrations decrease exponentially with sediment depth, reaching background values at 16-20cm, the vertical distribution resulting from mixing of natural sediment with ASS solids and bioturbation by large populations of polycheates. Average Methyl Hg (MeHg) concentration in ASS was 39.7+/-7.1ng/g, ca. 3% of the HgT concentration, while the background concentrations ranged between 0.1 and 0.61ng/g. MeHg concentrations in surficial polluted sediments were 0.7-5.9ng/g (ca. 0.5% of the HgT) and decreased vertically, similar to HgT. A positive correlation between MeHg and Hg only at the polluted stations, higher MeHg concentrations at the surface of the sediment and not below the redoxline, and no seasonality in the concentrations suggest that the MeHg originated from the ASS and not from in situ methylation. By doing selective extractions, we found that ca. 80% of the total Hg in ASS and polluted sediments was strongly bound to amorphous organo-sulfur and to inorganic sulfide species that are not bioavailable. The fractions with potential bioaccessible Hg had maximal concentrations in the range in which biotic effects should be expected. Therefore, although no bioaccumulation was found in the biota in the area, the concentration in the polluted sediments are not negligible and should be carefully monitored.
Díez, Elena Gascón; Graham, Neil D; Loizeau, Jean-Luc
2018-05-16
Concentrations and fluxes of total and methylmercury were determined in surface sediments and associated with settling particles at two sites in Lake Geneva to evaluate the sources and dynamics of this toxic contaminant. Total mercury concentrations measured in settling particles were different throughout the seasons and were greatly influenced by the Rhone River particulate inputs. Total mercury concentrations closer to shore (NG2) ranged between 0.073 ± 0.001 and 0.27 ± 0.01 μg/g, and between 0.038 ± 0.001 and 0.214 ± 0.008 μg/g at a site deeper in the lake (NG3). Total mercury fluxes ranged between 0.144 ± 0.002 and 3.0 ± 0.1 μg/m 2 /day at NG2, and between 0.102 ± 0.008 and 1.32 ± 0.08 μg/m 2 /day at NG3. Combined results of concentrations and fluxes showed that total mercury concentrations in settling particles are related to the season and particle inputs from the Rhone River. Despite an observed decrease in total mercury fluxes from the coastal zone towards the open lake, NG3 (~ 3 km from the shoreline) was still affected by the coastal boundary, as compared to distal sites at the center of the lake. Thus, sediment focusing is not efficient enough to redistribute contaminant inputs originating from the coastal zones, to the lake center. Methylmercury concentrations in settling particles largely exceeded the concentrations found in sediments, and their fluxes did not show significant differences with relation to the distance from shore. The methylmercury found associated with settling particles would be related to the lake's internal production rather than the effect of transport from sediment resuspension.
Impact-induced solidlike behavior and elasticity in concentrated colloidal suspensions
NASA Astrophysics Data System (ADS)
Chu, Baojin; Salem, David R.
2017-10-01
Modified drop weight impact tests were performed on Si O2 -ethylene glycol concentrated suspensions. Counterintuitive impact-induced solidlike behavior and elasticity, causing significant deceleration and rebound of the impactor, were observed. We provide evidence that the observed large deceleration force on the impactor mainly originates from the hydrodynamic force, and that the elasticity arises from the short-range repulsive force of a solvation layer on the particle surface. This study presents key experimental results to help understand the mechanisms underlying various stress-induced solidification phenomena.
Concentrations and fate of decamethylcyclopentasiloxane (D(5)) in the atmosphere.
McLachlan, Michael S; Kierkegaard, Amelie; Hansen, Kaj M; van Egmond, Roger; Christensen, Jesper H; Skjøth, Carsten A
2010-07-15
Decamethylcyclopentasiloxane (D(5)) is a volatile compound used in personal care products that is released to the atmosphere in large quantities. Although D(5) is currently under consideration for regulation, there have been no field investigations of its atmospheric fate. We employed a recently developed, quality assured method to measure D(5) concentration in ambient air at a rural site in Sweden. The samples were collected with daily resolution between January and June 2009. The D(5) concentration ranged from 0.3 to 9 ng m(-3), which is 1-3 orders of magnitude lower than previous reports. The measured data were compared with D(5) concentrations predicted using an atmospheric circulation model that included both OH radical and D(5) chemistry. The model was parametrized using emissions estimates and physical chemical properties determined in laboratory experiments. There was good agreement between the measured and modeled D(5) concentrations. The results show that D(5) is clearly subject to long-range atmospheric transport, but that it is also effectively removed from the atmosphere via phototransformation. Atmospheric deposition has little influence on the atmospheric fate. The good agreement between the model predictions and the field observations indicates that there is a good understanding of the major factors governing D(5) concentrations in the atmosphere.
Assessment of diesel particulate matter exposure in the workplace: freight terminals†
Sheesley, Rebecca J.; Schauer, James J.; Smith, Thomas J.; Garshick, Eric; Laden, Francine; Marr, Linsey C.; Molina, Luisa T.
2008-01-01
A large study has been undertaken to assess the exposure to diesel exhaust within diesel trucking terminals. A critical component of this assessment is an analysis of the variation in carbonaceous particulate matter (PM) across trucking terminal locations; consistency in the primary sources can be effectively tracked by analyzing trends in elemental carbon (EC) and organic molecular marker concentrations. Ambient samples were collected at yard, dock and repair shop work stations in 7 terminals in the USA and 1 in Mexico. Concentrations of EC ranged from 0.2 to 12 μg m−3 among the terminals, which corresponds to the range seen in the concentration of summed hopanes (0.5 to 20.5 ng m−3). However, when chemical mass balance (CMB) source apportionment results were presented as percent contribution to organic carbon (OC) concentrations, the contribution of mobile sources to OC are similar among the terminals in different cities. The average mobile source percent contribution to OC was 75.3 ± 17.1% for truck repair shops, 65.4 ± 20.4% for the docks and 38.4 ± 9.5% for the terminal yard samples. A relatively consistent mobile source impact was present at all the terminals only when considering percentage of total OC concentrations, not in terms of absolute concentrations. PMID:18392272
Short-Chain Chlorinated Paraffins in Zurich, Switzerland--Atmospheric Concentrations and Emissions.
Diefenbacher, Pascal S; Bogdal, Christian; Gerecke, Andreas C; Glüge, Juliane; Schmid, Peter; Scheringer, Martin; Hungerbühler, Konrad
2015-08-18
Short-chain chlorinated paraffins (SCCPs) are of concern due to their potential for adverse health effects, bioaccumulation, persistence, and long-range transport. Data on concentrations of SCCPs in urban areas and underlying emissions are still scarce. In this study, we investigated the levels and spatial distribution of SCCPs in air, based on two separate, spatially resolved sampling campaigns in the city of Zurich, Switzerland. SCCP concentrations in air ranged from 1.8 to 17 ng·m(-3) (spring 2011) and 1.1 to 42 ng·m(-3) (spring 2013) with medians of 4.3 and 2.7 ng·m(-3), respectively. Both data sets show that atmospheric SCCP levels in Zurich can vary substantially and may be influenced by a number of localized sources within this urban area. Additionally, continuous measurements of atmospheric concentrations performed at one representative sampling site in the city center from 2011 to 2013 showed strong seasonal variations with high SCCP concentrations in summer and lower levels in winter. A long-term dynamic multimedia environmental fate model was parametrized to simulate the seasonal trends of SCCP concentrations in air and to back-calculate urban emissions. Resulting annual SCCP emissions in the city of Zurich accounted for 218-321 kg, which indicates that large SCCP stocks are present in urban areas of industrialized countries.
Water and sediment quality of the Lake Andes and Choteau Creek basins, South Dakota, 1983-2000
Sando, Steven Kent; Neitzert, Kathleen M.
2003-01-01
The Bureau of Reclamation has proposed construction of the Lake Andes/Wagner Irrigation Demonstration Project to investigate environmental effects of irrigation of glacial till soils substantially derived from marine shales. During 1983-2000, the U.S. Geological Survey collected hydrologic, water-quality, and sediment data in the Lake Andes and Choteau Creek Basins, and on the Missouri River upstream and downstream from Choteau Creek, to provide baseline information in support of the proposed demonstration project. Lake Andes has a drainage area of about 230 mi2 (square miles). Tributaries to Lake Andes are ephemeral. Water-level fluctuations in Lake Andes can be large, and the lake has been completely dry on several occasions. The outlet aqueduct from Lake Andes feeds into Garden Creek, which enters Lake Francis Case just upstream from Fort Randall Dam on the Missouri River. For Lake Andes tributary stations, calcium, magnesium, and sodium are approximately codominant among the cations, and sulfate is the dominant anion. Dissolved-solids concentrations typically range from about 1,000 mg/L (milligrams per liter) to about 1,700 mg/L. Major-ion concentrations for Lake Andes tend to be higher than the tributaries and generally increase downstream in Lake Andes. Proportions of major ions are similar among the different lake units (with the exception of Owens Bay), with calcium, magnesium, and sodium being approximately codominant among cations, and sulfate being the dominant anion. Owens Bay is characterized by a calcium sulfate water type. Dissolved-solids concentrations for Lake Andes typically range from about 1,400 to 2,000 mg/L. Whole-water nitrogen and phosphorus concentrations are similar among the Lake Andes tributaries, with median whole-water nitrogen concentrations ranging from about 1.6 to 2.4 mg/L, and median whole-water phosphorus concentrations ranging from about 0.5 to 0.7 mg/L. Whole-water nitrogen concentrations in Lake Andes are similar among the different units, with medians that range from about 2.4 to 4.0 mg/L. Median whole-water phosphorus concentrations for the different Lake Andes units range from 0.2 to 0.5 mg/L, and decrease downstream through Lake Andes. Median selenium concentrations are substantially lower for Andes Creek (3 ?g/L (micrograms per liter)) than for the other tributary stations (34, 18, and 7 ?g/L). Median selenium concentrations for the lake stations (ranging from less than 1 to 2 ?g/L) are substantially lower than tributary stations. The pesticides 2,4-D and atrazine were the most commonly detected pesticides in Lake Andes. Median concentrations for 2,4-D for Lake Andes range from 0.07 to 0.11 ?g/L; the median concentration for Owens Bay is 0.04 ?g/L. Median concentrations for atrazine for Lake Andes range from 0.2 to 0.4 ?g/L; the median concentration for Owens Bay is less than 0.1 ?g/L. Concentrations of both 2,4-D and atrazine are largest for the most upstream part of Lake Andes that is most influenced by tributary inflow. Median suspended-sediment concentrations for Lake Andes tributaries range from 22 to 56 mg/L. Most of the suspended sediment transported in the Lake Andes tributaries consists of particles less than 63 ?m (micrometers) in diameter. Concentrations of most constituents in bottom sediments generally had similar ranges and medians for the Lake Andes tributaries. However, Andes Creek generally had lower concentrations of several metals. For Lake Andes, medians and ranges for most constituents generally were similar among the different units. However, selenium concentrations tended to be higher in the upstream part of the lake, and generally decreased downstream. Results of vertical sediment cores collected from a single site in the South Unit of Lake Andes in October 2000 indicate that selenium loading to Lake Andes increased during the period 1952 through 2000. Choteau Creek has a drainage area of 619 mi2. In the upstream part of the basin, Chotea
NASA Astrophysics Data System (ADS)
Deason, A. J.; Conroy, C.; Wetzel, A. R.; Tinker, J. L.
2013-11-01
We investigate the use of the halo mass-gap statistic—defined as the logarithmic difference in mass between the host halo and its most massive satellite subhalo—as a probe of halo age and concentration. A cosmological N-body simulation is used to study N ~ 25, 000 group/cluster-sized halos in the mass range 1012.5 < M halo/M ⊙ < 1014.5. In agreement with previous work, we find that halo mass-gap is related to halo formation time and concentration. On average, older and more highly concentrated halos have larger halo mass-gaps, and this trend is stronger than the mass-concentration relation over a similar dynamic range. However, there is a large amount of scatter owing to the transitory nature of the satellite subhalo population, which limits the use of the halo mass-gap statistic on an object-by-object basis. For example, we find that 20% of very large halo mass-gap systems (akin to "fossil groups") are young and have likely experienced a recent merger between a massive satellite subhalo and the central subhalo. We relate halo mass-gap to the observable stellar mass-gap via abundance matching. Using a galaxy group catalog constructed from the Sloan Digital Sky Survey Data Release 7, we find that the star formation and structural properties of galaxies at fixed mass show no trend with stellar mass-gap. This is despite a variation in halo age of ≈2.5 Gyr over ≈1.2 dex in stellar mass-gap. Thus, we find no evidence to suggest that the halo formation history significantly affects galaxy properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deason, A. J.; Conroy, C.; Wetzel, A. R.
We investigate the use of the halo mass-gap statistic—defined as the logarithmic difference in mass between the host halo and its most massive satellite subhalo—as a probe of halo age and concentration. A cosmological N-body simulation is used to study N ∼ 25, 000 group/cluster-sized halos in the mass range 10{sup 12.5} < M{sub halo}/M{sub ☉} < 10{sup 14.5}. In agreement with previous work, we find that halo mass-gap is related to halo formation time and concentration. On average, older and more highly concentrated halos have larger halo mass-gaps, and this trend is stronger than the mass-concentration relation over amore » similar dynamic range. However, there is a large amount of scatter owing to the transitory nature of the satellite subhalo population, which limits the use of the halo mass-gap statistic on an object-by-object basis. For example, we find that 20% of very large halo mass-gap systems (akin to {sup f}ossil groups{sup )} are young and have likely experienced a recent merger between a massive satellite subhalo and the central subhalo. We relate halo mass-gap to the observable stellar mass-gap via abundance matching. Using a galaxy group catalog constructed from the Sloan Digital Sky Survey Data Release 7, we find that the star formation and structural properties of galaxies at fixed mass show no trend with stellar mass-gap. This is despite a variation in halo age of ≈2.5 Gyr over ≈1.2 dex in stellar mass-gap. Thus, we find no evidence to suggest that the halo formation history significantly affects galaxy properties.« less
Immobile defects in ferroelastic walls: Wall nucleation at defect sites
NASA Astrophysics Data System (ADS)
He, X.; Salje, E. K. H.; Ding, X.; Sun, J.
2018-02-01
Randomly distributed, static defects are enriched in ferroelastic domain walls. The relative concentration of defects in walls, Nd, follows a power law distribution as a function of the total defect concentration C: N d ˜ C α with α = 0.4 . The enrichment Nd/C ranges from ˜50 times when C = 10 ppm to ˜3 times when C = 1000 ppm. The resulting enrichment is due to nucleation at defect sites as observed in large scale MD simulations. The dynamics of domain nucleation and switching is dependent on the defect concentration. Their energy distribution follows the power law with exponents during yield between ɛ ˜ 1.82 and 2.0 when the defect concentration increases. The power law exponent is ɛ ≈ 2.7 in the plastic regime, independent of the defect concentration.
Mercury cycling in stream ecosystems. 1. Water column chemistry and transport
Brigham, M.E.; Wentz, D.A.; Aiken, G.R.; Krabbenhoft, D.P.
2009-01-01
We studied total mercury (THg) and methylmercury (MeHg) in eight streams, located in Oregon, Wisconsin, and Florida, that span large ranges in climate, landscape characteristics, atmospheric Hg deposition, and water chemistry. While atmospheric deposition was the source of Hg at each site, basin characteristics appeared to mediate this source by providing controls on methylation and fluvial THg and MeHg transport. Instantaneous concentrations of filtered total mercury (FTHg) and filtered methylmercury (FMeHg) exhibited strong positive correlations with both dissolved organic carbon (DOC) concentrations and streamflow for most streams, whereas mean FTHg and FMeHg concentrations were correlated with wetland density of the basins. For all streams combined, whole water concentrations (sum of filtered and particulate forms) of THg and MeHg correlated strongly with DOC and suspended sediment concentrations in the water column. ?? 2009 American Chemical Society.
Zabik, John M.; Seiber, James N.
1993-01-01
Atmospheric transport of organophosphate pesticides from California's Central Valley to the Sierra Nevada mountains was assessed by collecting air- and wet-deposition samples during December, January, February, and March, 1990 to 1991. Large-scale spraying of these pesticides occurs during December and January to control insect infestations in valley orchards. Sampling sites were placed at 114- (base of the foothills), 533-, and 1920-m elevations. Samples acquired at these sites contained chlorpyrifos [phosphorothioic acid; 0,0-diethyl 0-(3,5,6-trichloro-2-pyridinyl) ester], parathion [phosphorothioic acid, 0-0-diethylo-(4-nitrophenyl) ester], diazinon {phosphorothioic acid, 0,0-diethyl 0-[6-methyl-2-(1-methylethyl)-4-pyrimidinyl] ester} diazinonoxon {phosphoric acid, 0,0-diethyl 0-[6-methyl-2-(1-methylethyl)-4-pyrimidinyl] ester}, and paraoxon [phosphoric acid, 0,0-diethyl 0-(4-nitrophenyl) ester] in both air and wet deposition samples. Air concentrations of chloropyrifos, diazinon and parathion ranged from 13 to 13 000 pg/m3 at the base of the foothills. At 533-m air concentrations were below the limit of quantification (1.4 pg/m3) to 83 pg/m3 and at 1920 m concentrations were below the limit of quantification. Concentrations in wet deposition varied with distance and elevation from the Central Valley. Rainwater concentrations at the base of the foot hills ranged from 16 to 7600 pg/mL. At 533-m rain and snow water concentrations ranged from below the limit of quantification (1.3 pg/mL) to 140 pg/mL and at 1920 m concentrations ranged from below the limit of quantification to 48 pg/mL. These findings indicate that atmospheric transport of pesticides applied in the valley to the Sierra Nevada mountains is occurring, but the levels decrease as distance and elevation increase from the valley floor.
Fabric strain sensor integrated with CNPECs for repeated large deformation
NASA Astrophysics Data System (ADS)
Yi, Weijing
Flexible and soft strain sensors that can be used in smart textiles for wearable applications are much desired. They should meet the requirements of low modulus, large working range and good fatigue resistance as well as good sensing performances. However, there were no commercial products available and the objective of the thesis is to investigate fabric strain sensors based on carbon nanoparticle (CNP) filled elastomer composites (CNPECs) for potential wearing applications. Conductive CNPECs were fabricated and investigated. The introduction of silicone oil (SO) significantly decreased modulus of the composites to less than 1 MPa without affecting their deformability and they showed good stability after heat treatment. With increase of CNP concentration, a percolation appeared in electrical resistivity and the composites can be divided into three ranges. I-V curves and impedance spectra together with electro-mechanical studies demonstrated a balance between sensitivity and working range for the composites with CNP concentrations in post percolation range, and were preferred for sensing applications only if the fatigue life was improved. Due to the good elasticity and failure resist property of knitted fabric under repeated extension, it was adopted as substrate to increase the fatigue life of the conductive composites. After optimization of processing parameters, the conductive fabric with CNP concentration of 9.0CNP showed linear I-V curves when voltage is in the range of -1 V/mm and 1 V/mm and negligible capacitive behavior when frequency below 103 Hz even with strain of 60%. It showed higher sensitivity due to the combination of nonlinear resistance-strain behavior of the CNPECs and non-even strain distribution of knitted fabric under extension. The fatigue life of the conductive fabric was greatly improved. Extended on the studies of CNPECs and the coated conductive fabrics, a fabric strain sensor was designed, fabricated and packaged. The Young's modulus of the packaged fabric strain sensor was less than 1 MPa; the strain gauge factor was 4.76 within the strain range of 0-40% and the hysteresis was 5.5%; the resistance relaxation was 5.56% with a constant strain of 40%; the fatigue life of the sensor was more than 100,000 cycles.
Warrick, J.A.; Mertes, L.A.K.; Siegel, D.A.; Mackenzie, C.
2004-01-01
A technique is presented for estimating suspended sediment concentrations of turbid coastal waters with remotely sensed multi-spectral data. The method improves upon many standard techniques, since it incorporates analyses of multiple wavelength bands (four for Sea-viewing Wide Field of view Sensor (SeaWiFS)) and a nonlinear calibration, which produce highly accurate results (expected errors are approximately ±10%). Further, potential errors produced by erroneous atmospheric calibration in excessively turbid waters and influences of dissolved organic materials, chlorophyll pigments and atmospheric aerosols are limited by a dark pixel subtraction and removal of the violet to blue wavelength bands. Results are presented for the Santa Barbara Channel, California where suspended sediment concentrations ranged from 0–200+ mg l−1 (±20 mg l−1) immediately after large river runoff events. The largest plumes were observed 10–30 km off the coast and occurred immediately following large El Niño winter floods.
Study of dielectric properties of adulterated milk concentration and freshness
NASA Astrophysics Data System (ADS)
Jitendra Murthy, V.; Sai Kiranmai, N.; Kumar, Sanjeev
2017-08-01
The knowledge of dielectric properties may hold a potential to develop a new technique for quality evaluation of milk. The dielectric properties of water diluted cow’s milk with milk concentration from 70 percent to 100 percent stored during 36hour storage at 22°C and 144 hour at 5°C were measured at room temperature for frequencies ranging from 10 to 4500 MHz and at low, high & at microwave frequencies using X band bench and open-ended coaxial-line probe technology, along with electrical conductivity. The raw milk had the lowest dielectric constant (ɛ‧) when the frequency was higher than about 20M.Hz, and had the highest loss (ɛ″) or decepation factor tan (δ) at each frequency. The penetration depth (dp) increased with decreasing frequency, water content and storage time, which was large enough to detect dielectric properties changes in milk samples and provide large scale RF pasteurization processes. The loss factor can be an indicator in predicting milk concentration and freshness.
Assoumani, A; Margoum, C; Lombard, A; Guillemain, C; Coquery, M
2017-03-01
Passive samplers are theoretically capable of integrating variations of concentrations of micropollutants in freshwater and providing accurate average values. However, this property is rarely verified and quantified experimentally. In this study, we investigated, in controlled conditions, how the polydimethylsiloxane-coated stir bars (passive Twisters) can integrate fluctuating concentrations of 20 moderately hydrophilic to hydrophobic pesticides (2.18 < Log K ow < 5.51). In the first two experiments, we studied the pesticide accumulation in the passive Twisters during high concentration peaks of various durations in tap water. We then followed their elimination from the passive Twisters placed in non-contaminated water (experiment no. 1) or in water spiked at low concentrations (experiment no. 2) for 1 week. In the third experiment, we assessed the accuracy of the time-weighted average concentrations (TWAC) obtained from the passive Twisters exposed for 4 days to several concentration variation scenarios. We observed little to no elimination of hydrophobic pesticides from the passive Twisters placed in non-contaminated water and additional accumulation when placed in water spiked at low concentrations. Moreover, passive Twisters allowed determining accurate TWAC (accuracy, determined by TWAC-average measured concentrations ratios, ranged from 82 to 127 %) for the pesticides with Log K ow higher than 4.2. In contrast, fast and large elimination was observed for the pesticides with Log K ow lower than 4.2 and poorer TWAC accuracy (ranging from 32 to 123 %) was obtained.
Assessment of indoor air quality at an electronic cigarette (Vaping) convention.
Chen, Rui; Aherrera, Angela; Isichei, Chineye; Olmedo, Pablo; Jarmul, Stephanie; Cohen, Joanna E; Navas-Acien, Ana; Rule, Ana M
2017-12-29
E-cigarette (vaping) conventions are public events promoting electronic cigarettes, in which indoor use of e-cigarettes is allowed. The large concentration of people using e-cigarettes and poor air ventilation can result in indoor air pollution. In order to estimate this worst-case exposure to e-cigarettes, we evaluated indoor air quality in a vaping convention in Maryland (MD), USA. Real-time concentrations of particulate matter (PM 10 ) and real-time total volatile organic compounds (TVOCs), CO 2 and NO 2 concentrations were measured. Integrated samples of air nicotine and PM 10 concentrations were also collected. The number of attendees was estimated to range from 75 to 600 at any single observation time. The estimated 24-h time-weighted average (TWA) PM 10 was 1800 μg/m 3 , 12-fold higher than the EPA 24-h regulation (150 μg/m 3 ). Median (range) indoor TVOCs concentration was 0.13 (0.04-0.3) ppm. PM 10 and TVOC concentrations were highly correlated with CO 2 concentrations, indicating the high number of people using e-cigarettes and poor indoor air quality. Air nicotine concentration was 125 μg/m 3 , equivalent to concentrations measured in bars and nightclubs. E-cigarette aerosol in a vaping convention that congregates many e-cigarette users is a major source of PM 10 , air nicotine and VOCs, impairing indoor air quality. These findings also raise occupational concerns for e-cigarette vendors and other venue staff workers.
Susong, D.D.; Abbott, M.L.; Krabbenhoft, D.P.
2003-01-01
Snow was sampled and analyzed for total mercury (THg) on the Idaho National Engineering and Environmental Laboratory (INEEL) and surrounding region prior to the start-up of a large (9-11 g/h) gaseous mercury emission source. The objective was to determine the effects of the source on local and regional atmospheric deposition of mercury. Snow samples collected from 48 points on a polar grid near the source had THg concentrations that ranged from 4.71 to 27.26 ng/L; snow collected from regional background sites had THg concentrations that ranged from 0.89 to 16.61 ng/L. Grid samples had higher concentrations than the regional background sites, which was unexpected because the source was not operating yet. Emission of Hg from soils is a possible source of Hg in snow on the INEEL. Evidence from Hg profiles in snow and from unfiltered/filtered split samples supports this hypothesis. Ongoing work on the INEEL is investigating Hg fluxes from soils and snow.
Aerosol chemistry during the wet season in central Amazonia - The influence of long-range transport
NASA Technical Reports Server (NTRS)
Talbot, R. W.; Andreae, M. O.; Berresheim, H.; Artaxo, P.; Garstang, M.
1990-01-01
The temporal variation in the concentration and chemistry of the atmospheric aerosol over central Amazonia, Brazil, during the 1987 wet season is discussed based on ground and aircraft collected data obtained during the NASA GTE ABLE 2B expedition conducted in April/May 1987. It is found that wet-season aerosol concentrations and composition are variable in contrast to the more uniform biogenic aerosol observed during the 1985 dry season; four distinct intervals of enhanced aerosol concentration coincided with short periods (3 to 5 d) of extensive rainfall. It is hypothesized that aerosol chemistry in Amazonia during the wet season is strongly influenced by long-range transport of soil dust, marine aerosol, and possibly biomass combustion products advected into the central Basin by large-scale tropospheric circulation, producing periodic pulses of material input to local boundary layer air. The resultant wet-season aerosol regime is dynamic, in contrast to the uniformity of natural biogenic aerosols during the dry season.
Coagulation algorithms with size binning
NASA Technical Reports Server (NTRS)
Statton, David M.; Gans, Jason; Williams, Eric
1994-01-01
The Smoluchowski equation describes the time evolution of an aerosol particle size distribution due to aggregation or coagulation. Any algorithm for computerized solution of this equation requires a scheme for describing the continuum of aerosol particle sizes as a discrete set. One standard form of the Smoluchowski equation accomplishes this by restricting the particle sizes to integer multiples of a basic unit particle size (the monomer size). This can be inefficient when particle concentrations over a large range of particle sizes must be calculated. Two algorithms employing a geometric size binning convention are examined: the first assumes that the aerosol particle concentration as a function of size can be considered constant within each size bin; the second approximates the concentration as a linear function of particle size within each size bin. The output of each algorithm is compared to an analytical solution in a special case of the Smoluchowski equation for which an exact solution is known . The range of parameters more appropriate for each algorithm is examined.
Toxicological relevance of pharmaceuticals in drinking water.
Bruce, Gretchen M; Pleus, Richard C; Snyder, Shane A
2010-07-15
Interest in the public health significance of trace levels of pharmaceuticals in potable water is increasing, particularly with regard to the effects of long-term, low-dose exposures. To assess health risks and establish target concentrations for water treatment, human health risk-based screening levels for 15 pharmaceutically active ingredients and four metabolites were compared to concentrations detected at 19 drinking water treatment plants across the United States. Compounds were selected based on rate of use, likelihood of occurrence, and potential for toxicity. Screening levels were established based on animal toxicity data and adverse effects at therapeutic doses, focusing largely on reproductive and developmental toxicity and carcinogenicity. Calculated drinking water equivalent levels (DWELs) ranged from 0.49 microg/L (risperidone) to 20,000 microg/L (naproxen). None of the 10 detected compounds exceeded their DWEL. Ratios of DWELs to maximum detected concentrations ranged from 110 (phenytoin) to 6,000,000 (sulfamethoxazole). Based on this evaluation, adverse health effects from targeted pharmaceuticals occurring in U.S. drinking water are not expected.
Advanced proteomic liquid chromatography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Fang; Smith, Richard D.; Shen, Yufeng
2012-10-26
Liquid chromatography coupled with mass spectrometry is the predominant platform used to analyze proteomics samples consisting of large numbers of proteins and their proteolytic products (e.g., truncated polypeptides) and spanning a wide range of relative concentrations. This review provides an overview of advanced capillary liquid chromatography techniques and methodologies that greatly improve separation resolving power and proteomics analysis coverage, sensitivity, and throughput.
Finding the Key to Successful L2 Learning in Groups and Individuals
ERIC Educational Resources Information Center
Lowie, Wander; van Dijk, Marijn; Chan, Huiping; Verspoor, Marjolijn
2017-01-01
A large body studies into individual differences in second language learning has shown that success in second language learning is strongly affected by a set of relevant learner characteristics ranging from the age of onset to motivation, aptitude, and personality. Most studies have concentrated on a limited number of learner characteristics and…
1995-08-14
seismic network. At large range, infrasound signals are oscillatory acoustic signals detected as small pressure variations about the ambient value... Infrasound Review and Background Infrasound signals are regular acoustic signals in that they are longitudinal pressure waves albeit at rather low frequency...energy is concentrated at higher frequency than that for higher yield sources. Infrasound can be generated by natural and manmade processes; moreover
NASA Technical Reports Server (NTRS)
Worstell, J. H.; Daniel, S. R.
1981-01-01
A method for the separation and analysis of tetralin hydroperoxide and its decomposition products by high pressure liquid chromatography has been developed. Elution with a single, mixed solvent from a micron-Porasil column was employed. Constant response factors (internal standard method) over large concentration ranges and reproducible retention parameters are reported.
Phillips, P.; Chalmers, A.
2009-01-01
Some sources of organic wastewater compounds (OWCs) to streams, lakes, and estuaries, including wastewater-treatment-plant effluent, have been well documented, but other sources, particularly wet-weather discharges from combined-sewer-overflow (CSO) and urban runoff, may also be major sources of OWCs. Samples of wastewater-treatment-plant (WWTP) effluent, CSO effluent, urban streams, large rivers, a reference (undeveloped) stream, and Lake Champlain were collected from March to August 2006. The highest concentrations of many OWCs associated with wastewater were in WWTP-effluent samples, but high concentrations of some OWCs in samples of CSO effluent and storm runoff from urban streams subject to leaky sewer pipes or CSOs were also detected. Total concentrations and numbers of compounds detected differed substantially among sampling sites. The highest total OWC concentrations (10-100 ??g/l) were in samples of WWTP and CSO effluent. Total OWC concentrations in samples from urban streams ranged from 0.1 to 10 ??g/l, and urban stream-stormflow samples had higher concentrations than baseflow samples because of contributions of OWCs from CSOs and leaking sewer pipes. The relations between OWC concentrations in WWTP-effluent and those in CSO effluent and urban streams varied with the degree to which the compound is removed through normal wastewater treatment. Concentrations of compounds that are highly removed during normal wastewater treatment [including caffeine, Tris(2-butoxyethyl)phosphate, and cholesterol] were generally similar to or higher in CSO effluent than in WWTP effluent (and ranged from around 1 to over 10 ??g/l) because CSO effluent is untreated, and were higher in urban-stream stormflow samples than in baseflow samples as a result of CSO discharge and leakage from near-surface sources during storms. Concentrations of compounds that are poorly removed during treatment, by contrast, are higher in WWTP effluent than in CSO, due to dilution. Results indicate that CSO effluent and urban stormwaters can be a significant major source of OWCs entering large water bodies such as Burlington Bay. ?? 2008 American Water Resources Association.
Accurate live and dead bacterial cell enumeration using flow cytometry (Conference Presentation)
NASA Astrophysics Data System (ADS)
Ou, Fang; McGoverin, Cushla; Swift, Simon; Vanholsbeeck, Frédérique
2017-03-01
Flow cytometry (FCM) is based on the detection of scattered light and fluorescence to identify cells with particular characteristics of interest. However most FCM cannot precisely control the flow through its interrogation point and hence the volume and concentration of the sample cannot be immediately obtained. The easiest, most reliable and inexpensive way of obtaining absolute counts with FCM is by using reference beads. We investigated a method of using FCM with reference beads to measure live and dead bacterial concentration over the range of 106 to 108 cells/mL and ratio varying from 0 to 100%. We believe we are the first to use this method for such a large cell concentration range while also establishing the effect of varying the live/dead bacteria ratios. Escherichia coli solutions with differing ratios of live:dead cells were stained with fluorescent dyes SYTO 9 and propidium iodide (PI), which label live and dead cells, respectively. Samples were measured using a LSR II Flow Cytometer (BD Biosciences); using 488 nm excitation with 20 mW power. Both SYTO 9 and PI fluorescence were collected and threshold was set to side scatter. Traditional culture-based plate count was done in parallel to the FCM analysis. The concentration of live bacteria from FCM was compared to that obtained by plate counts. Preliminary results show that the concentration of live bacteria obtained by FCM and plate counts correlate well with each other and indicates this may be extended to a wider concentration range or for studying other cell characteristics.
NASA Astrophysics Data System (ADS)
Su, Yushan; Hung, Hayley; Blanchard, Pierrette; Patton, Gregory W.; Kallenborn, Roland; Konoplev, Alexei; Fellin, Phil; Li, Henrik; Geen, Charles; Stern, Gary; Rosenberg, Bruno; Barrie, Leonard A.
Air concentrations of organochlorine pesticides (OCPs) were measured on a weekly basis in 2000-2003 at six Arctic stations, which include Alert, Kinngait, and Little Fox Lake in Canada; Point Barrow in the USA; Valkarkai in Russia; and Zeppelin in Norway. These stations cover a large region in the Arctic, providing a comprehensive perspective on OCPs in the circumpolar atmosphere. Currently used pesticide endosulfan I had similar concentrations across the stations in November-May, whereas large spatial divergence was found in June-October. This implies the extensive usage of endosulfan during summertime followed by long-range transport to the Arctic. The median air concentration of endosulfan I was 3.2 pg m -3 ( n=245). Seasonally and spatially uniform concentrations of legacy chlordane-related compounds indicated that the influence of primary emissions on Arctic air has become less important than volatilization emissions. Median air concentrations (pg m -3) of trans-chlordane, cis-chlordane, trans-nonachlor, oxychlordane, and heptachlor exo-epoxide were 0.20 ( n=413), 0.58 ( n=413), 0.44 ( n=413), 0.30 ( n=245), and 0.54 ( n=244), respectively. Although extensive usage was banned in the 1970s, large spatial variations reflected that DDT-related compounds were not well mixed in Arctic air. Concentrations of DDT-related compounds were low in general, and median concentrations of p, p'-DDT, o, p'-DDT, p, p'-DDE, o, p'-DDE, and ∑ 4DDT were 0.10, 0.18, 0.37, 0.10, and 0.79 pg m -3 ( n=418), respectively. Air concentrations of pentachloroanisole and dieldrin showed strong seasonal/spatial variations with median values of 3.8 and 0.48 pg m -3 ( n=245). Uniform concentrations were observed for octachlorostyrene with a median of 0.32 pg m -3 ( n=245). Arctic air concentrations of other measured OCPs, such as endrin, heptachlor, methoxychlor, mirex, photomirex, tetrachloroveratrole, trichloroveratrol, and trifluralin, were generally low and mostly below method detection limits.
Zeng, Hongjuan; Yu, Junsheng; Jiang, Yadong; Zeng, Xiangqun
2014-05-15
A complex thiolated mannose (TM)/quinone functionalised polythiophene (QFPT) thin film was modified on EQCM/Au electrode for recognition of specific carbohydrate-proteins. Different lectins such as those from Sambucus nigra (elder berry), Arachis hypogaea (peanut), Ulex europaeus (gorse, furze), Triticum vulgaris and Concanavalin A (ConA) was used for probes to evaluate bio-sensing performance of the TM/QFPT film. A specific response was observed for ConA from lectins when using the TM/QFPT film as sensing material and employing either elelctrochemical or the QCM method. No response was detected between thiolated mannose and other lectins. The linear relationship between current and ConA concentration is in the range of 0.5-17.5 nM by the elelctrochemical method and the linear relationship between frequency change and ConA concentration is in the range of 0.5-4.5 nM by the QCM method. This shows that the TM/QFPT-modified EQCM biosensor presents a paralleled determination by using electrochemical and the QCM method. The elelctrochemical method of the biosensor can be applicable in a large concentration range and its frequency change can be more precise. © 2013 Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singer, Brett C.; Pass, Rebecca Zarin; Delp, William W.
Combustion pollutant concentrations were measured during the scripted operation of natural gas cooking burners in nine homes. Boiling and simmering activities were conducted on the stovetop and in the oven with and without range hood exhaust ventilation or air mixing via a forced air system. Time-resolved concentrations of carbon dioxide (CO 2), nitric oxide (NO), nitrogen oxides (NO x), nitrogen dioxide (NO 2), particles with diameters of 6 nm or larger (PN), carbon monoxide (CO), and fine particulate matter (PM 2.5) were measured in the kitchen and bedroom area of each home. Four of the nine homes had kitchen 1more » h NO 2 exceed the national ambient air quality standard (100 ppb). In all homes, the highest 1 h integrated PN exceeded 2 × 10 5 cm -3-h, and the highest 4 h PN exceeded 3 × 10 5 cm -3-hr in the kitchen. Range hood performance varied widely, but one with a large capture volume and a measured flow of 108 L/s reduced concentrations 80–95%. Increased awareness of the need to ventilate when cooking, along with building standards for minimum range hood flow rates and volume, could substantially reduce exposures to NO 2 and ultrafine particles in homes.« less
NASA Astrophysics Data System (ADS)
Xu, J.; Wang, Z.; Gwiazda, R.; Paull, C. K.; Talling, P.; Parsons, D. R.; Maier, K. L.; Simmons, S.; Cartigny, M.
2017-12-01
During a large turbidity current event observed by seven moorings placed along Monterey Canyon, offshore central California, in the axial channel between 300 and 1900 meters water depth, a conductivity/temperature sensor placed 11 meters above canyon floor on the mooring at 1500 meters water depth recorded a rapid decrease of conductivity and increase of temperature during the passage of a large turbidity current. The conductivity decline is unlikely caused by fresh water input owing to lack of precipitation in the region prior to the event. We investigated the mechanisms of turbidity currents' high sediment concentration reducing the measured conductivity. By conducting a series of laboratory experiments with a range of different concentrations, grain size, and water temperature combinations, we quantified a relationship between reduced conductivity and the elevated sediment concentration. This relationship can be used for estimating the very high sediment concentrations in a turbidity current with a condition of assuming constant salinity of the ambient seawater. The empirical relationship was then applied to the in-situ time-series of temperature and conductivity measured during this turbidity current. The highest sediment concentration, in the head of the flow, reached nearly 400 g/L (volume concentration 17%). Such a high value, which has yet been reported in literature for an oceanic turbidity current, will have significant implications for the dynamics and deposits of such flows.
Artíñano, B; Gómez-Moreno, F J; Díaz, E; Amato, F; Pandolfi, M; Alonso-Blanco, E; Coz, E; García-Alonso, S; Becerril-Valle, M; Querol, X; Alastuey, A; van Drooge, B L
2017-09-01
A large and uncontrolled fire of a tire landfill started in Seseña (Toledo, Spain) on May 13, 2016. An experimental deployment was immediately launched in the area for measuring regulated and non-standard air quality parameters to assess the potential impact of the plume at local and regional levels. Outdoor and indoor measurements of different parameters were carried out at a near school, approximately 700m downwind the burning tires. Real time measurements of ambient black carbon (BC) and total number particle concentrations were identified as good tracers of the smoke plume. Simultaneous peaks allowed us to characterize situations of the plume impact on the site. Outdoor total particle number concentrations reached in these occasions 3.8×10 5 particlescm -3 (on a 10min resolution) whereas the indoor concentration was one order of magnitude lower. BC mass concentrations in ambient air were in the range of 2 to 7μgm -3 , whereas concentrations<2μgm -3 were measured indoor. Indoor and outdoor deposited inhalable dust was sampled and chemically characterized. Both indoor and outdoor dust was enriched in tire components (Zn, sulfate) and PAHs associated to the tire combustion process. Infiltration processes have been documented for BC and particle number concentrations causing increases in indoor concentrations. Copyright © 2017 Elsevier B.V. All rights reserved.
Regional patterns of mercury content in snowpack, sphagnum, and fish in northeastern North America
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haines, T.; Mower, B.; Perry, R.
1995-12-31
High levels of mercury have been found in fish from lakes throughout the northeastern US and eastern Canada, in waters with no known local mercury source. If this mercury originates from anthropogenic emissions to the atmosphere, deposition should be higher near population centers or other point sources. The authors surveyed the mercury content of late-season snowpack, sphagnum moss, and fish at locations from southwestern Connecticut to northern Newfoundland to determine if such a pattern existed. Mercury in snow ranged 1.5 to 20 ng/L, and in sphagnum < 24 to 289 ng/g dry wt. Concentrations were generally highest at southwestern sitesmore » and lowest at northeastern sites with some exceptions. The highest concentrations in both media were at locations in Rhode Island and New Hampshire, and may reflect local source emissions. Excluding these sites, the range in concentration from south to north is only a factor of two or three. These values are similar to those reported in other areas and reflect the long atmospheric residence time of gaseous elemental mercury. Mercury concentration in fish ranged 0.1 to 1.0 ug/g wet wt. and showed no regional pattern. Rather, fish mercury concentration was affected by fish species and size, being highest in large predatory species such as smallmouth bass (Micropterus dolomieu), and lowest in small nonpredatory species such as yellow perch (Perca flavescens) and brook trout (Salvelinus fontinalis).« less
Implications of Large Elastic Thicknesses for the Composition and Current Thermal State of Mars
NASA Astrophysics Data System (ADS)
Grott, M.; Breuer, D.
2008-12-01
The elastic lithosphere thickness at the Martian north polar cap has recently been constrained using radar sounding data obtained by SHARAD, the shallow radar onboard the Mars Reconnaissance Orbiter. Analysis of the SHARAD radargrams showed that the amount of deflection caused by ice loading at the polar caps is negligible - less than 100 m. Quantitative analysis yielded a lower bound on the elastic lithosphere thickness Te of 300 km, a value twice as large as previous estimates from theoretical considerations and flexure studies. Such large elastic thicknesses are only compatible with the planet's thermal evolution if the planetary interior is relatively cold and this could have direct bearing on the admissible amount of radioactive elements in the Martian interior. On the other hand, if the concentration of heat producing elements in the Martian interior is indeed reduced, the resulting low interior temperatures could possibly inhibit partial mantle melting and magmatism. However, geological evidence suggests that Mars has been volcanically active in the recent past. We have investigated the Martian thermal evolution and identified models which are consistent with a present day elastic thickness in excess of 300 km. We find that a wet mantle rheology is best compatible with the observed elastic thicknesses, but in this case the bulk concentration of heat producing elements in the silicate fraction cannot exceed 50 % of the chondritic concentration if 50 % of the radioacitve elements are concentrated in the crust. Furthermore, due to the efficient cooling of the planet for a wet mantle rheology, recent volcanism can only be explained by hydrous mantle melting. This requires the mantle water content to exceed 1500 ppm and although this is within the range reported for the shergottite parent magmas, it is certainly on the boundary of the plausible parameter range. If a dry mantle rheology is assumed, bulk Mars does not need to be sub-chondritic, but at least 70 % of the radiogenic elements need to be concentrated in the crust to be consistent with the large elastic thicknesses. For a dry mantle, recent volcanism could be driven by decompression melting in the heads of strong mantle plumes which are present in numerical simulations of mantle convection if the viscosity is strongly pressure dependent or endothermic phase transitions are present near the core-mantle boundary.
Large area silicon sheet by EFG
NASA Technical Reports Server (NTRS)
1981-01-01
The influence of parameters such as CO2 concentration, gas flow patterns, quartz in the bulk melt, melt doping level and growth speed on ribbon properties was examined for 10 cm wide ribbon. Ribbon quality is optimized for ambient CO2 in argon concentrations in the range from 1000 to 5000 ppm. Cell performance degrades at CO2 concentrations above 5000 ppm and IR interstitial oxygen levels decrease. These experiments were done primarily at a growth speed of 3.5 cm/minute. Cartridge parameters influencing the ribbon thickness were studied and thickness uniformity at 200 micrometers (8 mils) has been improved. Growth stability at the target speed of 4.0 cm/minute was improved significantly.
Influences of dietary uptake and reactive sulfides on metal bioavailability from aquatic sediments
Lee, B.-G.
2000-01-01
Understanding how animals are exposed to the large repository of metal pollutants in aquatic sediments is complicated and is important in regulatory decisions. Experiments with four types of invertebrates showed that feeding behavior and dietary uptake control bioaccumulation of cadmium, silver, nickel, and zinc. Metal concentrations in animal tissue correlated with metal concentrations extracted from sediments, but not with metal in porewater, across a range of reactive sulfide concentrations, from 0.5 to 30 micromoles per gram. These results contradict the notion that metal bioavailability in sediments is controlled by geochemical equilibration of metals between porewater and reactive sulfides, a proposed basis for regulatory criteria for metals.
NASA Astrophysics Data System (ADS)
Lapham, Laura; Marshall, Kathleen; Magen, Cédric; Lyubchich, Viacheslav; Cooper, Lee W.; Grebmeier, Jacqueline M.
2017-10-01
Current estimates of methane (CH4) flux suggest that Arctic shelves may be a significant source of atmospheric CH4, a potent greenhouse gas. However, little information is known about the CH4 flux from most Arctic shelves, other than the East Siberian Arctic Shelf. We report here dissolved CH4 concentrations in the water column and within surface sediments of the Northern Chukchi Sea. We hypothesized that this area contains high concentrations of CH4 because it receives nutrient rich waters through the Bering Strait, promoting primary production that enhances an organic-rich material flux to the seafloor and eventual microbial methanogenesis in the sediments. In August 2012, as part of the Chukchi Sea Offshore Monitoring in Drilling Area (COMIDA) project, fourteen stations were sampled on Hanna Shoal, a shallow feature on the shelf, and ten stations across the undersea Barrow Canyon. On Hanna Shoal, water column CH4 concentrations ranged from 14 to 74 nM, and surface concentrations were up to 15 times supersaturated in CH4 compared to equilibrium with the average atmospheric concentrations (3 nM). CH4 concentrations at the sediment-water interface were around 1,500 nM, and typically increased with depth in the sediment. At the head of Barrow Canyon, water column CH4 concentrations ranged from 5 to 46 nM, with the highest concentrations in the deepest waters that were sampled (118 m). Overall, the calculated fluxes to the atmosphere ranged from 1 to 80 μmol CH4 m-2 d-1 for Hanna Shoal and 4 to 17 μmol CH4 m-2 d-1 across the Barrow Canyon stations. Although there was a large range in these fluxes, the average atmospheric flux (20 μmol CH4 m-2 d-1) across Hanna Shoal was 12 times lower than the flux reported from the East Siberian Arctic Shelf in summer. We conclude that while there is a positive flux of CH4 to the atmosphere, this part of the Chukchi Sea is not a significant source of atmospheric CH4 compared to the East Siberian Sea shelf.
Foster, Gregory D.; Gates, Paul M.; Foreman, William T.; McKenzie, Stuart W.; Rinella, Frank A.
1993-01-01
Concentrations of pesticides in the dissolved phase of surface water samples from the Yakima River basin, WA, were determined using preconcentration in the Goulden large-sample extractor (GLSE) and gas chromatography/mass spectrometry (GC/MS) analysis. Sample volumes ranging from 10 to 120 L were processed with the GLSE, and the results from the large-sample analyses were compared to those derived from 1-L continuous liquid-liquid extractions Few of the 40 target pesticides were detected in 1-L samples, whereas large-sample preconcentration in the GLSE provided detectable levels for many of the target pesticides. The number of pesticides detected in GLSE processed samples was usually directly proportional to sample volume, although the measured concentrations of the pesticides were generally lower at the larger sample volumes for the same water source. The GLSE can be used to provide lower detection levels relative to conventional liquid-liquid extraction in GC/MS analysis of pesticides in samples of surface water.
Knotkova, Z; Dorrestein, G M; Jekl, V; Janouskova, J; Knotek, Z
2008-10-25
The fasting and postprandial serum concentrations of bile acids and other blood constituents were measured in a group of 10 clinically healthy, female, six-year-old captive red-eared terrapins (Trachemys scripta elegans). The terrapins were housed in a temperate room and maintained in four aquaria in which the water temperature ranged from 24 to 27 degrees C and the temperature above the basking site ranged from 27 to 30 degrees C. The serum concentrations of bile acids were measured four times in a period of five months, and at the second sampling the fasting and two postprandial (after 24 and 48 hours) serum concentrations of total protein, albumin, glucose, uric acid, cholesterol, triglycerides, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, and bile acids were determined. Coelioscopy revealed vitellogenic and previtellogenic follicles on the ovaries of all the terrapins, and eggs with calcified shells were detected in two of them. The livers were mostly pink to deep yellow in colour, with sharp edges, a smooth serosal surface, distinct large superficial vessels, and multifocal melanin deposits. Liver biopsies revealed fine, more or less oil red O-positive lipid droplets in all the hepatocytes, but in none of the cases was it considered to be pathological lipidosis. The mean (sd) bile acid concentrations ranged from 7.35 (4.52) to 10.04 (7.40) micromol/l. The fasting and postprandial concentrations were 3.1 (2.3), 4.5 (5.4) (24 hours) and 2.2 (1.5) (48 hours) micromol/l. High concentrations between 27.6 and 66.6 micromol/l were associated with lipaemia. There were no significant differences between the biochemical profiles of the fasting and postprandial serum samples.
Chrysikou, Loukia; Gemenetzis, Panagiotis; Kouras, Athanasios; Manoli, Evangelia; Terzi, Eleni; Samara, Constantini
2008-02-01
Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), including hexaclorocyclohexanes (HCHs) and DDTs, as well as trace elements were determined in soil and vegetation samples collected from the surrounding area of the landfill "Tagarades", the biggest in northern Greece, following a large scale fire involving approximately 50,000 tons of municipal waste. High concentrations of total PAHs, PCBs and heavy metals were found inside the landfill (1475 microg kg(-1) dw, 399 microg kg(-1) dw and 29.8 mg kg(-1) dw, respectively), whereas concentrations in the surrounding soils were by far lower ranging between 11.2-28.1 microg kg(-1) dw for PAHs, 4.02-11.2 microg kg(-1) dw for PCBs and 575-1207 mg kg(-1) dw for heavy metals. The distribution of HCHs and DDTs were quite different since certain soils exhibited equal or higher concentrations than the landfill. In vegetation, the concentrations of PAHs, PCBs, HCHs and DDTs ranged from 14.1-34.7, 3.64-25.9, 1.41-32.1 and 0.61-4.03 microg kg(-1) dw, respectively, while those of heavy metals from 81 to 159 mg kg(-1) dw. The results of the study indicated soil and vegetation pollution levels in the surroundings of the landfill comparable to those reported for other Greek locations. The impact from the landfill fire was not evident partially due to the presence of recent and past inputs from other activities (agriculture, vehicular transport, earlier landfill fires).
Zirconium nitride precipitation in nominally pure yttria-stabilized zirconia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomez-Garcia, D.; Martinez-Fernandez, J.; Dominguez-Rodriguez, A.
Nominally pure yttria-stabilized zirconia alloys are shown to contain unexpectedly large amounts of dissolved nitrogen. Its presence in the lattice was detected through the observation of large precipitates in alloys with three different concentrations of yttria deformed in compression in argon in the temperature range 1,600--1,800 C. Electron diffraction, EDS and PEELS analyses, and Moire imaging were used to identify the precipitates as ZrN. The possible origin of the nitrogen, its likely effects on properties, and the role of annealing atmosphere are briefly discussed.
Oxygen concentration dependence of silicon oxide dynamical properties
NASA Astrophysics Data System (ADS)
Yajima, Yuji; Shiraishi, Kenji; Endoh, Tetsuo; Kageshima, Hiroyuki
2018-06-01
To understand oxidation in three-dimensional silicon, dynamic characteristics of a SiO x system with various stoichiometries were investigated. The calculated results show that the self-diffusion coefficient increases as oxygen density decreases, and the increase is large when the temperature is low. It also shows that the self-diffusion coefficient saturates, when the number of removed oxygen atoms is sufficiently large. Then, approximate analytical equations are derived from the calculated results, and the previously reported expression is confirmed in the extremely low-SiO-density range.
Free tropospheric measurements of CS2 over a 45 deg N to 45 deg S latitude range
NASA Technical Reports Server (NTRS)
Tucker, B. J.; Maroulis, P. J.; Bandy, A. R.
1985-01-01
The mean value obtained from 52 free tropospheric measurements of CS2 over the 45 deg N-45 deg S latitude range was 5.7 pptv, with standard deviation and standard error of 1.9 and 0.3 pptv, respectively. Large fluctuations in the CS2 concentration are observed which reflect the apparent short atmospheric residence time and inhomogeneities in the surface sources of CS2. The amounts of CS2 in the Northern and Southern Hemispheres are statistically equal.
Quantifying Cr(VI) Production and Export from Serpentine Soil of the California Coast Range
McClain, Cynthia N.; Fendorf, Scott; Webb, Samuel M.; ...
2016-11-22
Here, hexavalent chromium (Cr(VI)) is generated in serpentine soils and exported to surface and groundwaters at levels above health-based drinking water standards. Although Cr(VI) concentrations are elevated in serpentine soil pore water, few studies have reported field evidence documenting Cr(VI) production rates and fluxes that govern Cr(VI) transport from soil to water sources. We report Cr speciation (i) in four serpentine soil depth profiles derived from the California Coast Range serpentinite belt and (ii) in local surface waters. Within soils, we detected Cr(VI) in the same horizons where Cr(III)-minerals are colocated with biogenic Mn(III/IV)-oxides, suggesting Cr(VI) generation through oxidation bymore » Mn-oxides. Water-extractable Cr(VI) concentrations increase with depth constituting a 7.8 to 12 kg/km 2 reservoir of Cr(VI) in soil. Here, Cr(VI) is produced at a rate of 0.3 to 4.8 kg Cr(VI)/km 2/yr and subsequently flushed from soil during water infiltration, exporting 0.01 to 3.9 kg Cr(VI)/km 2/yr at concentrations ranging from 25 to 172 μg/L. Although soil-derived Cr(VI) is leached from soil at concentrations exceeding 10 μg/L, due to reduction and dilution during transport to streams, Cr(VI) levels measured in local surface waters largely remain below California’s drinking water limit.« less
Quantifying Cr(VI) Production and Export from Serpentine Soil of the California Coast Range.
McClain, Cynthia N; Fendorf, Scott; Webb, Samuel M; Maher, Kate
2017-01-03
Hexavalent chromium (Cr(VI)) is generated in serpentine soils and exported to surface and groundwaters at levels above health-based drinking water standards. Although Cr(VI) concentrations are elevated in serpentine soil pore water, few studies have reported field evidence documenting Cr(VI) production rates and fluxes that govern Cr(VI) transport from soil to water sources. We report Cr speciation (i) in four serpentine soil depth profiles derived from the California Coast Range serpentinite belt and (ii) in local surface waters. Within soils, we detected Cr(VI) in the same horizons where Cr(III)-minerals are colocated with biogenic Mn(III/IV)-oxides, suggesting Cr(VI) generation through oxidation by Mn-oxides. Water-extractable Cr(VI) concentrations increase with depth constituting a 7.8 to 12 kg/km 2 reservoir of Cr(VI) in soil. Here, Cr(VI) is produced at a rate of 0.3 to 4.8 kg Cr(VI)/km 2 /yr and subsequently flushed from soil during water infiltration, exporting 0.01 to 3.9 kg Cr(VI)/km 2 /yr at concentrations ranging from 25 to 172 μg/L. Although soil-derived Cr(VI) is leached from soil at concentrations exceeding 10 μg/L, due to reduction and dilution during transport to streams, Cr(VI) levels measured in local surface waters largely remain below California's drinking water limit.
Potency of a tau fibrillization inhibitor is influenced by its aggregation state
Congdon, Erin E.; Necula, Mihaela; Blackstone, Robert D.; Kuret, Jeff
2007-01-01
Tau fibrillization is a potential therapeutic target for Alzheimer’s and other neurodegenerative diseases. Several small molecule inhibitors of tau aggregation have been developed for this purpose. One of them, 3,3′-bis(β-hydroxyethyl)-9-ethyl-5,5′-dimethoxythiacarbocyanine iodide (N744), is a cationic thiacarbocyanine dye that inhibits recombinant tau filament formation when present at submicromolar concentrations. To prepare dosing regimens for testing N744 activity in biological models, its full concentration-effect relationship in the range 0.01 – 60 μM was examined in vitro by electron microscopy and laser light scattering methods. Results revealed that N744 concentration dependence was biphasic, with fibrillization inhibitory activity appearing at submicromolar concentration, but with relief of inhibition and increases in fibrillization apparent above 10 μM. Therefore, fibrillization was inhibited ≥50% only over a narrow concentration range, which was further reduced by filament stabilizing modifications such as tau pseudophosphorylation. N744 inhibitory activity also was paralleled by changes in its aggregation state, with dimer predominating at inhibitory concentrations and large dye aggregates appearing at high concentrations. Ligand dimerization was promoted by the presence of tau protein, which lowered the equilibrium dissociation constant for dimerization more than an order of magnitude relative to controls. The results suggest that ligand aggregation may play an important role in both inhibitory and disinhibitory phases of the concentration-effect curve, and may lead to complex dose response relationships in model systems. PMID:17559794
Roscales, Jose L; Muñoz-Arnanz, Juan; González-Solís, Jacob; Jiménez, Begoña
2010-04-01
Although seabirds have been proposed as useful biomonitors for organochlorine contaminants (OCs) in marine environments, their suitability is still unclear. To understand the geographic variability and the influence of seabird trophic ecology in OC levels, we analyzed PCBs, DDTs, delta(13)C, and delta(15)N in the blood of adult Calonectris shearwaters throughout a vast geographic range within the northeast Atlantic Ocean (from Cape Verde to Azores) and the Mediterranean Sea (from the Alboran Sea to Crete). OC concentrations were greater in birds from the Mediterranean than in those from the Atlantic colonies, showing higher and lower chlorinated PCB profiles, respectively. This large-scale pattern may reflect the influence of historical European runoffs in the Mediterranean basin and diffused sources for OCs in remote Atlantic islands. Spatial patterns also emerged within the Atlantic basin, probably associated with pollutant long-range transport and recent inputs of DDT in the food webs of shearwaters from Cape Verde and the Canary islands. Moreover, a positive association of OC concentrations with delta(15)N within each locality points out diet specialization as a major factor explaining differences in OCs at the intraspecific level. Overall, this study highlights wide range breeding seabirds, such as Calonectris shearwaters, as suitable organisms for biomonitoring large geographic trends of organochlorine contamination in the marine environment.
NASA Astrophysics Data System (ADS)
Spencer, R.; Carey, J.; Tang, J.
2016-12-01
Silicon (Si) availability in Arctic coastal waters is a critical factor dictating phytoplankton species composition, as diatoms require as much Si as nitrogen (N) on a molar basis to survive. Riverine exports are the main source of Si to Arctic coastal waters annually and thus, the timing and magnitude of river Si fluxes have direct implications for marine ecology and global carbon dynamics. Although geochemical factors exert large controls on Si exports to marine waters, watershed land cover has recently been shown to alter the retention and transport of Si along the land-ocean continuum in lower latitudes, due in large part to the ability of terrestrial vegetation to store large quantities of Si in its tissue. However, it is unclear how shifts in basin land cover and climatic warming will alter Si exports in the Arctic, as increasing shrubiness and northward migration of treeline may increase Si retention on land, but permafrost thaw and elevated weathering rates may stimulate Si exports towards coastal waters. In this study we investigate how permafrost thaw and vegetation cover shifts are altering Arctic riverine Si export using the geochemical signatures of ten rivers draining a 700 km north-south gradient across the Yukon and Arctic North Slope basins in Alaska. Across the 2016 spring freshet, average dissolved Si (DSi) concentrations across sites ranged from 22 to 115 µM, with a significant negative relationship observed between average DSi concentration and latitude (r=-0.95, p<0.05). Conversely, average biogenic Si (BSi) concentrations showed no trends with latitude and were more uniform across the permafrost-vegetation cover gradient, ranging from 8 to 15 µM BSi. Si yields followed a similar pattern as concentrations across the gradient. We use data on basin lithology and land cover, instantaneous discharge, and the concentrations of inorganic nutrients (N, phosphorous), chlorophyll a, total suspended solids (TSS), and Ge (Germanium)/Si ratios, to determine the drivers of these patterns in Si behavior. In turn, our results will be used to create the first predictive framework to assess how future warming will alter fluvial Si exports to Arctic receiving waters.
Relationship between water and aragonite barium concentrations in aquaria reared juvenile corals
Gonneea, Meagan; Cohen, Anne L.; DeCarlo, Thomas M.; Charette, Matthew A.
2017-01-01
Coral barium to calcium (Ba/Ca) ratios have been used to reconstruct records of upwelling, river and groundwater discharge, and sediment and dust input to the coastal ocean. However, this proxy has not yet been explicitly tested to determine if Ba inclusion in the coral skeleton is directly proportional to seawater Ba concentration and to further determine how additional factors such as temperature and calcification rate control coral Ba/Ca ratios. We measured the inclusion of Ba within aquaria reared juvenile corals (Favia fragum) at three temperatures (∼27.7, 24.6 and 22.5 °C) and three seawater Ba concentrations (73, 230 and 450 nmol kg−1). Coral polyps were settled on tiles conditioned with encrusting coralline algae, which complicated chemical analysis of the coral skeletal material grown during the aquaria experiments. We utilized Sr/Ca ratios of encrusting coralline algae (as low as 3.4 mmol mol−1) to correct coral Ba/Ca for this contamination, which was determined to be 26 ± 11% using a two end member mixing model. Notably, there was a large range in Ba/Ca across all treatments, however, we found that Ba inclusion was linear across the full concentration range. The temperature sensitivity of the distribution coefficient is within the range of previously reported values. Finally, calcification rate, which displayed large variability, was not correlated to the distribution coefficient. The observed temperature dependence predicts a change in coral Ba/Ca ratios of 1.1 μmol mol−1 from 20 to 28 °C for typical coastal ocean Ba concentrations of 50 nmol kg−1. Given the linear uptake of Ba by corals observed in this study, coral proxy records that demonstrate peaks of 10–25 μmol mol−1 would require coastal seawater Ba of between 60 and 145 nmol kg−1. Further validation of the coral Ba/Ca proxy requires evaluation of changes in seawater chemistry associated with the environmental perturbation recorded by the coral as well as verification of these results for Porites species, which are widely used in paleo reconstructions.
Kent, Robert; Belitz, Kenneth
2004-01-01
Concentrations of total dissolved solids (TDS) and nutrients in selected Santa Ana Basin streams were examined as a function of water source. The principal water sources are mountain runoff, wastewater, urban runoff, and stormflow. Rising ground water also enters basin streams in some reaches. Data were collected from October 1998 to September 2001 from 6 fixed sites (including a mountain site), 6 additional mountain sites (including an alpine indicator site), and more than 20 synoptic sites. The fixed mountain site on the Santa Ana River near Mentone appears to be a good representative of reference conditions for water entering the basin. TDS can be related to water source. The median TDS concentration in base-flow samples from mountain sites was 200 mg/L (milligrams per liter). Base-flow TDS concentrations from sites on the valley floor typically ranged from 400 to 600 mg/L; base flow to most of these sites is predominantly treated wastewater, with minor contributions of rising ground water and urban runoff. Sparse data suggest that TDS concentrations in urban runoff are about 300 mg/L. TDS concentrations appear to increase on a downstream gradient along the main stem of the Santa Ana River, regardless of source inputs. The major-ion compositions observed in samples from the different sites can be related to water source, as well as to in-stream processes in the basin. Water compositions from mountain sites are categorized into two groups: one group had a composition close to that of the alpine indicator site high in the watershed, and another group had ionic characteristics closer to those in tributaries on the valley floor. The water composition at Warm Creek, a tributary urban indicator site, was highly variable but approximately intermediate to the compositions of the upgradient mountain sites. Water compositions at the Prado Dam and Imperial Highway sites, located 11 miles apart on the Santa Ana River, were similar to one another and appeared to be a mixture of the waters of the upstream sites, Santa Ana River at MWD Crossing, Cucamonga Creek, and Warm Creek. Rainfall usually dilutes stream TDS concentrations. The median TDS concentration in all storm-event discrete samples was 260 mg/L. The median flow-weighted average TDS concentration for stormflow, based on continuous measurement of specific conductance and hydrograph separation of the continuous discharge record, was 190 mg/L. However, stormflow TDS concentrations were variable, and depended on whether the storm was associated with a relatively small or large rainfall event. TDS concentrations in stormflow associated with relatively small events ranged from about 50 to 600 mg/L with a median of 220 mg/L, whereas concentrations in stormflow associated with relatively large events ranged from about 40 to 300 mg/L with a median of 100 mg/L. From the perspective of water managers, the nutrient species of highest concern in Santa Ana Basin streams is nitrate. Most mountain streams had median base-flow concentrations of nitrate below 0.3 mg/L as nitrogen. Nitrate concentrations in both urban runoff and stormflow were near 1 mg/L, which is close to the level found in rainfall for the region. In fact, results from this study suggest that much of the nitrate load in urban storm runoff comes from rainwater. Nitrate concentrations in the Santa Ana River and its major tributaries are highest downstream from wastewater inputs, where median base-flow concentrations of nitrite+nitrate ranged from about 5 to 7 mg/L. About 4 percent of samples collected from sites receiving treated wastewater had nitrate concentrations greater than 10 mg/L. Rising ground water also appears to have high nitrate concentrations (greater than 10 mg/L) in some reaches of the river. Concentrations of other nitrogen species were much lower than nitrate concentrations in base-flow samples. However, storm events increased concentrations and the proportion of organic nitro
El-Safty, Sherif A; Mizukami, Fujio; Hanaoka, Takaaki
2005-05-19
Highly ordered cage and cylindrical mesoporeous silica monoliths (HOM) with 2- and 3-dimensional (2D and 3D, respectively) structures, mesopore/micropore volumes, and thick-walled frameworks were successfully fabricated by instant direct templating of lyotropic phases of copolymer (EO(m)-PO(n)-EO(m)) surfactants. Large cage-like pores with uniform constriction sizes up to 10 nm and open cylindrical channel-like mesopores can be easily achieved by this simple and efficient synthesis design. Our results show that the cage-like pores could be fabricated at relatively lower copolymer concentrations used in the lyotropic phase domains at copolymer/TMOS ratios of 35 wt %. These ordered cage pore architectures underwent transition to open-cylindrical pores by increasing the copolymer concentration. High EO/PO block copolymers, in general, were crucially affected on the increase of the interior cavity sizes and on the stability of the cage mesopore characters. However, for F108 (EO(141)PO(44)EO(141)) systems, the fabrication of ordered and stable cage pore monoliths was achieved with significantly higher copolymer concentrations up to 90 wt %. Interestingly, the effective copolymer molecular nature was also observed in the ability to design various ordered mesophase geometries in large domain sizes. Our findings here show evidence that the synthetic strategy provides realistic control over a wide range of mesostructured phase geometries and their extended long-range ordering in the final replicas of the silica monolith frameworks. In addition, the HOM silica monoliths exhibited considerable structural stability against higher thermal temperature (up to 1000 degrees C) and longer hydrothermal treatment times under boiling water and steam. The remarkable structural findings of 3D frameworks, transparent monoliths, and micropores combined with large cage- and cylindrical-like mesopores are expected to find promising uses in materials chemistry.
Rubinova, Nastassia; Chumbimuni-Torres, Karin; Bakker, Eric
2010-01-01
In recent years, ion-selective electrodes based on polymer membranes have been shown to exhibit detection limits that are often in the nanomolar concentration range, and thus drastically lower than traditionally accepted. Since potentiometry is less dependent on scaling laws that other established analytical techniques, their performance in confined sample volumes is explored here. Solid-contact silver-selective microelectrodes, with a sodium-selective microelectrode as a reference, were inserted into a micropipette tip used as a 50-μl sample. The observed potential stabilities, reproducibilities and detection limits were attractive and largely matched that for large 100-ml samples. This should pave the way for further experiments to detecting ultra-small total ion concentrations by potentiometry, especially when used as a transducer after an amplification step in bioanalysis. PMID:20543910
Tordiffe, Adrian S W; Wachter, Bettina; Heinrich, Sonja K; Reyers, Fred; Mienie, Lodewyk J
2016-01-01
Cheetahs (Acinonyx jubatus) are highly specialised large felids, currently listed as vulnerable on the IUCN red data list. In captivity, they are known to suffer from a range of chronic non-infectious diseases. Although low heterozygosity and the stress of captivity have been suggested as possible causal factors, recent studies have started to focus on the contribution of potential dietary factors in the pathogenesis of these diseases. Fatty acids are an important component of the diet, not only providing a source of metabolisable energy, but serving other important functions in hormone production, cellular signalling as well as providing structural components in biological membranes. To develop a better understanding of lipid metabolism in cheetahs, we compared the total serum fatty acid profiles of 35 captive cheetahs to those of 43 free-ranging individuals in Namibia using gas chromatography-mass spectrometry. The unsaturated fatty acid concentrations differed most remarkably between the groups, with all of the polyunsaturated and monounsaturated fatty acids, except arachidonic acid and hypogeic acid, detected at significantly lower concentrations in the serum of the free-ranging animals. The influence of age and sex on the individual fatty acid concentrations was less notable. This study represents the first evaluation of the serum fatty acids of free-ranging cheetahs, providing critical information on the normal fatty acid profiles of free-living, healthy individuals of this species. The results raise several important questions about the potential impact of dietary fatty acid composition on the health of cheetahs in captivity.
Mercury cycling in stream ecosystems. 3. Trophic dynamics and methylmercury bioaccumulation
Chasar, L.C.; Scudder, B.C.; Stewart, A.R.; Bell, A.H.; Aiken, G.R.
2009-01-01
Trophic dynamics (community composition and feeding relationships) have been identified as important drivers of methylmercury (MeHg) bioaccumulation in lakes, reservoirs, and marine ecosystems. The relative importance of trophic dynamics and geochemical controls on MeHg bioaccumulation in streams, however, remains poorly characterized. MeHg bioaccumulation was evaluated in eight stream ecosystems across the United States (Oregon, Wisconsin, and Florida) spanning large ranges in climate, landscape characteristics, atmospheric Hg deposition, and stream chemistry. Across all geographic regions and all streams, concentrations of total Hg (THg) in top predator fish and forage fish, and MeHg in invertebrates, were strongly positively correlated to concentrations of filtered THg (FTHg), filtered MeHg (FMeHg), and dissolved organic carbon (DOC); to DOC complexity (as measured by specific ultraviolet absorbance); and to percent wetland in the stream basins. Correlations were strongest for nonurban streams. Although regressions of log[Hg] versus ??15N indicate that Hg in biota increased significantly with increasing trophic position within seven of eight individual streams, Hg concentrations in top predator fish (including cutthroat, rainbow, and brown trout; green sunfish; and largemouth bass) were not strongly influenced by differences in relative trophic position. Slopes of log[Hg] versus ??15N, an indicator of the efficiency of trophic enrichment, ranged from 0.14 to 0.27 for all streams. These data suggest that, across the large ranges in FTHg (0.14-14.2 ng L-1), FMeHg (0.023-1.03 ng L-1), and DOC (0.50-61.0 mg L-1) found in this study, Hg contamination in top predator fish in streams likely is dominated by the amount of MeHg available for uptake at the base of the food web rather than by differences in the trophic position of top predator fish. ?? 2009 American Chemical Society.
Combining Step Gradients and Linear Gradients in Density.
Kumar, Ashok A; Walz, Jenna A; Gonidec, Mathieu; Mace, Charles R; Whitesides, George M
2015-06-16
Combining aqueous multiphase systems (AMPS) and magnetic levitation (MagLev) provides a method to produce hybrid gradients in apparent density. AMPS—solutions of different polymers, salts, or surfactants that spontaneously separate into immiscible but predominantly aqueous phases—offer thermodynamically stable steps in density that can be tuned by the concentration of solutes. MagLev—the levitation of diamagnetic objects in a paramagnetic fluid within a magnetic field gradient—can be arranged to provide a near-linear gradient in effective density where the height of a levitating object above the surface of the magnet corresponds to its density; the strength of the gradient in effective density can be tuned by the choice of paramagnetic salt and its concentrations and by the strength and gradient in the magnetic field. Including paramagnetic salts (e.g., MnSO4 or MnCl2) in AMPS, and placing them in a magnetic field gradient, enables their use as media for MagLev. The potential to create large steps in density with AMPS allows separations of objects across a range of densities. The gradients produced by MagLev provide resolution over a continuous range of densities. By combining these approaches, mixtures of objects with large differences in density can be separated and analyzed simultaneously. Using MagLev to add an effective gradient in density also enables tuning the range of densities captured at an interface of an AMPS by simply changing the position of the container in the magnetic field. Further, by creating AMPS in which phases have different concentrations of paramagnetic ions, the phases can provide different resolutions in density. These results suggest that combining steps in density with gradients in density can enable new classes of separations based on density.
Pharmacology of 13-cis-retinoic acid in humans.
Kerr, I G; Lippman, M E; Jenkins, J; Myers, C E
1982-05-01
Vitamin A and its analogs (retinoids) have shown great promise for the chemoprevention of cancer as well as being a possible new class of chemotherapeutic agents. A Phase I and II trial of 13-cis-retinoic acid in advanced cancers was initiated, and the clinical pharmacology of the drug was studied. All patients received p.o. 13-cis-retinoic acid starting at 0.5 mg/kg/day, escalating over 4 weeks to a maximum dose of 8 mg/kg/day in divided doses. Although there was a linear correlation of plasma concentration with dose escalation, large inter-individual variations in peak plasma concentrations were noted. At the maximum drug dose, the mean peak plasma concentration was 4 X 10(-6) M. There was little drug accumulation on this schedule, as trough concentrations between p.o. doses often dropped below 1 X 10(-6) M. The drug was metabolized extensively to a metabolite, the concentrations of which exceeding parent 13-cis-retinoic acid concentrations with chronic dosing. Retinol concentrations were below the normal range.
Determining rates of chemical weathering in soils - Solute transport versus profile evolution
Stonestrom, David A.; White, A.F.; Akstin, K.C.
1998-01-01
SiO2 fluxes associated with contemporary solute transport in three deeply weathered granitoid profiles are compared to bulk SiO2 losses that have occurred during regolith development. Climates at the three profiles range from Mediterranean to humid to tropical. Due to shallow impeding alluvial layers at two of the profiles, and seasonally uniform rainfall at the third, temporal variations in hydraulic and chemical state variables are largely attenuated below depths of 1-2 m. This allows current SiO2 fluxes below the zone of seasonal variations to be estimated from pore-water concentrations and average hydraulic flux densities. Mean-annual SiO2 concentrations were 0.1-1.5 mM. Hydraulic conductivities for the investigated range of soil-moisture saturations ranged from 10-6 m s-1. Estimated hydraulic flux densities for quasi-steady portions of the profiles varied from 6 x 10-9 to 14 x 10-9 m s-1 based on Darcy's law and field measurements of moisture saturations and pressure heads. Corresponding fluid-residence times in the profiles ranged from 10 to 44 years. Total SiO2 losses, based on chemical and volumetric changes in the respective profiles, ranged from 19 to 110 kmoles SiO2 m-2 of land surface as a result of 0.2-0.4 Ma of chemical weathering. Extrapolation of contemporary solute fluxes to comparable time periods reproduced these SiO2 losses to about an order of magnitude. Despite the large range and non-linearity of measured hydraulic conductivities, solute transport rates in weathering regoliths can be estimated from characterization of hydrologic conditions at sufficiently large depths. The agreement suggests that current weathering rates are representative of long-term average weathering rates in the regoliths.SiO2 fluxes associated with contemporary solute transport in three deeply weathered granitoid profiles are compared to bulk SiO2 losses during regolith development. Due to shallow impeding alluvial layers at two of the profiles, and seasonally uniform rainfall at the third, temporal variations in hydraulic and chemical state variables are largely attenuated below depths of 1-2 m. Hydraulic conductivities for the investigated range of soil-moisture saturations of 10-6 m/s-1. Estimated hydraulic flux densities for quasi-steady portions of the profiles varied from 6??10-9 to 14??10-9 m/s based on Darcy's law and field measurements of moisture saturations and pressure heads.
Jesmer, Brett R.; Goheen, Jacob R.; Monteith, Kevin L.; Kauffman, Matthew J.
2017-01-01
Glucocorticoids (GC) and triiodothyronine (T3) are two endocrine markers commonly used to quantify resource limitation, yet the relationships between these markers and the energetic state of animals has been studied primarily in small-bodied species in captivity. Free-ranging animals, however, adjust energy intake in accordance with their energy reserves, a behavior known as state-dependent foraging. Further, links between life-history strategies and metabolic allometries cause energy intake and energy reserves to be more strongly coupled in small animals relative to large animals. Because GC and T3 may reflect energy intake or energy reserves, state-dependent foraging and body size may cause endocrine–energy relationships to vary among taxa and environments. To extend the utility of endocrine markers to large-bodied, free-ranging animals, we evaluated how state-dependent foraging, energy reserves, and energy intake influenced fecal GC and fecal T3 concentrations in free-ranging moose (Alces alces). Compared with individuals possessing abundant energy reserves, individuals with few energy reserves had higher energy intake and high fecal T3 concentrations, thereby supporting state-dependent foraging. Although fecal GC did not vary strongly with energy reserves, individuals with higher fecal GC tended to have fewer energy reserves and substantially greater energy intake than those with low fecal GC. Consequently, individuals with greater energy intake had both high fecal T3 and high fecal GC concentrations, a pattern inconsistent with previous documentation from captive animal studies. We posit that a positive relationship between GC and T3 may be expected in animals exhibiting state-dependent foraging if GC is associated with increased foraging and energy intake. Thus, we recommend that additional investigations of GC– and T3–energy relationships be conducted in free-ranging animals across a diversity of body size and life-history strategies before these endocrine markers are applied broadly to wildlife conservation and management.
Partitioning and transport of total and methyl mercury in the Lower Fox River, Wisconsin
Hurley, J.P.; Cowell, S.E.; Shafer, M.M.; Hughes, P.E.
1998-01-01
To investigate transport and partitioning processes of Hg(T) in the Fox River, we coupled detailed time series data of total mercury (Hg(T)) at the river mouth with transect sampling in the Lower Fox River. Unfiltered Hg(T) concentrations in the Fox River during the study period (April 1994-October 1995) ranged from 1.8 to 182 ng L(-1) with a median of 24.8 ng L-1, predominantly (93.6%) in the particulate phase. These levels were significantly elevated compared with other large tributaries to Lake Michigan (Hurley, J. P.; Shafer, M. M.; Cowell, S. E.; Overdier, J. T.; Hughes, P. E.; Armstrong, D. E. Environ. Sci. Technol. 1996, 30, 20932098). Transect sampling revealed progressively increasing water column Hg(T) concentrations and Hg(T) particulate enrichment downstream, which were consistent with trends in sediment Hg(T) levels in the river. Resuspended sediments are likely the predominant source of Hg from the Fox River into Green Bay. Despite elevated Hg(T) concentrations, methyl mercury (MeHg) concentrations were relatively low, suggesting limited bioavailability of Hg(T) associated with sediments.To investigate transport and partitioning processes of HgT in the Fox River, we coupled detailed time series data of total mercury (HgT) at the river mouth with transect sampling in the Lower Fox River. Unfiltered HgT concentrations in the Fox River during the study period (April 1994-October 1995) ranged from 1.8 to 182 ng L-1 with a median of 24.8 ng L-1, predominantly (93.6%) in the particulate phase. These levels were significantly elevated compared with other large tributaries to Lake Michigan. Transect sampling revealed progressively increasing water column HgT concentrations and HgT particulate enrichment downstream, which were consistent with trends in sediment HgT levels in the river. Resuspended sediments are likely the predominant source of Hg from the Fox River into Green Bay. Despite elevated HgT concentrations, methyl mercury (MeHg) concentrations were relatively low, suggesting limited bioavailability of HgT associated with sediments.
Effect of Refractive Index Variation on Two-Wavelength Interferometry for Fluid Measurements
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.
1998-01-01
Two wavelength interferometry can in principle be used to measure changes in both temperature and concentration in a fluid, but measurement errors may be large if the fluid dispersion is small. This paper quantifies the effects of uncertainties in dn/dT and dn/dC on the measured temperature and concentration when using the simple expression dn = (dn/dT)dT + (dn/dC)dC. For the data analyzed here, ammonium chloride in water from -5 to 10(exp infinity) C over a concentration range of 2-14% and for wavelengths 514.5 and 633 nm, it is shown that the gradients must be known to within 0.015% to produce a modest 10% uncertainty in the measured temperature and concentration. These results show that real care must be taken to ensure the accuracy of refractive index gradients when using two wavelength interferometry for the simultaneous measurement of temperature and concentration.
Trace metal bioavailability: Modeling chemical and biological interactions of sediment-bound zinc
Luoma, S. N.; Bryan, G.W.; Jenne, Everett A.
1979-01-01
Extractable concentrations of sediment-bound Zn, as modified by the physicochemical form of the metal in the sediments, controlled Zn concentrations in the deposit-feeding bivalvesScrobicularia plana (collected from 40 stations in 17 estuaries in southwest England) andMacoma balthica (from 28 stations in San Francisco Bay). Over a wide range of concentrations, a significant correlation was found between ammonium acetate-soluble concentrations of Zn in sediments and Zn concentrations in Scrobicularia. This correlation was insufficiently precise to be of predictive value for Scrobicularia, and did not hold for Macoma over the narrower range of Zn concentrations observed in San Francisco Bay. Strong correlation of Zn concentrations inScrobicularia and the bioavailability of sediment-bound Zn to Macoma with ratios of sorption substrate (oxides of iron and manganese, organic carbon, carbonates, humic materials) concentrations in sediments were found in both the English and San Francisco Bay study areas. These correlations were attributed to substrate competition for sorption of Zn within sediments, assuming: 1) competition for sorption of Zn was largely controlled by the relative concentrations of substrates present in the sediments and 2) the bioavailability of Zn to the deposit feeders was determined by the partitioning of Zn among the substrates. The correlations indicated that the availability of Zn to the bivalves increased when concentrations of either amorphous inorganic oxides or humic substances increased in sediments. Availability was reduced at increased concentrations of organic carbon and, in San Francisco Bay, ammonium acetate-soluble Mn. Concentrations of biologically available Zn in solution and low salinities may also have enhanced Zn uptake, although the roles of these variables were less obvious from the statistical analysis.
Code of Federal Regulations, 2012 CFR
2012-01-01
... concentrations (such as engines, floats, or fuel tanks in outer wing panels) along the wing span, and (3) The... range up to VD/MD, or VDF/MDF for jets; (3) A proper margin of damping exists at VD/MD, or VDF/MDF for jets; and (4) As VD/MD (or VDF/MDF for jets) is approached, there is no large or rapid reduction in...
Advanced proteomic liquid chromatography
Xie, Fang; Smith, Richard D.; Shen, Yufeng
2012-01-01
Liquid chromatography coupled with mass spectrometry is the predominant platform used to analyze proteomics samples consisting of large numbers of proteins and their proteolytic products (e.g., truncated polypeptides) and spanning a wide range of relative concentrations. This review provides an overview of advanced capillary liquid chromatography techniques and methodologies that greatly improve separation resolving power and proteomics analysis coverage, sensitivity, and throughput. PMID:22840822
Low Imazapyr Concentrations in Streamflow From Forest Sites
J.L. Michael
1989-01-01
This study evaluated the fate of the herbicide, ARSENAL(R) from large, forest-land watersheds in typical soils of the southern United States. Imazapyr is active over a range of rates and is recommended at rates up to 1.68 kilograms acid equivalent per hectare (kg/ha) for the control of annual and perennial grasses, broadleaved weeds, and woody competition. The...
Methotrexate Reduced TNF Bioactivity in Rheumatoid Arthritis Patients Treated with Infliximab
Rinaudo-Gaujous, Mélanie; Thomas, Thierry
2017-01-01
Objectives. To evaluate methotrexate effect on tumor necrosis factor (TNF) alpha bioactivity during infliximab (IFX) therapy in rheumatoid arthritis (RA) patients and to correlate TNF bioactivity with antibody towards IFX (ATI) development and RA clinical response. Materials and Methods. Thirty-nine active women RA patients despite conventional synthetic disease modifying antirheumatic drugs (csDMARDs) requiring IFX therapy were enrolled, and clinical data and blood samples were recorded at baseline (W0) and at 6 weeks (W6), W22, and W54 of IFX treatment. TNF bioactivity as well as IFX trough and ATI concentrations were assessed on blood samples. Results. TNF bioactivity decreased from W0 to W54 with a large range from W22 at the time of ATI detection. From W22, TNF bioactivity was lower in presence of methotrexate as csDMARD compared to other csDMARDs. IFX trough concentration increased from W0 to W54 with a large range from W22, similarly to TNF bioactivity. Methotrexate therapy prevented ATI presence at W22 and reduced TNF bioactivity compared to other csDMARDs (p = 0.002). Conclusion. This suggests that methotrexate plays a key role in TNF bioactivity and against ATI development. PMID:28352145
Isotopic composition of water from a mine drainage site in Creede County in south central Colorado
NASA Astrophysics Data System (ADS)
Michel, R. L.; Williams, M. W.; Krupicka, A.; Wireman, M.; Graves, J.
2011-12-01
Creede County in South Central Colorado was an active area of silver mining beginning in the early 1890s. To relieve flooding in some of the mines, the Nelson Tunnel was built in the late 1890s. This tunnel still exists and acid mine drainage from the tunnel eventually flows into the Willow Creek Watershed which eventually flows into the Upper Rio Grande. The water coming out of the tunnel is high in toxic metals and the area has become part of an EPA Superfund site in an effort to find a suitable method to remediate the metal problems. Among the approaches used in the program is the use of isotopes of water and carbon to identify sources and estimate ages of the water in the drainage. Samples were collected for analysis of isotopic ratios and tritium concentrations at a series of sites within the tunnel complex from 2008-2010. In 2009 samples were also collected for analysis of isotopes in groundwater and surface water. In 2010 sampling was expanded to include four precipitation and one snow sample. Tritium concentrations in precipitation and snowfall in 2010 ranged from 3-6 tritium units with the lowest concentration found in the snow sample. The 18O isotopic ratios in precipitation for this site ranged from an average of -8.9 o/oo in summer to about -19 o/oo in winter. The six groundwater samples collected in 2009 had an average 18O isotopic concentration of -15 o/oo and tritium concentrations ranging from 7.4-9.3 TU. These results suggest that the groundwater sampled is composed largely of a mixture of summer and winter precipitation with the latter source being dominant. The tritium concentrations in groundwater exceed recent precipitation concentrations, suggesting the presence of water from the bomb-tritium transient and an age of a decade or more for the groundwater. Eight sites in the tunnel were sampled I from 2008-2010, although not all sites were sampled every year. The sampling sites included waters seeping into the tunnel as well as the outlet water. For 18O, the average values were slightly less depleted in 2008 (-14.71 o/o) and 2010 (-14.87 o/oo) than in 2009 (-15.13 o/oo). Data from all years indicate that the source of water in the tunnel is a mixture similar to the mixture that produces local groundwater. The tritium concentrations, ranging from 0-5.6 TU, are substantially lower than concentrations measured in local groundwater. Only one site in the tunnel (Corkscrew Raise) had tritium concentrations near that of present day precipitation. All other sites had tritium concentrations below present day precipitation, indicating that these waters have a large component of water that was deposited prior to the onset of the bomb-tritium transient (1953). Most sites had tritium concentrations less than 2 TU, which suggests that these waters are a mixture of mostly old regional groundwater with a varying component of post-1953 water. Remediation efforts will have to concentrate on ways to prevent this old groundwater from entering the tunnel and transporting metals from the abandon mines to the watershed.
Front propagation and clustering in the stochastic nonlocal Fisher equation
NASA Astrophysics Data System (ADS)
Ganan, Yehuda A.; Kessler, David A.
2018-04-01
In this work, we study the problem of front propagation and pattern formation in the stochastic nonlocal Fisher equation. We find a crossover between two regimes: a steadily propagating regime for not too large interaction range and a stochastic punctuated spreading regime for larger ranges. We show that the former regime is well described by the heuristic approximation of the system by a deterministic system where the linear growth term is cut off below some critical density. This deterministic system is seen not only to give the right front velocity, but also predicts the onset of clustering for interaction kernels which give rise to stable uniform states, such as the Gaussian kernel, for sufficiently large cutoff. Above the critical cutoff, distinct clusters emerge behind the front. These same features are present in the stochastic model for sufficiently small carrying capacity. In the latter, punctuated spreading, regime, the population is concentrated on clusters, as in the infinite range case, which divide and separate as a result of the stochastic noise. Due to the finite interaction range, if a fragment at the edge of the population separates sufficiently far, it stabilizes as a new cluster, and the processes begins anew. The deterministic cutoff model does not have this spreading for large interaction ranges, attesting to its purely stochastic origins. We show that this mode of spreading has an exponentially small mean spreading velocity, decaying with the range of the interaction kernel.
Front propagation and clustering in the stochastic nonlocal Fisher equation.
Ganan, Yehuda A; Kessler, David A
2018-04-01
In this work, we study the problem of front propagation and pattern formation in the stochastic nonlocal Fisher equation. We find a crossover between two regimes: a steadily propagating regime for not too large interaction range and a stochastic punctuated spreading regime for larger ranges. We show that the former regime is well described by the heuristic approximation of the system by a deterministic system where the linear growth term is cut off below some critical density. This deterministic system is seen not only to give the right front velocity, but also predicts the onset of clustering for interaction kernels which give rise to stable uniform states, such as the Gaussian kernel, for sufficiently large cutoff. Above the critical cutoff, distinct clusters emerge behind the front. These same features are present in the stochastic model for sufficiently small carrying capacity. In the latter, punctuated spreading, regime, the population is concentrated on clusters, as in the infinite range case, which divide and separate as a result of the stochastic noise. Due to the finite interaction range, if a fragment at the edge of the population separates sufficiently far, it stabilizes as a new cluster, and the processes begins anew. The deterministic cutoff model does not have this spreading for large interaction ranges, attesting to its purely stochastic origins. We show that this mode of spreading has an exponentially small mean spreading velocity, decaying with the range of the interaction kernel.
Carravieri, Alice; Bustamante, Paco; Tartu, Sabrina; Meillère, Alizée; Labadie, Pierre; Budzinski, Hélène; Peluhet, Laurent; Barbraud, Christophe; Weimerskirch, Henri; Chastel, Olivier; Cherel, Yves
2014-12-16
Top marine predators are effective tools to monitor bioaccumulative contaminants in remote oceanic environments. Here, we used the wide-ranging wandering albatross Diomedea exulans to investigate potential geographical variations of contaminant transfer to predators in the Southern Ocean. Blood concentrations of 19 persistent organic pollutants and 14 trace elements were measured in a large number of individuals (N = 180) of known age, sex and breeding status from the subantarctic Crozet Islands. Wandering albatrosses were exposed to a wide range of contaminants, with notably high blood mercury concentrations. Contaminant burden was markedly influenced by latitudinal foraging habitats (inferred from blood δ(13)C values), with individuals feeding in warmer subtropical waters having lower concentrations of pesticides, but higher concentrations of mercury, than those feeding in colder subantarctic waters. Sexual differences in contaminant burden seemed to be driven by gender specialization in feeding habitats, rather than physiological characteristics, with females foraging further north than males. Other individual traits, such as adult age and reproductive status, had little effect on blood contaminant concentrations. Our study provides further evidence of the critical role of global distillation on organic contaminant exposure to Southern Ocean avian predators. In addition, we document an unexpected high transfer of mercury to predators in subtropical waters, which merits further investigation.
Advances in highly doped upconversion nanoparticles.
Wen, Shihui; Zhou, Jiajia; Zheng, Kezhi; Bednarkiewicz, Artur; Liu, Xiaogang; Jin, Dayong
2018-06-20
Lanthanide-doped upconversion nanoparticles (UCNPs) are capable of converting near-infra-red excitation into visible and ultraviolet emission. Their unique optical properties have advanced a broad range of applications, such as fluorescent microscopy, deep-tissue bioimaging, nanomedicine, optogenetics, security labelling and volumetric display. However, the constraint of concentration quenching on upconversion luminescence has hampered the nanoscience community to develop bright UCNPs with a large number of dopants. This review surveys recent advances in developing highly doped UCNPs, highlights the strategies that bypass the concentration quenching effect, and discusses new optical properties as well as emerging applications enabled by these nanoparticles.
McKee, Lester J; Gilbreath, Alicia N
2015-08-01
Water-quality policy documents throughout the world often identify urban stormwater as a large and controllable impact to sensitive ecosystems, yet there is often limited data to characterize concentrations and loads especially for rare and more difficult to quantify pollutants. In response, concentrations of suspended sediments and silver, mercury and selenium including speciation, and other trace elements were measured in dry and wet weather stormwater flow from a 100% urban watershed near San Francisco. Suspended sediment concentrations ranged between 1.4 and 2700 mg/L and varied with storm intensity. Turbidity was shown to correlate strongly with suspended sediments and most trace elements and was used as a surrogate with regression to estimate concentrations during unsampled periods and to compute loads. Mean suspended sediment yield was 31.5 t/km(2)/year. Total mercury ranged between 1.4 and 150 ng/L and was, on average, 92% particulate, 0.9% methylated, and 1.2% acid labile. Total mercury yield averaged 5.7 μg/m(2)/year. Total selenium ranged between non-detect and 2.9 μg/L and, on average, the total load (0.027 μg/m(2)/year) was 61% transported in dissolved phase. Selenate (Se(VI)) was the dominant species. Silver concentrations ranged between non-detect and 0.11 μg/L. Concentrations and loads of other trace elements were also highly variable and were generally similar to other urban systems with the exceptions of Ag and As (seldom reported) and Cr and Zn which exhibited concentrations and loads in the upper range of those reported elsewhere. Consistent with the semi-arid climatic setting, >95% of suspended sediment, 94% of total Hg, and 85-95 % of all other trace element loads were transported during storm flows with the exception of selenium which showed an inverse relationship between concentration and flow. Treatment of loads is made more challenging in arid climate settings due to low proportions of annual loads and greater dissolved phase during low flow conditions. This dataset fills an important local data gap for highly urban watersheds of San Francisco Bay. The field and interpretative methods, the uniqueness of the analyte list, and resulting information have general applicability for managing pollutant concentrations and loads in urban watersheds in other parts of the world and may have particularly useful application in more arid climates.
Risk characterization of methyl tertiary butyl ether (MTBE) in tap water.
Stern, B R; Tardiff, R G
1997-12-01
Methyl tertiary butyl ether (MTBE) can enter surface water and groundwater through wet atmospheric deposition or as a result of fuel leaks and spills. About 30% of the U.S. population lives in areas where MTBE is in regular use. Ninety-five percent of this population is unlikely to be exposed to MTBE in tap water at concentrations exceeding 2 ppb, and most will be exposed to concentrations that are much lower and may be zero. About 5% of this population may be exposed to higher levels of MTBE in tap water, resulting from fuel tank leaks and spills into surface or groundwater used for potable water supplies. This paper describes the concentration ranges found and anticipated in surface and groundwater, and estimates the distribution of doses experienced by humans using water containing MTBE to drink, prepare food, and shower/bathe. The toxic properties (including potency) of MTBE when ingested, inhaled, and in contact with the skin are summarized. Using a range of human toxic potency values derived from animal studies, margins of exposure (MOE) associated with alternative chronic exposure scenarios are estimated to range from 1700 to 140,000. Maximum concentrations of MTBE in tap water anticipated not to cause adverse health effects are determined to range from 700 to 14,000 ppb. The results of this analysis demonstrate that no health risks are likely to be associated with chronic and subchronic human exposures to MTBE in tap water. Although some individuals may be exposed to very high concentrations of MTBE in tap water immediately following a localized spill, these exposures are likely to be brief in duration due to large-scale dilution and rapid volatilization of MTBE, the institution of emergency response and remediation measures to minimize human exposures, and the low taste and odor thresholds of MTBE which ensure that its presence in tap water is readily detected at concentrations well below the threshold for human injury.
NASA Astrophysics Data System (ADS)
Sun, Yutao; Zhou, Xiaocheng; Zheng, Guodong; Li, Jing; Shi, Hongyu; Guo, Zhengfu; Du, Jianguo
2017-11-01
Degassing of carbon monoxide (CO), which plays a significant role in the contribution of deep carbon to the atmosphere, commonly occurs within active fault zones. CO degassing from soil to the atmosphere in the Basin and Range province, west of Beijing (BRPB), China, was investigated by in-situ field measurements in the active fault zones. The measured concentrations of CO in soil gas in the BRPB ranged from 0.29 × 10-6 to 1.1 × 10-6 with a mean value of 0.6 × 10-6, which is approximately twice as large as that in the atmosphere. Net fluxes of CO degassing ranged from -48.6 mg m-2 d-1 to 12.03 mg m-2 d-1. The diffusion of CO from soil to the atmosphere in the BRPB was estimated to be at least 7.6 × 103 ton/a, which is comparable to the corresponding result of about 1.2 × 104 ton/a for CO2. CO concentrations were spatially heterogeneous with clearly higher concentrations along the NE-SW trending in the BRPB. These elevated values of CO concentrations were also coincident with the region with low-velocity and high conductivity in deep mantle, and high Poisson's ratio in the crust, thereby suggesting that CO degassing from the soil might be linked to upwelling of the asthenospheric mantle. Other sources of CO in the soil gas are suggested to be dominated by chemical reactions between deep fluids and carbonate minerals (e.g., dolomite, limestone, and siderite) in country rocks. Biogenic processes may also contribute to the CO in soil gas. The spatial distribution patterns of CO concentrations are coincident with the stress field, suggesting that the concentrations of CO could be a potential indicator for crustal stress field and, hence is potential useful for earthquake monitoring in the BRPB.
Measurements of airborne methylene diphenyl diisocyanate (MDI) concentration in the U.S. workplace.
Booth, Karroll; Cummings, Barbara; Karoly, William J; Mullins, Sharon; Robert, William P; Spence, Mark; Lichtenberg, Fran W; Banta, J
2009-04-01
This article summarizes a large body of industry air sampling data (8134 samples) in which airborne MDI concentrations were measured in a wide variety of manufacturing processes that use either polymeric MDI (PMDI) or monomeric (pure) MDI. Data were collected during the period 1984 through 1999. A total of 606 surveys were conducted for 251 companies at 317 facilities. The database includes 3583 personal (breathing zone) samples and 4551 area samples. Data demonstrate that workplace airborne MDI concentrations are extremely low in a majority of the manufacturing operations. Most (74.6%) of the airborne MDI concentrations measured in the personal samples were nondetectable, i.e., below the limits of quantification (LOQs). A variety of validated industrial hygiene sampling/analytical methods were used for data collection; most are modifications of OSHA Method 47. The LOQs for these methods ranged from 0.1-0.5 microg/sample. The very low vapor pressures of both monomeric MDI and PMDI largely explain the low airborne concentrations found in most operations. However, processes or applications in which the chemical is sprayed or heated may result in higher airborne concentrations and higher exposure potentials if appropriate control measures are not implemented. Data presented in this article will be a useful reference for employers in helping them to manage their health and safety program as it relates to respiratory protection during MDI/PMDI applications.
Using depolarization to quantify ice nucleating particle concentrations: a new method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zenker, Jake; Collier, Kristen N.; Xu, Guanglang
We have developed a new method to determine ice nucleating particle (INP) concentrations observed by the Texas A&M University continuous flow diffusion chamber (CFDC) under a wide range of operating conditions. In this study, we evaluate differences in particle optical properties detected by the Cloud and Aerosol Spectrometer with POLarization (CASPOL) to differentiate between ice crystals, droplets, and aerosols. The depolarization signal from the CASPOL instrument is used to determine the occurrence of water droplet breakthrough (WDBT) conditions in the CFDC. The standard procedure for determining INP concentration is to count all particles that have grown beyond a nominal sizemore » cutoff as ice crystals. During WDBT this procedure overestimates INP concentration, because large droplets are miscounted as ice crystals. Here we design a new analysis method based on depolarization ratio that can extend the range of operating conditions of the CFDC. The method agrees reasonably well with the traditional method under non-WDBT conditions with a mean percent error of ±32.1 %. Additionally, a comparison with the Colorado State University CFDC shows that the new analysis method can be used reliably during WDBT conditions.« less
Water Quality in Courtland Creek, East Oakland, California
NASA Astrophysics Data System (ADS)
Bracho, H.; Ahumada, A.; Hernandez, G.; Quintero, D.; Ramirez, J.; Ramirez, L.; Pham, T.; Holt, J.; Johnson, A.; Rubio, E.; Ponce, X.; Medina, S.; Limon, S.
2013-12-01
Courtland Creek is a tributary of the larger East Creek system that runs southeast from the Oakland Hills down to the San Leandro Bay in Oakland, California. In an effort to assess the overall health of Courtland Creek our team conducted a water quality research study. Stream water samples were collected from 4 sites between MacArthur Avenue (describe geographically as not all readers are familiar with Oakland geography) and Thompson Avenue (describe geographically as not all readers are familiar with Oakland geography) at accessible sections of this largely culverted stream. Dissolved oxygen, ammonia, nitrite, nitrate, phosphate, and chlorine concentrations in were measured using wet chemistry procedures. Analysis of collected samples indicates that dissolved oxygen levels in the stream are sufficient for invertebrates, ranging from 5 and 9 parts per million (ppm). Nitrate levels were significantly high, with concentrations ranging from 15 and 40 ppm. Other chemical species associated with waste products--ammonia, nitrite, and phosphate--also were present, but at low concentrations. Small amounts of chlorine also were found in waters of the creek system. The presence of high concentrations of nitrate, together with chlorine, suggests that untreated sewage may be leaking into Courtland Creek at an unidentified location.
Using depolarization to quantify ice nucleating particle concentrations: a new method
Zenker, Jake; Collier, Kristen N.; Xu, Guanglang; ...
2017-12-01
We have developed a new method to determine ice nucleating particle (INP) concentrations observed by the Texas A&M University continuous flow diffusion chamber (CFDC) under a wide range of operating conditions. In this study, we evaluate differences in particle optical properties detected by the Cloud and Aerosol Spectrometer with POLarization (CASPOL) to differentiate between ice crystals, droplets, and aerosols. The depolarization signal from the CASPOL instrument is used to determine the occurrence of water droplet breakthrough (WDBT) conditions in the CFDC. The standard procedure for determining INP concentration is to count all particles that have grown beyond a nominal sizemore » cutoff as ice crystals. During WDBT this procedure overestimates INP concentration, because large droplets are miscounted as ice crystals. Here we design a new analysis method based on depolarization ratio that can extend the range of operating conditions of the CFDC. The method agrees reasonably well with the traditional method under non-WDBT conditions with a mean percent error of ±32.1 %. Additionally, a comparison with the Colorado State University CFDC shows that the new analysis method can be used reliably during WDBT conditions.« less
Flow resistance and suspended load in sand-bed rivers: Simplified stratification model
Wright, S.; Parker, G.
2004-01-01
New methods are presented for the prediction of the flow depth, grain-size specific near-bed concentration, and bed-material suspended sediment transport rate in sand-bed rivers. The salient improvements delineated here all relate to the need to modify existing formulations in order to encompass the full range of sand-bed rivers, and in particular large, low-slope sand-bed rivers. They can be summarized as follows: (1) the inclusion of density stratification effects in a simplified manner, which have been shown in the companion paper to be particularly relevant for large, low-slope, sand-bed rivers; (2) a new predictor for near-bed entrainment rate into suspension which extends a previous relation to the range of large, low-slope sand-bed rivers; and (3) a new predictor for form drag which again extends a previous relation to include large, low-slope sand-bed rivers. Finally, every attempt has been made to cast the relations in the simplest form possible, including the development of software, so that practicing engineers may easily use the methods. ?? ASCE.
Heggers, John P; Cottingham, John; Gusman, Jean; Reagor, Lee; McCoy, Lana; Carino, Edith; Cox, Robert; Zhao, Jian-Gang; Reagor, Lana
2002-06-01
Recent testimonials report grapefruit-seed extract, or GSE (Citricidal) to be effective against more than 800 bacterial and viral strains, 100 strains of fungus, and a large number of single and multicelled parasites. This study investigated GSE for antibacterial activity at varying time intervals and concentration levels and tissue toxicity at varying concentrations in an effort to determine if a concentration existed that was both microbicidal and nontoxic and in what period of time. Gram-negative and gram-positive isolates were introduced into graduated dilutions of GSE (twofold concentrations ranging from 1:1, through 1:512) for determination of bacterial activity. In vitro assays with human skin fibroblast cells were also performed at the same dilutions to determine toxicity. These tests indicated that from the 1:1 through the 1:128 concentrations, GSE remained toxic as well as bactericidal. However, test results indicated that at the 1:512 dilution, GSE remained bactericidal, but completely nontoxic. The initial data shows GSE to have antimicrobial properties against a wide range of gram-negative and gram-positive organisms at dilutions found to be safe. With the aid of scanning transmission electron microscopy (STEM), the mechanism of GSE's antibacterial activity was revealed. It was evident that GSE disrupts the bacterial membrane and liberates the cytoplasmic contents within 15 minutes after contact even at more dilute concentrations.
A national-scale assessment of micro-organic contaminants in groundwater of England and Wales.
Manamsa, Katya; Crane, Emily; Stuart, Marianne; Talbot, John; Lapworth, Dan; Hart, Alwyn
2016-10-15
A large variety of micro-organic (MO) compounds is used in huge quantities for a range of purposes (e.g. manufacturing, food production, healthcare) and is now being frequently detected in the aquatic environment. Interest in the occurrence of MO contaminants in the terrestrial and aquatic environments continues to grow, as well as in their environmental fate and potential toxicity. However, the contamination of groundwater resources by MOs has a limited evidence base compared to other freshwater resources. Of particular concern are newly 'emerging contaminants' such as pharmaceuticals and lifestyle compounds, particularly those with potential endocrine disrupting properties. While groundwater often has a high degree of protection from pollution due to physical, chemical and biological attenuation processes in the subsurface compared to surface aquatic environments, trace concentrations of a large range of compounds are still detected in groundwater and in some cases may persist for decades due to the long residence times of groundwater systems. This study provides the first national-scale assessment of micro-organic compounds in groundwater in England and Wales. A large set of monitoring data was analysed to determine the relative occurrence and detected concentrations of different groups of compounds and to determine relationships with land-use, aquifer type and groundwater vulnerability. MOs detected including emerging compounds such as caffeine, DEET, bisphenol A, anti-microbial agents and pharmaceuticals as well as a range of legacy contaminants including chlorinated solvents and THMs, petroleum hydrocarbons, pesticides and other industrial compounds. There are clear differences in MOs between land-use types, particularly for urban-industrial and natural land-use. Temporal trends of MO occurrence are assessed but establishing long-term trends is not yet possible. Copyright © 2016 British Geological Survey, NERC. Published by Elsevier B.V. All rights reserved.
Nitrate removal in stream ecosystems measured by 15N addition experiments: Denitrification
Mulholland, P.J.; Hall, R.O.; Sobota, D.J.; Dodds, W.K.; Findlay, S.E.G.; Grimm, N. B.; Hamilton, S.K.; McDowell, W.H.; O'Brien, J. M.; Tank, J.L.; Ashkenas, L.R.; Cooper, L.W.; Dahm, Clifford N.; Gregory, S.V.; Johnson, S.L.; Meyer, J.L.; Peterson, B.J.; Poole, G.C.; Valett, H.M.; Webster, J.R.; Arango, C.P.; Beaulieu, J.J.; Bernot, M.J.; Burgin, A.J.; Crenshaw, C.L.; Helton, A.M.; Johnson, L.T.; Niederlehner, B.R.; Potter, J.D.; Sheibley, R.W.; Thomasn, S.M.
2009-01-01
We measured denitrification rates using a field 15N-NO- 3 tracer-addition approach in a large, cross-site study of nitrate uptake in reference, agricultural, and suburban-urban streams. We measured denitrification rates in 49 of 72 streams studied. Uptake length due to denitrification (SWden) ranged from 89 m to 184 km (median of 9050 m) and there were no significant differences among regions or land-use categories, likely because of the wide range of conditions within each region and land use. N2 production rates far exceeded N2O production rates in all streams. The fraction of total NO-3 removal from water due to denitrification ranged from 0.5% to 100% among streams (median of 16%), and was related to NHz 4 concentration and ecosystem respiration rate (ER). Multivariate approaches showed that the most important factors controlling SWden were specific discharge (discharge / width) and NO-3 concentration (positive effects), and ER and transient storage zones (negative effects). The relationship between areal denitrification rate (Uden) and NO- 3 concentration indicated a partial saturation effect. A power function with an exponent of 0.5 described this relationship better than a Michaelis-Menten equation. Although Uden increased with increasing NO- 3 concentration, the efficiency of NO-3 removal from water via denitrification declined, resulting in a smaller proportion of streamwater NO-3 load removed over a given length of stream. Regional differences in stream denitrification rates were small relative to the proximate factors of NO-3 concentration and ecosystem respiration rate, and land use was an important but indirect control on denitrification in streams, primarily via its effect on NO-3 concentration. ?? 2009.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunter, C.; Simpson, J.; Kovats, Z.
Sediments from Soda Creek were evaluated using the Sediment Quality Triad as part of investigations being conducted at the Monsanto Company plant in Soda Springs, Idaho. Information collected by an ecological assessment included metal concentrations (arsenic, cadmium, copper, molybdenum, nickel, selenium, silver, and vanadium), benthic fauna community structure, and sediment toxicity. The collected sediments were composed of sandy-silt sized particles, with 2.4% to 9.1% organic carbon. Metal concentrations at sample stations were elevated relative to sediments collected from reference stations. For example, average cadmium concentrations ranged from 13 to 48 mg/kg at sample stations and 0.72 to 3.2 mg/kg atmore » reference stations; selenium concentrations ranged from 4.7 to 91 mg/kg at sample stations and 0.82 to 2.7 mg/kg at reference stations. Soda Creek has a relatively low flow gradient and the benthic fauna at both reference and sample stations was dominated by oligochaete worms and chironomid midge larvae. Taxonomic richness at individual sites ranged from 4.3 to 6.7 and 6 to 10.3 at reference and sample sites, respectively. There was no significant evidence of toxicity at any location sampled. Cluster analysis showed that the benthic community structure of many of the sample stations could not be distinguished from the reference stations. Canonical correlation analysis showed there was a significant relationship between benthic fauna and metal concentration, but there was not a consistent difference between sample and reference stations. For Soda Creek, local phenomena were more significant to benthic community structure than large-scale patterns of metal accumulation. Using the Triad approach, the authors concluded there has been no adverse effect of metal concentrations on the benthic community of Soda Creek.« less
Perrault, Justin R
2014-08-01
Bodily accumulation of certain toxic elements can cause physiologic harm to marine organisms and be detrimental to their health and survival. The leatherback sea turtle (Dermochelys coriacea) is a broadly distributed marine reptile capable of consuming hundreds of kilograms of gelatinous zooplankton each day. Little is known about toxicants present in these prey items. Specifically, mercury is a known neurotoxin with no known essential function, while selenium detoxifies bodily mercury, but can be toxic at elevated concentrations. I collected 121 leatherback prey items (i.e., gelatinous zooplankton) from known leatherback foraging grounds and sampled the esophagus and stomach contents of stranded turtles. All samples were analyzed for total mercury and selenium. Additionally, two prey items and three liver samples were analyzed for methylmercury, the most toxic form of the element. Total mercury concentrations in prey items ranged from 0.2 to 17 ppb, while selenium concentrations ranged from <10 to 616 ppb; methylmercury concentrations in liver ranged from 25 to 236 ppb. Prey items had methylmercury concentrations below the limits of detection (<0.4 ppb). Hazard quotients and exposure rates indicate that leatherbacks of all life stages may be at risk for selenium toxicity. For endangered species like the leatherback, continued anthropogenic deposition of mercury and selenium into the environment is concerning, especially since bodily mercury and selenium concentrations increase as organisms age. Because leatherbacks are long-lived and have large daily prey consumption rates, mercury and selenium loads may increase to physiologically harmful levels in this imperiled species. Copyright © 2014 Elsevier Ltd. All rights reserved.
Harino, H; Ohji, M; Wattayakorn, G; Adulyanukosol, K; Arai, T; Miyazaki, N
2007-07-01
Concentrations of butyltin (BT) and phenyltin (PT) compounds were measured in organs and tissues of five species of whales (Bride's whale [Balaenoptera edeni], false killer whale [Pseudorca crassidens], pygmy sperm whale [Kogia breviceps], short-finned pilot whale [Globicephala macrorhynchus], and sperm whale [Physeter macrocephalus]) found stranded on the coasts of Thailand. The mean concentrations of BTs in various whales were in the range of 0.157 to 1.03 mg kg(-1 )wet weight, which were higher levels than the reported concentrations in whales from other countries. PT concentrations were also detected in the range of 0.022 to 1.14 mg kg(-1) wet weight. The concentrations of BTs and PTs in whales were higher than those in mussels from the coastal area of Thailand. Concentrations of tributyltin (TBT) and triphenyltin (TPT) compounds in whale organs and tissues were also compared, and it was found that TBT concentrations were generally higher in liver and lower in lung. TPT concentrations were higher in liver and blubber and lower in lung. Ratios of TBT degradation products in whale liver, namely monobutyltin (MBT) and dibutyltin (DBT), were higher than the ratios of TBT. TPTs in liver were found to be dominant among PTs. The patterns of BTs and PTs in false killer whale liver were different from those in the other whales by cluster analysis. Their concentrations in false killer whales were the highest among all whales in this study. False killer whales feed on squid and large pelagic fish containing higher concentrations of organotin (OT) compounds, so the differences in patterns and concentrations of OTs in liver between false killer whales and the other whales may be caused by difference in diet.
A field evaluation of a piezo-optical dosimeter for environmental monitoring of nitrogen dioxide.
Wright, John D; Schillinger, Eric F J; Cazier, Fabrice; Nouali, Habiba; Mercier, Agnes; Beaugard, Charles
2004-06-01
Measurements of 8-hour time-weighted average NO(2) concentrations are reported at 7 different locations in the region of Dunkirk over 5 consecutive days using PiezOptic monitoring badges previously calibrated for the range 0-70 ppb together with data from chemiluminescent analysers in 5 sites (4 fixed and one mobile). The latter facilities also provided data on ozone and NO concentrations and meteorological conditions. Daily averages from the two pairs of badges in different types of sampling cover in each site have been compared with data from the chemiluminescent analysers, and found largely to agree within error margins of +/-30%. Although NO(2) and ozone concentrations were low, rendering detailed discussion impossible, the general features followed expected patterns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norton, S.A.; Kahl, J.S.; Brakke, D.F.
1988-01-01
There is great uncertainty and large cost in making dry deposition measurements. The authors present evidence based on wet deposition, evapotranspiration, S storage in lake sediments, and sulfate concentrations in lakes and streams in Maine that the dry deposition flux of sulfur to drainage basins of lakes in Maine ranges from nearly 0% to more than 100% of wet deposition, even in small areas. The regional pattern of sulfate concentrations in Maine lakes is due to gradients in both wet and dry deposition and variation in evapotranspiration. Patterns are modified locally by lakes hydrologic type, elevation, vegetation, and terrestrial drainagemore » basin aspect. (Copyright (c) 1988 Elsevier Science Publishers B.V.)« less
Mróz, Tomasz; Szufa, Katarzyna; Frontasyeva, Marina V; Tselmovich, Vladimir; Ostrovnaya, Tatiana; Kornaś, Andrzej; Olech, Maria A; Mietelski, Jerzy W; Brudecki, Kamil
2018-01-01
Seven lichens (Usnea antarctica and U. aurantiacoatra) and nine moss samples (Sanionia uncinata) collected in King George Island were analyzed using instrumental neutron activation analysis, and concentration of major and trace elements was calculated. For some elements, the concentrations observed in moss samples were higher than corresponding values reported from other sites in the Antarctica, but in the lichens, these were in the same range of concentrations. Scanning electron microscopy (SEM) and statistical analysis showed large influence of volcanic-origin particles. Also, the interplanetary cosmic particles (ICP) were observed in investigated samples, as mosses and lichens are good collectors of ICP and micrometeorites.
NASA Astrophysics Data System (ADS)
Stotler, Randy L.; Frape, Shaun K.; Ruskeeniemi, Timo; Ahonen, Lasse; Onstott, Tullis C.; Hobbs, Monique Y.
2009-06-01
SummaryShield fluids are commonly understood to evolve through water-rock interaction. However, fluids may also concentrate during ice formation. Very little is currently known about groundwater conditions beneath thick permafrost in crystalline environments. This paper evaluates three possible Shield fluid evolution pathways at a crystalline Shield location currently under 500+ meters of permafrost, including surfical cryogenic concentration of seawater, in situ cryogenic concentration and water-rock interaction. A primary goal of this study was to further scientific understanding of permafrost and its role in influencing deep flow system evolution, fluid movement and chemical evolution of waters in crystalline rocks. Precipitation, surface, permafrost and subpermafrost water samples were collected, as well as dissolved and free gas samples, fracture fillings and matrix fluid samples to characterize the site. Investigations of groundwater conditions beneath thick permafrost provides valuable information which can be applied to safety assessment of deep, underground nuclear waste repositories, effects of long-term mining in permafrost areas and understanding analogues to potential life-bearing zones on Mars. The study was conducted in the Lupin gold mine in Nunavut, Canada, located within the zone of continuous permafrost. Through-taliks beneath large lakes in the area provided potential hydraulic connections through the permafrost. Na-Cl and Na-Cl-SO 4 type permafrost waters were contaminated by mining activities, affecting the chloride and nitrate concentrations. High nitrate concentrations (423-2630 mg L -1) were attributed to remnants of blasting. High sulfate concentrations in the permafrost (578-5000 mg L -1) were attributed to naturally occurring and mining enhanced sulfide oxidation. Mine dewatering created an artificial hydraulic gradient, resulting in methane hydrate dissociation at depth. Less contaminated basal waters had medium sulfate concentrations and were Ca-Na dominated, similar to deeper subpermafrost waters. Subpermafrost waters had a wide range of salinities (2.6-40 g L -1). It was unclear from this investigation what impact talik waters would have on deep groundwaters in undisturbed environments. In situ cryogenic concentration due to ice and methane hydrate formation may have concentrated the remaining fluids, however there was no evidence that infiltration of cryogenically concentrated seawater occurred since the last glacial maximum. Matrix waters were dilute and unable to affect groundwater salinity. Fracture infillings were scarce, but calcite fluid inclusion microthermometry indicated a large range in salinities, potentially an additional source of salinity to the system.
Are walleye from Lake Roosevelt contaminated with mercury?
Erwin, Martha L.; Munn, Mark D.
1997-01-01
To find out, scientists from the U. S. Geological Survey (USGS) tested walleye and other sport fish from the upper Columbia River and Franklin D. Roosevelt Lake (Lake Roosevelt), the largest reservoir in Washington and a popular fishing spot.Findings:Walleye had higher concentrations of mercury than other sport fish.Larger walleye had higher mercury concentrations than smaller walleye.Mercury concentrations in walleye fillets ranged from 0.11 to 0.44 parts per million (ppm). These concentrations do not exceed the current Federal standard (1.0 ppm of mercury) designed to protect the health of people who eat small amounts of fish.After reviewing these findings, the Washington State Department of Health concluded that people who regularly consume large amounts of Lake Roosevelt walleye may be at risk of adverse health effects from mercury and should limit their consumption of these fish.
Recent science and its exploration: the case of molecular biology.
Rheinberger, Hans-Jörg
2009-03-01
This paper is about the interaction and the intertwinement between history of science as a historical process and history of science as the historiography of this process, taking molecular biology as an example. In the first part, two historical shifts are briefly characterized that appear to have punctuated the emergence of molecular biology between the 1930s and the 1980s, one connected to a new generation of analytical apparatus, the other to properly molecular tools. The second part concentrates on the historiography of this development. Basically, it distinguishes three phases. The first phase was largely dominated by accounts of the actors themselves. The second coincided with the general 'practical turn' in history of science at large, and today's historical appropriations of the molecularization of the life sciences appear to be marked by the changing disciplinary status of the science under review. In a closing remark, an argument is made for differentiating between long-range, middle-range and short-range perspectives in dealing with the history of the sciences.
Harada, Sei; Hirayama, Akiyoshi; Chan, Queenie; Kurihara, Ayako; Fukai, Kota; Iida, Miho; Kato, Suzuka; Sugiyama, Daisuke; Kuwabara, Kazuyo; Takeuchi, Ayano; Akiyama, Miki; Okamura, Tomonori; Ebbels, Timothy M D; Elliott, Paul; Tomita, Masaru; Sato, Asako; Suzuki, Chizuru; Sugimoto, Masahiro; Soga, Tomoyoshi; Takebayashi, Toru
2018-01-01
Cohort studies with metabolomics data are becoming more widespread, however, large-scale studies involving 10,000s of participants are still limited, especially in Asian populations. Therefore, we started the Tsuruoka Metabolomics Cohort Study enrolling 11,002 community-dwelling adults in Japan, and using capillary electrophoresis-mass spectrometry (CE-MS) and liquid chromatography-mass spectrometry. The CE-MS method is highly amenable to absolute quantification of polar metabolites, however, its reliability for large-scale measurement is unclear. The aim of this study is to examine reproducibility and validity of large-scale CE-MS measurements. In addition, the study presents absolute concentrations of polar metabolites in human plasma, which can be used in future as reference ranges in a Japanese population. Metabolomic profiling of 8,413 fasting plasma samples were completed using CE-MS, and 94 polar metabolites were structurally identified and quantified. Quality control (QC) samples were injected every ten samples and assessed throughout the analysis. Inter- and intra-batch coefficients of variation of QC and participant samples, and technical intraclass correlation coefficients were estimated. Passing-Bablok regression of plasma concentrations by CE-MS on serum concentrations by standard clinical chemistry assays was conducted for creatinine and uric acid. In QC samples, coefficient of variation was less than 20% for 64 metabolites, and less than 30% for 80 metabolites out of the 94 metabolites. Inter-batch coefficient of variation was less than 20% for 81 metabolites. Estimated technical intraclass correlation coefficient was above 0.75 for 67 metabolites. The slope of Passing-Bablok regression was estimated as 0.97 (95% confidence interval: 0.95, 0.98) for creatinine and 0.95 (0.92, 0.96) for uric acid. Compared to published data from other large cohort measurement platforms, reproducibility of metabolites common to the platforms was similar to or better than in the other studies. These results show that our CE-MS platform is suitable for conducting large-scale epidemiological studies.
Occurrence of priority organic pollutants in the fertilizers, China.
Mo, Ce-Hui; Cai, Quan-Ying; Li, Yun-Hui; Zeng, Qiao-Yun
2008-04-15
The use of large quantities of chemical fertilizers is usually associated with environmental problems. A lot of work has been done on the concentrations of heavy metals and radionuclides in chemical fertilizers, but little work has focused on the occurrence of semi-volatile organic compounds (SVOCs). In this study the occurrence of 43 SVOCs listed as priority pollutants in 22 widely used-fertilizers of China was determined by gas chromatography coupled with mass spectrometry. Twenty-six SVOCs were detected with different detection frequencies and concentrations. The most abundant compounds were phthalic acid esters (PAEs; ranging from 1.17 to 2795 microg kg(-1) dry weight, d.w.) and nitroaromatics (up to 9765 microg kg(-1) d.w.), followed by polycyclic aromatic hydrocarbons (PAHs; <140 microg kg(-1) d.w.) and halogenated hydrocarbons (<900 microg kg(-1) d.w.). Chlorobenzenes and haloethers occurred generally at low concentrations. There are large variations in concentrations of various compounds in different fertilizers, and the total concentrations of each class of contaminants varied widely, too. The highest levels of sum concentration for 16 PAHs, for 6 PAEs and for nitroaromatics were found in organic fertilizer containing pesticide and soil amendments. Concentrations of SVOCs in coated fertilizers (the controlled release fertilizer with coating) were considerably higher than those in the corresponding fertilizers without coating. The occurrence frequencies of SVOCs in the straight fertilizers (containing only one of the major plant nutrients) were lower than in the other fertilizers.
Atmospheric inorganic trace contaminants in Finland, especially in the Gulf of Finland area
NASA Astrophysics Data System (ADS)
Jalkanen, Liisa Maria
Atmospheric aerosol samples were collected at Utö and Virolahti in the Gulf of Finland area and Ähtäri in Central Finland using a filter pack. The samples were analysed by instrumental neutron activation analysis (INAA) and inductively coupled plasma mass-spectrometry (ICP-MS) for 34 elements including halogens and heavy metals. A very simple and quantitative acid digestion method was developed for the dissolution of the aerosol samples for ICP-MS analysis. Analysis of the elemental data is given using trajectories, principal component analysis and long-range transport modelling. The average total (fine + coarse) atmospheric concentrations range at Utö from 0.083 ng m -3 for Cd to 730 ng m-3 for Na. The sea areas (Utö, Virolahti, Hailuoto) have most of the heavy metal air pollution in Finland, as witnessed by the aerosol concentration and wet deposition data. There is a clear decreasing gradient in the deposition of As, Cd, Cr, Pb, and V from South to North in Finland. In general, the trace element concentrations and deposition are lower in Finland than in Central Europe. The effect of large particulate emission sources in Estonia can be seen in the elemental concentrations of atmospheric particles and in the deposition around the eastern Gulf of Finland region. There has been a remarkable decrease in heavy metal emissions in Finland during the 1990s. However, due to long-range transport, the decrease in deposition as witnessed by analysis of these concentrations in precipitation and moss is much less than would be expected.
Logarithmic sensing in Bacillus subtilis aerotaxis.
Menolascina, Filippo; Rusconi, Roberto; Fernandez, Vicente I; Smriga, Steven; Aminzare, Zahra; Sontag, Eduardo D; Stocker, Roman
2017-01-01
Aerotaxis, the directed migration along oxygen gradients, allows many microorganisms to locate favorable oxygen concentrations. Despite oxygen's fundamental role for life, even key aspects of aerotaxis remain poorly understood. In Bacillus subtilis, for example, there is conflicting evidence of whether migration occurs to the maximal oxygen concentration available or to an optimal intermediate one, and how aerotaxis can be maintained over a broad range of conditions. Using precisely controlled oxygen gradients in a microfluidic device, spanning the full spectrum of conditions from quasi-anoxic to oxic (60 n mol/l-1 m mol/l), we resolved B. subtilis' 'oxygen preference conundrum' by demonstrating consistent migration towards maximum oxygen concentrations ('monotonic aerotaxis'). Surprisingly, the strength of aerotaxis was largely unchanged over three decades in oxygen concentration (131 n mol/l-196 μ mol/l). We discovered that in this range B. subtilis responds to the logarithm of the oxygen concentration gradient, a rescaling strategy called 'log-sensing' that affords organisms high sensitivity over a wide range of conditions. In these experiments, high-throughput single-cell imaging yielded the best signal-to-noise ratio of any microbial taxis study to date, enabling the robust identification of the first mathematical model for aerotaxis among a broad class of alternative models. The model passed the stringent test of predicting the transient aerotactic response despite being developed on steady-state data, and quantitatively captures both monotonic aerotaxis and log-sensing. Taken together, these results shed new light on the oxygen-seeking capabilities of B. subtilis and provide a blueprint for the quantitative investigation of the many other forms of microbial taxis.
Jartun, Morten; Ottesen, Rolf Tore; Steinnes, Eiliv; Volden, Tore
2008-06-25
Runoff sediments from 68 small stormwater traps around the harbor of urban Bergen, Norway, were sampled and the concentrations of polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), heavy metals, and total organic carbon (TOC) were determined in addition to grain size. Our study provides empirical data from a large area in the interface between the urban and marine environment, studying the active transport of pollutants from land-based sources. The results of the analyses clearly demonstrate the importance of the urban environment representing a variety of contamination sources, and that stormwater runoff is an important dispersion mechanism of toxic pollutants. The concentrations of different pollutants in urban runoff sediments show that there are several active pollution sources supplying the sewage systems with PCBs, PAHs and heavy metals such as lead (Pb), zinc (Zn) and cadmium (Cd). The concentration of PCB7 in the urban runoff sediments ranged between < 0.0004 and 0.704 mg/kg. For PAH16, the concentration range was < 0.2-80 mg/kg, whereas the concentration ranges of Pb, Zn and Cd were 9-675, 51.3-4670 and 0.02-11.1 mg/kg respectively. Grain size distribution in 21 selected samples varied from a median particle diameter of 13 to 646 microm. However, several samples had very fine-grained particles even up to the 90 percentile of the samples, making them available for stormwater dispersion in suspended form. The sampling approach proposed in this paper will provide environmental authorities with a useful tool to examine ongoing urban contamination of harbors and similar recipients.
Joseph, Robert L.; Green, W. Reed
1994-01-01
A study of the Yocum Creek Basin conducted between July 27 and August 3, 1993, described the surface- and ground-water quality of the basin and the streamflow gain and loss. Water samples were collected from 12 sites on the main stem of Yocum Creek and 2 tributaries during periods of low to moderate streamflow (less than 40 cubic feet per second). Water samples were collected from 5 wells and 12 springs located in the basin. In 14 surface- water samples, nitrite plus nitrate concentrations ranged from 1.3 to 3.8 milligrams per liter as nitrogen. Orthophosphorus concentrations ranged from 0.01 to 0.06 milligrams per liter as phosphorous. Fecal coliform bacteria counts ranged from 9 to 220 colonies per 100 milliliters, with a median of 49 colonies per 100 milliliters. Fecal streptococci bacteria counts ranged from 37 to 1,500 colonies per 100 milliliters with a median of 420 colonies per 100 milliliters. Analyses for selected metals collected near the mouth of Yocum Creek indicate that metals are not present in significant concen- trations in surface-water samples. Diel dissolved oxygen concentrations and temperatures were measured at two sites on the mainstem of the stream. At the upstream site, dissolved oxygen concentrations ranged from 6.2 to 9.9 milligrams per liter and temperatures ranged from 18.5 to 23.0 degrees Celsius. Dissolved oxygen concentrations were higher and tempentture values were lower at the upstream site than those at the downstream site. Five wells were sampled in the basin and dissolved ammonia was present in concentrations ranging from 0.01 to 0.07 milligrams per liter as nitrogen. Dissolved nitrite plus nitrate was present in wells, with concen- trations ranging from less than 0.02 to 6.0 milligrams per liter as nitrogen. Volatile organic compound samples were collected at two wells and two springs. Chloroform was the only volatile organic compound found to be above the detection limit. Analysis indicated that 0.2 micrograms per liter of chloroform was present in one spring-water sample. In springs sampled, nitrite plus nitrate concen- trations ranged from 1.4 to 7.0 milligrams per llter as nitrogen. Dissolved ammonia plus organic nitrogen concentrations ranged from less than 0.2 to 0.49 milligrams per liter as nitrogen. Orthophosphorus concentrations ranged from 0.01 to 0.07 milligrams per liter as phosphorus. Fecal colfform bacteria counts ranged from 3 to 200 colonies per 100 milliliters, with a median of 18 colonies per 100 milliliters. Fecal streptococci bacteria counts ranged from 110 to more than 2,000 colonies per 100 milliliters with a median of 350 colonies per 100 milliliters. Large producing springs 1ocated in the mid to upper reaches of the basin contribute most of the flow to Yocum Creek. Streamflow increased an average of 29 percent on the mainstem of the stream. One losing reach was discovered on the mainstem of the stream and two losing reaches on tributaries to the mainstem. Surface flow steadily decreased along these reaches to the point where surface flow was not present, and the streambed became dry. These observations suggest that significant interaction exists between the underlying Springfield aquifer and surface flow in the Yocum Creek Basin.
Tritium and plutonium in waters from the Bering and Chukchi Seas
Landa, E.R.; Beals, D.M.; Halverson, J.E.; Michel, R.L.; Cefus, G.R.
1999-01-01
During the summer of 1993, seawater in the Bering and Chukchi Seas was sampled on a joint Russian-American cruise [BERPAC] of the RV Okean to determine concentrations of tritium, 239Pu and 240Pu. Concentrations of tritium were determined by electrolytic enrichment and liquid scintilation counting. Tritium levels ranged up to 420 mBq L-1 showed no evidence of inputs other than those attribute atmospheric nuclear weapons testing. Plutonium was recovered from water samples by ferric hydroxide precipitation, and concentrations were determined by thermal ionization mass spectrometry. 239+240Pu concentrations ranged from <1 to 5.5 [mu]Bq L-1. These concentrations are lower than those measured in water samples from other parts of the ocean during the mid-1960's to the late 1980's. The 240Pu:239Pu ratios, although associated with large uncertainties, suggest that most of the plutonium is derived from world-wide fallout. As points of comparison, the highest concentrations of tritium and plutonium observed here were about five orders of magnitude lower than the maximum permissible concentrations allowed in water released to the off-site environs from licensed nuclear facilities in the United States. This study and others sponsored by the International Atomic Energy Agency and the Office of Naval Research's Arctic Nuclear Waste Assessment Program are providing data for the assessment of potential radiological impacts in the Arctic regions associated with nuclear waste disposal by the former Soviet Union.
Transfer of Cadmium from Soil to Vegetable in the Pearl River Delta area, South China
Zhang, Huihua; Chen, Junjian; Zhu, Li; Yang, Guoyi; Li, Dingqiang
2014-01-01
The purpose of this study was to investigate the regional Cadmium (Cd) concentration levels in soils and in leaf vegetables across the Pearl River Delta (PRD) area; and reveal the transfer characteristics of Cadmium (Cd) from soils to leaf vegetable species on a regional scale. 170 paired vegetables and corresponding surface soil samples in the study area were collected for calculating the transfer factors of Cadmium (Cd) from soils to vegetables. This investigation revealed that in the study area Cd concentration in soils was lower (mean value 0.158 mg kg−1) compared with other countries or regions. The Cd-contaminated areas are mainly located in west areas of the Pearl River Delta. Cd concentrations in all vegetables were lower than the national standard of Safe vegetables (0.2 mg kg−1). 88% of vegetable samples met the standard of No-Polluted vegetables (0.05 mg kg−1). The Cd concentration in vegetables was mainly influenced by the interactions of total Cd concentration in soils, soil pH and vegetable species. The fit lines of soil-to-plant transfer factors and total Cd concentration in soils for various vegetable species were best described by the exponential equation (), and these fit lines can be divided into two parts, including the sharply decrease part with a large error range, and the slowly decrease part with a low error range, according to the gradual increasing of total Cd concentrations in soils. PMID:25247431
Transfer of cadmium from soil to vegetable in the Pearl River Delta area, South China.
Zhang, Huihua; Chen, Junjian; Zhu, Li; Yang, Guoyi; Li, Dingqiang
2014-01-01
The purpose of this study was to investigate the regional Cadmium (Cd) concentration levels in soils and in leaf vegetables across the Pearl River Delta (PRD) area; and reveal the transfer characteristics of Cadmium (Cd) from soils to leaf vegetable species on a regional scale. 170 paired vegetables and corresponding surface soil samples in the study area were collected for calculating the transfer factors of Cadmium (Cd) from soils to vegetables. This investigation revealed that in the study area Cd concentration in soils was lower (mean value 0.158 mg kg(-1)) compared with other countries or regions. The Cd-contaminated areas are mainly located in west areas of the Pearl River Delta. Cd concentrations in all vegetables were lower than the national standard of Safe vegetables (0.2 mg kg(-1)). 88% of vegetable samples met the standard of No-Polluted vegetables (0.05 mg kg(-1)). The Cd concentration in vegetables was mainly influenced by the interactions of total Cd concentration in soils, soil pH and vegetable species. The fit lines of soil-to-plant transfer factors and total Cd concentration in soils for various vegetable species were best described by the exponential equation (y = ax(b)), and these fit lines can be divided into two parts, including the sharply decrease part with a large error range, and the slowly decrease part with a low error range, according to the gradual increasing of total Cd concentrations in soils.
Complex magnetic susceptibility setup for spectroscopy in the extremely low-frequency range.
Kuipers, B W M; Bakelaar, I A; Klokkenburg, M; Erné, B H
2008-01-01
A sensitive balanced differential transformer was built to measure complex initial parallel magnetic susceptibility spectra in the 0.01-1000 Hz range. The alternating magnetic field can be chosen sufficiently weak that the magnetic structure of the samples is only slightly perturbed and the low frequencies make it possible to study the rotational dynamics of large magnetic colloidal particles or aggregates dispersed in a liquid. The distinguishing features of the setup are the novel multilayered cylindrical coils with a large sample volume and a large number of secondary turns (55 000) to measure induced voltages with a good signal-to-noise ratio, the use of a dual channel function generator to provide an ac current to the primary coils and an amplitude- and phase-adjusted compensation voltage to the dual phase differential lock-in amplifier, and the measurement of several vector quantities at each frequency. We present the electrical impedance characteristics of the coils, and we demonstrate the performance of the setup by measurement on magnetic colloidal dispersions covering a wide range of characteristic relaxation frequencies and magnetic susceptibilities, from chi approximately -10(-5) for pure water to chi>1 for concentrated ferrofluids.
Proceedings 43rd Stanford Geothermal Workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmons, Stuart; Kirby, Stefan; Verplanck, Philip
Herein we summarize the results of an investigation dealing with the concentrations and inventories of strategic, critical and valuable materials (SCVM) in produced fluids from geothermal and hydrocarbon reservoirs (50-250° C) in Nevada and Utah. Water samples were collected from thirty-four production wells across eight geothermal fields, the Uinta Basin oil/gas province in northeast Utah, and the Covenant oil field in southwestern Utah; additional water samples were collected from six hot springs in the Sevier Thermal Belt in southwestern Utah. Most SCVM concentrations in produced waters range from <0.1 to 100 µg/kg; the main exception is lithium, which has concentrationsmore » that range from <1000 to 25,000 ug/kg. Relatively high concentrations of gallium, germanium, scandium, selenium, and tellurium are measured too. Geothermal waters contain very low concentrations of REEs, below analytical detections limits (0.01 µg/kg), but the concentrations of lanthanum, cerium, and europium range from 0.05 to 5 µg/kg in Uinta basin waters. Among the geothermal fields, the Roosevelt Hot Spring reservoir appears to have the largest inventories of germanium and lithium, and Patua appears to have the largest inventories of gallium, scandium, selenium, and tellurium. By comparison, the Uinta basin has larger inventories of gallium. The concentrations of gallium, germanium, lithium, scandium, selenium, and tellurium in produced waters appear to be partly related to reservoir temperature and concentrations of total dissolved salts. The relatively high concentration and large inventory of lithium occurring at Roosevelt Hot Springs may be related to granitic-gneissic crystalline rocks, which host the reservoir. Analyses of calcite scales from Dixie Valley indicate enrichments in cobalt, gallium, gold, palladium, selenium and tellurium, and these metals appear to be depositing at deep levels in production wells due to boiling. Comparisons with SCVM mineral deposits suggest that brines in sedimentary basins, or derived from lacustrine evaporites, enable aqueous transport of gallium, germanium, and lithium.« less
NASA Astrophysics Data System (ADS)
Brito, Joel; Freney, Evelyn; Dominutti, Pamela; Borbon, Agnes; Haslett, Sophie L.; Batenburg, Anneke M.; Colomb, Aurelie; Dupuy, Regis; Denjean, Cyrielle; Burnet, Frederic; Bourriane, Thierry; Deroubaix, Adrien; Sellegri, Karine; Borrmann, Stephan; Coe, Hugh; Flamant, Cyrille; Knippertz, Peter; Schwarzenboeck, Alfons
2018-01-01
As part of the Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) project, an airborne campaign was designed to measure a large range of atmospheric constituents, focusing on the effect of anthropogenic emissions on regional climate. The presented study details results of the French ATR42 research aircraft, which aimed to characterize gas-phase, aerosol and cloud properties in the region during the field campaign carried out in June/July 2016 in combination with the German Falcon 20 and the British Twin Otter aircraft. The aircraft flight paths covered large areas of Benin, Togo, Ghana and Côte d'Ivoire, focusing on emissions from large urban conurbations such as Abidjan, Accra and Lomé, as well as remote continental areas and the Gulf of Guinea. This paper focuses on aerosol particle measurements within the boundary layer (< 2000 m), in particular their sources and chemical composition in view of the complex mix of both biogenic and anthropogenic emissions, based on measurements from a compact time-of-flight aerosol mass spectrometer (C-ToF-AMS) and ancillary instrumentation. Background concentrations (i.e. outside urban plumes) observed from the ATR42 indicate a fairly polluted region during the time of the campaign, with average concentrations of carbon monoxide of 131 ppb, ozone of 32 ppb, and aerosol particle number concentration ( > 15 nm) of 735 cm-3 stp. Regarding submicron aerosol composition (considering non-refractory species and black carbon, BC), organic aerosol (OA) is the most abundant species contributing 53 %, followed by SO4 (27 %), NH4 (11 %), BC (6 %), NO3 (2 %) and minor contribution of Cl (< 0.5 %). Average background PM1 in the region was 5.9 µg m-3 stp. During measurements of urban pollution plumes, mainly focusing on the outflow of Abidjan, Accra and Lomé, pollutants are significantly enhanced (e.g. average concentration of CO of 176 ppb, and aerosol particle number concentration of 6500 cm-3 stp), as well as PM1 concentration (11.9 µg m-3 stp). Two classes of organic aerosols were estimated based on C-ToF-AMS: particulate organic nitrates (pONs) and isoprene epoxydiols secondary organic aerosols (IEPOX-SOA). Both classes are usually associated with the formation of particulate matter through complex interactions of anthropogenic and biogenic sources. During DACCIWA, pONs have a fairly small contribution to OA (around 5 %) and are more associated with long-range transport from central Africa than local formation. Conversely, IEPOX-SOA provides a significant contribution to OA (around 24 and 28 % under background and in-plume conditions). Furthermore, the fractional contribution of IEPOX-SOA is largely unaffected by changes in the aerosol composition (particularly the SO4 concentration), which suggests that IEPOX-SOA concentration is mainly driven by pre-existing aerosol surface, instead of aerosol chemical properties. At times of large in-plume SO4 enhancements (above 5 µg m-3), the fractional contribution of IEPOX-SOA to OA increases above 50 %, suggesting only then a change in the IEPOX-SOA-controlling mechanism. It is important to note that IEPOX-SOA constitutes a lower limit to the contribution of biogenic OA, given that other processes (e.g. non-IEPOX isoprene, monoterpene SOA) are likely in the region. Given the significant contribution to aerosol concentration, it is crucial that such complex biogenic-anthropogenic interactions are taken into account in both present-day and future scenario models of this fast-changing, highly sensitive region.
Verplanck, P.L.; Mueller, S.H.; Goldfarb, R.J.; Nordstrom, D. Kirk; Youcha, E.K.
2008-01-01
Ester Dome, an upland area near Fairbanks, Alaska, was chosen for a detailed hydrogeochemical study because of the previously reported elevated arsenic in groundwater, and the presence of a large set of wells amenable to detailed sampling. Ester Dome lies within the Fairbanks mining district, where gold-bearing quartz veins, typically containing 2-3??vol.% sulfide minerals (arsenopyrite, stibnite, and pyrite), have been mined both underground and in open cuts. Gold-bearing veins on Ester Dome occur in shear zones and the sulfide minerals in these veins have been crushed to fine-grained material by syn- or post-mineralization movement. Groundwater at Ester Dome is circumneutral, Ca-HCO3 to Ca-SO4 type, and ranges from dilute (specific conductance of 48????S/cm) to more concentrated (specific conductance as high as 2070????S/cm). In general, solute concentrations increase down hydrologic gradient. Redox species indicate that the groundwaters range from oxic to sub-oxic (low dissolved oxygen, Fe(III) reduction, no SO4 reduction). Waters with the highest Fe concentrations, as high as 10.7??mg/L, are the most anoxic. Dissolved As concentrations range from < 1 to 1160????g/L, with a median value of 146????g/L. Arsenic concentrations are not correlated with specific conductance or Fe concentrations, suggesting that neither groundwater residence time, nor reductive dissolution of iron oxyhydroxides, control the arsenic chemistry. Furthermore, As concentrations do not covary with other constituents that form anions and oxyanions in solution (e.g., HCO3, Mo, F, or U) such that desorption of arsenic from clays or oxides also does not control arsenic mobility. Oxidation of arsenopyrite and dissolution of scorodite, in the near-surface environment appears to be the primary control of dissolved As in this upland area. More specifically, the elevated As concentrations are spatially associated with sulfidized shear zones and localities of gold-bearing quartz veins. Consistent with this interpretation, elevated dissolved Sb concentrations (as high as 59????g/L), also correlated with occurrences of hypogene sulfide minerals, were measured in samples with high dissolved As concentrations.
Arth, Joseph G.; Zmuda, Clara C.; Foley, Nora K.; Criss, Robert E.; Patton, W.W.; Miller, T.P.
1989-01-01
Thirty-six samples from plutons of the Ruby batholith of central Alaska were collected and analyzed for 22 trace elements, and many were analyzed for the isotopic compositions of Sr, Nd, O, and Pb in order to delimit the processes that produced the diversity of granodioritic to granitic compositions, to deduce the nature of the source of magmas at about 110 Ma, and to characterize the deep crust beneath the Ruby and Angayucham terranes. Plutons of the batholith show a substantial range in initial 87Sr/86Sr (SIR) of 0.7055–0.7235 and a general decrease from southwest to northeast. Initial 143Nd/144Nd (NIR) have a range of 0.51150–0.51232 and generally increase from southwest to northeast. The δ18O values for most whole rocks have a range of +8.4 to +11.8 and an average of +10.3‰. Rb, Cs, U, and Th show large ranges of concentration, generally increase as SiO2 increases, and are higher in southwest than in northeast plutons. Sr, Ba, Zr, Hf, Ta, Sc, Cr, Co, and Zr show large ranges of concentration and generally decrease as SiO2 increases. Rare earth elements (REE) show fractionated patterns and negative Eu anomalies. REE concentrations and anomalies are larger in the southwest than in the northeast plutons. Uniformity of SIR and NIR in Sithylemenkat and Jim River plutons suggests a strong role for fractional crystallization or melting of uniform magma sources at depth. Isotopic variability in Melozitna, Ray Mountains, Hot Springs, and Kanuti plutons suggests complex magmatic processes such as magma mixing and assimilation, probably combined with fractional crystallization, or melting of a complex source at depth. The large variations in SIR and NIR in the batholith require a variation in source materials at depth. The southwestern plutons probably had dominantly siliceous sources composed of metamorphosed Proterozoic and Paleozoic upper crustal rocks. The northeastern plutons probably had Paleozoic sources that were mixtures of siliceous and intermediate to mafic crustal rocks. The inferred sources could well have been the higher-metamorphic-grade lithologic equivalents of the exposed Proterozoic(?) to Paleozoic schists, orthogneisses, and metavolcanic rocks of Ruby terrane, the silicic portions of which are quite radiogenic. The deeper crustal sources that gave rise to most of the batholithic magmas are inferred to be similar under both the Ruby metamorphic terrane and the Angayucham ophiolitic terrane.
Examination of rare earth element concentration patterns in freshwater fish tissues.
Mayfield, David B; Fairbrother, Anne
2015-02-01
Rare earth elements (REEs or lanthanides) were measured in ten freshwater fish species from a reservoir in Washington State (United States). The REE distribution patterns were examined within fillet and whole body tissues for three size classes. Total concentrations (ΣREE) ranged from 0.014 to 3.0 mg kg(-1) (dry weight) and averaged 0.243 mg kg(-1) (dry weight). Tissue concentration patterns indicated that REEs accumulated to a greater extent in organs, viscera, and bone compared to muscle (fillet) tissues. Benthic feeding species (exposed to sediments) exhibited greater concentrations of REEs than pelagic omnivorous or piscivorous fish species. Decreasing REE concentrations were found with increasing age, total length or weight for largescale and longnose suckers, smallmouth bass, and walleye. Concentration patterns in this system were consistent with natural conditions without anthropogenic sources of REEs. These data provide additional reference information with regard to the fate and transport of REEs in freshwater fish tissues in a large aquatic system. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ammann, Elizabeth C. B.; Lynch, Victoria H.
1967-01-01
The oxygen production of a photosynthetic gas exchanger containing Chlorella pyrenoidosa (1% packed cell volume) was measured when various concentrations of carbon dioxide were present within the culture unit. The internal carbon dioxide concentrations were obtained by manipulating the entrance gas concentration and the flow rate. Carbon dioxide percentages were monitored by means of electrodes placed directly in the nutrient medium. The concentration of carbon dioxide in the nutrient medium which produced maximal photosynthesis was in the range of 1.5 to 2.5% by volume. Results were unaffected by either the level of carbon dioxide in the entrance gas or the rate of gas flow. Entrance gases containing 2% carbon dioxide flowing at 320 ml/min, 3% carbon dioxide at 135 ml/min, and 4% carbon dioxide at 55 ml/min yielded optimal carbon dioxide concentrations in the particular unit studied. By using carbon dioxide electrodes implanted directly in the gas exchanger to optimize the carbon dioxide concentration throughout the culture medium, it should be possible to design more efficient large-scale units. PMID:4382391
A Critical Analysis of Changing Radon Concentration Patterns on Gyokusen-dou Cave in Okinawa Island
NASA Astrophysics Data System (ADS)
Tanahara, A.; Iha, H.
2009-04-01
Radon concentrations were measured at 1 hour intervals for a year in Gyokuse-dou Cave, Okinawa Island. An apparatus for continuous radon monitoring connected to a data logger was installed in a large chamber of the cave along the tour route for visitors. Radon concentration ranged from 8000 Bq/m3 in the summer to 100 Bq/m3 in the winter. Seasonal changes in radon concentration correlate with difference between outside and inside air densities. The same effect seems to occur in a short time period. However, changing radon concentration pattern does not synchronize with air density difference pattern in the sites. The results of statistical treatment show that the outside air takes about 8-18 hours to reach the measuring point of radon in the Cave. The average airflow velocity from the site to the exit was estimated to be about 0.52-0.23 m/min. During the summer, the south wind blowing into the cave also affects the radon concentration.
Scale dependence of the mechanics of active gels with increasing motor concentration.
Sonn-Segev, Adar; Bernheim-Groswasser, Anne; Roichman, Yael
2017-10-18
Actin is a protein that plays an essential role in maintaining the mechanical integrity of cells. In response to strong external stresses, it can assemble into large bundles, but it grows into a fine branched network to induce cell motion. In some cases, the self-organization of actin fibers and networks involves the action of bipolar filaments of the molecular motor myosin. Such self-organization processes mediated by large myosin bipolar filaments have been studied extensively in vitro. Here we create active gels, composed of single actin filaments and small myosin bipolar filaments. The active steady state in these gels persists long enough to enable the characterization of their mechanical properties using one and two point microrheology. We study the effect of myosin concentration on the mechanical properties of this model system for active matter, for two different motor assembly sizes. In contrast to previous studies of networks with large motor assemblies, we find that the fluctuations of tracer particles embedded in the network decrease in amplitude as motor concentration increases. Nonetheless, we show that myosin motors stiffen the actin networks, in accordance with bulk rheology measurements of networks containing larger motor assemblies. This implies that such stiffening is of universal nature and may be relevant to a wider range of cytoskeleton-based structures.
Infrasonic observations of large-scale HE events
NASA Technical Reports Server (NTRS)
Whitaker, Rodney W.; Mutschlecner, J. Paul; Davidson, Masha B.; Noel, Susan D.
1990-01-01
The Los Alamos Infrasound Program has been operating since about mid-1982, making routine measurements of low frequency atmospheric acoustic propagation. Generally, the authors work between 0.1 Hz to 10 Hz; however, much of the work is concerned with the narrower range of 0.5 to 5.0 Hz. Two permanent stations, St. George, UT, and Los Alamos, NM, have been operational since 1983, collecting data 24 hours a day. For the purposes of this discussion, the authors concentrate on their measurements of large, high explosive (HE) events at ranges of 250 km to 5330 km. Because their equipment is well suited for mobile deployments, they can easily establish temporary observing sites for special events. The measurements are from the permanent sites, as well as from various temporary sites. A few observations that are typical of the full data set are given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Lili; Zhang, Shuai; Bowden, Mark E.
Barium tungstate (BaWO 4) is a widely investigated inorganic optical material due to its attractive emission properties. Because those properties strongly depend on crystal structure and morphology, numerous approaches to controlling growth have been pursued. However, an understanding of the growth mechanisms that lead to the wide range of morphologies obtained to date is largely lacking, and most attempts to develop that understanding have been based on post-growth analyses. Significantly, such analyses have led to the conclusion that certain BaWO 4 crystal morphologies result from a nonclassical growth process of oriented attachment. In this work, we systematically varied the morphologymore » of BaWO 4 crystals by adjusting the relative concentrations of solute, water, and ethanol. We then explored the growth mechanism leading to the observed range of morphologies through in situ TEM and in situ AFM. We find that even the most complex BaWO 4 morphologies occur through purely classical growth mechanisms largely controlled by the content of solute and ethanol. The latter acts as an impurity to poison growth at low concentrations and low solute levels, but leads to development of growth instabilities and eventual dendritic growth at high alcohol and moderate solute concentrations by driving up the supersaturation. These findings also highlight the necessity of in situ experiments to interpret ex situ observations of crystal growth and decipher the controlling mechanisms.« less
An Ultra-Sensitive Method for the Analysis of Perfluorinated ...
In epidemiological research, it has become increasingly important to assess subjects' exposure to different classes of chemicals in multiple environmental media. It is a common practice to aliquot limited volumes of samples into smaller quantities for specific trace level chemical analysis. A novel method was developed for the determination of 14 perfluorinated alkyl acids (PFAAs) in small volumes (10 mL) of drinking water using off-line solid phase extraction (SPE) pre-treatment followed by on-line pre-concentration on WAX column before analysis on column-switching high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). In general, large volumes (100 - 1000 mL) have been used for the analysis of PFAAs in drinking water. The current method requires approximately 10 mL of drinking water concentrated by using an SPE cartridge and eluted with methanol. A large volume injection of the extract was introduced on to a column-switching HPLC-MS/MS using a mix-mode SPE column for the trace level analysis of PFAAs in water. The recoveries for most of the analytes in the fortified laboratory blanks ranged from 73±14% to 128±5%. The lowest concentration minimum reporting levels (LCMRL) for the 14 PFAAs ranged from 0.59 to 3.4 ng/L. The optimized method was applied to a pilot-scale analysis of a subset of drinking water samples from an epidemiological study. These samples were collected directly from the taps in the households of Ohio and Nor
Faustorilla, Maria Vilma; Chen, Zuliang; Dharmarajan, Rajarathnam; Naidu, Ravendra
2017-09-01
Assessment of total petroleum hydrocarbons (TPHs) from contaminated sites demands routine and reliable measurement at trace levels. However, the detection limits of these methods need to be improved. This study developed the programmable temperature vaporization-large volume injection (PTV-LVI) method to quantify TPHs through gas chromatography-flame ionization detection. This configuration enhances the method sensitivity for trace level detections through large volume injections and pre-concentration of analytes along the injection liner. The method was evaluated for the three commonly observed hydrocarbon fractions: C10-C14, C15-C28 and C29-C36. In comparison with conventional injection methods (splitless and pulsed splitless), PTV-LVI showed R2 values > 0.999 with enhanced limits of detection and limits of quantification values. The method was applied to real samples for routine environmental monitoring of TPHs in an Australian contaminated site characterized by refueling station. Analysis of groundwater samples in the area showed a wide range of TPH concentrations as follows: 66-1,546,000 (C10-C14), 216-22,762 (C15-C28) and 105-2,103 (C29-C36) μg/L. This method has detected trace levels, thereby measuring a wider concentration range of TPHs. These more accurate measurements can lead to the appropriate application of risk assessments and remediation techniques. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
[Open-path online monitoring of ambient atmospheric CO2 based on laser absorption spectrum].
He, Ying; Zhang, Yu-Jun; Kan, Rui-Feng; Xia, Hui; Geng, Hui; Ruan, Jun; Wang, Min; Cui, Xiao-Juan; Liu, Wen-Qing
2009-01-01
With the conjunction of tunable diode laser absorption spectroscopy technology (TDLAS) and the open long optical path technology, the system designing scheme of CO2 on-line monitoring based on near infrared tunable diode laser absorption spectroscopy technology was discussed in detail, and the instrument for large-range measurement was set up. By choosing the infrared absorption line of CO2 at 1.57 microm whose line strength is strong and suitable for measurement, the ambient atmospheric CO2 was measured continuously with a 30 s temporal resolution at an suburb site in the autumn of 2007. The diurnal atmospheric variations of CO2 and continuous monitoring results were presented. The results show that the variation in CO2 concentration has an obvious diurnal periodicity in suburb where the air is free of interference and contamination. The general characteristic of diurnal variation is that the concentration is low in the daytime and high at night, so it matches the photosynthesis trend. The instrument can detect gas concentration online with high resolution, high sensitivity, high precision, short response time and many other advantages, the monitoring requires no gas sampling, the calibration is easy, and the detection limit is about 4.2 x 10(-7). It has been proved that the system and measurement project are feasible, so it is an effective method for gas flux continuous online monitoring of large range in ecosystem based on TDLAS technology.
Ye, Xiao-yan; Xiao, Wen-qing; Huang, Xia-ning; Zhang, Yong-lu; Cao, Yu-guang; Gu, Kang-ding
2012-07-01
This study aimed to construct an effective method to concentrate and detect virus in drinking water, and human adenovirus pollution status in actual water samples was monitored by constructed method. The concentration efficient of NanoCeram filter for the first concentration with source water and drinking water and the concentration efficient of the different concentrations of PEG 8000 for the second concentration were assessed by spiking f₂ bacteriophage into water samples. The standard of human adenovirus for real-time PCR was constructed by T-A clone. The plasmid obtained was identified through sequence analyzing and consistency check comparing to target gene fragment was conducted by using blast algorithm. Then, real-time PCR was constructed to quantify the concentration of human adenovirus using the plasmid as standard. Water samples were concentrated by using NanoCeram filter on the spot and then concentrated for the second time by PEG/NaCl in 2011. The DNA of concentrated samples were extracted for the quantification of human adenovirus in real-time PCR subsequently to monitor the pollution of human adenovirus in water. For the first concentration by NanoCeram filter, the recovery rates were (51.63 ± 26.60)% in source water and (50.27 ± 14.35)% in treated water, respectively. For the second concentration, the highest recovery rate was reached to (90.09 ± 10.50)% at the concentration of 0.13 kg/L of PEG 8000. The sequence identity score of standard of adenovirus for real time PCR and adenovirus gene was 99%, implying that it can be successfully used to quantification with human adenovirus. The levels of human adenovirus in the water samples sampled in 2011 ranged from 4.13×10³ to 2.20×10⁶ copies/L in source water, while range from 5.57×10² to 7.52×10⁵ copies/L in treated water and the removal efficiency range was (75.49 ± 11.71)%. NanoCeram filers combined with PEG/NaCl was an effective method to concentrate virus in aquatic environment. There was a large number of human adenovirus in source water, and it is not sufficient to remove them thoroughly through conventional water treatment processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dagaut, P.; Reuillon, M.; Boettner, J.C.
1994-12-31
The oxidation of TR0 kerosene (jet A1 aviation fuel) was studied in a jet-stirred reactor (JSR) at pressures extending from 10 to 40 atm, in the temperature range 750--1,150 K. A large number of reaction intermediates were identified, and their concentrations were followed for reaction yields ranging from low conversion to the formation of the final products. A reference hydrocarbon, n-decane, studied under the same experimental conditions gave very similar experimental concentration profiles for the main oxidation products. Because of the strong analogy between n-decane and kerosene oxidation kinetics, a detailed chemical kinetic reaction mechanisms describing the oxidation of n-decanemore » was built to reproduce the present experimental results. This mechanisms includes 573 elementary reactions, most of them being reversible, among 90 chemical species. A reasonably good prediction of the concentrations of major species was obtained by computation, covering the whole range of temperature, pressures, and equivalence ratios of the experiments. A kinetic analysis performed to identify the dominant reaction steps of the mechanism shows that, under the conditions of the present study (intermediate temperature and high pressure), HO{sub 2} radicals are important chain carriers leading to the formation of the branching agent H{sub 2}O{sub 2}.« less
Tuning direct current streaming dielectrophoresis of proteins
Nakano, Asuka; Camacho-Alanis, Fernanda; Chao, Tzu-Chiao; Ros, Alexandra
2012-01-01
Dielectrophoresis (DEP) of biomolecules has large potential to serve as a novel selectivity parameter for bioanalytical methods such as (pre)concentration, fractionation, and separation. However, in contrast to well-characterized biological cells and (nano)particles, the mechanism of protein DEP is poorly understood, limiting bioanalytical applications for proteins. Here, we demonstrate a detailed investigation of factors influencing DEP of diagnostically relevant immunoglobulin G (IgG) molecules using insulator-based DEP (iDEP) under DC conditions. We found that the pH range in which concentration of IgG due to streaming iDEP occurs without aggregate formation matches the pH range suitable for immunoreactions. Numerical simulations of the electrokinetic factors pertaining to DEP streaming in this range further suggested that the protein charge and electroosmotic flow significantly influence iDEP streaming. These predictions are in accordance with the experimentally observed pH-dependent iDEP streaming profiles as well as the determined IgG molecular properties. Moreover, we observed a transition in the streaming behavior caused by a change from positive to negative DEP induced through micelle formation for the first time experimentally, which is in excellent qualitative agreement with numerical simulations. Our study thus relates molecular immunoglobulin properties to observed iDEP, which will be useful for the future development of protein (pre)concentration or separation methods based on DEP. PMID:23908679
A splitting integration scheme for the SPH simulation of concentrated particle suspensions
NASA Astrophysics Data System (ADS)
Bian, Xin; Ellero, Marco
2014-01-01
Simulating nearly contacting solid particles in suspension is a challenging task due to the diverging behavior of short-range lubrication forces, which pose a serious time-step limitation for explicit integration schemes. This general difficulty limits severely the total duration of simulations of concentrated suspensions. Inspired by the ideas developed in [S. Litvinov, M. Ellero, X.Y. Hu, N.A. Adams, J. Comput. Phys. 229 (2010) 5457-5464] for the simulation of highly dissipative fluids, we propose in this work a splitting integration scheme for the direct simulation of solid particles suspended in a Newtonian liquid. The scheme separates the contributions of different forces acting on the solid particles. In particular, intermediate- and long-range multi-body hydrodynamic forces, which are computed from the discretization of the Navier-Stokes equations using the smoothed particle hydrodynamics (SPH) method, are taken into account using an explicit integration; for short-range lubrication forces, velocities of pairwise interacting solid particles are updated implicitly by sweeping over all the neighboring pairs iteratively, until convergence in the solution is obtained. By using the splitting integration, simulations can be run stably and efficiently up to very large solid particle concentrations. Moreover, the proposed scheme is not limited to the SPH method presented here, but can be easily applied to other simulation techniques employed for particulate suspensions.
Emissions of OTNE (Iso-E-super) - mass flows in sewage treatment plants.
Bester, Kai; Klasmeier, Jörg; Kupper, Thomas
2008-05-01
The fate and mass flows of OTNE ([1,2,3,4,5,6,7,8-octahydro-2,3,8,8-tetramethylnaphthalen-2yl]ethan-1-one) which is commercialized as Iso-E-Super were studied in three large scale sewage treatment plants (STPs) in detail. The results are compared to 14 smaller ones located in Germany and Switzerland. OTNE inflow concentrations ranged from 4000 to 13,000 ngl(-1) while the effluent concentrations ranged from 500 to 6,900 ngl(-1). It is eliminated from the waste water with 56-64% during waste water treatment. High OTNE concentrations in sewage sludge showed that the elimination was mainly driven by sorption to sludge. This complies with major elimination in the first settling basins (primary settling tanks) while it was removed to a lesser extent in the aeration basin of the activated sludge treatment or in successive biofilters. The mass flows of OTNE in the influent of the German STPs were between 0.9 and 1.9 g per inhabitant and year. In the annual effluents mass flows of OTNE ranged between 0.2 and 0.8 g per inhabitant which complies with data measured in 13 smaller STPs from Switzerland. The similarity of data suggests that the observed mass flow data might be extrapolated to other European regions.
Fossum, Kenneth D.; O'Day, Christie M.; Wilson, Barbara J.; Monical, Jim E.
2001-01-01
Stormwater and streamflow in Maricopa County were monitored to (1) describe the physical, chemical, and toxicity characteristics of stormwater from areas having different land uses, (2) describe the physical, chemical, and toxicity characteristics of streamflow from areas that receive urban stormwater, and (3) estimate constituent loads in stormwater. Urban stormwater and streamflow had similar ranges in most constituent concentrations. The mean concentration of dissolved solids in urban stormwater was lower than in streamflow from the Salt River and Indian Bend Wash. Urban stormwater, however, had a greater chemical oxygen demand and higher concentrations of most nutrients. Mean seasonal loads and mean annual loads of 11 constituents and volumes of runoff were estimated for municipalities in the metropolitan Phoenix area, Arizona, by adjusting regional regression equations of loads. This adjustment procedure uses the original regional regression equation and additional explanatory variables that were not included in the original equation. The adjusted equations had standard errors that ranged from 161 to 196 percent. The large standard errors of the prediction result from the large variability of the constituent concentration data used in the regression analysis. Adjustment procedures produced unsatisfactory results for nine of the regressions?suspended solids, dissolved solids, total phosphorus, dissolved phosphorus, total recoverable cadmium, total recoverable copper, total recoverable lead, total recoverable zinc, and storm runoff. These equations had no consistent direction of bias and no other additional explanatory variables correlated with the observed loads. A stepwise-multiple regression or a three-variable regression (total storm rainfall, drainage area, and impervious area) and local data were used to develop local regression equations for these nine constituents. These equations had standard errors from 15 to 183 percent.
Modelling potential production of macroalgae farms in UK and Dutch coastal waters
NASA Astrophysics Data System (ADS)
van der Molen, Johan; Ruardij, Piet; Mooney, Karen; Kerrison, Philip; O'Connor, Nessa E.; Gorman, Emma; Timmermans, Klaas; Wright, Serena; Kelly, Maeve; Hughes, Adam D.; Capuzzo, Elisa
2018-02-01
There is increasing interest in macroalgae farming in European waters for a range of applications, including food, chemical extraction for biofuel production. This study uses a 3-D numerical model of hydrodynamics and biogeochemistry to investigate potential production and environmental effects of macroalgae farming in UK and Dutch coastal waters. The model included four experimental farms in different coastal settings in Strangford Lough (Northern Ireland), in Sound of Kerrera and Lynn of Lorne (north-west Scotland) and in the Rhine plume (the Netherlands), as well as a hypothetical large-scale farm off the UK north Norfolk coast. The model could not detect significant changes in biogeochemistry and plankton dynamics at any of the farm sites averaged over the farming season. The results showed a range of macroalgae growth behaviours in response to simulated environmental conditions. These were then compared with in situ observations where available, showing good correspondence for some farms and less good correspondence for others. At the most basic level, macroalgae production depended on prevailing nutrient concentrations and light conditions, with higher levels of both resulting in higher macroalgae production. It is shown that under non-elevated and interannually varying winter nutrient conditions, farming success was modulated by the timings of the onset of increasing nutrient concentrations in autumn and nutrient drawdown in spring. Macroalgae carbohydrate content also depended on nutrient concentrations, with higher nutrient concentrations leading to lower carbohydrate content at harvest. This will reduce the energy density of the crop and thus affect its suitability for conversion into biofuel. For the hypothetical large-scale macroalgae farm off the UK north Norfolk coast, the model suggested high, stable farm yields of macroalgae from year to year with substantial carbohydrate content and limited environmental effects.
El-Mekawy, A F; Badran, H M; Seddeek, M K; Sharshar, T; Elnimr, T
2015-09-01
Non-nuclear industries use raw materials containing significant levels of naturally occurring radioactive material (NORM). The processing of these materials may expose workers engaged in or even people living near such sites to technologically enhanced naturally occurring radioactive material (TENORM) above the natural background. Inductively coupled plasma and gamma ray spectrometry have been used to determine major and trace elements and radionuclide concentrations in various samples, respectively, in order to investigate the environmental impact of coal mining and cement plant in North Sinai, Egypt. Generally, very little attention was directed to the large volumes of waste generated by either type of industrial activities. Different samples were analyzed including various raw materials, coal, charcoal, Portland and white cement, sludge, and wastes. Coal mine and cement plant workers dealing with waste and kaolin, respectively, are subjected to a relatively high annual effective dose. One of the important finding is the enhancement of all measured elements and radionuclides in the sludge found in coal mine. It may pose an environmental threat because of its large volume and its use as combustion material. The mine environment may have constituted Al, Fe, Cr, and V pollution source for the local area. Higher concentration of Al, Fe, Mn, B, Co, Cr, Mn, Ni, Sr, V, and TENORM were found in Portland cement and Zn in white cement. Coal has higher concentrations of Al, Fe, B, Co, Cr, and V as well as (226)Ra and (232)Th. The compiled results from the present study and different worldwide investigations demonstrate the obvious unrealistic ranges normally used for (226)Ra and (232)Th activity concentrations in coal and provided ranges for coal, Portland and white cement, gypsum, and limestone.
Dielectric properties characterization of saline solutions by near-field microwave microscopy
NASA Astrophysics Data System (ADS)
Gu, Sijia; Lin, Tianjun; Lasri, Tuami
2017-01-01
Saline solutions are of a great interest when characterizations of biological fluids are targeted. In this work a near-field microwave microscope is proposed for the characterization of liquids. An interferometric technique is suggested to enhance measurement sensitivity and accuracy. The validation of the setup and the measurement technique is conducted through the characterization of a large range of saline concentrations (0-160 mg ml-1). Based on the measured resonance frequency shift and quality factor, the complex permittivity is successfully extracted as exhibited by the good agreement found when comparing the results to data obtained from Cole-Cole model. We demonstrate that the near field microwave microscope (NFMM) brings a great advantage by offering the possibility to select a resonance frequency and a quality factor for a given concentration level. This method provides a very effective way to largely enhance the measurement sensitivity in high loss materials.
Fractal dimension of microbead assemblies used for protein detection.
Hecht, Ariel; Commiskey, Patrick; Lazaridis, Filippos; Argyrakis, Panos; Kopelman, Raoul
2014-11-10
We use fractal analysis to calculate the protein concentration in a rotating magnetic assembly of microbeads of size 1 μm, which has optimized parameters of sedimentation, binding sites and magnetic volume. We utilize the original Forrest-Witten method, but due to the relatively small number of bead particles, which is of the order of 500, we use a large number of origins and also a large number of algorithm iterations. We find a value of the fractal dimension in the range 1.70-1.90, as a function of the thrombin concentration, which plays the role of binding the microbeads together. This is in good agreement with previous results from magnetorotation studies. The calculation of the fractal dimension using multiple points of reference can be used for any assembly with a relatively small number of particles. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Tahara, Daisuke; Nishinaka, Hiroyuki; Morimoto, Shota; Yoshimoto, Masahiro
2017-07-01
Epitaxial ɛ-Ga2O3 thin films with smooth surfaces were successfully grown on c-plane AlN templates by mist chemical vapor deposition. Using X-ray diffraction 2θ-ω and φ scans, the out-of-plane and in-plane epitaxial relationship was determined to be (0001) ɛ-Ga2O3 [10\\bar{1}0] ∥ (0001)AlN[10\\bar{1}0]. The gallium/oxygen ratio was controlled by varying the gallium precursor concentration in the solution. While scanning electron microscopy showed the presence of large grains on the surfaces of the films formed for low concentrations of oxygen species, no large grains were observed under stoichiometric conditions. Cathodoluminescence measurements showed a deep-level emission ranging from 1.55-3.7 eV; however, no band-edge emission was observed.
Ozone and modeled stomatal conductance at a high elevation subalpine site in southeastern Wyoming
Robert C. Musselman; Karl F. Zeller; Nedialko T. Nikolov
1998-01-01
Ozone concentrations have been monitored at the Glacier Lakes Ecosystem Experiment Site (GLEES) in the Snowy Range of the Medicine Bow Mountains 55 km west of Laramie, Wyoming, USA. The site is located at 3,186 m elevation in a large subalpine meadow of a mature subalpine forest near timberline. Continuous ozone and meteorological monitoring are a part of the GLEES...
Landscape scale attributes of elk centers of activity in the central Black Hills of South Dakota
Cynthia H. Stubblefield; Kerri T. Vierling; Mark A. Rumble
2006-01-01
We researched the environmental attributes (n = 28) associated with elk (n = 50) summer range (1 May Â30 Sep) in the central Black Hills of South Dakota, USA, during 1998-Â2001. We defined high-use areas or centers of activity as landscapes underlying large concentrations of elk locations resulting from the shared fidelity of...
Sea Ice Concentration Estimation Using Active and Passive Remote Sensing Data Fusion
NASA Astrophysics Data System (ADS)
Zhang, Y.; Li, F.; Zhang, S.; Zhu, T.
2017-12-01
In this abstract, a decision-level fusion method by utilizing SAR and passive microwave remote sensing data for sea ice concentration estimation is investigated. Sea ice concentration product from passive microwave concentration retrieval methods has large uncertainty within thin ice zone. Passive microwave data including SSM/I, AMSR-E, and AMSR-2 provide daily and long time series observations covering whole polar sea ice scene, and SAR images provide rich sea ice details with high spatial resolution including deformation and polarimetric features. In the proposed method, the merits from passive microwave data and SAR data are considered. Sea ice concentration products from ASI and sea ice category label derived from CRF framework in SAR imagery are calibrated under least distance protocol. For SAR imagery, incident angle and azimuth angle were used to correct backscattering values from slant range to ground range in order to improve geocoding accuracy. The posterior probability distribution between category label from SAR imagery and passive microwave sea ice concentration product is modeled and integrated under Bayesian network, where Gaussian statistical distribution from ASI sea ice concentration products serves as the prior term, which represented as an uncertainty of sea ice concentration. Empirical model based likelihood term is constructed under Bernoulli theory, which meets the non-negative and monotonically increasing conditions. In the posterior probability estimation procedure, final sea ice concentration is obtained using MAP criterion, which equals to minimize the cost function and it can be calculated with nonlinear iteration method. The proposed algorithm is tested on multiple satellite SAR data sets including GF-3, Sentinel-1A, RADARSAT-2 and Envisat ASAR. Results show that the proposed algorithm can improve the accuracy of ASI sea ice concentration products and reduce the uncertainty along the ice edge.
Achilleos, Souzana; Evans, John S.; Yiallouros, Panayiotis K.; Kleanthous, Savvas; Schwartz, Joel; Koutrakis, Petros
2016-01-01
Air quality in Cyprus is influenced by both local and transported pollution including desert dust storms. We examined PM10 concentration data collected in Nicosia (urban representative) from April 1, 1993 through December 11, 2008, and Ayia Marina (rural background representative) from January 1, 1999 through December 31, 2008. Measurements were conducted using a Tapered Element Oscillating Micro-balance (TEOM). PM10 concentrations, meteorological records and satellite data were used to identify dust storm days. We investigated long term trends using a Generalized Additive Model (GAM) after controlling for day of week, month, temperature, wind speed, and relative humidity. In Nicosia, annual PM10 concentrations ranged from 50.4 to 63.8 μg/m3 and exceeded the EU annual standard limit enacted in 2005 of 40 μg/m3 every year. A large, statistically significant impact of urban sources (defined as the difference between urban and background levels) was seen in Nicosia over the period 2000–2008, and was highest during traffic hours, weekdays, cold months, and low wind conditions. Our estimate of the mean (standard error) contribution of urban sources to the daily ambient PM10 was 24.0 (0.4) μg/m3. The study of yearly trends showed that PM10 levels in Nicosia decreased from 59.4 μg/m3 in 1993 to 49.0 μg/m3 in 2008, probably in part as a result of traffic emission control policies in Cyprus. In Ayia Marina, annual concentrations ranged from 27.3 to 35.6 μg/m3, and no obvious time trends were observed. The levels measured at the Cyprus background site are comparable to background concentrations reported in other Eastern Mediterranean countries. Average daily PM10 concentrations during desert dust storms were around 100 μg/m3 since 2000 and much higher in earlier years. Despite the large impact of dust storms and their increasing frequency over time, dust storms were responsible for a small fraction of the exceedances of the daily PM10 limit. PMID:25562931
Ion-exchange chromatography separation applied to mineral recycle in closed systems
NASA Technical Reports Server (NTRS)
Ballou, E.; Spitze, L. A.; Wong, F. W.; Wydeven, T.; Johnson, C. C.
1981-01-01
As part of the controlled ecological life support system (CELSS) program, a study is being made of mineral separation on ion-exchange columns. The purpose of the mineral separation step is to allow minerals to be recycled from the oxidized waste products of plants, man, and animals for hydroponic food production. In the CELSS application, relatively large quantities of minerals in a broad concentration range must be recovered by the desired system, rather than the trace quantities and very low concentrations treated in analytical applications of ion-exchange chromatography. Experiments have been carried out to assess the parameters pertinent to the scale-up of ion-exchange chromatography and to determine feasibility. Preliminary conclusions are that the column scale-up is in a reasonable size range for the CELSS application. The recycling of a suitable eluent, however, remains a major challenge to the suitability of using ion exchange chromatography in closed systems.
Gueorguieva, Ivelina; Clark, Simon R; McMahon, Catherine J; Scarth, Sylvia; Rothwell, Nancy J; Tyrrell, Pippa J; Tyrell, Pippa J; Hopkins, Stephen J; Rowland, Malcolm
2008-03-01
What is already known about this subject? The naturally occurring interlukin-1 receptor antagonist (IL-1RA) markedly protects rodents against ischaemic, excitotoxic and traumatic brain injury, suggesting it may be of therapeutic value. When administered intravenously to patients soon after stroke, IL-1RA is safe and reduces the peripheral inflammatory response. However, IL-1RA is a large protein (17 kDa), which may limit brain penetration, thereby limiting its potential utility in brain injury. What this study adds. The purpose of these experiments was to determine the pharmacokinetics of IL-1RA in cerebrospinal fluid (CSF) of patients, to allow modelling that would aid development of therapeutic regimens. Peripherally administered IL-1RA crosses slowly into and out of the CSF of patients with subarachnoid haemorrhage and, at steady state, CSF IL-1RA concentration (range 115-886 ng ml(-1)) was similar to that found to be neuroprotective in rats (range 91-232 ng ml(-1)), although there was considerable variability among patients. However, there is a large concentration gradient of IL-1RA between plasma and CSF. These CSF:plasma data are consistent with very low permeation of IL-1RA into the CSF and elimination kinetics from it controlled by the volumetric turnover of CSF. The naturally occurring interlukin-1 receptor antagonist (IL-1RA) markedly protects rodents against ischaemic, excitotoxic and traumatic brain injury, suggesting it may be of therapeutic value. The aim was to determine the pharmacokinetics of IL-1RA in cerebrospinal fluid (CSF) of patients, to allow modelling that would aid development of therapeutic regimens. When administered intravenously to patients soon after stroke, IL-1RA is safe and reduces the peripheral inflammatory response. However, IL-1RA is a large protein (17 kDa), which may limit brain penetration, thereby limiting its potential utility in brain injury. In seven patients with subarchnoid haemorrhage (SAH), IL-1RA was administered by intravenous bolus, then infusion for 24 h, and both blood and CSF, via external ventricular drains, were sampled during and after stopping the infusion. Plasma steady-state concentrations were rapidly attained and maintained throughout the infusion, whereas CSF concentrations rose slowly towards a plateau during the 24-h infusion, reaching at best only 4% of that in plasma. Plasma kinetic parameters were within the literature range. Modelling of the combined data yielded rate constants entering and leaving the CSF of 0.0019 h(-1)[relative standard error (RSE) = 19%] and 0.1 h(-1) (RSE = 19%), respectively. Peripherally administered IL-1RA crosses slowly into and out of the CSF of patients with SAH. However, there is a large concentration gradient of IL-1RA between plasma and CSF. These CSF:plasma data are consistent with very low permeation of IL-1RA into the CSF and elimination kinetics from it controlled by the volumetric turnover of CSF.
Basu, Anirban; Kumar, Gopinatha Suresh
2015-05-15
The thermodynamics of the interaction of the food colourant tartrazine with two homologous serum proteins, HSA and BSA, were investigated, employing microcalorimetric techniques. At T=298.15K the equilibrium constants for the tartrazine-BSA and HSA complexation process were evaluated to be (1.92 ± 0.05) × 10(5)M(-1) and (1.04 ± 0.05) × 10(5)M(-1), respectively. The binding was driven by a large negative standard molar enthalpic contribution. The binding was dominated essentially by non-polyelectrolytic forces which remained largely invariant at all salt concentrations. The polyelectrolytic contribution was weak at all salt concentrations and accounted for only 6-18% of the total standard molar Gibbs energy change in the salt concentration range 10-50mM. The negative standard molar heat capacity values, in conjunction with the enthalpy-entropy compensation phenomenon observed, established the involvement of dominant hydrophobic forces in the complexation process. Tartrazine enhanced the stability of both serum albumins against thermal denaturation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Discrimination of trait-based characteristics by trace element bioaccumulation in riverine fishes
Short, T.M.; DeWeese, L.R.; Dubrovsky, N.M.
2008-01-01
Relations between tissue trace element concentrations and species traits were examined for 45 fish species to determine the extent to which trait-based characteristics accounted for relative differences among species in trace element bioaccumulation. Percentages of fish species correctly classified by discriminant analysis according to traits predicted by tissue trace element concentrations ranged from 72% to 87%. Tissue concentrations of copper, mercury, selenium, and zinc appeared to have the greatest overall influence on differentiating species according to trait characteristics. Discrimination of trait characteristics did not appear to be strongly influenced by local sources of trace elements in the streambed sediment. Bioaccumulation was greatest for those species classified as primarily detritivores, having relatively large adult body size, considered nonmigratory with respect to reproductive strategy, occurring mostly in large or variable size streams and rivers, preferring depositional areas within the stream channel, and preferring benthic rather than open-water habitats. Our findings provide evidence of the strong relationship between bioaccumulation of environmental trace elements and trait-based factors that influence contaminant exposure. ?? 2008 NRC.
Frans, L.M.; Paulson, A.J.; Huffman, R.L.; Osbourne, S.N.
2006-01-01
Concentrations of nutrients, major ions, organic carbon, suspended sediment, and the nitrogen isotope ratio of nitrate (delta15N) were collected at surface-water sites in rivers and drainage basins discharging to the southern part of Hood Canal, Mason and Kitsap Counties, Washington. Base-flow samples were collected from sites on the Union, Tahuya, and Skokomish Rivers from June to August 2004. Concentrations of nutrients at all sites were low. Ammonia and orthophosphate were less than the detection limit for most samples, and nitrate plus nitrite concentrations ranged from less than the detection limit of 0.06 to 0.49 milligram per liter (mg/L). Nitrate plus nitrite concentrations were near the detection limit of 0.06 mg/L in the North Fork, South Fork, and mainstem of the Skokomish River. The concentration of nitrate plus nitrite in the Tahuya River system above Lake Tahuya was 0.17 mg/L, but decreased to 0.1 mg/L or less downstream of Lake Tahuya. Overall, the Union River contained the highest nitrate plus nitrite concentrations of the three large river systems, ranging from 0.12 to 0.28 mg/L. delta15N generally was within the range that encompasses most sources, providing little information on nitrate sources. Most nitrogen was in the dissolved inorganic form. Dissolved inorganic nitrogen in Lake Tahuya was converted into particulate and dissolved organic nitrogen. Dissolved organic carbon concentrations generally were less than 1 mg/L in the Tahuya and Skokomish Rivers and averaged 1.3 mg/L in the Union River. Dissolved organic carbon concentrations of 2.6 to 2.7 mg/L at sites just downstream of Lake Tahuya were highest for the three large river systems, and decreased to concentrations less than 1 mg/L, which was similar to concentrations in the Skokomish River. Total nitrogen concentrations near 0.5 mg/L were measured at two sites: Unnamed Creek at Purdy-Cutoff Road (site S2b) and downstream of Lake Devereaux (site SP5). Concentrations of nitrate plus nitrite were highest at site S2b (0.49 mg/L), and dissolved organic carbon concentrations (3.3 mg/L) were highest at the outlet of Lake Devereaux. However, the overall impact of these sites on the nutrient loading to Hood Canal probably is negligible because of the low streamflow and small loads. Springtime samples were collected from the Union River, Tahuya River, Mission Creek, and three smaller drainage basins in March 2004. Samples were collected during spring rain events to determine if increased runoff contributes larger amounts of sediment and nutrients from the land into the surface water. There was little difference in nutrient concentrations between samples collected in the spring and base-flow samples collected in the summer. This is likely due to the fact that the springtime samples were collected during a rain event and not necessarily during a peak in the hydrograph.
Robust encoding of stimulus identity and concentration in the accessory olfactory system.
Arnson, Hannah A; Holy, Timothy E
2013-08-14
Sensory systems represent stimulus identity and intensity, but in the neural periphery these two variables are typically intertwined. Moreover, stable detection may be complicated by environmental uncertainty; stimulus properties can differ over time and circumstance in ways that are not necessarily biologically relevant. We explored these issues in the context of the mouse accessory olfactory system, which specializes in detection of chemical social cues and infers myriad aspects of the identity and physiological state of conspecifics from complex mixtures, such as urine. Using mixtures of sulfated steroids, key constituents of urine, we found that spiking responses of individual vomeronasal sensory neurons encode both individual compounds and mixtures in a manner consistent with a simple model of receptor-ligand interactions. Although typical neurons did not accurately encode concentration over a large dynamic range, from population activity it was possible to reliably estimate the log-concentration of pure compounds over several orders of magnitude. For binary mixtures, simple models failed to accurately segment the individual components, largely because of the prevalence of neurons responsive to both components. By accounting for such overlaps during model tuning, we show that, from neuronal firing, one can accurately estimate log-concentration of both components, even when tested across widely varying concentrations. With this foundation, the difference of logarithms, log A - log B = log A/B, provides a natural mechanism to accurately estimate concentration ratios. Thus, we show that a biophysically plausible circuit model can reconstruct concentration ratios from observed neuronal firing, representing a powerful mechanism to separate stimulus identity from absolute concentration.
Witt, Emitt C.; Shi, Honglan; Karstensen, Krista A.; Wang, Jianmin; Adams, Craig D.
2008-01-01
In October 2005, nearly one month after Hurricanes Katrina and Rita, a team of scientists from the U.S. Geological Survey and the Missouri University of Science and Technology deployed to southern Louisiana to collect perishable environmental data resulting from the impacts of these storms. Perishable samples collected for this investigation are subject to destruction or ruin by removal, mixing, or natural decay; therefore, collection is time-critical following the depositional event. A total of 238 samples of sediment, soil, and vegetation were collected to characterize chemical quality. For this analysis, 157 of the 238 samples were used to characterize trace element, iron, total organic carbon, pesticide, and polychlorinated biphenyl concentrations of deposited sediment and associated shallow soils. In decreasing order, the largest variability in trace element concentration was detected for lead, vanadium, chromium, copper, arsenic, cadmium, and mercury. Lead was determined to be the trace element of most concern because of the large concentrations present in the samples ranging from 4.50 to 551 milligrams per kilogram (mg/kg). Sequential extraction analysis of lead indicate that 39.1 percent of the total lead concentration in post-hurricane sediment is associated with the iron-manganese oxide fraction. This fraction is considered extremely mobile under reducing environmental conditions, thereby making lead a potential health hazard. The presence of lead in post-hurricane sediments likely is from redistribution of pre-hurricane contaminated soils and sediments from Lake Pontchartrain and the flood control canals of New Orleans. Arsenic concentrations ranged from 0.84 to 49.1 mg/kg. Although Arsenic concentrations generally were small and consistent with other research results, all samples exceeded the U.S. Environmental Protection Agency’s Human Health Medium-Specific Screening Level of 0.39 mg/kg. Mercury concentrations ranged from 0.02 to 1.30 mg/kg. Comparing the mean mercury concentration present in post-hurricane samples with regional background data from the U.S. Geological Survey National Geochemical Dataset, indicates that mercury concentrations in post-hurricane sediment generally are larger. Sequential extraction analysis of 51 samples for arsenic indicate that 54.5 percent of the total arsenic concentration is contained in the extremely mobile iron-manganese oxide fraction. Pesticide and polychlorinated biphenyl Arochlor concentrations in post-hurricane samples were small. Prometon was the most frequently detected pesticide with concentrations ranging from 2.4 to 193 micrograms per kilogram (µg/kg). Methoxychlor was present in 22 samples with a concentration ranging from 3.5 to 3,510 µg/kg. Although methoxychlor had the largest detected pesticide concentration, it was well below the U.S. Environmental Protection Agency’s High-Priority Screening Level for residential soils. Arochlor congeners were not detected for any sample above the minimum detection level of 7.9 µg/kg.
A Large Scale Dynamical System Immune Network Modelwith Finite Connectivity
NASA Astrophysics Data System (ADS)
Uezu, T.; Kadono, C.; Hatchett, J.; Coolen, A. C. C.
We study a model of an idiotypic immune network which was introduced by N. K. Jerne. It is known that in immune systems there generally exist several kinds of immune cells which can recognize any particular antigen. Taking this fact into account and assuming that each cell interacts with only a finite number of other cells, we analyze a large scale immune network via both numerical simulations and statistical mechanical methods, and show that the distribution of the concentrations of antibodies becomes non-trivial for a range of values of the strength of the interaction and the connectivity.
Optimization of a dual mode Rowland mount spectrometer used in the 120-950 nm wavelength range
NASA Astrophysics Data System (ADS)
McDowell, M. W.; Bouwer, H. K.
In a recent article, several configurations were described whereby a Rowland mount spectrometer could be modified to cover a wavelength range of 120-950 nm. In one of these configurations, large additional image aberration is introduced which severely limits the spectral resolving power. In the present article, the theoretical imaging properties of this configuration are considered and a simple method is proposed to reduce this aberration. The optimized system possesses an image quality similar to the conventional Rowland mount with the image surface slightly displaced from the Rowland circle but concentric to it.
Determination of 48 fragrance allergens in toys using GC with ion trap MS/MS.
Lv, Qing; Zhang, Qing; Li, Wentao; Li, Haiyu; Li, Pi; Ma, Qiang; Meng, Xianshuang; Qi, Meiling; Bai, Hua
2013-11-01
This paper presents a method for the simultaneous determination of 48 fragrance allergens in four types of toys (plastic toys, play clays, plush toys, and paper toys) based on GC with ion trap MS/MS. Compared with single-stage MS, MS/MS is superior in terms of the qualification and quantification of a large range of compounds in complicated matrices. Procedures for extraction and purification were optimized for each toy type. The method proved to be linear over a wide range of concentrations for all analytes with correlation coefficients between 0.9768 and 0.9999. Validation parameters, namely, LODs and LOQs, ranged from 0.005-5.0 and from 0.02-20 mg/kg, respectively. Average recoveries of target compounds (spiked at three concentration levels) were in the range of 79.5-109.1%. Intraday and interday repeatabilities of the proposed method varied from 0.7-10.5% and from 3.1-13.4%, respectively. The proposed method was used to monitor fragrance allergens in commercial toy products. Our findings indicate that this method is an accurate and effective technique for analyzing fragrance allergens in materials composed of complex components. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
El-Nashar, Rasha M; Abdel Ghani, Nour T; Hassan, Sherif M
2012-06-12
This work offers construction and comparative evaluation the performance characteristics of conventional polymer (I), carbon paste (II) and carbon nanotubes chemically modified carbon paste ion selective electrodes (III) for meclofenoxate hydrochloride are described. These electrodes depend mainly on the incorporation of the ion pair of meclofenoxate hydrochloride with phosphomolybdic acid (PMA) or phosphotungestic acid (PTA). They showed near Nernestian responses over usable concentration range 1.0 × 10(-5) to 1.0 × 10(-2)M with slopes in the range 55.15-59.74 mV(concentrationdecade)(-1). These developed electrodes were fully characterized in terms of their composition, response time, working concentration range, life span, usable pH and temperature range. The electrodes showed a very good selectivity for Meclo with respect to a large number of inorganic cations, sugars and in the presence of the degradation product of the drug (p-chloro phenoxy acetic acid). The standard additions method was applied to the determination of MecloCl in pure solution, pharmaceutical preparations and biological samples. Dissolution testing was also applied using the proposed sensors. Copyright © 2011 Elsevier B.V. All rights reserved.
Nitrogen in rock: Occurrences and biogeochemical implications
Holloway, J.M.; Dahlgren, R.A.
2002-01-01
There is a growing interest in the role of bedrock in global nitrogen cycling and potential for increased ecosystem sensitivity to human impacts in terrains with elevated background nitrogen concentrations. Nitrogen-bearing rocks are globally distributed and comprise a potentially large pool of nitrogen in nutrient cycling that is frequently neglected because of a lack of routine analytical methods for quantification. Nitrogen in rock originates as organically bound nitrogen associated with sediment, or in thermal waters representing a mixture of sedimentary, mantle, and meteoric sources of nitrogen. Rock nitrogen concentrations range from trace levels (>200 mg N kg -1) in granites to ecologically significant concentrations exceeding 1000 mg N kg -1 in some sedimentary and metasedimentary rocks. Nitrate deposits accumulated in arid and semi-arid regions are also a large potential pool. Nitrogen in rock has a potentially significant impact on localized nitrogen cycles. Elevated nitrogen concentrations in water and soil have been attributed to weathering of bedrock nitrogen. In some environments, nitrogen released from bedrock may contribute to nitrogen saturation of terrestrial ecosystems (more nitrogen available than required by biota). Nitrogen saturation results in leaching of nitrate to surface and groundwaters, and, where soils are formed from ammonium-rich bedrock, the oxidation of ammonium to nitrate may result in soil acidification, inhibiting revegetation in certain ecosystems. Collectively, studies presented in this article reveal that geologic nitrogen may be a large and reactive pool with potential for amplification of human impacts on nitrogen cycling in terrestrial and aquatic ecosystems.
Jayaratne, E R; Morawska, L; Ristovski, Z D; He, C
2007-07-15
Pollutant concentrations measured in the exhaust plume of a vehicle may be related to the pollutant emission factor using the CO2 concentration as a measure of the dilution factor. We have used this method for the rapid identification of high particle number (PN) emitting on-road vehicles. The method was validated for PN using a medium-duty vehicle and successfully applied to measurements of PN emissions from a large fleet of on-road diesel buses. The ratio of PN concentration to CO2 concentration, Z, in the exhaust plume was estimated for individual buses. On the average, a bus emitted about 1.5 x 10(9) particles per mg of CO2 emitted. A histogram of the number of buses as a function of Z showed, for the first time, that the PN emissions from diesel buses followed a gamma distribution, with most of the values within a narrow range and a few buses exhibiting relatively large values. It was estimated that roughly 10% and 50% of the PN emissions came from just 2% and 25% of the buses, respectively. A regression analysis showed that there was a positive correlation between Z and age of buses, with the slope of the best line being significantly different from zero. The mean Z value for the pre-Euro buses was significantly greater than each of the values for the Euro I and II buses.
INTEGRITY OF VOA-VIAL SEALS | Science Inventory | US ...
Preservation of soil samples for the analysis of volatile organic compounds (VOCs) requires both the inhibition of VOC degradation and the restriction of vapor movement in or out of the sample container. Clear, 40,mL glass VOA vials manufactured by the four major U.S. glass manufacturers were tested for seal integrity. Visual inspection revealed a variety of imperfections ranging from small indentations, bumps, and scratches on vial threads or lips, through obvious defects, such as large indentations or grooves in the vial lips and chipped or broken glass. The aluminum plate vacuum test proved to be unreliable in identifying potentially leaky vials. The septa-seal vacuum test was conducted twice on the 80 selected vials.Mean VOC concentrations after 14 days storage generally were within +- 20% of the known concentration with a majority of the concentrations within +- 15% of their known values. There were no statistically significant differences in VOC concentrations between vials in the potentially leaky and control group for any of the manufacturers. Only 1 vial lost VOCs and that was due to a large chip in the vial's lip and neck. These findings indicate that the silicone septa are flexible enough to overcome most vial imperfections and form a complete seal against VOC loss. A careful inspection of the VOA vials prior to use to remove any vials with large and obvious imperfections should be sufficient to screen out vials that are subject to VOC losses.
NASA Astrophysics Data System (ADS)
Thomas, Philipp; Straube, Arthur V.; Grima, Ramon
2010-11-01
Chemical reactions inside cells occur in compartment volumes in the range of atto- to femtoliters. Physiological concentrations realized in such small volumes imply low copy numbers of interacting molecules with the consequence of considerable fluctuations in the concentrations. In contrast, rate equation models are based on the implicit assumption of infinitely large numbers of interacting molecules, or equivalently, that reactions occur in infinite volumes at constant macroscopic concentrations. In this article we compute the finite-volume corrections (or equivalently the finite copy number corrections) to the solutions of the rate equations for chemical reaction networks composed of arbitrarily large numbers of enzyme-catalyzed reactions which are confined inside a small subcellular compartment. This is achieved by applying a mesoscopic version of the quasisteady-state assumption to the exact Fokker-Planck equation associated with the Poisson representation of the chemical master equation. The procedure yields impressively simple and compact expressions for the finite-volume corrections. We prove that the predictions of the rate equations will always underestimate the actual steady-state substrate concentrations for an enzyme-reaction network confined in a small volume. In particular we show that the finite-volume corrections increase with decreasing subcellular volume, decreasing Michaelis-Menten constants, and increasing enzyme saturation. The magnitude of the corrections depends sensitively on the topology of the network. The predictions of the theory are shown to be in excellent agreement with stochastic simulations for two types of networks typically associated with protein methylation and metabolism.
Martínez-González, Miguel Á; Ruiz-Canela, Miguel; Hruby, Adela; Liang, Liming; Trichopoulou, Antonia; Hu, Frank B
2016-03-09
Large observational epidemiologic studies and randomized trials support the benefits of a Mediterranean dietary pattern on cardiovascular disease (CVD). Mechanisms postulated to mediate these benefits include the reduction of low-grade inflammation, increased adiponectin concentrations, decreased blood coagulation, enhanced endothelial function, lower oxidative stress, lower concentrations of oxidized LDL, and improved apolipoprotein profiles. However, the metabolic pathways through which the Mediterranean diet influences CVD risk remain largely unknown. Investigating specific mechanisms in the context of a large intervention trial with the use of high-throughput metabolomic profiling will provide more solid public health messages and may help to identify key molecular targets for more effective prevention and management of CVD. Although metabolomics is not without its limitations, the techniques allow for an assessment of thousands of metabolites, providing wide-ranging profiling of small molecules related to biological status. Specific candidate plasma metabolites that may be associated with CVD include branched-chain and aromatic amino acids; the glutamine-to-glutamate ratio; some short- to medium-chain acylcarnitines; gut flora metabolites (choline, betaine, and trimethylamine N-oxide); urea cycle metabolites (citrulline and ornithine); and specific lipid subclasses. In addition to targeted metabolites, the role of a large number of untargeted metabolites should also be assessed. Large intervention trials with the use of food patterns for the prevention of CVD provide an unparalleled opportunity to examine the effects of these interventions on plasma concentrations of specific metabolites and determine whether such changes mediate the benefits of the dietary interventions on CVD risk. © 2016 American Society for Nutrition.
Scaling Properties of Particle Density Fields Formed in Simulated Turbulent Flows
NASA Technical Reports Server (NTRS)
Hogan, Robert C.; Cuzzi, Jeffrey N.; Dobrovolskis, Anthony R.; DeVincenzi, Donald (Technical Monitor)
1998-01-01
Direct numerical simulations (DNS) of particle concentrations in fully developed 3D turbulence were carried out in order to study the nonuniform structure of the particle density field. Three steady-state turbulent fluid fields with Taylor microscale Reynolds numbers (Re(sub lambda)) of 40, 80 and 140 were generated by solving the Navier-Stokes equations with pseudospectral methods. Large scale forcing was used to drive the turbulence and maintain temporal stationarity. The response of the particles to the fluid was parameterized by the particle Stokes number St, defined as the ratio of the particle's stopping time to the mean period of eddies on the Kolmogorov scale (eta). In this paper, we consider only passive particles optimally coupled to these eddies (St approx. = 1) because of their tendency to concentrate more than particles with lesser or greater St values. The trajectories of up to 70 million particles were tracked in the equilibrated turbulent flows until the particle concentration field reached a statistically stationary state. The nonuniform structure of the concentration fields was characterized by the multifractal singularity spectrum, f(alpha), derived from measures obtained after binning particles into cells ranging from 2(eta) to 15(eta) in size. We observed strong systematic variations of f(alpha) across this scale range in all three simulations and conclude that the particle concentration field is not statistically self similar across the scale range explored. However, spectra obtained at the 2(eta), 4(eta), and 8(eta) scales of each flow case were found to be qualitatively similar. This result suggests that the local structure of the particle concentration field may be flow-Independent. The singularity spectra found for 2n-sized cells were used to predict concentration distributions in good agreement with those obtained directly from the particle data. This Singularity spectrum has a shape similar to the analogous spectrum derived for the inertial-range energy dissipation fields of experimental turbulent flows at Re(sub lambda) = 110 and 1100. Based on this agreement, and the expectation that both dissipation and particle concentration are controlled by the same cascade process, we hypothesize that singularity spectra similar to the ones found in this work provide a good characterization of the spatially averaged statistical properties of preferentially concentrated particles in higher Re(sub lambda) turbulent flows.
National review of ambient air toxics observations.
Strum, Madeleine; Scheffe, Richard
2016-02-01
Ambient air observations of hazardous air pollutant (HAPs), also known as air toxics, derived from routine monitoring networks operated by states, local agencies, and tribes (SLTs), are analyzed to characterize national concentrations and risk across the nation for a representative subset of the 187 designated HAPs. Observations from the National Air Toxics Trend Sites (NATTS) network of 27 stations located in most major urban areas of the contiguous United States have provided a consistent record of HAPs that have been identified as posing the greatest risk since 2003 and have also captured similar concentration patterns of nearly 300 sites operated by SLTs. Relatively high concentration volatile organic compounds (VOCs) such as benzene, formaldehyde, and toluene exhibit the highest annual average concentration levels, typically ranging from 1 to 5 µg/m(3). Halogenated (except for methylene chloride) and semivolatile organic compounds (SVOCs) and metals exhibit concentrations typically 2-3 orders of magnitude lower. Formaldehyde is the highest national risk driver based on estimated cancer risk and, nationally, has not exhibited significant changes in concentration, likely associated with the large pool of natural isoprene and formaldehyde emissions. Benzene, toluene, ethylbenzene, and 1,3-butadiene are ubiquitous VOC HAPs with large mobile source contributions that continue to exhibit declining concentrations over the last decade. Common chlorinated organic compounds such as ethylene dichloride and methylene chloride exhibit increasing concentrations. The variety of physical and chemical attributes and measurement technologies across 187 HAPs result in a broad range of method detection limits (MDLs) and cancer risk thresholds that challenge confidence in risk results for low concentration HAPs with MDLs near or greater than risk thresholds. From a national monitoring network perspective, the ability of the HAPs observational database to characterize the multiple pollutant and spatial scale patterns influencing exposure is severely limited and positioned to benefit by leveraging a variety of emerging measurement technologies. Ambient air toxics observation networks have limited ability to characterize the broad suite of hazardous air pollutants (HAPs) that affect exposures across multiple spatial scales. While our networks are best suited to capture major urban-scale signals of ubiquitous volatile organic compound HAPs, incorporation of sensing technologies that address regional and local-scale exposures should be pursued to address major gaps in spatial resolution. Caution should be exercised in interpreting HAPs observations based on data proximity to minimum detection limit and risk thresholds.
Wachter, Bettina; Heinrich, Sonja K.; Reyers, Fred; Mienie, Lodewyk J.
2016-01-01
Cheetahs (Acinonyx jubatus) are highly specialised large felids, currently listed as vulnerable on the IUCN red data list. In captivity, they are known to suffer from a range of chronic non-infectious diseases. Although low heterozygosity and the stress of captivity have been suggested as possible causal factors, recent studies have started to focus on the contribution of potential dietary factors in the pathogenesis of these diseases. Fatty acids are an important component of the diet, not only providing a source of metabolisable energy, but serving other important functions in hormone production, cellular signalling as well as providing structural components in biological membranes. To develop a better understanding of lipid metabolism in cheetahs, we compared the total serum fatty acid profiles of 35 captive cheetahs to those of 43 free-ranging individuals in Namibia using gas chromatography-mass spectrometry. The unsaturated fatty acid concentrations differed most remarkably between the groups, with all of the polyunsaturated and monounsaturated fatty acids, except arachidonic acid and hypogeic acid, detected at significantly lower concentrations in the serum of the free-ranging animals. The influence of age and sex on the individual fatty acid concentrations was less notable. This study represents the first evaluation of the serum fatty acids of free-ranging cheetahs, providing critical information on the normal fatty acid profiles of free-living, healthy individuals of this species. The results raise several important questions about the potential impact of dietary fatty acid composition on the health of cheetahs in captivity. PMID:27992457
On the Importance of Small Ice Crystals in Tropical Anvil Cirrus
NASA Technical Reports Server (NTRS)
Jensen, E. J.; Lawson, P.; Baker, B.; Pilson, B.; Mo, Q.; Heymsfield, A. J.; Bansemer, A.; Bui, T. P.; McGill, M.; Hlavka, D.;
2009-01-01
In situ measurements of ice crystal concentrations and sizes made with aircraft instrumentation over the past two decades have often indicated the presence of numerous relatively small (< 50 m diameter) crystals in cirrus clouds. Further, these measurements frequently indicate that small crystals account for a large fraction of the extinction in cirrus clouds. The fact that the instruments used to make these measurements, such as the Forward Scattering Spectrometer Probe (FSSP) and the Cloud Aerosol Spectrometer (CAS), ingest ice crystals into the sample volume through inlets has led to suspicion that the indications of numerous small ]crystals could be artifacts of large ]crystal shattering on the instrument inlets. We present new aircraft measurements in anvil cirrus sampled during the Tropical Composition, Cloud, and Climate Coupling (TC4) campaign with the 2 ] Dimensional Stereo (2D ]S) probe, which detects particles as small as 10 m. The 2D ]S has detector "arms" instead of an inlet tube. Since the 2D ]S probe surfaces are much further from the sample volume than is the case for the instruments with inlets, it is expected that 2D ]S will be less susceptible to shattering artifacts. In addition, particle inter ]arrival times are used to identify and remove shattering artifacts that occur even with the 2D ]S probe. The number of shattering artifacts identified by the 2D ]S interarrival time analysis ranges from a negligible contribution to an order of magnitude or more enhancement in apparent ice concentration over the natural ice concentration, depending on the abundance of large crystals and the natural small ]crystal concentration. The 2D ]S measurements in tropical anvil cirrus suggest that natural small ]crystal concentrations are typically one to two orders of magnitude lower than those inferred from CAS. The strong correlation between the CAS/2D ]S ratio of small ]crystal concentrations and large ]crystal concentration suggests that the discrepancy is likely caused by shattering of large crystals on the CAS inlet. We argue that past measurements with CAS in cirrus with large crystals present may contain errors due to crystal shattering, and past conclusions derived from these measurements may need to be revisited. Further, we present correlations between CAS spurious concentration and 2D ]S large ]crystal mass from spatially uniform anvil cirrus sampling periods as an approximate guide for estimating quantitative impact of large ]crystal shattering on CAS concentrations in previous datasets. We use radiative transfer calculations to demonstrate that in the maritime anvil cirrus sampled during TC4, small crystals indicated by 2D ]S contribute relatively little cloud extinction, radiative forcing, or radiative heating in the anvils, regardless of anvil age or vertical location in the clouds. While 2D ]S ice concentrations in fresh anvil cirrus may often exceed 1 cm.3, and are observed to exceed 10 cm.3 in turrets, they are typically 0.1 cm.3 and rarely exceed 1 cm.3 (<1.4% of the time) in aged anvil cirrus. We hypothesize that isolated occurrences of higher ice concentrations in aged anvil cirrus may be caused by ice nucleation driven by either small ]scale convection or gravity waves. It appears that the numerous small crystals detrained from convective updrafts do not persist in the anvil cirrus sampled during TC ]4.
Fluvial sediment and chemical quality of water in the Little Blue River basin, Nebraska and Kansas
Mundorff, J.C.; Waddell, K.M.
1966-01-01
The Little Blue River drains about 3,37)0 square miles in south-central Nebraska and north-central Kansas. The uppermost bedrock in the basin is limestone and shale of Permian age and sandstone, shale, and limestone of Cretaceous age. Bedrock is exposed in many places in the lower one-third of the basin but elsewhere is buried beneath a thin to thick mantle of younger sediments, mostly of Quaternary age. These younger sediments are largely fluvial and eolian deposits but also include some glacial till. Consisting in large part of sand and gravel, the fluvial deposits are an important source of ground-water supplies throughout much of the upper two-thirds of the basin. Loess, an eolian deposit of clayey silt, is by far the most widespread surficial deposit. The climate is continental. Temperatures ranging from -38 ? F to 118 ? F have been recorded in the basin. Average annual precipitation as low as 10.31 and as high as 49.32 inches has been recorded. During most years in the period 1956-62, when nearly all the water-quality data were obtained, annual precipitation and annual runoff were greater than normal. Flow-duration data indicate, however, that the flow distribution for the period was near normal. The Little Blue River has the same suspended-sediment characteristics as nearly all unregulated streams in the Great Plains--a wide range in concentrations, low concentrations during low-flow periods, and high concentrations during almost all periods of significant overland runoff. The maximum instantaneous concentration normally occurs many hours before maximum water discharge during any given rise in stage; the maximum daily mean concentration during any given year normally occurs at a moderate stream stage, not during a major flood. Suspended-sediment data for Little Blue River near Deweese, Nebr., which receives drainage from the upstream third of the basin, approximately, show that during the 1!}57-61 water years concentrations of 100 ppm (parts per million) or less prevailed about 42 percent of the time and concentrations of 1,000 ppm or less prevailed about 85 percent of the time. Observed concentrations ranged from 2 to 21,000 ppm: daily mean concentrations ranged from 2 to 13,800 ppm. The discharge-weighted suspended-sediment concentration was computed as about 2,800 ppm at Little Blue River near Deweese, about 3,300 ppm near Fairbury (Endicott), and about 3,000 ppm at Waterville. These stations receive drainage from about one-third, two-thirds, and nearly all the basin, respectively. Water-utilization problems resulting from high concentrations are not significant in the basin ; use of water from the Little Blue River is quantitatively negligible. Concentrations and, consequently, discharges of sediment are greater at a given water discharge on a rising stage than at the same discharge on the falling stage of the same runoff event. Also, a wide range in sediment discharge occurs at similar water discharges during different runoff events. Daily sediment discharges at Little Blue River near Deweese ranged from about 1,400 to 16,000 tons at daily mean water discharges of about 500 cfs (cubic feet per second) and from almost 7,500 to 28,000 tons at water discharges of about 1,000 cfs. The estimated long-term sediment discharge at Little Blue River near Deweese is about 400,000 tons per year: near Fairbury, about 1,200,000 tons per year: and at Waterville, about 1.900,000 tons per year. The high sediment discharge from the downstream part of the basin is due to greater precipitation and runoff--not to higher concentrations of suspended sediment--in the downstream parts of the basin. Nearly all the suspended sediment is silt and clay. The streambed material is mainly medium sand to gravel. The median particle size of bed material observed was about 0.73 mm near Deweese and about 0.77 mm near Fairbury. A few computations of total sediment discharge of Little Blue River near Deweese indicate that suspended-sedim
Yousef, Gad G; Brown, Allan F; Funakoshi, Yayoi; Mbeunkui, Flaubert; Grace, Mary H; Ballington, James R; Loraine, Ann; Lila, Mary A
2013-05-22
Anthocyanins and phenolic acids are major secondary metabolites in blueberry with important implications for human health maintenance. An improved protocol was developed for the accurate, efficient, and rapid comparative screening for large blueberry sample sets. Triplicates of six commercial cultivars and four breeding selections were analyzed using the new method. The compound recoveries ranged from 94.2 to 97.5 ± 5.3% when samples were spiked with commercial standards prior to extraction. Eighteen anthocyanins and 4 phenolic acids were quantified in frozen and freeze-dried fruits. Large variations for individual and total anthocyanins, ranging from 201.4 to 402.8 mg/100 g, were assayed in frozen fruits. The total phenolic acid content ranged from 23.6 to 61.7 mg/100 g in frozen fruits. Across all genotypes, freeze-drying resulted in minor reductions in anthocyanin concentration (3.9%) compared to anthocyanins in frozen fruits. However, phenolic acids increased by an average of 1.9-fold (±0.3) in the freeze-dried fruit. Different genotypes frequently had comparable overall levels of total anthocyanins and phenolic acids, but differed dramatically in individual profiles of compounds. Three of the genotypes contained markedly higher concentrations of delphinidin 3-O-glucoside, cyanidin 3-O-glucoside, and malvidin 3-O-glucoside, which have previously been implicated as bioactive principles in this fruit. The implications of these findings for human health benefits are discussed.
A simple phenomenological model for grain clustering in turbulence
NASA Astrophysics Data System (ADS)
Hopkins, Philip F.
2016-01-01
We propose a simple model for density fluctuations of aerodynamic grains, embedded in a turbulent, gravitating gas disc. The model combines a calculation for the behaviour of a group of grains encountering a single turbulent eddy, with a hierarchical approximation of the eddy statistics. This makes analytic predictions for a range of quantities including: distributions of grain densities, power spectra and correlation functions of fluctuations, and maximum grain densities reached. We predict how these scale as a function of grain drag time ts, spatial scale, grain-to-gas mass ratio tilde{ρ }, strength of turbulence α, and detailed disc properties. We test these against numerical simulations with various turbulence-driving mechanisms. The simulations agree well with the predictions, spanning ts Ω ˜ 10-4-10, tilde{ρ }˜ 0{-}3, α ˜ 10-10-10-2. Results from `turbulent concentration' simulations and laboratory experiments are also predicted as a special case. Vortices on a wide range of scales disperse and concentrate grains hierarchically. For small grains this is most efficient in eddies with turnover time comparable to the stopping time, but fluctuations are also damped by local gas-grain drift. For large grains, shear and gravity lead to a much broader range of eddy scales driving fluctuations, with most power on the largest scales. The grain density distribution has a log-Poisson shape, with fluctuations for large grains up to factors ≳1000. We provide simple analytic expressions for the predictions, and discuss implications for planetesimal formation, grain growth, and the structure of turbulence.
NASA Astrophysics Data System (ADS)
Booth, B. B. B.; Bernie, D.; McNeall, D.; Hawkins, E.; Caesar, J.; Boulton, C.; Friedlingstein, P.; Sexton, D. M. H.
2013-04-01
We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission-driven rather than concentration-driven perturbed parameter ensemble of a global climate model (GCM). These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration-driven simulations (with 10-90th percentile ranges of 1.7 K for the aggressive mitigation scenario, up to 3.9 K for the high-end, business as usual scenario). A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 K (RCP8.5) and even under aggressive mitigation (RCP2.6) temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission-driven experiments, they do not change existing expectations (based on previous concentration-driven experiments) on the timescales over which different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in the case of SRES A1B and the Representative Concentration Pathways (RCPs), the concentration scenarios used to drive GCM ensembles, lies towards the lower end of our simulated distribution. This design decision (a legacy of previous assessments) is likely to lead concentration-driven experiments to under-sample strong feedback responses in future projections. Our ensemble of emission-driven simulations span the global temperature response of the CMIP5 emission-driven simulations, except at the low end. Combinations of low climate sensitivity and low carbon cycle feedbacks lead to a number of CMIP5 responses to lie below our ensemble range. The ensemble simulates a number of high-end responses which lie above the CMIP5 carbon cycle range. These high-end simulations can be linked to sampling a number of stronger carbon cycle feedbacks and to sampling climate sensitivities above 4.5 K. This latter aspect highlights the priority in identifying real-world climate-sensitivity constraints which, if achieved, would lead to reductions on the upper bound of projected global mean temperature change. The ensembles of simulations presented here provides a framework to explore relationships between present-day observables and future changes, while the large spread of future-projected changes highlights the ongoing need for such work.
Healy, D.F.
1997-01-01
The Rio Grande Valley study unit of the U.S. Geological Survey National Water-Quality Assessment Program collected monthly water- quality samples at a network of surface-water sites from April 1993 through September 1995. This basic-fixed-site network consisted of nine main-stem sites on the Rio Grande, five sites on tributaries of the Rio Grande, two sites on streams in the Rio Grande Valley study unit that are not directly tributary to the Rio Grande, and one site on a conveyance channel. During each monthly sampling, field properties were measured and samples were collected for the analysis of dissolved solids, major constituents, nutrients, selected trace elements, and suspended-sediment concentrations. During selected samplings, supplemental samples were collected for the analysis of additional trace elements, organic carbon, and/or pesticides. Spatial variations of dissolved-solids, major-constituent, and nutrient data were analyzed. The report presents summary statistics for the monthly water-quality data by sampling site and background information on the drainage basin upstream from each site. Regression equations are presented that relate dissolved-solids, major-constituent, and nutrient concentrations to streamflow, selected field properties, and time. Median instantaneous streamflow at each basic-fixed site ranged from 1.4 to 1,380 cubic feet per second. Median specific conductance at each basic-fixed site ranged from 84 to 1,680 microsiemens per centimeter at 25 degrees Celsius, and median pH values ranged from 7.8 to 8.5. The water sampled at the basic-fixed sites generally was well oxygenated and had a median dissolved-oxygen percent of saturation range from 89 to 108. With the exception of Rio Grande above mouth of Trinchera Creek, near Lasauses, Colorado, dissolved-solids concentrations in the main stem of the Rio Grande generally increased in a downstream direction. This increase is from natural sources such as ground-water inflow and evapotranspiration and from anthropogenic sources such as irrigation- return flows, urban runoff, and wastewater-treatment plant discharges. The smallest median dissolved-solids concentration detected at a basic- fixed site was 58 milligrams per liter and the largest was 1,240 milligrams per liter. The spatial distribution of calcium, magnesium, sodium, sulfate, chloride, and fluoride was similar to the spatial distribution of dissolved solids. The spatial distribution of potassium and bicarbonate varied slightly from that of dissolved solids. Median silica concentrations generally decreased in a downstream direction. Of all cations, calcium and sodium had the largest concentrations at most basic-fixed sites. Bicarbonate and sulfate were the anions having the largest concentrations at most sites. The largest median silica concentration was at Rito de los Frijoles in Bandelier National Monument, New Mexico, where silica composed approximately 50 percent of the dissolved solids. The largest concentrations and largest median concentrations of dissolved-nutrient analytes were detected at Santa Fe River above Cochiti Lake, New Mexico, and Rio Grande at Isleta, New Mexico. The relatively large dissolved-nutrient concentrations at these sites probably were due to discharges from wastewater-treatment plants and urban runoff. The largest concentrations and largest median concentrations of total ammonia plus organic nitrogen and total phosphorus were detected at Rio Puerco near Bernardo, New Mexico. The largest concentrations of these nutrients at this site were associated with runoff from summer thunderstorms. Dissolved-iron concentrations ranged from censored concentrations to 914 micrograms per liter. Median dissolved-iron concentrations ranged from 3 to 160 micrograms per liter. Dissolved-manganese concentrations ranged from censored concent
NASA Astrophysics Data System (ADS)
Budinov, Daniel; Clements, Robert; Rae, Cameron F.; Moncrieff, John B.; Jack, James W.
2016-12-01
Developments in the remote detection of trace gases in the atmosphere using Differential Absorption Lidar have been driven largely by improvements in two key technologies: lasers and detectors. We have designed and built a narrow linewidth pulsed laser source with a well-controlled output wavelength and sufficient pulse energy to measure the concentration profile of CO2 and CH4 to a range in excess of 4km. We describe here the initial measurements of concentration profiles recorded with this instrument. The system is built around a custom-designed Newtonian telescope with a 40cm diameter primary mirror. Laser sources and detectors attach directly to the side of the telescope allowing for flexible customization with a range of additional equipment. The instrument features an all-solid-state laser source based on an optical parametric oscillator (OPO) pumped by an YLF based diode-laser pumped solid-state laser and seeded by a tuned DFB seed. This provides a range of available wavelengths suitable for DIAL within the 1.5-1.6 μm spectral region. The output of the OPO is beam expanded and transmitted coaxially from the receiver telescope. A gas cell within the laser source controls the seed wavelength and allows the wavelength to be tuned to match a specific absorption feature of the selected gas species. The source can be rapidly tuned between the on-line and off-line wavelengths to make a DIAL measurement of either CO2 or CH4 The receiver is based on an InGaAs avalanche photodetector. Whilst photodiode detectors are a low-cost solution their limited sensitivity restricts the maximum range over which a signal can be detected. The receiver signal is digitised for subsequent processing to produce a sightline concentration profile. The instrument is mounted on a robust gimballed mount providing full directional movement within the upper hemisphere. Both static pointing and angular scan modes are available. Accurate angular position is available giving the sightline vector and supporting the interpretation of the concentration profile. Initial measurements have been made in the planetary boundary layer above the City of Edinburgh and these will be presented and discussed. Earlier measurements demonstrated that the signal from atmospheric scatter could be detected at ranges in excess of 6km. The later measurements have shown scatter signals at greater ranges, but with increasing noise at the longer ranges. This is expected as the signal decreases with the inverse of the range whereas the noise remains effectively constant. Range resolved concentration profiles for sightline vectors lying within an angular sector have been used to create a 3D map of concentration for that volume. This will be presented and discussed.
NASA Astrophysics Data System (ADS)
Mendez, Maxence; Blond, Nadège; Blondeau, Patrice; Schoemaecker, Coralie; Hauglustaine, Didier A.
2015-12-01
INCA-Indoor, a new indoor air quality (IAQ) model, has been developed to simulate the concentrations of volatile organic compounds (VOC) and oxidants considering indoor air specific processes such as: emission, ventilation, surface interactions (sorption, deposition, uptake). Based on the detailed version of SAPRC-07 chemical mechanism, INCA-Indoor is able to analyze the contribution of the production and loss pathways of key chemical species (VOCs, oxidants, radical species). The potential of this model has been tested through three complementary analyses: a comparison with the most detailed IAQ model found in the literature, focusing on oxidant species; realistic scenarios covering a large range of conditions, involving variable OH sources like HONO; and the investigation of alkenes ozonolysis under a large range of indoor conditions that can increase OH and HO2 concentrations. Simulations have been run changing nitrous acid (HONO) concentrations, NOx levels, photolysis rates and ventilation rates, showing that HONO can be the main source of indoor OH. Cleaning events using products containing D-limonene have been simulated at different periods of the day. These scenarios show that HOX concentrations can significantly increase in specific conditions. An assessment of the impact of indoor chemistry on the potential formation of secondary species such as formaldehyde (HCHO) and acetaldehyde (CH3CHO) has been carried out under various room configuration scenarios and a study of the HOx budget for different realistic scenarios has been performed. It has been shown that, under the simulation conditions, formaldehyde can be affected by oxidant concentrations via chemical production which can account for more than 10% of the total production, representing 6.5 ppb/h. On the other hand, acetaldehyde production is affected more by oxidation processes. When the photolysis rates are high, chemical processes are responsible for about 50% of the total production of acetaldehyde (9 ppb/h).
Gelation or molecular recognition; is the bis-(α,β-dihydroxy ester)s motif an omnigelator?
Griffiths, Peter C; Knight, David W; Morgan, Ian R; Ford, Amy; Brown, James; Davies, Ben; Heenan, Richard K; King, Stephen M; Dalgliesh, Robert M; Tomkinson, John; Prescott, Stuart; Schweins, Ralf; Paul, Alison
2010-11-18
Understanding the gelation of liquids by low molecular weight solutes at low concentrations gives an insight into many molecular recognition phenomena and also offers a simple route to modifying the physical properties of the liquid. Bis-(α,β-dihydroxy ester)s are shown here to gel thermoreversibly a wide range of solvents, raising interesting questions as to the mechanism of gelation. At gelator concentrations of 5-50 mg ml⁻¹, gels were successfully formed in acetone, ethanol/water mixtures, toluene, cyclohexane and chloroform (the latter, albeit at a higher gelator concentration). A range of neutron techniques - in particular small-angle neutron scattering (SANS) - have been employed to probe the structure of a selection of these gels. The universality of gelation in a range of solvent types suggests the gelation mechanism is a feature of the bis-(α,β-dihydroxy ester) motif, with SANS demonstrating the presence of regular structures in the 30-40 Å range. A correlation between the apparent rodlike character of the structures formed and the polarity of the solvent is evident. Preliminary spin-echo neutron scattering studies (SESANS) indicated the absence of any larger scale structures. Inelastic neutron spectroscopy (INS) studies demonstrated that the solvent is largely unaffected by gelation, but does reveal insights into the thermal history of the samples. Further neutron studies of this kind (particularly SESANS and INS) are warranted, and it is hoped that this work will stimulate others to pursue this line of research.
Nøst, Therese Haugdahl; Breivik, Knut; Wania, Frank; Rylander, Charlotta; Odland, Jon Øyvind; Sandanger, Torkjel Manning
2016-03-01
Studies on the health effects of polychlorinated biphenyls (PCBs) call for an understanding of past and present human exposure. Time-resolved mechanistic models may supplement information on concentrations in individuals obtained from measurements and/or statistical approaches if they can be shown to reproduce empirical data. Here, we evaluated the capability of one such mechanistic model to reproduce measured PCB concentrations in individual Norwegian women. We also assessed individual life-course concentrations. Concentrations of four PCB congeners in pregnant (n = 310, sampled in 2007-2009) and postmenopausal (n = 244, 2005) women were compared with person-specific predictions obtained using CoZMoMAN, an emission-based environmental fate and human food-chain bioaccumulation model. Person-specific predictions were also made using statistical regression models including dietary and lifestyle variables and concentrations. CoZMoMAN accurately reproduced medians and ranges of measured concentrations in the two study groups. Furthermore, rank correlations between measurements and predictions from both CoZMoMAN and regression analyses were strong (Spearman's r > 0.67). Precision in quartile assignments from predictions was strong overall as evaluated by weighted Cohen's kappa (> 0.6). Simulations indicated large inter-individual differences in concentrations experienced in the past. The mechanistic model reproduced all measurements of PCB concentrations within a factor of 10, and subject ranking and quartile assignments were overall largely consistent, although they were weak within each study group. Contamination histories for individuals predicted by CoZMoMAN revealed variation between study subjects, particularly in the timing of peak concentrations. Mechanistic models can provide individual PCB exposure metrics that could serve as valuable supplements to measurements.
Collection of microparticles at high balloon altitudes in the stratosphere
NASA Technical Reports Server (NTRS)
Testa, John P., Jr.; Stephens, John R.; Berg, Walter W.; Cahill, Thomas A.; Onaka, Takashi
1990-01-01
Stratospheric particles were collected between 34 and 36 km, using a combination of cascade impactors and filters lofted by a large helium balloon, and the particle concentration, size distribution, and bulk elemental composition were determined using SEM and proton-induced X-ray emission (PEXE) instrument. In addition, datailed particle morphology, elemental analysis, and electron diffraction data were obtained on 23 particles using a TEM. The concentration of particles between 0.045 and 1.0 micron in radius was found to be orders of magnitude above the concentrations predicted by the model of Hunten et al. (1980), but was consistent with balloon and satellite observations. Elemental composition analysis showed the presence of Cl, S, Ti, Fe, Br, Ni, Zr, Zn, Sr, and Cu in decreasing order of concentration. The 23 particles analyzed by TEM ranged from Al-rich silicates to almost pure Fe to one containing almost exclusively Ba and S. None were definitely chondritic in composition.
Gough, L.P.; Severson, R.C.; Jackson, L.L.
1988-01-01
Element-concentration baselines are given for Parmelia sulcata and associated soils. Parmelia chlorochroa was found sporadically and therefore only representative concentration ranges are reported for this species. Element data include (1) for lichens; Al, As, Ba, B, Ca, Cr, Cu, Fe, Hg, Mn, Ni, P, Sr, S, Ti, V, Y, and Zn; and (2) for soils: Al, Ba, Be, Ca, Cs, Cr, Cu, Fe, Hg, Mg, Mn, Ni, Nb, P, Pb, Sr, S, Ti, V, Y, and Zn. Very little (usually 7.2 km); thus, P sulcata is, in general, chemically similar throughout the park. This same uniformity was found for soil geochemistry. Numerous samples collected at close intervals would be required, therefore, to produce detailed element-concentration maps for P. sulcata and soils. No instances of elemental phytotoxic conditions were found; however, P. sulcata apparently possesses large concentrations of Ba, Cu, Fe, Pb, S, V, and possibly Zn.
Medium-Alloy Manganese-Rich Transformation-Induced Plasticity Steels
NASA Astrophysics Data System (ADS)
Suh, Dong Woo; Ryu, Joo Hyun; Joo, Min Sung; Yang, Hong Seok; Lee, Kyooyoung; Bhadeshia, H. K. D. H.
2013-01-01
The manganese concentration of steels which rely on transformation-induced plasticity is generally less than 2 wt pct. Recent work has highlighted the potential for strong and ductile alloys containing some 6 wt pct of manganese, but with aluminum additions in order to permit heat treatments which are amenable to rapid production. However, large concentrations of aluminum also cause difficulties during continuous casting. Alloy design calculations have been carried out in an effort to balance these conflicting requirements, while maintaining the amount of retained austenite and transformation kinetics. The results indicate that it is possible by adjusting the carbon and manganese concentrations to reduce the aluminum concentration, without compromising the mechanical properties or transformation kinetics. The deformation-induced transformation of retained austenite is explained quantitatively, for a range of alloys, in terms of a driving force which takes into account the very fine state of the retained austenite.
[Indoor air pollution by polychlorinated biphenyl compounds in permanently elastic sealants].
Burkhardt, U; Bork, M; Balfanz, E; Leidel, J
1990-10-01
A common cause for indoor pollution by polycholorinated biphenyls (PCB) are defective capacitors of luminous discharge lamps. This paper describes elastic sealing compounds as another source of PCB pollution in buildings. In several rooms of a large school building indoor concentrations of 1000 ng PCB/m3 and more were registered. The total PCB concentration in sealing compounds ranged between 124,000 and 327,000 ppm. Blood specimens drawn from the school's personnel did not show elevated PCB concentrations, but additional incorporation of PCB via the respiratory tract cannot be excluded. We do not presume that any impairment of the health has been caused by this pollutant, but we think that reduction of the PCB indoor concentrations would be advisable for prophylactic purposes. Attention should be given to so-called open PCB systems such as elastic sealing compounds. Although they have been prohibited 1978, there might be a widespread use in older buildings.
Sulfate was a trace constituent of Archean seawater.
Crowe, Sean A; Paris, Guillaume; Katsev, Sergei; Jones, CarriAyne; Kim, Sang-Tae; Zerkle, Aubrey L; Nomosatryo, Sulung; Fowle, David A; Adkins, Jess F; Sessions, Alex L; Farquhar, James; Canfield, Donald E
2014-11-07
In the low-oxygen Archean world (>2400 million years ago), seawater sulfate concentrations were much lower than today, yet open questions frustrate the translation of modern measurements of sulfur isotope fractionations into estimates of Archean seawater sulfate concentrations. In the water column of Lake Matano, Indonesia, a low-sulfate analog for the Archean ocean, we find large (>20 per mil) sulfur isotope fractionations between sulfate and sulfide, but the underlying sediment sulfides preserve a muted range of δ(34)S values. Using models informed by sulfur cycling in Lake Matano, we infer Archean seawater sulfate concentrations of less than 2.5 micromolar. At these low concentrations, marine sulfate residence times were likely 10(3) to 10(4) years, and sulfate scarcity would have shaped early global biogeochemical cycles, possibly restricting biological productivity in Archean oceans. Copyright © 2014, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Shukurov, K. A.; Shukurova, L. M.
2017-11-01
According to measurements in 2002-2015 of concentrations of ammonium nitrate, ammonium sulfate and natural silicates in aerosol samples with particles in the range of 1-2 μm in diameter at the Zvenigorod scientific station (55.7° N, 36.8° E) of the A.M. Obukhov Institute of Atmospheric Physics of the Russian Academy of Sciences and simulation of backward trajectories of air parcels using the trajectory model NOAA HYSPLIT_4 by means of CWT (concentration weighted trajectory) method, the average fields of capacity (in unit of concentration) of potential sources of these admixtures and their sum for the west of Moscow region were obtained. The patterns of large-scale atmospheric circulation, which favoring the transfer of these admixtures from their regions of the most probable potential sources to the western Moscow region, are analyzed.
Crock, J.G.; Severson, R.C.; Gough, L.P.
1992-01-01
Recent investigations on the Kenai Peninsula had two major objectives: (1) to establish elemental baseline concentrations ranges for native vegetation and soils; and, (2) to determine the sampling density required for preparing stable regional geochemical maps for various elements in native plants and soils. These objectives were accomplished using an unbalanced, nested analysis-of-variance (ANOVA) barbell sampling design. Hylocomium splendens (Hedw.) BSG (feather moss, whole plant), Picea glauca (Moench) Voss (white spruce, twigs and needles), and soil horizons (02 and C) were collected and analyzed for major and trace total element concentrations. Using geometric means and geometric deviations, expected baseline ranges for elements were calculated. Results of the ANOVA show that intensive soil or plant sampling is needed to reliably map the geochemistry of the area, due to large local variability. For example, producing reliable element maps of feather moss using a 50 km cell (at 95% probability) would require sampling densities of from 4 samples per cell for Al, Co, Fe, La, Li, and V, to more than 15 samples per cell for Cu, Pb, Se, and Zn.Recent investigations on the Kenai Peninsula had two major objectives: (1) to establish elemental baseline concentrations ranges for native vegetation and soils; and, (2) to determine the sampling density required for preparing stable regional geochemical maps for various elements in native plants and soils. These objectives were accomplished using an unbalanced, nested analysis-of-variance (ANOVA) barbell sampling design. Hylocomium splendens (Hedw.) BSG (feather moss, whole plant), Picea glauca (Moench) Voss (white spruce, twigs and needles), and soil horizons (02 and C) were collected and analyzed for major and trace total element concentrations. Using geometric means and geometric deviations, expected baseline ranges for elements were calculated. Results of the ANOVA show that intensive soil or plant sampling is needed to reliably map the geochemistry of the area, due to large local variability. For example, producing reliable element maps of feather moss using a 50 km cell (at 95% probability) would require sampling densities of from 4 samples per cell Al, Co, Fe, La, Li, and V, to more than 15 samples per cell for Cu, Pb, Se, and Zn.
Adsorption of hydrophobin/β-casein mixtures at the solid-liquid interface.
Tucker, I M; Petkov, J T; Penfold, J; Thomas, R K; Cox, A R; Hedges, N
2016-09-15
The adsorption behaviour of mixtures of the proteins β-casein and hydrophobin at the hydrophilic solid-liquid surface have been studied by neutron reflectivity. The results of measurements from sequential adsorption and co-adsorption from solution are contrasted. The adsorption properties of protein mixtures are important for a wide range of applications. Because of competing factors the adsorption behaviour of protein mixtures at interfaces is often difficult to predict. This is particularly true for mixtures containing hydrophobin as hydrophobin possesses some unusual surface properties. At β-casein concentrations ⩾0.1wt% β-casein largely displaces a pre-adsorbed layer of hydrophobin at the interface, similar to that observed in hydrophobin-surfactant mixtures. In the composition and concentration range studied here for the co-adsorption of β-casein-hydrophobin mixtures the adsorption is dominated by the β-casein adsorption. The results provide an important insight into how the competitive adsorption in protein mixtures of hydrophobin and β-casein can impact upon the modification of solid surface properties and the potential for a wide range of colloid stabilisation applications. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Schneeberger, Karin; Czirják, Gábor Á.; Voigt, Christian C.
2014-04-01
Oxidative stress—an imbalance between reactive pro- and neutralising antioxidants—damages cell structures and impairs fitness-relevant traits such as longevity and reproduction. Theory predicts that feeding on diets with high antioxidant content such as fruits should reduce oxidative stress; however, there is no support of this idea in free-ranging mammals. Bats cover a large variety of ecological niches, and therefore, we asked if measures of oxidative stress are lower in species with fruit diets. We measured reactive oxygen metabolites (ROM) representing total pro-oxidants produced and antioxidants in the plasma of 33 Neotropical bat species. Species with a fruit diet showed the lowest level of ROM and the highest concentration of antioxidants, followed by omnivorous and animalivorous species. Potentially, frugivorous species ingest more antioxidants with food and thus are able to neutralise more pro-oxidants than species not feeding on fruits, resulting in an overall lower level of oxidative stress. We therefore showed for the first time that measures of oxidative stress vary according to diets in free-ranging mammals.
NASA Astrophysics Data System (ADS)
Chaudhry, Z.; Martins, V.; Li, Z.
2006-12-01
As a result of population growth and increasing industrialization, air pollution in heavily populated urban areas is one of the central environmental problems of the century. As a part of the MILAGRO (Megacity Initiative: Local and Global Research Observations) study, Nuclepore filters were collected in two size ranges (PM10 and PM2.5) at 12 hour intervals at three location in Mexico during March, 2006. Sampling stations were located at the Instituto Mexicano del Petroleo (T0), at the Rancho La Bisnago in the State of Hidalgo (T2) and along the Gulf Coast in Tampico (Tam). Each filter was analyzed for mass concentration, aerosol scattering and absorption efficiencies. Mass concentrations at T0 ranged from 47 to 179 μg/m3 for PM10 with an average concentration of 96 μg/m3, and from 20 to 93 μg/m3 for PM2.5 with an average concentration of 41 μg/m3. Mass concentrations at T2 ranged from 12 to 154 μg/m3 for PM10 with an average concentration of 51 μg/m3, and from 7 to 50 μg/m3 for PM2.5 with an average concentration of 25 μg/m3. Mass concentrations at Tam ranged from 34 to 80 μg/m3 for PM10 with an average concentration of 52 μg/m3, and from 8 to 23 μg/m3 for PM2.5 with an average concentration of 13 μg/m3. While some of the extreme values are likely linked to local emissions, regional air pollution episodes also played important roles. Each of the sampling stations experienced a unique atmospheric condition. The site at T0 was influenced by urban air pollution and dust storms, the site at T2 was significantly less affected by air pollution but more affected by regional dust storms and local dust devils while Tam was influenced by air pollution, dust storms and the natural marine environment. The spectral mass absorption efficiency was measured from 350 to 2500 nm and shows large differences between the absorption properties of soil dust, black carbon, and organic aerosols. The strong spectral differences observed can be related to differences in refractive indices from the several collected species and particle size effects.
NASA Astrophysics Data System (ADS)
Viswanathan, G. M.; Buldyrev, S. V.; Garger, E. K.; Kashpur, V. A.; Lucena, L. S.; Shlyakhter, A.; Stanley, H. E.; Tschiersch, J.
2000-09-01
We analyze nonstationary 137Cs atmospheric activity concentration fluctuations measured near Chernobyl after the 1986 disaster and find three new results: (i) the histogram of fluctuations is well described by a log-normal distribution; (ii) there is a pronounced spectral component with period T=1yr, and (iii) the fluctuations are long-range correlated. These findings allow us to quantify two fundamental statistical properties of the data: the probability distribution and the correlation properties of the time series. We interpret our findings as evidence that the atmospheric radionuclide resuspension processes are tightly coupled to the surrounding ecosystems and to large time scale weather patterns.
Concentration dependence of sodium alloys based on tin surface tension
NASA Astrophysics Data System (ADS)
Alchagirov, B. B.; Kyasova, O. Kh; Uzdenova, A. N.; Khibiev, A. Kh
2018-04-01
The concentration dependence of the surface tension (ST) for alloys of the Sn-Na system in the range of compositions with a content of 0.06 to 5.00 at.% Na is studied by the large droplet method using high-purity components and a corresponding ST isotherm for T = 573 K is constructed. It has been established that small additions of sodium to tin significantly reduce ST of the studied melts. Calculations of sodium adsorption in alloys have shown that there is a maximum on the adsorption curve corresponding to alloys with a content of about 1.5 at.% Na in tin.
Moskovchenko, D V; Kurchatova, A N; Fefilov, N N; Yurtaev, A A
2017-05-01
The concentrations of several trace elements and iron were determined in 26 soil samples from Belyi Island in the Kara Sea (West Siberian sector of Russian Arctic). The major types of soils predominating in the soil cover were sampled. The concentrations of trace elements (mg kg -1 ) varied within the following ranges: 119-561 for Mn, 9.5-126 for Zn, 0.082-2.5 for Cd, <0.5-19.2 for Cu, <0.5-132 for Pb, 0.011-0.081 for Hg, <0.5-10.3 for Co, and 7.6-108 for Cr; the concentration of Fe varied from 3943 to 37,899 mg kg -1 . The impact of particular soil properties (pH, carbon and nitrogen contents, particle-size distribution) on metal concentrations was analyzed by the methods of correlation, cluster, and factor analyses. The correlation analysis showed that metal concentrations are negatively correlated with the sand content and positively correlated with the contents of silt and clay fractions. The cluster analysis allowed separation of the soils into three clusters. Cluster I included the soils with the high organic matter content formed under conditions of poor drainage; cluster II, the low-humus sandy soils of the divides and slopes; and cluster III, saline soils of coastal marshes. It was concluded that the geomorphic position largely controls the soil properties. The obtained data were compared with data on metal concentrations in other regions of the Russian Arctic. In general, the concentrations of trace elements in the studied soils were within the ranges typical of the background Arctic territories. However, some soils of Belyi Island contained elevated concentrations of Pb and Cd.
[Size distributions of aerosol during the Spring Festival in Nanjing].
Wang, Hong-Lei; Zhu, Bin; Shen, Li-Juan; Liu, Xiao-Hui; Zhang, Ze-Feng; Yang, Yang
2014-02-01
In order to investigate the firework burning impacts on spectrum distribution of atmospheric aerosol during the Spring Festival in Nanjing, number concentration and mass concentration of aerosol as well as mass concentration of gas pollutants were measured during January 19-31, 2012. The results indicated that the concentration of aerosol between 10-20 nm decreased, aerosol concentration in the range of 50-100 nm, 100-200 nm and 200-500 nm increased during the firework burning period comparing to those during the non-burning period. However, there was no obvious variation for aerosol between 20-50 nm and 0.5-10 microm. The spectrum distribution of number concentration was bimodal during the non-burning period and unimodal during the burning period, with the peak value shifting to large diameter section. The mass concentration presented a bimodal distribution, the value of PM2.5/PM10 and PM10/PM10 increased by 10% during the burning period. The firework burning events had big influence on the density of aerosol between 1.0-2.1 microm.
Using excess 4He to quantify variability in aquitard leakage
NASA Astrophysics Data System (ADS)
Gardner, W. Payton; Harrington, Glenn A.; Smerdon, Brian D.
2012-10-01
SummaryFluid flux through aquitards controls the rate of recharge, discharge, cross-formational fluid flow and contaminant transport in subsurface systems. In this paper, concentrations of 4He are used to investigate the spatial distribution of vertical fluid flux through the regionally extensive Great Artesian Basin aquitard system in northern South Australia. Two vertical profiles of 4He concentration in aquitard pore water, augmented with regional sampling of aquifers above and below the aquitard were used to estimate fluid flux at multiple locations over a large spatial area. 4He concentrations in the shallow aquifer above the Great Artesian Basin range from atmospheric equilibrium to 1000 times enriched over atmosphere. Fluid flux through the aquitard was estimated by fitting observed helium concentrations at each sampling site with a 1-D model of helium transport through the aquitard. Estimated fluid fluxes through the aquitard vary over three orders of magnitude across the study area. In areas of competent aquitard, fluid fluxes are less than 0.003 mm/yr, and mass transport of helium is dominated by molecular diffusion. Preferential discharge zones are clearly identifiable with fluid fluxes up to 3 mm/yr. Our results show that fluid flux through a regionally extensive aquitard can be highly variable at large spatial scales, and that 4He concentrations in aquifers bounding the aquitard system provide a convenient and sensitive method for investigating aquitard flux at the regional scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadley, O.L.; Corrigan, C.E.; Kirchstetter, T.W.
2010-01-12
Modeling studies show that the darkening of snow and ice by black carbon deposition is a major factor for the rapid disappearance of arctic sea ice, mountain glaciers and snow packs. This study provides one of the first direct measurements for the efficient removal of black carbon from the atmosphere by snow and its subsequent deposition to the snow packs of California. The early melting of the snow packs in the Sierras is one of the contributing factors to the severe water problems in California. BC concentrations in falling snow were measured at two mountain locations and in rain atmore » a coastal site. All three stations reveal large BC concentrations in precipitation, ranging from 1.7 ng/g to 12.9 ng/g. The BC concentrations in the air after the snow fall were negligible suggesting an extremely efficient removal of BC by snow. The data suggest that below cloud scavenging, rather than ice nuclei, was the dominant source of BC in the snow. A five-year comparison of BC, dust, and total fine aerosol mass concentrations at multiple sites reveals that the measurements made at the sampling sites were representative of large scale deposition in the Sierra Nevada. The relative concentration of iron and calcium in the mountain aerosol indicates that one-quarter to one-third of the BC may have been transported from Asia.« less
Han, Dongmei; Cao, Guoliang; McCallum, James; Song, Xianfang
2015-12-15
Groundwater within the coastal aquifer systems of the Daweijia area in northeastern China is characterized by a large of variations (33-521mg/L) in NO3(-) concentrations. Elevated nitrate concentrations, in addition to seawater intrusion in the Daweijia well field, both attributable to anthropogenic activities, may impact future water-management practices. Chemical and stable isotopic (δ(18)O, δ(2)H) analysis, (3)H and CFCs methods were applied to provide a better understanding of the relationship between the distribution of groundwater mean residence time (MRT) and nitrate transport, and to identify sources of nitrate concentrations in the complex coastal aquifer systems. There is a relatively narrow range of isotopic composition (ranging from -8.5 to -7.0‰) in most groundwater. Generally higher tritium contents observed in the wet season relative to the dry season may result from rapid groundwater circulation in response to the rainfall through the preferential flow paths. In the well field, the relatively increased nitrate concentrations of groundwater, accompanied by the higher tritium contents in the wet season, indicate the nitrate pollution can be attributed to domestic wastes. The binary exponential and piston-flow mixing model (BEP) yielded feasible age distributions based on the conceptual model. The good inverse relationship between groundwater MRTs (92-467years) and the NO3(-) concentrations in the shallow Quaternary aquifers indicates that elevated nitrate concentrations are attributable to more recent recharge for shallow groundwater. However, there is no significant relationship between the MRTs (8-411years) and the NO3(-) concentrations existing in the carbonate aquifer system, due to the complex hydrogeological conditions, groundwater age distributions and the range of contaminant source areas. Nitrate in the groundwater system without denitrification effects could accumulate and be transported for tens of years, through the complex carbonate aquifer matrix and the successive inputs of nitrogen from various sources. Copyright © 2015 Elsevier B.V. All rights reserved.
Concha, Gabriela; Broberg, Karin; Grandér, Margaretha; Cardozo, Alejandro; Palm, Brita; Vahter, Marie
2010-09-01
Elevated concentrations of arsenic in drinking water are common worldwide, however, little is known about the presence of other potentially toxic elements. We analyzed 31 different elements in drinking water collected in San Antonio de los Cobres and five surrounding Andean villages in Argentina, and in urine of the inhabitants, using ICP-MS. Besides confirmation of elevated arsenic concentrations in the drinking water (up to 210 microg/L), we found remarkably high concentrations of lithium (highest 1000 microg/L), cesium (320 microg/L), rubidium (47 microg/L), and boron (5950 microg/L). Similarly elevated concentrations of arsenic, lithium, cesium, and boron were found in urine of the studied women (N=198): village median values ranged from 26 to 266 microg/L of arsenic, 340 to 4550 microg/L of lithium, 34 to 531 microg/L of cesium, and 2980 to 16,560 microg/L of boron. There is an apparent risk of toxic effects of long-term exposure to several of the elements, and studies on associations with adverse human health effects are warranted, particularly considering the combined, life-long exposure. Because of the observed wide range of concentrations, all water sources used for drinking water should be screened for a large number of elements; obviously, this applies to all drinking water sources globally.
Rayne, Sierra; Ikonomou, Michael G; Ross, Peter S; Ellis, Graeme M; Barrett-Lennard, Lance G
2004-08-15
Polybrominated diphenyl ethers (PBDEs), polybrominated biphenyls (PBBs), and polychlorinated naphthalenes (PCNs) were quantified in blubber biopsy samples collected from free-ranging male and female killer whales (Orcinus orca) belonging to three distinct communities (southern residents, northern residents, and transients) from the northeastern Pacific Ocean. High concentrations of sigmaPBDE were observed in male southern residents (942+/-582 ng/g Iw), male and female transients (1015+/-605 and 885+/-706 ng/g Iw, respectively), and male and female northern residents (203+/-116 and 415+/-676 ng/g Iw, respectively). Because of large variation within sample groups, sigmaPBDE levels generally did not differ statistically with the exception of male northern residents, which had lower sigmaPBDE concentrations than male southern residents, male transients, and female transients, perhaps reflecting the consumption of less contaminated prey items. Male transient killer whales, which consume high trophic level prey including other cetaceans and occasionally spend time near populated areas, had sigmaPBDE concentrations approximately equal to southern residents. No significant age-related relationships were observed for sigmaPBDE concentrations. sigmaPBDE concentrations were approximately 1-3 orders of magnitude greater than those of sigmaPBB (3.0-31 ng/g Iw) and sigmaPCN (20-167 ng/g Iw) measured in a subset of samples, suggesting that PBDEs may represent a contaminant class of concern in these marine mammals.
Concentrations of phthalates and DINCH metabolites in pooled urine from Queensland, Australia.
Gomez Ramos, M J; Heffernan, A L; Toms, L M L; Calafat, A M; Ye, X; Hobson, P; Broomhall, S; Mueller, J F
2016-03-01
Dialkyl phthalate esters (phthalates) are ubiquitous chemicals used extensively as plasticizers, solvents and adhesives in a range of industrial and consumer products. 1,2-Cyclohexane dicarboxylic acid, diisononyl ester (DINCH) is a phthalate alternative introduced due to a more favourable toxicological profile, but exposure is largely uncharacterised. The aim of this study was to provide the first assessment of exposure to phthalates and DINCH in the general Australian population. De-identified urine specimens stratified by age and sex were obtained from a community-based pathology laboratory and pooled (n=24 pools of 100). Concentrations of free and total species were measured using online solid phase extraction isotope dilution high performance liquid chromatography tandem mass spectrometry. Concentrations ranged from 2.4 to 71.9ng/mL for metabolites of di(2-ethylhexyl)phthalate, and from <0.5 to 775ng/mL for all other metabolites. Our data suggest that phthalate metabolites concentrations in Australia were at least two times higher than in the United States and Germany; and may be related to legislative differences among countries. DINCH metabolite concentrations were comparatively low and consistent with the limited data available. Ongoing biomonitoring among the general Australian population may help assess temporal trends in exposure and assess the effectiveness of actions aimed at reducing exposures. Copyright © 2015 Elsevier Ltd. All rights reserved.
Atomistic Modeling of Quaternary Alloys: Ti and Cu in NiAl
NASA Technical Reports Server (NTRS)
Bozzolo, Guillermo; Mosca, Hugo O.; Wilson, Allen W.; Noebe, Ronald D.; Garces, Jorge E.
2002-01-01
The change in site preference in NiAl(Ti,Cu) alloys with concentration is examined experimentally via ALCHEMI and theoretically using the Bozzolo-Ferrante-Smith (BFS) method for alloys. Results for the site occupancy of Ti and Cu additions as a function of concentration are determined experimentally for five alloys. These results are reproduced with large-scale BFS-based Monte Carlo atomistic simulations. The original set of five alloys is extended to 25 concentrations, which are modeled by means of the BFS method for alloys, showing in more detail the compositional range over which major changes in behavior occur. A simple but powerful approach based on the definition of atomic local environments also is introduced to describe energetically the interactions between the various elements and therefore to explain the observed behavior.
Validation of uranium determination in urine by ICP-MS.
Bouvier-Capely, C; Baglan, N; Montègue, A; Ritt, J; Cossonnet, C
2003-08-01
A rapid procedure--dilution of urine+ICP-MS measurement--for the determination of uranium in urine was validated. Large ranges of concentration and isotopic composition were studied on urine samples excreted by occupationally exposed workers. The results were consistent with those obtained by fluorimetry and by alpha spectrometry after a purification procedure, two currently used techniques. However, the proposed procedure is limited for determination of the minor isotope 234U. Thus for worker monitoring, the conversion of 234U mass concentration into activity concentration can lead to an erroneous value of the effective dose, in particular for a contamination at very low level with highly enriched uranium. A solution to avoid this hazard is to perform a chemical purification prior to ICP-MS measurement to lower uncertainty and detection limit for 234U.
Ground-level ozone pollution and its health impacts in China
NASA Astrophysics Data System (ADS)
Liu, Huan; Liu, Shuai; Xue, Boru; Lv, Zhaofeng; Meng, Zhihang; Yang, Xiaofan; Xue, Tao; Yu, Qiao; He, Kebin
2018-01-01
In recent years, ground-level ozone pollution in China has become an increasingly prominent problem. This study simulated and analyzed spatiotemporal distribution of ozone and exposure level by the Weather Research and Forecasting (WRF)-Community Multiscale Air Quality (CMAQ) models and monitoring data from 1516 national air quality monitoring stations in China during 2015. The simulation results show that the Sichuan Basin, Shandong, Shanxi, Henan, Anhui, Qinghai-Tibetan Plateau, Yangtze River Delta (YRD), Pearl River Delta (PRD) and Beijing-Tianjin-Hebei (BTH) region had relatively high average annual concentrations of ozone. The regions with more than 10% nonattainment days of 160 μg/m3 (daily maximum 8-h) are mainly concentrated in BTH, Shandong Peninsula and YRD, where large seasonal variations were also found. Exposure levels were calculated based on population data and simulated ozone concentrations. The cumulative population exposed to daily maximum 8-h concentration greater than or equal to 100 μg/m3 was 816.04 million, 61.17% of the total. Three methods were used to estimate the mortality of chronic obstructive pulmonary disease (COPD) attributable to ozone. A comparative study using different exposure concentrations and threshold concentrations found large variations among these methods, although they were all peer-reviewed methods. The estimated mortality of COPD caused by ozone in China in 2015 ranged from 55341 to 80280, which mainly distributed in Beijing, Shandong, Henan, Hubei and Sichuan Province, the YRD and PRD region.
Peterson, Sarah H; Ackerman, Joshua T; Crocker, Daniel E; Costa, Daniel P
2018-02-14
Large fluctuations in animal body mass in relation to life-history events can influence contaminant concentrations and toxicological risk. We quantified mercury concentrations in adult northern elephant seals ( Mirounga angustirostris ) before and after lengthy at sea foraging trips ( n = 89) or fasting periods on land ( n = 27), and showed that mercury concentrations in blood and muscle changed in response to these events. The highest blood mercury concentrations were observed after the breeding fast, whereas the highest muscle mercury concentrations were observed when seals returned to land to moult. Mean female blood mercury concentrations decreased by 30% across each of the two annual foraging trips, demonstrating a foraging-associated dilution of mercury concentrations as seals gained mass. Blood mercury concentrations increased by 103% and 24% across the breeding and moulting fasts, respectively, demonstrating a fasting-associated concentration of mercury as seals lost mass. In contrast to blood, mercury concentrations in female's muscle increased by 19% during the post-breeding foraging trip and did not change during the post-moulting foraging trip. While fasting, female muscle mercury concentrations increased 26% during breeding, but decreased 14% during moulting. Consequently, regardless of exposure, an animal's contaminant concentration can be markedly influenced by their annual life-history events. © 2018 The Author(s).
Peterson, Sarah; Ackerman, Joshua T.; Crocker, Daniel E.; Costa, Daniel P.
2018-01-01
Large fluctuations in animal body mass in relation to life-history events can influence contaminant concentrations and toxicological risk. We quantified mercury concentrations in adult northern elephant seals (Mirounga angustirostris) before and after lengthy at sea foraging trips (n = 89) or fasting periods on land (n = 27), and showed that mercury concentrations in blood and muscle changed in response to these events. The highest blood mercury concentrations were observed after the breeding fast, whereas the highest muscle mercury concentrations were observed when seals returned to land to moult. Mean female blood mercury concentrations decreased by 30% across each of the two annual foraging trips, demonstrating a foraging-associated dilution of mercury concentrations as seals gained mass. Blood mercury concentrations increased by 103% and 24% across the breeding and moulting fasts, respectively, demonstrating a fasting-associated concentration of mercury as seals lost mass. In contrast to blood, mercury concentrations in female's muscle increased by 19% during the post-breeding foraging trip and did not change during the post-moulting foraging trip. While fasting, female muscle mercury concentrations increased 26% during breeding, but decreased 14% during moulting. Consequently, regardless of exposure, an animal's contaminant concentration can be markedly influenced by their annual life-history events.
Yoneyama, Tadakatsu; Ishikawa, Satoru; Fujimaki, Shu
2015-01-01
Zinc (Zn) and iron (Fe) are essential but are sometimes deficient in humans, while cadmium (Cd) is toxic if it accumulates in the liver and kidneys at high levels. All three are contained in the grains of rice, a staple cereal. Zn and Fe concentrations in rice grains harvested under different levels of soil/hydroponic metals are known to change only within a small range, while Cd concentrations show greater changes. To clarify the mechanisms underlying such different metal contents, we synthesized information on the routes of metal transport and accumulation in rice plants by examining metal speciation, metal transporters, and the xylem-to-phloem transport system. At grain-filling, Zn and Cd ascending in xylem sap are transferred to the phloem by the xylem-to-phloem transport system operating at stem nodes. Grain Fe is largely derived from the leaves by remobilization. Zn and Fe concentrations in phloem-sap and grains are regulated within a small range, while Cd concentrations vary depending on xylem supply. Transgenic techniques to increase concentrations of the metal chelators (nicotianamine, 2′-deoxymugineic acid) are useful in increasing grain Zn and Fe concentrations. The elimination of OsNRAMP5 Cd-uptake transporter and the enhancement of root cell vacuolar Cd sequestration reduce uptake and root-to-shoot transport, respectively, resulting in a reduction of grain Cd accumulation. PMID:26287170
Haptoglobin concentrations in free-range and temporarily captive juvenile steller sea lions.
Thomton, Jamie D; Mellish, Jo-Ann E
2007-04-01
Haptoglobin (Hp) is an acute-phase protein synthesized in the liver that circulates at elevated concentrations in response to tissue damage caused by inflammation, infection, and trauma. As part of a larger study, sera Hp concentrations were measured in temporarily captive (n = 21) and free-range (n = 38) western stock juvenile Steller sea lions (Eumetopias jubatus) sampled from 2003 to 2006. Baseline Hp concentration at time of capture was 133.3 +/- 17.4 mg/dl. Temporarily captive animals exhibited a 3.2-fold increase in Hp concentrations during the first 4 wk of captivity, followed by a return to entry levels by week 5. Haptoglobin levels were not influenced by age, season, or parasite load. There was a significant positive correlation between Hp concentrations and white blood cell count (P < 0.001) and globulin levels (P < 0.001) and a negative correlation to red blood cell count and hematocrit (P < 0.001 for both). There was no correlation between Hp levels and platelet count (P = 0.095) or hemoglobin (P = 0.457). Routine blubber biopsies collected under gas anesthesia did not produce a measurable Hp response. One animal with a large abscess had an Hp spike of 1,006.0 mg/dl that returned to entry levels after treatment. In conclusion, serum Hp levels correlate to the stable clinical health status observed during captivity, with moderate Hp response during capture and initial acclimation to captivity and acute response to inflammation and infection.
Yoneyama, Tadakatsu; Ishikawa, Satoru; Fujimaki, Shu
2015-08-13
Zinc (Zn) and iron (Fe) are essential but are sometimes deficient in humans, while cadmium (Cd) is toxic if it accumulates in the liver and kidneys at high levels. All three are contained in the grains of rice, a staple cereal. Zn and Fe concentrations in rice grains harvested under different levels of soil/hydroponic metals are known to change only within a small range, while Cd concentrations show greater changes. To clarify the mechanisms underlying such different metal contents, we synthesized information on the routes of metal transport and accumulation in rice plants by examining metal speciation, metal transporters, and the xylem-to-phloem transport system. At grain-filling, Zn and Cd ascending in xylem sap are transferred to the phloem by the xylem-to-phloem transport system operating at stem nodes. Grain Fe is largely derived from the leaves by remobilization. Zn and Fe concentrations in phloem-sap and grains are regulated within a small range, while Cd concentrations vary depending on xylem supply. Transgenic techniques to increase concentrations of the metal chelators (nicotianamine, 2'-deoxymugineic acid) are useful in increasing grain Zn and Fe concentrations. The elimination of OsNRAMP5 Cd-uptake transporter and the enhancement of root cell vacuolar Cd sequestration reduce uptake and root-to-shoot transport, respectively, resulting in a reduction of grain Cd accumulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKee, E.H.
Ground water flow through the region south and west of Frenchman Flat, in the Ash Meadows subbasin of the Death Valley ground water flow system, is controlled mostly by the distribution of permeable and impermeable rocks. Geologic structures such as faults are instrumental in arranging the distribution of the aquifer and aquitard rock units. Most permeability is in fractures caused by faulting in carbonate rocks. Large faults are more likely to reach the potentiometric surface about 325 meters below the ground surface and are more likely to effect the flow path than small faults. Thus field work concentrated on identifyingmore » large faults, especially where they cut carbonate rocks. Small faults, however, may develop as much permeability as large faults. Faults that are penetrative and are part of an anastomosing fault zone are particularly important. The overall pattern of faults and joints at the ground surface in the Spotted and Specter Ranges is an indication of the fracture system at the depth of the water table. Most of the faults in these ranges are west-southwest-striking, high-angle faults, 100 to 3500 meters long, with 10 to 300 /meters of displacement. Many of them, such as those in the Spotted Range and Rock Valley are left-lateral strike-slip faults that are conjugate to the NW-striking right-lateral faults of the Las Vegas Valley shear zone. These faults control the ground water flow path, which runs west-southwest beneath the Spotted Range, Mercury Valley and the Specter Range. The Specter Range thrust is a significant geologic structure with respect to ground water flow. This regional thrust fault emplaces siliceous clastic strata into the north central and western parts of the Specter Range.« less
Historical trends of metals in the sediments of San Francisco Bay, California
Hornberger, Michelle I.; Luoma, S.N.; VanGeen, A.; Fuller, C.; Anima, R.
1999-01-01
Concentrations of Ag, Al, Cr, Cu, Fe, Hg, Mn, Ni, Pb, V and Zn were determined in six sediment cores from San Francisco Bay (SFB) and one sediment core in Tomales Bay (TB), a reference estuary. SFB cores were collected from between the head of the estuary and its mouth (Grizzly Bay, GB; San Pablo Bay, SP; Central Bay, CB; Richardson Bay, RB, respectively) and ranged in length from 150 to 250 cm. Concentrations of Cr, V and Ni are greater than mean crustal content in SFB and TB sediments, and greater than found in many other coastal sediments. However, erosion of ultramafic rock formations in the watershed appears to be the predominant source. Baseline concentrations of other metals were determined from horizons deposited before sediments were influenced by human activities and by comparing concentrations to those in TB. Baseline concentrations of Cu co-varied with Al in the SFB sediments and ranged from 23.7 ?? 1.2 ??g/g to 41.4 ?? 2.4 ??g/g. Baseline concentrations of other metals were less variable: Ag, 0.09 ?? 0.02 ??g/g; Pb, 5.2 ?? 0.7 ??g/g; Hg, 0.06 ?? 0.01 ??g/g; Zn, 78 ?? 7 ??g/g. The earliest anthropogenic influence on metal concentrations appeared as Hg contamination (0.3-0.4 ??g/g) in sediments deposited at SP between 1850 and 1880, apparently associated with debris from hydraulic gold mining. Maximum concentrations of Hg within the cores were 20 times baseline. Greater inventories of Hg at SP and GB than at RB verified the importance of mining in the watershed as a source. Enrichment of Ag, Pb, Cu and Zn first appeared after 1910 in the RB core, later than is observed in Europe or eastern North America. Maximum concentrations of Ag and Pb were 5-10 times baseline and Cu and Zn concentrations were less than three times baseline. Large inventories of Pb to the sediments in the GB and SP cores appeared to be the result of the proximity to a large Pb smelter. Inventories of Pb at RB are similar to those typical of atmospheric inputs, although influence from the Pb smelter is also suspected. Concentrations of Hg and Pb have decreased since the 1970s (to 0.30 ??g/g and 25 ??g/g, respectively) and were similar among all cores in 1990. Early Ag contamination was perhaps a byproduct of the Pb smelting process, but a modem source of Ag is also indicated, especially at RB and CB.
Ziajahromi, Shima; Kumar, Anupama; Neale, Peta A; Leusch, Frederic D L
2018-05-01
Microplastics are a widespread environmental pollutant in aquatic ecosystems and have the potential to eventually sink to the sediment, where they may pose a risk to sediment-dwelling organisms. While the impacts of exposure to microplastics have been widely reported for marine biota, the effects of microplastics on freshwater organisms at environmentally realistic concentrations are largely unknown, especially for benthic organisms. Here we examined the effects of a realistic concentration of polyethylene microplastics in sediment on the growth and emergence of a freshwater organism Chironomus tepperi. We also assessed the influence of microplastic size by exposing C. tepperi larvae to four different size ranges of polyethylene microplastics (1-4, 10-27, 43-54 and 100-126 μm). Exposure to an environmentally relevant concentration of microplastics, 500 particles/kg sediment , negatively affected the survival, growth (i.e. body length and head capsule) and emergence of C. tepperi. The observed effects were strongly dependent on microplastic size with exposure to particles in the size range of 10-27 μm inducing more pronounced effects. While growth and survival of C. tepperi were not affected by the larger microplastics (100-126 μm), a significant reduction in the number of emerged adults was observed after exposure to the largest microplastics, with the delayed emergence attributed to exposure to a stressor. While scanning electron microscopy showed a significant reduction in the size of the head capsule and antenna of C. tepperi exposed to microplastics in the 10-27 μm size range, no deformities to the external structure of the antenna and mouth parts in organisms exposed to the same size range of microplastics were observed. These results indicate that environmentally relevant concentrations of microplastics in sediment induce harmful effects on the development and emergence of C. tepperi, with effects greatly dependent on particle size. Copyright © 2018 Elsevier Ltd. All rights reserved.
Mariussen, Espen; Johnsen, Ida Vaa; Strømseng, Arnljot Einride
2017-04-01
An environmental survey was performed on shooting ranges for small arms located on minerotrophic mires. The highest mean concentrations of Pb (13 g/kg), Cu (5.2 g/kg), Zn (1.1 g/kg), and Sb (0.83 g/kg) in the top soil were from a range located on a poor minerotrophic and acidic mire. This range had also the highest concentrations of Pb, Cu, Zn, and Sb in discharge water (0.18 mg/L Pb, 0.42 mg/L Cu, 0.63 mg/L Zn, and 65 μg/L Sb) and subsurface soil water (2.5 mg/L Pb, 0.9 mg/L Cu, 1.6 mg/L Zn, and 0.15 mg/L Sb). No clear differences in the discharge of ammunition residues between the mires were observed based on the characteristics of the mires. In surface water with high pH (pH ~7), there was a trend with high concentrations of Sb and lower relative concentrations of Cu and Pb. The relatively low concentrations of ammunition residues both in the soil and soil water, 20 cm below the top soil, indicates limited vertical migration in the soil. Channels in the mires, made by plant roots or soil layer of less decomposed materials, may increase the rate of transport of contaminated surface water into deeper soil layers and ground water. A large portion of both Cu and Sb were associated to the oxidizable components in the peat, which may imply that these elements form inner-sphere complexes with organic matter. The largest portion of Pb and Zn were associated with the exchangeable and pH-sensitive components in the peat, which may imply that these elements form outer-sphere complexes with the peat.
Determination of six iodotrihalomethanes in drinking water in Korea.
Woo, Bomi; Park, Ju-Hyun; Kim, Seungki; Lee, Jeongae; Choi, Jong-Ho; Pyo, Heesoo
2018-06-02
Trihalomethanes (THMs) are chemicals regulated by Environmental Protection Agency's first drinking water regulation issued after the passage of the Safe Drinking Water Act. Among THMs, iodotrihalomethanes (I-THMs) are produced by treating water containing iodides ion with chlorine or ozone. I-THMs are more carcinogenic and biotoxic than chlorinated or brominated THMs. The purpose of this study was to analyze of I-THMs in drinking water using the liquid-liquid extraction (LLE) method with various extraction solvents. The calibration curves ranged from 0.01 to 20 ng/mL and the correlation coefficient showed a good linearity of 0.99 or more. The method detection limit ranged from 0.01 to 0.10 ng/mL. The accuracy of the LLE method ranged from 99.43 to 112.40%, and its precision ranged from 1.10 to 10.36%. Good recoveries (71.35-118.60%) were obtained for spiked drinking water samples, demonstrating that the LLE method is suitable for the analysis of drinking water samples. Dichloroiodomethane, bromochloroiodomethane, and dibromoiodomethane were identified in drinking water collected from 70 places of water purification plants in Korea. The samples were classified by disinfection systems, regions, seasons, and water sources. The concentration of I-THMs in pre-/postchlorination facilities owing to excess chlorine usage was higher than in ozonization/postchlorination facilities. Moreover, the concentrations of I-THMs were high in the coastal region, because of the large amount of halide ions from the sea. There was no seasonal difference; however, the concentration of I-THMs in pre-/postchlorination facilities increased in spring and summer. The concentration of I-THMs in water sources was high in samples from the Geum River and the Yeongsan and Sumjin River. The concentration and detection frequency of I-THMs in Han River and Nakdong River were high in the coastal region, because of numerous pre-/postchlorination facilities and the abundance of halide ions from the ocean. Copyright © 2018 Elsevier B.V. All rights reserved.
Hydrology and land use in Grand Traverse County, Michigan
Cummings, T.R.; Gillespie, J.L.; Grannemann, N.G.
1990-01-01
Glacial deposits are the sole source of ground-water supplies in Grand Traverse County. These deposits range in thickness from 100 to 900 feet and consist of till, outwash, and materials of lacustrine and eolian origin. In some areas, the deposits fill buried valleys that are 500 feet deep. Sedimentary rocks of Paleozoic age, which underlie the glacial deposits, are mostly shale and are not used for water supply. Of the glacial deposits, outwash and lacustrine sand are the most productive aquifers. Most domestic wells obtain water from sand and gravel at depths ranging from 50 to 150 feet and yield at least 20 gallons per minute. Irrigation, municipal, and industrial wells capable of yielding 250 gallons per minute or more are generally greater than 150 feet deep. At places in the county where moranial deposits contain large amounts of interbedded silt and clay, wells are generally deeper and yields are much lower. Areal variations in the chemical and physical characteristics of ground and surface water are related to land use and chemical inputs to the hydrologic system. Information on fertilizer application, septic-tank discharges, animal wastes, and precipitation indicate that 40 percent of nitrogen input is from precipitation, 6 percent from septic tanks, 14 percent from animal wastes, and 40 percent from fertilizers. Streams and lakes generally have a calcium bicarbonate-type water. The dissolved-solids concentration of streams ranged from 116 to 380 milligrams per liter, and that of lakes, from 47 to 170 milligrams per liter. Water of streams is hard to very hard; water of lakes ranges from soft to hard. The maximum total nitrogen concentration found in streams was 4.4 milligrams per liter. Water of lakes have low nitrogen concentrations; the median nitrate concentration is less than 0.01 milligrams per liter. Pesticides (Parathion and Simazine) were detected in low concentrations at six stream sites; 2,4-D was detected in low concentrations in water of two lakes. Relationships between land use and the yield of dissolved and suspended substances could not be established for most stream basins. Calcium and bicarbonate are the principal dissolved substances in ground water. Dissolved-solids concentrations ranged from 70 to 700 milligrams per liter; the countywide mean concentration is 230 milligrams per liter. The mean nitrate concentration is 1.3 milligrams per liter; about 1.6 percent of the county's ground water has nitrate concentrations that exceed the U.S. Environmental Protection Agency's maximum drinking water level of 10 milligrams per liter. An effect of fertilizer applications on ground-water quality is evident in some parts of the county.
Stebounova, Larissa V; Gonzalez-Pech, Natalia I; Park, Jae Hong; Anthony, T Renee; Grassian, Vicki H; Peters, Thomas M
2018-05-18
There is an increasing need to evaluate concentrations of nanoparticles in occupational settings due to their potential negative health effects. The Nanoparticle Respiratory Deposition (NRD) personal sampler was developed to collect nanoparticles separately from larger particles in the breathing zone of workers, while simultaneously providing a measure of respirable mass concentration. This study compared concentrations measured with the NRD sampler to those measured with a nano Micro Orifice Uniform-Deposit Impactor (nanoMOUDI) and respirable samplers in three workplaces. The NRD sampler performed well at two out of three locations, where over 90% of metal particles by mass were submicrometer particle size (a heavy vehicle machining and assembly facility and a shooting range). At the heavy vehicle facility, the mean metal mass concentration of particles collected on the diffusion stage of the NRD was 42.5 ± 10.0 µg/m3, within 5% of the nanoMOUDI concentration of 44.4 ± 7.4 µg/m3. At the shooting range, the mass concentration for the diffusion stage of the NRD was 5.9 µg/m3, 28% above the nanoMOUDI concentration of 4.6 µg/m3. In contrast, less favorable results were obtained at an iron foundry, where 95% of metal particles by mass were larger than 1 µm. The accuracy of nanoparticle collection by NRD diffusion stage may have been compromised by high concentrations of coarse particles at the iron foundry, where the NRD collected almost 5-fold more nanoparticle mass compared to the nanoMOUDI on one sampling day and was more than 40% different on other sampling days. The respirable concentrations measured by NRD samplers agreed well with concentrations measured by respirable samplers at all sampling locations. Overall, the NRD sampler accurately measured concentrations of nanoparticles in industrial environments when concentrations of large, coarse mode, particles were low.
Electrical Connection of Enzyme Redox Centers to Electrodes
1992-03-20
concentration in the target organ or the affected physiological function ; and a microcontroller or microprocessor calculating the dose and timing the delivery...followed by introduction of medical feedback loops will allow the pharmaceutical industry to expand its range of drug delivery methods. Today’s primary ...inhalation (derived of the large lung surface area) and continuous, non -invasive administration, in the case of iontophoresis. The use of these
NASA Astrophysics Data System (ADS)
Zhang, Zhuomin; Zhan, Yisen; Huang, Yichun; Li, Gongke
2017-08-01
In this work, a portable large-volume constant-concentration (LVCC) sampling technique coupling with surface-enhanced Raman spectroscopy (SERS) was developed for the rapid on-site gas analysis based on suitable derivatization methods. LVCC sampling technique mainly consisted of a specially designed sampling cell including the rigid sample container and flexible sampling bag, and an absorption-derivatization module with a portable pump and a gas flowmeter. LVCC sampling technique allowed large, alterable and well-controlled sampling volume, which kept the concentration of gas target in headspace phase constant during the entire sampling process and made the sampling result more representative. Moreover, absorption and derivatization of gas target during LVCC sampling process were efficiently merged in one step using bromine-thiourea and OPA-NH4+ strategy for ethylene and SO2 respectively, which made LVCC sampling technique conveniently adapted to consequent SERS analysis. Finally, a new LVCC sampling-SERS method was developed and successfully applied for rapid analysis of trace ethylene and SO2 from fruits. It was satisfied that trace ethylene and SO2 from real fruit samples could be actually and accurately quantified by this method. The minor concentration fluctuations of ethylene and SO2 during the entire LVCC sampling process were proved to be < 4.3% and 2.1% respectively. Good recoveries for ethylene and sulfur dioxide from fruit samples were achieved in range of 95.0-101% and 97.0-104% respectively. It is expected that portable LVCC sampling technique would pave the way for rapid on-site analysis of accurate concentrations of trace gas targets from real samples by SERS.
Zhang, Zhuomin; Zhan, Yisen; Huang, Yichun; Li, Gongke
2017-08-05
In this work, a portable large-volume constant-concentration (LVCC) sampling technique coupling with surface-enhanced Raman spectroscopy (SERS) was developed for the rapid on-site gas analysis based on suitable derivatization methods. LVCC sampling technique mainly consisted of a specially designed sampling cell including the rigid sample container and flexible sampling bag, and an absorption-derivatization module with a portable pump and a gas flowmeter. LVCC sampling technique allowed large, alterable and well-controlled sampling volume, which kept the concentration of gas target in headspace phase constant during the entire sampling process and made the sampling result more representative. Moreover, absorption and derivatization of gas target during LVCC sampling process were efficiently merged in one step using bromine-thiourea and OPA-NH 4 + strategy for ethylene and SO 2 respectively, which made LVCC sampling technique conveniently adapted to consequent SERS analysis. Finally, a new LVCC sampling-SERS method was developed and successfully applied for rapid analysis of trace ethylene and SO 2 from fruits. It was satisfied that trace ethylene and SO 2 from real fruit samples could be actually and accurately quantified by this method. The minor concentration fluctuations of ethylene and SO 2 during the entire LVCC sampling process were proved to be <4.3% and 2.1% respectively. Good recoveries for ethylene and sulfur dioxide from fruit samples were achieved in range of 95.0-101% and 97.0-104% respectively. It is expected that portable LVCC sampling technique would pave the way for rapid on-site analysis of accurate concentrations of trace gas targets from real samples by SERS. Copyright © 2017 Elsevier B.V. All rights reserved.
Schmittner, M D; Faulhaber, J; Kemler, B; Koenen, W; Thumfart, J O; Weiss, C; Neumaier, M; Beck, G C
2010-12-01
Tumescent local anaesthesia (TLA) with high prilocaine doses leads to formation of methemoglobin (MHb) which is known to be a potent activator of pro-inflammatory endothelial cell response in vitro. As TLA is widely used for large dermatological resections, the aim of this study was to investigate the effects of high prilocaine doses on the systemic inflammatory response in vivo and its clinical relevance. This prospective study examines the influence of MHb on serum interleukin (IL)-6, IL-8 and tumour necrosis tumour necrosis (TNF)-α levels up to 72 h after application of TLA with prilocaine in doses higher than 600 mg. A total of 30 patients received prilocaine in a median dose of 1500 mg (range: 880-4160 mg) for large resections. Peak prilocaine serum concentration was reached 4 h (0.72 ± 0.07 μg/mL), the maximum concentration of MHb (7.43 ± 0.87%) and IL-6 (28.4 ± 4.1 U/L) 12 h after TLA application. TNF-α and IL-8 release were not found significantly increased. Three patients developed MHb concentrations >15%. This clinical study shows for the first time that a high prilocaine serum concentration leads in vivo to elevated systemic levels of IL-6 but not of IL-8 and TNF-α because of initial high MHb levels. Because of possible and unpredictable high MHb concentrations, TLA should only be performed with prilocaine in doses of 2.5 mg/kg. In general, new solutions of TLA are necessary to achieve adequate anaesthesia for large dermatological resections to decrease the risk of methemoglobinaemia. © 2010 The Authors. Journal compilation © 2010 European Academy of Dermatology and Venereology.
NASA Astrophysics Data System (ADS)
Vanderfleet, Oriana M.; Osorio, Daniel A.; Cranston, Emily D.
2017-12-01
Cellulose nanocrystals (CNCs) are emerging nanomaterials with a large range of potential applications. CNCs are typically produced through acid hydrolysis with sulfuric acid; however, phosphoric acid has the advantage of generating CNCs with higher thermal stability. This paper presents a design of experiments approach to optimize the hydrolysis of CNCs from cotton with phosphoric acid. Hydrolysis time, temperature and acid concentration were varied across nine experiments and a linear least-squares regression analysis was applied to understand the effects of these parameters on CNC properties. In all but one case, rod-shaped nanoparticles with a high degree of crystallinity and thermal stability were produced. A statistical model was generated to predict CNC length, and trends in phosphate content and zeta potential were elucidated. The CNC length could be tuned over a relatively large range (238-475 nm) and the polydispersity could be narrowed most effectively by increasing the hydrolysis temperature and acid concentration. The CNC phosphate content was most affected by hydrolysis temperature and time; however, the charge density and colloidal stability were considered low compared with sulfuric acid hydrolysed CNCs. This study provides insight into weak acid hydrolysis and proposes `design rules' for CNCs with improved size uniformity and charge density. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.
Rahman, Mohammed M.; Khan, Sher Bahadar; Asiri, Abdullah M.
2014-01-01
Transition metal doped semiconductor nanostructure materials (Sb2O3 doped ZnO microflowers, MFs) are deposited onto tiny µ-chip (surface area, ∼0.02217 cm2) to fabricate a smart chemical sensor for toxic ethanol in phosphate buffer solution (0.1 M PBS). The fabricated chemi-sensor is also exhibited higher sensitivity, large-dynamic concentration ranges, long-term stability, and improved electrochemical performances towards ethanol. The calibration plot is linear (r2 = 0.9989) over the large ethanol concentration ranges (0.17 mM to 0.85 M). The sensitivity and detection limit is ∼5.845 µAcm−2mM−1 and ∼0.11±0.02 mM (signal-to-noise ratio, at a SNR of 3) respectively. Here, doped MFs are prepared by a wet-chemical process using reducing agents in alkaline medium, which characterized by UV/vis., FT-IR, Raman, X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), and field-emission scanning electron microscopy (FE-SEM) etc. The fabricated ethanol chemical sensor using Sb2O3-ZnO MFs is simple, reliable, low-sample volume (<70.0 µL), easy of integration, high sensitivity, and excellent stability for the fabrication of efficient I–V sensors on μ-chips. PMID:24454785
Rahman, Mohammed M; Khan, Sher Bahadar; Asiri, Abdullah M
2014-01-01
Transition metal doped semiconductor nanostructure materials (Sb2O3 doped ZnO microflowers, MFs) are deposited onto tiny µ-chip (surface area, ∼0.02217 cm(2)) to fabricate a smart chemical sensor for toxic ethanol in phosphate buffer solution (0.1 M PBS). The fabricated chemi-sensor is also exhibited higher sensitivity, large-dynamic concentration ranges, long-term stability, and improved electrochemical performances towards ethanol. The calibration plot is linear (r(2) = 0.9989) over the large ethanol concentration ranges (0.17 mM to 0.85 M). The sensitivity and detection limit is ∼5.845 µAcm(-2)mM(-1) and ∼0.11±0.02 mM (signal-to-noise ratio, at a SNR of 3) respectively. Here, doped MFs are prepared by a wet-chemical process using reducing agents in alkaline medium, which characterized by UV/vis., FT-IR, Raman, X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), and field-emission scanning electron microscopy (FE-SEM) etc. The fabricated ethanol chemical sensor using Sb2O3-ZnO MFs is simple, reliable, low-sample volume (<70.0 µL), easy of integration, high sensitivity, and excellent stability for the fabrication of efficient I-V sensors on μ-chips.
Optimal Electrocatalytic Pd/MWNTs Nanocatalysts toward Formic Acid Oxidation
Wang, Yiran; He, Qingliang; Wei, Huige; Guo, Jiang; Ding, Keqiang; Wang, Qiang; Wang, Zhe; Wei, Suying; Guo, Zhanhu
2017-01-01
The operating conditions such as composition of electrolyte and temperature can greatly influence the formic acid (HCOOH) oxidation reaction (FAOR). Palladium decorated multi-walled carbon nanotubes (Pd/MWNTs) were successfully synthesized and employed as nanocatalysts to explore the effects of formic acid, sulfuric acid (H2SO4) concentration and temperature on FAOR. Both the hydrogen adsorption in low potential range and the oxidation of poisoning species during the high potential range in cyclic voltammetry were demonstrated to contribute to the enhanced electroactivity of Pd/MWNTs. The as-synthesized Pd/MWNTs gave the best performance under a condition with balanced adsorptions of HCOOH and H2SO4 molecules. The dominant dehydrogenation pathway on Pd/MWNTs can be largely depressed by the increased dehydration pathway, leading to an increased charge transfer resistance (Rct). Increasing HCOOH concentration could directly increase the dehydration process proportion and cause the production of COads species. H2SO4 as donor of H+ greatly facilitated the onset oxidation of HCOOH in the beginning process but it largely depressed the HCOOH oxidation with excess amount of H+. Enhanced ion mobility with increasing the temperature was mainly responsible for the increased current densities, improved tolerance stabilities and reduced Rct values, while dehydration process was also increased simultaneously. PMID:29622817
Kim, L H; Jeong, S M; Ko, S O
2007-01-01
Recently the Ministry of Environment in Korea has developed the total maximum daily load program in accordance with the target pollutant and its concentration goal on four major large rivers. Since the program is largely related to regional development, nonpoint source control is both important and topical. Of the various nonpoint sources, highways are stormwater intensive land uses since they are impervious and have high pollutant mass emissions from vehicular activity. The event mean concentration (EMC) is useful in estimating the loadings to receiving water bodies. However, the EMC does not provide information on the time varying changes in pollutant concentration or mass emissions, which are often important for best management practice development, or understanding shock loads. Therefore, in this study a new concept, the dynamic EMC determination method, will be introduced to clearly verify the relationship between EMC and the first flush effect. Three monitoring sites in Daejeon metropolitan city areas were equipped with an automatic rainfall gauge and a flow meter for accumulating the data such as rainfall and runoff flow. The dynamic EMC method was applied to more than 17 events, and the improved first flush criteria were determined on the ranges of storm duration and accumulated rainfall.
Thierry, Anne; Maillard, Marie-Bernadette; Richoux, Romain; Lortal, Sylvie
2006-09-06
Esters are important contributors to cheese flavor, but their mechanisms of synthesis in cheese are largely unknown. This study aimed to determine whether ethanol concentration limits the formation of ethyl esters in cheese. Mini Swiss cheeses were manufactured with (E) or without (C) the addition of ethanol to cheese milk. Ethanol concentrations (enzymatic analysis) were 64 +/- 17 and 330 +/- 82 microg g(-1), respectively, in C and E cheeses. E cheeses also contained 5.4 +/- 2.3 times more of the five ethyl esters quantified than C cheeses, regardless of the concentrations of esters in C cheeses (range 1-128 ng g(-1)). Furthermore, the presence of propionibacteria added as acid-producing secondary starters was associated with greater concentrations of esters, due to the increase in acid concentrations that propionibacteria induced and/or to an involvement of propionibacteria enzymes in ester synthesis. This study demonstrates that ethanol is the limiting factor of ethyl ester synthesis in Swiss cheese.
Rizzi, Juliane; Taniguchi, Satie; Martins, César C
2017-06-15
Babitonga Bay is a large estuary, which has been under pressure from anthropogenic activities coexisting with a natural area of Atlantic rainforest and mangrove systems. The concentration of persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) was determined to evaluate the contamination status and the determine possible pollution sources in the estuary. The ∑DDT (sum of DDT, DDE and DDD concentrations) was the predominant OCP group, with concentrations ranging from
Donnelly, Aoife A; Broderick, Brian M; Misstear, Bruce D
2015-01-01
The specific aims of this paper are to: (i) quantify the effects of various long range transport pathways nitrogen dioxide (NO2) and particulate matter with diameter less than 10μm (PM10) concentrations in Ireland and identify air mass movement corridors which may lead to incidences poor air quality for application in forecasting; (ii) compare the effects of such pathways at various sites; (iii) assess pathways associated with a period of decreased air quality in Ireland. The origin of and the regions traversed by an air mass 96h prior to reaching a receptor is modelled and k-means clustering is applied to create air-mass groups. Significant differences in air pollution levels were found between air mass cluster types at urban and rural sites. It was found that easterly or recirculated air masses lead to higher NO2 and PM10 levels with average NO2 levels varying between 124% and 239% of the seasonal mean and average PM10 levels varying between 103% and 199% of the seasonal mean at urban and rural sites. Easterly air masses are more frequent during winter months leading to higher overall concentrations. The span in relative concentrations between air mass clusters is highest at the rural site indicating that regional factors are controlling concentration levels. The methods used in this paper could be applied to assist in modelling and forecasting air quality based on long range transport pathways and forecast meteorology without the requirement for detailed emissions data over a large regional domain or the use of computationally demanding modelling techniques.
How predictable is the timing of a summer ice-free Arctic?
NASA Astrophysics Data System (ADS)
Jahn, Alexandra; Kay, Jennifer E.; Holland, Marika M.; Hall, David M.
2016-09-01
Climate model simulations give a large range of over 100 years for predictions of when the Arctic could first become ice free in the summer, and many studies have attempted to narrow this uncertainty range. However, given the chaotic nature of the climate system, what amount of spread in the prediction of an ice-free summer Arctic is inevitable? Based on results from large ensemble simulations with the Community Earth System Model, we show that internal variability alone leads to a prediction uncertainty of about two decades, while scenario uncertainty between the strong (Representative Concentration Pathway (RCP) 8.5) and medium (RCP4.5) forcing scenarios adds at least another 5 years. Common metrics of the past and present mean sea ice state (such as ice extent, volume, and thickness) as well as global mean temperatures do not allow a reduction of the prediction uncertainty from internal variability.
Direct piezoelectric responses of soft composite fiber mats
NASA Astrophysics Data System (ADS)
Varga, M.; Morvan, J.; Diorio, N.; Buyuktanir, E.; Harden, J.; West, J. L.; Jákli, A.
2013-04-01
Recently soft fiber mats electrospun from solutions of Barium Titanate (BT) ferroelectric ceramics particles and polylactic acid (PLA) were found to have large (d33 ˜ 1 nm/V) converse piezoelectric signals offering a myriad of applications ranging from active implants to smart textiles. Here, we report direct piezoelectric measurements (electric signals due to mechanical stress) of the BT/PLA composite fiber mats at several BT concentrations. A homemade testing apparatus provided AC stresses in the 50 Hz-1.5 kHz-frequency range. The piezoelectric constant d33 ˜ 0.5 nC/N and the compression modulus Y ˜ 104-105 Pa found are in agreement with the prior converse piezoelectric and compressibility measurements. Importantly, the direct piezoelectric signal is large enough to power a small LCD by simple finger tapping of a 0.15 mm thick 2-cm2 area mat. We propose using these mats in active Braille cells and in liquid crystal writing tablets.
Fate and bioaccumulation of isoproturon in outdoor aquatic microcosms.
Merlin, Gerard; Vuillod, Maryline; Lissolo, Thierry; Clement, Bernard
2002-06-01
To gain information concerning the ecotoxicity of isoproturon (IPU) on aquatic ecosystems, six experimental ponds of 5 m3 each were studied. All the experiments were conducted during the summer over two years. Three different types of ecosystems were tested in 1994 and one type of ecosystem was selected and repeated in 1995 with three replicates. In each case, the initial concentration of IPU contamination was set at 10 microg/L. The IPU concentration was determined in the water column and in different species (mainly plants) of the microcosms. A first-order kinetic decrease in IPU concentration was observed in 1994, with half-life ranging from 15 to 35 d, depending on the microcosms. This relatively fast decrease was also confirmed in 1995, but it reached a constant value after two months. A high variability of the IPU concentration was observed in exposed plants, with bioconcentration factors ranging from 100 to 1,200 with large coefficients of variation. The observed plant bioconcentration factors are higher than those predicted by usual numerical models, probably due to the specific binding of IPU on one protein of the photosynthetic apparatus. Our data show that bioconcentration does not occur in mollusks but is important in photosynthetic organisms. Plant bioconcentration and microbial biodegradation are the main processes involved in the IPU decay in our outdoor aquatic microcosms.
NASA Astrophysics Data System (ADS)
Guerrero, Massimo; Di Federico, Vittorio
2018-03-01
The use of acoustic techniques has become common for estimating suspended sediment in water environments. An emitted beam propagates into water producing backscatter and attenuation, which depend on scattering particles concentration and size distribution. Unfortunately, the actual particles size distribution (PSD) may largely affect the accuracy of concentration quantification through the unknown coefficients of backscattering strength, ks2, and normalized attenuation, ζs. This issue was partially solved by applying the multi-frequency approach. Despite this possibility, a relevant scientific and practical question remains regarding the possibility of using acoustic methods to investigate poorly sorted sediment in the spectrum ranging from clay to fine sand. The aim of this study is to investigate the possibility of combining the measurement of sound attenuation and backscatter to determine ζs for the suspended particles and the corresponding concentration. The proposed method is moderately dependent from actual PSD, thus relaxing the need of frequent calibrations to account for changes in ks2 and ζs coefficients. Laboratory tests were conducted under controlled conditions to validate this measurement technique. With respect to existing approaches, the developed method more accurately estimates the concentration of suspended particles ranging from clay to fine sand and, at the same time, gives an indication on their actual PSD.
Wade, Terry L; Morales-McDevitt, Maya; Bera, Gopal; Shi, Dawai; Sweet, Stephen; Wang, Binbin; Gold-Bouchot, Gerado; Quigg, Antonietta; Knap, Anthony H
2017-10-01
Marine oil snow (MOS) formation is a mechanism to transport oil from the ocean surface to sediments. We describe here the use of 110L mesocosms designed to mimic oceanic parameters during an oil spill including the use of chemical dispersants in order to understand the processes controlling MOS formation. These experiments were not designed to be toxicity tests but rather to illustrate mechanisms. This paper focuses on the development of protocols needed to conduct experiments under environmentally relevant conditions to examine marine snow and MOS. The experiments required the production of over 500 liters of water accommodated fraction (WAF), chemically enhanced water accommodated fraction of oil (CEWAF) as well as diluted CEWAF (DCEWAF). A redesigned baffled (170 L) recirculating tank (BRT) system was used. Two mesocosm experiments (M1 and M2) were run for several days each. In both M1 and M2, marine snow and MOS was formed in controls and all treatments respectively. Estimated oil equivalent (EOE) concentrations of CEWAF were in the high range of concentrations reported during spills and field tests, while WAF and DCEWAF concentrations were within the range of concentrations reported during oil spills. EOE decreased rapidly within days in agreement with historic data and experiments.
Ma, Jing; Cheng, Jinping; Wang, Wenhua; Kunisue, Tatsuya; Wu, Minghong; Kannan, Kurunthachalam
2011-02-28
Hair samples collected from e-waste recycling workers (n=23 males, n=4 females) were analyzed to assess occupational exposures to polybrominated diphenyl ethers (PBDEs) and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) at a large e-waste recycling facility in Taizhou, eastern China. Hair samples from a reference population composed of residents of Shanghai (n=11) were analyzed for comparison. The mean concentration of ∑PBDEs (range, 22.8-1020 ng/g dw; mean, 157 ng/g dw) found in hair samples from e-waste recycling workers was approximately 3 times higher than the mean determined for the reference samples. The congener profiles of PBDEs in hair from e-waste recycling workers were dominated by BDE 209, whereas the profiles in the reference-population samples showed comparable levels of BDE 47 and BDE 209. Total PCDD/F concentrations in hair from e-waste workers (range, 126-5820 pg/g dw; mean, 1670 pg/g dw) were approximately 18-fold greater than the concentrations measured in hair from the reference population. Concentrations of PCDFs were greater than concentrations of PCDDs, in all of the hair samples analyzed (samples from e-waste and non-e-waste sites). Tetrachlorodibenzofurans (TCDFs) were the major homologues in hair samples. Overall, e-waste recycling workers had elevated concentrations of both PBDEs and PCDD/Fs, indicating that they are exposed to high levels of multiple persistent organic pollutants. Copyright © 2010 Elsevier B.V. All rights reserved.
Díaz-Jaramillo, Mauricio; Muñoz, Claudia; Rudolph, Ignacio; Servos, Mark; Barra, Ricardo
2013-01-01
The Lenga Estuary is one of the most industrialized sites in south central Chile where the historic operation of chlor-alkali plants resulted in large quantities of mercury (Hg) being deposited into the estuary. This historical contamination may still represent a risk to the biota in the estuary. To investigate this four macroinvertebrates, Neotrypaea uncinata (ghostshrimp), Elminius kingii (barnacle), Hemigrapsus crenulatus (shore crab) and Perinereis gualpensis (ragworm) were collected seasonally from three different sites in the Lenga Estuary and one in a reference estuary (Tubul Estuary), and analyzed for Hg and stable isotopes (δ(15)N and δ(13)C). Mercury concentrations in Lenga sediments ranged from 0.4 ± 0.1 to 13 ± 3 mg/kg, while those in Tubul sediments ranged from 0.02 ± 0.01 to 0.07 ± 0.09 mg/kg. Total Hg concentrations of invertebrates were significantly different between estuaries (p<0.05), but not by species or season for each estuary (p>0.05). In contrast, organic Hg concentrations were different by species and season with shore crab muscle tissues exhibiting the greatest percent difference. Site-specific relationships demonstrated that total Hg concentrations in ragworm best reflected the total Hg sediment mercury concentrations. Signatures of δ(13)C were correlated to the organic Hg % rather than total Hg. This suggests that organic Hg concentrations in these species were related to the carbon sources. Copyright © 2012 Elsevier B.V. All rights reserved.
Hanley, Kevin W.; Wollheim, Wilfred M.; Salisbury, Joseph; Huntington, Thomas G.; Aiken, George R.
2013-01-01
Understanding the processes controlling the transfer and chemical composition of dissolved organic carbon (DOC) in freshwater systems is crucial to understanding the carbon cycle and the effects of DOC on water quality. Previous studies have identified watershed-scale controls on bulk DOC flux and concentration among small basins but fewer studies have explored controls among large basins or simultaneously considered the chemical composition of DOC. Because the chemical character of DOC drives riverine biogeochemical processes such as metabolism and photodegradation, accounting for chemical character in watershed-scale studies will improve the way bulk DOC variability in rivers is interpreted. We analyzed DOC quantity and chemical character near the mouths of 17 large North American rivers, primarily between 2008 and 2010, and identified watershed characteristics that controlled variability. We quantified DOC chemical character using both specific ultraviolet absorbance at 254 nm (SUVA254) and XAD-resin fractionation. Mean DOC concentration ranged from 2.1 to 47 mg C L−1 and mean SUVA254 ranged from 1.3 to 4.7 L mg C−1 m−1. We found a significant positive correlation between basin wetland cover and both bulk DOC concentration (R2 = 0.78; p < 0.0001) and SUVA254 (R2 = 0.91; p < 0.0001), while other land use characteristics were not correlated. The strong wetland relationship with bulk DOC concentration is similar to that found by others in small headwater catchments. However, two watersheds with extremely long surface water residence times, the Colorado and St. Lawrence, diverged from this wetland relationship. These results suggest that the role of riverine processes in altering the terrestrial DOC signal at the annual scale was minimal except in river systems with long surface water residence times. However, synoptic DOC sampling of both quantity and character throughout river networks will be needed to more rigorously test this finding. The inclusion of DOC chemical character will be vital to achieving a more complete understanding of bulk DOC dynamics in large river systems.
Benetello, Francesca; Squizzato, Stefania; Hofer, Angelika; Masiol, Mauro; Khan, Md Badiuzzaman; Piazzalunga, Andrea; Fermo, Paola; Formenton, Gian Maria; Rampazzo, Giancarlo; Pavoni, Bruno
2017-01-01
A total of 85 PM 2.5 samples were collected at a site located in a large industrial zone (Porto Marghera, Venice, Italy) during a 1-year-long sampling campaign. Samples were analyzed to determine water-soluble inorganic ions, elemental and organic carbon, and levoglucosan, and results were processed to investigate the seasonal patterns, the relationship between the analyzed species, and the most probable sources by using a set of tools, including (i) conditional probability function (CPF), (ii) conditional bivariate probability function (CBPF), (iii) concentration weighted trajectory (CWT), and (iv) potential source contribution function (PSCF) analyses. Furthermore, the importance of biomass combustions to PM 2.5 was also estimated. Average PM 2.5 concentrations ranged between 54 and 16 μg m -3 in the cold and warm period, respectively. The mean value of total ions was 11 μg m -3 (range 1-46 μg m -3 ): The most abundant ion was nitrate with a share of 44 % followed by sulfate (29 %), ammonium (14 %), potassium (4 %), and chloride (4 %). Levoglucosan accounted for 1.2 % of the PM 2.5 mass, and its concentration ranged from few ng m -3 in warm periods to 2.66 μg m -3 during winter. Average concentrations of levoglucosan during the cold period were higher than those found in other European urban sites. This result may indicate a great influence of biomass combustions on particulate matter pollution. Elemental and organic carbon (EC, OC) showed similar behavior, with the highest contributions during cold periods and lower during summer. The ratios between biomass burning indicators (K + , Cl - , NO 3 - , SO 4 2- , levoglucosan, EC, and OC) were used as proxy for the biomass burning estimation, and the contribution to the OC and PM 2.5 was also calculated by using the levoglucosan (LG)/OC and LG/PM 2.5 ratios and was estimated to be 29 and 18 %, respectively.
Yanosky, T.M.; Carmichael, J.K.
1993-01-01
Multielement analysis was performed on individual annual rings of trees growing at and near an abandoned wood-preserving plant site in Jackson, Tennessee, that operated from the early 1930's until 1981. Numerous organic compounds associated with the wood-preserving process have been detected in soils, ground water, and surface water within much of the site. Tree-ring investigations were conducted prior to investigations of ground water downgradient from the site to determine if trees preserved an areal and temporal record of contaminant movement into offsite areas. Increment cores were collected from trees on the abandoned plant site, in downgradient areas west and south of the site, and at two locations presumably unaffected by contamination from the site. Multielement analysis by proton-induced X-ray emission was performed on 5 to 15 individual growth rings from each of 34 trees that ranged in age from about 5 to 50 years. Concentrations of 16 elements were evaluated by analyzing average concentrations within the 1987, 1989, and 1990 rings of all trees; analyzing element-concentration trends along entire core radii; and analyzing element correlations between and among trees. Concentrations of some nutrients and trace metals were elevated in the outermost sapwood rings of some trees that grow south and southwest of the most contaminated part of the site; small trees on the main part of the site and larger trees to the west generally contained fewer rings with elevated concentrations, particularly of trace metals. Concentrations of several elements elevated in tree rings also were elevated in water samples collected from the reach of a stream that flows near the southwestern part of the site. Multielement analysis of each ring of a willow growing along the southern boundary of the site detected extremely large concentrations of chromium, nickel, and iron in rings that formed in 1986 and thereafter. Relative increases in the concentrations of these elements also were detected in a silver maple growing next to the willow, but not in another silver maple growing 150 meters farther to the west. An oak growing in the southwestern part of the study area contained large concentrations of calcium and several trace elements, and some trees south of the abandoned site contained large concentrations of phosphorus or potassium. Concentrations of trace metals and nutrients in some trees may be related to wood-preserving activities at the site and possibly to remedial efforts conducted during the early to mid 1980's.However, the possibility cannot be discounted that large concentrations of some elements are from sources other than the wood-preserving facility, or in part from flooding of the South Fork Forked Deer River.
Andrews, Rebecca E; Shah, Karan M; Wilkinson, J Mark; Gartland, Alison
2011-10-01
Metal-on-metal hip replacement (MOMHR) using large diameter bearings has become a popular alternative to conventional total hip arthroplasty, but is associated with elevated local tissue and circulating levels of chromium (Cr) and cobalt (Co) ions that may affect bone health. We examined the effects of acute and chronic exposure to these metals on human osteoblast and osteoclast formation and function over a clinically relevant concentration range previously reported in serum and within hip synovial fluid in patients after MOMHR. SaOS-2 cells were cultured with Co(2+), Cr(3+) and Cr(6+) for 3 days after which an MTS assay was used to assess cell viability, for 13 days after which alkaline phosphatase and cell viability were assessed and for 21 days after which nodule formation was assessed. Monocytes were isolated from human peripheral blood and settled onto dentine disks then cultured with M-CSF and RANKL plus either Co(2+), Cr(3+) or Cr(6+) ions for 21 days from day 0 or between days 14 and 21. Cells were fixed and stained for TRAP and osteoclast number and amount of resorption per dentine disk determined. Co(2+) and Cr(3+) did not affect osteoblast survival or function over the clinically equivalent concentration range, whilst Cr(6+) reduced osteoblast survival and function at concentrations within the clinically equivalent serum range after MOMHR (IC(50) =2.2 μM). In contrast, osteoclasts were more sensitive to metal ions exposure. At serum levels a mild stimulatory effect on resorption in forming osteoclasts was found for Co(2+) and Cr(3+), whilst at higher serum and synovial equivalent concentrations, and with Cr(6+), a reduction in cell number and resorption was observed. Co(2+) and Cr(6+) within the clinical range reduced cell number and resorption in mature osteoclasts. Our data suggest that metal ions at equivalent concentrations to those found in MOMHR affect bone cell health and may contribute to the observed bone-related complications of these prostheses. Copyright © 2011 Elsevier Inc. All rights reserved.
Surfactant and nonlinear drop dynamics in microgravity
NASA Astrophysics Data System (ADS)
Jankovsky, Joseph Charles
2000-11-01
Large amplitude drop dynamics in microgravity were conducted during the second United States Microgravity Laboratory mission carried onboard the Space Shuttle Columbia (20 October-5 November 1995). Centimeter- sized drops were statically deformed by acoustic radiation pressure and released to oscillate freely about a spherical equilibrium. Initial aspect ratios of up to 2.0 were achieved. Experiments using pure water and varying aqueous concentrations of Triton-X 100 and bovine serum albumin (BSA) were performed. The axisymmetric drop shape oscillations were fit using the degenerate spherical shape modes. The frequency and decay values of the fundamental quadrupole and fourth order shape mode were analyzed. Several large amplitude nonlinear oscillation dynamics were observed. Shape entrainment of the higher modes by the fundamental quadrupole mode occurred. Amplitude- dependent effects were observed. The nonlinear frequency shift, where the oscillation frequency is found to decrease with larger amplitudes, was largely unaffected by the presence of surfactants. The percentage of time spent in the prolate shape over one oscillation cycle was found to increase with oscillation amplitude. This prolate shape bias was also unaffected by the addition of surfactants. These amplitude-dependent effects indicate that the nonlinearities are a function of the bulk properties and not the surface properties. BSA was found to greatly enhance the surface viscoelastic properties by increasing the total damping of the oscillation, while Triton had only a small influence on damping. The surface concentration of BSA was found to be diffusion-controlled over the time of the experiments, while the Triton diffusion rate was very rapid. Using the experimental frequency and decay values, the suface viscoelastic properties of surface dilatational viscosity ( ks ) and surface shear viscosity ( ms ) were found for varying surfactant concentrations using the transcendental equation of Lu & Apfel (1991) and Tian et al. (1997). Values for Triton for concentrations of 0.017 to 2 CMC range from 0.01 to 0.05 surface poise (sp) for ks . For BSA, the fitting of the experimental data was highly sensitive to ms over a wide range of ks . Setting ks = 1 sp for 1 CMC drops ms , was found to increase from 0.07 to 0.28 sp linearly with the square root of time, indicating that surface shear viscosity is proportional to the surface concentration in the diffusion-controlled regime. The same time dependence was found for 2 CMC drops. However, the fitted shear viscosity was nearly half that of the 1 CMC concentration over the same time frame.
Multiscale modeling of thermal conductivity of high burnup structures in UO 2 fuels
Bai, Xian -Ming; Tonks, Michael R.; Zhang, Yongfeng; ...
2015-12-22
The high burnup structure forming at the rim region in UO 2 based nuclear fuel pellets has interesting physical properties such as improved thermal conductivity, even though it contains a high density of grain boundaries and micron-size gas bubbles. To understand this counterintuitive phenomenon, mesoscale heat conduction simulations with inputs from atomistic simulations and experiments were conducted to study the thermal conductivities of a small-grain high burnup microstructure and two large-grain unrestructured microstructures. We concluded that the phonon scattering effects caused by small point defects such as dispersed Xe atoms in the grain interior must be included in order tomore » correctly predict the thermal transport properties of these microstructures. In extreme cases, even a small concentration of dispersed Xe atoms such as 10 -5 can result in a lower thermal conductivity in the large-grain unrestructured microstructures than in the small-grain high burnup structure. The high-density grain boundaries in a high burnup structure act as defect sinks and can reduce the concentration of point defects in its grain interior and improve its thermal conductivity in comparison with its large-grain counterparts. Furthermore, an analytical model was developed to describe the thermal conductivity at different concentrations of dispersed Xe, bubble porosities, and grain sizes. Upon calibration, the model is robust and agrees well with independent heat conduction modeling over a wide range of microstructural parameters.« less
Hättenschwiler, Stephan; Aeschlimann, Beat; Coûteaux, Marie-Madeleine; Roy, Jacques; Bonal, Damien
2008-01-01
Distinct ecosystem level carbon : nitrogen : phosphorus (C : N : P) stoichiometries in forest foliage have been suggested to reflect ecosystem-scale selection for physiological strategies in plant nutrient use. Here, this hypothesis was explored in a nutrient-poor lowland rainforest in French Guiana. Variation in C, N and P concentrations was evaluated in leaf litter and foliage from neighbour trees of 45 different species, and the litter concentrations of major C fractions were also measured. Litter C ranged from 45.3 to 52.4%, litter N varied threefold (0.68-2.01%), and litter P varied seven-fold (0.009-0.062%) among species. Compared with foliage, mean litter N and P concentrations decreased by 30% and 65%, respectively. Accordingly, the range in mass-based N : P shifted from 14 to 55 in foliage to 26 to 105 in litter. Resorption proficiencies indicated maximum P withdrawal in most species, but with a substantial increase in variation in litter P compared with foliage. These data suggest that constrained ecosystem-level C : N : P ratios do not preclude the evolution of highly diversified strategies of nutrient use and conservation among tropical rainforest tree species. The resulting large variation in litter quality will influence stoichiometric constraints within the decomposer food web, with potentially far-ranging consequences on nutrient dynamics and plant-soil feedbacks.
Toxic cyanobacteria and cyanotoxins in public hot springs in Saudi Arabia.
Mohamed, Zakaria A
2008-01-01
Toxic cyanobacteria are well reported in rivers, lakes and even marine environments, but the toxin production of cyanobacteria in hot springs is largely unexplored. Therefore, the present study investigated the presence of toxic cyanobacteria and cyanotoxins in public hot springs in Saudi Arabia. The results of an enzyme-linked immunosorbent assay (ELISA) revealed that Saudi spring cyanobacterial mats contained microcystins (MCYSTs) at concentrations ranging from 468 to 512.5 microg g(-1). The Limulus amebocyte lystae (LAL) assay detected lipopolysaccharide (LPS) endotoxins in these mats at concentrations ranging from 433.3 to 506.8 EU g(-1). MCYSTs and endotoxins were also detected in spring waters at levels of 5.7 microg l(-1) and 640 EU ml(-1), respectively, exceeding WHO's provisional guideline value for MCYST-LR in drinking-water. High-performance liquid chromatography (HPLC) analysis revealed that only Oscillatoria limosa and Synechococcus lividus can produce MCYSTs with a profile consisting of MCYST-RR and -LR. Based on the LAL assay, 12 out of 17 cyanobacterial species contained LPS at concentrations ranging from 0.93 to 21.06 EU g(-1). However, not all LPS of these species were toxic to mice. This study suggests that the hot springs in the world including Saudi Arabia should be screened for toxic cyanobacteria to avoid the exposure of people recreating and bathing in spring waters to cyanobacterial toxins.
Water-water correlations in electrolyte solutions probed by hyper-Rayleigh scattering
NASA Astrophysics Data System (ADS)
Shelton, David P.
2017-12-01
Long-range ion-induced correlations between water molecules have been observed by second-harmonic or hyper-Rayleigh scattering experiments with conflicting results. The most recent work observed a large difference between the results for H2O and D2O, and large discrepancies with the previously proposed theory. However, the present observations are in quantitative agreement with the model where the ion electric field induces second harmonic generation by the water molecules, and ion-ion correlations given by the Debye-Huckel theory account for intensity saturation at high ion concentration. This work compares experimental results with theory and addresses the apparent discrepancies with previous experiments.
NASA Technical Reports Server (NTRS)
1980-01-01
Measurements in an Auger spectrometer of surface impurity concentrations on liquid gallium showed that the principle impurities were oxygen and carbon. The impurities showed a tendency to collect into plates or clumps. In Pb rich Pb-Sn off eutectic alloys, macrosegration caused by solutal convection was not reduced by vertical or horizontal fields of 0.1 T, but downward solidification virtually eliminated macrosegration in small diameter samples. Phase assemblages of selected compositions on the joints K(Fe0.5 Si-0.5) O2 -SiO2 and KFeO2 - SiO2 were determined over a large range of oxygen partial pressures and the temperature range 800 C to 1400 C.
Ground-states for the liquid drop and TFDW models with long-range attraction
NASA Astrophysics Data System (ADS)
Alama, Stan; Bronsard, Lia; Choksi, Rustum; Topaloglu, Ihsan
2017-10-01
We prove that both the liquid drop model in R 3 with an attractive background nucleus and the Thomas-Fermi-Dirac-von Weizsäcker (TFDW) model attain their ground-states for all masses as long as the external potential V(x) in these models is of long range, that is, it decays slower than Newtonian (e.g., V ( x ) ≫ | x | - 1 for large |x|.) For the TFDW model, we adapt classical concentration-compactness arguments by Lions, whereas for the liquid drop model with background attraction, we utilize a recent compactness result for sets of finite perimeter by Frank and Lieb.
Yuyama, Ken-ichi; Wu, Chi-Shiun; Sugiyama, Teruki; Masuhara, Hiroshi
2014-02-01
We present the laser trapping-induced crystallization of L-phenylalanine through high-concentration domain formation in H2O and D2O solutions which is achieved by focusing a continuous-wave (CW) near-infrared laser beam at the solution surface. Upon laser irradiation into the H2O solution, laser trapping of the liquid-like clusters increases the local concentration, accompanying laser heating, and a single plate-like crystal is eventually prepared at the focal spot. On the other hand, in the D2O solution, a lot of the monohydrate needle-like crystals are observed, not at the focal spot where the concentration is high enough to trigger crystal nucleation, but in the 0.5-1.5 mm range from the focal spot. The dynamics and mechanism of the amazing crystallization behaviour induced by laser trapping are discussed from the viewpoints of the concentration increase due to laser heating depending on solvent, the large high-concentration domain formation by laser trapping of liquid-like clusters, and the orientational disorder of molecules/clusters at the domain edge.
Field experiment of 800× off-axis XR-Köhler concentrator module on a carousel tracker
NASA Astrophysics Data System (ADS)
Yamada, Noboru; Okamoto, Kazuya; Ijiro, Toshikazu; Suzuki, Takao; Maemura, Toshihiko; Kawaguchi, Takashi; Takahashi, Hiroshi; Sato, Takashi; Hernandez, Maikel; Benitez, Pablo; Chaves, Julio; Cvetkovic, Aleksandra; Vilaplana, Juan; Mohedano, Ruben; Mendes-Lopes, Joao; Miñano, Juan Carlos
2013-09-01
This paper presents the design and preliminary experimental results of a concentrator-type photovoltaic module based on a free-form off-axis 800×XR-Köhler concentrator. The off-axis XR-Köhler concentrator is one of the advanced concentrators that perform high concentration with a large acceptance angle and excellent irradiance uniformity on a solar cell. As a result of on-sun characterization of the unglazed single-cell unit test rig, the temperature-corrected DC module efficiency was 32.2% at 25 °C without an anti-reflective (AR) coating on the secondary optics, and the acceptance angle was more than ±1.0°. In addition, the non-corrected DC efficiency of an individual cell in a glazed 8-cell unit module mounted on a carousel tracking system was measured. The individual efficiency deviated in the range of 24.3-27.4%, owing to the mirror shape and alignment errors. The resultant series-connected efficiency was approximately 25% at direct normal irradiation (DNI) of 770 W/m2.
Photothermal laser deflection, an innovative technique to measure particles in exhausts
NASA Astrophysics Data System (ADS)
Hess, Cecil F.
1993-10-01
Photothermal Laser Deflection (PLD) is an analytical technique to measure in real-time the mass concentration of particles and gaseous exhaust pollutants in a variety of combustion devices (e.g., gas turbine engines and rockets). PLD uses a pump laser to locally heat the particle or gaseous species, thus changing the refractive index of the surrounding gas to form a thermal lens. A probe laser beam travelling through the thermal lens is temporarily deflected, and the amount of deflection is proportional to the species mass concentration. The experiments and analyses conducted during phase 1 demonstrated the feasibility of PLD in measuring the mass concentration of both soot particles and NO2 at a repetition rate of 25 HZ. PLD response was linear at soot concentrations from 0.3 to 10 mg/cubic meters at NO2 concentrations from approximately 6 to 208 ppm. Strategies to measure lower concentrations have been defined and include focusing the probe beam onto the face of the bi-cell detector. The large dynamic range, fast acquisition rate, and ability to measure particulate and gaseous pollutants makes PLD superior to other available methods.
Jia, Li; Liu, Yaling; Du, Yanyan; Xing, Da
2007-06-22
A pressurized capillary electrochromatography (pCEC) system was developed for the separation of water-soluble vitamins, in which UV absorbance was used as the detection method and a monolithic silica-ODS column as the separation column. The parameters (type and content of organic solvent in the mobile phase, type and concentration of electrolyte, pH of the electrolyte buffer, applied voltage and flow rate) affecting the separation resolution were evaluated. The combination of two on-line concentration techniques, namely, solvent gradient zone sharpening effect and field-enhanced sample stacking, was utilized to improve detection sensitivity, which proved to be beneficial to enhance the detection sensitivity by enabling the injection of large volumes of samples. Coupling electrokinetic injection with the on-line concentration techniques was much more beneficial for the concentration of positively charged vitamins. Comparing with the conventional injection mode, the enhancement in the detection sensitivities of water-soluble vitamins using the on-line concentration technique is in the range of 3 to 35-fold. The developed pCEC method was applied to evaluate water-soluble vitamins in corns.
Harrison, Michael; Moyna, Niall M; Zderic, Theodore W; O'Gorman, Donal J; McCaffrey, Noel; Carson, Brian P; Hamilton, Marc T
2012-07-10
Many of the metabolic effects of exercise are due to the most recent exercise session. With recent advances in nuclear magnetic resonance spectroscopy (NMRS), it is possible to gain insight about which lipoprotein particles are responsible for mediating exercise effects. Using a randomized cross-over design, very low density lipoprotein (VLDL) responses were evaluated in eight men on the morning after i) an inactive control trial (CON), ii) exercising vigorously on the prior evening for 100 min followed by fasting overnight to maintain an energy and carbohydrate deficit (EX-DEF), and iii) after the same exercise session followed by carbohydrate intake to restore muscle glycogen and carbohydrate balance (EX-BAL). The intermediate, low and high density lipoprotein particle concentrations did not differ between trials. Fasting triglyceride (TG) determined biochemically, and mean VLDL size were lower in EX-DEF but not in EX-BAL compared to CON, primarily due to a reduction in VLDL-TG in the 70-120 nm (large) particle range. In contrast, VLDL-TG was lower in both EX-DEF and EX-BAL compared to CON in the 43-55 nm (medium) particle range. VLDL-TG in smaller particles (29-43 nm) was unaffected by exercise. Because the majority of VLDL particles were in this smallest size range and resistant to change, total VLDL particle concentration was not different between any of these conditions. Skeletal muscle lipoprotein lipase (LPL) activity was also not different across these 3 trials. However, in CON only, the inter-individual differences in LPL activity were inversely correlated with fasting TG, VLDL-TG, total, large and small VLDL particle concentration and VLDL size, indicating a regulatory role for LPL in the non-exercised state. These findings reveal a high level of differential regulation between different sized triglyceride-rich lipoproteins following exercise and feeding, in the absence of changes in LPL activity.
2012-01-01
Background Many of the metabolic effects of exercise are due to the most recent exercise session. With recent advances in nuclear magnetic resonance spectroscopy (NMRS), it is possible to gain insight about which lipoprotein particles are responsible for mediating exercise effects. Methods Using a randomized cross-over design, very low density lipoprotein (VLDL) responses were evaluated in eight men on the morning after i) an inactive control trial (CON), ii) exercising vigorously on the prior evening for 100 min followed by fasting overnight to maintain an energy and carbohydrate deficit (EX-DEF), and iii) after the same exercise session followed by carbohydrate intake to restore muscle glycogen and carbohydrate balance (EX-BAL). Results The intermediate, low and high density lipoprotein particle concentrations did not differ between trials. Fasting triglyceride (TG) determined biochemically, and mean VLDL size were lower in EX-DEF but not in EX-BAL compared to CON, primarily due to a reduction in VLDL-TG in the 70–120 nm (large) particle range. In contrast, VLDL-TG was lower in both EX-DEF and EX-BAL compared to CON in the 43–55 nm (medium) particle range. VLDL-TG in smaller particles (29–43 nm) was unaffected by exercise. Because the majority of VLDL particles were in this smallest size range and resistant to change, total VLDL particle concentration was not different between any of these conditions. Skeletal muscle lipoprotein lipase (LPL) activity was also not different across these 3 trials. However, in CON only, the inter-individual differences in LPL activity were inversely correlated with fasting TG, VLDL-TG, total, large and small VLDL particle concentration and VLDL size, indicating a regulatory role for LPL in the non-exercised state. Conclusions These findings reveal a high level of differential regulation between different sized triglyceride-rich lipoproteins following exercise and feeding, in the absence of changes in LPL activity. PMID:22672707
Personal Exposure to Particulate Matter and Endotoxin in California Dairy Workers
NASA Astrophysics Data System (ADS)
Garcia, Johnny
The average number of cows per dairy has increased over the last thirty years, with little known about how this increase may impact occupational exposure. Thirteen California dairies and 226 workers participated in this study throughout the 2008 summer months. Particulate Matter (PM) and endotoxin concentrations were quantified using ambient area based and personal air samplers. Two size fractions were collected, Total Suspended Particulate matter (TSP) and PM 2.5. Differences across dairies were evaluated by placing area based integrated air samplers in established locations on the dairies, e.g. milking parlor, drylot corral, and freestall barns. The workers occupational exposure was quantified using personal air samplers. We analyzed concentrations along with the time workers spent conducting specific job tasks during their shift to identify high exposure job tasks. Biological and chemical analytical methods were employed to ascertain endotoxin concentrations in personal and area based air samples. Recombinant factor C assays (rFC) were used to analyze biologically active endotoxin and gas chromatography coupled with mass spectrometry in tandem (GC-MS/MS) was used to quantify total endotoxin. The PM2.5 concentrations ranged from 2-116 mug/m3 for ambient area concentration and 7-495 mug/m3 for personal concentrations while TSP concentrations ranged from 74-1690 mug/m3 for area ambient concentrations and 191-4950 mug/m3 for personal concentrations. Biologically active endotoxin concentrations in the TSP size fraction from ambient area based samples ranged from 11-2095 EU/m3 and 45-2061 EU/m3 for personal samples. Total endotoxin in the TSP size fraction ranged from 75-10,166 pmol/m3 for area based samples and 34-11,689 pmol/m3 for personal samples. Drylot corrals were found to have higher sample mean concentrations when compared to other locations on the dairies for PM and endotoxin. Re-bedding, of the freestalls, was found to consistently lead to higher personal sample mean concentrations when compared to other tasks performed on dairies for both endotoxin and PM. In mixed effect regression models, regional ambient concentrations of PM 2.5 helped account for variation in PM2.5 concentration outcomes. We found that while upwind and downwind mean concentrations were not significantly different, central mean concentrations were higher than upwind concentration. Variation in TSP levels was largely explained by dairy-level characteristics such as the age of the dairy and number of animals in the drylot corrals and freestall barns. The different locations within the dairy were found to differ in mean concentrations for TSP. Biologically active and total endotoxin concentration variation was explained by meteorological data, wind speed, relative humidity, and dairy waste management practices. Personal exposure levels where found to be higher than area based concentrations for PM and endotoxin. Endotoxin characteristics differed by particle size and location within the dairy. The chain length proportion for endotoxin in the PM 2.5 size fraction was dominated by C12 and C16 in the TSP size fraction.
Temporal Variability of Groundwater Chemistry in Shallow and Deep Aquifers of Araihazar, Bangladesh
Dhar, R. K.; Zheng, Y.; Stute, M.; van Geen, A.; Cheng, Z.; Shanewaz, M.; Shamsudduha, M.; Hoque, M. A.; Rahman, M. W.; Ahmed, K. M.
2008-01-01
Samples were collected every 2–4 weeks from a set of 37 monitoring wells over a period of 2–3 years in Araihazar, Bangladesh, to evaluate the temporal variability of groundwater composition for As and other constituents. The monitoring wells are grouped in 6 nests and span the 5–91 m depth range. Concentrations of As, Ca, Fe, K, Mg, Mn, Na, P, and S were measured by high-resolution ICPMS with a precision of 5% or better; concentrations of Cl were measured by ion chromatography. In shallow wells <30 m deep, As and P concentrations generally varied by <30%, whereas concentrations of the major ions (Na, K, Mg, Ca and Cl) and the redox-sensitive elements (Fe, Mn, and S) varied over time by up to ± 90%. In wells tapping the deeper aquifers > 30 m often below clay layers concentrations of groundwater As were much lower and varied by <10%. The concentrations of major cations also varied by <10% in these deep aquifers. In contrast, the concentration of redox-sensitive constituents Fe, S, and Mn in deep aquifers varied by up to 97% over time. Thus, strong decoupling between variations in As and Fe concentrations is evident in groundwaters from shallow and deep aquifers. Comparison of the time series data with groundwater ages determined by 3H/3He and 14C dating shows that large seasonal or inter-annual variations in major cation and chloride concentrations are restricted to shallow aquifers and groundwater recharged < 5 years ago. There is no corresponding change in As concentrations despite having significant variations of redox sensitive constituents in these very young waters. This is attributed to chemical buffering due to rapid equilibrium between solute and solid As. At two sites where the As content of groundwater in existing shallow wells averages 102 µg/L (range: < 5 to 648 µg/L; n=118) and 272 µg/L (range: 10 to 485 µg/L; n=65), respectively, a systematic long-term decline in As concentrations lends support to the notion that flushing may slowly deplete an aquifer of As. Shallow aquifer water with > 5 yr 3H/3He age show a constant As:P molar ratio of 9.6 over time, suggesting common mechanism of mobilization. PMID:18467001
NASA Astrophysics Data System (ADS)
Mangold, Simon; Doppler, Tobias; Spycher, Simon; Langer, Miriam; Junghans, Marion; Kunz, Manuel; Stamm, Christian; Singer, Heinz
2017-04-01
Agricultural pesticides are regularly found in many surface waters draining agricultural areas. Due to large fluctuations in concentration over time and the potentially high number of pesticides, it is difficult to obtain a complete overview of the real pollution level. This collaborative project between research, federal and cantonal authorities in Switzerland aimed for a comprehensive assessment of pesticide pollution in five small agricultural streams to tackle this knowledge gap. The five streams are located in catchments (1.5 to 9 km2) with intensive agriculture covering a wide range of crops including vegetables, vineyards and orchards. Twelve-hour composite samples were collected continuously from March until the end of August 2015 with automatic sampling devices, yielding 360 samples per site. Using precipitation and water level data, we differentiated between discharge events and low-flow periods. Samples from discharge events where measured individually whereas samples taken during dry weather were pooled for the analysis. This procedure resulted in a complete concentration profile over the entire monitoring period covered by 34 - 60 samples per site. The analysis, using liquid chromatography coupled to high resolution mass spectrometry involved a target screening of about 220 pesticides. The measured concentrations were compared to chronic and acute environmental quality standards (EQS values) resulting in risk quotients RQs, which are the ratios between measured concentrations and the respective EQS values. Despite the small size of the catchments, we observed a large pesticide diversity in all of them with 68 to 103 detected compounds per study area. At all sites, chronic EQS values were exceeded. However, the exposure levels varied substantially among catchments. Maximum chronic RQs per site ranged between 1.1 and 48.8 and the duration of EQS exceedance varied between 2 weeks and 5.5 months. Additionally, the data reveal (very) high concentration peaks reaching up to 40 μg L-1 for single active ingredients. Of 15 compounds measured at high concentrations, several measured concentrations exceeded acute EQS values in three of the five areas for a duration of up to 2.5 months. Concentration peaks were often linked to discharge events but not exclusively. These findings demonstrate that rain driven processes were important causes of the observed concentration levels but that additional (possibly point) sources need to be considered for a comprehensive understanding of pesticide exposure. Overall, the results from these five catchments provide an unique insight into the diversity of pesticide pollution of small streams across a wide range of natural conditions in Switzerland. The spatial differences indicate that the intensity of pesticide use alone cannot explain the level of exposure but point to the influence of landscape characteristics such as topography, the connectivity of field to the stream network or the number of connected farmyards.
Zanchetta, Giuliano; Giavazzi, Fabio; Nakata, Michi; Buscaglia, Marco; Cerbino, Roberto; Clark, Noel A.; Bellini, Tommaso
2010-01-01
Concentrated solutions of duplex-forming DNA oligomers organize into various mesophases among which is the nematic (N∗), which exhibits a macroscopic chiral helical precession of molecular orientation because of the chirality of the DNA molecule. Using a quantitative analysis of the transmission spectra in polarized optical microscopy, we have determined the handedness and pitch of this chiral nematic helix for a large number of sequences ranging from 8 to 20 bases. The B-DNA molecule exhibits a right-handed molecular double-helix structure that, for long molecules, always yields N∗ phases with left-handed pitch in the μm range. We report here that ultrashort oligomeric duplexes show an extremely diverse behavior, with both left- and right-handed N∗ helices and pitches ranging from macroscopic down to 0.3 μm. The behavior depends on the length and the sequence of the oligomers, and on the nature of the end-to-end interactions between helices. In particular, the N∗ handedness strongly correlates with the oligomer length and concentration. Right-handed phases are found only for oligomers shorter than 14 base pairs, and for the sequences having the transition to the N∗ phase at concentration larger than 620 mg/mL. Our findings indicate that in short DNA, the intermolecular double-helical interactions switch the preferred liquid crystal handedness when the columns of stacked duplexes are forced at high concentrations to separations comparable to the DNA double-helix pitch, a regime still to be theoretically described. PMID:20876125
Selected papers in the hydrologic sciences, 1986
Subitzky, Seymour
1986-01-01
West Point Reservoir is a multiple-purpose project on the Chattahoochee River about 112 river kilometers downstream from Atlanta on the Alabama-Georgia border. Urbanization has placed large demands on the Chattahoochee River, and water quality below Atlanta was degraded even before impoundment. Water-quality, bottom-sediment, and fish-tissue samples were collected from the reservoir to determine whether water-quality problems have occurred subsequent to impoundment. Severe hypolimnetic oxygen deficiency occurred in the reservoir following thermal stratification in the spring of 1978 and 1979. During stratified periods, concentrations of dissolved iron and manganese in the hypolimnion at the dam pool ranged from 0 to 7,700 and 30 to 2,000 micrograms per liter, respectively. During thermally stratified periods, phytoplankton standing crops in the upper lentic section of the reservoir ranged from 39,000 to 670,000 cells per milliliter. A maximum algal growth potential value (U.S. Geological Survey method) of 48.0 milligrams per liter was obtained at the uppermost data-collection station. The primary growth-limiting nutrients were nitrogen in the Iotic section and phosphorus in the lentic section. The highest measured concentrations of volatile solids and total iron, manganese, phosphorus, and organic carbon in sediments occurred in the lentic section of the reservoir, where bottom sediments consist mainly of silt and clay. Polychlorinated biphenyls and chlordane concentrations in the bottom sediments were as high as 740 and 210 micrograms per kilogram, respectively. Concentrations of polychlorinated biphenyls and chlordane in fish tissue ranged from 19 to 3,800 and 6.0 to 280 micrograms per kilogram, respectively.
The New MIRUS System for Short-Term Sedation in Postsurgical ICU Patients.
Romagnoli, Stefano; Chelazzi, Cosimo; Villa, Gianluca; Zagli, Giovanni; Benvenuti, Francesco; Mancinelli, Paola; Arcangeli, Giulio; Dugheri, Stefano; Bonari, Alessandro; Tofani, Lorenzo; Belardinelli, Andrea; De Gaudio, A Raffaele
2017-09-01
To evaluate the feasibility and safety of the MIRUS system (Pall International, Sarl, Fribourg, Switzerland) for sedation with sevoflurane for postsurgical ICU patients and to evaluate atmospheric pollution during sedation. Prospective interventional study. Surgical ICU. February 2016 to December 2016. Postsurgical patients requiring ICU admission, mechanical ventilation, and sedation. Sevoflurane was administered with the MIRUS system targeted to a Richmond Agitation Sedation Scale from -3 to -5 by adaptation of minimum alveolar concentration. Data collected included Richmond Agitation Sedation Scale, minimum alveolar concentration, inspired and expired sevoflurane fraction, wake-up times, duration of sedation, sevoflurane consumption, respiratory and hemodynamic data, Simplified Acute Physiology Score II, Sepsis-related Organ Failure Assessment, and laboratory data and biomarkers of organ injury. Atmospheric pollution was monitored at different sites: before sevoflurane delivery (baseline) and during sedation with the probe 15 cm up to the MIRUS system (S1) and 15 cm from the filter-Reflector group (S2). Sixty-two patients were enrolled in the study. No technical failure occurred. Median Richmond Agitation Sedation Scale was -4.5 (interquartile range, -5 to -3.6) with sevoflurane delivered at a median minimum alveolar concentration of 0.45% (interquartile range, 0.4-0.53) yielding a mean inspiratory and expiratory concentrations of 0.79% (SD, 0.24) and 0.76% (SD, 0.18), respectively. Median awakening time was 4 minutes (2.2-5 min). Median duration of sevoflurane administration was 3.33 hours (2.33-5.75 hr), range 1-19 hours with a mean consumption of 7.89 mL/hr (SD, 2.99). Hemodynamics remained stable over the study period, and no laboratory data indicated liver or kidney injury or dysfunction. Median sevoflurane room air concentration was 0.10 parts per million (interquartile range, 0.07-0.15), 0.17 parts per million (interquartile range, 0.14-0.27), and 0.15 parts per million (interquartile range, 0.07-0.19) at baseline, S1, and S2, respectively. The MIRUS system is a promising and safe alternative for short-term sedation with sevoflurane of ICU patients. Atmospheric pollution is largely below the recommended thresholds (< 5 parts per million). Studies extended to more heterogeneous population of patients undergoing longer duration of sedation are needed to confirm these observations.
Solar receiver performance of point focusing collector system
NASA Technical Reports Server (NTRS)
Wu, Y. C.; Wen, L. C.
1978-01-01
The solar receiver performance of cavity receivers and external receivers used in dispersed solar power systems was evaluated for the temperature range 300-1300 C. Several parameters of receiver and concentrator are examined. It was found that cavity receivers are generally more efficient than external receivers, especially at high temperatures which require a large heat transfer area. The effects of variation in the ratio of receiver area to aperture area are considered.
High-Resolution Autoradiography
1955-01-01
alloy the tungsten concontrationl of it 1-mnicron culbe is: (8,9 gmI) (8.88 mcg m1-2nl/micron gradient will probably not be so sharp am fit( gradients ...phases of Ilite work: (a) Applicattion and( develop- lie( iiirkeh used. ment (If the( wet-process autorodiographic method will (b)i Trwo methods exist...34 concentration gradients are sufficiently large, the same solution since the range of beta particles in water Wet-process autoradiography as developed for
Halberg, Kenneth Agerlin; Larsen, Kristine Wulff; Jørgensen, Aslak; Ramløv, Hans; Møbjerg, Nadja
2013-04-01
Many species of tardigrades are known to tolerate extreme environmental stress, yet detailed knowledge of the mechanisms underlying the remarkable adaptations of tardigrades is still lacking, as are answers to many questions regarding their basic biology. Here, we present data on the inorganic ion composition and total osmotic concentration of five different species of tardigrades (Echiniscus testudo, Milnesium tardigradum, Richtersius coronifer, Macrobiotus cf. hufelandi and Halobiotus crispae) using high-performance liquid chromatography and nanoliter osmometry. Quantification of the ionic content indicates that Na(+) and Cl(-) are the principal inorganic ions in tardigrade fluids, albeit other ions, i.e. K(+), NH4(+), Ca(2+), Mg(2+), F(-), SO4(2-) and PO4(3-) were also detected. In limno-terrestrial tardigrades, the respective ions are concentrated by a large factor compared with that of the external medium (Na(+), ×70-800; K(+), ×20-90; Ca(2+) and Mg(2+), ×30-200; F(-), ×160-1040, Cl(-), ×20-50; PO4(3-), ×700-2800; SO4(2-), ×30-150). In contrast, in the marine species H. crispae, Na(+), Cl(-) and SO4(2-) are almost in ionic equilibrium with (brackish) salt water, while K(+), Ca(2+), Mg(2+) and F(-) are only slightly concentrated (×2-10). An anion deficit of ~120 mEq l(-1) in M. tardigradum and H. crispae indicates the presence of unidentified ionic components in these species. Body fluid osmolality ranges from 361±49 mOsm kg(-1) in R. coronifer to 961±43 mOsm kg(-1) in H. crispae. Concentrations of most inorganic ions are largely identical between active and dehydrated groups of R. coronifer, suggesting that this tardigrade does not lose large quantities of inorganic ions during dehydration. The large osmotic and ionic gradients maintained by both limno-terrestrial and marine species are indicative of a powerful ion-retentive mechanism in Tardigrada. Moreover, our data indicate that cryptobiotic tardigrades contain a large fraction of unidentified organic osmolytes, the identification of which is expected to provide increased insight into the phenomenon of cryptobiosis.
Gueorguieva, Ivelina; Clark, Simon R; McMahon, Catherine J; Scarth, Sylvia; Rothwell, Nancy J; Tyrell, Pippa J; Hopkins, Stephen J; Rowland, Malcolm
2008-01-01
Aim The naturally occurring interlukin-1 receptor antagonist (IL-1RA) markedly protects rodents against ischaemic, excitotoxic and traumatic brain injury, suggesting it may be of therapeutic value. The aim was to determine the pharmacokinetics of IL-1RA in cerebrospinal fluid (CSF) of patients, to allow modelling that would aid development of therapeutic regimens. Methods When administered intravenously to patients soon after stroke, IL-1RA is safe and reduces the peripheral inflammatory response. However, IL-1RA is a large protein (17 kDa), which may limit brain penetration, thereby limiting its potential utility in brain injury. In seven patients with subarchnoid haemorrhage (SAH), IL-1RA was administered by intravenous bolus, then infusion for 24 h, and both blood and CSF, via external ventricular drains, were sampled during and after stopping the infusion. Results Plasma steady-state concentrations were rapidly attained and maintained throughout the infusion, whereas CSF concentrations rose slowly towards a plateau during the 24-h infusion, reaching at best only 4% of that in plasma. Plasma kinetic parameters were within the literature range. Modelling of the combined data yielded rate constants entering and leaving the CSF of 0.0019 h−1[relative standard error (RSE) = 19%] and 0.1 h−1 (RSE = 19%), respectively. Conclusions Peripherally administered IL-1RA crosses slowly into and out of the CSF of patients with SAH. However, there is a large concentration gradient of IL-1RA between plasma and CSF. These CSF:plasma data are consistent with very low permeation of IL-1RA into the CSF and elimination kinetics from it controlled by the volumetric turnover of CSF. What is already known about this subject? The naturally occurring interlukin-1 receptor antagonist (IL-1RA) markedly protects rodents against ischaemic, excitotoxic and traumatic brain injury, suggesting it may be of therapeutic value.When administered intravenously to patients soon after stroke, IL-1RA is safe and reduces the peripheral inflammatory response.However, IL-1RA is a large protein (17 kDa), which may limit brain penetration, thereby limiting its potential utility in brain injury. What this study adds The purpose of these experiments was to determine the pharmacokinetics of IL-1RA in cerebrospinal fluid (CSF) of patients, to allow modelling that would aid development of therapeutic regimens.Peripherally administered IL-1RA crosses slowly into and out of the CSF of patients with subarachnoid haemorrhage and, at steady state, CSF IL-1RA concentration (range 115–886 ng ml−1) was similar to that found to be neuroprotective in rats (range 91–232 ng ml−1), although there was considerable variability among patients.However, there is a large concentration gradient of IL-1RA between plasma and CSF.These CSF:plasma data are consistent with very low permeation of IL-1RA into the CSF and elimination kinetics from it controlled by the volumetric turnover of CSF. PMID:17875190
NASA Astrophysics Data System (ADS)
Butler, T.; Vermeylen, F.; Lehmann, C. M.; Likens, G. E.; Puchalski, M.
2016-12-01
Data from bi-weekly passive samplers from 18 of the longest operating National Atmospheric Deposition Program's (NADP) Ammonia Monitoring Network (AMoN) sites (most operating from 2008 to 2015) show that concentrations of NH3 have been increasing (p-value < 0.0001) over large regions of the USA. This trend is occurring at a seasonal and annual level of aggregation. Using random coefficient models (RCM), the mean slope for the 18 sites combined shows an increase of NH3 concentration of +7% per year, with a 95% confidence interval (C.I.) from +5% to +9% per year. Travel blank corrected data using the same approach show increasing NH3 concentrations of +9% (95% C.I. +5% to +13%) per year. During a comparable period (2008-2014) NADP precipitation chemistry sites in the same regions show significant increasing (p-value = 0.0001) precipitation NH4+ concentrations trends for all sites combined of +5% (95% C.I. +3% to +7%) per year. Emissions inventory data for the study period show nearly constant rates of NH3 emissions, but large reductions in NOx and SO2 emissions. Seasonal air quality data from the Clean Air Status and Trends Network (CASTNET) sites in these regions show significant declines in atmospheric particulate SO42- and NH4+, and particulate NO3- plus HNO3 (total NO3-) during the same period. Less formation of acidic SO4 and NO3, due to reduced SO2 and NOx emissions, provide less substrate to interact with NH3 and form particulate ammonium species. Thus, concentrations of NH3 can increase in the atmosphere even if emissions remain constant. A likely result may be more localized deposition of NH3, as opposed to the more long-range transport and deposition of ammonium nitrate (NH4NO3) and sulfate (NH4)2SO4). Additionally, the spatial distribution of wet and dry acidic deposition will be impacted.
Cong, X C; Zhao, J J; Jing, Z; Wang, Q G; Ni, P F
2018-05-09
Recently, the problem of indoor particulate matter pollution has received much attention. An increasing number of epidemiological studies show that the concentration of atmospheric particulate matter has a significant effect on human health, even at very low concentrations. Most of these investigations have relied upon outdoor particle concentrations as surrogates of human exposures. However, considering that the concentration distribution of the indoor particulate matter is largely dependent on the extent to which these particles penetrate the building and on the degree of suspension in the indoor air, human exposures to particles of outdoor origin may not be equal to outdoor particle concentration levels. Therefore, it is critical to understand the relationship between the particle concentrations found outdoors and those found in indoor micro-environments. In this study, experiments were conducted using a naturally ventilated office located in Qingdao, China. The indoor and outdoor particle concentrations were measured at the same time using an optical counter with four size ranges. The particle size distribution ranged from 0.3 to 2.5 μm, and the experimental period was from April to September, 2016. Based on the experimental data, the dynamic and mass balance model based on time was used to estimate the penetration rate and deposition rate at air exchange rates of 0.03-0.25 h -1 . The values of the penetration rate and deposition velocity of indoor particles were determined to range from 0.45 to 0.82 h -1 and 1.71 to 2.82 m/h, respectively. In addition, the particulate pollution exposure in the indoor environment was analyzed to estimate the exposure hazard from indoor particulate matter pollution, which is important for human exposure to particles and associated health effects. The conclusions from this study can serve to provide a better understanding the dynamics and behaviors of airborne particle entering into buildings. And they will also highlight effective methods to reduce exposure to particles in office buildings.
Kleeschulte, M.J.; Emmett, L.F.
1987-01-01
Water samples from five monitoring wells adjacent to raffinate pits storing low-level radioactive waste contained concentrations of nitrate as nitrogen ranging from 53 to 990 milligrams per liter. Most samples also had maximum concentrations of calcium (900 milligrams per liter), sodium (340 milligrams per liter), sulfate (320 milligrams per liter), lithium (1,700 micrograms), strontium (1,900 micrograms per liter), and uranium (86 micrograms per liter). The raffinate pits also had large concentrations of these constituents. A water balance made on the raffinate pits indicated a 0.04 to 0.08 inch per day decrease in the water level that cannot be attributed to meterological conditions. These data and seismically-detected areas of saturated overburden beneath one raffinate pit and possibly adjacent to three other pits indicate leakage from the pits. (USGS)
Yamaguchi, Yoshinori; Li, Zhenqing; Zhu, Xifang; Liu, Chenchen; Zhang, Dawei; Dou, Xiaoming
2015-01-01
The selection of sieving polymer for RNA fragments separation by capillary electrophoresis is imperative. We investigated the separation of RNA fragments ranged from 100 to 10,000 nt in polyethylene glycol (PEG) and polyethylene oxide (PEO) solutions with different molecular weight and different concentration. We found that the separation performance of the small RNA fragments (<1000 nt) was improved with the increase of polymer concentration, whereas the separation performance for the large ones (>4000 nt) deteriorated in PEG/PEO solutions when the concentration was above 1.0%/0.6%, respectively. By double logarithmic plot of mobility and RNA fragment size, we revealed three migration regimes for RNA in PEG (300-500k) and PEO (4,000k). Moreover, we calculated the smallest resolvable nucleotide length (N min) from the resolution length analysis. PMID:25933347
Application of Titration-Based Screening for the Rapid Pilot Testing of High-Throughput Assays.
Zhang, Ji-Hu; Kang, Zhao B; Ardayfio, Ophelia; Ho, Pei-i; Smith, Thomas; Wallace, Iain; Bowes, Scott; Hill, W Adam; Auld, Douglas S
2014-06-01
Pilot testing of an assay intended for high-throughput screening (HTS) with small compound sets is a necessary but often time-consuming step in the validation of an assay protocol. When the initial testing concentration is less than optimal, this can involve iterative testing at different concentrations to further evaluate the pilot outcome, which can be even more time-consuming. Quantitative HTS (qHTS) enables flexible and rapid collection of assay performance statistics, hits at different concentrations, and concentration-response curves in a single experiment. Here we describe the qHTS process for pilot testing in which eight-point concentration-response curves are produced using an interplate asymmetric dilution protocol in which the first four concentrations are used to represent the range of typical HTS screening concentrations and the last four concentrations are added for robust curve fitting to determine potency/efficacy values. We also describe how these data can be analyzed to predict the frequency of false-positives, false-negatives, hit rates, and confirmation rates for the HTS process as a function of screening concentration. By taking into account the compound pharmacology, this pilot-testing paradigm enables rapid assessment of the assay performance and choosing the optimal concentration for the large-scale HTS in one experiment. © 2013 Society for Laboratory Automation and Screening.
NASA Astrophysics Data System (ADS)
Harvey, H. Rodger; Taylor, Karen A.
2017-10-01
The Hanna Shoal region represents an important northern gateway for transport and deposition in the Chukchi Sea. This study determined the concentration and distribution of organic contaminants (aliphatic hydrocarbon and polycyclic aromatic hydrocarbons, PAHs) in surface sediments from 34 sites across Hanna Shoal. Up to 31 total PAHs, including parent and alkyl homologues were detected with total concentrations ranging from a low of 168 ng g-1 the western flank of Hanna Shoal (station H34) to 1147 ng g-1 at station in Barrow Canyon (station BarC5). Alkyl PAHs were more abundant than parent structures and accounted for 53-64% of the summed concentrations suggesting overall at background levels (< 1600 ng g-1) in sediments. Alkane (C15-C33) hydrocarbons ranged from 4.3 μg g-1 on the southern flank of Hanna shoal to 31 μg g-1 at a northern station. Sediments were often dominated by short chain (C15-C22) alkanes with overall terrestrial aquatic ratios (TAR) for the region averaging 0.20. Based on the ratio of Fl/(Fl+ Py) and BaF/(Baf+BeP) verses (BA/BA+Ch) in sediments, PAHs are largely derived from petrogenic sources with minor amounts of mixed combustion sources. A diversity of PAHs were detected in the northern whelk Neptunea heros foot muscle with total concentrations ranging from 0.14 to 1.5 μg g-1 dry tissue wt. Larger (and presumably older) animals showed higher levels of PAH per unit muscle tissue, suggesting that animals may bioaccumulate PAHs over time, with low but increasing concentrations also present in internal and external eggs. Alkane hydrocarbons were also higher in whelks with distributions similar to that seen in sediments. The mussel Muscularus discors collected in Barrow Canyon showed constrained distributions and substantially lower concentrations of both PAHs and alkanes than the surrounding surface sediments.
Mineral induced formation of sugar phosphates
NASA Technical Reports Server (NTRS)
Pitsch, S.; Eschenmoser, A.; Gedulin, B.; Hui, S.; Arrhenius, G.
1995-01-01
Glycolaldehyde phosphate, sorbed from highly dilute, weakly alkaline solution into the interlayer of common expanding sheet structure metal hydroxide minerals, condenses extensively to racemic aldotetrose-2, 4-diphophates, and aldohexose-2, 4, 6-triphosphates. The reaction proceeds mainly through racemic erythrose-2, 4-phosphate, and terminates with a large fraction of racemic altrose-2, 4, 6-phosphate. In the absence of an inductive mineral phase, no detectable homogeneous reaction takes place in the concentration- and pH range used. The reactant glycolaldehyde phosphate is practically completely sorbed within an hour from solutions with concentrations as low as 50 micron; the half-time for conversion to hexose phosphates is of the order of two days at room temperature and pH 9.5. Total production of sugar phosphates in the mineral interlayer is largely independent of the glycolaldehyde phosphate concentration in the external solution, but is determined by the total amount of GAP offered for sorption up to the capacity of the mineral. In the presence of equimolar amounts of rac-glyceraldehyde-2-phosphate, but under otherwise similar conditions, aldopentose-2, 4, -diphosphates also form, but only as a small fraction of the hexose-2, 4, 6-phosphates.
The secret lives of corals: Climate records from coral chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck, J.W.; Smoker, M.; Burr, G.
1995-12-01
Corals can provide archives of a diverse suite of information about the ocean surface mixed layer, including records of ocean surface temperature (via coral Sr/Ca or U/Ca measurements), salinity (via {gamma}{sup 18}O measurements), biologic activity (via {gamma}{sup 13}C measurements), and ocean/atmosphere CO{sub 2} exchange rates (via {sup 14}C/{sup 12}C measurements). Recently, it has been shown that corals record evidence of large seasonal oscillations in {sup 14}C concentration of the ocean surface mixed layer, and that such oscillations are modulated by ENSO. These oscillations are related to seasonal changes in the surface wind velocity field, changes in the patterns of regionalmore » upwelling, as well as seasonal changes in the strength of the thermocline. High frequency AMS {sup 14}C analyses of corals shows that ENSO events can dramatically diminish the annual range in ocean mixed layer {sup 14}C concentration in this region. Our work on a coral from Vanuatu in the western equatorial Pacific also documents large seasonal changes in {sup 14}C concentration (3-5%) as well as ENSO modulation of these variations during the 82-83 ENSO event.« less
Global Assessment of Bisphenol A in the Environment
Corrales, Jone; Kristofco, Lauren A.; Steele, W. Baylor; Yates, Brian S.; Breed, Christopher S.; Williams, E. Spencer
2015-01-01
Because bisphenol A (BPA) is a high production volume chemical, we examined over 500 peer-reviewed studies to understand its global distribution in effluent discharges, surface waters, sewage sludge, biosolids, sediments, soils, air, wildlife, and humans. Bisphenol A was largely reported from urban ecosystems in Asia, Europe, and North America; unfortunately, information was lacking from large geographic areas, megacities, and developing countries. When sufficient data were available, probabilistic hazard assessments were performed to understand global environmental quality concerns. Exceedances of Canadian Predicted No Effect Concentrations for aquatic life were >50% for effluents in Asia, Europe, and North America but as high as 80% for surface water reports from Asia. Similarly, maximum concentrations of BPA in sediments from Asia were higher than Europe. Concentrations of BPA in wildlife, mostly for fish, ranged from 0.2 to 13 000 ng/g. We observed 60% and 40% exceedences of median levels by the US Centers for Disease Control and Prevention’s National Health and Nutrition Examination Survey in Europe and Asia, respectively. These findings highlight the utility of coordinating global sensing of environmental contaminants efforts through integration of environmental monitoring and specimen banking to identify regions for implementation of more robust environmental assessment and management programs. PMID:26674671
Large rock avalanches triggered by the M 7.9 Denali Fault, Alaska, earthquake of 3 November 2002
Jibson, R.W.; Harp, E.L.; Schulz, W.; Keefer, D.K.
2006-01-01
The moment magnitude (M) 7.9 Denali Fault, Alaska, earthquake of 3 November 2002 triggered thousands of landslides, primarily rock falls and rock slides, that ranged in volume from rock falls of a few cubic meters to rock avalanches having volumes as great as 20 ?? 106 m3. The pattern of landsliding was unusual: the number and concentration of triggered slides was much less than expected for an earthquake of this magnitude, and the landslides were concentrated in a narrow zone about 30-km wide that straddled the fault-rupture zone over its entire 300-km length. Despite the overall sparse landslide concentration, the earthquake triggered several large rock avalanches that clustered along the western third of the rupture zone where acceleration levels and ground-shaking frequencies are thought to have been the highest. Inferences about near-field strong-shaking characteristics drawn from interpretation of the landslide distribution are strikingly consistent with results of recent inversion modeling that indicate that high-frequency energy generation was greatest in the western part of the fault-rupture zone and decreased markedly to the east. ?? 2005 Elsevier B.V. All rights reserved.
Yao, Yao; Meng, Xiang-Zhou; Wu, Chen-Chou; Bao, Lian-Jun; Wang, Feng; Wu, Feng-Chang; Zeng, Eddy Y
2016-06-01
Freely dissolved polycyclic aromatic hydrocarbons (PAHs) were monitored in seven inland lakes of Antarctica by a polyethylene (PE)-based passive sampling technique, with the objective of tracking human footprints. The measured concentrations of PAHs were in the range of 14-360 ng L(-1) with the highest values concentrated around the Russian Progress II Station, indicating the significance of human activities to the loading of PAHs in Antarctica. The concentrations of PAHs in the inland lakes were in the upper part of the PAHs levels in aquatic environments from remote and background regions across the globe. The composition profiles of PAHs indicated that PAHs in the inland lakes were derived mainly from local oil spills, which was corroborated by a large number of fuel spillage reports from ship and plane crash incidents in Antarctica during recent years. Clearly, local human activities, rather than long-range transport, are the dominant sources of PAH contamination to the inland lakes. Finally, the present study demonstrates the efficacy of PE-based passive samplers for investigating PAHs in the aquatic environment of Antarctica under complex field conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Development of radon sources with a high stability and a wide range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukutsu, K.; Yamada, Y.
A solid {sup 222}Rn (radon) source using a fibrous and porous SiC ceramic disk was developed. The emission rate of radon emanated from the disk depended on the content of {sup 226}Ra and the sintering temperature. A {sup 226}Ra sulfate ({sup 226}RaSO{sub 4}) solution was dropped on a fibrous SiC ceramic disk (33 mmφ) of 1 mm in thickness, and sintered at 400 °C. The radon concentration from a disk containing {sup 226}Ra of 1.85 MBq was measured to be 38 kBq m{sup −3} at a carrier airflow rate of 0.5 L min{sup −1}. By adjusting the {sup 226}Ra contentmore » or the sweep airflow rate, the radon concentrations were easily controlled over a wide range of over three orders of magnitude. The concentration was very stable for a long term. The compactness of the source disk made is easy for handling the source container and the shielding of gamma radiation from {sup 226}Ra and its decay products. Such advantages in a radon generation system are desirable for experiments of high-level, large-scale radon exposure.« less
NASA Astrophysics Data System (ADS)
Wang, Chen-Lu; Zhang, Yan; Huang, Jian-Wei; Liu, Guo-Dong; Liang, Ai-Ji; Zhang, Yu-Xiao; Shen, Bing; Liu, Jing; Hu, Cheng; Ding, Ying; Liu, De-Fa; Hu, Yong; He, Shao-Long; Zhao, Lin; Yu, Li; Hu, Jin; Wei, Jiang; Mao, Zhi-Qiang; Shi, You-Guo; Jia, Xiao-Wen; Zhang, Feng-Feng; Zhang, Shen-Jin; Yang, Feng; Wang, Zhi-Min; Peng, Qin-Jun; Xu, Zu-Yan; Chen, Chuang-Tian; Zhou, Xing-Jiang
2017-08-01
WTe2 has attracted a great deal of attention because it exhibits extremely large and nonsaturating magnetoresistance. The underlying origin of such a giant magnetoresistance is still under debate. Utilizing laser-based angle-resolved photoemission spectroscopy with high energy and momentum resolutions, we reveal the complete electronic structure of WTe2. This makes it possible to determine accurately the electron and hole concentrations and their temperature dependence. We find that, with increasing the temperature, the overall electron concentration increases while the total hole concentration decreases. It indicates that the electron-hole compensation, if it exists, can only occur in a narrow temperature range, and in most of the temperature range there is an electron-hole imbalance. Our results are not consistent with the perfect electron-hole compensation picture that is commonly considered to be the cause of the unusual magnetoresistance in WTe2. We identified a flat band near the Brillouin zone center that is close to the Fermi level and exhibits a pronounced temperature dependence. Such a flat band can play an important role in dictating the transport properties of WTe2. Our results provide new insight on understanding the origin of the unusual magnetoresistance in WTe2.
Multi-channel Auto-dilution System for Remote Continuous Monitoring of High Soil-CO2 Fluxes
NASA Astrophysics Data System (ADS)
Barr, J. L.; Amonette, J. E.
2008-12-01
We describe a novel field instrument that takes input from up to 27 soil flux chambers and measures flux using the steady-state method. CO2 concentrations are determined with an infrared gas analyzer (IRGA, 0- 3000 ppmv range) with corrections for temperature, barometric pressure, and moisture content. The concentrations are monitored during data collection and, if they exceed the range of the IRGA, a stepped dilution program is automatically implemented that allows up to 50-fold dilution of the incoming gas stream with N2 supplied by boil-off from a large dewar. The upper concentration limit of the system with dilution is extended to at least 150,000 ppmv CO2. The data are stored on a datalogger having a cellular modem connection that allows remote control of the system as well as transmittal of data. The system is designed to operate for six weeks with no on-site maintenance required. Longer periods are possible with modifications to allow on-site generation of N2 from air. Example data from a recent CO2 test injection at the Zero- Emission Research and Technology (ZERT) field site in Bozeman, MT are presented.
Crystallization of the Large Membrane Protein Complex Photosystem I in a Microfluidic Channel
Abdallah, Bahige G.; Kupitz, Christopher; Fromme, Petra; Ros, Alexandra
2014-01-01
Traditional macroscale protein crystallization is accomplished non-trivially by exploring a range of protein concentrations and buffers in solution until a suitable combination is attained. This methodology is time consuming and resource intensive, hindering protein structure determination. Even more difficulties arise when crystallizing large membrane protein complexes such as photosystem I (PSI) due to their large unit cells dominated by solvent and complex characteristics that call for even stricter buffer requirements. Structure determination techniques tailored for these ‘difficult to crystallize’ proteins such as femtosecond nanocrystallography are being developed, yet still need specific crystal characteristics. Here, we demonstrate a simple and robust method to screen protein crystallization conditions at low ionic strength in a microfluidic device. This is realized in one microfluidic experiment using low sample amounts, unlike traditional methods where each solution condition is set up separately. Second harmonic generation microscopy via Second Order Nonlinear Imaging of Chiral Crystals (SONICC) was applied for the detection of nanometer and micrometer sized PSI crystals within microchannels. To develop a crystallization phase diagram, crystals imaged with SONICC at specific channel locations were correlated to protein and salt concentrations determined by numerical simulations of the time-dependent diffusion process along the channel. Our method demonstrated that a portion of the PSI crystallization phase diagram could be reconstructed in excellent agreement with crystallization conditions determined by traditional methods. We postulate that this approach could be utilized to efficiently study and optimize crystallization conditions for a wide range of proteins that are poorly understood to date. PMID:24191698
Canaud, Bernard; Barbieri, Carlo; Marcelli, Daniele; Bellocchio, Francesco; Bowry, Sudhir; Mari, Flavio; Amato, Claudia; Gatti, Emanuele
2015-01-01
Online hemodiafiltration (OL-HDF), the most efficient renal replacement therapy, enables enhanced removal of small and large uremic toxins by combining diffusive and convective solute transport. Randomized controlled trials on prevalent chronic kidney disease (CKD) patients showed improved patient survival with high-volume OL-HDF, underlining the effect of convection volume (CV). This retrospective international study was conducted in a large cohort of incident CKD patients to determine the CV threshold and range associated with survival advantage. Data were extracted from a cohort of adult CKD patients treated by post-dilution OL-HDF over a 101-month period. In total, 2293 patients with a minimum of 2 years of follow-up were analyzed using advanced statistical tools, including cubic spline analyses for determination of the CV range over which a survival increase was observed. The relative survival rate of OL-HDF patients, adjusted for age, gender, comorbidities, vascular access, albumin, C-reactive protein, and dialysis dose, was found to increase at about 55 l/week of CV and to stay increased up to about 75 l/week. Similar analysis of pre-dialysis β2-microglobin (marker of middle-molecule uremic toxins) concentrations found a nearly linear decrease in marker concentration as CV increased from 40 to 75 l/week. Analysis of log C-reactive protein levels showed a decrease over the same CV range. Thus, a convection dose target based on convection volume should be considered and needs to be confirmed by prospective trials as a new determinant of dialysis adequacy. PMID:25945407
Quantifying atmospheric nitrogen outflow from the Front Range of Colorado
NASA Astrophysics Data System (ADS)
Neuman, J. A.; Eilerman, S. J.; Brock, C. A.; Brown, S. S.; Dube, W. P.; Herndon, S. C.; Holloway, J. S.; Nowak, J. B.; Roscioli, J. R.; Ryerson, T. B.; Sjostedt, S. J.; Thompson, C. R.; Trainer, M.; Veres, P. R.; Wild, R. J.
2015-12-01
Reactive nitrogen emitted to the atmosphere from urban, industrial, and agricultural sources can be transported and deposited far from the source regions, affecting vegetation, soils, and water of sensitive ecosystems. Mitigation of atmospheric nitrogen deposition requires emissions characterization and quantification. Ammonia (NH3), a full suite of gas-phase oxidized nitrogen compounds, and particulate matter were measured from an aircraft that flew downwind from concentrated animal feeding operations, oil and gas extraction facilities, and urban areas along the Colorado Front Range in March and April 2015, as part of the Shale Oil and Natural Gas Nexus (SONGNEX) field study. Additionally, NH3 measurements from a fully instrumented aircraft that flew over the same region in July and August 2014 as part of the Front Range Air Pollution and Photochemistry Experiment (FRAPPE) are used to examine atmospheric nitrogen emission and transport. Cross-wind plume transects and altitude profiles were performed over the source regions and 60-240 km downwind. Plumes were transported in the boundary layer with large NH3 mixing ratios (typically 20-100 ppbv) and were tens of km wide. The NH3 in these plumes provided an atmospheric nitrogen burden greater than 0.2 kg N/ha. Nitrogen oxides and their oxidation products and particulate matter were also enhanced in the plumes, but with concentrations substantially less than NH3. With efficient transport followed by wet deposition, these plumes have the potential to provide a large nitrogen input to the neighboring Rocky Mountain National Park, where nitrogen deposition currently exceeds the ecological critical load of 1.5 kg N/ha/yr.
Selected Organochlorines in Human Blood and Urine in the South of the Russian Far East.
Tsygankov, Vasiliy Yu; Khristoforova, Nadezhda K; Lukyanova, Olga N; Boyarova, Margarita D; Kiku, Pavel F; Yarygina, Marina V
2017-10-01
The trace OCP concentrations, such as α-, β-, and γ-HCH, DDT and its metabolites (DDD and DDE) in blood and urine of residents from the south of the Russian Far East was revealed. A large range of OCPs was found in the urine: α- and γ-isomers of HCH, DDT and DDE. The only β-HCH was detected in the blood; this indicates its persistence and the difficulty of excretion this substance from the organism. The total trace OCP concentration, found in the biological fluids of residents of the south of the Russian Far East, providing further evidence that these organic contaminants persist in the environment.
Baseline concentration of Polonium-210 ((210)Po) in tuna fish.
Khan, M Feroz; Wesley, S Godwin
2016-06-15
Several species of tuna fish were analyzed for (210)Po content in their edible muscle tissues. This study was carried out as a part of baseline data generation around a large nuclear power plant situated at Kudankulam, southeast coast of India. The concentration of (210)Po in the muscle tissue ranged from 40.9±5.2 to 92.5±7.9Bq/kg of fresh fish, and the highest activity was recorded for the tuna Euthynnus affinis and the lowest for Auxis thazard. The committed effective dose to the local residents was calculated to be 62.7-141.8μSvyear(-1). Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Venning, J. A.; Khoo, M. T.; Pearce, B. W.; Brandner, P. A.
2018-04-01
Water susceptibility and background nuclei content in a water tunnel are investigated using a cavitation susceptibility meter. The measured cumulative histogram of nuclei concentration against critical pressure shows a power law dependence over a large range of concentrations and pressures. These results show that the water strength is not characterised by a single tension but is susceptible to `all' tensions depending on the relevant timescale. This background nuclei population is invariant to tunnel conditions showing that it is stabilised against dissolution. Consideration of a practical cavitating flow about a sphere shows that although background nuclei may be activated, their numbers are so few compared with other sources that they are insignificant for this case.
Capstone Depleted Uranium Aerosol Biokinetics, Concentrations, and Doses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guilmette, Raymond A.; Miller, Guthrie; Parkhurst, MaryAnn
2009-02-26
One of the principal goals of the Capstone Depleted Uranium (DU) Aerosol Study was to quantify and characterize DU aerosols generated inside armored vehicles by perforation with a DU penetrator. This study consequently produced a database in which the DU aerosol source terms were specified both physically and chemically for a variety of penetrator-impact geometries and conditions. These source terms were used to calculate radiation doses and uranium concentrations for various scenarios as part of the Capstone DU Human Health Risk Assessment (HHRA). This paper describes the scenario-related biokinetics of uranium, and summarizes intakes, chemical concentrations to the organs, andmore » E(50) and HT(50) for organs and tissues based on exposure scenarios for personnel in vehicles at the time of perforation as well as for first responders. For a given exposure scenario (duration time and breathing rates), the range of DU intakes among the target vehicles and shots was not large, about a factor of 10, with the lowest being from a ventilated operational Abrams tank and the highest being for an unventilated Abrams with DU penetrator perforating DU armor. The ranges of committed effective doses were more scenario-dependent than were intakes. For example, the largest range, a factor of 20, was shown for scenario A, a 1-min exposure, whereas, the range was only a factor of two for the first-responder scenario (E). In general, the committed effective doses were found to be in the tens of mSv. The risks ascribed to these doses are discussed separately.« less
Gelation or molecular recognition; is the bis-(α,β-dihydroxy ester)s motif an omnigelator?
Knight, David W; Morgan, Ian R; Ford, Amy; Brown, James; Davies, Ben; Heenan, Richard K; King, Stephen M; Dalgliesh, Robert M; Tomkinson, John; Prescott, Stuart; Schweins, Ralf; Paul, Alison
2010-01-01
Summary Understanding the gelation of liquids by low molecular weight solutes at low concentrations gives an insight into many molecular recognition phenomena and also offers a simple route to modifying the physical properties of the liquid. Bis-(α,β-dihydroxy ester)s are shown here to gel thermoreversibly a wide range of solvents, raising interesting questions as to the mechanism of gelation. At gelator concentrations of 5–50 mg ml−1, gels were successfully formed in acetone, ethanol/water mixtures, toluene, cyclohexane and chloroform (the latter, albeit at a higher gelator concentration). A range of neutron techniques – in particular small-angle neutron scattering (SANS) – have been employed to probe the structure of a selection of these gels. The universality of gelation in a range of solvent types suggests the gelation mechanism is a feature of the bis-(α,β-dihydroxy ester) motif, with SANS demonstrating the presence of regular structures in the 30–40 Å range. A correlation between the apparent rodlike character of the structures formed and the polarity of the solvent is evident. Preliminary spin-echo neutron scattering studies (SESANS) indicated the absence of any larger scale structures. Inelastic neutron spectroscopy (INS) studies demonstrated that the solvent is largely unaffected by gelation, but does reveal insights into the thermal history of the samples. Further neutron studies of this kind (particularly SESANS and INS) are warranted, and it is hoped that this work will stimulate others to pursue this line of research. PMID:21160568
Sharratt, W N; Brooker, A; Robles, E S J; Cabral, J T
2018-04-26
We investigate the formation of poly(vinyl alcohol) microparticles by the selective extraction of aqueous polymer solution droplets, templated by microfluidics and subsequently immersed in a non-solvent bath. The role of polymer molecular mass (18-105 kg mol-1), degree of hydrolysis (88-99%) and thus solubility, and initial solution concentration (0.01-10% w/w) are quantified. Monodisperse droplets with radii ranging from 50 to 500 μm were produced at a flow-focusing junction with carrier phase hexadecane and extracted into ethyl acetate. Solvent exchange and extraction result in droplet shrinkage, demixing, coarsening and phase-inversion, yielding polymer microparticles with well-defined dimensions and internal microstructure. Polymer concentration, varied from below the overlap concentration c* to above the concentrated crossover c**, as estimated by viscosity measurements, was found to have the largest impact on the final particle size and extraction timescale, while polymer mass and hydrolysis played a secondary role. These results are consistent with the observation that the average polymer concentration upon solidification greatly exceeds c**, and that the internal microparticle porosity is largely unchanged. However, reducing the initial polymer concentration to well below c* (approximately 100×) and increasing droplet size yields thin-walled (100's of nm) capsules which controllably crumple upon extraction. The symmetry of the process can be readily broken by imposing extraction conditions at an impermeable surface, yielding large, buckled, cavity morphologies. Based on these results, we establish robust design criteria for polymer capsules and particles, demonstrated here for poly(vinyl alcohol), with well-defined shape, dimensions and internal microstructure.
Dauchy, Xavier; Boiteux, Virginie; Bach, Cristina; Rosin, Christophe; Munoz, Jean-François
2017-09-01
To extinguish large-scale fuel fires, fluorosurfactant based foams (FSBFs) were developed in the 1960s and have been used ever since. In this study, 154 per- and polyfluoroalkyl substances (PFASs) including 122 emerging PFASs used as surfactants in FSBFs were sought in nine different foam concentrates. Field investigations were also carried out in the vicinity of four sites where FSBFs are or were intensively used (two airports, a training center for firefighters and an oil storage depot after a large explosion). In the foam concentrates, only three PFASs were quantified with concentrations ranging from 22,500 to 3,188,000 μg/L. Thirteen emerging PFASs were also identified in these samples based on their mass transitions and intensities. Overall, each foam was a mixture of at least two classes of PFASs. In three concentrates, none of the 122 emerging PFASs were identified as the main ingredient. A perfluoroalkyl acid precursor oxidation assay was therefore performed, and revealed the presence of high amounts of unidentified PFASs. In the vicinity of the four investigated sites, several PFASs were systematically quantified in all of the samples collected downstream of the sites. PFAS profiles were heavily influenced by parameters such as route of PFAS transport after use (runoff, seepage, direct discharge), time elapsed since the cessation of firefighting activities, and firefighting foam composition. The PFAS concentrations found around the investigated sites are the highest recorded in France and resulted in the closure of certain drinking water resources. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tsourdi, E; Wallaschofski, H; Rauner, M; Nauck, M; Pietzner, M; Rettig, R; Ittermann, T; Völzke, H; Völker, U; Hofbauer, L C; Hannemann, A
2016-02-01
In two large German population-based cohorts, we showed positive associations between serum thyrotropin (TSH) concentrations and the Fracture Risk Assessment score (FRAX) in men and positive associations between TSH concentrations and bone turnover markers in women. The role of thyroid hormones on bone stiffness and turnover is poorly defined. Existing studies are confounded by differences in design and small sample size. We assessed the association between TSH serum concentrations and bone stiffness and turnover in the SHIP cohorts, which are two population-based cohorts from a region in Northern Germany comprising 2654 men and women and 3261 men and women, respectively. We calculated the bone stiffness index using quantitative ultrasound (QUS) at the calcaneus, employed FRAX score for assessment of major osteoporotic fractures, and measured bone turnover markers, N-terminal propeptide of type I procollagen (P1NP), bone-specific alkaline phosphatase (BAP), osteocalcin, and type I collagen cross-linked C-telopeptide (CTX) in all subjects and sclerostin in a representative subgroup. There was no association between TSH concentrations and the stiffness index in both genders. In men, TSH correlated positively with the FRAX score both over the whole TSH range (p < 0.01) and within the reference TSH range (p < 0.01). There were positive associations between TSH concentrations and P1NP, BAP, osteocalcin, and CTX (p < 0.01) in women but not in men. There was no significant association between TSH and sclerostin levels. TSH serum concentrations are associated with gender-specific changes in bone turnover and stiffness.
Feizi, Alborz; Zhang, Yibo; Greenbaum, Alon; Guziak, Alex; Luong, Michelle; Chan, Raymond Yan Lok; Berg, Brandon; Ozkan, Haydar; Luo, Wei; Wu, Michael; Wu, Yichen; Ozcan, Aydogan
2016-11-01
Monitoring yeast cell viability and concentration is important in brewing, baking and biofuel production. However, existing methods of measuring viability and concentration are relatively bulky, tedious and expensive. Here we demonstrate a compact and cost-effective automatic yeast analysis platform (AYAP), which can rapidly measure cell concentration and viability. AYAP is based on digital in-line holography and on-chip microscopy and rapidly images a large field-of-view of 22.5 mm 2 . This lens-free microscope weighs 70 g and utilizes a partially-coherent illumination source and an opto-electronic image sensor chip. A touch-screen user interface based on a tablet-PC is developed to reconstruct the holographic shadows captured by the image sensor chip and use a support vector machine (SVM) model to automatically classify live and dead cells in a yeast sample stained with methylene blue. In order to quantify its accuracy, we varied the viability and concentration of the cells and compared AYAP's performance with a fluorescence exclusion staining based gold-standard using regression analysis. The results agree very well with this gold-standard method and no significant difference was observed between the two methods within a concentration range of 1.4 × 10 5 to 1.4 × 10 6 cells per mL, providing a dynamic range suitable for various applications. This lensfree computational imaging technology that is coupled with machine learning algorithms would be useful for cost-effective and rapid quantification of cell viability and density even in field and resource-poor settings.
Quantitative assessment of airborne exposures generated during common cleaning tasks: a pilot study
2010-01-01
Background A growing body of epidemiologic evidence suggests an association between exposure to cleaning products with asthma and other respiratory disorders. Thus far, these studies have conducted only limited quantitative exposure assessments. Exposures from cleaning products are difficult to measure because they are complex mixtures of chemicals with a range of physicochemical properties, thus requiring multiple measurement techniques. We conducted a pilot exposure assessment study to identify methods for assessing short term, task-based airborne exposures and to quantitatively evaluate airborne exposures associated with cleaning tasks simulated under controlled work environment conditions. Methods Sink, mirror, and toilet bowl cleaning tasks were simulated in a large ventilated bathroom and a small unventilated bathroom using a general purpose, a glass, and a bathroom cleaner. All tasks were performed for 10 minutes. Airborne total volatile organic compounds (TVOC) generated during the tasks were measured using a direct reading instrument (DRI) with a photo ionization detector. Volatile organic ingredients of the cleaning mixtures were assessed utilizing an integrated sampling and analytic method, EPA TO-17. Ammonia air concentrations were also measured with an electrochemical sensor embedded in the DRI. Results Average TVOC concentrations calculated for 10 minute tasks ranged 0.02 - 6.49 ppm and the highest peak concentrations observed ranged 0.14-11 ppm. TVOC time concentration profiles indicated that exposures above background level remained present for about 20 minutes after cessation of the tasks. Among several targeted VOC compounds from cleaning mixtures, only 2-BE was detectable with the EPA method. The ten minute average 2- BE concentrations ranged 0.30 -21 ppm between tasks. The DRI underestimated 2-BE exposures compared to the results from the integrated method. The highest concentration of ammonia of 2.8 ppm occurred during mirror cleaning. Conclusions Our results indicate that airborne exposures from short-term cleaning tasks can remain in the air even after tasks' cessation, suggesting potential exposures to anyone entering the room shortly after cleaning. Additionally, 2-BE concentrations from cleaning could approach occupational exposure limits and warrant further investigation. Measurement methods applied in this study can be useful for workplace assessment of airborne exposures during cleaning, if the limitations identified here are addressed. PMID:21118559
An Eulerian model for scavenging of pollutants by raindrops
NASA Astrophysics Data System (ADS)
Kumar, Sudarshan
An Eulerian model for simulating the coupled processes of gas-phase depletion and aqueousphase accumulation of the pollutant species during a rain event has been formulated. The model is capable of taking into account any realistic vertical profile of pollutant species concentrations and time-dependent initial aqueous-phase concentrations at the cloud base. The model considers the processes of single species absorption and dissociation in the aqueous phase. The coupled partial differential equations constituting the model are discretized into a set of ordinary differential equations by using the Galerkin method with chapeau functions as the basis functions. These equations are solved to obtain the pollutant concentrations of the gas phase and raindrops as well as the pH of raindrops as a function of time and distance below cloud-base. Simulations are performed for scavenging of gaseous HNO 3, H 2O 2, SO 2, formaldehyde and NH 3. For the case of highly soluble HNO 3 and H 2O 2, raindrops are far from equilibrium with the gas phase and their capacity for absorption of these gases is undiminished even as they reach ground level. The gas-phase concentrations for these species decrease exponentially with time and the washout is determined primarily by the rain intensity and mass-transfer coefficient of the gaseous species to the raindrops. The pollutant species concentrations in raindrops are an almost linear function of the distance below the cloud base. For the simulation conditions considered in this study, the half-life periods of these gases for removal from the atmosphere range from 15 to 40 min. For SO 2 and formaldehyde, the aqueous-phase concentrations approach equilibrium as the drops fall to ground level and the gas-phase concentrations show large gradients in the vertical. Half-life periods for SO 2 range from 1.3 to 13 h depending on the initial raindrop pH and rain intensity. For formaldehyde, the half-life ranges from 19 to 63 min. Solubility of NH 3 is a strong function of the raindrop pH. As NH 3 is absorbed, the raindrop pH increases and NH 3 solubility decreases. For pre-acidified drops (pH = 4.6), ammonia solubility is very high and the drops are far from equilibrium with the gas phase throughout the falling period. The half-life for ammonia ranges from 11 min to over 3 h in our simulations.
NASA Astrophysics Data System (ADS)
Nägele, G.; Heinen, M.; Banchio, A. J.; Contreras-Aburto, C.
2013-11-01
Dynamic processes in dispersions of charged spherical particles are of importance both in fundamental science, and in technical and bio-medical applications. There exists a large variety of charged-particles systems, ranging from nanometer-sized electrolyte ions to micron-sized charge-stabilized colloids. We review recent advances in theoretical methods for the calculation of linear transport coefficients in concentrated particulate systems, with the focus on hydrodynamic interactions and electrokinetic effects. Considered transport properties are the dispersion viscosity, self- and collective diffusion coefficients, sedimentation coefficients, and electrophoretic mobilities and conductivities of ionic particle species in an external electric field. Advances by our group are also discussed, including a novel mode-coupling-theory method for conduction-diffusion and viscoelastic properties of strong electrolyte solutions. Furthermore, results are presented for dispersions of solvent-permeable particles, and particles with non-zero hydrodynamic surface slip. The concentration-dependent swelling of ionic microgels is discussed, as well as a far-reaching dynamic scaling behavior relating colloidal long- to short-time dynamics.
NASA Astrophysics Data System (ADS)
Branfireun, Brian A.; Roulet, Nigel T.; Kelly, Carol. A.; Rudd, John W. M.
1999-09-01
Recent studies have found that "pristine" peatlands have high peat and pore water methylmercury (MeHg) concentrations and that peatlands may act as large sources of MeHg to the downstream aquatic system, depending upon the degree of hydrologie connectivity and catchment physiography. Sulphate-reducing bacteria have been implicated as principal methylators of inorganic mercury in many environments with previous research focused primarily on mercury methylation in aquatic sediments. Experiments in a poor fen in the Experimental Lakes Area, northwestern Ontario, Canada, demonstrated that the in situ addition of sulphate to peat and peat pore water resulted in a significant increase in pore water MeHg concentrations. As peatlands cover a large area of the Northern Hemisphere, this finding has potentially far ranging implications for the global mercury cycle, particularly in areas impacted by anthropogenically derived sulphate where the methylmercury fraction of total mercury species may be much larger than in nonimpacted environments.
Improving N-Glycan Coverage using HPLC-MS with Electrospray Ionization at Subambient Pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marginean, Ioan; Kronewitter, Scott R.; Moore, Ronald J.
Human serum glycan profiling with mass spectrometry (MS) has been employed to study several disease conditions and is demonstrating promise for e.g. clinical biomarker discovery. However, the poor glycan ionization efficiency and the large dynamic range of glycan concentrations in human sera hinder comprehensive profiling. In particular, large glycans are problematic because they are present at low concentrations and prone to fragmentation. Here we show that the sub-ambient pressure ionization with nanoelectrospray (SPIN)-MS can expand the serum glycome profile when compared with the conventional atmospheric pressure electrospray ionization (ESI)-MS with a heated capillary inlet. Notably, the ions generated by themore » SPIN interface were observed at higher charge states for 50% of the annotated glycans. Out of a total of 130 detected glycans, 34 were only detected with the SPIN-MS, resulting in improved coverage of glycan families as well as of glycans with larger numbers of labile monosaccharides.« less
The observation-based relationships between PM2.5 and AOD over China
NASA Astrophysics Data System (ADS)
Xin, Jinyuan; Gong, Chongshui; Liu, Zirui; Cong, Zhiyuan; Gao, Wenkang; Song, Tao; Pan, Yuepeng; Sun, Yang; Ji, Dongsheng; Wang, Lili; Tang, Guiqian; Wang, Yuesi
2016-09-01
This is the first investigation of the generalized linear regressions of PM2.5 and aerosol optical depth (AOD) with the Campaign on atmospheric Aerosol Research-China network over the large high-concentration aerosol region during the period from 2012 to 2013. The map of the PM2.5 and AOD levels showed large spatial differences in the aerosol concentrations and aerosol optical properties over China. The ranges of the annual mean PM2.5 and AOD were 10-117 µg/m3 and 0.12-1.11 from the clean regions to seriously polluted regions, from the almost "arctic" and the Tibetan Plateau to tropical environments. There were significant spatial agreements and correlations between the PM2.5 and AOD. However, the linear regression functions (PM2.5 = A*AOD + B) exhibited large differences in different regions and seasons. The slopes (A) were from 13 to 90, the intercepts (B) were from 0.8 to 33.3, and the correlation coefficients (R2) ranged from 0.06 to 0.75. The slopes (A) were much higher in the north (41-99) than in the south (13-64) because the extinction efficiency of hygroscopic aerosol was rapidly increasing with the increasing humidity from the dry north to the humid south. Meanwhile, the intercepts (B) were generally lower, and the correlation coefficients (R2) were much higher in the dry north than in the humid south. There was high consistency of AOD versus PM2.5 for all sites in three ranges of the atmospheric column precipitable water vapor (PWV). The segmented linear regression functions were y = 84.66x + 9.85 (PWV < 1.0), y = 69.47x + 11.87 (1.0 < PWV < 2.5), and y = 52.37x + 8.59 (PWV > 2.5). The correlation coefficients (R2) were high from 0.64 to 0.70 across China.
Adam, Fiona H; Noble, Peter J M; Swift, Simon T; Higgins, Brent M; Sieniawska, Christine E
2010-09-01
A 2-year-old 14.9-kg (32.8-lb) neutered female Shetland Sheepdog was admitted to the University of Liverpool Small Animal Teaching Hospital for evaluation of acute collapse. At admission, the dog was tachypneic and had reduced limb reflexes and muscle tone in all limbs consistent with diffuse lower motor neuron dysfunction. The dog was severely hypokalemic (1.7 mEq/L; reference range, 3.5 to 5.8 mEq/L). Clinical status of the dog deteriorated; there was muscle twitching, flaccid paralysis, and respiratory failure, which was considered a result of respiratory muscle weakness. Ventricular arrhythmias and severe acidemia (pH, 7.18; reference range, 7.35 to 7.45) developed. Intoxication was suspected, and plasma and urine samples submitted for barium analysis had barium concentrations comparable with those reported in humans with barium toxicosis. Analysis of barium concentrations in 5 control dogs supported the diagnosis of barium toxicosis in the dog. Fluids and potassium supplementation were administered IV. The dog recovered rapidly. Electrolyte concentrations measured after recovery were consistently unremarkable. Quantification of plasma barium concentration 56 days after the presumed episode of intoxication revealed a large decrease; however, the plasma barium concentration remained elevated, compared with that in control dogs. To our knowledge, this case represented the first description of barium toxicosis in the veterinary literature. Barium toxicosis can cause life-threatening hypokalemia; however, prompt supportive treatment can yield excellent outcomes. Barium toxicosis is a rare but important differential diagnosis in animals with hypokalemia and appropriate clinical signs.
Gilbreath, Alicia N; McKee, Lester J
2015-09-01
Urban runoff has been identified in water quality policy documents for San Francisco Bay as a large and potentially controllable source of pollutants. In response, concentrations of suspended sediments and a range of trace organic pollutants were intensively measured in dry weather and storm flow runoff from a 100% urban watershed. Flow in this highly urban watershed responded very quickly to rainfall and varied widely resulting in rapid changes of turbidity, suspended sediments and pollutant concentrations. Concentrations of each organic pollutant class were within similar ranges reported in other studies of urban runoff, however comparison was limited for several of the pollutants given information scarcity. Consistently among PCBs, PBDEs, and PAHs, the more hydrophobic congeners were transported in larger proportions during storm flows relative to low flows. Loads for Water Years 2007-2010 were estimated using regression with turbidity during the monitored months and a flow weighted mean concentration for unmonitored dry season months. More than 91% of the loads for every pollutant measured were transported during storm events, along with 87% of the total discharge. While this dataset fills an important local data gap for highly urban watersheds of San Francisco Bay, the methods, the uniqueness of the analyte list, and the resulting interpretations have applicability for managing pollutant loads in urban watersheds in other parts of the world. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGrath, S.P.; Zhao, F.J.; Dunham, S.J.
2000-06-01
Changes in the extractability and uptake by crops of sludge metals in a long-term field experiment, started in 1942, were measured to assess whether Zn and Cd are either fixed by the sludge/soil constituents or are released as the sludge organic matter (OM) decomposes. Total and 0.1 M CaCl{sub 2}-extractable concentrations of Zn and Cd in soil and total concentrations in crops were measured on archived crop and soil samples. Extractability of Zn as a proportion of the total ranged from 0.5 to 3% and that of Cd from 4 to 18%, and were higher in sludge-amended than farmyard manuremore » or fertilizer-amended soils. Over a 23-yr period after 1961, when sludge was last applied, the extractability of both metals fluctuated, but neither decreased nor increased consistently. The relationships between total soil and crop metal concentrations were linear, with no evidence of a plateau across the range of soil metal concentrations achieved. The slopes of the soil-plant relationships depended on the type of crop or crop part examined, but were generally in the order red beet (Beta vulgaris L.) > sugar beet (Beta vulgaris L.) > carrot (Daucus carota L.) > barley (Hordeum vulgare L.). However, there also were large seasonal differences in metal concentrations in the crops. It is concluded from the available evidence that up to 23 yr after sludge applications cease, Zn and Cd extractability and bioavailability do not decrease.« less
Polettini, Aldo; Cone, Edward J.; Gorelick, David A.; Huestis, Marilyn A.
2012-01-01
Background Although hair testing is well established for the assessment of past drug exposure, uncertainties persist about mechanisms of drug incorporation into hair and interpretation of results. The aim of this study was to administer methamphetamine (MAMP) under controlled conditions as a model drug to investigate drug incorporation into human hair. Material and Methods Seven volunteers with a history of stimulant use received 4×10 mg (low) doses of sustained release S-(+)-MAMP HCl within one week, with weekly head hair samples collected by shaving. 3 weeks later, 4 of them received 4×20 mg (high) doses. After extensive isopropanol/phosphate buffer washing of the hair, MAMP and its metabolite amphetamine (AMP) concentrations were determined in all weekly hair samples by LC-MS-MS in selected reaction monitoring mode with the undeca- and deca-deuterated drugs, respectively, as internal standards (LLOQ, 0.005 ng/mg). Results MAMP Tmax occurred from 1 to 2 weeks after both doses, with Cmax ranging from 0.6–3.5 ng/mg after the low and 1.2–5.3 ng/mg after the high MAMP doses. AMP Cmax in hair was 0.1–0.3 ng/mg and 0.2–0.5 ng/mg, respectively, for low and high doses. Highly dose–related concentrations within subjects, but large variability between subjects were observed. MAMP concentrations were above the 0.2 ng/mg cutoff for at least two weeks following administration of both low and high doses. The overall AMP/MAMP ratio ranged from 0.07 to 0.37 with a mean value of 0.15±0.07, and a median of 0.13. The percentage of MAMP and AMP removed with the washing procedure decreased with time after administration. A strong correlation was found between area under the curve of MAMP (r2=0.90, p=0.00) and AMP (r2=0.94, p=0.00) concentrations calculated for the 3-week period following administration and the total melanin concentration in hair. Significant correlations were observed also between Cmax and melanin. Conclusions This study demonstrated that despite large inter-individual differences, the incorporation of MAMP and AMP into hair is dose-related with much of the observed scatter of MAMP and AMP concentrations explained by melanin concentration in hair. PMID:22541011
Self-Interacting Dark Matter Can Explain Diverse Galactic Rotation Curves
NASA Astrophysics Data System (ADS)
Kamada, Ayuki; Kaplinghat, Manoj; Pace, Andrew B.; Yu, Hai-Bo
2017-09-01
The rotation curves of spiral galaxies exhibit a diversity that has been difficult to understand in the cold dark matter (CDM) paradigm. We show that the self-interacting dark matter (SIDM) model provides excellent fits to the rotation curves of a sample of galaxies with asymptotic velocities in the 25 - 300 km /s range that exemplify the full range of diversity. We assume only the halo concentration-mass relation predicted by the CDM model and a fixed value of the self-interaction cross section. In dark-matter-dominated galaxies, thermalization due to self-interactions creates large cores and reduces dark matter densities. In contrast, thermalization leads to denser and smaller cores in more luminous galaxies and naturally explains the flatness of rotation curves of the highly luminous galaxies at small radii. Our results demonstrate that the impact of the baryons on the SIDM halo profile and the scatter from the assembly history of halos as encoded in the concentration-mass relation can explain the diverse rotation curves of spiral galaxies.
Contamination status of arsenic in fish and shellfish from three river basins in Ghana.
Gbogbo, Francis; Otoo, Samuel Darlynton; Asomaning, Obed; Huago, Robert Quaye
2017-08-01
Fish and shellfish are regularly consumed and sold in Ghana, yet studies on arsenic pollution in Ghana are limited largely to ground water. This study evaluated arsenic concentrations in seven species of shellfish and 10 species of fish inhabiting the mouth of Ankobra, Densu and Volta basins in Ghana and assessed the public health implications. Arsenic levels varied from 0.2 to 2.2 mg L -1 in the three rivers and were higher than WHO recommended values of 10 μg L -1 for drinking water. Except for Periophthalmus sp. and Tympanotonus fuscatus from the Ankobra in which arsenic was not detected, concentrations in the organisms ranged from 0.2 to 2.8 mg kg -1 . The maximum quantities of the organisms considered safe for consumption ranged from 375 to 5250 g per week. Caution however needs to be exercised as PTWI for arsenic needs revision, and some heavy metals such as mercury are more toxic than arsenic.
Charging of mesospheric particles - Implications for electron density and particle coagulation
NASA Technical Reports Server (NTRS)
Jensen, Eric J.; Thomas, Gary E.
1991-01-01
The relationship between N(e) and mesospheric aerosols near the mesopause is studied. The full distribution of charges on mesospheric aerosols is calculated, including dust and ice particles with radii ranging from 1 to 400 nm. The N(e) and ion density N(i) are obtained and ionization height profiles are calculated. The effects of dust and ice particles on N(e) and N(i) are studied for a wide range of assumed conditions. The results indicate that aerosol concentrations associated with visible polar mesospheric clouds are unlikely to cause a severe N(e) depletion. The pronounced 'bite-out' of N(e) at about 87 km in the summertime may be caused by a large concentration of small ice particles in a narrow cold layer near the mesosphere. Net negative charge on mesospheric aerosols may severely inihibit coagulation, so that mesospheric dust would not grow significantly. A higher supersaturation with respect to water vapor would be needed for heterogeneous nucleation of ice crystals.
Fabrication of Titania Nanotubes for Gas Sensing Applications
NASA Astrophysics Data System (ADS)
Dzilal, A. A.; Muti, M. N.; John, O. D.
2010-03-01
Detection of hydrogen is needed for industrial process control and medical applications where presence of hydrogen indicates different type of health problems. Titanium dioxide nanotube structure is chosen as an active component in the gas sensor because of its highly sensitive electrical resistance to hydrogen over a wide range of concentrations. The objective of the work is to fabricate good quality titania nanotubes suitable for hydrogen sensing applications. The fabrication method used is anodizing method. The anodizing parameters namely the voltage, time duration, concentration of hydrofluoric acid in water, separation between the electrodes and the ambient temperature are varied accordingly to find the optimum anodizing conditions for production of good quality titania nanotubes. The highly ordered porous titania nanotubes produced by this method are in tabular shape and have good uniformity and alignment over large areas. From the investigation done, certain set of anodizing parameters have been found to produce good quality titania nanotubes with diameter ranges from 47 nm to 94 nm.
Hybrid micro-scale photovoltaics for enhanced energy conversion across all irradiation conditions
NASA Astrophysics Data System (ADS)
Agrawal, Gautam
A novel hybrid photovoltaics (HPV) architecture is presented that integrates high-performance micro-optics-based concentrator photovoltaics (CPV) array technology with a 1-sun photovoltaic (PV) cell within a low-profile panel structure. The approach simultaneously captures the direct solar radiation components with arrayed high-efficiency CPV cells and the diffuse solar components with an underlying wide-area PV cell. Performance analyses predict that the hybrid approach will significantly enhance the average energy produced per unit area for the full range of diffuse/direct radiation patterns across the USA. Furthermore, cost analyses indicate that the hybrid concept may be financially attractive for a wide range of locations. Indoor and outdoor experimental evaluation of a micro-optical system designed for use in a hybrid architecture verified that a large proportion of the direct radiation component was concentrated onto emulated micro-cell regions while most of the diffuse radiation and the remaining direct radiation was collected in the 1-sun cell area.
Self-Interacting Dark Matter Can Explain Diverse Galactic Rotation Curves.
Kamada, Ayuki; Kaplinghat, Manoj; Pace, Andrew B; Yu, Hai-Bo
2017-09-15
The rotation curves of spiral galaxies exhibit a diversity that has been difficult to understand in the cold dark matter (CDM) paradigm. We show that the self-interacting dark matter (SIDM) model provides excellent fits to the rotation curves of a sample of galaxies with asymptotic velocities in the 25-300 km/s range that exemplify the full range of diversity. We assume only the halo concentration-mass relation predicted by the CDM model and a fixed value of the self-interaction cross section. In dark-matter-dominated galaxies, thermalization due to self-interactions creates large cores and reduces dark matter densities. In contrast, thermalization leads to denser and smaller cores in more luminous galaxies and naturally explains the flatness of rotation curves of the highly luminous galaxies at small radii. Our results demonstrate that the impact of the baryons on the SIDM halo profile and the scatter from the assembly history of halos as encoded in the concentration-mass relation can explain the diverse rotation curves of spiral galaxies.
Sweetness and other sensory properties of model fruit drinks: Does viscosity have an impact?
Brandenstein, Cai V S; Busch-Stockfisch, Mechthild; Fischer, Markus
2015-03-15
The impact of thickening agents and viscosity levels on sensory perception was studied in model fruit drinks. Four formulations were prepared that varied in the sweetener blend (erythritol, maltitol and/or steviol glycosides). Locust bean gum and its blends with either xanthan or carrageenan were used to adjust viscosity levels (20, 40, and 70 mPa s). The ranges of viscosity and sweetness level were selected to represent a typical concentration range in commercially available beverages. An increase in viscosity resulted in significant increases in pulpiness, sliminess and perceived viscosity (P-values ≤ 0.001), which were not dependent on sweeteners or hydrocolloid type. Taste perception remained largely unchanged irrespective of the hydrocolloid used. The impact of viscosity on sweetness and taste perception was much smaller in the concentrations used than has been generally reported. The effect of the type of hydrocolloid on the perception of taste attributes was greater than that of viscosity. © 2014 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Lam, Nghi Q.; Janghorban, K.; Ardell, A. J.
1981-10-01
Irradiation-induced solute redistribution leading to precipitation of coherent γ' particles in undersaturated Ni-based solid solutions containing 6 and 8 at.% Si during 400-keV proton bombardment was modeled, based on the concept of solute segregation in concentrated alloys under spatially-dependent defect production conditions. The combined effects of (i) an extremely large difference between the defect production rates in the peak-damage and mid-range regions during irradiation and (ii) a preferential coupling between the interstitial and solute fluxes generate a net transient flux of Si atoms into the mid-range region, which is much larger than the solute flux out of this location. As a result, the Si concentration exceeds the solubility limit and homogeneous precipitation of the γ' phase occurs in this particular region of the irradiated samples. The spatial, compositional and temperature dependences of irradiation-induced homogeneous precipitation derived from the present theoretical calculations are in good qualitative agreement with experimental observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunter, B.J.
An investigation was made of possible hazardous exposures to mercury and nitrous oxide at a dental clinic. Air samples were taken while the dentist and assistants used mercury amalgams. Nitrous-oxide was in use for over three hours. The air-sampling results revealed a range of nitrous-oxide concentrations in the room air from 30 to 220 parts per million (ppm). Mercury concentrations ranged from nondetectable to 0.009ppm, well below the evaluation criteria of 0.05ppm. The author concludes that a health hazard from excessive exposures to nitrous oxide exists, but mercury levels pose no health hazard in the clinic. The author recommends thatmore » the ventilation system should be adjusted each time nitrous oxide is going to be used. Routine maintenance checks should be performed on all anesthetic and suction equipment. The installation of a large fan on the roof of the building is suggested. Patients, particularly children, should be watched so that they do not play with the face mask during the administration of nitrous oxide.« less
Code of Federal Regulations, 2011 CFR
2011-04-01
... rural areas and cities with large concentrations of poverty? 645.525 Section 645.525 Employees' Benefits... cities with large concentrations of poverty? (a) Competitive grant awards will be targeted to geographic... rural areas and cities with large concentrations of residents living in poverty. (b) Grant application...
Code of Federal Regulations, 2010 CFR
2010-04-01
... rural areas and cities with large concentrations of poverty? 645.525 Section 645.525 Employees' Benefits... cities with large concentrations of poverty? (a) Competitive grant awards will be targeted to geographic... rural areas and cities with large concentrations of residents living in poverty. (b) Grant application...
Code of Federal Regulations, 2012 CFR
2012-04-01
... rural areas and cities with large concentrations of poverty? 645.525 Section 645.525 Employees' Benefits... cities with large concentrations of poverty? (a) Competitive grant awards will be targeted to geographic... rural areas and cities with large concentrations of residents living in poverty. (b) Grant application...
Code of Federal Regulations, 2014 CFR
2014-04-01
... rural areas and cities with large concentrations of poverty? 645.525 Section 645.525 Employees' Benefits... cities with large concentrations of poverty? (a) Competitive grant awards will be targeted to geographic... rural areas and cities with large concentrations of residents living in poverty. (b) Grant application...
Code of Federal Regulations, 2013 CFR
2013-04-01
... rural areas and cities with large concentrations of poverty? 645.525 Section 645.525 Employees' Benefits... cities with large concentrations of poverty? (a) Competitive grant awards will be targeted to geographic... rural areas and cities with large concentrations of residents living in poverty. (b) Grant application...
NASA Astrophysics Data System (ADS)
Khairullah; Effendy, S.; Makmur, E. E. S.
2017-03-01
Forest and vegetation peat-fire is one of the main sources of air pollution in Kalimantan, predominantly during the dry period. In 2015, forest and vegetation fire in Central Kalimantan and South Kalimantan emit large quantities of smoke leading to poor air quality. Haze is a phenomenon characterized by high concentration of particulate matter. This research objective is to analyze trajectory and dispersion of concentration particulate matter, PM10 in Banjarbaru and Palangka Raya. Dynamics of PM10 (Particulate matter less than or 10 µm in size) on vegetation peat-fire is done using GDAS (Global Data Assimilation System) output with a horizontal resolution 1º which corresponds to 100 km × 100 km for input model. Climate conditions in the period September to October 2015 at generally during dry season of El Nino year. The Hybrid-single Langrangian Integrated Trajectory (HYSPLIT) model was used to investigate concentration and long-range movement of this pollutant from the source to the receptor area. We used time-series data on PM10 readings obtained from two stations Banjarbaru (South Kalimantan) and Palangka Raya (Central Kalimantan) belonging to Meteorology Climatology and Geophysics Agency (BMKG). We also used weather parameter such as wind speed and direction. We investigated trajectory run from hotspots information MoF (Sipongi Output Programs) and HYSPLIT. We compared concentration obtained from PM10 observation and its concentrations trend. The dispersion pattern, as simulated by HYSPLIT showed that the distribution of PM10 was greatly influenced by the wind direction and topography. There is a large difference between the concentration of PM10 Palangka Raya and Banjarbaru.
Long-term study of urban ultrafine particles and other pollutants
NASA Astrophysics Data System (ADS)
Wang, Yungang; Hopke, Philip K.; Chalupa, David C.; Utell, Mark J.
2011-12-01
Continuous measurements of number size distributions of ultrafine particles (UFPs) and other pollutants (PM 2.5, SO 2, CO and O 3) have been performed in Rochester, New York since late November 2001. The 2002-2009 average number concentrations of particles in three size ranges (10-50 nm, 50-100 nm and 100-500 nm) were 4730 cm -3, 1838 cm -3, and 1073 cm -3, respectively. The lowest annual average number concentrations of particles in 10-50 nm and 50-100 nm were observed during 2008-2009. The lowest monthly average number concentration of 10-50 nm particles was observed in July and the highest in February. The daily patterns of 10-50 nm particles had two peaks at early morning (7-8 AM) and early afternoon (2 PM). There was a distinct declining trend in the peak number concentrations from 2002-2005 to 2008-2009. Large reductions in SO 2 concentrations associated with northerly winds between 2007 and 2009 were observed. The most significant annual decrease in the frequency of morning particle nucleation was observed from 2005 to 2007. The monthly variation in the morning nucleation events showed a close correlation with number concentrations of 10-50 nm particles ( r = 0.89). The frequency of the local SO 2-related nucleation events was much higher before 2006. All of these results suggest significant impacts of highway traffic and industrial sources. The decrease in particle number concentrations and particle nucleation events likely resulted from a combination of the U.S. EPA 2007 Heavy-Duty Highway Rule implemented on October 1, 2006, the closure of a large coal-fired power plant in May 2008, and the reduction of Eastman Kodak emissions.
Borgoni, Riccardo; De Francesco, Davide; De Bartolo, Daniela; Tzavidis, Nikos
2014-12-01
Radon is a natural gas known to be the main contributor to natural background radiation exposure and only second to smoking as major leading cause of lung cancer. The main concern is in indoor environments where the gas tends to accumulate and can reach high concentrations. The primary contributor of this gas into the building is from the soil although architectonic characteristics, such as building materials, can largely affect concentration values. Understanding the factors affecting the concentration in dwellings and workplaces is important both in prevention, when the construction of a new building is being planned, and in mitigation when the amount of Radon detected inside a building is too high. In this paper we investigate how several factors, such as geologic typologies of the soil and a range of building characteristics, impact on indoor concentration focusing, in particular, on how concentration changes as a function of the floor level. Adopting a mixed effects model to account for the hierarchical nature of the data, we also quantify the extent to which such measurable factors manage to explain the variability of indoor radon concentration. Copyright © 2014 Elsevier Ltd. All rights reserved.
Experimental characterization of Fresnel-Köhler concentrators
NASA Astrophysics Data System (ADS)
Zamora, Pablo; Benítez, Pablo; Mohedano, Rubén; Cvetković, Aleksandra; Vilaplana, Juan; Li, Yang; Hernández, Maikel; Chaves, Julio; Miñano, Juan C.
2012-01-01
Most cost-effective concentrated photovoltaics (CPV) systems are based on an optical train comprising two stages, the first being a Fresnel lens. Among them, the Fresnel-Köhler (FK) concentrator stands out owing to both performance and practical reasons. We describe the experimental measurements procedure for FK concentrator modules. This procedure includes three main types of measurements: electrical efficiency, acceptance angle, and irradiance uniformity at the solar cell plane. We have collected here the performance features of two different FK prototypes (ranging different f-numbers, concentration ratios, and cell sizes). The electrical efficiencies measured in both prototypes are high and fit well with the models, achieving values up to 32.7% (temperature corrected, and with no antireflective coating on SOE or POE surfaces) in the best case. The measured angular transmission curves show large acceptance angles, again perfectly matching the expected values [measured concentration acceptance product (CAP) values over 0.56]. The irradiance pattern on the cell (obtained with a digital camera) shows an almost perfectly uniform distribution, as predicted by raytrace simulations. All these excellent on-sun results confirm the FK concentrator as a potentially cost-effective solution for the CPV market.
Observed chlorine concentrations during Jack Rabbit I and Lyme Bay field experiments
NASA Astrophysics Data System (ADS)
Hanna, Steven; Chang, Joseph; Huq, Pablo
2016-01-01
As part of planning for a series of field experiments where large quantities (up to 20 tons) of pressurized liquefied chlorine will be released, observations from previous chlorine field experiments are analyzed to estimate the ranges of chlorine concentrations expected at various downwind distances. In five field experiment days during the summer 2010 Jack Rabbit I (JR I) field trials, up to two tons of chlorine were released and concentrations were observed at distances, x, from 25 to 500 m. In the 1927 Lyme Bay (LB) experiments, there were four days of trials, where 3-10 tons of chlorine were released in about 15 min from the back of a ship. Concentrations were sampled at LB from four ships sailing across the cloud path at downwind distances in the range from about 350 to 3000 m. Thus, the distances from which JR I concentrations were available slightly overlapped the LB distances. One-minute arc-maximum chlorine concentrations, C (g/m3), were analyzed from four JR I trials and two LB trials. Normalized concentrations (Cu/Q) were plotted versus x (m), where u (m/s) is measured wind speed at heights of 2-10 m and Q (g/s) is continuous mass release rate. It is found that the JR I and LB Cu/Q observations smoothly merge with each other and fall along a line with approximate slope of -2 at distances beyond about 200 m (i.e., Cu/Q is proportional to x-2). At x < 200 m, where dense gas effects are more important, the slope is less (about -1.5). Most of the data points are within a factor of two of the "best-fit" line.
Robledo, Candace A; Yeung, Edwina; Mendola, Pauline; Sundaram, Rajeshwari; Maisog, Jose; Sweeney, Anne M; Barr, Dana Boyd; Louis, Germaine M Buck
2015-01-01
Persistent organic pollutants (POPs) are developmental toxicants, but the impact of both maternal and paternal exposures on offspring birth size is largely unexplored. We examined associations between maternal and paternal serum concentrations of 63 POPs, comprising five major classes of pollutants, with birth size measures. Parental serum concentrations of 9 organochlorine pesticides, 1 polybrominated biphenyl (PBB), 7 perfluoroalkyl chemicals (PFCs), 10 polybrominated diphenyl ethers (PBDEs), and 36 polychlorinated biphenyls (PCBs) were measured before conception for 234 couples. Differences in birth weight, length, head circumference, and ponderal index were estimated using multiple linear regression per 1-SD increase in natural log-transformed (ln-transformed) chemicals. Models were estimated separately for each parent and adjusted for maternal age, maternal prepregnancy body mass index (kilograms per meter squared) and other confounders, and all models included an interaction term between infant sex and each chemical. Among girls (n = 117), birth weight was significantly lower (range, 84-195 g) in association with a 1-SD increase in ln-transformed maternal serum concentrations of DDT, PBDE congeners 28 and 183, and paternal serum concentrations of PBDE-183 and PCB-167. Among boys (n = 113), maternal (PCBs 138, 153, 167, 170, 195, and 209 and perfluorooctane sulfonamide) and paternal (PCBs 172 and 195) serum concentrations of several POPs were statistically associated with lower birth weight (range, 98-170 g), whereas paternal concentrations of PBDEs (66, 99) were associated with higher birth weight. Differences in offspring head circumference, length, and ponderal index were also associated with parental exposures. Preconceptional maternal and paternal concentrations of several POPs were associated with statistically significant differences in birth size among offspring.
Brigham, M.E.; Goldstein, R.M.; Tornes, L.H.
1998-01-01
Stream-bottom sediment and fish-tissue samples from the Red River of the North Basin, were analyzed for a large suite of chemical elements and organic chemicals. Cadmium, lead, and mercury were widespread in sediments, at concentrations not indicative of acute contamination. Mercury, the element of greatest health concern in the region, was detected at low concentrations in 38 of 43 sediment samples (<0.02-0.13 micrograms per gram) and all of eleven fish-liver samples (0.03-0.6 micrograms per gram dry weight, or 0.0066-0.13 micrograms per gram wet weight). Concentrations of many elements appeared to be controlled by mineral rather than anthropogenic sources. DDT and its metabolites were the most frequently detected synthetic organochlorines: p,p'-DDE was detected in 9 of 38 sediment samples (concentration range: <1-16 nanograms per gram) and also frequently in whole-fish samples. Total DDT (the sum of DDT and its metabolites) concentrations ranged from <5 to 217 nanograms per gram, and at least one component of total DDT was detected in 19 of 23 fish samples. Concentrations of DDT and its metabolites in stream sediments were significantly higher in the intensively cropped Red River Valley Lake Plain, compared to upland areas, probably because of greater historical DDT usage in the lake plain. Several polycyclic aromatic hydrocarbons were detected in stream-bottom sediments. Although the potentially toxic chemicals measured in this study were at low levels, relative to more contaminated areas of the Nation, maximum concentrations of some chemicals are of concern because of their possible effects on aquatic biota and human health.
Anthony, Winston E; Palmer-Young, Evan C; Leonard, Anne S; Irwin, Rebecca E; Adler, Lynn S
2015-01-01
The impact of consuming biologically active compounds is often dose-dependent, where small quantities can be medicinal while larger doses are toxic. The consumption of plant secondary compounds can be toxic to herbivores in large doses, but can also improve survival in parasitized herbivores. In addition, recent studies have found that consuming nectar secondary compounds may decrease parasite loads in pollinators. However, the effect of compound dose on bee survival and parasite loads has not been assessed. To determine how secondary compound consumption affects survival and pathogen load in Bombus impatiens, we manipulated the presence of a common gut parasite, Crithidia bombi, and dietary concentration of anabasine, a nectar alkaloid produced by Nicotiana spp. using four concentrations naturally observed in floral nectar. We hypothesized that increased consumption of secondary compounds at concentrations found in nature would decrease survival of uninfected bees, but improve survival and ameliorate parasite loads in infected bees. We found medicinal effects of anabasine in infected bees; the high-anabasine diet decreased parasite loads and increased the probability of clearing the infection entirely. However, survival time was not affected by any level of anabasine concentration, or by interactive effects of anabasine concentration and infection. Crithidia infection reduced survival time by more than two days, but this effect was not significant. Our results support a medicinal role for anabasine at the highest concentration; moreover, we found no evidence for a survival-related cost of anabasine consumption across the concentration range found in nectar. Our results suggest that consuming anabasine at the higher levels of the natural range could reduce or clear pathogen loads without incurring costs for healthy bees.
Phillips, P J; Schubert, C; Argue, D; Fisher, I; Furlong, E T; Foreman, W; Gray, J; Chalmers, A
2015-04-15
Septic-system discharges can be an important source of micropollutants (including pharmaceuticals and endocrine active compounds) to adjacent groundwater and surface water systems. Groundwater samples were collected from well networks tapping glacial till in New England (NE) and sandy surficial aquifer New York (NY) during one sampling round in 2011. The NE network assesses the effect of a single large septic system that receives discharge from an extended health care facility for the elderly. The NY network assesses the effect of many small septic systems used seasonally on a densely populated portion of Fire Island. The data collected from these two networks indicate that hydrogeologic and demographic factors affect micropollutant concentrations in these systems. The highest micropollutant concentrations from the NE network were present in samples collected from below the leach beds and in a well downgradient of the leach beds. Total concentrations for personal care/domestic use compounds, pharmaceutical compounds and plasticizer compounds generally ranged from 1 to over 20 μg/L in the NE network samples. High tris(2-butoxyethyl phosphate) plasticizer concentrations in wells beneath and downgradient of the leach beds (>20 μg/L) may reflect the presence of this compound in cleaning agents at the extended health-care facility. The highest micropollutant concentrations for the NY network were present in the shoreline wells and reflect groundwater that is most affected by septic system discharges. One of the shoreline wells had personal care/domestic use, pharmaceutical, and plasticizer concentrations ranging from 0.4 to 5.7 μg/L. Estradiol equivalency quotient concentrations were also highest in a shoreline well sample (3.1 ng/L). Most micropollutant concentrations increase with increasing specific conductance and total nitrogen concentrations for shoreline well samples. These findings suggest that septic systems serving institutional settings and densely populated areas in coastal settings may be locally important sources of micropollutants to adjacent aquifer and marine systems. Published by Elsevier B.V.
Kadiri, Hind; Kostcheev, Serguei; Turover, Daniel; Salas-Montiel, Rafael; Nomenyo, Komla; Gokarna, Anisha; Lerondel, Gilles
2014-01-01
Our aim was to elaborate a novel method for fully controllable large-scale nanopatterning. We investigated the influence of the surface topology, i.e., a pre-pattern of hydrogen silsesquioxane (HSQ) posts, on the self-organization of polystyrene beads (PS) dispersed over a large surface. Depending on the post size and spacing, long-range ordering of self-organized polystyrene beads is observed wherein guide posts were used leading to single crystal structure. Topology assisted self-organization has proved to be one of the solutions to obtain large-scale ordering. Besides post size and spacing, the colloidal concentration and the nature of solvent were found to have a significant effect on the self-organization of the PS beads. Scanning electron microscope and associated Fourier transform analysis were used to characterize the morphology of the ordered surfaces. Finally, the production of silicon molds is demonstrated by using the beads as a template for dry etching.
Method to produce large, uniform hollow spherical shells
Hendricks, C.D.
1983-09-26
The invention is a method to produce large uniform hollow spherical shells by (1) forming uniform size drops of heat decomposable or vaporizable material, (2) evaporating the drops to form dried particles, (3) coating the dried particles with a layer of shell forming material and (4) heating the composite particles to melt the outer layer and to decompose or vaporize the inner particle to form an expanding inner gas bubble. The expanding gas bubble forms the molten outer layer into a shell of relatively large diameter. By cycling the temperature and pressure on the molten shell, nonuniformities in wall thickness can be reduced. The method of the invention is utilized to produce large uniform spherical shells, in the millimeter to centimeter diameter size range, from a variety of materials and of high quality, including sphericity, concentricity and surface smoothness, for use as laser fusion or other inertial confinement fusion targets as well as other applications.
A Novel Method of Fabricating a Well-Faceted Large-Crystal Diamond Through MPCVD
NASA Astrophysics Data System (ADS)
Man, Weidong; Weng, Jun; Wu, Yuqiong; Chen, Peng; Yu, Xuechao; Wang, Jianhua
2009-12-01
A novel method was developed to deposit a large crystal diamond with good facets up to 1000 μm on a tungsten substrate using a microwave plasma enhanced chemical vapor deposition (MPCVD). This method consists of two steps, namely single-crystal nucleation and growth. Prior to the fabrication of the well-faceted, large crystal diamond, an investigation was made into the nucleation and growth of the diamond which were affected by the O2 concentration and substrate temperature. Deposited diamond crystals were characterized by scanning electron microscopy and micro-Raman spectroscopy. The results showed that the conditions of single-crystal nucleation were appropriate when the ratio of H2/CH4/O2 was about 200/7.0/2.0, while the substrate temperature Ts of 1000°C to 1050°C was the appropriate range for single-crystal diamond growth. Under the optimum parameters, a well-faceted large crystal diamond was obtained.
Large enhancement of the spin Hall effect in Au by side-jump scattering on Ta impurities
NASA Astrophysics Data System (ADS)
Laczkowski, P.; Fu, Y.; Yang, H.; Rojas-Sánchez, J.-C.; Noel, P.; Pham, V. T.; Zahnd, G.; Deranlot, C.; Collin, S.; Bouard, C.; Warin, P.; Maurel, V.; Chshiev, M.; Marty, A.; Attané, J.-P.; Fert, A.; Jaffrès, H.; Vila, L.; George, J.-M.
2017-10-01
We present measurements of the spin Hall effect (SHE) in AuW and AuTa alloys for a large range of W or Ta concentrations by combining experiments on lateral spin valves and ferromagnetic-resonance/spin-pumping techniques. The main result is the identification of a large enhancement of the spin Hall angle (SHA) by the side-jump mechanism on Ta impurities, with a SHA as high as +0.5 (i.e., 50 % ) for about 10% of Ta. In contrast, the SHA in AuW does not exceed +0.15 and can be explained by intrinsic SHE of the alloy without significant extrinsic contribution from skew or side-jump scattering by W impurities. The AuTa alloys, as they combine a very large SHA with a moderate resistivity (smaller than 85 μ Ω cm ), are promising for spintronic devices exploiting the SHE.
Crawford, Graham C; Puschner, Birgit; Dierenfeld, Ellen S; Dunker, Freeland
2009-12-01
Serum and whole blood samples from 64 clinically normal captive black and white ruffed lemurs (Varecia variegata), aged 6 mo to 32 yr, were analyzed to survey mineral and fat-soluble vitamin concentrations. All animals were fed a commercial primate food and a wide range of fruits and vegetables. Specific commercial diet information was available for 52 animals that were fed one of 10 different diets. Data analysis showed no differences in the analytes attributable to sex or access to natural ultraviolet light. Serum phosphorus (range: 1.4-3.1 mmol/L) was significantly higher and retinol (range: 0.38-1.23 micromol/L) was significantly lower in young animals (< or =4 yr). Iron (range: 17.2-77.0 micromol/L) and copper (range: 10.7-53.3 micromol/L) were much higher than concentrations reported in other free-ranging lemur species, and in some animals were at levels considered potentially toxic in domestic animals. Magnesium (range: 0.66-2.04 mmol/L), sodium (range: 111-201 mmol/L), and potassium (range: 2.0-6.8 mmol/L) ranged both lower and higher than concentrations considered adequate for a mammal, but were similar to concentrations reported in wild red ruffed lemurs (Varecia rubra), a closely related species. Selenium (range: 3.5-7.7 micromol/L) was within the range expected for a mammal, but higher than concentrations reported in wild V rubra. Zinc (range: 9.2-62.7 micromol/L) was similar to concentrations reported in V. rubra. Calcidiol (range: <12.5-144.8 nmol/L) and retinol (range: 0.38-2.95 micromol/L) were both lower and higher than concentrations reported in V. rubra. Lower serum calcidiol concentration correlated with lower commercial dietary vitamin D3. Alpha-tocopherol (range: 1.2-17.6 micromol/L) and y-tocopherol (range: 0.3-3.9 micromol/L) were within a range expected in a captive frugivorous primate but higher than concentrations found in wild V. rubra.
Nabi, Hermann; Bochud, Murielle; Glaus, Jennifer; Lasserre, Aurélie M; Waeber, Gérard; Vollenweider, Peter; Preisig, Martin
2013-10-01
Studies on the association between homocysteine levels and depression have shown conflicting results. To examine the association between serum total homocysteine (tHcy) levels and major depressive disorder (MDD) in a large community sample with an extended age range. A total of 3392 men and women aged 35-66 years participating in the CoLaus study and its psychiatric arm (PsyCoLaus) were included in the analyses. High tHcy measured from fasting blood samples was defined as a concentration ≥15μmol/L. MDD was assessed using the semi-structured Diagnostic Interview for Genetics Studies. In multivariate analyses, elevated tHcy levels were associated with greater odds of meeting the diagnostic criteria for lifetime MDD among men (OR=1.71; 95% CI, 1.18-2.50). This was particularly the case for remitted MDD. Among women, there was no significant association between tHcy levels and MDD and the association tended to be in the opposite direction (OR=0.61; 95% CI, 0.34-1.08). In this large population-based study, elevated tHcy concentrations are associated with lifetime MDD and particularly with remitted MDD among men. Copyright © 2013 Elsevier Ltd. All rights reserved.
Chintapalli, Mahati; Timachova, Ksenia; Olson, Kevin R; Banaszak, Michał; Thelen, Jacob L; Mecham, Sue J; DeSimone, Joseph M; Balsara, Nitash P
2017-06-07
Incipient microphase separation is observed by wide angle X-ray scattering (WAXS) in short chain multiblock copolymers consisting of perfluoropolyether (PFPE) and poly(ethylene oxide) (PEO) segments. Two PFPE-PEO block copolymers were studied; one with dihydroxyl end groups and one with dimethyl carbonate end groups. Despite having a low degree of polymerization (N ∼ 10), these materials exhibited significant scattering intensity, due to disordered concentration fluctuations between their PFPE-rich and PEO-rich domains. The disordered scattering intensity was fit to a model based on a multicomponent random phase approximation to determine the value of the interaction parameter, χ, and the radius of gyration, R g . Over the temperature range 30-90 °C, the values of χ were determined to be very large (∼2-2.5), indicating a high degree of immiscibility between the PFPE and PEO blocks. In PFPE-PEO, due to the large electron density contrast between the fluorinated and non-fluorinated block and the high value of χ, disordered scattering was detected at intermediate scattering angles, (q ∼ 2 nm -1 ) for relatively small polymer chains. Our ability to detect concentration fluctuations was enabled by both a relatively large value of χ and significant scattering contrast.
Kollander, Barbro; Widemo, Fredrik; Ågren, Erik; Larsen, Erik H; Loeschner, Katrin
2017-03-01
This study investigated whether game meat may contain nanoparticles of lead from ammunition. Lead nanoparticles in the range 40 to 750 nm were detected by ICP-MS in single particle mode in game shot with lead-containing bullets. The median diameter of the detected nanoparticles was around 60 nm. The particle mass concentration ranged from 290 to 340 ng/g meat and the particle number concentrations from 27 to 50 million particles/g meat. The size limit of detection strongly depended on the level of dissolved lead and was in the range of 40 to 80 nm. In game meat sampled more than 10 cm away from the wound channel, no lead particles with a diameter larger than 40 nm were detected. In addition to dissolved lead in meat that originated from particulates, the presence of lead nano particles in game meat represents a hitherto unattended source of lead with a largely unknown toxicological impact to humans. Graphical Abstract Detection of lead nanoparticles in game meat by single particle ICP-MS following use of leadcontaining bullets.
The Effect of Age and Weight on Vancomycin Serum Trough Concentrations in Pediatric Patients
Madigan, Theresa; Sieve, Ronald M.; Graner, Kevin K.; Banerjee, Ritu
2013-01-01
Background Vancomycin treatment failure has been associated with low serum vancomycin trough concentrations, prompting recommendations to increase the daily doses in adults and children. Despite more aggressive vancomycin dosing, there continues to be significant variability in vancomycin trough concentrations in pediatric patients. Methods To determine if vancomycin trough concentrations in pediatric patients differ by age and weight, we reviewed records of hospitalized patients who received vancomycin between 2008 and 2012. Patients were divided into groups that received vancomycin 40 mg/kg/day (2008 to 2009) or 60 mg/kg/day (2010 to 2012). Vancomycin trough concentrations were compared between groups and within the 60-mg/kg/day group, stratified by patient age and weight. Results After increasing the vancomycin dose from 40 mg/kg/day to 60 mg/kg/day, initial trough concentrations increased significantly in patients younger than 2 and greater than 6 years of age, but not in patients between the ages of 2 and 5 years. In the 60-mg/kg/day group, only 16.7% of patients between 2 and 5 years of age had initial trough concentrations in the therapeutic range (10 mcg/mL to 20 mcg/mL). Initial trough concentrations were therapeutic in a greater proportion of patients ages 6 years to 12 years (38.7%) and 13 years to 18 years (63.0%). Patients between the ages of 13 and 18 had the highest proportion of supratherapeutic initial vancomycin trough concentrations (14.8%). Patients weighing > 50 kg had significantly higher trough concentrations than patients ≤ 50 kg (17.1 mcg/mL vs. 9.3 mcg/mL; p<0.001). Conclusion Although increasing the vancomycin dose from 40 mg/kg/day to 60 mg/kg/day led to a significant increase in vancomycin trough concentrations, a large proportion of patients receiving 60 mg/kg/day of vancomycin had trough concentrations outside of the therapeutic range. Specifically, patients younger than 6 years tend to have low trough concentrations, while adolescents and children > 50 kg are more likely to have elevated trough concentrations. Vancomycin dosing strategies in pediatric patients should consider age and weight as well as renal function and indication. PMID:23864541
Acid-base and hormonal abnormalities in dogs with naturally occurring diabetes mellitus.
Durocher, Lawren L; Hinchcliff, Kenneth W; DiBartola, Stephen P; Johnson, Susan E
2008-05-01
To examine acid-base and hormonal abnormalities in dogs with diabetes mellitus. Cross-sectional study. 48 dogs with diabetes mellitus and 17 healthy dogs. Blood was collected and serum ketone, glucose, lactate, electrolytes, insulin, glucagon, cortisol, epinephrine, norepinephrine, nonesterified fatty acid, and triglyceride concentrations were measured. Indicators of acid-base status were calculated and compared between groups. Serum ketone and glucose concentrations were significantly higher in diabetic than in healthy dogs, but there was no difference in venous blood pH or base excess between groups. Anion gap and strong ion difference were significantly higher and strong ion gap and serum bicarbonate concentration were significantly lower in the diabetic dogs. There were significant linear relationships between measures of acid-base status and serum ketone concentration, but not between measures of acid-base status and serum lactate concentration. Serum insulin concentration did not differ significantly between groups, but diabetic dogs had a wider range of values. All diabetic dogs with a serum ketone concentration > 1,000 micromol/L had a serum insulin concentration < 5 microU/mL. There were strong relationships between serum ketone concentration and serum glucagon-insulin ratio, serum cortisol concentration, and plasma norepinephrine concentration. Serum beta-hydroxybutyrate concentration, expressed as a percentage of serum ketone concentration, decreased as serum ketone concentration increased. Results suggested that ketosis in diabetic dogs was related to the glucagon-insulin ratio with only low concentrations of insulin required to prevent ketosis. Acidosis in ketotic dogs was attributable largely to high serum ketone concentrations.
Kelly, Brian P.
2002-01-01
A detailed ground-water sampling plan was developed and executed for 64 monitoring wells in the city of Independence well field to characterize ground-water quality in the 10-year zone of contribution. Samples were collected from monitoring wells, combined Independence well field pumpage, and the Missouri River at St. Joseph, Missouri, from 1998 through 2000. In 328 ground-water samples from the 64 monitoring wells and combined well field pumpage samples, specific conductance values ranged from 511 to 1,690 microsiemens per centimeter at 25 degrees Celsius, pH values ranged from 6.4 to 7.7, water temperature ranged from 11.3 to 23.6 degrees Celsius, and dissolved oxygen concentrations ranged from 0 to 3.3 milligrams per liter. In 12 samples from the combined well field pumpage samples, specific conductance values ranged from 558 to 856 microsiemens per centimeter at 25 degrees Celsius, pH values ranged from 6.9 to 7.7, water temperature ranged from 5.8 to 22.9 degrees Celsius, and dissolved oxygen concentrations ranged from 0 to 2.4 milligrams per liter. In 45 Missouri River samples, specific conductance values ranged from 531 to 830 microsiemens per centimeter at 25 degrees Celsius, pH ranged from 7.2 to 8.7, water temperature ranged from 0 to 30 degrees Celsius, and dissolved oxygen concentrations ranged from 5.0 to 17.6 milligrams per liter. The secondary maximum contaminant level for sulfate in drinking water was exceeded once in samples from two monitoring wells, the maximum contaminant level (MCL) for antimony was exceeded once in a sample from one monitoring well, and the MCL for barium was exceeded once in a sample from one monitoring well. The MCL for iron was exceeded in samples from all monitoring wells except two. The MCL for manganese was exceeded in all samples from monitoring wells and combined well field pumpage. Enzyme linked immunoassay methods indicate total benzene, toluene, ethyl benzene, and xylene (BTEX) was detected in samples from five wells. The highest total BTEX concentration was less than the MCL of toluene, ethyl benzene, or xylene but greater than the MCL for benzene. Total BTEX was not detected in samples from any well more than once. Atrazine was detected in samples from nine wells, and exceeded the MCL once in a sample from one well. Alachlor was detected in samples from 22 wells but the MCL was never exceeded in any sample. Samples from five wells analyzed for a large number of organic compounds indicate concentrations of volatile organic compounds did not exceed the MCL for drinking water. No semi-volatile organic compounds were detected; dieldrin was detected in one well sample, and no other pesticides, herbicides, polychlorinated biphenyls, or polychlorinated napthalenes were detected. Dissolved ammonia, dissolved nitrite plus nitrate, dissolved orthophosphorus, alachlor, and atrazine analyses were used to determine the spatial and temporal variability of agricultural chemicals in ground water. Detection frequencies for dissolved ammonia increased with well depth, decreased with depth for dissolved nitrite plus nitrate, and remained relatively constant with depth for dissolved orthophosphorus. Maximum concentrations of dissolved ammonia, dissolved nitrite plus nitrate, and dissolved orthophosphorus were largest in the shallowest wells and decreased with depth, which may indicate the land surface as the source. However, median concentrations increased with depth for dissolved ammonia, were less than the detection limit for dissolved nitrite plus nitrate, and decreased with depth for dissolved orthophosphorus. This pattern does not indicate a well-defined single source for these constituents. Dissolved orthophosphorus median concentrations were similar, but decreased slightly with depth, and may indicate the land surface as the source. Seasonal variability of dissolved ammonia, dissolved nitrite plus nitrate, a
Near roadway air pollution across a spatially extensive road and cycling network.
Farrell, William; Weichenthal, Scott; Goldberg, Mark; Valois, Marie-France; Shekarrizfard, Maryam; Hatzopoulou, Marianne
2016-05-01
This study investigates the variability in near-road concentrations of ultra-fine particles (UFP). Our results are based on a mobile data collection campaign conducted in 2012 in Montreal, Canada using instrumented bicycles and covering approximately 475 km of unique roadways. The spatial extent of the data collected included a diverse array of roads and land use patterns. Average concentrations of UFP per roadway segment varied greatly across the study area (1411-192,340 particles/cm(3)) as well as across the different visits to the same segment. Mixed effects linear regression models were estimated for UFP (R(2) = 43.80%), incorporating a wide range of predictors including land-use, built environment, road characteristics, and meteorology. Temperature and wind speed had a large negative effect on near-road concentrations of UFP. Both the day of the week and time of day had a significant effect with Tuesdays and afternoon periods positively associated with UFP. Since UFP are largely associated with traffic emissions and considering the wide spatial extent of our data collection campaign, it was impossible to collect traffic volume data. For this purpose, we used simulated data for traffic volumes and speeds across the region and observed a positive effect for volumes and negative effect for speed. Finally, proximity to truck routes was also associated with higher UFP concentrations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Role of hemoglobin and capillarization for oxygen delivery and extraction in muscular exercise.
Saltin, B; Kiens, B; Savard, G; Pedersen, P K
1986-01-01
Through the years the role of the various links in the transport of oxygen in the human body has been discussed extensively, and especially whether one of these links could be singled out as limiting oxygen uptake during exercise. In his thesis work Lars Hermansen dealt with several of these variables related to oxygen transport and uptake. Two of these were the hemoglobin concentration of the blood (Hb) and skeletal muscle capillarization. These are the focus of this article. It can be demonstrated that variation in arterial oxygen content due to different Hb concentrations is fully compensated for at the level of the muscle, i.e. the amount of oxygen delivered to contracting muscles is adjusted by a variation in the blood flow so that it is the same regardless of Hb concentration in the range of 118-172 g X l-1. At the systemic level, with a large fraction of the muscle exercising, this causes an increase in submaximal heart rate and a lowering in maximal oxygen uptake in people with low as compared to normal or high Hb concentration. The primary significance of an enlarged capillary network in the muscle does not appear to be for accommodating a larger flow, but rather to allow for a long enough mean transit time and large enough surface area for optimal exchange of gases, substrates and metabolites.
Plucinski, Mateusz; Dimbu, Rafael; Candrinho, Baltazar; Colborn, James; Badiane, Aida; Ndiaye, Daouda; Mace, Kimberly; Chang, Michelle; Lemoine, Jean F; Halsey, Eric S; Barnwell, John W; Udhayakumar, Venkatachalam; Aidoo, Michael; Rogier, Eric
2017-11-07
Rapid diagnostic test (RDT) positivity is supplanting microscopy as the standard measure of malaria burden at the population level. However, there is currently no standard for externally validating RDT results from field surveys. Individuals' blood concentration of the Plasmodium falciparum histidine rich protein 2 (HRP2) protein were compared to results of HRP2-detecting RDTs in participants from field surveys in Angola, Mozambique, Haiti, and Senegal. A logistic regression model was used to estimate the HRP2 concentrations corresponding to the 50 and 90% level of detection (LOD) specific for each survey. There was a sigmoidal dose-response relationship between HRP2 concentration and RDT positivity for all surveys. Variation was noted in estimates for field RDT sensitivity, with the 50% LOD ranging between 0.076 and 6.1 ng/mL and the 90% LOD ranging between 1.1 and 53 ng/mL. Surveys conducted in two different provinces of Angola using the same brand of RDT and same study methodology showed a threefold difference in LOD. Measures of malaria prevalence estimated using population RDT positivity should be interpreted in the context of potentially large variation in RDT LODs between, and even within, surveys. Surveys based on RDT positivity would benefit from external validation of field RDT results by comparing RDT positivity and antigen concentration.
Mouser, Vivian H. M.; Melchels, Ferry P.W.; Visser, Jetze; Dhert, Wouter J.A.; Gawlitta, Debby; Malda, Jos
2016-01-01
Bioprinting of chondrocyte-laden hydrogels facilitates the fabrication of constructs with controlled organization and shape for e.g. articular cartilage implants. Gelatin-methacryloyl (gelMA) supplemented with gellan gum is a promising bio-ink. However, the rheological properties governing the printing process, and the influence of gellan gum on the mechanical properties and chondrogenesis of the blend, are still unknown. Here, we investigated the suitability of gelMA/gellan for cartilage bioprinting. Multiple concentrations, ranging from 3-25% gelMA with 0-1.5% gellan gum, were evaluated for their printability, defined as the ability to form filaments and to incorporate cells at 15-37°C. To support the printability assessment, yield stress and viscosity of the hydrogels were measured. Stiffness of UV-cured constructs, as well as cartilage-like tissue formation by embedded chondrocytes, were determined in vitro. A large range of gelMA/gellan concentrations were printable with inclusion of cells and formed the bioprinting window. Addition of gellan gum improved filament deposition by inducing yielding behavior, increased construct stiffness, and supported chondrogenesis. High gellan gum concentrations, however, did compromise cartilage matrix production and distribution, and even higher concentrations resulted in too high yield stresses to allow cell encapsulation. This study demonstrates the high potential of gelMA/gellan blends for cartilage bioprinting and identifies yield stress as dominant factor for bioprintability. PMID:27431733
Ojwang', Loice M; Cook, Robert L
2013-08-06
The interaction of humic acids (HAs) with 1-palmitoyl-2-oleoyl-Sn-glycero-3-phosphocholine (POPC) large unilamellar vesicle (LUV) model biomembrane system was studied by fluorescence spectroscopy. HAs from aquatic and terrestrial (including coal) sources were studied. The effects of HA concentration and temperature over environmentally relevant ranges of 0 to 20 mg C/L and 10 to 30 °C, respectively, were investigated. The dosage studies revealed that the aquatic Suwannee River humic acid (SRHA) causes an increased biomembrane perturbation (percent leakage of the fluorescent dye, Sulforhodamine B) over the entire studied concentration range. The two terrestrial HAs, namely Leonardite humic acid (LAHA) and Florida peat humic acid (FPHA), at concentrations above 5 mg C/L, show a decrease or a plateau effect attributable to the competition within the HA mixture and/or the formation of "partial aggregates". The temperature studies revealed that biomembrane perturbation increases with decreasing temperature for all three HAs. Kinetic studies showed that the membrane perturbation process is complex with both fast and slow absorption (sorption into the bilayer) components and that the slow component could be fitted by first order kinetics. A mechanism based on "lattice errors" within the POPC LUVs is put forward to explain the fast and slow components. A rationale behind the concentration and temperature findings is provided, and the environmental implications are discussed.
Bourg, Ian C; Sposito, Garrison
2011-08-15
We report new molecular dynamics results elucidating the structure of the electrical double layer (EDL) on smectite surfaces contacting mixed NaCl-CaCl(2) electrolyte solutions in the range of concentrations relevant to pore waters in geologic repositories for CO(2) or high-level radioactive waste (0.34-1.83 mol(c) dm(-3)). Our results confirm the existence of three distinct ion adsorption planes (0-, β-, and d-planes), often assumed in EDL models, but with two important qualifications: (1) the location of the β- and d-planes are independent of ionic strength or ion type and (2) "indifferent electrolyte" ions can occupy all three planes. Charge inversion occurred in the diffuse ion swarm because of the affinity of the clay surface for CaCl(+) ion pairs. Therefore, at concentrations ≥0.34 mol(c) dm(-3), properties arising from long-range electrostatics at interfaces (electrophoresis, electro-osmosis, co-ion exclusion, colloidal aggregation) will not be correctly predicted by most EDL models. Co-ion exclusion, typically neglected by surface speciation models, balanced a large part of the clay mineral structural charge in the more concentrated solutions. Water molecules and ions diffused relatively rapidly even in the first statistical water monolayer, contradicting reports of rigid "ice-like" structures for water on clay mineral surfaces. Published by Elsevier Inc.
Mouser, Vivian H M; Melchels, Ferry P W; Visser, Jetze; Dhert, Wouter J A; Gawlitta, Debby; Malda, Jos
2016-07-19
Bioprinting of chondrocyte-laden hydrogels facilitates the fabrication of constructs with controlled organization and shape e.g. for articular cartilage implants. Gelatin-methacryloyl (gelMA) supplemented with gellan gum is a promising bio-ink. However, the rheological properties governing the printing process, and the influence of gellan gum on the mechanical properties and chondrogenesis of the blend, are still unknown. Here, we investigated the suitability of gelMA/gellan for cartilage bioprinting. Multiple concentrations, ranging from 3% to 20% gelMA with 0%-1.5% gellan gum, were evaluated for their printability, defined as the ability to form filaments and to incorporate cells at 15 °C-37 °C. To support the printability assessment, yield stress and viscosity of the hydrogels were measured. Stiffness of UV-cured constructs, as well as cartilage-like tissue formation by embedded chondrocytes, were determined in vitro. A large range of gelMA/gellan concentrations were printable with inclusion of cells and formed the bioprinting window. The addition of gellan gum improved filament deposition by inducing yielding behavior, increased construct stiffness and supported chondrogenesis. High gellan gum concentrations, however, did compromise cartilage matrix production and distribution, and even higher concentrations resulted in too high yield stresses to allow cell encapsulation. This study demonstrates the high potential of gelMA/gellan blends for cartilage bioprinting and identifies yield stress as a dominant factor for bioprintability.
Speybrouck, David; Doublet, Charline; Cardinael, Pascal; Fiol-Petit, Catherine; Corens, David
2017-08-11
Supercritical Fluid Chromatography is frequently used to efficiently handle separations of enantiomers. The separation of basic analytes usually requires the addition of a basic additive in the mobile phase to improve the peak shape or even to elute the compounds. The effect of increasing the concentration of 2-propylamine as additive on the elution of a series of basic compounds on a Chiralpak-AD stationary phase was studied. In this study, unusual additive concentrations ranging from 0.3% to 10% of 2-propylamine 2-propylaminein the modifier were explored and the effect on retention, peak shape, selectivity and resolution was evaluated. The addition of a large quantity of additive allowed to drastically improve the selectivity and the resolution, and even enantiomers elution order reversal was observed by changing the concentration of basic additive. The role of the ratio additive/modifier appeared a key to tune the enantioselectivity. Finally, the impact of these drastic conditions on the column material was evaluated. Copyright © 2017 Elsevier B.V. All rights reserved.
Selective concentration of aromatic bases from water with a resin adsorbent
Stuber, H.A.; Leenheer, J.A.
1983-01-01
Aromatic bases are concentrated from water on columns of a resin adsorbent and recovered by aqueous-acid elution. The degree of concentration attainable depends on the ratio of the capacity factor (k) of the neutral form of the amine to that of the ionized form. Capacity factors of ionic forms of amines on XAD-8 resin (a methylacrylic ester polymer) are greater than zero, ranging from 20 to 250 times lower than those of their neutral forms; they increase with increasing hydrophobicity of the amine. Thus, desorption by acid is an edition (k during desorption >0) rather than a displacement (k during desorption = 0) process. The degree of concentration attainable on XAD-8 resin varies with the hydrophobicity of the amine, being limited for hydrophilic solutes (for example, pyridine) by small neutral-form k's, reaching a maximum for amines of intermediate hydrophobicity (for example, quinoline), and decreasing for more hydrophobc solutes (for example, acridine) because of their large ionic-form k's.
Diphytanyl glycerol ether distributions in sediments of the Orca Basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pease, T.K.; VanVleet, E.S.; Barre, J.S.
1992-09-01
Archaebacterially produced diphytanyl glycerol ether (DPGE) was examined in core sediments from the Orca Basin, an anoxic hypersaline basin in the northwestern Gulf of Mexico, to observe its spatial variability and potential origin. A differential extraction protocol was employed to quantify the isopranyl glycerol ethers associated with unbound, intermediate-bound, and kerogen-bound lipid fractions. Archaebacterial lipids were evident at all depths for the unbound and intermediate-bound fractions. Concentrations of DPGE ranged from 0.51 to 2.91 [mu]g/g dry sediment at the surface and showed secondary maxima deeper in basin sediments. Intermediate-bound DPGE concentrations exhibited an inverse relationship to unbound DPGE concentrations. Kerogen-boundmore » DPGE concentrations were normally below detection limits. Earlier studies describing the general homogeneity of lipid components within the overlying brine and at the brine/seawater interface suggest that the large-scale sedimentary DPGE variations observed in this study result from spatial and temporal variations in in-situ production by methanogenic or extremely halophilic archaebacteria.« less
NASA Astrophysics Data System (ADS)
Hager, John; Steill, Jeff; Compton, Robert
2004-11-01
A high-resolution FTIR Bomem DA8 spectrometer has been installed at the University of Tennessee and has been successfully coupled with a suntracker and open path optics. Solar absorption spectra were recorded on 75 days in the last 18 months over a large spectral range. The high-resolution spectra provide information on the vertical concentration profiles of trace gases in the atmosphere. The HITRAN data base was used along with SFIT2 in order to retrieve concentration profiles of different trace gases. Many atmospheric constituents are open to this analysis. Tropospheric Ozone in the Knoxville area is rated as the worst in the nation by the American Lung Association. Sunlight, pollutants and hot weather cause ground-level ozone to form in harmful concentrations in the air. Seasonal and daily trends of ozone show correlation with other sources such as the EPA, and recent efforts to correlate solar spectra with open-path spectra will be discussed.
Delgado-Lecaroz, R; Warnick, L D; Guard, C L; Smith, M C; Barry, D A
2000-01-01
The objective of this study was to evaluate serum mineral and electrolyte concentrations at the time of on-farm diagnosis of left displaced abomasum, right displaced abomasum, or abomasal volvulus in dairy cows. Data were collected from 104 affected cows and 96 control cows matched with cases, based on herd, parity, and stage of lactation. Cows with abomasal displacement or volvulus had significantly lower calcium, phosphorous, magnesium, potassium, and chloride concentrations and increased anion gap at the time of diagnosis compared with control cows from the same herds. The percentages of cases and controls with total serum calcium concentrations below the lower limit of the laboratory reference range (2.08 mmol/L [8.3 mg/dL]) were 70% and 23%, respectively. Based on the large percentage of cases with hypocalcemia, administering calcium salts at the time of treatment of field cases of abomasal displacement or volvulus may be beneficial. PMID:10769767
Magneto-optical characterization of colloidal dispersions. Application to nickel nanoparticles.
Pascu, Oana; Caicedo, José Manuel; Fontcuberta, Josep; Herranz, Gervasi; Roig, Anna
2010-08-03
We report here on a fast magneto-optical characterization method for colloidal liquid dispersions of magnetic nanoparticles. We have applied our methodology to Ni nanoparticles with size equal or below 15 nm synthesized by a ligand stabilized solution-phase synthesis. We have measured the magnetic circular dichroism (MCD) of colloidal dispersions and found that we can probe the intrinsic magnetic properties within a wide concentration range, from 10(-5) up to 10(-2) M, with sensitivity to concentrations below 1 microg/mL of magnetic Ni particles. We found that the measured MCD signal scales up with the concentration thus providing a means of determining the concentration values of highly diluted dispersions. The methodology presented here exhibits large flexibility and versatility and might be suitable to study either fundamental problems related to properties of nanosize particles including surface related effects which are highly relevant for magnetic colloids in biomedical applications or to be applied to in situ testing and integration in production lines.
Fate of pharmaceutical and trace organic compounds in three septic system plumes, Ontario, Canada.
Carrara, Cherilyn; Ptacek, Carol J; Robertson, William D; Blowes, David W; Moncur, Michael C; Sverko, Ed; Backus, Sean
2008-04-15
Three high volume septic systems in Ontario, Canada, were examined to assess the potential for onsite wastewatertreatment systems to release pharmaceutical compounds to the environment and to evaluate the mobility of these compounds in receiving aquifers. Wastewater samples were collected from the septic tanks, and groundwater samples were collected below and down gradient of the infiltration beds and analyzed for a suite of commonly used pharmaceutical and trace organic compounds. The septic tank samples contained elevated concentrations of several pharmaceutical compounds. Ten of the 12 compounds analyzed were detected in groundwater at one or more sites at concentrations in the low ng L(-1) to low microg L(-1) range. Large differences among the sites were observed in both the number of detections and the concentrations of the pharmaceutical compounds. Of the compounds analyzed, ibuprofen, gemfibrozil, and naproxen were observed to be transported atthe highest concentrations and greatest distances from the infiltration source areas, particularly in anoxic zones of the plumes.
Methyl tert-butyl ether (MTBE) in finished drinking water in Germany.
Kolb, Axel; Püttmann, Wilhelm
2006-03-01
In the present study 83 finished drinking water samples from 50 cities in Germany were analyzed for methyl tert-butyl ether (MTBE) content with a detection limit of 10 ng/L. The detection frequency was 46% and the concentrations ranged between 17 and 712 ng/L. Highest concentrations were found in the community water systems (CWSs) of Leuna and Spergau in Saxony-Anhalt. These CWSs are supplied with water possibly affected by MTBE contaminated groundwater. MTBE was detected at concentrations lower than 100 ng/L in drinking water supplied by CWSs using bank filtered water from Rhine and Main Rivers. The results from Leuna and Spergau show that large groundwater contaminations in the vicinity of CWSs pose the highest risk for MTBE contamination in drinking water. CWSs using bank filtered water from Rhine and Main Rivers are susceptible to low MTBE contaminations in finished drinking water. All measured MTBE concentrations were below proposed limit values for drinking water.
Arsenic accumulation in three species of sea turtles.
Saeki, K; Sakakibara, H; Sakai, H; Kunito, T; Tanabe, S
2000-09-01
Arsenic in the liver, kidney and muscle of three species of sea turtles, e.g., green turtles (Chelonia mydas), loggerhead turtles (Caretta caretta) and hawksbill turtles (Eretmochelys imbricata), were determined using HG-AAS, followed by arsenic speciation analysis using HPLC-ICP-MS. The order of arsenic concentration in tissues was muscle > kidney > liver. Unexpectedly, the arsenic concentrations in the hawksbill turtles feeding mainly on sponges were higher than the two other turtles primarily eating algae and mollusk which accumulate a large amount of arsenic. Especially, the muscles of the hawksbill turtles contained remarkably high arsenic concentrations averaging 153 mg kg(-1) dry weight with the range of 23.1-205 mg kg(-1) (n = 4), even in comparison with the data from other organisms. The arsenic concentrations in the tissues of the green turtles were significantly decreased with standard carapace length as an indicator of growth. In arsenic compounds, arsenobetaine was mostly detected in the tissues of all the turtles. Besides arsenobetaine, a small amount of dimethylarsinic acid was also observed in the hawksbill turtles.
Pareja, Jhon; López, Sebastian; Jaramillo, Daniel; Hahn, David W; Molina, Alejandro
2013-04-10
The performances of traditional laser-induced breakdown spectroscopy (LIBS) and laser ablation-LIBS (LA-LIBS) were compared by quantifying the total elemental concentration of potassium in highly heterogeneous solid samples, namely soils. Calibration curves for a set of fifteen samples with a wide range of potassium concentrations were generated. The LA-LIBS approach produced a superior linear response different than the traditional LIBS scheme. The analytical response of LA-LIBS was tested with a large set of different soil samples for the quantification of the total concentration of Fe, Mn, Mg, Ca, Na, and K. Results showed an acceptable linear response for Ca, Fe, Mg, and K while poor signal responses were found for Na and Mn. Signs of remaining matrix effects for the LA-LIBS approach in the case of soil analysis were found and discussed. Finally, some improvements and possibilities for future studies toward quantitative soil analysis with the LA-LIBS technique are suggested.