Science.gov

Sample records for large curvature circular

  1. The effect of intrinsic curvature on conformational properties of circular DNA.

    PubMed Central

    Katritch, V; Vologodskii, A

    1997-01-01

    Both thermal fluctuations and the intrinsic curvature of DNA contribute to conformations of the DNA axis. We looked for a way to estimate the relative contributions of these two components of the double-helix curvature for DNA with a typical sequence. We developed a model and Monte Carlo procedure to simulate the Boltzmann distribution of DNA conformations with a specific intrinsic curvature. Two steps were used to construct the equilibrium conformation of the model chain. We first specified the equilibrium DNA conformation at the base pair level of resolution, using a set of the equilibrium dinucleotide angles and DNA sequence. This conformation was then approximated by the conformation of the model chain consisting of a reduced number of longer, straight cylindrical segments. Each segment of the chain corresponded to a certain number of DNA base pairs. We simulated conformational properties of nicked circular DNA for different sets of equilibrium dinucleotide angles, different random DNA sequences, and lengths. Only random sequences of DNA generated with equal probability of appearance for all types of bases at any site of the sequence were used. The results showed that for a broad range of intrinsic curvature parameters, the radius of gyration of DNA circles should be nearly independent of DNA sequence for all DNA lengths studied. We found, however, a DNA properly that should strongly depend on DNA sequence if the double helix has essential intrinsic curvature. This property is the equilibrium distribution of the linking number for DNA circles that are 300-1000 bp in length. We found that a large fraction of the distributions corresponding to random DNA sequences should have two separate maxima. The physical nature of this unexpected effect is discussed. This finding opens new opportunities for joined experimental and theoretical studies of DNA intrinsic curvature. Images FIGURE 1 PMID:9138556

  2. Large Circular Basin Flooded and then Cratered

    NASA Image and Video Library

    2000-08-05

    As NASA Mariner 10 passed by Mercury on its second encounter with the planet on Sept. 21, 1974, this picture of a large circular 350 kilometer, 220 mile diameter basin was obtained near the morning terminator.

  3. Curvature wavefront sensing for the large synoptic survey telescope.

    PubMed

    Xin, Bo; Claver, Chuck; Liang, Ming; Chandrasekharan, Srinivasan; Angeli, George; Shipsey, Ian

    2015-10-20

    The Large Synoptic Survey Telescope (LSST) will use an active optics system (AOS) to maintain alignment and surface figure on its three large mirrors. Corrective actions fed to the LSST AOS are determined from information derived from four curvature wavefront sensors located at the corners of the focal plane. Each wavefront sensor is a split detector such that the halves are 1 mm on either side of focus. In this paper, we describe the extensions to published curvature wavefront sensing algorithms needed to address challenges presented by the LSST, namely the large central obscuration, the fast f/1.23 beam, off-axis pupil distortions, and vignetting at the sensor locations. We also describe corrections needed for the split sensors and the effects from the angular separation of different stars providing the intrafocal and extrafocal images. Lastly, we present simulations that demonstrate convergence, linearity, and negligible noise when compared to atmospheric effects when the algorithm extensions are applied to the LSST optical system. The algorithm extensions reported here are generic and can easily be adapted to other wide-field optical systems including similar telescopes with large central obscuration and off-axis curvature sensing.

  4. Assessment of RANS to predict flows with large streamline curvature

    NASA Astrophysics Data System (ADS)

    Yin, J. L.; Wang, D. Z.; Cheng, H.; Gu, W. G.

    2013-12-01

    In order to provide a guideline for choosing turbulence models in computation of complex flows with large streamline curvature, this paper presents a comprehensive comparison investigation of different RANS models widely used in engineering to check each model's sensibility on the streamline curvature. First, different models including standard k-ε, Realizable k-ε, Renormalization-group (RNG) k-ε model, Shear-stress transport k-ω model and non-linear eddy-viscosity model v2-f model are tested to simulated the flow in a 2D U-bend which has the standard bench mark available. The comparisons in terms of non-dimensional velocity and turbulent kinetic energy show that large differences exist among the results calculated by various models. To further validate the capability to predict flows with secondary flows, the involved models are tested in a 3D 90° bend flow. Also, the velocities are compared. As a summary, the advantages and disadvantages of each model are analysed and guidelines for choice of turbulence model are presented.

  5. Accelerator Considerations of Large Circular Colliders

    NASA Astrophysics Data System (ADS)

    Chao, Alex

    As we consider the tremendous physics reaches of the big future circular electron-positron and proton-proton colliders, it might be advisable to keep a close track of what accelerator challenges they face. Good progresses are being made, and yet it is reported here that substantial investments in funding, manpower, as well as a long sustained time to the R&D efforts will be required in preparation to realize these dream colliders.

  6. Accelerator considerations of large circular colliders

    NASA Astrophysics Data System (ADS)

    Chao, Alex

    2016-07-01

    As we consider the tremendous physics reaches of the big future circular electron-positron and proton-proton colliders, it might be advisable to keep a close track of what accelerator challenges they face. Good progresses are being made, and yet it is reported here that substantial investments in funding, manpower, as well as a long sustained time to the R&D efforts will be required in preparation to realize these dream colliders.

  7. Camera-based curvature measurement of a large incandescent object

    NASA Astrophysics Data System (ADS)

    Ollikkala, Arttu V. H.; Kananen, Timo P.; Mäkynen, Anssi J.; Holappa, Markus

    2013-04-01

    The goal of this work was to implement a low-cost machine vision system to help the roller operator to estimate the amount of strip camber during the rolling process. The machine vision system composing of a single camera, a standard PC-computer and a LabVIEW written program using straightforward image analysis determines the magnitude and direction of camber and presents the results both in numerical and graphical form on the computer screen. The system was calibrated with LED set-up which was also used to validate the accuracy of the system by mimicking the strip curvatures. The validation showed that the maximum difference between the true and measured values was less than +/-4 mm (k=0.95) within the 22 meter long test pattern.

  8. Large eddy simulation of a boundary layer with concave streamwise curvature

    NASA Technical Reports Server (NTRS)

    Lund, Thomas S.

    1993-01-01

    One of the most exciting recent developments in the field of large eddy simulation (LES) is the dynamic subgrid-scale model. The dynamic model concept is a general procedure for evaluating model constants by sampling a band of the smallest scales actually resolved in the simulation. To date, the procedure has been used primarily in conjunction with the Smagorinsky model. The dynamic procedure has the advantage that the value of the model constant need not be specified a priori, but rather is calculated as a function of space and time as the simulation progresses. This feature makes the dynamic model especially attractive for flows in complex geometries where it is difficult or impossible to calibrate model constants. The dynamic model was highly successful in benchmark tests involving homogeneous and channel flows. Having demonstrated the potential of the dynamic model in these simple flows, the overall direction of the LES effort at CTR shifted toward an evaluation of the model in more complex situations. The current test cases are basic engineering-type flows for which Reynolds averaged approaches were unable to model the turbulence to within engineering accuracy. Flows currently under investigation include a backward-facing step, wake behind a circular cylinder, airfoil at high angles of attack, separated flow in a diffuser, and boundary layer over a concave surface. Preliminary results from the backward-facing step and cylinder wake simulations are encouraging. Progress on the LES of a boundary layer on a concave surface is discussed. Although the geometry of a concave wall is not very complex, the boundary layer that develops on its surface is difficult to model due to the presence of streamwise Taylor-Gortler vortices. These vortices arise as a result of a centrifugal instability associated with the convex curvature.

  9. Large quasi-circular features beneath frost on Triton

    NASA Technical Reports Server (NTRS)

    Helfenstein, Paul; Veverka, Joseph; Mccarthy, Derek; Lee, Pascal; Hillier, John

    1992-01-01

    Specially processed Voyager 2 images of Neptune's largest moon, Triton, reveal three large quasi-circular features ranging in diameter from 280 to 935 km within Triton's equatorial region. The largest of these features contains a central irregularly shaped area of comparatively low albedo about 380 km in diameter, surrounded by crudely concentric annuli of higher albedo materials. None of the features exhibit significant topographic expression, and all appear to be primarily albedo markings. The features are located within a broad equatorial band of anomalously transparent frost that renders them nearly invisible at the large phase angles (alpha greater than 90 deg) at which Voyager obtained its highest resolution coverage of Triton. The features can be discerned at smaller phase angles (alpha = 66 deg) at which the frost only partially masks underlying albedo contrasts. The origin of the features is uncertain but may have involved regional cryovolcanic activity.

  10. Large quasi-circular features beneath frost on triton.

    PubMed

    Helfenstein, P; Veverka, J; McCarthy, D; Lee, P; Hillier, J

    1992-02-14

    Specially processed Voyager 2 images of Neptune's largest moon, Triton, reveal three large quasi-circular features ranging in diameter from 280 to 935 kilometers within Triton's equatorial region. The largest of these features contains a central, irregularly shaped area of comparatively low albedo about 380 kilometers in diameter, surrounded by crudely concentric annuli of higher albedo materials. None of the features exhibit significant topographic expression, and all appear to be primarily albedo markings. The features are located within a broad equatorial band of anomalously transparent frost that renders them nearly invisible at the large phase angles (alpha > 90 degrees ) at which Voyager obtained its highest resolution coverage of Triton. The features can be discerned at smaller phase angles (alpha = 66 degrees ) at which the frost only partially masks underlying albedo contrasts. The origin of the features is uncertain but may have involved regional cryovolcanic activity.

  11. Large quasi-circular features beneath frost on Triton

    NASA Technical Reports Server (NTRS)

    Helfenstein, Paul; Veverka, Joseph; Mccarthy, Derek; Lee, Pascal; Hillier, John

    1992-01-01

    Specially processed Voyager 2 images of Neptune's largest moon, Triton, reveal three large quasi-circular features ranging in diameter from 280 to 935 km within Triton's equatorial region. The largest of these features contains a central irregularly shaped area of comparatively low albedo about 380 km in diameter, surrounded by crudely concentric annuli of higher albedo materials. None of the features exhibit significant topographic expression, and all appear to be primarily albedo markings. The features are located within a broad equatorial band of anomalously transparent frost that renders them nearly invisible at the large phase angles (alpha greater than 90 deg) at which Voyager obtained its highest resolution coverage of Triton. The features can be discerned at smaller phase angles (alpha = 66 deg) at which the frost only partially masks underlying albedo contrasts. The origin of the features is uncertain but may have involved regional cryovolcanic activity.

  12. Design and experimental demonstration of variable curvature mirror having a large saggitus variation

    NASA Astrophysics Data System (ADS)

    Xie, Xiaopeng; Zhao, Hui; Ren, Guorui; Wei, Jingxuan; Menke, Neimule

    2014-11-01

    Variable curvature mirror (VCM) is a simplified active optical component being capable of changing its curvature radius. Curvature radius variation within a wide range requires that the VCM should be able to generate a large saggitus variation. Besides that, the surface form accuracy should be maintained above a reasonable level. In this paper, a piezoelectric actuation based prototype VCM is designed, constructed and experimentally tested. The thickness of the K9 plane mirror is only 3mm over the full aperture of 100mm. Six piezoelectric actuators are fixed into a base plate and the head of each actuator is connected to an annular ring through the screw thread. With such a structure, the force provided by each actuator can be transformed to the mirror backside through this annular ring. With each actuator generating the same force, the curvature radius can be changed in a uniform way. At the mean time, the surface form accuracy could be adjusted one point by point to compensation asymmetric modes as well. Mathematical analysis and FEA (finite element analysis) are used together to demonstrate the theoretical correctness. Besides that, the prototype VCM is successfully constructed and experiments have been carried out to give a quantitative assessment on the saggitus variation.

  13. Compensation for large tensor modes with iso-curvature perturbations in CMB anisotropies

    SciTech Connect

    Kawasaki, Masahiro; Yokoyama, Shuichiro E-mail: shu@icrr.u-tokyo.ac.jp

    2014-05-01

    Recently, BICEP2 has reported the large tensor-to-scalar ratio r = 0.2{sup +0.07}{sub −0.05} from the observation of the cosmic microwave background (CMB) B-mode at degree-scales. Since tensor modes induce not only CMB B-mode but also the temperature fluctuations on large scales, to realize the consistent temperature fluctuations with the Planck result we should consider suppression of scalar perturbations on corresponding large scales. To realize such a suppression, we consider anti-correlated iso-curvature perturbations which could be realized in the simple curvaton model.

  14. Stochastic Allen-Cahn Approximation of the Mean Curvature Flow: Large Deviations Upper Bound

    NASA Astrophysics Data System (ADS)

    Bertini, Lorenzo; Buttà, Paolo; Pisante, Adriano

    2017-05-01

    Consider the Allen-Cahn equation on the d-dimensional torus, d = 2, 3, in the sharp interface limit. As is well known, the limiting dynamics is described by the motion by mean curvature of the interface between the two stable phases. Here, we analyze a stochastic perturbation of the Allen-Cahn equation and describe its large deviation asymptotics in a joint sharp interface and small noise limit. Relying on previous results on the variational convergence of the action functional, we prove the large deviations upper bound. The corresponding rate function is finite only when there exists a time evolving interface of codimension one between the two stable phases. The zero level set of this rate function is given by the evolution by mean curvature in the sense of Brakke. Finally, the rate function can be written in terms of the sum of two non-negative quantities: the first measures how much the velocity of the interface deviates from its mean curvature, while the second is due to the possible occurrence of nucleation events.

  15. Radius of Curvature Measurement of Large Optics Using Interferometry and Laser Tracker

    NASA Technical Reports Server (NTRS)

    Hagopian, John; Connelly, Joseph

    2011-01-01

    The determination of radius of curvature (ROC) of optics typically uses either a phase measuring interferometer on an adjustable stage to determine the position of the ROC and the optics surface under test. Alternatively, a spherometer or a profilometer are used for this measurement. The difficulty of this approach is that for large optics, translation of the interferometer or optic under test is problematic because of the distance of translation required and the mass of the optic. Profilometry and spherometry are alternative techniques that can work, but require a profilometer or a measurement of subapertures of the optic. The proposed approach allows a measurement of the optic figure simultaneous with the full aperture radius of curvature.

  16. Large-eddy simulation of flow past a circular cylinder

    NASA Astrophysics Data System (ADS)

    Cheng, Wan; Pullin, Dale; Samtaney, Ravi; Zhang, Wei

    2015-11-01

    Wall-modeled, large-eddy simulations (LES) about a smooth-walled circular cylinder are described. The cylinder is of diameter D and is of extent 3 D in the span-wise direction. The stretched-vortex sub-grid scale model is used away from the cylinder wall, including regions of large-scale separated flow. At the wall this is coupled directly to an extended version of the virtual-wall model (VWM) of Chung & Pullin (2009). Here the wall-adjacent flow is modeled by wall-normal integration of both components of the wall-parallel momentum equation across a thin wall-layer whose thickness is small compared to that of the local boundary layer. This provides a wall-parallel, cell-scale estimate of the surface stress-vector field across the entire cylinder surface, and, with further assumptions, gives a slip-velocity boundary condition for the outer-flow LES. Flow separation is captured. The LES are done with a fourth-order accurate finite-difference method with span-wise periodic boundary conditions. A third-order semi-implicit Runge-Kutta method is used for temporal discretization. The LES methodology is verified by comparison with DNS at ReD = 3 , 900 . LES at larger Reynolds number will be discussed. Supported partially by KAUST OCRF Award No. URF/1/1394-01 and partially by NSF award CBET 1235605.

  17. Plastic set of smooth large radii of curvature thermal conductance specimens at light loads

    NASA Technical Reports Server (NTRS)

    Mckinzie, D. J., Jr.

    1972-01-01

    Thermal contact conductance test data at high vacuum were obtained from two Armco iron specimens having smooth, large radii of curvature, convex, one-half wave length surfaces. The data are compared with calculations based on two macroscopic elastic deformation theories and an empirical expression. Major disagreement with the theories and fair agreement with the empirical expression resulted. Plastic deformation of all the contacting surfaces was verified from surface analyzer statistics. These results indicate that the theoretical assumption of macroscopic elastic deformation is inadequate for accurate prediction of heat transfer with light loads for Armco iron specimens similar to those used in this investigation.

  18. Large curvature and background scale independence in single-metric approximations to asymptotic safety

    NASA Astrophysics Data System (ADS)

    Morris, Tim R.

    2016-11-01

    In single-metric approximations to the exact renormalization group (RG) for quantum gravity, it has been not been clear how to treat the large curvature domain beyond the point where the effective cutoff scale k is less than the lowest eigenvalue of the appropriate modified Laplacian. We explain why this puzzle arises from background dependence, resulting in Wilsonian RG concepts being inapplicable. We show that when properly formulated over an ensemble of backgrounds, the Wilsonian RG can be restored. This in turn implies that solutions should be smooth and well defined no matter how large the curvature is taken. Even for the standard single-metric type approximation schemes, this construction can be rigorously derived by imposing a modified Ward identity (mWI) corresponding to rescaling the background metric by a constant factor. However compatibility in this approximation requires the space-time dimension to be six. Solving the mWI and flow equation simultaneously, new variables are then derived that are independent of overall background scale.

  19. A Novel Low-Cost, Large Curvature Bend Sensor Based on a Bowden-Cable.

    PubMed

    Jeong, Useok; Cho, Kyu-Jin

    2016-06-24

    Bend sensors have been developed based on conductive ink, optical fiber, and electronic textiles. Each type has advantages and disadvantages in terms of performance, ease of use, and cost. This study proposes a new and low-cost bend sensor that can measure a wide range of accumulated bend angles with large curvatures. This bend sensor utilizes a Bowden-cable, which consists of a coil sheath and an inner wire. Displacement changes of the Bowden-cable's inner wire, when the shape of the sheath changes, have been considered to be a position error in previous studies. However, this study takes advantage of this position error to detect the bend angle of the sheath. The bend angle of the sensor can be calculated from the displacement measurement of the sensing wire using a Hall-effect sensor or a potentiometer. Simulations and experiments have shown that the accumulated bend angle of the sensor is linearly related to the sensor signal, with an R-square value up to 0.9969 and a root mean square error of 2% of the full sensing range. The proposed sensor is not affected by a bend curvature of up to 80.0 m(-1), unlike previous bend sensors. The proposed sensor is expected to be useful for various applications, including motion capture devices, wearable robots, surgical devices, or generally any device that requires an affordable and low-cost bend sensor.

  20. A Novel Low-Cost, Large Curvature Bend Sensor Based on a Bowden-Cable

    PubMed Central

    Jeong, Useok; Cho, Kyu-Jin

    2016-01-01

    Bend sensors have been developed based on conductive ink, optical fiber, and electronic textiles. Each type has advantages and disadvantages in terms of performance, ease of use, and cost. This study proposes a new and low-cost bend sensor that can measure a wide range of accumulated bend angles with large curvatures. This bend sensor utilizes a Bowden-cable, which consists of a coil sheath and an inner wire. Displacement changes of the Bowden-cable’s inner wire, when the shape of the sheath changes, have been considered to be a position error in previous studies. However, this study takes advantage of this position error to detect the bend angle of the sheath. The bend angle of the sensor can be calculated from the displacement measurement of the sensing wire using a Hall-effect sensor or a potentiometer. Simulations and experiments have shown that the accumulated bend angle of the sensor is linearly related to the sensor signal, with an R-square value up to 0.9969 and a root mean square error of 2% of the full sensing range. The proposed sensor is not affected by a bend curvature of up to 80.0 m−1, unlike previous bend sensors. The proposed sensor is expected to be useful for various applications, including motion capture devices, wearable robots, surgical devices, or generally any device that requires an affordable and low-cost bend sensor. PMID:27347959

  1. The 2-D Curvature of Large Angle Interplanetary MHD Discontinuity Surfaces: IMP-8 and WIND Observations

    NASA Astrophysics Data System (ADS)

    Lepping, R. P.; Wu, C.; McClernan, K.

    2002-12-01

    This study examines the degree of 2-D curvature of solar wind directional discontinuity (DD) surfaces at 1 AU using magnetic field, density, and velocity data from the WIND and IMP-8 spacecraft for a large number (N = 134) of carefully selected events having large ``discontinuity angles" of 90° or greater. The discontinuity angle (ω ) is measured in the DDs current sheet, the normal to which is estimated by field variance analysis. The fundamental analysis depends on estimates of these DD surface normals at the two spacecraft, and the DDs center-times and positions. On average, the transit time from one DD sighting to the other was 36 minutes, and the associated distance along the normal direction was 137 RE. The transition-interval lengths across the DDs are translated into thicknesses and examined for the amount of change between the two spacecraft observing points; average thickness is relatively large, 14 RE. All relevant quantities are examined statistically to establish their distributions, average, and degree of change. A weighted average of the radius of curvature is estimated to be 380 RE, but its most probably value is 290 RE. The average ω is 140° with a relatively large spread (σ =28°). The average direction of propagation is: longitude = 194° and latitude = 7° (but < ∣ lat∣ > = 27°). Various parameters are studied with respect to DD type, defined in terms the ratio of speed of propagation to net speed (``ratio") of the DD surface, (the RD ratio is high and the TD ratio is very low or zero). The results by this definition of type are favorably compared to those from the more conventional method, which depends on the absolute strength of the normal component of the magnetic field. There is little difference in any average parameter value according to type. However, the average ω appears to depend slightly on type with the < ω > for the RDs being smaller. A DDs type was shown to change in either direction between the two observation

  2. Two-dimensional curvature of large angle interplanetary MHD discontinuity surfaces: IMP-8 and WIND observations

    NASA Astrophysics Data System (ADS)

    Lepping, R. P.; Wu, C.-C.; McClernan, K.

    2003-07-01

    This study examines the degree of two-dimensional curvature of solar wind directional discontinuity (DD) surfaces at 1 AU using magnetic field, density, and velocity data from the WIND and IMP-8 spacecraft for a large number (N = 134) of carefully selected events having large "discontinuity angles" of 90° or greater. The discontinuity angle (ω) is measured in the DD's current sheet, the normal (n) to which is estimated by field variance analysis. The fundamental analysis depends on estimates of these DD surface normals at the two spacecraft and the DD's center-times and positions. On average, the transit time from one DD sighting to the other was 36 minutes, and the associated distance along the normal direction was 137 RE. The transition-interval lengths across the DDs are translated into thicknesses and examined for the amount of change between the two spacecraft observing points. The average thickness is relatively large, 14 RE.; the most probable thickness is ≈6 RE. All relevant quantities are examined statistically to establish their distributions, average, and degree of change. A weighted average of the radius of curvature is estimated to be 380 RE, but its most probable value is 290 RE. The average ω is 140° with a relatively large spread (σ = 28°). The average direction of propagation is: longitude (ϕn) = 194° and latitude (θn) = 7° (but <∣θn∣> = 27°), where ϕn = 0° is sunward and θn = 0° is the ecliptic plane. Various parameters are studied with respect to DD type, i.e., rotational or tangential discontinuity (RD or TD), defined in terms of the "ratio" (in percent) of speed of propagation to net speed of the DD surface, where the net speed is the sum of the convection velocity (along n) plus the propagation speed. The RD %-ratio is moderately small, but the TD ratio is very small or zero. The results by this definition of type are favorably compared to those from the more conventional method, which depends on the absolute strength of

  3. Large Scale Quantum Coherence of Nearly Circular Wavepackets

    SciTech Connect

    Reinhold, Carlos O; Yoshida, S.; Burgdorfer, J.; Wyker, B.; Mestayer, J. J.; Dunning, F. B.

    2009-01-01

    We demonstrate that the quantum coherence of mesoscopic very-high-n, n {approx} 305, Rydberg wave packets travelling along nearly circular orbits can be maintained on microsecond time scales corresponding to hundreds of classical orbital periods. The coherence is probed through collapses and revivals of periodic oscillations in the average electron position. The temporal interferences of spatially separated Schroedinger cat-like wave packets are also observed. A novel hybrid quantum-classical trajectory method is employed to simulate the wave packet dynamics.

  4. Large dimensions and small curvatures from supersymmetric brane back-reaction

    NASA Astrophysics Data System (ADS)

    Burgess, C. P.; van Nierop, L.

    2011-04-01

    We compute the back-reaction of pairs of codimension-two branes within an explicit flux-stabilized compactification, to trace how its properties depend on the parameters that define the brane-bulk couplings. Both brane tension and magnetic couplings to the stabilizing flux play an important role in the resulting dynamics, with the magnetic coupling allowing some of the flux to be localized on the branes (thus changing the flux-quantization conditions). We find that back-reaction lifts the classical flat directions of the bulk supergravity, and we calculate both the scalar potential and changes to the extra-dimensional and on-brane geometries that result, as functions of the assumed brane couplings. When linearized about simple rugby-ball geometries the resulting solutions allow a systematic exploration of the system's response. Several of the systems we explore have remarkable properties. Among these are a propensity for the extra dimensions to stabilize at exponentially large sizes, providing a mechanism for generating extremely large volumes. In some circumstances the brane-dilaton coupling allows the bulk dilaton to adjust to suppress the on-brane curvature parametrically below the change in brane tension, potentially providing a mechanism for reducing the vacuum energy. We explore the stability of this suppression to quantum effects in the case where their strength is controlled by the value of the field along the classical flat direction, and find it can (but need not) be stable.

  5. Strong curvature effects in Neumann wave problems

    SciTech Connect

    Willatzen, M.; Pors, A.; Gravesen, J.

    2012-08-15

    Waveguide phenomena play a major role in basic sciences and engineering. The Helmholtz equation is the governing equation for the electric field in electromagnetic wave propagation and the acoustic pressure in the study of pressure dynamics. The Schroedinger equation simplifies to the Helmholtz equation for a quantum-mechanical particle confined by infinite barriers relevant in semiconductor physics. With this in mind and the interest to tailor waveguides towards a desired spectrum and modal pattern structure in classical structures and nanostructures, it becomes increasingly important to understand the influence of curvature effects in waveguides. In this work, we demonstrate analytically strong curvature effects for the eigenvalue spectrum of the Helmholtz equation with Neumann boundary conditions in cases where the waveguide cross section is a circular sector. It is found that the linear-in-curvature contribution originates from parity symmetry breaking of eigenstates in circular-sector tori and hence vanishes in a torus with a complete circular cross section. The same strong curvature effect is not present in waveguides subject to Dirichlet boundary conditions where curvature contributions contribute to second-order in the curvature only. We demonstrate this finding by considering wave propagation in a circular-sector torus corresponding to Neumann and Dirichlet boundary conditions, respectively. Results for relative eigenfrequency shifts and modes are determined and compared with three-dimensional finite element method results. Good agreement is found between the present analytical method using a combination of differential geometry with perturbation theory and finite element results for a large range of curvature ratios.

  6. Strong curvature effects in Neumann wave problems

    NASA Astrophysics Data System (ADS)

    Willatzen, M.; Pors, A.; Gravesen, J.

    2012-08-01

    Waveguide phenomena play a major role in basic sciences and engineering. The Helmholtz equation is the governing equation for the electric field in electromagnetic wave propagation and the acoustic pressure in the study of pressure dynamics. The Schrödinger equation simplifies to the Helmholtz equation for a quantum-mechanical particle confined by infinite barriers relevant in semiconductor physics. With this in mind and the interest to tailor waveguides towards a desired spectrum and modal pattern structure in classical structures and nanostructures, it becomes increasingly important to understand the influence of curvature effects in waveguides. In this work, we demonstrate analytically strong curvature effects for the eigenvalue spectrum of the Helmholtz equation with Neumann boundary conditions in cases where the waveguide cross section is a circular sector. It is found that the linear-in-curvature contribution originates from parity symmetry breaking of eigenstates in circular-sector tori and hence vanishes in a torus with a complete circular cross section. The same strong curvature effect is not present in waveguides subject to Dirichlet boundary conditions where curvature contributions contribute to second-order in the curvature only. We demonstrate this finding by considering wave propagation in a circular-sector torus corresponding to Neumann and Dirichlet boundary conditions, respectively. Results for relative eigenfrequency shifts and modes are determined and compared with three-dimensional finite element method results. Good agreement is found between the present analytical method using a combination of differential geometry with perturbation theory and finite element results for a large range of curvature ratios.

  7. The Effect of the π-Electron Delocalization Curvature on the Two-Photon Circular Dichroism of Molecules with Axial Chirality.

    PubMed

    Diaz, Carlos; Lin, Na; Toro, Carlos; Passier, Remy; Rizzo, Antonio; Hernández, Florencio E

    2012-07-05

    Herein we report on the theoretical-experimental study of the effect of curvature of the π-electron delocalization on the two-photon circular dichroism (TPCD) of a family of optically active biaryl derivatives (S-BINOL, S-VANOL, and S-VAPOL). The comparative analysis of the influence of the different transition moments to their corresponding TPCD rotatory strength reveals an enhanced contribution of the magnetic transition dipole moment on VAPOL. This effect is hereby attributed to the additional twist in the π-electron delocalization on this compound. TPCD measurements were done using the double L-scan technique in the picosecond regime. Theoretical calculations were completed using modern analytical response theory, within a time-dependent density functional theory (TD-DFT) approach, at both, B3LYP and CAM-B3LYP levels, with the aug-cc-pVDZ basis set for S-BINOL and S-VANOL, and 6-31G* for S-VAPOL. Solvent effects were included by means of the polarizable continuum model (PCM) in CH2Cl2.

  8. Reading Materials in Large Type. Reference Circular No. 87-4.

    ERIC Educational Resources Information Center

    Library of Congress, Washington, DC. National Library Service for the Blind and Physically Handicapped.

    This circular provides information about reading materials in large type, i.e., materials set in type that is a minimum size of 14-point and, most commonly, 16- to 18-point size. Most of the materials listed are typeset, but a few are photographically enlarged conventionally printed books or typewritten materials prepared using a large-print…

  9. Large-eddy simulation of turbulent circular jet flows

    SciTech Connect

    Jones, S. C.; Sotiropoulos, F.; Sale, M. J.

    2002-07-01

    This report presents a numerical method for carrying out large-eddy simulations (LES) of turbulent free shear flows and an application of a method to simulate the flow generated by a nozzle discharging into a stagnant reservoir. The objective of the study was to elucidate the complex features of the instantaneous flow field to help interpret the results of recent biological experiments in which live fish were exposed to the jet shear zone. The fish-jet experiments were conducted at the Pacific Northwest National Laboratory (PNNL) under the auspices of the U.S. Department of Energy’s Advanced Hydropower Turbine Systems program. The experiments were designed to establish critical thresholds of shear and turbulence-induced loads to guide the development of innovative, fish-friendly hydropower turbine designs.

  10. Circularity measuring system: A shape gauge designed especially for use on large objects

    NASA Technical Reports Server (NTRS)

    Rohrkaste, G. R.

    1990-01-01

    The Circularity Measuring System (CMS) was developed to make an in-situ determination of shape similarity for selected fit large cylinders (RSRM segments). It does this to a repeatable accuracy of 0.10 mm (0.004 inch). This is less that the goal of 0.07 mm (0.003 inch), but was determined adequate because of the addition of an assembly aid that increased the entry chamfer of the clevis side of the joint. The usefulness of the CMS is demonstrated by the application to measurements other than its specified design purpose, such as submarine hull circularity, SRM mid-case circularity, as well as circularity of interfacing SRM tooling, specifically the rounding devices and horizontal disassembly devices. Commercialization of the tool is being pursued, since it is an enhancement of metrology technology for circularity determination. The most accurate in-situ technology it replaces is determined from a template. The CMS is an improvement in accuracy and operation.

  11. Circularity measuring system: A shape gauge designed especially for use on large objects

    NASA Astrophysics Data System (ADS)

    Rohrkaste, G. R.

    1990-04-01

    The Circularity Measuring System (CMS) was developed to make an in-situ determination of shape similarity for selected fit large cylinders (RSRM segments). It does this to a repeatable accuracy of 0.10 mm (0.004 inch). This is less that the goal of 0.07 mm (0.003 inch), but was determined adequate because of the addition of an assembly aid that increased the entry chamfer of the clevis side of the joint. The usefulness of the CMS is demonstrated by the application to measurements other than its specified design purpose, such as submarine hull circularity, SRM mid-case circularity, as well as circularity of interfacing SRM tooling, specifically the rounding devices and horizontal disassembly devices. Commercialization of the tool is being pursued, since it is an enhancement of metrology technology for circularity determination. The most accurate in-situ technology it replaces is determined from a template. The CMS is an improvement in accuracy and operation.

  12. Analysis and design of lattice materials for large cord and curvature variations in skin panels of morphing wings

    NASA Astrophysics Data System (ADS)

    Vigliotti, Andrea; Pasini, Damiano

    2015-03-01

    In the past few decades, several concepts for morphing wings have been proposed with the aim of improving the structural and aerodynamic performance of conventional aircraft wings. One of the most interesting challenges in the design of a morphing wing is represented by the skin, which needs to meet specific deformation requirements. In particular when morphing involves changes of cord or curvature, the skin is required to undergo large recoverable deformation in the actuation direction, while maintaining the desired shape and strength in the others. One promising material concept that can meet these specifications is represented by lattice materials. This paper examines the use of alternative planar lattices in the embodiment of a skin panel for cord and camber morphing of an aircraft wing. We use a structural homogenization scheme capable of capturing large geometric nonlinearity, to examine the structural performance of lattice skin concepts, as well as to tune their mechanical properties in desired directions.

  13. Few-mode and large-mode-area fiber with circularly distributed cores

    NASA Astrophysics Data System (ADS)

    Jin, Wenxing; Ren, Guobin; Jiang, Youchao; Wu, Yue; Xu, Yao; Yang, Yuguang; Shen, Ya; Ren, Wenhua; Jian, Shuisheng

    2017-03-01

    In this paper, a novel few-mode large-mode-area fiber is proposed. This type of fiber consists of 11 conventional cores and 8 air-hole cores circularly arranged around the center core. Few-mode condition equal to strict dual-mode here is available by appropriate adjusting on corepitch, relative refractive index difference and core radius. Large effective area of fundamental mode around 1403.561 μm2 could be achieved by optimization of structural parameters. Bending loss less than 10-3 dB / m is realized when effective area is over 1400 μm2.

  14. Experimental study of noise emitted by circular cylinders with large roughness

    NASA Astrophysics Data System (ADS)

    Alomar, Antoni; Angland, David; Zhang, Xin; Molin, Nicolas

    2014-12-01

    The aerodynamic noise generated by high Reynolds number flow around a bluff body with large surface roughness was investigated. This is a relevant problem in many applications, in particular aircraft landing gear noise. A circular cylinder in cross-flow and a zero-pressure-gradient turbulent boundary layer with various types of roughness was tested in a series of wind tunnel experiments. It has been shown that distributed roughness covering a circular cylinder affects the spectra over the entire frequency range. Roughness noise is dominant at high frequencies, and the peak frequency is well described by Howe's roughness noise model when scaled with the maximum outer velocity. There are differences between hemispherical and cylindrical roughness elements for both the circular cylinder and the zero-pressure-gradient turbulent boundary layer cases, indicating a dependence on roughness shape, not described by the considered roughness noise models. Cylindrical roughness generates higher noise levels at the highest frequencies, especially for the zero-pressure-gradient turbulent boundary layer case. Cable-type roughness aligned with the mean flow does not generate roughness noise, and its spectrum has been found to collapse with the smooth cylinder at medium and high frequencies. At low and medium frequencies the noise spectra have the same features as the smooth cylinder, but with higher shedding peak levels and fall-off levels, despite the decrease in spanwise correlation length. Roughness induces early separation, and thus a shift of the spectra to lower frequencies.

  15. Vibrational circular dichroism spectra for large molecules and molecules with heavy elements

    NASA Astrophysics Data System (ADS)

    Reiter, Kevin; Kühn, Michael; Weigend, Florian

    2017-02-01

    We present an implementation of vibrational circular dichroism (VCD) spectra in TURBOMOLE. We mainly followed the route proposed by Cheeseman [Chem. Phys. Lett. 252, 211 (1996)] and extended the modules for calculating the magnetic response and vibrational frequencies accordingly. The implementation allows for gauge origin invariant employment of effective core potentials, as demonstrated for Co(ppy)3, ppy = 2-Phenylpyridine. In this way, scalar relativistic effects are covered and heavy elements can be treated. Further, with the present implementation molecular symmetry may be efficiently exploited, which makes the calculation of large (symmetric) systems feasible. The calculation of the VCD spectrum of icosahedral C6202+ is shown as an illustrative application.

  16. Vibrational circular dichroism spectra for large molecules and molecules with heavy elements.

    PubMed

    Reiter, Kevin; Kühn, Michael; Weigend, Florian

    2017-02-07

    We present an implementation of vibrational circular dichroism (VCD) spectra in TURBOMOLE. We mainly followed the route proposed by Cheeseman [Chem. Phys. Lett. 252, 211 (1996)] and extended the modules for calculating the magnetic response and vibrational frequencies accordingly. The implementation allows for gauge origin invariant employment of effective core potentials, as demonstrated for Co(ppy)3, ppy = 2-Phenylpyridine. In this way, scalar relativistic effects are covered and heavy elements can be treated. Further, with the present implementation molecular symmetry may be efficiently exploited, which makes the calculation of large (symmetric) systems feasible. The calculation of the VCD spectrum of icosahedral C620(2+) is shown as an illustrative application.

  17. Microfabrication of large-area circular high-stress silicon nitride membranes for optomechanical applications

    NASA Astrophysics Data System (ADS)

    Serra, E.; Bawaj, M.; Borrielli, A.; Di Giuseppe, G.; Forte, S.; Kralj, N.; Malossi, N.; Marconi, L.; Marin, F.; Marino, F.; Morana, B.; Natali, R.; Pandraud, G.; Pontin, A.; Prodi, G. A.; Rossi, M.; Sarro, P. M.; Vitali, D.; Bonaldi, M.

    2016-06-01

    In view of the integration of membrane resonators with more complex MEMS structures, we developed a general fabrication procedure for circular shape SiNx membranes using Deep Reactive Ion Etching (DRIE). Large area and high-stress SiNx membranes were fabricated and used as optomechanical resonators in a Michelson interferometer, where Q values up to 1.3 × 106 were measured at cryogenic temperatures, and in a Fabry-Pérot cavity, where an optical finesse up to 50000 has been observed.

  18. Large-eddy simulation of a boundary layer with concave streamwise curvature

    NASA Technical Reports Server (NTRS)

    Lund, Thomas S.

    1994-01-01

    Turbulence modeling continues to be one of the most difficult problems in fluid mechanics. Existing prediction methods are well developed for certain classes of simple equilibrium flows, but are still not entirely satisfactory for a large category of complex non-equilibrium flows found in engineering practice. Direct and large-eddy simulation (LES) approaches have long been believed to have great potential for the accurate prediction of difficult turbulent flows, but the associated computational cost has been prohibitive for practical problems. This remains true for direct simulation but is no longer clear for large-eddy simulation. Advances in computer hardware, numerical methods, and subgrid-scale modeling have made it possible to conduct LES for flows or practical interest at Reynolds numbers in the range of laboratory experiments. The objective of this work is to apply ES and the dynamic subgrid-scale model to the flow of a boundary layer over a concave surface.

  19. Preparation and Properties of Asymmetric Large Unilamellar Vesicles: Interleaflet Coupling in Asymmetric Vesicles Is Dependent on Temperature but Not Curvature

    PubMed Central

    Cheng, Hui-Ting; London, Erwin

    2011-01-01

    Asymmetry of inner and outer leaflet lipid composition is an important characteristic of eukaryotic plasma membranes. We previously described a technique in which methyl-β-cyclodextrin-induced lipid exchange is used to prepare biological membrane-like asymmetric small unilamellar vesicles (SUVs). Here, to mimic plasma membranes more closely, we used a lipid-exchange-based method to prepare asymmetric large unilamellar vesicles (LUVs), which have less membrane curvature than SUVs. Asymmetric LUVs in which sphingomyelin (SM) or SM + 1-palmitoyl-2-oleoyl-phosphatidylcholine was exchanged into the outer leaflet of vesicles composed of 1,2-dioleoyl-phosphatidylethanolamine (DOPE) and 1-palmitoyl-2-oleoyl-phosphatidylserine (POPS) were prepared with or without cholesterol. Approximately 80–100% replacement of outer leaflet DOPE and POPS was achieved. At room temperature, SM exchange into the outer leaflet increased the inner leaflet lipid order, suggesting significant interleaflet interaction. However, the SM-rich outer leaflet formed an ordered state, melting with a midpoint at ∼37°C. This was about the same value observed in pure SM vesicles, and was significantly higher than that observed in symmetric vesicles with the same SM content, which melted at ∼20°C. In other words, ordered state formation by outer-leaflet SM in asymmetric vesicles was not destabilized by an inner leaflet composed of DOPE and POPS. These properties suggest that the coupling between the physical states of the outer and inner leaflets in these asymmetric LUVs becomes very weak as the temperature approaches 37°C. Overall, the properties of asymmetric LUVs were very similar to those previously observed in asymmetric SUVs, indicating that they do not arise from the high membrane curvature of asymmetric SUVs. PMID:21641312

  20. Investigation on the viscoelastic behaviors of a circular dielectric elastomer membrane undergoing large deformation

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Wang, Zhengang; He, Tianhu

    2016-12-01

    To explore the time-dependent dissipative behaviors of a circular dielectric elastomer membrane subject to force and voltage, a viscoelastic model is formulated based on the nonlinear theory for dissipative dielectrics. The circular membrane is attached centrally to a light rigid disk and then connected to a fixed rigid ring. When subject to force and voltage, the membrane deforms into an out-of plane shape, undergoing large deformation. The governing equations to describe the large deformation are derived by using energy variational principle while the viscoelasticity of the membrane is describe by a two-unit spring-dashpot model. The evolutions of the considered variables and the deformed shape are illustrated graphically. In calculation, the effects of the voltage and the pre-stretch on the electromechanical behaviors of the membrane are examined and the results show that they significantly influence the electromechanical behaviors of the membrane. It is expected that the present model may provide some guidelines in the design and application of such dielectric elastomer transducers.

  1. Beyond the Large Hadron Collider: A First Look at Cryogenics for CERN Future Circular Colliders

    NASA Astrophysics Data System (ADS)

    Lebrun, Philippe; Tavian, Laurent

    Following the first experimental discoveries at the Large Hadron Collider (LHC) and the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. The study, conducted with the collaborative participation of interested institutes world-wide, considers several options for very high energy hadron-hadron, electron-positron and hadron-electron colliders to be installed in a quasi-circular underground tunnel in the Geneva basin, with a circumference of 80 km to 100 km. All these machines would make intensive use of advanced superconducting devices, i.e. high-field bending and focusing magnets and/or accelerating RF cavities, thus requiring large helium cryogenic systems operating at 4.5 K or below. Based on preliminary sets of parameters and layouts for the particle colliders under study, we discuss the main challenges of their cryogenic systems and present first estimates of the cryogenic refrigeration capacities required, with emphasis on the qualitative and quantitative steps to be accomplished with respect to the present state-of-the-art.

  2. A comparison of shell theories for large-amplitude vibrations of circular cylindrical shells: Lagrangian approach

    NASA Astrophysics Data System (ADS)

    Amabili, M.

    2003-07-01

    Large-amplitude (geometrically non-linear) vibrations of circular cylindrical shells subjected to radial harmonic excitation in the spectral neighbourhood of the lowest resonances are investigated. The Lagrange equations of motion are obtained by an energy approach, retaining damping through Rayleigh's dissipation function. Four different non-linear thin shell theories, namely Donnell's, Sanders-Koiter, Flügge-Lur'e-Byrne and Novozhilov's theories, which neglect rotary inertia and shear deformation, are used to calculate the elastic strain energy. The formulation is also valid for orthotropic and symmetric cross-ply laminated composite shells. The large-amplitude response of perfect and imperfect, simply supported circular cylindrical shells to harmonic excitation in the spectral neighbourhood of the lowest natural frequency is computed for all these shell theories. Numerical responses obtained by using these four non-linear shell theories are also compared to results obtained by using the Donnell's non-linear shallow-shell equation of motion. A validation of calculations by comparison with experimental results is also performed. Both empty and fluid-filled shells are investigated by using a potential fluid model. The effects of radial pressure and axial load are also studied. Boundary conditions for simply supported shells are exactly satisfied. Different expansions involving from 14 to 48 generalized co-ordinates, associated with natural modes of simply supported shells, are used. The non-linear equations of motion are studied by using a code based on an arclength continuation method allowing bifurcation analysis.

  3. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge.

    PubMed

    Nayak, Ajaya K; Fischer, Julia Erika; Sun, Yan; Yan, Binghai; Karel, Julie; Komarek, Alexander C; Shekhar, Chandra; Kumar, Nitesh; Schnelle, Walter; Kübler, Jürgen; Felser, Claudia; Parkin, Stuart S P

    2016-04-01

    It is well established that the anomalous Hall effect displayed by a ferromagnet scales with its magnetization. Therefore, an antiferromagnet that has no net magnetization should exhibit no anomalous Hall effect. We show that the noncolinear triangular antiferromagnet Mn3Ge exhibits a large anomalous Hall effect comparable to that of ferromagnetic metals; the magnitude of the anomalous conductivity is ~500 (ohm·cm)(-1) at 2 K and ~50 (ohm·cm)(-1) at room temperature. The angular dependence of the anomalous Hall effect measurements confirms that the small residual in-plane magnetic moment has no role in the observed effect except to control the chirality of the spin triangular structure. Our theoretical calculations demonstrate that the large anomalous Hall effect in Mn3Ge originates from a nonvanishing Berry curvature that arises from the chiral spin structure, and that also results in a large spin Hall effect of 1100 (ħ/e) (ohm·cm)(-1), comparable to that of platinum. The present results pave the way toward the realization of room temperature antiferromagnetic spintronics and spin Hall effect-based data storage devices.

  4. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge

    PubMed Central

    Nayak, Ajaya K.; Fischer, Julia Erika; Sun, Yan; Yan, Binghai; Karel, Julie; Komarek, Alexander C.; Shekhar, Chandra; Kumar, Nitesh; Schnelle, Walter; Kübler, Jürgen; Felser, Claudia; Parkin, Stuart S. P.

    2016-01-01

    It is well established that the anomalous Hall effect displayed by a ferromagnet scales with its magnetization. Therefore, an antiferromagnet that has no net magnetization should exhibit no anomalous Hall effect. We show that the noncolinear triangular antiferromagnet Mn3Ge exhibits a large anomalous Hall effect comparable to that of ferromagnetic metals; the magnitude of the anomalous conductivity is ~500 (ohm·cm)−1 at 2 K and ~50 (ohm·cm)−1 at room temperature. The angular dependence of the anomalous Hall effect measurements confirms that the small residual in-plane magnetic moment has no role in the observed effect except to control the chirality of the spin triangular structure. Our theoretical calculations demonstrate that the large anomalous Hall effect in Mn3Ge originates from a nonvanishing Berry curvature that arises from the chiral spin structure, and that also results in a large spin Hall effect of 1100 (ħ/e) (ohm·cm)−1, comparable to that of platinum. The present results pave the way toward the realization of room temperature antiferromagnetic spintronics and spin Hall effect–based data storage devices. PMID:27152355

  5. Asymptotic Results for Passive Wavefront Curvature Ranging Using a Large-Scale Distributed Array System

    DTIC Science & Technology

    2012-05-01

    spectral decomposition, Rρ = L∑ i=1 λivi vHi ≈ 1 L L∑ i=1 Pρ(νi)e(νi) eH(νi). (3) For large L, the eigen-mode vi ≈ 1√Le(νi) becomes a nor- malized...module spacing Lt = 0.5Lcoh. with JML(r, θ) = L∑ i=1 λi ηSNR 1 + λi ηSNR | vHi y(t)|2 ≈ L∑ i=1 Pρ(νi) ηSNR 1 + Pρ(νi) ηSNR |eH(νi)y(t)|2 . (5) Here, SNR is

  6. Post Main Sequence Orbital Circularization of Binary Stars in the Large and Small Magellanic Clouds.

    SciTech Connect

    Faccioli, L; Alcock, C; Cook, K

    2007-11-20

    We present results from a study of the orbits of eclipsing binary stars (EBs) in the Magellanic Clouds. The samples comprise 4510 EBs found in the Large Magellanic Cloud (LMC) by the MACHO project, 2474 LMC EBs found by the OGLE-II project (of which 1182 are also in the MACHO sample), 1380 in the Small Magellanic Cloud (SMC) found by the MACHO project, and 1317 SMC EBs found by the OGLE-II project (of which 677 are also in the MACHO sample); we also consider the EROS sample of 79 EBs in the bar of the LMC. Statistics of the phase differences between primary and secondary minima allow us to infer the statistics of orbital eccentricities within these samples. We confirm the well-known absence of eccentric orbit in close binary stars. We also find evidence for rapid circularization in longer period systems when one member evolves beyond the main sequence, as also found by previous studies.

  7. Large-scale structures in the wake of a circular cylinder

    NASA Astrophysics Data System (ADS)

    Yamane, Ryuichiro; Mochimaru, Yoshihiro; Yagita, Miki; Tanaka, Yutaka; Shirakashi, Masataka

    1986-11-01

    The authors have reported (1984) that the two-dimensional Karman vortices behind a circular cylinder with diameter d are broken into lengths of about 8(d) and they form chains of spoon-shaped vortex couples. In the present experiment, disks were attached to the cylinder so that the Karman vortices were artificially cut to fixed lengths of 4(d), 6(d), 8(d), and 10(d). The structures with 8(d) were most stable forming a vortex chain with least irregularities, and the wake was much wider than without the disks, while the neighboring vortices with a length 4(d) merged to a scale of 8(d). These results show that the length 8(d) is a unique scale in the deformation of the Karman vortices to a three-dimensional large scale structure.

  8. Capacity of the circular plate condenser: analytical solutions for large gaps between the plates

    NASA Astrophysics Data System (ADS)

    Rao, T. V.

    2005-11-01

    A solution of Love's integral equation (Love E R 1949 Q. J. Mech. Appl. Math. 2 428), which forms the basis for the analysis of the electrostatic field due to two equal circular co-axial parallel conducting plates, is considered for the case when the ratio, τ, of distance of separation to radius of the plates is greater than 2. The kernel of the integral equation is expanded into an infinite series in odd powers of 1/τ and an approximate kernel accurate to {\\cal O}(\\tau^{-(2N+1)}) is deduced therefrom by terminating the series after an arbitrary but finite number of terms, N. The approximate kernel is rearranged into a degenerate form and the integral equation with this kernel is reduced to a system of N linear equations. An explicit analytical solution is obtained for N = 4 and the resulting analytical expression for the capacity of the circular plate condenser is shown to be accurate to {\\cal O}(\\tau^{-9}) . Analytical expressions of lower orders of accuracy with respect to 1/τ are deduced from the four-term (i.e., N = 4) solution and predictions (of capacity) from the expressions of different orders of accuracy (with respect to 1/τ) are compared with very accurate numerical solutions obtained by solving the linear system for large enough N. It is shown that the {\\cal O}(\\tau^{-9}) approximation predicts the capacity extremely well for any τ >= 2 and an {\\cal O}(\\tau^{-3}) approximation gives, for all practical purposes, results of adequate accuracy for τ >= 4. It is further shown that an approximate solution, applicable for the case of large distances of separation between the plates, due to Sneddon (Sneddon I N 1966 Mixed Boundary Value Problems in Potential Theory (Amsterdam: North-Holland) pp 230-46) is accurate to {\\cal O}(\\tau^{-6}) for τ >= 2.

  9. Electromagnetic Response of a Large Circular Loop Source on a Layered Earth: A New Computation Method

    NASA Astrophysics Data System (ADS)

    Singh, Nagendra Pratap; Mogi, Toru

    2005-01-01

    Integral expressions of electromagnetic (EM) field components due to a large circular loop source carrying an alternating (ac) current and placed on or above the surface of a layered earth model are transformed to such suitable forms that facilitate numerical computation of field response in quasi-static as well as non-quasi-static regions. The improper integrals occurring in expressions of EM field components are evaluated by converting these integrals into the convergent integrals using the process of subtraction or addition of an integral expression inside the integral sign and subsequently adjusting it or its equivalent analytic expression outside the integral sign. The adjusted integral expressions, in turn, are evaluated using the functional relationships described in this paper. The computation method based on this formulation takes into consideration the effects of both conduction as well as displacement currents, and is well suitable for any position of the source loop either in the air or on the surface of the model, in contrary to the earlier methods which face convergence problem. Moreover, the formulation is equally efficient for computing the EM response at any arbitrary receiver position either inside or outside the source loop. For illustrating the accuracy and applicability of the method and studying the nature of EM response of a loop source over a layered earth model, we have applied it for the computation of amplitude and phase of Hz field over the various 2-layer and 3-layer models. Results show their characteristic variations, and depict good resolution for the subsurface layering. The results are in agreement with those of the published results for the quasi-static region, and are new extension of quasi-static variation in the non-quasi-static region. The agreement of computed results with published results demonstrates the accuracy of the method. Moreover, this is the initial presentation of numerical results for an arbitrary in-loop point

  10. Survey of large circular and octagonal tanks operated at Norwegian commercial smolt and post-smolt sites

    USDA-ARS?s Scientific Manuscript database

    A survey was conducted to determine the geometry, operating parameters, and other key features of large circular or octagonal culture tanks used to produce Atlantic salmon smolt and post-smolt at six major Norwegian Atlantic salmon production companies. A total of 55 large tanks were reported at sev...

  11. The α-β circular scanning with large range and low noise.

    PubMed

    Liu, J; You, X; Wang, Y; Gu, K; Liu, C; Tan, J

    2017-05-01

    A circular-route scanning method called α-β circular scanning is proposed and realized using sinusoidal signals with a constant phase difference of π/2. Experiments show that the circular scanning range of α-β circular scanning is 57% greater than the rectangular scanning range of raster scanning within an effective optical field of view. Moreover, the scanning speed is improved by 7.8% over raster scanning because the whole sine signal is utilized in α-β circular scanning whereas the flyback area of the saw-tooth signal needs to be discarded in raster scanning. The maximum scanning acceleration decreases by a factor of 44, drastically decreasing the high noise, which should considerably elongate the lifetime of the galvanometers while inhibiting internal vibration. The proposed α-β circular scanning technique could be used in scanning imaging, optical tweezers and laser-beam fabrication. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  12. Fabrication of a microarray using a combination of the large circular sense and antisense DNA.

    PubMed

    Doh, Kyung-Oh; Lee, Yun-Han; Han, Kil-Hwan; Uhm, Seok-Yong; Kim, Jong-Pil; Bae, Yun-Ui; Park, Jeong-Hoh; Moon, Ik-Jae; Park, Jong-Gu

    2010-01-01

    In the present study, single-stranded large circular (LC)-sense molecules were utilized as probes for DNA microarrays and showed stronger binding signals than those of PCR-amplified cDNA probes. A microarray experiment using 284 LC-sense DNA probes found 6 upregulated and 7 downregulated genes in A549 cells as compared to WI38VA13 cells. Repeated experiments showed largely consistent results, and microarray data strongly correlated with data acquired from quantitative real-time RT-PCR. A large array comprising 5,079 LC-sense DNA was prepared, and analysis of the mean differential expression from dye-swap experiments revealed 332 upregulated and 509 downregulated genes in A549 cells compared to WI38VA13 cells. Subsequent functional analysis using an LC-antisense library of overexpressed genes identified 28 genes involved in A549 cell growth. These experiments demonstrated the proper features of LC-sense molecules as probe DNA for microarray and the potential utility of the combination of LC-sense and -antisense libraries for an effective functional validation of genes.

  13. A circular cylinder undergoing large-amplitude transverse oscillations in a slow uniform cross flow

    NASA Astrophysics Data System (ADS)

    Lam, K. M.; Liu, P.

    2013-05-01

    This study explores the vortex patterns formed by a circular cylinder undergoing lateral cylinder oscillations with large amplitudes and in the presence of a slow uniform cross flow. It is an extension of our previous study (Lam et al., 2010b) in which formation of the 2S, 2P and P+S vortex modes were discussed from the viewpoint of interaction of a uniform cross-flow with the vortex street patterns of a cylinder oscillating in an otherwise quiescent fluid at Keulegan-Carpenter numbers up to KC=8.9. The present paper reports three additional experimental sets in which the amplitudes of cylinder oscillations have even larger values, at A/D>2.5, and lie beyond the vortex mode map usually quoted from Williamson and Roshko (1988). It is found that the slow uniform cross-flow at λ/D≈3 and Reynolds number based on cross-flow velocity at 232 acts to convect the corresponding vortex patterns in the absence of cross-flow downstream across the line of cylinder oscillation. Vortex-vortex interaction and vortex-cylinder interaction are observed to affect the subsequent development of vortices. The P+S vortex mode is found to occur up to KC=16. At KC between 16 and 24, a new vortex mode is observed in which only one vortex pair can be convected downstream every cylinder oscillation cycle. Another new vortex mode with two vortex pairs and two stationary vortices are found at KC>24.

  14. An experimental approach to measure particle deposition in large circular ventilation ducts.

    PubMed

    Da, Guillaume; Géhin, Evelyne; Ben-Othmane, Mourad; Havet, Michel; Solliec, Camille; Motzkus, Charles

    2015-04-01

    The topic of this study is related to airborne particle dynamics in indoor environments. Lab-scale experiments have been performed to investigate particle deposition velocity to six different surfaces orientations (with respect to gravity) for fully developed turbulent flow in horizontal large circular ventilation ducts. Monodispersed aerosol particles (1-6 μm) were used in the deposition experiments. A very low particle mass (40 ng) was measured reliably above background level on duct surfaces by a means of a nondestructive stencil technique associated with fluorescence analysis. For 2-6 μm particles (diffusion and impaction regime), deposition rates to floors were much greater than rates to the ceiling and greater than rates to the wall. For 1-μm particles, the effect of surface orientation to particle deposition was not significant. Results were compared to the very few similar and published studies. This work was conducted in the frame of the CleanAirNet project which aimed at producing new knowledge, models, and techniques to help controlling the safety food stuffs, through a better control of aerosol particle (bioaerosols) transport and deposition in the ventilation networks of the food industry.

  15. Wall-resolved large-eddy simulation of flow past a circular cylinder

    NASA Astrophysics Data System (ADS)

    Cheng, W.; Pullin, D. I.; Samtaney, R.

    2016-11-01

    Wall-resolved large-eddy simulations (LES) about a smooth-walled circular cylinder are described over a range of Reynolds number from ReD = 3 . 9 ×103 (subcritical) to above the drag crisis, ReD = 8 . 5 ×105 (supercritical), where D is the cylinder diameter. The span-wise domain is 3 D for ReD <=105 and D otherwise. The numerical method is a fourth-order finite-difference discretization on a standard curvilinear O-grid. The stretched-vortex sub-grid scale model is used in the whole domain, including regions of large-scale separated flow. For ReD <=105 , calculations of the skin-friction coefficient versus polar angle θ along the cylinder surface and its dependence on ReD are well captured in comparison with experimental data. Proper separation behavior is observed. For high ReD , a fine mesh 8192 × 1024 × 256 is used. It is found that a blowing/suction-type perturbation of the wall-normal velocity along a span-wise strip, with angular position at θ = 50 -60o , is then required in order to produce flow separation in accordance with experiment at Reynolds numbers in the drag-crisis regime. Results presented will focus on the skin-friction behavior and details of flow separation. Supported partially by KAUST OCRF Award No. URF/1/1394-01 and partially by NSF award CBET 1235605. The Cray XC40, Shaheen, at KAUST was utilized for all simulations.

  16. Sidewall-box airlift pump provides large flows for aeration, CO2 stripping, and water rotation in large dual-drain circular tanks

    USDA-ARS?s Scientific Manuscript database

    Conventional gas transfer technologies for aquaculture systems occupy a large amount of space, require a considerable capital investment, and can contribute to high electricity demand. In addition, diffused aeration in a circular culture tank can interfere with the hydrodynamics of water rotation a...

  17. Circular High-Q Resonating Isotropic Strain Sensors with Large Shift of Resonance Frequency under Stress

    PubMed Central

    Melik, Rohat; Unal, Emre; Perkgoz, Nihan Kosku; Puttlitz, Christian; Demir, Hilmi Volkan

    2009-01-01

    We present circular architecture bioimplant strain sensors that facilitate a strong resonance frequency shift with mechanical deformation. The clinical application area of these sensors is for in vivo assessment of bone fractures. Using a rectangular geometry, we obtain a resonance shift of 330 MHz for a single device and 170 MHz for its triplet configuration (with three side-by-side resonators on chip) under an applied load of 3,920 N. Using the same device parameters with a circular isotropic architecture, we achieve a resonance frequency shift of 500 MHz for the single device and 260 MHz for its triplet configuration, demonstrating substantially increased sensitivity. PMID:22303132

  18. Curvature Cosmology

    NASA Astrophysics Data System (ADS)

    Crawford, David F.

    Curvature Cosmology proposes a new cosmological model very different from, and more elegant than, the Big-Bang Theory. Curvature Cosmology is based on two major hypotheses that Hubble redshift is due to an interaction of photons with curved spacetime and that there is a pressure that acts to stabilise expansion and provides a static, stable universe. The main focus of this book is to describe these two hypotheses in detail and to examine all relevant cosmological data in the context of this new model of the universe. This model proposes that, though evolution of stars and galaxies is evident, the statistical properties of the universe are the same at all places and at all times. In short, the universe is ageless, has no defined beginning (unlike the Big-Bang model), and carries no evidence of expansion, despite the changeability of its components. Curvature Cosmology calls for a paradigm shift in current cosmology and requires at least basic (if not more complex) knowledge of past and current cosmological models and equations.

  19. THE ROLE OF ERUPTING SIGMOID IN TRIGGERING A FLARE WITH PARALLEL AND LARGE-SCALE QUASI-CIRCULAR RIBBONS

    SciTech Connect

    Joshi, Navin Chandra; Magara, Tetsuya; Moon, Y.-J.; Liu, Chang; Wang, Haimin; Sun, Xudong E-mail: njoshi98@gmail.com

    2015-10-10

    In this paper, we present observations and analysis of an interesting sigmoid formation, eruption, and the associated flare that occurred on 2014 April 18 using multi-wavelength data sets. We discuss the possible role of the sigmoid eruption in triggering the flare, which consists of two different sets of ribbons: parallel ribbons and a large-scale quasi-circular ribbon. Several observational evidence and nonlinear force-free field extrapolation results show the existence of a large-scale fan-spine type magnetic configuration with a sigmoid lying under a section of the fan dome. The event can be explained with the following two phases. During the preflare phase, we observed the formation and appearance of the sigmoid via tether-cutting reconnection between the two sets of sheared fields under the fan dome. The second, main flare phase features the eruption of the sigmoid, the subsequent flare with parallel ribbons, and a quasi-circular ribbon. We propose the following multi-stage successive reconnection scenario for the main flare. First, tether-cutting reconnection is responsible for the formation and the eruption of the sigmoid structure. Second, the reconnection occurring in the wake of the erupting sigmoid produces the parallel flare ribbons on the both sides of the circular polarity inversion line. Third, the null-type reconnection higher in the corona, possibly triggered by the erupting sigmoid, leads to the formation of a large quasi-circular ribbon. For the first time, we suggest a mechanism for this type of flare consisting of a double set of ribbons triggered by an erupting sigmoid in a large-scale fan-spine-type magnetic configuration.

  20. Performance Prediction of Large-Diameter Circular Saws Based on Surface Hardness Tests for Mugla (Turkey) Marbles

    NASA Astrophysics Data System (ADS)

    Güney, Avni

    2011-05-01

    Surface hardness tests such as Shore hardness (SH) and Schmidt hammer rebound hardness (SR) may provide a quick and inexpensive measure of rock hardness, which may be widely used for estimating the mechanical properties of rock material such as strength, sawability, drillability and cuttability. In the marble industry, circular sawing with diamond sawblades constitutes a major cost in the processing. Therefore, several models based on the relations between hourly slab production ( P hs), rock surface hardness (SH and SR) and mineral grain size ( S cr) were developed using the data obtained from field and laboratory measurements on five different marbles quarried in the Mugla Province of Turkey. The models which include surface hardness and crystal size may as well be used for the prediction of sawability (hourly slab production) of carbonate rocks using large-diameter circular saws.

  1. Distribution of circular proteins in plants: large-scale mapping of cyclotides in the Violaceae.

    PubMed

    Burman, Robert; Yeshak, Mariamawit Y; Larsson, Sonny; Craik, David J; Rosengren, K Johan; Göransson, Ulf

    2015-01-01

    During the last decade there has been increasing interest in small circular proteins found in plants of the violet family (Violaceae). These so-called cyclotides consist of a circular chain of approximately 30 amino acids, including six cysteines forming three disulfide bonds, arranged in a cyclic cystine knot (CCK) motif. In this study we map the occurrence and distribution of cyclotides throughout the Violaceae. Plant material was obtained from herbarium sheets containing samples up to 200 years of age. Even the oldest specimens contained cyclotides in the preserved leaves, with no degradation products observable, confirming their place as one of the most stable proteins in nature. Over 200 samples covering 17 of the 23-31 genera in Violaceae were analyzed, and cyclotides were positively identified in 150 species. Each species contained a unique set of between one and 25 cyclotides, with many exclusive to individual plant species. We estimate the number of different cyclotides in the Violaceae to be 5000-25,000, and propose that cyclotides are ubiquitous among all Violaceae species. Twelve new cyclotides from six phylogenetically dispersed genera were sequenced. Furthermore, the first glycosylated derivatives of cyclotides were identified and characterized, further increasing the diversity and complexity of this unique protein family.

  2. Distribution of circular proteins in plants: large-scale mapping of cyclotides in the Violaceae

    PubMed Central

    Burman, Robert; Yeshak, Mariamawit Y.; Larsson, Sonny; Craik, David J.; Rosengren, K. Johan; Göransson, Ulf

    2015-01-01

    During the last decade there has been increasing interest in small circular proteins found in plants of the violet family (Violaceae). These so-called cyclotides consist of a circular chain of approximately 30 amino acids, including six cysteines forming three disulfide bonds, arranged in a cyclic cystine knot (CCK) motif. In this study we map the occurrence and distribution of cyclotides throughout the Violaceae. Plant material was obtained from herbarium sheets containing samples up to 200 years of age. Even the oldest specimens contained cyclotides in the preserved leaves, with no degradation products observable, confirming their place as one of the most stable proteins in nature. Over 200 samples covering 17 of the 23–31 genera in Violaceae were analyzed, and cyclotides were positively identified in 150 species. Each species contained a unique set of between one and 25 cyclotides, with many exclusive to individual plant species. We estimate the number of different cyclotides in the Violaceae to be 5000–25,000, and propose that cyclotides are ubiquitous among all Violaceae species. Twelve new cyclotides from six phylogenetically dispersed genera were sequenced. Furthermore, the first glycosylated derivatives of cyclotides were identified and characterized, further increasing the diversity and complexity of this unique protein family. PMID:26579135

  3. Curvature of wave streamlines

    NASA Astrophysics Data System (ADS)

    Berry, M. V.

    2013-10-01

    Wave streamlines are integral curves of the local wavevector (phase gradient). An exact formula is derived, giving the curvature of streamlines as the component transverse to the local wavevector of the gradient of the logarithm of the local wavenumber. The formula is applied to quantum particles moving in a potential and classical light in the presence of a refractive-index gradient. Three limiting regimes are encompassed. The first is geometrical, in which the bending of streamlines arises solely from the classical force or optical index gradient. The second and third limits concern singularities in the pattern of wave streamlines, of two types: optical vortices, near which the streamlines are asymptotically circular, and phase saddles, near which the streamlines are asymptotically hyperbolic.

  4. Unprecedented large inverted repeats at the replication terminus of circular bacterial chromosomes suggest a novel mode of chromosome rescue

    PubMed Central

    El Kafsi, Hela; Loux, Valentin; Mariadassou, Mahendra; Blin, Camille; Chiapello, Hélène; Abraham, Anne-Laure; Maguin, Emmanuelle; van de Guchte, Maarten

    2017-01-01

    The first Lactobacillus delbrueckii ssp. bulgaricus genome sequence revealed the presence of a very large inverted repeat (IR), a DNA sequence arrangement which thus far seemed inconceivable in a non-manipulated circular bacterial chromosome, at the replication terminus. This intriguing observation prompted us to investigate if similar IRs could be found in other bacteria. IRs with sizes varying from 38 to 76 kbp were found at the replication terminus of all 5 L. delbrueckii ssp. bulgaricus chromosomes analysed, but in none of 1373 other chromosomes. They represent the first naturally occurring very large IRs detected in circular bacterial genomes. A comparison of the L. bulgaricus replication terminus regions and the corresponding regions without IR in 5 L. delbrueckii ssp. lactis genomes leads us to propose a model for the formation and evolution of the IRs. The DNA sequence data are consistent with a novel model of chromosome rescue after premature replication termination or irreversible chromosome damage near the replication terminus, involving mechanisms analogous to those proposed in the formation of very large IRs in human cancer cells. We postulate that the L. delbrueckii ssp. bulgaricus-specific IRs in different strains derive from a single ancestral IR of at least 93 kbp. PMID:28281695

  5. Unprecedented large inverted repeats at the replication terminus of circular bacterial chromosomes suggest a novel mode of chromosome rescue.

    PubMed

    El Kafsi, Hela; Loux, Valentin; Mariadassou, Mahendra; Blin, Camille; Chiapello, Hélène; Abraham, Anne-Laure; Maguin, Emmanuelle; van de Guchte, Maarten

    2017-03-10

    The first Lactobacillus delbrueckii ssp. bulgaricus genome sequence revealed the presence of a very large inverted repeat (IR), a DNA sequence arrangement which thus far seemed inconceivable in a non-manipulated circular bacterial chromosome, at the replication terminus. This intriguing observation prompted us to investigate if similar IRs could be found in other bacteria. IRs with sizes varying from 38 to 76 kbp were found at the replication terminus of all 5 L. delbrueckii ssp. bulgaricus chromosomes analysed, but in none of 1373 other chromosomes. They represent the first naturally occurring very large IRs detected in circular bacterial genomes. A comparison of the L. bulgaricus replication terminus regions and the corresponding regions without IR in 5 L. delbrueckii ssp. lactis genomes leads us to propose a model for the formation and evolution of the IRs. The DNA sequence data are consistent with a novel model of chromosome rescue after premature replication termination or irreversible chromosome damage near the replication terminus, involving mechanisms analogous to those proposed in the formation of very large IRs in human cancer cells. We postulate that the L. delbrueckii ssp. bulgaricus-specific IRs in different strains derive from a single ancestral IR of at least 93 kbp.

  6. Amplicon structure in multidrug-resistant murine cells: a nonrearranged region of genomic DNA corresponding to large circular DNA.

    PubMed Central

    Ståhl, F; Wettergren, Y; Levan, G

    1992-01-01

    Multidrug resistance (MDR) in tumor cell lines is frequently correlated with amplification of one or more mdr genes. Usually the amplified domain also includes several neighboring genes. Using pulsed-field gel electrophoresis, we have established a restriction map covering approximately 2,200 kb in the drug-sensitive mouse tumor cell line TC13K. The mapped region is located on mouse chromosome 5 and includes the three mdr genes, the gene for the calcium-binding sorcin protein, and a gene with unknown function designated class 5. Long-range maps of the amplified DNA sequences in five of six MDR sublines that had been independently derived from TC13K generally displayed the same pattern as did the parental cell line. All six MDR sublines exhibited numerous double minutes, and one of them displayed a homogeneously staining region in a subpopulation. Large circular molecules, most likely identical to one chromatid of the double minutes, were detected in four of the sublines by linearization with gamma irradiation. The size of the circles was about 2,500 kb, which correlated to a single unit of the amplified domain. We therefore propose that in four independent instances of MDR development, a single unit of about 2,500 kb has been amplified in the form of circular DNA molecules. The restriction enzyme map of the amplified unit is unchanged compared with that of the parental cell line, whereas the joining sites of the circular DNA molecules are not identical but are in the same region. Images PMID:1545798

  7. Crowder/grader units improve harvest efficiency in large circular tanks

    USDA-ARS?s Scientific Manuscript database

    The use of larger and deeper tanks can reduce building, labor and other aquaculture production costs. However, the ability to grade and transfer large numbers of fish is more challenging when using large tanks. At The Conservation Fund Freshwater Institute, the authors have developed and evaluated i...

  8. Comparison of turbulent flow through hexagram and hexagon orifices in circular pipes using large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Nicolleau, Franck C. G. A.; Qin, Ning

    2016-04-01

    Characteristics of turbulent flow through a circular, a hexagon and a hexagram orifice with the same flow area in circular pipes are investigated using wall-modelled large-eddy simulation. Good agreements to available experimental data were obtained in both the mean velocity and turbulent kinetic energy. The hexagram orifice with alternating convex and concave corners introduces outwards radial velocity around the concave corners downstream of the orifice plate stronger than the hexagon orifice. The stronger outwards radial velocity transfers high momentum from the pipe centre towards the pipe wall to energize the orifice-forced vortex sheet rolling-up and leads to a delayed vortex break-down. Correspondingly, the hexagram has a more gradual flow recovery to a pipe flow and a reduced pressure drop than the hexagon orifice. Both the hexagon and hexagram orifices show an axis-switching phenomenon, which is observed from both the streamwise velocity and turbulent kinetic energy contours. To the best knowledge of the authors, this is the first comparison of orifice-forced turbulence development, mixing and flow dynamics between a regular and a fractal-based polygonal orifice.

  9. Transcriptome-wide identification and functional investigation of circular RNA in the teleost large yellow croaker (Larimichthys crocea).

    PubMed

    Xu, Shuangbin; Xiao, Shijun; Qiu, Changliang; Wang, Zhiyong

    2017-04-01

    Circular RNA (circRNA) was first reported over thirty years ago. With the development of high-throughput sequencing technologies, circRNA has been identified in an increasing number of species. However, few studies on circRNA have been reported in teleost fish. Accumulating transcriptome and phenotype data enable us to probe the biological functions of circRNA in fish species. Here, we report the identification of circRNAs from RNA sequencing (RNA-seq) data in large yellow croaker (Larimichthys crocea), a commercially important marine fish in China and East Asia. Using the computational identification, 975 circular RNAs were detected, of which three were validated by experiments. GO and KEGG analyses revealed the biological functions of genes hosting the circRNAs were enriched in the progression of translation initiation, macromolecule metabolism and binding. Notably, we found that many circRNAs in large yellow croaker had abundant microRNA-binding sites. A total of 363 the identified circRNAs had more than five miRNA-binding sites, among which twenty-two had more than ten binding sites for the miRNA-430 and the let-7 family. Our study confirmed the presence of circRNAs in large yellow croaker for the first time, providing a valuable reference for circRNA identification in fish species. Meanwhile, this work confirmed that the RNA-seq data from the traditional linear transcriptome library could be used for preliminary circRNA identification, which may offer an important reference for preliminary circRNA investigations in other species.

  10. Tripping the Flow past a Circular Cylinder: Use of Multiple Large-Scale Spanwise Protrusions

    NASA Astrophysics Data System (ADS)

    Joshi, Antrix

    An experimental study is carried out to investigate if the collective influence of multiple spanwise tripwires fitted on a circular cylinder in subcritical flow can be correlated to the knowledge accumulated by previous studies on the influence of only one tripwire on its own. In an effort to explore this, the vortex shedding frequency, characteristics of the near wake flow topology, shear layer separation behaviour, and the strength and coherence of the von Karman vortex shedding were determined for cylinders fitted with one, two, three, four, five, and eighteen spanwise tripwires using measurement techniques such as Particle Image Velocimetry (PIV), Constant Temperature Anemometry (CTA), and Hydrogen Bubble Flow Visualization. The single-wire tripping was selected as the baseline case because it is the simplest form of tripping, and much is known about its effects from previous studies. Based upon the effective range of angles from thetat to theta b, defined by Nebres and Batill (1992), four scenarios could be identified for a multi-wire fitted cylinder. If none of the tripwires of the multi-wire fitted cylinder were within this range, the cylinder was analogous to a smooth cylinder. If only one tripwire was within the thetat to theta b range, the flow around the multiple-wire fitted cylinder can be exactly inferred from the flow around the single-wire fitted cylinder. If two tripwires of the multi-wire fitted cylinder were within the thetat to theta b range, the Strouhal number could be inferred by considering an accumulative influence of both of the tripwires. The fundamental angles such as the first and the second critical angles could also be found for the multi-wire-fitted cases by considering the fundamental angles of the single-wire-fitted case. Here, the total amount of fluid available to be entrained in the shear layers needs to be considered to predict the near wake flow behaviour; which may cause a delay in the location of the first critical angle

  11. Launch window analysis of satellites in high eccentricity or large circular orbits

    NASA Technical Reports Server (NTRS)

    Renard, M. L.; Bhate, S. K.; Sridharan, R.

    1973-01-01

    Numerical methods and computer programs for studying the stability and evolution of orbits of large eccentricity are presented. Methods for determining launch windows and target dates are developed. Mathematical models are prepared to analyze the characteristics of specific missions.

  12. Large-eddy simulation of circular cylinder flow at subcritical Reynolds number: Turbulent wake and sound radiation

    NASA Astrophysics Data System (ADS)

    Guo, Li; Zhang, Xing; He, Guowei

    2016-02-01

    The flows past a circular cylinder at Reynolds number 3900 are simulated using large-eddy simulation (LES) and the far-field sound is calculated from the LES results. A low dissipation energy-conserving finite volume scheme is used to discretize the incompressible Navier-Stokes equations. The dynamic global coefficient version of the Vreman's subgrid scale (SGS) model is used to compute the sub-grid stresses. Curle's integral of Lighthill's acoustic analogy is used to extract the sound radiated from the cylinder. The profiles of mean velocity and turbulent fluctuations obtained are consistent with the previous experimental and computational results. The sound radiation at far field exhibits the characteristic of a dipole and directivity. The sound spectra display the -5/3 power law. It is shown that Vreman's SGS model in company with dynamic procedure is suitable for LES of turbulence generated noise.

  13. Large deflection of clamped circular plate and accuracy of its approximate analytical solutions

    NASA Astrophysics Data System (ADS)

    Zhang, Yin

    2016-02-01

    A different set of governing equations on the large deflection of plates are derived by the principle of virtual work (PVW), which also leads to a different set of boundary conditions. Boundary conditions play an important role in determining the computation accuracy of the large deflection of plates. Our boundary conditions are shown to be more appropriate by analyzing their difference with the previous ones. The accuracy of approximate analytical solutions is important to the bulge/blister tests and the application of various sensors with the plate structure. Different approximate analytical solutions are presented and their accuracies are evaluated by comparing them with the numerical results. The error sources are also analyzed. A new approximate analytical solution is proposed and shown to have a better approximation. The approximate analytical solution offers a much simpler and more direct framework to study the plate-membrane transition behavior of deflection as compared with the previous approaches of complex numerical integration.

  14. Method and Apparatus for Precisely Applying Large Planar Equi-Biaxial Strains to a Circular Membrane

    DTIC Science & Technology

    2013-04-01

    discussions, and for his attention to detail and quality in the manufacture of components using a laser cutter, Objet 3-D printer , lathe, and Haas CNC...package, VIC- 3D (from CorrelatedSolutions), was used to process the images and measure the resulting strain field. A representative sample of the...Love, A. E. H. A Treatise on the Mathematical Theory of Elasticity ; Cambridge University Press: New York, 1927. Rivlin, R. S.; Saunders, D. W. Large

  15. A model for simulating the influence of a spatial distribution of large circular macropores on surface runoff

    NASA Astrophysics Data System (ADS)

    Léonard, J.; Perrier, E.; de Marsily, G.

    2001-12-01

    This paper reports the development and test, at the scale of 1 m2, of an event- based model that aims at simulating the influence of a spatial distribution of large circular macropores on surface runoff. The main originality of this model is that it focuses on the way macropores are supplied with water at the soil surface, by coupling an original model for water interception by individual macropores to a high-resolution spatialized overland flow model. A three-step evaluation of the model was carried out, involving (1) an experimental test of the model for water interception by macropores; (2) a sensitivity analysis of the model to time and space discretization; and (3) a comparison between numerical and field results in the case of runoff on a crusted soil surface with a population of large macropores made by termites in the Sahel. The model was found to accurately simulate the effect of a spatial distribution of large macropores on runoff, and it showed that small heterogeneities, like macropores or areas where a crust has been destroyed, which cover a very limited proportion of the soil surface, can have a high impact on runoff.

  16. Modeling a decrease in hydraulic losses during turbulent flow in a U-bend channel with a circular cavern with a large opening angle

    NASA Astrophysics Data System (ADS)

    Isaev, S. A.; Kalinin, E. I.; Tereshkin, A. A.; Usachov, A. E.

    2015-03-01

    The Reynolds equations for incompressible viscous fluid, closed using the Menter shear-stress-transfer model modified with allowance for the curvature of flow lines, have been numerically solved using multiblock computational technologies. The obtained solution has been used to calculate the turbulent flow in a U-bend channel containing a circular cavern with a variable opening angle. Predictions based on the results of numerical simulations agree well with the experimental data of Savelsberg and Castro at moderate cavern opening angles. It is established that hydraulic losses in a U-bend channel with completely open cavern are significantly (by ˜25%) decreased as compared to those in a smooth channel at Re = 105.

  17. On the stability of self-consistent large amplitude waves in a cold plasma. I - Transverse circularly polarized waves in the absence of a large scale magnetic field

    NASA Technical Reports Server (NTRS)

    Lee, M. A.; Lerche, I.

    1978-01-01

    It is demonstrated that a self-consistent circularly polarized wave in an otherwise field-free homogeneous cold plasma is unstable to small amplitude perturbations. For either an electron-positron plasma or an electron-proton plasma the instability rate is at least about the order of the effective plasma frequency when the bulk flow speed is zero. For finite bulk flow speeds of the plasma, it is shown that the electron-positron plasma is unstable, again with a growth rate of the order of the effective plasma frequency; it is also shown that the electron-proton plasma is unstable (at least at small wave numbers, k) with a growth rate proportional to k. The calculated instability rates are conservative, for other modes not investigated here may be more unstable. The results of these calculations bear directly on the understanding of plasma systems thought to be driven by large amplitude waves.

  18. Thermal Stability of Magnetic States in Circular Thin-Film Nanomagnets with Large Perpendicular Magnetic Anisotropy

    NASA Astrophysics Data System (ADS)

    Chaves-O'Flynn, Gabriel

    The scaling of the energy barrier to magnetization reversal in thin-film nanomagnets with perpendicular magnetization as a function of their lateral size is of great interest and importance for high-density magnetic random access memory devices. Experimental studies of such elements show either a quadratic or linear dependence of the energy barrier on element diameter. I will discuss a theoretical model we developed to determine the micromagnetic configurations that set the energy barrier for thermally activated reversal of a thin disk with perpendicular magnetic anisotropy as a function of disk diameter. We find a critical length in the problem that is set by the exchange and effective perpendicular magnetic anisotropy energies, with the latter including the size dependence of the demagnetization energy. For diameters smaller than this critical length, the reversal occurs by nearly coherent magnetization rotation and the energy barrier scales with the square of the diameter normalized to the critical length (for fixed film thickness), while for larger diameters, the transition state has a domain wall, and the energy barrier depends linearly on the normalized diameter. Simple analytic expressions are derived for these two limiting cases and verified using full micromagnetic simulations with the string method. Further, the effect of an applied field is considered and shown to lead to a plateau in the energy barrier versus diameter dependence at large diameters. Based on these finding I discuss the prospects and material challenges in the scaling of magnetic memory devices based on thin films with strong perpendicular magnetic anisotropy. In collaboration with G. Wolf, J. Z. Sun and A. D. Kent. Supported by NSF-DMR-1309202 and in part by Spin Transfer Technologies Inc. and the Nanoelectronics Research Initiative through the Institute for Nanoelectronics Discovery and Exploration.

  19. Theory and experiments for large-amplitude vibrations of empty and fluid-filled circular cylindrical shells with imperfections

    NASA Astrophysics Data System (ADS)

    Amabili, M.

    2003-05-01

    The large-amplitude response of perfect and imperfect, simply supported circular cylindrical shells to harmonic excitation in the spectral neighbourhood of some of the lowest natural frequencies is investigated. Donnell's non-linear shallow-shell theory is used and the solution is obtained by the Galerkin method. Several expansions involving 16 or more natural modes of the shell are used. The boundary conditions on the radial displacement and the continuity of circumferential displacement are exactly satisfied. The effect of internal quiescent, incompressible and inviscid fluid is investigated. The non-linear equations of motion are studied by using a code based on the arclength continuation method. A series of accurate experiments on forced vibrations of an empty and water-filled stainless-steel shell have been performed. Several modes have been intensively investigated for different vibration amplitudes. A closed loop control of the force excitation has been used. The actual geometry of the test shell has been measured and the geometric imperfections have been introduced in the theoretical model. Several interesting non-linear phenomena have been experimentally observed and numerically reproduced, such as softening-type non-linearity, different types of travelling wave response in the proximity of resonances, interaction among modes with different numbers of circumferential waves and amplitude-modulated response. For all the modes investigated, the theoretical and experimental results are in strong agreement.

  20. Circular Coinduction

    NASA Technical Reports Server (NTRS)

    Rosu, Grigore; Goguen, Joseph; Norvig, Peter (Technical Monitor)

    2001-01-01

    Circular coinduction is a technique for behavioral reasoning that extends cobasis coinduction to specifications with circularities. Because behavioral satisfaction is not recursively enumerable, no algorithm can work for every behavioral statement. However. algorithms using circular coinduction can prove every practical behavioral result that we know. This paper proves the correctness of circular coinduction and some consequences.

  1. Spatial curvature endgame: Reaching the limit of curvature determination

    NASA Astrophysics Data System (ADS)

    Leonard, C. Danielle; Bull, Philip; Allison, Rupert

    2016-07-01

    Current constraints on spatial curvature show that it is dynamically negligible: |ΩK|≲5 ×10-3 (95% C.L.). Neglecting it as a cosmological parameter would be premature however, as more stringent constraints on ΩK at around the 10-4 level would offer valuable tests of eternal inflation models and probe novel large-scale structure phenomena. This precision also represents the "curvature floor," beyond which constraints cannot be meaningfully improved due to the cosmic variance of horizon-scale perturbations. In this paper, we discuss what future experiments will need to do in order to measure spatial curvature to this maximum accuracy. Our conservative forecasts show that the curvature floor is unreachable—by an order of magnitude—even with Stage IV experiments, unless strong assumptions are made about dark energy evolution and the Λ CDM parameter values. We also discuss some of the novel problems that arise when attempting to constrain a global cosmological parameter like ΩK with such high precision. Measuring curvature down to this level would be an important validation of systematics characterization in high-precision cosmological analyses.

  2. Nudiviruses and other large, double-stranded circular DNA viruses of invertebrates: new insights on an old topic.

    PubMed

    Wang, Yongjie; Jehle, Johannes A

    2009-07-01

    Nudiviruses (NVs) are a highly diverse group of large, circular dsDNA viruses pathogenic for invertebrates. They have rod-shaped and enveloped nucleocapsids, replicate in the nucleus of infected host cells, and possess interesting biological and molecular properties. The unassigned viral genus Nudivirus has been proposed for classification of nudiviruses. Currently, the nudiviruses comprise five different viruses: the palm rhinoceros beetle virus (Oryctes rhinoceros NV, OrNV), the Hz-1 virus (Heliothis zea NV-1, HzNV-1), the cricket virus (Gryllus bimaculatus NV, GbNV), the corn earworm moth Hz-2 virus (HzNV-2), and the occluded shrimp Monodon Baculovirus reassigned as Penaeus monodon NV (PmNV). Thus far, the genomes of OrNV, GbNV, HzNV-1 and HzNV-2 have been completely sequenced. They vary between 97 and 230kbp in size and encode between 98 and 160 open reading frames (ORFs). All sequenced nudiviruses have 33 ORFs in common. Strikingly, 20 of them are homologous to baculovirus core genes involved in RNA transcription, DNA replication, virion structural components and other functions. Another nine conserved ORFs are likely associated with DNA replication, repair and recombination, and nucleotide metabolism; one is homologous to baculovirus iap-3 gene; two are nudivirus-specific ORFs of unknown function. Interestingly, one nudivirus ORF is similar to polh/gran gene, encoding occlusion body protein matrix and being conserved in Alpha- Beta- and Gammabaculoviruses. Members of nudiviruses are closely related and form a monophyletic group consisting of two sister clades of OrNV/GbNV and HzNVs/PmNV. It is proposed that nudiviruses and baculoviruses derived from a common ancestor and are evolutionarily related to other large DNA viruses such as the insect-specific salivary gland hypertrophy virus (SGHV) and the marine white spot syndrome virus (WSSV).

  3. On the Weyl curvature hypothesis

    SciTech Connect

    Stoica, Ovidiu Cristinel

    2013-11-15

    The Weyl curvature hypothesis of Penrose attempts to explain the high homogeneity and isotropy, and the very low entropy of the early universe, by conjecturing the vanishing of the Weyl tensor at the Big-Bang singularity. In previous papers it has been proposed an equivalent form of Einstein’s equation, which extends it and remains valid at an important class of singularities (including in particular the Schwarzschild, FLRW, and isotropic singularities). Here it is shown that if the Big-Bang singularity is from this class, it also satisfies the Weyl curvature hypothesis. As an application, we study a very general example of cosmological models, which generalizes the FLRW model by dropping the isotropy and homogeneity constraints. This model also generalizes isotropic singularities, and a class of singularities occurring in Bianchi cosmologies. We show that the Big-Bang singularity of this model is of the type under consideration, and satisfies therefore the Weyl curvature hypothesis. -- Highlights: •The singularities we introduce are described by finite geometric/physical objects. •Our singularities have smooth Riemann and Weyl curvatures. •We show they satisfy Penrose’s Weyl curvature hypothesis (Weyl=0 at singularities). •Examples: FLRW, isotropic singularities, an extension of Schwarzschild’s metric. •Example: a large class of singularities which may be anisotropic and inhomogeneous.

  4. Spatial curvature falsifies eternal inflation

    SciTech Connect

    Kleban, Matthew; Schillo, Marjorie E-mail: mls604@nyu.edu

    2012-06-01

    Inflation creates large-scale cosmological density perturbations that are characterized by an isotropic, homogeneous, and Gaussian random distribution about a locally flat background. Even in a flat universe, the spatial curvature measured within one Hubble volume receives contributions from long wavelength perturbations, and will not in general be zero. These same perturbations determine the Cosmic Microwave Background (CMB) temperature fluctuations, which are O(10{sup −5}). Consequently, the low-l multipole moments in the CMB temperature map predict the value of the measured spatial curvature Ω{sub k}. On this basis we argue that a measurement of |Ω{sub k}| > 10{sup −4} would rule out slow-roll eternal inflation in our past with high confidence, while a measurement of Ω{sub k} < −10{sup −4} (which is positive curvature, a locally closed universe) rules out false-vacuum eternal inflation as well, at the same confidence level. In other words, negative curvature (a locally open universe) is consistent with false-vacuum eternal inflation but not with slow-roll eternal inflation, and positive curvature falsifies both. Near-future experiments will dramatically extend the sensitivity of Ω{sub k} measurements and constitute a sharp test of these predictions.

  5. Simulation optimization of filament parameters for uniform depositions of diamond films on surfaces of ultra-large circular holes

    NASA Astrophysics Data System (ADS)

    Wang, Xinchang; Shen, Xiaotian; Sun, Fanghong; Shen, Bin

    2016-12-01

    Chemical vapor deposition (CVD) diamond films have been widely applied as protective coatings on varieties of anti-frictional and wear-resistant components, owing to their excellent mechanical and tribological properties close to the natural diamond. In applications of some components, the inner hole surface will serve as the working surface that suffers severe frictional or erosive wear. It is difficult to realize uniform depositions of diamond films on surfaces of inner holes, especially ultra-large inner holes. Adopting a SiC compact die with an aperture of V80 mm as an example, a novel filament arrangement with a certain number of filaments evenly distributed on a circle is designed, and specific effects of filament parameters, including the filament number, arrangement direction, filament temperature, filament diameter, circumradius and the downward translation, on the substrate temperature distribution are studied by computational fluid dynamics (CFD) simulations based on the finite volume method (FVM), adopting a modified computational model well consistent with the actual deposition environment. Corresponding temperature measurement experiments are also conducted to verify the rationality of the computational model. From the aspect of depositing uniform boron-doped micro-crystalline, undoped micro-crystalline and undoped fine-grained composite diamond (BDM-UMC-UFGCD) film on such the inner hole surface, filament parameters as mentioned above are accurately optimized and compensated by orthogonal simulations. Moreover, deposition experiments adopting compensated optimized parameters and some typical contrastive parameters are also accomplished for further verifying the rationality of the computational model and the correctness of the compensation coefficient 0.7 defined for the downward translation determined by simulations. More importantly, on the basis of more simulations and verification tests, a general filament arrangement model suitable for V50-120 mm

  6. Toroidal circular dichroism

    NASA Astrophysics Data System (ADS)

    Raybould, T. A.; Fedotov, V. A.; Papasimakis, N.; Kuprov, I.; Youngs, I. J.; Chen, W. T.; Tsai, D. P.; Zheludev, N. I.

    2016-07-01

    We demonstrate that the induced toroidal dipole, represented by currents flowing on the surface of a torus, makes a distinct and indispensable contribution to circular dichroism. We show that toroidal circular dichroism supplements the well-known mechanism involving electric dipole and magnetic dipole transitions. We illustrate this with rigorous analysis of the experimentally measured polarization-sensitive transmission spectra of an artificial metamaterial, constructed from elements of toroidal symmetry. We argue that toroidal circular dichroism will be found in large biomolecules with elements of toroidal symmetry and should be taken into account in the interpretation of circular dichroism spectra of organics.

  7. Intrinsic versus imposed curvature in cyclical oligomers: the portal protein of bacteriophage SPP1.

    PubMed Central

    van Heel, M; Orlova, E V; Dube, P; Tavares, P

    1996-01-01

    Large cyclical oligomers may be formed by (curvi-) linear polymerization of monomers until the n(th) monomer locks in with the first member of the chain. The subunits in incomplete structures exhibit a natural curvature with respect to each other which can be perturbed when the oligomer closes cyclically. Using cryo-electron microscopy and multivariate statistical image processing we report herein a direct structural observation of this effect. A sub-population (approximately 15%) of incomplete oligomers was found within a sample of SPP1 bacteriophage portal proteins embedded in vitreous ice. Whereas the curvature between adjacent subunits of the closed circular 13-fold symmetric oligomer is 27.7 degrees, in these incomplete oligomers the angle is only 25.8 degrees, a value which almost allows for a 14-subunit cyclical arrangement. A simple model for the association of large cyclical oligomers is suggested by our data. Images PMID:8890151

  8. Large-amplitude, circularly polarized, compressive, obliquely propagating electromagnetic proton cyclotron waves throughout the Earth's magnetosheath: low plasma β conditions

    SciTech Connect

    Remya, B.; Reddy, R. V.; Lakhina, G. S.; Tsurutani, B. T.; Falkowski, B. J.; Echer, E.; Glassmeier, K.-H.

    2014-09-20

    During 1999 August 18, both Cassini and WIND were in the Earth's magnetosheath and detected transverse electromagnetic waves instead of the more typical mirror-mode emissions. The Cassini wave amplitudes were as large as ∼14 nT (peak to peak) in a ∼55 nT ambient magnetic field B {sub 0}. A new method of analysis is applied to study these waves. The general wave characteristics found were as follows. They were left-hand polarized and had frequencies in the spacecraft frame (f {sub scf}) below the proton cyclotron frequency (f{sub p} ). Waves that were either right-hand polarized or had f {sub scf} > f{sub p} are shown to be consistent with Doppler-shifted left-hand waves with frequencies in the plasma frame f{sub pf} < f{sub p} . Thus, almost all waves studied are consistent with their being electromagnetic proton cyclotron waves. Most of the waves (∼55%) were found to be propagating along B {sub 0} (θ{sub kB{sub 0}}<30{sup ∘}), as expected from theory. However, a significant fraction of the waves were found to be propagating oblique to B {sub 0}. These waves were also circularly polarized. This feature and the compressive ([B {sub max} – B {sub min}]/B {sub max}, where B {sub max} and B {sub min} are the maximum and minimum field magnitudes) nature (ranging from 0.27 to 1.0) of the waves are noted but not well understood at this time. The proton cyclotron waves were shown to be quasi-coherent, theoretically allowing for rapid pitch-angle transport of resonant protons. Because Cassini traversed the entire subsolar magnetosheath and WIND was in the dusk-side flank of the magnetosheath, it is surmised that the entire region was filled with these waves. In agreement with past theory, it was the exceptionally low plasma β (0.35) that led to the dominance of the proton cyclotron wave generation during this interval. A high-speed solar wind stream ((V{sub sw} ) = 598 km s{sup –1}) was the source of this low-β plasma.

  9. Curvature in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Wenxia; Hasinska, Kathy; Seabaugh, Matt; Swartz, Scott; Lannutti, John

    At this point in history, curvature is inherent to the laminated components that comprise solid oxide fuel cells (SOFCs). Surprisingly, however, this fact has never been previously quantified in the literature. In addition, potential curvature changes associated with NiO reduction and re-oxidation during operation have not been investigated. In this report, an optical profilometer was employed to non-destructively quantify the surface curvature or cracking behavior observed on a large scale in industrially manufactured cells. This provides insights into the challenges that the component materials face as well as additional appreciation for why, in spite of a concerted effort to commercialize SOFC power generation, all currently manufactured SOFC stacks fail. Our results demonstrate that cracked electrolyte areas (caused by differential sintering) are flatter than uncracked regions. The height of the electrolyte surface ranged from 86 to 289 μm above the baseline following sintering. Reduction typically results in increases in curvature of up to 214 μm. Initial crack density appears to affect curvature evolution during reduction; the higher the crack density, the smaller the curvature increase following reduction at 600 °C. In general, however, we observed that the electrolyte layer is remarkably resistant to further cracking during these typographic changes. Following oxidation at 750 °C, large changes in curvature (up to 280 μm) are noted that appear to be related to the strength of the bond between the electrolyte and the underlying anode.

  10. Importance of plan curvature in watershed modeling

    NASA Astrophysics Data System (ADS)

    Boll, J.; Ribail, J.; Zhao, M.

    2016-12-01

    A hillslope's hydrologic response to precipitation events is largely controlled by the topographic features of a given hillslope, specifically the profile and plan curvature. Many models simplify hillslope topography and ignore the curvature properties, and some use alternate measures such as a topographic index or the hillslope width function. Models that ignore curvature properties may be calibrated to produce the statistically acceptable integrated response of runoff at a watershed outlet, but incorporating these properties is necessary to model accurately hydrologic processes such as surface flow, erosion, subsurface lateral flow, location of runoff generation and drainage response. In this study, we evaluated the sensitivity of rainfall-runoff modelling to profile and plan curvature in two models. In the first model, the Water Erosion Prediction Project (WEPP) model, hillslope uses a representative width to the hillslope by dividing the drainage area by the average surface channel length. Profile curvature is preserved with a limited spatial resolution due to the number of overland flow elements. In the second model, the distributed Soil Moisture Routing (SMR) model, the geographic information system uses the D8 algorithm to capture profile and plan curvature. Sensitivity to topographic features was tested for three profile curvatures (convex, concave, straight) combined with three plan curvatures (diverging, converging, uniform) resulting in a total of nine hillslopes. Each hillslope was subjected to different rainfall events to detect threshold behavior for when topographic features cannot be ignored. Our findings indicate that concave and convex plan curvature need to be included when subsurface flow processes are the dominant flow process for surface flow runoff generation. We present thresholds for acceptable cases when profile and plan curvature can be simplified in larger spatial hydrologic units.

  11. Magnetic curvature effects on plasma interchange turbulence

    SciTech Connect

    Li, B. Liao, X.; Sun, C. K.; Ou, W.; Liu, D.; Gui, G.; Wang, X. G.

    2016-06-15

    The magnetic curvature effects on plasma interchange turbulence and transport in the Z-pinch and dipole-like systems are explored with two-fluid global simulations. By comparing the transport levels in the systems with a different magnetic curvature, we show that the interchange-mode driven transport strongly depends on the magnetic geometry. For the system with large magnetic curvature, the pressure and density profiles are strongly peaked in a marginally stable state and the nonlinear evolution of interchange modes produces the global convective cells in the azimuthal direction, which lead to the low level of turbulent convective transport.

  12. Structural and dynamic inhomogeneities induced by curvature gradients in elliptic colloidal halos of paramagnetic particles.

    PubMed

    Ramírez-Garza, O A; Méndez-Alcaraz, J M; González-Mozuelos, P

    2017-05-21

    Paramagnetic colloidal particles distributed along an ellipse are used as a model system to study the effects of curvature gradients on the structure and dynamics of colloids in curved manifolds. Unlike what happens for circular and spherical systems, in the present case, the equilibrium one-particle distribution function displays inhomogeneities due to the changing curvature along the ellipse. The ensuing effects on the two-body correlations are also analyzed, leading to the observation of anisotropic and long-ranged effects. Another noticeable consequence is the slowing down of the self-diffusion of these particles, which for large eccentricities may induce metastable states; this is evaluated by means of the time-dependent self-distribution.

  13. Curvature-induced lipid segregation

    NASA Astrophysics Data System (ADS)

    Zheng, Bin; Meng, Qing-Tian; B. Selinger Robin, L.; V. Selinger, Jonathan; Ye, Fang-Fu

    2015-06-01

    We investigate how an externally imposed curvature influences lipid segregation on two-phase-coexistent membranes. We show that the bending-modulus contrast of the two phases and the curvature act together to yield a reduced effective line tension. On largely curved membranes, a state of multiple domains (or rafts) forms due to a mechanism analogous to that causing magnetic-vortex formation in type-II superconductors. We determine the criterion for such a multi-domain state to occur; we then calculate respectively the size of the domains formed on cylindrically and spherically curved membranes. Project supported by the Hundred-Talent Program of the Chinese Academy of Sciences (FY) and the National Science Foundation of USA via Grant DMR-1106014 (RLBS, JVS).

  14. Soliton curvatures of surfaces and spaces

    SciTech Connect

    Konopelchenko, B.G.

    1997-01-01

    An intrinsic geometry of surfaces and three-dimensional Riemann spaces is discussed. In the geodesic coordinates the Gauss equation for two-dimensional Riemann spaces (surfaces) is reduced to the one-dimensional Schr{umlt o}dinger equation, where the Gaussian curvature plays a role of potential. The use of this fact provides an infinite set of explicit expressions for curvature and metric of surface. A special case is governed by the KdV equation for the Gaussian curvature. Integrable dynamics of curvature via the KdV equation, higher KdV equations, and 2+1-dimensional integrable equations with breaking solitons is considered. For a special class of three-dimensional Riemann spaces the relation between metric and scalar curvature is given by the two-dimensional stationary Schr{umlt o}dinger or perturbed string equations. This provides us an infinite family of Riemann spaces with explicit scalar curvature and metric. Particular class of spaces and their integrable evolutions are described by the Nizhnik{endash}Veselov{endash}Novikov equation and its higher analogs. Surfaces and three-dimensional Riemann spaces with large curvature and slow dependence on the variable are considered. They are associated with the Burgers and Kadomtsev{endash}Petviashvili equations, respectively. {copyright} {ital 1997 American Institute of Physics.}

  15. From voxel to curvature

    NASA Astrophysics Data System (ADS)

    Monga, Olivier; Ayache, Nicholas; Sander, Peter T.

    1991-09-01

    Modern medical image techniques, such as magnetic resonance image (MRI) or x-ray computed tomography provide three dimensional images of internal structures of the body, usually by means of a stack of tomographic images. The first stage in the automatic analysis of such data is 3-D edge detection1,2 which provides points corresponding to the boundaries of the surfaces forming the 3-D structure. The next stage is to characterize the local geometry of these surfaces in order to extract points or lines on which registration and/or tracking procedures can rely.3,4,5,6 This paper presents a pipeline of processes which define a hierarchical description of the second order differential characteristics of the surfaces. The focus is on the theoretical coherence of these levels of representation. Using uncertainty, a link is established between the edge detection and the local surface approximation by addressing the uncertainties inherent to edge detection in 2-D or 3-D images; and how to incorporate these uncertainties into the computation of local geometric models. In particular, calculate the uncertainty of edge location, direction, and magnitude for the 3-D Deriche operator is calculated.1,2 Statistical results are then used as a solid theoretical foundation on which to base subsequent computations, such as the determination of local surface curvature using local geometric models for surface segmentation. From the local fitting, for each edge point the mean and Gaussian curvature, principal curvatures and directions, curvature singularities, lines of curvature singularities, and covariance matrices defining the uncertainties are calculated. Experimental results for real data using two 3-D scanner images of the same organ taken at different positions demonstrate the stability of the mean and Gaussian curvatures. Experimental results for real data showing the determination of local curvature extremes of surfaces extracted from MR images are presented.

  16. Circular Motion.

    ERIC Educational Resources Information Center

    Lee, Paul D.

    1995-01-01

    Provides a period-long activity using battery powered cars rolling in a circular motion on a tile floor. Students measure the time and distance as the car moves to derive the equation for centripetal acceleration. (MVL)

  17. Circular Motion.

    ERIC Educational Resources Information Center

    Lee, Paul D.

    1995-01-01

    Provides a period-long activity using battery powered cars rolling in a circular motion on a tile floor. Students measure the time and distance as the car moves to derive the equation for centripetal acceleration. (MVL)

  18. Bacterial cell curvature through mechanical control of cell growth

    PubMed Central

    Cabeen, Matthew T; Charbon, Godefroid; Vollmer, Waldemar; Born, Petra; Ausmees, Nora; Weibel, Douglas B; Jacobs-Wagner, Christine

    2009-01-01

    The cytoskeleton is a key regulator of cell morphogenesis. Crescentin, a bacterial intermediate filament-like protein, is required for the curved shape of Caulobacter crescentus and localizes to the inner cell curvature. Here, we show that crescentin forms a single filamentous structure that collapses into a helix when detached from the cell membrane, suggesting that it is normally maintained in a stretched configuration. Crescentin causes an elongation rate gradient around the circumference of the sidewall, creating a longitudinal cell length differential and hence curvature. Such curvature can be produced by physical force alone when cells are grown in circular microchambers. Production of crescentin in Escherichia coli is sufficient to generate cell curvature. Our data argue for a model in which physical strain borne by the crescentin structure anisotropically alters the kinetics of cell wall insertion to produce curved growth. Our study suggests that bacteria may use the cytoskeleton for mechanical control of growth to alter morphology. PMID:19279668

  19. Large anisotropic Fe orbital moments in perpendicularly magnetized Co2FeAl Heusler alloy thin films revealed by angular-dependent x-ray magnetic circular dichroism

    NASA Astrophysics Data System (ADS)

    Okabayashi, Jun; Sukegawa, Hiroaki; Wen, Zhenchao; Inomata, Koichiro; Mitani, Seiji

    2013-09-01

    Perpendicular magnetic anisotropy (PMA) in Heusler alloy Co2FeAl thin films sharing an interface with a MgO layer is investigated by angular-dependent x-ray magnetic circular dichroism. Orbital and spin magnetic moments are deduced separately for Fe and Co 3d electrons. In addition, the PMA energies are estimated using the orbital magnetic moments parallel and perpendicular to the film surfaces. We found that PMA in Co2FeAl is determined mainly by the contribution of Fe atoms with large orbital magnetic moments, which are enhanced at the interface between Co2FeAl and MgO. Furthermore, element specific magnetization curves of Fe and Co are found to be similar, suggesting the existence of ferromagnetic coupling between Fe and Co PMA directions.

  20. The sources of super-high energetic electron at relativistic circularly-polarized laser-solid interactions in the presence of large scale pre-plasmas

    NASA Astrophysics Data System (ADS)

    Wu, D.; Krasheninnikov, S. I.; Luan, S. X.; Yu, W.

    2016-12-01

    The two stage electron acceleration model [Wu et al., Nucl. Fusion 57, 016007 (2017)] is extended to investigate the sources of super-hot electrons at intense circularly polarized (CP) laser solid interactions. It is found that in the presence of large scale pre-formed plasmas, super-high energetic electrons can be generated. For laser of intensity 1020 W /cm2 and pre-plasma of scale-length 10 μm , the cut-off energy of electrons by CP laser can be as high as 120 MeV compared with 100 MeV by linearly polarized laser. This unexpected acceleration can be also explained by the two-stage acceleration model. The envelop modulation of reflected CP laser is figured out, and a modified scaling law of the maximal-possible energy gain when including the modulation effect is obtained.

  1. Nonlocal Curvature Flows

    NASA Astrophysics Data System (ADS)

    Chambolle, Antonin; Morini, Massimiliano; Ponsiglione, Marcello

    2015-12-01

    This paper aims at building a unified framework to deal with a wide class of local and nonlocal translation-invariant geometric flows. We introduce a class of nonlocal generalized mean curvatures and prove the existence and uniqueness for the level set formulation of the corresponding geometric flows. We then introduce a class of generalized perimeters, whose first variation is an admissible generalized curvature. Within this class, we implement a minimizing movements scheme and we prove that it approximates the viscosity solution of the corresponding level set PDE. We also describe several examples and applications. Besides recovering and presenting in a unified way existence, uniqueness, and approximation results for several geometric motions already studied and scattered in the literature, the theory developed in this paper also allows us to establish new results.

  2. Engineering curvature in graphene ribbons using ultrathin polymer films.

    PubMed

    Li, Chunyu; Koslowski, Marisol; Strachan, Alejandro

    2014-12-10

    We propose a method to induce curvature in graphene nanoribbons in a controlled manner using an ultrathin thermoset polymer in a bimaterial strip setup and test it via molecular dynamics (MD) simulations. Continuum mechanics shows that curvature develops to release the residual stress caused by the chemical and thermal shrinkage of the polymer during processing and that this curvature increases with decreasing film thickness; however, significant deformation is only achieved for ultrathin polymer films. Quite surprisingly, explicit MD simulations of the curing and annealing processes show that the predicted trend not just continues down to film thicknesses of 1-2 nm but that the curvature development is enhanced significantly in such ultrathin films due to surface tension effects. This combination of effects leads to very large curvatures of over 0.14 nm(-1) that can be tuned via film thickness. This provides a new avenue to engineer curvature and, thus, electromagnetic properties of graphene.

  3. Evolution of the curvature perturbations during warm inflation

    NASA Astrophysics Data System (ADS)

    Matsuda, Tomohiro

    2009-06-01

    This paper considers warm inflation as an interesting application of multi-field inflation. Delta-N formalism is used for the calculation of the evolution of the curvature perturbations during warm inflation. Although the perturbations considered in this paper are decaying after the horizon exit, the corrections to the curvature perturbations sourced by these perturbations can remain and dominate the curvature perturbations at large scales. In addition to the typical evolution of the curvature perturbations, inhomogeneous diffusion rate is considered for warm inflation, which may lead to significant non-Gaussianity of the spectrum.

  4. Effect of Convex Longitudinal Curvature on the Planing Characteristics of a Surface Without Dead Rise

    NASA Technical Reports Server (NTRS)

    Mottard, Elmo J.

    1959-01-01

    A hydrodynamic investigation was made in Langley tank no. 1 of a planing surface which was curved longitudinally in the shape of a circular arc with the center of curvature above the model and had a beam of inches and a radius of curvature of 20 beams. The planing surface had length-beam ratio of 9 and an angle of dead rise of 0 deg. Wetted length, resistance, and trimming moment were determined for values of load coefficient C(sub Delta) from -4.2 to 63.9 and values of speed coefficient C(sub V) from 6 to 25. The effects of convexity were to increase the wetted length-beam ratio (for a given lift), to decrease the lift-drag ratio, to move the center of pressure forward, and ta increase the trim for maximum lift-drag ratio as compared with values for a flat surface. The effects were greatest at low trims and large drafts. The maximum negative lift coefficient C(sub L,b) obtainable with a ratio of the radius of curvature to the beam of 20 was -0.02. The effects of camber were greater in magnitude for convexity than for the same amount of concavity.

  5. Forman curvature for complex networks

    NASA Astrophysics Data System (ADS)

    Sreejith, R. P.; Mohanraj, Karthikeyan; Jost, Jürgen; Saucan, Emil; Samal, Areejit

    2016-06-01

    We adapt Forman’s discretization of Ricci curvature to the case of undirected networks, both weighted and unweighted, and investigate the measure in a variety of model and real-world networks. We find that most nodes and edges in model and real networks have a negative curvature. Furthermore, the distribution of Forman curvature of nodes and edges is narrow in random and small-world networks, while the distribution is broad in scale-free and real-world networks. In most networks, Forman curvature is found to display significant negative correlation with degree and centrality measures. However, Forman curvature is uncorrelated with clustering coefficient in most networks. Importantly, we find that both model and real networks are vulnerable to targeted deletion of nodes with highly negative Forman curvature. Our results suggest that Forman curvature can be employed to gain novel insights on the organization of complex networks.

  6. Photon Drag Effect due to Berry Curvature.

    PubMed

    Kurosawa, Hiroyuki; Sawada, Kei; Ohno, Seigo

    2016-08-19

    A theoretical investigation reveals that the photon drag effect (PDE) is induced in a grating slab with deformation by the Berry curvature in phase space. It drifts the momentum of light, and gives asymmetric PDE signals in momentum space. Large PDE signals are observed even near the Γ point. This characteristic agrees well with our theoretical results.

  7. Evolving magnitude-frequency distributions during the Guy-Greenbrier (2010-11) induced earthquake sequence: Insights into the physical mechanisms of b-value shifts and large-magnitude curvature

    NASA Astrophysics Data System (ADS)

    Dempsey, D.; Suckale, J.; Huang, Y.

    2015-12-01

    In 2010-11, a sequence of earthquakes occurred on an unmapped basement fault near Guy, Arkansas. The events are likely to have been triggered by a nine month period of wastewater disposal during which 4.5x105 m2 of water was injected at two nearby wells. Magnitude-frequency distributions (MFD) for the induced sequence show two interesting properties: (i) a low Gutenberg-Richter (GR) b-value of ~0.8 during injection, increasing to 1.0 post-injection (ii) and downward curvature of the MFD at the upper magnitude limit. We use a coupled model of injection-triggering and earthquake rupture to show how the evolving MFD can be understood in terms of an effective stress increase on the fault, which arises from overpressuring and strength reduction. Reservoir simulation is used to model injection into a horizontally extensive aquifer that overlies an impermeable basement containing a single permeable fault. Earthquake triggering occurs when the static strength, reduced by the modeled pressure increase, satisfies a Mohr-Coulomb criterion. Pressure evolution is also incorporated in a model of fault rupture, which is based on an expanding bilateral crack approximation to quasidynamic rupture propagation and static/dynamic friction evolution. An earthquake sequence is constructed as an ensemble of triggered ruptures for many realizations of a heterogeneous fractal stress distribution. During injection, there is a steady rise in fluid pressure on the fault. In addition to its role in triggering earthquakes, rising pressure affects the rupture process by reducing the dynamic strength relative to fault shear stress; this is equivalent to tectonic stress increase in natural seismicity. As mean stress increases, larger events are more frequent and this is reflected in a lower b-value. The largest events, however, occur late in the loading cycle at very high stress; their absence in the early stages of injection manifests as downward curvature in the MFD at large magnitudes.

  8. Large, segmental, circular vascular malformation of the small intestine (in a female toddler with hematochezia): unusual presentation in a child.

    PubMed

    Kalmar, Peter I; Petnehazy, Thomas; Wießpeiner, Ulrike; Beer, Meinrad; Hauer, Almuthe C; Till, Holger; Riccabona, Michael

    2014-02-26

    Failure to thrive and hematochezia in children may be alarm signs warranting endoscopy. In contrast, vascular malformations of the small intestine are uncommon in this age group. We report on a female toddler in whom various imaging techniques revealed an unusually large segmental vascular malformation of the ileum as the cause of the child's main clinical symptoms. A 19 months old girl presented with severe anemia (Hb 3 mmol/l), failure to thrive and chronic diarrhea. Diagnostics for intestinal blood loss and pathogens were negative. The child had duodenoscopy, also for histological diagnosis of celiac disease, with negative results. A dietary protocol was suggestive for inadequate iron intake and she was supplemented. After symptomless four-months the child presented again, now with mild abdominal pain and, for the first time, hematochezia. An orienting abdominal ultrasound (US) study showed a suspicious tumorous bowel condition. A subsequent detailed abdominal US supplemented by a saline enema during investigation (i.e., "hydrocolon", to improve outlining of the formation's localization) revealed a large circumferential cystiform vascular mass of the ileum causing segmental ileal obstruction.Complementing preoperative abdominal hydro-MRI, planned based on the findings of the US study, confirmed the suspected vascular malformation of the ileum and exquisitely outlined the extent, location and anatomy.The patient was successfully operated laparoscopically, the affected ileum segment with the mass was completely removed as proven by histology, and the child recovered well. The huge segmental vascular malformation of the distal ileum described here is an extreme rarity in young children. Although the reported child's presenting symptoms malabsorption and malnutrition could have been responsible for its severe anemia, this was obviously caused by blood losses from the ileal vascular malformation. It was due to incipient abdominal pain rather than hematochezia that

  9. Buttock Reconstruction in Sarcoma Surgery: An Esthetic Sigmoidplasty Closure for Large Circular Defects Using Double Opposing Skin Flaps

    PubMed Central

    Daya, Mahendra

    2016-01-01

    Background: Large defects arising from extirpation surgery of buttock sarcomas requiring adjuvant radiotherapy are best closed with flap surgery. The traditional solutions are derived from an approach to pressure sores, which were designed for the ischial, sacral, or trochanteric areas, and have now been adapted for true buttock defects. This invariably destroys the esthetics of the buttock. We describe a novel technique of sigmoidplasty, which preserves most of the esthetic features. Methods: We report on a retrospective review of 11 consecutive buttock sarcomas managed at our institution between 2009 and 2014, focusing on those for which the described reconstruction method was used (N = 5). Results: The immediate outcome was very good. In 1 patient, partial loss of 1 of the flaps and the management thereof resulted in a minor contour deformity. In general, the buttock volume was significantly decreased but the shape was preserved. This was obtained without secondary donor defect and with minimal contour irregularity. Long-term follow-up remained pleasing, and all patients were satisfied with the outcomes. Conclusions: The described technique of buttock defect closure satisfies the oncoplastic principles of tumor surgery with the added benefit of superior esthetics. We suggest that it is a versatile adjunct to the reconstructive surgeon’s armamentarium for buttock reconstruction after sarcoma excision, particularly when the gluteal artery perforator systems are unavailable. PMID:27826466

  10. Improving the Sensitivity of Astronomical Curvature Wavefront Sensor Using Dual-Stroke Curvature

    NASA Astrophysics Data System (ADS)

    Guyon, Olivier; Blain, Celia; Takami, Hideki; Hayano, Yutaka; Hattori, Masayuki; Watanabe, Makoto

    2008-06-01

    Curvature wavefront sensors measure wavefront phase aberration by acquiring two intensity images on either side of the pupil plane. Low-order adaptive optics (AO) systems using curvature wavefront sensing (CWFS) have proved to be highly efficient for astronomical applications: they are more sensitive, use fewer detector elements, and achieve, for the same number of actuators, higher Strehl ratios than AO systems using more traditional Shack-Hartmann wavefront sensors. In higher-order systems, however, curvature wavefront sensors lose sensitivity to low spatial frequencies wavefront aberrations. This effect, often described as “noise propagation,” limits the usefulness of curvature wavefront sensing for high-order AO systems and/or large telescopes. In this paper, we first explain how this noise propagation effect occurs and then show that this limitation can be overcome by acquiring four defocused images of the pupil instead of two. This solution can be implemented without significant technology development and can run with a simple linear wavefront reconstruction algorithm at >kHz speed. We have successfully demonstrated in the laboratory that the four conjugation planes can be sequentially obtained at >kHz speed using a speaker-vibrating membrane assembly commonly used in current curvature AO systems. Closed loop simulations show that implementing this scheme is equivalent to making the guide star 1 to 1.5 magnitude brighter for the configuration tested (188 actuator elements on 8-m telescope). Higher sensitivity gains are expected on curvature systems with higher number of actuators.

  11. The use of a circular external skeletal fixation device for the management of long bone osteotomies in large ruminants: an experimental study.

    PubMed

    Aithal, H P; Singh, G R; Hoque, M; Maiti, S K; Kinjavdekar, P; Pawde, A M; Setia, H C

    2004-08-01

    The study was undertaken to evaluate the feasibility of a simple, inexpensive model of circular external fixator (CEF) for use in large ruminants. A simple model of CEF frames consisting of four full rings (13-19 cm diameter, 4 cm wide and 4 mm thick with 18-24 holes) connected by threaded rods (8 mm diameter, 10-15 cm long) and nuts was developed using mild (low carbon) steel and were nickel-plated. In the first phase of the study, three male cow calves were utilized to study the feasibility of application of the fixators in the metatarsus, tibia and radius, in reference of adaptation and tolerance by animals. In the second phase, the fixators were tested in osteotomized bones. Six bull calves of 1.5-2 years of age weighing about 200-250 kg were utilized for this purpose. After preparing the area for aseptic surgery, under xylazine (at 0.1 mg/kg, i.m.)-ketamine (i.v. till effect) general anaesthesia, the test bone (metatarsus, radius and tibia in two animals each) was approached through the medial surface and an osteotomy was created with a saw and chisel at the mid-diaphysis. The pre-constructed 4-ring CEF was mounted on the limb around the test bone in such a way that it formed a cylinder with the axis of the limb at the centre. Each ring was then fixed to the bone with a pair of beaded wires (316 SS) of 3.5 mm diameter. During the post-operative period, the animals were observed for any change in behaviour, tolerance of the fixators, the weight bearing on the test limb, the status of the fixator, and the level of reduction of the osteotomy, alignment and healing at different intervals. The fixation of CEF was easier in the metatarsus and radius than in the tibia. The inner ring diameters found adequate for metatarsus, radius and tibia were 13-15 cm, 15-17 cm and 17-19 cm, respectively. The fixators applied to different bones were well-tolerated, and the animals could lay down, stand and walk freely with the fixator without any problems. All the animals showed

  12. Parallel Large-Scale Computation of an Oldroyd-B Fluid Past a Confined Circular Cylinder in a Rectangular Channel using an Unstructured Finite Volume Method

    NASA Astrophysics Data System (ADS)

    Sahin, Mehmet

    2010-11-01

    A new stable unstructured finite volume method is presented for parallel large-scale simulation of viscoelastic fluid flows. The numerical method based on side-centered finite volume method where the velocity vector components are defined at the mid-point of each cell face, while the pressure term and the extra stress tensor are defined at element centroids. The present arrangement of the primitive variables leads to a stable numerical scheme and it does not require any ad-hoc modifications in order to enhance the pressure-velocity-stress coupling. The log-conformation representation has been implemented in order improve the limiting Weissenberg numbers in the proposed finite volume method. The time stepping algorithm used decouples the calculation of the extra stresses from the evaluation of the velocity and pressure fields by solving a generalised Stokes problem. The present numerical method is verified for the three-dimensional flow of an Oldroyd-B fluid past a confined sphere in a cylindrical tube. Then the method is applied to the three-dimensional flow of an Oldroyd-B fluid past a confined circular cylinder in a rectangular channel. The computed results at relatively high Weissenberg numbers are discussed and compared to those obtained for Newtonian fluids.

  13. Non-Linear Dynamics and Stability of Circular Cylindrical Shells Containing Flowing Fluid. Part Iv: Large-Amplitude Vibrations with Flow

    NASA Astrophysics Data System (ADS)

    AMABILI, M.; PELLICANO, F.; PAÏDOUSSIS, M. P.

    2000-11-01

    The response of a shell conveying fluid to harmonic excitation, in the spectral neighbourhood of one of the lowest natural frequencies, is investigated for different flow velocities. The theoretical model has already been presented in Part I of the present study. Non-linearities due to moderately large-amplitude shell motion are considered by using Donnell's non-linear shallow-shell theory. Linear potential flow theory is applied to describe the fluid-structure interaction by using the model proposed by Paı̈doussis and Denise. For different amplitudes and frequencies of the excitation and for different flow velocities, the following are investigated numerically: (1) periodic response of the system; (2) unsteady and stochastic motion; (3) loss of stability by jumps to bifurcated branches. The effect of the flow velocity on the non-linear periodic response of the system has also been investigated. Poincaré maps and bifurcation diagrams are used to study the unsteady and stochastic dynamics of the system. Amplitude modulated motions, multi-periodic solutions, chaotic responses, cascades of bifurcations as the route to chaos and the so-called “blue sky catastrophe” phenomenon have all been observed for different values of the system parameters; the latter two have been predicted here probably for the first time for the dynamics of circular cylindrical shells.

  14. Complex circular subsidence structures in tephra deposited on large blocks of ice: Varða tuff cone, Öræfajökull, Iceland

    NASA Astrophysics Data System (ADS)

    Smellie, J. L.; Walker, A. J.; McGarvie, D. W.; Burgess, R.

    2016-08-01

    Several broadly circular structures up to 16 m in diameter, into which higher strata have sagged and locally collapsed, are present in a tephra outcrop on southwest Öræfajökull, southern Iceland. The tephra was sourced in a nearby basaltic tuff cone at Varða. The structures have not previously been described in tuff cones, and they probably formed by the melting out of large buried blocks of ice emplaced during a preceding jökulhlaup that may have been triggered by a subglacial eruption within the Öræfajökull ice cap. They are named ice-melt subsidence structures, and they are analogous to kettle holes that are commonly found in proglacial sandurs and some lahars sourced in ice-clad volcanoes. The internal structure is better exposed in the Varða examples because of an absence of fluvial infilling and reworking, and erosion of the outcrop to reveal the deeper geometry. The ice-melt subsidence structures at Varða are a proxy for buried ice. They are the only known evidence for a subglacial eruption and associated jökulhlaup that created the ice blocks. The recognition of such structures elsewhere will be useful in reconstructing more complete regional volcanic histories as well as for identifying ice-proximal settings during palaeoenvironmental investigations.

  15. THE COUPLING IMPEDANCE OF A TOROIDAL BEAM TUBE WITH CIRCULAR CROSS SECTION.

    SciTech Connect

    HAHN,H.

    1999-03-29

    IN THIS PAPER, THE LONGITUDINAL COUPLING IMPEDANCE OF A TOROIDAL BEAM TUBE WITH CIRCULAR CROSS SECION IS DERIVED IN THE FREQUENCY DOMAIN USING THE TOROIDAL COORDINATE SYSTEM. EXACT, ALTHOUGH COUPLED, DIFFERENTIAL EQUATIONS FOR THE AZIMUTHAL FIELD COMPONENTS ARE OBTAINED. AN APPROXIAMTE SOLUTION, VALID IN THE LIMIT OF SMALL CURVATURE, IS THEN DERIVED. ASSUMING EXTREME RELATIVISTIC ENERGIES AND A BEAM TUBE WITH PERFECTLY CONDUCTING WALLS, ONE FINDS A CLOSED-FORM EXPRESSION FOR THE PURELY REACTIVE COUPLING IMPEDANCE WHICH AT LOW MODE NUMBERS IS DEPENDENT ON THE TUBE GEOMETRY BUT WHICH AT VERY LARGE MODE NUMBERS APPROACHES THE FREE SPACE IMPEDANCE.

  16. On nonlinear higher spin curvature

    NASA Astrophysics Data System (ADS)

    Manvelyan, Ruben; Mkrtchyan, Karapet; Rühl, Werner; Tovmasyan, Murad

    2011-05-01

    We present the first nonlinear term of the higher spin curvature which is covariant with respect to deformed gauge transformations that are linear in the field. We consider the case of spin 3 after presenting spin 2 as an example, and then construct the general spin s quadratic term of the de Wit-Freedman curvature.

  17. Geodesic curvature driven surface microdomain formation.

    PubMed

    Adkins, Melissa R; Zhou, Y C

    2017-09-15

    Lipid bilayer membranes are not uniform and clusters of lipids in a more ordered state exist within the generally disorder lipid milieu of the membrane. These clusters of ordered lipids microdomains are now referred to as lipid rafts. Recent reports attribute the formation of these microdomains to the geometrical and molecular mechanical mismatch of lipids of different species on the boundary. Here we introduce the geodesic curvature to characterize the geometry of the domain boundary, and develop a geodesic curvature energy model to describe the formation of these microdomains as a result of energy minimization. Our model accepts the intrinsic geodesic curvature of any binary lipid mixture as an input, and will produce microdomains of the given geodesic curvature as demonstrated by three sets of numerical simulations. Our results are in contrast to the surface phase separation predicted by the classical surface Cahn-Hilliard equation, which tends to generate large domains as a result of the minimizing line tension. Our model provides a direct and quantified description of the structure inhomogeneity of lipid bilayer membrane, and can be coupled to the investigations of biological processes on membranes for which such inhomogeneity plays essential roles.

  18. Graph Curvature for Differentiating Cancer Networks

    PubMed Central

    Sandhu, Romeil; Georgiou, Tryphon; Reznik, Ed; Zhu, Liangjia; Kolesov, Ivan; Senbabaoglu, Yasin; Tannenbaum, Allen

    2015-01-01

    Cellular interactions can be modeled as complex dynamical systems represented by weighted graphs. The functionality of such networks, including measures of robustness, reliability, performance, and efficiency, are intrinsically tied to the topology and geometry of the underlying graph. Utilizing recently proposed geometric notions of curvature on weighted graphs, we investigate the features of gene co-expression networks derived from large-scale genomic studies of cancer. We find that the curvature of these networks reliably distinguishes between cancer and normal samples, with cancer networks exhibiting higher curvature than their normal counterparts. We establish a quantitative relationship between our findings and prior investigations of network entropy. Furthermore, we demonstrate how our approach yields additional, non-trivial pair-wise (i.e. gene-gene) interactions which may be disrupted in cancer samples. The mathematical formulation of our approach yields an exact solution to calculating pair-wise changes in curvature which was computationally infeasible using prior methods. As such, our findings lay the foundation for an analytical approach to studying complex biological networks. PMID:26169480

  19. Geodesic curvature driven surface microdomain formation

    NASA Astrophysics Data System (ADS)

    Adkins, Melissa R.; Zhou, Y. C.

    2017-09-01

    Lipid bilayer membranes are not uniform and clusters of lipids in a more ordered state exist within the generally disorder lipid milieu of the membrane. These clusters of ordered lipids microdomains are now referred to as lipid rafts. Recent reports attribute the formation of these microdomains to the geometrical and molecular mechanical mismatch of lipids of different species on the boundary. Here we introduce the geodesic curvature to characterize the geometry of the domain boundary, and develop a geodesic curvature energy model to describe the formation of these microdomains as a result of energy minimization. Our model accepts the intrinsic geodesic curvature of any binary lipid mixture as an input, and will produce microdomains of the given geodesic curvature as demonstrated by three sets of numerical simulations. Our results are in contrast to the surface phase separation predicted by the classical surface Cahn-Hilliard equation, which tends to generate large domains as a result of the minimizing line tension. Our model provides a direct and quantified description of the structure inhomogeneity of lipid bilayer membrane, and can be coupled to the investigations of biological processes on membranes for which such inhomogeneity plays essential roles.

  20. Flow of an elastico-viscous liquid in a curved pipe of slowly varying curvature.

    PubMed

    Sarin, V B

    1993-03-01

    Curvature forms an important feature of thoracic aorta and this paper deals with the flow of an idealized elastico-viscous liquid in a curved pipe of circular cross-section and slowly varying curvature, under a pressure gradient. The flow is assumed to be steady and at low Reynolds numbers. By using the series expansion method of Dean (Phil Mag 4 (1927) 208-223; Phil Mag 5 (1928) 673-693) in powers of a parameter L, which can be considered as the square of ratio of the centrifugal force induced by the circular motion of the fluid to the viscous force, it is shown that in a tube of increasing curvature, there will be delay in setting up of the secondary motion. The wall shear stress, an important parameter in physiological flows, is calculated. The flow of Newtonian fluid in a tube of circular cross section is discussed, as a particular case.

  1. An analytical approach to estimate curvature effect of coseismic deformations

    NASA Astrophysics Data System (ADS)

    Dong, Jie; Sun, Wenke; Zhou, Xin; Wang, Rongjiang

    2016-08-01

    We present an analytical approach to compute the curvature effect by the new analytical solutions of coseismic deformation derived for the homogeneous sphere model. We consider two spheres with different radii: one is the same as earth and the other with a larger radius can approximate a half-space model. Then, we calculate the coseismic displacements for the two spheres and define the relative percentage of the displacements as the curvature effect. The near-field curvature effect is defined relative to the maximum coseismic displacement. The results show that the maximum curvature effect is about 4 per cent for source depths of less than 100 km, and about 30 per cent for source depths of less than 600 km. For the far-field curvature effect, we define it relative to the observing point. The curvature effect is extremely large and sometimes exceeds 100 per cent. Moreover, this new approach can be used to estimate any planet's curvature effect quantitatively. For a smaller sphere, such as the Moon, the curvature effect is much larger than that of the Earth, with an inverse ratio to the earth's radius.

  2. Interaction of a circular turbulent jet with a flat target

    NASA Astrophysics Data System (ADS)

    Volkov, K. N.

    2007-01-01

    Large eddy simulations are performed for an unsteady flow and heat transfer in the region of interaction of a circular turbulent jet with a normally positioned flat obstacle (target). Space-filtered Navier-Stokes equations are closed by the RNG model of eddy viscosity, which takes into account the curvature of streamlines in the region of flow turning. The computations are performed for different dimensionless distances between the nozzle exit and the target and for different Reynolds numbers. The dependence between the Nusselt number distribution over the target surface and the vortex structure of the jet is analyzed. The local and integral characteristics of the flow are compared with the data of a physical experiment.

  3. Streamline curvature in supersonic shear layers

    NASA Technical Reports Server (NTRS)

    Kibens, V.

    1992-01-01

    Results of an experimental investigation in which a curved shear layer was generated between supersonic flow from a rectangular converging/diverging nozzle and the freestream in a series of open channels with varying radii of curvature are reported. The shear layers exhibit unsteady large-scale activity at supersonic pressure ratios, indicating increased mixing efficiency. This effect contrasts with supersonic flow in a straight channel, for which no large-scale vortical structure development occurs. Curvature must exceed a minimum level before it begins to affect the dynamics of the supersonic shear layer appreciably. The curved channel flows are compared with reference flows consisting of a free jet, a straight channel, and wall jets without sidewalls on a flat and a curved plate.

  4. Streamline curvature in supersonic shear layers

    NASA Technical Reports Server (NTRS)

    Kibens, V.

    1992-01-01

    Results of an experimental investigation in which a curved shear layer was generated between supersonic flow from a rectangular converging/diverging nozzle and the freestream in a series of open channels with varying radii of curvature are reported. The shear layers exhibit unsteady large-scale activity at supersonic pressure ratios, indicating increased mixing efficiency. This effect contrasts with supersonic flow in a straight channel, for which no large-scale vortical structure development occurs. Curvature must exceed a minimum level before it begins to affect the dynamics of the supersonic shear layer appreciably. The curved channel flows are compared with reference flows consisting of a free jet, a straight channel, and wall jets without sidewalls on a flat and a curved plate.

  5. Curvature, Hydrogen, Q

    SciTech Connect

    Wallace, John Paul; Myneni, Ganapati Rao; Pike, Robert

    2011-03-31

    The manufacturing of niobium SRF accelerator cavities is plagued by a mobile point defect, hydrogen. For efficient accelerator operation, niobium must function at both high electric and magnetic fields, and is compromised if magnetic impurities are located in the surface regions of the material. The finding that trace hydrogen in niobium can produce structures with magnetic properties is a feature that is not acceptable for a high performance cavity. X-ray diffraction has proved to be the key tool in assessing irreversible process damage to the niobium substrate. In future generations of accelerators, niobium will actually be merely the substrate for more effective superconductors that will allow for more efficient operation. The substrate analogy to the silicon wafer industry is useful since for niobium it may be possible to avoid some of the mistakes made in silicon technology. Because hydrogen attacks niobium on a number of different size scales, there is an inherent complexity in the trouble sources. There are also features in cavity design that are benign, such as local curvature considerations, requiring a fully non symmetric analysis of current flow to be appreciated.

  6. Cosmic curvature and condensation

    NASA Technical Reports Server (NTRS)

    Harwit, Martin

    1992-01-01

    It is shown that the universe may consist of a patchwork of domains with different Riemann curvature constants k = 0, +/-1. Features of a phase transition in which flat space breaks up in a transition 2k0 - k(-) + k(+) with initial scale factors R(-) = R(+) are postulated and explored. It is shown that such a transition is energetically permitted, has the equivalent of a Curie temperature, and can lead in a natural way to the formation of voids and galaxies. It is predicted that, if the ambient universe on average is well fitted by a purely k(-) space, with only occasional domains of k(+) containing galaxies, a density parameter of (A(z sub c + 1)) super -1 should be expected, where z sub c represents the redshift of the earliest objects to have condensed, and A takes on values ranging from about 5 to 3. Present observations of quasars would suggest a density of about 0.03 or 0.05, respectively, but it could be lower if earlier condensation took place.

  7. Curvature, Hydrogen, Q

    SciTech Connect

    John Paul Wallace, Ganapati Rao Myneni, and Robert Pike

    2011-03-01

    The manufacturing of niobium SRF accelerator cavities is plagued by a mobile point defect, hydrogen. For efficient accelerator operation, niobium must function at both high electric and magnetic fields, and is compromised if magnetic impurities are located in the surface regions of the material. The finding that trace hydrogen in niobium can produce structures with magnetic properties is a feature that is not acceptable for a high performance cavity. X-ray diffraction has proved to be the key tool in assessing irreversible process damage to the niobium substrate. In future generations of accelerators, niobium will actually be merely the substrate for more effective superconductors that will allow for more efficient operation. The substrate analogy to the silicon wafer industry is useful since for niobium it may be possible to avoid some of the mistakes made in silicon technology. Because hydrogen attacks niobium on a number of different size scales, there is an inherent complexity in the trouble sources. There are also features in cavity design that are benign, such as local curvature considerations, requiring a fully non symmetric analysis of current flow to be appreciated.

  8. EAU guidelines on penile curvature.

    PubMed

    Hatzimouratidis, Konstantinos; Eardley, Ian; Giuliano, François; Hatzichristou, Dimitrios; Moncada, Ignacio; Salonia, Andrea; Vardi, Yoram; Wespes, Eric

    2012-09-01

    Penile curvature can be congenital or acquired. Acquired curvature is secondary due to La Peyronie (Peyronie's) disease. To provide clinical guidelines on the diagnosis and treatment of penile curvature. A systematic literature search on the epidemiology, diagnosis, and treatment of penile curvature was performed. Articles with the highest evidence available were selected and formed the basis for assigning levels of evidence and grades of recommendations. The pathogenesis of congenital penile curvature is unknown. Peyronie's disease is a poorly understood connective tissue disorder most commonly attributed to repetitive microvascular injury or trauma during intercourse. Diagnosis is based on medical and sexual histories, which are sufficient to establish the diagnosis. Physical examination includes assessment of palpable nodules and penile length. Curvature is best documented by a self-photograph or pharmacologically induced erection. The only treatment option for congenital penile curvature is surgery based on plication techniques. Conservative treatment for Peyronie's disease is associated with poor outcomes. Pharmacotherapy includes oral potassium para-aminobenzoate, intralesional treatment with verapamil, clostridial collagenase or interferon, topical verapamil gel, and iontophoresis with verapamil and dexamethasone. They can be efficacious in some patients, but none of these options carry a grade A recommendation. Steroids, vitamin E, and tamoxifen cannot be recommended. Extracorporeal shock wave treatment and penile traction devices may only be used to treat penile pain and reduce penile deformity, respectively. Surgery is indicated when Peyronie's disease is stable for at least 3 mo. Tunical shortening procedures, especially plication techniques, are the first treatment options. Tunical lengthening procedures are preferred in more severe curvatures or in complex deformities. Penile prosthesis implantation is recommended in patients with erectile dysfunction

  9. Compound curvature laser window development

    NASA Technical Reports Server (NTRS)

    Verhoff, Vincent G.

    1993-01-01

    The NASA Lewis Research Center has developed and implemented a unique process for forming flawless compound curvature laser windows. These windows represent a major part of specialized, nonintrusive laser data acquisition systems used in a variety of compressor and turbine research test facilities. This report summarizes the main aspects of compound curvature laser window development. It is an overview of the methodology and the peculiarities associated with the formulation of these windows. Included in this discussion is new information regarding procedures for compound curvature laser window development.

  10. Sigma models with negative curvature

    NASA Astrophysics Data System (ADS)

    Alonso, Rodrigo; Jenkins, Elizabeth E.; Manohar, Aneesh V.

    2016-05-01

    We construct Higgs Effective Field Theory (HEFT) based on the scalar manifold Hn, which is a hyperbolic space of constant negative curvature. The Lagrangian has a non-compact O (n , 1) global symmetry group, but it gives a unitary theory as long as only a compact subgroup of the global symmetry is gauged. Whether the HEFT manifold has positive or negative curvature can be tested by measuring the S-parameter, and the cross sections for longitudinal gauge boson and Higgs boson scattering, since the curvature (including its sign) determines deviations from Standard Model values.

  11. Sigma models with negative curvature

    DOE PAGES

    Alonso, Rodrigo; Jenkins, Elizabeth E.; Manohar, Aneesh V.

    2016-03-16

    Here, we construct Higgs Effective Field Theory (HEFT) based on the scalar manifold Hn, which is a hyperbolic space of constant negative curvature. The Lagrangian has a non-compact O(n, 1) global symmetry group, but it gives a unitary theory as long as only a compact subgroup of the global symmetry is gauged. Whether the HEFT manifold has positive or negative curvature can be tested by measuring the S-parameter, and the cross sections for longitudinal gauge boson and Higgs boson scattering, since the curvature (including its sign) determines deviations from Standard Model values.

  12. Engineering Curvature-Induced Anisotropy in Thin Ferromagnetic Films

    NASA Astrophysics Data System (ADS)

    Tretiakov, Oleg A.; Morini, Massimiliano; Vasylkevych, Sergiy; Slastikov, Valeriy

    2017-08-01

    We investigate the effect of large curvature and dipolar energy in thin ferromagnetic films with periodically modulated top and bottom surfaces on magnetization behavior. We predict that the dipolar interaction and surface curvature can produce perpendicular anisotropy which can be controlled by engineering special types of periodic surface structures. Similar effects can be achieved by a significant surface roughness in the film. We demonstrate that, in general, the anisotropy can point in an arbitrary direction depending on the surface curvature. Furthermore, we provide simple examples of these periodic surface structures to show how to engineer particular anisotropies in thin films.

  13. Spacetime curvature and the Higgs stability during inflation.

    PubMed

    Herranen, M; Markkanen, T; Nurmi, S; Rajantie, A

    2014-11-21

    It has been claimed that the electroweak vacuum may be unstable during inflation due to large fluctuations of the order H in the case of a high inflationary scale as suggested by BICEP2. We compute the standard model Higgs effective potential including UV-induced curvature corrections at one-loop level. We find that for a high inflationary scale a large curvature mass is generated due to renormalization group running of nonminimal coupling ξ, which either stabilizes the potential against fluctuations for ξEW≳6×10(-2), or destabilizes it for ξEW≲2×10(-2) when the generated curvature mass is negative. Only in the narrow intermediate region may the effect of the curvature mass be significantly smaller.

  14. Curvature Interaction in Collective Space

    NASA Astrophysics Data System (ADS)

    Herrmann, Richard

    2012-12-01

    For the Riemannian space, built from the collective coordinates used within nuclear models, an additional interaction with the metric is investigated, using the collective equivalent to Einstein's curvature scalar. The coupling strength is determined using a fit with the AME2003 ground state masses. An extended finite-range droplet model including curvature is introduced, which generates significant improvements for light nuclei and nuclei in the trans-fermium region.

  15. Static optical designs for Wavefront Curvature Sensing

    NASA Astrophysics Data System (ADS)

    Bharmal, Nazim A.

    2006-06-01

    A bulk optic is presented, the Parallel Output Beamsplitter, which allows simultaneous imaging of two planes either side of the focus using static imaging optics. The POB is used to create novel optical configurations for Wavefront Curvature Sensing and two designs are presented. The first is suited to small-amplitude aberration measurements in situations where compactness, a large field of view, and high optical throughput are desirable. A laboratory experiment using a POB to make such a wavefront sensor was undertaken, and results are presented. The second design is a conceptual idea which offers image-scale invariant imaging of two planes whose conjugation satisfies the requirements of a conventional Wavefront Curvature Sensor concept.

  16. Cosmological signatures of anisotropic spatial curvature

    SciTech Connect

    Pereira, Thiago S.; Marugán, Guillermo A. Mena; Carneiro, Saulo E-mail: mena@iem.cfmac.csic.es

    2015-07-01

    If one is willing to give up the cherished hypothesis of spatial isotropy, many interesting cosmological models can be developed beyond the simple anisotropically expanding scenarios. One interesting possibility is presented by shear-free models in which the anisotropy emerges at the level of the curvature of the homogeneous spatial sections, whereas the expansion is dictated by a single scale factor. We show that such models represent viable alternatives to describe the large-scale structure of the inflationary universe, leading to a kinematically equivalent Sachs-Wolfe effect. Through the definition of a complete set of spatial eigenfunctions we compute the two-point correlation function of scalar perturbations in these models. In addition, we show how such scenarios would modify the spectrum of the CMB assuming that the observations take place in a small patch of a universe with anisotropic curvature.

  17. Fixed field circular accelerator designs

    SciTech Connect

    Johnstone, C.; Wan, W.; Garren, A.

    2000-01-06

    The rapid rate and cycle time required to efficiently accelerate muons precludes conventional circular accelerators. Recirculating linacs provide one option, but the separate return arcs per acceleration pass may prove costly. Recent work on muon acceleration schemes has concentrated on designing fixed-field circular accelerators whose strong superconducting fields can sustain a factor of 4 increase in energy from injection to extraction. A 4 to 16 GeV fixed-field circular accelerator has been designed which allows large orbit excursions and the tune to vary as a function of momentum. Acceleration is .6 GeV per turn so the entire cycle consists of only 20 turns. In addition, a 16 to 64 GeV fixed-field circular accelerator has been designed which is more in keeping with the traditional Fixed Field Alternating Gradient machines. In this work the two machine designs are described.

  18. Extraction of "best fit circles" on 3D meshes based on discrete curvatures: application to impact craters detection

    NASA Astrophysics Data System (ADS)

    Beguet, Florian; Bali, Sarah; Christoff, Nicole; Jorda, Laurent; Viseur, Sophie; Bouley, Sylvain; Manolova, Agata; Mari, Jean-Luc

    2016-04-01

    Impact craters is a typical feature observed at the surface of most bodies in the solar system: terrestrial planets, their satellites, asteroids and even possibly cometary nuclei exhibit impact craters. Their spatial density yields the estimation of the age of the surface, a key parameter required for subsequent geological studies. With the development of interplanetary missions, a large number of solar system objects have been mapped at a high spatial resolution, emphasizing the need for new automatic methods of crater detection and counting. In this work, we present such a method using a new approach based on the analysis of reconstructed 3D meshes instead of 2D images. The robust extraction of feature areas on surface objects embedded in 3D, like circular shapes, is a challenging problem. Classical approaches generally rely on image processing and template matching on a 2D flat projection of the 3D object (for instance a high-resolution picture). In this paper, we propose a full 3D method that mainly relies on curvature analysis. Mean and Gaussian curvatures are estimated on the surface. They are used to label vertices that belong to concave parts corresponding to specific pits on the surface. Centers are located in the targeted surface regions, corresponding to potential crater features. Then "best fit circles" are extracted, based on the rims of the circular shapes. They consist in closed lines exclusively composed of edges of the initial mesh. This approach has been applied to the detection of craters on the asteroid Vesta. Keywords: geometric modeling, 3D meshes, shape recognition, mesh processing, discrete curvatures, asteroids, crater detection, geology, geomorphology.

  19. Influence of Coanda surface curvature on performance of bladeless fan

    NASA Astrophysics Data System (ADS)

    Li, Guoqi; Hu, Yongjun; Jin, Yingzi; Setoguchi, Toshiaki; Kim, Heuy Dong

    2014-10-01

    The unique Coanda surface has a great influence on the performance of bladeless fan. However, there is few studies to explain the relationship between the performance and Coanda surface curvature at present. In order to gain a qualitative understanding of effect of the curvature on the performance of bladeless fan, numerical studies are performed in this paper. Firstly, three-dimensional numerical simulation is done by Fluent software. For the purpose to obtain detailed information of the flow field around the Coanda surface, two-dimensional numerical simulation is also conducted. Five types of Coanda surfaces with different curvature are designed, and the flow behaviour and the performance of them are analyzed and compared with those of the prototype. The analysis indicates that the curvature of Coanda surface is strongly related to blowing performance, It is found that there is an optimal curvature of Coanda surfaces among the studied models. Simulation result shows that there is a special low pressure region. With increasing curvature in Y direction, several low pressure regions gradually enlarged, then begin to merge slowly, and finally form a large area of low pressure. From the analyses of streamlines and velocity angle, it is found that the magnitude of the curvature affects the flow direction and reasonable curvature can induce fluid flow close to the wall. Thus, it leads to that the curvature of the streamlines is consistent with that of Coanda surface. Meanwhile, it also causes the fluid movement towards the most suitable direction. This study will provide useful information to performance improvements of bladeless fans.

  20. Curvature of the localized surface plasmon resonance peak.

    PubMed

    Chen, Peng; Liedberg, Bo

    2014-08-05

    Localized surface plasmon resonance (LSPR) occurring in noble metal nanoparticles (e.g., Au) is a widely used phenomenon to report molecular interactions. Traditional LSPR sensors typically monitor shifts in the peak position or extinction in response to local refractive index changes in the close vicinity of the nanoparticle surface. The ability to resolve minute shifts/extinction changes is to a large extent limited by instrumental noise. A new strategy to evaluate LSPR responses utilizing changes in the shape of the extinction spectrum (the curvature) is proposed. The response of curvature to refractive index changes is investigated theoretically using Mie theory and an analytical expression relating the curvature to the refractive index is presented. The experimentally derived curvatures for 13 nm spherical gold nanoparticles (AuNPs) exposed to solvents with different bulk refractive indices confirm the theoretical predictions. Moreover, both the calculated and experimental findings suggest that the curvature is approximately a linear function of refractive index in regimes relevant to bio and chemical sensing. We demonstrate that curvature is superior over peak shift and extinction both in terms of signal-to-noise (S/N) ratio and reliability of LSPR sensors. With a curvature, one could readily monitor submonolayer adsorption of a low molecular weight thiol molecule (M(w) = 458.6) onto 13 nm AuNPs. It is also worthwhile mentioning that curvature is virtually insensitive to instrumental instabilities and artifacts occurring during measurement. Instabilities such as baseline tilt and shift, shift in peak position as well as sharp spikes/steps in the extinction spectra do not induce artifacts in the sensorgrams of curvature.

  1. Geophysical characterization of two circular structures at Bajada del Diablo (Patagonia, Argentina): Indication of impact origin

    NASA Astrophysics Data System (ADS)

    Prezzi, Claudia B.; Orgeira, María Julia; Acevedo, Rogelio D.; Ponce, Juan Federico; Martinez, Oscar; Rabassa, Jorge O.; Corbella, Hugo; Vásquez, Carlos; González-Guillot, Mauricio; Subías, Ignacio

    2012-02-01

    An impact origin has been proposed for the circular structures found in Bajada del Diablo, Patagonia, Argentina. Taking into account its extension and the number of impact structures, Bajada del Diablo would be the largest meteoritic impact areas known on Earth, being an extremely interesting area for the research of impact events and processes. Moreover, the global distribution of known impact structures shows a surprising asymmetry. Particularly, South America has only seven described areas. It is evident that this situation is an artifact, highlighting the importance of intensifying the research in the least studied areas such as Argentina. Circular structures in Bajada del Diablo have been identified on two rock types: the Quiñelaf eruptive complex and Pampa Sastre Formation. In the first case, circular structures are placed in olivine basalts. On the other hand, Pampa Sastre Formation (late Pliocene/early Pleistocene) corresponds to conglomerate layers with basalt clasts boulder and block in size in a coarse sandy matrix. With the aim of further the investigation of the proposed impact origin for these circular structures, we carried out detailed topographic, magnetic and electromagnetic ground surveys in two circular structures ("8" and "A") found in Pampa Sastre conglomerates. Both circular structures are simple, bowl-shaped with rim diameters of 300 m and maximum depths of 10 m. They have been partially filled in by debris flows from the rims and wind-blown sands. Two preliminary magnetic profiles have also been carried out in circular structure "G" found in Quiñelaf basalts. The magnetic anomalies show a circular pattern with a slightly negative and relatively flat signal in the circular structures' bases. Furthermore in the circular structures' rims, high-amplitude, conspicuous and localized (short wavelength) anomalies are observed. Such large amplitude and short wavelength anomalies are not detected outside the circular structures. For all used

  2. Intrinsically disordered proteins drive membrane curvature

    PubMed Central

    Busch, David J.; Houser, Justin R.; Hayden, Carl C.; Sherman, Michael B.; Lafer, Eileen M.; Stachowiak, Jeanne C.

    2015-01-01

    Assembly of highly curved membrane structures is essential to cellular physiology. The prevailing view has been that proteins with curvature-promoting structural motifs, such as wedge-like amphipathic helices and crescent-shaped BAR domains, are required for bending membranes. Here we report that intrinsically disordered domains of the endocytic adaptor proteins, Epsin1 and AP180 are highly potent drivers of membrane curvature. This result is unexpected since intrinsically disordered domains lack a well-defined three-dimensional structure. However, in vitro measurements of membrane curvature and protein diffusivity demonstrate that the large hydrodynamic radii of these domains generate steric pressure that drives membrane bending. When disordered adaptor domains are expressed as transmembrane cargo in mammalian cells, they are excluded from clathrin-coated pits. We propose that a balance of steric pressure on the two surfaces of the membrane drives this exclusion. These results provide quantitative evidence for the influence of steric pressure on the content and assembly of curved cellular membrane structures. PMID:26204806

  3. Intrinsically disordered proteins drive membrane curvature

    NASA Astrophysics Data System (ADS)

    Busch, David J.; Houser, Justin R.; Hayden, Carl C.; Sherman, Michael B.; Lafer, Eileen M.; Stachowiak, Jeanne C.

    2015-07-01

    Assembly of highly curved membrane structures is essential to cellular physiology. The prevailing view has been that proteins with curvature-promoting structural motifs, such as wedge-like amphipathic helices and crescent-shaped BAR domains, are required for bending membranes. Here we report that intrinsically disordered domains of the endocytic adaptor proteins, Epsin1 and AP180 are highly potent drivers of membrane curvature. This result is unexpected since intrinsically disordered domains lack a well-defined three-dimensional structure. However, in vitro measurements of membrane curvature and protein diffusivity demonstrate that the large hydrodynamic radii of these domains generate steric pressure that drives membrane bending. When disordered adaptor domains are expressed as transmembrane cargo in mammalian cells, they are excluded from clathrin-coated pits. We propose that a balance of steric pressure on the two surfaces of the membrane drives this exclusion. These results provide quantitative evidence for the influence of steric pressure on the content and assembly of curved cellular membrane structures.

  4. Intrinsically disordered proteins drive membrane curvature.

    PubMed

    Busch, David J; Houser, Justin R; Hayden, Carl C; Sherman, Michael B; Lafer, Eileen M; Stachowiak, Jeanne C

    2015-07-24

    Assembly of highly curved membrane structures is essential to cellular physiology. The prevailing view has been that proteins with curvature-promoting structural motifs, such as wedge-like amphipathic helices and crescent-shaped BAR domains, are required for bending membranes. Here we report that intrinsically disordered domains of the endocytic adaptor proteins, Epsin1 and AP180 are highly potent drivers of membrane curvature. This result is unexpected since intrinsically disordered domains lack a well-defined three-dimensional structure. However, in vitro measurements of membrane curvature and protein diffusivity demonstrate that the large hydrodynamic radii of these domains generate steric pressure that drives membrane bending. When disordered adaptor domains are expressed as transmembrane cargo in mammalian cells, they are excluded from clathrin-coated pits. We propose that a balance of steric pressure on the two surfaces of the membrane drives this exclusion. These results provide quantitative evidence for the influence of steric pressure on the content and assembly of curved cellular membrane structures.

  5. Dehydrating agents sharply reduce curvature in DNAs containing A tracts.

    PubMed

    Sprous, D; Zacharias, W; Wood, Z A; Harvey, S C

    1995-05-25

    The structural basis of DNA curvature remains elusive, because models for curvature based on crystallographic structures of molecules containing A tracts do not agree with any of the models for sequence-directed curvature based on solution studies. Here we demonstrate that the difference is probably due to MPD (2-methyl-2,4-pentanediol), the dehydrating agent commonly used in crystallography. One characteristic signature of curved DNA molecules is that they run anomalously slowly on polyacrylamide gels, appearing to be larger than they actually are. The gel anomalies of three curved DNAs from trypanosome kinetoplast minicircles drop monotonically with increasing MPD concentration, indicating that MPD straightens molecules that are curved in aqueous solution. This is not due to some non-specific effect of MPD on poly(dA) or polypurine tracts, because control molecules containing dA70 and dG43 run normally over the full range of MPD concentrations. Circular dichroism spectra are not affected by MPD, ruling out a conformational change to a structure outside the B-DNA family. The effect is not due to MPD-induced changes in phasing of the curved sequences, because MPD has virtually no effect on the linking numbers of relaxed plasmids containing either curved sequences or dA70. At the concentrations of MPD used in X-ray crystallography, the curvature of DNAs containing A tracts is substantially lower than in solution, which probably explains the ongoing discrepancies between the crystallographic results and models based on solution studies.

  6. Membrane curvature at a glance

    PubMed Central

    McMahon, Harvey T.; Boucrot, Emmanuel

    2015-01-01

    ABSTRACT Membrane curvature is an important parameter in defining the morphology of cells, organelles and local membrane subdomains. Transport intermediates have simpler shapes, being either spheres or tubules. The generation and maintenance of curvature is of central importance for maintaining trafficking and cellular functions. It is possible that local shapes in complex membranes could help to define local subregions. In this Cell Science at a Glance article and accompanying poster, we summarize how generating, sensing and maintaining high local membrane curvature is an active process that is mediated and controlled by specialized proteins using general mechanisms: (i) changes in lipid composition and asymmetry, (ii) partitioning of shaped transmembrane domains of integral membrane proteins or protein or domain crowding, (iii) reversible insertion of hydrophobic protein motifs, (iv) nanoscopic scaffolding by oligomerized hydrophilic protein domains and, finally, (v) macroscopic scaffolding by the cytoskeleton with forces generated by polymerization and by molecular motors. We also summarize some of the discoveries about the functions of membrane curvature, where in addition to providing cell or organelle shape, local curvature can affect processes like membrane scission and fusion as well as protein concentration and enzyme activation on membranes. PMID:25774051

  7. Cam radius of curvature modification for improved manufacturability

    SciTech Connect

    Doughty, S.

    1995-12-31

    The design of IC engine cams using the popular polynomial design techniques often results in very high accelerations (and associated high contact forces) as the follower approaches the base circle. In those same parts of the cam action, the cam radius of curvature is likely to change signs, going from convex to concave, and this leads to manufacturing difficulties. When the cam is concave, the radius of the grinding wheel that can be used in manufacture is controlled by the minimum concave radius of curvature of the cam, and this is often much smaller than the wheel size that would result in most economic production. Further, the arc of contact is extended, resulting in loss of coolant flow and rapid loss of wheel dress. A solution is presented, based on substituting a convex circular arc to replace a segment of the cam profile including the concavity. The ramifications of such a modification with regard to the follower motion is also presented.

  8. Curvature generation in nematic surfaces

    NASA Astrophysics Data System (ADS)

    Mostajeran, Cyrus

    2015-06-01

    In recent years there has been a growing interest in the study of shape formation using modern responsive materials that can be preprogrammed to undergo spatially inhomogeneous local deformations. In particular, nematic liquid crystalline solids offer exciting possibilities in this context. Considerable recent progress has been made in achieving a variety of shape transitions in thin sheets of nematic solids by engineering isolated points of concentrated Gaussian curvature using topological defects in the nematic director field across textured surfaces. In this paper, we consider ways of achieving shape transitions in thin sheets of nematic glass by generation of nonlocalized Gaussian curvature in the absence of topological defects in the director field. We show how one can blueprint any desired Gaussian curvature in a thin nematic sheet by controlling the nematic alignment angle across the surface and highlight specific patterns which present feasible initial targets for experimental verification of the theory.

  9. Modeling the curvature and interface shear stress of GaN-sapphire system

    NASA Astrophysics Data System (ADS)

    Li, Jia; Shi, Junjie; Wu, Jiejun; Liu, Huizhao

    2016-03-01

    The curvature and interface shear stress of GaN-sapphire system are studied by establishing the mechanical equations based on two main assumptions: (a) the thickness of GaN film can be compared to the thickness of sapphire substrate, and (b) the thickness of GaN film is non-uniform. Our results show that the curvature of GaN-sapphire system is a variable within the whole circular system. The interface shear stress changes direction around at the middle of radius for the circular system, and the curvature have an important effect on the interface shear stress due to the consideration of non-uniform thickness for GaN film.

  10. Higher curvature corrections to primordial fluctuations in slow-roll inflation

    SciTech Connect

    Satoh, Masaki; Soda, Jiro E-mail: jiro@tap.scphys.kyoto-u.ac.jp

    2008-09-15

    We study higher curvature corrections to the scalar spectral index, the tensor spectral index, the tensor-to-scalar ratio, and the polarization of gravitational waves. We find that there are cases where the higher curvature corrections cannot be negligible in the dynamics of the scalar field, although they are always negligible energetically. Indeed, it turns out that the tensor-to-scalar ratio could be enhanced and the tensor spectral index could be blue due to the Gauss-Bonnet term. We estimate the degree of circular polarization of gravitational waves generated during the slow-roll inflation. We argue that the circular polarization could be observable with the help of both the Gauss-Bonnet and the parity violating terms. We also present several examples to reveal observational implications of higher curvature corrections for chaotic inflationary models.

  11. Advanced Curvature Deformable Mirrors

    DTIC Science & Technology

    2010-09-01

    designs using just a glass wafer and a wafer of Carbon Fiber Reinforced Polymer ( CFRP ). In both cases minimum bend radius decreases and the resonant... matrix is consequently nearly diagonal. The long actuators at the outer edge of the deformable mirror are largely outside the working pupil so their...formal reconstruction of the wave front either explicitly or implicitly in the control matrix . The WFS-DM combination is acting like an analog computer

  12. High-beta analytic equilibria in circular, elliptical, and D-shaped large aspect ratio axisymmetric configurations with poloidal and toroidal flows

    NASA Astrophysics Data System (ADS)

    López, O. E.; Guazzotto, L.

    2017-03-01

    The Grad-Shafranov-Bernoulli system of equations is a single fluid magnetohydrodynamical description of axisymmetric equilibria with mass flows. Using a variational perturbative approach [E. Hameiri, Phys. Plasmas 20, 024504 (2013)], analytic approximations for high-beta equilibria in circular, elliptical, and D-shaped cross sections in the high aspect ratio approximation are found, which include finite toroidal and poloidal flows. Assuming a polynomial dependence of the free functions on the poloidal flux, the equilibrium problem is reduced to an inhomogeneous Helmholtz partial differential equation (PDE) subject to homogeneous Dirichlet conditions. An application of the Green's function method leads to a closed form for the circular solution and to a series solution in terms of Mathieu functions for the elliptical case, which is valid for arbitrary elongations. To extend the elliptical solution to a D-shaped domain, a boundary perturbation in terms of the triangularity is used. A comparison with the code FLOW [L. Guazzotto et al., Phys. Plasmas 11(2), 604-614 (2004)] is presented for relevant scenarios.

  13. Amplification of curvature perturbations in cyclic cosmology

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Liu, Zhi-Guo; Piao, Yun-Song

    2010-12-01

    We analytically and numerically show that through the cycles with nonsingular bounce, the amplitude of curvature perturbation on a large scale will be amplified and the power spectrum will redden. In some sense, this amplification will eventually destroy the homogeneity of the background, which will lead to the ultimate end of cycles of the global universe. We argue that for the model with increasing cycles, it might be possible that a fissiparous multiverse will emerge after one or several cycles, in which the cycles will continue only at corresponding local regions.

  14. Amplification of curvature perturbations in cyclic cosmology

    SciTech Connect

    Zhang Jun; Liu Zhiguo; Piao Yunsong

    2010-12-15

    We analytically and numerically show that through the cycles with nonsingular bounce, the amplitude of curvature perturbation on a large scale will be amplified and the power spectrum will redden. In some sense, this amplification will eventually destroy the homogeneity of the background, which will lead to the ultimate end of cycles of the global universe. We argue that for the model with increasing cycles, it might be possible that a fissiparous multiverse will emerge after one or several cycles, in which the cycles will continue only at corresponding local regions.

  15. Analysis of curvature effects on plasmon biosensing of molecular interactions

    NASA Astrophysics Data System (ADS)

    Lee, Hyunwoong; Kim, Donghyun

    2017-02-01

    Surface plasmon represents oscillations of electrons at the interface between metal and dielectric layers. Surface plasmon resonance (SPR) is influenced by the environment near the surface, which has been the basis for label-free biosensor structure for various applications of molecular detection. An important aspect of SPR biosensing is that its characteristics are affected by the geometrical structure. Yet most research has focused largely on a structure using flat surface. Although flat structure is suitable for typical sensor applications, it may not be appropriate for wearable or in vivo applications. In this study, we analyzed the effects of surface curvature on flexible SPR biosensors. Curved surface was approximated using a segmented model in which each segment is treated as a flat surface with a different incident angle and then optical characteristics of the overall model were calculated by rigorous coupled wave analysis in two different configurations of light incidence. We calculated curvature effects on SPR with curvature radius larger than 255 μm. It was found that regardless of the incident configurations, resonance curves tend to broaden with increased curvature due to larger momentum dispersion. Resonance shifts as a result of DNA immobilization and hybridization decrease with curvature. The analysis was extended to multi-curvature structure and finds significant fluctuation of resonance shift for parallel light incidence. The study can be of profound importance for plasmonic devices using flexible substrates.

  16. Circular codes, symmetries and transformations.

    PubMed

    Fimmel, Elena; Giannerini, Simone; Gonzalez, Diego Luis; Strüngmann, Lutz

    2015-06-01

    Circular codes, putative remnants of primeval comma-free codes, have gained considerable attention in the last years. In fact they represent a second kind of genetic code potentially involved in detecting and maintaining the normal reading frame in protein coding sequences. The discovering of an universal code across species suggested many theoretical and experimental questions. However, there is a key aspect that relates circular codes to symmetries and transformations that remains to a large extent unexplored. In this article we aim at addressing the issue by studying the symmetries and transformations that connect different circular codes. The main result is that the class of 216 C3 maximal self-complementary codes can be partitioned into 27 equivalence classes defined by a particular set of transformations. We show that such transformations can be put in a group theoretic framework with an intuitive geometric interpretation. More general mathematical results about symmetry transformations which are valid for any kind of circular codes are also presented. Our results pave the way to the study of the biological consequences of the mathematical structure behind circular codes and contribute to shed light on the evolutionary steps that led to the observed symmetries of present codes.

  17. On the determination of curvature and dynamical dark energy

    SciTech Connect

    Virey, J-M; Taxil, P; Talon-Esmieu, D; Ealet, A; Tilquin, A E-mail: talon@cppm.in2p3.fr E-mail: taxil@cpt.univ-mrs.fr

    2008-12-15

    Constraining simultaneously the dark energy (DE) equation of state and the curvature of the universe is difficult due to strong degeneracies. To circumvent this problem when analyzing data it is usual to assume flatness to constrain the DE or, conversely, to assume that the DE is a cosmological constant to constrain the curvature. In this paper, we quantify the impact of such assumptions with an eye to future large surveys. We simulate future data for type Ia supernovae, the cosmic microwave background and baryon acoustic oscillations for a large range of fiducial cosmologies allowing a small spatial curvature. We take into account a possible time evolution of DE through a parameterized equation of state: w(a) = w{sub 0}+(1-a)w{sub a}. We then fit the simulated data with a wrong assumption on the curvature or on the DE parameters. For a fiducial {Lambda}CDM cosmology, if flatness is incorrectly assumed in the fit and if the true curvature is within the ranges 0.01<{Omega}{sub k}<0.03 and -0.07<{Omega}{sub k}<-0.01, one will be led to conclude erroneously that an evolving DE is present, even with high statistics. On the other hand, models with curvature and dynamical DE can be confused with a flat {Lambda}CDM model when the fit ignores a possible DE evolution. We find that, in the future, with high statistics, such risks of confusion should be limited, but they are still possible, and biases in the cosmological parameters might be important. We conclude by recalling that, in the future, it will be mandatory to perform some complete multi-probe analyses, leaving the DE parameters as well as the curvature as free parameters.

  18. Space Curvature and the "Heavy Banana 'Paradox.'"

    ERIC Educational Resources Information Center

    Gruber, Ronald P.; And Others

    1991-01-01

    Two ways to visually enhance the concept of space curvature are described. Viewing space curvature as a meterstick contraction and the heavy banana "paradox" are discussed. The meterstick contraction is mathematically explained. (KR)

  19. Space Curvature and the "Heavy Banana 'Paradox.'"

    ERIC Educational Resources Information Center

    Gruber, Ronald P.; And Others

    1991-01-01

    Two ways to visually enhance the concept of space curvature are described. Viewing space curvature as a meterstick contraction and the heavy banana "paradox" are discussed. The meterstick contraction is mathematically explained. (KR)

  20. Detonation Front Curvatures and Detonation Rates

    NASA Astrophysics Data System (ADS)

    Lauderbach, Lisa M.; Lorenz, K. Thomas; Lee, Edward L.; Souers, P. Clark

    2015-06-01

    We have normalized the LLNL library of detonation front curvatures by dividing lags by the edge lag and radii by the edge radius. We then fit the normalized data to the equation L = AR2 + BR8, where L is the normalized lag and R is the normalized radius. We attribute the quadratic term to thermal processes and the 8th-power term to shock processes. We compare the % of the quadratic term J at the edge with detonation rates obtained from the size effect. One class of results is made up of fine-grained, uniform explosives with large lags, where a low detonation rate leads to a high J and vice versa. This provides a rough way of estimating unknown rates if the unknown explosive is of high quality. The other, equally-large class contains rough-grained materials, often with small lags and small radii. These have curves that do not fit the equation but superfically often look quadratic. Some HMX and PETN curvatures even show a ``sombrero'' effect. Code models show that density differences of 0.03 g/cc in ram-pressed parts can cause pseudo-quadratic curves and even sombreros. Modeling is used to illustrate J at the lowest and highest possible detonation rates. This work performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  1. Waterfall field in hybrid inflation and curvature perturbation

    SciTech Connect

    Gong, Jinn-Ouk; Sasaki, Misao E-mail: misao@yukawa.kyoto-u.ac.jp

    2011-03-01

    We study carefully the contribution of the waterfall field to the curvature perturbation at the end of hybrid inflation. In particular we clarify the parameter dependence analytically under reasonable assumptions on the model parameters. After calculating the mode function of the waterfall field, we use the δN formalism and confirm the previously obtained result that the power spectrum is very blue with the index 4 and is absolutely negligible on large scales. However, we also find that the resulting curvature perturbation is highly non-Gaussian and hence we calculate the bispectrum. We find that the bispectrum is at leading order independent of momentum and exhibits its peak at the equilateral limit, though it is unobservably small on large scales. We also present the one-point probability distribution function of the curvature perturbation.

  2. Classification and quantification of leaf curvature

    PubMed Central

    Liu, Zhongyuan; Jia, Liguo; Mao, Yanfei; He, Yuke

    2010-01-01

    Various mutants of Arabidopsis thaliana deficient in polarity, cell division, and auxin response are characterized by certain types of leaf curvature. However, comparison of curvature for clarification of gene function can be difficult without a quantitative measurement of curvature. Here, a novel method for classification and quantification of leaf curvature is reported. Twenty-two mutant alleles from Arabidopsis mutants and transgenic lines deficient in leaf flatness were selected. The mutants were classified according to the direction, axis, position, and extent of leaf curvature. Based on a global measure of whole leaves and a local measure of four regions in the leaves, the curvature index (CI) was proposed to quantify the leaf curvature. The CI values accounted for the direction, axis, position, and extent of leaf curvature in all of the Arabidopsis mutants grown in growth chambers. Comparison of CI values between mutants reveals the spatial and temporal variations of leaf curvature, indicating the strength of the mutant alleles and the activities of the corresponding genes. Using the curvature indices, the extent of curvature in a complicated genetic background becomes quantitative and comparable, thus providing a useful tool for defining the genetic components of leaf development and to breed new varieties with leaf curvature desirable for the efficient capture of sunlight for photosynthesis and high yields. PMID:20400533

  3. Classification and quantification of leaf curvature.

    PubMed

    Liu, Zhongyuan; Jia, Liguo; Mao, Yanfei; He, Yuke

    2010-06-01

    Various mutants of Arabidopsis thaliana deficient in polarity, cell division, and auxin response are characterized by certain types of leaf curvature. However, comparison of curvature for clarification of gene function can be difficult without a quantitative measurement of curvature. Here, a novel method for classification and quantification of leaf curvature is reported. Twenty-two mutant alleles from Arabidopsis mutants and transgenic lines deficient in leaf flatness were selected. The mutants were classified according to the direction, axis, position, and extent of leaf curvature. Based on a global measure of whole leaves and a local measure of four regions in the leaves, the curvature index (CI) was proposed to quantify the leaf curvature. The CI values accounted for the direction, axis, position, and extent of leaf curvature in all of the Arabidopsis mutants grown in growth chambers. Comparison of CI values between mutants reveals the spatial and temporal variations of leaf curvature, indicating the strength of the mutant alleles and the activities of the corresponding genes. Using the curvature indices, the extent of curvature in a complicated genetic background becomes quantitative and comparable, thus providing a useful tool for defining the genetic components of leaf development and to breed new varieties with leaf curvature desirable for the efficient capture of sunlight for photosynthesis and high yields.

  4. Long-time behavior of material-surface curvature in isotropic turbulence

    NASA Technical Reports Server (NTRS)

    Girimaji, S. S.

    1992-01-01

    The behavior at large times of the curvature of material elements in turbulence is investigated using Lagrangian velocity-gradient time series obtained from direct numerical simulations of isotropic turbulence. The main objectives are: to study the asymptotic behavior of the pdf curvature as a function of initial curvature and shape; and to establish whether the curvature of an initially plane material element goes to a stationary probability distribution. The evidence available in the literature about the asymptotic curvature-pdf of initially flat surfaces is ambiguous, and the conjecture is that it is quasi-stationary. In this work several material-element ensembles of different initial curvatures and shapes are studied. It is found that, at long times the moments of the logarithm of curvature are independent of the initial pdf of curvature. This, it is argued, supports the view that the curvature attains a stationary distribution at long times. It is also shown that, irrespective of initial shape or curvature, the shape of any material element at long times is cylindrical with a high probability.

  5. Parameter-dependent spectral statistics of chaotic quantum graphs: Neumann versus circular orthogonal ensemble boundary conditions.

    PubMed

    Hul, Oleh; Sirko, Leszek

    2011-06-01

    The parameter-dependent spectral statistics of totally connected quantum graphs with n = 4-30 vertices, such as the parametric velocities correlation functions and the distribution of curvatures, are studied. The inverse participation ratio (IPR), an important measure of localization effects, was also numerically investigated. In the calculations, we successfully used two different theoretical approaches. The first approach was based on the graphs' eigenenergies and wave functions calculations, while the second one used the eigenphases and the eigenvectors of the bond scattering matrix S(k). We considered graphs with Neumann and circular orthogonal ensemble (COE) boundary conditions. We show that in contrast to large Neumann graphs, for which the departure of many parameter-dependent spectral statistics from the random matrix theory (RMT) predictions is observed, for large COE graphs, the spectral statistics and IPR are in good agreement with the RMT predictions.

  6. The dark side of curvature

    SciTech Connect

    Barenboim, Gabriela; Martínez, Enrique Fernández; Mena, Olga; Verde, Licia E-mail: enfmarti@mppmu.mpg.de E-mail: liciaverde@icc.ub.edu

    2010-03-01

    Geometrical tests such as the combination of the Hubble parameter H(z) and the angular diameter distance d{sub A}(z) can, in principle, break the degeneracy between the dark energy equation of state parameter w(z), and the spatial curvature Ω{sub k} in a direct, model-independent way. In practice, constraints on these quantities achievable from realistic experiments, such as those to be provided by Baryon Acoustic Oscillation (BAO) galaxy surveys in combination with CMB data, can resolve the cosmic confusion between the dark energy equation of state parameter and curvature only statistically and within a parameterized model for w(z). Combining measurements of both H(z) and d{sub A}(z) up to sufficiently high redshifts z ∼ 2 and employing a parameterization of the redshift evolution of the dark energy equation of state are the keys to resolve the w(z)−Ω{sub k} degeneracy.

  7. An improved in vitro bioassay for the study of 5-HT4 receptors in the human isolated large intestinal circular muscle

    PubMed Central

    Prins, N H; Shankley, N P; Welsh, N J; Briejer, M R; Lefebvre, R A; Akkermans, L M A; Schuurkes, J A J

    2000-01-01

    Recently, it was demonstrated that 5-HT induces relaxation of human colon circular muscle through activation of 5-HT4 receptors and 5-HT7 receptors. The aim of the current study was to develop a new in vitro bioassay of human colon that would facilitate the pharmacological analysis of 5-HT responses mediated solely by 5-HT4 receptors.Contracting circular muscle strips with KCl (80 mM) yielded a stable contractile tension and, in contrast to muscarinic cholinoceptor agonists and histamine, a profound reduction of spontaneous contractility. This allowed the establishment of reproducible, fully-defined, agonist concentration-response curves by cumulative dosing. Under these conditions, 5-HT induced a concentration-dependent relaxation (pEC50 7.31, Hill slope 0.91).Neither methysergide (10 μM) nor granisetron (1 μM) affected the 5-HT-induced relaxation, suggesting that 5-HT1, 5-HT2, 5-HT3, 5-ht5, 5-HT6 or 5-HT7 receptors are not involved. The lack of effect of tetrodotoxin (0.3 μM) indicated a direct effect of 5-HT on the smooth muscle.The selective 5-HT4 receptor antagonists GR 113808, GR 125487 and RS 39604 competitively antagonized the 5-HT-induced relaxation (pKB 9.43, 10.12 and 8.53, respectively). SB 204070 (1 nM) produced a rightward shift (pA2 10.34) and depression of the 5-HT curve. These affinity estimates are similar to those previously reported for 5-HT4 receptors.The selective 5-HT4 receptor agonists, prucalopride and R076186, induced relaxations (pEC50 7.50 and 7.57, respectively), that were blocked by GR 113808 (3 nM), yielding pA2 estimates of 9.31 and 9.21, respectively.To summarise, in KCl (80 mM)-contracted muscle strips, 5-HT induces relaxation through activation of a homogeneous smooth muscle 5-HT4 receptor population. This new bioassay allows the focused, pharmacological characterization of human colonic 5-HT4 receptors in vitro. PMID:10780964

  8. Quantum complexity and negative curvature

    NASA Astrophysics Data System (ADS)

    Brown, Adam R.; Susskind, Leonard; Zhao, Ying

    2017-02-01

    As time passes, once simple quantum states tend to become more complex. For strongly coupled k -local Hamiltonians, this growth of computational complexity has been conjectured to follow a distinctive and universal pattern. In this paper we show that the same pattern is exhibited by a much simpler system—classical geodesics on a compact two-dimensional geometry of uniform negative curvature. This striking parallel persists whether the system is allowed to evolve naturally or is perturbed from the outside.

  9. Curvatures Estimation in Orientation Selection

    DTIC Science & Technology

    1991-01-31

    than is-obtained in length-tuning measurements . Hence, over a limited range, increasing the size or gain of the small RF has a similar effect . The...the remaining larger, lower curvature units to represent the curve. An indirect test involves measuring the time for the effect to set in, with and...31Jan 91 By, Steen .Zcke * ax . Cnadr tDistribution/ Steen .Zcke *MaxS. ynaer ~ Availability Codes Dist Special Computer Vision and Robotics Laboratory

  10. Disformal invariance of curvature perturbation

    SciTech Connect

    Motohashi, Hayato; White, Jonathan E-mail: jwhite@post.kek.jp

    2016-02-01

    We show that under a general disformal transformation the linear comoving curvature perturbation is not identically invariant, but is invariant on superhorizon scales for any theory that is disformally related to Horndeski's theory. The difference between disformally related curvature perturbations is found to be given in terms of the comoving density perturbation associated with a single canonical scalar field. In General Relativity it is well-known that this quantity vanishes on superhorizon scales through the Poisson equation that is obtained on combining the Hamiltonian and momentum constraints, and we confirm that a similar result holds for any theory that is disformally related to Horndeski's scalar-tensor theory so long as the invertibility condition for the disformal transformation is satisfied. We also consider the curvature perturbation at full nonlinear order in the unitary gauge, and find that it is invariant under a general disformal transformation if we assume that an attractor regime has been reached. Finally, we also discuss the counting of degrees of freedom in theories disformally related to Horndeski's.

  11. Substrate curvature regulates cell migration

    NASA Astrophysics Data System (ADS)

    He, Xiuxiu; Jiang, Yi

    2017-06-01

    Cell migration is essential in many aspects of biology. Many basic migration processes, including adhesion, membrane protrusion and tension, cytoskeletal polymerization, and contraction, have to act in concert to regulate cell migration. At the same time, substrate topography modulates these processes. In this work, we study how substrate curvature at micrometer scale regulates cell motility. We have developed a 3D mechanical model of single cell migration and simulated migration on curved substrates with different curvatures. The simulation results show that cell migration is more persistent on concave surfaces than on convex surfaces. We have further calculated analytically the cell shape and protrusion force for cells on curved substrates. We have shown that while cells spread out more on convex surfaces than on concave ones, the protrusion force magnitude in the direction of migration is larger on concave surfaces than on convex ones. These results offer a novel biomechanical explanation to substrate curvature regulation of cell migration: geometric constrains bias the direction of the protrusion force and facilitates persistent migration on concave surfaces.

  12. Substrate curvature regulates cell migration.

    PubMed

    He, Xiuxiu; Jiang, Yi

    2017-05-23

    Cell migration is essential in many aspects of biology. Many basic migration processes, including adhesion, membrane protrusion and tension, cytoskeletal polymerization, and contraction, have to act in concert to regulate cell migration. At the same time, substrate topography modulates these processes. In this work, we study how substrate curvature at micrometer scale regulates cell motility. We have developed a 3D mechanical model of single cell migration and simulated migration on curved substrates with different curvatures. The simulation results show that cell migration is more persistent on concave surfaces than on convex surfaces. We have further calculated analytically the cell shape and protrusion force for cells on curved substrates. We have shown that while cells spread out more on convex surfaces than on concave ones, the protrusion force magnitude in the direction of migration is larger on concave surfaces than on convex ones. These results offer a novel biomechanical explanation to substrate curvature regulation of cell migration: geometric constrains bias the direction of the protrusion force and facilitates persistent migration on concave surfaces.

  13. Non-Linear Dynamics and Stability of Circular Cylindrical Shells Containing Flowing Fluid, Part II: Large-Amplitude Vibrations Without Flow

    NASA Astrophysics Data System (ADS)

    AMABILI, M.; PELLICANO, F.; PAÏDOUSSIS, M. P.

    1999-12-01

    The non-linear response of empty and fluid-filled circular cylindrical shells to harmonic excitations is investigated. Both modal and point excitations have been considered. The model is suitable to study simply supported shells with and without axial constraints. Donnell's non-linear shallow-shell theory is used. The boundary conditions on radial displacement and the continuity of circumferential displacement are exactly satisfied. The radial deflection of the shell is expanded by using a basis of seven linear modes. The effect of internal quiescent, incompressible and inviscid fluid is investigated. The equations of motion, obtained in Part I of this study, are studied by using a code based on the collocation method. The validation of the present model is obtained by comparison with other authoritative results. The effect of the number of axisymmetric modes used in the expansion on the response of the shell is investigated, clarifying questions open for a long time. The results show the occurrence of travelling wave response in the proximity of the resonance frequency, the fundamental role of the first and third axisymmetric modes in the expansion of the radial deflection with one longitudinal half-wave, and limit cycle responses. Modes with two longitudinal half-waves are also investigated.

  14. Faecal virome of healthy chickens reveals a large diversity of the eukaryote viral community, including novel circular ssDNA viruses.

    PubMed

    Lima, Diane A; Cibulski, Samuel P; Finkler, Fabrine; Teixeira, Thais F; Varela, Ana Paula M; Cerva, Cristine; Loiko, Márcia R; Scheffer, Camila M; Dos Santos, Helton F; Mayer, Fabiana Q; Roehe, Paulo M

    2017-04-01

    This study is focused on the identification of the faecal virome of healthy chickens raised in high-density, export-driven poultry farms in Brazil. Following high-throughput sequencing, a total of 7743 de novo-assembled contigs were constructed and compared with known nucleotide/amino acid sequences from the GenBank database. Analyses with blastx revealed that 279 contigs (4 %) were related to sequences of eukaryotic viruses. Viral genome sequences (total or partial) indicative of members of recognized viral families, including Adenoviridae, Caliciviridae, Circoviridae, Parvoviridae, Picobirnaviridae, Picornaviridae and Reoviridae, were identified, some of those representing novel genotypes. In addition, a range of circular replication-associated protein encoding DNA viruses were also identified. The characterization of the faecal virome of healthy chickens described here not only provides a description of the viruses encountered in such niche but should also represent a baseline for future studies comparing viral populations in healthy and diseased chicken flocks. Moreover, it may also be relevant for human health, since chickens represent a significant proportion of the animal protein consumed worldwide.

  15. The curvature of material surfaces in isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Pope, S. B.; Yeung, P. K.; Girimaji, S. S.

    1989-12-01

    Direct numerical simulation is used to study the curvature of material surfaces in isotropic turbulence. The Navier-Stokes equation is solved by a 643 pseudospectral code for constant-density homogeneous isotropic turbulence, which is made statistically stationary by low-wavenumber forcing. The Taylor-scale Reynolds number is 39. An ensemble of 8192 infinitesimal material surface elements is tracked through the turbulence. For each element, a set of exact ordinary differential equations is integrated in time to determine, primarily, the two principal curvatures k1 and k2. Statistics are then deduced of the mean-square curvature M= (1)/(2) (k21+k22), and of the mean radius of curvature R=(k21+k22)-1/2. Curvature statistics attain an essentially stationary state after about 15 Kolmogorov time scales. Then the area-weighted expectation of R is found to be 12η, where η is the Kolmogorov length scale. For moderate and small radii (less than 10η) the probability density function (pdf) of R is approximately uniform, there being about 5% probability of R being less than η. The uniformity of the pdf of R, for small R, implies that the expectation of M is infinite. It is found that the surface elements with large curvatures are nearly cylindrical in shape (i.e., ‖k1‖≫‖k2‖ or ‖k2‖≫‖k1‖), consistent with the folding of the surface along nearly straight lines. Nevertheless the variance of the Gauss curvature K=k1k2 is infinite.

  16. Clinical workflow for spinal curvature measurement with portable ultrasound

    NASA Astrophysics Data System (ADS)

    Tabanfar, Reza; Yan, Christina; Kempston, Michael; Borschneck, Daniel; Ungi, Tamas; Fichtinger, Gabor

    2016-03-01

    PURPOSE: Spinal curvature monitoring is essential in making treatment decisions in scoliosis. Monitoring entails radiographic examinations, however repeated ionizing radiation exposure has been shown to increase cancer risk. Ultrasound does not emit ionizing radiation and is safer for spinal curvature monitoring. We investigated a clinical sonography protocol and challenges associated with position-tracked ultrasound in spinal curvature measurement in scoliosis. METHODS: Transverse processes were landmarked along each vertebra using tracked ultrasound snapshots. The transverse process angle was used to determine the orientation of each vertebra. We tested our methodology on five patients in a local pediatric scoliosis clinic, comparing ultrasound to radiographic curvature measurements. RESULTS: Despite strong correlation between radiographic and ultrasound curvature angles in phantom studies, we encountered new challenges in the clinical setting. Our main challenge was differentiating transverse processes from ribs and other structures during landmarking. We observed up to 13° angle variability for a single vertebra and a 9.85° +/- 10.81° difference between ultrasound and radiographic Cobb angles for thoracic curvatures. Additionally, we were unable to visualize anatomical landmarks in the lumbar region where soft tissue depth was 25-35mm. In volunteers with large Cobb angles (greater than 40° thoracic and 60° lumbar), we observed spinal protrusions resulting in incomplete probe-skin contact and partial ultrasound images not suitable for landmarking. CONCLUSION: Spinal curvature measurement using tracked ultrasound is viable on phantom spine models. In the clinic, new challenges were encountered which must be resolved before a universal sonography protocol can be developed.

  17. The effects of out-of-plane curvature on the growth of epithelia

    NASA Astrophysics Data System (ADS)

    Yevick, Hannah; Duclos, Guillaume; Bonnet, Isabelle; Silberzan, Pascal

    2015-03-01

    Collective cell migration is at play in many well documented in vivo processes for example, wound re-epithelialization, cancer metastasis and dorsal closure. We present a study describing the effect of out of plane curvature on the collective properties of epithelial tissue. Microfabricated environments are used to deconstruct a monolayer's response to geometry. Specifically, fibers with a radius of curvature between 1um-100um are populated with MDCK cells, a model epithelial, kidney-derived, cell line. Migration dynamics as well as cell architecture are quantified and the effects of curvature compared with confinement alone. Large curvatures trigger specific cellular behaviors and organization that may shed light on tubulogenesis.

  18. Determination of Principal Curvatures and Contact Ellipse for Profile Crowned Helical Gears

    NASA Technical Reports Server (NTRS)

    Feng, P.-H.; Litvin, F. L.; Townsend, D. P.; Handschuh, R. F.

    1999-01-01

    Helical gears with localized bearing contact of tooth surfaces achieved by profile crowning of tooth surfaces are considered. Profile crowning is provided by application of two imaginary rack-cutters with mismatched surfaces. The goal is to determine the dimensions and orientation of the instantaneous contact ellipse that requires the determination of principle curvatures of pinion-gear tooth surfaces. A simplified solution to this problem is proposed based on the approach development for correlation of principal curvatures and directions of generating and generated tooth surfaces. The obtained equations are applied for profile crowning where the normal profiles of the rack-cutters are either a circular arc or a straight line.

  19. ODE/PDE analysis of corneal curvature.

    PubMed

    Płociniczak, Lukasz; Griffiths, Graham W; Schiesser, William E

    2014-10-01

    The starting point for this paper is a nonlinear, two-point boundary value ordinary differential equation (BVODE) that defines corneal curvature according to a static force balance. A numerical solution to the BVODE is computed by first converting the BVODE to a parabolic partial differential equation (PDE) by adding an initial value (t, pseudo-time) derivative to the BVODE. A numerical solution to the PDE is then computed by the method of lines (MOL) with the calculation proceeding to a sufficiently large value of t such that the derivative in t reduces to essentially zero. The PDE solution at this point is also the solution for the BVODE. This procedure is implemented in R (an open source scientific programming system) and the programming is discussed in some detail. A series approximation to the solution is derived from which an estimate for the rate of convergence is obtained. This is compared to a fitted exponential model. Also, two linear approximations are derived, one of which leads to a closed form solution. Both provide solutions very close to that obtained from the full nonlinear model. An estimate for the cornea radius of curvature is also derived. The paper concludes with a discussion of the features of the solution to the ODE/PDE system.

  20. Actin filament curvature biases branching direction

    PubMed Central

    Risca, Viviana I.; Wang, Evan B.; Chaudhuri, Ovijit; Chia, Jia Jun; Geissler, Phillip L.; Fletcher, Daniel A.

    2012-01-01

    Mechanical cues affect many important biological processes in metazoan cells, such as migration, proliferation, and differentiation. Such cues are thought to be detected by specialized mechanosensing molecules linked to the cytoskeleton, an intracellular network of protein filaments that provide mechanical rigidity to the cell and drive cellular shape change. The most abundant such filament, actin, forms branched networks nucleated by the actin-related protein (Arp) 2/3 complex that support or induce membrane protrusions and display adaptive behavior in response to compressive forces. Here we show that filamentous actin serves in a mechanosensitive capacity itself, by biasing the location of actin branch nucleation in response to filament bending. Using an in vitro assay to measure branching from curved sections of immobilized actin filaments, we observed preferential branch formation by the Arp2/3 complex on the convex face of the curved filament. To explain this behavior, we propose a fluctuation gating model in which filament binding or branch nucleation by Arp2/3 occur only when a sufficiently large, transient, local curvature fluctuation causes a favorable conformational change in the filament, and we show with Monte Carlo simulations that this model can quantitatively account for our experimental data. We also show how the branching bias can reinforce actin networks in response to compressive forces. These results demonstrate how filament curvature can alter the interaction of cytoskeletal filaments with regulatory proteins, suggesting that direct mechanotransduction by actin may serve as a general mechanism for organizing the cytoskeleton in response to force. PMID:22308368

  1. Cosmological models with positive scalar spatial curvature and Λ>0

    NASA Astrophysics Data System (ADS)

    Ponce de Leon, J.

    1987-12-01

    Some exact spherically symmetric solutions of the Einstein field equations with Λ>0 and positive three-curvature are given. They have reasonable physical properties and represent universes which do not undergo inflation but have a non-de Sitter behaviour for large times. This paper extends some previous results in the literature. Permanent address: Apartado 2816, Caracas 1010-A, Venezuela.

  2. Active optics for high-dynamic variable curvature mirrors.

    PubMed

    Hugot, Emmanuel; Ferrari, Marc; Lemaitre, Gérard R; Madec, Fabrice; Vives, Sébastien; Chardin, Elodie; Le Mignant, David; Cuby, Jean-Gabriel

    2009-10-01

    Variable curvature mirrors of large amplitude are designed by using finite element analysis. The specific case studied reaches at least a 800 mum sag with an optical quality better than lambda/5 over a 120 mm clear aperture. We highlight the geometrical nonlinearity and the plasticity effect.

  3. [Circular migration in Indonesia].

    PubMed

    Mantra, I B

    1979-12-01

    The author examines circular migration in Indonesia, with primary focus on the 1970s. It is found that circular, or repeated return migration, generally occurs over short distances and for short periods and is more frequent than lifetime migration. The relationships between improvements in the national transport system, access to labor force opportunities in both the formal and informal sectors of the economy, and circular migration are discussed.

  4. Studying Biomolecule Localization by Engineering Bacterial Cell Wall Curvature

    PubMed Central

    Renner, Lars D.; Eswaramoorthy, Prahathees; Ramamurthi, Kumaran S.; Weibel, Douglas B.

    2013-01-01

    In this article we describe two techniques for exploring the relationship between bacterial cell shape and the intracellular organization of proteins. First, we created microchannels in a layer of agarose to reshape live bacterial cells and predictably control their mean cell wall curvature, and quantified the influence of curvature on the localization and distribution of proteins in vivo. Second, we used agarose microchambers to reshape bacteria whose cell wall had been chemically and enzymatically removed. By combining microstructures with different geometries and fluorescence microscopy, we determined the relationship between bacterial shape and the localization for two different membrane-associated proteins: i) the cell-shape related protein MreB of Escherichia coli, which is positioned along the long axis of the rod-shaped cell; and ii) the negative curvature-sensing cell division protein DivIVA of Bacillus subtilis, which is positioned primarily at cell division sites. Our studies of intracellular organization in live cells of E. coli and B. subtilis demonstrate that MreB is largely excluded from areas of high negative curvature, whereas DivIVA localizes preferentially to regions of high negative curvature. These studies highlight a unique approach for studying the relationship between cell shape and intracellular organization in intact, live bacteria. PMID:24391905

  5. Representation of tactile curvature in macaque somatosensory area 2

    PubMed Central

    Connor, Charles E.; Hsiao, Steven S.

    2013-01-01

    Tactile shape information is elaborated in a cortical hierarchy spanning primary (SI) and secondary somatosensory cortex (SII). Indeed, SI neurons in areas 3b and 1 encode simple contour features such as small oriented bars and edges, whereas higher order SII neurons represent large curved contour features such as angles and arcs. However, neural coding of these contour features has not been systematically characterized in area 2, the most caudal SI subdivision in the postcentral gyrus. In the present study, we analyzed area 2 neural responses to embossed oriented bars and curved contour fragments to establish whether curvature representations are generated in the postcentral gyrus. We found that many area 2 neurons (26 of 112) exhibit clear curvature tuning, preferring contours pointing in a particular direction. Fewer area 2 neurons (15 of 112) show preferences for oriented bars. Because area 2 response patterns closely resembled SII patterns, we also compared area 2 and SII response time courses to characterize the temporal dynamics of curvature synthesis in the somatosensory system. We found that curvature representations develop and peak concurrently in area 2 and SII. These results reveal that transitions from orientation tuning to curvature selectivity in the somatosensory cortical hierarchy occur within SI rather than between SI and SII. PMID:23536717

  6. Sculpting membranes: a mechanism of curvature generation by proteins

    NASA Astrophysics Data System (ADS)

    Campelo, Felix

    2010-03-01

    A wide spectrum of intracellular processes is dependent on the ability of cells to dynamically regulate membrane shape. Membrane bending by proteins is necessary for the generation of intracellular transport carriers and for the maintenance of otherwise intrinsically unstable regions of high membrane curvature in cell organelles. Understanding the mechanisms by which proteins curve membranes is therefore of primary importance. Crescent shaped N-BAR domains containing amphipathic helices can induce membrane curvature by two mechanisms: the scaffolding mechanism due to the very shape of the BAR dimer, and the hydrophobic insertion mechanism by which small shallow inclusions penetrate the membrane matrix and act as a wedge changing the local membrane curvature. We will focus on this latter mechanism, and study it from a quantitative point of view. We use an elastic model of the lipid bilayer, taking into account the internal strains and stresses generated by the presence of an inclusion. We show that large membrane curvatures found in in vitro experiments can be ascribed to this mechanism, and that shallow insertions are more powerful curvature generators than lipids.

  7. Representation of tactile curvature in macaque somatosensory area 2.

    PubMed

    Yau, Jeffrey M; Connor, Charles E; Hsiao, Steven S

    2013-06-01

    Tactile shape information is elaborated in a cortical hierarchy spanning primary (SI) and secondary somatosensory cortex (SII). Indeed, SI neurons in areas 3b and 1 encode simple contour features such as small oriented bars and edges, whereas higher order SII neurons represent large curved contour features such as angles and arcs. However, neural coding of these contour features has not been systematically characterized in area 2, the most caudal SI subdivision in the postcentral gyrus. In the present study, we analyzed area 2 neural responses to embossed oriented bars and curved contour fragments to establish whether curvature representations are generated in the postcentral gyrus. We found that many area 2 neurons (26 of 112) exhibit clear curvature tuning, preferring contours pointing in a particular direction. Fewer area 2 neurons (15 of 112) show preferences for oriented bars. Because area 2 response patterns closely resembled SII patterns, we also compared area 2 and SII response time courses to characterize the temporal dynamics of curvature synthesis in the somatosensory system. We found that curvature representations develop and peak concurrently in area 2 and SII. These results reveal that transitions from orientation tuning to curvature selectivity in the somatosensory cortical hierarchy occur within SI rather than between SI and SII.

  8. Dehydrating agents sharply reduce curvature in DNAs containing A tracts.

    PubMed Central

    Sprous, D; Zacharias, W; Wood, Z A; Harvey, S C

    1995-01-01

    The structural basis of DNA curvature remains elusive, because models for curvature based on crystallographic structures of molecules containing A tracts do not agree with any of the models for sequence-directed curvature based on solution studies. Here we demonstrate that the difference is probably due to MPD (2-methyl-2,4-pentanediol), the dehydrating agent commonly used in crystallography. One characteristic signature of curved DNA molecules is that they run anomalously slowly on polyacrylamide gels, appearing to be larger than they actually are. The gel anomalies of three curved DNAs from trypanosome kinetoplast minicircles drop monotonically with increasing MPD concentration, indicating that MPD straightens molecules that are curved in aqueous solution. This is not due to some non-specific effect of MPD on poly(dA) or polypurine tracts, because control molecules containing dA70 and dG43 run normally over the full range of MPD concentrations. Circular dichroism spectra are not affected by MPD, ruling out a conformational change to a structure outside the B-DNA family. The effect is not due to MPD-induced changes in phasing of the curved sequences, because MPD has virtually no effect on the linking numbers of relaxed plasmids containing either curved sequences or dA70. At the concentrations of MPD used in X-ray crystallography, the curvature of DNAs containing A tracts is substantially lower than in solution, which probably explains the ongoing discrepancies between the crystallographic results and models based on solution studies. Images PMID:7784188

  9. Bimodal spectrum for the curvature fluctuations of bilayer vesicles: pure bending plus hybrid curvature-dilation modes.

    PubMed

    Rodríguez-García, R; Arriaga, L R; Mell, M; Moleiro, L H; López-Montero, I; Monroy, F

    2009-03-27

    We study thermal undulations of giant bilayer vesicles by flickering spectroscopy. The experimental fluctuation spectra are scrutinized in view of the classical Helfrich theory. Pure bending modes are revealed to be unable to predict the large fluctuations systematically found at a high wave vector. Hybrid curvature-dilational modes are then invoked as a more efficient mode of motion in producing high curvatures. A bimodal spectrum of the thermal undulations has been theoretically developed for the shell-like topology. Reconciliation between experiments and theory is achieved when this bimodal spectrum is considered.

  10. Salvage penile curvature correction surgery.

    PubMed

    Hsieh, Cheng-Hsing; Chen, Heng-Shuen; Lee, Wen-Yuan; Chen, Kuo-Liang; Chang, Chao-Hsiang; Hsu, Geng-Long

    2010-01-01

    It is commonly believed that coarser suture materials should be used to provide sufficient tenacity in surgery for penile curvature correction. We report our 15-year experience of fine sutures in a second operation in 31 patients who underwent prior curvature correction elsewhere with coarser sutures, resulting in recurrent penile curvature. Suture materials used in prior surgeries in these patients were either 2-0 or 3-0 nylon sutures. In this series, all 31 patients underwent a modified Nesbit procedure at the level of the collagen bundles using finer sutures. Prior to July 1998, 10 men underwent salvage surgery using 4-0 polyglactin sutures. Thereafter, we adapted 6-0 nylon sutures for another 21 patients. We categorized the patients into the polyglactin (n = 10) and nylon (n = 21) groups respectively. Overall, 29 patients were available for follow-up while using the abridged 5-item version of the International Index of Erectile Function (IIEF-5) scoring system, with 21 patients in the nylon group. We have found cavernosography a practical and reliable method to objectively assess penile morphology in these patients. The penile morphology both subjectively and objectively was excellent in all patients, except for 1 in each group. Erectile function restoration showed a trend of satisfaction in the polyglactin group and based on IIEF-5 was significantly improved in the nylon group (14.2 ± 3.6 vs 21.9 ± 2.1, n = 20, P < .001). These results suggest that in penile tunical surgery, fine sutures such as 6-0 nylon may result in better penile morphology and functional outcomes.

  11. Curvature sensing MARCKS-ED peptides bind to membranes in a stereo-independent manner.

    PubMed

    Yan, Lei; de Jesus, Armando Jerome; Tamura, Ryo; Li, Victoria; Cheng, Kui; Yin, Hang

    2015-07-01

    Membrane curvature and lipid composition plays a critical role in interchanging of matter and energy in cells. Peptide curvature sensors are known to activate signaling pathways and promote molecular transport across cell membranes. Recently, the 25-mer MARCKS-ED peptide, which is derived from the effector domain of the myristoylated alanine-rich C kinase substrate protein, has been reported to selectively recognize highly curved membrane surfaces. Our previous studies indicated that the naturally occurring L-MARCKS-ED peptide could simultaneously detect both phosphatidylserine and curvature. Here, we demonstrate that D-MARCKS-ED, composed by unnatural D-amino acids, has the same activities as its enantiomer, L-MARCKS-ED, as a curvature and lipid sensor. An atomistic molecular dynamics simulation suggests that D-MARCKS-ED may change from linear to a boat conformation upon binding to the membrane. Comparable enhancement of fluorescence intensity was observed between D- and L-MARCKS-ED peptides, indicating similar binding affinities. Meanwhile, circular dichroism spectra of D- and L-MARCKS-ED are almost symmetrical both in the presence and absence of liposomes. These results suggest similar behavior of artificial D- and natural L-MARCKS-ED peptides when binding to curved membranes. Our studies may contribute to further understanding of how MARCKS-ED senses membrane curvature as well as provide a new direction to develop novel membrane curvature probes.

  12. Hydrogen peroxide treatment results in reduced curvature values in the Arabidopsis root apex.

    PubMed

    Noriega, Arturo; Tocino, Angel; Cervantes, Emilio

    2009-03-15

    Curvature of a plane curve is a measurement related to its shape. A Mathematica code was developed [Cervantes E, Tocino A. J Plant Physiol 2005;162:1038-1045] to obtain parametric equations from microscopic images of the Arabidopsis thaliana root apex. In addition, curvature values for these curves were given. It was shown that ethylene-insensitive mutants (etr1-1 and ein2-1) have reduced curvature values in the root apex. It has also been shown that blocking ethylene action by norbornadiene, an ethylene inhibitor, results in reduced curvature values in the two outer cell layers of the root apex [Noriega A, Cervantes E, Tocino A. J Plant Physiol 2008, in press]. Because ethylene action has been related with hydrogen peroxide [Desikan R, Hancock JT, Bright J, Harrison J, Weir I, Hooley R, Neill SJ. Plant Physiol 2005;137:831-834], the effect of a treatment with hydrogen peroxide in the curvature values of three successive layers of the root apex in Arabidopsis thaliana was investigated by confocal microscopy. Treatment with 10mM hydrogen peroxide resulted in reduced curvature values in the three layers. The effect was associated with smaller cells having higher circularity indices. The results are discussed in the context of the role of ethylene in development.

  13. Effect of topological defects and curvature on anisotropic crystal growth

    NASA Astrophysics Data System (ADS)

    Azadi, Amir; Grason, Gregory M.

    2015-03-01

    The equilibrium shapes and symmetries of crystals are vestiges of the physical principles underlying their formation. We perform particle-based simulations guided by analytical analysis to investigate the structure of crystalline domains on curved substrates, a focus on the impact of topological defects on domain morphology. We find at low area fraction, as has been argued previously, that isotropic crystal growth with relatively compact domains generates large curvature-induced strains accommodated by relative ductile interactions, while the formation of anisotropic ribbon-like structures with lower-curvature induced stresses, introduces a larger line tension cost, and is thus favored for brittle crystals. Our results show that for ductile crystals with large surface coverage, appearance of stable topological defects precludes the formation of anisotropic, ribbon domains. However branch-like structures with large interfacial area are stable for certain values of intermediate curvature and crystalline ductility. These processes are guided by the interplay between elastic shape instability, defects, and curvature, where pattern formations are not related to kinetic instabilities.

  14. Shaped curve by blending two circular arcs

    NASA Astrophysics Data System (ADS)

    Zakaria, Wan Zafira Ezza Wan; Ali, Jamaludin Md

    2014-07-01

    Segments of two given circular arcs can be blended to produce a segment of a new curve. The new curve that been produced which also known as blending curve is form in a C-shape. That's mean the two circular arcs are blend at the same endpoints. Bezier Curve refer to [1] is the main application in this construction of blending curve. As the two circular arcs are create using the Rational Bezier Curve for the shape refer to [2]. First degree of Bezier Curve is use in blending function along with functionH(t). Blending can provide a smooth transition from one curve to another and can give various degrees of smoothness at the endpoints of the blend, where the smoothness is measured analogously to parametric continuity, Cn and geometric continuity, Gn. The accuracy of the approximation to a best blending curve obtained by different blending formulas is compared via analysis. Two types of blending formula introduced, which are Blend A and B. Blend A which involve only parametric continuity, C0, C1 and C2 Blend A. Next, new blending formula known as Blend B which actually a correction to the C0 Blend A. So, some correction term are added to the blending function in C0 Blend A for obtaining parametric continuity, C1 and C2 Blend B. Then, geometric continuity use for Blend B by increasing the smoothness of blending curve that result in parametric continuity. Some free parameter are added to the original blending function of C1 and C2 Blend B and secure to be G1 and G2 Blend B. Finally, the curvature which measures how quickly a tangent line turns on a curve is applied. So, appropriate result of blending curve can be obtained through the observation of the shape which lies within the convex hull of their control points and its curvature value at the start and end points equal to the curvature of the two circular arcs that are being blended.

  15. Nanoscale manipulation of membrane curvature for probing endocytosis in live cells.

    PubMed

    Zhao, Wenting; Hanson, Lindsey; Lou, Hsin-Ya; Akamatsu, Matthew; Chowdary, Praveen D; Santoro, Francesca; Marks, Jessica R; Grassart, Alexandre; Drubin, David G; Cui, Yi; Cui, Bianxiao

    2017-08-01

    Clathrin-mediated endocytosis (CME) involves nanoscale bending and inward budding of the plasma membrane, by which cells regulate both the distribution of membrane proteins and the entry of extracellular species. Extensive studies have shown that CME proteins actively modulate the plasma membrane curvature. However, the reciprocal regulation of how the plasma membrane curvature affects the activities of endocytic proteins is much less explored, despite studies suggesting that membrane curvature itself can trigger biochemical reactions. This gap in our understanding is largely due to technical challenges in precisely controlling the membrane curvature in live cells. In this work, we use patterned nanostructures to generate well-defined membrane curvatures ranging from +50 nm to -500 nm radius of curvature. We find that the positively curved membranes are CME hotspots, and that key CME proteins, clathrin and dynamin, show a strong preference towards positive membrane curvatures with a radius <200 nm. Of ten CME-related proteins we examined, all show preferences for positively curved membrane. In contrast, other membrane-associated proteins and non-CME endocytic protein caveolin1 show no such curvature preference. Therefore, nanostructured substrates constitute a novel tool for investigating curvature-dependent processes in live cells.

  16. 2. Northwest circular bastion, seen from edge of southwest circular ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Northwest circular bastion, seen from edge of southwest circular bastion wall. Metal roof beams extend up to form peak. World War II gun installation at right. - Fort Hamilton, Northwest Circular Bastion, Rose Island, Newport, Newport County, RI

  17. Mirror with thermally controlled radius of curvature

    DOEpatents

    Neil, George R.; Shinn, Michelle D.

    2010-06-22

    A radius of curvature controlled mirror for controlling precisely the focal point of a laser beam or other light beam. The radius of curvature controlled mirror provides nearly spherical distortion of the mirror in response to differential expansion between the front and rear surfaces of the mirror. The radius of curvature controlled mirror compensates for changes in other optical components due to heating or other physical changes. The radius of curvature controlled mirror includes an arrangement for adjusting the temperature of the front surface and separately adjusting the temperature of the rear surface to control the radius of curvature. The temperature adjustment arrangements can include cooling channels within the mirror body or convection of a gas upon the surface of the mirror. A control system controls the differential expansion between the front and rear surfaces to achieve the desired radius of curvature.

  18. Directable weathering of concave rock using curvature estimation.

    PubMed

    Jones, Michael D; Farley, McKay; Butler, Joseph; Beardall, Matthew

    2010-01-01

    We address the problem of directable weathering of exposed concave rock for use in computer-generated animation or games. Previous weathering models that admit concave surfaces are computationally inefficient and difficult to control. In nature, the spheroidal and cavernous weathering rates depend on the surface curvature. Spheroidal weathering is fastest in areas with large positive mean curvature and cavernous weathering is fastest in areas with large negative mean curvature. We simulate both processes using an approximation of mean curvature on a voxel grid. Both weathering rates are also influenced by rock durability. The user controls rock durability by editing a durability graph before and during weathering simulation. Simulations of rockfall and colluvium deposition further improve realism. The profile of the final weathered rock matches the shape of the durability graph up to the effects of weathering and colluvium deposition. We demonstrate the top-down directability and visual plausibility of the resulting model through a series of screenshots and rendered images. The results include the weathering of a cube into a sphere and of a sheltered inside corner into a cavern as predicted by the underlying geomorphological models.

  19. Symmetric curvature descriptors for label-free analysis of DNA

    PubMed Central

    Buzio, Renato; Repetto, Luca; Giacopelli, Francesca; Ravazzolo, Roberto; Valbusa, Ugo

    2014-01-01

    High-resolution microscopy techniques such as electron microscopy, scanning tunnelling microscopy and atomic force microscopy represent well-established, powerful tools for the structural characterization of adsorbed DNA molecules at the nanoscale. Notably, the analysis of DNA contours allows mapping intrinsic curvature and flexibility along the molecular backbone. This is particularly suited to address the impact of the base-pairs sequence on the local conformation of the strands and plays a pivotal role for investigations relating the inherent DNA shape and flexibility to other functional properties. Here, we introduce novel chain descriptors aimed to characterize the local intrinsic curvature and flexibility of adsorbed DNA molecules with unknown orientation. They consist of stochastic functions that couple the curvatures of two nanosized segments, symmetrically placed on the DNA contour. We show that the fine mapping of the ensemble-averaged functions along the molecular backbone generates characteristic patterns of variation that highlight all pairs of tracts with large intrinsic curvature or enhanced flexibility. We demonstrate the practical applicability of the method for DNA chains imaged by atomic force microscopy. Our approach paves the way for the label-free comparative analysis of duplexes, aimed to detect nanoscale conformational changes of physical or biological relevance in large sample numbers. PMID:25248631

  20. Origins of chemoreceptor curvature sorting in Escherichia coli

    PubMed Central

    Draper, Will; Liphardt, Jan

    2017-01-01

    Bacterial chemoreceptors organize into large clusters at the cell poles. Despite a wealth of structural and biochemical information on the system's components, it is not clear how chemoreceptor clusters are reliably targeted to the cell pole. Here, we quantify the curvature-dependent localization of chemoreceptors in live cells by artificially deforming growing cells of Escherichia coli in curved agar microchambers, and find that chemoreceptor cluster localization is highly sensitive to membrane curvature. Through analysis of multiple mutants, we conclude that curvature sensitivity is intrinsic to chemoreceptor trimers-of-dimers, and results from conformational entropy within the trimer-of-dimers geometry. We use the principles of the conformational entropy model to engineer curvature sensitivity into a series of multi-component synthetic protein complexes. When expressed in E. coli, the synthetic complexes form large polar clusters, and a complex with inverted geometry avoids the cell poles. This demonstrates the successful rational design of both polar and anti-polar clustering, and provides a synthetic platform on which to build new systems. PMID:28322223

  1. Circularly polarized Hankel vortices.

    PubMed

    Kotlyar, Victor V; Kovalev, Alexey A

    2017-04-03

    We discuss vector Hankel beams with circular polarization. These beams appear as a generalization of a spherical wave with an embedded optical vortex with topological charge n. Explicit analytical relations to describe all six projections of the E- and H-field are derived. The relations are shown to satisfy Maxwell's equations. Hankel beams with clockwise and anticlockwise circular polarization are shown to have peculiar features while propagating in free space. Relations for the Poynting vector projections and the angular momentum in the far field are also obtained. It is shown that a Hankel beam with clockwise circular polarization has radial divergence (ratio between the radial and longitudinal projections of the Poynting vector) similar to that of the spherical wave, while the beam with the anticlockwise circular polarization has greater radial dependence. At n = 0, the circularly polarized Hankel beam has non-zero spin angular momentum. At n = 1, power flow of the Hankel beam with anticlockwise polarization consists of two parts: right-handed helical flow near the optical axis and left-handed helical flow in periphery. At n ≥2, power flow is directed along the right-handed helix regardless of the direction of the circular polarization. Power flow along the optical axis is the same for the Hankel beams of both circular polarizations, if they have the same topological charge.

  2. Radius of curvature controlled mirror

    DOEpatents

    Neil, George R.; Rathke, John Wickham; Schultheiss, Thomas John; Shinn, Michelle D.; Dillon-Townes, Lawrence A.

    2006-01-17

    A controlled radius of curvature mirror assembly comprising: a distortable mirror having a reflective surface and a rear surface; and in descending order from the rear surface; a counter-distortion plate; a flow diverter having a flow diverter aperture at the center thereof; a flow return plate having a flow return aperture at the center thereof; a thermal isolation plate having a thermal isolation plate aperture at the center thereof and a flexible heater having a rear surface and a flexible heater aperture at the center thereof; a double walled tube defining a coolant feed chamber and a coolant return chamber; said coolant feed chamber extending to and through the flow diverter aperture and terminating at the counter-distortion plate and the coolant return chamber extending to and through the thermal isolation backplate and terminating at the flow diverter; and a coolant feed and a coolant return exit at the rear of said flexible heater.

  3. A quantum chemistry study of curvature effects on boron nitride nanotubes/nanosheets for gas adsorption.

    PubMed

    Sha, Haoyan; Faller, Roland

    2016-07-20

    Quantum chemistry calculations were performed to investigate the effect of the surface curvature of a Boron Nitride (BN) nanotube/nanosheet on gas adsorption. Curved boron nitride layers with different curvatures interacting with a number of different gases including noble gases, oxygen, and water on both their convex and concave sides of the surface were studied using density functional theory (DFT) with a high level dispersion corrected functional. Potential energy surfaces of the gas molecules interacting with the selected BN surfaces were investigated. In addition, the charge distribution and electrostatic potential contour of the selected BN surfaces are discussed. The results reveal how the curvature of the BN surfaces affects gas adsorption. In particular, small curvatures lead to a slight difference in the physisorption energy, while large curvatures present distinct potential energy surfaces, especially for the short-range repulsion.

  4. Non-perturbative approach for curvature perturbations in stochastic δ N formalism

    SciTech Connect

    Fujita, Tomohiro; Kawasaki, Masahiro; Tada, Yuichiro E-mail: kawasaki@icrr.u-tokyo.ac.jp

    2014-10-01

    In our previous paper [1], we have proposed a new algorithm to calculate the power spectrum of the curvature perturbations generated in inflationary universe with use of the stochastic approach. Since this algorithm does not need the perturbative expansion with respect to the inflaton fields on super-horizon scale, it works even in highly stochastic cases. For example, when the curvature perturbations are very large or the non-Gaussianities of the curvature perturbations are sizable, the perturbative expansion may break down but our algorithm enables to calculate the curvature perturbations. We apply it to two well-known inflation models, chaotic and hybrid inflation, in this paper. Especially for hybrid inflation, while the potential is very flat around the critical point and the standard perturbative computation is problematic, we successfully calculate the curvature perturbations.

  5. Squaring a Circular Segment

    ERIC Educational Resources Information Center

    Gordon, Russell

    2008-01-01

    Consider a circular segment (the smaller portion of a circle cut off by one of its chords) with chord length c and height h (the greatest distance from a point on the arc of the circle to the chord). Is there a simple formula involving c and h that can be used to closely approximate the area of this circular segment? Ancient Chinese and Egyptian…

  6. Squaring a Circular Segment

    ERIC Educational Resources Information Center

    Gordon, Russell

    2008-01-01

    Consider a circular segment (the smaller portion of a circle cut off by one of its chords) with chord length c and height h (the greatest distance from a point on the arc of the circle to the chord). Is there a simple formula involving c and h that can be used to closely approximate the area of this circular segment? Ancient Chinese and Egyptian…

  7. Determining wave direction using curvature parameters.

    PubMed

    de Queiroz, Eduardo Vitarelli; de Carvalho, João Luiz Baptista

    2016-01-01

    The curvature of the sea wave was tested as a parameter for estimating wave direction in the search for better results in estimates of wave direction in shallow waters, where waves of different sizes, frequencies and directions intersect and it is difficult to characterize. We used numerical simulations of the sea surface to determine wave direction calculated from the curvature of the waves. Using 1000 numerical simulations, the statistical variability of the wave direction was determined. The results showed good performance by the curvature parameter for estimating wave direction. Accuracy in the estimates was improved by including wave slope parameters in addition to curvature. The results indicate that the curvature is a promising technique to estimate wave directions.•In this study, the accuracy and precision of curvature parameters to measure wave direction are analyzed using a model simulation that generates 1000 wave records with directional resolution.•The model allows the simultaneous simulation of time-series wave properties such as sea surface elevation, slope and curvature and they were used to analyze the variability of estimated directions.•The simultaneous acquisition of slope and curvature parameters can contribute to estimates wave direction, thus increasing accuracy and precision of results.

  8. Supported lipid bilayers with controlled curvature via colloidal lithography.

    PubMed

    Sundh, Maria; Manandhar, Michal; Svedhem, Sofia; Sutherland, Duncan S

    2011-09-01

    Supported lipid bilayers (SLBs) at surfaces provide a route to quantitatively study molecular interactions with and at lipid membranes via different surface-based analytical techniques. Here, a method to fabricate SLBs with controlled curvatures, in the nanometer regime over large areas, is presented, utilizing lipid vesicle rupture onto nanostructured sensor substrates. Heat treated colloidal particle masks were used as templates to produce silicon dioxide films with systematically varied radius of curvature (ROC, 70 to 170 nm are demonstrated) and quartz crystal microbalance with dissipation monitoring (QCM-D) was used to confirm vesicle rupture onto such structured surfaces. Fluorescence microscopy was used to show fluidity of the supported membranes. The formation of confluent SLBs is demonstrated at the nanostructured surfaces from vesicles composed of POPC lipids. However, at surfaces with decreasing ROCs, vesicle rupture was hindered but with an increasing fraction of the positively charged lipid POEPC in the vesicles, it was possible to form good quality supported bilayers on all curvatures studied. Curved SLBs open up the possibility to systematically study the influence of curvature on molecular interactions at lipid membranes. © 2011 IEEE

  9. Streamline curvature effects on turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Wilcox, D. C.; Chambers, T. L.

    1976-01-01

    A theoretical tool has been developed for predicting, in a nonempirical manner, effects of streamline curvature and coordinate-system rotation on turbulent boundary layers. The second-order closure scheme developed by Wilcox and Traci has been generalized for curved streamline flow and for flow in a rotating coordinate system. A physically based straightforward argument shows that curvature/rotation primarily affects the turbulent mixing energy; the argument yields suitable curvature/rotation terms which are added to the mixing-energy equation. Singular-perturbation solutions valid in the wall layer of a curved-wall boundary layer and a fully developed rotating channel flow demonstrate that, with the curvature/rotation terms, the model predicts the curved-wall and the rotating coordinate system laws of the wall. Results of numerical computations of curved-wall boundary layers and of rotating channel flow show that curvature/rotation effects can be computed accurately with second-order closure.

  10. The genome of Oryctes rhinoceros nudivirus provides novel insight into the evolution of nuclear arthropod-specific large circular double-stranded DNA viruses.

    PubMed

    Wang, Yongjie; Bininda-Emonds, Olaf R P; van Oers, Monique M; Vlak, Just M; Jehle, Johannes A

    2011-06-01

    The Oryctes rhinoceros nudivirus (OrNV) is a dsDNA virus with enveloped, rod-shaped virions. Its genome is 127,615 bp in size and contains 139 predicted protein-coding open reading frames (ORFs). In-depth genome sequence comparisons revealed a varying number of shared gene homologues, not only with other nudiviruses (NVs) and baculoviruses, but also with other arthropod-specific large dsDNA viruses, including the so-called Monodon baculovirus (MBV), the salivary gland hypertrophy viruses (SGHVs) and white spot syndrome virus (WSSV). Nudivirus genomes contain 20 baculovirus core gene homologues associated with transcription (p47, lef-8, lef-9, lef-4, vlf-1, and lef-5), replication (dnapol and helicase), virus structure (p74, pif-1, pif-2, pif-3, 19kda/pif-4, odv-e56/pif-5, vp91, vp39, and 38K), and unknown functions (ac68, ac81, and p33). Most strikingly, a set of homologous genes involved in peroral infection (p74, pif-1, pif-2, and pif-3) are common to baculoviruses, nudiviruses, SGHVs, and WSSV indicating an ancestral mode of infection in these highly diverged viruses. A gene similar to polyhedrin/granulin encoding the baculovirus occlusion body protein was identified in non-occluded NVs and in Musca domestica SGHV evoking the question of the evolutionary origin of the baculovirus polyhedrin/granulin gene. Based on gene homologies, we further propose that the shrimp MBV is an occluded member of the nudiviruses. We conclude that baculoviruses, NVs and the shrimp MBV, the SGHVs and WSSV share the significant number of conserved genetic functions, which may point to a common ancestry of these viruses.

  11. FlyEyes: A CCD-Based Wavefront Sensor for PUEO, the CFHT Curvature AO System

    DTIC Science & Technology

    2010-09-28

    but have been known to fail. Furthermore, curvature systems with large numbers of subapertures are now in operation and the cost of individual APDs...Astronomy and Astrophysics , National Taiwan University, Taipei, Taiwan, R.O.C. Gerry Luppino GL Scientific, 3367 Waialae avenue, Honolulu, Hawaii 96816...Furthermore, curvature systems with large numbers of subapertures are now in operation and the cost of individual APDs may become prohibitive for

  12. Sequence-dependent DNA curvature and flexibility from scanning force microscopy images.

    PubMed Central

    Scipioni, Anita; Anselmi, Claudio; Zuccheri, Giampaolo; Samori, Bruno; De Santis, Pasquale

    2002-01-01

    This paper reports a study of the sequence-dependent DNA curvature and flexibility based on scanning force microscopy (SFM) images. We used a palindromic dimer of a 1878-bp pBR322 fragment and collected a large pool of SFM images. The curvature of each imaged chain was measured in modulus and direction. It was found that the ensemble curvature modulus does not allow the separation of static and dynamic contributions to the curvature, whereas the curvature, when its direction in the two dimensions is taken into account, permits the direct separation of the intrinsic curvature contributions static and dynamic contributions. The palindromic symmetry also acted as an internal gauge of the validity of the SFM images statistical analysis. DNA static curvature resulted in good agreement with the predicted sequence-dependent intrinsic curvature. Furthermore, DNA sequence-dependent flexibility was found to correlate with the occurrence of A.T-rich dinucleotide steps along the chain and, in general, with the normalized basepair stacking energy distribution. PMID:12414677

  13. Incisor crown bending strength correlates with diet and incisor curvature in anthropoid primates.

    PubMed

    Deane, Andrew S

    2015-02-01

    Anthropoid incisors are large relative to the postcanine dentition and function in the preprocessing of food items. Previous analyses of anthropoid incisor allometry and shape demonstrate that incisor morphology is correlated with preferred foods and that more frugivorous anthropoids have larger and more curved incisors. Although the relationship between incisal crown curvature and preferred foods has been well documented in extant and fossil anthropoids, the functional significance of curvature variation has yet to be conclusively established. Given that an increase in crown curvature will increase maximum linear crown dimensions, and bending resistance is a function of linear crown dimensions, it is hypothesized that incisor crown curvature functons to increase incisor crown resistance to bending forces. This study uses beam theory to calculate the mesiodistal and labiolingual bending strengths of the maxillary and mandibular incisors of hominoid and platyrrhine taxa with differing diets and variable degrees of incisal curvature. Results indicate that bending strength correlates with incisal curvature and that frugivores have elevated incisor bending resistance relative to folivores. Maxillary central incisor bending strengths further discriminate platyrrhine and hominoid hard- and soft-object frugivores suggesting this crown is subjected to elevated occlusal loading relative to other incisors. These results are consistent with the hypothesis that incisor crown curvature functions to increase incisor crown resistance to bending forces but does not preclude the possibility that incisor bending strength is a composite function of multiple dentognathic variables including, but not limited to, incisor crown curvature. © 2014 Wiley Periodicals, Inc.

  14. Integrating 3D seismic curvature and curvature gradient attributes for fracture characterization: Methodologies and interpretational implications

    SciTech Connect

    Gao, Dengliang

    2013-03-01

    In 3D seismic interpretation, curvature is a popular attribute that depicts the geometry of seismic reflectors and has been widely used to detect faults in the subsurface; however, it provides only part of the solutions to subsurface structure analysis. This study extends the curvature algorithm to a new curvature gradient algorithm, and integrates both algorithms for fracture detection using a 3D seismic test data set over Teapot Dome (Wyoming). In fractured reservoirs at Teapot Dome known to be formed by tectonic folding and faulting, curvature helps define the crestal portion of the reservoirs that is associated with strong seismic amplitude and high oil productivity. In contrast, curvature gradient helps better define the regional northwest-trending and the cross-regional northeast-trending lineaments that are associated with weak seismic amplitude and low oil productivity. In concert with previous reports from image logs, cores, and outcrops, the current study based on an integrated seismic curvature and curvature gradient analysis suggests that curvature might help define areas of enhanced potential to form tensile fractures, whereas curvature gradient might help define zones of enhanced potential to develop shear fractures. In certain fractured reservoirs such as at Teapot Dome where faulting and fault-related folding contribute dominantly to the formation and evolution of fractures, curvature and curvature gradient attributes can be potentially applied to differentiate fracture mode, to predict fracture intensity and orientation, to detect fracture volume and connectivity, and to model fracture networks.

  15. Determination of curvature and twist of deformed object by digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Quan, C.; Chen, W.; Tay, C. J.

    2008-11-01

    This paper describes a feasibility study of digital holographic interferometry for the measurement of curvature and twist of a deformed object. Measurement of curvature and twist is an important aspect in experimental mechanics. Numerous methods have been proposed to determine the curvature and twist by using digital shearography. We proposed a novel method to determine curvature and twist based on digital holography (DH) and complex phasor (CP). In the conventional methods, phase difference between the first and second states is obtained directly by digital phase subtraction (DPS) and Fourier transform is then employed to extract phase maps. In this study, CP method is proposed to improve the quality of phase maps corresponding to second-order derivatives. Subsequently, sine/cosine transformation and short time Fourier transform (STFT) are employed to process the wrapped phase maps. An experiment is conducted on a clamped circular plate under a point load at centre. The experimental results show that the proposed method is valid and able to obtain high quality phase maps corresponding to curvature and twist of a deformed object.

  16. Family Of Grating Techniques Of Slope And Curvature Measurements For Static And Dynamic Flexure Of Plates

    NASA Astrophysics Data System (ADS)

    Kao, T. Y.; Chiang, F. P.

    1982-08-01

    A family of optical methods are developed for the measurement of slope and curvature of flexed plate surfaces. Slope and curvature contour fringes are generated by using gratings as filters in the light path emerging from the flexed surface. General field equations are derived for gratings placed anywhere in the field. Depending upon the pitch and the position and the number of gratings used, a variety of techniques are obtained for the contouring of slopes or curvatures. When a low density grating is used, the resulting shadowgram yields slope contour fringes if it is placed at the real focal plane of the field lens. Otherwise, the shadow gram fringes are not slope contours. However, slope contours can be obtained if a double-exposure technique or a double grating is used to generate the moire fringes. If a grating of sufficiently high frequency is used, the resulting pattern is a curvature pattern, for which a monochromatic light source is needed. A successive plotting method is also proposed for curvature contouring whereby white light and a grating of arbi-trary pitch can be used. The methods are verified by a series of experiments using cantilever beams and clamped circular plates. Applications to a variety of other problems, including flexure wave propagation, are also demonstrated.

  17. How linear tension converts to curvature: geometric control of bone tissue growth.

    PubMed

    Bidan, Cécile M; Kommareddy, Krishna P; Rumpler, Monika; Kollmannsberger, Philip; Bréchet, Yves J M; Fratzl, Peter; Dunlop, John W C

    2012-01-01

    This study investigated how substrate geometry influences in-vitro tissue formation at length scales much larger than a single cell. Two-millimetre thick hydroxyapatite plates containing circular pores and semi-circular channels of 0.5 mm radius, mimicking osteons and hemi-osteons respectively, were incubated with MC3T3-E1 cells for 4 weeks. The amount and shape of the tissue formed in the pores, as measured using phase contrast microscopy, depended on the substrate geometry. It was further demonstrated, using a simple geometric model, that the observed curvature-controlled growth can be derived from the assembly of tensile elements on a curved substrate. These tensile elements are cells anchored on distant points of the curved surface, thus creating an actin "chord" by generating tension between the adhesion sites. Such a chord model was used to link the shape of the substrate to cell organisation and tissue patterning. In a pore with a circular cross-section, tissue growth increases the average curvature of the surface, whereas a semi-circular channel tends to be flattened out. Thereby, a single mechanism could describe new tissue growth in both cortical and trabecular bone after resorption due to remodelling. These similarities between in-vitro and in-vivo patterns suggest geometry as an important signal for bone remodelling.

  18. Models for circular-linear and circular-circular data constructed from circular distributions based on nonnegative trigonometric sums.

    PubMed

    Fernández-Durán, J J

    2007-06-01

    Johnson and Wehrly (1978, Journal of the American Statistical Association 73, 602-606) and Wehrly and Johnson (1980, Biometrika 67, 255-256) show one way to construct the joint distribution of a circular and a linear random variable, or the joint distribution of a pair of circular random variables from their marginal distributions and the density of a circular random variable, which in this article is referred to as joining circular density. To construct flexible models, it is necessary that the joining circular density be able to present multimodality and/or skewness in order to model different dependence patterns. Fernández-Durán (2004, Biometrics 60, 499-503) constructed circular distributions based on nonnegative trigonometric sums that can present multimodality and/or skewness. Furthermore, they can be conveniently used as a model for circular-linear or circular-circular joint distributions. In the current work, joint distributions for circular-linear and circular-circular data constructed from circular distributions based on nonnegative trigonometric sums are presented and applied to two data sets, one for circular-linear data related to the air pollution patterns in Mexico City and the other for circular-circular data related to the pair of dihedral angles between consecutive amino acids in a protein.

  19. Digitalizing the Circular Economy

    NASA Astrophysics Data System (ADS)

    Reuter, Markus A.

    2016-12-01

    Metallurgy is a key enabler of a circular economy (CE), its digitalization is the metallurgical Internet of Things (m-IoT). In short: Metallurgy is at the heart of a CE, as metals all have strong intrinsic recycling potentials. Process metallurgy, as a key enabler for a CE, will help much to deliver its goals. The first-principles models of process engineering help quantify the resource efficiency (RE) of the CE system, connecting all stakeholders via digitalization. This provides well-argued and first-principles environmental information to empower a tax paying consumer society, policy, legislators, and environmentalists. It provides the details of capital expenditure and operational expenditure estimates. Through this path, the opportunities and limits of a CE, recycling, and its technology can be estimated. The true boundaries of sustainability can be determined in addition to the techno-economic evaluation of RE. The integration of metallurgical reactor technology and systems digitally, not only on one site but linking different sites globally via hardware, is the basis for describing CE systems as dynamic feedback control loops, i.e., the m-IoT. It is the linkage of the global carrier metallurgical processing system infrastructure that maximizes the recovery of all minor and technology elements in its associated refining metallurgical infrastructure. This will be illustrated through the following: (1) System optimization models for multimetal metallurgical processing. These map large-scale m-IoT systems linked to computer-aided design tools of the original equipment manufacturers and then establish a recycling index through the quantification of RE. (2) Reactor optimization and industrial system solutions to realize the "CE (within a) Corporation—CEC," realizing the CE of society. (3) Real-time measurement of ore and scrap properties in intelligent plant structures, linked to the modeling, simulation, and optimization of industrial extractive process

  20. Circular free-electron laser

    DOEpatents

    Brau, Charles A.; Kurnit, Norman A.; Cooper, Richard K.

    1984-01-01

    A high efficiency, free electron laser utilizing a circular relativistic electron beam accelerator and a circular whispering mode optical waveguide for guiding optical energy in a circular path in the circular relativistic electron beam accelerator such that the circular relativistic electron beam and the optical energy are spatially contiguous in a resonant condition for free electron laser operation. Both a betatron and synchrotron are disclosed for use in the present invention. A free electron laser wiggler is disposed around the circular relativistic electron beam accelerator for generating a periodic magnetic field to transform energy from the circular relativistic electron beam to optical energy.

  1. Magnetophoretic Induction of Root Curvature

    NASA Technical Reports Server (NTRS)

    Hasenstein, Karl H.

    1997-01-01

    The last year of the grant period concerned the consolidation of previous experiments to ascertain that the theoretical premise apply not just to root but also to shoots. In addition, we verified that high gradient magnetic fields do not interfere with regular cellular activities. Previous results have established that: (1) intracellular magnetophoresis is possible; and (2) HGMF lead to root curvature. In order to investigate whether HGMF affect the assembly and/or organization of structural proteins, we examined the arrangement of microtubules in roots exposed to HGMF. The cytoskeletal investigations were performed with fomaldehyde-fixed, nonembedded tissue segments that were cut with a vibratome. Microtubules (MTs) were stained with rat anti-yeast tubulin (YOL 1/34) and DTAF-labeled antibody against rat IgG. Microfilaments (MFs) were visualized by incubation in rhodamine-labeled phalloidin. The distribution and arrangement of both components of the cytoskeleton were examined with a confocal microscope. Measurements of growth rates and graviresponse were done using a video-digitizer. Since HGMF repel diamagnetic substances including starch-filled amyloplasts and most The second aspect of the work includes studies of the effect of cytoskeletal inhibitors on MTs and MFs. The analysis of the effect of micotubular inhibitors on the auxin transport in roots showed that there is very little effect of MT-depolymerizing or stabilizing drugs on auxin transport. This is in line with observations that application of such drugs is not immediately affecting the graviresponsiveness of roots.

  2. Programming curvature using origami tessellations

    NASA Astrophysics Data System (ADS)

    Dudte, Levi H.; Vouga, Etienne; Tachi, Tomohiro; Mahadevan, L.

    2016-05-01

    Origami describes rules for creating folded structures from patterns on a flat sheet, but does not prescribe how patterns can be designed to fit target shapes. Here, starting from the simplest periodic origami pattern that yields one-degree-of-freedom collapsible structures--we show that scale-independent elementary geometric constructions and constrained optimization algorithms can be used to determine spatially modulated patterns that yield approximations to given surfaces of constant or varying curvature. Paper models confirm the feasibility of our calculations. We also assess the difficulty of realizing these geometric structures by quantifying the energetic barrier that separates the metastable flat and folded states. Moreover, we characterize the trade-off between the accuracy to which the pattern conforms to the target surface, and the effort associated with creating finer folds. Our approach enables the tailoring of origami patterns to drape complex surfaces independent of absolute scale, as well as the quantification of the energetic and material cost of doing so.

  3. Ionic liquid tunes microemulsion curvature.

    PubMed

    Liu, Liping; Bauduin, Pierre; Zemb, Thomas; Eastoe, Julian; Hao, Jingcheng

    2009-02-17

    Middle-phase microemulsions formed from cationic dioctadecyldimethylammonium chloride (DODMAC), anionic sodium dodecylsulfate (SDS), n-butanol, and n-heptane were studied. An ionic liquid (IL), 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]), was employed as the electrolyte in the aqueous media instead of inorganic salts usually used in microemulsion formulation. Studies have been carried out as a function of the concentrations of [bmim][BF4], n-butanol, total surfactant (cDODMAC+SDS), and temperature on the phase behavior and the ultralow interfacial tensions in which the anionic component is present in excess in the catanionic film. Ultralow interfacial tension measurements confirmed the formation of middle-phase microemulsions and the necessary conditions for stabilizing middle-phase microemulsions. Electrical conductivity, small-angle X-ray scattering (SAXS), and small-angle neutron scattering (SANS) experiments were also performed, indicating that the typical heptane domain size has an average radius of 360 A and the ionic liquid induces softening of the charged catanionic film. Most interestingly, the IL concentration (cIL) is shown to act as an effective interfacial curvature-control parameter, representing a new approach to tuning the formulation of microemulsions and emulsions. The results expand the potential uses of ILs but also point to the design of new ILs that may achieve superefficient control over interfacial and self-assembly systems.

  4. Curvature function and coarse graining

    NASA Astrophysics Data System (ADS)

    Díaz-Marín, Homero; Zapata, José A.

    2010-12-01

    A classic theorem in the theory of connections on principal fiber bundles states that the evaluation of all holonomy functions gives enough information to characterize the bundle structure (among those sharing the same structure group and base manifold) and the connection up to a bundle equivalence map. This result and other important properties of holonomy functions have encouraged their use as the primary ingredient for the construction of families of quantum gauge theories. However, in these applications often the set of holonomy functions used is a discrete proper subset of the set of holonomy functions needed for the characterization theorem to hold. We show that the evaluation of a discrete set of holonomy functions does not characterize the bundle and does not constrain the connection modulo gauge appropriately. We exhibit a discrete set of functions of the connection and prove that in the abelian case their evaluation characterizes the bundle structure (up to equivalence), and constrains the connection modulo gauge up to "local details" ignored when working at a given scale. The main ingredient is the Lie algebra valued curvature function F_S (A) defined below. It covers the holonomy function in the sense that exp {F_S (A)} = Hol(l= partial S, A).

  5. Curvature function and coarse graining

    SciTech Connect

    Diaz-Marin, Homero; Zapata, Jose A.

    2010-12-15

    A classic theorem in the theory of connections on principal fiber bundles states that the evaluation of all holonomy functions gives enough information to characterize the bundle structure (among those sharing the same structure group and base manifold) and the connection up to a bundle equivalence map. This result and other important properties of holonomy functions have encouraged their use as the primary ingredient for the construction of families of quantum gauge theories. However, in these applications often the set of holonomy functions used is a discrete proper subset of the set of holonomy functions needed for the characterization theorem to hold. We show that the evaluation of a discrete set of holonomy functions does not characterize the bundle and does not constrain the connection modulo gauge appropriately. We exhibit a discrete set of functions of the connection and prove that in the abelian case their evaluation characterizes the bundle structure (up to equivalence), and constrains the connection modulo gauge up to ''local details'' ignored when working at a given scale. The main ingredient is the Lie algebra valued curvature function F{sub S}(A) defined below. It covers the holonomy function in the sense that expF{sub S}(A)=Hol(l={partial_derivative}S,A).

  6. Towards future circular colliders

    NASA Astrophysics Data System (ADS)

    Benedikt, Michael; Zimmermann, Frank

    2016-09-01

    The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) presently provides proton-proton collisions at a center-of-mass (c.m.) energy of 13 TeV. The LHC design was started more than 30 years ago, and its physics program will extend through the second half of the 2030's. The global Future Circular Collider (FCC) study is now preparing for a post-LHC project. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh) in a new ˜100 km tunnel. It also includes the design of a high-luminosity electron-positron collider (FCCee) as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb3 S n superconductor, for the FCC-hh hadron collider, and a highly-efficient superconducting radiofrequency system for the FCC-ee lepton collider. Following the FCC concept, the Institute of High Energy Physics (IHEP) in Beijing has initiated a parallel design study for an e + e - Higgs factory in China (CEPC), which is to be succeeded by a high-energy hadron collider (SPPC). At present a tunnel circumference of 54 km and a hadron collider c.m. energy of about 70 TeV are being considered. After a brief look at the LHC, this article reports the motivation and the present status of the FCC study, some of the primary design challenges and R&D subjects, as well as the emerging global collaboration.

  7. The Gaussian curvature elastic energy of intermediates in membrane fusion.

    PubMed

    Siegel, David P

    2008-12-01

    The Gaussian curvature elastic energy contribution to the energy of membrane fusion intermediates has usually been neglected because the Gaussian curvature elastic modulus, kappa, was unknown. It is now possible to measure kappa for phospholipids that form bicontinuous inverted cubic (Q(II)) phases. Here, it is shown that one can estimate kappa for lipids that do not form Q(II) phases by studying the phase behavior of lipid mixtures. The method is used to estimate kappa for several lipid compositions in excess water. The values of kappa are used to compute the curvature elastic energies of stalks and catenoidal fusion pores according to recent models. The Gaussian curvature elastic contribution is positive and similar in magnitude to the bending energy contribution: it increases the total curvature energy of all the fusion intermediates by 100 units of k(B)T or more. It is important to note that this contribution makes the predicted intermediate energies compatible with observed lipid phase behavior in excess water. An order-of-magnitude fusion rate equation is used to estimate whether the predicted stalk energies are consistent with the observed rates of stalk-mediated processes in pure lipid systems. The current theory predicts a stalk energy that is slightly too large, by approximately 30 k(B)T, to rationalize the observed rates of stalk-mediated processes in phosphatidylethanolamine or N-monomethylated dioleoylphosphatidylethanolamine systems. Despite this discrepancy, the results show that models of fusion intermediate energy are accurate enough to make semiquantitative predictions about how proteins mediate biomembrane fusion. The same rate model shows that for proteins to drive biomembrane fusion at observed rates, they have to perform mediating functions corresponding to a reduction in the energy of a purely lipidic stalk by several tens of k(B)T. By binding particular peptide sequences to the monolayer surface, proteins could lower fusion intermediate

  8. Curvature and torsion in growing actin networks

    NASA Astrophysics Data System (ADS)

    Shaevitz, Joshua W.; Fletcher, Daniel A.

    2008-06-01

    Intracellular pathogens such as Listeria monocytogenes and Rickettsia rickettsii move within a host cell by polymerizing a comet-tail of actin fibers that ultimately pushes the cell forward. This dense network of cross-linked actin polymers typically exhibits a striking curvature that causes bacteria to move in gently looping paths. Theoretically, tail curvature has been linked to details of motility by considering force and torque balances from a finite number of polymerizing filaments. Here we track beads coated with a prokaryotic activator of actin polymerization in three dimensions to directly quantify the curvature and torsion of bead motility paths. We find that bead paths are more likely to have low rather than high curvature at any given time. Furthermore, path curvature changes very slowly in time, with an autocorrelation decay time of 200 s. Paths with a small radius of curvature, therefore, remain so for an extended period resulting in loops when confined to two dimensions. When allowed to explore a three-dimensional (3D) space, path loops are less evident. Finally, we quantify the torsion in the bead paths and show that beads do not exhibit a significant left- or right-handed bias to their motion in 3D. These results suggest that paths of actin-propelled objects may be attributed to slow changes in curvature, possibly associated with filament debranching, rather than a fixed torque.

  9. Curvature and torsion in growing actin networks

    PubMed Central

    Shaevitz, Joshua W; Fletcher, Daniel A

    2011-01-01

    Intracellular pathogens such as Listeria monocytogenes and Rickettsia rickettsii move within a host cell by polymerizing a comet-tail of actin fibers that ultimately pushes the cell forward. This dense network of cross-linked actin polymers typically exhibits a striking curvature that causes bacteria to move in gently looping paths. Theoretically, tail curvature has been linked to details of motility by considering force and torque balances from a finite number of polymerizing filaments. Here we track beads coated with a prokaryotic activator of actin polymerization in three dimensions to directly quantify the curvature and torsion of bead motility paths. We find that bead paths are more likely to have low rather than high curvature at any given time. Furthermore, path curvature changes very slowly in time, with an autocorrelation decay time of 200 s. Paths with a small radius of curvature, therefore, remain so for an extended period resulting in loops when confined to two dimensions. When allowed to explore a three-dimensional (3D) space, path loops are less evident. Finally, we quantify the torsion in the bead paths and show that beads do not exhibit a significant left- or right-handed bias to their motion in 3D. These results suggest that paths of actin-propelled objects may be attributed to slow changes in curvature, possibly associated with filament debranching, rather than a fixed torque. PMID:18560043

  10. Compact waveguide circular polarizer

    SciTech Connect

    Tantawi, Sami G.

    2016-08-16

    A multi-port waveguide is provided having a rectangular waveguide that includes a Y-shape structure with first top arm having a first rectangular waveguide port, a second top arm with second rectangular waveguide port, and a base arm with a third rectangular waveguide port for supporting a TE.sub.10 mode and a TE.sub.20 mode, where the end of the third rectangular waveguide port includes rounded edges that are parallel to a z-axis of the waveguide, a circular waveguide having a circular waveguide port for supporting a left hand and a right hand circular polarization TE.sub.11 mode and is coupled to a base arm broad wall, and a matching feature disposed on the base arm broad wall opposite of the circular waveguide for terminating the third rectangular waveguide port, where the first rectangular waveguide port, the second rectangular waveguide port and the circular waveguide port are capable of supporting 4-modes of operation.

  11. Surface precision of optical membranes with curvature.

    PubMed

    Marker, D; Jenkins, C

    1997-11-24

    Space-based inflatable technology is of current interest to NASA and DOD, and in particular to the Air Force and Phillips Laboratory. Potentially large gains in lowering launch costs, through reductions in structure mass and volume, are driving this activity. Diverse groups are researching and developing this technology for radio and radar antennae, optical telescopes, and solar power and propulsion applications. Regardless of the use, one common requirement for successful application is the accuracy of the inflated surface shape. The work reported here concerns the shape control of an inflated thin circular disk through use of a nonlinear finite element analysis. First, a review of the important associated Hencky problem is given. Then we discuss a shape modification, achieved through enforced boundary displacements, which resulted in moving the inflated shape towards a desired parabolic profile. Minimization of the figure error is discussed and conclusions are drawn.

  12. Impact of curvature on topological defects

    NASA Astrophysics Data System (ADS)

    Mesarec, L.; Góźdź, W.; Iglič, A.; Kralj, S.

    2017-01-01

    We analyze the impact of extrinsic and intrinsic curvature on positions of topological defects (TDs) in two-dimensional (2D) nematic films. We demonstrate that both these curvature contributions are commonly present and are expected to be weighted by comparable elastic constants. A simple Landau-de Gennes approach in terms of tensor nematic order parameter is used to numerically demonstrate impact of the curvatures on position of TDs on 2D ellipsoidal nematic shells. In particular, in oblate ellipsoids the extrinsic and intrinsic elastic terms enforce conflicting tendencies to positions of TDs.

  13. 76 FR 62148 - Title VI; Proposed Circular, Environmental Justice; Proposed Circular

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-06

    ... Federal Transit Administration Title VI; Proposed Circular, Environmental Justice; Proposed Circular...; Proposed Circular'' and ``Environmental Justice; Proposed Circular.'' FOR FURTHER INFORMATION CONTACT: For... Circular'' (76 FR 60593) and ``Environmental Justice; Proposed Circular'' (76 FR 60590). Corrections The...

  14. Curvature theory for point-path and plane-envelope in spherical kinematics by new adjoint approach

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Wang, Delun

    2014-11-01

    Planar kinematics has been studied systematically based on centrodes, however axodes are underutilized to set up the curvature theories in spherical and spatial kinematics. Through a spherical adjoint approach, an axode-based theoretical system of spherical kinematics is established. The spherical motion is re-described by the adjoint approach and vector equation of spherical instant center is concisely derived. The moving and fixed axodes for spherical motion are mapped onto a unit sphere to obtain spherical centrodes, whose kinematic invariants totally reflect the intrinsic property of spherical motion. Based on the spherical centrodes, the curvature theories for a point and a plane of a rigid body in spherical motion are revealed by spherical fixed point and plane conditions. The Euler-Savary analogue for point-path is presented. Tracing points with higher order curvature features are located in the moving body by means of algebraic equations. For plane-envelope, the construction parameters are obtained. The osculating conditions for plane-envelope and circular cylindrical surface or circular conical surface are given. A spherical four-bar linkage is taken as an example to demonstrate the spherical adjoint approach and the curvature theories. The research proposes systematic spherical curvature theories with the axode as logical starting-point, and sets up a bridge from the centrode-based planar kinematics to the axode-based spatial kinematics.

  15. Effects of Berry Curvature on the Collective Modes of Ultracold Gases

    NASA Astrophysics Data System (ADS)

    Price, Hannah M.; Cooper, Nigel R.

    2013-11-01

    Topological energy bands have important geometrical properties described by the Berry curvature. We show that the Berry curvature changes the hydrodynamic equations of motion for a trapped Bose-Einstein condensate, and causes significant modifications to the collective mode frequencies. We illustrate our results for the case of two-dimensional Rashba spin-orbit coupling in a Zeeman field. Using an operator approach, we derive the effects of Berry curvature on the dipole mode in very general settings. We show that the sizes of these effects can be large and readily detected in experiment. Collective modes therefore provide a sensitive way to measure geometrical properties of energy bands.

  16. Computation of constant mean curvature surfaces: Application to the gas-liquid interface of a pressurized fluid on a superhydrophobic surface.

    PubMed

    Lobaton, E J; Salamon, T R

    2007-10-01

    The interface shape separating a gas layer within a superhydrophobic surface consisting of a square lattice of posts from a pressurized liquid above the surface is computed numerically. The interface shape is described by a constant mean curvature surface that satisfies the Young-Laplace equation with the three-phase gas-liquid-solid contact line assumed pinned at the post outer edge. The numerical method predicts the existence of constant mean curvature solutions from the planar, zero curvature solution up to a maximum curvature that is dependent on the post shape, size and pitch. An overall force balance between surface tension and pressure forces acting on the interface yields predictions for the maximum curvature that agree with the numerical simulations to within one percent for convex shapes such as circular and square posts, but significantly over predicts the maximum curvature for non-convex shapes such as a circular post with a sinusoidal surface perturbation. Changing the post shape to increase the contact line length, while maintaining constant post area, results in increases of 2 to 12% in the maximum computable curvature for contact line length increases of 11 to 77%. Comparisons are made to several experimental studies for interface shape and pressure stability.

  17. Circular Fibonacci gratings.

    PubMed

    Gao, Nan; Zhang, Yuchao; Xie, Changqing

    2011-11-01

    We introduce circular Fibonacci gratings (CFGs) that combine the concept of circular gratings and Fibonacci structures. Theoretical analysis shows that the diffraction pattern of CFGs is composed of fractal distributions of impulse rings. Numerical simulations are performed with two-dimensional fast Fourier transform to reveal the fractal behavior of the diffraction rings. Experimental results are also presented and agree well with the numerical results. The fractal nature of the diffraction field should be of great theoretical interest, and shows potential to be further developed into practical applications, such as in laser measurement with wideband illumination.

  18. Detonation front curvatures and detonation rates

    NASA Astrophysics Data System (ADS)

    Lauderbach, Lisa M.; Lorenz, K. Thomas; Lee, Edward L.; Souers, P. Clark

    2017-01-01

    Many detonation front curvatures are reviewed. Most are of the Shock Dynamics type, which are described as a combination of quadratic and 8th power-of-the-radius curves. The integrated fraction of the 8th power curve is taken as a measure of curvature, which we are able to relate to the logarithm of the detonation rate. This provides a means of estimating the rates of some unknown explosives from the curvature. Using the edge lag divided by the radius is an even better way. A second group of curvatures are almost or purely quadratic. This is probably not associated with density gradients but may be caused by low sound speeds. A final group of "sombreros" show curvy fronts for ideal explosives, which appear to be caused by density gradients.

  19. Anisotropic Membrane Curvature Sensing by Amphipathic Peptides

    PubMed Central

    Gómez-Llobregat, Jordi; Elías-Wolff, Federico; Lindén, Martin

    2016-01-01

    Many proteins and peptides have an intrinsic capacity to sense and induce membrane curvature, and play crucial roles for organizing and remodeling cell membranes. However, the molecular driving forces behind these processes are not well understood. Here, we describe an approach to study curvature sensing by simulating the interactions of single molecules with a buckled lipid bilayer. We analyze three amphipathic antimicrobial peptides, a class of membrane-associated molecules that specifically target and destabilize bacterial membranes, and find qualitatively different sensing characteristics that would be difficult to resolve with other methods. Our findings provide evidence for direction-dependent curvature sensing mechanisms in amphipathic peptides and challenge existing theories of hydrophobic insertion. The buckling approach is generally applicable to a wide range of curvature-sensing molecules, and our results provide strong motivation to develop new experimental methods to track position and orientation of membrane proteins. PMID:26745422

  20. Helical Microfilaments with Alternating Imprinted Intrinsic Curvatures.

    PubMed

    Silva, Pedro Emanuel Santos; Godinho, Maria Helena

    2017-03-01

    There has been an intense research for developing techniques that can produce filaments with helical shapes, given the widespread of potential applications. In this work, how helices with different curvatures can be precisely imprinted in microfilaments is shown. It is also shown that using this technique, it is possible to produce, in a single fiber, helices with different curvatures. This striking and innovative behavior is observed when one side of the stretched filaments is irradiated with UV light, modifying the mechanical properties at surface. Upon release, the regions with higher curvature start to curl first, while regions with lower intrinsic curvature remain stretched until start to curl later. The results presented here can be important to understand why structures adopt a helical shape in general, which can be of interest in nanotechnology, biomolecular science, or even to understand why plant filaments curl. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Role of feature curvature in contact guidance

    PubMed Central

    Mathur, Anurag; Moore, Simon W.; Sheetz, Michael P.; Hone, James

    2012-01-01

    This study examines the role of feature curvature in cellular topography sensing. To separate the effects of feature size and curvature, we have developed a method to fabricate grooved substrates whose radius of curvature (r) is varied from under 10 nm to 400 nm, while all other dimensions are kept constant. With increasing r up to 200 nm, mouse embryonic fibroblasts increased their spread area, but reduced their polarization (aspect ratio). Interestingly, on features with an r of 200 and 400 nm - where there was very little effect on spreading area and polarization - we find that internal structures such as stress fibers are nevertheless still strongly aligned to the topography. These findings are of importance to studies of both tissue engineering and curvature sensing proteins. PMID:22426288

  2. Gravitational energy in quadratic-curvature gravities.

    PubMed

    Deser, S; Tekin, Bayram

    2002-09-02

    We define energy (E) and compute its values for gravitational systems involving terms quadratic in curvature. There are significant differences, both conceptually and concretely, from Einstein theory. For D=4, all purely quadratic models admit constant curvature vacua with arbitrary Lambda, and E is the "cosmological" Abbott-Deser (AD) expression; instead, E always vanishes in flat, Lambda=0, background. For combined Einstein-quadratic curvature systems without explicit Lambda-term vacuum must be flat space, and E has the usual Arnowitt-Deser-Misner form. A Lambda-term forces unique de Sitter vacuum, with E the sum of contributions from Einstein and quadratic parts to the AD form. We also discuss the effects on energy definition of higher curvature terms and of higher dimension.

  3. Spline-Based Smoothing of Airfoil Curvatures

    NASA Technical Reports Server (NTRS)

    Li, W.; Krist, S.

    2008-01-01

    Constrained fitting for airfoil curvature smoothing (CFACS) is a splinebased method of interpolating airfoil surface coordinates (and, concomitantly, airfoil thicknesses) between specified discrete design points so as to obtain smoothing of surface-curvature profiles in addition to basic smoothing of surfaces. CFACS was developed in recognition of the fact that the performance of a transonic airfoil is directly related to both the curvature profile and the smoothness of the airfoil surface. Older methods of interpolation of airfoil surfaces involve various compromises between smoothing of surfaces and exact fitting of surfaces to specified discrete design points. While some of the older methods take curvature profiles into account, they nevertheless sometimes yield unfavorable results, including curvature oscillations near end points and substantial deviations from desired leading-edge shapes. In CFACS as in most of the older methods, one seeks a compromise between smoothing and exact fitting. Unlike in the older methods, the airfoil surface is modified as little as possible from its original specified form and, instead, is smoothed in such a way that the curvature profile becomes a smooth fit of the curvature profile of the original airfoil specification. CFACS involves a combination of rigorous mathematical modeling and knowledge-based heuristics. Rigorous mathematical formulation provides assurance of removal of undesirable curvature oscillations with minimum modification of the airfoil geometry. Knowledge-based heuristics bridge the gap between theory and designers best practices. In CFACS, one of the measures of the deviation of an airfoil surface from smoothness is the sum of squares of the jumps in the third derivatives of a cubicspline interpolation of the airfoil data. This measure is incorporated into a formulation for minimizing an overall deviation- from-smoothness measure of the airfoil data within a specified fitting error tolerance. CFACS has been

  4. Cosmological spatial curvature probed by microwave polarization

    SciTech Connect

    Matzner, R.A.; Tolman, B.W.

    1982-11-15

    If there is a large-scale anisotropy in the expansion of the universe, the microwave background radiation is expected to be linearly polarized. This communication shows that spatial curvature is capable of rotating the polarization of the microwaves relative to its direction at last scattering, which is directly correlated with the expansion anisotropy (and so also the observed intensity anisotropy). In Friedmann-Robertson-Walker models of the universe with additional small expansion anisotropy, the observed rotation relative to the intensity anisotropy would be appreciable and constant over the celestial sphere in the closed (type IX) model, but in the flat and open models, it must either vanish (types I and V) or vary ina complicated way over the celestial sphere (type VII/sub h/). These facts suggest a clear observational test of the closure of the universe. Also, an ambiguity inherent in the homogeneity of the universe does not allow prediction of the direction of rotation; thus homogeneous universes possess a property which might be called ''handedness.''

  5. Mean curvature flow of a hyperbolic surface

    SciTech Connect

    Ovchinnikov, Yu. N.; Sigal, I. M.

    2011-12-15

    A four-parameter family of self-similar solutions is obtained to the mean curvature flow equation for a surface. This family is shown to be stable with respect to a small deformation of a hyperbolic surface. At time instant t*, a singular point is formed within a finite time interval, that is accompanied by a change in the topology of the surface. The solution is continued beyond the singular point. A relationship between the parameters describing the hyperbolic surface before and after the change in the surface topology is obtained. A particular case is analyzed when the unperturbed surface is a cylinder. A cylindrical surface is weakly unstable with respect to a perturbation in the form of a 'wide neck.' At the final stage of the development of the neck when its transverse size becomes much less than the cylinder radius at large distances from the neck, the surface flow in a wide region in the neighborhood of the neck is described by a universal two-parameter family of self-similar solutions. These solutions are stable with respect to small perturbations of the surface.

  6. Gradient expansion, curvature perturbations, and magnetized plasmas

    SciTech Connect

    Giovannini, Massimo; Rezaei, Zahra

    2011-04-15

    The properties of magnetized plasmas are always investigated under the hypothesis that the relativistic inhomogeneities stemming from the fluid sources and from the geometry itself are sufficiently small to allow for a perturbative description prior to photon decoupling. The latter assumption is hereby relaxed and predecoupling plasmas are described within a suitable expansion where the inhomogeneities are treated to a given order in the spatial gradients. It is argued that the (general relativistic) gradient expansion shares the same features of the drift approximation, customarily employed in the description of cold plasmas, so that the two schemes are physically complementary in the large-scale limit and for the low-frequency branch of the spectrum of plasma modes. The two-fluid description, as well as the magnetohydrodynamical reduction, is derived and studied in the presence of the spatial gradients of the geometry. Various solutions of the coupled system of evolution equations in the anti-Newtonian regime and in the quasi-isotropic approximation are presented. The relation of this analysis to the so-called separate universe paradigm is outlined. The evolution of the magnetized curvature perturbations in the nonlinear regime is addressed for the magnetized adiabatic mode in the plasma frame.

  7. Curvature Analysis of Cardiac Excitation Wavefronts

    DTIC Science & Technology

    2013-04-01

    computational cardiac-cell network accurately reproduces a particular kind of cardiac arrhythmia , such as ventricular fibrillation. Curvature Analysis of Cardiac...network accurately reproduces a particular kind of cardiac arrhythmia , such as ventricular fibrillation. Index Terms Cardiac excitation waves...isopotentials, Bézier curves, curvature, cardiac arrhythmia and fibrillation Ç 1 INTRODUCTION AN estimated 81,000,000 American adults, more than onein three

  8. Curvature tensors unified field equations on SEXn

    NASA Astrophysics Data System (ADS)

    Chung, Kyung Tae; Lee, Il Young

    1988-09-01

    We study the curvature tensors and field equations in the n-dimensional SE manifold SEXn. We obtain several basic properties of the vectors S λ and U λ and then of the SE curvature tensor and its contractions, such as a generalized Ricci identity, a generalized Bianchi identity, and two variations of the Bianchi identity satisfied by the SE Einstein tensor. Finally, a system of field equations is discussed in SEXn and one of its particular solutions is constructed and displayed.

  9. Curvature adaptive optics and low light imaging

    NASA Astrophysics Data System (ADS)

    Ftaclas, C.; Chun, M.; Kuhn, J.; Ritter, J.

    We review the basic approach of curvature adaptive optics (AO) and show how its many advantages arise. A curvature wave front sensor (WFS) measures exactly what a curvature deformable mirror (DM) generates. This leads to the computational and operational simplicity of a nearly diagonal control matrix. The DM automatically reconstructs the wave front based on WFS curvature measurements. Thus, there is no formal wave front reconstruction. This poses an interesting challenge to post-processing of AO images. Physical continuity of the DM and the reconstruction of phase from wave front curvature data assure that each actuated region of the DM corrects local phase, tip-tilt and focus. This gain in per-channel correction efficiency, combined with the need for only one pixel per channel detector reads in the WFS allows the use of photon counting detectors for wave front sensing. We note that the use of photon counting detectors implies penalty-free combination of correction channels either in the WFS or on the DM. This effectively decouples bright and faint source performance in that one no longer predicts the other. The application of curvature AO to the low light moving target detection problem, and explore the resulting challenges to components and control systems. Rapidly moving targets impose high-speed operation posing new requirements unique to curvature components. On the plus side, curvature wave front sensors, unlike their Shack-Hartmann counterparts, are tunable for optimum sensitivity to seeing and we are examining autonomous optimization of the WFS to respond to rapid changes in seeing.

  10. Instant curvature measurement for microcantilever sensors

    SciTech Connect

    Jeon, Sangmin; Thundat, Thomas

    2004-08-09

    A multiple-point deflection technique has been developed for the instant measurement of microcantilever curvature. Eight light-emitting diodes are focused on various positions of a gold-coated silicon cantilever through optical fibers, and temperature change or chemical adsorption induces cantilever bending. The deflection at each point on the cantilever is measured with subnanometer precision by a position-sensitive detector, and thus the curvature of the cantilever is obtained.

  11. Stress-induced curvature engineering in surface-micromachined devices

    NASA Astrophysics Data System (ADS)

    Aksyuk, Vladimir A.; Pardo, Flavio; Bishop, David J.

    1999-03-01

    Residual stress and stress gradients play an important role in determining equilibrium shape and behavior of various Si surface-micromachined devices under applied loads. This is particularly true for system having large-area plates and long beams where curvature resulting from stress can lead to significant deviations from stress-free shape. To gain better understanding of these properties, we have measured the equilibrium shapes of various structures built on the MCNC MUMPs using an interferometric profiler. The structures were square plates and long beams composed of various combinations of polysilicon an oxide layers. Some of the structures had additional MUMPs metal layer on top, while on others in-house chromium-gold stacks of varying thickness have been deposited. Temperature dependence of the curvature was measured for some plates. We have used these data in conjunction with simple models to significantly improve the performance of our micromachined devices. While for some structures such as large area reflectors the curvature had to be minimized, it could be advantageously exploited by others, for example vertical actuators for self-assembly.

  12. Generating ekpyrotic curvature perturbations before the big bang

    SciTech Connect

    Lehners, Jean-Luc; Turok, Neil; McFadden, Paul; Steinhardt, Paul J.

    2007-11-15

    We analyze a general mechanism for producing a nearly scale-invariant spectrum of cosmological curvature perturbations during a contracting phase preceding a big bang, which can be entirely described using 4D effective field theory. The mechanism, based on first producing entropic perturbations and then converting them to curvature perturbations, can be naturally incorporated in cyclic and ekpyrotic models in which the big bang is modeled as a brane collision, as well as other types of cosmological models with a pre-big bang phase. We show that the correct perturbation amplitude can be obtained and that the spectral tilt n{sub s} tends to range from slightly blue to red, with 0.97large-field inflationary models.

  13. Glauber theory and the quantum coherence of curvature inhomogeneities

    NASA Astrophysics Data System (ADS)

    Giovannini, Massimo

    2017-02-01

    The curvature inhomogeneities are systematically scrutinized in the framework of the Glauber approach. The amplified quantum fluctuations of the scalar and tensor modes of the geometry are shown to be first-order coherent while the interference of the corresponding intensities is larger than in the case of Bose–Einstein correlations. After showing that the degree of second-order coherence does not suffice to characterize unambiguously the curvature inhomogeneities, we argue that direct analyses of the degrees of third- and fourth-order coherence are necessary to discriminate between different correlated states and to infer more reliably the statistical properties of the large-scale fluctuations. We speculate that the moments of the multiplicity distributions of the relic phonons might be observationally accessible thanks to new generations of instruments able to count the single photons of the Cosmic Microwave Background in the THz region.

  14. Spherical gravitational curvature boundary-value problem

    NASA Astrophysics Data System (ADS)

    Šprlák, Michal; Novák, Pavel

    2016-08-01

    Values of scalar, vector and second-order tensor parameters of the Earth's gravitational field have been collected by various sensors in geodesy and geophysics. Such observables have been widely exploited in different parametrization methods for the gravitational field modelling. Moreover, theoretical aspects of these quantities have extensively been studied and well understood. On the other hand, new sensors for observing gravitational curvatures, i.e., components of the third-order gravitational tensor, are currently under development. As the gravitational curvatures represent new types of observables, their exploitation for modelling of the Earth's gravitational field is a subject of this study. Firstly, the gravitational curvature tensor is decomposed into six parts which are expanded in terms of third-order tensor spherical harmonics. Secondly, gravitational curvature boundary-value problems defined for four combinations of the gravitational curvatures are formulated and solved in spectral and spatial domains. Thirdly, properties of the corresponding sub-integral kernels are investigated. The presented mathematical formulations reveal some important properties of the gravitational curvatures and extend the so-called Meissl scheme, i.e., an important theoretical framework that relates various parameters of the Earth's gravitational field.

  15. Nonadditive Compositional Curvature Energetics of Lipid Bilayers

    NASA Astrophysics Data System (ADS)

    Sodt, A. J.; Venable, R. M.; Lyman, E.; Pastor, R. W.

    2016-09-01

    The unique properties of the individual lipids that compose biological membranes together determine the energetics of the surface. The energetics of the surface, in turn, govern the formation of membrane structures and membrane reshaping processes, and thus they will underlie cellular-scale models of viral fusion, vesicle-dependent transport, and lateral organization relevant to signaling. The spontaneous curvature, to the best of our knowledge, is always assumed to be additive. We describe observations from simulations of unexpected nonadditive compositional curvature energetics of two lipids essential to the plasma membrane: sphingomyelin and cholesterol. A model is developed that connects molecular interactions to curvature stress, and which explains the role of local composition. Cholesterol is shown to lower the number of effective Kuhn segments of saturated acyl chains, reducing lateral pressure below the neutral surface of bending and favoring positive curvature. The effect is not observed for unsaturated (flexible) acyl chains. Likewise, hydrogen bonding between sphingomyelin lipids leads to positive curvature, but only at sufficient concentration, below which the lipid prefers negative curvature.

  16. The role of curvature in entanglement

    NASA Astrophysics Data System (ADS)

    Buck, Gregory

    2015-10-01

    Which tangles more readily: curly hair or straight hair? A perhaps natural thought, supported by some theoretical evidence, is to associate curvature and entanglement, and assume that they would grow together-that an increase in one fosters an increase in the other. However we have biological examples such as DNA in the chromosome, and mechanical examples such as coiled telephone cords, in which much more curvature is employed than is required for the packing, and in which tangling is presumably detrimental. We offer a resolution to this conundrum. We show, that at least for simple but generally applicable models, the relationship between curvature and entanglement is subtle: if we keep filament density constant and increase curvature, the entanglement initially increases, passes through a maximum, then decreases, so there is a regime where increasing curvature increases entanglement, and there is also a regime where increasing curvature decreases entanglement. This has implications for filament packing in many circumstances, and in particular for the compaction structure of DNA in the cell-it provides a straightforward argument for the view that one purpose of DNA coiling and supercoiling is to inhibit entanglement. It also tells us to expect that wavy hair-neither the straightest nor the curliest-tangles most readily.

  17. Nonadditive Compositional Curvature Energetics of Lipid Bilayers.

    PubMed

    Sodt, A J; Venable, R M; Lyman, E; Pastor, R W

    2016-09-23

    The unique properties of the individual lipids that compose biological membranes together determine the energetics of the surface. The energetics of the surface, in turn, govern the formation of membrane structures and membrane reshaping processes, and thus they will underlie cellular-scale models of viral fusion, vesicle-dependent transport, and lateral organization relevant to signaling. The spontaneous curvature, to the best of our knowledge, is always assumed to be additive. We describe observations from simulations of unexpected nonadditive compositional curvature energetics of two lipids essential to the plasma membrane: sphingomyelin and cholesterol. A model is developed that connects molecular interactions to curvature stress, and which explains the role of local composition. Cholesterol is shown to lower the number of effective Kuhn segments of saturated acyl chains, reducing lateral pressure below the neutral surface of bending and favoring positive curvature. The effect is not observed for unsaturated (flexible) acyl chains. Likewise, hydrogen bonding between sphingomyelin lipids leads to positive curvature, but only at sufficient concentration, below which the lipid prefers negative curvature.

  18. Wiimote Experiments: Circular Motion

    ERIC Educational Resources Information Center

    Kouh, Minjoon; Holz, Danielle; Kawam, Alae; Lamont, Mary

    2013-01-01

    The advent of new sensor technologies can provide new ways of exploring fundamental physics. In this paper, we show how a Wiimote, which is a handheld remote controller for the Nintendo Wii video game system with an accelerometer, can be used to study the dynamics of circular motion with a very simple setup such as an old record player or a…

  19. Wiimote Experiments: Circular Motion

    ERIC Educational Resources Information Center

    Kouh, Minjoon; Holz, Danielle; Kawam, Alae; Lamont, Mary

    2013-01-01

    The advent of new sensor technologies can provide new ways of exploring fundamental physics. In this paper, we show how a Wiimote, which is a handheld remote controller for the Nintendo Wii video game system with an accelerometer, can be used to study the dynamics of circular motion with a very simple setup such as an old record player or a…

  20. Copyright Basics. Circular 1.

    ERIC Educational Resources Information Center

    Library of Congress, Washington, DC. Copyright Office.

    This circular answers some of the questions that are frequently asked about copyright, a form of protection provided by the laws of the United States to authors of "original works of authorship" including library, dramatic musical, artistic, and certain other intellectual works. The Copyright Act of 1976 (title 17 of the United States…

  1. Wiimote Experiments: Circular Motion

    NASA Astrophysics Data System (ADS)

    Kouh, Minjoon; Holz, Danielle; Kawam, Alae; Lamont, Mary

    2013-03-01

    The advent of new sensor technologies can provide new ways of exploring fundamental physics. In this paper, we show how a Wiimote, which is a handheld remote controller for the Nintendo Wii video game system with an accelerometer, can be used to study the dynamics of circular motion with a very simple setup such as an old record player or a bicycle wheel.

  2. Transposable elements and circular DNAs

    PubMed Central

    2016-01-01

    ABSTRACT Circular DNAs are extra-chromosomal fragments that become circularized by genomic recombination events. We have recently shown that yeast LTR elements generate circular DNAs through recombination events between their flanking long terminal repeats (LTRs). Similarly, circular DNAs can be generated by recombination between LTRs residing at different genomic loci, in which case the circular DNA will contain the intervening sequence. In yeast, this can result in gene copy number variations when circles contain genes and origins of replication. Here, I speculate on the potential and implications of circular DNAs generated through recombination between human transposable elements. PMID:28090380

  3. Anisotropic Cosmology and Curvature Invariants.

    NASA Astrophysics Data System (ADS)

    Skea, James E. F.

    greater when non-axisymmetric cosmologies are considered. In the limit where the particle production is switched on at the Planck time (t _{rm Pl}), isotropisation is found to occur at _{Omega } 10^5 t_ {rm Pl}, compatible with restrictions on anistropy at that time. Particle production is not found to isotropise Bianchi VIII and IX cosmologies. In Part 3, we study the structure of various curvature invariants and, following a suggestion by Karlhede, we investigate their relationship to horizons in particular space-times. (Abstract shortened by UMI.).

  4. Improved computer-aided detection of small polyps in CT colonography using interpolation for curvature estimationa

    PubMed Central

    Liu, Jiamin; Kabadi, Suraj; Van Uitert, Robert; Petrick, Nicholas; Deriche, Rachid; Summers, Ronald M.

    2011-01-01

    Purpose: Surface curvatures are important geometric features for the computer-aided analysis and detection of polyps in CT colonography (CTC). However, the general kernel approach for curvature computation can yield erroneous results for small polyps and for polyps that lie on haustral folds. Those erroneous curvatures will reduce the performance of polyp detection. This paper presents an analysis of interpolation’s effect on curvature estimation for thin structures and its application on computer-aided detection of small polyps in CTC. Methods: The authors demonstrated that a simple technique, image interpolation, can improve the accuracy of curvature estimation for thin structures and thus significantly improve the sensitivity of small polyp detection in CTC. Results: Our experiments showed that the merits of interpolating included more accurate curvature values for simulated data, and isolation of polyps near folds for clinical data. After testing on a large clinical data set, it was observed that sensitivities with linear, quadratic B-spline and cubic B-spline interpolations significantly improved the sensitivity for small polyp detection. Conclusions: The image interpolation can improve the accuracy of curvature estimation for thin structures and thus improve the computer-aided detection of small polyps in CTC. PMID:21859029

  5. Aggregation and vesiculation of membrane proteins by curvature-mediated interactions

    NASA Astrophysics Data System (ADS)

    Reynwar, Benedict J.; Illya, Gregoria; Harmandaris, Vagelis A.; Müller, Martin M.; Kremer, Kurt; Deserno, Markus

    2007-05-01

    Membrane remodelling plays an important role in cellular tasks such as endocytosis, vesiculation and protein sorting, and in the biogenesis of organelles such as the endoplasmic reticulum or the Golgi apparatus. It is well established that the remodelling process is aided by specialized proteins that can sense as well as create membrane curvature, and trigger tubulation when added to synthetic liposomes. Because the energy needed for such large-scale changes in membrane geometry significantly exceeds the binding energy between individual proteins and between protein and membrane, cooperative action is essential. It has recently been suggested that curvature-mediated attractive interactions could aid cooperation and complement the effects of specific binding events on membrane remodelling. But it is difficult to experimentally isolate curvature-mediated interactions from direct attractions between proteins. Moreover, approximate theories predict repulsion between isotropically curving proteins. Here we use coarse-grained membrane simulations to show that curvature-inducing model proteins adsorbed on lipid bilayer membranes can experience attractive interactions that arise purely as a result of membrane curvature. We find that once a minimal local bending is realized, the effect robustly drives protein cluster formation and subsequent transformation into vesicles with radii that correlate with the local curvature imprint. Owing to its universal nature, curvature-mediated attraction can operate even between proteins lacking any specific interactions, such as newly synthesized and still immature membrane proteins in the endoplasmic reticulum.

  6. Energy levels of a quantum particle on a cylindrical surface with non-circular cross-section in electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Cruz, Philip Christopher S.; Bernardo, Reginald Christian S.; Esguerra, Jose Perico H.

    2017-04-01

    We calculate the energy levels of a quantum particle on a cylindrical surface with non-circular cross-section in uniform electric and magnetic fields. Using separation of variables method and a change of independent variable, we show that the problem can be reduced to a one-dimensional Schrödinger equation for a periodic potential. The effects of varying the shape of the cross-section while keeping the same perimeter and the strengths of the electric and magnetic fields are investigated for elliptical, corrugated, and nearly-rectangular tubes with radial dimensions of the order of a nanometer. The geometric potential has minima at the angular positions where there is a significant amount of curvature. For the elliptical and corrugated tubes, it is shown that as the tube departs from the circular shape of cross-section the double-degeneracy between the energy levels is lifted. For the nearly-rectangular tube, it is shown that energy level crossings occur as the horizontal dimension of the tube is varied while keeping the same perimeter and radius of circular corners. The interplay between the curvature and the strength of the electric and magnetic fields determines the overall behavior of the energy levels. As the strength of the electric field increases, the overall potential gets skewed creating a potential well on the side corresponding to the more negative electric potential. The energy levels of the first few excited states approach more positive values while the ground state energy level approaches a more negative value. For large electric fields, all bound state energy levels tend to more negative values. The contribution of weak magnetic fields to the overall potential behaves in the same way as the electric field contribution but with its sign depending on the direction of the component of the momentum parallel to the cylindrical axis. Large magnetic fields lead to pairing of energy levels reminiscent of 2D Landau levels for the elliptical and nearly

  7. Voronoi-Based Curvature and Feature Estimation from Point Clouds.

    PubMed

    Mérigot, Quentin; Ovsjanikov, Maks; Guibas, Leonidas

    2011-06-01

    We present an efficient and robust method for extracting curvature information, sharp features, and normal directions of a piecewise smooth surface from its point cloud sampling in a unified framework. Our method is integral in nature and uses convolved covariance matrices of Voronoi cells of the point cloud which makes it provably robust in the presence of noise. We show that these matrices contain information related to curvature in the smooth parts of the surface, and information about the directions and angles of sharp edges around the features of a piecewise-smooth surface. Our method is applicable in both two and three dimensions, and can be easily parallelized, making it possible to process arbitrarily large point clouds, which was a challenge for Voronoi-based methods. In addition, we describe a Monte-Carlo version of our method, which is applicable in any dimension. We illustrate the correctness of both principal curvature information and feature extraction in the presence of varying levels of noise and sampling density on a variety of models. As a sample application, we use our feature detection method to segment point cloud samplings of piecewise-smooth surfaces.

  8. Curvature forces in membrane lipid-protein interactions.

    PubMed

    Brown, Michael F

    2012-12-11

    Membrane biochemists are becoming increasingly aware of the role of lipid-protein interactions in diverse cellular functions. This review describes how conformational changes in membrane proteins, involving folding, stability, and membrane shape transitions, potentially involve elastic remodeling of the lipid bilayer. Evidence suggests that membrane lipids affect proteins through interactions of a relatively long-range nature, extending beyond a single annulus of next-neighbor boundary lipids. It is assumed the distance scale of the forces is large compared to the molecular range of action. Application of the theory of elasticity to flexible soft surfaces derives from classical physics and explains the polymorphism of both detergents and membrane phospholipids. A flexible surface model (FSM) describes the balance of curvature and hydrophobic forces in lipid-protein interactions. Chemically nonspecific properties of the lipid bilayer modulate the conformational energetics of membrane proteins. The new biomembrane model challenges the standard model (the fluid mosaic model) found in biochemistry texts. The idea of a curvature force field based on data first introduced for rhodopsin gives a bridge between theory and experiment. Influences of bilayer thickness, nonlamellar-forming lipids, detergents, and osmotic stress are all explained by the FSM. An increased awareness of curvature forces suggests that research will accelerate as structural biology becomes more closely entwined with the physical chemistry of lipids in explaining membrane structure and function.

  9. Curvature Forces in Membrane Lipid-Protein Interactions

    PubMed Central

    Brown, Michael F.

    2012-01-01

    Membrane biochemists are becoming increasingly aware of the role of lipid-protein interactions in diverse cellular functions. This review describes how conformational changes of membrane proteins—involving folding, stability, and membrane shape transitions—potentially involve elastic remodeling of the lipid bilayer. Evidence suggests that membrane lipids affect proteins through interactions of a relatively long-range nature, extending beyond a single annulus of next-neighbor boundary lipids. It is assumed the distance scale of the forces is large compared to the molecular range of action. Application of the theory of elasticity to flexible soft surfaces derives from classical physics, and explains the polymorphism of both detergents and membrane phospholipids. A flexible surface model (FSM) describes the balance of curvature and hydrophobic forces in lipid-protein interactions. Chemically nonspecific properties of the lipid bilayer modulate the conformational energetics of membrane proteins. The new biomembrane model challenges the standard model (the fluid mosaic model) found in biochemistry texts. The idea of a curvature force field based on data first introduced for rhodopsin gives a bridge between theory and experiment. Influences of bilayer thickness, nonlamellar-forming lipids, detergents, and osmotic stress are all explained by the FSM. An increased awareness of curvature forces suggests that research will accelerate as structural biology becomes more closely entwined with the physical chemistry of lipids in explaining membrane structure and function. PMID:23163284

  10. Lipids, curvature, and nano-medicine*

    PubMed Central

    Mouritsen, Ole G

    2011-01-01

    The physical properties of the lamellar lipid-bilayer component of biological membranes are controlled by a host of thermodynamic forces leading to overall tensionless bilayers with a conspicuous lateral pressure profile and build-in curvature-stress instabilities that may be released locally or globally in terms of morphological changes. In particular, the average molecular shape and the propensity of the different lipid and protein species for forming non-lamellar and curved structures are a source of structural transitions and control of biological function. The effects of different lipids, sterols, and proteins on membrane structure are discussed and it is shown how one can take advantage of the curvature-stress modulations brought about by specific molecular agents, such as fatty acids, lysolipids, and other amphiphilic solutes, to construct intelligent drug-delivery systems that function by enzymatic triggering via curvature. Practical applications: The simple concept of lipid molecular shape and how it impacts on the structure of lipid aggregates, in particular the curvature and curvature stress in lipid bilayers and liposomes, can be exploited to construct liposome-based drug-delivery systems, e.g., for use as nano-medicine in cancer therapy. Non-lamellar-forming lysolipids and fatty acids, some of which may be designed to be prodrugs, can be created by phospholipase action in diseased tissues thereby providing for targeted drug release and proliferation of molecular entities with conical shape that break down the permeability barrier of the target cells and may hence enhance efficacy. PMID:22164124

  11. Curvature constraints from the causal entropic principle

    SciTech Connect

    Bozek, Brandon; Albrecht, Andreas; Phillips, Daniel

    2009-07-15

    Current cosmological observations indicate a preference for a cosmological constant that is drastically smaller than what can be explained by conventional particle physics. The causal entropic principle (Bousso et al.) provides an alternative approach to anthropic attempts to predict our observed value of the cosmological constant by calculating the entropy created within a causal diamond. We have extended this work to use the causal entropic principle to predict the preferred curvature within the 'multiverse'. We have found that values larger than {rho}{sub k}=40{rho}{sub m} are disfavored by more than 99.99% peak value at {rho}{sub {lambda}}=7.9x10{sup -123} and {rho}{sub k}=4.3{rho}{sub m} for open universes. For universes that allow only positive curvature or both positive and negative curvature, we find a correlation between curvature and dark energy that leads to an extended region of preferred values. Our universe is found to be disfavored to an extent depending on the priors on curvature. We also provide a comparison to previous anthropic constraints on open universes and discuss future directions for this work.

  12. Circular inferences in schizophrenia.

    PubMed

    Jardri, Renaud; Denève, Sophie

    2013-11-01

    A considerable number of recent experimental and computational studies suggest that subtle impairments of excitatory to inhibitory balance or regulation are involved in many neurological and psychiatric conditions. The current paper aims to relate, specifically and quantitatively, excitatory to inhibitory imbalance with psychotic symptoms in schizophrenia. Considering that the brain constructs hierarchical causal models of the external world, we show that the failure to maintain the excitatory to inhibitory balance results in hallucinations as well as in the formation and subsequent consolidation of delusional beliefs. Indeed, the consequence of excitatory to inhibitory imbalance in a hierarchical neural network is equated to a pathological form of causal inference called 'circular belief propagation'. In circular belief propagation, bottom-up sensory information and top-down predictions are reverberated, i.e. prior beliefs are misinterpreted as sensory observations and vice versa. As a result, these predictions are counted multiple times. Circular inference explains the emergence of erroneous percepts, the patient's overconfidence when facing probabilistic choices, the learning of 'unshakable' causal relationships between unrelated events and a paradoxical immunity to perceptual illusions, which are all known to be associated with schizophrenia.

  13. Efficient circular thresholding.

    PubMed

    Lai, Yu-Kun; Rosin, Paul L

    2014-03-01

    Otsu's algorithm for thresholding images is widely used, and the computational complexity of determining the threshold from the histogram is O(N) where N is the number of histogram bins. When the algorithm is adapted to circular rather than linear histograms then two thresholds are required for binary thresholding. We show that, surprisingly, it is still possible to determine the optimal threshold in O(N) time. The efficient optimal algorithm is over 300 times faster than traditional approaches for typical histograms and is thus particularly suitable for real-time applications. We further demonstrate the usefulness of circular thresholding using the adapted Otsu criterion for various applications, including analysis of optical flow data, indoor/outdoor image classification, and non-photorealistic rendering. In particular, by combining circular Otsu feature with other colour/texture features, a 96.9% correct rate is obtained for indoor/outdoor classification on the well known IITM-SCID2 data set, outperforming the state-of-the-art result by 4.3%.

  14. Myopic aberrations: Simulation based comparison of curvature and Hartmann Shack wavefront sensors

    NASA Astrophysics Data System (ADS)

    Basavaraju, Roopashree M.; Akondi, Vyas; Weddell, Stephen J.; Budihal, Raghavendra Prasad

    2014-02-01

    In comparison with a Hartmann Shack wavefront sensor, the curvature wavefront sensor is known for its higher sensitivity and greater dynamic range. The aim of this study is to numerically investigate the merits of using a curvature wavefront sensor, in comparison with a Hartmann Shack (HS) wavefront sensor, to analyze aberrations of the myopic eye. Aberrations were statistically generated using Zernike coefficient data of 41 myopic subjects obtained from the literature. The curvature sensor is relatively simple to implement, and the processing of extra- and intra-focal images was linearly resolved using the Radon transform to provide Zernike modes corresponding to statistically generated aberrations. Simulations of the HS wavefront sensor involve the evaluation of the focal spot pattern from simulated aberrations. Optical wavefronts were reconstructed using the slope geometry of Southwell. Monte Carlo simulation was used to find critical parameters for accurate wavefront sensing and to investigate the performance of HS and curvature sensors. The performance of the HS sensor is highly dependent on the number of subapertures and the curvature sensor is largely dependent on the number of Zernike modes used to represent the aberration and the effective propagation distance. It is shown that in order to achieve high wavefront sensing accuracy while measuring aberrations of the myopic eye, a simpler and cost effective curvature wavefront sensor is a reliable alternative to a high resolution HS wavefront sensor with a large number of subapertures.

  15. Charged Particle Optics in Circular Higgs Factory

    SciTech Connect

    Cai, Yunhai

    2015-02-26

    Similar to a super B-factory, a circular Higgs factory will require strong focusing systems near the interaction points and a low-emittance lattice in arcs to achieve a factory luminosity. At electron beam energy of 120 GeV, beamstrahlung effects during the collision pose an additional challenge to the collider design. In particular, a large momentum acceptance at 2 percent level is necessary to retain an adequate beam lifetime. This turns out to be the most challenging aspect in the design of circular Higgs factory. In this paper, an example will be provided to illustrate the beam dynamics in circular Higgs factory, emphasizing on the chromatic optics. Basic optical modules and advanced analysis will be presented. Most important, we will show that 2% momentum aperture is achievable

  16. Magnetization in narrow ribbons: curvature effects

    NASA Astrophysics Data System (ADS)

    Gaididei, Yuri; Goussev, Arseni; Kravchuk, Volodymyr P.; Pylypovskyi, Oleksandr V.; Robbins, J. M.; Sheka, Denis D.; Slastikov, Valeriy; Vasylkevych, Sergiy

    2017-09-01

    A ribbon is a surface swept out by a line segment turning as it moves along a central curve. For narrow magnetic ribbons, for which the length of the line segment is much less than the length of the curve, the anisotropy induced by the magnetostatic interaction is biaxial, with a hard axis normal to the ribbon and an easy axis along the central curve. The micromagnetic energy of a narrow ribbon reduces to that of a one-dimensional ferromagnetic wire, but with curvature, torsion and local anisotropy modified by the rate of turning. These general results are applied to two examples, namely a helicoid ribbon, for which the central curve is a straight line, and a Möbius ribbon, for which the central curve is a circle about which the line segment executes a {{180}\\circ} twist. In both examples, for large positive tangential anisotropy, the ground state magnetization lies tangent to the central curve. As the tangential anisotropy is decreased, the ground state magnetization undergoes a transition, acquiring an in-surface component perpendicular to the central curve. For the helicoid ribbon, the transition occurs at vanishing anisotropy, below which the ground state is uniformly perpendicular to the central curve. The transition for the Möbius ribbon is more subtle; it occurs at a positive critical value of the anisotropy, below which the ground state is nonuniform. For the helicoid ribbon, the dispersion law for spin wave excitations about the tangential state is found to exhibit an asymmetry determined by the geometric and magnetic chiralities.

  17. On the curvature effect of thin membranes

    NASA Astrophysics Data System (ADS)

    Wang, Duo; Jiao, Xiangmin; Conley, Rebecca; Glimm, James

    2013-01-01

    We investigate the curvature effect of a thin, curved elastic interface that separates two subdomains and exerts a pressure due to a curvature effect. This pressure, which we refer to as interface pressure, is similar to the surface tension in fluid mechanics. It is important in some applications, such as the canopy of parachutes, biological membranes of cells, balloons, airbags, etc., as it partially balances a pressure jump between the two sides of an interface. In this paper, we show that the interface pressure is equal to the trace of the matrix product of the curvature tensor and the Cauchy stress tensor in the tangent plane. We derive the theory for interfaces in both 2-D and 3-D, and present numerical discretizations for computing the quality over triangulated surfaces.

  18. Cosmic curvature from de Sitter equilibrium cosmology.

    PubMed

    Albrecht, Andreas

    2011-10-07

    I show that the de Sitter equilibrium cosmology generically predicts observable levels of curvature in the Universe today. The predicted value of the curvature, Ω(k), depends only on the ratio of the density of nonrelativistic matter to cosmological constant density ρ(m)(0)/ρ(Λ) and the value of the curvature from the initial bubble that starts the inflation, Ω(k)(B). The result is independent of the scale of inflation, the shape of the potential during inflation, and many other details of the cosmology. Future cosmological measurements of ρ(m)(0)/ρ(Λ) and Ω(k) will open up a window on the very beginning of our Universe and offer an opportunity to support or falsify the de Sitter equilibrium cosmology.

  19. HEREDITARY DISTAL FORELEG CURVATURE IN THE RABBIT

    PubMed Central

    Pearce, Louise

    1960-01-01

    An inwardly directed curvature of the distal segment of both forelegs of the rabbit has been described. The condition was detected at 2 to 3 weeks of age, developed rapidly, and reached its final and permanent stage at 2 to 3 months of age. Only the distal epiphysis of the ulna was primarily affected and this in the form of a massive chondrodystrophic lesion accompanied by a progressive curvature of the shaft. The curvature of the growing radius was a secondary effect due to the firm, immovable, anatomical connection of the ulna and radius. The positional changes of the wrist and paw were likewise effects secondary to the changed form of the ulna and radius. The bowing abnormality occurred only in certain families of pure bred Beveren, Belgian, French Silver, and Dutch rabbits and was found to be inherited. The mode of inheritance was on the basis of a single recessive unit factor (5). PMID:13733755

  20. Principal curvature for infrared small target detection

    NASA Astrophysics Data System (ADS)

    Zhao, Yao; Pan, Haibin; Du, Changping; Zheng, Yao

    2015-03-01

    Small target detection in infrared image with complex background and low signal-noise ratio is an important and difficult task in the infrared target tracking system. In this paper, a principal curvature-based method is proposed. The principal curvatures of target pixels are negative and their absolute values are larger than that of background pixels and noise pixels in a Gaussian-blurred infrared image. The proposed filter takes a composite function of the curvatures for detection. An approximate model is also built for optimizing the parameters. Experimental results show that the proposed algorithm is effective and adaptable for infrared small target detection in complex background. Compared with several popular methods, the proposed algorithm demonstrates significant improvement on detection performance in terms of the parameters of signal clutter ratio gain, background suppression factor and ROC.

  1. Ray Curvature and Refraction of Wave Packets.

    DTIC Science & Technology

    1978-09-01

    1!~~~~~ _ ‘ AD AOM 302 FLORIDA STATE UNIV TALLAHASSEE DEPT OF OCEANOGRAPHY FIG B/3 RAY CURVATURE AND REFRACTION OF WAVE PACKETS. (U) SEP 78 .J E...BREEDING N00014—77—C—0329 UNCLASSIFIED TR JE6 3 NL _ _ _ rwii__ _ ~iU ir!I I -~~ RAYOJR\\1L~[UREAND REFRACI ION OF WAVE F1~\\CKET~S ~y J. Ernest Breeding...01 29 014 -~ Technical Report No. JEB-3 Department of Oceanography • Florida State University RAY CURVATURE AND REFRACTION OF WAVE PACKETS b O G • J

  2. NASTRAN modifications for recovering strains and curvatures

    NASA Technical Reports Server (NTRS)

    Hennrich, C. W.

    1975-01-01

    Modifications to the NASTRAN structural analysis computer program are described. The modifications allow the recovery of strain and curvature data for the general two-dimensional elements, in addition to the usual stress data. Option features allow the transformation of the strain/curvature (or stress) data to a common coordinate system and representation at the grid points of the structural model rather than at the conventional element center locations. Usage information is provided which will allow present users of NASTRAN to easily utilize the new capability.

  3. Cholesterol Mediates Membrane Curvature during Fusion Events

    NASA Astrophysics Data System (ADS)

    Ivankin, Andrey; Kuzmenko, Ivan; Gidalevitz, David

    2012-06-01

    Biomembranes undergo extensive shape changes as they perform vital cellular functions. The mechanisms by which lipids and proteins control membrane curvature remain unclear. We use x-ray reflectivity, grazing incidence x-ray diffraction, and epifluorescence microscopy to study binding of HIV-1 glycoprotein gp41’s membrane-bending domain to DPPC/cholesterol monolayers of various compositions at the air-liquid interface. The results offer a new insight into how membrane curvature could be regulated by cholesterol during fusion of the viral lipid envelope and the host cell membranes.

  4. Equal-Curvature X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    Saha, Timo T.; Zhang, William

    2002-01-01

    We introduce a new type of x-ray telescope design; an Equal-Curvature telescope. We simply add a second order axial sag to the base grazing incidence cone-cone telescope. The radius of curvature of the sag terms is the same on the primary surface and on the secondary surface. The design is optimized so that the on-axis image spot at the focal plane is minimized. The on-axis RMS (root mean square) spot diameter of two studied telescopes is less than 0.2 arc-seconds. The off-axis performance is comparable to equivalent Wolter type 1 telescopes.

  5. Hysteresis compensation technique for POF curvature sensors

    NASA Astrophysics Data System (ADS)

    Leal, Arnaldo G.; Frizera, Anselmo; Pontes, Maria José

    2017-04-01

    Polymer optical fibers (POF) have higher strain limits, fracture toughness and flexibility in bend if compared to glass optical fibers. These characteristics enable the application of POFs as curvature sensors. However, the polymer is a viscoelastic material, which does not have a constant response with stress or strain. For this reason, a curvature sensor based on POF may present high hysteresis. This paper proposes a dynamic compensation technique based on the angular velocity of the sensor. Results show a hysteresis up to 10 times lower. Furthermore, it results on a simple calibration equation, which can be applied in real-time measurements.

  6. Curvature suppresses the Rayleigh-Taylor instability

    SciTech Connect

    Trinh, Philippe H.; Kim, Hyoungsoo; Hammoud, Naima; Howell, Peter D.; Chapman, S. Jonathan; Stone, Howard A.

    2014-05-01

    The dynamics of a thin liquid #12;lm on the underside of a curved cylindrical substrate is studied. The evolution of the liquid layer is investigated as the #12;lm thickness and the radius of curvature of the substrate are varied. A dimensionless parameter (a modi#12;ed Bond number) that incorporates both geometric parameters, gravity, and surface tension is identified, and allows the observations to be classified according to three different flow regimes: stable films, films with transient growth of perturbations followed by decay, and unstable films. Experiments and theory confirm that, below a critical value of the Bond number, curvature of the substrate suppresses the Rayleigh-Taylor instability.

  7. Tests on Stiffened Circular Cylinders

    NASA Technical Reports Server (NTRS)

    Holt, Marshall

    1941-01-01

    Compressive tests were made of two series of stiffened circular cylindrical shells under axial load. All the shells were 16 inches in diameter by 24 inches in length and were made of aluminum-alloy sheet curved to the proper radius and welded with one longitudinal weld. The ratios of diameter to thickness of shell wall in the two series of specimens were 258 and 572. Strains were measured with Huggenberger tensometers at a number of gage lines on the stiffeners and shell. The results of these tests indicate that a spacing of circumferential stiffeners equal to 0.67 times the radius is too great to strengthen the shell wall appreciably. The results are not inclusive enough to show the optimum in stiffeners. Plain cylinders without stiffeners developed ultimate strengths approximately half as great as the buckling strengths computed by the equation resulting from the classical theory and slightly greater than those computed by Donnell's large deflection theory.

  8. Frequency analysis of wavefront curvature sensing: optimum propagation distance and multi-z wavefront curvature sensing.

    PubMed

    Fengjie, Xi; Zongfu, Jiang; Xiaojun, Xu; Jing, Hou; Zejin, Liu

    2009-03-02

    In this paper we determine the optimum propagation distance between measurement planes and the plane of the lens in a wavefront curvature sensor with the diffraction optics approach. From the diffraction viewpoint, the measured wavefront aberration can be decomposed into Fourier harmonics at various frequencies. The curvature signal produced by a single harmonic is analyzed with the wave propagation transfer function approach, which is the frequency analysis of wavefront curvature sensing. The intensity of the curvature signal is a sine function of the product of the propagation distance and the squared frequency. To maximize the curvature signal, the optimum propagation distance is proposed as one quarter of the Talbot length at the critical frequency (average power point at which the power spectrum density is the average power spectrum density). Following the determination of the propagation distance, the intensity of the curvature signal varies sinusoidally with the squared frequencies, vanishing at some higher frequency bands just like a comb filter. To cover these insensitive bands, wavefront curvature sensing with dual propagation distances or with multi-propagation distances is proposed.

  9. Direct and alignment-insensitive measurement of cantilever curvature

    SciTech Connect

    Hermans, Rodolfo I.; Aeppli, Gabriel; Bailey, Joe M.

    2013-07-15

    We analytically derive and experimentally demonstrate a method for the simultaneous measurement of deflection for large arrays of cantilevers. The Fresnel diffraction patterns of a cantilever independently reveal tilt, curvature, cubic, and higher order bending of the cantilever. It provides a calibrated absolute measurement of the polynomial coefficients describing the cantilever shape, without careful alignment and could be applied to several cantilevers simultaneously with no added complexity. We show that the method is easily implemented, works in both liquid media and in air, for a broad range of displacements and is especially suited to the requirements for multi-marker biosensors.

  10. Inflation, Bifurcations of Nonlinear Curvature Lagrangians and Dark Energy

    NASA Astrophysics Data System (ADS)

    Mielke, Eckehard W.; Kusmartsev, Fjodor V.; Schunck, Franz E.

    2008-09-01

    A possible equivalence of scalar dark matter, the inflaton, and modified gravity is analyzed. After a conformal mapping, the dependence of the effective Lagrangian on the curvature is not only singular but also bifurcates into several almost Einsteinian spaces, distinguished only by a different effective gravitational strength and cosmological constant. A swallow tail catastrophe in the bifurcation set indicates the possibility for the coexistence of different Einsteinian domains in our Universe. This 'triple unification' may shed new light on the nature and large scale distribution not only of dark matter but also on 'dark energy', regarded as an effective cosmological constant, and inflation.

  11. A momentum calculation for charged tracks with minute curvature

    NASA Astrophysics Data System (ADS)

    Treadwell, Elliott

    1982-07-01

    ADJUST is a calculational method written in A.N.S.I. Fortran IV to correct the momenta of charged tracks with minute radius of curvature and large fractional momentum error [ K<0.0014 (GeV/ c) -1 and Δp/ p⩾0.30]. Single application of the method to straight tracks eliminates remeasurements and avoids creating additional biases against high multiplicity events ( NCH>8 tracks). Although ADJUST originated from the analysis of bubble-chamber events, the method is not restricted to bubble-chamber data.

  12. Cold Rydberg atoms in circular states

    NASA Astrophysics Data System (ADS)

    Anderson, David; Schwarzkopf, Andrew; Raithel, Georg

    2012-06-01

    Circular-state Rydberg atoms are interesting in that they exhibit a unique combination of extraordinary properties; long lifetimes (˜n^5), large magnetic moments (l=|m|=n-1) and no first order Stark shift. Circular states have found applications in cavity quantum electrodynamics and precision measurements [1,2], among other studies. In this work we present the production of circular states in an atom trapping apparatus using an adiabatic state-switching method (the crossed-field method [3]). To date, we have observed lifetimes of adiabatically prepared states of several milliseconds. Their relatively large ionization electric fields have been verified by time-of-flight signatures of ion trajectories. We intend to explore the magnetic trapping of circular state Rydberg atoms, as well as their production and interaction properties in ultra-cold and degenerate samples.[4pt] [1] P. Bertet et al., Phys. Rev. Lett., 88, 14 (2002)[0pt] [2] M. Brune et al., Phys. Rev. Lett., 72, 21 (1994)[0pt] [3] D. Delande and J.C. Gay, Europhys. Lett., 5, 303-308 (1988).

  13. The intermediate state of DMPG is stabilized by enhanced positive spontaneous curvature.

    PubMed

    Alakoskela, Juha-Matti; Parry, Mikko J; Kinnunen, Paavo K J

    2010-04-06

    1,2-Dimyristoyl-sn-glycero-3-phospho-rac-glycerol (DMPG) at low salt concentrations has a complex endotherm with at least four components and extending over the span of 20 degrees. During this ongoing melting, the solution becomes viscous and scatters light poorly. This multipeak endotherm was suggested to result from the effects of curvature on the relative free energies of gel and fluid DMPG bilayers, further relating to the formation of an intermediate sponge phase between the lamellar gel and fluid phases. Although later studies appear to exclude a connected bilayer network, the relation of the endotherm peaks to curvature remains an appealing hypothesis. This was tested by including in the system both water-soluble small molecules (dimethyl sulfoxide, ethanol, and urea) as well as amphiphiles (myristoyl-lyso-PG, cholesterol, cholesterol-3-sulfate, and dimyristoylglycerol) known to alter the spontaneous curvature of bilayers. All compounds increasing the monolayer positive spontaneous curvature (ethanol, urea, myristoyl-lyso-PG, cholesterol-3-sulfate) increased the temperature span of the intermediate state and elevated the temperature of its dissolution, while all compounds increasing the negative spontaneous curvature (dimethyl sulfoxide, cholesterol, dimyristoylglycerol) had the opposite effect, implying that the intermediate state contains a structure with positive curvature. The results support the view that the intermediate state consists of vesicles with a large number of holes. The viscosity increase could be related to vesicle expansion needed to accommodate the numerous holes.

  14. Stress compensation for arbitrary curvature control in vanadium dioxide phase transition actuators

    NASA Astrophysics Data System (ADS)

    Dong, Kaichen; Lou, Shuai; Choe, Hwan Sung; Liu, Kai; You, Zheng; Yao, Jie; Wu, Junqiao

    2016-07-01

    Due to its thermally driven structural phase transition, vanadium dioxide (VO2) has emerged as a promising material for micro/nano-actuators with superior volumetric work density, actuation amplitude, and repetition frequency. However, the high initial curvature of VO2 actuators severely obstructs the actuation performance and application. Here, we introduce a "seesaw" method of fabricating tri-layer cantilevers to compensate for the residual stress and realize nearly arbitrary curvature control of VO2 actuators. By simply adjusting the thicknesses of the individual layers, cantilevers with positive, zero, or negative curvatures can be engineered. The actuation amplitude can be decoupled from the curvature and controlled independently as well. Based on the experimentally measured residual stresses, we demonstrate sub-micron thick VO2 actuators with nearly zero final curvature and a high actuation amplitude simultaneously. This "seesaw" method can be further extended to the curvature engineering of other microelectromechanical system multi-layer structures where large stress-mismatch between layers are inevitable.

  15. Stress compensation for arbitrary curvature control in vanadium dioxide phase transition actuators

    SciTech Connect

    Dong, Kaichen E-mail: wuj@berkeley.edu; Lou, Shuai; Choe, Hwan Sung; Yao, Jie; Wu, Junqiao E-mail: wuj@berkeley.edu; Liu, Kai; You, Zheng

    2016-07-11

    Due to its thermally driven structural phase transition, vanadium dioxide (VO{sub 2}) has emerged as a promising material for micro/nano-actuators with superior volumetric work density, actuation amplitude, and repetition frequency. However, the high initial curvature of VO{sub 2} actuators severely obstructs the actuation performance and application. Here, we introduce a “seesaw” method of fabricating tri-layer cantilevers to compensate for the residual stress and realize nearly arbitrary curvature control of VO{sub 2} actuators. By simply adjusting the thicknesses of the individual layers, cantilevers with positive, zero, or negative curvatures can be engineered. The actuation amplitude can be decoupled from the curvature and controlled independently as well. Based on the experimentally measured residual stresses, we demonstrate sub-micron thick VO{sub 2} actuators with nearly zero final curvature and a high actuation amplitude simultaneously. This “seesaw” method can be further extended to the curvature engineering of other microelectromechanical system multi-layer structures where large stress-mismatch between layers are inevitable.

  16. Bending stiffness depends on curvature of ternary lipid mixture tubular membranes.

    PubMed

    Tian, Aiwei; Capraro, Benjamin R; Esposito, Cinzia; Baumgart, Tobias

    2009-09-16

    Lipid and protein sorting and trafficking in intracellular pathways maintain cellular function and contribute to organelle homeostasis. Biophysical aspects of membrane shape coupled to sorting have recently received increasing attention. Here we determine membrane tube bending stiffness through measurements of tube radii, and demonstrate that the stiffness of ternary lipid mixtures depends on membrane curvature for a large range of lipid compositions. This observation indicates amplification by curvature of cooperative lipid demixing. We show that curvature-induced demixing increases upon approaching the critical region of a ternary lipid mixture, with qualitative differences along two roughly orthogonal compositional trajectories. Adapting a thermodynamic theory earlier developed by M. Kozlov, we derive an expression that shows the renormalized bending stiffness of an amphiphile mixture membrane tube in contact with a flat reservoir to be a quadratic function of curvature. In this analytical model, the degree of sorting is determined by the ratio of two thermodynamic derivatives. These derivatives are individually interpreted as a driving force and a resistance to curvature sorting. We experimentally show this ratio to vary with composition, and compare the model to sorting by spontaneous curvature. Our results are likely to be relevant to the molecular sorting of membrane components in vivo.

  17. Femoral curvature variability in modern humans using three-dimensional quadric surface fitting.

    PubMed

    Chapman, Tara; Sholukha, Victor; Semal, Patrick; Louryan, Stéphane; Rooze, Marcel; Van Sint Jan, Serge

    2015-12-01

    This study analysed femoral curvature in a population from Belgium in conjunction with other morphological characteristics by the use of three-dimensional (3D) quadric surfaces (QS) modelled from the bone surface. 3D models were created from computed tomography data of 75 femoral modern human bones. Anatomical landmarks (ALs) were palpated in specific bony areas of the femur (shaft, condyles, neck and head). QS were then created from the surface vertices which enclose these ALs. The diaphyseal shaft was divided into five QS shapes to analyse curvature in different parts of the shaft. Femoral bending differs in different parts of the diaphyseal shaft. The greatest degree of curvature was found in the distal shaft (mean 4.5° range 0.2°-10°) followed by the proximal (mean 4.4° range 1.5°-10.2°), proximal intermediate (mean 3.7° range 0.9°-7.9°) and distal intermediate (mean 1.8° range 0.2°-5.6°) shaft sections. The proximal and distal angles were significantly more bowed than the intermediate proximal and the intermediate distal angle. There was no significant difference between the proximal and distal angle. No significant correlations were found between morphological characteristics and femoral curvature. An extremely large variability of femoral curvature with several bones displaying very high or low degrees of femoral curvature was also found. 3D QS fitting enables the creation of accurate models which can discriminate between different patterns in similar curvatures and demonstrates there is a clear difference between curvature in different parts of the shaft.

  18. Strong curvature singularities and causal simplicity

    SciTech Connect

    Krolak, A. )

    1992-02-01

    Techniques of differential topology in Lorentzian manifolds developed by Geroch, Hawking, and Penrose are used to rule out a class of locally naked strong curvature singularities in strongly causal space-times. This result yields some support to the validity of Penrose's strong cosmic censorship hypothesis.

  19. Membrane Curvature Sensing by Amphipathic Helices

    PubMed Central

    Jensen, Martin Borch; Bhatia, Vikram Kjøller; Jao, Christine C.; Rasmussen, Jakob Ewald; Pedersen, Søren L.; Jensen, Knud J.; Langen, Ralf; Stamou, Dimitrios

    2011-01-01

    Preferential binding of proteins on curved membranes (membrane curvature sensing) is increasingly emerging as a general mechanism whereby cells may effect protein localization and trafficking. Here we use a novel single liposome fluorescence microscopy assay to examine a common sensing motif, the amphipathic helix (AH), and provide quantitative measures describing and distinguishing membrane binding and sensing behavior. By studying two AH-containing proteins, α-synuclein and annexin B12, as well as a range of AH peptide mutants, we reveal that both the hydrophobic and hydrophilic faces of the helix greatly influence binding and sensing. Although increased hydrophobic and electrostatic interactions with the membrane both lead to greater densities of bound protein, the former yields membrane curvature-sensitive binding, whereas the latter is not curvature-dependent. However, the relative contributions of both components determine the sensing of AHs. In contrast, charge density in the lipid membrane seems important primarily in attracting AHs to the membrane but does not significantly influence sensing. These observations were made possible by the ability of our assay to distinguish within our samples liposomes with and without bound protein as well as the density of bound protein. Our findings suggest that the description of membrane curvature-sensing requires consideration of several factors such as short and long range electrostatic interactions, hydrogen bonding, and the volume and structure of inserted hydrophobic residues. PMID:21953452

  20. Riemann curvature of a boosted spacetime geometry

    NASA Astrophysics Data System (ADS)

    Battista, Emmanuele; Esposito, Giampiero; Scudellaro, Paolo; Tramontano, Francesco

    2016-10-01

    The ultrarelativistic boosting procedure had been applied in the literature to map the metric of Schwarzschild-de Sitter spacetime into a metric describing de Sitter spacetime plus a shock-wave singularity located on a null hypersurface. This paper evaluates the Riemann curvature tensor of the boosted Schwarzschild-de Sitter metric by means of numerical calculations, which make it possible to reach the ultrarelativistic regime gradually by letting the boost velocity approach the speed of light. Thus, for the first time in the literature, the singular limit of curvature, through Dirac’s δ distribution and its derivatives, is numerically evaluated for this class of spacetimes. Moreover, the analysis of the Kretschmann invariant and the geodesic equation shows that the spacetime possesses a “scalar curvature singularity” within a 3-sphere and it is possible to define what we here call “boosted horizon”, a sort of elastic wall where all particles are surprisingly pushed away, as numerical analysis demonstrates. This seems to suggest that such “boosted geometries” are ruled by a sort of “antigravity effect” since all geodesics seem to refuse to enter the “boosted horizon” and are “reflected” by it, even though their initial conditions are aimed at driving the particles toward the “boosted horizon” itself. Eventually, the equivalence with the coordinate shift method is invoked in order to demonstrate that all δ2 terms appearing in the Riemann curvature tensor give vanishing contribution in distributional sense.

  1. Carbon-fiber-reinforced polymer variable-curvature mirror used for optical zoom imaging: prototype design and experimental demonstration

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Fan, Xuewu; Pang, Zhihai; Ren, Guorui; Wang, Wei; Xie, Yongjie; Ma, Zhen; Du, Yunfei; Su, Yu; Wei, Jingxuan

    2015-02-01

    In recent years, optical zoom imaging without moving elements has received much attention. The key to realizing this technique lies in the design of the variable-curvature mirror (VCM). To obtain enough optical magnification, the VCM should be able to change its radius of curvature over a wide range. In other words, the VCM must be able to provide a large sagittal variation, which requires the mirror material to be robust during curvature variation, require little force to deform, and have high ultimate strength. Carbon-fiber-reinforced polymer (CFRP) satisfies all these requirements and is suitable for fabricating such a VCM. Therefore, in this research, a CFRP prototype VCM has been designed, fabricated, and tested. With a diameter of 100 mm, a thickness of 2 mm, and an initial radius of curvature of 1740 mm, this VCM can provide a maximum 23-μm sagittal variation and a minimum and maximum radius of curvature of 1705 and 1760 mm.

  2. Geometrical interpretation and curvature distribution in nanocarbons

    NASA Astrophysics Data System (ADS)

    Gupta, Sanju; Saxena, Avadh

    2011-04-01

    Despite extensive research on microscopic structure and physical property characterization of advanced nanocarbon systems, they have not been viewed as topologically distinct nanoscale materials with various geometries (curvature). This work is motivated by our recent work [S. Gupta and A. Saxena, J. Raman Spectrosc. 40, 1127 (2009)] where we introduced the notion of "global" topology for novel nanocarbons and provided systematic trends by monitoring the phonon spectra via resonance Raman spectroscopy, which led to the paradigm of curvature/topology → property → functionality relationship in these materials. Here we determined the distribution of the mean (H) and Gaussian (K) curvatures as pertinent observables for geometric characterization taking into account the observed geometrical parameters, that is, radius, polar, azimuthal, or conical angle associated with tubular (single, double-, and multi-walled nanotubes; K = 0), spherical (hypo- and hyperfullerenes; K > 0) and complex (helical nanoribbons and nanotori/nanorings; K < 0) nanocarbon geometries to quantify the interplay of intrinsic surface curvature and topology, wherein global topology of the overall sp2-bonded carbon (sp2C) constrains local topology of the constituent carbon rings. We also studied various other structures such as catenoid and saddle-shaped surfaces as interesting nanocarbons. We compared these results with highly oriented pyrolytic graphite and monolayer graphene as layered and planar systems, respectively. Moreover, nanocarbons discussed herein are their derivatives. Curvature leads to nonlinearity that manifests itself in some form of symmetry breaking which can be extrapolated to topological variation due to nanoscale defects. Thus it may either close/open the bandgap leading to the introduction of new Raman spectroscopy signatures and optical absorption peaks, changes in mechanical properties, electrical behavior, and electronic density of states and possibly inducing magnetism

  3. Seismological Constraints on Fault Plane Curvature

    NASA Astrophysics Data System (ADS)

    Reynolds, K.

    2015-12-01

    The down-dip geometry of seismically active normal faults is not well known. Many examples of normal faults with down-dip curvature exist, such as listric faults revealed in cross-section or in seismic reflection data, or the exposed domes of core complexes. However, it is not understood: (1) whether curved faults fail in earthquakes, and (2) if those faults have generated earthquakes, is the curvature a primary feature of the rupture or due to later modification of the plane? Even if an event is surface-rupturing, because of the limited depth-extent over which observations can be made, it is difficult to reliably constrain the change in dip with depth (if any) and therefore the fault curvature. Despite the uncertainty in seismogenic normal fault geometries, published slip inversions most commonly use planar fault models. We investigate the seismological constraints on normal fault geometry using a forward-modelling approach and present a seismological technique for determining down-dip geometry. We demonstrate that complexity in the shape of teleseismic body waveforms may be used to investigate the presence of down-dip fault plane curvature. We have applied this method to a catalogue of continental and oceanic normal faulting events. Synthetic models demonstrate that the shapes of SH waveforms at along-strike stations are particularly sensitive to fault plane geometry. It is therefore important to consider the azimuthal station coverage before modelling an event. We find that none of the data require significant down-dip curvature, although the modelling results for some events remain ambiguous. In some cases we can constrain that the down-dip fault geometry is within 20° of planar.

  4. Multiscale Lagrangian Statistics of Curvature Angle in Direct Numerical Simulation of Pore-Scale Turbulence

    NASA Astrophysics Data System (ADS)

    He, X.; Kadoch, B.; Apte, S.; Farge, M.; Schneider, K.

    2016-12-01

    Direct Numerical Simulations (DNS) of flow through a periodic face centered cubic (FCC) unit cell at Reynolds numbers of 300, 500 and 1000 are conducted to investigate porescale turbulent flow physics. The simulations are performed using a fictitious domain approach [Apte et al, J. Comp. Physics 2009], which uses non-body conforming Cartesian grids. The flowfield involves regions of rapid acceleration and decelerations, separated flow and jet-impingement like flow features. Lagrangian statistics of scale dependent curvature angle and acceleration are calculated by tracking a large number of fluid particle trajectories. For isotropic turbulence, it has been shown [Bos et al. 2015, PRL] that the mean curvature angle varies linearly with time initially, reaches an inertial range and asymptotes to a value of π /2 at long times, corresponding to the decorrelation and equipartition of the cosine of the curvature angle. Similar trends are observed at early times for turbulence in porous medium; however, the mean curvature angle asymptotes to a value larger than π /2, due to the effect of confinement on the fluid particle trajectories that result in preferred directions at large times. A Monte-Carlo based stochastic model to predict the long-time behavior of curvature angles is developed. It is shown to correctly predict an angle larger than π /2 at large times consistent with the Lagrangian statistics.

  5. Multiscale Lagrangian Statistics of Curvature Angle in Pore-Scale Turbulence

    NASA Astrophysics Data System (ADS)

    He, Bryan; Kadoch, Benjamin; Apte, Sourabh; Farge, Marie; Schneider, Kai

    2016-11-01

    Porescale turbulent flow physics are investigated using Direct Numeric Simulation (DNS) of flow through a periodic face centered cubic (FCC) unit cell at Reynolds numbers of 300, 500 and 1000. The simulations are performed using a fictitious domain approach, which uses non-body conforming Cartesian grids. Lagrangian statistics of scale dependent curvature angle and acceleration are calculated by tracking a large number of fluid particle trajectories. For isotropic turbulence, it has been shown that the mean curvature angle varies linearly with time initially, reaches an inertial range and asymptotes to a value of π / 2 at long times, corresponding to the decorrelation and equipartition of the cosine of the curvature angle. Similar trends are observed at early times for turbulence in porous medium; however, the mean curvature angle asymptotes to a value larger than π / 2 , due to the effect of confinement on the fluid particle trajectories that result in preferred directions at large times. A Monte-Carlo based stochastic model to predict the long-time behavior of curvature angles is developed and shown to correctly predicts an angle larger than π / 2 at large times. NSF Project Numbers 1336983, 1133363.

  6. Mixed lipid bilayers with locally varying spontaneous curvature and bending.

    PubMed

    Gueguen, Guillaume; Destainville, Nicolas; Manghi, Manoel

    2014-08-01

    A model of lipid bilayers made of a mixture of two lipids with different average compositions on both leaflets, is developed. A Landau Hamiltonian describing the lipid-lipid interactions on each leaflet, with two lipidic fields ψ 1 and ψ 2, is coupled to a Helfrich one, accounting for the membrane elasticity, via both a local spontaneous curvature, which varies as C 0 + C 1(ψ 1 - ψ 2/2), and a bending modulus equal to κ 0 + κ 1(ψ 1 + ψ 2)/2. This model allows us to define curved patches as membrane domains where the asymmetry in composition, ψ 1 - ψ 2, is large, and thick and stiff patches where ψ 1 + ψ 2 is large. These thick patches are good candidates for being lipidic rafts, as observed in cell membranes, which are composed primarily of saturated lipids forming a liquid-ordered domain and are known to be thick and flat nano-domains. The lipid-lipid structure factors and correlation functions are computed for globally spherical membranes and planar ones and for a whole set of parameters including the surface tension and the coupling in the two leaflet compositions. Phase diagrams are established, within a Gaussian approximation, showing the occurrence of two types of Structure Disordered phases, with correlations between either curved or thick patches, and an Ordered phase, corresponding to the divergence of the structure factor at a finite wave vector. The varying bending modulus plays a central role for curved membranes, where the driving force κ 1 C 0 (2) is balanced by the line tension, to form raft domains of size ranging from 10 to 100 nm. For planar membranes, raft domains emerge via the cross-correlation with curved domains. A global picture emerges from curvature-induced mechanisms, described in the literature for planar membranes, to coupled curvature- and bending-induced mechanisms in curved membranes forming a closed vesicle.

  7. A three-dimensional analysis of the geometry and curvature of the proximal tibial articular surface of hominoids

    NASA Astrophysics Data System (ADS)

    Landis, Emily K.; Karnick, Pushpak

    2006-02-01

    This study uses new three-dimensional imaging techniques to compare the articular curvature of the proximal tibial articular surface of hominoids. It has been hypothesized that the curvature of the anteroposterior contour of the lateral condyle in particular can be used to differentiate humans and apes and reflect locomotor function. This study draws from a large comparative sample of extant hominoids to obtain quantitative curvature data. Three-dimensional models of the proximal tibiae of 26 human, 15 chimpanzee, 15 gorilla, 17 orangutan, 16 gibbon and four Australopithecus fossil casts (AL 129-1b, AL 288-1aq, AL 333x-26, KNM-KP 29285A) were acquired with a Cyberware Model 15 laser digitizer. Curvature analysis was accomplished using a software program developed at Arizona State University's Partnership for Research In Stereo Modeling (PRISM) lab, which enables the user to extract curvature profiles and compute the difference between analogous curves from different specimens. Results indicate that the curvature of chimpanzee, gorilla and orangutan tibiae is significantly different from the curvature of human tibiae, thus supporting the hypothesized dichotomy between humans and great apes. The non-significant difference between gibbons and all other taxa indicates that gibbons have an intermediate pattern of articular curvature. All four Australopithecus tibia were aligned with the great apes.

  8. How to calculate normal curvatures of sampled geological surfaces

    NASA Astrophysics Data System (ADS)

    Bergbauer, Stephan; Pollard, David D.

    2003-02-01

    Curvature has been used both to describe geological surfaces and to predict the distribution of deformation in folded or domed strata. Several methods have been proposed in the geoscience literature to approximate the curvature of surfaces; however we advocate a technique for the exact calculation of normal curvature for single-valued gridded surfaces. This technique, based on the First and Second Fundamental Forms of differential geometry, allows for the analytical calculation of the magnitudes and directions of principal curvatures, as well as Gaussian and mean curvature. This approach is an improvement over previous methods to calculate surface curvatures because it avoids common mathematical approximations, which introduce significant errors when calculated over sloped horizons. Moreover, the technique is easily implemented numerically as it calculates curvatures directly from gridded surface data (e.g. seismic or GPS data) without prior surface triangulation. In geological curvature analyses, problems arise because of the sampled nature of geological horizons, which introduces a dependence of calculated curvatures on the sample grid. This dependence makes curvature analysis without prior data manipulation problematic. To ensure a meaningful curvature analysis, surface data should be filtered to extract only those surface wavelengths that scale with the feature under investigation. A curvature analysis of the top-Pennsylvanian horizon at Goose Egg dome, Wyoming shows that sampled surfaces can be smoothed using a moving average low-pass filter to extract curvature information associated with the true morphology of the structure.

  9. Circular dichroism in biological photonic crystals and cubic chiral nets.

    PubMed

    Saba, M; Thiel, M; Turner, M D; Hyde, S T; Gu, M; Grosse-Brauckmann, K; Neshev, D N; Mecke, K; Schröder-Turk, G E

    2011-03-11

    Nature provides impressive examples of chiral photonic crystals, with the notable example of the cubic so-called srs network (the label for the chiral degree-three network modeled on SrSi2) or gyroid structure realized in wing scales of several butterfly species. By a circular polarization analysis of the band structure of such networks, we demonstrate strong circular dichroism effects: The butterfly srs microstructure, of cubic I4(1)32 symmetry, shows significant circular dichroism for blue to ultraviolet light, that warrants a search for biological receptors sensitive to circular polarization. A derived synthetic structure based on four like-handed silicon srs nets exhibits a large circular polarization stop band of a width exceeding 30%. These findings offer design principles for chiral photonic devices.

  10. Inequalities for scalar curvature of pseudo-Riemannian submanifolds

    NASA Astrophysics Data System (ADS)

    Tripathi, Mukut Mani; Gülbahar, Mehmet; Kılıç, Erol; Keleş, Sadık

    2017-02-01

    Some basic inequalities, involving the scalar curvature and the mean curvature, for a pseudo-Riemannian submanifold of a pseudo-Riemannian manifold are obtained. We also find inequalities for spacelike submanifolds. Equality cases are also discussed.

  11. CIRCULAR CAVITY SLOT ANTENNA

    DOEpatents

    Kerley, P.L.

    1959-01-01

    A small-size antenna having a doughnut-shaped field pattern and which can act both as an antenna and a resonant circuit is described. The antenna is of the slotted type and comprises a resonant cavity with a center hole. A circular slot is provided in one wall of the cavity concentric with the hole and a radio frequency source is connected across the slot. The pattern and loading of the antenna are adjusted by varying the position and shape of a center element slidably disposed within the hole and projecting from the slotted side of the resonant cavity. The disclosed structure may also be used to propagate the oscillator signal down a transniission line by replacing the center element with one leg of the transmission line in a spaced relation from the walls of the cavity.

  12. Laser triangulation measurements of scoliotic spine curvatures.

    PubMed

    Čelan, Dušan; Jesenšek Papež, Breda; Poredoš, Primož; Možina, Janez

    2015-01-01

    The main purpose of this research was to develop a new method for differentiating between scoliotic and healthy subjects by analysing the curvatures of their spines in the cranio-caudal view. The study included 247 subjects with physiological curvatures of the spine and 28 subjects with clinically confirmed scoliosis. The curvature of the spine was determined by a computer analysis of the surface of the back, measured with a non-invasive, 3D, laser-triangulation system. The determined spinal curve was represented in the transversal plane, which is perpendicular to the line segment that was defined by the initial point and the end point of the spinal curve. This was achieved using a rotation matrix. The distances between the extreme points in the antero-posterior (AP) and left-right (LR) views were calculated in relation to the length of the spine as well as the quotient of these two values LR/AP. All the measured parameters were compared between the scoliotic and control groups using the Student's t-Test in case of normal data and Kruskal-Wallis test in case of non-normal data. Besides, a comprehensive diagram representing the distances between the extreme points in the AP and LR views was introduced, which clearly demonstrated the direction and the size of the thoracic and lumbar spinal curvatures for each individual subject. While the distances between the extreme points of the spine in the AP view were found to differ only slightly between the groups (p = 0.1), the distances between the LR extreme points were found to be significantly greater in the scoliosis group, compared to the control group (p < 0.001). The quotient LR/AP was statistically significantly different in both groups (p < 0.001). The main innovation of the presented method is the ability to differentiate a scoliotic subject from a healthy subject by assessing the curvature of the spine in the cranio-caudal view. Therefore, the proposed method could be useful for human posture

  13. Circularly Polarized MHOHG with Bichromatic Circularly Polarized Laser Pulses

    NASA Astrophysics Data System (ADS)

    Bandrauk, Andre D.; Mauger, Francois; Uzer, Turgay

    2016-05-01

    Circularly polarized MHOHG-Molecular High Order Harmonic Generation is shown to occur efficiently with intense ultrashort bichromatic circularly polarized pulses due to frequent electron-parent -ion recollision with co-or counter-rotating incident circular pulses as predicted in 1995. We show in this context that molecules offer a very robust and efficient frameworkfor the production of circularly polarized harmonics for the generation of single circularly polarized ``attosecond'' pulses. The efficiency of such new MHOHG is shown to depend on the compatibility of the symmetry of the molecular medium with the net electric field generated by the combination of the laser pulses.Using a time-dependent symmetry analysis with concrete examples such as H 2 + vs H 3 + we show how all the features(harmonic order and ∧ polarization) of MHOHG can be explained and predicted.

  14. Circularization pathway of a bacterial group II intron

    PubMed Central

    Monat, Caroline; Cousineau, Benoit

    2016-01-01

    Group II introns are large RNA enzymes that can excise as lariats, circles or in a linear form through branching, circularization or hydrolysis, respectively. Branching is by far the main and most studied splicing pathway while circularization was mostly overlooked. We previously showed that removal of the branch point A residue from Ll.LtrB, the group II intron from Lactococcus lactis, exclusively leads to circularization. However, the majority of the released intron circles harbored an additional C residue of unknown origin at the splice junction. Here, we exploited the Ll.LtrB-ΔA mutant to study the circularization pathway of bacterial group II introns in vivo. We demonstrated that the non-encoded C residue, present at the intron circle splice junction, corresponds to the first nt of exon 2. Intron circularization intermediates, harboring the first 2 or 3 nts of exon 2, were found to accumulate showing that branch point removal leads to 3′ splice site misrecognition. Traces of properly ligated exons were also detected functionally confirming that a small proportion of Ll.LtrB-ΔA circularizes accurately. Overall, our data provide the first detailed molecular analysis of the group II intron circularization pathway and suggests that circularization is a conserved splicing pathway in bacteria. PMID:26673697

  15. Using surface curvature to map geomorphic process regimes in a bedrock landscape, Henry Mountains, Utah

    NASA Astrophysics Data System (ADS)

    Corbett, S.; Sklar, L. S.; Davis, J.

    2009-12-01

    network corresponds to negative mean curvature, where concave and convex profile segments plot as basins and synformal saddles (positive and negative Gaussian curvature) respectively. We are able to use surface curvature to map what can be interpreted as bedrock channel width, as well as knickpoints, sand-bedrock bed transitions, and even individual large potholes. The tips of the channel network also have a distinct surface-curvature signature, and are associated with prominent polygonal bedrock fracturing at the sub-meter scale. In the hillslope portion of the landscape (positive mean curvature), the distribution of landscape elements has several modes, including a characteristic dome curvature that may be associated with sheet jointing and weathering-influenced exfoliation erosion, and an antiformal saddle curvature where solution pits occur, particularly on higher ridges most distant from the main-stem slot canyon channels. One key goal of this work is to quantify the effect of variable erosion rate on the distribution of process regime as expressed by these characteristic modes of bedrock surface curvature.

  16. Trench curvature and deformation of the subducting lithosphere

    NASA Astrophysics Data System (ADS)

    Schettino, Antonio; Tassi, Luca

    2012-01-01

    The subduction of oceanic lithosphere is generally accompanied by downdip and lateral deformation. The downdip component of strain is associated with external forces that are applied to the slab during its sinking, namely the gravitational force and the mantle resistance to penetration. Here, we present theoretical arguments showing that a tectonic plate is also subject to a predictable amount of lateral deformation as a consequence of its bending along an arcuate trench zone, independently from the long-term physical processes that have determined the actual curvature of the subduction zone. In particular, we show that the state of lateral strain and the lateral strain rate of a subducting slab depend from geometric and kinematic parameters, such as trench curvature, dip function and subduction velocity. We also demonstrate that the relationship between the state of lateral strain in a subducting slab and the geometry of bending at the corresponding active margin implies a small component of lateral shortening at shallow depths, and may include large extensional lateral deformation at intermediate depths, whereas a state of lateral mechanical equilibrium can only represent a localized exception. Our formulation overcomes the flaws of the classic 'ping-pong ball' model for the bending of the lithosphere at subduction zones, which lead to severe discrepancies with the observed geometry and style of deformation of the modern subducting slabs. A study of the geometry and seismicity of eight modern subduction zones is performed, to assess the validity of the theoretical relationship between trench curvature, slab dip function, and lateral strain rate. The strain pattern within the eight present-day slabs, which is reconstructed through an analysis of Harvard CMT solutions, shows that tectonic plates cannot be considered as flexible-inextensible spherical caps, whereas the lateral intraslab deformation which is accommodated through seismic slip can be explained in terms

  17. Curvature effects on the velocity profile in turbulent pipe flow.

    PubMed

    Grossmann, Siegfried; Lohse, Detlef

    2017-02-01

    Prandtl and von Kármán have developed the famous log-law for the mean velocity profile for turbulent flow over a plate. The log-law has also been applied to turbulent pipe flow, though the wall surface is curved (in span-wise direction) and has finite diameter. Here we discuss the theoretical framework, based on the Navier-Stokes equations, with which one can describe curvature effects and also the well-known finite-size effects in the turbulent mean-velocity profile. When comparing with experimental data we confirm that the turbulent eddy viscosity must contain both curvature and finite-size contributions and that the usual ansatz for the turbulent eddy viscosity as being linear in the wall distance is insufficient, both for small and large wall distances. We analyze the experimental velocity profile in terms of an r-dependent generalized turbulent viscosity [Formula: see text] (with [Formula: see text] being the wall distance, a pipe radius, u * shear stress velocity, and g([Formula: see text]/a) the nondimensionalized viscosity), which reflects the radially strongly varying radial eddy transport of the axial velocity. After the near wall linear viscous sublayer, which soon sees the pipe wall's curvature, a strong transport (eddy) activity steepens the profile considerably, leading to a maximum in g([Formula: see text]/a) at about half radius, then decreasing again towards the pipe center. This reflects the smaller eddy transport effect near the pipe's center, where even in strongly turbulent flow (the so-called "ultimate state") the profile remains parabolic. The turbulent viscous transport is strongest were the deviations of the profile from parabolic are strongest, and this happens in the range around half radius.

  18. Constraining inverse-curvature gravity with supernovae.

    PubMed

    Mena, Olga; Santiago, José; Weller, Jochen

    2006-02-03

    We show that models of generalized modified gravity, with inverse powers of the curvature, can explain the current accelerated expansion of the Universe without resorting to dark energy and without conflicting with solar system experiments. We have solved the Friedmann equations for the full dynamical range of the evolution of the Universe and performed a detailed analysis of supernovae data in the context of such models that results in an excellent fit. If we further include constraints on the current expansion of the Universe and on its age, we obtain that the matter content of the Universe is 0.07curvature gravity models considered cannot explain the dynamics of the Universe just with a baryonic matter component.

  19. Effect of intrinsic curvature on semiflexible polymers

    NASA Astrophysics Data System (ADS)

    Ghosh, Surya K.; Singh, Kulveer; Sain, Anirban

    2009-11-01

    Recently many important biopolymers have been found to possess intrinsic curvature. Tubulin protofilaments in animal cells, FtsZ filaments in bacteria and double stranded DNA are examples. We examine how intrinsic curvature influences the conformational statistics of such polymers. We give exact results for the tangent-tangent spatial correlation function C(r)=⟨t̂(s).t̂(s+r)⟩ , both in two and three dimensions. Contrary to expectation, C(r) does not show any oscillatory behavior, rather decays exponentially and the effective persistence length has strong length dependence for short polymers. We also compute the distribution function P(R) of the end to end distance R and show how curved chains can be distinguished from wormlike chains using loop formation probability.

  20. Curvature suppresses the Rayleigh-Taylor instability

    DOE PAGES

    Trinh, Philippe H.; Kim, Hyoungsoo; Hammoud, Naima; ...

    2014-05-20

    We studied the dynamics of a thin liquid film on the underside of a curved cylindrical substrate. The evolution of the liquid layer is investigated as the film thickness and the radius of curvature of the substrate are varied. A dimensionless parameter (a modified Bond number) that incorporates both geometric parameters, gravity, and surface tension is identified, and allows the observations to be classified according to three different flow regimes: stable films, films with transient growth of perturbations followed by decay, and unstable films. We found that the experiments and theory confirm that, below a critical value of the Bondmore » number, curvature of the substrate suppresses the Rayleigh-Taylor instability.« less

  1. Tube curvature measuring probe and method

    DOEpatents

    Sokol, George J.

    1990-01-01

    The present invention is directed to a probe and method for measuring the radius of curvature of a bend in a section of tubing. The probe includes a member with a pair of guide means, one located at each end of the member. A strain gauge is operatively connected to the member for detecting bending stress exrted on the member as the probe is drawn through and in engagement with the inner surface of a section of tubing having a bend. The method of the present invention includes steps utilizing a probe, like the aforementioned probe, which can be made to detect bends only in a single plane when having a fixed orientation relative the section of tubing to determine the maximum radius of curvature of the bend.

  2. Measuring Intrinsic Curvature of Space with Electromagnetism

    NASA Astrophysics Data System (ADS)

    Mabin, Mason; Becker, Maria; Batelaan, Herman

    2016-10-01

    The concept of curved space is not readily observable in everyday life. The educational movie "Sphereland" attempts to illuminate the idea. The main character, a hexagon, has to go to great lengths to prove that her world is in fact curved. We present an experiment that demonstrates a new way to determine if a two-dimensional surface, the 2-sphere, is curved. The behavior of an electric field, placed on a spherical surface, is shown to be related to the intrinsic Gaussian curvature. This approach allows students to gain some understanding of Einstein's theory of general relativity, which relates the curvature of spacetime to the presence of mass and energy. Additionally, an opportunity is provided to investigate the dimensionality of Gauss's law.

  3. Controlling Hamiltonian chaos via Gaussian curvature.

    PubMed

    Oloumi, A; Teychenné, D

    1999-12-01

    We present a method allowing one to partly stabilize some chaotic Hamiltonians which have two degrees of freedom. The purpose of the method is to avoid the regions of V(q(1),q(2)) where its Gaussian curvature becomes negative. We show the stabilization of the Hénon-Heiles system, over a wide area, for the critical energy E=1/6. Total energy of the system varies only by a few percent.

  4. Generalization of Seidel astigmatism and Petzval curvature.

    PubMed

    Gaj, M

    1966-06-01

    In a paper probably to be published in Optika i Spektroskopiya the wave aberration for sagittal focus for the arbitrary surface of rotational symmetry has been carried out on the base of the astigmatic beam invariant D(s) = nu(s)d(s). The resulting expression for the wave aberration has been reformulated into three terms which, in the Seidel region, go over into astigmatism (the first) and into the Petzval curvature (the second) while the third disappears.

  5. Breeding curvature from extended gauge covariance

    NASA Astrophysics Data System (ADS)

    Aldrovandi, R.

    1991-05-01

    Independence between spacetime and “internal” space in gauge theories is related to the adjoint-covariant behaviour of the gauge potential. The usual gauge scheme is modified to allow a coupling between both spaces. Gauging spacetime translations produce field equations similar to Einstein equations. A curvature-like quantity of mixed differential-algebraic character emerges. Enlarged conservation laws are present, pointing to the presence of an covariance.

  6. Curvature of spacetime: A simple student activity

    NASA Astrophysics Data System (ADS)

    Wood, Monika; Smith, Warren; Jackson, Matthew

    2016-12-01

    The following is a description of an inexpensive and simple student experiment for measuring the differences between the three types of spacetime topology—Euclidean (flat), Riemann (spherical), and Lobachevskian (saddle) curvatures. It makes use of commonly available tools and materials, and requires only a small amount of construction. The experiment applies to astronomical topics such as gravity, spacetime, general relativity, as well as geometry and mathematics.

  7. Multiple Manifold Clustering Using Curvature Constrained Path

    PubMed Central

    Babaeian, Amir; Bayestehtashk, Alireza; Bandarabadi, Mojtaba

    2015-01-01

    The problem of multiple surface clustering is a challenging task, particularly when the surfaces intersect. Available methods such as Isomap fail to capture the true shape of the surface near by the intersection and result in incorrect clustering. The Isomap algorithm uses shortest path between points. The main draw back of the shortest path algorithm is due to the lack of curvature constrained where causes to have a path between points on different surfaces. In this paper we tackle this problem by imposing a curvature constraint to the shortest path algorithm used in Isomap. The algorithm chooses several landmark nodes at random and then checks whether there is a curvature constrained path between each landmark node and every other node in the neighborhood graph. We build a binary feature vector for each point where each entry represents the connectivity of that point to a particular landmark. Then the binary feature vectors could be used as a input of conventional clustering algorithm such as hierarchical clustering. We apply our method to simulated and some real datasets and show, it performs comparably to the best methods such as K-manifold and spectral multi-manifold clustering. PMID:26375819

  8. Superintegrable systems on spaces of constant curvature

    SciTech Connect

    Gonera, Cezary Kaszubska, Magdalena

    2014-07-15

    Construction and classification of two-dimensional (2D) superintegrable systems (i.e. systems admitting, in addition to two global integrals of motion guaranteeing the Liouville integrability, the third global and independent one) defined on 2D spaces of constant curvature and separable in the so-called geodesic polar coordinates are presented. The method proposed is applicable to any value of curvature including the case of Euclidean plane, sphere and hyperbolic plane. The main result is a generalization of Bertrand’s theorem on 2D spaces of constant curvature and covers most of the known separable and superintegrable models on such spaces (in particular, the so-called Tremblay–Turbiner–Winternitz (TTW) and Post–Winternitz (PW) models which have recently attracted some interest). -- Highlights: •Classifying 2D superintegrable, separable (polar coordinates) systems on S{sup 2}, R{sup 2}, H{sup 2}. •Construction of radial, angular potentials leading to superintegrability. •Generalization of Bertrand’s theorem covering known models, e.g. Higgs, TTW, PW, and Coulomb.

  9. Stiffness Modulation of Rayed Fins by Curvature

    NASA Astrophysics Data System (ADS)

    Nguyen, Khoi; Yu, Ning; Venkadesan, Madhusudhan; Bandi, Mahesh; Mandre, Shreyas

    2016-11-01

    Fishes with rayed fins comprise over 99% of all extant fish species. Multifunctional use of fins, from propulsion to station holding, requires substantial modulation of stiffness. We propose that fishes stiffen the fin by curving it transverse to its length. This effect is similar to stiffening a dollar bill by curling it because of curvature-induced coupling of out-of-plane bending with in-plane stretching. Unlike a piece of paper, rayed fins are a composite of rays and membranes. We model this as parallel elastic beams (rays) with springy interconnections (membranes). Our analysis shows that the key parameters stiffening the fin are the ray anisotropy to bending, the misalignment of principal bending directions of adjacent rays, and the membrane elasticity. The composite fin stiffens when the principal bending directions of adjacent rays are misaligned due to fin curvature, which necessarily causes the membrane to stretch. Unlike a homogenous thin sheet, composite rayed structures are able to mimic curvature-induced stiffening by using misaligned rays even if the fin appears geometrically flat. Preliminary radiographic evidence from the rays of fish fins supports such a mechanism. Funding by Human Frontier Science Program.

  10. Effects of wall curvature on turbulence statistics

    NASA Technical Reports Server (NTRS)

    Moser, R. D.; Moin, P.

    1985-01-01

    A three-dimensional, time-dependent, direct numerical simulation of low-Reynolds number turbulent flow in a mildly curved channel was performed, and the results examined to determine the mechanism by which curvature affects wall-bounded turbulent shear flows. A spectral numerical method with about one-million modes was employed, and no explicit subgrid scale model was used. The effects of curvature on this flow were determined by comparing the concave and convex sides of the channel. The observed effects are consistent with experimental observations for mild curvature. The most significant difference in the turbulence statistics between the concave and convex sides is in the Reynolds shear stress. This is accompanied by significant differences in the terms of the Reynolds shear stress balance equations. In addition, it was found that stationary Taylor-Goertler vortices were present and that they had a significant effect on the flow by contributing to the mean Reynolds shear stress, and by enhancing the difference between the wall shear stresses.

  11. Circular chemiresistors for microchemical sensors

    DOEpatents

    Ho, Clifford K.

    2007-03-13

    A circular chemiresistor for use in microchemical sensors. A pair of electrodes is fabricated on an electrically insulating substrate. The pattern of electrodes is arranged in a circle-filling geometry, such as a concentric, dual-track spiral design, or a circular interdigitated design. A drop of a chemically sensitive polymer (i.e., chemiresistive ink) is deposited on the insulating substrate on the electrodes, which spreads out into a thin, circular disk contacting the pair of electrodes. This circularly-shaped electrode geometry maximizes the contact area between the pair of electrodes and the polymer deposit, which provides a lower and more stable baseline resistance than with linear-trace designs. The circularly-shaped electrode pattern also serves to minimize batch-to-batch variations in the baseline resistance due to non-uniform distributions of conductive particles in the chemiresistive polymer film.

  12. Annular force based variable curvature mirror aiming to realize non-moving element optical zooming

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Xie, Xiaopeng; Wei, Jingxuan; Ren, Guorui; Pang, Zhihai; Xu, Liang

    2015-10-01

    Recently, a new kind of optical zooming technique in which no moving elements are involved has been paid much attention. The elimination of moving elements makes optical zooming suitable for applications which has exacting requirements in space, power cost and system stability. The mobile phone and the space-borne camera are two typical examples. The key to realize non-moving elements optical zooming lies in the introduction of variable curvature mirror (VCM) whose radius of curvature could be changed dynamically. When VCM is about to be used to implement optical zoom imaging, two characteristics should be ensured. First, VCM has to provide large enough saggitus variation in order to obtain a big magnification ratio. Second, after the radius of curvature has been changed, the corresponding surface figure accuracy should still be maintained superior to a threshold level to make the high quality imaging possible. In this manuscript, based on the elasticity theory, the physical model of the annular force based variable curvature mirror is established and numerically analyzed. The results demonstrate that when the annular force is applied at the half-the-aperture position, the actuation force is reduced and a smaller actuation force is required to generate the saggitus variation and thus the maintenance of surface figure accuracy becomes easier during the variation of radius of curvature. Besides that, a prototype VCM, whose diameter and thickness are 100mm and 3mm respectively, have been fabricated and the maximum saggitus variation that could be obtained approaches more than 30 wavelengths. At the same time, the degradation of surface figure accuracy is weakly correlated to the curvature radius variation. Keywords: optical zooming; variable curvature mirror; surface figure accuracy; saggitus;

  13. A mixing-length model for the prediction of convex curvature effects on turbulent boundary layers. [for turbine blade convective heat transfer prediction

    NASA Technical Reports Server (NTRS)

    Adams, E. W.; Johnston, J. P.

    1983-01-01

    A mixing-length model is developed for the prediction of turbulent boundary layers with convex streamwise curvature. For large layer thickness ratio, delta/R greater than 0.05, the model scales mixing length on the wall radius of curvature, R. For small delta/R, ordinary flat wall modeling is used for the mixing-length profile with curvature corrections, following the recommendations of Eide and Johnston (1976). Effects of streamwise change of curvature are considered; a strong lag from equilibrium is required when R increases downstream. Fifteen separate data sets were compared, including both hydrodynamic and heat transfer results. Six of these computations are presented and compared to experiment.

  14. Free-streaming radiation in cosmological models with spatial curvature

    NASA Technical Reports Server (NTRS)

    Wilson, M. L.

    1982-01-01

    The effects of spatial curvature on radiation anisotropy are examined for the standard Friedmann-Robertson-Walker model universes. The effect of curvature is found to be very important when considering fluctuations with wavelengths comparable to the horizon. It is concluded that the behavior of radiation fluctuations in models with spatial curvature is quite different from that in spatially flat models, and that models with negative curvature are most strikingly different. It is therefore necessary to take the curvature into account in careful studies of the anisotropy of the microwave background.

  15. The HOPS/Class C Vps Complex Tethers High-Curvature Membranes via a Direct Protein-Membrane Interaction.

    PubMed

    Ho, Ruoya; Stroupe, Christopher

    2016-10-01

    Membrane tethering is a physical association of two membranes before their fusion. Many membrane tethering factors have been identified, but the interactions that mediate inter-membrane associations remain largely a matter of conjecture. Previously, we reported that the homotypic fusion and protein sorting/Class C vacuolar protein sorting (HOPS/Class C Vps) complex, which has two binding sites for the yeast vacuolar Rab GTPase Ypt7p, can tether two low-curvature liposomes when both membranes bear Ypt7p. Here, we show that HOPS tethers highly curved liposomes to Ypt7p-bearing low-curvature liposomes even when the high-curvature liposomes are protein-free. Phosphorylation of the curvature-sensing amphipathic lipid-packing sensor (ALPS) motif from the Vps41p HOPS subunit abrogates tethering of high-curvature liposomes. A HOPS complex without its Vps39p subunit, which contains one of the Ypt7p binding sites in HOPS, lacks tethering activity, though it binds high-curvature liposomes and Ypt7p-bearing low-curvature liposomes. Thus, HOPS tethers highly curved membranes via a direct protein-membrane interaction. Such high-curvature membranes are found at the sites of vacuole tethering and fusion. There, vacuole membranes bend sharply, generating large areas of vacuole-vacuole contact. We propose that HOPS localizes via the Vps41p ALPS motif to these high-curvature regions. There, HOPS binds via Vps39p to Ypt7p in an apposed vacuole membrane. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. On the Riemann Curvature Operators in Randers Spaces

    NASA Astrophysics Data System (ADS)

    Rafie-Rad, M.

    2013-05-01

    The Riemann curvature in Riemann-Finsler geometry can be regarded as a collection of linear operators on the tangent spaces. The algebraic properties of these operators may be linked to the geometry and the topology of the underlying space. The principal curvatures of a Finsler space (M, F) at a point x are the eigenvalues of the Riemann curvature operator at x. They are real functions κ on the slit tangent manifold TM0. A principal curvature κ(x, y) is said to be isotropic (respectively, quadratic) if κ(x, y)/F(x, y) is a function of x only (respectively, κ(x, y) is quadratic with respect to y). On the other hand, the Randers metrics are the most popular and prominent metrics in pure and applied disciplines. Here, it is proved that if a Randers metric admits an isotropic principal curvature, then F is of isotropic S-curvature. The same result is also established for F to admit a quadratic principal curvature. These results extend Shen's verbal results about Randers metrics of scalar flag curvature K = K(x) as well as those Randers metrics with quadratic Riemann curvature operator. The Riemann curvature Rik may be broken into two operators Rik and Jik. The isotropic and quadratic principal curvature are characterized in terms of the eigenvalues of R and J.

  17. A Novel Quantitative Measure of Breast Curvature Based on Catenary

    PubMed Central

    Lee, Juhun; Chen, Si; Reece, Gregory P.; Crosby, Melissa A.; Beahm, Elisabeth K.

    2012-01-01

    Quantitative, objective measurements of breast curvature computed from clinical photographs could be used to investigate factors that impact reconstruction and facilitate surgical planning. This paper introduces a novel quantitative measure of breast curvature based on catenary. A catenary curve is used to approximate the overall curvature of the breast contour, and the curvature measure is extracted from the catenary curve. The catenary curve was verified by comparing its length, the area enclosed by the curve, and the curvature measure from the catenary curve to those from manual tracings of the breast contour. The evaluation of the proposed analysis employed untreated and postoperative clinical photographs of women who were undergoing tissue expander/implant (TE/Implant) reconstruction. Logistic regression models were developed to distinguish between the curvature of breasts undergoing TE/Implant reconstruction and that of untreated breasts based on the curvature measure and patient variables (age and body mass index). The relationships between the curvature measures of untreated breasts and patient variables were also investigated. The catenary curve approximates breast curvature reliably. The curvature measure contains useful information for quantifying the curvature differences between breasts undergoing TE/Implant reconstruction and untreated breasts, and identifying the effect of patient variables on the breast shape. PMID:22271826

  18. A novel quantitative measure of breast curvature based on catenary.

    PubMed

    Lee, Juhun; Chen, Si; Reece, Gregory P; Crosby, Melissa A; Beahm, Elisabeth K; Markey, Mia K

    2012-04-01

    Quantitative, objective measurements of breast curvature computed from clinical photographs could be used to investigate factors that impact reconstruction and facilitate surgical planning. This paper introduces a novel quantitative measure of breast curvature based on catenary. A catenary curve is used to approximate the overall curvature of the breast contour, and the curvature measure is extracted from the catenary curve. The catenary curve was verified by comparing its length, the area enclosed by the curve, and the curvature measure from the catenary curve to those from manual tracings of the breast contour. The evaluation of the proposed analysis employed untreated and postoperative clinical photographs of women who were undergoing tissue expander/implant (TE/Implant) reconstruction. Logistic regression models were developed to distinguish between the curvature of breasts undergoing TE/Implant reconstruction and that of untreated breasts based on the curvature measure and patient variables (age and body mass index). The relationships between the curvature measures of untreated breasts and patient variables were also investigated. The catenary curve approximates breast curvature reliably. The curvature measure contains useful information for quantifying the curvature differences between breasts undergoing TE/Implant reconstruction and untreated breasts, and identifying the effect of patient variables on the breast shape.

  19. Nuclear spin circular dichroism

    SciTech Connect

    Vaara, Juha; Rizzo, Antonio; Kauczor, Joanna; Norman, Patrick; Coriani, Sonia

    2014-04-07

    Recent years have witnessed a growing interest in magneto-optic spectroscopy techniques that use nuclear magnetization as the source of the magnetic field. Here we present a formulation of magnetic circular dichroism (CD) due to magnetically polarized nuclei, nuclear spin-induced CD (NSCD), in molecules. The NSCD ellipticity and nuclear spin-induced optical rotation (NSOR) angle correspond to the real and imaginary parts, respectively, of (complex) quadratic response functions involving the dynamic second-order interaction of the electron system with the linearly polarized light beam, as well as the static magnetic hyperfine interaction. Using the complex polarization propagator framework, NSCD and NSOR signals are obtained at frequencies in the vicinity of optical excitations. Hartree-Fock and density-functional theory calculations on relatively small model systems, ethene, benzene, and 1,4-benzoquinone, demonstrate the feasibility of the method for obtaining relatively strong nuclear spin-induced ellipticity and optical rotation signals. Comparison of the proton and carbon-13 signals of ethanol reveals that these resonant phenomena facilitate chemical resolution between non-equivalent nuclei in magneto-optic spectra.

  20. Residual stress determination from a laser-based curvature measurement

    SciTech Connect

    W. D. Swank; R. A. Gavalya; J. K. Wright; R. N. Wright

    2000-05-08

    Thermally sprayed coating characteristics and mechanical properties are in part a result of the residual stress developed during the fabrication process. The total stress state in a coating/substrate is comprised of the quench stress and the coefficient of thermal expansion (CTE) mismatch stress. The quench stress is developed when molten particles impact the substrate and rapidly cool and solidify. The CTE mismatch stress results from a large difference in the thermal expansion coefficients of the coating and substrate material. It comes into effect when the substrate/coating combination cools from the equilibrated deposit temperature to room temperature. This paper describes a laser-based technique for measuring the curvature of a coated substrate and the analysis required to determine residual stress from curvature measurements. Quench stresses were determined by heating the specimen back to the deposit temperature thus removing the CTE mismatch stress. By subtracting the quench stress from the total residual stress at room temperature, the CTE mismatch stress was estimated. Residual stress measurements for thick (>1mm) spinel coatings with a Ni-Al bond coat on 304 stainless steel substrates were made. It was determined that a significant portion of the residual stress results from the quenching stress of the bond coat and that the spinel coating produces a larger CTE mismatch stress than quench stress.

  1. The effect of detonation curvature on cylindrical wall motion

    SciTech Connect

    Aldis, D.F.; Quirk, W.; Breithaupt, R.D.

    1991-06-04

    In the large scale analysis of explosive response, discrepancies have been found between the results predicted by a computer models using various sets of equation of state parameters derived from different experiments. In this report, we will present recent progress toward determining possible reasons for the differences. The system that we have modeled in this study is the cylinder test. Numerous researchers have used this test to study the work potential of detonating explosives for the transverse expansion of metals. One of the original purposes for the development of the test was for the determination of equations of state for detonation products of explosives. The method that is used to determine the parameters for these empirical equations of state, is to iteratively simulate the detonating explosive expansion using a two dimensional hydrodynamic code, adjust the parameters, and repeat until a best fit'' to the experimental results is obtained. We will, in this present report, explore a small part of this problem. We will concentrate on the effect of the material that is used in the all of the cylinder, the effect of detonation front curvature, and how the curvature might influence the cylindrical wall expansion. 8 refs., 6 figs.

  2. Residual Stress Determination from a Laser-Based Curvature Measurement

    SciTech Connect

    Swank, William David; Gavalya, Rick Allen; Wright, Julie Knibloe; Wright, Richard Neil

    2000-05-01

    Thermally sprayed coating characteristics and mechanical properties are in part a result of the residual stress developed during the fabrication process. The total stress state in a coating/substrate is comprised of the quench stress and the coefficient of thermal expansion (CTE) mismatch stress. The quench stress is developed when molten particles impact the substrate and rapidly cool and solidify. The CTE mismatch stress results from a large difference in the thermal expansion coefficients of the coating and substrate material. It comes into effect when the substrate/coating combination cools from the equilibrated deposit temperature to room temperature. This paper describes a laser-based technique for measuring the curvature of a coated substrate and the analysis required to determine residual stress from curvature measurements. Quench stresses were determined by heating the specimen back to the deposit temperature thus removing the CTE mismatch stress. By subtracting the quench stress from the total residual stress at room temperature, the CTE mismatch stress was estimated. Residual stress measurements for thick (>1mm) spinel coatings with a Ni-Al bond coat on 304 stainless steel substrates were made. It was determined that a significant portion of the residual stress results from the quenching stress of the bond coat and that the spinel coating produces a larger CTE mismatch stress than quench stress.

  3. Dynamic cutaneous information is sufficient for precise curvature discrimination

    PubMed Central

    Cheeseman, Jacob R.; Norman, J. Farley; Kappers, Astrid M. L.

    2016-01-01

    Our tactual perceptual experiences occur when we interact, actively and passively, with environmental objects and surfaces. Previous research has demonstrated that active manual exploration often enhances the tactual perception of object shape. Nevertheless, the factors that contribute to this enhancement are not well understood. The present study evaluated the ability of 28 younger (mean age was 23.1 years) and older adults (mean age was 71.4 years) to discriminate curved surfaces by actively feeling objects with a single index finger and by passively feeling objects that moved relative to a restrained finger. While dynamic cutaneous stimulation was therefore present in both conditions, active exploratory movements only occurred in one. The results indicated that there was a significant and large effect of age, such that the older participants’ thresholds were 43.8 percent higher than those of the younger participants. Despite the overall adverse effect of age, the pattern of results across the active and passive touch conditions was identical. For both age groups, the curvature discrimination thresholds obtained for passive touch were significantly lower than those that occurred during active touch. Curvature discrimination performance was therefore best in the current study when dynamic cutaneous stimulation occurred in the absence of active movement. PMID:27137417

  4. Fiber Fabry-Perot interferometer for curvature sensing

    NASA Astrophysics Data System (ADS)

    Monteiro, Catarina S.; Ferreira, Marta S.; Silva, Susana O.; Kobelke, Jens; Schuster, Kay; Bierlich, Jörg; Frazão, Orlando

    2016-12-01

    A curvature sensor based on an Fabry-Perot (FP) interferometer was proposed. A capillary silica tube was fusion spliced between two single mode fibers, producing an FP cavity. Two FP sensors with different cavity lengths were developed and subjected to curvature and temperature. The FP sensor with longer cavity showed three distinct operating regions for the curvature measurement. Namely, a linear response was shown for an intermediate curvature radius range, presenting a maximum sensitivity of 68.52 pm/m-1. When subjected to temperature, the sensing head produced a similar response for different curvature radii, with a sensitivity varying from 0.84 pm/°C to 0.89 pm/°C, which resulted in a small cross-sensitivity to temperature when the FP sensor was subjected to curvature. The FP cavity with shorter length presented low sensitivity to curvature.

  5. Curvature inducing macroion condensation driven shape changes of fluid vesicles.

    PubMed

    Sreeja, K K; Ipsen, John H; Sunil Kumar, P B

    2015-11-21

    We study the effect of curvature inducing macroion condensation on the shapes of charged deformable fluid interfaces using dynamically triangulated Monte Carlo simulations. In the weak electrostatic coupling regime, surface charges are weakly screened and the conformations of a vesicle, with fixed spherical topology, depend on the charge-charge interaction on the surface. While in the strong coupling regime, condensation driven curvature induction plays a dominant role in determining the conformations of these surfaces. Condensation itself is observed to be dependent on the induced curvature, with larger induced curvatures favoring increased condensation. We show that both curvature generation and curvature sensing, induced by the interplay of electrostatics and curvature energy, contribute to determination of the vesicle configurations.

  6. Optimal Spatial Scale for Curvature Calculations in Multiphase Flows

    NASA Astrophysics Data System (ADS)

    Senecal, Jacob; Owkes, Mark

    2016-11-01

    In gas-liquid flows, the surface tension force often controls the dynamics of the flow and an accurate calculation of this force is necessary for predictive simulations. The surface tension force is directly proportional to the curvature of the gas-liquid interface, making accurate curvature calculations an essential consideration. Multiple methods have been developed to calculate the curvature of volume of fluid (VoF) interface capturing schemes, such as the height function method. These methods have been extensively tested. However, the impact of the scale or size of computational stencil on which the curvature is computed, has not been correlated with the rate at which interface perturbations relax under the surface tension force. In this work, the effect of varying the scale on which the curvature is computed has been tested and quantified. An optimal curvature scale is identified that leads to accurate and converging curvatures, and accurate timescales for surface tension induced, interface dynamics.

  7. Entropic derivation of F=ma for circular motion

    NASA Astrophysics Data System (ADS)

    Duncan, Michael; Singleton, Douglas; Myrzakulov, Ratbay

    2011-11-01

    We examine the entropic picture of Newton's second law for the case of circular motion. It is shown that one must make modifications to the derivation of F = ma due to a change in the effective Unruh temperature for circular motion. These modifications present a challenge to the entropic derivation of Newton's second law, but also open up the possibility to experimentally test and constrain this model for large centripetal accelerations. (Phys. Lett. B 703 (2011) 516-518)

  8. Entropic derivation of F = m a for circular motion

    NASA Astrophysics Data System (ADS)

    Duncan, Michael; Myrzakulov, Ratbay; Singleton, Douglas

    2011-09-01

    We examine the entropic picture of Newton's second law for the case of circular motion. It is shown that one must make modifications to the derivation of F = ma due to a change in the effective Unruh temperature for circular motion. These modifications present a challenge to the entropic derivation of Newton's second law, but also open up the possibility to experimentally test and constrain this model for large centripetal accelerations.

  9. Flow-induced buckling of flexible shells with non-zero Gaussian curvatures and thin spots.

    PubMed

    Chang, Gary Han; Modarres-Sadeghi, Yahya

    2017-03-29

    We study the influence of one or multiple thin spots on the flow-induced instabilities of flexible shells of revolution with non-zero Gaussian curvatures. The shell's equation of motion is described by a thin doubly-curved shell theory and is coupled with perturbed flow pressure, calculated based on an inviscid flow model. We show that for shells with positive Gaussian curvatures conveying fluid, the existence of a thin spot results in a localized flow-induced buckling response of the shell in the neighborhood of the thin spot, and significantly reduces the critical flow velocity for buckling instability. For shells with negative Gaussian curvatures, the buckling response is extended along the shell's characteristic lines and the critical flow velocity is only slightly reduced. We also show that the length scale of the localized deformation generated by a thin spot is proportional to the shell's global thickness when the stiffness of the thin spot is negligible compared with the stiffness of the rest of the shell. When two thin spots exist at a distance, their influences are independent from each other for shells with positive Gaussian curvatures, but large-scale deformations can be created due to multiple thin spots on shells with negative curvatures, depending on the thin spots' relative position.

  10. Accurate VoF based curvature evaluation method for low-resolution interface geometries

    NASA Astrophysics Data System (ADS)

    Owkes, Mark; Herrmann, Marcus; Desjardins, Olivier

    2014-11-01

    The height function method is a common approach to compute the curvature of a gas-liquid interface in the context of the volume-of-fluid method. While the approach has been shown to produce second-order curvature estimates for many interfaces, the height function method deteriorates when the curvature becomes large and the interface becomes under-resolved by the computational mesh. In this work, we propose a modification to the height function method that improves the curvature calculation for under-resolved structures. The proposed scheme computes heights within columns that are not aligned with the underlying computational mesh but rather the interface normal vector which are found to be more robust for under-resolved interfaces. A computational geometry toolbox is used to compute the heights in the complex geometry that is formed at the intersection of the computational mesh and the columns. The resulting scheme has significantly reduced curvature errors for under-resolved interfaces and recovers the second-order convergence of the standard height function method for well-resolved interfaces.

  11. Stability and control of compressible flows over a surface with concave-conves curvature

    NASA Technical Reports Server (NTRS)

    Maestrello, L.; Bayliss, A.; Parikh, P.; Turkel, E.

    1986-01-01

    The active control of spatially unstable disturbances in a laminar, two-dimensional, compressible boundary layer over a curved surface is numerically simulated. The control is effected by localized time-periodic surface heating. We consider two similar surfaces of different heights with concave-convex curvature. In one, the height is sufficiently large so that the favorable pressure gradient is sufficient to stabilize a particular disturbance. In the other case the pressure gradient induced by the curvature is destabilizing. It is shown that by using active control that the disturbance can be stabilized. The results demonstrate that the curvature induced mean pressure gradient significantly enhances the receptivity of the flow localized time-periodic surface heating and that this is a potentially viable mechanism in air.

  12. The curvature elastic-energy function of the lipid-water cubic mesophase

    NASA Astrophysics Data System (ADS)

    Chung, Hesson; Caffrey, Martin

    1994-03-01

    CELL and lipid membranes are able to bend, as manifested during membrane fusion and the formation of non-lamellar lyotropic mesopbases in water. But there is an energy cost to bending of lipid layers, called the curvature elastic energy. Although the functional form of this energy is known1, a complete quantitative knowledge of the curvature elastic energy, which is central to predicting the relative stability of the large number of phases that lipid membranes can adopt, has been lacking. Here we use X-ray synchrotron diffraction measurements of the variation of lattice parameter with pressure and temperature for the periodic Ia3d (Q230) cubic phase of hydrated monoolein to calculate the complete curvature elastic-energy function for the lipid cubic mesophase. This allows us to predict the stabilities of different cubic and lamellar phases for this system as a function of composition.

  13. Anomalous Nernst and Righi-Leduc Effects in Mn3Sn : Berry Curvature and Entropy Flow

    NASA Astrophysics Data System (ADS)

    Li, Xiaokang; Xu, Liangcai; Ding, Linchao; Wang, Jinhua; Shen, Mingsong; Lu, Xiufang; Zhu, Zengwei; Behnia, Kamran

    2017-08-01

    We present a study of electric, thermal and thermoelectric response in noncollinear antiferromagnet Mn3Sn , which hosts a large anomalous Hall effect (AHE). Berry curvature generates off-diagonal thermal (Righi-Leduc) and thermoelectric (Nernst) signals, which are detectable at room temperature and invertible with a small magnetic field. The thermal and electrical Hall conductivities respect the Wiedemann-Franz law, implying that the transverse currents induced by the Berry curvature are carried by Fermi surface quasiparticles. In contrast to conventional ferromagnets, the anomalous Lorenz number remains close to the Sommerfeld number over the whole temperature range of study, excluding any contribution by inelastic scattering and pointing to the Berry curvature as the unique source of AHE. The anomalous off-diagonal thermo-electric and Hall conductivities are strongly temperature dependent and their ratio is close to kB/e .

  14. Curvature-induced activation of a passive tracer in an active bath.

    PubMed

    Mallory, S A; Valeriani, C; Cacciuto, A

    2014-09-01

    We use numerical simulations to study the motion of a large asymmetric tracer immersed in a low-density suspension of self-propelled particles in two dimensions. Specifically, we analyze how the curvature of the tracer affects its translational and rotational motion in an active environment. We find that even very small amounts of curvature are sufficient for the active bath to impart directed motion to the tracer, which results in its effective activation. We propose simple scaling arguments to characterize this induced activity in terms of the curvature of the tracer and the strength of the self-propelling force. Our results suggest new ways of controlling the transport properties of passive tracers in an active medium by carefully tailoring their geometry.

  15. Estimation of the bending rigidity and spontaneous curvature of fluid membranes in simulations.

    PubMed

    Shiba, Hayato; Noguchi, Hiroshi

    2011-09-01

    Several numerical methods for measuring the bending rigidity and the spontaneous curvature of fluid membranes are studied using two types of meshless membrane models. The bending rigidity is estimated from the thermal undulations of planar and tubular membranes and the axial force of tubular membranes. We found a large dependence of its estimate value from the thermal undulation analysis on the upper-cutoff frequency q(cut) of the least-squares fit. The inverse power-spectrum fit with an extrapolation to q(cut)→0 yields the smallest estimation error among the investigated methods. The spontaneous curvature is estimated from the axial force of tubular membranes and the average curvature of bent membrane strips. The results of these methods show good agreement with each other.

  16. On classical thermal stability of black holes with a dynamical extrinsic curvature

    NASA Astrophysics Data System (ADS)

    Capistrano, Abraão J. S.; Gutiérrez-Piñeres, Antonio C.; Ulhoa, Sergio C.; Amorim, Ronni G. G.

    2017-05-01

    We study the deformation caused by the influence of the extrinsic curvature on a vacuum spherically symmetric metric embedded in a five-dimensional bulk. We investigate the resulting black-holes obtaining general characteristics such as their masses, horizons, singularities and thermal properties by using a dynamical extrinsic curvature leading to different results as those from rigid embedded models. As a test, we also study the bending of light near such black-holes analyzing the movement of a test particle and the modification caused by extrinsic curvature on its movement. Accordingly, using the asymptotically conformal flat condition, we show that such black holes must be large and constrained by the allowed number range - 1 / 2 ≤ n ≤ 1.8 for a set of n-scalar potentials. As a result, they are locally thermodynamically stable, but not globally preferred.

  17. Vector and tensor contributions to the curvature perturbation at second order

    SciTech Connect

    Carrilho, Pedro; Malik, Karim A. E-mail: k.malik@qmul.ac.uk

    2016-02-01

    We derive the evolution equation for the second order curvature perturbation using standard techniques of cosmological perturbation theory. We do this for different definitions of the gauge invariant curvature perturbation, arising from different splits of the spatial metric, and compare the expressions. The results are valid at all scales and include all contributions from scalar, vector and tensor perturbations, as well as anisotropic stress, with all our results written purely in terms of gauge invariant quantities. Taking the large-scale approximation, we find that a conserved quantity exists only if, in addition to the non-adiabatic pressure, the transverse traceless part of the anisotropic stress tensor is also negligible. We also find that the version of the gauge invariant curvature perturbation which is exactly conserved is the one defined with the determinant of the spatial part of the inverse metric.

  18. Quantized circular photogalvanic effect in Weyl semimetals.

    PubMed

    de Juan, Fernando; Grushin, Adolfo G; Morimoto, Takahiro; Moore, Joel E

    2017-07-06

    The circular photogalvanic effect (CPGE) is the part of a photocurrent that switches depending on the sense of circular polarization of the incident light. It has been consistently observed in systems without inversion symmetry and depends on non-universal material details. Here we find that in a class of Weyl semimetals (for example, SrSi2) and three-dimensional Rashba materials (for example, doped Te) without inversion and mirror symmetries, the injection contribution to the CPGE trace is effectively quantized in terms of the fundamental constants e, h, c and with no material-dependent parameters. This is so because the CPGE directly measures the topological charge of Weyl points, and non-quantized corrections from disorder and additional bands can be small over a significant range of incident frequencies. Moreover, the magnitude of the CPGE induced by a Weyl node is relatively large, which enables the direct detection of the monopole charge with current techniques.

  19. Quantized circular photogalvanic effect in Weyl semimetals

    PubMed Central

    de Juan, Fernando; Grushin, Adolfo G.; Morimoto, Takahiro; Moore, Joel E

    2017-01-01

    The circular photogalvanic effect (CPGE) is the part of a photocurrent that switches depending on the sense of circular polarization of the incident light. It has been consistently observed in systems without inversion symmetry and depends on non-universal material details. Here we find that in a class of Weyl semimetals (for example, SrSi2) and three-dimensional Rashba materials (for example, doped Te) without inversion and mirror symmetries, the injection contribution to the CPGE trace is effectively quantized in terms of the fundamental constants e, h, c and with no material-dependent parameters. This is so because the CPGE directly measures the topological charge of Weyl points, and non-quantized corrections from disorder and additional bands can be small over a significant range of incident frequencies. Moreover, the magnitude of the CPGE induced by a Weyl node is relatively large, which enables the direct detection of the monopole charge with current techniques. PMID:28681840

  20. Quantized circular photogalvanic effect in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    de Juan, Fernando; Grushin, Adolfo G.; Morimoto, Takahiro; Moore, Joel E.

    2017-07-01

    The circular photogalvanic effect (CPGE) is the part of a photocurrent that switches depending on the sense of circular polarization of the incident light. It has been consistently observed in systems without inversion symmetry and depends on non-universal material details. Here we find that in a class of Weyl semimetals (for example, SrSi2) and three-dimensional Rashba materials (for example, doped Te) without inversion and mirror symmetries, the injection contribution to the CPGE trace is effectively quantized in terms of the fundamental constants e, h, c and with no material-dependent parameters. This is so because the CPGE directly measures the topological charge of Weyl points, and non-quantized corrections from disorder and additional bands can be small over a significant range of incident frequencies. Moreover, the magnitude of the CPGE induced by a Weyl node is relatively large, which enables the direct detection of the monopole charge with current techniques.

  1. Circular Scan Streak Tube Development

    NASA Technical Reports Server (NTRS)

    Nevin, S.

    1980-01-01

    A streak tube having circular scan was designed, built and tested. Continuous circular scan, easily derived from out of phase sine waves applied to the conventional deflection plates, permits the timing of pulses traveling long baselines. At the tube's output a circular array of 720 elements is scanned to provide 30 to 40 picosecond resolution. Initial difficulties with electron bombarded silicon arrays were circumvented by using microchannel plates within the streak tube to provide the needed electronic amplification and digital sensitivity and coupling the 720 element arrays to the electron beam by means of a phosphor on a fiber optics. Two ceramic body tubes with S-20 photocathodes were tested and delivered.

  2. Circular on family planning, 1988.

    PubMed

    1988-01-01

    This Hubei, China, Circular, issued near the end of 1988, provides the following: "The population growth situation in our country is grim. Since 1986, the natural population growth rate has risen continuously. To draw the prompt attention of the whole party and the entire people to the issue of our population, all localities must seriously unfold the activities of publicizing family planning (FP) this winter and next spring, in coordination with education in current affairs. It is necessary to publicize FP in an all-around way and with accuracy, and the activities of publicizing must be carried out effectively in a solid and deep-going way. In the rural areas, stress must be placed on areas where FP work is not carried out well and where there is a prevailing tendency toward early marriage, early child-bearing, and extra-budgetary births. In cities, publicity and education must be conducted especially among the transient population, individual households, and jobless households. During the period of publicity, large-scale street-corner publicity activities must be carried out in cities and towns so as to create strong public opinion and to combine the endeavor to publicize current affairs and policies with the effort to popularize knowledge about contraception and birth-control, to execute measures of contraception and birth control, and to establish FP associations in the countryside."

  3. Mesoscale simulations of curvature-inducing protein partitioning on lipid bilayer membranes in the presence of mean curvature fields

    NASA Astrophysics Data System (ADS)

    Liu, Jin; Tourdot, Richard; Ramanan, Vyas; Agrawal, Neeraj J.; Radhakrishanan, Ravi

    2012-06-01

    The membrane-surface migration of curvature-inducing proteins in response to membrane curvature gradients has been investigated using Monte Carlo simulations of a curvilinear membrane model based on the Helfrich Hamiltonian. Consistent with theoretical and experimental data, we find the proteins that generate curvature can also sense the background membrane curvature, wherein they preferentially partition to the high curvature regions. The partitioning strength depends linearly on local membrane curvature and the slope (or the coupling constant) of the partitioning probability versus mean curvature depends on the membrane bending rigidity and instantaneous curvature field caused by different proteins. Our simulation study allows us to quantitatively characterize and identify the important factors affecting the coupling constant (slope), which may be difficult to determine in experiments. Furthermore, the membrane model is used to study budding of vesicles where it is found that in order to stabilize a mature vesicle with a stable 'neck-region' (or stable membrane overhangs), the area (extent) of the intrinsic curvature region needs to exceed a threshold-critical value. The migration and partitioning of curvature-inducing proteins in a budding vesicle with a stable neck (with a characteristic negative value of the Gaussian curvature) is investigated.

  4. Mesoscale simulations of curvature-inducing protein partitioning on lipid bilayer membranes in the presence of mean curvature fields

    PubMed Central

    Liu, Jin; Tourdot, Richard; Ramanan, Vyas; Agrawal, Neeraj J.; Radhakrishanan, Ravi

    2015-01-01

    The membrane-surface migration of curvature-inducing proteins in response to membrane curvature gradients has been investigated using Monte Carlo simulations of a curvilinear membrane model based on the Helfrich Hamiltonian. Consistent with theoretical and experimental data, we find the proteins that generate curvature can also sense the background membrane curvature, wherein they preferentially partition to the high curvature regions. The partitioning strength depends linearly on local membrane curvature and the slope (or the coupling constant) of the partitioning probability versus mean curvature depends on the membrane bending rigidity and instantaneous curvature field caused by different proteins. Our simulation study allows us to quantitatively characterize and identify the important factors affecting the coupling constant (slope), which may be difficult to determine in experiments. Furthermore, the membrane model is used to study budding of vesicles where it is found that in order to stabilize a mature vesicle with a stable ‘neck-region’ (or stable membrane overhangs), the area (extent) of the intrinsic curvature region needs to exceed a threshold-critical value. The migration and partitioning of curvature-inducing proteins in a budding vesicle with a stable neck (with a characteristic negative value of the Gaussian curvature) is investigated. PMID:26500377

  5. Mesoscale simulations of curvature-inducing protein partitioning on lipid bilayer membranes in the presence of mean curvature fields.

    PubMed

    Liu, Jin; Tourdot, Richard; Ramanan, Vyas; Agrawal, Neeraj J; Radhakrishanan, Ravi

    2012-06-01

    The membrane-surface migration of curvature-inducing proteins in response to membrane curvature gradients has been investigated using Monte Carlo simulations of a curvilinear membrane model based on the Helfrich Hamiltonian. Consistent with theoretical and experimental data, we find the proteins that generate curvature can also sense the background membrane curvature, wherein they preferentially partition to the high curvature regions. The partitioning strength depends linearly on local membrane curvature and the slope (or the coupling constant) of the partitioning probability versus mean curvature depends on the membrane bending rigidity and instantaneous curvature field caused by different proteins. Our simulation study allows us to quantitatively characterize and identify the important factors affecting the coupling constant (slope), which may be difficult to determine in experiments. Furthermore, the membrane model is used to study budding of vesicles where it is found that in order to stabilize a mature vesicle with a stable 'neck-region' (or stable membrane overhangs), the area (extent) of the intrinsic curvature region needs to exceed a threshold-critical value. The migration and partitioning of curvature-inducing proteins in a budding vesicle with a stable neck (with a characteristic negative value of the Gaussian curvature) is investigated.

  6. Estimation of the lifetime of a trapped vortex in a circular cavern on a semicircular airfoil streamlined at a zero angle of attack after switching off slot suction

    NASA Astrophysics Data System (ADS)

    Isaev, S. A.; Baranov, P. A.; Sudakov, A. G.; Popov, I. A.; Usachov, A. E.

    2017-04-01

    The restructuring of the periodic structure of a turbulent streamline for a semicircular airfoil at a zero angle of attack with a system of slot suction from the circular cavern switched off is calculated. Multiblock numerical methods are applied for solution of Reynolds-averaged nonstationary Navier-Stokes equations closed using the modified shear-stress transfer model taking into account flow line curvature. The lifetime of a trapped vortex in a circular cavern is estimated.

  7. Solitons in curved space of constant curvature

    SciTech Connect

    Batz, Sascha; Peschel, Ulf

    2010-05-15

    We consider spatial solitons as, for example, self-confined optical beams in spaces of constant curvature, which are a natural generalization of flat space. Due to the symmetries of these spaces we are able to define respective dynamical parameters, for example, velocity and position. For positively curved space we find stable multiple-hump solitons as a continuation from the linear modes. In the case of negatively curved space we show that no localized solution exists and a bright soliton will always decay through a nonlinear tunneling process.

  8. Zero curvature-surface driven small objects

    NASA Astrophysics Data System (ADS)

    Dou, Xiaoxiao; Li, Shanpeng; Liu, Jianlin

    2017-08-01

    In this study, we investigate the spontaneous migration of small objects driven by surface tension on a catenoid, formed by a layer of soap constrained by two rings. Although the average curvature of the catenoid is zero at each point, the small objects always migrate to the position near the ring. The force and energy analyses have been performed to uncover the mechanism, and it is found that the small objects distort the local shape of the liquid film, thus making the whole system energetically favorable. These findings provide some inspiration to design microfluidics, aquatic robotics, and miniature boats.

  9. Double curvature mirrors for linear concentrators

    NASA Astrophysics Data System (ADS)

    Lance, Tamir; Ackler, Harold; Finot, Marc

    2012-10-01

    Skyline Solar's medium concentration photovoltaic system uses quasi-parabolic mirrors and one axis tracking. Improvements in levelized cost of energy can be achieved by effective management of non-uniformity of the flux line on the panels. To reduce non uniformity of the flux line due to mirror to mirror gaps, Skyline developed a dual curvature mirror that stretches the flux line along the panel. Extensive modeling and experiments have been conducted to analyze the impact of this new design and to optimize the design.

  10. Steering electromagnetic beams with conical curvature singularities.

    PubMed

    Zhang, Yong-Liang; Dong, Xian-Zi; Zheng, Mei-Ling; Zhao, Zhen-Sheng; Duan, Xuan-Ming

    2015-10-15

    We describe how the transformation-optics technique can be used to design an effective medium mimicking the conical curvature singularity. Anholonomic coordinate transformation gives rise to linear topological defects that break the rotational symmetry. The bending and splitting of the optical beams are found analytically and numerically, depending on the incident direction and the topological charge. Beyond their practical applications to omnidirectional beam steering for photonics, our findings set forth an attractive realm to simulate the relevant physical phenomena in the optical laboratory.

  11. Curvature-Driven Lipid Sorting in Biomembranes

    PubMed Central

    Callan-Jones, Andrew; Sorre, Benoit; Bassereau, Patricia

    2011-01-01

    It has often been suggested that the high curvature of transport intermediates in cells may be a sufficient means to segregate different lipid populations based on the relative energy costs of forming bent membranes. In this review, we present in vitro experiments that highlight the essential physics of lipid sorting at thermal equilibrium: It is driven by a trade-off between bending energy, mixing entropy, and interactions between species. We collect evidence that lipid sorting depends strongly on lipid–lipid and protein–lipid interactions, and hence on the underlying composition of the membrane and on the presence of bound proteins. PMID:21421916

  12. Curvature sensor for ocular wavefront measurement.

    PubMed

    Díaz-Doutón, Fernando; Pujol, Jaume; Arjona, Montserrat; Luque, Sergio O

    2006-08-01

    We describe a new wavefront sensor for ocular aberration determination, based on the curvature sensing principle, which adapts the classical system used in astronomy for the living eye's measurements. The actual experimental setup is presented and designed following a process guided by computer simulations to adjust the design parameters for optimal performance. We present results for artificial and real young eyes, compared with the Hartmann-Shack estimations. Both methods show a similar performance for these cases. This system will allow for the measurement of higher order aberrations than the currently used wavefront sensors in situations in which they are supposed to be significant, such as postsurgery eyes.

  13. Spacetime Curvature and Higgs Stability after Inflation.

    PubMed

    Herranen, M; Markkanen, T; Nurmi, S; Rajantie, A

    2015-12-11

    We investigate the dynamics of the Higgs field at the end of inflation in the minimal scenario consisting of an inflaton field coupled to the standard model only through the nonminimal gravitational coupling ξ of the Higgs field. Such a coupling is required by renormalization of the standard model in curved space, and in the current scenario also by vacuum stability during high-scale inflation. We find that for ξ≳1, rapidly changing spacetime curvature at the end of inflation leads to significant production of Higgs particles, potentially triggering a transition to a negative-energy Planck scale vacuum state and causing an immediate collapse of the Universe.

  14. Beam Rounders for Circular Colliders

    SciTech Connect

    A. Burov; S. Nagaitsev; Ya. Derbenev

    2001-07-01

    By means of linear optics, an arbitrary uncoupled beam can be locally transformed into a round (rotation-invariant) state and then back. This provides an efficient way to round beams in the interaction region of circular colliders.

  15. Beam rounders for circular colliders

    SciTech Connect

    A. Burov and S. Nagaitsev

    2002-12-10

    By means of linear optics, an arbitrary uncoupled beam can be locally transformed into a round (rotation-invariant) state and then back. This provides an efficient way to round beams in the interaction region of circular colliders.

  16. Increased curvature of hollow fiber membranes could up-regulate differential functions of renal tubular cell layers.

    PubMed

    Shen, Chong; Meng, Qin; Zhang, Guoliang

    2013-08-01

    Tissue engineering devices as in vitro cell culture systems in scaffolds has encountered the bottleneck due to their much lower cell functions than real tissues/organs in vivo. Such situation has been improved in some extent by mimicking the cell microenvironments in vivo from either chemical or physical ways. However, microenvironmental curvature, commonly seen in real tissues/organs, has never been manipulated to regulate the cell performance in vitro. In this regard, this paper fabricated polysulfone membranes with or without polyethylene glycol modification to investigate the impact of curvature on two renal tubular cells. Regardless the varying membrane curvatures among hollow fiber membranes of different diameters and flat membrane of zero curvature, both renal cells could well attach at 4 h of seeding and form similar confluent layers at 6 days on each membrane. Nevertheless, the renal cells on hollow fibers, though showing confluent morphology as those on flat membranes, expressed higher renal functions and, moreover, the renal functions significantly increased with the membrane curvature among hollow fibers. Such upregulation on functions was unassociated with mass transport barrier of hollow fibers, because the cultures on lengthwise cut hollow fibers without mass transfer barrier showed same curvature effect on renal functions as whole hollow fibers. It could be proposed that the curvature of hollow fiber membrane approaching to the large curvature in kidney tubules increased the mechanical stress in the renal cells and thus might up-regulate the renal cell functions. In conclusion, the increase of substrate curvature could up-regulate the cell functions without altering the confluent cell morphology and this finding will facilitate the design of functional tissue engineering devices.

  17. Beach vortices near circular topography

    NASA Astrophysics Data System (ADS)

    Hinds, A. K.; Johnson, E. R.; McDonald, N. R.

    2016-10-01

    Finite-area monopolar vortices which propagate around topography without change in shape are computed for circular seamounts and wells including the limiting cases of each: islands and infinitely deep wells. The time-dependent behaviour of vortex pairs propagating toward circular topography is also examined. Trajectories of point-vortex pairs exterior to the topography are found and compared to trajectories of vortex patches computed using contour dynamics.

  18. Large-deflection theory of curved sheet

    NASA Technical Reports Server (NTRS)

    Levy, Samuel

    1943-01-01

    Equations are given for the elastic behavior of initially curved sheets in which the deflections are not small in comparison with the thickness, but at the same time small enough to justify the use of simplified formulas for curvature. These equations are solved for the case of a sheet with circular cylindrical shape simply supported along two edges parallel to the axis of the generating cylinder. Numerical results are given for three values of the curvature and for three ratios of buckle length to buckle width. The computations are carried to buckle deflections of about twice the sheet thickness. It was concluded that initial curvature may cause an appreciable increase in the buckling load but that, for edge strains which are several times the buckling strain, the initial curvature causes a negligibly small change in the effective width.

  19. Curvature-driven bubbles or droplets on the spiral surface

    PubMed Central

    Li, Shanpeng; Liu, Jianlin; Hou, Jian

    2016-01-01

    Directional motion of droplets or bubbles can often be observed in nature and our daily life, and this phenomenon holds great potential in many engineering areas. The study shows that droplets or bubbles can be driven to migrate perpetually on some special substrates, such as the Archimedean spiral, the logarithmic spiral and a cantilever sheet in large deflection. It is found that a bubble approaches or deviates from the position with highest curvature of the substrate, when it is on the concave or convex side. This fact is helpful to explain the repelling water capability of Nepenthes alata. Based on the force and energy analysis, the mechanism of the bubble migration is well addressed. These findings pave a new way to accurately manipulate droplet or bubble movement, which bring inspirations to the design of microfluidic and water harvesting devices, as well as oil displacement and ore filtration. PMID:27885261

  20. Converting entropy to curvature perturbations after a cosmic bounce

    SciTech Connect

    Fertig, Angelika; Lehners, Jean-Luc; Mallwitz, Enno; Wilson-Ewing, Edward

    2016-10-04

    We study two-field bouncing cosmologies in which primordial perturbations are created in either an ekpyrotic or a matter-dominated contraction phase. We use a non-singular ghost condensate bounce model to follow the perturbations through the bounce into the expanding phase of the universe. In contrast to the adiabatic perturbations, which on large scales are conserved across the bounce, entropy perturbations can grow significantly during the bounce phase. If they are converted into adiabatic/curvature perturbations after the bounce, they typically form the dominant contribution to the observed temperature fluctuations in the microwave background, which can have several beneficial implications. For ekpyrotic models, this mechanism loosens the constraints on the amplitude of the ekpyrotic potential while naturally suppressing the intrinsic amount of non-Gaussianity. For matter bounce models, the mechanism amplifies the scalar perturbations compared to the associated primordial gravitational waves.

  1. Curvature-driven bubbles or droplets on the spiral surface

    NASA Astrophysics Data System (ADS)

    Li, Shanpeng; Liu, Jianlin; Hou, Jian

    2016-11-01

    Directional motion of droplets or bubbles can often be observed in nature and our daily life, and this phenomenon holds great potential in many engineering areas. The study shows that droplets or bubbles can be driven to migrate perpetually on some special substrates, such as the Archimedean spiral, the logarithmic spiral and a cantilever sheet in large deflection. It is found that a bubble approaches or deviates from the position with highest curvature of the substrate, when it is on the concave or convex side. This fact is helpful to explain the repelling water capability of Nepenthes alata. Based on the force and energy analysis, the mechanism of the bubble migration is well addressed. These findings pave a new way to accurately manipulate droplet or bubble movement, which bring inspirations to the design of microfluidic and water harvesting devices, as well as oil displacement and ore filtration.

  2. Topological implications of negative curvature for biological and social networks

    NASA Astrophysics Data System (ADS)

    Albert, Réka; DasGupta, Bhaskar; Mobasheri, Nasim

    2014-03-01

    Network measures that reflect the most salient properties of complex large-scale networks are in high demand in the network research community. In this paper we adapt a combinatorial measure of negative curvature (also called hyperbolicity) to parametrized finite networks, and show that a variety of biological and social networks are hyperbolic. This hyperbolicity property has strong implications on the higher-order connectivity and other topological properties of these networks. Specifically, we derive and prove bounds on the distance among shortest or approximately shortest paths in hyperbolic networks. We describe two implications of these bounds to crosstalk in biological networks, and to the existence of central, influential neighborhoods in both biological and social networks.

  3. Particles and curvatures in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Serra, Francesca; Luo, Yimin; Yang, Shu; Kamien, Randall D.; Stebe, Kathleen J.

    Elastic interactions in anisotropic fluids can be harnessed to direct particle interactions. A strategy to smoothly manipulate the director field in nematic liquid crystals is to vary the topography of the bounding surfaces. A rugged landscape with peaks and valleys create local deformations of the director field which can interact with particles in solution. We study this complex interaction in two different settings. The first consists of an array of shallow pores in a poly-dimethyl-siloxane (PDMS) membrane, whose curvature can be tuned either by swelling the PDMS membrane or by mechanical stretching. The second is a set of grooves with wavy walls, fabricated by photolithography, with various parameters of curvature and shapes. In this contexts we study how the motion of colloidal particles in nematic liquid crystals can be influenced by their interaction with the peaks and valleys of the bottom substrate or of the side walls. Particles with different associated topological defects (hedgehogs or Saturn rings) behave differently as they interact with the topographical features, favoring the docking on peaks or valleys. These experimental systems are also ideal to study the ``lock and key'' mechanism of particles in holes and to investigate a possible route for particle sorting.

  4. Brane Localized Curvature for Warped Gravitons

    SciTech Connect

    Rizzo, Thomas G.

    2003-06-26

    We study the effects of including brane localized curvature terms in the Randall-Sundrum (RS) model of the hierarchy. This leads to the existence of brane localized kinetic terms for the graviton. Such terms can be induced by brane and bulk quantum effects as well as Higgs-curvature mixing on the brane. We derive the modified spectrum of Kaluza-Klein (KK) gravitons and their couplings to 4-dimensional fields in the presence of these terms. We find that the masses and couplings of the KK gravitons have considerable dependence on the size of the brane localized terms; the weak-scale phenomenology of the model is consequently modified . In particular, the weak-scale spin-2 graviton resonances which generically appear in the RS model may be significantly lighter than previously assumed. However, they may avoid detection as their widths may be too narrow to be observable at colliders. In the contact interaction limit, for a certain range of parameters, the experimental reach for the scale of the theory is independent of the size of the boundary terms.

  5. Kinetic information from detonation front curvature

    SciTech Connect

    Souers, P. C., LLNL

    1998-06-15

    The time constants for time-dependent modeling may be estimated from reaction zone lengths, which are obtained from two sources One is detonation front curvature, where the edge lag is close to being a direct measure The other is the Size Effect, where the detonation velocity decreases with decreasing radius as energy is lost to the cylinder edge A simple theory that interlocks the two effects is given A differential equation for energy flow in the front is used, the front is described by quadratic and sixth-power radius terms The quadratic curvature comes from a constant power source of energy moving sideways to the walls Near the walls, the this energy rises to the total energy of detonation and produces the sixth-power term The presence of defects acting on a short reaction zone can eliminate the quadratic part while leaving the wall portion of the cuvature A collection of TNT data shows that the reaction zone increases with both the radius and the void fraction

  6. Effects of streamline curvature on separation prediction

    NASA Astrophysics Data System (ADS)

    Arolla, Sunil K.; Durbin, Paul A.

    2009-11-01

    In this study, the effects of streamline curvature on prediction of flow separation are investigated. The geometry is a circulation control airfoil, a high-lift configuration that has been under extensive research for more than two decades. A tangential jet is blown over a thick, rounded trailing edge, using the Coanda effect to delay separation. An attempt is made to understand, through numerical simulations, the dynamics of turbulent separation and reattachment on the Coanda surface. Highly curved, attached recirculation regions are seen to form. A physics based curvature correction proposed by Pettersson-Reif et al. (1999) is used in conjunction with ζ-f turbulence model. The chord-based Reynolds number is Re = 10^6. Two jet momentum coefficients of Cμ=0.03 and 0.1 are computed. In this paper, comparisons between the computed and experimental pressure distributions, velocity profiles and the position of flow detachment are presented. Comparisons with other closures such as Menter's SST model are also discussed.

  7. Vortex motion on surfaces of small curvature

    SciTech Connect

    Dorigoni, Daniele Dunajski, Maciej Manton, Nicholas S.

    2013-12-15

    We consider a single Abelian Higgs vortex on a surface Σ whose Gaussian curvature K is small relative to the size of the vortex, and analyse vortex motion by using geodesics on the moduli space of static solutions. The moduli space is Σ with a modified metric, and we propose that this metric has a universal expansion, in terms of K and its derivatives, around the initial metric on Σ. Using an integral expression for the Kähler potential on the moduli space, we calculate the leading coefficients of this expansion numerically, and find some evidence for their universality. The expansion agrees to first order with the metric resulting from the Ricci flow starting from the initial metric on Σ, but differs at higher order. We compare the vortex motion with the motion of a point particle along geodesics of Σ. Relative to a particle geodesic, the vortex experiences an additional force, which to leading order is proportional to the gradient of K. This force is analogous to the self-force on bodies of finite size that occurs in gravitational motion. -- Highlights: •We study an Abelian Higgs vortex on a surface with small curvature. •A universal expansion for the moduli space metric is proposed. •We numerically check the universality at low orders. •Vortex motion differs from point particle motion because a vortex has a finite size. •Moduli space geometry has similarities with the geometry arising from Ricci flow.

  8. Emergent gravity in spaces of constant curvature

    NASA Astrophysics Data System (ADS)

    Alvarez, Orlando; Haddad, Matthew

    2017-03-01

    In physical theories where the energy (action) is localized near a submanifold of a constant curvature space, there is a universal expression for the energy (or the action). We derive a multipole expansion for the energy that has a finite number of terms, and depends on intrinsic geometric invariants of the submanifold and extrinsic invariants of the embedding of the submanifold. This is the second of a pair of articles in which we try to develop a theory of emergent gravity arising from the embedding of a submanifold into an ambient space equipped with a quantum field theory. Our theoretical method requires a generalization of a formula due to by Hermann Weyl. While the first paper discussed the framework in Euclidean (Minkowski) space, here we discuss how this framework generalizes to spaces of constant sectional curvature. We focus primarily on anti de Sitter space. We then discuss how such a theory can give rise to a cosmological constant and Planck mass that are within reasonable bounds of the experimental values.

  9. Curvature Filters Efficiently Reduce Certain Variational Energies.

    PubMed

    Gong, Yuanhao; Sbalzarini, Ivo F

    2017-04-01

    In image processing, the rapid approximate solution of variational problems involving generic data-fitting terms is often of practical relevance, for example in real-time applications. Variational solvers based on diffusion schemes or the Euler-Lagrange equations are too slow and restricted in the types of data-fitting terms. Here, we present a filter-based approach to reduce variational energies that contain generic data-fitting terms, but are restricted to specific regularizations. Our approach is based on reducing the regularization part of the variational energy, while guaranteeing non-increasing total energy. This is applicable to regularization-dominated models, where the data-fitting energy initially increases, while the regularization energy initially decreases. We present fast discrete filters for regularizers based on Gaussian curvature, mean curvature, and total variation. These pixel-local filters can be used to rapidly reduce the energy of the full model. We prove the convergence of the resulting iterative scheme in a greedy sense, and we show several experiments to demonstrate applications in image-processing problems involving regularization-dominated variational models.

  10. Noise control of a circular saw

    NASA Astrophysics Data System (ADS)

    Okrzesik, Jeff

    2002-05-01

    Construction workers are subjected to high levels of noise pollution on a daily basis. Sound levels of about 85 dB(A) with exposures of 8 hours per day will result in permanent hearing loss after many years [Noise and Hearing Loss, NIH Consens Statement Online 8(1), 1-24 (1990)]. There are numerous sources contributing to the noise problems. Tools are of particular interest considering the amount of time the average worker uses them. A circular saw is a common tool used daily by many construction workers. The levels of noise produced by a circular saw will be tested in order to evaluate the problem. The noise levels as well as the locations of the noise sources will be evaluated. Several ideas regarding the reduction of sound emissions have been researched. There will be three initial focal points of the investigation. The blade properties, including the material, size and tooth design, are all key elements that will be studied closely. The numerous dynamic parts in the motor are also large sources of noise that may be reduced by increasing the efficiency of the motor. Another vital element to reducing noise involved with a circular saw is to study the interaction noise from the piece being worked on.

  11. Asymptotic behavior of curvature of surface elements in isotropic turbulence

    NASA Technical Reports Server (NTRS)

    Girimaji, S. S.

    1991-01-01

    The asymptotic behavior of the curvature of material elements in turbulence is investigated using Lagrangian velocity-gradient time series obtained from direct numerical simulations of isotropic turbulence. Several material-element ensembles of different initial curvatures and shapes are studied. It is found that, at long times, the (first five) moments of the logarithm of characteristic curvature and shape factor asymptote to values that are independent of the initial curvature or shape. This evidence strongly suggests that the asymptotic pdf's of the curvature and shape of material elements are stationary and independent of initial conditions. Irrespective of initial curvature or shape, the asymptotic shape of a material surface is cylindrical with a high probability.

  12. Peptide backbone circularization enhances antifreeze protein thermostability.

    PubMed

    Stevens, Corey A; Semrau, Joanna; Chiriac, Dragos; Litschko, Morgan; Campbell, Robert L; Langelaan, David N; Smith, Steven P; Davies, Peter L; Allingham, John S

    2017-10-01

    Antifreeze proteins (AFPs) are a class of ice-binding proteins that promote survival of a variety of cold-adapted organisms by decreasing the freezing temperature of bodily fluids. A growing number of biomedical, agricultural, and commercial products, such as organs, foods, and industrial fluids, have benefited from the ability of AFPs to control ice crystal growth and prevent ice recrystallization at subzero temperatures. One limitation of AFP use in these latter contexts is their tendency to denature and irreversibly lose activity at the elevated temperatures of certain industrial processing or large-scale AFP production. Using the small, thermolabile type III AFP as a model system, we demonstrate that AFP thermostability is dramatically enhanced via split intein-mediated N- and C-terminal end ligation. To engineer this circular protein, computational modeling and molecular dynamics simulations were applied to identify an extein sequence that would fill the 20-Å gap separating the free ends of the AFP, yet impose little impact on the structure and entropic properties of its ice-binding surface. The top candidate was then expressed in bacteria, and the circularized protein was isolated from the intein domains by ice-affinity purification. This circularized AFP induced bipyramidal ice crystals during ice growth in the hysteresis gap and retained 40% of this activity even after incubation at 100°C for 30 min. NMR analysis implicated enhanced thermostability or refolding capacity of this protein compared to the noncyclized wild-type AFP. These studies support protein backbone circularization as a means to expand the thermostability and practical applications of AFPs. © 2017 The Protein Society.

  13. Curvature and Tangency Handles for Control of Convex Cubic Shapes

    DTIC Science & Technology

    2000-01-01

    looked at A-splines constructed with segments of singular al- gebraic cubics, which are just rational cubics, with new, geometrically more meaningful...contact interpolation , and curvatures at three prescribed points, see Figures 1-4. Curve and Surface Design: Saint-Malo 1999 91 Pierre-Jean Laurent...curvature at one contact point. §2. Barycentric Coordinates and Curvature at the Endpoints The general algebraic cubic in cartesian coordinates x, y is

  14. The curvature measurement of Sagnac loop based on PMF

    NASA Astrophysics Data System (ADS)

    Zhao, Yu; Jin, Yongxing; Gong, Huaping; Wang, Jianfeng

    2010-12-01

    An optical fiber curvature sensor is fabricated by using a short section of polarization maintaining fiber (PMF) as the sensing component spliced in an optical fiber Sagnac loop. The length of the sensing element for the curvature sensing is about 142 mm. The sensitivity of the curvature measurement of 0.0344 m-1/pm is achieved experimentally. The propose sensor is more convenient and simply than that of photonic crystal fiber (PCF).

  15. Wrinkles and splay conspire to give positive disclinations negative curvature

    PubMed Central

    Matsumoto, Elisabetta A.; Vega, Daniel A.; Pezzutti, Aldo D.; García, Nicolás A.; Chaikin, Paul M.; Register, Richard A.

    2015-01-01

    Recently, there has been renewed interest in the coupling between geometry and topological defects in crystalline and striped systems. Standard lore dictates that positive disclinations are associated with positive Gaussian curvature, whereas negative disclinations give rise to negative curvature. Here, we present a diblock copolymer system exhibiting a striped columnar phase that preferentially forms wrinkles perpendicular to the underlying stripes. In free-standing films this wrinkling behavior induces negative Gaussian curvature to form in the vicinity of positive disclinations. PMID:26420873

  16. Radius of Curvature of Off-Axis Paraboloids

    NASA Technical Reports Server (NTRS)

    Robinson, Brian; Reardon, Patrick; Hadaway, James; Geary, Joseph; Russell, Kevin (Technical Monitor)

    2002-01-01

    We present several methods for measuring the vertex radius of curvature of off-axis paraboloidal mirrors. One is based on least-squares fitting of interferometer output, one on comparison of sagittal and tangential radii of curvature, and another on measurement of displacement of the nulled test article from the ideal reference wave. Each method defines radius of curvature differently and, as a consequence, produces its own sort of errors.

  17. Curvature and geodesic instabilities in a geometrical approach to the planar three-body problem

    NASA Astrophysics Data System (ADS)

    Krishnaswami, Govind S.; Senapati, Himalaya

    2016-10-01

    The Maupertuis principle allows us to regard classical trajectories as reparametrized geodesics of the Jacobi-Maupertuis (JM) metric on configuration space. We study this geodesic reformulation of the planar three-body problem with both Newtonian and attractive inverse-square potentials. The associated JM metrics possess translation and rotation isometries in addition to scaling isometries for the inverse-square potential with zero energy E. The geodesic flow on the full configuration space ℂ3 (with collision points excluded) leads to corresponding flows on its Riemannian quotients: the center of mass configuration space ℂ2 and shape space ℝ3 (as well as 𝕊3 and the shape sphere 𝕊2 for the inverse-square potential when E = 0). The corresponding Riemannian submersions are described explicitly in "Hopf" coordinates which are particularly adapted to the isometries. For equal masses subject to inverse-square potentials, Montgomery shows that the zero-energy "pair of pants" JM metric on the shape sphere is geodesically complete and has negative gaussian curvature except at Lagrange points. We extend this to a proof of boundedness and strict negativity of scalar curvatures everywhere on ℂ2, ℝ3, and 𝕊3 with collision points removed. Sectional curvatures are also found to be largely negative, indicating widespread geodesic instabilities. We obtain asymptotic metrics near collisions, show that scalar curvatures have finite limits, and observe that the geodesic reformulation "regularizes" pairwise and triple collisions on ℂ2 and its quotients for arbitrary masses and allowed energies. For the Newtonian potential with equal masses and zero energy, we find that the scalar curvature on ℂ2 is strictly negative though it could have either sign on ℝ3. However, unlike for the inverse-square potential, geodesics can encounter curvature singularities at collisions in finite geodesic time.

  18. Modulation of the spontaneous curvature and bending rigidity of lipid membranes by interfacially adsorbed amphipathic peptides.

    PubMed

    Zemel, Assaf; Ben-Shaul, Avinoam; May, Sylvio

    2008-06-12

    Amphipathic alpha-helical peptides are often ascribed an ability to induce curvature stress in lipid membranes. This may lead directly to a bending deformation of the host membrane, or it may promote the formation of defects that involve highly curved lipid layers present in membrane pores, fusion intermediates, and solubilized peptide-micelle complexes. The driving force is the same in all cases: peptides induce a spontaneous curvature in the host lipid layer, the sign of which depends sensitively on the peptide's structural properties. We provide a quantitative account for this observation on the basis of a molecular-level method. To this end, we consider a lipid membrane with peptides interfacially adsorbed onto one leaflet at high peptide-to-lipid ratio. The peptides are modeled generically as rigid cylinders that interact with the host membrane through a perturbation of the conformational properties of the lipid chains. Through the use of a molecular-level chain packing theory, we calculate the elastic properties, that is, the spontaneous curvature and bending stiffness, of the peptide-decorated lipid membrane as a function of the peptide's insertion depth. We find a positive spontaneous curvature (preferred bending of the membrane away from the peptide) for small penetration depths of the peptide. At a penetration depth roughly equal to half-insertion into the hydrocarbon core, the spontaneous curvature changes sign, implying negative spontaneous curvature (preferred bending of the membrane toward the peptide) for large penetration depths. Despite thinning of the membrane upon peptide insertion, we find an increase in the bending stiffness. We discuss these findings in terms of how the peptide induces elastic stress.

  19. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials.

    PubMed

    Li, Wei; Coppens, Zachary J; Besteiro, Lucas V; Wang, Wenyi; Govorov, Alexander O; Valentine, Jason

    2015-09-22

    Circularly polarized light is utilized in various optical techniques and devices. However, using conventional optical systems to generate, analyse and detect circularly polarized light involves multiple optical elements, making it challenging to realize miniature and integrated devices. While a number of ultracompact optical elements for manipulating circularly polarized light have recently been demonstrated, the development of an efficient and highly selective circularly polarized light photodetector remains challenging. Here we report on an ultracompact circularly polarized light detector that combines large engineered chirality, realized using chiral plasmonic metamaterials, with hot electron injection. We demonstrate the detector's ability to distinguish between left and right hand circularly polarized light without the use of additional optical elements. Implementation of this photodetector could lead to enhanced security in fibre and free-space communication, as well as emission, imaging and sensing applications for circularly polarized light using a highly integrated photonic platform.

  20. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials

    PubMed Central

    Li, Wei; Coppens, Zachary J.; Besteiro, Lucas V.; Wang, Wenyi; Govorov, Alexander O.; Valentine, Jason

    2015-01-01

    Circularly polarized light is utilized in various optical techniques and devices. However, using conventional optical systems to generate, analyse and detect circularly polarized light involves multiple optical elements, making it challenging to realize miniature and integrated devices. While a number of ultracompact optical elements for manipulating circularly polarized light have recently been demonstrated, the development of an efficient and highly selective circularly polarized light photodetector remains challenging. Here we report on an ultracompact circularly polarized light detector that combines large engineered chirality, realized using chiral plasmonic metamaterials, with hot electron injection. We demonstrate the detector's ability to distinguish between left and right hand circularly polarized light without the use of additional optical elements. Implementation of this photodetector could lead to enhanced security in fibre and free-space communication, as well as emission, imaging and sensing applications for circularly polarized light using a highly integrated photonic platform. PMID:26391292

  1. 78 FR 14620 - Joint Development: Proposed Circular

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-06

    ... Federal Transit Administration Joint Development: Proposed Circular AGENCY: Federal Transit Administration... the form of a circular, on joint development. This circular provides guidance to recipients of Federal... joint development. This circular: (1) Defines the term ``joint development''; ] (2) explains how to...

  2. Membrane-Mediated Aggregation of Curvature-Inducing Nematogens and Membrane Tubulation

    PubMed Central

    Ramakrishnan, N.; Sunil Kumar, P.B.; Ipsen, John H.

    2013-01-01

    The shapes of cell membranes are largely regulated by membrane-associated, curvature-active proteins. Herein, we use a numerical model of the membrane, recently developed by us, with elongated membrane inclusions possessing spontaneous directional curvatures that could be different along, and perpendicular to, the membrane’s long axis. We show that, due to membrane-mediated interactions, these curvature-inducing membrane-nematogens can aggregate spontaneously, even at low concentrations, and change the local shape of the membrane. We demonstrate that for a large group of such inclusions, where the two spontaneous curvatures have equal sign, the tubular conformation and sometimes the sheet conformation of the membrane are the common equilibrium shapes. We elucidate the factors necessary for the formation of these protein lattices. Furthermore, the elastic properties of the tubes, such as their compressional stiffness and persistence length, are calculated. Finally, we discuss the possible role of nematic disclination in capping and branching of the tubular membranes. PMID:23473484

  3. Membrane-mediated aggregation of curvature-inducing nematogens and membrane tubulation.

    PubMed

    Ramakrishnan, N; Sunil Kumar, P B; Ipsen, John H

    2013-03-05

    The shapes of cell membranes are largely regulated by membrane-associated, curvature-active proteins. Herein, we use a numerical model of the membrane, recently developed by us, with elongated membrane inclusions possessing spontaneous directional curvatures that could be different along, and perpendicular to, the membrane's long axis. We show that, due to membrane-mediated interactions, these curvature-inducing membrane-nematogens can aggregate spontaneously, even at low concentrations, and change the local shape of the membrane. We demonstrate that for a large group of such inclusions, where the two spontaneous curvatures have equal sign, the tubular conformation and sometimes the sheet conformation of the membrane are the common equilibrium shapes. We elucidate the factors necessary for the formation of these protein lattices. Furthermore, the elastic properties of the tubes, such as their compressional stiffness and persistence length, are calculated. Finally, we discuss the possible role of nematic disclination in capping and branching of the tubular membranes. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. A Direct Estimate of the Spatial Curvature of the Universe

    NASA Astrophysics Data System (ADS)

    Rosquist, Kjell; Samuelsson, Lars

    The main idea of this contribution is to calculate the average spatial curvature directly from the observed mass distribution of the universe. In short, our philosophy is that the curvature of the universe is generated solely by the matter it contains. Although this may seem as self-evident in the context of general relativity, the usual practice in cosmology is rather to use a top-down approach in which the curvature is calculated indirectly using a prescribed matter distribution as a source of the Einstein equations. By contrast, our approach may be seen as part of a bottom-up approach. In practical terms, we first calculate the far field spatial curvature generated by an isolated matter distribution which is in arbitrary motion. At this stage we obtain the result that the sign of the spatial curvature is necessarily positive. For the spatial curvature generated by multiple sources we show that it is sufficient to use linearized theory to compute the leading contributions. In the matter dominated era the spatial curvature is then seen to be generated by local sources at small redshifts. This fact makes it possible to calculate the total spatial curvature just by summing up the contributions from the observed discrete mass distribution. A crude estimate gives a very small value for the curvature.

  5. Fringes of equal tangential inclination by curvature-induced birefringence

    NASA Astrophysics Data System (ADS)

    Medhat, M.; Hendawy, N. I.; Zaki, A. A.

    2003-02-01

    A new kind of interference fringes, fringes of equal tangential inclination by curvature-induced birefringence, is presented. These are two-beam interference fringes produced by bending a thin sheet of birefringent material into a part of an exact cylinder such that the curvature is constant. Due to this curvature there is a uniform birefringence being induced. The change in birefringence induced by applying different radii of curvatures to a Fortepan sheet is measured. The stored (fixed) or natural birefringence of this sheet is deduced.

  6. Plane wave gravitons, curvature singularities and string physics

    SciTech Connect

    Brooks, R. . Center for Theoretical Physics)

    1991-03-21

    This paper discusses bounded (compactifying) potentials arising from a conspiracy between plane wave graviton and dilaton condensates. So are string propagation and supersymmetry in spacetimes with curvature singularities.

  7. Evolving extrinsic curvature and the cosmological constant problem

    NASA Astrophysics Data System (ADS)

    Capistrano, Abraão J. S.; Cabral, Luis A.

    2016-10-01

    The concept of smooth deformation of Riemannian manifolds associated with the extrinsic curvature is explained and applied to the Friedmann-Lemaître-Robertson-Walker cosmology. We show that such deformation can be derived from the Einstein-Hilbert-like dynamical principle may produce an observable effect in the sense of Noether. As a result, we show how the extrinsic curvature compensates both quantitative and qualitative differences between the cosmological constant Λ and the vacuum energy {ρ }{vac} obtaining the observed upper bound for the cosmological constant problem at electroweak scale. The topological characteristics of the extrinsic curvature are discussed showing that the produced extrinsic scalar curvature is an evolving dynamical quantity.

  8. Inconsistency of scale invariant curvature coupled to gravity

    SciTech Connect

    Zoller, D.

    1990-01-01

    We show that the scale invariant curvature action for paths, the point particle version of Polyakov's extrinsic curvature action for surfaces, does not couple consistently to gravity. Although the curvature action for paths yields a massless representation of the Poincare group with fixed helicity and so potentially provides a description of single photons and gravitons, the inconsistent coupling to gravity apparently suggests such a description is not viable. We present a physical interpretation of the inconsistency in terms of the non-localizability of the photon and point out a conceptual kinship between the local symmetry of the curvature theory and the local supersymmetry of a spinning particle or spinning string. 11 refs.

  9. The curvature index and synchronization of dynamical systems.

    PubMed

    Chen, Yen-Sheng; Chang, Chien-Cheng

    2012-06-01

    We develop a quantity, named the curvature index, for dynamical systems. This index is defined as the limit of the average curvature of the trajectory during evolution, which measures the bending of the curve on an attractor. The curvature index has the ability to differentiate the topological change of an attractor, as its alterations exhibit the structural changes of a dynamical system. Thus, the curvature index may indicate thresholds of some synchronization regimes. The Rössler system and a time-delay system are simulated to demonstrate the effectiveness of the index, respectively.

  10. Multi-scale curvature tensor analysis of machined surfaces

    NASA Astrophysics Data System (ADS)

    Bartkowiak, Tomasz; Brown, Christopher

    2016-12-01

    This paper demonstrates the use of multi-scale curvature analysis, an areal new surface characterization technique for better understanding topographies, for analyzing surfaces created by conventional machining and grinding. Curvature, like slope and area, changes with scale of observation, or calculation, on irregular surfaces, therefore it can be used for multi-scale geometric analysis. Curvatures on a surface should be indicative of topographically dependent behavior of a surface and curvatures are, in turn, influenced by the processing and use of the surface. Curvatures have not been well characterized previously. Curvature has been used for calculations in contact mechanics and for the evaluation of cutting edges. In the current work two parts were machined and then one of them was ground. The surface topographies were measured with a scanning laser confocal microscope. Plots of curvatures as a function of position and scale are presented, and the means and standard deviations of principal curvatures are plotted as a function of scale. Statistical analyses show the relations between curvature and these two manufacturing processes at multiple scales.

  11. Hair curvature: a natural dialectic and review.

    PubMed

    Nissimov, Joseph N; Das Chaudhuri, Asit Baran

    2014-08-01

    Although hair forms (straight, curly, wavy, etc.) are present in apparently infinite variations, each fibre can be reduced to a finite sequence of tandem segments of just three types: straight, bent/curly, or twisted. Hair forms can thus be regarded as resulting from genetic pathways that induce, reverse or modulate these basic curvature modes. However, physical interconversions between twists and curls demonstrate that strict one-to-one correspondences between them and their genetic causes do not exist. Current hair-curvature theories do not distinguish between bending and twisting mechanisms. We here introduce a multiple papillary centres (MPC) model which is particularly suitable to explain twisting. The model combines previously known features of hair cross-sectional morphology with partially/completely separated dermal papillae within single follicles, and requires such papillae to induce differential growth rates of hair cortical material in their immediate neighbourhoods. The MPC model can further help to explain other, poorly understood, aspects of hair growth and morphology. Separate bending and twisting mechanisms would be preferentially affected at the major or minor ellipsoidal sides of fibres, respectively, and together they exhaust the possibilities for influencing hair-form phenotypes. As such they suggest dialectic for hair-curvature development. We define a natural-dialectic (ND) which could take advantage of speculative aspects of dialectic, but would verify its input data and results by experimental methods. We use this as a top-down approach to first define routes by which hair bending or twisting may be brought about and then review evidence in support of such routes. In particular we consider the wingless (Wnt) and mammalian target of rapamycin (mTOR) pathways as paradigm pathways for molecular hair bending and twisting mechanisms, respectively. In addition to the Wnt canonical pathway, the Wnt/Ca(2+) and planar cell polarity (PCP) pathways

  12. Circular dichroism techniques: biomolecular and nanostructural analyses- a review.

    PubMed

    Ranjbar, Bijan; Gill, Pooria

    2009-08-01

    This paper reviews the best known techniques using circular dichroism spectroscopy such as conventional circular dichroism (i.e. electronic circular dichroism), magnetic circular dichroisms (magnetic vibrational circular dichroism, x-ray magnetic circular dichroism), fluorescence detected circular dichroism, near-infrared circular dichroism, vibrational circular dichroism, Fourier transform infrared circular dichroism, high pressure liquid chromatography circular dichroism, stopped-flow circular dichroism, and synchrotron radiation circular dichroism. Also, we have described here the most important applications of circular dichroism spectroscopy in structural biochemistry and nanoscience.

  13. Circular RNAs in heart failure.

    PubMed

    Devaux, Yvan; Creemers, Esther E; Boon, Reinier A; Werfel, Stanislas; Thum, Thomas; Engelhardt, Stefan; Dimmeler, Stefanie; Squire, Iain

    2017-06-01

    Cardiovascular disease, and particularly heart failure, is still a serious health care issue for which novel treatments and biomarkers are needed. The RNA family comprises different subgroups, among which the small-sized microRNAs and the larger long non-coding RNAs have shown some potential to aid in moving personalized health care of heart failure patients a step forward. Here, members of the Cardiolinc network review the recent findings suggesting that the less well-known circular RNAs may constitute a novel reservoir of therapeutic targets and biomarkers of heart failure. The knowledge of the mode of biogenesis of circular RNAs will first be reported, followed by a description of different features that make these RNA molecules of interest for the heart failure community. The functions of circular RNAs in the heart will be described, with some emphasis given to their regulation in the failing heart. Circulating in the bloodstream, circular RNAs have appeared as potential biomarkers and recent findings associated with the use of circular RNAs as heart failure biomarkers will be discussed. Finally, some directions for future research will be provided. © 2017 The Authors. European Journal of Heart Failure © 2017 European Society of Cardiology.

  14. Individual muscle contributions to circular turning mechanics.

    PubMed

    Ventura, Jessica D; Klute, Glenn K; Neptune, Richard R

    2015-04-13

    Turning is an activity of daily living that involves both the acceleration of the body center-of-mass (COM) towards the center of curvature and rotation of the pelvis towards the new heading. The purpose of this study was to understand which muscles contribute to turning using experimentation, musculoskeletal modeling and simulation. Ten healthy adults consented to walk around a 1-m radius circular path at their self-selected walking speed and then along a straight line at the same speed. Forward dynamics simulations of the individual subjects during the turning and straight-line walking tasks were generated to identify the contributions of individual muscle groups to the body mediolateral and anterior-posterior COM acceleration impulse and to the pelvis angular acceleration impulse. The stance leg gluteus medius and ankle plantarflexor muscles and the swing leg adductor muscles were the primary contributors to redirect the body's COM relative to straight-line walking. In some cases, contributions to mediolateral COM acceleration were modulated through changes in leg orientation rather than through changes in muscle force. While modulation of the muscle contributions generally occurred in both the inner and outer legs, greater changes were observed during inner single-leg support than during outer single-leg support. Total pelvis angular acceleration was minimal during the single-support phase, but the swing leg muscles contributed significantly to balancing the internal and external rotation of the pelvis. The understanding of which muscles contribute to turning the body during walking may help guide the development of more effective locomotor therapies for those with movement impairments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Evidence of Cholesterol Accumulated in High Curvature Regions: Implication ot the Curvature Elastic Energy for Lipid Mixtures

    SciTech Connect

    Wang,W.; Yang, L.; Huang, H.

    2007-01-01

    Recent experiments suggested that cholesterol and other lipid components of high negative spontaneous curvature facilitate membrane fusion. This is taken as evidence supporting the stalk-pore model of membrane fusion in which the lipid bilayers go through intermediate structures of high curvature. How do the high-curvature lipid components lower the free energy of the curved structure? Do the high-curvature lipid components modify the average spontaneous curvature of the relevant monolayer, thereby facilitate its bending, or do the lipid components redistribute in the curved structure so as to lower the free energy? This question is fundamental to the curvature elastic energy for lipid mixtures. Here we investigate the lipid distribution in a monolayer of a binary lipid mixture before and after bending, or more precisely in the lamellar, hexagonal, and distorted hexagonal phases. The lipid mixture is composed of 2:1 ratio of brominated di18:0PC and cholesterol. Using a newly developed procedure for the multiwavelength anomalous diffraction method, we are able to isolate the bromine distribution and reconstruct the electron density distribution of the lipid mixture in the three phases. We found that the lipid distribution is homogenous and uniform in the lamellar and hexagonal phases. But in the distorted hexagonal phase, the lipid monolayer has nonuniform curvature, and cholesterol almost entirely concentrates in the high curvature region. This finding demonstrates that the association energies between lipid molecules vary with the curvature of membrane. Thus, lipid components in a mixture may redistribute under conditions of nonuniform curvature, such as in the stalk structure. In such cases, the spontaneous curvature depends on the local lipid composition and the free energy minimum is determined by lipid distribution as well as curvature.

  16. Structural Origin of Circularly Polarized Iridescence in Jeweled Beetles

    NASA Astrophysics Data System (ADS)

    Sharma, Vivek; Crne, Matija; Park, Jung Ok; Srinivasarao, Mohan

    2009-07-01

    The iridescent metallic green beetle, Chrysina gloriosa, which selectively reflects left circularly polarized light, possesses an exoskeleton decorated by hexagonal cells (~10 μm) that coexist with pentagons and heptagons. The fraction of hexagons decreases with an increase in curvature. In bright field microscopy, each cell contains a bright yellow core, placed in a greenish cell with yellowish border, but the core disappears in dark field. With use of confocal microscopy, we observe that these cells consist of nearly concentric nested arcs that lie on the surface of a shallow cone. We infer that the patterns are structurally and optically analogous to the focal conic domains formed spontaneously on the free surface of a cholesteric liquid crystal. These textures provide the basis for the morphogenesis as well as key insights for emulating the intricate optical response of the exoskeleton of scarab beetles.

  17. Structural origin of circularly polarized iridescence in jeweled beetles

    NASA Astrophysics Data System (ADS)

    Crne, Matija; Sharma, Vivek; Park, Jung O.; Srinivasarao, Mohan

    2010-03-01

    The iridescent metallic green beetle, Chrysina gloriosa, selectively reflects left circularly polarized light. The exoskeleton is decorated by hexagonal cells (˜10 micron) that coexist with pentagons and heptagons. We find that the fraction of hexagons decreases with an increase in curvature. In bright field microscopy, each cell contains a bright yellow core, placed in a greenish cell with yellowish border, but the core disappears in the dark field. Using confocal microscopy, we observe that these cells consist of nearly concentric, nested arcs that lie on surface of a shallow cone. We infer that the patterns are structurally and optically analogous to the focal conic domains formed spontaneously on the free surface of a cholesteric liquid crystal. The microstructure provides the bases for the morphogenesis as well as key insights for emulating the intricate optical response the exoskeleton of scarab beetles.

  18. Chiral surface waves for enhanced circular dichroism

    NASA Astrophysics Data System (ADS)

    Pellegrini, Giovanni; Finazzi, Marco; Celebrano, Michele; Duò, Lamberto; Biagioni, Paolo

    2017-06-01

    We present a novel chiral sensing platform that combines a one-dimensional photonic crystal design with a birefringent surface defect. The platform sustains simultaneous transverse electric and transverse magnetic surface modes, which are exploited to generate chiral surface waves. The present design provides homogeneous and superchiral fields of both handednesses over arbitrarily large areas in a wide spectral range, resulting in the enhancement of the circular dichroism signal by more than two orders of magnitude, thus paving the road toward the successful combination of surface-enhanced spectroscopies and electromagnetic superchirality.

  19. Curvature effects in thin magnetic shells.

    PubMed

    Gaididei, Yuri; Kravchuk, Volodymyr P; Sheka, Denis D

    2014-06-27

    A magnetic energy functional is derived for an arbitrary curved thin shell on the assumption that the magnetostatic effects can be reduced to an effective easy-surface anisotropy; it can be used for solving both static and dynamic problems. General static solutions are obtained in the limit of a strong anisotropy of both signs (easy-surface and easy-normal cases). It is shown that the effect of the curvature can be treated as the appearance of an effective magnetic field, which is aligned along the surface normal for the case of easy-surface anisotropy and is tangential to the surface for the case of easy-normal anisotropy. In general, the existence of such a field excludes the solutions that are strictly tangential or strictly normal to the surface. As an example, we consider static equilibrium solutions for a cone surface magnetization.

  20. Hawking temperature of constant curvature black holes

    SciTech Connect

    Cai Ronggen; Myung, Yun Soo

    2011-05-15

    The constant curvature (CC) black holes are higher dimensional generalizations of Banados-Teitelboim-Zanelli black holes. It is known that these black holes have the unusual topology of M{sub D-1}xS{sup 1}, where D is the spacetime dimension and M{sub D-1} stands for a conformal Minkowski spacetime in D-1 dimensions. The unusual topology and time-dependence for the exterior of these black holes cause some difficulties to derive their thermodynamic quantities. In this work, by using a globally embedding approach, we obtain the Hawking temperature of the CC black holes. We find that the Hawking temperature takes the same form when using both the static and global coordinates. Also, it is identical to the Gibbons-Hawking temperature of the boundary de Sitter spaces of these CC black holes.

  1. Band geometry, Berry curvature, and superfluid weight

    NASA Astrophysics Data System (ADS)

    Liang, Long; Vanhala, Tuomas I.; Peotta, Sebastiano; Siro, Topi; Harju, Ari; Törmä, Päivi

    2017-01-01

    We present a theory of the superfluid weight in multiband attractive Hubbard models within the Bardeen-Cooper-Schrieffer (BCS) mean-field framework. We show how to separate the geometric contribution to the superfluid weight from the conventional one, and that the geometric contribution is associated with the interband matrix elements of the current operator. Our theory can be applied to systems with or without time-reversal symmetry. In both cases the geometric superfluid weight can be related to the quantum metric of the corresponding noninteracting systems. This leads to a lower bound on the superfluid weight given by the absolute value of the Berry curvature. We apply our theory to the attractive Kane-Mele-Hubbard and Haldane-Hubbard models, which can be realized in ultracold atom gases. Quantitative comparisons are made to state of the art dynamical mean-field theory and exact diagonalization results.

  2. Nonminimal coupling of perfect fluids to curvature

    SciTech Connect

    Bertolami, Orfeu; Lobo, Francisco S. N.; Paramos, Jorge

    2008-09-15

    In this work, we consider different forms of relativistic perfect fluid Lagrangian densities that yield the same gravitational field equations in general relativity (GR). A particularly intriguing example is the case with couplings of the form [1+f{sub 2}(R)]L{sub m}, where R is the scalar curvature, which induces an extra force that depends on the form of the Lagrangian density. It has been found that, considering the Lagrangian density L{sub m}=p, where p is the pressure, the extra-force vanishes. We argue that this is not the unique choice for the matter Lagrangian density, and that more natural forms for L{sub m} do not imply the vanishing of the extra force. Particular attention is paid to the impact on the classical equivalence between different Lagrangian descriptions of a perfect fluid.

  3. Supermarkets and unhealthy food marketing: An international comparison of the content of supermarket catalogues/circulars.

    PubMed

    Charlton, Emma L; Kähkönen, Laila A; Sacks, Gary; Cameron, Adrian J

    2015-12-01

    Supermarket marketing activities have a major influence on consumer food purchases. This study aimed to assess and compare the contents of supermarket marketing circulars from a range of countries worldwide from an obesity prevention perspective. The contents of supermarket circulars from major supermarket chains in 12 non-random countries were collected and analysed over an eight week period from July to September 2014 (n=89 circulars with 12,563 food products). Circulars were largely English language and from countries representing most continents. Food products in 25 sub-categories were categorised as discretionary or non-discretionary (core) food or drinks based on the Australian Guide to Healthy Eating. The total number of products in each subcategory in the whole circular, and on front covers only, was calculated. Circulars from most countries advertised a high proportion of discretionary foods. The only exceptions were circulars from the Philippines (no discretionary foods) and India (11% discretionary food). Circulars from six countries advertised more discretionary foods than core foods. Front covers tended to include a much greater proportion of healthy products than the circulars overall. Supermarket circulars in most of the countries examined include a high percentage of discretionary foods, and therefore promote unhealthy eating behaviours that contribute to the global obesity epidemic. A clear opportunity exists for supermarket circulars to promote rather than undermine healthy eating behaviours of populations. Governments need to ensure that supermarket marketing is included as part of broader efforts to restrict unhealthy food marketing. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Photoelectron circular dichroism of isopropanolamine

    NASA Astrophysics Data System (ADS)

    Catone, D.; Turchini, S.; Contini, G.; Prosperi, T.; Stener, M.; Decleva, P.; Zema, N.

    2017-01-01

    Spectroscopies based on circular polarized light are sensitive to the electronic and structural properties of chiral molecules. Photoelectron circular dichroism (PECD) is a powerful technique that combines the chiral sensitivity of the circular polarized light and the electronic information obtained by photoelectron spectroscopy. An experimental and theoretical PECD study of the outer valence and C 1s core states of 1-amino-2-propanol in the gas phase is presented. The experimental dichroic dispersions in the photoelectron kinetic energy are compared with theoretical calculations employing a multicentric basis set of B-spline functions and a Kohn-Sham Hamiltonian. In order to understand analogies and differences in the dichroism of structural isomers bearing the same functional groups, a comparison with previous PECD study of valence band of 2-amino-1-propanol is carried out.

  5. Circular piezoelectric bender laser tuners

    NASA Technical Reports Server (NTRS)

    Mcelroy, J. H.; Thompson, P. E.; Walker, H. E.; Johnson, E. H.; Radecki, D. J.; Reynolds, R. S.

    1972-01-01

    The circular piezoelectric bender laser tuner to replace conventional laser tuners when mirror diameters up to 0.50 inch are sufficient is described. The circular piezoelectric bender laser tuner offers much higher displacements per applied volt and permits laser control circuits to be fabricated using standard operational amplifiers, rather than the expensive high-voltage amplifiers required by conventional tuners. The cost of the device is more than one order of magnitude lower than conventional tuners and the device is very rugged with all mechanical resonances easily designed to be greater than 3kHz. In addition to its use as a laser frequency tuner, the circular bender tuner should find many applications in interferometers and similar devices.

  6. Electron acceleration at a coronal shock propagating through a large-scale streamer-like magnetic field

    SciTech Connect

    Kong, Xiangliang; Chen, Yao; Guo, Fan; Feng, Shiwei; Du, Guohui; Li, Gang

    2016-04-05

    With a test-particle simulation, we investigate the effect of large-scale coronal magnetic fields on electron acceleration at an outward-propagating coronal shock with a circular front. The coronal field is approximated by an analytical solution with a streamer-like magnetic field featured by partially open magnetic field and a current sheet at the equator atop the closed region. We show that the large-scale shock-field configuration, especially the relative curvature of the shock and the magnetic field line across which the shock is sweeping, plays an important role in the efficiency of electron acceleration. At low shock altitudes, when the shock curvature is larger than that of magnetic field lines, the electrons are mainly accelerated at the shock flanks; at higher altitudes, when the shock curvature is smaller, the electrons are mainly accelerated at the shock nose around the top of closed field lines. The above process reveals the shift of efficient electron acceleration region along the shock front during its propagation. We also found that in general the electron acceleration at the shock flank is not so efficient as that at the top of closed field since at the top a collapsing magnetic trap can be formed. In addition, we find that the energy spectra of electrons is power-law like, first hardening then softening with the spectral index varying in a range of -3 to -6. In conclusion, physical interpretations of the results and implications on the study of solar radio bursts are discussed.

  7. Paired circularly polarized heterodyne ellipsometer

    SciTech Connect

    Yu, C.-J.; Lin, C.-E.; Yu, L.-P.; Chou, C

    2009-02-01

    We develop a paired circularly polarized heterodyne ellipsometer (PCPHE), in which a heterodyne interferometer based on a two-frequency circularly polarized laser beam is set up. It belongs to an amplitude-sensitive ellipsometer that is able to provide not only a wider dynamic range of polarization modulation frequency but also a higher detection sensitivity than that of a conventional photometric ellipsometer. A real-time and precise measurement of ellipsometric parameters, which demonstrated an accuracy of less than 1 nm on thickness measurement of SiO2 thin film deposited on silicon substrate, can be applied with the PCPHE.

  8. Logistic regression for circular data

    NASA Astrophysics Data System (ADS)

    Al-Daffaie, Kadhem; Khan, Shahjahan

    2017-05-01

    This paper considers the relationship between a binary response and a circular predictor. It develops the logistic regression model by employing the linear-circular regression approach. The maximum likelihood method is used to estimate the parameters. The Newton-Raphson numerical method is used to find the estimated values of the parameters. A data set from weather records of Toowoomba city is analysed by the proposed methods. Moreover, a simulation study is considered. The R software is used for all computations and simulations.

  9. Turbulent boundary layers along straight and curved long thin circular cylinders at low angles-of-incidence

    NASA Astrophysics Data System (ADS)

    Jordan, Stephen A.

    2016-05-01

    Long thin circular cylinders commonly serve as towed sonar tracking devices, where the radius-of-curvature along the longitudinal axis is quite low [ρr = O(10-4)]. Because no understanding presently exists about the direct impact of longitudinal curvature on the turbulent statistics, the long cylinder is simply viewed as a chain of straight segments at various (increasing then decreasing) small inclinations to the freestream direction. Realistically, even our statistical evidence along straight thin cylinders at low incidence angles is inadequate to build solid evidence towards forming reliable empirical models. In the present study, we address these shortcomings by executing Large-Eddy Simulations (LESs) of straight and longitudinally curved thin cylinders at low to moderate turbulent radius-based Reynolds numbers (500 ≤ Rea ≤ 3500) and small angles-of-incidence (α = 0° → 9°). Coupled with the previous experimental measurements and numerical results, the new expanded database (311 ≤ Rea ≤ 56 500) delivered sufficient means to propose power-law expressions for the longitudinal evolution of the skin friction, normal drag, and turbulent boundary layer (TBL) length scales. Surprisingly, the LES computations of the curved cylinders at analogous geometric and kinematic conditions as the straight cylinder showed similar character in terms of the longitudinal skin friction. Beyond incidence 1°-3° (upper end corresponds to the highest simulated Rea), the skin friction was directly proportional to the yaw angle and monotonically shifted downward with higher Rea. Conversely, the flow structure, normal drag, TBL length scales, Reynolds stresses, and the separation state of the transverse shear layers towards regular vortex shedding for the curved cylinder were highly dissimilar than the straight one at equivalent incidence angles.

  10. Coherent gradient sensing method and system for measuring surface curvature

    NASA Technical Reports Server (NTRS)

    Rosakis, Ares J. (Inventor); Singh, Ramen P. (Inventor); Kolawa, Elizabeth (Inventor); Moore, Jr., Nicholas R. (Inventor)

    2000-01-01

    A system and method for determining a curvature of a specularly reflective surface based on optical interference. Two optical gratings are used to produce a spatial displacement in an interference field of two different diffraction components produced by one grating from different diffraction components produced by another grating. Thus, the curvature of the surface can be determined.

  11. Gaussian and mean curvatures for discrete asymptotic nets

    NASA Astrophysics Data System (ADS)

    Schief, W. K.

    2017-04-01

    We propose discretisations of Gaussian and mean curvatures of surfaces parametrised in terms of asymptotic coordinates and examine their relevance in the context of integrable discretisations of classical classes of surfaces and their underlying integrable systems. We also record discrete analogues of the classical relation between the Gaussian curvature of hyperbolic surfaces and the torsion of their asymptotic lines.

  12. Effects of curvature on asymmetric steady states in catalyst particles

    SciTech Connect

    Lucier, B J

    1981-02-01

    The effects of curvature on steady states of chemical catalytic reactions are investigated by studying the cases of the catalytic particle being a spherical or cylindrical shell. Existence and stability of solutions are studied. It is shown that the solutions converge to the solutions for the catalytic slab when the curvature goes to 0 in each case.

  13. The development of curvature in the porcine radioulna.

    PubMed

    Pantinople, Jess; McCabe, Kyle; Henderson, Keith; Richards, Hazel L; Milne, Nick

    2017-01-01

    Long bone curvature in animal limbs has long been a subject of interest and much work has explored why long bones should be curved. However, the 'when' and 'how' of curvature development is poorly understood. It has been shown that the rat tibia fails to attain its normal curvature if the action of muscles is removed early in life, but it is not clear if this is because the curvature fails to develop or if the bone becomes straighter without the action of muscles. No studies have examined the development of bone curvature in a normally developing quadruped, so this study tracks the course of curvature formation in the radioulna in a series of growing pigs. We also histologically examined the epiphyseal growth plates of these bones to determine if they contribute to the formation of curvature. In all three epiphyseal plates examined, the proliferative zone is thicker and more densely populated with chondrocytes on the cranial (convex) side than the caudal (concave) side. Frost's chondral modelling theory would suggest that the cranial side of the bone is under more compression than the caudal side, and we conclude that this is due to the action of triceps extending the elbow by pulling on the olecranon process. These results support the idea that bone curvature is an adaptation to habitual loading, where longitudinal loads acting on the curved bone cause bending strains that counter the bending resulting from the habitual muscle action.

  14. Maximal dinucleotide and trinucleotide circular codes.

    PubMed

    Michel, Christian J; Pellegrini, Marco; Pirillo, Giuseppe

    2016-01-21

    We determine here the number and the list of maximal dinucleotide and trinucleotide circular codes. We prove that there is no maximal dinucleotide circular code having strictly less than 6 elements (maximum size of dinucleotide circular codes). On the other hand, a computer calculus shows that there are maximal trinucleotide circular codes with less than 20 elements (maximum size of trinucleotide circular codes). More precisely, there are maximal trinucleotide circular codes with 14, 15, 16, 17, 18 and 19 elements and no maximal trinucleotide circular code having less than 14 elements. We give the same information for the maximal self-complementary dinucleotide and trinucleotide circular codes. The amino acid distribution of maximal trinucleotide circular codes is also determined.

  15. Holographic curvature perturbations in a cosmology with a space-like singularity

    SciTech Connect

    Ferreira, Elisa G.M.; Brandenberger, Robert

    2016-07-19

    We study the evolution of cosmological perturbations in an anti-de-Sitter (AdS) bulk through a cosmological singularity by mapping the dynamics onto the boundary conformal fields theory by means of the AdS/CFT correspondence. We consider a deformed AdS space-time obtained by considering a time-dependent dilaton which induces a curvature singularity in the bulk at a time which we call t=0, and which asymptotically approaches AdS both for large positive and negative times. The boundary field theory becomes free when the bulk curvature goes to infinity. Hence, the evolution of the fluctuations is under better controle on the boundary than in the bulk. To avoid unbounded particle production across the bounce it is necessary to smooth out the curvature singularity at very high curvatures. We show how the bulk cosmological perturbations can be mapped onto boundary gauge field fluctuations. We evolve the latter and compare the spectrum of fluctuations on the infrared scales relevant for cosmological observations before and after the bounce point. We find that the index of the power spectrum of fluctuations is the same before and after the bounce.

  16. An experimental investigation of the supersonic turbulent boundary layer subjected to concave curvature

    NASA Astrophysics Data System (ADS)

    Wang, Qian-cheng; Wang, Zhen-guo; Zhao, Yu-xin

    2016-09-01

    By employing particle image velocimetry, the response of a Mach 2.95 turbulent boundary layer to the concave curvature is experimentally investigated. The radius of the concave wall is 350 mm, and the turning angle is 20∘. Logarithmic law is well preserved in the profile of streamwise velocity at all streamwise positions despite the impact of curvature. The varying trend of principal strain rate is found to be different at different heights within the boundary layer, which cannot be explained by the suggestion given by former researchers. Based on the three-layer model proposed in this paper, distribution of the principal strain rate is carefully analyzed. The streamwise increase of wall friction is suggested to be brought by the increase of velocity gradient in the thin subsonic layer. Increases of the static temperature and the related sound speed are responsible for that. Larger correlated turbulent motions could be introduced by the concave curvature. The probability density histograms of streamwise velocity reveal that the large scale hairpin packets are statistically well organized. The concave curvature is found to have the potential of reinforcing the organization, which explains the increase of turbulent level in the supersonic concave boundary layer.

  17. Test of the FLRW Metric and Curvature with Strong Lens Time Delays

    NASA Astrophysics Data System (ADS)

    Liao, Kai; Li, Zhengxiang; Wang, Guo-Jian; Fan, Xi-Long

    2017-04-01

    We present a new model-independent strategy for testing the Friedmann-Lemaître-Robertson-Walker (FLRW) metric and constraining cosmic curvature, based on future time-delay measurements of strongly lensed quasar-elliptical galaxy systems from the Large Synoptic Survey Telescope and supernova observations from the Dark Energy Survey. The test only relies on geometric optics. It is independent of the energy contents of the universe and the validity of the Einstein equation on cosmological scales. The study comprises two levels: testing the FLRW metric through the distance sum rule (DSR) and determining/constraining cosmic curvature. We propose an effective and efficient (redshift) evolution model for performing the former test, which allows us to concretely specify the violation criterion for the FLRW DSR. If the FLRW metric is consistent with the observations, then on the second level the cosmic curvature parameter will be constrained to ˜0.057 or ˜0.041 (1σ), depending on the availability of high-redshift supernovae, which is much more stringent than current model-independent techniques. We also show that the bias in the time-delay method might be well controlled, leading to robust results. The proposed method is a new independent tool for both testing the fundamental assumptions of homogeneity and isotropy in cosmology and for determining cosmic curvature. It is complementary to cosmic microwave background plus baryon acoustic oscillation analyses, which normally assume a cosmological model with dark energy domination in the late-time universe.

  18. Role of curvatures in determining the characteristics of a string vibrating against a doubly curved obstacle

    NASA Astrophysics Data System (ADS)

    Singh, Harkirat; Wahi, Pankaj

    2017-08-01

    The motion of a string in the presence of a doubly curved obstacle is investigated. A mathematical model has been developed for a general shape of the obstacle. However, detailed analysis has been performed for a shape relevant to the Indian stringed musical instruments like Tanpura and Sitar. In particular, we explore the effect of obstacle's curvature in the plane perpendicular to the string axis on its motion. This geometrical feature of the obstacle introduces a coupling between motions in mutually perpendicular directions over and above the coupling due to the stretching nonlinearity. We find that only one planar motion is possible for our system. Small amplitude planar motions are stable to perturbations in the perpendicular direction resulting in non-whirling motions while large amplitude oscillations lead to whirling motions. The critical amplitude of oscillations, across which there is a transition in the qualitative behavior of the non-planar trajectories, is determined using Floquet theory. Our analysis reveals that a small obstacle curvature in a direction perpendicular to the string axis leads to a considerable reduction in the critical amplitudes required for initiation of whirling motions. Hence, this obstacle curvature has a destabilizing effect on the planar motions in contrast to the curvature along the string axis which stabilizes planar motions.

  19. Combined Effects of Flow Diverting Strategies and Parent Artery Curvature on Aneurysmal Hemodynamics: A CFD Study.

    PubMed

    Xu, Jinyu; Wu, Zhichen; Yu, Ying; Lv, Nan; Wang, Shengzhang; Karmonik, Christof; Liu, Jian-Min; Huang, Qinghai

    2015-01-01

    Flow diverters (FD) are increasingly being considered for treating large or giant wide-neck aneurysms. Clinical outcome is highly variable and depends on the type of aneurysm, the flow diverting device and treatment strategies. The objective of this study was to analyze the effect of different flow diverting strategies together with parent artery curvature variations on altering intra-aneurysmal hemodynamics. Four ideal intracranial aneurysm models with different parent artery curvature were constructed. Computational fluid dynamics (CFD) simulations of the hemodynamics before and after applying five types of flow diverting strategies (single FD, single FD with 5% and 10% packing density of coils, two FDs with 25% and 50% overlapping rate) were performed. Changes in pressure, wall shear stress (WSS), relative residence time (RRT), inflow velocity and inflow volume rate were calculated and compared. Each flow diverting strategy resulted in enhancement of RRT and reduction of normalized mean WSS, inflow volume rate and inflow velocity in various levels. Among them, 50% overlapped FD induced most effective hemodynamic changes in RRT and inflow volume rate. The mean pressure only slightly decreased after treatment. Regardless of the kind of implantation of FD, the mean pressure, inflow volume rate and inflow velocity increased and the RRT decreased as the curvature of the parent artery increased. Of all flow diverting strategies, overlapping FDs induced most favorable hemodynamic changes. Hemodynamics alterations post treatment were substantially influenced by parent artery curvature. Our results indicate the need of an individualized flow diverting strategy that is tailored for a specific aneurysm.

  20. Molecular Modeling of Lipid Membrane Curvature Induction by a Peptide: More than Simply Shape

    PubMed Central

    Sodt, Alexander J.; Pastor, Richard W.

    2014-01-01

    Molecular dynamics simulations of an amphipathic helix embedded in a lipid bilayer indicate that it will induce substantial positive curvature (e.g., a tube of diameter 20 nm at 16% surface coverage). The induction is twice that of a continuum model prediction that only considers the shape of the inclusion. The discrepancy is explained in terms of the additional presence of specific interactions described only by the molecular model. The conclusion that molecular shape alone is insufficient to quantitatively model curvature is supported by contrasting molecular and continuum models of lipids with large and small headgroups (choline and ethanolamine, respectively), and of the removal of a lipid tail (modeling a lyso-lipid). For the molecular model, curvature propensity is analyzed by computing the derivative of the free energy with respect to bending. The continuum model predicts that the inclusion will soften the bilayer near the headgroup region, an effect that may weaken curvature induction. The all-atom predictions are consistent with experimental observations of the degree of tubulation by amphipathic helices and variation of the free energy of binding to liposomes. PMID:24806928

  1. Molecular modeling of lipid membrane curvature induction by a peptide: more than simply shape.

    PubMed

    Sodt, Alexander J; Pastor, Richard W

    2014-05-06

    Molecular dynamics simulations of an amphipathic helix embedded in a lipid bilayer indicate that it will induce substantial positive curvature (e.g., a tube of diameter 20 nm at 16% surface coverage). The induction is twice that of a continuum model prediction that only considers the shape of the inclusion. The discrepancy is explained in terms of the additional presence of specific interactions described only by the molecular model. The conclusion that molecular shape alone is insufficient to quantitatively model curvature is supported by contrasting molecular and continuum models of lipids with large and small headgroups (choline and ethanolamine, respectively), and of the removal of a lipid tail (modeling a lyso-lipid). For the molecular model, curvature propensity is analyzed by computing the derivative of the free energy with respect to bending. The continuum model predicts that the inclusion will soften the bilayer near the headgroup region, an effect that may weaken curvature induction. The all-atom predictions are consistent with experimental observations of the degree of tubulation by amphipathic helices and variation of the free energy of binding to liposomes. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Application of the normalized curvature ratio to an in-service structure

    NASA Astrophysics Data System (ADS)

    Kliewer, Kaitlyn; Glisic, Branko

    2017-04-01

    Fiber optic sensors (FOS) offer numerous advantages for structural health monitoring. In addition to being durable, lightweight, and capable of multiplexing, they offer the ability to simultaneously monitor both static and dynamic strain. FOS also allow for the instrumentation of large areas of a structure with long-gages sensors which helps enable global monitoring of the structure. Drawing upon these benefits, the Normalized Curvature Ratio (NCR), a curvature based damage detection method, has been developed. This method utilizes a series of long-gage fiber Bragg grating (FBG) strain sensors for damage detection of a structure through dynamic strain measurements and curvature analysis. While dynamic SHM methods typically rely up frequency and acceleration based analysis, it has been found that strain and curvature based analysis may be a more reliable means for structural monitoring. Previous research was performed through small scale experimental testing and analytical models were developed and provided promising results for the NCR as a potential damage sensitive feature. Based on this success, this research focuses on the application of the NCR to an existing in-service structure, the US202/NJ23 highway overpass located in Wayne, NJ. The overpass is currently instrumented with a series of long-gage FBG strains sensors and periodic strain measurements for dynamic events induced by heavy weight vehicles have been recorded for more than 5 years. This research shows encouraging results and the potential for the NCR to be used as a simplistic metric for damage detection using FBG strain sensors.

  3. Using Surface Curvature to Control the Dimerization of a Surface-Active Protein

    NASA Astrophysics Data System (ADS)

    Kurylowicz, Martin; Giuliani, Maximiliano; Dutcher, John

    2012-02-01

    Understanding the influence of surface geometry on adsorbed proteins promises new possibilities in biophysics, such as topographical catalysis, molecular recognition of geometric cues, and modulations of oligomerization or ligand binding. We have created nano-textured hydrophobic surfaces that are stable in buffer by spin coating polystyrene (PS) nanoparticles (NPs) to form patchy NP monolayers on a PS substrate, yielding flat and highly curved areas on the same sample. Moreover, we have separated surface chemistry from texture by floating a 10 nm thick film of monodisperse PS onto the NP-functionalized surface. Using Single Molecule Force Spectroscopy we have compared in situ the distribution of detachment lengths for proteins on curved surfaces to that measured on flat surfaces. We have shown that β-Lactoglobulin (β-LG), a surface-active protein which helps to stabilize oil droplets in milk, forms dimers on both flat PS surfaces and surfaces with a radius of curvature of 100 nm, whereas β-LG monomers exist for more highly curved surfaces with radii of curvature of 25 and 40 nm. It is surprising that rather large radii of curvature have such a strong influence on proteins whose radius is only ˜2 nm. Furthermore, the transition from dimer to monomer with changes in surface curvature offers promising applications for proteins whose function can be modified by their oligomerization state.

  4. Interaction effect of number of circular holes in a circular plate

    SciTech Connect

    Ukadgaonker, V.G.; Agnahotri, N.A.

    1996-12-01

    The problem of circular tubesheet with uniform tension at its circular boundary and nine holes in the circular pitch pattern at its center is solved using complex stress functions. The Schwarz Alternating Technique is used to find the interaction effect of the holes on each other and then the superposition method is used to obtain desired geometry of the nine holes. This superposition gives the stress free boundary at the central hole exactly satisfied. When these results are compared with those obtained by Ukadgaonker and Kale by Finite Element Method it is found that the theoretical solutions give higher stress concentration than FEM by about 20% for a large outer radius. When the outer radius is reduced the stress concentration factor increases considerably and the difference in the analytical and the FEM solution also increases to a large extent. The analytical solution found in the present paper is verified with the FEM and Photoelasticity solution obtained by Ukadgaonker and Kale (1996) earlier. This problem is further generalized for a rhombic pitch pattern, which can be reduced to particular cases such as square pitch pattern, triangular pitch pattern, diagonal pitch pattern by changing the angle of the rhombus. The stress concentration factor around the central hole varies very little for various ligament efficiencies which is given in percentage.

  5. Surface Curvature in Island Groups and Discontinuous Cratonic Structures

    NASA Astrophysics Data System (ADS)

    McDowell, M. S.

    2002-05-01

    The Canadian Archipelago includes eight major islands and a host of smaller ones. They are separated by water bodies, of varying widths attributable to glacial activity and ocean currents. Land form varies from relatively rugged mountains (~2000 m) in eastern, glacial, islands, to low lying western, similar to the continental topography adjacent. The Arctic region is thought to have been low average elevation before the Pleistocene. To a picture puzzler, it all looks like it fit together. Experimentally cutting apart the islands from large scale maps shows that the rough edges match fairly well. However, when those independent pieces are sutured together, without restraint, as in free air, the fit is far better. Far more importantly, they consistently form a noticeably concave surface. This tendency is not at all apparent in flat surface or computer screen manipulation; the pieces need to be "hand joined" or on a molded surface to allow the assembly to freely form as it will. Fitting together the coastlines above 60 \\deg north, from 120 \\deg west to 45 \\deg east, and comparing the resulting contracted area to the original, obtains an 8 percent area reduction. The curvature "humps" a trial planar section of 15 cms by 1.6 cm, a substantial difference in the radius of curvature. If you rashly suggest applying that formula globally, the resulting sphere would have a surface area of 4.7 x108,(down from 5 x108), and therefore radius of 6117 km, down from 6400, which is a rather preposterous conclusion. As nobody would believe it, I tested the idea elsewhere. The Huronian succession of six named cratons is adjacent on the south. I cut this map apart, too, and fit it together, once again getting a curvature, this time more pronounced. I am trying it with the Indonesian Archipelago, although this area has volcanic complications, and with Precambrian Basins in western Australia and Nimibia, Africa. Indications are - an essentially similar pattern of fit, but non uniform

  6. Curvature-processing network in macaque visual cortex.

    PubMed

    Yue, Xiaomin; Pourladian, Irene S; Tootell, Roger B H; Ungerleider, Leslie G

    2014-08-19

    Our visual environment abounds with curved features. Thus, the goal of understanding visual processing should include the processing of curved features. Using functional magnetic resonance imaging in behaving monkeys, we demonstrated a network of cortical areas selective for the processing of curved features. This network includes three distinct hierarchically organized regions within the ventral visual pathway: a posterior curvature-biased patch (PCP) located in the near-foveal representation of dorsal V4, a middle curvature-biased patch (MCP) located on the ventral lip of the posterior superior temporal sulcus (STS) in area TEO, and an anterior curvature-biased patch (ACP) located just below the STS in anterior area TE. Our results further indicate that the processing of curvature becomes increasingly complex from PCP to ACP. The proximity of the curvature-processing network to the well-known face-processing network suggests a possible functional link between them.

  7. Curvature sensor based on a Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Monteiro, Catarina; Ferreira, Marta S.; Kobelke, Jens; Schuster, Kay; Bierlich, Jörg; Frazão, Orlando

    2016-05-01

    A curvature sensor based on a Fabry-Perot interferometer is proposed. A capillary tube of silica is fusion spliced between two single mode fibers, producing a Fabry-Perot cavity. The light propagates in air, when passing through the capillary tube. Two different cavities are subjected to curvature and temperature. The cavity with shorter length shows insensitivity to both measurands. The larger cavity shows two operating regions for curvature measurement, where a linear response is shown, with a maximum sensitivity of 18.77pm/m-1 for the high curvature radius range. When subjected to temperature, the sensing head produces a similar response for different curvature radius, with a sensitivity of 0.87pm/°C.

  8. Robust pupil center detection using a curvature algorithm

    NASA Technical Reports Server (NTRS)

    Zhu, D.; Moore, S. T.; Raphan, T.; Wall, C. C. (Principal Investigator)

    1999-01-01

    Determining the pupil center is fundamental for calculating eye orientation in video-based systems. Existing techniques are error prone and not robust because eyelids, eyelashes, corneal reflections or shadows in many instances occlude the pupil. We have developed a new algorithm which utilizes curvature characteristics of the pupil boundary to eliminate these artifacts. Pupil center is computed based solely on points related to the pupil boundary. For each boundary point, a curvature value is computed. Occlusion of the boundary induces characteristic peaks in the curvature function. Curvature values for normal pupil sizes were determined and a threshold was found which together with heuristics discriminated normal from abnormal curvature. Remaining boundary points were fit with an ellipse using a least squares error criterion. The center of the ellipse is an estimate of the pupil center. This technique is robust and accurately estimates pupil center with less than 40% of the pupil boundary points visible.

  9. Curvature-processing network in macaque visual cortex

    PubMed Central

    Yue, Xiaomin; Pourladian, Irene S.; Tootell, Roger B. H.; Ungerleider, Leslie G.

    2014-01-01

    Our visual environment abounds with curved features. Thus, the goal of understanding visual processing should include the processing of curved features. Using functional magnetic resonance imaging in behaving monkeys, we demonstrated a network of cortical areas selective for the processing of curved features. This network includes three distinct hierarchically organized regions within the ventral visual pathway: a posterior curvature-biased patch (PCP) located in the near-foveal representation of dorsal V4, a middle curvature-biased patch (MCP) located on the ventral lip of the posterior superior temporal sulcus (STS) in area TEO, and an anterior curvature-biased patch (ACP) located just below the STS in anterior area TE. Our results further indicate that the processing of curvature becomes increasingly complex from PCP to ACP. The proximity of the curvature-processing network to the well-known face-processing network suggests a possible functional link between them. PMID:25092328

  10. Nastic curvatures of wheat coleoptiles that develop in true microgravity.

    PubMed

    Heathcote, D G; Chapman, D K; Brown, A H

    1995-07-01

    Dark-grown wheat coleoptiles developed strong curvatures within 5 h of being transferred in orbit from a 1 g centrifuge to microgravity during an experiment flown on the IML-1 shuttle mission. The curving tendency was strongest in seedlings that were immature, with coleoptiles shorter than 10 mm at the time of transfer. The curvature direction was non-random, and directed away from the caryopsis (the coleptile face adjacent to the caryopsis becoming convex). The curvatures were most marked in the basal third of the coleoptiles, contrasting with phototropic responses, which occur in the apical third. We interpret these curvatures as being nastic, and related to the curvatures commonly reported to occur during clinostat rotation treatments.

  11. Curvature dependence of the interfacial heat and mass transfer coefficients

    NASA Astrophysics Data System (ADS)

    Glavatskiy, K. S.; Bedeaux, D.

    2014-03-01

    Nucleation is often accompanied by heat transfer between the surroundings and a nucleus of a new phase. The interface between two phases gives an additional resistance to this transfer. For small nuclei the interfacial curvature is high, which affects not only equilibrium quantities such as surface tension, but also the transport properties. In particular, high curvature affects the interfacial resistance to heat and mass transfer. We develop a framework for determining the curvature dependence of the interfacial heat and mass transfer resistances. We determine the interfacial resistances as a function of a curvature. The analysis is performed for a bubble of a one-component fluid and may be extended to various nuclei of multicomponent systems. The curvature dependence of the interfacial resistances is important in modeling transport processes in multiphase systems.

  12. Effects of Iris Surface Curvature on Iris Recognition

    SciTech Connect

    Thompson, Joseph T; Flynn, Patrick J; Bowyer, Kevin W; Santos-Villalobos, Hector J

    2013-01-01

    To focus on objects at various distances, the lens of the eye must change shape to adjust its refractive power. This change in lens shape causes a change in the shape of the iris surface which can be measured by examining the curvature of the iris. This work isolates the variable of iris curvature in the recognition process and shows that differences in iris curvature degrade matching ability. To our knowledge, no other work has examined the effects of varying iris curvature on matching ability. To examine this degradation, we conduct a matching experiment across pairs of images with varying degrees of iris curvature differences. The results show a statistically signi cant degradation in matching ability. Finally, the real world impact of these ndings is discussed

  13. Nastic curvatures of wheat coleoptiles that develop in true microgravity

    NASA Technical Reports Server (NTRS)

    Heathcote, D. G.; Chapman, D. K.; Brown, A. H.

    1995-01-01

    Dark-grown wheat coleoptiles developed strong curvatures within 5 h of being transferred in orbit from a 1 g centrifuge to microgravity during an experiment flown on the IML-1 shuttle mission. The curving tendency was strongest in seedlings that were immature, with coleoptiles shorter than 10 mm at the time of transfer. The curvature direction was non-random, and directed away from the caryopsis (the coleptile face adjacent to the caryopsis becoming convex). The curvatures were most marked in the basal third of the coleoptiles, contrasting with phototropic responses, which occur in the apical third. We interpret these curvatures as being nastic, and related to the curvatures commonly reported to occur during clinostat rotation treatments.

  14. Effect of curvature on cholesteric liquid crystals in toroidal geometries

    NASA Astrophysics Data System (ADS)

    Fialho, Ana R.; Bernardino, Nelson R.; Silvestre, Nuno M.; Telo da Gama, Margarida M.

    2017-01-01

    The confinement of liquid crystals inside curved geometries leads to exotic structures, with applications ranging from biosensors to optical switches and privacy windows. Here we study how curvature affects the alignment of a cholesteric liquid crystal. We model the system on the mesoscale using the Landau-de Gennes model. Our study was performed in three stages, analyzing different curved geometries from cylindrical walls and pores, to toroidal domains, in order to isolate the curvature effects. Our results show that the stresses introduced by the curvature influence the orientation of the liquid crystal molecules, and cause distortions in the natural periodicity of the cholesteric that depend on the radius of curvature, on the pitch, and on the dimensions of the system. In particular, the cholesteric layers of toroidal droplets exhibit a symmetry breaking not seen in cylindrical pores and that is driven by the additional curvature.

  15. Nastic curvatures of wheat coleoptiles that develop in true microgravity

    NASA Technical Reports Server (NTRS)

    Heathcote, D. G.; Chapman, D. K.; Brown, A. H.

    1995-01-01

    Dark-grown wheat coleoptiles developed strong curvatures within 5 h of being transferred in orbit from a 1 g centrifuge to microgravity during an experiment flown on the IML-1 shuttle mission. The curving tendency was strongest in seedlings that were immature, with coleoptiles shorter than 10 mm at the time of transfer. The curvature direction was non-random, and directed away from the caryopsis (the coleptile face adjacent to the caryopsis becoming convex). The curvatures were most marked in the basal third of the coleoptiles, contrasting with phototropic responses, which occur in the apical third. We interpret these curvatures as being nastic, and related to the curvatures commonly reported to occur during clinostat rotation treatments.

  16. Robust pupil center detection using a curvature algorithm

    NASA Technical Reports Server (NTRS)

    Zhu, D.; Moore, S. T.; Raphan, T.; Wall, C. C. (Principal Investigator)

    1999-01-01

    Determining the pupil center is fundamental for calculating eye orientation in video-based systems. Existing techniques are error prone and not robust because eyelids, eyelashes, corneal reflections or shadows in many instances occlude the pupil. We have developed a new algorithm which utilizes curvature characteristics of the pupil boundary to eliminate these artifacts. Pupil center is computed based solely on points related to the pupil boundary. For each boundary point, a curvature value is computed. Occlusion of the boundary induces characteristic peaks in the curvature function. Curvature values for normal pupil sizes were determined and a threshold was found which together with heuristics discriminated normal from abnormal curvature. Remaining boundary points were fit with an ellipse using a least squares error criterion. The center of the ellipse is an estimate of the pupil center. This technique is robust and accurately estimates pupil center with less than 40% of the pupil boundary points visible.

  17. Optimized TE01-to-TM11 mode conversion in highly overmoded circular waveguide at 70 and 140 GHz

    NASA Astrophysics Data System (ADS)

    Sturm, H.

    1985-06-01

    Mode coupling in bent, oversized, smoothly walled circular waveguides was studied by numerical integration of coupled-mode equations, to optimize high power TE01-to-TM11 mode transducers at 70 and 140 GHZ. Such transducers are used in the mode conversion sequence TE on to TE01 to TM11 to HE11 to generate the linearly polarized HE11 (Gaussianlike) mode from the circular electric TE on gyrotron mode. The balanced HE11 hydrid mode is ideal for electron cyclotron plasma heating in thermonuclear fusion research and for other technical applications. The lowest level of unwanted spurious modes is achieved with sinusoidal curvature distribution instead of constant curvature. The calculated efficiencies of 98.0% at 70 GHZ and 95.2% at 140 GHZ (inner diameter 27.79 mm, ohmic attenuation included) are in excellent agreement with the measured values (97.6% and 95%) respectively.

  18. The contractile ring coordinates curvature-dependent septum assembly during fission yeast cytokinesis

    PubMed Central

    Zhou, Zhou; Munteanu, Emilia Laura; He, Jun; Ursell, Tristan; Bathe, Mark; Huang, Kerwyn Casey; Chang, Fred

    2015-01-01

    The functions of the actin-myosin–based contractile ring in cytokinesis remain to be elucidated. Recent findings show that in the fission yeast Schizosaccharomyces pombe, cleavage furrow ingression is driven by polymerization of cell wall fibers outside the plasma membrane, not by the contractile ring. Here we show that one function of the ring is to spatially coordinate septum cell wall assembly. We develop an improved method for live-cell imaging of the division apparatus by orienting the rod-shaped cells vertically using microfabricated wells. We observe that the septum hole and ring are circular and centered in wild-type cells and that in the absence of a functional ring, the septum continues to ingress but in a disorganized and asymmetric manner. By manipulating the cleavage furrow into different shapes, we show that the ring promotes local septum growth in a curvature-dependent manner, allowing even a misshapen septum to grow into a more regular shape. This curvature-dependent growth suggests a model in which contractile forces of the ring shape the septum cell wall by stimulating the cell wall machinery in a mechanosensitive manner. Mechanical regulation of the cell wall assembly may have general relevance to the morphogenesis of walled cells. PMID:25355954

  19. Acoustic field of a pulsating cylinder in a rarefied gas: Thermoviscous and curvature effects

    NASA Astrophysics Data System (ADS)

    Ben Ami, Y.; Manela, A.

    2017-09-01

    We study the acoustic field of a circular cylinder immersed in a rarefied gas and subject to harmonic small-amplitude normal-to-wall displacement and heat-flux excitations. The problem is analyzed in the entire range of gas rarefaction rates and excitation frequencies, considering both single cylinder and coaxial cylinders setups. Numerical calculations are carried out via the direct simulation Monte Carlo method, applying a noniterative algorithm to impose the boundary heat-flux condition. Analytical predictions are obtained in the limits of ballistic- and continuum-flow conditions. Comparing with a reference inviscid continuum solution, the results illustrate the specific impacts of gas rarefaction and boundary curvature on the acoustic source efficiency. Inspecting the far-field properties of the generated disturbance, the continuum-limit solution exhibits an exponential decay of the signal with the distance from the source, reflecting thermoviscous effects, and accompanied by an inverse square-root decay, characteristic of the inviscid problem. Stronger attenuation is observed in the ballistic limit, where boundary curvature results in "geometric reduction" of the molecular layer affected by the source, and the signal vanishes at a distance of few acoustic wavelengths from the cylinder. The combined effects of mechanical and thermal excitations are studied to seek for optimal conditions to monitor the vibroacoustic signal. The impact of boundary curvature becomes significant in the ballistic-flow regime, where the optimal heat-flux amplitude required for sound reduction decreases with the distance from the source and is essentially a function of the acoustic-wavelength-scaled distance only.

  20. Class IIc or Circular Bacteriocins

    NASA Astrophysics Data System (ADS)

    Martin-Visscher, Leah A.; van Belkum, Marco J.; Vederas, John C.

    The circular bacteriocins produced by Gram-positive bacteria represent a diverse class of antimicrobial peptides. These bacteriocins display enhanced stability compared to linear bacteriocins, which arises from their characteristic circular backbone. Currently, eight unique circular bacteriocins have been identified, and analysis of their gene clusters indicates that they likely utilize complex mechanisms for maturation and secretion, as well as for immunity. These bacteriocins target the cytoplasmic membrane of sensitive cells, leading to pore formation that results in loss of ions, dissipation of membrane potential, and ultimately, cell death. Structural studies suggest that despite variation in their sequences, most of these bacteriocins likely adopt a common three-dimensional architecture, consisting of four or five tightly packed helices encompassing a hydrophobic core. There are many mysteries surrounding the biosynthesis of these peptides, particularly in regard to the mechanism by which they are cyclized. Elucidation of such a mechanism may provide exciting new approaches to the bioengineering of new, stable, and antimicrobially active circular peptides.

  1. Accelerator Science: Circular vs. Linear

    ScienceCinema

    Lincoln, Don

    2016-12-14

    Particle accelerator are scientific instruments that allow scientists to collide particles together at incredible energies to study the secrets of the universe. However, there are many manners in which particle accelerators can be constructed. In this video, Fermilab’s Dr. Don Lincoln explains the pros and cons of circular and linear accelerators.

  2. A Circular Education Organizational Structure.

    ERIC Educational Resources Information Center

    Hollander, Jim

    1993-01-01

    The circular nonhierarchical organization of the Hishkoonikun local education authority in Kashechewan, Ontario (Canada), makes students the central focus of educational decision making, provides equality and improves accountability and responsibility among various educational stakeholders, and reflects Native cultural values and traditions. (SV)

  3. Stress Analysis of Circular Frames

    NASA Technical Reports Server (NTRS)

    Fahlbusch, H; Wegner, W

    1941-01-01

    The stresses in circular frames of constant bending stiffnesses, as encountered in thin-wall shells, are investigated from the point of view of finite depth of sectional area of frame. The solution is carried out for four fundamental load conditions. The method is illustrated on a worked out example.

  4. Accelerator Science: Circular vs. Linear

    SciTech Connect

    Lincoln, Don

    2016-11-10

    Particle accelerator are scientific instruments that allow scientists to collide particles together at incredible energies to study the secrets of the universe. However, there are many manners in which particle accelerators can be constructed. In this video, Fermilab’s Dr. Don Lincoln explains the pros and cons of circular and linear accelerators.

  5. Comparison Of Pre-Operative Curvature With Postoperative Curvature In Root Canals Treated With K-3 Rotary Systems.

    PubMed

    Nagi, Sana Ehsen; Khan, Farhan Raza

    2017-01-01

    With root canal treatment, the organic debris and micro-organisms from pulp space is removed and an ideal canal preparation is achieved that is conducive of hermetic obturation. The purpose of this study was to correlate the pre-operative canal curvature with the postoperative curvature in human extracted teeth prepared with K-3 rotary systems. The root canal preparation was carried out on extracted human molars and premolars using K-3 endodontic rotary files. A pre and post-operative image of the teeth using digital radiograph were taken in order to compare pre and post-operative canal curvature. The images were saved in an images retrieval system (Gendex software, USA). Change in the canal curvature was measured using the software measuring tool (Vixwin software, USA). Student paired t-test and Pearson correlation test was applied at 0.05 level of significance. There is a statistically significant difference between pre-operative and post-operative canal curvature (p-value <0.001) and a strong positive correlation (91% correlation) between pre-operative and post-operative canal curvature in teeth prepared with the K-3 rotary files. A significant difference between pre and post instrumentation curvature was found. Degree of canal curvature was not correlated with time taken for canal preparation.

  6. Localization of CO2 Leakage from a Circular Hole on a Flat-Surface Structure Using a Circular Acoustic Emission Sensor Array

    PubMed Central

    Cui, Xiwang; Yan, Yong; Guo, Miao; Han, Xiaojuan; Hu, Yonghui

    2016-01-01

    Leak localization is essential for the safety and maintenance of storage vessels. This study proposes a novel circular acoustic emission sensor array to realize the continuous CO2 leak localization from a circular hole on the surface of a large storage vessel in a carbon capture and storage system. Advantages of the proposed array are analyzed and compared with the common sparse arrays. Experiments were carried out on a laboratory-scale stainless steel plate and leak signals were obtained from a circular hole in the center of this flat-surface structure. In order to reduce the influence of the ambient noise and dispersion of the acoustic wave on the localization accuracy, ensemble empirical mode decomposition is deployed to extract the useful leak signal. The time differences between the signals from the adjacent sensors in the array are calculated through correlation signal processing before estimating the corresponding distance differences between the sensors. A hyperbolic positioning algorithm is used to identify the location of the circular leak hole. Results show that the circular sensor array has very good directivity toward the circular leak hole. Furthermore, an optimized method is proposed by changing the position of the circular sensor array on the flat-surface structure or adding another circular sensor array to identify the direction of the circular leak hole. Experiential results obtained on a 100 cm × 100 cm stainless steel plate demonstrate that the full-scale error in the leak localization is within 0.6%. PMID:27869765

  7. Localization of CO₂ Leakage from a Circular Hole on a Flat-Surface Structure Using a Circular Acoustic Emission Sensor Array.

    PubMed

    Cui, Xiwang; Yan, Yong; Guo, Miao; Han, Xiaojuan; Hu, Yonghui

    2016-11-19

    Leak localization is essential for the safety and maintenance of storage vessels. This study proposes a novel circular acoustic emission sensor array to realize the continuous CO₂ leak localization from a circular hole on the surface of a large storage vessel in a carbon capture and storage system. Advantages of the proposed array are analyzed and compared with the common sparse arrays. Experiments were carried out on a laboratory-scale stainless steel plate and leak signals were obtained from a circular hole in the center of this flat-surface structure. In order to reduce the influence of the ambient noise and dispersion of the acoustic wave on the localization accuracy, ensemble empirical mode decomposition is deployed to extract the useful leak signal. The time differences between the signals from the adjacent sensors in the array are calculated through correlation signal processing before estimating the corresponding distance differences between the sensors. A hyperbolic positioning algorithm is used to identify the location of the circular leak hole. Results show that the circular sensor array has very good directivity toward the circular leak hole. Furthermore, an optimized method is proposed by changing the position of the circular sensor array on the flat-surface structure or adding another circular sensor array to identify the direction of the circular leak hole. Experiential results obtained on a 100 cm × 100 cm stainless steel plate demonstrate that the full-scale error in the leak localization is within 0.6%.

  8. Lunar Maria and circular basins-a review

    USGS Publications Warehouse

    Stuart-Alexander, D. E.; Howard, K.A.

    1970-01-01

    Lunar Orbiter data make it possible to examine the distribution and relations of maria and large circular basins over the entire Moon. The restricted distribution and age of the maria are in marked contrast to the apparently random distribution in time and place of the circular basins, some of which contain mare fillings. The circular basins are believed to be impact scars, and the maria to be volcanic fills which in each case are younger than the structures they fill. Twenty-nine circular basins 300 km wide or wider are recognized. They are placed in an age sequence because successive stages of degradation can be recognized from the fresh Orientale basin to the almost obliterated basin containing Mare Australe. The maria were emplaced during a short span of lunar history, although some light plains of the highlands may be older maria lightened through age. The present maria are topographically low, tend to be associated with large circular basins, and lie in a crude global belt of regional concentrations; 94% are on the hemisphere facing the Earth. Possible explanations offered for these patterns of mare distribution include impact-induced volcanism, volcanic extrusion to a hydrostatic level, isostatic compensation, lateral heterogeneity in the lunar interior, subcrustal convection, and volcanism due to disruption by Earth's gravity. ?? 1970.

  9. Structural inversion of the Tamworth Belt: Insights into the development of orogenic curvature in the southern New England Orogen, Australia

    NASA Astrophysics Data System (ADS)

    Phillips, G.; Robinson, J.; Glen, R.; Roberts, J.

    2016-05-01

    The middle to late Permian Hunter Bowen Event is credited with the development of orogenic curvature in the southern New England Orogen, yet contention surrounds the structural dynamics responsible for the development of this curvature. Debate is largely centred on the roles of orogen parallel strike-slip and orogen normal extension and contraction to explain the development of curvature. To evaluate the dynamic history of the Hunter Bowen Event, we present new kinematic reconstructions of the Tamworth Belt. The Tamworth Belt formed as a Carboniferous forearc basin and was subsequently inverted during the Hunter Bowen Event. Kinematic reconstructions of the Tamworth Belt are based on new maps and cross-sections built from a synthesis of best-available mapping, chronostratigraphic data and new interpretations of depth-converted seismic data. The following conclusions are made from our study: (i) the Hunter Bowen Event was dominantly driven by margin normal contraction (east-west shortening; present-day coordinates), and; (ii) variations in structural style along the strike of the Tamworth Belt can be explained by orthogonal vs. oblique inversion, which reflects the angular relationship between the principal shortening vector and continental-arc margin. Given these conclusions, we suggest that curvature around the controversial Manning Bend was influenced by the presence of primary curvature in the continental margin, and that the Hastings Block was translated along a sinistral strike-slip fault system that formed along this oblique (with respect to the regional east-west extension and convergence direction) part of the margin. Given the available temporal data, the translation of the Hastings Block took place in the Early Permian (Asselian) and therefore preceded the Hunter Bowen Event. Accordingly, we suggest that the Hunter Bowen Event was dominantly associated with enhancing curvature that was either primary in origin, or associated with fault block translation

  10. Tidal invariants for compact binaries on quasi-circular orbits

    NASA Astrophysics Data System (ADS)

    Warburton, Niels; Dolan, Sam; Nolan, Patrick; Ottewill, Adrian; Wardell, Barry

    2015-04-01

    We extend the gravitational self-force approach to encompass `self-interaction' tidal effects for a compact body of mass μ on a quasi-circular orbit around a black hole of mass M >> μ . Specifically, we define and calculate at O(μ) (conservative) shifts in the eigenvalues of the electric- and magnetic-type tidal tensors, and a (dissipative) shift in a scalar product between their eigenbases. This approach yields four gauge-invariant functions, from which one may construct other tidal quantities such as the curvature scalars and the speciality index. First, we analyze the general case of a geodesic in a regular perturbed vacuum spacetime admitting a helical Killing vector and a reflection symmetry. Next, we specialize to focus on circular orbits in the equatorial plane of Kerr spacetime at O(μ) . We present accurate numerical results for the Schwarzschild case for orbital radii up to the light-ring, calculated via independent implementations in Lorenz and Regge-Wheeler gauges. We show that our results are consistent with leading-order post-Newtonian expansions, and demonstrate the existence of additional structure in the strong-field regime. We anticipate that our strong-field results will inform (e.g.) effective one-body models for the gravitational two-body probl

  11. Programming curvature using origami tessellations.

    PubMed

    Dudte, Levi H; Vouga, Etienne; Tachi, Tomohiro; Mahadevan, L

    2016-05-01

    Origami describes rules for creating folded structures from patterns on a flat sheet, but does not prescribe how patterns can be designed to fit target shapes. Here, starting from the simplest periodic origami pattern that yields one-degree-of-freedom collapsible structures-we show that scale-independent elementary geometric constructions and constrained optimization algorithms can be used to determine spatially modulated patterns that yield approximations to given surfaces of constant or varying curvature. Paper models confirm the feasibility of our calculations. We also assess the difficulty of realizing these geometric structures by quantifying the energetic barrier that separates the metastable flat and folded states. Moreover, we characterize the trade-off between the accuracy to which the pattern conforms to the target surface, and the effort associated with creating finer folds. Our approach enables the tailoring of origami patterns to drape complex surfaces independent of absolute scale, as well as the quantification of the energetic and material cost of doing so.

  12. Characterizing repulsive gravity with curvature eigenvalues

    NASA Astrophysics Data System (ADS)

    Luongo, Orlando; Quevedo, Hernando

    2014-10-01

    Repulsive gravity has been investigated in several scenarios near compact objects by using different intuitive approaches. Here, we propose an invariant method to characterize regions of repulsive gravity, associated to black holes and naked singularities. Our method is based upon the behavior of the curvature tensor eigenvalues, and leads to an invariant definition of a repulsion radius. The repulsion radius determines a physical region, which can be interpreted as a repulsion sphere, where the effects due to repulsive gravity naturally arise. Further, we show that the use of effective masses to characterize repulsion regions can lead to coordinate-dependent results whereas, in our approach, repulsion emerges as a consequence of the spacetime geometry in a completely invariant way. Our definition is tested in the spacetime of an electrically charged Kerr naked singularity and in all its limiting cases. We show that a positive mass can generate repulsive gravity if it is equipped with an electric charge or an angular momentum. We obtain reasonable results for the spacetime regions contained inside the repulsion sphere whose size and shape depend on the value of the mass, charge and angular momentum. Consequently, we define repulsive gravity as a classical relativistic effect by using the geometry of spacetime only.

  13. Actin filament curvature biases branching direction

    NASA Astrophysics Data System (ADS)

    Wang, Evan; Risca, Viviana; Chaudhuri, Ovijit; Chia, Jia-Jun; Geissler, Phillip; Fletcher, Daniel

    2012-02-01

    Actin filaments are key components of the cellular machinery, vital for a wide range of processes ranging from cell motility to endocytosis. Actin filaments can branch, and essential in this process is a protein complex known as the Arp2/3 complex, which nucleate new ``daughter'' filaments from pre-existing ``mother'' filaments by attaching itself to the mother filament. Though much progress has been made in understanding the Arp2/3-actin junction, some very interesting questions remain. In particular, F-actin is a dynamic polymer that undergoes a wide range of fluctuations. Prior studies of the Arp2/3-actin junction provides a very static notion of Arp2/3 binding. The question we ask is how differently does the Arp2/3 complex interact with a straight filament compared to a bent filament? In this study, we used Monte Carlo simulations of a surface-tethered worm-like chain to explore possible mechanisms underlying the experimental observation that there exists preferential branch formation by the Arp2/3 complex on the convex face of a curved filament. We show that a fluctuation gating model in which Arp2/3 binding to the actin filament is dependent upon a rare high-local-curvature shape fluctuation of the filament is consistent with the experimental data.

  14. BICEP2, the curvature perturbation and supersymmetry

    SciTech Connect

    Lyth, David H.

    2014-11-01

    The tensor fraction r ≅ 0.16 found by BICEP2 corresponds to a Hubble parameter H ≅ 1.0 × 10{sup 14} GeV during inflation. This has two implications for the (single-field) slow-roll inflation hypothesis. First, the inflaton perturbation must account for much more than 10% of the curvature perturbation ζ, which barring fine-tuning means that it accounts for practically all of it. It follows that a curvaton-like mechanism for generating ζ requires an alternative to slow roll such as k-inflation. Second, accepting slow-roll inflation, the excursion of the inflaton field is at least of order Planck scale. As a result, the flatness of the inflaton presumably requires a shift symmetry. I point out that if such is the case, the resulting potential is likely to have at least approximately the quadratic form suggested in 1983 by Linde, which is known to be compatible with the observed r as well as the observed spectral index n{sub s}. The shift symmetry does not require supersymmetry. Also, the big H may rule out a GUT by restoring the symmetry and producing fatal cosmic strings. The absence of a GUT would correspond to the absence of superpartners for the Standard Model particles, which indeed have yet to be found at the LHC.

  15. Nonlinear diffusion filtering influenced by mean curvature

    NASA Astrophysics Data System (ADS)

    Kollár, Michal; Mikula, Karol; Čunderlík, Róbert

    2016-04-01

    The presentation introduces a new nonlinear diffusion filtering method on closed surfaces such as a sphere, ellipsoid or the Earth's surface. Our new model extends the regularized surface Perona-Malik model by including a local extrema detector based on a mean curvature of processed data. The model is thus represented by a nonlinear diffusion equation which filters noise while preserves main edges, local extrema and details important for a correct interpretation of data. We define a surface finite-volume method to approximate numerically the nonlinear parabolic partial differential equation on a closed surface. The closed surface is approximated by a polyhedral surface created by planar triangles representing subdivision of an initial icosahedron grid and we use a piece-wise linear approximation of a solution in space and the backward Euler time discretization. Numerical experiments present nonlinear diffusion filtering of artificial data and real measurements, namely the GOCE satellite observations. They aim to point out a main advantage of the new nonlinear model which, on the contrary of Perona-Malik model, preserves local extremal values of filtered data.

  16. Cosmic acceleration from matter-curvature coupling

    NASA Astrophysics Data System (ADS)

    Zaregonbadi, Raziyeh; Farhoudi, Mehrdad

    2016-10-01

    We consider f( {R,T} ) modified theory of gravity in which, in general, the gravitational Lagrangian is given by an arbitrary function of the Ricci scalar and the trace of the energy-momentum tensor. We indicate that in this type of the theory, the coupling energy-momentum tensor is not conserved. However, we mainly focus on a particular model that matter is minimally coupled to the geometry in the metric formalism and wherein, its coupling energy-momentum tensor is also conserved. We obtain the corresponding Raychaudhuri dynamical equation that presents the evolution of the kinematic quantities. Then for the chosen model, we derive the behavior of the deceleration parameter, and show that the coupling term can lead to an acceleration phase after the matter dominated phase. On the other hand, the curvature of the universe corresponds with the deviation from parallelism in the geodesic motion. Thus, we also scrutinize the motion of the free test particles on their geodesics, and derive the geodesic deviation equation in this modified theory to study the accelerating universe within the spatially flat FLRW background. Actually, this equation gives the relative accelerations of adjacent particles as a measurable physical quantity, and provides an elegant tool to investigate the timelike and the null structures of spacetime geometries. Then, through the null deviation vector, we find the observer area-distance as a function of the redshift for the chosen model, and compare the results with the corresponding results obtained in the literature.

  17. Spontaneous curvature of bilayer membranes from molecular simulations: asymmetric lipid densities and asymmetric adsorption.

    PubMed

    Różycki, Bartosz; Lipowsky, Reinhard

    2015-02-07

    Biomimetic and biological membranes consist of molecular bilayers with two leaflets which are typically exposed to different aqueous environments and may differ in their molecular density or composition. Because of these asymmetries, the membranes prefer to curve in a certain manner as quantitatively described by their spontaneous curvature. Here, we study such asymmetric membranes via coarse-grained molecular dynamics simulations. We consider two mechanisms for the generation of spontaneous curvature: (i) different lipid densities within the two leaflets and (ii) leaflets exposed to different concentrations of adsorbing particles. We focus on membranes that experience no mechanical tension and describe two methods to compute the spontaneous curvature. The first method is based on the detailed structure of the bilayer's stress profile which can hardly be measured experimentally. The other method starts from the intuitive view that the bilayer represents a thin fluid film bounded by two interfaces and reduces the complexity of the stress profile to a few membrane parameters that can be measured experimentally. For the case of asymmetric adsorption, we introduce a simulation protocol based on two bilayers separated by two aqueous compartments with different adsorbate concentrations. The adsorption of small particles with a size below 1 nm is shown to generate large spontaneous curvatures up to about 1/(24 nm). Our computational approach is quite general: it can be applied to any molecular model of bilayer membranes and can be extended to other mechanisms for the generation of spontaneous curvatures as provided, e.g., by asymmetric lipid composition or depletion layers of solute molecules.

  18. A linearization time-domain CMOS smart temperature sensor using a curvature compensation oscillator.

    PubMed

    Chen, Chun-Chi; Chen, Hao-Wen

    2013-08-28

    This paper presents an area-efficient time-domain CMOS smart temperature sensor using a curvature compensation oscillator for linearity enhancement with a -40 to 120 °C temperature range operability. The inverter-based smart temperature sensors can substantially reduce the cost and circuit complexity of integrated temperature sensors. However, a large curvature exists on the temperature-to-time transfer curve of the inverter-based delay line and results in poor linearity of the sensor output. For cost reduction and error improvement, a temperature-to-pulse generator composed of a ring oscillator and a time amplifier was used to generate a thermal sensing pulse with a sufficient width proportional to the absolute temperature (PTAT). Then, a simple but effective on-chip curvature compensation oscillator is proposed to simultaneously count and compensate the PTAT pulse with curvature for linearization. With such a simple structure, the proposed sensor possesses an extremely small area of 0.07 mm2 in a TSMC 0.35-mm CMOS 2P4M digital process. By using an oscillator-based scheme design, the proposed sensor achieves a fine resolution of 0.045 °C without significantly increasing the circuit area. With the curvature compensation, the inaccuracy of -1.2 to 0.2 °C is achieved in an operation range of -40 to 120 °C after two-point calibration for 14 packaged chips. The power consumption is measured as 23 mW at a sample rate of 10 samples/s.

  19. Anoxia promotes gravitropic curvature in rice pulvini but inhibits it in wheat and oat pulvini.

    PubMed

    Azuma, Tetsushi; Inoue, Yoshitaka; Hamada, Yuma; Okishio, Takuma; Sasayama, Daisuke; Itoh, Kazuyuki

    2013-09-01

    Gravitropic curvature of pulvini of wheat and oat stem segments gradually declined with decreasing atmospheric O₂ concentration and was almost completely blocked under anoxia, whereas that of rice stem segments was enhanced under hypoxia and anoxia. Anoxia substantially increased the ethanol content in pulvini of gravistimulated stem segments in rice, wheat and oat, but the ethanol content showed no marked difference between rice pulvini and wheat and oat pulvini. The concentrations of exogenous ethanol and acetaldehyde required to inhibit the gravitropic curvature of pulvini were significantly higher in rice segments than in wheat and oat segments. However, in all three species, the concentrations of ethanol and acetaldehyde required to completely inhibit curvature were several-fold higher than the endogenous levels that accumulated in pulvini gravistimulated in N₂. The pulvini of rice segments gravistimulated in N₂ did not contain much more ATP than those of wheat or oat segments gravistimulated in N₂. When applied unilaterally to the pulvini of vertically oriented stem segments incubated in N₂, indole-3-acetic acid induced bending in rice stem segments but not in wheat and oat stem segments. Transference of graviresponsive pulvini of rice, as well as those of wheat and oat, from aerobic conditions to anaerobic conditions led to cessation of gravitropic curvature within several minutes, but subsequently only gravitropic curvature of anoxic rice pulvini was completely recovered within 2 h. A large portion of this recovery was blocked by cordycepin, a transcription inhibitor. These results suggested that anoxia-induced expression of any gene or genes enables rice pulvini to respond to gravistimulation under anaerobic conditions, and that such a gene or genes might be unrelated to ethanol fermentation and ATP production in anaerobic conditions. Copyright © 2013 Elsevier GmbH. All rights reserved.

  20. Dynamical and statistical effects of the intrinsic curvature of internal space of molecules

    NASA Astrophysics Data System (ADS)

    Teramoto, Hiroshi; Takatsuka, Kazuo

    2005-02-01

    curvature effect becomes large roughly linearly with the size of molecule.

  1. Dynamical and statistical effects of the intrinsic curvature of internal space of molecules.

    PubMed

    Teramoto, Hiroshi; Takatsuka, Kazuo

    2005-02-15

    curvature effect becomes large roughly linearly with the size of molecule.

  2. Negative Gaussian curvature induces significant suppression of thermal conduction in carbon crystals.

    PubMed

    Zhang, Zhongwei; Chen, Jie; Li, Baowen

    2017-09-28

    From the mathematic category of surface Gaussian curvature, carbon allotropes can be classified into three types: zero curvature, positive curvature, and negative curvature. By performing Green-Kubo equilibrium molecular dynamics simulations, we found that surface curvature has a significant impact on the phonon vibration and thermal conductivity (κ) of carbon crystals. When curving from zero curvature to negative or positive curvature structures, κ is reduced by several orders of magnitude. Interestingly, we found that κ of negatively curved carbon crystals exhibits a monotonic dependence on curvature. Through phonon mode analysis, we show that curvature induces remarkable phonon softening in phonon dispersion, which results in the reduction of phonon group velocity and flattening of phonon band structure. Furthermore, the curvature was found to induce phonon mode hybridization, leading to the suppression of phonon relaxation time. Our study provides physical insight into thermal transport in curvature materials, and will be valuable in the modulation of phonon activity through surface curvature.

  3. Controllable curvature from planar polymer sheets in response to light.

    PubMed

    Hubbard, Amber M; Mailen, Russell W; Zikry, Mohammed A; Dickey, Michael D; Genzer, Jan

    2017-02-24

    The ability to change shape and control curvature in 3D structures starting from planar sheets can aid in assembly and add functionality to an object. Herein, we convert planar sheets of shape memory polymers (SMPs) into 3D objects with controllable curvature by dictating where the sheets shrink. Ink patterned on the surface of the sheet absorbs infrared (IR) light, resulting in localized heating, and the material shrinks locally wherever the temperature exceeds the activation temperature, Ta. We introduce two different mechanisms for controlling curvature within SMP sheets. The 'direct' mechanism uses localized shrinkage to induce curvature only in regions patterned with ink. The 'indirect' mechanism uses localized shrinkage in regions patterned with ink to induce curvature in neighboring regions without ink through a balance of internal stresses. Finite element analysis predicts the final shape of the polymer sheets with excellent qualitative agreement with experimental studies. Results from this study show that curvature can be controlled by the distribution and darkness of the ink pattern on the polymer sheet. Additionally, we utilize the direct and indirect curvature mechanisms to demonstrate the formation and actuation of gripper devices, which represent the potential utility of this approach.

  4. Effect of curvature on domain wall motion in elliptical nanorings

    NASA Astrophysics Data System (ADS)

    Kaya, Fikriye Idil; Bickel, Jessica; Aidala, Katherine

    2014-03-01

    Understanding domain wall (DW) motion in ferromagnetic nanostructures is important to realize proposed magnetic data storage and logic devices. We investigate the effect of curvature on DW pinning and motion by studying elliptical rings using micromagnetic simulations. Elliptical rings with constant width have varying curvature, with the lowest curvature at the minor axis, and the greatest curvature at the major axis. DWs can be created at any angular position within the ellipse by the application of an appropriate uniform magnetic field. However, only some of these positions are stable when the field is removed. We study the stability and depinning of the DWs by applying a slowly increasing elliptical magnetic field to determine the magnitude of the field at which the DWs begin to move. By varying the major to minor axis ratio, we examine the effect of curvature on DW pinning. A larger field is required to move DWs in regions of higher curvature (near the major axis) than lower curvature (near the minor axis). Overall, we see that increasing the major to minor axis ratio of elliptical nanorings requires increasing field strength to depin the DWs along the major axis. Work supported in part by NSF DMR-1207924 and NSF CMMI-1025020. Simulations performed at the CNS computational facilities at Harvard University, a member of the NNIN supported by NSF Award No. ECS-0335765.

  5. On 3-gauge transformations, 3-curvatures, and Gray-categories

    SciTech Connect

    Wang, Wei

    2014-04-15

    In the 3-gauge theory, a 3-connection is given by a 1-form A valued in the Lie algebra g, a 2-form B valued in the Lie algebra h, and a 3-form C valued in the Lie algebra l, where (g,h,l) constitutes a differential 2-crossed module. We give the 3-gauge transformations from one 3-connection to another, and show the transformation formulae of the 1-curvature 2-form, the 2-curvature 3-form, and the 3-curvature 4-form. The gauge configurations can be interpreted as smooth Gray-functors between two Gray 3-groupoids: the path 3-groupoid P{sub 3}(X) and the 3-gauge group G{sup L} associated to the 2-crossed module L, whose differential is (g,h,l). The derivatives of Gray-functors are 3-connections, and the derivatives of lax-natural transformations between two such Gray-functors are 3-gauge transformations. We give the 3-dimensional holonomy, the lattice version of the 3-curvature, whose derivative gives the 3-curvature 4-form. The covariance of 3-curvatures easily follows from this construction. This Gray-categorical construction explains why 3-gauge transformations and 3-curvatures have the given forms. The interchanging 3-arrows are responsible for the appearance of terms with the Peiffer commutator (, )

  6. Curvature modulates the self-assembly of amphiphilic molecules.

    PubMed

    Tian, Falin; Luo, Yu; Zhang, Xianren

    2010-10-14

    In this work, we used lattice Monte Carlo simulations and theoretical model calculations to show how the self-assembly of adsorbed amphiphilic molecules is affected by the local curvature of solid surfaces. It is found that, beyond a critical curvature value, solid surface geometry governs the spatial ordering of aggregates and may induce the morphological transitions. The simulation results show how the curvature of solid surfaces modulates the distribution of aggregates: the anisotropy in local curvature along and perpendicular to the cylindrical surfaces tends to generate orientationally ordered cylindrical micelles. To account for the morphological transitions induced by the local curvature of solid surfaces, we constructed a theoretical model which includes the Helfrich bending energy, the deformation energy of aggregates induced by solid surfaces, and the adsorption energy. The model calculations indicate that on highly curved solid surfaces the bending energy for bilayer structure sharply increases with surface curvature, which in turn induces the morphological transition from bilayer to cylindrical structure. Our results suggest that the local curvature provides a means of controlling the spatial organization of amphiphilic molecules.

  7. 3D curvature of muscle fascicles in triceps surae.

    PubMed

    Rana, Manku; Hamarneh, Ghassan; Wakeling, James M

    2014-12-01

    Muscle fascicles curve along their length, with the curvatures occurring around regions of high intramuscular pressure, and are necessary for mechanical stability. Fascicles are typically considered to lie in fascicle planes that are the planes visualized during dissection or two-dimensional (2D) ultrasound scans. However, it has previously been predicted that fascicles must curve in three-dimensional (3D) and thus the fascicle planes may actually exist as 3D sheets. 3D fascicle curvatures have not been explored in human musculature. Furthermore, if the fascicles do not lie in 2D planes, then this has implications for architectural measures that are derived from 2D ultrasound scans. The purpose of this study was to quantify the 3D curvatures of the muscle fascicles and fascicle sheets within the triceps surae muscles and to test whether these curvatures varied among different contraction levels, muscle length, and regions within the muscle. Six male subjects were tested for three torque levels (0, 30, and 60% maximal voluntary contraction) and four ankle angles (-15, 0, 15, and 30° plantar flexion), and fascicles were imaged using 3D ultrasound techniques. The fascicle curvatures significantly increased at higher ankle torques and shorter muscle lengths. The fascicle sheet curvatures were of similar magnitude to the fascicle curvatures but did not vary between contractions. Fascicle curvatures were regionalized within each muscle with the curvature facing the deeper aponeuroses, and this indicates a greater intramuscular pressure in the deeper layers of muscles. Muscle architectural measures may be in error when using 2D images for complex geometries such as the soleus.

  8. The Induction of Negative Curvature as a Mechanism of Cell Toxicity by Amyloidogenic Peptides

    PubMed Central

    Smith, Pieter E. S.; Brender, Jeffrey R.; Ramamoorthy, Ayyalusamy

    2009-01-01

    The death of insulin-producing β-cells is a key step in the pathogenesis of type 2 diabetes. The amyloidogenic peptide Islet Amyloid Polypeptide (IAPP, also known as amylin) has been shown to disrupt β-cell membranes leading to β-cell death. Despite the strong evidence linking IAPP to the destruction of β-cell membrane integrity and cell death, the mechanism of IAPP toxicity is poorly understood. In particular, the effect of IAPP on the bilayer structure has largely been uncharacterized. In this study, we have determined the effect of the amyloidogenic and toxic hIAPP1-37 peptide and the non-toxic and non-amyloidogenic rIAPP1-37 peptide on membranes by a combination of DSC and solid-state NMR spectroscopy. We also characterized the toxic but largely non-amyloidogenic rIAPP1-19 and hIAPP1-19 fragments. DSC shows that both amyloidogenic (hIAPP1-37) and largely non-amyloidogenic (hIAPP1-19 and rIAPP1-19) toxic versions of the peptide strongly favor the formation of negative curvature in lipid bilayers, while the non-toxic full-length rat IAPP1-37 peptide does not. This result was confirmed by solid-state NMR spectroscopy which shows that in bicelles composed of regions of high curvature and low curvature, non-toxic rIAPP1-37 binds to the regions of low curvature while toxic rIAPP1-19 binds to regions of high curvature. Similarly, solid-state NMR spectroscopy shows that the toxic rIAPP1-19 peptide significantly disrupts the lipid bilayer structure, whereas the non-toxic rIAPP1-37 does not have a significant effect. These results indicate IAPP may induce the formation of pores by the induction of excess membrane curvature and can be used to guide the design of compounds that can prevent the cell-toxicity of IAPP. This mechanism may be important to understand the toxicity of other amyloidogenic proteins. Our solid-state NMR results also demonstrate the possibility of using bicelles to measure the affinity of biomolecules for negatively or positively curved regions of

  9. The inviscid axisymmetric stability of the supersonic flow along a circular cylinder

    NASA Technical Reports Server (NTRS)

    Duck, Peter W.

    1989-01-01

    The supersonic flow past a thin straight circular cylinder is investigated. The associated boundary layer flow (i.e., the velocity and temperature field) is computed; the asymptotic, far downstream solution is obtained, and compared with the full numerical results. The inviscid, linear, axisymmetric (temporal) stability of this boundary layer is also studied. A so called doubly generalized inflexion condition is derived, which is a condition for the existence of so called subsonic neutral modes. The eigenvalue problem (for the complex wavespeed) is computed for two freestream Mach numbers (2.8 and 3.8), and this reveals that curvature has a profound effect on the stability of the flow. The first unstable inviscid mode is seen to rapidly disappear as curvature is introduced, while the second (and generally the most important) mode suffers a substantially reduced amplification rate.

  10. The inviscid axisymmetric stability of the supersonic flow along a circular cylinder

    NASA Technical Reports Server (NTRS)

    Duck, Peter W.

    1990-01-01

    The supersonic flow past a thin straight circular cylinder is investigated. The associated boundary-layer flow (i.e. the velocity and temperature field) is computed; the asymptotic, far downstream solution is obtained, and compared with the full numerical results. The inviscid, linear, axisymmetric (temporal) stability of this boundary layer is also studied. A so-called 'doubly generalized' inflexion condition is derived, which is a condition for the existence of so-called 'subsonic' neutral modes. The eigenvalue problem (for the complex wavespeed) is computed for two free-stream Mach numbers (2.8 and 3.8), and this reveals that curvature has a profound effect on the stability of the flow. The first unstable inviscid mode is seen to disappear rapidly as curvature is introduced, while the second (and generally the most important) mode suffers a substantially reduced amplification rate.

  11. The inviscid axisymmetric stability of the supersonic flow along a circular cylinder

    NASA Technical Reports Server (NTRS)

    Duck, Peter W.

    1990-01-01

    The supersonic flow past a thin straight circular cylinder is investigated. The associated boundary-layer flow (i.e. the velocity and temperature field) is computed; the asymptotic, far downstream solution is obtained, and compared with the full numerical results. The inviscid, linear, axisymmetric (temporal) stability of this boundary layer is also studied. A so-called 'doubly generalized' inflexion condition is derived, which is a condition for the existence of so-called 'subsonic' neutral modes. The eigenvalue problem (for the complex wavespeed) is computed for two free-stream Mach numbers (2.8 and 3.8), and this reveals that curvature has a profound effect on the stability of the flow. The first unstable inviscid mode is seen to disappear rapidly as curvature is introduced, while the second (and generally the most important) mode suffers a substantially reduced amplification rate.

  12. Holomorphic bisectional curvatures, supersymmetry breaking, and Affleck-Dine baryogenesis

    NASA Astrophysics Data System (ADS)

    Dutta, Bhaskar; Sinha, Kuver

    2012-11-01

    Working in D=4, N=1 supergravity, we utilize relations between holomorphic sectional and bisectional curvatures of Kahler manifolds to constrain Affleck-Dine baryogenesis. We show the following no-go result: Affleck-Dine baryogenesis cannot be performed if the holomorphic sectional curvature at the origin is isotropic in tangent space; as a special case, this rules out spaces of constant holomorphic sectional curvature (defined in the above sense) and in particular maximally symmetric coset spaces. We also investigate scenarios where inflationary supersymmetry breaking is identified with the supersymmetry breaking responsible for mass splitting in the visible sector, using conditions of sequestering to constrain manifolds where inflation can be performed.

  13. Dynamic Curvature Steering Control for Autonomous Vehicle: Performance Analysis

    NASA Astrophysics Data System (ADS)

    Aizzat Zakaria, Muhammad; Zamzuri, Hairi; Amri Mazlan, Saiful

    2016-02-01

    This paper discusses the design of dynamic curvature steering control for autonomous vehicle. The lateral control and longitudinal control are discussed in this paper. The controller is designed based on the dynamic curvature calculation to estimate the path condition and modify the vehicle speed and steering wheel angle accordingly. In this paper, the simulation results are presented to show the capability of the controller to track the reference path. The controller is able to predict the path and modify the vehicle speed to suit the path condition. The effectiveness of the controller is shown in this paper whereby identical performance is achieved with the benchmark but with extra curvature adaptation capabilites.

  14. LPG-based sensor for curvature and vibration

    NASA Astrophysics Data System (ADS)

    Nascimento, I. M.; Chesini, G.; Baptista, J. M.; Cordeiro, Cristiano M. B.; Jorge, P. A. S.

    2016-05-01

    A long-period grating (LPG) written on a standard single mode fiber is investigated as a curvature and vibration sensor. It is demonstrated a high sensitivity to applied curvature and the possibility to monitor vibration in a wide range of frequencies from 30 Hz to 2000 Hz. The system was tested using an intensity based interrogation scheme with the LPG sensor operating in the curvature regime. Results have shown a reproducible frequency discrimination in the 30 Hz to 2000 Hz, with resolutions between 11 mHz and 913 mHz. Frequency retrieval could be performed independent of temperature up to 86 °C.

  15. Measurement of the gravity-field curvature by atom interferometry.

    PubMed

    Rosi, G; Cacciapuoti, L; Sorrentino, F; Menchetti, M; Prevedelli, M; Tino, G M

    2015-01-09

    We present the first direct measurement of the gravity-field curvature based on three conjugated atom interferometers. Three atomic clouds launched in the vertical direction are simultaneously interrogated by the same atom interferometry sequence and used to probe the gravity field at three equally spaced positions. The vertical component of the gravity-field curvature generated by nearby source masses is measured from the difference between adjacent gravity gradient values. Curvature measurements are of interest in geodesy studies and for the validation of gravitational models of the surrounding environment. The possibility of using such a scheme for a new determination of the Newtonian constant of gravity is also discussed.

  16. Inconsistency of scale-invariant curvature coupled to gravity

    SciTech Connect

    Zoller, D. )

    1990-10-29

    We show that the scale-invariant curvature action for paths, the point-particle version of Polyakov's extrinsic-curvature action for surfaces, does not couple consistently to gravity. The curvature action for paths yields a massless representation of the Poincare group with fixed helicity and so potentially provides a description of single photons and gravitons. We present a physical interpretation of the inconsistency in terms of the nonlocalizability of the photon and point out a conceptual kinship with the local supersymmetry of a spinning particle.

  17. Inconsistency of scale-invariant curvature coupled to gravity

    NASA Astrophysics Data System (ADS)

    Zoller, D.

    1990-10-01

    We show that the scale-invariant curvature action for paths, the point-particle version of Polyakov's extrinsic-curvature action for surfaces, does not couple consistently to gravity. The curvature action for paths yields a massless representation of the Poincaré group with fixed helicity and so potentially provides a description of single photons and gravitons. We present a physical interpretation of the inconsistency in terms of the nonlocalizability of the photon and point out a conceptual kinship with the local supersymmetry of a spinning particle.

  18. Motion on constant curvature spaces and quantization using Noether symmetries.

    PubMed

    Bracken, Paul

    2014-12-01

    A general approach is presented for quantizing a metric nonlinear system on a manifold of constant curvature. It makes use of a curvature dependent procedure which relies on determining Noether symmetries from the metric. The curvature of the space functions as a constant parameter. For a specific metric which defines the manifold, Lie differentiation of the metric gives these symmetries. A metric is used such that the resulting Schrödinger equation can be solved in terms of hypergeometric functions. This permits the investigation of both the energy spectrum and wave functions exactly for this system.

  19. Enhancing magnetoelectric effect via the curvature of composite cylinder

    NASA Astrophysics Data System (ADS)

    Wang, H. M.; Pan, E.; Chen, W. Q.

    2010-05-01

    We solved analytically the magnetoelectric (ME) effect in a bilayered piezoelectric/piezomagnetic cylinder under harmonic excitation. We revealed that at a fixed thickness ratio of the layers, the static or low-frequency ME effect can be substantially enhanced by increasing the curvature of the cylinder. In the megahertz frequency domain, on the other hand, we observed that the peak ME effect can be considerably increased by decreasing the curvature. We further showed that at a fixed curvature, the ME effect can be tuned to be around the resonant frequency for giant output by varying the boundary condition and thickness ratio.

  20. Characterizing the curvature and its first derivative for imperfect fluids

    NASA Astrophysics Data System (ADS)

    Machado Ramos, Maria da Piedade

    2017-04-01

    The curvature tensor and its derivatives up to any order can be covariantly characterized by a minimal set of spinor quantities. On the other hand it might be useful, particularly in cosmology, to describe the geometry of a spacetime in a (1+3) formalism, based on an invariantly defined fluid velocity. In this work, we consider an imperfect fluid possessing both isotropic and anisotropic pressure. For these fluids, we determine the (1+3) matter terms of the curvature as well as the parts of the first order covariant derivative of the curvature (\