Sample records for large dam projects

  1. Health impacts of large dams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lerer, L.B.; Scudder, T.

    1999-03-01

    Large dams have been criticized because of their negative environmental and social impacts. Public health interest largely has focused on vector-borne diseases, such as schistosomiasis, associated with reservoirs and irrigation projects. Large dams also influence health through changes in water and food security, increases in communicable diseases, and the social disruption caused by construction and involuntary resettlement. Communities living in close proximity to large dams often do not benefit from water transfer and electricity generation revenues. A comprehensive health component is required in environmental and social impact assessments for large dam projects.

  2. Study on Reventment-Protected and Non-Bottom-Protected Plunge Pool of High Arch Dam

    NASA Astrophysics Data System (ADS)

    Yingkui, Wang; Quxiu, Cao; Fanhui, Kong

    2018-05-01

    Lots of high arch dam have the characteristics of “High head, Large discharge and Narrow river valley”, therefore, the security researches of energy dissipation were always the focus in these hydro-projects. Statistically, the trajectory type energy dissipation is the most widely used in the built high arch dams, and the water plunge poor were always set downstream the dam body. However, the widely used protected plunge poor need large investment with the disadvantage of complicated operation and maintenance. Along with the construction of concrete high arch dam in the Southwest China, the river overburden and water cushion were deep in dam site, which is becoming a new characteristic of these hydro-projects. Accordingly, the deep water cushion can be used for the energy dissipation design, such as the “Reventment-Protected and Non-Bottom-Protected Plunge Pool”, which has the advantage of more simplified project design and more economy investment.

  3. River turbidity and sediment loads during dam removal

    USGS Publications Warehouse

    Warrick, Jonathan A.; Duda, Jeffrey J.; Magirl, Christopher S.; Curran, Chris A.

    2012-01-01

    Dam decommissioning has become an important means for removing unsafe or obsolete dams and for restoring natural fluvial processes, including discharge regimes, sediment transport, and ecosystem connectivity [Doyle et al., 2003]. The largest dam-removal project in history began in September 2011 on the Elwha River of Washington State (Figure 1a). The project, which aims to restore the river ecosystem and increase imperiled salmon populations that once thrived there, provides a unique opportunity to better understand the implications of large-scale river restoration.

  4. Dams in the Amazon: Belo Monte and Brazil's hydroelectric development of the Xingu River Basin.

    PubMed

    Fearnside, Phillip M

    2006-07-01

    Hydroelectric dams represent major investments and major sources of environmental and social impacts. Powerful forces surround the decision-making process on public investments in the various options for the generation and conservation of electricity. Brazil's proposed Belo Monte Dam (formerly Kararaô) and its upstream counterpart, the Altamira Dam (better known by its former name of Babaquara) are at the center of controversies on the decision-making process for major infrastructure projects in Amazonia. The Belo Monte Dam by itself would have a small reservoir area (440 km2) and large installed capacity (11, 181.3 MW), but the Altamira/Babaquara Dam that would regulate the flow of the Xingu River (thereby increasing power generation at Belo Monte) would flood a vast area (6140 km2). The great impact of dams provides a powerful reason for Brazil to reassess its current policies that allocate large amounts of energy in the country's national grid to subsidized aluminum smelting for export. The case of Belo Monte and the five additional dams planned upstream (including the Altamira/Babaquara Dam) indicate the need for Brazil to reform its environmental assessment and licensing system to include the impacts of multiple interdependent projects.

  5. Local Economic Development and Hydropower Along the Brahmaputra River Basin in Northeast India

    NASA Astrophysics Data System (ADS)

    Mock, A.

    2014-12-01

    Large dams have long been controversial. They offer benefits, such as reduced greenhouse gas emissions, energy security, and local development, yet produce negative social and ecological impact, such as wildlife habitat destruction, human displacement, and the disruption of downstream fishing or agricultural industries. In the past decade, the Indian government has signed Memoranda of Understanding with hydroelectric power companies for the building of over 130 large dams on the Brahmaputra River in the state of Arunachal Pradesh in Northeast India. These dams can generate 43% of India's assessed hydropower potential to sustain India's growing economy. In addition, the Indian government claims that these dams will bring local development with needed jobs. However, local Arunachali people have protested and temporarily halted hydropower projects because of the impact of dams on their existing livelihoods. Using the North Eastern Electric Power Corporation's (NEEPCO) Ranganadi Hydroelectric Project as a case study, our project examined whether dams in Northeast India provide jobs for local people, and whether distance from the dam or work colony to a worker's hometown affects the type of job the worker received. Survey data from residents at NEEPCO's work colony in Doimukh, Arunachal Pradesh, was analyzed using SPSS (n = 18). Our research found that 100% of workers at the dam originally resided in Northeast India, with 33% from Arunachal Pradesh, and 67% from the nearby states of Assam, and Tripura. Further, our analysis revealed no statistically significant relationship between the distance to a worker's hometown and job type (p = .609). Where workers come from did not affect the type of job they received. More research using a larger sample size and additional hydroelectric project case studies is needed to further explore the relationship between worker home location and their job types.

  6. Exporting dams: China's hydropower industry goes global.

    PubMed

    McDonald, Kristen; Bosshard, Peter; Brewer, Nicole

    2009-07-01

    In line with China's "going out" strategy, China's dam industry has in recent years significantly expanded its involvement in overseas markets. The Chinese Export-Import Bank and other Chinese financial institutions, state-owned enterprises, and private firms are now involved in at least 93 major dam projects overseas. The Chinese government sees the new global role played by China's dam industry as a "win-win" situation for China and host countries involved. But evidence from project sites such as the Merowe Dam in Sudan demonstrates that these dams have unrecognized social and environmental costs for host communities. Chinese dam builders have yet to adopt internationally accepted social and environmental standards for large infrastructure development that can assure these costs are adequately taken into account. But the Chinese government is becoming increasingly aware of the challenge and the necessity of promoting environmentally and socially sound investments overseas.

  7. Impacts of Dams and Global Warming on Fish Biodiversity in the Indo-Burma Hotspot

    PubMed Central

    Nam, So; Samejima, Hiromitsu; Watanabe, Katsutoshi; Grudpan, Chaiwut; Grudpan, Jarungjit; Magtoon, Wichan; Musikasinthorn, Prachya; Nguyen, Phuong Thanh; Praxaysonbath, Bounthob; Sato, Tomoyuki; Shimatani, Yukihiro; Suvarnaraksha, Apinun; Tanaka, Wataru; Thach, Phanara; Tran, Dac Dinh; Yamashita, Tomomi

    2016-01-01

    Both hydropower dams and global warming pose threats to freshwater fish diversity. While the extent of global warming may be reduced by a shift towards energy generation by large dams in order to reduce fossil-fuel use, such dams profoundly modify riverine habitats. Furthermore, the threats posed by dams and global warming will interact: for example, dams constrain range adjustments by fishes that might compensate for warming temperatures. Evaluation of their combined or synergistic effects is thus essential for adequate assessment of the consequences of planned water-resource developments. We made projections of the responses of 363 fish species within the Indo-Burma global biodiversity hotspot to the separate and joint impacts of dams and global warming. The hotspot encompasses the Lower Mekong Basin, which is the world’s largest freshwater capture fishery. Projections for 81 dam-building scenarios revealed progressive impacts upon projected species richness, habitable area, and the proportion of threatened species as generating capacity increased. Projections from 126 global-warming scenarios included a rise in species richness, a reduction in habitable area, and an increase in the proportion of threatened species; however, there was substantial variation in the extent of these changes among warming projections. Projections from scenarios that combined the effects of dams and global warming were derived either by simply adding the two threats, or by combining them in a synergistic manner that took account of the likelihood that habitat shifts under global warming would be constrained by river fragmentation. Impacts on fish diversity under the synergistic projections were 10–20% higher than those attributable to additive scenarios, and were exacerbated as generating capacity increased—particularly if CO2 emissions remained high. The impacts of dams, especially those on river mainstreams, are likely to be greater, more predictable and more immediately pressing for fishes than the consequences of global warming. Limits upon dam construction should therefore be a priority action for conserving fish biodiversity in the Indo-Burma hotspot. This would minimize synergistic impacts attributable to dams plus global warming, and help ensure the continued provision of ecosystem services represented by the Lower Mekong fishery. PMID:27532150

  8. Impacts of Dams and Global Warming on Fish Biodiversity in the Indo-Burma Hotspot.

    PubMed

    Kano, Yuichi; Dudgeon, David; Nam, So; Samejima, Hiromitsu; Watanabe, Katsutoshi; Grudpan, Chaiwut; Grudpan, Jarungjit; Magtoon, Wichan; Musikasinthorn, Prachya; Nguyen, Phuong Thanh; Praxaysonbath, Bounthob; Sato, Tomoyuki; Shibukawa, Koichi; Shimatani, Yukihiro; Suvarnaraksha, Apinun; Tanaka, Wataru; Thach, Phanara; Tran, Dac Dinh; Yamashita, Tomomi; Utsugi, Kenzo

    2016-01-01

    Both hydropower dams and global warming pose threats to freshwater fish diversity. While the extent of global warming may be reduced by a shift towards energy generation by large dams in order to reduce fossil-fuel use, such dams profoundly modify riverine habitats. Furthermore, the threats posed by dams and global warming will interact: for example, dams constrain range adjustments by fishes that might compensate for warming temperatures. Evaluation of their combined or synergistic effects is thus essential for adequate assessment of the consequences of planned water-resource developments. We made projections of the responses of 363 fish species within the Indo-Burma global biodiversity hotspot to the separate and joint impacts of dams and global warming. The hotspot encompasses the Lower Mekong Basin, which is the world's largest freshwater capture fishery. Projections for 81 dam-building scenarios revealed progressive impacts upon projected species richness, habitable area, and the proportion of threatened species as generating capacity increased. Projections from 126 global-warming scenarios included a rise in species richness, a reduction in habitable area, and an increase in the proportion of threatened species; however, there was substantial variation in the extent of these changes among warming projections. Projections from scenarios that combined the effects of dams and global warming were derived either by simply adding the two threats, or by combining them in a synergistic manner that took account of the likelihood that habitat shifts under global warming would be constrained by river fragmentation. Impacts on fish diversity under the synergistic projections were 10-20% higher than those attributable to additive scenarios, and were exacerbated as generating capacity increased-particularly if CO2 emissions remained high. The impacts of dams, especially those on river mainstreams, are likely to be greater, more predictable and more immediately pressing for fishes than the consequences of global warming. Limits upon dam construction should therefore be a priority action for conserving fish biodiversity in the Indo-Burma hotspot. This would minimize synergistic impacts attributable to dams plus global warming, and help ensure the continued provision of ecosystem services represented by the Lower Mekong fishery.

  9. Modelling the impact of large dams on flows and hydropower production of the Sekong, Sesan and Srepok Rivers in the Mekong Basin

    NASA Astrophysics Data System (ADS)

    Piman, T.; Cochrane, T. A.; Arias, M. E.

    2013-12-01

    Water flow patterns in the Mekong River and its tributaries are changing due to water resources development, particularly as a result of on-going rapid hydropower development of tributaries for economic growth. Local communities and international observers are concerned that alterations of natural flow patterns will have great impacts on biodiversity, ecosystem services, food securing and livelihood in the basin. There is also concern that un-coordinated dam development will have an adverse impact on energy production potential of individual hydropower plants. Of immediate concern is the proposed hydropower development in the transboundary Srepok, Sesan and Srekong (3S) Basin, which contributes up to 20% of the Mekong's annual flows, has a large potential for energy production, and provides critical ecosystem services to local people and the downstream Tonle Sap Lake and the Mekong delta. To assess the magnitude of potential changes in flows and hydropower production, daily flows were simulated over 20 years (1986-2005) using the SWAT and HEC ResSim models for a range of dam development and operations scenarios. Simulations of all current and proposed hydropower development in the 3S basin (41 dams) using an operation scheme to maximize electricity production will increase average dry seasonal flows by 88.1% while average wet seasonal flows decrease by 24.7% when compared to the baseline (no dams) scenario, About 55% of dry season flows changes are caused by the seven largest proposed dams (Lower Srepok 3, Lower Srepok4, Lower Sesan 3, Lower Sesan and Srepok 2, Xekong 5, Xekong 4, and Xe Xou). The total active storage of the existing and ongoing hydropower projects is only 6,616 million m3 while the cumulative active storage of the seven large proposed dams is 17,679 million m3. The Lower Srepok 3 project causes the highest impact on seasonal flow changes. Average energy production of the existing and ongoing hydropower projects is 73.2 GWh/day. Additional benefits from energy production of the seven large proposed dams (33.0 GWh/day) are less than half compared to the cumulative benefits of the exiting and ongoing projects. In total, potential energy production of all dams is 129.1 GWh/day. Cascade dam simulations, under an independent operation regime, result in high electricity production of downstream dams, particularly of small storage dams. Hourly flow alterations, however, can be significant due to intra daily reservoir operations and warrant further study as well as impact of climate change on flows and hydropower operation. Strategic site selection and coordinated reservoir operations between countries and dam operators are necessary to achieve an acceptable level of energy production in the basin and mitigate negative impacts to seasonal flow patterns which sustain downstream ecosystem productivity and livelihoods.

  10. Geomorphic and habitat response to a large-dam removal in a Mediterranean river

    NASA Astrophysics Data System (ADS)

    Harrison, L.; East, A. E.; Smith, D. P.; Bond, R.; Logan, J. B.; Nicol, C.; Williams, T.; Boughton, D. A.; Chow, K.

    2017-12-01

    The presence of large dams has fundamentally altered physical and biological processes in riverine ecosystems, and dam removal is becoming more common as a river restoration strategy. We used a before-after-control-impact study design to investigate the geomorphic and habitat response to removal of 32-m-high San Clemente Dam on the Carmel River, CA. The project represents the first major dam removal in a Mediterranean river and is also unique among large dam removals in that most reservoir sediment was sequestered in place. We found that in the first year post-removal, a sediment pulse migrated 3.5 km downstream, filling pools and the interstitial pore spaces of gravels with sand. These sedimentary and topographic changes initially reduced the overall quality of steelhead (O. mykiss) spawning and rearing habitat in impacted reaches. Over the second winter after dam removal, a sequence of high flows flushed large volumes of sand from pools and mobilized the river bed throughout much of the active channel. The floods substantially altered fluvial evolution in the upper part of the reservoir, promoting new avulsion and the subsequent delivery of gravel and large wood to below dam reaches. These geomorphic processes increased the availability of spawning-sized gravel and enhanced channel complexity in reaches within several km of the former dam, which should improve habitat for multiple life stages of steelhead. Results indicate that when most reservoir sediment remains impounded, high flows become more important drivers of geomorphic and habitat change than dam removal alone. In such cases, the rates at which biophysical processes are reestablished will depend largely on post-dam removal flow sequencing and the upstream supply of sediment and large wood.

  11. Risk Costs for New Dams: Economic Analysis and Effects of Monitoring

    NASA Astrophysics Data System (ADS)

    Paté-Cornell, M. Elisabeth; Tagaras, George

    1986-01-01

    This paper presents new developments and illustrations of the introduction of risk and costs in cost-benefit analysis for new dams. The emphasis is on a method of evaluation of the risk costs based on the structure of the local economy. Costs to agricultural property as well as residential, commercial, industrial, and public property are studied in detail. Of particular interest is the case of sequential dam failure and the evaluation of the risk costs attributable to a new dam upstream from an existing one. Three real cases are presented as illustrations of the method: the Auburn Dam, the Dickey-Lincoln School Project, and the Teton Dam, which failed in 1976. This last case provides a calibration tool for the estimation of loss ratios. For these three projects, the risk-modified benefit-cost ratios are computed to assess the effect of the risk on the economic performance of the project. The role of a warning system provided by systematic monitoring of the dam is analyzed: by reducing the risk costs, the warning system attenuates their effect on the benefit-cost ratio. The precursors, however, can be missed or misinterpreted: monitoring does not guarantee that the risks to human life can be reduced to zero. This study shows, in particular, that it is critical to consider the risk costs in the decision to build a new dam when the flood area is large and densely populated.

  12. Elwha River dam removal-Rebirth of a river

    USGS Publications Warehouse

    Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.

    2011-01-01

    After years of planning for the largest project of its kind, the Department of the Interior will begin removal of two dams on the Elwha River, Washington, in September 2011. For nearly 100 years, the Elwha and Glines Canyon Dams have disrupted natural processes, trapping sediment in the reservoirs and blocking fish migrations, which changed the ecology of the river downstream of the dams. All five Pacific salmon species and steelhead-historically present in large numbers-are locally extirpated or persist in critically low numbers. Upstream of the dams, more than 145 kilometers of pristine habitat, protected inside Olympic National Park, awaits the return of salmon populations. As the dams are removed during a 2-3 year project, some of the 19 million cubic meters of entrapped sediment will be carried downstream by the river in the largest controlled release of sediment into a river and marine waters in history. Understanding the changes to the river and coastal habitats, the fate of sediments, and the salmon recolonization of the Elwha River wilderness will provide useful information for society as future dam removals are considered.

  13. Science partnership between U.S. Geological Survey and the Lower Elwha Klallam Tribe—Understanding the Elwha River Dam Removal Project

    USGS Publications Warehouse

    Duda, Jeffrey J.; Beirne, Matt M.; Warrick, Jonathan A.; Magirl, Christopher S.

    2018-04-16

    After nearly a century of producing power, two large hydroelectric dams on the Elwha River in Washington State were removed during 2011 to 2014 to restore the river ecosystem and recover imperiled salmon populations. Roughly two-thirds of the 21 million cubic meters of sediment—enough to fill nearly 2 million dump trucks—contained behind the dams was released downstream, which restored natural processes and initiated important changes to the river, estuarine, and marine ecosystems. A multidisciplinary team of scientists from the Lower Elwha Klallam Tribe, academia, non-governmental organizations, Federal and state agencies, and the U.S. Geological Survey collected key data before, during, and after dam removal to understand the outcomes of this historic project on the Elwha River ecosystem.

  14. Estimating Sediment Delivery to The Rio Maranon, Peru Prior to Large-Scale Hydropower Developments Using High Resolution Imagery from Google Earth and a DJI Phantom 3 Drone

    NASA Astrophysics Data System (ADS)

    Goode, J. R.; Candelaria, T.; Kramer, N. R.; Hill, A. F.

    2016-12-01

    As global energy demands increase, generating hydroelectric power by constructing dams and reservoirs on large river systems is increasingly seen as a renewable alternative to fossil fuels, especially in emerging economies. Many large-scale hydropower projects are located in steep mountainous terrain, where environmental factors have the potential to conspire against the sustainability and success of such projects. As reservoir storage capacity decreases when sediment builds up behind dams, high sediment yields can limit project life expectancy and overall hydropower viability. In addition, episodically delivered sediment from landslides can make quantifying sediment loads difficult. These factors, combined with remote access, limit the critical data needed to effectively evaluate development decisions. In the summer of 2015, we conducted a basic survey to characterize the geomorphology, hydrology and ecology of 620 km of the Rio Maranon, Peru - a major tributary to the Amazon River, which flows north from the semi-arid Peruvian Andes - prior to its dissection by several large hydropower dams. Here we present one component of this larger study: a first order analysis of potential sediment inputs to the Rio Maranon, Peru. To evaluate sediment delivery and storage in this system, we used high resolution Google Earth imagery to delineate landslides, combined with high resolution imagery from a DJI Phantom 3 Drone, flown at alluvial fan inputs to the river in the field. Because hillslope-derived sediment inputs from headwater tributaries are important to overall ecosystem health in large river systems, our study has the potential to contribute to the understanding the impacts of large Andean dams on sediment connectivity to the Amazon basin.

  15. Dams and Intergovernmental Transfers

    NASA Astrophysics Data System (ADS)

    Bao, X.

    2012-12-01

    Gainers and Losers are always associated with large scale hydrological infrastructure construction, such as dams, canals and water treatment facilities. Since most of these projects are public services and public goods, Some of these uneven impacts cannot fully be solved by markets. This paper tried to explore whether the governments are paying any effort to balance the uneven distributional impacts caused by dam construction or not. It showed that dam construction brought an average 2% decrease in per capita tax revenue in the upstream counties, a 30% increase in the dam-location counties and an insignificant increase in downstream counties. Similar distributional impacts were observed for other outcome variables. like rural income and agricultural crop yields, though the impacts differ across different crops. The paper also found some balancing efforts from inter-governmental transfers to reduce the unevenly distributed impacts caused by dam construction. However, overall the inter-governmental fiscal transfer efforts were not large enough to fully correct those uneven distributions, reflected from a 2% decrease of per capita GDP in upstream counties and increase of per capita GDP in local and downstream counties. This paper may shed some lights on the governmental considerations in the decision making process for large hydrological infrastructures.

  16. Coastal change from a massive sediment input: Dam removal, Elwha River, Washington, USA

    USGS Publications Warehouse

    Warrick, Jonathan A.; Gelfenbaum, Guy R.; Stevens, Andrew; Miller, Ian M.; Kaminsky, George M.; Foley, Melissa M.

    2015-01-01

    The removal of two large dams on the Elwha River, Washington, provides an ideal opportunity to study coastal morphodynamics during increased sediment supply. The dam removal project exposed ~21 million cubic meters (~30 million tonnes) of sediment in the former reservoirs, and this sediment was allowed to erode by natural river processes. Elevated rates of sand and gravel sediment transport in the river occurred during dam removal. Most of the sediment was transported to the coast, and this renewed sediment supply resulted in hundreds of meters of seaward expansion of the river delta since 2011. Our most recent survey in January 2015 revealed that a cumulative ~3.5 million m3 of sediment deposition occurred at the delta since the beginning of the dam removal project, and that aggradation had exceeded 8 m near the river mouth. Some of the newly deposited sediment has been shaped by waves and currents into a series of subaerial berms that appear to move shoreward with time.

  17. 75 FR 30805 - Gibson Dam Hydroelectric Company, LLC; Notice Soliciting Comments, and Final Terms and Conditions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-02

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 12478-003] Gibson Dam... of Application: Major Project--Existing Dam. b. Project No.: P-12478-003. c. Date filed: August 28, 2009. d. Applicant: Gibson Dam Hydroelectric Company, LLC. e. Name of Project: Gibson Dam Hydroelectric...

  18. Seismic risk assessment for Poiana Uzului (Romania) buttress dam on Uz river

    NASA Astrophysics Data System (ADS)

    Moldovan, Iren-Adelina; Toma-Danila, Dragos; Paerele, Cosmin Marian; Emilian Toader, Victorin; Petruta Constantin, Angela; Ghita, Cristian

    2017-04-01

    The most important specific requirements towards dams' safety is the seismic risk assessment. This objective will be accomplished by rating the dams into seismic risk classes using the theory of Bureau and Ballentine, 2002, and Bureau (2003), taking into account the maximum expected peak ground motions at dams' site, the structures vulnerability and the downstream risk characteristics. The maximum expected values for ground motions at dams' site have been obtained using probabilistic seismic hazard assessment approaches. The structural vulnerability was obtained from dams' characteristics (age, high, water volume) and the downstream risk was assessed using human, economical, touristic, historic and cultural heritage information from the areas that might be flooded in the case of a dam failure. A couple of flooding scenarios have been performed. The results of the work consist of local and regional seismic information, specific characteristics of dam, seismic hazard values for different return periods and risk classes. The studies realized in this paper have as final goal to provide in the near future the local emergency services with warnings of a potential dam failure and ensuing flood as a result of a large earthquake occurrence, allowing further public training for evacuation. Acknowledgments This work was partially supported by the Partnership in Priority Areas Program - PNII, under MEN-UEFISCDI, DARING Project no. 69/2014 and the Nucleu Program - PN 16-35, Project no. 03 01 and 01 06.

  19. Effects of dam removal on Tule Fall Chinook salmon spawning habitat in the White Salmon River, Washington

    USGS Publications Warehouse

    Hatten, James R.; Batt, Thomas R.; Skalicky, Joseph J.; Engle, Rod; Barton, Gary J.; Fosness, Ryan L.; Warren, Joe

    2016-01-01

    Condit Dam is one of the largest hydroelectric dams ever removed in the USA. Breached in a single explosive event in October 2011, hundreds-of-thousands of cubic metres of sediment washed down the White Salmon River onto spawning grounds of a threatened species, Columbia River tule fall Chinook salmon Oncorhynchus tshawytscha. We investigated over a 3-year period (2010–2012) how dam breaching affected channel morphology, river hydraulics, sediment composition and tule fall Chinook salmon (hereafter ‘tule salmon’) spawning habitat in the lower 1.7 km of the White Salmon River (project area). As expected, dam breaching dramatically affected channel morphology and spawning habitat due to a large load of sediment released from Northwestern Lake. Forty-two per cent of the project area that was previously covered in water was converted into islands or new shoreline, while a large pool near the mouth filled with sediments and a delta formed at the mouth. A two-dimensional hydrodynamic model revealed that pool area decreased 68.7% in the project area, while glides and riffles increased 659% and 530%, respectively. A spatially explicit habitat model found the mean probability of spawning habitat increased 46.2% after dam breaching due to an increase in glides and riffles. Shifting channels and bank instability continue to negatively affect some spawning habitat as sediments continue to wash downstream from former Northwestern Lake, but 300 m of new spawning habitat (river kilometre 0.6 to 0.9) that formed immediately post-breach has persisted into 2015. Less than 10% of tule salmon have spawned upstream of the former dam site to date, but the run sizes appear healthy and stable. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  20. Rapid water quality change in the Elwha River estuary complex during dam removal

    USGS Publications Warehouse

    Foley, Melissa M.; Duda, Jeffrey J.; Beirne, Matthew M.; Paradis, Rebecca; Ritchie, Andrew; Warrick, Jonathan A.

    2015-01-01

    Dam removal in the United States is increasing as a result of structural concerns, sedimentation of reservoirs, and declining riverine ecosystem conditions. The removal of the 32 m Elwha and 64 m Glines Canyon dams from the Elwha River in Washington, U.S.A., was the largest dam removal project in North American history. During the 3 yr of dam removal—from September 2011 to August 2014—more than ten million cubic meters of sediment was eroded from the former reservoirs, transported downstream, and deposited throughout the lower river, river delta, and nearshore waters of the Strait of Juan de Fuca. Water quality data collected in the estuary complex at the mouth of the Elwha River document how conditions in the estuary changed as a result of sediment deposition over the 3 yr the dams were removed. Rapid and large-scale changes in estuary conditions—including salinity, depth, and turbidity—occurred 1 yr into the dam removal process. Tidal propagation into the estuary ceased following a large sediment deposition event that began in October 2013, resulting in decreased salinity, and increased depth and turbidity in the estuary complex. These changes have persisted in the system through dam removal, significantly altering the structure and functioning of the Elwha River estuary ecosystem.

  1. 78 FR 35630 - Martin Dam Hydroelectric Project; Notice of Availability of the Draft Environmental Impact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-13

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 349-173] Martin Dam Hydroelectric Project; Notice of Availability of the Draft Environmental Impact Statement for the Martin Dam... the Martin Dam Hydroelectric Project (FERC No. 349), located on the Tallapoosa River in Tallapoosa...

  2. How to meet the increasing demands of water, food and energy in the future?

    NASA Astrophysics Data System (ADS)

    Shi, Haiyun; Chen, Ji; Sivakumar, Bellie; Peart, Mervyn

    2017-04-01

    Regarded as a driving force in water, food and energy demands, the world's population has been increasing rapidly since the beginning of the 20th century. According to the medium-growth projection scenario of the United Nations, the world's population will reach 9.5 billion by 2050. In response to the continuously growing population during this century, water, food and energy demands have also been increasing rapidly, and social problems (e.g., water, food, and energy shortages) will be most likely to occur, especially if no proper management strategies are adopted. Then, how to meet the increasing demands of water, food and energy in the future? This study focuses on the sustainable developments of population, water, food, energy and dams, and the significances of this study can be concluded as follows: First, we reveal the close association between dams and social development through analysing the related data for the period 1960-2010, and argue that construction of additional large dams will have to be considered as one of the best available options to meet the increasing water, food and energy demands in the future. We conduct the projections of global water, food and energy consumptions and dam development for the period 2010-2050, and the results show that, compared to 2010, the total water, food and energy consumptions in 2050 will increase by 20%, 34% and 37%, respectively. Moreover, it is projected that additional 4,340 dams will be constructed by 2050 all over the world. Second, we analyse the current situation of global water scarcity based on the related data representing water resources availability (per capita available water resources), dam development (the number of dams), and the level of economic development (per capita gross domestic product). At the global scale, water scarcity exists in more than 70% of the countries around the world, including 43 countries suffering from economic water scarcity and 129 countries suffering from physical water scarcity. At the continental scale, most countries of Africa, the south and west Asia, and the central Europe are suffering from water scarcity. Third, with comprehensive consideration of population growth as the major driving force, water resources availability as the basic supporting factor, and topography as the important constraint, we address the question of future dam development and predict the locations of future large dams around the world. The results show that there will be 1,433 large dams built in the future, mainly in the Tibet Plateau and the Yunnan-Guizhou Plateau in Asia, the East African Plateau and the western part of Africa, the Andes Mountains and the Brazilian Plateau region in South America, the Rocky Mountains in North America, the Alps in Europe, and the Murray-Darling Basin in Oceania. Taking into account of the current situation of global water scarcity, these large dams are most likely to be constructed in countries that have abundant total available water resources or per capita available water resources, no matter whether they are experiencing "economic water scarcity" or have sufficient financial support.

  3. Innovative resettlement schemes planned for the Numata Dam project

    NASA Astrophysics Data System (ADS)

    Nakayama, Mikiyasu

    2003-10-01

    The Numata Dam, planned for the Tone River basin of Gunma Prefecture, was the largest dam construction project ever considered in Japan. This dam construction project, however, did not materialize. The proposal for the Numata Dam was first launched in 1959, at a time when the Tokyo Metropolitan area was mushrooming, both in population and industrial activity. The Numata Dam was supposed to be a prioritized dam construction project to alleviate the then anticipated water shortage in the Tokyo Metropolitan area. The Numata Dam plan experienced fierce opposition from those who would have been obliged to resettle, whereas those in Tokyo and the surrounding metropolitan area welcomed the plan. The major concern of the planned Numata Dam was the number of resettlers, which was then estimated to be around 3000 families. The resettlement plan developed for the Numata Dam included some innovative concepts, which may be applicable even today, for dam construction projects in the developing world. The plan included such ideas as (a) having resettlers share existing farmland with the present owners provided improvements were made to increase productivity, (b) paying rent to resettlers, and (c) establishing the Tone River Development Agency. After more than a decade of debate, both at national and local levels, the Numata Dam project was finally discarded through a decision of the Prime Minister in 1972. The resettlement schemes elaborated for the Numata Dam still appear to be innovative. Such schemes may be applied to projects in the developing world, in particular, in nations that are about to take off with economic development. Copyright

  4. 75 FR 74700 - Grand River Dam Authority; Notice of Application for Amendment of License and Soliciting Comments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-01

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No.: 2183-078] Grand River Dam... Dam Authority. e. Name of Project: Markham Ferry Hydroelectric Project. f. Location: The project is..., Grand River Dam Authority, P.O. Box 409, Vinita, Oklahoma 74301-0409, (918) 256-5545 or by e-mail...

  5. Emergency Fish Restoration Project; Final Report 2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeCaire, Richard

    Lake Roosevelt is a 151-mile impoundment created by the construction of Grand Coulee Dam during the early 1940's. The construction of the dam permanently and forever blocked the once abundant anadromous fish runs to the upper Columbia Basin. Since the construction of Grand Coulee Dam in 1943 and Chief Joseph Dam in 1956 this area is known as the blocked area. The blocked area is totally dependant upon resident fish species to provide a subsistence, recreational and sport fishery. The sport fishery of lake Roosevelt is varied but consists mostly of Rainbow trout (Oncorhynchus mykiss), Kokanee salmon (Oncorhynchus nerka), Walleyemore » (Stizostedion vitreum) Small mouth bass (Micropterus dolomieui) and white sturgeon (Acipenser transmontanus). Currently, Bonneville Power Administration funds and administers two trout/kokanee hatcheries on Lake Roosevelt. The Spokane Tribe of Indians operates one hatchery, the Washington Department of Fish and Wildlife the other. In addition to planting fish directly into Lake Roosevelt, these two hatcheries also supply fish to a net pen operation that also plants the lake. The net pen project is administered by Bonneville Power funded personnel but is dependant upon volunteer labor for daily feeding and monitoring operations. This project has demonstrated great success and is endorsed by the Colville Confederated Tribes, the Spokane Tribe of Indians, the Washington Department of Fish and Wildlife, local sportsmen associations, and the Lake Roosevelt Forum. The Lake Roosevelt/Grand Coulee Dam area is widely known and its diverse fishery is targeted by large numbers of anglers annually to catch rainbow trout, kokanee salmon, small mouth bass and walleye. These anglers contribute a great deal to the local economy by fuel, grocery, license, tackle and motel purchases. Because such a large portion of the local economy is dependant upon the Lake Roosevelt fishery and tourism, any unusual operation of the Lake Roosevelt system may have a substantial impact to the economy. During the past several years the Chief Joseph Kokanee Enhancement project has been collecting data pertaining to fish entraining out of the lake through Grand Coulee Dam. During 1996 and 1997 the lake was deeply drawn down to accommodate the limited available water during a drought year and for the highly unusual draw-down of Lake Roosevelt during the critical Northwest power shortage. The goal of the project is to enhance the resident rainbow trout fishery in Lake Roosevelt lost as a result of the unusual operation of Grand Coulee dam during the drought/power shortage.« less

  6. 75 FR 22122 - Gibson Dam Hydroelectric Company, LLC; Notice of Application Accepted for Filing and Soliciting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-27

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No.: 12478-003] Gibson Dam... Commission and is available for public inspection. a. Type of Application: Major Project--Existing Dam. b. Project No.: P-12478-003. c. Date filed: August 28, 2009. d. Applicant: Gibson Dam Hydroelectric Company...

  7. 75 FR 16090 - Grand River Dam Authority; Notice of Application for Amendment of License and Soliciting Comments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-31

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 1494-384] Grand River Dam.... Applicant: Grand River Dam Authority. e. Name of Project: Pensacola Project. f. Location: The proposed non... Council, Grand Dam River Authority, P.O. Box 409, Vinita, Oklahoma 74301, (918) 256-5545. i. FERC Contact...

  8. Classification of US hydropower dams by their modes of operation

    DOE PAGES

    McManamay, Ryan A.; Oigbokie, II, Clement O.; Kao, Shih -Chieh; ...

    2016-02-19

    A key challenge to understanding ecohydrologic responses to dam regulation is the absence of a universally transferable classification framework for how dams operate. In the present paper, we develop a classification system to organize the modes of operation (MOPs) for U.S. hydropower dams and powerplants. To determine the full diversity of MOPs, we mined federal documents, open-access data repositories, and internet sources. W then used CART classification trees to predict MOPs based on physical characteristics, regulation, and project generation. Finally, we evaluated how much variation MOPs explained in sub-daily discharge patterns for stream gages downstream of hydropower dams. After reviewingmore » information for 721 dams and 597 power plants, we developed a 2-tier hierarchical classification based on 1) the storage and control of flows to powerplants, and 2) the presence of a diversion around the natural stream bed. This resulted in nine tier-1 MOPs representing a continuum of operations from strictly peaking, to reregulating, to run-of-river, and two tier-2 MOPs, representing diversion and integral dam-powerhouse configurations. Although MOPs differed in physical characteristics and energy production, classification trees had low accuracies (<62%), which suggested accurate evaluations of MOPs may require individual attention. MOPs and dam storage explained 20% of the variation in downstream subdaily flow characteristics and showed consistent alterations in subdaily flow patterns from reference streams. Lastly, this standardized classification scheme is important for future research including estimating reservoir operations for large-scale hydrologic models and evaluating project economics, environmental impacts, and mitigation.« less

  9. Classification of US hydropower dams by their modes of operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManamay, Ryan A.; Oigbokie, II, Clement O.; Kao, Shih -Chieh

    A key challenge to understanding ecohydrologic responses to dam regulation is the absence of a universally transferable classification framework for how dams operate. In the present paper, we develop a classification system to organize the modes of operation (MOPs) for U.S. hydropower dams and powerplants. To determine the full diversity of MOPs, we mined federal documents, open-access data repositories, and internet sources. W then used CART classification trees to predict MOPs based on physical characteristics, regulation, and project generation. Finally, we evaluated how much variation MOPs explained in sub-daily discharge patterns for stream gages downstream of hydropower dams. After reviewingmore » information for 721 dams and 597 power plants, we developed a 2-tier hierarchical classification based on 1) the storage and control of flows to powerplants, and 2) the presence of a diversion around the natural stream bed. This resulted in nine tier-1 MOPs representing a continuum of operations from strictly peaking, to reregulating, to run-of-river, and two tier-2 MOPs, representing diversion and integral dam-powerhouse configurations. Although MOPs differed in physical characteristics and energy production, classification trees had low accuracies (<62%), which suggested accurate evaluations of MOPs may require individual attention. MOPs and dam storage explained 20% of the variation in downstream subdaily flow characteristics and showed consistent alterations in subdaily flow patterns from reference streams. Lastly, this standardized classification scheme is important for future research including estimating reservoir operations for large-scale hydrologic models and evaluating project economics, environmental impacts, and mitigation.« less

  10. Assessing changes in failure probability of dams in a changing climate

    NASA Astrophysics Data System (ADS)

    Mallakpour, I.; AghaKouchak, A.; Moftakhari, H.; Ragno, E.

    2017-12-01

    Dams are crucial infrastructures and provide resilience against hydrometeorological extremes (e.g., droughts and floods). In 2017, California experienced series of flooding events terminating a 5-year drought, and leading to incidents such as structural failure of Oroville Dam's spillway. Because of large socioeconomic repercussions of such incidents, it is of paramount importance to evaluate dam failure risks associated with projected shifts in the streamflow regime. This becomes even more important as the current procedures for design of hydraulic structures (e.g., dams, bridges, spillways) are based on the so-called stationary assumption. Yet, changes in climate are anticipated to result in changes in statistics of river flow (e.g., more extreme floods) and possibly increasing the failure probability of already aging dams. Here, we examine changes in discharge under two representative concentration pathways (RCPs): RCP4.5 and RCP8.5. In this study, we used routed daily streamflow data from ten global climate models (GCMs) in order to investigate possible climate-induced changes in streamflow in northern California. Our results show that while the average flow does not show a significant change, extreme floods are projected to increase in the future. Using the extreme value theory, we estimate changes in the return periods of 50-year and 100-year floods in the current and future climates. Finally, we use the historical and future return periods to quantify changes in failure probability of dams in a warming climate.

  11. 78 FR 41056 - Notice of Availability of Environmental Assessment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-09

    ... applications for original licenses for the Red River Lock and Dam No. 5 Hydroelectric Project (FERC Project No. 12758-004), Red River Lock and Dam No. 4 Hydroelectric Project (FERC Project No. 12757- 004), and Red... be located on the Red River in Louisiana. The Lock and Dam No. 5 Project would be located in Bossier...

  12. The Grand Ethiopian Renaissance Dam: Source of cooperation or contention?

    USGS Publications Warehouse

    Teferi Taye, Meron; Tadesse, Tsegaye; Senay, Gabriel; Block, Paul

    2016-01-01

    This paper discusses the challenges and benefits of the Grand Ethiopian Renaissance Dam (GERD), which is under construction and expected to be operational on the Blue Nile River in Ethiopia in a few years. Like many large-scale projects on transboundary rivers, the GERD has been criticized for potentially jeopardizing downstream water security and livelihoods through upstream unilateral decision making. In spite of the contentious nature of the project, the authors argue that this project can provide substantial benefits for regional development. The GERD, like any major river infrastructure project, will undeniably bring about social, environmental, and economic change, and in this unique case has, on balance, the potential to achieve success on all fronts. It must be stressed, however, that strong partnerships between riparian countries are essential. National success is contingent on regional cooperation.

  13. 78 FR 21933 - Archon Energy 1, Inc.; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-12

    ... feasibility of the Palo Verde Diversion Dam Hydroelectric Project (Palo Verde Diversion Dam Project or project... Southern California Edison transmission line located approximately one mile west of the Palo Verde Dam. An...

  14. The World Commission on Dams: A fundamental step towards integrated water resources management and poverty reduction? A pilot case in the Lower Zambezi, Mozambique

    NASA Astrophysics Data System (ADS)

    Scodanibbio, Lucia; Mañez, Gustavo

    The Cahora Bassa dam in the Lower Zambezi has undoubtedly brought varied economic benefits (such as hydroelectricity) to Mozambique. There is also, however, evidence of certain negative impacts that have increased the vulnerability of downstream populations. Specifically, current water management practices in the Zambezi have affected people’s livelihoods by the frequent unpredictable releases of water that wash away riverbank crops, impoverish fish stocks and fish habitat, and threaten the valuable shrimp exports. These releases have also worsened the effects of large floods, for example the floods of 2001. The ecosystem of the Zambezi delta, which is a Ramsar site, has also suffered since Cahora Bassa’s regulation. The Mozambican government is proposing to construct a new dam downstream of Cahora Bassa at Mphanda Nkuwa. In the feasibility study, there was no due consideration of rural downstream communities and their livelihoods. This has left many potentially affected people uninformed and vulnerable to the risks associated with the new development. The new dam is likely to worsen the already severe impacts of Cahora Bassa. The World Commission on Dams (WCD) developed seven strategic priorities, designed to inform all decisions related to future dam developments. These priorities follow principles of public participation, social equity, environmental sustainability, economic efficiency and accountability. The WCD proposed best-practice guidelines for both addressing existing dams and for any future ones which are planned. According to the WCD, affected communities have a right to participate in the decision to build a dam, they should be the first to benefit from the project, and the rivers on which their livelihoods are based should be protected. Stakeholder participation is one of the fundamental components of integrated water resources management (IWRM). For effective participation in dam projects, affected people need to be empowered, have access to information and adequate capacity. In this context JA!, a Mozambican environmental NGO, is undertaking a project to share WCD recommendations with affected people along the Zambezi River. JA! has adopted a “bottom-up” approach to ensure that the people’s interests are included in government projects. This approach could give Mozambique the power to safeguard the environment while sustaining peoples’ livelihoods.

  15. 54. Downstream face of Agua Fria project's diversion dam showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    54. Downstream face of Agua Fria project's diversion dam showing initial masonry construction and poured concrete capping. Photographer Mark Durben, 1986. Source: Salt River Project. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  16. Hydroacoustic Evaluation of Fish Passage Through Bonneville Dam in 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ploskey, Gene R.; Weiland, Mark A.; Zimmerman, Shon A.

    2006-12-04

    The Portland District of the U.S. Army Corps of Engineers requested that the Pacific Northwest National Laboratory (PNNL) conduct fish-passage studies at Bonneville Dam in 2005. These studies support the Portland District's goal of maximizing fish-passage efficiency (FPE) and obtaining 95% survival for juvenile salmon passing Bonneville Dam. Major passage routes include 10 turbines and a sluiceway at Powerhouse 1 (B1), an 18-bay spillway, and eight turbines and a sluiceway at Powerhouse 2 (B2). In this report, we present results of two studies related to juvenile salmonid passage at Bonneville Dam. The studies were conducted between April 16 and Julymore » 15, 2005, encompassing most of the spring and summer migrations. Studies included evaluations of (1) Project fish passage efficiency and other major passage metrics, and (2) smolt approach and fate at B1 Sluiceway Outlet 3C from the B1 forebay. Some of the large appendices are only presented on the compact disk (CD) that accompanies the final report. Examples include six large comma-separated-variable (.CSV) files of hourly fish passage, hourly variances, and Project operations for spring and summer from Appendix E, and large Audio Video Interleave (AVI) files with DIDSON-movie clips of the area upstream of B1 Sluiceway Outlet 3C (Appendix H). Those video clips show smolts approaching the outlet, predators feeding on smolts, and vortices that sometimes entrained approaching smolts into turbines. The CD also includes Adobe Acrobat Portable Document Files (PDF) of the entire report and appendices.« less

  17. Large-scale dam removal on the Elwha River, Washington, USA: fluvial sediment load

    USGS Publications Warehouse

    Magirl, Christopher S.; Hilldale, Robert C.; Curran, Christopher A.; Duda, Jeffrey J.; Straub, Timothy D.; Domanski, Marian M.; Foreman, James R.

    2015-01-01

    The Elwha River restoration project, in Washington State, includes the largest dam-removal project in United States history to date. Starting September 2011, two nearly century-old dams that collectively contained 21 ± 3 million m3 of sediment were removed over the course of three years with a top-down deconstruction strategy designed to meter the release of a portion of the dam-trapped sediment. Gauging with sediment-surrogate technologies during the first two years downstream from the project measured 8,200,000 ± 3,400,000 tonnes of transported sediment, with 1,100,000 and 7,100,000 t moving in years 1 and 2, respectively, representing 3 and 20 times the Elwha River annual sediment load of 340,000 ± 80,000 t/y. During the study period, the discharge in the Elwha River was greater than normal (107% in year 1 and 108% in year 2); however, the magnitudes of the peak-flow events during the study period were relatively benign with the largest discharge of 292 m3/s (73% of the 2-year annual peak-flow event) early in the project when both extant reservoirs still retained sediment. Despite the muted peak flows, sediment transport was large, with measured suspended-sediment concentrations during the study period ranging from 44 to 16,300 mg/L and gauged bedload transport as large as 24,700 t/d. Five distinct sediment-release periods were identified when sediment loads were notably increased (when lateral erosion in the former reservoirs was active) or reduced (when reservoir retention or seasonal low flows and cessation of lateral erosion reduced sediment transport). Total suspended-sediment load was 930,000 t in year 1 and 5,400,000 t in year 2. Of the total 6,300,000 ± 3,200,000 t of suspended-sediment load, 3,400,000 t consisted of silt and clay and 2,900,000 t was sand. Gauged bedload on the lower Elwha River in year 2 of the project was 450,000 ± 360,000 t. Bedload was not quantified in year 1, but qualitative observations using bedload-surrogate instruments indicated detectable bedload starting just after full removal of the downstream dam. Using comparative studies from other sediment-laden rivers, the total ungauged fraction of < 2-mm bedload was estimated to be on the order of 1.5 Mt.

  18. Assessment of Useful Plants in the Catchment Area of the Proposed Ntabelanga Dam in the Eastern Cape Province, South Africa

    PubMed Central

    2017-01-01

    Background The developmental projects, particularly construction of dams, result in permanent changes of terrestrial ecosystems through inundation. Objective The present study was undertaken aiming at documenting useful plant species in Ntabelanga dam catchment area that will be impacted by the construction of the proposed dam. Methods A total of 55 randomly selected quadrats were used to assess plant species diversity and composition. Participatory rural appraisal (PRA) methods were used to identify useful plant species growing in the catchment area through interviews with 108 randomly selected participants. Results A total of 197 plant species were recorded with 95 species (48.2%) utilized for various purposes. Use categories included ethnoveterinary and herbal medicines (46 species), food plants (37 species), construction timber and thatching (14 species), firewood (five species), browse, live fence, and ornamental (four species each), and brooms and crafts (two species). Conclusion This study showed that plant species play an important role in the daily life and culture of local people. The construction of Ntabelanga dam is, therefore, associated with several positive and negative impacts on plant resources which are not fully integrated into current decision-making, largely because of lack of multistakeholder dialogue on the socioeconomic issues of such an important project. PMID:28828397

  19. 75 FR 46918 - Gresham Municipal Utilities; Notice of Application for Amendment of License and Soliciting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-04

    ... Utilities. e. Name of Project: Upper Red Lake Dam Hydroelectric Project. f. Location: On the Red River, in.... Description of Request: The licensee proposes to amend the license for the Upper Red Lake Dam Hydroelectric... Project No. 2464), which is located immediately downstream from the Upper Red Lake Dam Project; (2) the...

  20. 76 FR 54766 - Amnor Hydro West Inc.; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-02

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14063-000] Amnor Hydro West... feasibility of constructing the Hiram M. Chittenden Lock and Dam Hydroelectric Project (Hiram Dam Project or project) located at the Hiram M. Chittenden Lock and Dam facility owned and operated by the U.S. Army...

  1. 77 FR 47628 - Archon Energy 1, Inc.; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-09

    ...), proposing to study the feasibility of the DaGuerre Point Dam Hydropower Project (DaGuerre Point Dam Project or project) to be located at the U.S. Army Corps of Engineers' (USACE) DaGuerre Point Dam, on the...

  2. After Three Gorges Dam: What have we learned?

    NASA Astrophysics Data System (ADS)

    Natali, J.; Williams, P.; Wong, R.; Kondolf, G. M.

    2013-12-01

    China is at a critical point in its development path. By investing heavily in large-scale infrastructure, the rewards of economic growth weigh against long-term environmental and social costs. The construction of Three Gorges Dam, the world's largest hydroelectric project, began in 1994. Between 2002 and 2010, its 660 kilometer reservoir filled behind a 181 meter dam, displacing at least 1.4 million people and transforming Asia's longest river (the Yangtze) while generating nearly 100 billion kWh/yr of electricity -- 2.85% of China's current electric power usage. As the mega-project progenitor in a cascade of planned dams, the Three Gorges Dam emerges as a test case for how China will plan, execute and mitigate its development pathway and the transformation of its environment. Post-Project Assessments (PPA) provide a systematic, scientific method for improving the practice of environmental management - particularly as they apply to human intervention in river systems. In 2012, the Department of Landscape Architecture and Environmental Planning at University of California, Berkeley organized a symposium-based PPA for the Three Gorges Dam on the Yangtze River. Prior to this symposium, the twelve invited Chinese scientists, engineers and economists with recent research on Three Gorges Dam had not had the opportunity to present their evaluations together in an open, public forum. With a 50-year planning horizon, the symposium's five sessions centered on impacts on flows, geomorphology, geologic hazards, the environment and socioeconomic effects. Three Gorges' project goals focused on flood control, hydropower and improved navigation. According to expert research, major changes in sediment budget and flow regime from reservoir operation have significantly reduced sediment discharge into the downstream river and estuary, initiating a series of geomorphic changes with ecological and social impacts. While the dam reduces high flow stages from floods originating above the reservoir, subsequent floodplain development and degradation of levees increase downstream flood risk. As geomorphic adjustment continues, the loss of key fish and wildlife habitat will rise, a recognized but externalized environmental cost with potential mitigation measures found in protecting and restoring floodplain lakes. With significant underestimates of social impacts and project costs, the population of the surrounding area has experienced severe adverse impacts ranging from loss of ancient villages, landholdings, and livelihoods to increased threats of natural hazards -- without full compensation or public disclosure of project costs. The value of PPAs is most realized when integrated into adaptive management for river basin planning. Throughout the symposium, speakers echoed the conclusion: 'The entire Yangtze basin needs comprehensive management.' Integrated planning decisions must consider dams, water diversions, reservoir management, protection of natural areas, basin-wide land management, preservation of flood detention areas and levees, and both economic compensation and social opportunity for affected residents. The resulting analysis may influence the massive expansion of worldwide hydroelectric development as China exports its financing and dam building expertise.

  3. Large-scale projects in the amazon and human exposure to mercury: The case-study of the Tucuruí Dam.

    PubMed

    Arrifano, Gabriela P F; Martín-Doimeadios, Rosa C Rodríguez; Jiménez-Moreno, María; Ramírez-Mateos, Vanesa; da Silva, Núbia F S; Souza-Monteiro, José Rogério; Augusto-Oliveira, Marcus; Paraense, Ricardo S O; Macchi, Barbarella M; do Nascimento, José Luiz M; Crespo-Lopez, Maria Elena

    2018-01-01

    The Tucuruí Dam is one of the largest dams ever built in the Amazon. The area is not highly influenced by gold mining as a source of mercury contamination. Still, we recently noted that one of the most consumed fishes (Cichla sp.) is possibly contaminated with methylmercury. Therefore, this work evaluated the mercury content in the human population living near the Tucuruí Dam. Strict exclusion/inclusion criteria were applied for the selection of participants avoiding those with altered hepatic and/or renal functions. Methylmercury and total mercury contents were analyzed in hair samples. The median level of total mercury in hair was above the safe limit (10µg/g) recommended by the World Health Organization, with values up to 75µg/g (about 90% as methylmercury). A large percentage of the participants (57% and 30%) showed high concentrations of total mercury (≥ 10µg/g and ≥ 20µg/g, respectively), with a median value of 12.0µg/g. These are among the highest concentrations ever detected in populations living near Amazonian dams. Interestingly, the concentrations are relatively higher than those currently shown for human populations highly influenced by gold mining areas. Although additional studies are needed to confirm the possible biomagnification and bioaccumulation of mercury by the dams in the Amazon, our data already support the importance of adequate impact studies and continuous monitoring. More than 400 hydropower dams are operational or under construction in the Amazon, and an additional 334 dams are presently planned/proposed. Continuous monitoring of the populations will assist in the development of prevention strategies and government actions to face the problem of the impacts caused by the dams. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. 76 FR 57731 - Notice of Preliminary Permit Application Accepted for Filing and Soliciting Comments, Motions To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-16

    ... Competing Applications; McKay Dam Hydropower, LLC On May 31, 2011, McKay Dam Hydropower, LLC filed an... study the feasibility of the McKay Dam Hydroelectric Project (project) to be located at the McKay dam near Pendleton in Umatilla County, [[Page 57732

  5. 77 FR 2970 - Gibson Dam Hydroelectric Company, LLC, Montana; Notice of Availability of Final Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-20

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 12478-003] Gibson Dam... reviewed the application for license for the Gibson Dam Hydroelectric Project, located at the U.S. Department of the Interior, Bureau of Reclamation's Gibson dam on the Sun River in Lewis and Clark and Teton...

  6. 78 FR 38026 - Alabama Power, Inc.; Supplement to Notice of Availability of the Draft Environmental Impact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-25

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 349-173] Alabama Power, Inc.; Supplement to Notice of Availability of the Draft Environmental Impact Statement for the Martin Dam... Impact Statement (draft EIS) for the Martin Dam Hydroelectric Project No. 349- 173 (Martin Dam Project...

  7. Quantifying the extent of river fragmentation by hydropower dams in the Sarapiquí River Basin, Costa Rica

    USGS Publications Warehouse

    Anderson, Elizabeth P.; Pringle, Catherine M.; Freeman, Mary C.

    2008-01-01

    Costa Rica has recently experienced a rapid proliferation of dams for hydropower on rivers draining its northern Caribbean slope. In the Sarapiquí River Basin, eight hydropower plants were built between 1990 and 1999 and more projects are either under construction or proposed. The majority of these dams are small (<15 m tall) and operate as water diversion projects.While the potential environmental effects of individual projects are evaluated prior to dam construction, there is a need for consideration of the basin-scale ecological consequences of hydropower development. This study was a first attempt to quantify the extent of river fragmentation by dams in the Sarapiquí River Basin.Using simple spatial analyses, the length of river upstream from dams and the length of de-watered reaches downstream from dams was measured. Results indicated that there are currently 306.8 km of river (9.4% of the network) upstream from eight existing dams in the Sarapiquí River Basin and 30.6 km of rivers (0.9% of the network) with significantly reduced flow downstream from dams. Rivers upstream from dams primarily drain two life zones: Premontane Rain Forest (107.9 km) and Lower Montane Rain Forest (168.2 km).Simple spatial analyses can be used as a predictive or planning tool for considering the effects of future dams in a basin-scale context. In the Sarapiquí River Basin, we recommend that future dam projects be constructed on already dammed rivers to minimize additional river fragmentation and to protect remaining riverine connectivity.

  8. Widespread Forest Vertebrate Extinctions Induced by a Mega Hydroelectric Dam in Lowland Amazonia

    PubMed Central

    2015-01-01

    Mega hydropower projects in tropical forests pose a major emergent threat to terrestrial and freshwater biodiversity worldwide. Despite the unprecedented number of existing, under-construction and planned hydroelectric dams in lowland tropical forests, long-term effects on biodiversity have yet to be evaluated. We examine how medium and large-bodied assemblages of terrestrial and arboreal vertebrates (including 35 mammal, bird and tortoise species) responded to the drastic 26-year post-isolation history of archipelagic alteration in landscape structure and habitat quality in a major hydroelectric reservoir of Central Amazonia. The Balbina Hydroelectric Dam inundated 3,129 km2 of primary forests, simultaneously isolating 3,546 land-bridge islands. We conducted intensive biodiversity surveys at 37 of those islands and three adjacent continuous forests using a combination of four survey techniques, and detected strong forest habitat area effects in explaining patterns of vertebrate extinction. Beyond clear area effects, edge-mediated surface fire disturbance was the most important additional driver of species loss, particularly in islands smaller than 10 ha. Based on species-area models, we predict that only 0.7% of all islands now harbor a species-rich vertebrate assemblage consisting of ≥80% of all species. We highlight the colossal erosion in vertebrate diversity driven by a man-made dam and show that the biodiversity impacts of mega dams in lowland tropical forest regions have been severely overlooked. The geopolitical strategy to deploy many more large hydropower infrastructure projects in regions like lowland Amazonia should be urgently reassessed, and we strongly advise that long-term biodiversity impacts should be explicitly included in pre-approval environmental impact assessments. PMID:26132139

  9. Widespread Forest Vertebrate Extinctions Induced by a Mega Hydroelectric Dam in Lowland Amazonia.

    PubMed

    Benchimol, Maíra; Peres, Carlos A

    2015-01-01

    Mega hydropower projects in tropical forests pose a major emergent threat to terrestrial and freshwater biodiversity worldwide. Despite the unprecedented number of existing, under-construction and planned hydroelectric dams in lowland tropical forests, long-term effects on biodiversity have yet to be evaluated. We examine how medium and large-bodied assemblages of terrestrial and arboreal vertebrates (including 35 mammal, bird and tortoise species) responded to the drastic 26-year post-isolation history of archipelagic alteration in landscape structure and habitat quality in a major hydroelectric reservoir of Central Amazonia. The Balbina Hydroelectric Dam inundated 3,129 km2 of primary forests, simultaneously isolating 3,546 land-bridge islands. We conducted intensive biodiversity surveys at 37 of those islands and three adjacent continuous forests using a combination of four survey techniques, and detected strong forest habitat area effects in explaining patterns of vertebrate extinction. Beyond clear area effects, edge-mediated surface fire disturbance was the most important additional driver of species loss, particularly in islands smaller than 10 ha. Based on species-area models, we predict that only 0.7% of all islands now harbor a species-rich vertebrate assemblage consisting of ≥80% of all species. We highlight the colossal erosion in vertebrate diversity driven by a man-made dam and show that the biodiversity impacts of mega dams in lowland tropical forest regions have been severely overlooked. The geopolitical strategy to deploy many more large hydropower infrastructure projects in regions like lowland Amazonia should be urgently reassessed, and we strongly advise that long-term biodiversity impacts should be explicitly included in pre-approval environmental impact assessments.

  10. 77 FR 30518 - Grand River Dam Authority; Notice of Application for Amendment of License and Soliciting Comments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-23

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 1494-403] Grand River Dam.... Project No.: 1494-403. c. Date Filed: April 11, 2012. d. Applicant: Grand River Dam Authority. e. Name of.... Tamara E. Jahnke, Assistant General Counsel, Grand River Dam Authority, P.O. Box 409, Vinita, Oklahoma...

  11. 77 FR 58820 - Grand River Dam Authority; Notice of Application Accepted for Filing, Soliciting Comments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-24

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [ Project No. 1494-410] Grand River Dam.... Project No: 1494-410. c. Date Filed: August 6, 2012. d. Applicant: Grand River Dam Authority. e. Name of... River Dam Authority, P.O. Box 409, Vinita, Oklahoma 74301, (918) 256-5545. i. FERC Contact: Lorance...

  12. 76 FR 9341 - Grand River Dam Authority; Notice of Application Accepted for Filing, Soliciting Comments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-17

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 1494-391] Grand River Dam.... Project No.: 1494-391. c. Date Filed: January 7, 2011. d. Applicant: Grand River Dam Authority (GRDA). e... Contact: Tamara E. Jahnke, Assistant General Counsel, Grand River Dam Authority, P.O. Box 409, Vinita, OK...

  13. 76 FR 57731 - Notice of Preliminary Permit Application Accepted for Filing and Soliciting Comments, Motions To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-16

    ... Competing Applications; Kachess Dam Hydropower, LLC On May 31, 2011, Kachess Dam Hydropower, LLC filed an... study the feasibility of the Kachess Dam Hydroelectric Project (project) to be located at Kachess Reservoir dam, owned and operated by the U.S. Bureau of Reclamation near Cle Elum and Roslyn in Kittitas...

  14. 76 FR 40903 - Grand River Dam Authority; Notice of Application for Amendment of License and Soliciting Comments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-12

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 2524-019] Grand River Dam.... Date Filed: January 21, 2011. d. Applicant: Grand River Dam Authority. e. Name of Project: Salina... Zumwalt-Smith, General Counsel, Grand River Dam Authority, P.O. Box 409, Vinita, OK 73401-0409. Tel: (918...

  15. Geomorphic response to large-dam removal: Impacts of a massive sediment release to the Elwha River, Washington

    NASA Astrophysics Data System (ADS)

    Magirl, C. S.; Ritchie, A.; Bountry, J.; Randle, T. J.; East, A. E.; Hilldale, R. C.; Curran, C. A.; Pess, G. R.

    2015-12-01

    The 2011-2014 staged removals of two nearly century-old dams on the Elwha River in northwest Washington State, the largest dam-removal project in the United States, exposed 21 million m3 of reservoir-trapped sand and gravel to potential fluvial transport. The river downstream from the dams is gravel bedded with a pool-riffle morphology. The river flows 20 km to the marine environment through a riparian corridor lined with large wood and having relatively few anthropogenic alterations. This moderately natural pre-dam-removal condition afforded an unprecedented opportunity to study river response to an anticipated massive sediment release. Four years into the project, 12 million m3 of sediment eroded from the former reservoirs with about 90% of the total load transported to the marine environment. Annualized sediment discharge was as great as 20 times the background natural load. Initial river response to the arrival of the first large sediment pulse was the nearly complete filling of the river's previously sediment-starved pools, widespread filling of side channels, and increased braiding index. In year 2, during maximum aggradation, the river graded to a plane-bedded system, efficiently conveying sediment to the marine environment. Modest peak flows (<2-yr return period) in year 2 promoted sediment transport but caused little large-scale geomorphic disturbance by channel migration or avulsions. As the river processed the sediment pulse, pools returned and the braiding index decreased in years 3-4. Higher peak flows in year 4 caused localized channel widening and migration but no major avulsions. Gauging indicated sand dominated the first stages of sediment release, but fluvial loads coarsened through time with progressive arrival of larger material. The literature suggests the Elwha River sediment wave should have evolved through dispersion with little translation. However, morphologic measurements and data from a stage-gauge network indicated patterns of deposition, sediment transport, and sediment-wave evolution were heterogeneously complex, challenging our efforts to classify the sediment wave in terms of simple dispersion or translation.

  16. Eliminating Contractor Inspections of Federal Water Projects Could Save Millions.

    DTIC Science & Technology

    1981-09-29

    of the Buffalo Creek, West Virginia, Mine Refuse Embankment and the 1976 Teton Dam failure in Idaho have been fairly recent reminders of the risk...project failures, heightened by the Teton Dam failure, prompted several Government-sponsored dam safety reviews in the late 1970’s. Following these reviews...inspection approach was evaluated as part of the Government-wide,’ Presidentially directed Dam Safety Review of 1977. The Bureau’s 1976 Teton Dam

  17. Evaluation of the Three Gorges Dam project using multi-criteria analysis (MCA) based on a sustainable perspective

    NASA Astrophysics Data System (ADS)

    Han, Yue; Zheng, Wei; Guo, Junshan; Ma, Yihe; Ding, Junqi; Zhu, Lingkai; Che, Yongqiang; Zhang, Yanpeng

    2018-02-01

    Abstract . The Three Gorges dam of China is one of the largest and expensive hydropower projects of the world. The four main purposes of the project are flood control,energy production, improved navigation and fresh water supply. The dam project has been completed and running successfully with the potential benefits. However, this project is still a controversial issue among many environmentalists and socialists due to various impacts. This study focuses on the benefit and the impacts of the project, and also evaluates the performance of the project using multi-criteria analysis (MCA) approach from a sustainable perspective. Different sustainability criteria related with the dam project have been identified and used for the ranking and rating process. The final result of MCA comes with this scoring process and pairwise comparison, which evaluates the performance of the project considering different positive and negative aspects.

  18. 75 FR 73064 - Notice of Competing Preliminary Permit Applications Accepted for Filing and Soliciting Comments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-29

    ... hydropower at the U.S. Army Corps of Engineers (Corps) C.W. Bill Young Lock and Dam located on the Allegheny... the proposed C.W. Bill Young Lock and Dam Projects: Lock+ Hydro Friends Fund XXXIX's project (Project... attached to the downstream side of the Corps dam which would support one frame module; (2) each frame...

  19. A national perspective on paleoclimate streamflow and water storage infrastructure in the conterminous United States

    NASA Astrophysics Data System (ADS)

    Ho, Michelle; Lall, Upmanu; Sun, Xun; Cook, Edward

    2017-04-01

    Large-scale water storage infrastructure in the Conterminous United States (CONUS) provides a means of regulating the temporal variability in water supply with storage capacities ranging from seasonal storage in the wetter east to multi-annual and decadal-scale storage in the drier west. Regional differences in water availability across the CONUS provides opportunities for optimizing water dependent economic activities, such as food and energy production, through storage and transportation. However, the ability to sufficiently regulate water supplies into the future is compromised by inadequate monitoring of non-federally-owned dams that make up around 97% of all dams. Furthermore, many of these dams are reaching or have exceeded their economic design life. Understanding the role of dams in the current and future landscape of water requirements in the CONUS is needed to prioritize dam safety remediation or identify where redundant dams may be removed. A national water assessment and planning process is needed for addressing water requirements, accounting for regional differences in water supply and demand, and the role of dams in such a landscape. Most dams in the CONUS were designed without knowledge of devastating floods and prolonged droughts detected in multi-centennial paleoclimate records, consideration of projected climate change, nor consideration of optimal operation across large-scale regions. As a step towards informing water supply across the CONUS we present a paleoclimate reconstruction of annual streamflow across the CONUS over the past 555 years using a spatially and temporally complete paleoclimate record of summer drought across the CONUS targeting a set of US Geological Survey streamflow sites. The spatial and temporal structures of national streamflow variability are analyzed using hierarchical clustering, principal component analysis, and wavelet analyses. The reconstructions show signals of contemporary droughts such as the Dust Bowl (1930s) and 1950s droughts. Decadal-scale variability was detected in the late 1900s in the western US, however, similar modes of temporal variability were rarely present prior to the 1950s. The 20th century featured longer wet spells and shorter dry spells compared with the preceding 450 years. Streamflow in the Pacific Northwest and Northeast are negatively correlated with the central US suggesting the potential to mitigate some drought impacts by balancing economic activities and insurance pools across these regions during major droughts. The converging issues of a slowly growing US population, evolving demands for food, energy, and water, aging dams, and reduced water storage capacity through decommissioning and sedimentation highlights the pressing need for a national water assessment and a subsequent national water plan. There are many factors that need to be understood in order to appropriately assess dam and reservoir requirements across the CONUS and to improve water use and flood protection efficiency. In addition to historical and paleoclimate-informed surface water supply, factors requiring consideration in planning for future dam and reservoir infrastructure include: -the role of conjunctive surface and groundwater storage and use; -basin-scale operational strategies to balance sectoral water demand; -projections of surface water supply; -projections of regional water demands; -impacts of water conservation; and -the influence of water policy and financial instruments.

  20. 51. McMILLAN DAM Photographic copy of historic photo, 1937 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. McMILLAN DAM - Photographic copy of historic photo, 1937 (original print filed in Work Projects Misc., File E, National Archives, Washington, D.C.) photographer unknown 'CCC ENROLLEES RECONSTRUCTING McMILLAN DAM ON PECOS RIVER DAMAGED BY FLOODS - CARLSBAD FEDERAL RECLAMATION PROJECT, NEW MEXICO' - Carlsbad Irrigation District, McMillan Dam, On Pecos River, 13 miles North of Carlsbad, Carlsbad, Eddy County, NM

  1. Have Large Dams Altered Extreme Precipitation Patterns?

    NASA Astrophysics Data System (ADS)

    Hossain, Faisal; Jeyachandran, Indumathi; Pielke, Roger

    2009-12-01

    Dams and their impounded waters are among the most common civil infrastructures, with a long heritage of modern design and operations experience. In particular, large dams, defined by the International Commission on Large Dams (ICOLD) as having a height greater than 15 meters from the foundation and holding a reservoir volume of more than 3 million cubic meters, have the potential to vastly transform local climate, landscapes, regional economics, and urbanization patterns. In the United States alone, about 75,000 dams are capable of storing a volume of water equaling almost 1 year's mean runoff of the nation [Graf, 1999]. The World Commission on Dams (WCD) reports that at least 45,000 large dams have been built worldwide since the 1930s. These sheer numbers raise the question of the extent to which large dams and their impounded waters alter patterns that would have been pervasive had the dams not been built.

  2. Impacts of large dams on downstream flow conditions of rivers: Aggradation and reduction of the Medjerda channel capacity downstream of the Sidi Salem dam (Tunisia)

    NASA Astrophysics Data System (ADS)

    Zahar, Yadh; Ghorbel, Abdelmajid; Albergel, Jean

    2008-04-01

    SummarySince the opening of the Sidi Salem dam on the watercourse of the Medjerda, in 1981, an alarming narrowing of the riverbed in the lower valley has been observed. This geo-morphological change is attributed to different factors ranking from the reduction in the discharge flows, which used to clean out the riverbed to the periodic releases of turbid water undertaken to remove the silt deposition inside the reservoir, which increased the sediment deposition in the downstream channel. Other smaller hydraulic projects are also held responsible for the loss of the water velocity including a series of concrete sills meant to raise water levels, numerous cross bridges and the management of the downstream Laroussia dam regulating the discharge from the Cap Bon canal. The above anthropogenic factors, in conjunction with natural topographical conditions characterized by a generally shallow slope and a very sinuous watercourse, led to an extremely rapid aggradation of the downstream channel-bed. This paper proposes an analysis of this process and argues that the resulting reduction in channel capacity is one of the major causes of the large floods experienced in the country since 1996.

  3. Stress and deformation analysis of double curvature arc dams using finite element method (FEM): A case of budhi gandaki hydropower project

    NASA Astrophysics Data System (ADS)

    Mishra, Aanand Kumar; Singh, Ajay; Bahadur Singh, Akal

    2018-06-01

    High rise arc dams are widely used in the development of storage type hydropower project because of the economic advantage. Among different phases considered during the lifetime of dam, control of dam’s safety and performance becomes more concerned during the lifetime. This paper proposed the 3 – D finite element method (FEM) for stress and deformation analysis of double curvature arc dam considering the non – linearity of foundation rock following the Hoek – Brown Criterion. The proposed methodology is implemented through MATLAB scripting language and studied the double curvature arc dam proposed for Budhi Gandaki hydropower project. The stress developed in the foundation rock, compressive and tensile stress acting on the dam are investigated and analysed for the reservoir level variation. Deformation at the top of the dam and in the foundation rock is also investigated. In addition to that, stress and deformation variation in the foundation rock is analysed for various rock properties.

  4. 18 CFR 4.50 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... PROJECT COSTS Application for License for Major Project-Existing Dam § 4.50 Applicability. (a... to any application for either an initial license or new license for a major project—existing dam that... apply to any major project—existing dam (see § 4.40) that is proposed to entail or include: (i) Any...

  5. 18 CFR 4.50 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... PROJECT COSTS Application for License for Major Project-Existing Dam § 4.50 Applicability. (a... to any application for either an initial license or new license for a major project—existing dam that... apply to any major project—existing dam (see § 4.40) that is proposed to entail or include: (i) Any...

  6. 18 CFR 4.50 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... PROJECT COSTS Application for License for Major Project-Existing Dam § 4.50 Applicability. (a... to any application for either an initial license or new license for a major project—existing dam that... apply to any major project—existing dam (see § 4.40) that is proposed to entail or include: (i) Any...

  7. 18 CFR 4.50 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... PROJECT COSTS Application for License for Major Project-Existing Dam § 4.50 Applicability. (a... to any application for either an initial license or new license for a major project—existing dam that... apply to any major project—existing dam (see § 4.40) that is proposed to entail or include: (i) Any...

  8. 18 CFR 4.50 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... PROJECT COSTS Application for License for Major Project-Existing Dam § 4.50 Applicability. (a... to any application for either an initial license or new license for a major project—existing dam that... apply to any major project—existing dam (see § 4.40) that is proposed to entail or include: (i) Any...

  9. A riverscape perspective of Pacific salmonids and aquatic habitats prior to large-scale dam removal in the Elwha River, Washington, USA

    USGS Publications Warehouse

    Brenkman, S.J.; Duda, J.J.; Torgersen, C.E.; Welty, E.; Pess, G.R.; Peters, R.; McHenry, M.L.

    2012-01-01

     Dam removal has been increasingly proposed as a river restoration technique. In 2011, two large hydroelectric dams will be removed from Washington State’s Elwha River. Ten anadromous fish populations are expected to recolonise historical habitats after dam removal. A key to understanding watershed recolonisation is the collection of spatially continuous information on fish and aquatic habitats. A riverscape approach with an emphasis on biological data has rarely been applied in mid-sized, wilderness rivers, particularly in consecutive years prior to dam removal. Concurrent snorkel and habitat surveys were conducted from the headwaters to the mouth (rkm 65–0) of the Elwha River in 2007 and 2008. This riverscape approach characterised the spatial extent, assemblage structure and patterns of relative density of Pacific salmonids. The presence of dams influenced the longitudinal patterns of fish assemblages, and species richness was the highest downstream of the dams, where anadromous salmonids still have access. The percent composition of salmonids was similar in both years for rainbow trout, Oncorhynchus mykiss (Walbaum), coastal cutthroat trout, Oncorhynchus clarkii clarkii (Richardson) (89%; 88%), Chinook salmon, Oncorhynchus tshawytscha (Walbaum) (8%; 9%), and bull trout, Salvelinus confluentus (Suckley) (3% in both years). Spatial patterns of abundance for rainbow and cutthroat trout (r = 0.76) and bull trout (r = 0.70) were also consistent between years. Multivariate and univariate methods detected differences in habitat structure along the river profile caused by natural and anthropogenic factors. The riverscape view highlighted species-specific biological hotspots and revealed that 60–69% of federally threatened bull trout occurred near or below the dams. Spatially continuous surveys will be vital in evaluating the effectiveness of upcoming dam removal projects at restoring anadromous salmonids.

  10. Montgomery Point Lock and Dam, White River, Arkansas

    DTIC Science & Technology

    2016-01-01

    ER D C/ CH L TR -1 6- 1 Monitoring Completed Navigation Projects (MCNP) Program Montgomery Point Lock and Dam, White River, Arkansas Co...Navigation Projects (MCNP) Program ERDC/CHL TR-16-1 January 2016 Montgomery Point Lock and Dam, White River, Arkansas Allen Hammack, Michael Winkler, and...20314-1000 Under MCNP Work Unit: Montgomery Point Lock and Dam, White River, Arkansas ERDC/CHL TR-16-1 ii Abstract Montgomery Point Lock and

  11. Interaction of Dams and Landslides--Case Studies and Mitigation

    USGS Publications Warehouse

    Schuster, Robert L.

    2006-01-01

    In the first half of the 20th century, engineering geology and geotechnical engineering were in their infancy, and dams were often built where landslides provided valley constrictions, often without expert site investigation. Only the most important projects were subjected to careful geologic examination. Thus, dams were often built without complete understanding of the possible geotechnical problems occurring in foundations or abutments. Most of these dams still exist, although many have undergone costly repairs because of stability or leakage problems. Today, however, every effort is made in the selection of damsites, including those sited on landslides, to provide foundations and abutments that are generally impervious and capable of withstanding the stresses imposed by the proposed dam and reservoir, and possible landslides. By means of a literature search, technical interviews, and field inventory, I have located 254 large (at least 10 m high) dams worldwide that directly interact with landslides; that is, they have been built on pre-existing landslides or have been subjected to landslide activity during or after construction. A table (Appendix table A) summarizes dam characteristics, landslide conditions, and remedial measures at each of the dams. Of the 254 dams, 164 are earthfill, 23 are rockfill, and 18 are earthfill-rockfill; these are flexible dam types that generally perform better on the possibly unstable foundations provided by landslides than do more rigid concrete dams. Any pre-existing landslides that might impinge on the foundation or abutments of a dam should be carefully investigated. If a landslide is recognized in a dam foundation or abutment, the landslide deposits commonly are avoided in siting the dam or are removed during stripping of the dam foundation and abutment contacts. Contrarily, it has often been found to be technically feasible and economically desirable to site and construct dams on known landslides or on the remnants of these features. In these cases, proven preventive and remedial measures have been used to ensure the stability of the foundations and abutments, and to reduce seepage to acceptable levels.

  12. Seismic hazard and risk assessment for large Romanian dams situated in the Moldavian Platform

    NASA Astrophysics Data System (ADS)

    Moldovan, Iren-Adelina; Popescu, Emilia; Otilia Placinta, Anica; Petruta Constantin, Angela; Toma Danila, Dragos; Borleanu, Felix; Emilian Toader, Victorin; Moldoveanu, Traian

    2016-04-01

    Besides periodical technical inspections, the monitoring and the surveillance of dams' related structures and infrastructures, there are some more seismic specific requirements towards dams' safety. The most important one is the seismic risk assessment that can be accomplished by rating the dams into seismic risk classes using the theory of Bureau and Ballentine (2002), and Bureau (2003), taking into account the maximum expected peak ground motions at the dams site - values obtained using probabilistic hazard assessment approaches (Moldovan et al., 2008), the structures vulnerability and the downstream risk characteristics (human, economical, historic and cultural heritage, etc) in the areas that might be flooded in the case of a dam failure. Probabilistic seismic hazard (PSH), vulnerability and risk studies for dams situated in the Moldavian Platform, starting from Izvorul Muntelui Dam, down on Bistrita and following on Siret River and theirs affluent will be realized. The most vulnerable dams will be studied in detail and flooding maps will be drawn to find the most exposed downstream localities both for risk assessment studies and warnings. GIS maps that clearly indicate areas that are potentially flooded are enough for these studies, thus giving information on the number of inhabitants and goods that may be destroyed. Geospatial servers included topography is sufficient to achieve them, all other further studies are not necessary for downstream risk assessment. The results will consist of local and regional seismic information, dams specific characteristics and locations, seismic hazard maps and risk classes, for all dams sites (for more than 30 dams), inundation maps (for the most vulnerable dams from the region) and possible affected localities. The studies realized in this paper have as final goal to provide the local emergency services with warnings of a potential dam failure and ensuing flood as a result of an large earthquake occurrence, allowing further public training for evacuation. The work is supported from PNII/PCCA 2013 Project DARING 69/2014, financed by UEFISCDI, Romania. Bureau GJ (2003) "Dams and appurtenant facilities" Earthquake Engineering Handbook, CRS Press, WF Chen, and C Scawthorn (eds.), Boca Raton, pp. 26.1-26.47. Bureau GJ and Ballentine GD (2002) "A comprehensive seismic vulnerability and loss assessment of the State of Carolina using HAZUS. Part IV: Dam inventory and vulnerability assessment methodology", 7th National Conference on Earthquake Engineering, July 21-25, Boston, Earthquake Engineering Research Institute, Oakland, CA. Moldovan IA, Popescu E, Constantin A (2008), "Probabilistic seismic hazard assessment in Romania: application for crustal seismic active zones", Romanian Journal of Physics, Vol.53, Nos. 3-4

  13. 72. Headgates for Agua Fria project canal on east end ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    72. Headgates for Agua Fria project canal on east end of diversion dam. Photographer Mark Durben. Source: Salt River Project. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  14. 10 CFR 904.5 - Revenue requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... into the Colorado River Dam Fund. All receipts from the Project shall be available for payment of the... responsible for the administration of the Colorado River Dam Fund. (b) The electric service revenue of the... Treasury of the advances to the Colorado River Dam Fund for the Project made prior to May 31, 1987, for...

  15. 75 FR 61458 - Grand River Dam Authority; Notice of Application for Amendment of License and Soliciting Comments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 1494-386] Grand River Dam Authority; Notice of Application for Amendment of License and Soliciting Comments, Motions To Intervene, and... August 16, 2010. d. Applicant: Grand River Dam Authority. e. Name of Project: Pensacola Hydroelectric...

  16. 10 CFR 904.5 - Revenue requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... into the Colorado River Dam Fund. All receipts from the Project shall be available for payment of the... responsible for the administration of the Colorado River Dam Fund. (b) The electric service revenue of the... Treasury of the advances to the Colorado River Dam Fund for the Project made prior to May 31, 1987, for...

  17. 10 CFR 904.5 - Revenue requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... into the Colorado River Dam Fund. All receipts from the Project shall be available for payment of the... responsible for the administration of the Colorado River Dam Fund. (b) The electric service revenue of the... Treasury of the advances to the Colorado River Dam Fund for the Project made prior to May 31, 1987, for...

  18. 10 CFR 904.5 - Revenue requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... into the Colorado River Dam Fund. All receipts from the Project shall be available for payment of the... responsible for the administration of the Colorado River Dam Fund. (b) The electric service revenue of the... Treasury of the advances to the Colorado River Dam Fund for the Project made prior to May 31, 1987, for...

  19. 33 CFR 263.23 - Small flood control project authority (Section 205).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operation, except as may result from the normal procedure applying to projects authorized after submission of preliminary examination and survey reports. (b) Non-Federal responsibilities for dam and reservoir project. All new projects under this authority, including dams and reservoirs, are considered local...

  20. 33 CFR 263.23 - Small flood control project authority (Section 205).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... operation, except as may result from the normal procedure applying to projects authorized after submission of preliminary examination and survey reports. (b) Non-Federal responsibilities for dam and reservoir project. All new projects under this authority, including dams and reservoirs, are considered local...

  1. Potential effects of ongoing and proposed hydropower development on terrestrial biological diversity in the Indian Himalaya.

    PubMed

    Pandit, Maharaj K; Grumbine, R Edward

    2012-12-01

    Indian Himalayan basins are earmarked for widespread dam building, but aggregate effects of these dams on terrestrial ecosystems are unknown. We mapped distribution of 292 dams (under construction and proposed) and projected effects of these dams on terrestrial ecosystems under different scenarios of land-cover loss. We analyzed land-cover data of the Himalayan valleys, where dams are located. We estimated dam density on fifth- through seventh-order rivers and compared these estimates with current global figures. We used a species-area relation model (SAR) to predict short- and long-term species extinctions driven by deforestation. We used scatter plots and correlation studies to analyze distribution patterns of species and dams and to reveal potential overlap between species-rich areas and dam sites. We investigated effects of disturbance on community structure of undisturbed forests. Nearly 90% of Indian Himalayan valleys would be affected by dam building and 27% of these dams would affect dense forests. Our model projected that 54,117 ha of forests would be submerged and 114,361 ha would be damaged by dam-related activities. A dam density of 0.3247/1000 km(2) would be nearly 62 times greater than current average global figures; the average of 1 dam for every 32 km of river channel would be 1.5 times higher than figures reported for U.S. rivers. Our results show that most dams would be located in species-rich areas of the Himalaya. The SAR model projected that by 2025, deforestation due to dam building would likely result in extinction of 22 angiosperm and 7 vertebrate taxa. Disturbance due to dam building would likely reduce tree species richness by 35%, tree density by 42%, and tree basal cover by 30% in dense forests. These results, combined with relatively weak national environmental impact assessment and implementation, point toward significant loss of species if all proposed dams in the Indian Himalaya are constructed. ©2012 Society for Conservation Biology.

  2. Role of the check dam in land development on the Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Xu, Xiang-Zhou; Zhang, Luo-Hao; Zhu, Tongxin; Dang, Tian-Min; Zhang, Hong-Wu; Xu, Shi-Guo

    2017-04-01

    Check dam is one of the most effective measures to reduce flow connectivity, which can retain soil and water, and increase land productivity. More than 100,000 check dams have been built on the Loess Plateau since 1950s. However, quantifying the effect of check dams on water resources and water environments remains a challenge. In this study, an in-depth field investigation together with a credible statistical analysis was carried out in two representative catchments on the Loess Plateau, Nanxiaohegou Catchment and Jiuyuangou Catchment, to assess the effectiveness of check dams in soil, water and nutrients conservation. The results show: (1) Check dam plays an important role in conserving water, soil, and nutrients on the Loess Plateau. About half of the total transported water and more than 80 % of the total transported soil and nutrients, had been locally retained in the selected catchments. Hence check dams had a significant benefit to improve soil fertility in the small watersheds, and reducing water pollution downstream of dams. (2) Compared to terrace farmlands, forest lands and grasslands, check-dam lands were much more important in conserving water, soil and nutrients in the catchments. Nearly 50% of the reduced water and more than 70% of the stored soil and nutrients in the study catchments were solely retained by the check dams, whereas the area of the dam lands was less than 7% of the total conservation land area. (3) Check dams are still effective in large storms even if dams were damaged by floods. It is often assumed that check dams could only retain sediment in small flood events whereas most of the stored soil may be washed out as the dams may be destroyed in a disastrous flood. Furthermore, if a major check dam, namely the key project dam, was built in the gully outlet, the flood could be controlled, and thereupon the dam-break can be also avoided. We suggest that a compensation and incentive policy be implemented on dam building to realize the sustainable development of local economy and ecological environment.

  3. Mapping the social impacts of small dams: The case of Thailand's Ing River basin.

    PubMed

    Fung, Zali; Pomun, Teerapong; Charles, Katrina J; Kirchherr, Julian

    2018-05-24

    The social impacts of large dams have been studied extensively. However, small dams' social impacts have been largely neglected by the academic community. Our paper addresses this gap. We examine the social impacts of multiple small dams in one upstream and one downstream village in Thailand's Ing River basin. Our research is based on semi-structured interviews with beneficiaries, government and NGOs. We argue that small dams' social impacts are multi-faceted and unequal. The dams were perceived to reduce fish abundance and provide flood mitigation benefits. Furthermore, the dams enabled increased access to irrigation water for upstream farmers, who re-appropriated water via the dams at the expense of those downstream. The small dams thus engendered water allocation conflicts. Many scholars, practitioners and environmentalists argue that small dams are a benign alternative to large dams. However, the results of our research mandate caution regarding this claim.

  4. Climate change impact on operation of dams and hydroelectricity generation in the Northeastern United States

    NASA Astrophysics Data System (ADS)

    Ehsani, N.; Vorosmarty, C. J.; Fekete, B. M.

    2016-12-01

    We are using a large-scale, high-resolution, fully integrated hydrological/reservoir/hydroelectricity model to investigate the impact of climate change on the operation of 11037 dams and generation of electricity from 375 hydroelectric power plants in the Northeastern United States. Moreover, we estimate the hydropower potential of the region by energizing the existing non-powered dams and then studying the impact of climate change on the hydropower potential. We show that climate change increases the impact of dams on the hydrology of the region. Warmer temperatures produce shorter frozen periods, earlier snowmelt and elevated evapotranspiration rates, which when combined with changes in precipitation, are projected to increase water availability in winter but reduce it during summer. As a result, the water that is stored by dams will be more than ever a necessary part of the routine water systems operations to compensate for these seasonal imbalances. The function of dams as emergency water storage for creating drought resiliency will mostly diminish in the future. Building more dams to cope with the local impacts of climate change on water resources and to offset the increased drought vulnerability may thus be inevitable. Annual hydroelectricity generation in the region is 41 Twh. Our estimate of the annual hydropower potential of non-powered dams adds up to 350 Twh. Climate change may reduce hydropower potential from non-powered dams by up to 13% and reduce current hydroelectricity generation by up to 8% annually. Hydroelectricity generation and hydropower potential may increase in winter months and decline in months of summer and fall. These changes call for recalibration of dam operations and may raise conflict of interests in multipurpose dams.

  5. Examining the economic impacts of hydropower dams on property values using GIS.

    PubMed

    Bohlen, Curtis; Lewis, Lynne Y

    2009-07-01

    While the era of dam building is largely over in the United States, globally dams are still being proposed and constructed. The articles in this special issue consider many aspects and impacts of dams around the world. This paper examines dam removal and the measurement of the impacts of dams on local community property values. Valuable lessons may be found. In the United States, hundreds of small hydropower dams will come up for relicensing in the coming decade. Whether or not the licenses are renewed and what happens to the dams if the licenses expires is a subject of great debate. Dams are beginning to be removed for river restoration and fisheries restoration and these "end-of-life" decisions may offer lessons for countries proposing or currently building small (and large) hydropower dams. What can these restoration stories tell us? In this paper, we examine the effects of dams along the Penobscot River in Maine (USA) on residential property values. We compare the results to findings from a similar (but ex post dam removal) data set for properties along the Kennebec river in Maine, where the Edwards Dam was removed in 1999. The Penobscot River Restoration Project, an ambitious basin-wide restoration effort, includes plans to remove two dams and decommission a third along the Penobscot River. Dam removal has significant effects on the local environment, and it is reasonable to anticipate that environmental changes will themselves be reflected in changes in property values. Here we examine historical real estate transaction data to examine whether landowners pay a premium or penalty to live near the Penobscot River or near a hydropower generating dam. We find that waterfront landowners on the Penobscot or other water bodies in our study area pay approximately a 16% premium for the privilege of living on the water. Nevertheless, landowners pay LESS to live near the Penobscot River than they do to live further away, contrary to the expectation that bodies of water function as real estate amenities and boost local property values. Results with respect to the effect of proximity to hydropower generating plants are equivocal. Homeowners pay a small premium for houses close to hydropower dams in our region, but the statistical significance of that result depends on the specific model form used to estimate the effect. Consideration of the social and economic impacts of dam removal-based river restoration can complement studies of the ecological impacts of the practice. Such studies help us understand the extent to which human society's subjective perception of value of aquatic ecosystems relates to objective measures of ecosystem health. The paper also illustrates how geographic information systems (GIS) can help inform these analyses.

  6. 78 FR 62322 - Hydropower Regulatory Efficiency Act of 2013; Notice of Rescheduled Two-Year Licensing Process...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-16

    ... at non-powered dams and closed-loop pumped storage projects in compliance with section 6 of the... process for licensing hydropower development at non-powered dams and closed-loop pumped storage projects...-powered dam versus closed- loop pumped storage) affect the steps included in a two-year process? 3.9...

  7. 77 FR 34033 - American River Power IX, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-08

    ... generator; (3) a concrete tailrace releasing water into the river downstream of the dam; (4) a switchyard... study the feasibility of the Peoria Dam, Illinois--Hydroelectric Water Power Project (Peoria Dam Project...-long, 50-foot-wide, 55-foot-high powerhouse containing two horizontal Kaplan pit turbines each with a...

  8. Project Operations: Flood Control Operations and Maintenance Policies

    DTIC Science & Technology

    1996-10-30

    President and an internal review performed by the Corps task group shortly after failure of the Teton Dam , we have undertaken numerous actions to modify our...practice for design, construction and operation of Corps reservoir projects. One important item as a result of the Teton Dam failure and the review...1 Glossary 1-4 1-2 CHAPTER 2 - Dam Operations Management Purpose 2-1 2-1 Policy 2-2 2-1 Emergency Plan 2-3 2-1 Dam Safety Training 2-4 2-2

  9. American River Watershed Project, California. Part 1: Main Report. Part 2: Final Supplemental Environmental Impact Statement/Environmental Impact Report. Supplemental Information Report

    DTIC Science & Technology

    1996-03-01

    VII-7 VIII-1 Computer generated rendering of flood detention dam ................ VIII-3 VIII-2 American River Watershed Project Schedule...shows a plan view of the dam and plate 19 shows the dam in section and profile. Figure VIII-1 is a computer generated rendering of the dam. Table VIH-1...Williamson Act render the land ineligible for continued protection under that law, the local sponsor would be responsible for compensating the landowners

  10. The midcontinent of the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratt, W.P.; Sims, P.K.

    1990-01-01

    The Olympic Dam (Roxby Downs) deposit in South Australia is one of the world's largest ore deposits, containing an estimated 32 million tonnes Cu, 1.2 million tonnes of uranium oxide, 1.2 million kg Au, and significant concentrations of rare-earth elements and silver. Host rocks are multistage breccias containing a large component of granitic and some possible felsic debris in a hydrothermal iron oxide-dominated matrix. The Precambrian basement in the Midcontinent region, especially the St. Francois and Spavinaw Proterozoic anorogenic granitic terranes in and adjacent to southern Missouri, may have potential for an olympic dam-type deposit. In February 1988, the U.S.more » Geological Survey convened a workshop in Denver, Colo., to review current data and hypotheses on the type deposit and on the permissive Midcontinent terranes and to design plans for a research project to try to identify potential olympic dam target regions in the Midcontinent. This book presents four of the papers from the workshop (three full texts and one abstract) and one modified paper, as well as the integrated project proposal. An epilogue contains two short papers constituting an update on one aspect of the project proposal: mapping of the possibly analogous Pea Ridge iron ore deposit of Southeast Missouri.« less

  11. American Recovery and Reinvestment Act: North Fork Skokomish Powerhouse at Cushman No. 2 Dam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Steve; McCarty, Patrick

    2013-09-30

    The objective of this project was to add generating capacity on an in-stream flow release at Tacoma Power's Cushman hydroelectric project, Cushman No. 2 Dam, FERC Project P-460. The flow that is being used to generate additional electricity was being discharged from a valve at the base of the dam without recovery of the energy. A second objective to the project was to incorporate upstream fish passage by use of a fish collection structure attached to the draft tubes of the hydroelectric units. This will enable reintroduction of native anadromous fish above the dams which have blocked fish passage sincemore » the late 1920's. The project was funded in part by the American Recovery and Reinvestment Act through the Department of Energy, Office of Energy, Efficiency and Renewable Energy, Wind and Water Power Program.« less

  12. Removing Dams: Project-Level Policy and Scientific Research Needs (Invited)

    NASA Astrophysics Data System (ADS)

    Graber, B.

    2010-12-01

    More than 800 dams have been removed around the country, mostly “small” dams, under 25 feet in height. The total number of removals, however, is small relative to the number of deteriorating dams and the ecological impacts those structures continue to have on native riverine species and natural river function. The number of dam removal projects is increasing as aging dams continue to deteriorate and riverine species continue to decline. Practitioners and regulators need to find cost-effective project approaches that minimize short-term environmental impacts and maximize long-term benefits while keeping project costs manageable. Dam removals can be a regulatory challenge because they inherently have short-term impacts in order to achieve larger, self-sustaining, long-term benefits. These short-term impacts include sediment movement, construction access roads, and habitat conversion from lacustrine to riverine. Environmental regulations are designed to prevent degradation and have presented challenges for projects designed to benefit the environment. For example, a short-term release of sediment may exceed water quality standards for some period of time, but lead to a long-term beneficial project. Other regulatory challenges include permitting the loss of wetland area for increased native river function, or allowing the release of some level of contaminated sediment when the downstream sediment is similarly contaminated. Dam removal projects raise a range of engineering and scientific questions on effective implementation techniques such as appropriate sediment management approaches, construction equipment access approaches, invasive species management, channel/floodplain reconstruction, and active versus passive habitat rehabilitation. While practitioners have learned and refined implementation approaches over the last decade, more input is needed from researchers to help assess the effectiveness of those techniques, and to provide more effective techniques. Applied research is needed to provide management tools for practitioners on questions such as: How do we determine the quantity of sediment that is acceptable to release downstream without causing long-term harm to habitat? How can we estimate how much sediment rivers naturally carry in places where there are no sediment gauges? Will the release of coarse-grain sediment help build habitat structure downstream or will it smother habitat? What is the trajectory of habitat quality in an impoundment wetland and is it justifiable to use self-sustainability as an argument to allow a reduction in wetland area for native river habitat? Will having construction equipment working in the flowing river channel do less harm than dewatering a river channel for a longer period of time? American Rivers staff have collectively had an active involvement in more than one hundred dam removal projects. In this presentation, an American Rivers geomorphologist will pose the questions that need to be answered to reduce project-level policy challenges and allow the implementation of cost-effective dam removal projects.

  13. 4. VIEW, LOOKING SOUTHWEST, SHOWING A LARGE FIELDSTONE DAM (KNOWN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW, LOOKING SOUTHWEST, SHOWING A LARGE FIELD-STONE DAM (KNOWN LOCALLY AS DAM NO. 1), BUILT BY THE CCC - J. Clark Salyer National Wildlife Refuge Dams, Along Lower Souris River, Kramer, Bottineau County, ND

  14. Master Plan for Public Use Development and Resource Management, Lake Traverse, Minnesota - South Dakota.

    DTIC Science & Technology

    1979-05-01

    White Rock Dam Recreation Area 25 Reservation Highway Recreation Area 27 Brown’s Valley Dike Recreation Area 28 Potential Recreation Areas 28 Section...Development 35 White Rock Dam 35 Reservation Highway 39 Brown’s Valley Dike 39 Land Use Allocation 42 Project Operations ൲ Operations: Recreation--Intensive...Facilities 4 Proposed Facilities v i i u < *1 I_ • In I . .. PROJECT DAT ~PROJECT DATA LAKE TRAVERSE AND RESERVATION DAM Reservoir Flowage rights to

  15. Authorized and Operating Purposes of Corps of Engineers Reservoirs

    DTIC Science & Technology

    1992-07-01

    Puerto Rico CERRILLOS DAM AND RESERVOIR Jacksonville E-9O PORTUGUES DAM AND RESERVOIR Jacksonville E-92 South Carolina HARTWELL DAM AND LAKE Savannah E...LAKE Missouri Kansas City E-12 POMONA LAKE Kansas Kansas City E-12 PORTUGUES DAM AND RESERVOIR Puerto Rico Jacksonville E-92 PRADO DAM (SANTA ANA...PROJECT Florida Jacksonville E-92 PORTUGUES DAM AND RESERVOIR Puerto Rico Jacksonville E-92 RODMAN LOCK AND DAM (CROSS FLORIDA BARGE CANAL Florida

  16. 75 FR 15458 - Request for Small Reclamation Projects Act Loan To Construct Narrows Dam in Sanpete County, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-29

    ... construction by SWCD of the proposed Narrows Dam and reservoir, a non-Federal project to be located on... conditions in the affected areas without further development and assumes that irrigation operations would... construction of the 17,000 acre-foot Narrows Dam and reservoir on Gooseberry Creek, pipelines to deliver the...

  17. 78 FR 27215 - Baker County Oregon; Notice of Application Tendered for Filing With the Commission and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-09

    ... the base of Mason dam in the vicinity of the exiting discharge via the project's tailrace. Baker... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 12686-004] Baker County...: Baker County, Oregon (Baker County). e. Name of Project: Mason Dam Hydroelectric Project. f. Location...

  18. Sedimentology of new fluvial deposits on the Elwha River, Washington, USA, formed during large-scale dam removal

    USGS Publications Warehouse

    Draut, Amy; Ritchie, Andrew C.

    2015-01-01

    Removal of two dams 32 m and 64 m high on the Elwha River, Washington, USA, provided the first opportunity to examine river response to a dam removal and controlled sediment influx on such a large scale. Although many recent river-restoration efforts have included dam removal, large dam removals have been rare enough that their physical and ecological effects remain poorly understood. New sedimentary deposits that formed during this multi-stage dam removal result from a unique, artificially created imbalance between fluvial sediment supply and transport capacity. River flows during dam removal were essentially natural and included no large floods in the first two years, while draining of the two reservoirs greatly increased the sediment supply available for fluvial transport. The resulting sedimentary deposits exhibited substantial spatial heterogeneity in thickness, stratal-formation patterns, grain size and organic content. Initial mud deposition in the first year of dam removal filled pore spaces in the pre-dam-removal cobble bed, potentially causing ecological disturbance but not aggrading the bed substantially at first. During the second winter of dam removal, thicker and in some cases coarser deposits replaced the early mud deposits. By 18 months into dam removal, channel-margin and floodplain deposits were commonly >0.5 m thick and, contrary to pre-dam-removal predictions that silt and clay would bypass the river system, included average mud content around 20%. Large wood and lenses of smaller organic particles were common in the new deposits, presumably contributing additional carbon and nutrients to the ecosystem downstream of the dam sites. Understanding initial sedimentary response to the Elwha River dam removals will inform subsequent analyses of longer-term sedimentary, geomorphic and ecosystem changes in this fluvial and coastal system, and will provide important lessons for other river-restoration efforts where large dam removal is planned or proposed.

  19. Malaria and large dams in sub-Saharan Africa: future impacts in a changing climate.

    PubMed

    Kibret, Solomon; Lautze, Jonathan; McCartney, Matthew; Nhamo, Luxon; Wilson, G Glenn

    2016-09-05

    Sub-Saharan Africa (SSA) has embarked on a new era of dam building to improve food security and promote economic development. Nonetheless, the future impacts of dams on malaria transmission are poorly understood and seldom investigated in the context of climate and demographic change. The distribution of malaria in the vicinity of 1268 existing dams in SSA was mapped under the Intergovernmental Panel on Climate Change (IPCC) representative concentration pathways (RCP) 2.6 and 8.5. Population projections and malaria incidence estimates were used to compute population at risk of malaria in both RCPs. Assuming no change in socio-economic interventions that may mitigate impacts, the change in malaria stability and malaria burden in the vicinity of the dams was calculated for the two RCPs through to the 2080s. Results were compared against the 2010 baseline. The annual number of malaria cases associated with dams and climate change was determined for each of the RCPs. The number of dams located in malarious areas is projected to increase in both RCPs. Population growth will add to the risk of transmission. The population at risk of malaria around existing dams and associated reservoirs, is estimated to increase from 15 million in 2010 to 21-23 million in the 2020s, 25-26 million in the 2050s and 28-29 million in the 2080s, depending on RCP. The number of malaria cases associated with dams in malarious areas is expected to increase from 1.1 million in 2010 to 1.2-1.6 million in the 2020s, 2.1-3.0 million in the 2050s and 2.4-3.0 million in the 2080s depending on RCP. The number of cases will always be higher in RCP 8.5 than RCP 2.6. In the absence of changes in other factors that affect transmission (e.g., socio-economic), the impact of dams on malaria in SSA will be significantly exacerbated by climate change and increases in population. Areas without malaria transmission at present, which will transition to regions of unstable transmission, may be worst affected. Modifying conventional water management frameworks to improve malaria control, holds the potential to mitigate some of this increase and should be more actively implemented.

  20. Osage River Basin, Osage River, Missouri, Harry S. Trumman Dam & Reservoir. Multiple-Purpose Project. Operation and Maintenance Manual. Appendix 7, Volume 2. Construction Foundation Report.

    DTIC Science & Technology

    1984-01-01

    PROJECT S TYPE OF REPORT & PERIOD COVEREDOSAGE RIVER BASIN ConStruction Foundation OSAGE RIVER MISSOURI Report from September 1966 HARRY S. TRUMAN DAM...OPERATION AND MAINTENANCE MANUAL HARRY S. TRUMAN DAM AND RESERVOIR OSAGE RIVER, MISSOURI APPENDIX VII CONSTRUCTION FOUNDATION REPORT VOLUME II TABLE OF...09r IWNI’(ANSAS CITY M?5OU ....... 11 1 O IA R, MISSOURI HARRY S TRUMA DAM & 1K5(V01 = CONSTRUCT"ON FOUNDATION REPORT IGEOLOGIC UNIT DESCRIPTIONS

  1. National Dam Safety Program. Cadet Mine Tailings Dam (MO 30715), Mississippi - Kaskaskia - St. Louis Basin, Washington County, Missouri. Phase I Inspection Report.

    DTIC Science & Technology

    1980-02-01

    Safety Inspection of Dams" are not available. These studies should be performed by a professional engineer experienced in the design and construction...engineer experienced in the design and construction of tailings dams. An inspection and maintenance program should be initiated. Periodic inspections...Page No. SECTION 1 - PROJECT INFORMATION 1.1 General 1 1.2 Description of Project 1 1.3 Pertinent Data 2 SECTION 2 - ENGINEERING DATA 2.1 Design 5 2.2

  2. Locked on course: Hydro-Quebec`s commitment to mega-projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, J.; Briscoe, F.; Suzuki, Tatsujiro

    1997-01-01

    Large organizations often escalate their commitments to mega-project development, even after evidence becomes available of adverse environmental consequences or lack of economic feasibility. This escalation of commitment transcends both sectorial and national boundaries. Preeminent examples include controversial nuclear projects in the US, hydroelectric projects like the Three Gorges Dam in China, and transport projects like the Chunnel and the Concorde. In this article, the authors examine the experience of Hydro-Quebec with the Great Whale Project. They argue that Hydro-Quebec escalated its commitment even after serious questions emerged about its environmental impacts and economic feasibility, because of (1) its earlier successmore » with large projects, (2) its engineering culture`s norms for consistency, and (3) its role in the government`s desire for economic and cultural autonomy. Finally, they discuss the changes that are necessary to break commitments to such projects.« less

  3. The Three Gorges Dam of China: Technology to Bridge Two Centuries

    ERIC Educational Resources Information Center

    Wahby, Wafeek S.

    2003-01-01

    Some of the most sophisticated 20th-century technologies have been applied to build the largest hydroelectric dam in the world, the Three Gorges Dam Project (TGDP) of China. The author administered a study abroad course in China from May 27 to June 10, 2000, to study the massive project as it approached the halfway mark of its second and most…

  4. 77 FR 51993 - Western Technical College; Notice of Availability of Environmental Assessment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-28

    ... hydroelectric generation at the dam. The dam is operated manually in a run-of-river mode (i.e., an operating...) distribution line; and (5) appurtenant facilities. The project would be operated in a run-of-river mode using... could otherwise enter project waters or adjacent non-project lands; Operating the project in a run-of...

  5. Plugs or flood-makers? The unstable landslide dams of eastern Oregon

    NASA Astrophysics Data System (ADS)

    Safran, E. B.; O'Connor, J. E.; Ely, L. L.; House, P. K.; Grant, G.; Harrity, K.; Croall, K.; Jones, E.

    2015-11-01

    Landslides into valley bottoms can affect longitudinal profiles of rivers, thereby influencing landscape evolution through base-level changes. Large landslides can hinder river incision by temporarily damming rivers, but catastrophic failure of landslide dams may generate large floods that could promote incision. Dam stability therefore strongly modulates the effects of landslide dams and might be expected to vary among geologic settings. Here, we investigate the morphometry, stability, and effects on adjacent channel profiles of 17 former and current landslide dams in eastern Oregon. Data on landslide dam dimensions, former impoundment size, and longitudinal profile form were obtained from digital elevation data constrained by field observations and aerial imagery; while evidence for catastrophic dam breaching was assessed in the field. The dry, primarily extensional terrain of low-gradient volcanic tablelands and basins contrasts with the tectonically active, mountainous landscapes more commonly associated with large landslides. All but one of the eastern Oregon landslide dams are ancient (likely of order 103 to 104 years old), and all but one has been breached. The portions of the Oregon landslide dams blocking channels are small relative to the area of their source landslide complexes (0.4-33.6 km2). The multipronged landslides in eastern Oregon produce marginally smaller volume dams but affect much larger channels and impound more water than do landslide dams in mountainous settings. As a result, at least 14 of the 17 (82%) large landslide dams in our study area appear to have failed cataclysmically, producing large downstream floods now marked by boulder outwash, compared to a 40-70% failure rate for landslide dams in steep mountain environments. Morphometric indices of landslide dam stability calibrated in other environments were applied to the Oregon dams. Threshold values of the Blockage and Dimensionless Blockage Indices calibrated to worldwide data sets successfully separate dam sites in eastern Oregon that failed catastrophically from those that did not. Accumulated sediments upstream of about 50% of the dam sites indicate at least short-term persistence of landslide dams prior to eventual failure. Nevertheless, only three landslide dam remnants and one extant dam significantly elevate the modern river profile. We conclude that eastern Oregon's landslide dams are indeed floodmakers, but we lack clear evidence that they form lasting plugs.

  6. Plugs or flood-makers? the unstable landslide dams of eastern Oregon

    USGS Publications Warehouse

    Safran, Elizabeth B.; O'Connor, Jim E.; Ely, Lisa L.; House, P. Kyle; Grant, Gordon E.; Harrity, Kelsey; Croall, Kelsey; Jones, Emily

    2015-01-01

    Landslides into valley bottoms can affect longitudinal profiles of rivers, thereby influencing landscape evolution through base-level changes. Large landslides can hinder river incision by temporarily damming rivers, but catastrophic failure of landslide dams may generate large floods that could promote incision. Dam stability therefore strongly modulates the effects of landslide dams and might be expected to vary among geologic settings. Here, we investigate the morphometry, stability, and effects on adjacent channel profiles of 17 former and current landslide dams in eastern Oregon. Data on landslide dam dimensions, former impoundment size, and longitudinal profile form were obtained from digital elevation data constrained by field observations and aerial imagery; while evidence for catastrophic dam breaching was assessed in the field. The dry, primarily extensional terrain of low-gradient volcanic tablelands and basins contrasts with the tectonically active, mountainous landscapes more commonly associated with large landslides. All but one of the eastern Oregon landslide dams are ancient (likely of order 103 to 104 years old), and all but one has been breached. The portions of the Oregon landslide dams blocking channels are small relative to the area of their source landslide complexes (0.4–33.6 km2). The multipronged landslides in eastern Oregon produce marginally smaller volume dams but affect much larger channels and impound more water than do landslide dams in mountainous settings. As a result, at least 14 of the 17 (82%) large landslide dams in our study area appear to have failed cataclysmically, producing large downstream floods now marked by boulder outwash, compared to a 40–70% failure rate for landslide dams in steep mountain environments. Morphometric indices of landslide dam stability calibrated in other environments were applied to the Oregon dams. Threshold values of the Blockage and Dimensionless Blockage Indices calibrated to worldwide data sets successfully separate dam sites in eastern Oregon that failed catastrophically from those that did not. Accumulated sediments upstream of about 50% of the dam sites indicate at least short-term persistence of landslide dams prior to eventual failure. Nevertheless, only three landslide dam remnants and one extant dam significantly elevate the modern river profile. We conclude that eastern Oregon's landslide dams are indeed floodmakers, but we lack clear evidence that they form lasting plugs.

  7. Hydropower and sustainability: resilience and vulnerability in China's powersheds.

    PubMed

    McNally, Amy; Magee, Darrin; Wolf, Aaron T

    2009-07-01

    Large dams represent a whole complex of social, economic and ecological processes, perhaps more than any other large infrastructure project. Today, countries with rapidly developing economies are constructing new dams to provide energy and flood control to growing populations in riparian and distant urban communities. If the system is lacking institutional capacity to absorb these physical and institutional changes there is potential for conflict, thereby threatening human security. In this paper, we propose analyzing sustainability (political, socioeconomic, and ecological) in terms of resilience versus vulnerability, framed within the spatial abstraction of a powershed. The powershed framework facilitates multi-scalar and transboundary analysis while remaining focused on the questions of resilience and vulnerability relating to hydropower dams. Focusing on examples from China, this paper describes the complex nature of dams using the sustainability and powershed frameworks. We then analyze the roles of institutions in China to understand the relationships between power, human security and the socio-ecological system. To inform the study of conflicts over dams China is a particularly useful case study because we can examine what happens at the international, national and local scales. The powershed perspective allows us to examine resilience and vulnerability across political boundaries from a dynamic, process-defined analytical scale while remaining focused on a host of questions relating to hydro-development that invoke drivers and impacts on national and sub-national scales. The ability to disaggregate the affects of hydropower dam construction from political boundaries allows for a deeper analysis of resilience and vulnerability. From our analysis we find that reforms in China's hydropower sector since 1996 have been motivated by the need to create stability at the national scale rather than resilient solutions to China's growing demand for energy and water resource control at the local and international scales. Some measures that improved economic development through the market economy and a combination of dam construction and institutional reform may indeed improve hydro-political resilience at a single scale. However, if China does address large-scale hydropower construction's potential to create multi-scale geopolitical tensions, they may be vulnerable to conflict - though not necessarily violent - in domestic and international political arenas. We conclude with a look toward a resilient basin institution for the Nu/Salween River, the site of a proposed large-scale hydropower development effort in China and Myanmar.

  8. VIEW OF FOSSIL CREEK DIVERSION DAM FROM DOWNSTREAM (INCLUDES 1950s ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF FOSSIL CREEK DIVERSION DAM FROM DOWNSTREAM (INCLUDES 1950s AUTOMATIC/REMOTE CONTROL SLUICE GATE IN UPPER CENTER OF DAM, NORTH SIDE). LOOKING NORTH-NORTHWEST - Childs-Irving Hydroelectric Project, Fossil Creek Diversion Dam, Forest Service Road 708/502, Camp Verde, Yavapai County, AZ

  9. National Program for Inspection of Non-Federal Dams. Lovejoy Pond Dam ME-00022, Androscoggin River Basin, North Wayne, Maine. Phase I Inspection Report.

    DTIC Science & Technology

    1979-04-01

    programs for non-Federal dams. (3) To update, verify and complete the National Inventory of Dams. 1.2 DESCRIPTION OF PROJECT a. Location. The Lovejoy Pond...BUREAU OF STANDARDS- 1963-A 41 ANDROSCOGGIN RIVER BASIN NORTH WAYNE ,MAINE LOVEJOY POND DAM ME-00022 0 PHASE I INSPECTION REPORT NATIONAL DAM INSPECTION...side of necessar mnd idenifIr bioc Sigmmber) DAMS, INSPECTION, DAM SAFETY, * Androscoggin River Basin North Wayne, Maine Lovejoy Pond * 20. ABSTRACT

  10. 76 FR 20707 - Cle Elum Dam Fish Passage Facilities and Fish Reintroduction Project; Kittitas County, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation [INT-FES 11-02] Cle Elum Dam Fish Passage Facilities and Fish Reintroduction Project; Kittitas County, WA AGENCY: Bureau of Reclamation, Interior... Fish Passage Facilities and Fish Reintroduction Project. SUMMARY: The Bureau of Reclamation...

  11. National Dam Safety Program. Lake Muskoday Dam (Inventory Number N.Y. 341) Delaware River Basin, Sullivan County, New York. Phase I Inspection Report,

    DTIC Science & Technology

    1981-09-14

    DACW-51-81-C-0006 . PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT. TASK AREA & WORK UNIT NUMBERS ~ Flaherty-Giauara Associates...olie It neceary and Idontily b block number) Dam Safety National Dam Safety Program Visual Inspection Lake Muskoday Dam Hydrology, Structural Stability...DELAWARE RIVER BASIN LAKE MUSKODAY DAM SULLIVAN COUNTY, NEW YORK INVENTORY No.NY341 PHASE I INSPECTION REPORT NATIONAL DAM SAFETY PROGRAM J T C NEW YORK

  12. Lac Courte Oreilles Hydro Dam Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Jason; Meyers, Amy

    The main objective of this project was to investigate upgrading the existing hydro power generating system at the Winter Dam. The tribe would like to produce more energy and receive a fair market power purchase agreement so the dam is no longer a drain on our budget but a contributor to our economy. We contracted Kiser Hydro, LLC Engineering for this project and received an engineering report that includes options for producing more energy with cost effective upgrades to the existing turbines. Included in this project was a negotiation of energy price sales negotiations.

  13. Geographical Overview of the Three Gorges Dam and Reservoir, China - Geologic Hazards and Environmental Impacts

    USGS Publications Warehouse

    Highland, Lynn M.

    2008-01-01

    The Three Gorges Dam and Reservoir on the Yangtze River, China, has been an ambitious and controversial project. The dam, the largest in the world as of 2008, will provide hydropower, help to manage flood conditions, and increase the navigability of the Yangtze River. However, this massive project has displaced human and animal populations and altered the stability of the banks of the Yangtze, and it may intensify the seismic hazard of the area. It has also hindered archeological investigations in the reservoir and dam area. This report, originally in the form of a Microsoft PowerPoint presentation, gives a short history and overview of the dam construction and subsequent consequences, especially geologic hazards already noted or possible in the future. The report provides photographs, diagrams, and references for the reader's further research - a necessity, because this great undertaking is dynamic, and both its problems and successes continue to evolve. The challenges and consequences of Three Gorges Dam will be closely watched and documented as lessons learned and applied to future projects in China and elsewhere.

  14. 77 FR 40607 - Whitman River Dam, Inc.; Notice of Availability of Environmental Assessment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ... Dam, Inc.; Notice of Availability of Environmental Assessment In accordance with the National... for an original license for the Crocker Dam Hydroelectric Project, to be located on the Whitman River... Energy Regulatory Commission, 888 First Street, Washington, DC 20426. Please affix ``Crocker Dam...

  15. Effects of dams and geomorphic context on riparian forests of the Elwha River, Washington

    USGS Publications Warehouse

    Shafroth, Patrick B.; Perry, Laura G; Rose, Chanoane A; Braatne, Jeffrey H

    2016-01-01

    Understanding how dams affect the shifting habitat mosaic of river bottomlands is key for protecting the many ecological functions and related goods and services that riparian forests provide and for informing approaches to riparian ecosystem restoration. We examined the downstream effects of two large dams on patterns of forest composition, structure, and dynamics within different geomorphic contexts and compared them to upstream reference conditions along the Elwha River, Washington, USA. Patterns of riparian vegetation in river segments downstream of the dams were driven largely by channel and bottomland geomorphic responses to a dramatically reduced sediment supply. The river segment upstream of both dams was the most geomorphically dynamic, whereas the segment between the dams was the least dynamic due to substantial channel armoring, and the segment downstream of both dams was intermediate due to some local sediment supply. These geomorphic differences were linked to altered characteristics of the shifting habitat mosaic, including older forest age structure and fewer young Populus balsamifera subsp. trichocarpa stands in the relatively static segment between the dams compared to more extensive early-successional forests (dominated by Alnus rubra and Salix spp.) and pioneer seedling recruitment upstream of the dams. Species composition of later-successional forest communities varied among river segments as well, with greater Pseudotsuga menziesii and Tsuga heterophylla abundance upstream of both dams, Acer spp. abundance between the dams, and P. balsamifera subsp. trichocarpa and Thuja plicata abundance below both dams. Riparian forest responses to the recent removal of the two dams on the Elwha River will depend largely on channel and geomorphic adjustments to the release, transport, and deposition of the large volume of sediment formerly stored in the reservoirs, together with changes in large wood dynamics.

  16. 18 CFR 11.5 - Exemption of minor projects.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Government Dams § 11.5 Exemption of minor projects. No exemption will be made from payment of annual charges for the use of Government dams or tribal lands within Indian reservations but licenses may be issued...

  17. 18 CFR 11.5 - Exemption of minor projects.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Government Dams § 11.5 Exemption of minor projects. No exemption will be made from payment of annual charges for the use of Government dams or tribal lands within Indian reservations but licenses may be issued...

  18. 77 FR 14516 - Alabama Power Company, Martin Dam Hydroelectric Project; Notice of Proposed Revised Restricted...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-12

    ... a Programmatic Agreement for Managing Properties Included in or Eligible for Inclusion in the... for inclusion in, the National Register of Historic Places at the Martin Dam Hydroelectric Project...

  19. Can local people also gain from benefit sharing in water resources development? Experiences from dam development in the Orange-Senqu River Basin

    NASA Astrophysics Data System (ADS)

    Mokorosi, Palesa Selloane; van der Zaag, Pieter

    The concept of sharing benefits derived from beneficial uses of water is increasingly embraced in numerous international discourses in place of sharing water in volumes among nations riparian to common water bodies. Many benefit-sharing efforts involve building of dams and inter-basin transfer schemes. These infrastructures have been blamed to be posing environmental and social costs and directly affecting local people ( Gupta and van der Zaag, 2007) [Gupta, J., van der Zaag, P., 2007. Inter-basin water transfers and integrated water resources management: Where engineering, science and politics interlock. Physics and Chemistry of the Earth doi:10.1016/j.pce.2007.04.003]. This paper attempts to find attributes that lead towards recognising the rights of affected people and the mechanisms that may ensure access of direct benefits to them. Four theoretical factors are identified as key in recognising the rights of the affected people and were adopted as the analytical framework: a. Appropriate legal and policy framework, b. Public participation, c. Sustainable compensation measures, and d. Equitable access of derived benefits. In order to complement these theoretical factors, the study compared two large water development projects in the Orange-Senqu river basin: the Orange River Development Project and the Lesotho Highlands Water Project. In both projects, several large dams were constructed and water was transferred from one river into another. The following are the findings of the paper: a) the political environment through the legal and institutional framework plays a major role in protecting or marginalising the affected people; b) compensation measures for lost properties left many affected people destitute and food insecure; c) affected people mainly benefited from the indirect benefits of the projects instead of direct benefits. In order to ensure access to direct benefits for the affected people it is recommended that a) the national legislation must support the concept, b) mechanisms for allocating benefits to the affected people must be defined at project planning stage and should aim at long-term development goals, and c) local authorities must have sufficient capacity to ensure smooth operation.

  20. The Three Gorges Dam Affects Regional Precipitation

    NASA Technical Reports Server (NTRS)

    Wu, Liguang; Zhang, Qiang; Jiang, Zhihong

    2006-01-01

    Issues regarding building large-scale dams as a solution to power generation and flood control problems have been widely discussed by both natural and social scientists from various disciplines, as well as the policy-makers and public. Since the Chinese government officially approved the Three Gorges Dam (TGD) projects, this largest hydroelectric project in the world has drawn a lot of debates ranging from its social and economic to climatic impacts. The TGD has been partially in use since June 2003. The impact of the TGD is examined through analysis of the National Aeronautics and Space Administration (NASA) Tropical Rainfall Measuring Mission (TRMM) rainfall rate and Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature and high-resolution simulation using the Pennsylvania State University-National Center for Atmospheric Research (PSU-NCAR) fifth-generation Mesoscale Model (MM5). The independent satellite data sets and numerical simulation clearly indicate that the land use change associated with the TGD construction has increased the precipitation in the region between Daba and Qinling mountains and reduced the precipitation in the vicinity of the TGD after the TGD water level abruptly rose from 66 to 135 m in June 2003. This study suggests that the climatic effect of the TGD is on the regional scale (approx.100 km) rather than on the local scale (approx.10 km) as projected in previous studies.

  1. 75 FR 28000 - Cellu Tissue Corporation; Notice of Application Tendered for Filing With the Commission and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-19

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 2851-016] Cellu Tissue..., 2010. d. Applicant: Cellu Tissue Corporation. e. Name of Project: Natural Dam Hydroelectric Project. f.... h. Agent Contact: Chris Fiedler or Robin Gaumes, Cellu Tissue Corp., Natural Dam Mill, 4921 Route...

  2. Influence of Partial Dam Removal on Change of Channel Morphology and Physical Habitats: A Case Study of Yu-Sheng River

    NASA Astrophysics Data System (ADS)

    Hao Weng, Chung; Yeh, Chao Hsien

    2017-04-01

    The rivers in Taiwan have the characteristic of large slope gradient and fast flow velocity caused by rugged terrain. And Taiwan often aces many typhoons which will bring large rainfall in the summer. In early Taiwan, river management was more focus on flood control, flood protection and disaster reduction. In recent years, the rise of ecological conservation awareness for the precious fish species brings spotlight on the Taiwan salmon (Oncorhynchus masou formosanus) which lives in the river section of this study. In order to make sure ecological corridor continuing, dam removal is the frequently discussed measure in recent years and its impact on environmental is also highly concerned. Since the dam removal may causes severe changes to the river channel, the action of dam removal needs careful evaluation. As one of the endangered species, Taiwan salmon is considered a national treasure of Taiwan and it was originally an offshore migration of the Pacific salmon. After the ice age and geographical isolation, it becomes as an unique subspecies of Taiwan and evolved into landlocked salmon. Now the Taiwan salmon habitats only exists in few upstream creeks and the total number of wild Taiwan salmon in 2015 was about 4,300. In order to expand the connectivity of the fish habitats in Chi-Jia-Wan creek basin, several dam removal projects had completed with good results. Therefore, this paper focuses on the dam removal of Yu-Sheng creek dam. In this paper, a digital elevation model (DEM) of about 1 kilometer channel of the Yu-Sheng creek dam is obtained by unmanned aerial vehicle (UAV). Using CCHE2D model, the simulation of dam removal will reveal the impact on channel morphology. After model parameter identification and verification, this study simulated the scenarios of three historical typhoon events with recurrence interval of two years, fifteen years, and three decades under four different patterns of dam removal to identify the the head erosion, flow pattern, and siltation and erosion of channel. With simulations by River2D under mean flow and ecological reference flow for the channels before and after dam removal, the habitat suitability curves of adult, two-aged juvenile, and one-aged juvenile salmons were applied to estimate the weighted usable areas. With results of two models on channel changes, infrastructure protection, and habitats improvement the best way for dam removal is then suggested.

  3. Monitoring and Evaluation of Smolt Migration in the Columbia Basin : Volume IX : Evaluation of the 2001 Predictions of the Run-Timing of Wild and Hatchery-Reared Migrant Salmon and Steelhead Trout Migrating to Lower Granite, Rock Island, McNary, and John Day Dams using Program RealTime.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgess, Caitlin; Skalski, John R.

    2001-12-01

    Program RealTime provided tracking and forecasting of the 2001 inseason outmigration via the internet for eighteen PIT-tagged stocks of wild salmon and steelhead to Lower Granite and/or McNary dams and eleven passage-indexed stocks to Rock Island, McNary, or John Day dams. Nine of the PIT-tagged stocks tracked this year were new to the project. Thirteen ESUs of wild subyearling and yearling chinook salmon and steelhead, and one ESU of hatchery-reared sockeye salmon were tracked and forecasted to Lower Granite Dam. Eight wild ESUs of subyearling and yearling chinook salmon, sockeye salmon and steelhead were tracked to McNary Dam for themore » first time this year. Wild PIT-tagged ESUs tracked to Lower Granite Dam included yearling spring/summer chinook salmon release-recovery stocks (from Bear Valley Creek, Catherine Creek, Herd Creek, Imnaha River, Johnson Creek, Lostine River, Minam River, South Fork Salmon River, Secesh River, and Valley Creek), PIT-tagged wild runs-at-large of yearling chinook salmon and steelhead, and a PIT-tagged stock of subyearling fall chinook salmon. The stock of hatchery-reared PIT-tagged summer-run sockeye salmon smolts outmigrating to Lower Granite Dam, consisted this year of a new stock of fish from Alturas Lake Creek, Redfish Lake Creek Trap and Sawtooth Trap. The passage-indexed stocks, counted using FPC passage indices, included combined wild- and hatchery-reared runs-at-large of subyearling and yearling chinook, coho, and sockeye salmon, and steelhead migrating to Rock Island and McNary dams, and, new this year, combined wild and hatchery subyearling chinook salmon to John Day Dam. Unusual run-timing and fish passage characteristics were observed in this low-flow, negligible-spill migration year. The period for the middle 80% of fish passage (i.e., progress from the 10th to the 90th percentiles) was unusually short for nine out of ten PIT-tagged yearling spring/summer chinook salmon stocks tracked to Lower Granite Dam. It was the shortest on record for seven of these ten stocks. The nine stocks recording unusually short middle 80% periods also recorded higher-than-average recovery percentages. However the opposite trend was observed for the PIT-tagged wild subyearling chinook salmon and hatchery sockeye salmon stocks whose middle 80% period of passage to Lower Granite Dam was average to above average. Recovery percentages for these two stocks were average, compared to historical recoveries. The performance results of Program RealTime to make accurate predictions of percentiles of fish passage at an index site were mixed this year. The release-recovery stocks of wild PIT-tagged spring/summer chinook salmon tracked to Lower Granite Dam were predicted less accurately than usual, on average, with two exceptions. One of these exceptions was a stock that had its best prediction (first-half, last-half, and season-wide) ever to occur. On average, however, performance was down for predicting these stocks. The RealTime Select composite season-wide MAD was 4.3%, larger than the historical average of 2.1%. Passage percentiles for PIT-tagged runs-at-large of wild Snake River yearling and subyearling chinook salmon and of wild steelhead outmigrating to Lower Granite Dam were predicted very well this year, their second year of inclusion in the project, with season-wide MADs of 3.6%, 4.7%, and 1.8% respectively. These results, too, were mixed with respect to comparison with last year's performance. The yearling chinook stock was predicted somewhat better last year (up from 1.7% last year to 3.6% this year) but the subyearling chinook salmon and steelhead stocks were predicted better this year than last, season-wide. The steelhead stock, in particular, was predicted much better this year than last year, down to 1.8% this year from 4.8% last year. The PIT-tagged runs-at-large of wild salmon and steelhead tracked to McNary Dam in 2001 for the first time, were also well-predicted. In particular, the Snake River stocks were well-predicted, with season-wide MADs of 4.7% for subyearling chinook salmon, 3.3% for yearling chinook salmon, and 1.4% for steelhead. All three Snake River stocks were better predicted at McNary Dam than they were at Lower Granite Dam. The Upper Columbia River PIT-tagged runs-at-large of wild subyearling chinook salmon and wild steelhead were not predicted with the remarkable accuracy of the Snake River stocks, but RealTime performance for these stocks was still good, with season-wide MADs of 7.9% and 4.9%, respectively. The results of RealTime predictions of FPC passage-indexed percentiles of combined wild and hatchery-reared salmonids to Rock Island and McNary dams were comparable to last year with respect to the large variability in performance. Like last year some runs were predicted very well while others were predicted very poorly. The stocks predicted best and worst last year were not necessarily the stocks predicted best and worst this year.« less

  4. Influence of dams on river-floodplain dynamics in the Elwha River, Washington

    USGS Publications Warehouse

    Kloehn, K.K.; Beechie, T.J.; Morley, S.A.; Coe, H.J.; Duda, J.J.

    2008-01-01

    The Elwha dam removal project presents an ideal opportunity to study how historic reduction and subsequent restoration of sediment supply alter river-floodplain dynamics in a large, forested river floodplain. We used remote sensing and onsite data collection to establish a historical record of floodplain dynamics and a baseline of current conditions. Analysis was based on four river reaches, three from the Elwha River and the fourth from the East Fork of the Quinault River. We found that the percentage of floodplain surfaces between 25 and 75 years old decreased and the percentage of surfaces >75 years increased in reaches below the Elwha dams. We also found that particle size decreased as downstream distance from dams increased. This trend was evident in both mainstem and side channels. Previous studies have found that removal of the two Elwha dams will initially release fine sediment stored in the reservoirs, then in subsequent decades gravel bed load supply will increase and gradually return to natural levels, aggrading river beds up to 1 m in some areas. We predict the release of fine sediments will initially create bi-modal grain size distributions in reaches downstream of the dams, and eventual recovery of natural sediment supply will significantly increase lateral channel migration and erosion of floodplain surfaces, gradually shifting floodplain age distributions towards younger age classes.

  5. Cultural Resources Survey, Harry S. Truman Dam and Reservoir Project, Missouri. Volume 8. Archeological Test Excavations: 1976

    DTIC Science & Technology

    1983-02-01

    4 1983 • i • i . _ _ _ - K -^ REPORTS OF THE CULTURAL RISOURCES SURVEY HARRY S. TRUMAN DAM AND RESERVOIR PROJECT...iMiM US Army Corps of Engineers Kansas City District m 00 CO Harry S. Truman 15am and Reservoir, Missouri American Archaeology Division...Department of Anthropology, University of Missouri - Columbia Columbia, Missouri O Cultural Resources Survey Harry S. Truman Dam and eservoir

  6. 76 FR 26718 - Gibson Dam Hydroelectric Company, LLC; Notice of Availability of Draft Environmental Assessment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-09

    ... Dam Hydroelectric Company, LLC; Notice of Availability of Draft Environmental Assessment In accordance... reviewed the application for license for the Gibson Dam Hydroelectric Project, located at the U.S. Department of the Interior, Bureau of Reclamation's, Gibson dam on the Sun River in Lewis and Clark and Teton...

  7. 43 CFR 431.7 - Administration and management of the Colorado River Dam Fund.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Colorado River Dam Fund. 431.7 Section 431.7 Public Lands: Interior Regulations Relating to Public Lands... management of the Colorado River Dam Fund. Reclamation is responsible for the repayment of the Project and the administration of the Colorado River Dam Fund and the Lower Colorado River Basin Development Fund...

  8. 43 CFR 431.7 - Administration and management of the Colorado River Dam Fund.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Colorado River Dam Fund. 431.7 Section 431.7 Public Lands: Interior Regulations Relating to Public Lands... management of the Colorado River Dam Fund. Reclamation is responsible for the repayment of the Project and the administration of the Colorado River Dam Fund and the Lower Colorado River Basin Development Fund...

  9. 43 CFR 431.7 - Administration and management of the Colorado River Dam Fund.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Colorado River Dam Fund. 431.7 Section 431.7 Public Lands: Interior Regulations Relating to Public Lands... management of the Colorado River Dam Fund. Reclamation is responsible for the repayment of the Project and the administration of the Colorado River Dam Fund and the Lower Colorado River Basin Development Fund...

  10. Modulation of Extreme Flood Levels by Impoundment Significantly Offset by Floodplain Loss Downstream of the Three Gorges Dam

    NASA Astrophysics Data System (ADS)

    Mei, Xuefei; Dai, Zhijun; Darby, Stephen E.; Gao, Shu; Wang, Jie; Jiang, Weiguo

    2018-04-01

    River flooding—the world's most significant natural hazard—is likely to increase under anthropogenic climate change. Most large rivers have been regulated by damming, but the extent to which these impoundments can mitigate extreme flooding remains uncertain. Here the catastrophic 2016 flood on the Changjiang River is first analyzed to assess the effects of both the Changjiang's reservoir cascade and the Three Gorges Dam (TGD), the world's largest hydraulic engineering project on downstream flood discharge and water levels. We show that the Changjiang's reservoir cascade impounded over 30.0 × 103 m3/s of flow at the peak of the flood on 25 July 2016, preventing the occurrence of what would otherwise have been the second largest flood ever recorded in the reach downstream of the TGD. Half of this flood water storage was retained by the TGD alone, meaning that impoundment by the TGD reduced peak water levels at the Datong hydrometric station (on 25 July) by 1.47 m, compared to pre-TGD conditions. However, downstream morphological changes, in particular, extensive erosion of the natural floodplain, offset this reduction in water level by 0.22 m, so that the full beneficial impact of floodwater retention by the TGD was not fully realized. Our results highlight how morphological adjustments downstream of large dams may inhibit their full potential to mitigate extreme flood risk.

  11. Malaria and water resource development: the case of Gilgel-Gibe hydroelectric dam in Ethiopia.

    PubMed

    Yewhalaw, Delenasaw; Legesse, Worku; Van Bortel, Wim; Gebre-Selassie, Solomon; Kloos, Helmut; Duchateau, Luc; Speybroeck, Niko

    2009-01-29

    Ethiopia plans to increase its electricity power supply by five-fold over the next five years to fulfill the needs of its people and support the economic growth based on large hydropower dams. Building large dams for hydropower generation may increase the transmission of malaria since they transform ecosystems and create new vector breeding habitats. The aim of this study was to assess the effects of Gilgel-Gibe hydroelectric dam in Ethiopia on malaria transmission and changing levels of prevalence in children. A cross-sectional, community-based study was carried out between October and December 2005 in Jimma Zone, south-western Ethiopia, among children under 10 years of age living in three 'at-risk' villages (within 3 km from dam) and three 'control' villages (5 to 8 km from dam). The man-made Gilgel-Gibe dam is operating since 2004. Households with children less than 10 years of age were selected and children from the selected households were sampled from all the six villages. This included 1,081 children from 'at-risk' villages and 774 children from 'control' villages. Blood samples collected from children using finger prick were examined microscopically to determine malaria prevalence, density of parasitaemia and identify malarial parasite species. Overall 1,855 children (905 girls and 950 boys) were surveyed. A total of 194 (10.5%) children were positive for malaria, of which, 117 (60.3%) for Plasmodium vivax, 76 (39.2%) for Plasmodium falciparum and one (0.5%) for both P. vivax and P. falciparum. A multivariate design-based analysis indicated that, while controlling for age, sex and time of data collection, children who resided in 'at-risk' villages close to the dam were more likely to have P. vivax infection than children who resided farther away (odds ratio (OR) = 1.63, 95% CI = 1.15, 2.32) and showed a higher OR to have P. falciparum infection than children who resided in 'control' villages, but this was not significant (OR = 2.40, 95% CI = 0.84, 6.88). A classification tree revealed insights in the importance of the dam as a risk factor for malaria. Assuming that the relationship between the dam and malaria is causal, 43% of the malaria occurring in children was due to living in close proximity to the dam. This study indicates that children living in close proximity to a man-made reservoir in Ethiopia are at higher risk of malaria compared to those living farther away. It is recommended that sound prevention and control programme be designed and implemented around the reservoir to reduce the prevalence of malaria. In this respect, in localities near large dams, health impact assessment through periodic survey of potential vectors and periodic medical screening is warranted. Moreover, strategies to mitigate predicted negative health outcomes should be integral parts in the preparation, construction and operational phases of future water resource development and management projects.

  12. Malaria and water resource development: the case of Gilgel-Gibe hydroelectric dam in Ethiopia

    PubMed Central

    Yewhalaw, Delenasaw; Legesse, Worku; Van Bortel, Wim; Gebre-Selassie, Solomon; Kloos, Helmut; Duchateau, Luc; Speybroeck, Niko

    2009-01-01

    Background Ethiopia plans to increase its electricity power supply by five-fold over the next five years to fulfill the needs of its people and support the economic growth based on large hydropower dams. Building large dams for hydropower generation may increase the transmission of malaria since they transform ecosystems and create new vector breeding habitats. The aim of this study was to assess the effects of Gilgel-Gibe hydroelectric dam in Ethiopia on malaria transmission and changing levels of prevalence in children. Methods A cross-sectional, community-based study was carried out between October and December 2005 in Jimma Zone, south-western Ethiopia, among children under 10 years of age living in three 'at-risk' villages (within 3 km from dam) and three 'control' villages (5 to 8 km from dam). The man-made Gilgel-Gibe dam is operating since 2004. Households with children less than 10 years of age were selected and children from the selected households were sampled from all the six villages. This included 1,081 children from 'at-risk' villages and 774 children from 'control' villages. Blood samples collected from children using finger prick were examined microscopically to determine malaria prevalence, density of parasitaemia and identify malarial parasite species. Results Overall 1,855 children (905 girls and 950 boys) were surveyed. A total of 194 (10.5%) children were positive for malaria, of which, 117 (60.3%) for Plasmodium vivax, 76 (39.2%) for Plasmodium falciparum and one (0.5%) for both P. vivax and P. falciparum. A multivariate design-based analysis indicated that, while controlling for age, sex and time of data collection, children who resided in 'at-risk' villages close to the dam were more likely to have P. vivax infection than children who resided farther away (odds ratio (OR) = 1.63, 95% CI = 1.15, 2.32) and showed a higher OR to have P. falciparum infection than children who resided in 'control' villages, but this was not significant (OR = 2.40, 95% CI = 0.84, 6.88). A classification tree revealed insights in the importance of the dam as a risk factor for malaria. Assuming that the relationship between the dam and malaria is causal, 43% of the malaria occurring in children was due to living in close proximity to the dam. Conclusion This study indicates that children living in close proximity to a man-made reservoir in Ethiopia are at higher risk of malaria compared to those living farther away. It is recommended that sound prevention and control programme be designed and implemented around the reservoir to reduce the prevalence of malaria. In this respect, in localities near large dams, health impact assessment through periodic survey of potential vectors and periodic medical screening is warranted. Moreover, strategies to mitigate predicted negative health outcomes should be integral parts in the preparation, construction and operational phases of future water resource development and management projects. PMID:19178727

  13. The Mekong's future flows under multiple driving factors: How future climate change, hydropower developments and irrigation expansion drive hydrological changes?

    NASA Astrophysics Data System (ADS)

    Hoang, L. P.; van Vliet, M. T. H.; Lauri, H.; Kummu, M.; Koponen, J.; Supit, I.; Leemans, R.; Kabat, P.; Ludwig, F.

    2016-12-01

    The Mekong River's flows and water resources are in many ways essential for sustaining economic growths, flood security of about 70 million people and biodiversity in one of the world's most ecologically productive wetland systems. The river's hydrological cycle, however, are increasingly perturbed by climate change, large-scale hydropower developments and rapid irrigated land expansions. This study presents an integrated impact assessment to characterize and quantify future hydrological changes induced by these driving factors, both separately and combined. We have integrated a crop simulation module and a hydropower dam module into a distributed hydrological model (VMod) and simulated the Mekong's hydrology under multiple climate change and development scenarios. Our results show that the Mekong's hydrological regime will experience substantial changes caused by the considered factors. Magnitude-wise, hydropower dam developments exhibit the largest impacts on river flows, with projected higher flows (up to +35%) during the dry season and lower flows (up to -44%) during the wet season. Annual flow changes caused by the dams, however, are relatively marginal. In contrast to this, climate change is projected to increase the Mekong's annual flows (up to +16%) while irrigated land expansions result in annual flow reductions (-1% to -3%). Combining the impacts of these three drivers, we found that river flow changes, especially those at the monthly scale, largely differ from changes under the individual driving factors. This is explained by large differences in impacts' magnitudes and contrasting impacts' directions for the individual drivers. We argue that the Mekong's future flows are likely driven by multiple factors and thus advocate for integrated assessment approaches and tools that support proper considerations of these factors and their interplays.

  14. Relocation Stress, Coping, and Sense of Control among Resettlers Resulting from China's Three Gorges Dam Project

    ERIC Educational Resources Information Center

    Xi, Juan; Hwang, Sean-Shong

    2011-01-01

    The involuntary relocation of people for development purposes has become prevalent across the world in recent decades. Depression is one of the documented negative outcomes of involuntary relocation among resettlers. Viewing the affected population simply as passive victims, past studies have largely ignored the coping strategies employed by…

  15. Plugs or flood-makers? The unstable landslide dams of eastern Oregon

    Treesearch

    E.B. Safran; J.E. O' Connor; L.L. Ely; P.K. House; Gordon Grant; K. Harrity; K. Croall; E. Jones

    2015-01-01

    Landslides into valley bottoms can affect longitudinal profiles of rivers, thereby influencing landscape evolution through base-level changes. Large landslides can hinder river incision by temporarily damming rivers, but catastrophic failure of landslide dams may generate large floods that could promote incision. Dam stability therefore strongly modulates the effects...

  16. 75 FR 47808 - Alabama Municipal Electric Authority; Notice of Competing Preliminary Permit Application Accepted...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-09

    ..., proposing to study the feasibility of the George W. Andrews Lock and Dam Hydroelectric Project. The proposed project would be located at the existing George W. Andrews Lock and Dam on the Chattahoochee River in...

  17. Longitudinal cracking in concrete at bridge deck dams on structural rehabilitation projects.

    DOT National Transportation Integrated Search

    2012-10-01

    The main objective of this project was to identify the causes of longitudinal cracking in newly placed concrete deck segments adjacent to : bridge deck expansion dam rehabilitations within District 3-0 of the Pennsylvania Department of Transportation...

  18. Coastal and lower Elwha River, Washington, prior to dam removal--history, status, and defining characteristics: Chapter 1 in Coastal habitats of the Elwha River, Washington--biological and physical patterns and processes prior to dam removal

    USGS Publications Warehouse

    Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.; Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.

    2011-01-01

    Characterizing the physical and biological characteristics of the lower Elwha River, its estuary, and adjacent nearshore habitats prior to dam removal is essential to monitor changes to these areas during and following the historic dam-removal project set to begin in September 2011. Based on the size of the two hydroelectric projects and the amount of sediment that will be released, the Elwha River in Washington State will be home to the largest river restoration through dam removal attempted in the United States. Built in 1912 and 1927, respectively, the Elwha and Glines Canyon Dams have altered key physical and biological characteristics of the Elwha River. Once abundant salmon populations, consisting of all five species of Pacific salmon, are restricted to the lower 7.8 river kilometers downstream of Elwha Dam and are currently in low numbers. Dam removal will reopen access to more than 140 km of mainstem, flood plain, and tributary habitat, most of which is protected within Olympic National Park. The high capture rate of river-borne sediments by the two reservoirs has changed the geomorphology of the riverbed downstream of the dams. Mobilization and downstream transport of these accumulated reservoir sediments during and following dam removal will significantly change downstream river reaches, the estuary complex, and the nearshore environment. To introduce the more detailed studies that follow in this report, we summarize many of the key aspects of the Elwha River ecosystem including a regional and historical context for this unprecedented project.

  19. 78 FR 38307 - Gresham Municipal Utilities; Notice of Application Tendered for Filing With the Commission and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-26

    .... Date filed: June 10, 2013. d. Applicant: Gresham Municipal Utilities. e. Name of Project: Upper Red Lake Dam Hydroelectric Project. f. Location: On Red River in Shawano County, Wisconsin. No federal... analysis at this time. n. The Upper Red Lake Dam Hydroelectric Project would consist of the following...

  20. 18 CFR 11.3 - Use of government dams, excluding pumped storage projects.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Use of government dams, excluding pumped storage projects. 11.3 Section 11.3 Conservation of Power and Water Resources FEDERAL... charge for the project made pursuant to section 10(e) of the Federal Power Act. (b) Graduated flat rates...

  1. 5. DETAIL VIEW OF TOE SPILLWAY SECTION OF LOWWATER DAM, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. DETAIL VIEW OF TOE SPILLWAY SECTION OF LOW-WATER DAM, LOOKING NORTHWEST (UPSTREAM). ST. LOUIS WATER DEPARTMENT INTAKE IN BACKGROUND - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 27, Granite City, Madison County, IL

  2. 41. LOCK AND DAM NO. 26 (REPLACEMENT). LOCK LOCK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. LOCK AND DAM NO. 26 (REPLACEMENT). LOCK -- LOCK GATES -- LIFT GATE, GATE LEAVES -- GENERAL ASSEMBLY. M-L 26(R) 21/28 - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 26R, Alton, Madison County, IL

  3. Multiple-Purpose Project, Osage River Basin, Osage River, Missouri. Harry S. Truman Dam & Reservoir Operation and Maintenance Manual. Appendix VII. Volume 1. Construction Foundation Report.

    DTIC Science & Technology

    1984-01-01

    RIVER MISSOURI Report from September 1966 HARRY S. TROMAN DAM & RESERVOIR November 1979 OPERATION AND MAINTENANCE MANUAL 6 PERFORMING DRG. REPORT N4040E...Two of this report ) VII- I- xxiv ............................. .... ... .... ... . .2. . . OPERATION AND MAINTENANCE MANUAL HARRY S. TRUMAN DAM AND...RESERVOIR OSAGE RIVER, MISSOURI APPENDIX VII CONSTRUCTION FOUNDATION REPORT CHAPTER 1 INTRODUCTION 1-01. Location and Description of Project: Harry S

  4. Sustainability of dams-an evaluation approach

    NASA Astrophysics Data System (ADS)

    Petersson, E.

    2003-04-01

    Situated in the stream bed of a river, dams and reservoirs interrupt the natural hydrological cycle. They are very sensitive to all kinds of changes in the catchment, among others global impacts on land use, climate, settlement structures or living standards. Vice versa dams strongly affect the spatially distributed, complex system of ecology, economy and society in the catchment both up- and downstream of the reservoir. The occurrence of negative impacts due to large dams led to serious conflicts about future dams. Nevertheless, water shortages due to climatic conditions and their changes, that are faced by enormous water and energy demands due to rising living standards of a growing world population, seem to require further dam construction, even if both supply and demand management are optimised. Although environmental impact assessments are compulsory for dams financed by any of the international funding agencies, it has to be assumed that the projects lack sustainability. Starting from an inventory of today's environmental impact assessments as an integral part of a feasibility study the presentation will identify their inadequacies with regard to the sustainability of dams. To improve the sustainability of future dams and avoid the mistakes of the past, the planning procedures for dams have to be adapted. The highly complex and dynamical system of interrelated physical and non-physical processes, that involves many different groups of stakeholders, constitutes the need for a model-oriented decision support system. In line with the report of the World Commission of Dams an integrated analysis and structure of the complex interrelations between dams, ecology, economy and society will be presented. Thus the system, that a respective tool will be based on, is analysed. Furthermore an outlook will be given on the needs of the potential users of a DSS and how it has to be embedded in the overall planning process. The limits of computer-based decision-support in the very specific context of dam construction will be identified. Special focus will be on the constraints arising from the need to jointly evaluate qualitative and quantitative aspects and the methodological potential of multi-criteria evaluation in this respect.

  5. Resilience scales of a dammed tropical river

    NASA Astrophysics Data System (ADS)

    Calamita, Elisa; Schmid, Martin; Wehrli, Bernhard

    2017-04-01

    Artificial river impoundments disrupt the seasonality and dynamics of thermal, chemical, morphological and ecological regimes in river systems. These alterations affect the aquatic ecosystems in space and time and specifically modify the seasonality and the longitudinal gradients of important biogeochemical processes. Resilience of river systems to anthropogenic stressors enables their recovery along the flow path; however little is known about the longitudinal distance that rivers need to partially restore their physical, chemical and biological integrity. In this study, the concept of a "resilience scale" will be explored for different water quality parameters downstream of Kariba dam, the largest artificial lake in the Zambezi basin (South-East Africa). The goal of this project is to develop a modelling framework to investigate and quantify the impact of large dams on downstream water quality in tropical context. In particular, we aim to assess the degree of reversibility of the main downstream alterations (temperature, oxygen, nutrients) and consequently the quantification of their longitudinal extent. Coupling in-situ measurements with hydraulic and hydrological parameters such as travel times, will allow us to define a physically-based parametrization of the different resilience scales for tropical rivers. The results will be used for improving future dam management at the local scale and assessing the ecological impact of planned dams at the catchment scale.

  6. 43 CFR 418.23 - Diversion of Rock Dam Ditch water.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Diversion of Rock Dam Ditch water. 418.23... Operations and Management § 418.23 Diversion of Rock Dam Ditch water. Project water may be diverted directly to Rock Dam Ditch from the Truckee Canal only when diversions cannot be made from the outlet works of...

  7. 43 CFR 418.23 - Diversion of Rock Dam Ditch water.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Diversion of Rock Dam Ditch water. 418.23... Operations and Management § 418.23 Diversion of Rock Dam Ditch water. Project water may be diverted directly to Rock Dam Ditch from the Truckee Canal only when diversions cannot be made from the outlet works of...

  8. 43 CFR 418.23 - Diversion of Rock Dam Ditch water.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Diversion of Rock Dam Ditch water. 418.23... Operations and Management § 418.23 Diversion of Rock Dam Ditch water. Project water may be diverted directly to Rock Dam Ditch from the Truckee Canal only when diversions cannot be made from the outlet works of...

  9. 53. McMILLAN DAM Photographic copy of historic photo, 1937 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. McMILLAN DAM - Photographic copy of historic photo, 1937 (original print in '1937 Annual Report of the Carlsbad Project,' located at the Carlsbad Irrigation District offices, Carlsbad, New Mexico) photographer unknown 'McMILLAN DAM AFTER RECONSTRUCTION' - Carlsbad Irrigation District, McMillan Dam, On Pecos River, 13 miles North of Carlsbad, Carlsbad, Eddy County, NM

  10. Experimental research on the dam-break mechanisms of the Jiadanwan landslide dam triggered by the Wenchuan earthquake in China.

    PubMed

    Xu, Fu-gang; Yang, Xing-guo; Zhou, Jia-wen; Hao, Ming-hui

    2013-01-01

    Dam breaks of landslide dams are always accompanied by large numbers of casualties, a large loss of property, and negative influences on the downstream ecology and environment. This study uses the Jiadanwan landslide dam, created by the Wenchuan earthquake, as a case study example. Several laboratory experiments are carried out to analyse the dam-break mechanism of the landslide dam. The different factors that impact the dam-break process include upstream flow, the boulder effect, dam size, and channel discharge. The development of the discharge channel and the failure of the landslide dam are monitored by digital video and still cameras. Experimental results show that the upstream inflow and the dam size are the main factors that impact the dam-break process. An excavated discharge channel, especially a trapezoidal discharge channel, has a positive effect on reducing peak flow. The depth of the discharge channel also has a significant impact on the dam-break process. The experimental results are significant for landslide dam management and flood disaster prevention and mitigation.

  11. Experimental Research on the Dam-Break Mechanisms of the Jiadanwan Landslide Dam Triggered by the Wenchuan Earthquake in China

    PubMed Central

    Xu, Fu-gang; Yang, Xing-guo; Hao, Ming-hui

    2013-01-01

    Dam breaks of landslide dams are always accompanied by large numbers of casualties, a large loss of property, and negative influences on the downstream ecology and environment. This study uses the Jiadanwan landslide dam, created by the Wenchuan earthquake, as a case study example. Several laboratory experiments are carried out to analyse the dam-break mechanism of the landslide dam. The different factors that impact the dam-break process include upstream flow, the boulder effect, dam size, and channel discharge. The development of the discharge channel and the failure of the landslide dam are monitored by digital video and still cameras. Experimental results show that the upstream inflow and the dam size are the main factors that impact the dam-break process. An excavated discharge channel, especially a trapezoidal discharge channel, has a positive effect on reducing peak flow. The depth of the discharge channel also has a significant impact on the dam-break process. The experimental results are significant for landslide dam management and flood disaster prevention and mitigation. PMID:23844387

  12. Dams and transnational advocacy: Political opportunities in transnational collective action

    NASA Astrophysics Data System (ADS)

    Fu, Teng

    Possible arguments to explain the gradual decline in big dam development and its site transferring from developed to developing countries include technical, economic, and political factors. This study focuses on the political argument---the rise of transnational anti-dam advocacy and its impact on state policy-making. Under what conditions does transnational anti-dam advocacy matter? Under what conditions does transnational advocacy change state dam policies (delay, scale down, or cancel)? It examines the role of transnational anti-dam actors in big dam building in a comparative context in Asia. Applying the social movement theory of political opportunity structure (POS) and using the qualitative case-study method, the study provides both within-case and cross-case analyses. Within-case analysis is utilized to explain the changing dynamics of big dam building in China (Three Gorges Dam and proposed Nu/Salween River dam projects), and to a lesser extent, Sardar Sarovar Project in India and Nam Theun 2 Dam in Laos. Different domestic and international POS (DPOS and IPOS) impact the strategies and outcomes of anti-dam advocacies in these countries. The degree of openness of the POS directly affects the capacity of transnational efforts in influencing state dam policies. The degree of openness or closure is measured by specific laws, institutions, discourse, or elite allies (or the absence of these) for the participation of non-state actors on big dam issues at a particular moment. This degree of openness is relative, varying over time, across countries and regions. This study finds that the impact of transnational anti-dam activism is most effective when both DPOS and IPOS are relatively open. Transnational anti-dam advocacy is least effective in influencing state dam policies when both DPOS and IPOS are relatively closed. Under a relatively open DPOS and closed IPOS, transnational anti-dam advocacy is more likely to successfully change state dam policies and even facilitate the opening of relatively closed IPOS. In contrast, under a relatively closed DPOS and open IPOS, transnational anti-dam advocacy can hardly exist. Without the domestic anti-dam pressure from below, international anti-dam efforts from above are less likely to affect state dam policies or open up closed DPOS.

  13. A brief history of 20th century dam construction and a look into the future

    NASA Astrophysics Data System (ADS)

    van de Giesen, Nick

    2010-05-01

    In this presentation, an overview is given of global dam building activities in the 20th century. Political, economical and hydrological factors shaped the building of large dams. The development of the relations between these three factors and dam building over time is examined. One can argue whether or not history is simply "one damn thing after another" but the second half of the 20th century suggests that history is at least reflected by the construction of one dam after another. The financial crisis of the 1930's started the first construction wave of large hydropower dams in the United States. This wave continued into the Second World War. During the Cold War, the weapon race between the USA and USSR was accompanied by a parallel neck-and-neck race in dam construction. By the 1970's, dam construction in the USA tapered off, while that in the USSR continued until its political disintegration. In China, we see two spurts in dam development, the first one coinciding with the disastrous Great Leap Forward and the second with the liberalization of the Chinese economy after the fall of the Berlin Wall. Economic and political events thus shaped to an important extent decisions surrounding the construction of large dams. Clearly, there are some hydrological prerequisites for the construction of dams. The six largest dam building nations are USSR, Canada, USA, China, Brazil, and India, all large countries with ample water resources and mountain ranges. Australia has relatively little reservoir storage for the simple fact that most of this country is flat and dry. A few countries have relatively large amounts of reservoir storage. Especially Uganda (Owens Falls), Ghana (Akosombo), and Zimbabwe (Kariba) are examples of small countries where gorges in major rivers were "natural" places for large dams and reservoirs to be built early on. It seems that, deserts aside, the average potential storage capacity lies for most continents around 10 cm or about 50% of the total yearly continental runoff. Some of the least developed countries, such as Papua New Guinea, Congo DR, and Myanmar, still have large hydropower development potential. In most countries, however, dam construction seems to have reached its peak. For the presentation, use is made of GapMinder software (www.gapminder.org), which provides direct insight in the dynamic and multi-dimensonial aspects of 20th century dam construction.

  14. 2. OVERALL VIEW OF LOWWATER DAM, LOOKING UPSTREAM. CHAIN OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. OVERALL VIEW OF LOW-WATER DAM, LOOKING UPSTREAM. CHAIN OF ROCKS BRIDGE AND ST. LOUIS WATER DEPARTMENT INTAKE IN BACKGROUND, LOOKING NORTHWEST - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 27, Granite City, Madison County, IL

  15. 77 FR 29626 - Application Ready for Environmental Analysis and Soliciting Comments, Recommendations, Terms and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-18

    ... Hydroelectric, LLC (BOST3). e. Name of Project: Red River Lock & Dam No. 3 Hydroelectric Project. f. Location: The proposed project would be located at the existing U.S. Army Corps of Engineer's (Corps) Red River Lock & Dam No. 3 on the Red River, in Natchitoches Parish near the City of Colfax, Louisiana. The...

  16. 77 FR 785 - BOST5 Hydroelectric Company, LLC, (BOST5); Notice of Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-06

    ... (BOST5). e. Name of Project: Red River Lock & Dam No. 5 Hydroelectric Project. f. Location: The proposed project would be located at the existing Army Corps of Engineer's (Corps) Red River Lock & Dam No. 5 on the Red River, in Bassier Parish near the Town of Ninock, Louisiana. g. Filed Pursuant to: Federal...

  17. 76 FR 67723 - CRD Hydroelectric, LLC; Notice of Application To Amend License and Accepted for Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-02

    .... Name of Project: Red Rock Hydroelectric Project. f. Location: The project is located at the U.S. Army Corps of Engineers Lake Red Rock Dam on the Des Moines River in Marion County, Iowa. g. Filed Pursuant.... Army Corps of Engineers' Lake Red Rock Dam. The applicant's proposal also includes the installation of...

  18. 76 FR 14651 - BOST4 Hydroelectric Company, LLC; Notice of Application Tendered for Filing With the Commission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-17

    ... (BOST4). e. Name of Project: Red River Lock & Dam No. 4 Hydroelectric Project. f. Location: The proposed project would be located at the existing Army Corps of Engineer's (Corps) Red River Lock & Dam No. 4 on the Red River, in Red River Parish near the City of Coushatta, Louisiana. g. Filed Pursuant to...

  19. 77 FR 786 - BOST4 Hydroelectric Company, LLC, (BOST4); Notice of Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-06

    ... (BOST4). e. Name of Project: Red River Lock & Dam No. 4 Hydroelectric Project. f. Location: The proposed project would be located at the existing Army Corps of Engineer's (Corps) Red River Lock & Dam No. 4 on the Red River, in Red River Parish near the Town of Coushatta, Louisiana. g. Filed Pursuant to...

  20. 76 FR 14653 - BOST3 Hydroelectric Company, LLC (BOST3); Notice of Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-17

    ...). e. Name of Project: Red River Lock & Dam No. 3 Hydroelectric Project. f. Location: The proposed project would be located at the existing Army Corps of Engineer's (Corps) Red River Lock & Dam No. 3 on the Red River, in Natchitoches Parish near the City of Colfax, Louisiana. g. Filed Pursuant to...

  1. 77 FR 29622 - Application Ready for Environmental Analysis and Soliciting Comments, Recommendations, Terms and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-18

    ..., LLC (BOST5). e. Name of Project: Red River Lock & Dam No. 5 Hydroelectric Project. f. Location: The proposed project would be located at the existing U.S. Army Corps of Engineer's (Corps) Red River Lock & Dam No. 5 on the Red River, in Bossier Parish, near the Town of Ninock, Louisiana. The proposed...

  2. 77 FR 29623 - Application Ready for Environmental Analysis and Soliciting Comments, Recommendations, Terms and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-18

    ..., LLC (BOST4). e. Name of Project: Red River Lock & Dam No. 4 Hydroelectric Project. f. Location: The proposed project would be located at the existing U. S. Army Corps of Engineer's (Corps) Red River Lock & Dam No. 4 on the Red River, in Red River Parish near the Town of Coushatta, Louisiana. The proposed...

  3. 76 FR 65717 - City of Broken Bow, OK; Notice of Availability of Final Environmental Assessment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    ... application for an Original Major License for the Broken Bow Re-Regulation Dam Hydropower Project (FERC Project No. 12470-001). The Broken Bow Re-Regulation Dam Project is proposed to be located on the Mountain Fork River in McCurtain County, Oklahoma, at the U.S. Army Corps of Engineers' Broken Bow Re-Regulation...

  4. Coastal habitat and biological community response to dam removal on the Elwha River

    USGS Publications Warehouse

    Foley, Melissa M.; Warrick, Jonathan A.; Ritchie, Andrew C.; Stevens, Andrew; Shafroth, Patrick B.; Duda, Jeff; Beirne, Matthew M.; Paradis, Rebecca; Gelfenbaum, Guy R.; McCoy, Randall; Cubley, Erin S.

    2017-01-01

    Habitat diversity and heterogeneity play a fundamental role in structuring ecological communities. Dam emplacement and removal can fundamentally alter habitat characteristics, which in turn can affect associated biological communities. Beginning in the early 1900s, the Elwha and Glines Canyon dams in Washington, USA, withheld an estimated 30 million tonnes of sediment from river, coastal, and nearshore habitats. During the staged removal of these dams—the largest dam removal project in history—over 14 million tonnes of sediment were released from the former reservoirs. Our interdisciplinary study in coastal habitats—the first of its kind—shows how the physical changes to the river delta and estuary habitats during dam removal were linked to responses in biological communities. Sediment released during dam removal resulted in over a meter of sedimentation in the estuary and over 400 m of expansion of the river mouth delta landform. These changes increased the amount of supratidal and intertidal habitat, but also reduced the influx of seawater into the pre-removal estuary complex. The effects of these geomorphic and hydrologic changes cascaded to biological systems, reducing the abundance of macroinvertebrates and fish in the estuary and shifting community composition from brackish to freshwater-dominated species. Vegetation did not significantly change on the delta, but pioneer vegetation increased during dam removal, coinciding with the addition of newly available habitat. Understanding how coastal habitats respond to large-scale human stressors—and in some cases the removal of those stressors—is increasingly important as human uses and restoration activities increase in these habitats.

  5. 75 FR 4363 - Grand River Dam Authority; Notice of Application for Amendment of License and Soliciting Comments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 2183-072] Grand River Dam... No.: 2183-072. c. Date Filed: August 4, 2009. d. Applicant: Grand River Dam Authority. e. Name of... 16 U.S.C. 791(a)-825(r). h. Applicant Contact: D. Casey Davis, Grand River Dam Authority, P.O. Box...

  6. 75. AVALON DAM Photographic copy of historic photo, April ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    75. AVALON DAM - Photographic copy of historic photo, April 10, 1938 (original print in '1938 Annual Report of the Carlsbad Project,' located at the Carlsbad Irrigation District offices, Carlsbad, New Mexico) photographer unknown 'AVALON DAM - CCC ROCK WORK AT SPILLWAY NO. 2' - Carlsbad Irrigation District, Avalon Dam, On Pecos River, 4 miles North of Carlsbad, Carlsbad, Eddy County, NM

  7. 52. McMILLAN DAM Photographic copy of historic photo, January ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. McMILLAN DAM - Photographic copy of historic photo, January 15, 1938 (original print in '1938 Annual Report of the Carlsbad Project,' located at the Carlsbad Irrigation District offices, Carlsbad, New Mexico) photographer unknown 'McMILLAN DAM - TRIMMING EARTH SLOPE BEFORE GRAVEL PLACING' - Carlsbad Irrigation District, McMillan Dam, On Pecos River, 13 miles North of Carlsbad, Carlsbad, Eddy County, NM

  8. 4. DETAIL VIEW OF ROCKFILL SECTION OF LOWWATER DAM, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. DETAIL VIEW OF ROCKFILL SECTION OF LOW-WATER DAM, LOOKING NORTHEAST (UPSTREAM). CHAIN OF ROCKS BRIDGE AND ST. LOUIS WATER DEPARTMENT INTAKES IN BACKGROUND - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 27, Granite City, Madison County, IL

  9. 10. Downstream face of Mormon Flat Dam under construction. Cement ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Downstream face of Mormon Flat Dam under construction. Cement storage shed is at center right. Photographer unknown, September 1924. Source: Salt River Project. - Mormon Flat Dam, On Salt River, Eastern Maricopa County, east of Phoenix, Phoenix, Maricopa County, AZ

  10. Erosion risk analysis by GIS in environmental impact assessments: a case study--Seyhan Köprü Dam construction.

    PubMed

    Sahin, S; Kurum, E

    2002-11-01

    Environmental Impact Assessment (EIA) is a systematically constructed procedure whereby environmental impacts caused by proposed projects are examined. Geographical Information Systems (GIS) are crucially efficient tools for impact assessment and their use is likely to dramatically increase in the near future. GIS have been applied to a wide range of different impact assessment projects and dams among them have been taken as the case work in this article. EIA Regulation in force in Turkey requires the analysis of steering natural processes that can be adversely affected by the proposed project, particularly in the section of the analysis of the areas with higher landscape value. At this point, the true potential value of GIS lies in its ability to analyze spatial data with accuracy. This study is an attempt to analyze by GIS the areas with higher landscape value in the impact assessment of dam constructions in the case of Seyhan-Köprü Hydroelectric Dam project proposal. A method needs to be defined before the overlapping step by GIS to analyze the areas with higher landscape value. In the case of Seyhan-Köprü Hydroelectric Dam project proposal of the present work, considering the geological conditions and the steep slopes of the area and the type of the project, the most important natural process is erosion. Therefore, the areas of higher erosion risk were considered as the Areas with Higher Landscape Value from the conservation demands points of view.

  11. Large dams and alluvial rivers in the Anthropocene: The impacts of the Garrison and Oahe Dams on the Upper Missouri River

    USGS Publications Warehouse

    Skalak, Katherine; Benthem, Adam J.; Schenk, Edward R.; Hupp, Cliff R.; Galloway, Joel M.; Nustad, Rochelle A.; Wiche, Gregg J.

    2013-01-01

    The Missouri River has had a long history of anthropogenic modification with considerable impacts on river and riparian ecology, form, and function. During the 20th century, several large dam-building efforts in the basin served the needs for irrigation, flood control, navigation, and the generation of hydroelectric power. The managed flow provided a range of uses, including recreation, fisheries, and habitat. Fifteen dams impound the main stem of the river, with hundreds more on tributaries. Though the effects of dams and reservoirs are well-documented, their impacts have been studied individually, with relatively little attention paid to their interaction along a river corridor. We examine the morphological and sedimentological changes in the Upper Missouri River between the Garrison Dam in ND (operational in 1953) and Oahe Dam in SD (operational in 1959). Through historical aerial photography, stream gage data, and cross sectional surveys, we demonstrate that the influence of the upstream dam is still a major control of river dynamics when the backwater effects of the downstream reservoir begin. In the “Anthropocene”, dams are ubiquitous on large rivers and often occur in series, similar to the Garrison Dam Segment. We propose a conceptual model of how interacting dams might affect river geomorphology, resulting in distinct and recognizable morphologic sequences that we term “Inter-Dam sequence” characteristic of major rivers in the US.

  12. Three Gorges Dam alters the Changjiang (Yangtze) river water cycle in the dry seasons: Evidence from H-O isotopes.

    PubMed

    Deng, Kai; Yang, Shouye; Lian, Ergang; Li, Chao; Yang, Chengfan; Wei, Hailun

    2016-08-15

    As the largest hydropower project in the world, the Three Gorges Dam (TGD) has attracted great concerns in terms of its impact on the Changjiang (Yangtze) River and coastal marine environments. In this study, we measured or collected the H-O isotopic data of river water, groundwater and precipitation in the mid-lower Changjiang catchment during the dry seasons of recent years. The aim was to investigate the changes of river water cycle in response to the impoundment of the TGD. Isotopic evidences suggested that the mid-lower Changjiang river water was ultimately derived from precipitation, but dominated by the mixing of different water masses with variable sources and isotopic signals as well. The isotopic parameter "deuterium excess" (d-excess) yielded large fluctuations along the mid-lower mainstream during the initial stage of the TGD impoundment, which was inherited from the upstream water with inhomogeneous isotopic signals. However, as the reservoir water level rising to the present stage, small variability of d-excess was observed along the mid-lower mainstream. This discrepancy could be explained that the TGD impoundment had significantly altered the water cycle downstream the dam, with the rising water level increasing the residence time and enhancing the mixing of reservoir water derived from upstream. This eventually resulted in the homogenization of reservoir water, and thus small fluctuations of d-excess downstream the dam after the quasi-normal stage (2008 to present). We infer that the retention effect of large reservoirs has greatly buffered the d-excess natural variability of water cycle in large river systems. Nevertheless, more research attention has to be paid to the damming effect on the water cycle in the river, estuarine and coastal areas, especially during the dry seasons. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. 15. DETAIL EXTERIOR VIEW LOOKING NORTH SHOWING REINFORCED CONCRETE PILLBOX ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. DETAIL EXTERIOR VIEW LOOKING NORTH SHOWING REINFORCED CONCRETE PILLBOX ON BRADFORD ISLAND END OF DAM/SPILLWAY; THE PILLBOX WAS BUILT DURING WORLD WAR II TO HELP PROTECT THE DAM/SPILLWAY FROM SABOTAGE. - Bonneville Project, Bonneville Dam, Columbia River, Bonneville, Multnomah County, OR

  14. 77 FR 67813 - Sam Rayburn Dam Project Power Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-14

    ... period January 1, 2009, through September 30, 2012. However, the current rate schedule will expire...) prepared a 2012 Current Power Repayment Study using the existing Sam Rayburn Dam Project rate schedule and... because the current rate expires September 30, 2012. Southwestern will reevaluate the ability of the...

  15. 18 CFR 12.31 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Section 12.31 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT SAFETY OF WATER POWER PROJECTS AND PROJECT WORKS... downstream tow of the dam to the lowest point on the crest of the dam. (d) Gross storage capacity means the...

  16. 77 FR 59395 - Grand River Dam Authority; Notice of Revised Restricted Service List for a Programmatic Agreement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-27

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 2524-018--Oklahoma Salina Pumped Storage Project] Grand River Dam Authority; Notice of Revised Restricted Service List for a Programmatic Agreement Rule 2010 of the Federal Energy Regulatory Commission's (Commission) Rules of Practice...

  17. 76 FR 21885 - BOST5 Hydroelectric Company, LLC; Notice of Application Tendered for Filing With the Commission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-19

    ... (BOST5). e. Name of Project: Red River Lock & Dam No. 5 Hydroelectric Project. f. Location: The proposed project would be located at the existing Army Corps of Engineer's (Corps) Red River Lock & Dam No. 5 on the Red River, near the town of Ninock near the City of Shreveport, Louisiana. g. Filed Pursuant to...

  18. River-damming, late-Quaternary rockslides in the Ötz Valley region (Tyrol, Austria)

    NASA Astrophysics Data System (ADS)

    Dufresne, A.; Ostermann, M.; Preusser, F.

    2018-06-01

    The Ötz Valley and adjacent regions in Tyrol (Austria) have been repeatedly affected by large rockslope failures following deglaciation. Six rockslides, each over 107 m3 in volume, were emplaced into the Ötz and Inn valleys, five of which formed persistent rockslide dams. Even though catastrophic rockslope failures are short-lived events (commonly minutes) they can have long-lasting impacts on the landscape. For example, large fans have built in the Ötz Valley and knickpoints persist at the former dam sites even though the Ötz River has eroded through the deposits during the past thousands of years; exact age-constraints of rockslide dam failure, however, are still scarce. Empirical, geomorphic stability indices from the literature successfully identified the least and the most stable dams of this group, whereas the rest remain inconclusive with some indices variably placing the dams in the stable, unstable, and uncertain categories. This shows (a) that further index calibrations and (b) better age constraints on dam formation and failure are needed, and (c) that the exact processes of dam failure are not always trivial to pinpoint for ancient (partially) breached dams. This study is a contribution towards better constraining the nature and landscape impact of dam formation following large rockslope failures.

  19. Large river bed sediment characterization with low-cost sidecan sonar: Case studies from two setting in the Colorado (Arizona) and Penobscot (Maine) Rivers

    USGS Publications Warehouse

    Buscombe, Daniel D.; Grams, Paul E.; Melis, Theodore S.; Smith, Sean

    2015-01-01

    Here we discuss considerations in the use of sidescan sonar for riverbed sediment classification using examples from two large rivers, the Colorado River below Glen Canyon Dam in Arizona and the Upper Penobscot River in northern Maine (Figure 3). These case studies represent two fluvial systems that differ in recent history, physiography, sediment transport, and fluvial morphologies. The bed of the Colorado River in Glen Canyon National Recreation Area is predominantly graveled with extensive mats of submerged vegetation, and ephemeral surficial sand deposits exist below major tributaries. The bed is imaged periodically to assess the importance of substrate type and variability on rainbow trout spawning and juvenile rearing habitats and controls on aquatic invertebrate population dynamics. The Colorado River bed further below the dam in Grand Canyon National Park is highly dynamic. Tributary inputs of sand, gravel and boulders are spatially variable, and hydraulics of individual pools and eddies vary considerably in space and in response to varying dam operations, including experimental controlled flood releases to rebuild eroding sandbars. The bed encompasses the full range of noncohesive sediments, deposited in complicated spatial patterns. The mobile portion of the Penobscot River is generally more uniform, and consists predominantly of embedded gravels interspersed between bedrock outcrops with small isolated sand patches in sections with modest or low gradients. Patches of large cobbles, boulders and bedrock outcrops are present in the lower reaches of the river near locations of two recent dam removal projects but are of limited extent below the "head of tide" on the river. Aggregations of coarse materials often correspond to locations with abrupt bed elevation drops in the Upper Penobscot River.

  20. Monitoring and Evaluation of Smolt Migration in the Columbia River Basin : Volume VI : Evaluation of the 2000 Predictions of the Run-Timing of Wild Migrant Chinook Salmon and Steelhead Trout, and Hatchery Sockeye Salmon in the Snake River Basin, and Combined Wild Hatchery Salminids Migrating to Rock Island and McNary Dams using Program RealTime.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgess, Caitlin

    1998-07-01

    Program RealTime provided tracking and forecasting of the 2000 in season outmigration via the internet for stocks of wild PIT-tagged spring/summer chinook salmon. These stocks were ESUs from nineteen release sites above Lower Granite dam, including Bear Valley Creek, Big Creek, Camas Creek (new), Cape Horn Creek, Catherine Creek, Elk Creek, Herd Creek, Imnaha River, Johnson Creek (new), Lake Creek, Loon Creek, Lostine River, Marsh Creek, Minam River, East Fork Salmon River (new), South Fork Salmon River, Secesh River, Sulfur Creek and Valley Creek. Forecasts were also provided for two stocks of hatchery-reared PIT-tagged summer-run sockeye salmon, from Redfish Lakemore » and Alturas Lake (new); for a subpopulation of the PIT-tagged wild Snake River fall subyearling chinook salmon; for all wild Snake River PIT-tagged spring/summer yearling chinook salmon (new) and steelhead trout (new)detected at Lower Granite Dam during the 2000 outmigration. The 2000 RealTime project began making forecasts for combined wild- and hatchery-reared runs-at-large of subyearling and yearling chinook, coho, and sockeye salmon, and steelhead trout migrating to Rock Island and McNary Dams on the mid-Columbia River and the mainstem Columbia River. Due to the new (in 1999-2000) Snake River basin hatchery protocol of releasing unmarked hatchery-reared fish, the RealTime forecasting project no longer makes run-timing forecasts for wild Snake River runs-at-large using FPC passage indices, as it has done for the previous three years (1997-1999). The season-wide measure of Program RealTime performance, the mean absolute difference (MAD) between in-season predictions and true (observed) passage percentiles, improved relative to previous years for nearly all stocks. The average season-wide MAD of all (nineteen) spring/summer yearling chinook salmon ESUs dropped from 5.7% in 1999 to 4.5% in 2000. The 2000 MAD for the hatchery-reared Redfish Lake sockeye salmon ESU was the lowest recorded, at 6.0%, down from 6.7% in 1999. The MAD for the PIT-tagged ESU of wild Snake River fall sub-yearling chinook salmon, after its second season of run-timing forecasting, was 4.7% in 2000 compared to 5.5% in 1999. The high accuracy of season-wide performance in 2000 was largely due to exceptional Program RealTime performance in the last half of the season. Passage predictions from fifteen of the sixteen spring/summer yearling chinook salmon ESUs available for comparison improved in 2000 compared to 1999. The last-half average MAD over all the yearling chinook salmon ESUs was 4.3% in 2000, compared to 6.5% in 1999. Program RealTime 2000 first-half forecasting performance was slightly worse than that of 1999 (MAD = 4.5%), but still comparable to previous years with a MAD equal to 5.1%. Three yearling chinook ESUs showed moderately large (> 10%) MADs. These stocks had larger-than-average recapture percentages in 2000, producing over-predictions early in the season, in a dynamic reminiscent of migration year 1998 (Burgess et al., 1999). The passage distribution of the new stock of hatchery-reared sockeye salmon from Alturas Lake was well-predicted by Program RealTime, based on only two years of historical data (whole-season MAD = 4.3%). The two new run-of-the-river PIT-tagged stocks of wild yearling chinook salmon and steelhead trout were predicted with very good accuracy (whole-season MADs were 4.8% for steelhead trout and 1.7% for yearling chinook salmon), particularly during the last half of the outmigration. First-half steelhead predictions were among the season's worst (MAD = 10.8%), with over-predictions attributable to the largest passage on record of wild PIT-tagged steelhead trout to Lower Granite Dam. The results of RealTime predictions of passage percentiles of combined wild and hatchery-reared salmonids to Rock Island and McNary were mixed. Some of these passage-indexed runs-at-large were predicted with exceptional accuracy (whole-season MADs for coho salmon outmigrating to Rock Island Dam and McNary Dam were, respectively, 0.58% and 1.24%; for yearling chinook to McNary, 0.59%) while others were not forecast well at all (first-half MADs of sockeye salmon migrating to Rock Island and McNary Dams, respectively, were 19.25% and 12.78%). The worst performances for these mid- and mainstem-Columbia River runs-at-large were probably due to large hatchery release disturbing the smoothly accumulating percentages of normal fish passage. The RealTime project used a stock-specific method of upwardly adjusting PIT-tagged smolt counts at Lower Granite Dam. For chinook and sockeye salmon, the project continued using the 1999 formulation for spill-adjustment. For the new stock of wild PIT-tagged steelhead trout, a formula derived for steelhead trout only was used.« less

  1. Beyond hydrology in the sustainability assessment of dams: A planners perspective - The Sarawak experience

    NASA Astrophysics Data System (ADS)

    Andre, Edward

    2012-01-01

    SummaryThere is increasing concern about the availability of water supplies in developing countries to provide clean drinking water and sanitation as well as providing for irrigation for food security. This has led to hydrologically led investigation to establish the feasibility and storage capacity of potentially new dam sites. This task has become more difficult for hydrologists and others with the uncertainties created by climate change and the measurement of the hydrological, geographical and ecological footprint of new dams. The questions asked by hydrologists are increasingly likely to be required to be cast in terms of the four pillars of sustainability; environmental, economic, social and institutional. Similarly, regional planners have to be more cognisant of the social outcomes of dam development while understanding the wider hydrological context at a watershed and basin level. The paper defines the concept of sustainability assessment in the context of resettlement and analyses its implications for the Bakun Hydro-electric project in Sarawak, Malaysia. Specifically it attempts to address the question of what social sustainability would really mean in the context of communities affected by dam projects, and their catchments using hermeneutics, tradeoffs and offsets. The findings of this question were presented at a hydrological conference held in Santiago in October 2010, based on the outcome of specific questionnaire responses received from indigenous peoples affected by the Bakun Dam hydroelectric project. The paper also offers some insights pertaining to the social sustainability assessment aspects of dams and their catchments.

  2. Monitoring the ongoing deformation and seasonal behaviour affecting Mosul Dam through space-borne SAR data

    NASA Astrophysics Data System (ADS)

    Tessari, G.; Riccardi, P.; Pasquali, P.

    2017-12-01

    Monitoring of dam structural health is an important practice to control the structure itself and the water reservoir, to guarantee efficient operation and safety of surrounding areas. Ensuring the longevity of the structure requires the timely detection of any behaviour that could deteriorate the dam and potentially result in its shutdown or failure.The detection and monitoring of surface displacements is increasingly performed through the analysis of satellite Synthetic Aperture Radar (SAR) data, thanks to the non-invasiveness of their acquisition, the possibility to cover large areas in a short time and the new space missions equipped with high spatial resolution sensors. The availability of SAR satellite acquisitions from the early 1990s enables to reconstruct the historical evolution of dam behaviour, defining its key parameters, possibly from its construction to the present. Furthermore, the progress on SAR Interferometry (InSAR) techniques through the development of Differential InSAR (DInSAR) and Advanced stacking techniques (A-DInSAR) allows to obtain accurate velocity maps and displacement time-series.The importance of these techniques emerges when environmental or logistic conditions do not allow to monitor dams applying the traditional geodetic techniques. In such cases, A-DInSAR constitutes a reliable diagnostic tool of dam structural health to avoid any extraordinary failure that may lead to loss of lives.In this contest, an emblematic case will be analysed as test case: the Mosul Dam, the largest Iraqi dam, where monitoring and maintaining are impeded for political controversy, causing possible risks for the population security. In fact, it is considered one of the most dangerous dams in the world because of the erosion of the gypsum rock at the basement and the difficult interventions due to security problems. The dam consists of 113 m tall and 3.4 km long earth-fill embankment-type, with a clay core, and it was completed in 1984.The deformation fields obtained from SAR data are evaluated to assess the temporal evolution of the strains affecting the structure. Obtained results represent the preliminary stage of a multidisciplinary project, finalized to assess possible damages affecting a dam through remote sensing and civil engineering surveys.

  3. Thermal effects of dams in the Willamette River basin, Oregon

    USGS Publications Warehouse

    Rounds, Stewart A.

    2010-01-01

    Methods were developed to assess the effects of dams on streamflow and water temperature in the Willamette River and its major tributaries. These methods were used to estimate the flows and temperatures that would occur at 14 dam sites in the absence of upstream dams, and river models were applied to simulate downstream flows and temperatures under a no-dams scenario. The dams selected for this study include 13 dams built and operated by the U.S. Army Corps of Engineers (USACE) as part of the Willamette Project, and 1 dam on the Clackamas River owned and operated by Portland General Electric (PGE). Streamflows in the absence of upstream dams for 2001-02 were estimated for USACE sites on the basis of measured releases, changes in reservoir storage, a correction for evaporative losses, and an accounting of flow effects from upstream dams. For the PGE dam, no-project streamflows were derived from a previous modeling effort that was part of a dam-relicensing process. Without-dam streamflows were characterized by higher peak flows in winter and spring and much lower flows in late summer, as compared to with-dam measured flows. Without-dam water temperatures were estimated from measured temperatures upstream of the reservoirs (the USACE sites) or derived from no-project model results (the PGE site). When using upstream data to estimate without-dam temperatures at dam sites, a typical downstream warming rate based on historical data and downstream river models was applied over the distance from the measurement point to the dam site, but only for conditions when the temperature data indicated that warming might be expected. Regressions with measured temperatures from nearby or similar sites were used to extend the without-dam temperature estimates to the entire 2001-02 time period. Without-dam temperature estimates were characterized by a more natural seasonal pattern, with a maximum in July or August, in contrast to the measured patterns at many of the tall dam sites where the annual maximum temperature typically occurred in September or October. Without-dam temperatures also tended to have more daily variation than with-dam temperatures. Examination of the without-dam temperature estimates indicated that dam sites could be grouped according to the amount of streamflow derived from high-elevation, spring-fed, and snowmelt-driven areas high in the Cascade Mountains (Cougar, Big Cliff/Detroit, River Mill, and Hills Creek Dams: Group A), as opposed to flow primarily derived from lower-elevation rainfall-driven drainages (Group B). Annual maximum temperatures for Group A ranged from 15 to 20 degree(s)C, expressed as the 7-day average of the daily maximum (7dADM), whereas annual maximum 7dADM temperatures for Group B ranged from 21 to 25 degrees C. Because summertime stream temperature is at least somewhat dependent on the upstream water source, it was important when estimating without-dam temperatures to use correlations to sites with similar upstream characteristics. For that reason, it also is important to maintain long-term, year-round temperature measurement stations at representative sites in each of the Willamette River basin's physiographic regions. Streamflow and temperature estimates downstream of the major dam sites and throughout the Willamette River were generated using existing CE-QUAL-W2 flow and temperature models. These models, originally developed for the Willamette River water-temperature Total Maximum Daily Load process, required only a few modifications to allow them to run under the greatly reduced without-dam flow conditions. Model scenarios both with and without upstream dams were run. Results showed that Willamette River streamflow without upstream dams was reduced to levels much closer to historical pre-dam conditions, with annual minimum streamflows approximately one-half or less of dam-augmented levels. Thermal effects of the dams varied according to the time of year, from cooling in mid-summer to warm

  4. 78 FR 49735 - Intent To Prepare a Draft Environmental Impact Statement for Dam Safety Study, Lake Lewisville...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-15

    ... determine appropriate permanent methods for correcting potential problems, interim risk reduction measures... Environmental Impact Statement for Dam Safety Study, Lake Lewisville Dam, Elm Fork Trinity River, Denton County... primary purposes of the project are flood risk management, [[Page 49736

  5. 10 CFR 904.5 - Revenue requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... into the Colorado River Dam Fund. All receipts from the Project shall be available for payment of the... responsible for the administration of the Colorado River Dam Fund. (b) The electric service revenue of the...(c) of the Adjustment Act and section 1543(c)(2) of the Colorado River Basin Project Act (43 U.S.C...

  6. 78 FR 58535 - Hydropower Regulatory Efficiency Act of 2013; Supplemental Notice of Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-24

    ... license for hydropower development at non-powered dams and closed-loop pumped storage projects in... for licensing hydropower development at non-powered dams and closed-loop pumped storage projects... closed- loop pumped storage) affect the steps included in a two-year process? 3.9 Should there be a...

  7. Grand Coulee Dam Wildlife Mitigation Program : Pygmy Rabbit Programmatic Management Plan, Douglas County, Washington.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashley, Paul

    1992-06-01

    The Northwest Power Planning Council and the Bonneville Power Administration approved the pygmy rabbit project as partial mitigation for impacts caused by the construction of Grand Coulee Dam. The focus of this project is the protection and enhancement of shrub-steppe/pygmy rabbit habitat in northeastern Washington.

  8. Monitoring and Evaluation of Smolt Migration in the Columbia Basin : Volume XV : Evaluation of the 2007 Predictions of the Run-Timing of Wild and Hatchery-Reared Salmon and Steelhead Smolts to Rock Island, Lower Granite, McNary, John Day, and Bonneville Dams using Program RealTime.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griswold, Jim; Townsend, Richard L.; Skalski, John R.

    Program RealTime provided monitoring and forecasting of the 2007 inseason outmigrations via the internet for 26 PIT-tagged stocks of wild ESU Chinook salmon and steelhead to Lower Granite and/or McNary dams, one PIT-tagged hatchery-reared ESU of sockeye salmon to Lower Granite Dam, one PIT-tagged wild stock of sockeye salmon to McNary Dam, and 20 passage-indexed runs-at-large, five each to Rock Island, McNary, John Day, and Bonneville dams. Nineteen stocks are of wild yearling Chinook salmon which were captured, PIT-tagged, and released at sites above Lower Granite Dam in 2007 and have at least one year's historical migration data previous tomore » the 2007 migration. These stocks originate in 19 tributaries of the Salmon, Grande Ronde and Clearwater Rivers, all tributaries to the Snake River, and are subsequently detected through tag identification and monitored at Lower Granite Dam. Seven wild PIT-tagged runs-at-large of Snake or Upper Columbia River ESU salmon and steelhead were monitored at McNary Dam. Three wild PIT-tagged runs-at-large were monitored at Lower Granite Dam, consisting of the yearling and subyearling Chinook salmon and the steelhead runs. The hatchery-reared PIT-tagged sockeye salmon stock from Redfish Lake was monitored outmigrating through Lower Granite Dam. Passage-indexed stocks (stocks monitored by FPC passage indices) included combined wild and hatchery runs-at-large of subyearling and yearling Chinook, coho, and sockeye salmon, and steelhead forecasted to Rock Island, McNary, John Day, and Bonneville dams.« less

  9. Preliminary Marine Safety Risk Assessment, Brandon Road Lock and Dam Invasive Species Control Measures

    DTIC Science & Technology

    2016-12-01

    i Classification | CG-926 RDC | author | audience | month year Preliminary Marine Safety Risk Assessment, Brandon Road Lock & Dam...No. 4. Title and Subtitle Preliminary Marine Safety Risk Assessment, Brandon Road Lock & Dam Invasive Species Control Measures 5. Report Date...safety due to proposed invasive species control measures located in the vicinity of the Brandon Road Lock and Dam (BRLD) Navigation Project on the

  10. Large-scale dam removal on the Elwha River, Washington, USA: source-to-sink sediment budget and synthesis

    USGS Publications Warehouse

    Warrick, Jonathan A.; Bountry, Jennifer A.; East, Amy E.; Magirl, Christopher S.; Randle, Timothy J.; Gelfenbaum, Guy R.; Ritchie, Andrew C.; Pess, George R.; Leung, Vivian; Duda, Jeff J.

    2015-01-01

    Understanding landscape responses to sediment supply changes constitutes a fundamental part of many problems in geomorphology, but opportunities to study such processes at field scales are rare. The phased removal of two large dams on the Elwha River, Washington, exposed 21 ± 3 million m3, or ~ 30 million tonnes (t), of sediment that had been deposited in the two former reservoirs, allowing a comprehensive investigation of watershed and coastal responses to a substantial increase in sediment supply. Here we provide a source-to-sink sediment budget of this sediment release during the first two years of the project (September 2011–September 2013) and synthesize the geomorphic changes that occurred to downstream fluvial and coastal landforms. Owing to the phased removal of each dam, the release of sediment to the river was a function of the amount of dam structure removed, the progradation of reservoir delta sediments, exposure of more cohesive lakebed sediment, and the hydrologic conditions of the river. The greatest downstream geomorphic effects were observed after water bodies of both reservoirs were fully drained and fine (silt and clay) and coarse (sand and gravel) sediments were spilling past the former dam sites. After both dams were spilling fine and coarse sediments, river suspended-sediment concentrations were commonly several thousand mg/L with ~ 50% sand during moderate and high river flow. At the same time, a sand and gravel sediment wave dispersed down the river channel, filling channel pools and floodplain channels, aggrading much of the river channel by ~ 1 m, reducing river channel sediment grain sizes by ~ 16-fold, and depositing ~ 2.2 million m3 of sand and gravel on the seafloor offshore of the river mouth. The total sediment budget during the first two years revealed that the vast majority (~ 90%) of the sediment released from the former reservoirs to the river passed through the fluvial system and was discharged to the coastal waters, where slightly less than half of the sediment was deposited in the river-mouth delta. Although most of the measured fluvial and coastal deposition was sand-sized and coarser (> 0.063 mm), significant mud deposition was observed in and around the mainstem river channel and on the seafloor. Woody debris, ranging from millimeter-size particles to old-growth trees and stumps, was also introduced to fluvial and coastal landforms during the dam removals. At the end of our two-year study, Elwha Dam was completely removed, Glines Canyon Dam had been 75% removed (full removal was completed 2014), and ~ 65% of the combined reservoir sediment masses—including ~ 8 Mt of fine-grained and ~ 12 Mt of coarse-grained sediment—remained within the former reservoirs. Reservoir sediment will continue to be released to the Elwha River following our two-year study owing to a ~ 16 m base level drop during the final removal of Glines Canyon Dam and to erosion from floods with larger magnitudes than occurred during our study. Comparisons with a geomorphic synthesis of small dam removals suggest that the rate of sediment erosion as a percent of storage was greater in the Elwha River during the first two years of the project than in the other systems. Comparisons with other Pacific Northwest dam removals suggest that these steep, high-energy rivers have enough stream power to export volumes of sediment deposited over several decades in only months to a few years. These results should assist with predicting and characterizing landscape responses to future dam removals and other perturbations to fluvial and coastal sediment budgets.

  11. Increased sediment load during a large-scale dam removal changes nearshore subtidal communities

    PubMed Central

    Foley, Melissa M.; Berry, Helen D.; Duda, Jeffrey J.; Hudson, Benjamin; Elder, Nancy E.; Beirne, Matthew M.; Warrick, Jonathan A.; McHenry, Michael L.; Stevens, Andrew W.; Eidam, Emily F.; Ogston, Andrea S.; Gelfenbaum, Guy; Pedersen, Rob

    2017-01-01

    The coastal marine ecosystem near the Elwha River was altered by a massive sediment influx—over 10 million tonnes—during the staged three-year removal of two hydropower dams. We used time series of bathymetry, substrate grain size, remotely sensed turbidity, scuba dive surveys, and towed video observations collected before and during dam removal to assess responses of the nearshore subtidal community (3 m to 17 m depth). Biological changes were primarily driven by sediment deposition and elevated suspended sediment concentrations. Macroalgae, predominantly kelp and foliose red algae, were abundant before dam removal with combined cover levels greater than 50%. Where persistent sediment deposits formed, macroalgae decreased greatly or were eliminated. In areas lacking deposition, macroalgae cover decreased inversely to suspended sediment concentration, suggesting impacts from light reduction or scour. Densities of most invertebrate and fish taxa decreased in areas with persistent sediment deposition; however, bivalve densities increased where mud deposited over sand, and flatfish and Pacific sand lance densities increased where sand deposited over gravel. In areas without sediment deposition, most invertebrate and fish taxa were unaffected by increased suspended sediment or the loss of algae cover associated with it; however, densities of tubeworms and flatfish, and primary cover of sessile invertebrates increased suggesting benefits of increased particulate matter or relaxed competition with macroalgae for space. As dam removal neared completion, we saw evidence of macroalgal recovery that likely owed to water column clearing, indicating that long-term recovery from dam removal effects may be starting. Our results are relevant to future dam removal projects in coastal areas and more generally to understanding effects of increased sedimentation on nearshore subtidal benthic communities. PMID:29220368

  12. Evaluation of a Prototype Surface Flow Bypass for Juvenile Salmon and Steelhead at the Powerhouse of Lower Granite Dam, Snake River, Washington, 1996-2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Gary E.; Anglea, Steven M.; Adams, Noah S.

    2005-02-28

    A surface flow bypass provides a route in the upper water column for naturally, surface-oriented juvenile salmonids to safely migrate through a hydroelectric dam. Surface flow bypasses were recommended in several regional salmon recovery plans as a means to increase passage survival of juvenile salmonids at Columbia and Snake River dams. A prototype surface flow bypass, called the SBC, was retrofit on Lower Granite Dam and evaluated from 1996 to 2000 using biotelemetry and hydroacoustic techniques. In terms of passage efficiency, the best SBC configurations were a surface skimmer (99 m3/s [3,500 cfs], three entrances 5 m wide, 5 mmore » deep and one entrance 5 m wide, 15 m deep) and a single chute (99 m3/s, one entrance 5 m wide, 8.5 m deep). They each passed 62 ? 3% (95% confidence interval) of the total juvenile fish population that entered the section of the dam with the SBC entrances (Turbine Units 4-5). Smooth entrance shape and concentrated surface flow characteristics of these configurations are worth pursuing in designs for future surface flow bypasses. In addition, a guidance wall in the Lower Granite Dam forebay diverted the following percentages of juvenile salmonids away from Turbine Units 1-3 toward other passage routes, including the SBC: run-at-large 79 ? 18%; hatchery steelhead 86%; wild steelhead 65%; and yearling chinook salmon 66%. When used in combination with spill or turbine intake screens, a surface flow bypass with a guidance wall can produce a high level (> 90% of total project passage) of non-turbine passage and provide operational flexibility to fisheries managers and dam operators responsible for enhancing juvenile salmonid survival.« less

  13. Increased sediment load during a large-scale dam removal changes nearshore subtidal communities.

    PubMed

    Rubin, Stephen P; Miller, Ian M; Foley, Melissa M; Berry, Helen D; Duda, Jeffrey J; Hudson, Benjamin; Elder, Nancy E; Beirne, Matthew M; Warrick, Jonathan A; McHenry, Michael L; Stevens, Andrew W; Eidam, Emily F; Ogston, Andrea S; Gelfenbaum, Guy; Pedersen, Rob

    2017-01-01

    The coastal marine ecosystem near the Elwha River was altered by a massive sediment influx-over 10 million tonnes-during the staged three-year removal of two hydropower dams. We used time series of bathymetry, substrate grain size, remotely sensed turbidity, scuba dive surveys, and towed video observations collected before and during dam removal to assess responses of the nearshore subtidal community (3 m to 17 m depth). Biological changes were primarily driven by sediment deposition and elevated suspended sediment concentrations. Macroalgae, predominantly kelp and foliose red algae, were abundant before dam removal with combined cover levels greater than 50%. Where persistent sediment deposits formed, macroalgae decreased greatly or were eliminated. In areas lacking deposition, macroalgae cover decreased inversely to suspended sediment concentration, suggesting impacts from light reduction or scour. Densities of most invertebrate and fish taxa decreased in areas with persistent sediment deposition; however, bivalve densities increased where mud deposited over sand, and flatfish and Pacific sand lance densities increased where sand deposited over gravel. In areas without sediment deposition, most invertebrate and fish taxa were unaffected by increased suspended sediment or the loss of algae cover associated with it; however, densities of tubeworms and flatfish, and primary cover of sessile invertebrates increased suggesting benefits of increased particulate matter or relaxed competition with macroalgae for space. As dam removal neared completion, we saw evidence of macroalgal recovery that likely owed to water column clearing, indicating that long-term recovery from dam removal effects may be starting. Our results are relevant to future dam removal projects in coastal areas and more generally to understanding effects of increased sedimentation on nearshore subtidal benthic communities.

  14. Increased sediment load during a large-scale dam removal changes nearshore subtidal communities

    USGS Publications Warehouse

    Rubin, Stephen P.; Miller, Ian M.; Foley, Melissa M.; Berry, Helen D.; Duda, Jeffrey J.; Hudson, Benjamin; Elder, Nancy E.; Beirne, Matthew M.; Warrick, Jonathan; McHenry, Michael L.; Stevens, Andrew; Eidam, Emily; Ogston, Andrea; Gelfenbaum, Guy R.; Pedersen, Rob

    2017-01-01

    The coastal marine ecosystem near the Elwha River was altered by a massive sediment influx—over 10 million tonnes—during the staged three-year removal of two hydropower dams. We used time series of bathymetry, substrate grain size, remotely sensed turbidity, scuba dive surveys, and towed video observations collected before and during dam removal to assess responses of the nearshore subtidal community (3 m to 17 m depth). Biological changes were primarily driven by sediment deposition and elevated suspended sediment concentrations. Macroalgae, predominantly kelp and foliose red algae, were abundant before dam removal with combined cover levels greater than 50%. Where persistent sediment deposits formed, macroalgae decreased greatly or were eliminated. In areas lacking deposition, macroalgae cover decreased inversely to suspended sediment concentration, suggesting impacts from light reduction or scour. Densities of most invertebrate and fish taxa decreased in areas with persistent sediment deposition; however, bivalve densities increased where mud deposited over sand, and flatfish and Pacific sand lance densities increased where sand deposited over gravel. In areas without sediment deposition, most invertebrate and fish taxa were unaffected by increased suspended sediment or the loss of algae cover associated with it; however, densities of tubeworms and flatfish, and primary cover of sessile invertebrates increased suggesting benefits of increased particulate matter or relaxed competition with macroalgae for space. As dam removal neared completion, we saw evidence of macroalgal recovery that likely owed to water column clearing, indicating that long-term recovery from dam removal effects may be starting. Our results are relevant to future dam removal projects in coastal areas and more generally to understanding effects of increased sedimentation on nearshore subtidal benthic communities.

  15. Dam removal: Listening in

    Treesearch

    M. M. Foley; J. R. Bellmore; J. E. O' Connor; J. J. Duda; A. E. East; G. E. Grant; C. W. Anderson; J. A. Bountry; M. J. Collins; P. J. Connolly; L. S. Craig; J. E. Evans; S. L. Greene; F. J. Magilligan; C. S. Magirl; J. J. Major; G. R. Pess; T. J. Randle; P. B. Shafroth; C. E. Torgersen; D. Tullos; A. C. Wilcox

    2017-01-01

    Dam removal is widely used as an approach for river restoration in the United States. The increase in dam removals—particularly large dams—and associated dam-removal studies over the last few decades motivated a working group at the USGS John Wesley Powell Center for Analysis and Synthesis to review and synthesize available studies of dam removals and their findings....

  16. Quantifying and Generalizing Hydrologic Responses to Dam Regulation using a Statistical Modeling Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManamay, Ryan A

    2014-01-01

    Despite the ubiquitous existence of dams within riverscapes, much of our knowledge about dams and their environmental effects remains context-specific. Hydrology, more than any other environmental variable, has been studied in great detail with regard to dam regulation. While much progress has been made in generalizing the hydrologic effects of regulation by large dams, many aspects of hydrology show site-specific fidelity to dam operations, small dams (including diversions), and regional hydrologic regimes. A statistical modeling framework is presented to quantify and generalize hydrologic responses to varying degrees of dam regulation. Specifically, the objectives were to 1) compare the effects ofmore » local versus cumulative dam regulation, 2) determine the importance of different regional hydrologic regimes in influencing hydrologic responses to dams, and 3) evaluate how different regulation contexts lead to error in predicting hydrologic responses to dams. Overall, model performance was poor in quantifying the magnitude of hydrologic responses, but performance was sufficient in classifying hydrologic responses as negative or positive. Responses of some hydrologic indices to dam regulation were highly dependent upon hydrologic class membership and the purpose of the dam. The opposing coefficients between local and cumulative-dam predictors suggested that hydrologic responses to cumulative dam regulation are complex, and predicting the hydrology downstream of individual dams, as opposed to multiple dams, may be more easy accomplished using statistical approaches. Results also suggested that particular contexts, including multipurpose dams, high cumulative regulation by multiple dams, diversions, close proximity to dams, and certain hydrologic classes are all sources of increased error when predicting hydrologic responses to dams. Statistical models, such as the ones presented herein, show promise in their ability to model the effects of dam regulation effects at large spatial scales as to generalize the directionality of hydrologic responses.« less

  17. National Dam Safety Program. Ursel Gingerich Dam (MO 10393), Mississippi - Salt - Quincy River Basin, Schuyler County, Missouri. Phase I Inspection Report.

    DTIC Science & Technology

    1979-12-01

    34 which identifies the program element, project, task area, and work unit or equivalent under which the work was authorized. Block 11. Controlling ...Dam Inventory and Inspection Section, LMSED-PD ULSF 210 Tucker Blvd., North, St. Louis, Mo. 63101D C O 11. CONTROLLING OFFICE NAME AND ADDRESS 12m...under the National Program of Inspection of Non -Federal Dams. This report assesses the general condition of the dam with a respect to safety, based on

  18. Wildlife Habitat Impact Assessment, Chief Joseph Dam Project, Washington : Project Report 1992.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuehn, Douglas; Berger, Matthew

    1992-01-01

    Under the Pacific Northwest Electric Power Planning and Conservation Act of 1980, and the subsequent Northwest Power Planning Council`s Columbia River Basin Fish and Wildlife Program, a wildlife habitat impact assessment and identification of mitigation objectives have been developed for the US Army Corps of Engineer`s Chief Joseph Dam Project in north-central Washington. This study will form the basis for future mitigation planning and implementation.

  19. 2005 Tri-Service Infrastructure Systems Conference and Exhibition. Volume 9, Tracks 9-11

    DTIC Science & Technology

    2005-08-04

    Walls ETL 1110-2-563, by John D. Clarkson and Robert C. Patev Belleville Locks & Dam Barge Accident on 6 Jan 05, by John Clarkson Portugues Dam Project...Update, by Alberto Gonzalez, Jim Mangold and Dave Dollar Portugues Dam: RCC Materials Investigation, by Jim Hinds Nonlinear Incremental Thermal Stress...Strain Analysis Portugues Dam, by David Dollar, Ahmed Nisar, Paul Jacob and Charles Logie Seismic Isolation of Mission-Critical Infrastructure to

  20. 78 FR 6321 - Stephen Phillips, Brentwood Dam Ventures, LLC; Notice of Transfer of Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-30

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 4254-009] Stephen Phillips, Brentwood Dam Ventures, LLC; Notice of Transfer of Exemption 1. By letter filed May 31, 2006 and supplemented on January 15, 2013, Stephen Phillips and Brentwood Dam Ventures, LLC informed the Commission that...

  1. 78 FR 70295 - Intent to Prepare an Environmental Impact Statement for the Dam Safety Modification Report...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-25

    ... of the dam not designed to be overtopped. After a full consideration of alternatives, this... for the DSA project permitting the Huntington District to begin detailed design and [[Page 70296... concrete blocks placed against the downstream face of the dam, and a pavement for scour protection...

  2. 77 FR 62224 - Notice of Intent To Revise Scope of Draft Environmental Impact Statement for Updating the Water...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-12

    ... Industrial Water Supply From the Buford Dam/Lake Lanier Project AGENCY: Department of the Army, U.S. Army... accommodate municipal and industrial water supply from the Buford Dam/Lake Lanier project. The Corps is... also consider, along with operations for all authorized purposes, an expanded range of water supply...

  3. 75 FR 33290 - City of Broken Bow, OK; Notice of Availability of Environmental Assessment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-11

    ... application for an Original Major License for the Broken Bow Re-Regulation Dam Hydropower Project. The project would be located at the United States Army Corps of Engineers' (Corps) Broken Bow Re-Regulation Dam on... http://www.ferc.gov , using the ``eLibrary'' link. Enter the docket number excluding the last three...

  4. A retrospective view of the quality of the fauna component of the Olympic Dam Project Environmental Impact Statement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Read, J.L.

    1994-06-01

    The merits of the fauna section of the Olympic Dam Project Environmental Impact Statement (EIS) are discussed. The values of different survey methods and monitoring organisms used in this document are evaluated following 10 years of fauna monitoring and research subsequent to the preparation of the EIS. The pilot fauna reconnaissance was found to be of little value, although the associated literature review formed an integral part of the EIS. Over 95% of all amphibian, reptile and bird species recorded at Olympic Dam were confirmed or predicted to occur in the EIS. Mammal predictions were less accurate because of themore » sparse populations and irruptive nature of several arid-zone species. Prediction and monitoring of rare species were demonstrably difficult. The Olympic Dam Project EIS was found in general to be an accurate and useful document. However, it is suggested that more emphasis be placed on establishing monitoring programmes for future EISs, particularly for invertebrates. 35 refs., 1 fig., 3 tabs.« less

  5. Physical and biological responses to an alternative removal strategy of a moderate-sized dam in Washington, USA.

    Treesearch

    Shannon Claeson; B. Coffin

    2015-01-01

    Dam removal is an increasingly practised river restoration technique, and ecological responses vary with watershed, dam and reservoir properties, and removal strategies. Moderate-sized dams, like Hemlock Dam (7.9m tall and 56m wide), are large enough that removal effects could be significant, but small enough that mitigation may be possible through a modified dam...

  6. 1000 dams down and counting

    USGS Publications Warehouse

    O'Connor, James E.; Duda, Jeff J.; Grant, Gordon E.

    2015-01-01

    Forty years ago, the demolition of large dams was mostly fiction, notably plotted in Edward Abbey's novel The Monkey Wrench Gang. Its 1975 publication roughly coincided with the end of large-dam construction in the United States. Since then, dams have been taken down in increasing numbers as they have filled with sediment, become unsafe or inefficient, or otherwise outlived their usefulness (1) (see the figure, panel A). Last year's removals of the 64-m-high Glines Canyon Dam and the 32-m-high Elwha Dam in northwestern Washington State were among the largest yet, releasing over 10 million cubic meters of stored sediment. Published studies conducted in conjunction with about 100 U.S. dam removals and at least 26 removals outside the United States are now providing detailed insights into how rivers respond (2, 3).

  7. Population and water. Interview: Genady Golubev.

    PubMed

    1993-01-01

    Irrigated cropland yields 36% of all global food crops. Without dams, some countries are forced to increase arable lands or to boost agricultural production. Dry farming poses environmental problems, e.g, those linked to chemical use. Dams also cause environmental problems. Egypt's Aswan dam has stopped the annual floods replenished the lands with natural fertilizer. On the other hand, it provides almost 25% of Egypt's energy needs. Irrigation has expanded areas on which to plant crops, thereby meeting Egypt's rising food needs. The Nile had very low water levels for 7 years during the 1980s so the dam prevented a disaster. The World Conservation Union does not endorse engineered solutions to water scarcity because they generally result in bad watershed management. An irrigation scheme in the former Soviet Union was handled so poorly that it created 1 of this century;s worst environmental disasters--shrinking of the Aral Sea in Kazakhstan. This resulted in destruction of its fisheries, pollution from pesticides, large scale salinization, inferior water quality, and declining health of the people in the area. The Government of India has embarked on an irrigation scheme, the Narmada River dam project. In April 1993, it cancelled its loans with the World Bank because it could not abide by the Bank's tough environmental conditions, but the government intends to go ahead with the project on its own. Natural drainage is required for sustainable irrigation schemes, some of which have endured for centuries. Most of the 26 intensely water scarce countries have rapidly growing populations and are in Africa and the Middle East. The best way for these countries to address this scarcity is to use existing water better, ideally in a way that minimized environmental damage. By 2025, at least 96 countries will be facing great water shortages. Water scarcity will spark conflicts between countries and within countries. The world probably cannot provide enough water to support 8-10 billion people.

  8. Soil erosion and sediment yield, a double barrel problem in South Africa's only large river network without a dam

    NASA Astrophysics Data System (ADS)

    Le Roux, Jay

    2016-04-01

    Soil erosion not only involves the loss of fertile topsoil but is also coupled with sedimentation of dams, a double barrel problem in semi-arid regions where water scarcity is frequent. Due to increasing water requirements in South Africa, the Department of Water and Sanitation is planning water resource development in the Mzimvubu River Catchment, which is the only large river network in the country without a dam. Two dams are planned including a large irrigation dam and a hydropower dam. However, previous soil erosion studies indicate that large parts of the catchment is severely eroded. Previous studies, nonetheless, used mapping and modelling techniques that represent only a selection of erosion processes and provide insufficient information about the sediment yield. This study maps and models the sediment yield comprehensively by means of two approaches over a five-year timeframe between 2007 and 2012. Sediment yield contribution from sheet-rill erosion was modelled with ArcSWAT (a graphical user interface for SWAT in a GIS), whereas gully erosion contributions were estimated using time-series mapping with SPOT 5 imagery followed by gully-derived sediment yield modelling in a GIS. Integration of the sheet-rill and gully results produced a total sediment yield map, with an average of 5 300 t km-2 y-1. Importantly, the annual average sediment yield of the areas where the irrigation dam and hydropower dam will be built is around 20 000 t km-2 y-1. Without catchment rehabilitation, the life expectancy of the irrigation dam and hydropower dam could be 50 and 40 years respectively.

  9. Monitoring and Evaluation of Smolt Migration in the Columbia Basin, Volume XIV; Evaluation of 2006 Prediction of the Run-Timing of Wild and Hatchery-Reared Salmon and Steelhead at Rock Island, Lower Granite, McNary, John Day and Bonneville Dams using Program Real Time, Technical Report 2006.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griswold, Jim

    Program RealTime provided monitoring and forecasting of the 2006 inseason outmigrations via the internet for 32 PIT-tagged stocks of wild ESU chinook salmon and steelhead to Lower Granite and/or McNary dams, one PIT-tagged hatchery-reared ESU of sockeye salmon to Lower Granite Dam, and 20 passage-indexed runs-at-large, five each to Rock Island, McNary, John Day, and Bonneville Dams. Twenty-four stocks are of wild yearling chinook salmon which were captured, PIT-tagged, and released at sites above Lower Granite Dam in 2006, and have at least one year's historical migration data previous to the 2006 migration. These stocks originate in drainages of themore » Salmon, Grande Ronde and Clearwater Rivers, all tributaries to the Snake River, and are subsequently detected through the tag identification and monitored at Lower Granite Dam. In addition, seven wild PIT-tagged runs-at-large of Snake or Upper Columbia River ESU salmon and steelhead were monitored at McNary Dam. Three wild PIT-tagged runs-at-large were monitored at Lower Granite Dam, consisting of the yearling and subyearling chinook salmon and the steelhead trout runs. The hatchery-reared PIT-tagged sockeye salmon stock from Redfish Lake was monitored outmigrating through Lower Granite Dam. Passage-indexed stocks (stocks monitored by FPC passage indices) included combined wild and hatchery runs-at-large of subyearling and yearling chinook, coho, and sockeye salmon, and steelhead trout forecasted to Rock Island, McNary, John Day, and Bonneville Dams.« less

  10. Using 3D acoustic telemetry to assess the response of resident salmonids to strobe lights in Lake Roosevelt, Washington: Chief Joseph Kokanee Enhancement Feasibility Study, 2001-2002 annual report

    USGS Publications Warehouse

    Perry, R.W.; Farley, M.J.; Hansen, G.S.; Shurtleff, D.J.; Rondorf, D.W.; LeCaire, R.

    2003-01-01

    In 1995, the Chief Joseph Kokanee Enhancement Project was established to mitigate the loss of anadromous fish due to the construction of Chief Joseph and Grand Coulee dams. The objectives of the Chief Joseph Enhancement Project are to determine the status of resident kokanee (Oncorhynchus nerka) populations above Chief Joseph and Grand Coulee dams and to enhance kokanee and rainbow trout (Oncorhynchus mykiss) populations. Studies conducted at Grand Coulee Dam documented substantial entrainment of kokanee through turbines at the third powerhouse.

  11. Global water resources affected by human interventions and climate change.

    PubMed

    Haddeland, Ingjerd; Heinke, Jens; Biemans, Hester; Eisner, Stephanie; Flörke, Martina; Hanasaki, Naota; Konzmann, Markus; Ludwig, Fulco; Masaki, Yoshimitsu; Schewe, Jacob; Stacke, Tobias; Tessler, Zachary D; Wada, Yoshihide; Wisser, Dominik

    2014-03-04

    Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct human impacts on the terrestrial water cycle are presented and compared using a multimodel approach. Seven global hydrological models have been forced with multiple climate projections, and with and without taking into account impacts of human interventions such as dams and water withdrawals on the hydrological cycle. Model results are analyzed for different levels of global warming, allowing for analyses in line with temperature targets for climate change mitigation. The results indicate that direct human impacts on the water cycle in some regions, e.g., parts of Asia and in the western United States, are of the same order of magnitude, or even exceed impacts to be expected for moderate levels of global warming (+2 K). Despite some spread in model projections, irrigation water consumption is generally projected to increase with higher global mean temperatures. Irrigation water scarcity is particularly large in parts of southern and eastern Asia, and is expected to become even larger in the future.

  12. Global water resources affected by human interventions and climate change

    PubMed Central

    Haddeland, Ingjerd; Heinke, Jens; Biemans, Hester; Eisner, Stephanie; Flörke, Martina; Hanasaki, Naota; Konzmann, Markus; Ludwig, Fulco; Masaki, Yoshimitsu; Schewe, Jacob; Stacke, Tobias; Tessler, Zachary D.; Wada, Yoshihide; Wisser, Dominik

    2014-01-01

    Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct human impacts on the terrestrial water cycle are presented and compared using a multimodel approach. Seven global hydrological models have been forced with multiple climate projections, and with and without taking into account impacts of human interventions such as dams and water withdrawals on the hydrological cycle. Model results are analyzed for different levels of global warming, allowing for analyses in line with temperature targets for climate change mitigation. The results indicate that direct human impacts on the water cycle in some regions, e.g., parts of Asia and in the western United States, are of the same order of magnitude, or even exceed impacts to be expected for moderate levels of global warming (+2 K). Despite some spread in model projections, irrigation water consumption is generally projected to increase with higher global mean temperatures. Irrigation water scarcity is particularly large in parts of southern and eastern Asia, and is expected to become even larger in the future. PMID:24344275

  13. Geologic factors pertinent to the proposed A. J. Wiley Hydroelectric Project No. 2845, Bliss, Idaho

    USGS Publications Warehouse

    Malde, Harold E.

    1981-01-01

    The A.J. Wiley Hydroelectric Project is a proposal by the Idaho Power Company to develop hydroelectricity near Bliss, Idaho, by building a dam on the Snake River (fig. 1). The proposed dam would impound a narrow reservoir as deep as 85 feet in a free-flowing reach of the river that extends from the upper reach of water impounded by the Bliss Dam to the foot of the Lower Salmon Falls Dam, nearly 8 miles farther upstream. The proposed dam would be built in three sections: a spillway section and a powerhouse (intake) section to be constructed of concrete in the right-handed part, and an embankment section to be constructed as a zoned-fill of selected earth materials in the left-hand part. (Right and left are to be understood in the sense of looking downstream.) In August, 1979, the Idaho Power Company was granted a 3-year permit (Project No. 2845) by the Federal Energy Regulatory Commission (FERC) to make site investigations and environmental studies in the project area. A year later, on August 26, 1980, the company applied to FERC for a license to construct the project. On October 8, 1980, as explained in a letter by William W. Lindsay, Director of the Office of Electric Power Regulation, the company was given 90 days to correct certain deficiencies in the application. Because several of the deficiencies identified by Mr. Lindsay pertain to geologic aspects of the project, his letter is attached to this report as Appendix A. Hereafter in this report, the deficiencies listed by Mr. Lindsay are identified by the numerical entries in his letter. The Idaho Power Company is referred to as the applicant.

  14. MALACOLOGICAL INVESTIGATION OF THE FULLY OPERATIONAL NAM THEUN 2 HYDROELECTRIC DAM PROJECT IN KHAMMOUANE PROVINCE, CENTRAL LAO PDR.

    PubMed

    Sri-aroon, Pusadee; Chusongsang, Phiraphol; Chusongsang, Yupa; Limpanont, Yanin; Surinthwong, Pornpimol; Vongphayloth, Khamsing; Brey, Paul T

    2015-09-01

    We conducted a malacological investigation in four districts of the Nam Theun 2 (NT2) hydroelectric dam project area, Khammouane Province, central Lao PDR (Nakai, Gnommalath, Mahaxai and Xe Bang Fai), after the first and second years of full operation in March 2010 and November 2011 to determine health risks for humans. A total 10,863 snail specimens (10 families/23 species) from 57 sampling stations and 12,902 snail specimens (eight families/21 species) from 66 sampling stations were collected in 2010 and 2011, respectively. Neotricula aperta (gamma race), the intermediate host for Schistosoma mekongi, was found in large numbers (5,853 specimens) in 2010 in Nam Gnom (downstream) at Station 25 (Mueang Gnommalath: Gnommalath District) and in fewer numbers (170 specimens) at Station 26 (Ban Thathod: Gnommalath District). In 2011, significantly fewer numbers (434 specimens) of N. aperta were found at Station 25. No snails were found to be infected with S. mekongi; however, 3.6% and 0.45% of Bithynia (D.). s. goniomphalos specimens collected were found to be infected with Opisthorchis viverrini (human liver fluke) during 2010 and 2011, respectively. Pomacea canaliculata, the rice crop pest, the intermediate host of Angiostrongylus (Parastrongylus) cantonensis, was found in the greatest numbers during 2010 and 2011; the prevalence increased significantly from 1.3% in 2010 to 53.3% in 2011. We also found seasonal variation in snail populations in terms of abundance and diversity. The snail fauna and risk for transmission of parasitic diseases need to be monitored continuously to evaluate the long-term impact of the dam project.

  15. Use of Sentinel-1 SAR data to monitor Mosul dam vulnerability

    NASA Astrophysics Data System (ADS)

    Riccardi, Paolo; Tessari, Giulia; Lecci, Daniele; Floris, Mario; Pasquali, Paolo

    2017-04-01

    The structural monitoring of dams is an important practice to guarantee their safety. Moreover, the water reservoir and the efficient operation and safety of surrounding areas need to be monitored. Considering the importance of large dams as multipurpose infrastructure for flood control, energy production, water supply and irrigation, ensuring their longevity is a key aspect on their management. Therefore, it is of great importance to detect dam deterioration potentially resulting in its shutdown or failure, preventing life and economic losses. Traditional dam monitoring requires the identification of soil movements, tilt, displacements, structural stress and strain behaviour. Since the '90, innovative remote sensing techniques based on satellite Synthetic Aperture Radar (SAR) data were developed to detect and monitor surface displacements. The main advantages of SAR data are the non-invasiveness of their acquisition, the possibility to cover large areas in a short time and the advancement. Moreover, the availability of SAR satellite acquisitions from the 1990s enables to reconstruct the historical evolution of dam behaviour. Furthermore, the use of SAR Interferometry (InSAR) techniques, Differential InSAR (DInSAR) and Advanced stacking techniques (A-DInSAR), produce accurate velocity maps and displacement time-series. The importance of these techniques emerges when environmental or logistic conditions do not allow to monitor dams applying the traditional geodetic techniques. An iconic case demonstrating the relevance of remote sensing observations is the Mosul Dam, the largest Iraqi dam, where monitoring and maintaining are impeded for political controversy, thus the risk for the population is very high. It is considered one of the most dangerous dams in the world because of the erosion of the gypsum rock at the basement and the difficult interventions due to security issues. It consists of 113 m tall and 3.4 km long earth-fill embankment-type, with a clay core. It was completed in 1984 and started generating power on 1986. Since then, frequent consolidation works have been carried out pumping cement mixtures into the soil foundation to keep it stable and prevent it from sinking and then breaking apart. To overcome the impossibility of directly monitoring the structure, analysis of recent deformation affecting the Mosul dam is achieved considering C-band Sentinel-1 SAR data, acquired from the end of 2014 to the present. These 20-m ground resolution data can provide a millimetric precision on displacements. Furthermore, ESA archive available SAR data (ERS and Envisat) are considered to reconstruct the temporal evolution of the deformations. In this work, different stacks of data are processed applying SBAS and PS A-DInSAR techniques; deformation fields obtained from SAR data are evaluated to assess the temporal evolution of the strains affecting the structure. Obtained results represent the preliminary stage of a multidisciplinary project, finalised to assess possible damages affecting a dam through remote sensing and civil engineering surveys.

  16. Introduction of an Emergency Response Plan for flood loading of Sultan Abu Bakar Dam in Malaysia

    NASA Astrophysics Data System (ADS)

    Said, N. F. Md; Sidek, L. M.; Basri, H.; Muda, R. S.; Razad, A. Z. Abdul

    2016-03-01

    Sultan Abu Bakar Dam Emergency Response Plan (ERP) is designed to assist employees for identifying, monitoring, responding and mitigation dam safety emergencies. This paper is outlined to identification of an organization chart, responsibility for emergency management team and triggering level in Sultan Abu Bakar Dam ERP. ERP is a plan that guides responsibilities for proper operation of Sultan Abu Bakar Dam in respond to emergency incidents affecting the dam. Based on this study four major responsibilities are needed for Abu Bakar Dam owing to protect any probable risk for downstream which they can be Incident Commander, Deputy Incident Commander, On-Scene Commander, Civil Engineer. In conclusion, having organization charts based on ERP studies can be helpful for decreasing the probable risks in any projects such as Abu Bakar Dam and it is a way to identify and suspected and actual dam safety emergencies.

  17. Disasters as a necessary part of benefit-cost analyses.

    PubMed

    Mark, R K; Stuart-Alexander, D E

    1977-09-16

    Benefit-cost analyses for water projects generally have not included the expected costs (residual risk) of low-probability disasters such as dam failures, impoundment-induced earthquakes, and landslides. Analysis of the history of these types of events demonstrates that dam failures are not uncommon and that the probability of a reservoir-triggered earth-quake increases with increasing reservoir depth. Because the expected costs from such events can be significant and risk is project-specific, estimates should be made for each project. The cost of expected damage from a "high-risk" project in an urban area could be comparable to project benefits.

  18. 2005 Tri-Service Infrastructure Systems Conference and Exhibition. Volume 11, Tracks 13 and 14

    DTIC Science & Technology

    2005-08-04

    Walls ETL 1110-2-563, by John D. Clarkson and Robert C. Patev Belleville Locks & Dam Barge Accident on 6 Jan 05, by John Clarkson Portugues Dam Project...Update, by Alberto Gonzalez, Jim Mangold and Dave Dollar Portugues Dam: RCC Materials Investigation, by Jim Hinds Nonlinear Incremental Thermal Stress...Strain Analysis Portugues Dam, by David Dollar, Ahmed Nisar, Paul Jacob and Charles Logie Seismic Isolation of Mission-Critical Infrastructure to

  19. Effects of dam operation on the endangered Júcar nase, Parachondrostoma arrigonis, related to mesohabitats, microhabitat availability and water temperature regime, in the river Cabriel (Spain)

    NASA Astrophysics Data System (ADS)

    Martinez-Capel, Francisco; Costa, Rui; Muñoz-Mas, Rafael; Diego Alcaraz-Hernandez, Juan; Hernandez-Mascarell, Aina

    2010-05-01

    The presence of large dams affects habitat availability, often regarded as the primary factor that limits population and community recovery in rivers. Physical habitat is often targeted in restoration, but there is often a paucity of useful information. Habitat degradation has reduced the complexity and connectivity of the Mediterranean streams in Spain. These changes have diminished the historical range of the endangered Júcar nase, Parachondrostoma arrigonis (Steindachner, 1866), isolated the populations of this species, and probably contributed to its risk of extinction. In the Júcar River basin (Spain), where this fish is endemic, the populations are mainly restricted to the river Cabriel, which is fragmented in two segments by the large dam of Contreras. In this river, 3 main lines of research were developed from 2006 to 2008, i.e., microhabitat suitability, mesohabitat suitability, and water temperature, in order to relate such kind of variables with the flow regime. The main goal of the research project, funded by the Spanish Ministry of Environment, was to detect the main reasons of the species decline, and to propose dam operation improvements to contribute to the recovery of the species. The flow and water temperature regimes were also studied in the river Cabriel, upstream and downstream the large dam of Contreras. During the three years of study, below the dam it was observed a small and not significant variation in the proportions of slow and fast habitats; the regulated flow regime was pointed out as the main reason of such variations. At the microhabitat scale, optimal ranges for average depth and velocity were defined; these data allowed us to develop an estimation of weighted useable area under natural and regulated conditions. The Júcar nase were found majorly at depths no greater than 1,15 meters with slow water velocities. It was possible to observe a clear alteration of the flow and water temperature regime below the dam, due to the cold water release during the summer months (maximum discharge) for irrigation in the Valencian Region. The temperature effect was partially mitigated by the presence of natural springs. The results in these three lines of research supported the proposal of management actions, such as the implementation of an environmental flow regime, with anticipated releases more coincident with the natural flow regime, and previous to the fish migration for spawning, and therefore smaller discharges during the summer.

  20. Harnessing Alaska. [Hydroelectric power in Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Four hydropower projects will provide electricity for isolated Alaskan cities by late 1984. A 15Mw project is already producing power. The three remaining hydro projects are described. Tyee Lake is a lake tap project. Water is supplied to the powerhouse by tapping the lake via a tunnel blasted through the lake bottom. Water then flows through a vertical pressure shaft to a power tunnel and into an aboveground powerhouse. Swan Lake consists of a double-curved arch dam and a power tunnel. Terror Lake consists of a concrete-faced compacted rockfill dam and a power tunnel.

  1. 76. AVALON DAM Photographic copy of historic photo, 1939 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    76. AVALON DAM - Photographic copy of historic photo, 1939 (original print in '1939 Annual Report of the Carlsbad Project,' located at the Carlsbad Irrigation District offices, Carlsbad, New Mexico) photographer unknown VIEW OF CCC WORKERS COMPLETING CONSTRUCTION OF SUSPENSION BRIDGE - Carlsbad Irrigation District, Avalon Dam, On Pecos River, 4 miles North of Carlsbad, Carlsbad, Eddy County, NM

  2. 77 FR 37668 - Notice of Preliminary Permit Application Accepted for Filing and Soliciting Comments, Motions To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-22

    ... feasibility of the proposed Coralville Dam Hydroelectric Project No. 14388, to be located at the existing Coralville Dam on the Iowa River, near Iowa City in Johnson County, Iowa. The Coralville Dam is owned by the... Competing Applications; Coralville Energy, LLC On April 18, 2012, the Coralville Energy, LLC filed an...

  3. 9. 'CRIB DAM IN LAKE FORK RIVER AT HEADING OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. 'CRIB DAM IN LAKE FORK RIVER AT HEADING OF LAKE FORK CANAL, UINTAH PROJECT. TWO SLUICEWAYS TWENTY FEET WIDE HAVE BEEN LEFT IN THE DAM TO PASS BOULDERS DURING HIGH WATER. THESE SLUICEWAYS ARE CLOSED BY LOGS AND HAY DURING LOW WATER.' Date unknown - Irrigation Canals in the Uinta Basin, Duchesne, Duchesne County, UT

  4. 77 FR 21095 - UEK Delaware L.P.; Notice of Declaration of Intention and Soliciting Comments, Protests, and/or...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-09

    ... Indian River in Sussex County, Delaware. The United States Army Corps of Engineers designed, built, and... project uses no dam or impoundment. The proposed project would consist of: (1) Twenty-five 122-inches-tall... water or water power from a government dam; or (4) if applicable, has involved or would involve any...

  5. 76 FR 63294 - River Bounty, Inc.; Notice of Termination of Exemption By Implied Surrender and Soliciting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ... powerhouse containing three units. Currently, there is a 50- to 60-foot-wide breach in the dam. The project... the Oakland Project because it lost its power sales contract. Since that time, the powerhouse..., the breach expanded leaving a 50- to 60-foot- wide opening in the dam. In April 2011, the Commission...

  6. 76 FR 70440 - Haiwee Ridge Pumped Storage Project; Notice of Preliminary Permit Application Accepted for Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-14

    ... South Haiwee reservoir, near the town of Olancha, Inyo County, California. The project would affect... (Alternatives A and B) would consist of the existing South Haiwee dam. The dam has operations limited due to... the water level in the reservoir is limited to a maximum elevation of 3,742 feet msl. The applicant is...

  7. Nearly 400 million people are at higher risk of schistosomiasis because dams block the migration of snail-eating river prawns

    USGS Publications Warehouse

    Sokolow, Susanne H.; Jones, Isabel J.; Jocque, Merlijn M. T.; La, Diana; Cords, Olivia; Knight, Anika; Lund, Andrea; Wood, Chelsea L.; Lafferty, Kevin D.; Hoover, Christopher M.; Collender, Phillip A.; Remais, Justin V.; Lopez-Carr, David; Fisk, Jonathan; Kuris, Armand M.; De Leo, Giulio A.

    2017-01-01

    Dams have long been associated with elevated burdens of human schistosomiasis, but how dams increase disease is not always clear, in part because dams have many ecological and socio-economic effects. A recent hypothesis argues that dams block reproduction of the migratory river prawns that eat the snail hosts of schistosomiasis. In the Senegal River Basin, there is evidence that prawn populations declined and schistosomiasis increased after completion of the Diama Dam. Restoring prawns to a water-access site upstream of the dam reduced snail density and reinfection rates in people. However, whether a similar cascade of effects (from dams to prawns to snails to human schistosomiasis) occurs elsewhere is unknown. Here, we examine large dams worldwide and identify where their catchments intersect with endemic schistosomiasis and the historical habitat ranges of large, migratory Macrobrachium spp. prawns. River prawn habitats are widespread, and we estimate that 277–385 million people live within schistosomiasis-endemic regions where river prawns are or were present (out of the 800 million people who are at risk of schistosomiasis). Using a published repository of schistosomiasis studies in sub-Saharan Africa, we compared infection before and after the construction of 14 large dams for people living in: (i) upstream catchments within historical habitats of native prawns, (ii) comparable undammed watersheds, and (iii) dammed catchments beyond the historical reach of migratory prawns. Damming was followed by greater increases in schistosomiasis within prawn habitats than outside prawn habitats. We estimate that one third to one half of the global population-at-risk of schistosomiasis could benefit from restoration of native prawns. Because dams block prawn migrations, our results suggest that prawn extirpation contributes to the sharp increase of schistosomiasis after damming, and points to prawn restoration as an ecological solution for reducing human disease.

  8. Nearly 400 million people are at higher risk of schistosomiasis because dams block the migration of snail-eating river prawns

    NASA Astrophysics Data System (ADS)

    Sokolow, S. H.; Jones, I. J.; La, D.; Cords, O.; Knight, A.; Lund, A.; Wood, C. L.; Lafferty, K. D.; Kuris, A. M.; Hoover, C.; Collender, P. A.; Remais, J.; Lopez-Carr, D.; De Leo, G.

    2016-12-01

    Dams have long been associated with elevated burdens of human schistosomiasis, but how dams increase disease is not always clear, in part because dams have many ecological and socioeconomic effects. A recent hypothesis argues that dams block reproduction of the migratory river prawns that eat the snail hosts of schistosomiasis. In the Senegal River Basin, there is evidence that prawn populations declined and schistosomiasis increased after completion of the Diama Dam. Restoring prawns to a water-access site upstream of the dam reduced snail density and reinfection rates in people. However, whether a similar cascade of effects (from dams to prawns to snails to human schistosomiasis) occurs elsewhere is unknown. Here, we examine large dams worldwide and identify where their catchments intersect with endemic schistosomiasis and the historical habitat ranges of large, migratory Macrobrachium spp. prawns. River prawn habitats are widespread, and we estimate that 277 to 385 million people live within schistosomiasis-endemic regions where river prawns are or were present (out of the 800 million people who are at risk of schistosomiasis). Using a published repository of schistosomiasis studies in sub-Saharan Africa, we compared infection before and after the construction of 14 large dams for people living in: (1) upstream catchments within historical habitats of native prawns, (2) comparable undammed watersheds, and (3) dammed catchments beyond the historical reach of migratory prawns. Damming was followed by greater increases in schistosomiasis within prawn habitats than outside prawn habitats. We estimate that one third to one half of the global population-at-risk of schistosomiasis could benefit from restoring native prawns. Because dams block prawn migrations, our results suggest that prawn extirpation contributes to the sharp increase of schistosomiasis after damming, and points to prawn restoration as an ecological solution for reducing human disease.

  9. Nearly 400 million people are at higher risk of schistosomiasis because dams block the migration of snail-eating river prawns.

    PubMed

    Sokolow, Susanne H; Jones, Isabel J; Jocque, Merlijn; La, Diana; Cords, Olivia; Knight, Anika; Lund, Andrea; Wood, Chelsea L; Lafferty, Kevin D; Hoover, Christopher M; Collender, Phillip A; Remais, Justin V; Lopez-Carr, David; Fisk, Jonathan; Kuris, Armand M; De Leo, Giulio A

    2017-06-05

    Dams have long been associated with elevated burdens of human schistosomiasis, but how dams increase disease is not always clear, in part because dams have many ecological and socio-economic effects. A recent hypothesis argues that dams block reproduction of the migratory river prawns that eat the snail hosts of schistosomiasis. In the Senegal River Basin, there is evidence that prawn populations declined and schistosomiasis increased after completion of the Diama Dam. Restoring prawns to a water-access site upstream of the dam reduced snail density and reinfection rates in people. However, whether a similar cascade of effects (from dams to prawns to snails to human schistosomiasis) occurs elsewhere is unknown. Here, we examine large dams worldwide and identify where their catchments intersect with endemic schistosomiasis and the historical habitat ranges of large, migratory Macrobrachium spp. prawns. River prawn habitats are widespread, and we estimate that 277-385 million people live within schistosomiasis-endemic regions where river prawns are or were present (out of the 800 million people who are at risk of schistosomiasis). Using a published repository of schistosomiasis studies in sub-Saharan Africa, we compared infection before and after the construction of 14 large dams for people living in: (i) upstream catchments within historical habitats of native prawns, (ii) comparable undammed watersheds, and (iii) dammed catchments beyond the historical reach of migratory prawns. Damming was followed by greater increases in schistosomiasis within prawn habitats than outside prawn habitats. We estimate that one third to one half of the global population-at-risk of schistosomiasis could benefit from restoration of native prawns. Because dams block prawn migrations, our results suggest that prawn extirpation contributes to the sharp increase of schistosomiasis after damming, and points to prawn restoration as an ecological solution for reducing human disease.This article is part of the themed issue 'Conservation, biodiversity and infectious disease: scientific evidence and policy implications'. © 2017 The Authors.

  10. Nearly 400 million people are at higher risk of schistosomiasis because dams block the migration of snail-eating river prawns

    PubMed Central

    Jones, Isabel J.; Jocque, Merlijn; La, Diana; Cords, Olivia; Knight, Anika; Lund, Andrea; Lafferty, Kevin D.; Hoover, Christopher M.; Collender, Phillip A.; Remais, Justin V.; Lopez-Carr, David; Kuris, Armand M.; De Leo, Giulio A.

    2017-01-01

    Dams have long been associated with elevated burdens of human schistosomiasis, but how dams increase disease is not always clear, in part because dams have many ecological and socio-economic effects. A recent hypothesis argues that dams block reproduction of the migratory river prawns that eat the snail hosts of schistosomiasis. In the Senegal River Basin, there is evidence that prawn populations declined and schistosomiasis increased after completion of the Diama Dam. Restoring prawns to a water-access site upstream of the dam reduced snail density and reinfection rates in people. However, whether a similar cascade of effects (from dams to prawns to snails to human schistosomiasis) occurs elsewhere is unknown. Here, we examine large dams worldwide and identify where their catchments intersect with endemic schistosomiasis and the historical habitat ranges of large, migratory Macrobrachium spp. prawns. River prawn habitats are widespread, and we estimate that 277–385 million people live within schistosomiasis-endemic regions where river prawns are or were present (out of the 800 million people who are at risk of schistosomiasis). Using a published repository of schistosomiasis studies in sub-Saharan Africa, we compared infection before and after the construction of 14 large dams for people living in: (i) upstream catchments within historical habitats of native prawns, (ii) comparable undammed watersheds, and (iii) dammed catchments beyond the historical reach of migratory prawns. Damming was followed by greater increases in schistosomiasis within prawn habitats than outside prawn habitats. We estimate that one third to one half of the global population-at-risk of schistosomiasis could benefit from restoration of native prawns. Because dams block prawn migrations, our results suggest that prawn extirpation contributes to the sharp increase of schistosomiasis after damming, and points to prawn restoration as an ecological solution for reducing human disease. This article is part of the themed issue ‘Conservation, biodiversity and infectious disease: scientific evidence and policy implications’. PMID:28438916

  11. Dam removal: Listening in

    NASA Astrophysics Data System (ADS)

    Foley, M. M.; Bellmore, J. R.; O'Connor, J. E.; Duda, J. J.; East, A. E.; Grant, G. E.; Anderson, C. W.; Bountry, J. A.; Collins, M. J.; Connolly, P. J.; Craig, L. S.; Evans, J. E.; Greene, S. L.; Magilligan, F. J.; Magirl, C. S.; Major, J. J.; Pess, G. R.; Randle, T. J.; Shafroth, P. B.; Torgersen, C. E.; Tullos, D.; Wilcox, A. C.

    2017-07-01

    Dam removal is widely used as an approach for river restoration in the United States. The increase in dam removals—particularly large dams—and associated dam-removal studies over the last few decades motivated a working group at the USGS John Wesley Powell Center for Analysis and Synthesis to review and synthesize available studies of dam removals and their findings. Based on dam removals thus far, some general conclusions have emerged: (1) physical responses are typically fast, with the rate of sediment erosion largely dependent on sediment characteristics and dam-removal strategy; (2) ecological responses to dam removal differ among the affected upstream, downstream, and reservoir reaches; (3) dam removal tends to quickly reestablish connectivity, restoring the movement of material and organisms between upstream and downstream river reaches; (4) geographic context, river history, and land use significantly influence river restoration trajectories and recovery potential because they control broader physical and ecological processes and conditions; and (5) quantitative modeling capability is improving, particularly for physical and broad-scale ecological effects, and gives managers information needed to understand and predict long-term effects of dam removal on riverine ecosystems. Although these studies collectively enhance our understanding of how riverine ecosystems respond to dam removal, knowledge gaps remain because most studies have been short (< 5 years) and do not adequately represent the diversity of dam types, watershed conditions, and dam-removal methods in the U.S.

  12. Dam removal: Listening in

    USGS Publications Warehouse

    Foley, Melissa M.; Bellmore, James; O'Connor, James E.; Duda, Jeff; East, Amy E.; Grant, Gordon G.; Anderson, Chauncey; Bountry, Jennifer A.; Collins, Mathias J.; Connolly, Patrick J.; Craig, Laura S.; Evans, James E.; Greene, Samantha; Magilligan, Francis J.; Magirl, Christopher S.; Major, Jon J.; Pess, George R.; Randle, Timothy J.; Shafroth, Patrick B.; Torgersen, Christian E.; Tullos, Desiree D.; Wilcox, Andrew C.

    2017-01-01

    Dam removal is widely used as an approach for river restoration in the United States. The increase in dam removals—particularly large dams—and associated dam-removal studies over the last few decades motivated a working group at the USGS John Wesley Powell Center for Analysis and Synthesis to review and synthesize available studies of dam removals and their findings. Based on dam removals thus far, some general conclusions have emerged: (1) physical responses are typically fast, with the rate of sediment erosion largely dependent on sediment characteristics and dam-removal strategy; (2) ecological responses to dam removal differ among the affected upstream, downstream, and reservoir reaches; (3) dam removal tends to quickly reestablish connectivity, restoring the movement of material and organisms between upstream and downstream river reaches; (4) geographic context, river history, and land use significantly influence river restoration trajectories and recovery potential because they control broader physical and ecological processes and conditions; and (5) quantitative modeling capability is improving, particularly for physical and broad-scale ecological effects, and gives managers information needed to understand and predict long-term effects of dam removal on riverine ecosystems. Although these studies collectively enhance our understanding of how riverine ecosystems respond to dam removal, knowledge gaps remain because most studies have been short (< 5 years) and do not adequately represent the diversity of dam types, watershed conditions, and dam-removal methods in the U.S.

  13. Large-scale dam removal in the northeast United States: documenting ecological responses to the Penobscot River Restoration Project

    NASA Astrophysics Data System (ADS)

    Collins, M. J.; Aponte Clarke, G.; Baeder, C.; McCaw, D.; Royte, J.; Saunders, R.; Sheehan, T.

    2012-12-01

    The Penobscot River Restoration Project aims to improve aquatic connectivity in New England's second largest watershed ( 22,000 km2) by removing the two lowermost, mainstem dams and bypassing a third dam on a principal tributary upstream. Project objectives include: restoring unobstructed access to the entire historic riverine range for five lower river diadromous species including Atlantic and shortnose sturgeon; significantly improving access to upstream habitat for six upper river diadromous species including Atlantic salmon; reconnecting trophic linkages between headwater areas and the Gulf of Maine; restoring fluvial processes to the former impoundments; improving recreational and Penobscot Nation cultural opportunities; and maintaining basin-wide hydropower output. The project is expected to have landscape-scale benefits and the need for a significant investment in long-term monitoring and evaluation to formally quantify ecosystem response has been recognized. A diverse group of federal, state, tribal, NGO, and academic partners has developed a long-term monitoring and evaluation program composed of nine studies that began in 2009. Including American Recovery and Reinvestment Act (ARRA) funding that leveraged partner contributions, we have invested nearly $2M to date in pre- and post-removal investigations that evaluate geomorphology/bed sediment, water quality, wetlands, and fisheries. Given the number of affected diadromous species and the diversity of their life histories, we have initiated six distinct, but related, fisheries investigations to document these expected changes: Atlantic salmon upstream and downstream passage efficiency using passive integrated transponder (PIT) and acoustic telemetry; fish community structure via an index of biotic integrity (IBI); total diadromous fish biomass through hydroacoustics; shortnose sturgeon spawning and habitat use via active and passive acoustic telemetry; and freshwater-marine food web interactions by examining stable nutrient isotopes in fish tissue. Here we summarize the multidisciplinary studies we are undertaking and present some preliminary results from three years of pre-removal study. We highlight our stream channel geometry and bed sediment grain size investigations that reveal impoundments bedded primarily by coarse materials and storing very little sediment, circumstances that are influenced by the reach's geology and late Quaternary history. The pre-removal data from our nine studies help us characterize the impounded and fragmented ecosystem on the eve of dam removal and help us further develop and refine testable hypotheses for ecosystem response to the project.

  14. National Dam Safety Program. Union Lake Dam (MO 30225), Missouri - Kansas City Basin, Jackson County, Missouri. Phase I Inspection Report.

    DTIC Science & Technology

    1980-12-01

    report was prepared under the National Program of Inspection of Non-Federal Dams. This report assesses the general condition of the dam with respect to...enter the complete contract or grant number(s) under which the wo-ieported was accomplished. Leave blank in in-house reports. Block 9. Performing...34Research and Development Planning Summary," which identifies the program element, project, task area, and work unit or equivalent under which the work

  15. Quantifying Factors That Impact Riverbed Dynamic Permeability at a Riverbank Filtration Facility

    NASA Astrophysics Data System (ADS)

    Ulrich, C.; Hubbard, S. S.; Florsheim, J. L.; Rosenberry, D. O.; Borglin, S. E.; Zhang, Y.; Seymour, D.; Trotta, M.

    2012-12-01

    Previous modeling studies of the Wohler riverbank filtration system on the Russian River, California suggested that riverbed and aquifer permeability both influence the development of a pumping-induced unsaturated zone below the riverbed, which affects water produced through large radial water-supply collector wells that extend beneath and adjacent to the river. In particular, previous work suggests that riverbed permeability is influenced by interaction between pumping and river stage that is controlled by a downstream temporary inflatable dam during the summer low flow period. We hypothesize that raising the dam may instead lead to deposition of fine-grained sediment and/or accumulation of biota, both of which decrease riverbed permeability in the vicinity of the collector wells. To test this hypothesis, we are monitoring streambed permeability and seepage as a function of river stage and dam operation. We are using multiple methods to monitor the hydrological, sedimentological and geomorphic dynamics, including: seepage meters, sediment traps, cryogenic coring, ground penetrating radar, electrical resistance tomography, riverbed topography, piezometers, and thermistors. Here we discuss the use of this novel suite of methods to quantify dynamic riverbed permeability, how it relates to dam operation, and determine the key controls on permeability (i.e., biotic or abiotic). These results are expected to improve the overall understanding of riverbed permeability dynamics associated with Riverbank filtration. The results are also expected to be transferable to the project sponsors, the Sonoma County Water Agency, toward the development of an optimal pumping and dam operation schedule.

  16. 23 CFR 630.803 - Procedures.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... PROCEDURES Bridges on Federal Dams § 630.803 Procedures. A State's application to qualify a project under... part of the agency constructing the dam to provide such bridge or approach roads to satisfy a legal...

  17. 23 CFR 630.803 - Procedures.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... PROCEDURES Bridges on Federal Dams § 630.803 Procedures. A State's application to qualify a project under... part of the agency constructing the dam to provide such bridge or approach roads to satisfy a legal...

  18. Assessment of Subyearling Chinook Salmon Survival through the Federal Hydropower Projects in the Main-Stem Columbia River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skalski, J. R.; Eppard, M. B.; Ploskey, Gene R.

    2014-07-11

    High survival through hydropower projects is an essential element in the recovery of salmonid populations in the Columbia River. It is also a regulatory requirement under the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp) established under the Endangered Species Act. It requires dam passage survival to be ≥0.96 and ≥0.93 for spring and summer outmigrating juvenile salmonids, respectively, and estimated with a standard error ≤ 0.015. An innovative virtual/paired-release design was used to estimate dam passage survival, defined as survival from the face of a dam to the tailrace mixing zone. A coordinated four-dam study was conductedmore » during the 2012 summer outmigration using 14,026 run-of-river subyearling Chinook salmon surgically implanted with acoustic micro-transmitter (AMT) tags released at 9 different locations, and monitored on 14 different detection arrays. Each of the four estimates of dam passage survival exceeded BiOp requirements with values ranging from 0.9414 to 0.9747 and standard errors, 0.0031 to 0.0114. Two consecutive years of survival estimates must meet BiOp standards in order for a hydropower project to be in compliance with recovery requirements for a fish stock.« less

  19. ShakeNet: a portable wireless sensor network for instrumenting large civil structures

    USGS Publications Warehouse

    Kohler, Monica D.; Hao, Shuai; Mishra, Nilesh; Govindan, Ramesh; Nigbor, Robert

    2015-08-03

    We report our findings from a U.S. Geological Survey (USGS) National Earthquake Hazards Reduction Program-funded project to develop and test a wireless, portable, strong-motion network of up to 40 triaxial accelerometers for structural health monitoring. The overall goal of the project was to record ambient vibrations for several days from USGS-instrumented structures. Structural health monitoring has important applications in fields like civil engineering and the study of earthquakes. The emergence of wireless sensor networks provides a promising means to such applications. However, while most wireless sensor networks are still in the experimentation stage, very few take into consideration the realistic earthquake engineering application requirements. To collect comprehensive data for structural health monitoring for civil engineers, high-resolution vibration sensors and sufficient sampling rates should be adopted, which makes it challenging for current wireless sensor network technology in the following ways: processing capabilities, storage limit, and communication bandwidth. The wireless sensor network has to meet expectations set by wired sensor devices prevalent in the structural health monitoring community. For this project, we built and tested an application-realistic, commercially based, portable, wireless sensor network called ShakeNet for instrumentation of large civil structures, especially for buildings, bridges, or dams after earthquakes. Two to three people can deploy ShakeNet sensors within hours after an earthquake to measure the structural response of the building or bridge during aftershocks. ShakeNet involved the development of a new sensing platform (ShakeBox) running a software suite for networking, data collection, and monitoring. Deployments reported here on a tall building and a large dam were real-world tests of ShakeNet operation, and helped to refine both hardware and software. 

  20. 77 FR 73651 - North Star Hydro Services, CA LLC; Notice of Preliminary Permit Application Accepted for Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-11

    ...), proposing to study the feasibility of the Marble Bluff Dam Hydropower Project to be located at the U.S. Bureau of Reclamation's Marble Bluff dam on the Truckee River, near Nixon, Washoe County, Nevada. The... east of the existing spillway of the Marble Bluff dam. Flow diverted at the sluice gate would be used...

  1. 18 CFR 292.209 - Exceptions from requirements for hydroelectric small power production facilities located at a new...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... requirements for hydroelectric small power production facilities located at a new dam or diversion. 292.209... Exceptions from requirements for hydroelectric small power production facilities located at a new dam or... license or exemption is filed for a project located at a Government dam, as defined in section 3(10) of...

  2. 18 CFR 292.209 - Exceptions from requirements for hydroelectric small power production facilities located at a new...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... requirements for hydroelectric small power production facilities located at a new dam or diversion. 292.209... Exceptions from requirements for hydroelectric small power production facilities located at a new dam or... license or exemption is filed for a project located at a Government dam, as defined in section 3(10) of...

  3. 75 FR 13527 - Muskingum Valley Hydro, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ... the feasibility of the Paint Creek Dam Project No. 13633, to be located at the existing Paint Creek Dam on Paint Creek, in Highland County, Ohio. The Paint Creek Dam is owned and operated by the U.S.... Applicant Contact: Randall Smith, 4950 Frazeysburg Road, Zanesville, OH 43701, (740) 891-5424. [[Page 13528...

  4. 54. McMILLAN DAM Photographic copy of historic photo, May ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    54. McMILLAN DAM - Photographic copy of historic photo, May 5, 1938 (original print in '1938 Annual Report of the Carlsbad Project,' located at the Carlsbad Irrigation District offices, Carlsbad, New Mexico) photographer unknown 'McMILLAN HEADGATE OPEN AFTER COMPLETION' - Carlsbad Irrigation District, McMillan Dam, On Pecos River, 13 miles North of Carlsbad, Carlsbad, Eddy County, NM

  5. Studying and understanding the environmental impacts of the Three Gorges Dam in China

    NASA Astrophysics Data System (ADS)

    Schönbrodt-Stitt, Sarah; Stumpf, Felix; Schmidt, Karsten; Althaus, Paul; Bi, Renneng; Bieger, Katrin; Buzzo, Giovanni; Dumperth, Christian; Fohrer, Nicola; Rohn, Joachim; Strehmel, Alexander; Udelhoven, Thomas; Wei, Xiang; Zimmermann, Karsten; Scholten, Thomas

    2013-04-01

    Since its planning phase and its completion and start of operation in 2009, the Three Gorges Dam (TGD) at the Yangtze River, has been discussed in a controversial manner. Due to considerable resettlements along with the associated expansion of the infrastructure network and large-scale shifts in land use and management, the TGD in Central China is among the most prominent human-induced examples for large-scale environmental impacts. As a consequence of the rapid ecosystem changes, the region is largely characterized by an enormous boost of typical geo-risks such as soil erosion, mass movements, and diffuse sediment and matter fluxes into the reservoir. Within the joint research project YANGTZE-GEO, Chinese and German scientists jointly focus on the human-induced environmental changes in the reservoir of the TGD after the impoundment of the Yangtze River and its tributaries. An integrative approach was set up in order to combine multi-scale investigation methods and state-of-the-art techniques from soil science, geology, hydrology, geophysics, geodesy, remote sensing, and data survey and monitoring. By means of eco-hydrological and soil erosion modeling, geo-statistical approaches such as digital soil mapping and Artificial Neuronal Networks, spatially and temporally differentiated simulation of the water budget as well as the balance of diffuse matter such as phosphorus and sediment, three-dimensional dynamic modeling, seismoacoustics and terrestrial radarinterferometry, multi-temporal land use classification from recent and historical remote sensing data and laser scanning, the research aims at (i) the understanding of the mechanisms and anthropogenic and environmental control factors of the environmental changes in the highly dynamic region and (ii) the development of spatially explicit land use options and recommendations for a sustainable land use management. Finally, based on the integrate modelling, we aim at the conception of a monitoring- and measuring network and early-warning system including local and regional authorities. Thus, the studies will contribute to a better understanding of the dimensions and dynamics of the ecological consequences of such large dam projects at the Yangtze River and worldwide.

  6. Coralville Reservoir Water Quality Project

    DTIC Science & Technology

    2006-05-01

    Description of the Area and Scope of the Project The Coralville flood control dam is located in Johnson County, Iowa , about three miles north of Iowa City...out of the reservoir. USGS 05453100 Iowa River at Marengo, IA USGS 05453520 Iowa River below Coralville Dam near Coralville , IA max min average...26: Pesticides in Fish. Coralville Reservoir Water Quality Pesticides in Fish Reservoir (Near Lake McBride Spillway) Downstream ( Iowa

  7. 77 FR 68757 - Clean River Power MR-1, LLC; Clean River Power MR-2, LLC; Clean River Power MR-3, LLC; Clean...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ... environmental analysis at this time. n. The proposed Beverly Lock and Dam Water Power Project would be located... River; (3) two turbine-generator units providing a combined installed capacity of 3.0 megawatts (MW); (4... about 17,853 megawatt-hours (MWh). The proposed Devola Lock and Dam Water Power Project would be located...

  8. The arrangement of deformation monitoring project and analysis of monitoring data of a hydropower engineering safety monitoring system

    NASA Astrophysics Data System (ADS)

    Wang, Wanshun; Chen, Zhuo; Li, Xiuwen

    2018-03-01

    The safety monitoring is very important in the operation and management of water resources and hydropower projects. It is the important means to understand the dam running status, to ensure the dam safety, to safeguard people’s life and property security, and to make full use of engineering benefits. This paper introduces the arrangement of engineering safety monitoring system based on the example of a water resource control project. The monitoring results of each monitoring project are analyzed intensively to show the operating status of the monitoring system and to provide useful reference for similar projects.

  9. Seasonal And Intra-seasonal Hydrological Responses To Change In Climate Pattern And Small Dams of the Faga Watershed In Burkina-Faso

    NASA Astrophysics Data System (ADS)

    Mamounata, K.

    2015-12-01

    In response to the increasing demand for food linked to the substantial growth of population in Burkina Faso, irrigation has been widely used by the farming community to support agricultural production. Thus a promising option for water resources development in such a context is to increase the number of small dams. It is assumed that the great number of small dams may have effect on sub-basins' hydrological dynamic. This study aims to assess the seasonal and the intra-seasonal change in river basins hydrology with the case study of the Faga River sub-basin located in Burkina-Faso, West Africa, using Water Simulation Model (WaSiM). For this watershed the number of small dams is slightly very important (More than 60) and their impact on the watershed runoff has been estimated simultaneously with the change in climate pattern. The coefficient of variation for rainfall in this sub-basin from 1982 to 2010 is 0.097 and the stream flow presents a seasonal average of 25.58Km3 per month for the same period. The intra-seasonal climate variation for the same period is estimated at 0.087 in the scenario where any dam has not been considered. Results based on simulation including the five important dams over the sub-basin show that the overall effect of small dams is on average a 20.76% in runoff. Projections using the Representative Concentration Pathways (RCP) 4.5 and 8.5 climate scenarios with increase of 25% of dams' number show a probable decrease of about 29.54% and 35.25% of the average during the next fifty years runoff. The study findings show that small dams reduce significantly the runoff from their watershed and the uncertainties related to the sustainability of the resource seems to be increasing during the same period. Therefore, despite the very large number of water storage infrastructures, reservoirs operating strategies have to be achieved for water sustainability within the Faga sub-basin.

  10. 75 FR 50777 - Minidoka Dam Spillway Replacement, Minidoka County, ID

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-17

    ... INFORMATION: Minidoka Dam impounds Lake Walcott and is a feature of Reclamation's Minidoka Project. They are... numerous locations. In addition, the potential for ice damage to the stoplog piers requires that reservoir...

  11. Applicability of the World Commission on Dams' recommendations for public financial institutions: a case for Japanese yen loan assistance

    NASA Astrophysics Data System (ADS)

    Fujikura, Ryo; Nakayama, Mikiyasu; Mori, Katsuhiko

    2003-10-01

    The World Commission on Dams (WCD) published Dams and Development as its only and final report in November 2000. Identifying core values and strategic priorities, the report proposed internationally acceptable criteria and standards. Despite the fact that the WCD itself did not intend that the report be used as a blueprint, many non-governmental organizations strongly support the report and the criteria and guidelines recommended in the report, and demand that they be adopted in their current form by funding organizations. The WCD criteria and guidelines were found to have several methodological problems, and it appears impossible to apply the recommended criteria and guidelines as they stand. This study examines the applicability of the WCD criteria and guidelines for public financing institutes involved in overseas development assistance and proposes necessary measures to increase their applicability in order to realize core values and strategic priorities. The character of and relationships among key decision points, strategic priorities, criteria, and guidelines should be clarified. Then, this study examines the applicability of the WCD recommendations for Japanese public financial institutions, as Japan has nearly become the sole bilateral donor providing financial assistance (loans) for large dam construction projects. The public financial institution can only be mandated to check the legal status of the decisions made regarding Stages 1 and 2 which are the first two of the five successive stages from the planning to the operation of the dam project. Needs assessment and alternative selection are expected to be conducted at Stage 1 and 2 respectively. The Japan Bank for International Cooperation (JBIC), which deals with the Japanese concessional yen loan, and the Japan International Cooperation Agency (JICA), which is in charge of technical assistance, are featured in this study. As for the Japanese concessional yen loan assistance, there are other inherent problems for adopting the recommendations. First, it is not clear which government agency officially and substantially carries the decision-making responsibility. Second, JBIC may be involved only when Stage 2 has been completed, and it should be decided and clarified to what extent the Japanese government, as well as JIBC and JICA, should be involved in Stages 1 and 2 (2A: intensive studies on alternatives) of a project for which funding is requested. These issues need to be solved if the Japanese government wishes to adopt the recommendations. Copyright

  12. Geomorphology of the Elwha River and its Delta: Chapter 3 in Coastal habitats of the Elwha River, Washington--biological and physical patterns and processes prior to dam removal

    USGS Publications Warehouse

    Warrick, Jonathan A.; Draut, Amy E.; McHenry, Michael L.; Miller, Ian M.; Magirl, Christopher S.; Beirne, Matthew M.; Stevens, Andrew Stevens; Logan, Joshua B.; Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.

    2011-01-01

    The removal of two dams on the Elwha River will introduce massive volumes of sediment to the river, and this increase in sediment supply in the river will likely modify the shapes and forms of the river and coastal landscape downstream of the dams. This chapter provides the geologic and geomorphologic background of the Olympic Peninsula and the Elwha River with emphasis on the present river and shoreline. The Elwha River watershed was formed through the uplift of the Olympic Mountains, erosion and movement of sediment throughout the watershed from glaciers, and downslope movement of sediment from gravitational and hydrologic forces. Recent alterations to the river morphology and sediment movement through the river include the two large dams slated to be removed in 2011, but also include repeated bulldozing of channel boundaries, construction and maintenance of flood plain levees, a weir and diversion channel for water supply purposes, and engineered log jams to help enhance river habitat for salmon. The shoreline of the Elwha River delta has changed in location by several kilometers during the past 14,000 years, in response to variations in the local sea-level of approximately 150 meters. Erosion of the shoreline has accelerated during the past 80 years, resulting in landward movement of the beach by more than 200 meters near the river mouth, net reduction in the area of coastal wetlands, and the development of an armored low-tide terrace of the beach consisting primarily of cobble. Changes to the river and coastal morphology during and following dam removal may be substantial, and consistent, long-term monitoring of these systems will be needed to characterize the effects of the dam removal project.

  13. Establishing spatial trends in water chemistry and stable isotopes (δ15N and δ13C) in the Elwha River prior to dam removal and salmon recolonization

    USGS Publications Warehouse

    Duda, J.J.; Coe, H.J.; Morley, S.A.; Kloehn, K.K.

    2011-01-01

    Two high-head dams on the Elwha River in Washington State (USA) have changed the migratory patterns of resident and anadromous fish, limiting Pacific salmon to the lower 7.9 km of a river that historically supported large Pacific salmon runs. To document the effects of the dams prior to their removal, we measured carbon and nitrogen stable isotope ratios of primary producers, benthic macroinvertebrates, and fish, and water chemistry above, between and below the dams. We found that δ15N was significantly higher in fish, stoneflies, black flies, periphyton and macroalgae where salmon still have access. Fish and chloroperlid stoneflies were enriched in δ13C, but the values were more variable than in δ15N. For some taxa, there were also differences between the two river sections that lack salmon, suggesting that factors other than marine-derived nutrients are structuring longitudinal isotopic profiles. Consistent with trophic theory, macroalgae had the lowest δ15N, followed by periphyton, macroinvertebrates and fish, with a range of 6.9, 6.2 and 7.7‰ below, between, and above the dams, respectively. Water chemistry analyses confirmed earlier reports that the river is oligotrophic. Phosphorous levels in the Elwha were lower than those found in other regional rivers, with significant differences among regulated, unregulated and reference sections. The removal of these dams, among the largest of such projects ever attempted, is expected to facilitate the return of salmon and their marine-derived nutrients (MDN) throughout the watershed, possibly altering the food web structure, nutrient levels and stable isotope values that we documented.

  14. Upstream effects of dams on alluvial channels: state-of-the-art and future challenges

    NASA Astrophysics Data System (ADS)

    Liro, Maciej

    2017-04-01

    More than 50,000 large dams (with the height above 15 m) operate all over the world and, thus, they significantly disturb water and sediment transport in river systems. These disturbances are recognized as one of the most important factors shaping river morphology in the Anthropocene. Downstream effects of dams have been well documented in numerous case studies and supported by predictions from existing models. In contrast, little is known on the upstream effects of dams on alluvial channels. This review highlights the lack of studies on sedimentological, hydromorphological and biogeomorphological adjustments of alluvial rivers in the base-level raised zones of backwater upstream of dam reservoirs where water level fluctuations occur. Up to date, it has been documented that backwater effects may facilitate fine and coarse sediment deposition, increase groundwater level, provide higher and more frequent channel and floodplain inundation and lead to significant morphological changes. But there have been no studies quantifying short- and long-term consequences of these disturbances for the hydromorphological and biogeomorphological feedbacks that control development of alluvial channels. Some recent studies carried out on gravel-bed and fine-grained bed rivers show that the above mentioned disturbances facilitate vegetation expansion on exposed channel sediments and floodplain influencing river morphology, which suggests that backwater area of alluvial rivers may be treated as the hotspot of bio-geomorphological changes in a fluvial system. To set the stage for future research on upstream effects of dams, this work presents the existing state-of-art and proposes some hypotheses which may be tested in future studies. This study was carried out within the scope of the Research Project 2015/19/N/ST10/01526 financed by the National Science Centre of Poland

  15. Geomorphology and American dams: The scientific, social, and economic context

    NASA Astrophysics Data System (ADS)

    Graf, William L.

    2005-10-01

    American geomorphologic research related to dams is embedded in a complicated context of science, policy, economics, and culture. Research into the downstream effects of large dams has progressed to the point of theory-building, but generalization and theory-building are from this research because (1) it is highly focused on a few locations, (2) it concerns mostly very large dams rather than a representative sample of sizes, (3) the available record of effects is too short to inform us on long-term changes, (4) the reversibility of changes imposed by dam installation and operation is unknown, and (5) coordinated funding for the needed research is scarce. In the scientific context, present research is embedded in a history of geomorphology in government service, with indistinct boundaries between "basic and applied" research. The federal policy that most strongly influences present geomorphological investigations connected with dams is related to habitat for endangered species, because the biological aspects of ecosystems are directly dependent on the substrate formed by the sediments and landforms that are influenced by dams. The economic context for research includes large amounts of public funds for river restoration, along with substantial private investments in dams; and geomorphology is central to these expensive issues. The cultural context for research is highly contentious and dominated by advocacy procedures that include intense scrutiny of any geomorphologic research related to dams. Advocates are likely to use the products of geomorphological research to make cases for their own positions.

  16. Risk Analysis of Earth-Rock Dam Failures Based on Fuzzy Event Tree Method

    PubMed Central

    Fu, Xiao; Gu, Chong-Shi; Su, Huai-Zhi; Qin, Xiang-Nan

    2018-01-01

    Earth-rock dams make up a large proportion of the dams in China, and their failures can induce great risks. In this paper, the risks associated with earth-rock dam failure are analyzed from two aspects: the probability of a dam failure and the resulting life loss. An event tree analysis method based on fuzzy set theory is proposed to calculate the dam failure probability. The life loss associated with dam failure is summarized and refined to be suitable for Chinese dams from previous studies. The proposed method and model are applied to one reservoir dam in Jiangxi province. Both engineering and non-engineering measures are proposed to reduce the risk. The risk analysis of the dam failure has essential significance for reducing dam failure probability and improving dam risk management level. PMID:29710824

  17. 76 FR 44899 - FFP Missouri 17, LLC; BOST2 Hydroelectric LLC; Notice of Competing Preliminary Permit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-27

    ... at the U.S. Army Corps of Engineers' (Corps) Columbia Lock & Dam, located on the Ouachita River near... & Dam Hydroelectric Project No. 13824-000 would consist of: (1) Two to four compact bulb turbines, with... Dam; (2) a 40-foot x 60-foot control building located on the South Carolina side of the river; and (3...

  18. 77 FR 62511 - Soule Hydro LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-15

    ...,400-foot-long conduit tunnel; (5) a powerhouse with approximate dimensions of 80 feet wide by 160 feet.... The proposed project would consist of the following: (1) A 265- foot-high, 903-foot-long Main dam; (2) a 265-foot-high, 2,024 feet-long Saddle dam adjacent to the main dam; (3) a storage reservoir with a...

  19. 9. Photographic copy of photograph. (Source: National Archives Photo Collection, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Photographic copy of photograph. (Source: National Archives Photo Collection, Denver, NN-366-114, Box 12, Photo 4464) Rebuilt Rock Creek Diversion Dam. Intake structure for canal is at left with suliceway and overflow section to right. April 24, 1950. - Bitter Root Irrigation Project, Rock Creek Diversion Dam, One mile east of Como Dam, west of U.S. Highway 93, Darby, Ravalli County, MT

  20. 24. DETAIL EXTERIOR VIEW LOOKING EAST, SHOWING FISH LADDER AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. DETAIL EXTERIOR VIEW LOOKING EAST, SHOWING FISH LADDER AT NORTH END OF DAM/SPILLWAY; WATER FLOWING THROUGH FISH LADDER IS VISIBLE AT BOTTOM. - Bonneville Project, Bonneville Dam, Columbia River, Bonneville, Multnomah County, OR

  1. 43 CFR 418.23 - Diversion of Rock Dam Ditch water.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Operations and Management § 418.23 Diversion of Rock Dam Ditch water. Project water may be diverted directly... Lahontan Reservoir. Such diversions will require the prior written approval of the Bureau and be used in...

  2. 43 CFR 418.23 - Diversion of Rock Dam Ditch water.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Operations and Management § 418.23 Diversion of Rock Dam Ditch water. Project water may be diverted directly... Lahontan Reservoir. Such diversions will require the prior written approval of the Bureau and be used in...

  3. Assessing the influence of Environmental Impact Assessments on science and policy: an analysis of the Three Gorges Project.

    PubMed

    Tullos, Desiree

    2009-07-01

    The need to understand and minimize negative environmental outcomes associated with large dams has both contributed to and benefited from the introduction and subsequent improvements in the Environmental Impact Assessment (EIA) process. However, several limitations in the EIA process remain, including those associated with the uncertainty and significance of impact projections. These limitations are directly related to the feedback between science and policy, with information gaps in scientific understanding discovered through the EIA process contributing valuable recommendations on critical focus areas for prioritizing and funding research within the fields of ecological conservation and river engineering. This paper presents an analysis of the EIA process for the Three Gorges Project (TGP) in China as a case study for evaluating this feedback between the EIA and science and policy. For one of the best-studied public development projects in the world, this paper presents an investigation into whether patterns exist between the scientific interest (via number of publications) in environmental impacts and (a) the identification of impacts as uncertain or priority by the EIA, (b) decisions or political events associated with the dam, and (c) impact type. This analysis includes the compilation of literature on TGP, characterization of ecosystem interactions and responses to TGP through a hierarchy of impacts, coding of EIA impacts as "uncertain" impacts that require additional study and "priority" impacts that have particularly high significance, mapping of an event chronology to relate policies, institutional changes, and decisions about TGP as "events" that could influence the focus and intensity of scientific investigation, and analysis of the number of publications by impact type and order within the impact hierarchy. From these analyses, it appears that the availability and consistency of scientific information limit the accuracy of environmental impact projections. These analyses also suggest a lack of direct feedback between the EIA process and emerging science, as indicated by the failure of literature to focus on issues related to the design and management of TGP, ultimately challenging the environmental sustainability of the project. While the EIA process has enormous potential for improving both the basic sciences and the planning and sustainability of hydrodevelopment, important institutional changes need to occur for this potential to be realized. This paper concludes with recommendations about those institutional changes needed to improve the feedback between the science and policy, and ultimately the environmental sustainability, of large dams.

  4. Distributional Impacts of Large Dams in China

    NASA Astrophysics Data System (ADS)

    Bao, X.

    2010-12-01

    Dams on a river are believed to have heterogeneous impacts to the upstream, local and downstream areas. Generally, irrigation dams will bring benefits to the downstream by facilitating more irrigation, while it will bring negative impacts to upstream due to inundation or no impact to local area as a combination result of population dislocation and economic benefits. This paper checked the impacts of large dams (above 100 meters) on the upstream, downstream and local area, using 2000-2008 county level data in China. Robust heterogeneous impacts of different categories of dams (mainly dams serving for irrigation, hydropower, or other purposes) were found on different areas, using IV regression approaches. Dams higher than 100 meters are significantly and heterogeneously impacting agricultural production, urban employment and rural per capita income. Its beneficial impact on agriculture production is significant for downstream especially in continuous drought years. But its impacts on social welfare indicators, such as primary school enrollment and hospital beds, are not heterogeneously different across regions.

  5. The short-term impacts of development-induced displacement on wealth and subjective well-being in the Brazilian Amazon

    PubMed Central

    RANDELL, HEATHER

    2017-01-01

    Summary Displacement due to development projects such as dams, mines, and urban infrastructure often leads to livelihood decline among affected communities. The challenge, therefore, lies in implementing projects that achieve national or regional development goals while also generating positive social and economic outcomes for displaced populations. This paper uses a longitudinal, mixed-methods design to understand the short-term changes in wealth and subjective well-being of households displaced due to construction of the Belo Monte Dam in the Brazilian Amazon. The households were compensated by either cash or credit for their lost land and assets, and were then responsible for finding and purchasing new property. Using pre- and post-displacement household survey and semi-structured interview data, as well as data from a small comparison group, I find that wealth increased for the majority of the study population and that socioeconomic inequality decreased, as poorer households experienced greater improvements in housing conditions, assets, and property ownership. In addition, subjective well-being improved for most households, particularly among those who did not own land at baseline, those who gained assets such as vehicles, those who remained closer to the original study area, and those who remained in close proximity to other households from the study population. Moving to an urban destination was strongly associated with declines in well-being, as was moving far from family or friends. These results suggest that investing sufficient resources in a compensation-based resettlement program can benefit households displaced by large infrastructure projects in the short term, but additional data collection is needed after the completion of dam construction to determine whether these benefits are sustained over the longer term. PMID:28316364

  6. Cleaning up the big muddy: A meta-synthesis of the research on the social impact of dams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirchherr, Julian, E-mail: julian.kirchherr@sant.ox.ac.uk; Pohlner, Huw, E-mail: huw.pohlner@oxfordalumni.org; Charles, Katrina J., E-mail: katrina.charles@ouce.ox.ac.uk

    Scholars have been exploring the social impacts of dams for over 50 years, but a lack of systematic approaches has resulted in many research gaps remaining. This paper presents the first systematic review of the literature on the social impacts of dams. For this purpose, we built a sample of 217 articles published in the past 25 years via key word searches, expert consultations and bibliography reviews. All articles were assessed against an aggregate matrix framework on the social impact of dams, which combines 27 existing frameworks. We find that existing literature is highly biased with regard to: perspective (45%more » negative versus 5% positive); dam size (large dams are overrepresented); spatial focus (on the resettlement area); and temporal focus (5–10 years ex-post resettlement). Additionally, there is bias in terms of whose views are included, with those of dam developers rarely examined by scholars. These gaps need to be addressed in future research to advance our knowledge on the social impact of dams to support more transparency in the trade-offs being made in dam development decisions. - Highlights: • Very first systematic review of the research on dams' social impact • Biases in the literature identified, e. g. large dams over-studied, too much focus solely on resettlement area impacts • Implications of these biases for understanding of the topic are discussed.« less

  7. National Program for Inspection of Non-Federal Dams. Miller Pond Dam (CT 00154), Thames River Basin, Waterford, Connecticut. Phase I Inspection Report.

    DTIC Science & Technology

    1980-08-01

    Phase I Investigation; however, the investigation is intended to identify any need for such studies . In reviewing this report, it should be realized that...need for more detailed hydrologic and hydraulic studies , considering the size of the dam, its general condition and the downstream damage potential. The...and/or further study . 1-1 I 1.2 DESCRIPTION OF PROJECT a. Location - The dam is located on Hunt’s Brook in a rural area of the Town of Waterford

  8. Santa Ana River Design Memorandum Number 1. Phase 2. GDM on the Santa Ana River Mainstem, Including Santiago Creek. Volume 7. Hydrology

    DTIC Science & Technology

    1988-08-01

    current design of Seven Oaks Dam that would extend use of the dam beyond the expected project life of 100 years, is to market the sediment that...aggregate). Marketing the sediment deposited behind the dam would serve the dual purpose of extending the useful life of the dam by restoring reservoir...o ..... UCG 𔃿P 0- 54 Pine Tree Canyon 12 .Lies north of Mojave ............. 35.0 59,500 1: Aug 1931 )5 Cinermn Creek near Tehachapi

  9. Delayed effects of flood control on a flood-dependent riparian forest

    USGS Publications Warehouse

    Katz, Gabrielle L.; Friedman, Jonathan M.; Beatty, Susan W.

    2005-01-01

    The downstream effects of dams on riparian forests are strongly mediated by the character and magnitude of adjustment of the fluvial–geomorphic system. To examine the effects of flow regulation on sand-bed streams in eastern Colorado, we studied the riparian forest on three river segments, the dam-regulated South Fork Republican River downstream of Bonny Dam, the unregulated South Fork Republican River upstream of Bonny Dam, and the unregulated Arikaree River. Although Bonny Dam significantly reduced peak and mean discharge downstream since 1951, there was little difference in forest structure between the regulated and unregulated segments. On all river segments, the riparian forest was dominated by the native pioneer tree, Populus deltoides, which became established during a period of channel narrowing beginning after the 1935 flood of record and ending by 1965. The nonnative Elaeagnus angustifolia was present on all river segments, with recruitment ongoing. The lack of contrast in forest structure between regulated and unregulated reaches resulted primarily from the fact that no large floods occurred on any of the study segments since dam construction. Most of the riparian forest in the study area was located on the broad narrowing terrace, which was rarely inundated on the unregulated segments, resulting in little contrast with the regulated segment. A minor dam effect occurred on the small modern floodplain, which was actively disturbed on the unregulated segments, but not on the regulated segments. Although Bonny Dam had the potential to significantly influence downstream riparian ecosystems, this influence had not been expressed, and may never be if a large flood does not occur within the lifetime of the dam. Minor dam effects to riparian systems can be expected downstream of large dams in some settings, including the present example in which there was insufficient time for the dam effects to by fully expressed.

  10. Dams, Hydrology and Risk in Future River Management

    NASA Astrophysics Data System (ADS)

    Wegner, D. L.

    2017-12-01

    Across America there are over 80,000 large to medium dams and globally the number is in excess of 800,000. Currently there are over 1,400 dams and diversion structures being planned or under construction globally. In addition to these documented dams there are thousands of small dams populating watersheds. Governments, agencies, native tribes, private owners and regulators all have a common interest in safe dams. Often dam safety is characterized as reducing structural risk while providing for maximum operational flexibility. In the 1970's there were a number of large and small dam failures in the United States. These failures prompted the federal government to issue voluntary dam safety guidelines. These guidelines were based on historic information incorporated into a risk assessment process to analyze, evaluate and manage risk with the goal to improve the quality of and support of dam management and safety decisions. We conclude that historic and new risks need to be integrated into dam management to insure adequate safety and operational flexibility. A recent assessment of the future role of dams in the United States premises that future costs such as maintenance or removal beyond the economic design life have not been factored into the long-term operations or relicensing of dams. The converging risks associated with aging water storage infrastructure, multiple dams within watersheds and uncertainty in demands policy revisions and an updated strategic approach to dam safety. Decisions regarding the future of dams in the United States may, in turn, influence regional water planning and management. Leaders in Congress and in the states need to implement a comprehensive national water assessment and a formal analysis of the role dams play in our water future. A research and national policy agenda is proposed to assess future impacts and the design, operation, and management of watersheds and dams.

  11. Lower Methow tributaries intensive effectiveness monitoring study. Interim report

    USGS Publications Warehouse

    Martens, Kyle D.; Connolly, Patrick J.

    2008-01-01

    Actions have been taken to replace diversion dams in lower Beaver Creek with a series of rock vortex weirs. Some of these diversion dams have been in place for over 100 years, and they have impaired or completely blocked upstream migration of fish. Three diversion dams were replaced in 2003 (Lower Stokes, Thurlow Transfer, and Upper Stokes), and a forth diversion dam was replaced in 2004 (Fort-Thurlow). These vortex weirs were designed and installed under the supervision of U.S. Bureau of Reclamation (BOR) engineers and completed in accordance to National Marine Fisheries Service (NMFS) and Washington Department of Fisheries and Wildlife (WDFW) fish passage criteria. The projects were designed to meet fish species recovery needs described by the Endangered Species Act (ESA) and the “BiOp” issued by NMFS (2000a). Since no specific guidelines have been identified to date specifically addressing diversion dams, WDFW and NMFS guidelines are being considered as the target design and performance criteria for the sites monitored as part of this project. Where used, the vortex weirs were designed to maintain irrigation diversion capabilities while improving fish passage.

  12. Combined effects of multiple large-scale hydraulic engineering on water stages in the middle Yangtze River

    NASA Astrophysics Data System (ADS)

    Han, Jianqiao; Sun, Zhaohua; Li, Yitian; Yang, Yunping

    2017-12-01

    Investigation of water stages influenced by human projects provides better understanding of riverine geomorphological processes and river management. Based on hydrological data collected over 60 years, an extreme stage-extreme discharge analysis and a specific-gauge analysis were performed to research the individual and combined effects of multiple engineering projects on a long-term time series of water stages in the middle Yangtze River. Conclusions are as follows. (1) In accordance with the operation years of the Jingjiang cutoff (CF), the Gezhouba Dam (GD), and the Three Gorges Dam (TGD), the time series (1955-2012) was divided into periods of P1 (1955-1970), P2 (1971-1980), P3 (1981-2002), and P4 (2003 - 2012). Water stage changes during P1-P2, P2-P3, and P3-P4 are varied because of the differences in the types and scales of these projects. The stage decreased at Shashi and increased at Luoshan owing to the operation of the CF. Additionally, after the GD was constructed, the low-flow stage decreased in the upstream reach of Chenglingji and increased in its downstream reach, whereas the flood stage merely decreased at Yichang. Moreover, the TGD resulted in an overall decrease in low-flow stages and a limited increase in flood stages because of the differential adjustments of river geometry and resistance between the low-flow channel and flood channel. (2) Although differences existed in the scouring mechanisms between streamwise erosion associated with dams and headward erosion associated with cutoffs, particular bed textures in the gravel reach led to a similar adjustment that stage reduction at Shashi was the greatest of all stations, which caused the flow slope and sediment transport capacity to decrease in the sandy reach. (3) These engineering projects caused changes in average low-flow and flood stages that varied between Yichang (- 1.58 and - 0.08 m respectively), Shashi (- 3.54 and - 0.12 m), and Luoshan (1.15 and 0.97 m) from P1 to P4. However, less influence was observed at Hankou owing to its remote location and the short impoundment time of the TGD. (4) Potentially detrimental decreases in low-flow stages and increases in flood stages should be monitored and managed in the future. Our results are of practical significance for river management and the evaluation of the influences of large-scale anthropogenic activities on the hydrological regimes of large rivers.

  13. Report on an Archeological Survey of Five Local Protection Project Dams and Associated Drainage and Diversion Channels in Northwest El Paso, Texas.

    DTIC Science & Technology

    1976-09-30

    r AD-A126 989 REPORTTORN AN ARCHEOLOGICAL SURVEY 0F FIE LOCAL PROTECTION PROJECT CAMS A..U) EL PASO CENTENNIA MUSEUM TX R E GERALD 30 SEP 76 DACW47-6...ARCHEOLOGICAL SURVEY OF FIVE LOCAL PROTECTION PROJECT DAMS AND ASSOCIATED DRAINAGE AND DIVERSION CHANNELS IN NORTHWEST EL PASO, TEXAS By REX E. GERALD, Ph.D...gchelogical. Survey of Five Local9/07___Protection Dand Associated Drainage and Diversion a Channels in Northwest El Paso, Texas Gerald, Rex E

  14. Effects of Climate Change and Deforestation on the Amazon's Hydrological Cycle Will Require Interventions to Hydropower Planning in Brazil

    NASA Astrophysics Data System (ADS)

    Arias, M. E.; Farinosi, F.; Lee, E.; Livino, A.; Moorcroft, P. R.

    2016-12-01

    Brazil is the 2nd largest hydropower producer in the world, and this energy source will continue to be a priority in the country for the foreseeable decades. Yet, climate change is expected to alter the country's hydrological regime, in particular in the Amazon where most new hydropower development is occurring. In order to better assess the potential of hydropower projects in decades to come, it is important to evaluate how future hydrological regimes will affect their performance and suitability. This study quantifies the impacts of climate change and land use conversion on hydropower generation, and identifies mechanisms that could help energy planners to account for future changes. Using the largest network of dams in Brazil's national portfolio within a single watershed, the Tapaj's River, this study connects global and regional future environmental projections to daily river flows and operations of 37 dams with an overall potential capacity of 29.4 GW. We found that climate change could decrease hydropower potential by 477-665 MW (-6 to -8% from historical conditions) during the dry season, a critical loss since dams are expected to operate at only one third of capacity during this perioddue to the limited reservoir volume of most projects in the Amazon lowlands. Furthermore, deforestation is expected to increase the inter-annual variability in hydropower potential from 2,798 for baseline conditions to 3,764-3,899 (+967-1102) MW under future scenarios for the 2040s. Consideration of future hydrological conditions on individual dams showed that the magnitude and uncertainty of losses could be greater than 30 MW -equivalent to the total potential of some dams in the inventory- in 11 of the projects studied. Future hydrological conditions could also delay the period when maximum daily generation occurs by 22-29 days, which could have important implications to energy planning in Brazil because these run-of-river dams would no longer be able to meet the country's seasonal peak demand. This information on future changes to individual dams' performance could feed directly into the project selection process in order to adapt designs and operations to ensure the greatest benefits and least impacts from hydropower in the long term.

  15. Riparian Vegetation Encroachment Ratios in rivers below large Dams

    NASA Astrophysics Data System (ADS)

    Garcia de Jalón, Diego; Martínez-Fernández, Vanesa; González del Tánago, Marta

    2017-04-01

    Large Dams and reservoirs change the natural flow regime and consequently cause many alterations in riparian vegetation dynamics which may be assessed at different spatial and temporal scales. In Mediterranean regions flow regulation is frequently associated with irrigation. Regulated rivers with this purpose very often show reduced discharges during the wet season when the reservoir is being filled and increased discharges during the dry season when irrigation takes place. This type of regulation frequently promotes riparian vegetation growth as soil moisture levels are increased during summer when a natural drought would otherwise limit its growth. Additionally, flow regulation by large dams promotes the aging of late seral riparian vegetation reducing the frequency of flood disturbance and consequently, the potential recruitment of pioneer species. In this work we study the response of woody riparian vegetation to flow regulation by large dams in four rivers from Central Spain: Jarama, Manzanares, Guadalix and Alberche. The aim is to quantify the annual vegetation encroachment ratios and to develop a model to understand the main controlling factors, such as floodplain and channel traits; flow regulation intensity; type of regulation; present vegetation canopy; distance to the dam; and time since dam commissioning. A temporal comparison using aerial photographs from 1956, 1966, 1972, 1991, 2011 and 2014 was done in thirteen river reaches downstream from large dams, to evaluate their morphological evolution.. Floodplain dimensions and channel and riparian vegetation changes were assessed by comparing different pre-dam and post-dam conditions. Recent coloured photographs with 0.5 m spatial resolution and older black-and-white photographs at 1:33 000 spatial scale were supplied by the National Geographic Institute of Spain (www.ign.es) and the Statistical Institute (www.madrid.org/nomecalles/Inicio.icm) from Madrid Community. Similar visual scales were used to cope with different air photographs resolution. Results show a generalized natural vegetation encroachment process. Two exceptions were found associated with farming (Jarama 3) and poplar plantation (Alberche 1) that occupied riparian soils.. Annual encroachment ratios, range from 1 to 55 Ha/km, with a mean value of 12 Ha per km of river length. Higher values are found in the lowest reaches, which are far from the dam (5 cases), and also in the years following the beginning of dam operation. However, other reaches showed a delay of several years in the encroaching process, likely associated to scarcity or absence of initial woody vegetation at the time when dam started working.

  16. Formation and failure of volcanic debris dams in the Chakachatna River valley associated with eruptions of the Spurr volcanic complex, Alaska

    USGS Publications Warehouse

    Waythomas, C.F.

    2001-01-01

    The formation of lahars and a debris avalanche during Holocene eruptions of the Spurr volcanic complex in south-central Alaska have led to the development of volcanic debris dams in the Chakachatna River valley. Debris dams composed of lahar and debris-avalanche deposits formed at least five times in the last 8000-10,000 years and most recently during eruptions of Crater Peak vent in 1953 and 1992. Water impounded by a large debris avalanche of early Holocene (?) age may have destabilized an upstream glacier-dammed lake causing a catastrophic flood on the Chakachatna River. A large alluvial fan just downstream of the debris-avalanche deposit is strewn with boulders and blocks and is probably the deposit generated by this flood. Application of a physically based dam-break model yields estimates of peak discharge (Qp) attained during failure of the debris-avalanche dam in the range 104 < Qp < 106 m3 s-1 for plausible breach erosion rates of 10-100 m h-1. Smaller, short-lived, lahar dams that formed during historical eruptions in 1953, and 1992, impounded smaller lakes in the upper Chakachatna River valley and peak flows attained during failure of these volcanic debris dams were in the range 103 < Qp < 104 m3 s-1 for plausible breach erosion rates. Volcanic debris dams have formed at other volcanoes in the Cook Inlet region, Aleutian arc, and Wrangell Mountains but apparently did not fail rapidly or result in large or catastrophic outflows. Steep valley topography and frequent eruptions at volcanoes in this region make for significant hazards associated with the formation and failure of volcanic debris dams. Published by Elsevier Science B.V.

  17. Survey of beaver-related restoration practices in rangeland streams of the western USA

    USGS Publications Warehouse

    Pilliod, David S.; Rohde, Ashley T.; Charnley, Susan; Davee, Rachael R; Dunham, Jason B.; Gosnell, Hannah; Grant, Gordon E.; Hausner, Mark B.; Huntington, Justin L.; Nash, Caroline

    2018-01-01

    Poor condition of many streams and concerns about future droughts in the arid and semi-arid western USA have motivated novel restoration strategies aimed at accelerating recovery and increasing water resources. Translocation of beavers into formerly occupied habitats, restoration activities encouraging beaver recolonization, and instream structures mimicking the effects of beaver dams are restoration alternatives that have recently gained popularity because of their potential socioeconomic and ecological benefits. However, beaver dams and dam-like structures also harbor a history of social conflict. Hence, we identified a need to assess the use of beaver-related restoration projects in western rangelands to increase awareness and accountability, and identify gaps in scientific knowledge. We inventoried 97 projects implemented by 32 organizations, most in the last 10 years. We found that beaver-related stream restoration projects undertaken mostly involved the relocation of nuisance beavers. The most common goal was to store water, either with beaver dams or artificial structures. Beavers were often moved without regard to genetics, disease, or potential conflicts with nearby landowners. Few projects included post-implementation monitoring or planned for longer term issues, such as what happens when beavers abandon a site or when beaver dams or structures breach. Human dimensions were rarely considered and water rights and other issues were mostly unresolved or addressed through ad-hoc agreements. We conclude that the practice and implementation of beaver-related restoration has outpaced research on its efficacy and best practices. Further scientific research is necessary, especially research that informs the establishment of clear guidelines for best practices.

  18. Survey of Beaver-related Restoration Practices in Rangeland Streams of the Western USA.

    PubMed

    Pilliod, David S; Rohde, Ashley T; Charnley, Susan; Davee, Rachael R; Dunham, Jason B; Gosnell, Hannah; Grant, Gordon E; Hausner, Mark B; Huntington, Justin L; Nash, Caroline

    2018-01-01

    Poor condition of many streams and concerns about future droughts in the arid and semi-arid western USA have motivated novel restoration strategies aimed at accelerating recovery and increasing water resources. Translocation of beavers into formerly occupied habitats, restoration activities encouraging beaver recolonization, and instream structures mimicking the effects of beaver dams are restoration alternatives that have recently gained popularity because of their potential socioeconomic and ecological benefits. However, beaver dams and dam-like structures also harbor a history of social conflict. Hence, we identified a need to assess the use of beaver-related restoration projects in western rangelands to increase awareness and accountability, and identify gaps in scientific knowledge. We inventoried 97 projects implemented by 32 organizations, most in the last 10 years. We found that beaver-related stream restoration projects undertaken mostly involved the relocation of nuisance beavers. The most common goal was to store water, either with beaver dams or artificial structures. Beavers were often moved without regard to genetics, disease, or potential conflicts with nearby landowners. Few projects included post-implementation monitoring or planned for longer term issues, such as what happens when beavers abandon a site or when beaver dams or structures breach. Human dimensions were rarely considered and water rights and other issues were mostly unresolved or addressed through ad-hoc agreements. We conclude that the practice and implementation of beaver-related restoration has outpaced research on its efficacy and best practices. Further scientific research is necessary, especially research that informs the establishment of clear guidelines for best practices.

  19. Survey of Beaver-related Restoration Practices in Rangeland Streams of the Western USA

    NASA Astrophysics Data System (ADS)

    Pilliod, David S.; Rohde, Ashley T.; Charnley, Susan; Davee, Rachael R.; Dunham, Jason B.; Gosnell, Hannah; Grant, Gordon E.; Hausner, Mark B.; Huntington, Justin L.; Nash, Caroline

    2018-01-01

    Poor condition of many streams and concerns about future droughts in the arid and semi-arid western USA have motivated novel restoration strategies aimed at accelerating recovery and increasing water resources. Translocation of beavers into formerly occupied habitats, restoration activities encouraging beaver recolonization, and instream structures mimicking the effects of beaver dams are restoration alternatives that have recently gained popularity because of their potential socioeconomic and ecological benefits. However, beaver dams and dam-like structures also harbor a history of social conflict. Hence, we identified a need to assess the use of beaver-related restoration projects in western rangelands to increase awareness and accountability, and identify gaps in scientific knowledge. We inventoried 97 projects implemented by 32 organizations, most in the last 10 years. We found that beaver-related stream restoration projects undertaken mostly involved the relocation of nuisance beavers. The most common goal was to store water, either with beaver dams or artificial structures. Beavers were often moved without regard to genetics, disease, or potential conflicts with nearby landowners. Few projects included post-implementation monitoring or planned for longer term issues, such as what happens when beavers abandon a site or when beaver dams or structures breach. Human dimensions were rarely considered and water rights and other issues were mostly unresolved or addressed through ad-hoc agreements. We conclude that the practice and implementation of beaver-related restoration has outpaced research on its efficacy and best practices. Further scientific research is necessary, especially research that informs the establishment of clear guidelines for best practices.

  20. View of Diversion Dam and Flume Intake of the Childs ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Diversion Dam and Flume Intake of the Childs System at the Irving Powerhouse. Looking northwest - Childs-Irving Hydroelectric Project, Childs System, Flume Intake & Forebay, Forest Service Road 708/502, Camp Verde, Yavapai County, AZ

  1. Baseline studies in the Elwha River ecosystem prior to dam removal: Introduction to the special issue

    USGS Publications Warehouse

    Duda, Jeffrey J.; Freilich, Jerry; Schreiner, Edward G.

    2008-01-01

    The planned removal of two dams that have been in place for over 95 years on the Elwha River provides a unique opportunity to study dam removal effects. Among the largest dams ever considered for removal, this project is compelling because 83% of the watershed lies undisturbed in Olympic National Park. Eighteen million cubic meters of sediment have accumulated in and will be released from the reservoirs, and there is potential for rehabilitating depressed Pacific salmon runs. Researchers from academia, non-profit organizations, federal and state governments, and the Lower Elwha Klallam Tribe are currently assessing baseline ecological conditions of the Elwha River as part of dam removal studies. We introduce dam removal topics, provide a brief history of the dams, and summarize the ecology of the Elwha River basin as an introduction to a special issue devoted to research in the watershed.

  2. The blind men meet the elephant at the dam: Alternative spatial and taxonomic components reveal different insights about how low-head dams impact fish biodiversity

    USGS Publications Warehouse

    Fencl, Jane S.; Mather, Martha E.; Smith, Joseph M.; Hitchman, Sean M.

    2017-01-01

    Dams are ubiquitous environmental impacts that threaten aquatic ecosystems. The ability to compare across research studies is essential to conserve the native biodiversity that is impacted by the millions of low‐head dams that currently fragment streams and rivers. Here, we identify a previously unaddressed obstacle that impedes this generalization. Specifically, divergent spatial and taxonomic approaches that result from different conceptualizations of the dam‐biodiversity problem can produce conflicting science‐based conclusions about the same dam impact. In this research, using the same dammed and undammed sites, we evaluated the scientific generality of different conceptualizations of the dam‐biodiversity problem. We compared two different but commonly used spatial approaches—(1) above dam–below dam vs. (2) undammed–dammed comparisons—and 11 different, commonly used taxonomic approaches (three assemblage summaries, eight guilds). Sites above the dam structure had less diverse fish assemblages than sites below dams, whereas sites below the dam structure were similar to undammed sites. Thus, spatial approach 1 detected a large dam effect and spatial approach 2 detected a small dam effect. Similarly, some taxonomic responses (species richness, diversity, abundance, and number of guilds) detected large dam effects; other responses detected small (riffle specialist guild) or no dam effects (pool generalists). In summary, our results showed that how the problem was framed altered scientific conclusions and created different dam realities. The metaphor of how individual blind men disagree about the structure of an elephant, based on examinations of different body parts, reinforces the need for a coordinated, holistic perspective on dam research. Although no single approach is adequate for all problems, identifying the form, consequences of, and relationships among different research conceptualizations will set the stage for future syntheses of dam‐biodiversity research to advance science‐based conservation.

  3. 10. Photographic copy of photograph. (Source: U.S. Department of Interior. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Photographic copy of photograph. (Source: U.S. Department of Interior. Office of Indian Affairs. Indian Irrigation Service. Annual Report, Fiscal Year 1919. Vol. I, RG 75, Entry 655, Box 25, National Archives, Washington, DC.) ASHURST-HAYDEN (FLORENCE) DAM SITE, BRUSH DAM ACROSS THE RIVER - San Carlos Irrigation Project, Ashurst-Hayden Dam, Gila River, T4S R11E S7, Coolidge, Pinal County, AZ

  4. Water Power in The Wilderness: The History of Bonneville Lock and Dam

    DTIC Science & Technology

    1997-01-01

    to present many complex problems of site selection, proper construction techniques, and equipment design . The project first received serious...Bonneville Dam amply lived up to the hopes and dreams of its promoters and designers . In the short term, Bonneville supplied essential power for the...plan for the Columbia River. It designated Grand Coulee as the key upriver project and Bonneville as the lowermost in the chain . Report data on the

  5. Solomon Gulch hydroelectric project takes shape

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The planning and current construction activities for the Solomon Gulch hydroelectric plant near Valdez, Alaska which is scheduled for dam completion in 1980 and power plant operation in 1981 are discussed. The main dam will be 115 ft high and 360 ft wide. The two paralled 48-in. dia penstocks will be constructed from surplus pipe left over from the Alaska pipeline project. Construction on the 12 MW plant began in October 1978. (LCL)

  6. Impact on sediments and water by release of copper from chalcopyrite bearing rock due to acidic mine drainage

    NASA Astrophysics Data System (ADS)

    Shukla, Anoop Kant; Pradhan, Manoj; Tiwari, Onkar Nath

    2018-04-01

    Mining activity causes transition of rock-mass from its original position in earth into open environment. The action of environmental elements such air, water, microorganisms leads to oxidation of minerals which constitute the rock. The oxidation of sulphide minerals in presence of moisture releases acidic mine discharge (AMD). The acidic nature of AMD causes leaching of metals from rock minerals. Dissolution of other minerals may occur upon reaction with AMD. Chalcopyrite (CuFeS2) undergoes oxidation in acidic condition releasing copper among other products. This study reveals contamination of copper in sediment samples and seepage water from the tailing dam of a large copper project in located in central India. Elevation was studied using GIS to ascertain to the topographic elevation of tailing dam area. It was located at relatively high altitude causing seepage to flow away from tailing dam. The seepage water from tailing dam was found to be acidic with mean pH value of 4.0 and elevated copper content. Similarly, sediments from seepage water flow displayed elevated copper concentration. The copper concentration in seepage water was found with a mean value of 10.73 mg/l. The sediments from seepage water flow also displayed elevated copper concentration with mean value of 26.92 g/kg. This indicates impact on sediments by release of copper due to acidic mine drainage.

  7. 22. DETAIL EXTERIOR VIEW LOOKING NORTHWEST, SHOWING FISH LADDER AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. DETAIL EXTERIOR VIEW LOOKING NORTHWEST, SHOWING FISH LADDER AT NORTH END OF DAM/SPILLWAY; VIEW SHOWS SECTION OF FISH LADDER NEAR WHERE IT ENTERS THE COLUMBIA RIVER. - Bonneville Project, Bonneville Dam, Columbia River, Bonneville, Multnomah County, OR

  8. Geomorphic responses to dam removal in the United States – a two-decade perspective

    USGS Publications Warehouse

    Major, Jon J.; East, Amy; O'Connor, Jim E.; Grant, Gordon E.; Wilcox, Andrew C.; Magirl, Christopher S.; Collins, Matthias J.; Tullos, Desiree D.; Tsutsumi, Daizo; Laronne, Jonathan B.

    2017-01-01

    Recent decades have seen a marked increase in the number of dams removed in the United States. Investigations following a number of removals are beginning to inform how, and how fast, rivers and their ecosystems respond to released sediment. Though only a few tens of studies detail physical responses to removals, common findings have begun to emerge. They include: (1) Rivers are resilient and respond quickly to dam removals, especially when removals are sudden rather than prolonged. Rivers can swiftly evacuate large fractions of reservoir sediment (≥50% within one year), especially when sediment is coarse grained (sand and gravel). The channel downstream typically takes months to years—not decades—to achieve a degree of stability within its range of natural variability. (2) Modest streamflows (<2-year return interval flows) can erode and transport large amounts of reservoir sediment. Greater streamflows commonly are needed to access remnant reservoir sediment and transport it downstream. (3) Dam height, sediment volume, and sediment caliber strongly influence downstream response to dam removal. Removals of large dams (≥10 m tall) have had longer-lasting and more widespread downstream effects than more common removals of small dams. (4) Downstream valley morphology and position of a dam within a watershed influence the distribution of released sediment. Valley confinement, downstream channel gradient, locations and depths of channel pools, locations and geometries of extant channel bars, and locations of other reservoirs all influence the downstream fate of released sediment.

  9. Geochemical discrimination of five pleistocene Lava-Dam outburst-flood deposits, western Grand Canyon, Arizona

    USGS Publications Warehouse

    Fenton, C.R.; Poreda, R.J.; Nash, B.P.; Webb, R.H.; Cerling, T.E.

    2004-01-01

    Pleistocene basaltic lava dams and outburst-flood deposits in the western Grand Canyon, Arizona, have been correlated by means of cosmogenic 3He (3Hec) ages and concentrations of SiO2, Na2O, K2O, and rare earth elements. These data indicate that basalt clasts and vitroclasts in a given outburst-flood deposit came from a common source, a lava dam. With these data, it is possible to distinguish individual dam-flood events and improve our understanding of the interrelations of volcanism and river processes. At least five lava dams on the Colorado River failed catastrophically between 100 and 525 ka; subsequent outburst floods emplaced basalt-rich deposits preserved on benches as high as 200 m above the current river and up to 53 km downstream of dam sites. Chemical data also distinguishes individual lava flows that were collectively mapped in the past as large long-lasting dam complexes. These chemical data, in combination with age constraints, increase our ability to correlate lava dams and outburst-flood deposits and increase our understanding of the longevity of lava dams. Bases of correlated lava dams and flood deposits approximate the elevation of the ancestral river during each flood event. Water surface profiles are reconstructed and can be used in future hydraulic models to estimate the magnitude of these large-scale floods.

  10. Assessment of 21st century drought conditions at Shasta Dam based on dynamically projected water supply conditions by a regional climate model coupled with a physically-based hydrology model.

    PubMed

    Trinh, T; Ishida, K; Kavvas, M L; Ercan, A; Carr, K

    2017-05-15

    Along with socioeconomic developments, and population increase, natural disasters around the world have recently increased the awareness of harmful impacts they cause. Among natural disasters, drought is of great interest to scientists due to the extraordinary diversity of their severity and duration. Motivated by the development of a potential approach to investigate future possible droughts in a probabilistic framework based on climate change projections, a methodology to consider thirteen future climate projections based on four emission scenarios to characterize droughts is presented. The proposed approach uses a regional climate model coupled with a physically-based hydrology model (Watershed Environmental Hydrology Hydro-Climate Model; WEHY-HCM) to generate thirteen equally likely future water supply projections. The water supply projections were compared to the current water demand for the detection of drought events and estimation of drought properties. The procedure was applied to Shasta Dam watershed to analyze drought conditions at the watershed outlet, Shasta Dam. The results suggest an increasing water scarcity at Shasta Dam with more severe and longer future drought events in some future scenarios. An important advantage of the proposed approach to the probabilistic analysis of future droughts is that it provides the drought properties of the 100-year and 200-year return periods without resorting to any extrapolation of the frequency curve. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Anticipated sediment delivery to the lower Elwha River during and following dam removal: Chapter 2 in Coastal habitats of the Elwha River, Washington--biological and physical patterns and processes prior to dam removal

    USGS Publications Warehouse

    Czuba, Christiana R.; Randle, Timothy J.; Bountry, Jennifer A.; Magirl, Christopher S.; Czuba, Jonathan A.; Curran, Christopher A.; Konrad, Christopher P.; Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.

    2011-01-01

    During and after the planned incremental removal of two large, century-old concrete dams between 2011 and 2014, the sediment-transport regime in the lower Elwha River of western Washington will initially spike above background levels and then return to pre-dam conditions some years after complete dam removal. Measurements indicate the upper reaches of the steep-gradient Elwha River, draining the northeast section of the Olympic Mountains, carries between an estimated 120,000 and 290,000 cubic meters of sediment annually. This large load has deposited an estimated 19 million cubic meters of sediment within the two reservoirs formed by the Elwha and Glines Canyon Dams. It is anticipated that from 7 to 8 million cubic meters of this trapped sediment will mobilize and transport downstream during and after dam decommissioning, restoring the downstream sections of the sediment-starved river and nearshore marine environments. Downstream transport of sediment from the dam sites will have significant effects on channel morphology, water quality, and aquatic habitat during and after dam removal. Sediment concentrations are expected to be between 200 and 1,000 milligrams per liter during and just after dam removal and could rise to as much as 50,000 milligrams per liter during high flows. Downstream sedimentation in the river channel and flood plain will be potentially large, particularly in the lower Elwha River, an alluvial reach with a wide flood plain. Overall aggradation could be as much as one to several meters. Not all reservoir sediment, however, will be released to the river. Some material will remain on hill slopes and flood plains within the drained reservoirs in quantities that will depend on the hydrology, precipitation, and mechanics of the incising channel. Eventually, vegetation will stabilize this remaining reservoir sediment, and the overall sediment load in the restored river will return to pre-dam levels.

  12. INDIRECT UPSTREAM EFFECTS OF DAMS: CONSEQUENCES OF MIGRATORY CONSUMER EXTIRPATION IN PUERTO RICO

    Treesearch

    EFFIE A. GREATHOUSE; CATHERINE M. PRINGLE; WILLIAM H. MCDOWELL; JEFF G. HOLMQUIST

    2006-01-01

    Large dams degrade the integrity of a wide variety of ecosystems, yet direct downstream effects of dams have received the most attention from ecosystem managers and researchers. We investigated indirect upstream effects of dams resulting from decimation of migratory freshwater shrimp and fish populations in Puerto Rico, USA, in both high- and low-gradient streams. In...

  13. The remains of the dam: what have we learned from 15 years of US dam removals?

    Treesearch

    Gordon E. Grant; Sarah L. Lewis

    2015-01-01

    Important goals for studying dam removal are to learn how rivers respond to large and rapid introductions of sediment, and to develop predictive models to guide future dam removals. Achieving these goals requires organizing case histories systematically so that underlying physical mechanisms determining rates and styles of sediment erosion, transport, and deposition...

  14. Downstream effects of hydropower production on aquatic macroinvertebrate assemblages in two rivers in Costa Rica.

    PubMed

    Chaves-Ulloa, Ramsa; Umaña-Villalobos, Gerardo; Springer, Monika

    2014-04-01

    Despite the fact that little is known about the consequences of hydropower production in tropical areas, many large dams (> 15 m high) are currently under construction or consideration in the tropics. We researched the effects of large hydroelectric dams on aquatic macroinvertebrate assemblages in two Costa Rican rivers. We measured physicochemical characteristics and sampled aquatic macroinvertebrates from March 2003 to March 2004 in two dammed rivers, Peñas Blancas and San Lorenzo, as well as in the undammed Chachagua River. Sites above and below the dam had differences in their physicochemical variables, with wide variation and extreme values in variables measured below the dam in the San Lorenzo River. Sites below the dams had reduced water discharges, velocities, and depths when compared with sites above the dams, as well as higher temperatures and conductivity. Sites above dams were dominated by collector-gatherer-scrapers and habitat groups dominated by swimmer-clingers, while sites below dams had a more even representation of groups. In contrast, a comparison between two sites at different elevation in the undammed river maintained a similar assemblage composition. Tributaries might facilitate macroinvertebrate recovery above the turbine house, but the assemblage below the turbine house resembled the one below the dam. A massive sediment release event from the dam decreased the abundance per sample and macroinvertebrate taxa below the dam in the Peñas Blancas River. Our study illustrates the effects of hydropower production on neotropical rivers, highlighting the importance of using multiple measures of macroinvertebrate assemblage structure for assessing this type of environmental impact.

  15. Damming the Brahmaputra: Impacts on the Resilience of Local Communities to Floods and Climate Change

    NASA Astrophysics Data System (ADS)

    Rampini, C.

    2016-12-01

    Recurrent destructive floods along the Brahmaputra river basin are a major challenge for the people and state governments of Northeast India. Climate change is expected to further exacerbate this challenge, as melting Himalayan glaciers and changes in the South Asian monsoon lead to an increase in the frequency of severe floods. At the same time, the Brahmaputra has become the focus of India's hydropower development efforts, with 140 new dams planned along its main stem and tributaries. Though these dams could provide flood protection for downstream communities, political and economic factors have led dam builders to prioritize hydroelectricity generation over flood control. Using the Ranganadi Hydroelectric Project in Arunachal Pradesh as a case study, this research investigates the effects of dam building on the resilience of downstream communities to floods that are becoming increasingly severe as a result of climate change. Findings suggest that dams in Northeast are eroding downstream communities' resilience to floods by increasing their vulnerability and reducing their adaptive capacity to these natural hazards. The risk is that, as dams and climate change jointly make the floodplains of Northeast India increasingly hazardous, uninhabitable and unproductive, they will push local communities away from these landscapes and agricultural livelihoods and towards more carbon-intensive livelihoods. More broadly this research highlights the danger of pursuing climate change mitigation and renewable energy development projects without considering their impacts on the vulnerability and adaptability of affected communities to climate change.

  16. The Yangtze-Project

    NASA Astrophysics Data System (ADS)

    Subklew, Günter; Ulrich, Julia; Fürst, Leander; Höltkemeier, Agnes

    2010-05-01

    As an important element in Chinese politics for the development of the Western parts of the country, a large hydraulic engineering project - the Three Gorges Dam - has been set up in order to dam the Yangtze River for a length of over 600 km with an average width of about 1,100 m. It is expected that this results in ecological, technical and social problems of a magnitude hardly dealt with before. With this gigantic project, the national executive is pursuing the aims of - preventing flooding - safeguarding the water supply - encouraging navigation and - generating electric energy. In future, fluctuations of the water level of up to 30 metres will be deliberately applied in the dammed-up section of the river while retaining the flow character of the seasonal variation. The pollution of the Yangtze with a wide range of problem substances is frequently underestimated since in many cases attention is only paid to the low measured concentrations. However, the large volumes of water lead to appreciable loads and thus the danger of an accumulation of pollutants even reaching the human food chain. It should also not be forgotten that the Yangtze represents the major, and in some cases indeed the only, source of drinking and domestic water for the population. A consideration of the water level in the impoundment that will in future arise from management of the reservoir reveals the dramatic change in contrast to the natural inundation regime. In the past, the flood events on the banks of the Yangtze and its tributaries occurred in the summer months. The plants in the riparian zone (water fluctuation zone = WFZ) were previously inundated during the warmer time of year (28 ° July/August) and the terrestrial phase of the WFZ was characterized by cool temperatures (3-5 °C January) that permitted little plant activity. In future, the highest water levels will occur in winter above the dam on the Yangtze and also on the tributaries flowing into it. The plants in the WFZ will then encounter considerably improved climatic conditions with higher temperatures during their physiologically active season in the summer months. This reversal of the flood pulse in the course of the year will exert an enormous influence on the fauna and flora and the associated processes. Other parameters resulting from the management of the reservoir are the sediment deposits and their varying extents in the different zones of the WFZ. For example, the different degrees of compaction of the sediment of the river bank will largely determine the exchange of oxygen, nutrients and metabolites between the plants and the water body and thus the major ecosystem functions. The locally different thicknesses of the sediment body will be decisive for the emergence of plant shoots through the sediment. In areas of high flow rates, in contrast, habitats will be established that are strongly characterized by the dynamics of the pebbles and boulders. The Three Gorges Project will thus bring about a significant change in habitat conditions for vegetation in the WFZ whose consequences cannot yet be predicted with any certainty. This also concerns the potential and long-term impacts of changed vegetation on the local population, who exploit the plant resources, and also on tourism and on the hydroregime and the sedimentation regime in the reservoir. Landslides and rock falls are the major geological events in the Three Gorges region. The mud and debris avalanches formed during such landslips represent a danger both for areas of settlement and also for land used industrially and agriculturally, as well as for infrastructure facilities, and may also considerably obstruct navigation. Furthermore, the analogous mass movements are one of the reasons for the silting up of the Yangtze and many of its tributaries. The region of the Three Gorges contains rapidly growing urban centres that will receive further impulses for growth from the dam project. The fact that the Chongqing conurbation, with more than 30 million inhabitants the "largest city in the world", is directly under the authority of the Chinese central government illustrates the significance that the administration attaches to the development of this part of the country. In this project area, it is planned to determine the input of nitrates and sulphates into the soils and waters in the region of the Three Gorges Dam with the greatest possible accuracy. It is envisaged that for selected, especially critical regions the deposition will be calculated with a particularly high spatial resolution. As a result of intensive exchange of ideas between Chinese and German scientists, four project areas were jointly defined for collaboration - interactions in the pollutant/water/sediment system - vegetation - changing land use / erosion / mass movements - atmosphere The scientific partners involved on the Chinese and the German side are universities, national research institutes, institutes of the Chinese Academy of Sciences, scientific divisions of government agencies and private companies. Research Centre Jülich from Germany and the "State Council Three Gorges Project Construction Committee" in China are coordinating this cooperation of numerous partners in both countries, the "Yangtze Project".

  17. Modified rockfall catch fence Mayflower Creek - Detroit Dam : final report.

    DOT National Transportation Integrated Search

    1988-08-08

    The experimental features project is located on the North Santiam Highway (#162) between Mayflower Creek and Detroit Dam, approximately 40 miles east of Salem. Here access is limited and the slope is nonuniform. To deal with the constant problem of f...

  18. Modified rockfall catch fence Mayflower Creek - Detroit Dam : interim Report.

    DOT National Transportation Integrated Search

    1986-07-01

    This experimental features project is located on the North Santiam Highway (#162) between Mayflower Creek and Detroit Dam, approximately 40 miles east of Salem. Here access is limited and the slope is non-uniform. To deal with the problem of falling ...

  19. View of Stehr Lake from FS 502 looking upstream (northeast). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Stehr Lake from FS 502 looking upstream (northeast). Vehicle at right center is parked on earthen Upper Stehr Lake Dam. - Childs-Irving Hydroelectric Project, Childs System, Stehr Lake & Dams, Forest Service Road 708/502, Camp Verde, Yavapai County, AZ

  20. VIEW OF DOWNSTREAM SIDE OF CHECK DAM, CONCRETE SPILLWAY WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF DOWNSTREAM SIDE OF CHECK DAM, CONCRETE SPILLWAY WITH MORTARED ROCK WALLS, AND CIPPOLETTI WEIR ON TUMALO RESERVOIR FEED CANAL NEAR COLLINS ROAD (IN BACKGROUND). LOOKING NORTHEAST - Tumalo Irrigation District, Tumalo Project, West of Deschutes River, Tumalo, Deschutes County, OR

  1. Fish navigation of large dams emerges from their modulation of flow field experience

    PubMed Central

    Goodwin, R. Andrew; Politano, Marcela; Garvin, Justin W.; Nestler, John M.; Hay, Duncan; Anderson, James J.; Weber, Larry J.; Dimperio, Eric; Smith, David L.; Timko, Mark

    2014-01-01

    Navigating obstacles is innate to fish in rivers, but fragmentation of the world’s rivers by more than 50,000 large dams threatens many of the fish migrations these waterways support. One limitation to mitigating the impacts of dams on fish is that we have a poor understanding of why some fish enter routes engineered for their safe travel around the dam but others pass through more dangerous routes. To understand fish movement through hydropower dam environments, we combine a computational fluid dynamics model of the flow field at a dam and a behavioral model in which simulated fish adjust swim orientation and speed to modulate their experience to water acceleration and pressure (depth). We fit the model to data on the passage of juvenile Pacific salmonids (Oncorhynchus spp.) at seven dams in the Columbia/Snake River system. Our findings from reproducing observed fish movement and passage patterns across 47 flow field conditions sampled over 14 y emphasize the role of experience and perception in the decision making of animals that can inform opportunities and limitations in living resources management and engineering design. PMID:24706826

  2. Hard choices in assessing survival past dams — a comparison of single- and paired-release strategies

    USGS Publications Warehouse

    Zydlewski, Joseph D.; Stich, Daniel S.; Sigourney, Douglas B.

    2017-01-01

    Mark–recapture models are widely used to estimate survival of salmon smolts migrating past dams. Paired releases have been used to improve estimate accuracy by removing components of mortality not attributable to the dam. This method is accompanied by reduced precision because (i) sample size is reduced relative to a single, large release; and (ii) variance calculations inflate error. We modeled an idealized system with a single dam to assess trade-offs between accuracy and precision and compared methods using root mean squared error (RMSE). Simulations were run under predefined conditions (dam mortality, background mortality, detection probability, and sample size) to determine scenarios when the paired release was preferable to a single release. We demonstrate that a paired-release design provides a theoretical advantage over a single-release design only at large sample sizes and high probabilities of detection. At release numbers typical of many survival studies, paired release can result in overestimation of dam survival. Failures to meet model assumptions of a paired release may result in further overestimation of dam-related survival. Under most conditions, a single-release strategy was preferable.

  3. Hydrologic scenarios for floodplain building in a vertically accreting, suspended sediment river

    NASA Astrophysics Data System (ADS)

    Alexander, J. S.; Scott, M. L.; Schmidt, J. C.

    2006-12-01

    Recent advances in dendrogeomorphology allow for precise age constraint on rates of floodplain building. We applied these techniques in our effort to evaluate the relative roles of flow regulation and invasive riparian vegetation in accelerating the rate of vertical accretion and channel narrowing of the dam-regulated upper Green River in Dinosaur National Monument, Colorado and Utah. Four large trenches were excavated into alluvial deposits that are now inundated by either common post-dam floods or rare post-dam high releases. We dated individual stratigraphic units using the recently developed stem-burial method (Friedman et al. 2005), as well as traditional cross-dating methods. These excavations indicate that episodic large floods with pre- dam recurrences of 5 to 10 years may vertically aggrade floodplains by up to 1.0 m. Smaller, more frequent, floods progressively create inset alluvial deposits that are subsequently colonized by native or non-native woody shrubs and trees. These lower elevation deposits serve as growing surfaces for both native and non- native riparian plants as well as stable platforms for deposition during occasional large post-dam floods that exceed the capacity of the dam's power plant. This style of floodplain building results in channel narrowing and loss of aquatic habitats. In the case of the upper Green River, the majority of channel narrowing occurred during two isolated events: (1) a rare basin-wide flood in late winter 1962, shortly before completion of Flaming Gorge Dam and (2) the largest post-dam bypass flood in 1983. Thick deposits of these ages occur in each trench, and this pattern correlates with the sequence of channel narrowing described by Allred and Schmidt (1999) 320 km downstream at the USGS gage near Green River, Utah. Our results suggest infrequent, controlled, high-magnitude dam releases may be an ineffective means of channel rejuvenation and vegetation control along vertically accreting, suspended sediment rivers. Where post-dam rivers are in a condition of sediment surplus, large floods may further isolate unwanted riparian vegetation from lower, more frequently disturbed hydrologic environments by increasing the elevation of the higher alluvial deposits.

  4. 8. Photographic copy of photograph. (Source: Department of Interior. Bureau ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Photographic copy of photograph. (Source: Department of Interior. Bureau of Reclamation. Bitterroot Project History 1931-1962. National Archives, Denver, RG 115, Accession #115-90-039, Box 243) Photographer unknown. View of original rock-fill crib diversion structure, September 13, 1949. Diversion and head works for big ditch on Rock Creek. - Bitter Root Irrigation Project, Rock Creek Diversion Dam, One mile east of Como Dam, west of U.S. Highway 93, Darby, Ravalli County, MT

  5. 8. Historic photo taken during construction of the Lost River ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Historic photo taken during construction of the Lost River Diversion Dam and House. Labeled as follows, 'View showing walk construction North side. Group in foreground, left to right: - J.M. McLean, I.S. Voorhees, Asst Eng'r, A.B. Clevland, engineer... W.W. Patch, Project Engineer.' Negative # 95. Facing east. - Klamath Basin Project, Lost River Diversion Dam House, Lost River near intersection of State Highway 140 & Hill Road, Klamath Falls, Klamath County, OR

  6. Final Independent External Peer Review Report for the Intake Diversion Dam Modification Lower Yellowstone Project, Montana Draft Supplement to the 26 April 2010 Environmental Assessment and Appendices

    DTIC Science & Technology

    2013-02-08

    Fish and Wildlife Service WRDA Water Resources Development Act Intake Project IEPR Final IEPR Report February 8, 2013 x... Wildlife Service (USFWS), Natural Resources Conservation Service (NRCS), Montana Department of Environmental Quality, The Nature Conservancy...30% design features and channel entrance and exit pre-appraisal study to provide fish passage around Intake Dam, Montana. U.S. Fish and Wildlife

  7. Environmental Assessment for the Bear Creek Dam and Lake Project Master Plan, South Platte River, Colorado

    DTIC Science & Technology

    2012-09-01

    erosion. Piney Creek alluvium along the low terraces is Holocene in age and rock fragments in this area have igneous or metamorphic lithology with...to the Red Rocks Amphitheatre and Bandimere Speedway, which are a brief drive from the Park. Recreational use of Bear Creek Lake is also... US Army Corps of Engineers ® Omaha District Environmental Assessment for the Bear Creek Dam and Lake Project Master Plan South Platte River

  8. Impacts of large dams on the complexity of suspended sediment dynamics in the Yangtze River

    NASA Astrophysics Data System (ADS)

    Wang, Yuankun; Rhoads, Bruce L.; Wang, Dong; Wu, Jichun; Zhang, Xiao

    2018-03-01

    The Yangtze River is one of the largest and most important rivers in the world. Over the past several decades, the natural sediment regime of the Yangtze River has been altered by the construction of dams. This paper uses multi-scale entropy analysis to ascertain the impacts of large dams on the complexity of high-frequency suspended sediment dynamics in the Yangtze River system, especially after impoundment of the Three Gorges Dam (TGD). In this study, the complexity of sediment dynamics is quantified by framing it within the context of entropy analysis of time series. Data on daily sediment loads for four stations located in the mainstem are analyzed for the past 60 years. The results indicate that dam construction has reduced the complexity of short-term (1-30 days) variation in sediment dynamics near the structures, but that complexity has actually increased farther downstream. This spatial pattern seems to reflect a filtering effect of the dams on the on the temporal pattern of sediment loads as well as decreased longitudinal connectivity of sediment transfer through the river system, resulting in downstream enhancement of the influence of local sediment inputs by tributaries on sediment dynamics. The TGD has had a substantial impact on the complexity of sediment series in the mainstem of the Yangtze River, especially after it became fully operational. This enhanced impact is attributed to the high trapping efficiency of this dam and its associated large reservoir. The sediment dynamics "signal" becomes more spatially variable after dam construction. This study demonstrates the spatial influence of dams on the high-frequency temporal complexity of sediment regimes and provides valuable information that can be used to guide environmental conservation of the Yangtze River.

  9. Brazil's Balbina Dam: Environment versus the legacy of the Pharaohs in Amazonia

    NASA Astrophysics Data System (ADS)

    Fearnside, Philip M.

    1989-07-01

    The Balbina Dam in Brazil's state of Amazonas floods 2360 km2 of tropical forest to generate an average of only 112.2 MW of electricity. The flat topography and small size of the drainage basin make output small. Vegetation has been left to decompose in the reservoir, resulting in acidic, anoxic water that will corrode the turbines. The shallow reservoir contains 1500 islands and innumerable stagnant bays where the water's residence time will be even longer than the average time of over one year. Balbina was built to supply electricity to Manaus, a city that has grown so much while the dam was under construction that other alternatives are already needed. Government subsidies explain the explosive growth, including Brazil's unified tariff for electricity. Alternative power sources for Manaus include transmission from more distant dams or from recently discovered oil and natural gas deposits. Among Balbina's impacts are loss of potential use of the forest and displacement of about one third of the surviving members of a much-persecuted Amerindian tribe: the Waimiri-Atroari. The dam was closed on 1 October 1987 and the first of five generators began operation in February 1989. The example of Balbina points to important ways that the decision-making process could be improved in Brazil and in the international funding agencies that have directly and indirectly contributed to the project. Environmental impact analyses must be completed prior to decisions on overall project implementation and must be free of influence from project proponents. The current environmental impact assessment system in Brazil, as in many other countries, has an undesirable influence on science policy, in addition to failing to address the underlying causes of environmentally destructive development processes and inability to halt “irreversible” projects like Balbina.

  10. Sediment Budgeting in Dam-Affected Rivers: Assessing the Influence of Damming, Tributaries, and Alluvial Valley Sediment Storage on Sediment Regimes

    NASA Astrophysics Data System (ADS)

    Wilcox, A. C.; Dekker, F. J.; Riebe, C. S.

    2014-12-01

    Although sediment supply is recognized as a fundamental driver of fluvial processes, measuring how dams affect sediment regimes and incorporating such knowledge into management strategies remains challenging. To determine the influences of damming, tributary supply, and valley morphology and sediment storage on downstream sediment supply in a dryland river, the Bill Williams River (BWR) in western Arizona, we measured basin erosion rates using cosmogenic nuclide analysis of beryllium-10 (10Be) at sites upstream and downstream of a dam along the BWR, as well as from tributaries downstream of the dam. Riverbed sediment mixing calculations were used to test if the dam, which blocks sediment supply from the upper 85% of the basin's drainage area, increases the proportion of tributary sediment to residual upstream sediment in mainstem samples downstream of the dam. Erosion rates in the BWR watershed are more than twice as large in the upper catchment (136 t km-2 yr-1) than in tributaries downstream of Alamo Dam (61 t km-2 yr-1). Tributaries downstream of the dam have little influence on mainstem sediment dynamics. The effect of the dam on reducing sediment supply is limited, however, because of the presence of large alluvial valleys along the mainstem BWR downstream of the dam that store substantial sediment and mitigate supply reductions from the upper watershed. These inferences, from our 10Be derived erosion rates and mixing calculations, are consistent with field observations of downstream changes in bed material size, which suggest that sediment-deficit conditions are restricted to a 10 km reach downstream of the dam, and limited reservoir bathymetry data. Many studies have suggested that tributary sediment inputs downstream of dams play a key role in mitigating dam-induced sediment deficits, but here we show that in a dryland river with ephemeral tributaries, sediment stored in alluvial valleys can also play a key role and in some cases trumps the role of tributaries.

  11. Research on early-warning index of the spatial temperature field in concrete dams.

    PubMed

    Yang, Guang; Gu, Chongshi; Bao, Tengfei; Cui, Zhenming; Kan, Kan

    2016-01-01

    Warning indicators of the dam body's temperature are required for the real-time monitoring of the service conditions of concrete dams to ensure safety and normal operations. Warnings theories are traditionally targeted at a single point which have limitations, and the scientific warning theories on global behavior of the temperature field are non-existent. In this paper, first, in 3D space, the behavior of temperature field has regional dissimilarity. Through the Ward spatial clustering method, the temperature field was divided into regions. Second, the degree of order and degree of disorder of the temperature monitoring points were defined by the probability method. Third, the weight values of monitoring points of each regions were explored via projection pursuit. Forth, a temperature entropy expression that can describe degree of order of the spatial temperature field in concrete dams was established. Fifth, the early-warning index of temperature entropy was set up according to the calculated sequential value of temperature entropy. Finally, project cases verified the feasibility of the proposed theories. The early-warning index of temperature entropy is conducive to the improvement of early-warning ability and safety management levels during the operation of high concrete dams.

  12. Assessing Changes in Contaminant Fluxes Following Dam Removal in an Urbanized River

    EPA Science Inventory

    Restoration of rivers and their associated ecosystems is a growing priority for government agencies (e.g., NOAA, USEPA), as well as conservation organizations. Dam removal is a major component of many restoration projects credited with reintroducing fish species, improving water...

  13. Monitoring Organic Contaminant Fluxes Following Dam Removal Utilizing Passive Sampler Technology

    EPA Science Inventory

    Restoration of riverine habitats and their associated ecosystems is a growing priority for government agencies (e.g., USEPA, NOAA, USDA), as well as non-profit conservation organizations (e.g., American Rivers). Dam removal is a major component of many restoration projects credi...

  14. Monitoring Changes in Contaminant Fluxes Resulting from Dam Removal in an Urbanized River.

    EPA Science Inventory

    Restoration of rivers and their associated ecosystems is a growing priority for government agencies (e.g., NOAA, USEPA), as well as conservation organizations. Dam removal is a major component of many restoration projects credited with reintroducing fish species, improving water...

  15. Applying the World Water and Agriculture Model to Filling Scenarios for the Grand Ethiopian Renaissance Dam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villa, Daniel L.; Tidwell, Vincent C.; Passell, Howard D.

    The World Water and Agriculture Model has been used to simulate water, hydropower, and food sector effects in Egypt, Sudan, and Ethiopia during the filling of the Grand Ethiopian Renaissance Dam reservoir. This unique capability allows tradeoffs to be made between filling policies for the Grand Ethiopian Renaissance Dam reservoir. This Nile River Basin study is presented to illustrate the capacity to use the World Water and Agriculture Model to simulate regional food security issues while keeping a global perspective. The study uses runoff data from the Intergovernmental Panel for Climate Change Coupled Model Inter-comparison Project Phase 5 and informationmore » from the literature in order to establish a reasonable set of hydrological initial conditions. Gross Domestic Product and population growth are modelled exogenously based on a composite projection of United Nations and World Bank data. The effects of the Grand Ethiopian Renaissance Dam under various percentages of water withheld are presented.« less

  16. Failure of a massive earthquake-induced landslide dam in Papua New Guinea

    USGS Publications Warehouse

    King, J. P.; Loveday, I. C.; Schuster, R.L.

    1987-01-01

    This article discusses the recent occurrence of a large earthquake-induced landslide that dammed the Bairaman River in the interior of hte island of New Britian, Papua New Guinea, and the subsequent overtopping and failure of this landslide dam. 

  17. Front Range Infrastructure Resources Project--Aggregate Resources Activities

    USGS Publications Warehouse

    ,

    1998-01-01

    Infrastructure, such as roads, buildings, airports, and dams, is built and maintained by use of large quantities of aggregate—sand, gravel, and stone. As urban areas expand, local sources of these resources become inaccessible. Other competitive land uses have a higher value than aggregate resources. For example, gravel cannot be mined from under a subdivision. The failure to plan for the protection and extraction of infrastructure resources often results in increased consumer cost, environmental damage, and an adversarial relationship between the industry and the community.

  18. New River Dam Foundation Report. Gila River Basin: Phoenix, Arizona and Vicinity (Including New River).

    DTIC Science & Technology

    1985-10-01

    further downstream before merging with the Agua Fria River. 6 Site Geology 2.08 The geological formations present within the project area consist...sampling and in- situ density testing using the sand displacement 11 or large-scale water displacement method. Dozer trenches TT82-1 and TT82-6 were excavated...underlying the valley or may, due to its pervasiveness, represent an in situ weathering product of the buried bedrock. 4.18 Because of the magnitude

  19. The Economic Benefits Of Multipurpose Reservoirs In The United States- Federal Hydropower Fleet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadjerioua, Boualem; Witt, Adam M.; Stewart, Kevin M.

    The United States is home to over 80,000 dams, of which approximately 3% are equipped with hydroelectric generating capabilities. When a dam serves as a hydropower facility, it provides a variety of energy services that range from clean, reliable power generation to load balancing that supports grid stability. In most cases, the benefits of dams and their associated reservoirs go far beyond supporting the nation s energy demand. As evidenced by the substantial presence of non-powered dams with the ability to store water in large capacities, the primary purpose of a dam may not be hydropower, but rather one ofmore » many other purposes. A dam and reservoir may support navigation, recreation, flood control, irrigation, and water supply, with each multipurpose benefit providing significant social and economic impacts on a local, regional, and national level. When hydropower is one of the services provided by a multipurpose reservoir, it is then part of an integrated system of competing uses. Operating rules, management practices, consumer demands, and environmental constraints must all be balanced to meet the multipurpose project s objectives. When federal dams are built, they are authorized by Congress to serve one or more functions. Legislation such as the Water Resources Development Act regulates the operation of the facility in order to coordinate the authorized uses and ensure the dam s intended objectives are being met. While multipurpose reservoirs account for billions of dollars in contributions to National Economic Development (NED) every year, no attempt has been made to evaluate their benefits on a national scale. This study is an on-going work conducted by Oak Ridge National Laboratory in an effort to estimate the economic benefits of multipurpose hydropower reservoirs in the United States. Given the important role that federal hydropower plays in the U.S., the first focus of this research will target the three main federal hydropower owners Tennessee Valley Authority, U.S. Army Corps of Engineers, and U.S. Bureau of Reclamation. Together these three agencies own and operate 157 powered dams which account for almost half of the total installed hydropower capacity in the U.S. Future work will include engaging publicly-owned utilities and the private sector in order to quantify the benefits of all multipurpose hydropower reservoirs in the U.S.« less

  20. Multiyear Downstream Response to Dam Removal on the White Salmon River, WA

    NASA Astrophysics Data System (ADS)

    Wilcox, A. C.; O'Connor, J. E.; Major, J. J.

    2017-12-01

    The 2011 removal of the 38 m tall Condit Dam on the White Salmon River, Washington was one of the largest dam removals to date, in terms of both dam height and sediment release. We examined the multiyear geomorphic response to this event, through 2015, including in a bedrock-confined canyon and in a less-confined, backwater-influenced pool reach near the river's mouth, to the large, rapid influx of fine reservoir sediment produced by the breach and to subsequent sediment transfer in the free-flowing White Salmon River. In the canyon reach, aggraded sediments were rapidly eroded from riffles, returning them toward pre-breach bed elevations within weeks, but pool aggradation persisted for longer. The downstream, less-confined reach transformed from a deep pool to a narrower pool-riffle channel with alternate bars; multiyear observations showed persistence of bars and of this new and distinct morphology. This downstream reach marks a rare case in post-dam removal channel response; in most dam removals, channels have rapidly reverted toward pre-removal morphology, as in the canyon reach here. Comparison of the multiyear geomorphic evolution of the White Salmon River to other recent large dam removals in the U.S. allows evaluation of the relative influences of antecedent channel morphology, post-breach hydrology, and dam removal style, as well as providing a basis for predicting responses to future dam removals.

  1. Review of Seismic Hazard Issues Associated with Auburn Dam Project, Sierra Nevada Foothills, California

    USGS Publications Warehouse

    Schwartz, D.P.; Joyner, W.B.; Stein, R.S.; Brown, R.D.; McGarr, A.F.; Hickman, S.H.; Bakun, W.H.

    1996-01-01

    Summary -- The U.S. Geological Survey was requested by the U.S. Department of the Interior to review the design values and the issue of reservoir-induced seismicity for a concrete gravity dam near the site of the previously-proposed Auburn Dam in the western foothills of the Sierra Nevada, central California. The dam is being planned as a flood-control-only dam with the possibility of conversion to a permanent water-storage facility. As a basis for planning studies the U.S. Army Corps of Engineers is using the same design values approved by the Secretary of the Interior in 1979 for the original Auburn Dam. These values were a maximum displacement of 9 inches on a fault intersecting the dam foundation, a maximum earthquake at the site of magnitude 6.5, a peak horizontal acceleration of 0.64 g, and a peak vertical acceleration of 0.39 g. In light of geological and seismological investigations conducted in the western Sierran foothills since 1979 and advances in the understanding of how earthquakes are caused and how faults behave, we have developed the following conclusions and recommendations: Maximum Displacement. Neither the pre-1979 nor the recent observations of faults in the Sierran foothills precisely define the maximum displacement per event on a fault intersecting the dam foundation. Available field data and our current understanding of surface faulting indicate a range of values for the maximum displacement. This may require the consideration of a design value larger than 9 inches. We recommend reevaluation of the design displacement using current seismic hazard methods that incorporate uncertainty into the estimate of this design value. Maximum Earthquake Magnitude. There are no data to indicate that a significant change is necessary in the use of an M 6.5 maximum earthquake to estimate design ground motions at the dam site. However, there is a basis for estimating a range of maximum magnitudes using recent field information and new statistical fault relations. We recommend reevaluating the maximum earthquake magnitude using current seismic hazard methodology. Design Ground Motions. A large number of strong-motion records have been acquired and significant advances in understanding of ground motion have been achieved since the original evaluations. The design value for peak horizontal acceleration (0.64 g) is larger than the median of one recent study and smaller than the median value of another. The value for peak vertical acceleration (0.39 g) is somewhat smaller than median values of two recent studies. We recommend a reevaluation of the design ground motions that takes into account new ground motion data with particular attention to rock sites at small source distances. Reservoir-Induced Seismicity. The potential for reservoir-induced seismicity must be considered for the Auburn Darn project. A reservoir-induced earthquake is not expected to be larger than the maximum naturally occurring earthquake. However, the probability of an earthquake may be enhanced by reservoir impoundment. A flood-control-only project may involve a lower probability of significant induced seismicity than a multipurpose water-storage dam. There is a need to better understand and quantify the likelihood of this hazard. A methodology should be developed to quantify the potential for reservoir induced seismicity using seismicity data from the Sierran foothills, new worldwide observations of induced and triggered seismicity, and current understanding of the earthquake process. Reevaluation of Design Parameters. The reevaluation of the maximum displacement, maximum magnitude earthquake, and design ground motions can be made using available field observations from the Sierran foothills, updated statistical relations for faulting and ground motions, and current computational seismic hazard methodologies that incorporate uncertainty into the analysis. The reevaluation does not require significant new geological field studies.

  2. 43 CFR 418.15 - Operations monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Wadsworth—U.S. Geological Survey (USGS) gauge number 10351300; (ii) Carson River below Lahontan Dam—USGS gauge number 10312150; (iii) Rock Dam Ditch near the end of the concrete lining; and (2) Subtracting: (i... Tarzyn Road near Fallon (below Sagouspe Dam) for satisfying water rights outside of the Project...

  3. 43 CFR 418.15 - Operations monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Wadsworth—U.S. Geological Survey (USGS) gauge number 10351300; (ii) Carson River below Lahontan Dam—USGS gauge number 10312150; (iii) Rock Dam Ditch near the end of the concrete lining; and (2) Subtracting: (i... Tarzyn Road near Fallon (below Sagouspe Dam) for satisfying water rights outside of the Project...

  4. Modeling the capacity of riverscapes to support beaver dams

    NASA Astrophysics Data System (ADS)

    Macfarlane, William W.; Wheaton, Joseph M.; Bouwes, Nicolaas; Jensen, Martha L.; Gilbert, Jordan T.; Hough-Snee, Nate; Shivik, John A.

    2017-01-01

    The construction of beaver dams facilitates a suite of hydrologic, hydraulic, geomorphic, and ecological feedbacks that increase stream complexity and channel-floodplain connectivity that benefit aquatic and terrestrial biota. Depending on where beaver build dams within a drainage network, they impact lateral and longitudinal connectivity by introducing roughness elements that fundamentally change the timing, delivery, and storage of water, sediment, nutrients, and organic matter. While the local effects of beaver dams on streams are well understood, broader coverage network models that predict where beaver dams can be built and highlight their impacts on connectivity across diverse drainage networks are lacking. Here we present a capacity model to assess the limits of riverscapes to support dam-building activities by beaver across physiographically diverse landscapes. We estimated dam capacity with freely and nationally-available inputs to evaluate seven lines of evidence: (1) reliable water source, (2) riparian vegetation conducive to foraging and dam building, (3) vegetation within 100 m of edge of stream to support expansion of dam complexes and maintain large colonies, (4) likelihood that channel-spanning dams could be built during low flows, (5) the likelihood that a beaver dam is likely to withstand typical floods, (6) a suitable stream gradient that is neither too low to limit dam density nor too high to preclude the building or persistence of dams, and (7) a suitable river that is not too large to restrict dam building or persistence. Fuzzy inference systems were used to combine these controlling factors in a framework that explicitly also accounts for model uncertainty. The model was run for 40,561 km of streams in Utah, USA, and portions of surrounding states, predicting an overall network capacity of 356,294 dams at an average capacity of 8.8 dams/km. We validated model performance using 2852 observed dams across 1947 km of streams. The model showed excellent agreement with observed dam densities where beaver dams were present. Model performance was spatially coherent and logical, with electivity indices that effectively segregated capacity categories. That is, beaver dams were not found where the model predicted no dams could be supported, beaver avoided segments that were predicted to support rare or occasional densities, and beaver preferentially occupied and built dams in areas predicted to have pervasive dam densities. The resulting spatially explicit reach-scale (250 m long reaches) data identifies where dam-building activity is sustainable, and at what densities dams can occur across a landscape. As such, model outputs can be used to determine where channel-floodplain and wetland connectivity are likely to persist or expand by promoting increases in beaver dam densities.

  5. Mitigation for the Construction and Operation of Libby Dam, 2004-2005 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunnigan, James; DeShazer, Jay; Garrow, Larry

    2005-06-01

    ''Mitigation for the Construction and Operation of Libby Dam'' is part of the Northwest Power and Conservation Council's (NPCC) resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine themore » biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness. This project completes urgent and high priority mitigation actions as directed by the Kootenai Subbasin Plan. Montana Fish, Wildlife & Parks (MFWP) uses a combination of techniques to collect physical and biological data within the Kootenai River Basin. These data serve several purposes including: the development and refinement of models used in management of water resources and operation of Libby Dam; investigations into the limiting factors of native fish populations, gathering basic life history information, tracking trends in endangered and threatened species, and the assessment of restoration or management activities designed to restore native fishes and their habitats.« less

  6. Mitigation for the Construction and Operation of Libby Dam, 2003-2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunnigan, James; DeShazer, Jay; Garrow, Larry

    2004-06-01

    ''Mitigation for the Construction and Operation of Libby Dam'' is part of the Northwest Power and Conservation Council's (NPCC) resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating for damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determinemore » the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness. This project completes urgent and high priority mitigation actions as directed by the Kootenai Subbasin Plan. Montana FWP uses a combination of diverse techniques to collect a variety of physical and biological data within the Kootenai River Basin. These data serve several purposes including: the development and refinement of models used in management of water resources and operation of Libby Dam; investigations into the limiting factors of native fish populations, gathering basic life history information, tracking trends in endangered, threatened species, and the assessment of restoration or management activities intended to restore native fishes and their habitats.« less

  7. Landslide-dammed paleolake perturbs marine sedimentation and drives genetic change in anadromous fish

    PubMed Central

    Mackey, Benjamin H.; Roering, Joshua J.; Lamb, Michael P.

    2011-01-01

    Large bedrock landslides have been shown to modulate rates and processes of river activity by forming dams, forcing upstream aggradation of water and sediment, and generating catastrophic outburst floods. Less apparent is the effect of large landslide dams on river ecosystems and marine sedimentation. Combining analyses of 1-m resolution topographic data (acquired via airborne laser mapping) and field investigation, we present evidence for a large, landslide-dammed paleolake along the Eel River, CA. The landslide mass initiated from a high-relief, resistant outcrop which failed catastrophically, blocking the Eel River with an approximately 130-m-tall dam. Support for the resulting 55-km-long, 1.3-km3 lake includes subtle shorelines cut into bounding terrain, deltas, and lacustrine sediments radiocarbon dated to 22.5 ka. The landslide provides an explanation for the recent genetic divergence of local anadromous (ocean-run) steelhead trout (Oncorhynchus mykiss) by blocking their migration route and causing gene flow between summer run and winter run reproductive ecotypes. Further, the dam arrested the prodigious flux of sediment down the Eel River; this cessation is recorded in marine sedimentary deposits as a 10-fold reduction in deposition rates of Eel-derived sediment and constitutes a rare example of a terrestrial event transmitted through the dispersal system and recorded offshore. PMID:22084068

  8. Landslide-dammed paleolake perturbs marine sedimentation and drives genetic change in anadromous fish.

    PubMed

    Mackey, Benjamin H; Roering, Joshua J; Lamb, Michael P

    2011-11-22

    Large bedrock landslides have been shown to modulate rates and processes of river activity by forming dams, forcing upstream aggradation of water and sediment, and generating catastrophic outburst floods. Less apparent is the effect of large landslide dams on river ecosystems and marine sedimentation. Combining analyses of 1-m resolution topographic data (acquired via airborne laser mapping) and field investigation, we present evidence for a large, landslide-dammed paleolake along the Eel River, CA. The landslide mass initiated from a high-relief, resistant outcrop which failed catastrophically, blocking the Eel River with an approximately 130-m-tall dam. Support for the resulting 55-km-long, 1.3-km(3) lake includes subtle shorelines cut into bounding terrain, deltas, and lacustrine sediments radiocarbon dated to 22.5 ka. The landslide provides an explanation for the recent genetic divergence of local anadromous (ocean-run) steelhead trout (Oncorhynchus mykiss) by blocking their migration route and causing gene flow between summer run and winter run reproductive ecotypes. Further, the dam arrested the prodigious flux of sediment down the Eel River; this cessation is recorded in marine sedimentary deposits as a 10-fold reduction in deposition rates of Eel-derived sediment and constitutes a rare example of a terrestrial event transmitted through the dispersal system and recorded offshore.

  9. Revisiting the homogenization of dammed rivers in the southeastern US

    Treesearch

    Ryan A. McManamay; Donald J. Orth; Charles A. Dolloff

    2012-01-01

    For some time, ecologists have attempted to make generalizations concerning how disturbances influence natural ecosystems, especially river systems. The existing literature suggests that dams homogenize the hydrologic variability of rivers. However, this might insinuate that dams affect river systems similarly despite a large gradient in natural hydrologic character....

  10. National Dam Inspection Program. Lower Hemlock Dam (NDI-ID Number PA-00756, DER-ID Number 52-117) Delaware River Basin, Pike County, Pennsylvania. Phase I Inspection Report.

    DTIC Science & Technology

    1980-06-01

    1= .l 1 Cd LzL C -N w x - bo0 P4 0 r.. L4- :3 wow I- TABLE OF CONTENTS Page SECTION 1 - PROJECT INFORMATION 1.1 GENERAL 1 1.2 DESCRIPTION OF PROJECT...Classification: High (Refer to Section 3.1.E.) E. Ownership: Mr. David R. Kochel, Community Manager Hemlock Farms Community Association Hemlock Farms...0S~/m 00 (%.J? N N LOWER HEMLOCK DAM PA.-00756 I NSPECTION SURVEY PLATE A-31 lb’hJ -oo z lb - 00,00 Z 0 w -I- - 00 €0 xI Og 4O O I14 wIL -0ogo U vz i

  11. Harvesting river water through small dams promote positive environmental impact.

    PubMed

    Agoramoorthy, Govindasamy; Chaudhary, Sunita; Chinnasamy, Pennan; Hsu, Minna J

    2016-11-01

    While deliberations relating to negative consequences of large dams on the environment continue to dominate world attention, positive benefits provided by small dams, also known as check dams, go unobserved. Besides, little is known about the potential of check dams in mitigating global warming impacts due to less data availability. Small dams are usually commissioned to private contractors who do not have clear mandate from their employers to post their work online for public scrutiny. As a result, statistics on the design, cost, and materials used to build check dams are not available in public domain. However, this review paper presents data for the first time on the often ignored potential of check dams mitigating climate-induced hydrological threats. We hope that the scientific analysis presented in this paper will promote further research on check dams worldwide to better comprehend their eco-friendly significance serving society.

  12. Sediment and water discharge rates of Turkish Black Sea rivers before and after hydropower dam construction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, B.J.

    1994-06-01

    Presently, the water discharge rate to the Black Sea by Turkish rivers is approximately 41 km[sup 3]/yr. The sediment discharge rate of Turkish rivers to the Black Sea is 28 x 10[sup 6] t/yr. Before construction of the hydroelectric dams, the sediment discharge rate was approximately 70 x 10[sup 6] t/yr. The sharp reduction in sediment load is largely a result of the dams near the mouths of the Yesil Irmak and Kizil Irmak rivers. Before the construction of dams, Turkish rivers contributed approximately one third of the total amount of sediment received by the Black Sea from all surroundingmore » rivers. The life-span of the major reservoirs varies from approximately only one century (Yesil Irmak river reservoirs) to several thousand years (Sakarya river reservoirs). Life-span for the large Altinkaya Dam reservoir is estimated with approximately 500 yr.« less

  13. Assessing Changes to Organic Contaminant Fluxes from Contaminated Sediments Following Dam Removal in an Urbanized River

    EPA Science Inventory

    Restoration of rivers and their associated ecosystems is a growing priority for government agencies (e.g., NOAA, USDA), as well as conservation organizations. Dam removal is a major component of many restoration projects credited with reintroducing fish species, improving water ...

  14. 43 CFR 418.29 - Project management.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... determination by the Bureau, the Bureau may take over from the District the care, operation, maintenance, and management of the diversion and outlet works (Derby Dam and Lahontan Dam/Reservoir) or any or all of the.... Following written notification from the Bureau, the care, operation, and maintenance of the works may be...

  15. 78 FR 8119 - Cancellation of the Notice of Intent To Prepare a Draft and Final Supplemental Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    ... the Herbert Hoover Dike Major Rehabilitation Project, Martin and Palm Beach Counties AGENCY...-wide risk reduction approach as required for safety modifications to dams. FOR FURTHER INFORMATION...-2108. SUPPLEMENTARY INFORMATION: The supplemental MRR will be replaced with a system-wide Dam Safety...

  16. Hydropower generation, flood control and dam cascades: A national assessment for Vietnam

    NASA Astrophysics Data System (ADS)

    Nguyen-Tien, Viet; Elliott, Robert J. R.; Strobl, Eric A.

    2018-05-01

    Vietnam is a country with diverse terrain and climatic conditions and a dependency on hydropower for a significant proportion of its power needs and as such, is particularly vulnerable to changes in climate. In this paper we apply SWAT (Soil and Water Assessment Tool) derived discharge simulation results coupled with regression analysis to estimate the performance of hydropower plants for Vietnam between 1995 and mid-2014 when both power supply and demand increased rapidly. Our approach is to examine the watershed formed from three large inter-boundary basins: The Red River, the Vietnam Coast and the Lower Mekong River, which have a total area of 977,964 km2. We then divide this area into 7,887 sub-basins with an average area of 131.6 km2 (based on level 12 of HydroSHEDS/HydroBASINS datasets) and 53,024 Hydrological Response Units (HRUs). Next we simulate river flow for the 40 largest hydropower plants across Vietnam. Our validation process demonstrates that the simulated flows are significantly correlated with the gauged inflows into these dams and are able to serve as a good proxy for the inflows into hydropower dams in our baseline energy regression, which captures 87.7% of the variation in monthly power generation. In other results we estimate that large dams sacrifice on average around 18.2% of their contemporaneous production for the purpose of flood control. When we assess Vietnam's current alignment of dams we find that the current cascades of large hydropower dams appear to be reasonably efficient: each MWh/day increase in upstream generation adds 0.146 MWh/day to downstream generation. The study provides evidence for the multiple benefits of a national system of large hydropower dams using a cascade design. Such a system may help overcome future adverse impacts from changes in climate conditions. However, our results show that there is still room for improvement in the harmonization of cascades in some basins. Finally, possible adverse hydro-ecological impacts due to the proliferation of large upstream dams, including those located beyond Vietnam's border, need to be carefully considered.

  17. Seismic Stability Evaluation of Ririe Dam and Reservoir Project. Report 2. Stability Calculations, Analysis, and Evaluations. Volume 1. Main Text

    DTIC Science & Technology

    1991-09-01

    Army (i #Awleable) Engineer istrict. Walls Welli NPW-EN- GI _____________________ Bc DRSSW4~Sse.adZPa 10 SOURCE OF FUNDING NUMBERS Bldg. 602, City...cracks induced by ground motions. Z. Overtopping of dam due to seiches in reservoir. h. Overtopping of dam due to slides or rockfalls into reservoir. j...overtopping due to slides or rockfalls is not likely. Three potential modes of failure remain from the original list: (c) slope failures induced by

  18. National Dam Safety Program. Stony Brook Watershed Dam Site Number 7 (NJ00344), Raritan River Basin, Stony Brook, Mercer County, New Jersey. Phase 1 Inspection Report.

    DTIC Science & Technology

    1980-02-01

    for Permit for Construction and Repair of Dam" filed on March 16, 1959. f. Design and Construction History Design data on file with NJDEP include: 1...LAr- Us a-2. hr’s. LA9~ WATF=R? SiQ_~~- SL- !E q VOL ( YFv - mcA>-) (Acmr-- =T.) 2o4~ 2-Ito STORCH ENGINEERS shootL... of 11. Project FmnnK Wmr=X---A-1

  19. 33 CFR 208.11 - Regulations for use of storage allocated for flood control or navigation and/or project operation...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... VA Pwr. Glen Elder Dam & Waconda Lk KS Mitchel Solomon R FIM 722.3204.8 1488.31455.6 1455.61428.0... 820 PL 78-534 USBR. Kirwin Dam & Res KS Phillips N Fork Solomon R F ICR 215.1 89.6 1757.3 1729.2 1729... Webster Dam & Res KS Rocks S Fork Solomon R F IRC 183.4 72.1 1923.7 1892.5 1892.5 1860.0 8480 3772 3772...

  20. 33 CFR 208.11 - Regulations for use of storage allocated for flood control or navigation and/or project operation...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... VA Pwr. Glen Elder Dam & Waconda Lk KS Mitchel Solomon R FIM 722.3204.8 1488.31455.6 1455.61428.0... 820 PL 78-534 USBR. Kirwin Dam & Res KS Phillips N Fork Solomon R F ICR 215.1 89.6 1757.3 1729.2 1729... Webster Dam & Res KS Rocks S Fork Solomon R F IRC 183.4 72.1 1923.7 1892.5 1892.5 1860.0 8480 3772 3772...

  1. Seismic Stability Evaluation of Alben Barkley Dam and Lake Project. Volume 2. Geological and Seismological Evaluation.

    DTIC Science & Technology

    1986-06-01

    30 APPENDIX A: EARTHQUAKES AND GEOLOGY OF THE BARKLEY DAM AREA IN RELATION TO THE NEW MADRID EARTHQUAKE REGION TO...Dam is about 115 km from the source area of the New Madrid earthquakes of 1811-1812. Four major earthquakes are deduced to have occurred (Street and...hundreds of aftershocks, a dozen of which were felt over much of the central United States. Other major earthquakes that have happened in the New Madrid

  2. Geophysical evaluation of the Success Dam foundation, Porterville, California

    USGS Publications Warehouse

    Hunter, L.E.; Powers, M.H.; Haines, S.; Asch, T.; Burton, B.L.; Serafini, D.C.

    2006-01-01

    Success Dam is a zonedearth fill embankment located near Porterville, CA. Studies of Success Dam by the recent Dam Safety Assurance Program (DSAP) have demonstrated the potential for seismic instability and large deformation of the dam due to relatively low levels of earthquake shaking. The U.S. Army Corps of Engineers conducted several phases of investigations to determine the properties of the dam and its underlying foundation. Detailed engineering studies have been applied using a large number of analytical techniques to estimate the response of the dam and foundation system when subjected to earthquake loading. Although a large amount of data have been acquired, most are 'point' data from borings and results have to be extrapolated between the borings. Geophysical techniques were applied to image the subsurface to provide a better understanding of the spatial distribution of key units that potentially impact the stability. Geophysical investigations employing seismic refraction tomography, direct current (DC) resistivity, audio magnetotellurics (AMT) and self-potential (SP) were conducted across the location of the foundation of a new dam proposed to replace the existing one. Depth to bedrock and the occurrence of beds potentially susceptible to liquefaction were the focus of the investigations. Seismic refraction tomography offers a deep investigation of the foundation region and looks at compressional and shear properties of the material. Whereas resistivity surveys determines conductivity relationships in the shallow subsurface and can produce a relatively high-resolution image of geological units with different electrical properties. AMT was applied because it has the potential to look considerably deeper than the other methods, is useful for confirming depth to bedrock, and can be useful in identifying deep seated faults. SP is a passive electrical method that measures the electrical streaming potential in the subsurface that responds to the movement of ground water. SP surveys were conducted at low pool and high pool conditions in order to look for evidence of seepage below the existing dam. In this paper, we summarize these techniques, present their results at Success Dam, and discuss general application of these techniques for investigating dams and their foundations.

  3. Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2003 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocklage, Stephen J.

    The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project (FCAP) sites upstream of Lower Granite Dam in 2003. This was the eighth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 437,633 yearlings released from the Fall Chinook Acclimation Project facilities were short of the 450,000 fish quota.more » We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 7,492 PIT tagged yearlings from Pittsburg Landing, 7,494 from Big Canyon and 2,497 from Captain John Rapids. Fish health sampling indicated that, overall, bacterial kidney disease levels at the acclimation facilities could be considered medium with 37-83% of the fish sampled rating medium to very high. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 153.7 mm (153.2-154.2 mm) at Captain John Rapids to 164.2 mm (163.9-164.5 mm) at Pittsburg Landing. Mean condition factors ranged from 1.06 at Lyons Ferry Hatchery to 1.22 at Captain John Rapids. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 83.1% (80.7-85.5%) for Big Canyon to 91.7% (87.7-95.7%) for Captain John Rapids. Estimated survival from release to McNary Dam ranged from 59.9% (54.6-65.2%) for Big Canyon to 69.4% (60.5-78.4%) for Captain John Rapids. Median migration rates to Lower Granite Dam, based on all observations of PIT tagged yearlings from the FCAP facilities, ranged from 5.8 river kilometers per day (rkm/d) for Captain John Rapids to 16.2 rkm/d for Pittsburg Landing. Median migration rates to McNary Dam ranged from 11.7 rkm/d for Captain John Rapids to 17.6 rkm/d for Pittsburg Landing. Median travel times from the FCAP facilities were about 8-15 days to Lower Granite Dam and 22-27 days to McNary Dam. Median arrival dates at Lower Granite Dam, based on all observations of PIT tagged yearling groups from the FCAP facilities, ranged from April 23-25. Median arrival dates at McNary Dam for Pittsburg Landing, Big Canyon and Captain John Rapids groups ranged from May 4-10.« less

  4. Enhancing ecosystem restoration efficiency through spatial and temporal coordination.

    PubMed

    Neeson, Thomas M; Ferris, Michael C; Diebel, Matthew W; Doran, Patrick J; O'Hanley, Jesse R; McIntyre, Peter B

    2015-05-12

    In many large ecosystems, conservation projects are selected by a diverse set of actors operating independently at spatial scales ranging from local to international. Although small-scale decision making can leverage local expert knowledge, it also may be an inefficient means of achieving large-scale objectives if piecemeal efforts are poorly coordinated. Here, we assess the value of coordinating efforts in both space and time to maximize the restoration of aquatic ecosystem connectivity. Habitat fragmentation is a leading driver of declining biodiversity and ecosystem services in rivers worldwide, and we simultaneously evaluate optimal barrier removal strategies for 661 tributary rivers of the Laurentian Great Lakes, which are fragmented by at least 6,692 dams and 232,068 road crossings. We find that coordinating barrier removals across the entire basin is nine times more efficient at reconnecting fish to headwater breeding grounds than optimizing independently for each watershed. Similarly, a one-time pulse of restoration investment is up to 10 times more efficient than annual allocations totaling the same amount. Despite widespread emphasis on dams as key barriers in river networks, improving road culvert passability is also essential for efficiently restoring connectivity to the Great Lakes. Our results highlight the dramatic economic and ecological advantages of coordinating efforts in both space and time during restoration of large ecosystems.

  5. Enhancing ecosystem restoration efficiency through spatial and temporal coordination

    PubMed Central

    Neeson, Thomas M.; Ferris, Michael C.; Diebel, Matthew W.; Doran, Patrick J.; O’Hanley, Jesse R.; McIntyre, Peter B.

    2015-01-01

    In many large ecosystems, conservation projects are selected by a diverse set of actors operating independently at spatial scales ranging from local to international. Although small-scale decision making can leverage local expert knowledge, it also may be an inefficient means of achieving large-scale objectives if piecemeal efforts are poorly coordinated. Here, we assess the value of coordinating efforts in both space and time to maximize the restoration of aquatic ecosystem connectivity. Habitat fragmentation is a leading driver of declining biodiversity and ecosystem services in rivers worldwide, and we simultaneously evaluate optimal barrier removal strategies for 661 tributary rivers of the Laurentian Great Lakes, which are fragmented by at least 6,692 dams and 232,068 road crossings. We find that coordinating barrier removals across the entire basin is nine times more efficient at reconnecting fish to headwater breeding grounds than optimizing independently for each watershed. Similarly, a one-time pulse of restoration investment is up to 10 times more efficient than annual allocations totaling the same amount. Despite widespread emphasis on dams as key barriers in river networks, improving road culvert passability is also essential for efficiently restoring connectivity to the Great Lakes. Our results highlight the dramatic economic and ecological advantages of coordinating efforts in both space and time during restoration of large ecosystems. PMID:25918378

  6. 75 FR 2129 - Lock+TM

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-14

    ..., proposing to study the feasibility of Project Green Dream (Project No. 13625), to be located at the New... Dam are owned and operated by the U.S. Army Corps of Engineers. Project Green Dream would include new...

  7. The Impact of the Dachaoshan Dam on Seasonal Hydrological Dynamics in the Main Stream of the Mekong River

    NASA Astrophysics Data System (ADS)

    Kameyama, S.; Shimazaki, H.; Nohara, S.; Fukushima, M.; Kudo, K.; Sato, T.

    2008-12-01

    In the Mekong River watershed, traditional social and industrial systems have long existed in harmony with water and biological resources. Since the 1950s, many dam-construction projects have been started to develop power and water resources to meet increasing demand for energy and food production. Since the 1970s, there have been temporary interruptions to these projects because of civil war or regional volatility of international relations. Many of these projects have been restarted in the last 15 years. This raises international interest, as there are transboundary issues cross-border issues related to both development assistance and environmental conservation. By 2008, two Chinese dams had already been completed (the Manwan dam in 1996 and the Dachaoshan dam in 2003) on the Mekong River in Yunnan province. Dam construction has some positive impacts, such as electricity production, management of water resources, and flood control. However, upstream control of water discharge can have negative impacts on traditional agricultural systems and fisheries downstream from the dams, such as drastic changes in flow volume and sediment load. We used hydrological simulation of the watershed to quantify the impact of the construction of the Dachaoshan dam by comparing annual water discharge and sediment transport before and after the dam was completed. Our main objectives were to use watershed hydrologic modeling to simulate changes to annual hydrological parameters and sediment transport, and to map spatio-temporal changes of these data before and after dam construction. Our study area covered the part of the Mekong River main channel that extends about 100 km downstream from the junction of the borders of Myanmar, Thailand, and the Lao People's Democratic Republic. We used five data validation points at 25-km intervals along this section of the river and calculated model parameters every 1 km. The years we modeled were 1990 (began dam construction) and 2006 (after dam completed). We used the MIKE-SHE and MIKE11-Enterprise (developed by DHI) to calculate seasonal changes of water level, water velocity, and sediment transport. These models provided both water discharge and sediment transport dynamics at each modeled point along the river. The sediment budget was calculated as the difference of sediment load by volume between adjacent modeled points. All parameters used in the model were calibrated with field survey data; the river structure and water flows were measured in November 2007. To validate our simulated results we used historical water-level records from the towns of Chensean and Chencone. To determine the relationship between water discharge and sediment load, we analyzed the turbidity of monthly river water samples collected in the study region between November 2007 and November 2008. Our watershed runoff models simulated water discharge and sediment load at 1-km intervals and 1-h time steps for 1990 and 2006. The model results were compiled in GIS format and maps were produced to provide simple spatial displays of modeled parameters. Our simulations show that after construction of the dam, there was a moderate decrease in peak discharge volume and water velocity during the rainy season from August to September.

  8. Sediment transport on Cape Sable, Everglades National Park, Florida

    USGS Publications Warehouse

    Zucker, Mark; Boudreau, Carrie

    2010-01-01

    The Cape Sable peninsula is located on the southwestern tip of the Florida peninsula within Everglades National Park (ENP). Lake Ingraham, the largest lake within Cape Sable, is now connected to the Gulf of Mexico and western Florida Bay by canals built in the early 1920's. Some of these canals breached a natural marl ridge located to the north of Lake Ingraham. These connections altered the landscape of this area allowing for the transport of sediments to and from Lake Ingraham. Saline intrusion into the formerly fresh interior marsh has impacted the local ecology. Earthen dams installed in the 1950's and 1960's in canals that breached the marl ridge have repeatedly failed. Sheet pile dams installed in the early 1990's subsequently failed resulting in the continued alteration of Lake Ingraham and the interior marsh. The Cape Sable Canals Dam Restoration Project, funded by ENP, proposes to restore the two failed dams in Lake Ingraham. The objective of this study was to collect discharge and water quality data over a series of tidal cycles and flow conditions to establish discharge and sediment surrogate relations prior to initiating the Cape Sable Canals Dam Restoration Project. A dry season synoptic sampling event was performed on April 27-30, 2009.

  9. Dam break analysis and flood inundation map of Krisak dam for emergency action plan

    NASA Astrophysics Data System (ADS)

    Juliastuti, Setyandito, Oki

    2017-11-01

    The Indonesian Regulation which refers to the ICOLD Regulation (International Committee on Large Dam required have the Emergency Action Plan (EAP) guidelines because of the dams have potential failure. In EAP guidelines there is a management of evacuation where the determination of the inundation map based on flood modeling. The purpose of the EAP is to minimize the risk of loss of life and property in downstream which caused by dam failure. This paper will describe about develop flood modeling and inundation map in Krisak dam using numerical methods through dam break analysis (DBA) using hydraulic model Zhong Xing HY-21. The approaches of dam failure simulation are overtopping and piping. Overtopping simulation based on quadrangular, triangular and trapezium fracture. Piping simulation based on cracks of orifice. Using results of DBA, hazard classification of Krisak dam is very high. The nearest village affected dam failure is Singodutan village (distance is 1.45 kilometer from dam) with inundation depth is 1.85 meter. This result can be used by stakeholders such as emergency responders and the community at risk in formulating evacuation procedure.

  10. Integrated Research Methods for Applied Urban Hydrogeology of Karst Sites

    NASA Astrophysics Data System (ADS)

    Epting, J.; Romanov, D. K.; Kaufmann, G.; Huggenberger, P.

    2008-12-01

    Integrated and adaptive surface- and groundwater monitoring and management in urban areas require innovative process-oriented approaches. To accomplish this, it is necessary to develop and combine interdisciplinary instruments that facilitate adequately quantifying cumulative effects on groundwater flow regimes. While the characterization and modeling of flow in heterogeneous and fractured media has been investigated intensively, there are no well-developed long-term hydrogeological research sites for gypsum karst. Considering that infrastructures in karst regions, particularly in gypsum, are prone to subsidence, severe problems can arise in urban areas. In the 1880's, a river dam was constructed on gypsum-containing rock, Southeast of Basel, Switzerland. Over the last 30 years, subsidence of the dam and an adjacent highway has been observed. Surface water infiltrates upstream of the dam, circulates in the gravel deposits and in the weathered bedrock around and beneath the dam and exfiltrates downstream into the river. These processes enhance karstification processes in the soluble units of the gypsum. As a result an extended weathering zone within the bedrock and the development of preferential flow paths within voids and conduits can be observed. To prevent further subsidence, construction measures were conducted in two major project phases in 2006 and 2007. The highway was supported by a large number of pillars embedded in the non- weathered rock and by a sealing pile wall, to prevent infiltrating river water circulating around the dam and beneath the foundation of the highway. To safeguard surface and subsurface water resources during the construction measures, an extensive observation network was set up. Protection schemes and geotechnical investigations that are necessary for engineering projects often provide "windows of opportunity", bearing the possibility to change perceptions concerning the sustainable development of water resources and coordinate future measures. Theories describing the evolution of karst systems are mainly based on conceptual models. Although these models are based on fundamental and well established physical and chemical principles that allow studying important processes from initial small scale fracture networks to the mature karst, systems for monitoring the evolution of karst phenomena are rare. Integrated process-oriented investigation methods are presented, comprising the combination of multiple data sources (lithostratigraphic information of boreholes, extensive groundwater monitoring, dye tracer tests, geophysics) with high-resolution numerical groundwater modeling and model simulations of karstification below the dam. Subsequently, different scenarios evaluated the future development of the groundwater flow regime, the karstification processes as well as possible remediation measures. The approach presented assists in optimizing investigation methods, including measurement and monitoring technologies with predictive character for similar subsidence problems within karst environments in urban areas.

  11. The use of historical maps for reconstructing landforms before river damming. The case of the Swiss Rhone River

    NASA Astrophysics Data System (ADS)

    Reynard, E.; Laigre, L.; Baud, D.

    2012-04-01

    The Swiss Rhone River was systematically embanked during the period 1864-1893. The Swiss Rhone River valley is a glacial valley filled by glaciolacustrine, fluvioglacial and fluvial sediments. Torrential tributaries contribute to a large extent to the sedimentation in the valley and have built large alluvial fans in the main valley. The period before the river damming corresponds to the Little Ice Age, and it is supposed that the torrential behaviour of the river and its tributaries was very active during that period. In parallel to a large hydraulic project (Third Rhone River Correction), aiming at enlarging the river for security and environmental reasons, this project aims at reconstructing the palaeogeomorphology of the river floodplain before and also during the 30-year long embankment project developed during the last decades of the 19th century. The objective is to better know the geomorphological behaviour of the river, and also to localize palaolandforms (meanders, braided patterns, sandstone dunes, wetlands, etc.), present in the floodplain in the first part of the 19th century and that have now totally disappeared. The project is carried out in close collaboration with the Cantonal Archives of Valais and with a group of historians working on the relations between the river and the communities. It should contribute to a better knowledge of the Swiss Rhone River history (Reynard et al., 2009). Both published official maps (Dufour maps, Siegfried maps) and unpublished maps and plans are systematically collected, digitized, and organised in a database managed by a Geographical Information System. Other data are collected (place names, geomorphological, hydrological and hydraulic data, information about land-use and vegetation, paintings and photographs, etc.) and localised. A high-resolution digital terrain model and areal photographs are also used and allow us to map palaeolandforms (meanders, filled oxbow lakes, former channels, etc.). In a second step maps of the palaeogeomorphology of the river floodplain are produced and analysed in collaboration with the historian colleagues. Reference Reynard E., Evéquoz-Dayen M., Dubuis P. (eds) (2009). Le Rhône : dynamique, histoire et société. Sion, Cahiers de Vallesia 21, 238 p.

  12. Synthesis of downstream fish passage information at projects owned by the U.S. Army Corps of Engineers in the Willamette River Basin, Oregon

    USGS Publications Warehouse

    Hansen, Amy C.; Kock, Tobias J.; Hansen, Gabriel S.

    2017-08-07

    The U.S. Army Corps of Engineers (USACE) operates the Willamette Valley Project (Project) in northwestern Oregon, which includes a series of dams, reservoirs, revetments, and fish hatcheries. Project dams were constructed during the 1950s and 1960s on rivers that supported populations of spring Chinook salmon (Oncorhynchus tshawytscha), winter steelhead (O. mykiss), and other anadromous fish species in the Willamette River Basin. These dams, and the reservoirs they created, negatively affected anadromous fish populations. Efforts are currently underway to improve passage conditions within the Project and enhance populations of anadromous fish species. Research on downstream fish passage within the Project has occurred since 1960 and these efforts are documented in numerous reports and publications. These studies are important resources to managers in the Project, so the USACE requested a synthesis of existing literature that could serve as a resource for future decision-making processes. In 2016, the U.S. Geological Survey conducted an extensive literature review on downstream fish passage studies within the Project. We identified 116 documents that described studies conducted during 1960–2016. Each of these documents were obtained, reviewed, and organized by their content to describe the state-of-knowledge within four subbasins in the Project, which include the North Santiam, South Santiam, McKenzie, and Middle Fork Willamette Rivers. In this document, we summarize key findings from various studies on downstream fish passage in the Willamette Project. Readers are advised to review specific reports of interest to insure that study methods, results, and additional considerations are fully understood.

  13. Geomorphic Influences on Large Wood Dam Loadings, Particulate Organic Matter and Dissolved Organic Carbon in an 0ld-Growth Northern Hardwood Watershed

    Treesearch

    P. Charles Goebel; Kurt S. Pregitzer; Brain J. Palik

    2003-01-01

    We quantified large wood loadings and seasonal concentrations of particulate organic matter (POM) and dissolved organic carbon (DOC) in three different geomonghic zones (each with unique hydrogeomorphic characteristics) of a pristine, old-growth northern hardwood watershed. The highest large wood dam loadings were in the high-gradient, bedrock controlled geomorphic...

  14. Large storage operations under climate change: expanding uncertainties and evolving tradeoffs

    NASA Astrophysics Data System (ADS)

    Giuliani, Matteo; Anghileri, Daniela; Castelletti, Andrea; Vu, Phuong Nam; Soncini-Sessa, Rodolfo

    2016-03-01

    In a changing climate and society, large storage systems can play a key role for securing water, energy, and food, and rebalancing their cross-dependencies. In this letter, we study the role of large storage operations as flexible means of adaptation to climate change. In particular, we explore the impacts of different climate projections for different future time horizons on the multi-purpose operations of the existing system of large dams in the Red River basin (China-Laos-Vietnam). We identify the main vulnerabilities of current system operations, understand the risk of failure across sectors by exploring the evolution of the system tradeoffs, quantify how the uncertainty associated to climate scenarios is expanded by the storage operations, and assess the expected costs if no adaptation is implemented. Results show that, depending on the climate scenario and the time horizon considered, the existing operations are predicted to change on average from -7 to +5% in hydropower production, +35 to +520% in flood damages, and +15 to +160% in water supply deficit. These negative impacts can be partially mitigated by adapting the existing operations to future climate, reducing the loss of hydropower to 5%, potentially saving around 34.4 million US year-1 at the national scale. Since the Red River is paradigmatic of many river basins across south east Asia, where new large dams are under construction or are planned to support fast growing economies, our results can support policy makers in prioritizing responses and adaptation strategies to the changing climate.

  15. 22 CFR 216.2 - Applicability of procedures.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... river basin development; (ii) Irrigation or water management projects, including dams and impoundments... projects, programs or activities authorized or approved by A.I.D. and to substantive amendments or extensions of ongoing projects, programs, or activities. (b) Exemptions. (1) Projects, programs or activities...

  16. 77 FR 48151 - Boulder Canyon Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-13

    ... DEPARTMENT OF ENERGY Western Area Power Administration Boulder Canyon Project AGENCY: Western Area... Canyon Project (BCP) electric service provided by the Western Area Power Administration (Western). The... INFORMATION: Hoover Dam, authorized by the Boulder Canyon Project Act (45 Stat. 1057, December 21, 1928), sits...

  17. 43 CFR 431.7 - Administration and management of the Colorado River Dam Fund.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the administration of the Colorado River Dam Fund and the Lower Colorado River Basin Development Fund... deposited by Western and shall be available without further appropriation for: (1) Defraying the costs of... River Basin Project Act; (5) Transfers to the Lower Colorado River Basin Development Fund and subsequent...

  18. 1. VIEW OF LOCKS, LOOKING NORTHEAST Photocopy of photograph, ca. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF LOCKS, LOOKING NORTHEAST Photocopy of photograph, ca. 1980, courtesy of U.S. Engineer Office, St. Louis, Missouri. Original print is on file at Mississippi River Lock and Dam No. 27 in Granite City, Illinois. - Upper Mississippi River 9-Foot Channel Project, Lock & Dam 27, Granite City, Madison County, IL

  19. 114. Photocopy of original construction drawing, 14 August 1935. (Original ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    114. Photocopy of original construction drawing, 14 August 1935. (Original print in the possession of U.S. Army Corps of Engineers, Portland District, Portland, OR.) (M-5-8, Sheet No. 14) SPILLWAY DAM FISHWAY ENTRANCE BAY DIFFUSION CHAMBER BEAN DETAILS. - Bonneville Project, Bonneville Dam, Columbia River, Bonneville, Multnomah County, OR

  20. 78 FR 66911 - Notice of Availability of Draft Environmental Assessment; City of New York

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ... City of New York's existing Cannonsville Dam, which impounds its Cannonsville Water Supply Reservoir. The dam and reservoir are located on the West Branch of the Delaware River, near the Township of... EA) which analyzes the potential environmental effects of construction and operation of the project...

  1. 18 CFR 4.81 - Contents of application.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., or State, as appropriate] and (is/is not) claiming preference under section 7(a) of the Federal Power... and nature of any new roads that would be built for the purpose of conducting the studies; and (2) Work plan for new dam construction. For any development within the project that would entail new dam...

  2. 78 FR 8119 - Cancellation of the Notice of Intent To Prepare a Draft and Final Supplemental Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    ... the Herbert Hoover Dike Major Rehabilitation Project, Palm Beach and Glades Counties, FL AGENCY... safety modifications to dams. FOR FURTHER INFORMATION CONTACT: Questions may be forwarded to Ms. Angela... supplemental MRR will be replaced with a system wide Dam Safety Modification (DSM) Report. Environmental...

  3. 77 FR 48149 - Coralville Energy, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-13

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14431-000] Coralville..., Motions To Intervene, and Competing Applications On July 5, 2012, Coralville Energy, LLC filed an... Burlington Street Dam on the Iowa River, near Iowa City in Johnson County, Iowa. The Burlington Street Dam is...

  4. 33 CFR 208.19 - Marshall Ford Dam and Reservoir (Mansfield Dam and Lake Travis), Colorado River, Tex.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and Reservoir in the interest of flood control as follows: (a) Water Control Plan—(1) General..., flood control, stream regulation, generation of power, irrigation, water supply, and recreation uses. (2) Overall plan for water control. Within the Colorado River Basin, four Federal projects provide flood...

  5. 33 CFR 208.19 - Marshall Ford Dam and Reservoir (Mansfield Dam and Lake Travis), Colorado River, Tex.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and Reservoir in the interest of flood control as follows: (a) Water Control Plan—(1) General..., flood control, stream regulation, generation of power, irrigation, water supply, and recreation uses. (2) Overall plan for water control. Within the Colorado River Basin, four Federal projects provide flood...

  6. Bureau of Reclamation Hydropower Lease of Power Privilege: Case Studies and Considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis, Taylor L.; Levine, Aaron L.; McLaughlin, Kathleen

    This report analyzes the U.S. Bureau of Reclamation's (Reclamation) lease of power privilege (LOPP) regulatory process for a nonfederal entity to use a Reclamation jurisdictional dam or conduit for power generation. Recent federal initiatives encouraging hydropower development at federally-owned facilities coupled with Reclamation's hydroelectric potential has led to an increased interest in powering Reclamation dams and conduits through the LOPP process. During the last five years, 23 of the 36 total LOPP projects (76 MW) have been initiated and are at some phase of the development process. Resource assessments analyzed in this report identify over 360 MW of hydroelectric potentialmore » at Reclamation-owned dams and conduits. This report provides considerations from Reclamation staff involved in the LOPP regulatory process and developers that have received an LOPP and are currently generating hydropower at a Reclamation dam or conduit. The authors also analyze LOPP regulatory processing timelines before and after the implementation of federal initiatives to streamline the LOPP process and provide case studies of hydropower projects that have obtained an LOPP.« less

  7. Evaluate the Restoration Potential of Snake River Fall Chinook Salmon Spawning Habitat, Status Report 2006.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanrahan, T.P.

    2009-01-08

    The Bonneville Power Administration (BPA) Project 2003-038-00, Evaluate the restoration potential of Snake River fall Chinook salmon spawning habitat, began in FY04 (15 December 2003) and continues into FY06. This status report is intended to summarize accomplishments during FY04 and FY05. Accomplishments are summarized by Work Elements, as detailed in the Statement of Work (see BPA's project management database PISCES). This project evaluates the restoration potential of mainstem habitats for fall Chinook salmon. The studies address two research questions: 'Are there sections not currently used by spawning fall Chinook salmon within the impounded lower Snake River that possess the physicalmore » characteristics for potentially suitable fall Chinook spawning habitat?' and 'Can hydrosystem operations affecting these sections be adjusted such that the sections closely resemble the physical characteristics of current fall Chinook salmon spawning areas in similar physical settings?' Efforts are focused at two study sites: (1) the Ice Harbor Dam tailrace downstream to the Columbia River confluence, and (2) the Lower Granite Dam tailrace. Our previous studies indicated that these two areas have the highest potential for restoring Snake River fall Chinook salmon spawning habitat. The study sites will be evaluated under existing structural configurations at the dams (i.e., without partial removal of a dam structure), and alternative operational scenarios (e.g., varying forebay/tailwater elevations). The areas studied represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We are using a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats is the section extending downstream from the Wanapum Dam tailrace on the Columbia River. Escapement estimates for fall of 2000 indicate more than 9000 adult fall Chinook salmon returned to this area, accounting for more than 2100 redds within a 5 km section of river.« less

  8. Turbocharger with sliding piston, and having vanes and leakage dams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Quentin; Alnega, Ahmed

    2011-12-06

    A turbocharger having a sliding piston for regulating exhaust gas flow into the turbine wheel includes a set of first vanes mounted on a fixed first wall of the turbine nozzle and projecting axially toward an opposite second wall of the nozzle, and/or a set of second vanes mounted on the end of the piston and projecting in an opposite axial direction toward the first wall of the nozzle. For the/each set of vanes, there are leakage dams formed on the wall that is adjacent the vane tips when the piston is closed. The leakage dams are closely adjacent themore » vane tips and discourage exhaust gas from leaking in a generally radial direction past the vane tips as the piston just begins to open from its fully closed position.« less

  9. Potential of modified flow-release rules for Kingsley Dam in meeting crane habitat requirements, Platte River, Nebraska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, H.W.; Hiew, K.L.; Loubser, E.

    1985-11-01

    The Whooping Crane, an endangered species, uses the Platte River downstream from Overton, Nebraska in its migratory route. Maintenance of favorable habitat conditions required by law may mean restrictions on development and management of Colorado's entitled water in the South Platte River. The project investigated meeting crane habitat flow requirements by alternative plans for flow releases through Kingsley Dam (North Platte River) and Narrows Dam (a proposed project on the South Platte River). The analysis is based on mean monthly flow of the past 39 years. Irrigation releases were held firm, hydroelectric power production was maximized, and flows available tomore » meet habitat requirements were determined. A simulation model was developed to model the operation of the North Platte and South Platte Rivers.« less

  10. Monitoring and Evaluation of Environmental Flow Prescriptions for Five Demonstration Sites of the Sustainable Rivers Project

    USGS Publications Warehouse

    Konrad, Christopher P.

    2010-01-01

    The Nature Conservancy has been working with U.S. Army Corps of Engineers (Corps) through the Sustainable Rivers Project (SRP) to modify operations of dams to achieve ecological objectives in addition to meeting the authorized purposes of the dams. Modifications to dam operations are specified in terms of environmental flow prescriptions that quantify the magnitude, duration, frequency, and seasonal timing of releases to achieve specific ecological outcomes. Outcomes of environmental flow prescriptions implemented from 2002 to 2008 have been monitored and evaluated at demonstration sites in five rivers: Green River, Kentucky; Savannah River, Georgia/South Carolina; Bill Williams River, Arizona; Big Cypress Creek, Texas; and Middle Fork Willamette River, Oregon. Monitoring and evaluation have been accomplished through collaborative partnerships of federal and state agencies, universities, and nongovernmental organizations.

  11. Characteristics of the first stage of constructing the Hoabinh Dam in Vietnam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogachenko, P.T.; Godunov, B.I.; Phunc Ne, T.

    1985-06-01

    As a result of an analysis of the data, investigations, and on-site observations at the Hoa-Binh Dam, Vietnam, the authors conclude: infilling of the rock mass with sand, successful for the Aswan dam, cannot be mechanically transferred to other dams; the possibility of using the energy of the river flow for removing low-quality soils in large amounts from the foundation of rock-fill dams by regulating the sequence of dumping the elements of the dam was confirmed in model investigations and successfully accomplished in the construction of the HoaBinh dam; at the site of the Hoa-Binh dam, observations of the dumpingmore » of the sand-gravel soil into water into a high shoulder did not reveal segregation of this soil, however, the data from investigations in a single borehole contradict the observations -- further on-site observation must therefore be made.« less

  12. Cultural Resources Survey, Harry S. Truman Dam and Reservoir Project, Missouri. Volume 9. Preliminary Studies of Early and Middle Archaic Components.

    DTIC Science & Technology

    1983-02-01

    masim y an Identify by block number,) The ten volumes report the results of a cultural resources survev in the Harry S. Truman Dam and Reservoir...UNIVERSITY OF MISSOURI-COLUMBIA 1983 j .9!!: *. 1 REPORTS CF THE ’C". CULr.JPAL RESOURCES SURVEY HARRY S. TRUMAN DM AND PRESERVOIR PROJECT volume I...and Surficial Geology of the Harry S. Truman Reservoir Area, West Central Missouri, by R. A. Ward and T. L. Thompson, pp. 1-21 Part II: Report on

  13. Cultural Resources Survey, Harry S. Truman Dam and Reservoir Project, Missouri. Volume 3. Architectural Survey.

    DTIC Science & Technology

    1983-02-01

    REPORT A PERInD O 2ERED I:UlLural Resources Survey, Harry S. Truman Dam F • ild Reservoir Project, Missouri, Volumes I - X 6 PERFORMING ORG. REPORT NUMBER...West Central Missouri, by R. A. Ward and T. L. Thompson, pp. 1-21 Part II: Report on Geochronological Investigations in the Harry S. Truman Reservoir...NATIONAL BUREAU OF SIANDARDS 1963 A LI I i * I Harry S. Truman DamaS Amand Reservoir, MissouriUS Army Corps of Engineers American Archaeology Division

  14. Future water availability in North African dams simulated by high-resolution regional climate models

    NASA Astrophysics Data System (ADS)

    Tramblay, Yves; Jarlan, Lionel; Hanich, Lahoucine; Somot, Samuel

    2016-04-01

    In North Africa, the countries of Morocco, Algeria and Tunisia are already experiencing water scarcity and a strong interannual variability of precipitation. To better manage their existing water resources, several dams and reservoirs have been built on most large river catchments. The objective of this study is to provide quantitative scenarios of future changes in water availability for the 47 major dams and reservoirs catchments located in North Africa. An ensemble of regional climate models (RCM) with a spatial resolution of 12km, driven by different general circulation models (GCM), from the EuroCORDEX experiment have been considered to analyze the projected changes on temperature, precipitation and potential evapotranspiration (PET) for two scenarios (RCP4.5 and RCP8.5) and two time horizons (2040-2065 and 2065-2090). PET is estimated from RCM outputs either with the FAO-Penman-Monteith (PM) equation, requiring air temperature, relative humidity, net radiation and wind, or with the Hargreave Samani (HS) equation, requiring only air temperature. The water balance is analyzed by comparing the climatic demand and supply of water, considering that for most of these catchments groundwater storage is negligible over long time periods. Results indicated a future temperature increase for all catchments between +1.8° and +4.2°, depending on the emission scenario and the time period considered. Precipitation is projected to decrease between -14% to -27%, mainly in winter and spring, with a strong East to West gradient. PET computed from PM or HS formulas provided very similar estimates and projections, ranging between +7% to +18%. Changes in PET are mostly driven by rising temperatures and are greatest during dry summer months than for the wet winter season. Therefore the increased PET has a lower impact than declining precipitation on future water availability, which is expected to decrease by -19% to -33% on average.

  15. Application of correspondence analysis in the assessment of mine tailings dam breakage risk in the Mediterranean region.

    PubMed

    Salgueiro, Ana Rita; Pereira, Henrique Garcia; Rico, Maria-Teresa; Benito, Gerado; Díez-Herreo, Andrés

    2008-02-01

    A new statistical approach for preliminary risk evaluation of breakage in tailings dam is presented and illustrated by a case study regarding the Mediterranean region. The objective of the proposed method is to establish an empirical scale of risk, from which guidelines for prioritizing the collection of further specific information can be derived. The method relies on a historical database containing, in essence, two sets of qualitative data: the first set concerns the variables that are observable before the disaster (e.g., type and size of the dam, its location, and state of activity), and the second refers to the consequences of the disaster (e.g., failure type, sludge characteristics, fatalities categorization, and downstream range of damage). Based on a modified form of correspondence analysis, where the second set of attributes are projected as "supplementary variables" onto the axes provided by the eigenvalue decomposition of the matrix referring to the first set, a "qualitative regression" is performed, relating the variables to be predicted (contained in the second set) with the "predictors" (the observable variables). On the grounds of the previously derived relationship, the risk of breakage in a new case can be evaluated, given observable variables. The method was applied in a case study regarding a set of 13 test sites where the ranking of risk obtained was validated by expert knowledge. Once validated, the procedure was included in the final output of the e-EcoRisk UE project (A Regional Enterprise Network Decision-Support System for Environmental Risk and Disaster Management of Large-Scale Industrial Spills), allowing for a dynamic historical database updating and providing a prompt rough risk evaluation for a new case. The aim of this section of the global project is to provide a quantified context where failure cases occurred in the past for supporting analogue reasoning in preventing similar situations.

  16. Little Goose Dam Full Flow PIT-Tag Detection System Project Summary.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warf, Don; Livingston, Scott

    2009-04-16

    In 2006, the design phase of this project was kicked off and was for the most part modeled after the Full Flow PIT installation installed at Lower Monumental Dam during winter and spring of 2006 and 2007. As the Goose Full Flow design progressed and the project started to move towards construction, issues within contracting occurred and the project was put on delay for 1 year. Starting in mid December of 2008, Harcon Inc. was awarded the contract and construction of the new Goose Full Flow PIT-tag detection system began. The purpose of this document is to summarize the installationmore » of the Little Goose Full Flow project from start to finish and to highlight the notable successes and challenges that the installation presented along with the final results and current status.« less

  17. Computational hydraulics of a cascade of experimental-scale landside dam failures

    NASA Astrophysics Data System (ADS)

    Wright, N.; Guan, M.

    2015-12-01

    Abstract: Landslide dams typically comprise unconsolidated and poorly sorted material, and are vulnerable to rapid failure and breaching, particularly in mountainous areas during high intense rainfalls. A large flash flood with high-concentrated sediment can be formed in a short period, and the magnitude is likely to be amplified along the flow direction due to the inclusion of a large amount of sediment. This can result in significant and sudden flood risk downstream for human life and property. Numerous field evidence has indicated the various risks of landslide dam failures. In general, cascading landslide dams can be formed along the sloping channel due to the randomness and unpredictability of landslides, which complexes the hydraulics of landslide dam failures. The failure process of a single dam and subsequent floods has attracted attention in multidisciplinary studies. However, the dynamic failure process of cascading landslide dams has been poorly understood. From a viewpoint of simulation, this study evaluates the formation and development of rapid sediment-charged floods due to cascading failure of landslide dams through detailed hydro-morphodynamic modelling. The model used is based on shallow water theory and it has been successful in predicting the flow and morphological process during sudden dam-break, as well as full and partial dyke-breach. Various experimental-scale scenarios are modelled, including: (1) failure of a single full dam in a sloping channel, (2) failure of two dams in a sloping channel, (3) failure of multiple landslide dams (four) in a sloping channel. For each scenario, different failure modes (sudden/gradual) and bed boundary (fixed /mobile) are assumed and simulated. The study systematically explores the tempo-spatial evolution of landslide-induced floods (discharge, flow velocity, and flow concentration) and geomorphic properties along the sloping channel. The effects of in-channel erosion and flow-driven sediment from dams on the development of flood process are investigated. The results improve the understanding of the formation and development mechanism of flash floods due to cascading landslide dam failures. The findings are beneficial for downstream flood risk assessment and developing control strategies for landslide-induced floods.

  18. 43 CFR 431.3 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... restore the Project to a former good operating condition. Colorado River Dam Fund or Fund shall mean that... specified in the Project Act, the Adjustment Act, the Colorado River Basin Project Act, and the Hoover Power... electric service pursuant to the Hoover Power Plant Act. Project or Boulder Canyon Project shall mean all...

  19. 43 CFR 431.3 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... restore the Project to a former good operating condition. Colorado River Dam Fund or Fund shall mean that... specified in the Project Act, the Adjustment Act, the Colorado River Basin Project Act, and the Hoover Power... electric service pursuant to the Hoover Power Plant Act. Project or Boulder Canyon Project shall mean all...

  20. 43 CFR 431.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... restore the Project to a former good operating condition. Colorado River Dam Fund or Fund shall mean that... specified in the Project Act, the Adjustment Act, the Colorado River Basin Project Act, and the Hoover Power... electric service pursuant to the Hoover Power Plant Act. Project or Boulder Canyon Project shall mean all...

  1. 43 CFR 431.3 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... restore the Project to a former good operating condition. Colorado River Dam Fund or Fund shall mean that... specified in the Project Act, the Adjustment Act, the Colorado River Basin Project Act, and the Hoover Power... electric service pursuant to the Hoover Power Plant Act. Project or Boulder Canyon Project shall mean all...

  2. 43 CFR 431.3 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... restore the Project to a former good operating condition. Colorado River Dam Fund or Fund shall mean that... specified in the Project Act, the Adjustment Act, the Colorado River Basin Project Act, and the Hoover Power... electric service pursuant to the Hoover Power Plant Act. Project or Boulder Canyon Project shall mean all...

  3. Laboratory measurements of acoustic, electrical resistivity, and erodibility of soils as a function of compaction

    USDA-ARS?s Scientific Manuscript database

    Catastrophic floods resulting from the failure of dam and levee infrastructures can paralyze the economy and social life of large populations for long periods of time. The United States has over 100,000 miles of levees and the National Inventory of Dams lists approximately 79,000 U.S. dams. The de...

  4. Experimental study on mechanism and shape characteristics of suspended flexible dam

    NASA Astrophysics Data System (ADS)

    Wang, Jian-zhong; Fan, Hong-xia; Zhu, Li-jun

    2014-12-01

    Hydraulic structures such as groin, longitudinal dike and seawall are common in water conservancy and water transportation engineering projects at home and abroad, which have long been dominated by solid mass structural form. With brush and stone as building materials, this kind of structure has an obvious engineering effect. However, it not only requires huge capital investments, but also has negative impacts on the ecological environment. The suspended flexible dam is an innovative engineering measure, and few theoretical and experimental researches of this type dam can be found at present. This paper studies the mechanism and shape characteristics of this dam and obtains the dynamic equilibrium equation of flexible dam, the float buoyancy expression, and the condition for transformation among three forms of the underwater shape of the dam. The results are valuable in engineering application and can be used as the reference for the future work due to the distinctive design philosophy, the small negative effects on environment and the consistency for sustainable development.

  5. Passage survival of juvenile steelhead, coho salmon, and Chinook salmon in Lake Scanewa and at Cowlitz Falls Dam, Cowlitz River, Washington, 2010–16

    USGS Publications Warehouse

    Liedtke, Theresa L.; Kock, Tobias J.; Hurst, William

    2018-04-03

    A multi-year evaluation was conducted during 2010–16 to evaluate passage survival of juvenile steelhead (Oncorhynchus mykiss), Chinook salmon (O. tshawytscha), and coho salmon (O. kisutch) in Lake Scanewa, and at Cowlitz Falls Dam in the upper Cowlitz River Basin, Washington. Reservoir passage survival was evaluated in 2010, 2011, and 2016, and included the tagging and release of 1,127 juvenile salmonids. Tagged fish were released directly into the Cowlitz and Cispus Rivers, 22.3 and 8.9 km, respectively, upstream of the reservoir, and were monitored as they moved downstream into, and through the reservoir. A single release-recapture survival model was used to analyze detection records and estimate reservoir passage survival, which was defined as successful passage from reservoir entry to arrival at Cowlitz Falls Dam. Tagged fish generally moved quickly downstream of the release sites and, on average, arrived in the dam forebay within 2 d of release. Median travel time from release to first detection at the dam ranged from 0.23 to 0.96 d for juvenile steelhead, from 0.15 to 1.11 d for juvenile coho salmon, and from 0.18 to 1.89 d for juvenile Chinook salmon. Minimum reservoir passage survival probabilities were 0.960 for steelhead, 0.855 for coho salmon and 0.900 for Chinook salmon.Dam passage survival was evaluated at the pilot-study level during 2013–16 and included the tagging and release of 2,512 juvenile salmonids. Juvenile Chinook salmon were evaluated during 2013–14, and juvenile steelhead and coho salmon were evaluated during 2015–16. A paired-release study design was used that included release sites located upstream and downstream of Cowlitz Falls Dam. The downstream release site was positioned at the downstream margin of the dam’s tailrace, which allowed dam passage survival to be measured in a manner that included mortality that occurred in the passage route and in the dam tailrace. More than one-half of the tagged Chinook salmon (52 percent) released upstream of Cowlitz Falls Dam moved downstream and passed the project; the remaining fish either remained upstream of the dam (37 percent) or were collected (11 percent). In 2015 and 2016, collection efficiencies at Cowlitz Falls Dam were abnormally high for juvenile steelhead and coho salmon, which resulted in few fish passing the dam. Seven percent of the tagged steelhead (40 fish) and 4 percent of the tagged coho salmon (18 fish) released upstream of the dam eventually passed the project, but these low numbers of fish precluded the estimation of meaningful survival estimates. Dam passage survival probability estimates for juvenile Chinook salmon were 0.828 in 2013 and 0.861 in 2014, lower than previously reported for turbine-specific passage Cowlitz Falls Dam.

  6. Principles for selecting earthquake motions in engineering design of large dams

    USGS Publications Warehouse

    Krinitzsky, E.L.; Marcuson, William F.

    1983-01-01

    This report gives a synopsis of the various tools and techniques used in selecting earthquake ground motion parameters for large dams. It presents 18 charts giving newly developed relations for acceleration, velocity, and duration versus site earthquake intensity for near- and far-field hard and soft sites and earthquakes having magnitudes above and below 7. The material for this report is based on procedures developed at the Waterways Experiment Station. Although these procedures are suggested primarily for large dams, they may also be applicable for other facilities. Because no standard procedure exists for selecting earthquake motions in engineering design of large dams, a number of precautions are presented to guide users. The selection of earthquake motions is dependent on which one of two types of engineering analyses are performed. A pseudostatic analysis uses a coefficient usually obtained from an appropriate contour map; whereas, a dynamic analysis uses either accelerograms assigned to a site or specified respunse spectra. Each type of analysis requires significantly different input motions. All selections of design motions must allow for the lack of representative strong motion records, especially near-field motions from earthquakes of magnitude 7 and greater, as well as an enormous spread in the available data. Limited data must be projected and its spread bracketed in order to fill in the gaps and to assure that there will be no surprises. Because each site may have differing special characteristics in its geology, seismic history, attenuation, recurrence, interpreted maximum events, etc., as integrated approach gives best results. Each part of the site investigation requires a number of decisions. In some cases, the decision to use a 'least ork' approach may be suitable, simply assuming the worst of several possibilities and testing for it. Because there are no standard procedures to follow, multiple approaches are useful. For example, peak motions at a site may be obtained from several methods that involve magnitude of earthquake, distance from source, and corresponding motions; or, alternately, peak motions may be assigned from other correlations based on earthquake intensity. Various interpretations exist to account for duration, recurrence, effects of site conditions, etc. Comparison of the various interpretations can be very useful. Probabilities can be assigned; however, they can present very serious problems unless appropriate care is taken when data are extrapolated beyond their data base. In making deterministic judgments, probabilistic data can provide useful guidance in estimating the uncertainties of the decision. The selection of a design ground motion for large dams is based in the end on subjective judgments which should depend, to an important extent, on the consequences of failure. Usually, use of a design value of ground motion representing a mean plus one standard deviation of possible variation in the mean of the data puts one in a conservative position. If failure presents no hazard to life, lower values of design ground motion may be justified, providing there are cost benefits and the risk is acceptable to the owner. Where a large hazard to life exists (i.e., a dam above an urbanized area) one may wish to use values of design ground motion that approximate the very worst case. The selection of a design ground motion must be appropriate for its particular set of circumstances.

  7. National Program for Inspection of Non-Federal Dams. Spectacle Swamp Dam (CT 00476), Connecticut Coastal Basin, Wilton, Connecticut. Phase I Inspection Report.

    DTIC Science & Technology

    1981-05-01

    CT 00476 IA 𔄁V 7 4. TITLE (nd $ba#ile) S. TYPE OF REPORT a PERIOD COVERED Spectacle Swamp Dam INSPECTION REPORT NATIONAL PROGRAM FOR INSPECTION OF...PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELrihENT. PROJECT. TASK AREA & WORK UNIT NUMS1RS X 1I. CONTROLLING OFFICE NAME AND ADDRESS Ia ...SCNEDULE 16. DISTRIOUTION STATEMENT (1 tklReport) APPROVAL FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED 5 17. DISTRIOUTION STATEMENT (of IA * he r ieet

  8. Madison River, Montana Report on Flood Emergency Madison River Slide. Volume 1. Main Report

    DTIC Science & Technology

    1960-09-01

    SUbject The Earthquake Madison River Valley Hebgen Dam and Lake Madison R1 ver Slide MADISOX RIVlm1 IIOIT.ANA :REPORT 01’ FLOOD l!MBRGDCY...the Gallatin River on the east and the Jefferson River on the west to form the Missouri Rivero See the general map Plate lo Hebgen Dam ~ a water...storage project of the Mont&Da Power Company:; is located at the entrance to Madison Canyon in the Madison Mountain RSDge o From the dam , the river flows

  9. The effects of habitat restoration on endangered fishes in the Upper Klamath Basin

    NASA Astrophysics Data System (ADS)

    Vanderkooi, S.; Burdick, S.; Ellsworth, C.

    2009-12-01

    The Klamath Basin has been prominent in the debate over the use of water in the arid west for nearly a decade. Principle competing demands include threatened and endangered species, agriculture, recreation, and Tribal rights. In an effort to recover two endangered fish species, the Lost River sucker and the shortnose sucker, several large-scale restoration projects have recently been undertaken in the basin. These include restoration of 7000 acres of drained wetlands in the Williamson River Delta in 2007 and 2008 and the removal of Chiloquin Dam on the Sprague River in 2008. The objectives of these projects include increasing amounts of usable aquatic habitats, restoring watershed function, improving water quality, and improving access to and connectivity among habitats. The U.S. Geological Survey is involved in a series of collaborative, interdisciplinary research efforts to evaluate the effectiveness of these restoration projects. Effectiveness is being evaluated by physical, biological and ecological metrics. Our focus is on the biology and ecology of endangered suckers. In the Williamson River Delta, we’re collecting data on the distribution, habitat use, relative abundance, and health and condition of early life-history stages of endangered suckers. Results to date indicate larval as well as age-0 and age-1 juvenile suckers are using newly created habitats in the delta. Preliminary results from comparisons of age-0 suckers captured within and outside of the delta suggest those using the restored habitats are in better condition. In the Sprague River, we’re studying the behavior, run timing, and distribution of adult suckers during spawning migrations as well as the relative abundance, species composition, and timing of emigrating larval suckers. Preliminary results indicate adult suckers migrated into the reach previously impounded by Chiloquin Dam in greater numbers than in the past. While these results indicate a positive response to dam removal, population-level effects of such restoration projects on suckers will not be fully evident for years to come because of the long life span and slow maturation rates of these fish. Continued monitoring of physical and biological changes due to restoration is essential to determining the effectiveness of these actions and informing future efforts.

  10. Modeling Changes in Bed Surface Texture and Aquatic Habitat Caused by Run-of-River Hydropower Development

    NASA Astrophysics Data System (ADS)

    Fuller, T. K.; Venditti, J. G.; Nelson, P. A.; Popescu, V.; Palen, W.

    2014-12-01

    Run-of-river (RoR) hydropower has emerged as an important alternative to large reservoir-based dams in the renewable energy portfolios of China, India, Canada, and other areas around the globe. RoR projects generate electricity by diverting a portion of the channel discharge through a large pipe for several kilometers downhill where it is used to drive turbines before being returned to the channel. Individual RoR projects are thought to be less disruptive to local ecosystems than large hydropower because they involve minimal water storage, more closely match the natural hydrograph downstream of the project, and are capable of bypassing trapped sediment. However, there is concern that temporary sediment supply disruption may degrade the productivity of salmon spawning habitat downstream of the dam by causing changes in the grain size distribution of bed surface sediment. We hypothesize that salmon populations will be most susceptible to disruptions in sediment supply in channels where; 1) sediment supply is high relative to transport capacity prior to RoR development, and 2) project design creates substantial sediment storage volume. Determining the geomorphic effect of RoR development on aquatic habitat requires many years of field data collection, and even then it can be difficult to link geomorphic change to RoR development alone. As an alternative, we used a one-dimensional morphodynamic model to test our hypothesis across a range of pre-development sediment supply conditions and sediment storage volumes. Our results confirm that coarsening of the median surface grain-size is greatest in cases where pre-development sediment supply was highest and sediment storage volumes were large enough to disrupt supply over the course of the annual hydrograph or longer. In cases where the pre-development sediment supply is low, coarsening of the median surface grain-size is less than 2 mm over a multiple-year disruption period. When sediment supply is restored, our results show that the time required for a channel to re-establish its pre-development median surface grain-size is inversely correlated to the pre-development sediment supply conditions. These results demonstrate that morphodynamic models can be a valuable tool in assessing the risk to aquatic habitat from RoR development.

  11. Modeling Potential Surface and Shallow Groundwater Storage Provided by Beaver Ponds Across Watersheds

    NASA Astrophysics Data System (ADS)

    Hafen, K.; Wheaton, J. M.; Macfarlane, W.

    2016-12-01

    Damming of streams by North American Beaver (Castor canadensis) has been shown to provide a host of potentially desirable hydraulic and hydrologic impacts. Notably, increases in surface water storage and groundwater storage may alter the timing and delivery of water around individual dams and dam complexes. Anecdotal evidence suggests these changes may be important for increasing and maintaining baseflow and even helping some intermittent streams flow perennially. In the arid west, these impacts could be particularly salient in the face of climate change. However, few studies have examined the hydrologic impacts of beaver dams at scales large enough to provide insight for water management, in part because understanding or modeling these impacts at large spatial scales has been precluded by uncertainty concerning the number of beaver dams a drainage network can support. Using the recently developed Beaver Restoration Assessment Tool (BRAT) to identify possible densities and spatial configurations of beaver dams, we developed a model that predicts the area and volume of surface water storage associated with dams of various sizes, and applied this model at different dam densities across multiple watersheds (HUC12) in northern Utah. We then used model results as inputs to the MODFLOW groundwater model to identify the subsequent changes to shallow groundwater storage. The spatially explicit water storage estimates produced by our approach will be useful in evaluating potential beaver restoration and conservation, and will also provide necessary information for developing hydrologic models to specifically identify the effects beaver dams may have on water delivery and timing.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, R.; McKinstry, C.; Cook, C.

    This report documents a four-year study(a) to assess the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee (Oncorhynchus nerka kennerlyi) and rainbow trout (O. mykiss) at the entrance to the forebay of the third powerplant at Grand Coulee Dam. The work was conducted for the Bonneville Power Administration, U.S. Department of Energy, by Pacific Northwest National Laboratory (PNNL) in conjunction with the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes). In this report, emphasis is placed on the methodology and results associated with the fourth project year and compared with findings frommore » the previous years to provide an overall project summary. Since 1995, the Colville Confederated Tribes have managed the Chief Joseph Kokanee Enhancement Project as part of the Northwest Power and Conservation Council Fish and Wildlife Program. Project objectives have focused on understanding natural production of kokanee (a land-locked sockeye salmon) and other fish stocks in the area above Grand Coulee and Chief Joseph dams on the Columbia River (Figure S.1). A 42-month investigation from 1996 to 1999 determined that from 211,685 to 576,676 fish, including kokanee and rainbow trout, were entrained annually at Grand Coulee Dam. Analysis of the data found that 85% of the total entrainment occurred at the dam's third powerplant. Because these entrainment rates represent a significant loss to the tribal fisheries upstream of the dam, they have been judged unacceptable to fishery managers responsible for perpetuating the fishery in Lake Roosevelt. In an effort to reduce fish entrainment rates, the scope of work for the Chief Joseph Kokanee Enhancement Project was modified in 2001 to include a multiyear study of the efficacy of using strobe lights to deter fish from entering the third powerplant forebay. Pacific Northwest National Laboratory initiated the four-year study in collaboration with Colville Tribal Fisheries. The objective of the study was to determine the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee and rainbow trout under field conditions.« less

  13. Examining global electricity supply vulnerability to climate change using a high-fidelity hydropower dam model.

    PubMed

    Turner, Sean W D; Ng, Jia Yi; Galelli, Stefano

    2017-07-15

    An important and plausible impact of a changing global climate is altered power generation from hydroelectric dams. Here we project 21st century global hydropower production by forcing a coupled, global hydrological and dam model with three General Circulation Model (GCM) projections run under two emissions scenarios. Dams are simulated using a detailed model that accounts for plant specifications, storage dynamics, reservoir bathymetry and realistic, optimized operations. We show that the inclusion of these features can have a non-trivial effect on the simulated response of hydropower production to changes in climate. Simulation results highlight substantial uncertainty in the direction of change in globally aggregated hydropower production (~-5 to +5% change in mean global production by the 2080s under a high emissions scenario, depending on GCM). Several clearly impacted hotspots are identified, the most prominent of which encompasses the Mediterranean countries in southern Europe, northern Africa and the Middle East. In this region, hydropower production is projected to be reduced by approximately 40% on average by the end of the century under a high emissions scenario. After accounting for each country's dependence on hydropower for meeting its current electricity demands, the Balkans countries emerge as the most vulnerable (~5-20% loss in total national electricity generation depending on country). On the flipside, a handful of countries in Scandinavia and central Asia are projected to reap a significant increase in total electrical production (~5-15%) without investing in new power generation facilities. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Examining global electricity supply vulnerability to climate change using a high-fidelity hydropower dam model

    DOE PAGES

    Turner, Sean W. D.; Ng, Jia Yi; Galelli, Stefano

    2017-03-07

    Here, an important and plausible impact of a changing global climate is altered power generation from hydroelectric dams. Here we project 21st century global hydropower production by forcing a coupled, global hydrological and dam model with three General Circulation Model (GCM) projections run under two emissions scenarios. Dams are simulated using a detailed model that accounts for plant specifications, storage dynamics, reservoir bathymetry and realistic, optimized operations. We show that the inclusion of these features can have a non-trivial effect on the simulated response of hydropower production to changes in climate. Simulation results highlight substantial uncertainty in the direction ofmore » change in globally aggregated hydropower production (~–5 to + 5% change in mean global production by the 2080s under a high emissions scenario, depending on GCM). Several clearly impacted hotspots are identified, the most prominent of which encompasses the Mediterranean countries in southern Europe, northern Africa and the Middle East. In this region, hydropower production is projected to be reduced by approximately 40% on average by the end of the century under a high emissions scenario. After accounting for each country's dependence on hydropower for meeting its current electricity demands, the Balkans countries emerge as the most vulnerable (~ 5–20% loss in total national electricity generation depending on country). On the flipside, a handful of countries in Scandinavia and central Asia are projected to reap a significant increase in total electrical production (~ 5–15%) without investing in new power generation facilities.« less

  15. Examining global electricity supply vulnerability to climate change using a high-fidelity hydropower dam model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, Sean W. D.; Ng, Jia Yi; Galelli, Stefano

    Here, an important and plausible impact of a changing global climate is altered power generation from hydroelectric dams. Here we project 21st century global hydropower production by forcing a coupled, global hydrological and dam model with three General Circulation Model (GCM) projections run under two emissions scenarios. Dams are simulated using a detailed model that accounts for plant specifications, storage dynamics, reservoir bathymetry and realistic, optimized operations. We show that the inclusion of these features can have a non-trivial effect on the simulated response of hydropower production to changes in climate. Simulation results highlight substantial uncertainty in the direction ofmore » change in globally aggregated hydropower production (~–5 to + 5% change in mean global production by the 2080s under a high emissions scenario, depending on GCM). Several clearly impacted hotspots are identified, the most prominent of which encompasses the Mediterranean countries in southern Europe, northern Africa and the Middle East. In this region, hydropower production is projected to be reduced by approximately 40% on average by the end of the century under a high emissions scenario. After accounting for each country's dependence on hydropower for meeting its current electricity demands, the Balkans countries emerge as the most vulnerable (~ 5–20% loss in total national electricity generation depending on country). On the flipside, a handful of countries in Scandinavia and central Asia are projected to reap a significant increase in total electrical production (~ 5–15%) without investing in new power generation facilities.« less

  16. Evaluating the Impact of Gilgel Gibe Dam on the Lake Turkana Water Levels: An Illustration from an Endorheic Lake in Africa

    NASA Astrophysics Data System (ADS)

    Velpuri, N.; Senay, G. B.

    2010-12-01

    Lake Turkana is one of the lakes in the Great Rift Valley, Africa. This lake has no outlet hence it is considered as closed or endorheic lake. To meet the demand of electricity in the east African region, Ethiopia is currently building Gilgel Gibe-III dam on the Omo River, which supplies up to 80% of the inflows to the Lake Turkana. On completion, this dam would be the tallest dam in Africa with a height of 241 m. As Lake Turkana is highly dependent on the inflows from the Omo River, the construction of this dam could potentially pose a threat to the downstream river valley and to Lake Turkana. This hydroelectric project is arguably one of the most controversial projects in the region. The impact of the dam on the lake is evaluated using Remote Sensing datasets and hydrologic modeling. First, lake water levels (1998-2007) were estimated using the Simplified Lake Water Balance (SLAB) approach which takes in satellite based rainfall estimates, modeled runoff and evapotranspiration data over the Turkana basin. Modeled lake levels were validated against TOPEX/POSIEDON/Jason-1 satellite altimeter data. Validation results showed that the model could capture observed trends and seasonal variations in lake levels. The fact that the lake is endorheic makes it easy to model the lake levels. Using satellite based estimates for the years 1998-2009, future scenarios for rainfall and evapotranspiration were generated using the Monte Carlo simulation approach and the impact of Gilgel Gibe-III dam on the Lake Turkana water levels is evaluated using SLAB approach. Preliminary results indicate that the impact of the dam on the lake would vary with the initial water level in the lake at the time of dam commissioning. It was found that during the initial period of dam/reservoir filling the lake level would drop up to 2-3 m (95% confidence interval). However, on average the lake would stabilize within 10 years from the date of commissioning. The variability within the lake levels due to reduced inflows after the dam commissioning were found to be within the natural variability of the lake (0-5 m). The use of cost free satellite based estimates for runoff and evapotranspiration modeling makes this approach consistent and credible. It is also easy to replicate on any other dam in the world. Results obtained from this approach are very valuable and would aid decision makers and environmentalists in proper decision making.

  17. Dam Removal Information Portal (DRIP)—A map-based resource linking scientific studies and associated geospatial information about dam removals

    USGS Publications Warehouse

    Duda, Jeffrey J.; Wieferich, Daniel J.; Bristol, R. Sky; Bellmore, J. Ryan; Hutchison, Vivian B.; Vittum, Katherine M.; Craig, Laura; Warrick, Jonathan A.

    2016-08-18

    The removal of dams has recently increased over historical levels due to aging infrastructure, changing societal needs, and modern safety standards rendering some dams obsolete. Where possibilities for river restoration, or improved safety, exceed the benefits of retaining a dam, removal is more often being considered as a viable option. Yet, as this is a relatively new development in the history of river management, science is just beginning to guide our understanding of the physical and ecological implications of dam removal. Ultimately, the “lessons learned” from previous scientific studies on the outcomes dam removal could inform future scientific understanding of ecosystem outcomes, as well as aid in decision-making by stakeholders. We created a database visualization tool, the Dam Removal Information Portal (DRIP), to display map-based, interactive information about the scientific studies associated with dam removals. Serving both as a bibliographic source as well as a link to other existing databases like the National Hydrography Dataset, the derived National Dam Removal Science Database serves as the foundation for a Web-based application that synthesizes the existing scientific studies associated with dam removals. Thus, using the DRIP application, users can explore information about completed dam removal projects (for example, their location, height, and date removed), as well as discover sources and details of associated of scientific studies. As such, DRIP is intended to be a dynamic collection of scientific information related to dams that have been removed in the United States and elsewhere. This report describes the architecture and concepts of this “metaknowledge” database and the DRIP visualization tool.

  18. 75 FR 61174 - Warner Valley Comprehensive Site Plan, Final Environmental Impact Statement, Lassen Volcanic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-04

    ... Warner Valley fen and wetland areas; (3) Removal or repair of Dream Lake Dam and restoration of... project planning area. This area includes Dream Lake Dam, built in 1932 by Alex Sifford, which impounds an... built the 10 structures which now form the core of Drakesbad Guest Ranch Historic District (both Dream...

  19. 75 FR 53283 - Yankee Cove Development, LLC; Notice of Declaration of Intention and Soliciting Comments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... reservoir; (2) a proposed eight-foot-high, twenty-two-foot-wide dam; (3) a twenty-inch diameter, 630-foot... water or water power from a government dam; or (4) if applicable, has involved or would involve any... capacity, or have otherwise significantly modified the project's pre-1935 design or operation. l. Locations...

  20. 76 FR 18541 - Wediko Children's Services; Notice of Declaration of Intention and Soliciting Comments, Protests...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ... dam; (3) a proposed 350-foot-long, 18-to-24-inch-diameter above-ground steel penstock, routed along a... government dam; or (4) if applicable, has involved or would involve any construction subsequent to 1935 that... significantly modified the project's pre-1935 design or operation. l. Locations of the Application: Copies of...

  1. 77 FR 63311 - Lake Clementine Hydro, LLC; Notice of Successive Preliminary Permit Application Accepted for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-16

    ... Dam on the North Fork of the American River, near the City of Auburn, Placer County, California. The... Fork Dam, Lake Clementine Hydro plans to install two 7.5 megawatt (MW) generation units, for a total... to study three alternative designs for the project. Applicant Contact: Mr. Magnus Johannesson...

  2. 77 FR 10490 - FPL Energy Maine Hydro, LLC; Notice of Availability of Environmental Assessment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-22

    ... the spillway at the Upper Dam development, which is part of the Upper and Middle Dam Storage Project... not constitute a major federal action significantly affecting the quality of the human environment... Commission's Web site at http://www.ferc.gov using the ``eLibrary'' link. Enter the docket number excluding...

  3. 78 FR 76604 - Grand River Dam Authority; Notice of Application Tendered for Filing With the Commission and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-18

    ... reservoir for the Grand River Dam Authority's Markham Ferry Project No. 2183, for pumped storage operations.... Holway Reservoir (the upper reservoir), with a normal pool elevation between 850 feet and 865 feet National Geodetic Vertical Datum; (2) three rim dikes around the upper reservoir; (3) an 1,800-foot-long...

  4. Regulation of water resources for sustaining global future socioeconomic development

    NASA Astrophysics Data System (ADS)

    Chen, J.; SHI, H.; Sivakumar, B.

    2016-12-01

    With population projections indicating continued growth during this century, socio-economic problems (e.g., water, food, and energy shortages) will be most likely to occur, especially if proper planning, development, and management strategies are not adopted. In the present study, firstly, we explore the vital role of dams in promoting economic growth through analyzing the relationship between dams and Gross Domestic Product (GDP) at both global and national scales. Secondly, we analyze the current situation of global water scarcity based on the data representing water resources availability, dam development, and the level of economic development. Third, with comprehensive consideration of population growth as the major driving force, water resources availability as the basic supporting factor, and topography as the important constraint, this study addresses the question of dam development in the future and predicts the locations of future dams around the world.

  5. Monitoring of Juvenile Yearling Chinook Salmon and Steelhead Survival and Passage at John Day Dam, Spring 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiland, Mark A.; Ploskey, Gene R.; Hughes, James S.

    The purpose of this study was to compare dam passage survival, at two spill treatment levels, of yearling Chinook salmon and steelhead smolts at John Day Dam during spring 2010. The two treatments were 30% and 40% spill out of total project discharge. Under the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp), dam passage survival should be greater than or equal to 0.96 and estimated with a standard error (SE) less than or equal 0.015. The study also estimated forebay residence time, tailrace egress time, and spill passage efficiency (SPE), as required in the Columbia Basin Fishmore » Accords. However, by agreement among the stakeholders, this study was not an official BiOp compliance test because the long-term passage measures at John Day Dam have yet to be finalized and another year of spill-treatment testing was desired.« less

  6. Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 1999 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocklage, Stephen J.; Kellar, Dale S.

    2005-07-01

    The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project (FCAP) sites upstream of Lower Granite Dam along with yearlings released on-station from Lyons Ferry Hatchery in 1999. This was the fourth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 453,117 yearlings released from the Fall Chinook Acclimationmore » Project facilities not only slightly exceeded the 450,000 fish quota, but a second release of 76,386 yearlings (hereafter called Surplus) were acclimated at the Big Canyon facility and released about two weeks after the primary releases. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 9,941 PIT tagged yearlings from Pittsburg Landing, 9,583 from Big Canyon, 2,511 Big Canyon Surplus and 2,494 from Captain John Rapids. The Washington Department of Fish and Wildlife released 983 PIT tagged yearlings from Lyons Ferry Hatchery. Fish health sampling indicated that, overall, bacterial kidney disease levels could be considered relatively low and did not appear to increase after transport to the acclimation facilities. Compared to prior years, Quantitative Health Assessment Indices were relatively low at Pittsburg Landing and Lyons Ferry Hatchery and relatively high at Big Canyon and Captain John Rapids. Mean fork lengths (95% confidence interval) of the release groups ranged from 147.4 mm (146.7-148.1 mm) at Captain John Rapids to 163.7 mm (163.3-164.1 mm) at Pittsburg Landing. Mean condition factors ranged from 1.04 at Pittsburg Landing to 1.23 at Captain John Rapids. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 87.8% (82.1-93.4%) for Big Canyon Surplus to 94.1% (90.1-98.1%) for Captain John Rapids. Estimated survival from release to McNary Dam ranged from 58.7% (49.3-68.1%) for Big Canyon Surplus to 71.3% (60.1-82.5%) for Captain John Rapids. Median migration rates to Lower Granite Dam, based on all observations of PIT tagged yearlings from the FCAP facilities, ranged from 9.3 river kilometers per day (rkm/d) for Captain John Rapids to 18.7 rkm/d for Pittsburg Landing. Median migration rates to McNary Dam ranged from 9.0 rkm/d for Lyons Ferry Hatchery to 17.3 rkm/d for Pittsburg Landing. Median travel times from the FCAP facilities were about 7-10 days to Lower Granite Dam and 21-23 days to McNary Dam. Median arrival dates at Lower Granite Dam, based on all observations of PIT tagged yearling groups from the FCAP facilities, were all from April 23-25. The median arrival date for Big Canyon Surplus was May 4. Median arrival dates at McNary Dam for Pittsburg Landing, Big Canyon and Captain John Rapids groups were all from May 7-8. Median arrival dates at McNary Dam were May 17 for Big Canyon Surplus and April 26 for Lyons Ferry Hatchery.« less

  7. Geomorphic and vegetation changes in a meandering dryland river regulated by a large dam, Sauce Grande River, Argentina

    NASA Astrophysics Data System (ADS)

    Casado, Ana; Peiry, Jean-Luc; Campo, Alicia M.

    2016-09-01

    This paper investigates post-dam geomorphic and vegetation changes in the Sauce Grande River, a meandering dryland river impounded by a large water-conservation dam. As the dam impounds a river section with scarce influence of tributaries, sources for fresh water and sediment downstream are limited. Changes were inspected based on (i) analysis of historical photographs/imagery spanning pre- (1961) and post-dam (1981, 2004) channel conditions for two river segments located above and below the dam, and (ii) field survey of present channel conditions for a set of eight reference reaches along the river segments. Whilst the unregulated river exhibited active lateral migration with consequent adjustments of the channel shape and size, the river section below the dam was characterized by (i) marked planform stability (93 to 97%), and by (ii) vegetation encroachment leading to alternating yet localized contraction of the channel width (up to 30%). The present river displays a moribund, stable channel where (i) redistribution of sediment along the river course no longer occurs and (ii) channel forms constitute a remnant of a fluvial environment created before closing the dam, under conditions of higher energy. In addition to providing new information on the complex geomorphic response of dryland rivers to impoundment, this paper represents the very first geomorphic assessment of the regulated Sauce Grande and therefore provides an important platform to underpin further research assessing the geomorphic state of this highly regulated dryland river.

  8. Project Planning for Cougar Dam during 2010

    USGS Publications Warehouse

    Haskell, Craig A.; Tiffan, Kenneth F.

    2011-01-01

    Cougar Dam is a 158 m-tall, rock fill dam located about 63 km east of Springfield, Oregon. Completed in 1963, the dam is owned and operated by the U.S. Army Corps of Engineers (USACE). It impounds Cougar Reservoir, which is 9.7 km long, has a surface area of 518 ha, and is predominately used for flood control. The pool elevation typically ranges from a maximum conservation pool of 515 m (1,690 ft) National Geodetic Vertical Datum (NGVD) in summer to a minimum flood control elevation of 467 m (1,532 ft NGVD) in winter. The reservoir thermally stratifies in the summer, has an average depth of 37 m, and holds 153,500 acre-feet when full. Cougar Dam is located on the South Fork of the McKenzie River 7 km upstream from the mainstem McKenzie River, a tributary of the Willamette River. The McKenzie River Basin basin supports the largest remaining population of wild spawning spring Chinook salmon in the Willamette River Basin (National Oceanic and Atmospheric Administration; NOAA, 2008). Cougar Dam and others were collectively deemed to cause jeopardy to the sustainability of anadromous fish stocks in the Willamette River Basin (NOAA, 2008). Prior to dam construction, as many as 805 redds were observed in the South Fork of the McKenzie River (Willis and others, 1960) and it is estimated that 40 km of spawning habitat were lost when access was blocked after dam construction. The 2008 Willamette Biological Opinion (BIOP) requires improvements to operations and structures to reduce impacts on Upper Willamette River (UWR) Chinook salmon (Oncorhynchus tshawytscha) and UWR steelhead (O. mykiss; NOAA, 2008). In 2010, an adult fish collection facility was completed below Cougar Dam to collect returning adult salmon for transport to spawning habitats above the dam. Before that time, returning adult spring Chinook salmon were transported to upstream spawning areas as part of a trap-and-haul program with adults passed ranging annually from 0 to 1,038 (Taylor, 2000). The progeny of adult fish that are allowed to spawn above Cougar Dam move downstream into Cougar Reservoir in the spring. Under the BIOP, the USACE is required to provide downstream fish passage or operational alternatives at Cougar Dam by 2014. Currently, there is little information about the seasonal timing of reservoir entry of juvenile Chinook salmon and what habitats they and other fishes use in the reservoir. However, rotary screw traps placed in the outlet channel below the dam indicate peak juvenile passage coinciding with seasonally low pool elevation in mid December and late January. It is unknown whether juveniles upstream of Cougar Dam can be captured in large enough numbers for tagging and subsequent survival studies to proceed. These studies are needed to examine the feasibility of installing downstream fish passage structures at Cougar Dam to meet BIOP requirements. Therefore, the USACE contracted with the U.S. Geological Survey (USGS) to test the efficacy of using a mid-water trawl and lampara seine to capture fish in Cougar Reservoir on three consecutive days in the fall of 2010. These collection methods could potentially provide fish for feasibility and subsequent survival studies and as verification of fish targets in future active hydroacoustic surveys.

  9. Experiments in dam removal, sediment pulses and channel evolution on the Clark Fork River, MT and White Salmon River, WA

    NASA Astrophysics Data System (ADS)

    Wilcox, A. C.

    2012-12-01

    Two recent dam removals on tributaries to the Columbia River in the northwestern United States present contrasting examples of how dam removal methods, reservoir contents, and geomorphic settings influence system responses. The 2008 removal of Milltown Dam, from the Clark Fork River (CFR), Montana, and the 2011 removal of Condit Dam from the White Salmon River (WSR), Washington (Table 1), represent two of the largest dam removals to date. The Milltown Dam removal was notable because the dam stored millions of cubic meters of contaminated mine tailings, a portion of which were excavated as part of Superfund remediation but a portion of which flowed downstream after the removal. On the CFR, post-breach high flows in 2008 produced reservoir erosion and downstream deposition in bed interstices, along bars, and on the floodplain, but above-average (3-15 year recurrence interval) floods since then have remobilized this material and have, to a large extent, erased signs of downstream sedimentation. The Condit Dam removal entailed dynamiting of a 4m by 5.5m hole at the base of the dam, which produced rapid and dramatic draining of fine reservoir sediments within hours of the blast. Downstream of Condit Dam, the initial hyperconcentrated flows and sediment pulse draped the WSR with fine sediment, filled pools, and, in an unconfined reach influenced by the Columbia River's backwater, caused meters of aggradation and new bar formation. In the confined, bedrock-dominated reach downstream of the Condit site, pool-riffle structure has started to reemerge as of summer 2012 and the finest bed materials have been evacuated from the main channel, although sediment storage in pools and eddies persists. Whereas post-breach geomorphic responses on the CFR have been largely driven by hydrology, the post-breach evolution of the WSR has been predominantly influenced by antecedent geomorphic conditions (slope, confinement, and Columbia River backwater). On both the CFR and WSR, the pace of post-breach reservoir erosion and of geomorphic recovery from the disturbances produced by dam removal has been rapid, far exceeding pre-breach predictions.Table 1: Comparison of Milltown and Condit Dam removals

  10. Dam Dynamics in the Colonial Northeast and Chesapeake: Hydrologic Implications

    NASA Astrophysics Data System (ADS)

    Bain, D. J.; Salant, N. L.; Brandt, S. L.

    2008-12-01

    Recent work has highlighted the widespread presence of low-head dams for power generation during the 19th century. However, this work largely depends on census numbers tabulated in the mid-1800s, over 200 years after European activity began in North America. In order to compare the hydrologic implications of colonial era low-head dam construction with the impacts of other simultaneous processes (e.g., expatriation of the beaver or forest clearance), we have compiled historical data on mills to reconstruct the temporal and spatial dynamics of low-head dam construction in the colonial northeastern United States (i.e., Virginia to Maine). This reconstruction, combined with the results of related work on beaver pond dynamics and deforestation, provides several insights into the distribution and impacts of human impoundments during this period. While the resulting hydrologic changes are large, the addition of human dams to the system seems to be minimally offset and less important than changes arising from the expatriation of the beaver or the removal of trees during this early period. In addition, the spatial patterns of dam construction are complex, making prediction of hydrologic and associated responses more difficult to predict.

  11. Ten years of the Three Gorges Dam: a call for policy overhaul

    NASA Astrophysics Data System (ADS)

    Yang, Xiankun; Lu, X. X.

    2013-12-01

    The Three Gorges Dam (TGD), the world’s largest source of ‘clean’ hydroelectric power (Shen and Xie 2004), has entered its tenth year after the first turbine went into operation in June 2003. The dam, with a generating capacity 20 times that of the United States’ Hoover Dam, has been hailed as a crucial part of a solution to China’s energy crisis. Despite great benefits, however, major concerns have been voiced over the disastrous environmental and social consequences of this massive engineering project (Stone 2011). In this paper, we review the benefits and impacts learned from the controversial megadam over the past decade and discuss perspective quests on policy overhaul for future environmental protection.

  12. Geomorphic responses to large check-dam removal on a mountain river in Taiwan

    NASA Astrophysics Data System (ADS)

    Wang, H.; Stark, C. P.; Cook, K. L.; Kuo, W.

    2011-12-01

    Dam removal has become an important aspect of river restoration in recent years, but studies documenting the physical and ecological response to dam removal are still lacking - particularly in mountain rivers and following major floods. This presentation documents the recent removal of a large dam on a coarse-grained, steep (an order of magnitude greater than on the Marmot) mountain channel in Taiwan. The Chijiawan river, a tributary of the Tachia River draining a 1236 km2 watershed, is the only habitat in Taiwan of the endangered Formosan landlocked salmon. The habitat of this fish has been cut significantly since the 1960s following construction of check dams designed to prevent reservoir sedimentation downstream. The largest and lowermost barrier on Chijiawan creek is the 15m high, "No. 1 Check Dam" built in 1971. Forty years later, in early 2011, the sediment wedge behind the dam had reached an estimated 0.2 million m3 and the dam toe had been scoured about 4m below its foundation, posing a serious risk of dam failure. For these reasons, the Shei-Pa National Park removed the dam in late May 2011. To monitor the response of the river to dam removal, we installed video cameras, time-lapse cameras, stage recorders, and turbidity sensors, conducted surveys of grain size distributions and longitudinal profiles, and carried out repeat photography. Channel changes were greatest immediately following removal as a result of the high stream power, steep energy slope, and unconsolidated alluvial fill behind the dam. Headcut propagation caused immediate removal of the sand-grade sediment and progressive channel widening. One month after dam removal, a minor flood event excavated a big wedge of sediment from the impoundment. Most of the subsequent downstream deposition occurred within 500m of the dam, with alluviation reaching up to 0.5m in places. Two months after dam removal, erosion had propagated 300m upstream into the impounded sediment along a bed profile of gradient at 1.4% at a headcut with a local gradient of 5.1%. The change in grain size was a fining of the sediment at the two downstream sites and a slight coarsening at the upstream site from April 2010 to July 2011. This is likely due to the increase in energy upstream of the dam post-removal, which has transported the fine-grained sediments downstream. As the river adjusts over coming months and years, we anticipate that observations such as these will help generate an important resource for all those concerned with dam removal and river restoration.

  13. 77 FR 51022 - Clark Canyon Hydro, LLC; Notice of Application Accepted for Filing, Ready for Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-23

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 12429-007] Clark Canyon... b. Project No.: 12429-007. c. Date Filed: May 31, 2012. d. Applicant: Clark Canyon Hydro, LLC . e. Name of Project: Clark Canyon Dam Hydroelectric Project. f. Location: When constructed, the project...

  14. Libby Mitigation Program, 2007 Annual Progress Report: Mitigation for the Construction and Operation of Libby Dam.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunnigan, James; DeShazer, J.; Garrow, L.

    Libby Reservoir was created under an International Columbia River Treaty between the United States and Canada for cooperative water development of the Columbia River Basin (Columbia River Treaty 1964). Libby Reservoir inundated 109 stream miles of the mainstem Kootenai River in the United States and Canada, and 40 miles of tributary streams in the U.S. that provided habitat for spawning, juvenile rearing, and migratory passage (Figure 1). The authorized purpose of the dam is to provide power (91.5%), flood control (8.3%), and navigation and other benefits (0.2%; Storm et al. 1982). The Pacific Northwest Power Act of 1980 recognized possiblemore » conflicts stemming from hydroelectric projects in the northwest and directed Bonneville Power Administration to 'protect, mitigate, and enhance fish and wildlife to the extent affected by the development and operation of any hydroelectric project of the Columbia River and its tributaries' (4(h)(10)(A)). Under the Act, the Northwest Power Planning Council was created and recommendations for a comprehensive fish and wildlife program were solicited from the region's federal, state, and tribal fish and wildlife agencies. Among Montana's recommendations was the proposal that research be initiated to quantify acceptable seasonal minimum pool elevations to maintain or enhance the existing fisheries (Graham et al. 1982). Research to determine how operations of Libby Dam affect the reservoir and river fishery and to suggest ways to lessen these effects began in May 1983. The framework for the Libby Reservoir Model (LRMOD) was completed in 1989. Development of Integrated Rule Curves (IRCs) for Libby Dam operation was completed in 1996 (Marotz et al. 1996). The Libby Reservoir Model and the IRCs continue to be refined (Marotz et al 1999). Initiation of mitigation projects such as lake rehabilitation and stream restoration began in 1996. The primary focus of the Libby Mitigation project now is to restore the fisheries and fish habitat in basin streams and lakes. 'Mitigation for the Construction and Operation of Libby Dam' is part of the Northwest Power and Conservation Council's (NPCC) resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness. This project completes urgent and high priority mitigation actions as directed by the Kootenai Subbasin Plan.« less

  15. Owyhee River intracanyon lava flows: does the river give a dam?

    USGS Publications Warehouse

    Ely, Lisa L.; Brossy, Cooper C.; House, P. Kyle; Safran, Elizabeth B.; O'Connor, Jim E.; Champion, Duane E.; Fenton, Cassandra R.; Bondre, Ninad R.; Orem, Caitlin A.; Grant, Gordon E.; Henry, Christopher D.; Turrin, Brent D.

    2013-01-01

    Rivers carved into uplifted plateaus are commonly disrupted by discrete events from the surrounding landscape, such as lava flows or large mass movements. These disruptions are independent of slope, basin area, or channel discharge, and can dominate aspects of valley morphology and channel behavior for many kilometers. We document and assess the effects of one type of disruptive event, lava dams, on river valley morphology and incision rates at a variety of time scales, using examples from the Owyhee River in southeastern Oregon. Six sets of basaltic lava flows entered and dammed the river canyon during two periods in the late Cenozoic ca. 2 Ma–780 ka and 250–70 ka. The dams are strongly asymmetric, with steep, blunt escarpments facing up valley and long, low slopes down valley. None of the dams shows evidence of catastrophic failure; all blocked the river and diverted water over or around the dam crest. The net effect of the dams was therefore to inhibit rather than promote incision. Once incision resumed, most of the intracanyon flows were incised relatively rapidly and therefore did not exert a lasting impact on the river valley profile over time scales >106 yr. The net long-term incision rate from the time of the oldest documented lava dam, the Bogus Rim lava dam (≤1.7 Ma), to present was 0.18 mm/yr, but incision rates through or around individual lava dams were up to an order of magnitude greater. At least three lava dams (Bogus Rim, Saddle Butte, and West Crater) show evidence that incision initiated only after the impounded lakes filled completely with sediment and there was gravel transport across the dams. The most recent lava dam, formed by the West Crater lava flow around 70 ka, persisted for at least 25 k.y. before incision began, and the dam was largely removed within another 35 k.y. The time scale over which the lava dams inhibit incision is therefore directly affected by both the volume of lava forming the dam and the time required for sediment to fill the blocked valley. Variations in this primary process of incision through the lava dams could be influenced by additional independent factors such as regional uplift, drainage integration, or climate that affect the relative base level, discharge, and sediment yield within the watershed. By redirecting the river, tributaries, and subsequent lava flows to different parts of the canyon, lava dams create a distinct valley morphology of flat, broad basalt shelves capping steep cliffs of Tertiary sediment. This stratigraphy is conducive to landsliding and extends the effects of intracanyon lava flows on channel geomorphology beyond the lifetime of the dams.

  16. Evolution of an Interfacial Crack on the Concrete Embankment Boundary

    NASA Astrophysics Data System (ADS)

    Smith, J.; Ezzedine, S. M.; Lomov, I.; Kanarska, Y.; Antoun, T.; Glascoe, L. G.; Hall, R. L.; Woodson, S. C.

    2013-12-01

    Failure of a dam can have subtle beginnings: a small crack or dislocation at the interface of the concrete dam and the surrounding embankment soil initiated by a seismic event, for example, can: a) result in creating gaps between the concrete dam and the lateral embankments; b) initiate internal erosion of embankment; and c) lead to a catastrophic failure of the dam. The dam may ';self-rehabilitate' if a properly designed granular filter is engineered around the embankment. Currently, the design criteria for such filters have only been based on experimental studies. We demonstrate the numerical prediction of filter effectiveness at the soil grain scale and relate it to the larger dam scale. Validated computer predictions highlight that a resilient (or durable) filter is consistent with the current design specifications for dam filters. These predictive simulations, unlike the design specifications, can be used to assess filter success or failure under different soil or loading conditions and can lead to meaningful estimates of the timing and nature of full-scale dam failure. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and was sponsored by the Department of Homeland Security (DHS), Science and Technology Directorate, Homeland Security Advanced Research Projects Agency (HSARPA).

  17. The changing hydrology of a dammed Amazon

    PubMed Central

    Timpe, Kelsie; Kaplan, David

    2017-01-01

    Developing countries around the world are expanding hydropower to meet growing energy demand. In the Brazilian Amazon, >200 dams are planned over the next 30 years, and questions about the impacts of current and future hydropower in this globally important watershed remain unanswered. In this context, we applied a hydrologic indicator method to quantify how existing Amazon dams have altered the natural flow regime and to identify predictors of alteration. The type and magnitude of hydrologic alteration varied widely by dam, but the largest changes were to critical characteristics of the flood pulse. Impacts were largest for low-elevation, large-reservoir dams; however, small dams had enormous impacts relative to electricity production. Finally, the “cumulative” effect of multiple dams was significant but only for some aspects of the flow regime. This analysis is a first step toward the development of environmental flows plans and policies relevant to the Amazon and other megadiverse river basins. PMID:29109972

  18. 77 FR 50493 - Sam Rayburn Dam Project Power Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-21

    ...-purpose reservoir projects with hydroelectric power facilities constructed and operated by the U.S. Army... Corporate Operations, Southwestern Power Administration, One West Third, Tulsa, OK 74103, (918) 595-6680 or...

  19. How stakeholders frame dam removal: The role of current and anticipated future ecosystem service use

    NASA Astrophysics Data System (ADS)

    Reilly, Kate; Adamowski, Jan

    2016-04-01

    Many river restoration projects, including dam removal, are controversial and can trigger conflicts between stakeholders who are for and against the proposed project. The study of environmental conflicts suggests that differences in how stakeholders 'frame', or make sense of a situation based on their prior knowledge and experiences, can perpetuate conflicts. Understanding different stakeholders' frames, particularly how they converge, can form the basis of successful conflict resolution. In the case of dam removals, it is often assumed that emphasising increased provision of ecosystem services can be a point of convergence between those advocating for ecological restoration and those opposed to removal because of negative human impacts. However, how exactly stakeholders frame a contentious proposed dam removal and how those frames relate to ecosystem services has been little studied. Here we used the case of a potential dam removal in New Brunswick to investigate how people frame the issue and how that relates to their current and anticipated future use of ecosystem services. Based on in-depth interviews with 30 stakeholders in the area, including both people for and against dam removal, we found that both groups currently used ecosystem services and were in favour of ecosystem protection. However, they differed in how they framed the issue of the potential dam removal. The group against dam removal framed the issue as one of loss and risk - they thought that any potential benefits to the ecosystem would be outweighed by the high risk of negative social impacts caused by a loss of access to ecosystem services, such as recreation and aesthetic enjoyment. By contrast, the group in favour of the dam framed the issue as one of opportunity and justice. They thought that following a short transition period, all stakeholders would benefit from the restored river, particularly from a restored salmon fishery, improved aesthetic appeal and the long-term sustainability of an undammed river. Ultimately, we argue that increased provision of ecosystem services does not always represent a point of convergence between stakeholder groups, because both groups support ecosystem protection but differ in how they expect the benefits they derive from ecosystem services to change. Conflict resolution strategies may be better addressed by measures to mitigate the perceived loss of ecosystem services in the group against dam removal.

  20. The social impacts of dams: A new framework for scholarly analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirchherr, Julian, E-mail: julian.kirchherr@sant.ox.ac.uk; Charles, Katrina J., E-mail: katrina.charles@ouce.ox.ac.uk

    No commonly used framework exists in the scholarly study of the social impacts of dams. This hinders comparisons of analyses and thus the accumulation of knowledge. The aim of this paper is to unify scholarly understanding of dams' social impacts via the analysis and aggregation of the various frameworks currently used in the scholarly literature. For this purpose, we have systematically analyzed and aggregated 27 frameworks employed by academics analyzing dams' social impacts (found in a set of 217 articles). A key finding of the analysis is that currently used frameworks are often not specific to dams and thus omitmore » key impacts associated with them. The result of our analysis and aggregation is a new framework for scholarly analysis (which we call ‘matrix framework’) specifically on dams' social impacts, with space, time and value as its key dimensions as well as infrastructure, community and livelihood as its key components. Building on the scholarly understanding of this topic enables us to conceptualize the inherently complex and multidimensional issues of dams' social impacts in a holistic manner. If commonly employed in academia (and possibly in practice), this framework would enable more transparent assessment and comparison of projects.« less

  1. Evolution of an interfacial crack on the concrete-embankment boundary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glascoe, Lee; Antoun, Tarabay; Kanarska, Yuliya

    2013-07-10

    Failure of a dam can have subtle beginnings. A small crack or dislocation at the interface of the concrete dam and the surrounding embankment soil initiated by, for example, a seismic or an explosive event can lead to a catastrophic failure of the dam. The dam may ‘self-rehabilitate’ if a properly designed granular filter is engineered around the embankment. Currently, the design criteria for such filters have only been based on experimental studies. We demonstrate the numerical prediction of filter effectiveness at the soil grain scale. This joint LLNL-ERDC basic research project, funded by the Department of Homeland Security’s Sciencemore » and Technology Directorate (DHS S&T), consists of validating advanced high performance computer simulations of soil erosion and transport of grain- and dam-scale models to detailed centrifuge and soil erosion tests. Validated computer predictions highlight that a resilient filter is consistent with the current design specifications for dam filters. These predictive simulations, unlike the design specifications, can be used to assess filter success or failure under different soil or loading conditions and can lead to meaningful estimates of the timing and nature of full-scale dam failure.« less

  2. The role of reservoir storage in large-scale surface water availability analysis for Europe

    NASA Astrophysics Data System (ADS)

    Garrote, L. M.; Granados, A.; Martin-Carrasco, F.; Iglesias, A.

    2017-12-01

    A regional assessment of current and future water availability in Europe is presented in this study. The assessment was made using the Water Availability and Adaptation Policy Analysis (WAAPA) model. The model was built on the river network derived from the Hydro1K digital elevation maps, including all major river basins of Europe. Reservoir storage volume was taken from the World Register of Dams of ICOLD, including all dams with storage capacity over 5 hm3. Potential Water Availability is defined as the maximum amount of water that could be supplied at a certain point of the river network to satisfy a regular demand under pre-specified reliability requirements. Water availability is the combined result of hydrological processes, which determine streamflow in natural conditions, and human intervention, which determines the available hydraulic infrastructure to manage water and establishes water supply conditions through operating rules. The WAAPA algorithm estimates the maximum demand that can be supplied at every node of the river network accounting for the regulation capacity of reservoirs under different management scenarios. The model was run for a set of hydrologic scenarios taken from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), where the PCRGLOBWB hydrological model was forced with results from five global climate models. Model results allow the estimation of potential water stress by comparing water availability to projections of water abstractions along the river network under different management alternatives. The set of sensitivity analyses performed showed the effect of policy alternatives on water availability and highlighted the large uncertainties linked to hydrological and anthropological processes.

  3. Spokane Tribal Hatchery, 2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peone, Tim L.

    2003-03-01

    The Spokane Tribal Hatchery (Galbraith Springs) project originated from the Northwest Power Planning Council (NPPC) 1987 Columbia Basin Fish and Wildlife Program. The goal of this project is to aid in the restoration and enhancement of the Lake Roosevelt and Banks Lake fisheries adversely affected by the construction and operation of Grand Coulee Dam. The objective is to produce kokanee salmon and rainbow trout for release into Lake Roosevelt for maintaining a viable fishery. The goal and objective of this project adheres to the NPPC Resident Fish Substitution Policy and specifically to the biological objectives addressed in the NPPC Columbiamore » River Basin Fish and Wildlife Program to mitigate for hydropower related fish losses in the blocked area above Chief Joseph/Grand Coulee Dams.« less

  4. Groundwater-Surface Water Interactions and Downstream Transport of Water, Heat, and Solutes in a Hydropeaked River

    NASA Astrophysics Data System (ADS)

    Ferencz, S. B.; Cardenas, M. B.; Neilson, B. T.; Watson, J.

    2017-12-01

    A majority of the world's largest river systems are regulated by dams. In addition to being used for water resources management and flood prevention, many large dams are also used for hydroelectric power generation. In the United States, dams account for 7% of domestic electricity, and hydropower accounts for 16% of worldwide electricity production. To help meet electricity demand during peak usage times, hydropower utilities often increase their releases of water during high demand periods. This practice, termed hydropeaking, can cause large transient flow regimes downstream of hydroelectric dams. These transient flow increases can result in order of magnitude daily fluctuations in discharge, and the released water can have different thermal and chemical properties than ambient river water. As hydropeaking releases travel downstream, the temporary rise in stage and increase in discharge can enhance surface water-groundwater (SW-GW) exchange between the river and its alluvial aquifer. This dam-induced SW-GW exchange, combined with hydrodynamic attenuation and heat exchange processes, result in complex responses downstream. The dam-regulated Lower Colorado River downstream of Austin, TX was used as a natural laboratory to observe SW-GW interactions and downstream transport of water, heat, and solutes under hydropeaking conditions. To characterize SW-GW interactions, well transects were installed in the banks of the river to observe exchanges between the river and alluvial aquifer. The well transects were installed at three different distances from the dam (15km, 35km, and 80km). At each well transect conductivity, temperature, and pressure sensors were deployed in the monitoring wells and in the channel. Additional conductivity and temperature sensors were deployed along the study reach to provide a more detailed record of heat and solute transport during hydropeaking releases. The field data spans over two months of daily dam releases that were punctuated by two large natural storm events. To our knowledge, this study is the first to use multiple downstream field sites to characterize how dam-induced SW-GW interactions and in-stream temperature and solute transport behave under hydropeaking conditions.

  5. 75 FR 63166 - Howard Rosenfeld; Notice of Declaration of Intention and Soliciting Comments, Protests, and/or...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-14

    ... dam; (3) a proposed 18-inch-diameter, 535-foot-long PVC penstock; (4) an existing 22-foot-long, 22... water or water power from a government dam; or (4) if applicable, has involved or would involve any... capacity, or have otherwise significantly modified the project's pre-1935 design or operation. l. Locations...

  6. The Beaver: A Marine Education Infusion Unit. Northern New England Marine Education Project.

    ERIC Educational Resources Information Center

    Maine Univ., Orono. Coll. of Education.

    This interdisciplinary unit is intended for use with third grade classes. It examines the history and economics of man's relationships to the beaver. It investigates the natural history of the beaver, its anatomy, range, food sources, and the skills it employs to modify its environment by building dams. The structure of beaver dams is examined.…

  7. Archaeological Investigations at Sites 45-OK-250 and 45-OK-4, Chief Joseph Dam Project, Washington.

    DTIC Science & Technology

    1984-01-01

    level behind Chief Joseph Dam. Systematic random sampling using I x I x ’ - 0.1-m collection units in 1 x 1, 1 x 2, or 2 x 2 m cel Is disclosed...ft to the operating pool . level behind Chief Joseph Dam. Systematic random sampling using 1 x 1 x 0.1-i collection units In 1 x 1, 1 x 2, or 2 x 2 m...contingencies under which data were collected , describe data collection and analysis, and organize and summarize data In a torm useful to the widest

  8. Downstream passage and impact of turbine shutdowns on survival of silver American Eels at five hydroelectric dams on the Shenandoah River

    USGS Publications Warehouse

    Eyler, Sheila; Welsh, Stuart A.; Smith, David R.; Rockey, Mary

    2016-01-01

    Hydroelectric dams impact the downstream migrations of silver American Eels Anguilla rostrata via migratory delays and turbine mortality. A radiotelemetry study of American Eels was conducted to determine the impacts of five run-of-the-river hydroelectric dams located over a 195-km stretch of the Shenandoah River, Virginia–West Virginia, during fall 2007–summer 2010. Overall, 96 radio-tagged individuals (mean TL = 85.4 cm) migrated downstream past at least one dam during the study. Most American Eels passed dams relatively quickly; over half (57.9%) of the dam passage events occurred within 1 h of reaching a dam, and most (81.3%) occurred within 24 h of reaching the dam. Two-thirds of the dam passage events occurred via spill, and the remaining passage events were through turbines. Migratory delays at dams were shorter and American Eels were more likely to pass via spill over the dam during periods of high river discharge than during low river discharge. The extent of delay in migration did not differ between the passage routes (spill versus turbine). Twenty-eight American Eels suffered turbine-related mortality, which occurred at all five dams. Mortality rates for eels passing through turbines ranged from 15.8% to 40.7% at individual dams. Overall project-specific mortality rates (with all passage routes combined) ranged from 3.0% to 14.3%. To protect downstream-migrating American Eels, nighttime turbine shutdowns (1800–0600 hours) were implemented during September 15–December 15. Fifty percent of all downstream passage events in the study occurred during the turbine shutdown period. Implementation of the seasonal turbine shutdown period reduced cumulative mortality from 63.3% to 37.3% for American Eels passing all five dams. Modifying the turbine shutdown period to encompass more dates in the spring and linking the shutdowns to environmental conditions could provide greater protection to downstream-migrating American Eels.

  9. Modeling the Impact of controlled flow and sediment releases for the restoration of the Nile Delta, Egypt

    NASA Astrophysics Data System (ADS)

    Al-Zaidi, B. M.; Moussa, A.; Viparelli, E.

    2017-12-01

    The construction of the High and Old Aswan Dams and of barrages significantly altered the flow and the sediment transport regimes in the Egyptian reach of the Nile River. The field data collected by the Nile Research Institute show that the post-High Aswan Dam Nile River hydrology is characterized by reductions of more than 70% in flow discharge and 98% in sediment load compared to pre-High Aswan Dam conditions. A significant portion of discharge released from the dams is diverted at the barrages for agricultural ( 80%) and municipal ( 15%) uses. Thus, virtually no water is reaching the Nile Delta and the Mediterranean Sea. Consequently, the sediment load delivered to the Mediterranean Sea is negligible compared to pre-dam conditions. Consequences of the flow regulation are delta wide wetland loss and shoreline retreat, widespread delta pollution, reduction soil quality, salination of cultivated land, wetland losses, and saltwater intrusion in the groundwater. Here we present the second part of a feasibility study for the restoration of the Nile River-Delta system characterized by controlled flow releases and sediment augmentations downstream of the High Aswan Dam. The controlled flow releases are obtained by regulating the current releases from the High Aswan Dam at the Old Aswan Dam, which is located 6.5 km downstream of the High Aswan Dam. Previous studies showed that 10 billion m3 of water can be saved annually by improving the Egyptian irrigation system. Here we propose to use the saved water to increase the water discharge to the Nile Delta, i.e., the total volume of water released from the dams does not change, what changes is the water used and the imposed hydrograph. We modulate the river flow by storing the saved water during the agriculture season upstream of the Old Aswan Dam and releasing it in the months coinciding with the natural river flood season. It is important to note that here we are considering the simplest possible scenario for water storage. In reality, additional storage volumes are available upstream of the major barrages, and these volumes can also be used during the proposed restoration project. The study consists in the implementation and validation of a laterally averaged delta growth model to quantify the impact of the proposed restoration project on the Nile Delta in terms of changes in shoreline position and channel-floodplain characteristics under the predicted rates of sea level rise.

  10. How big of an effect do small dams have? Using geomorphological footprints to quantify spatial impact of low-head dams and identify patterns of across-dam variation

    USGS Publications Warehouse

    Fencl, Jane S.; Mather, Martha E.; Costigan, Katie H.; Daniels, Melinda D.

    2015-01-01

    Longitudinal connectivity is a fundamental characteristic of rivers that can be disrupted by natural and anthropogenic processes. Dams are significant disruptions to streams. Over 2,000,000 low-head dams (<7.6 m high) fragment United States rivers. Despite potential adverse impacts of these ubiquitous disturbances, the spatial impacts of low-head dams on geomorphology and ecology are largely untested. Progress for research and conservation is impaired by not knowing the magnitude of low-head dam impacts. Based on the geomorphic literature, we refined a methodology that allowed us to quantify the spatial extent of low-head dam impacts (herein dam footprint), assessed variation in dam footprints across low-head dams within a river network, and identified select aspects of the context of this variation. Wetted width, depth, and substrate size distributions upstream and downstream of six low-head dams within the Upper Neosho River, Kansas, United States of America were measured. Total dam footprints averaged 7.9 km (3.0–15.3 km) or 287 wetted widths (136–437 wetted widths). Estimates included both upstream (mean: 6.7 km or 243 wetted widths) and downstream footprints (mean: 1.2 km or 44 wetted widths). Altogether the six low-head dams impacted 47.3 km (about 17%) of the mainstem in the river network. Despite differences in age, size, location, and primary function, the sizes of geomorphic footprints of individual low-head dams in the Upper Neosho river network were relatively similar. The number of upstream dams and distance to upstream dams, but not dam height, affected the spatial extent of dam footprints. In summary, ubiquitous low-head dams individually and cumulatively altered lotic ecosystems. Both characteristics of individual dams and the context of neighboring dams affected low-head dam impacts within the river network. For these reasons, low-head dams require a different, more integrative, approach for research and management than the individualistic approach that has been applied to larger dams.

  11. How Big of an Effect Do Small Dams Have? Using Geomorphological Footprints to Quantify Spatial Impact of Low-Head Dams and Identify Patterns of Across-Dam Variation

    PubMed Central

    Costigan, Katie H.; Daniels, Melinda D.

    2015-01-01

    Longitudinal connectivity is a fundamental characteristic of rivers that can be disrupted by natural and anthropogenic processes. Dams are significant disruptions to streams. Over 2,000,000 low-head dams (<7.6 m high) fragment United States rivers. Despite potential adverse impacts of these ubiquitous disturbances, the spatial impacts of low-head dams on geomorphology and ecology are largely untested. Progress for research and conservation is impaired by not knowing the magnitude of low-head dam impacts. Based on the geomorphic literature, we refined a methodology that allowed us to quantify the spatial extent of low-head dam impacts (herein dam footprint), assessed variation in dam footprints across low-head dams within a river network, and identified select aspects of the context of this variation. Wetted width, depth, and substrate size distributions upstream and downstream of six low-head dams within the Upper Neosho River, Kansas, United States of America were measured. Total dam footprints averaged 7.9 km (3.0–15.3 km) or 287 wetted widths (136–437 wetted widths). Estimates included both upstream (mean: 6.7 km or 243 wetted widths) and downstream footprints (mean: 1.2 km or 44 wetted widths). Altogether the six low-head dams impacted 47.3 km (about 17%) of the mainstem in the river network. Despite differences in age, size, location, and primary function, the sizes of geomorphic footprints of individual low-head dams in the Upper Neosho river network were relatively similar. The number of upstream dams and distance to upstream dams, but not dam height, affected the spatial extent of dam footprints. In summary, ubiquitous low-head dams individually and cumulatively altered lotic ecosystems. Both characteristics of individual dams and the context of neighboring dams affected low-head dam impacts within the river network. For these reasons, low-head dams require a different, more integrative, approach for research and management than the individualistic approach that has been applied to larger dams. PMID:26540105

  12. 75 FR 75999 - Lock + Hydro Friends Fund XlVI; FFP Missouri 17, LLC; Solia 3 Hydroelectric, LLC; Three Rivers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    .... 13754-000; Project No. 13765-000; Project No. 13783-000; Project No. 13790-000] Lock + Hydro Friends..., and Motions To Intervene NOVEMBER 30, 2010. On May 18, 2010, Lock + Hydro Friends Fund XLVI, FFP... proposed Hildebrand Lock & Dam Projects: Lock+ Hydro Friends Fund XLVI's project (Project No. 13734-000...

  13. Fish vs. power: Remaking salmon, science and society on the Fraser River, 1900--1960

    NASA Astrophysics Data System (ADS)

    Evenden, Matthew Dominic

    Overlapping resource demands made the Fraser River a contested site of development politics in twentieth century British Columbia. Since the turn of the century, power interests surveyed the river's flow, sited dams and promoted development schemes. Fisheries interests, on the other hand, sought to maintain the river as salmon spawning habitat. They questioned the necessity of dams, supported fisheries research and rehabilitation and organized anti-development coalitions. Before the mid-1950s a number of dam projects proceeded on Fraser tributaries and major landslides at Hells Gate modeled the dangers of main stem development. Because of the concerted political lobbying of fisheries groups, the skeptical appraisal of fisheries scientists to development proposals and the legal and political authority of the federal Department of Fisheries and the International Pacific Salmon Fisheries Commission, major dam projects were defeated on the Fraser in the late 1950s. Delayed development on the Fraser helped to spur hydroelectric projects on other rivers in the province; the fish-power problem on the Fraser altered the province's spatial economy of power. Once development began on the Columbia and Peace Rivers, the Fraser was protected by implication. The study combines approaches from environmental history, the history of science and political economy to demonstrate the intersections and interactions between nature, knowledge and society. Research was conducted at eleven archives in Canada and the United States in the papers of organizations, corporations, government departments, politicians, scientists and individuals.

  14. Are large-scale flow experiments informing the science and management of freshwater ecosystems?

    USGS Publications Warehouse

    Olden, Julian D.; Konrad, Christopher P.; Melis, Theodore S.; Kennard, Mark J.; Freeman, Mary C.; Mims, Meryl C.; Bray, Erin N.; Gido, Keith B.; Hemphill, Nina P.; Lytle, David A.; McMullen, Laura E.; Pyron, Mark; Robinson, Christopher T.; Schmidt, John C.; Williams, John G.

    2013-01-01

    Greater scientific knowledge, changing societal values, and legislative mandates have emphasized the importance of implementing large-scale flow experiments (FEs) downstream of dams. We provide the first global assessment of FEs to evaluate their success in advancing science and informing management decisions. Systematic review of 113 FEs across 20 countries revealed that clear articulation of experimental objectives, while not universally practiced, was crucial for achieving management outcomes and changing dam-operating policies. Furthermore, changes to dam operations were three times less likely when FEs were conducted primarily for scientific purposes. Despite the recognized importance of riverine flow regimes, four-fifths of FEs involved only discrete flow events. Over three-quarters of FEs documented both abiotic and biotic outcomes, but only one-third examined multiple taxonomic responses, thus limiting how FE results can inform holistic dam management. Future FEs will present new opportunities to advance scientifically credible water policies.

  15. 76 FR 63920 - Amnor Hydro West, Inc.; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-14

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14065-000] Amnor Hydro West... Act (FPA), proposing to study the feasibility of the Clear Creek Dam Hydropower Project (project) to...' express permission. The proposed project would utilize the existing outlet works of the U.S. Bureau of...

  16. Ecogeomorphic feedbacks in regrowth of travertine step-pool morphology after dam decommissioning, Fossil Creek, Arizona

    NASA Astrophysics Data System (ADS)

    Fuller, Brian M.; Sklar, Leonard S.; Compson, Zacchaeus G.; Adams, Kenneth J.; Marks, Jane C.; Wilcox, Andrew C.

    2011-03-01

    The linkages between fluvial geomorphology and aquatic ecosystems are commonly conceptualized as a one-way causal chain in which geomorphic processes create the physical template for ecological dynamics. In streams with a travertine step-pool morphology, however, biotic processes strongly influence the formation and growth of travertine dams, creating the potential for numerous feedbacks. Here we take advantage of the decommissioning of a hydroelectric project on Fossil Creek, Arizona, where restoration of CaCO 3-rich baseflow has triggered rapid regrowth of travertine dams, to explore the interactions between biotic and abiotic factors in travertine morphodynamics. We consider three conceptual frameworks, where biotic factors independently modulate the rate of physical and chemical processes that produce travertine dams; combine with abiotic factors in a set of feedback loops; and work in opposition to abiotic processes, such that the travertine step-pool morphology reflects a dynamic balance between dominantly-biotic constructive processes and dominantly-abiotic destructive processes. We consider separately three phases of an idealized life cycle of travertine dams: dam formation, growth, and destruction by erosive floods. Dam formation is catalyzed by abiotic factors (e.g. channel constrictions, and bedrock steps) and biotic factors (e.g. woody debris, and emergent vegetation). From measurements of changes over time in travertine thickness on a bedrock step, we find evidence for a positive feedback between flow hydraulics and travertine accrual. Measurements of organic content in travertine samples from this step show that algal growth contributes substantially to travertine accumulation and suggest that growth is most rapid during seasonal algal blooms. To document vertical growth of travertine dams, we embedded 252 magnets into nascent travertine dams, along a 10 km stretch of river. Growth rates are calculated from changes over time in the magnetic field intensity at the dam surface. At each magnet we record a range of hydraulic and travertine composition variables to characterize the dominant mechanism of growth: abiotic precipitation, algal growth, trapping of organic material, or in situ plant growth. We find: (1) rapid growth of travertine dams following flow restoration, averaging more than 2 cm/year; (2) growth rates decline downstream, consistent with loss of dissolved constituents because of upstream travertine deposition, but also parallel to a decline in organic content in dam surface material and a downstream shift in dominant biotic mechanism; (3) biotic mechanisms are associated with faster growth rates; and (4) correlations between hydraulic attributes and growth rates are more consistent with biotic than abiotic controls. We conclude that the strong influence of living organisms on rates of travertine growth, coupled with the beneficial effects of travertine on ecosystem dynamics, demonstrate a positive feedback between biology and geomorphology. During our two-year study period, erosive flood flows occurred causing widespread removal of travertine. The temporal distribution of travertine growth and erosion over the study period is consistent with a bimodal magnitude-frequency relation in which growth dominates except when large, infrequent storms occur. This model may be useful in other systems where biology exerts strong controls on geomorphic processes.

  17. ORNL Trusted Corridors Project: Watts Bar Dam Inland Waterway Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Randy M; Gross, Ian G; Smith, Cyrus M

    2011-11-01

    Radiation has existed everywhere in the environment since the Earth's formation - in rocks, soil, water, and plants. The mining and processing of naturally occurring radioactive materials for use in medicine, power generation, consumer products, and industry inevitably generate emissions and waste. Radiological measuring devices have been used by industry for years to measure for radiation in undesired locations or simply identify radioactive materials. Since the terrorist attacks on the United States on 9-11-01 these radiation measuring devices have proliferated in many places in our nation's commerce system. DOE, TVA, the Army Corps and ORNL collaborated to test the usefulnessmore » of these devices in our nation's waterway system on this project. The purpose of the Watts Bar Dam ORNL Trusted Corridors project was to investigate the security, safety and enforcement needs of local, state and federal government entities for state-of-the-art sensor monitoring in regards to illegal cargo including utilization of the existing infrastructure. TVA's inland waterways lock system is a recognized and accepted infrastructure by the commercial carrier industry. Safety Monitoring activities included tow boat operators, commercial barges and vessels, recreational watercraft and their cargo, identification of unsafe vessels and carriers, and, monitoring of domestic and foreign commercial vessels and cargo identification. Safety Enforcement activities included cargo safety, tracking, identification of hazardous materials, waterway safety regulations, and hazardous materials regulations. Homeland Security and Law Enforcement Applications included Radiological Dispersive Devices (RDD) identification, identification of unsafe or illicit transport of hazardous materials including chemicals and radiological materials, and screening for shipments of illicit drugs. In the Fall of 2005 the SensorNet funding for the project expired. After several unsuccessful attempts to find a Federal sponsor to continue with the project, the Watts Bar Dam Project was canceled and the Exploranium radiation monitors were removed from the doors of Watts Bar Dam in early 2006. The DHS Domestic Nuclear Detection Office decided to proceed with a Pilot building on the ORNL work performed at the TN and SC weigh stations in the highway sector of the Trusted Corridors project and eventually expanded it to other southern states under the name of Southeastern Corridor Pilot Project (SETCP). Many of the Phase I goals were achieved however real-world test data of private watercraft and barges was never obtained.« less

  18. Distribution and abundance of stream fishes in relation to barriers: implications for monitoring stream recovery after barrier removal

    USGS Publications Warehouse

    Zydlewski, Joseph D.; Coghlan, Stephen M.; Gardner, C.; Saunders, R.

    2011-01-01

    Dams are ubiquitous in coastal regions and have altered stream habitats and the distribution and abundance of stream fishes in those habitats by disrupting hydrology, temperature regime and habitat connectivity. Dam removal is a common restoration tool, but often the response of the fish assemblage is not monitored rigorously. Sedgeunkedunk Stream, a small tributary to the Penobscot River (Maine, USA), has been the focus of a restoration effort that includes the removal of two low-head dams. In this study, we quantified fish assemblage metrics along a longitudinal gradient in Sedgeunkedunk Stream and also in a nearby reference stream. By establishing pre-removal baseline conditions and associated variability and the conditions and variability immediately following removal, we can characterize future changes in the system associated with dam removal. Over 2 years prior to dam removal, species richness and abundance in Sedgeunkedunk Stream were highest downstream of the lowest dam, lowest immediately upstream of that dam and intermediate farther upstream; patterns were similar in the reference stream. Although seasonal and annual variation in metrics within each site was substantial, the overall upstream-to-downstream pattern along the stream gradient was remarkably consistent prior to dam removal. Immediately after dam removal, we saw significant decreases in richness and abundance downstream of the former dam site and a corresponding increase in fish abundance upstream of the former dam site. No such changes occurred in reference sites. Our results show that by quantifying baseline conditions in a small stream before restoration, the effects of stream restoration efforts on fish assemblages can be monitored successfully. These data set the stage for the long-term assessment of Sedgeunkedunk Stream and provide a simple methodology for assessment in other restoration projects.

  19. 18 CFR 12.31 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Section 12.31 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT SAFETY OF WATER POWER PROJECTS AND PROJECT WORKS... water over the dam or a spillway. (e) The Director of the Office of Energy Projects Licensing may, for...

  20. 18 CFR 12.31 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Section 12.31 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT SAFETY OF WATER POWER PROJECTS AND PROJECT WORKS... water over the dam or a spillway. (e) The Director of the Office of Energy Projects Licensing may, for...

  1. 18 CFR 12.31 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Section 12.31 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT SAFETY OF WATER POWER PROJECTS AND PROJECT WORKS... water over the dam or a spillway. (e) The Director of the Office of Energy Projects Licensing may, for...

  2. 18 CFR 12.31 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Section 12.31 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT SAFETY OF WATER POWER PROJECTS AND PROJECT WORKS... water over the dam or a spillway. (e) The Director of the Office of Energy Projects Licensing may, for...

  3. Characterization of debris flows by rainstorm condition at a torrent on the Mount Yakedake volcano, Japan

    NASA Astrophysics Data System (ADS)

    Okano, Kazuyuki; Suwa, Hiroshi; Kanno, Tadahiro

    2012-01-01

    We analyzed rainstorm control on debris-flow magnitude and flow characteristics using the 14 sets of rainstorm and debris-flow data obtained from 1980 to 2005 at the Kamikamihorizawa Creek of Mount Yakedake. With the principal component analysis on five parameters of debris flows: frontal velocity, peak velocity, peak flow depth, peak discharge and total discharge, and with video-record of boulder-dams in motion, and the preceding rainfall intensities, we conclude that the 14 debris flows could be categorized into three groups. The flows in the first group have large hydraulic magnitude and massive and turbulent boulder-dams filled with slurry matrix. The flows in the second group have small hydraulic magnitude and boulder-dams scarcely filled with slurry matrix, and the dam is observed to alternate between stopping and starting. The flows in the third group have small hydraulic magnitude and boulder dams filled with slurry matrix. Analysis of hillslope hydrology and debris-flow data asserted that the antecedent rainfall conditions control not only the hydraulic magnitude of debris flows but also the boulder-dam features. Large rainstorms of high intensity and durations as short as 10 minutes induces fast and large storm runoff to the headwaters and the source reaches of debris flow, while rainstorms with durations as long as 24 h raises water content in the bottom deposits along the debris-flow growth reaches and generates substantial runoff from the tributaries. Classification of the three groups is done based on water availability to debris flows on the source and growth reaches at the occurrence of debris flow.

  4. An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales

    NASA Astrophysics Data System (ADS)

    Grill, Günther; Lehner, Bernhard; Lumsdon, Alexander E.; MacDonald, Graham K.; Zarfl, Christiane; Reidy Liermann, Catherine

    2015-01-01

    The global number of dam constructions has increased dramatically over the past six decades and is forecast to continue to rise, particularly in less industrialized regions. Identifying development pathways that can deliver the benefits of new infrastructure while also maintaining healthy and productive river systems is a great challenge that requires understanding the multifaceted impacts of dams at a range of scales. New approaches and advanced methodologies are needed to improve predictions of how future dam construction will affect biodiversity, ecosystem functioning, and fluvial geomorphology worldwide, helping to frame a global strategy to achieve sustainable dam development. Here, we respond to this need by applying a graph-based river routing model to simultaneously assess flow regulation and fragmentation by dams at multiple scales using data at high spatial resolution. We calculated the cumulative impact of a set of 6374 large existing dams and 3377 planned or proposed dams on river connectivity and river flow at basin and subbasin scales by fusing two novel indicators to create a holistic dam impact matrix for the period 1930-2030. Static network descriptors such as basin area or channel length are of limited use in hierarchically nested and dynamic river systems, so we developed the river fragmentation index and the river regulation index, which are based on river volume. These indicators are less sensitive to the effects of network configuration, offering increased comparability among studies with disparate hydrographies as well as across scales. Our results indicate that, on a global basis, 48% of river volume is moderately to severely impacted by either flow regulation, fragmentation, or both. Assuming completion of all dams planned and under construction in our future scenario, this number would nearly double to 93%, largely due to major dam construction in the Amazon Basin. We provide evidence for the importance of considering small to medium sized dams and for the need to include waterfalls to establish a baseline of natural fragmentation. Our versatile framework can serve as a component of river fragmentation and connectivity assessments; as a standardized, easily replicable monitoring framework at global and basin scales; and as part of regional dam planning and management strategies.

  5. 77 FR 41778 - City of Sandpoint; Notice of Declaration of Intention and Soliciting Comments, Protests, and/or...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-16

    .... The proposed project will consist of a small 30-foot-high rock dam, a small reservoir, an 18- [[Page... United States; (3) would utilize surplus water or water power from a government dam; or (4) if applicable... pre-1935 design or operation. l. Locations of the Application: Copies of this filing are on file with...

  6. 77 FR 2718 - Don Grant; Notice of Petition for Declaratory Order and Soliciting Comments, Protests, and/or...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-19

    ... 158-foot-long, 8- foot-high high-rock-laid dam with a small reservoir; (2) a 11-foot wide by 12.5-foot... reservations of the United States; (3) would utilize surplus water or water power from a government dam; or (4... modified the project's pre- 1935 design or operation. l. Locations of the Application: Copies of this...

  7. Estimated Loads of Suspended Sediment and Selected Trace Elements Transported through the Milltown Reservoir Project Area Before and After the Breaching of Milltown Dam in the Upper Clark Fork Basin, Montana, Water Year 2008

    USGS Publications Warehouse

    Lambing, John H.; Sando, Steven K.

    2009-01-01

    This report presents estimated daily and cumulative loads of suspended sediment and selected trace elements transported during water year 2008 at three streamflow-gaging stations that bracket the Milltown Reservoir project area in the upper Clark Fork basin of western Montana. Milltown Reservoir is a National Priorities List Superfund site where sediments enriched in trace elements from historical mining and ore processing have been deposited since the construction of Milltown Dam in 1907. Milltown Dam was breached on March 28, 2008, as part of Superfund remedial activities to remove the dam and contaminated sediment that had accumulated in Milltown Reservoir. The estimated loads transported through the project area during the periods before and after the breaching of Milltown Dam, and for the entire water year 2008, were used to quantify the net gain or loss (mass balance) of suspended sediment and trace elements within the project area during the transition from a reservoir environment to a free-flowing river. This study was done in cooperation with the U.S. Environmental Protection Agency. Streamflow during water year 2008 compared to long-term streamflow, as represented by the record for Clark Fork above Missoula (water years 1930-2008), generally was below normal (long-term median) from about October 2007 through April 2008. Sustained runoff started in mid-April, which increased flows to near normal by mid-May. After mid-May, flows sharply increased to above normal, reaching a maximum daily mean streamflow of 16,800 cubic feet per second (ft3/s) on May 21, which essentially equaled the long-term 10th-exceedance percentile for that date. Flows substantially above normal were sustained through June, then decreased through the summer and reached near-normal by August. Annual mean streamflow during water year 2008 (3,040 ft3/s) was 105 percent of the long-term mean annual streamflow (2,900 ft3/s). The annual peak flow (17,500 ft3/s) occurred on May 21 and was 112 percent of the long-term mean annual peak flow (15,600 ft3/s). About 81 percent of the annual flow volume was discharged during the post-breach period. Daily loads of suspended sediment were estimated directly by using high-frequency sampling of the daily sediment monitoring. Daily loads of unfiltered-recoverable arsenic, cadmium, copper, iron, lead, manganese, and zinc were estimated by using regression equations relating trace-element discharge to either streamflow or suspended-sediment discharge. Regression equations for estimating trace-element discharge in water year 2008 were developed from instantaneous streamflow and concentration data for periodic water-quality samples collected during all or part of water years 2004-08. The equations were applied to records of daily mean streamflow or daily suspended-sediment loads to produce estimated daily trace-element loads. Variations in daily suspended-sediment and trace-element loads generally coincided with variations in streamflow. Relatively small to moderately large daily net losses from the project area were common during the pre-breach period when low-flow conditions were prevalent. Outflow loads from the project area sharply increased immediately after the breaching of Milltown Dam and during the rising limb and peak flow of the annual hydrograph. Net losses of suspended sediment and trace elements from the project area decreased as streamflow decreased during the summer, eventually becoming small or reaching an approximate net balance between inflow and outflow. Estimated daily loads of suspended sediment and trace elements for all three stations were summed to determine cumulative inflow and outflow loads for the pre-breach and post-breach periods, as well as for the entire water year 2008. Overall, the mass balance between the combined inflow loads from two upstream source areas (upper Clark Fork and Blackfoot River basins) and the outflow loads at Clark Fork above Missoula indicates net losses

  8. Sediment Transport Over Run-of-River Dams

    NASA Astrophysics Data System (ADS)

    O'Brien, M.; Magilligan, F. J.; Renshaw, C. E.

    2016-12-01

    Dams have numerous documented effects that can degrade river habitat downstream. One significant effect of large dams is their ability to trap sediment delivered from upstream. This trapping can alter sediment transport and grain size downstream - effects that often motivate dam removal decisions. However, recent indirect observations and modeling studies indicate that small, run-of-river (ROR) dams, which do not impede discharge, may actually leak sediment downstream. However, there are no direct measurements of sediment flux over ROR dams. This study investigates flow and sediment transport over four to six different New England ROR dams over a summer-fall field season. Sediment flux was measured using turbidity meters and tracer (RFID) cobbles. Sediment transport was also monitored through an undammed control site and through a river where two ROR dams were recently removed. These data were used to predict the conditions that contribute to sediment transport and trapping. Year 1 data show that tracer rocks of up to 61 mm were transported over a 3 m ROR dam in peak flows of 84% of bankfull stage. These tracer rocks were transported over and 10 m beyond the dam and continue to move downstream. During the same event, comparable suspended sediment fluxes of up to 81 g/s were recorded both upstream and downstream of the dam at near-synchronous timestamps. These results demonstrate the potential for sediment transport through dammed rivers, even in discharge events that do not exceed bankfull. This research elucidates the effects of ROR dams and the controls on sediment transport and trapping, contributions that may aid in dam management decisions.

  9. Project-induced displacement, secondary stressors, and health.

    PubMed

    Cao, Yue; Hwang, Sean-Shong; Xi, Juan

    2012-04-01

    It has been estimated that about 15 million people are displaced by development projects around the world each year. Despite the magnitude of people affected, research on the health and other impacts of project-induced displacement is rare. This study extends existing knowledge by exploring the short-term health impact of a large scale population displacement resulting from China's Three Gorges Dam Project. The study is theoretically guided by the stress process model, but we supplement it with Cernea's impoverishment risks and reconstruction (IRR) model widely used in displacement literature. Our panel analysis indicates that the displacement is associated positively with relocatees' depression level, and negatively with their self-rated health measured against a control group. In addition, a path analysis suggests that displacement also affects depression and self-rated health indirectly by changing social integration, socioeconomic status, and community resources. The importance of social integration as a protective mechanism, a factor that has been overlooked in past studies of population displacement, is highlighted in this study. Published by Elsevier Ltd.

  10. PROJECT-INDUCED DISPLACEMENT, SECONDARY STRESSORS, AND HEALTH

    PubMed Central

    Cao, Yue; Hwang, Sean-Shong; Xi, Juan

    2012-01-01

    It has been estimated that about 15 million people are displaced by development projects around the world each year. Despite the magnitude of people affected, research on the health and other impacts of project-induced displacement is rare. This study extends existing knowledge by exploring the short-term health impact of a large scale population displacement resulting from China’s Three Gorges Dam Project. The study is theoretically guided by the stress process model, but we supplement it with Cernea’s Impoverishment Risks and Reconstruction (IRR) model widely used in displacement literature. Our panel analysis indicates that the displacement is associated positively with relocatees’ depression level, and negatively with their self-rated health measured against a control group. In addition, a path analysis suggests that displacement also affects depression and self-rated health indirectly by changing social integration, socioeconomic status, and community resources. The importance of social integration as a protective mechanism, a factor that has been overlooked in past studies of population displacement, is highlighted in this study. PMID:22341203

  11. Glacial melt water in Greenland - A renewable resource for the future

    NASA Astrophysics Data System (ADS)

    Alther, G. R.; Ruedisili, L. C.; Stauber, H.; Kollbrunner, C. F.

    1981-06-01

    Glacial melt water in Greenland can be used as a renewable resource for generating electricity (a yearly estimate of 60-115 GW), and it can serve as a supplementary source for drinking and irrigation, metallurgical processing, and the manufacturing of liquid hydrogen as fuel. Southern Greenland is particularly suited for this melt water hydropower project, having high precipitation and summer temperatures, large quantities of melt water, natural 'nunatak' dams, and coastal ranges with steep gradients. Transportation of the generated energy is proposed in the form of sea cables and overland transmission lines, hydrogen gas pipelines, and tankers for liquid hydrogen transport. A hypothetical glacial power station is schematically illustrated, and production costs are calculated. The glacial melt project would serve as an economical source of energy with minimal damage to the environment.

  12. The German-Chinese research collaboration YANGTZE-GEO: Assessing the geo-risks in the Three Gorges Reservoir area

    NASA Astrophysics Data System (ADS)

    Schönbrodt, S.; Behrens, T.; Bieger, K.; Ehret, D.; Frei, M.; Hörmann, G.; Seeber, C.; Schleier, M.; Schmalz, B.; Fohrer, N.; Kaufmann, H.; King, L.; Rohn, J.; Subklew, G.; Xiang, W.

    2012-04-01

    The river impoundment by The Three Gorges Dam leads to resettlement and land reclamation on steep slopes. As a consequence, ecosystem changes such as soil erosion, mass movements, and diffuse sediment and matter fluxes are widely expected to increase rapidly. In order to assess and analyse those ecosystem changes, the German-Chinese joint research project YANGTZE-GEO was set up in 2008. Within the framework of YANGTZE-GEO five German universities (Tuebingen, Erlangen, Giessen, Kiel, Potsdam) conducted studies on soil erosion, mass movements, diffuse matter inputs, and land use change and vulnerability in close collaboration with Chinese scientists. The Chinese partners and institutions are according to their alphabetic order of hometown the Chinese Research Academy of Environmental Sciences (CRAES; Beijing), the Standing Office of the State Council Three Gorges Project Construction Committee (Beijing), the National Climate Centre (NCC) of the China Meteorological Administration (CMA; Beijing), the Aero Geophysical Survey and Remote Sensing for Land and Resources (AES; Beijing), the Nanjing University, the CAS Institute of Soil Science (Nanjing), the Nanjing Institute of Geography and Limnology at CAS (NIGLAS; Nanjing), the China University of Geosciences (CUG; Wuhan), the CAS Institute of Hydrobiology (Wuhan), and the China Three Gorges University (Yichang). The overall aim of YANGTZE-GEO is the development of a risk assessment and forecasting system to locate high risk areas using GIS-based erosion modelling, data mining tools for terrace condition analysis and landslide recognition, eco-hydrological modelling for diffuse matter inputs, and state-of-the-art remote sensing to assess the landscape's vulnerability. Furthermore, the project aims at the recommendation of sustainable land management systems. YANGTZE-GEO showed the relevance of such research and crucially contributes to the understanding of the dimension and dynamics of the ecological consequences of large dam projects.

  13. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the lower-Colorado River valley, Arizona, California, and Nevada

    USGS Publications Warehouse

    Radtke, D.B.; Kepner, W.G.; Effertz, R.J.

    1988-01-01

    The Lower Colorado River Valley Irrigation Drainage Project area included the Colorado River and its environs from Davis Dam to just above Imperial Dam. Water, bottom sediment, and biota were sampled at selected locations within the study area and analyzed for selected inorganic and synthetic organic constituents that are likely to be present at toxic concentrations. With the exceptions of selenium and DDE, this study found sampling locations to be relatively free of large concentrations of toxic constituents that could be a threat to humans, fish, and wildlife. Selenium was the only inorganic constituent to exceed any existing standard, criterion, or guideline for protection of fish and wildlife resources. Concentrations of DDE in double-crested cormorants, however, exceeded the criterion of 1.0 microgram per gram established by the National Academy of Sciences and the National Academy of Engineering for DDT and its metabolites for protection of wildlife. Dissolved-selenium concentrations in water from the lower Colorado River appear to be derived from sources above Davis Dam. At this time, therefore , agricultural practices in the lower Colorado River valley do not appear to exacerbate selenium concentrations. This fact, however, does not mean that the aquatic organisms and their predators are not in jeopardy. Continued selenium loading to the lower Colorado environment could severely affect important components of the ecosystem. (Author 's abstract)

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, Greg; Marotz, Brian L.; Dunnigan, James

    ''Mitigation for the Construction and Operation of Libby Dam'' is part of the Northwest Power Planning Council's resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating for damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biologicalmore » effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness.« less

  15. Landsat Image Analysis of the Rebea Agricultural Project, Mosul Dam and Lake, Northern Iraq

    NASA Astrophysics Data System (ADS)

    Welsh, W.; Alassadi, F.

    2014-12-01

    An archive of 70 good-to-excellent quality Landsat TM and ETM+ images acquired between 1984 and 2011 were identified through visual examination of the GLOVIS web portal. After careful consideration of factors relevant to agriculture in the region (e.g., crop calendar) and associated image processing needs (e.g., preference for anniversary dates), the images deemed most appropriate were downloaded. Standard preprocessing, including visual quality and statistical inspection, sub-setting to the study area, was performed, and the results combined in a database with available GIS data. The resolution merge spatial enhancement technique was applied to any ETM+ imagery to improve visual clarity and interpretability. The NDVI was calculated for all images in the time series. Unsupervised classification of images was performed for dates ranging from 1987 just before the inception of the Rebea project in 1989 through 2011. In order to reduce uncertainty related to lack of detailed ancillary and/or ground reference data, simple land cover classes were mapped, specifically: surface water, agriculture, and other. Results were able to quantify and track areas of each class over time, and showed a marked decrease in agriculture between the Iraq invasion in 2003 to the end of the study period in 2011, despite massive efforts and capital by the United States and Iraqi governments to improve agriculture in the area. Complications to understanding the role of warfare and conflict on the environment in the Mosul region include severe drought and water shortages, including effects of the Turkish GAP water resource development project in the headwaters of the Tigris-Euphrates, as well as Mosul Dam structural problems associated with geologically-unsuitable conditions upon which the dam is constructed. Now, the Islamic State in Iraq and Syria (ISIS) likely captured the Mosul Dam on the day this abstract was submitted. Our Landsat-based monitoring and analysis of the Rebea Project and Mosul Dam continues, including the acquisition of Landsat 8 imagery for 31 July 2014, just prior to the ISIS attack. Details of our completed and ongoing research will be presented.

  16. 75 FR 71104 - Lock Hydro Friends Fund XXXV; FFP Missouri 7, LLC; Dashields Hydro, LLC; Notice of Competing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-22

    .... 13735-000; Project No. 13756-000; Project No. 13779-000] Lock Hydro Friends Fund XXXV; FFP Missouri 7... Soliciting Comments, and Motions To Intervene November 15, 2010. On May 18, 2010, Lock Hydro Friends Fund.... Descriptions of the proposed Dashields Lock and Dam Projects: Lock Hydro Friends Fund XXXV's project (Project...

  17. Analysis of Stream Channel Geometry Temporal and Spatial Evolution after Historic Dam Removal - two French case studies

    NASA Astrophysics Data System (ADS)

    Slawson, Deborah; Manière, Louis; Marchandeau, Florent

    2014-05-01

    IRSTEA, in partnership with the French Office national de l'eau et des milieux aquatiques (ONEMA), has begun a study of channel geomorphology in small streams where dams have been removed or breached between two and 200 years ago, without any subsequent restoration of the channel in the legacy sediments. A preliminary analysis of two sites in the Morvan, Burgundy, will be presented; a dam breached at the beginning of the 20th century and another in the last decade. Using ergodic reasoning, historical and recent upstream and downstream channel geometry is being used to predict the future temporal and spatial scales of channel physical habitat restoration. With the implementation of the European Water Framework Directive (WFD), dam removal has become a more frequently used method for restoring stream ecological continuity. In France, these obstacles are ubiquitous in medium and small streams and considerably reduce lateral and longitudinal connectivity. Improvement in the hydromorphologically controlled, physical habitat, particularly flow and sediment transport regimes, is often essential to improvement in stream biology. However, dam removal may cause long-term disturbances in flow and sediment transport regimes. In the absence of channel restoration measures in addition to dam removal, these disturbances may result in long-term negative impacts on fish, macroinvertebrate, and riparian plant physical habitat. These negative impacts may include channel incision and lowering of the water table, disconnection from floodplains, increased stream power and bed scouring, and increased sediment load from headcutting and bank erosion. Over time, these negative impacts may resolve themselves. However, the time frame necessary for reestablishing adequate physical habitat is not well-known. Some studies have indicated that many decades or longer may be required, depending on a variety of factors. Under the WFD, the REstoring rivers FOR effective catchment Management (REFORM) project is stressing the use of reference condition benchmarks when identifying objectives for and designing stream restoration projects. To identify appropriate reference condition benchmarks, it is important to understand over what temporal and spatial scales physical habitat improvement may take place after dam removal, including: 1. defining the spatial and temporal objectives for physical habitat restoration as a result of dam removal and 2. determining if dam removal alone will be sufficient to achieve those objectives or if additional channel restoration measures might be required.

  18. Dam removal increases American eel abundance in distant headwater streams

    USGS Publications Warehouse

    Hitt, Nathaniel P.; Eyler, Sheila; Wofford, John E.B.

    2012-01-01

    American eel Anguilla rostrata abundances have undergone significant declines over the last 50 years, and migration barriers have been recognized as a contributing cause. We evaluated eel abundances in headwater streams of Shenandoah National Park, Virginia, to compare sites before and after the removal of a large downstream dam in 2004 (Embrey Dam, Rappahannock River). Eel abundances in headwater streams increased significantly after the removal of Embrey Dam. Observed eel abundances after dam removal exceeded predictions derived from autoregressive models parameterized with data prior to dam removal. Mann–Kendall analyses also revealed consistent increases in eel abundances from 2004 to 2010 but inconsistent temporal trends before dam removal. Increasing eel numbers could not be attributed to changes in local physical habitat (i.e., mean stream depth or substrate size) or regional population dynamics (i.e., abundances in Maryland streams or Virginia estuaries). Dam removal was associated with decreasing minimum eel lengths in headwater streams, suggesting that the dam previously impeded migration of many small-bodied individuals (<300 mm TL). We hypothesize that restoring connectivity to headwater streams could increase eel population growth rates by increasing female eel numbers and fecundity. This study demonstrated that dams may influence eel abundances in headwater streams up to 150 river kilometers distant, and that dam removal may provide benefits for eel management and conservation at the landscape scale.

  19. Feasibility of groundwater recharge dam projects in arid environments

    NASA Astrophysics Data System (ADS)

    Jaafar, H. H.

    2014-05-01

    A new method for determining feasibility and prioritizing investments for agricultural and domestic recharge dams in arid regions is developed and presented. The method is based on identifying the factors affecting the decision making process and evaluating these factors, followed by determining the indices in a GIS-aided environment. Evaluated parameters include results from field surveys and site visits, land cover and soils data, precipitation data, runoff data and modeling, number of beneficiaries, domestic irrigation demand, reservoir objectives, demography, reservoirs yield and reliability, dam structures, construction costs, and operation and maintenance costs. Results of a case study on more than eighty proposed dams indicate that assessment of reliability, annualized cost/demand satisfied and yield is crucial prior to investment decision making in arid areas. Irrigation demand is the major influencing parameter on yield and reliability of recharge dams, even when only 3 months of the demand were included. Reliability of the proposed reservoirs as related to their standardized size and net inflow was found to increase with increasing yield. High priority dams were less than 4% of the total, and less priority dams amounted to 23%, with the remaining found to be not feasible. The results of this methodology and its application has proved effective in guiding stakeholders for defining most favorable sites for preliminary and detailed design studies and commissioning.

  20. Monitoring the effect of restoration measures in Indonesian peatlands by radar satellite imagery.

    PubMed

    Jaenicke, J; Englhart, S; Siegert, F

    2011-03-01

    In the context of the ongoing climate change discussions the importance of peatlands as carbon stores is increasingly recognised in the public. Drainage, deforestation and peat fires are the main reasons for the release of huge amounts of carbon from peatlands. Successful restoration of degraded tropical peatlands is of high interest due to their huge carbon store and sequestration potential. The blocking of drainage canals by dam building has become one of the most important measures to restore the hydrology and the ecological function of the peat domes. This study investigates the capability of using multitemporal radar remote sensing imagery for monitoring the hydrological effects of these measures. The study area is the former Mega Rice Project area in Central Kalimantan, Indonesia, where peat drainage and forest degradation is especially intense. Restoration measures started in July 2004 by building 30 large dams until June 2008. We applied change detection analysis with more than 80 ENVISAT ASAR and ALOS PALSAR images, acquired between 2004 and 2009. Radar signal increases of up to 1.36 dB show that high frequency multitemporal radar satellite imagery can be used to detect an increase in peat soil moisture after dam construction, especially in deforested areas with a high density of dams. Furthermore, a strong correlation between cross-polarised radar backscatter coefficients and groundwater levels above -50 cm was found. Monitoring peatland rewetting and quantifying groundwater level variations is important information for vegetation re-establishment, fire hazard warning and making carbon emission mitigation tradable under the voluntary carbon market or REDD (Reducing Emissions from Deforestation and Degradation) mechanism. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Numerical Simulation of Missouri River Bed Evolution Downstream of Gavins Point Dam

    NASA Astrophysics Data System (ADS)

    Sulaiman, Z. A.; Blum, M. D.; Lephart, G.; Viparelli, E.

    2016-12-01

    The Missouri River originates in the Rocky Mountains in western Montana and joins the Mississippi River near Saint Louis, Missouri. In the 1900s dam construction and river engineering works, such as river alignment, narrowing and bank protections were performed in the Missouri River basin to control the flood flows, ensure navigation and use the water for agricultural, industrial and municipal needs, for the production of hydroelectric power generation and for recreation. These projects altered the flow and the sediment transport regimes in the river and the exchange of sediment between the river and the adjoining floodplain. Here we focus on the long term effect of dam construction and channel narrowing on the 1200 km long reach of the Missouri River between Gavins Point Dam, Nebraska and South Dakota, and the confluence with the Mississippi River. Field observations show that two downstream migrating waves of channel bed degradation formed in this reach in response to the changes in flow regime, sediment load and channel geometry. We implemented a one dimensional morphodynamic model for large, low slope sand bed rivers, we validated the model at field scale by comparing the numerical results with the available field data and we use the model to 1) predict the magnitude and the migration rate of the waves of degradation at engineering time scales ( 150 years into the future), 2) quantify the changes in the sand load delivered to the Mississippi River, where field observations at Thebes, i.e. downstream of Saint Louis, suggest a decline in the mean annual sand load in the past 50 years, and 3) identify the role of the main tributaries - Little Sioux River, Platte River and Kansas River - on the wave migration speed and the annual sand load in the Missouri River main channel.

  2. 18 CFR 11.3 - Use of government dams, excluding pumped storage projects.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... per kilowatt-hour for the first 40 gigawatt-hours of energy a project produces, 11/2 mills per... energy the project produces over 80 gigawatt-hours. (c) Information reporting. (1) Except as provided in... may file a request with the Director of the Office of Energy Projects for a credit for contractual...

  3. 18 CFR 11.3 - Use of government dams, excluding pumped storage projects.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... per kilowatt-hour for the first 40 gigawatt-hours of energy a project produces, 11/2 mills per... energy the project produces over 80 gigawatt-hours. (c) Information reporting. (1) Except as provided in... may file a request with the Director of the Office of Energy Projects for a credit for contractual...

  4. 18 CFR 11.3 - Use of government dams, excluding pumped storage projects.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... per kilowatt-hour for the first 40 gigawatt-hours of energy a project produces, 11/2 mills per... energy the project produces over 80 gigawatt-hours. (c) Information reporting. (1) Except as provided in... may file a request with the Director of the Office of Energy Projects for a credit for contractual...

  5. 18 CFR 11.3 - Use of government dams, excluding pumped storage projects.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... per kilowatt-hour for the first 40 gigawatt-hours of energy a project produces, 11/2 mills per... energy the project produces over 80 gigawatt-hours. (c) Information reporting. (1) Except as provided in... may file a request with the Director of the Office of Energy Projects for a credit for contractual...

  6. 18 CFR 4.60 - Applicability and notice to agencies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DETERMINATION OF PROJECT COSTS Application for License for Minor Water Power Projects and Major Water Power Projects 5 Megawatts or Less § 4.60 Applicability and notice to agencies. (a) Applicability. The provisions... water power project, as defined in § 4.30(b)(17); (2) Any major project—existing dam, as defined in § 4...

  7. 18 CFR 4.60 - Applicability and notice to agencies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DETERMINATION OF PROJECT COSTS Application for License for Minor Water Power Projects and Major Water Power Projects 5 Megawatts or Less § 4.60 Applicability and notice to agencies. (a) Applicability. The provisions... water power project, as defined in § 4.30(b)(17); (2) Any major project—existing dam, as defined in § 4...

  8. 18 CFR 4.60 - Applicability and notice to agencies.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... DETERMINATION OF PROJECT COSTS Application for License for Minor Water Power Projects and Major Water Power Projects 5 Megawatts or Less § 4.60 Applicability and notice to agencies. (a) Applicability. The provisions... water power project, as defined in § 4.30(b)(17); (2) Any major project—existing dam, as defined in § 4...

  9. 18 CFR 4.60 - Applicability and notice to agencies.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... DETERMINATION OF PROJECT COSTS Application for License for Minor Water Power Projects and Major Water Power Projects 5 Megawatts or Less § 4.60 Applicability and notice to agencies. (a) Applicability. The provisions... water power project, as defined in § 4.30(b)(17); (2) Any major project—existing dam, as defined in § 4...

  10. 18 CFR 4.60 - Applicability and notice to agencies.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DETERMINATION OF PROJECT COSTS Application for License for Minor Water Power Projects and Major Water Power Projects 5 Megawatts or Less § 4.60 Applicability and notice to agencies. (a) Applicability. The provisions... water power project, as defined in § 4.30(b)(17); (2) Any major project—existing dam, as defined in § 4...

  11. 6. Photographic copy of photograph (Source: Salt River Project Archives, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Photographic copy of photograph (Source: Salt River Project Archives, Tempe, Lubken collection, #R-295) Transformer house under construction. View looking north. October 5, 1908. - Theodore Roosevelt Dam, Transformer House, Salt River, Tortilla Flat, Maricopa County, AZ

  12. 5. Photographic copy of photograph (Source: Salt River Project Archives, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photographic copy of photograph (Source: Salt River Project Archives, Tempe, Lubken collection, #R-273) Transformer house under construction. View looking north. July 1, 1908. - Theodore Roosevelt Dam, Transformer House, Salt River, Tortilla Flat, Maricopa County, AZ

  13. 8. Photographic copy of photograph (Source: Salt River Project Archives, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Photographic copy of photograph (Source: Salt River Project Archives, Tempe, Box 8040, File 29) View of transformer house looking north. No date. CA. 1920. - Theodore Roosevelt Dam, Transformer House, Salt River, Tortilla Flat, Maricopa County, AZ

  14. 76 FR 74783 - Apache Hydro LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-01

    ... project would consist of the following: (1) A 210-foot-high, 1,610-foot-long earth fill dam; (2) a 20-foot... acre-foot storage capacity; (4) a 170-foot-high, 1,270.0-foot-long earth fill dam creating; (5) a lower... prior registration, using the eComment system at http://www.ferc.gov/docs-filing/ecomment.asp . You must...

  15. Lake Mohave Geophysical Survey 2002: GIS Data Release

    USGS Publications Warehouse

    Cross, VeeAnn A.; Foster, David S.; Twichell, David C.

    2005-01-01

    This CD-ROM contains sidescan-sonar imagery, sub-bottom reflection profiles, and an interpretive map derived from these data. These data were collected in Lake Mohave, a reservoir behind the Davis Dam and below the Hoover Dam on the Colorado River. These data are veiwable within an Environmental system Research Institute, Inc. (ESRI) Geographic Information system (GIS) ArcView 3.2 project file stored on this CD-ROM

  16. Effects of dam-induced landscape fragmentation on amazonian ant-plant mutualistic networks.

    PubMed

    Emer, Carine; Venticinque, Eduardo Martins; Fonseca, Carlos Roberto

    2013-08-01

    Mutualistic networks are critical to biological diversity maintenance; however, their structures and functionality may be threatened by a swiftly changing world. In the Amazon, the increasing number of dams poses a large threat to biological diversity because they greatly alter and fragment the surrounding landscape. Tight coevolutionary interactions typical of tropical forests, such as the ant-myrmecophyte mutualism, where the myrmecophyte plants provide domatia nesting space to their symbiotic ants, may be jeopardized by the landscape changes caused by dams. We analyzed 31 ant-myrmecophyte mutualistic networks in undisturbed and disturbed sites surrounding Balbina, the largest Central Amazonian dam. We tested how ant-myrmecophyte networks differ among dam-induced islands, lake edges, and undisturbed forests in terms of species richness, composition, structure, and robustness (number of species remaining in the network after partner extinctions). We also tested how landscape configuration in terms of area, isolation, shape, and neighborhood alters the structure of the ant-myrmecophyte networks on islands. Ant-myrmecophytic networks were highly compartmentalized in undisturbed forests, and the compartments had few strongly connected mutualistic partners. In contrast, networks at lake edges and on islands were not compartmentalized and were negatively affected by island area and isolation in terms of species richness, density, and composition. Habitat loss and fragmentation led to coextinction cascades that contributed to the elimination of entire ant-plant compartments. Furthermore, many myrmecophytic plants in disturbed sites lost their mutualistic ant partners or were colonized by opportunistic, nonspecialized ants. Robustness of ant-myrmecophyte networks on islands was lower than robustness near lake edges and in undisturbed forest and was particularly susceptible to the extinction of plants. Beyond the immediate habitat loss caused by the building of large dams in Amazonia, persistent edge effects and habitat fragmentation associated with dams had large negative effects on animal-plant mutualistic networks. © 2013 Society for Conservation Biology.

  17. Assessment of the Fishery Improvement Opportunities on the Pend Oreille River: Recommendations for Fisheries Enhancement: Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashe, Becky L.; Scholz, Allan T.

    1992-03-01

    This report recommends resident fish substitution projects to partially replace anadromous fish losses caused by construction of Grand Coulee and Chief Joseph Dams. These recommendations involve enhancing the resident fishery in the Pend Oreille River as a substitute for anadromous fish losses. In developing these recommendations we have intentionally attempted to minimize the impact upon the hydroelectric system and anadromous fish recovery plans. In this report we are recommending that the Northwest Power Planning Council direct Bonneville Power Administration to fund the proposed enhancement measures as resident fish substitution projects under the NPPC's Columbia Basin Fish and Wildlife Program. Themore » Pend Oreille River, located in northeast Washington, was historically a free flowing river which supported anadromous steelhead trout and chinook salmon, and large resident cutthroat trout and bull trout. In 1939, Grand Coulee Dam eliminated the anadromous species from the river. In 1955, Box Canyon Dam was constructed, inundating resident trout habitat in the river and creating many back water and slough areas. By the late 1950's the fishery in the reservoir had changed from a quality trout fishery to a warm water fishery, supporting largemouth bass, yellow perch and rough fish (tenth, suckers, squawfish). The object of this study was to examine the existing fishery, identify fishery improvement opportunities and recommend fishery enhancement projects. Three years of baseline data were collected from the Box Canyon portion of the Pend Oreille River to assess population dynamics, growth rates, feeding habits, behavior patterns and factors limiting the fishery. Fishery improvement opportunities were identified based on the results of these data. Relative abundance surveys in the reservoir resulted in the capture of 47,415 fish during the study. The most abundant species in the reservoir were yellow perch, composing 44% of the fish captured. The perch population in the river is stunted and therefore not popular with anglers. Pumpkinseed composed 16% of the total catch, followed by tenth (9%), largemouth bass (8%), mountain whitefish (6%), largescale sucker (5%), northern squawfish (4%) and longnose sucker (3%).« less

  18. Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk.

    PubMed

    Steinmann, Peter; Keiser, Jennifer; Bos, Robert; Tanner, Marcel; Utzinger, Jürg

    2006-07-01

    An estimated 779 million people are at risk of schistosomiasis, of whom 106 million (13.6%) live in irrigation schemes or in close proximity to large dam reservoirs. We identified 58 studies that examined the relation between water resources development projects and schistosomiasis, primarily in African settings. We present a systematic literature review and meta-analysis with the following objectives: (1) to update at-risk populations of schistosomiasis and number of people infected in endemic countries, and (2) to quantify the risk of water resources development and management on schistosomiasis. Using 35 datasets from 24 African studies, our meta-analysis showed pooled random risk ratios of 2.4 and 2.6 for urinary and intestinal schistosomiasis, respectively, among people living adjacent to dam reservoirs. The risk ratio estimate for studies evaluating the effect of irrigation on urinary schistosomiasis was in the range 0.02-7.3 (summary estimate 1.1) and that on intestinal schistosomiasis in the range 0.49-23.0 (summary estimate 4.7). Geographic stratification showed important spatial differences, idiosyncratic to the type of water resources development. We conclude that the development and management of water resources is an important risk factor for schistosomiasis, and hence strategies to mitigate negative effects should become integral parts in the planning, implementation, and operation of future water projects.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simmons, M.A.; McKinstry, C.A.; Simmons, C.S.

    Since 1995, the Colville Confederated Tribes have managed the Chief Joseph Kokanee Enhancement Project as part of the Northwest Power Planning Council's (NWPPC) Fish and Wildlife Program. Project objectives have focused on understanding natural production of kokanee (a land-locked sockeye salmon) and other fish stocks in the area above Grand Coulee and Chief Joseph Dams on the Columbia River. A 42-month investigation concluded that entrainment at Grand Coulee Dam ranged from 211,685 to 576,676 fish annually. Further analysis revealed that 85% of the total entrainment occurred at the dam's third powerplant. These numbers represent a significant loss to the tribalmore » fisheries upstream of the dam. In response to a suggestion by the NWPPC's Independent Scientific Review Panel, the scope of work for the Chief Joseph Kokanee Enhancement Project was expanded to include a multiyear pilot test of a strobe light system to help mitigate fish entrainment. This report details the work conducted during the first year of the study by researchers of the Colville Confederated Tribes in collaboration with the Pacific Northwest National Laboratory (PNNL). The objective of the study was to determine the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee and rainbow trout. Analysis of the effect of strobe lights on the distribution (numbers) and behavior of kokanee and rainbow trout was based on 51, 683 fish targets detected during the study period (June 30 through August 1, 2001). Study findings include the following: (1) Analysis of the count data indicated that significantly more fish were present when the lights were on compared to off. This was true for both the 24-hr tests as well as the 1-hr tests. Powerplant discharge, distance from lights, and date were significant factors in the analysis. (2) Behavioral results indicated that fish within 14 m of the lights were trying to avoid the lights by swimming across the lighted region or upstream. Fish were also swimming faster and straighter when the lights were on compared to off. (3) The behavioral results were most pronounced for medium- and large-sized fish at night. Medium-sized fish, based on acoustic target strength, were similar to the size of kokanee and rainbow trout released upstream of Grand Coulee Dam. Based on this study and general review of strobe lights, the researchers recommend several modifications and enhancements to the follow-on study in 2002. The recommendations include: (1) modifying the study design to include only the 24-hr on/off treatments, and controlling the discharge at the third powerplant, so it can be included as a design variable; and (2) providing additional data by beginning the study earlier (mid-May) to better capture the kokanee population, deploying an additional splitbeam transducer to sample the region close to the lights, and increasing the number of lights to provide better definition of the lit and unlit region.« less

  20. Hydropower licensing and evolving climate: climate knowledge to support risk assessment for long-term infrastructure decisions

    NASA Astrophysics Data System (ADS)

    Ray, A. J.; Walker, S. H.; Trainor, S. F.; Cherry, J. E.

    2014-12-01

    This presentation focuses on linking climate knowledge to the complicated decision process for hydropower dam licensing, and the affected parties involved in that process. The U.S. Federal Energy Regulatory Commission issues of licenses for nonfederal hydroelectric operations, typically 30-50 year licenses, and longer infrastructure lifespan, a similar time frame as the anticipated risks of changing climate and hydrology. Resources managed by other federal and state agencies such as the NOAA National Marine Fisheries Service may be affected by new or re-licensed projects. The federal Integrated Licensing Process gives the opportunity for affected parties to recommend issues for consultative investigation and possible mitigation, such as impacts to downstream fisheries. New or re-licensed projects have the potential to "pre-adapt" by considering and incorporating risks of climate change into their planned operations as license terms and conditions. Hundreds of hydropower facilities will be up for relicensing in the coming years (over 100 in the western Sierra Nevada alone, and large-scale water projects such as the proposed Lake Powell Pipeline), as well as proposed new dams such as the Susitna project in Alaska. Therefore, there is a need for comprehensive guidance on delivering climate analysis to support understanding of risks of hydropower projects to other affected resources, and decisions on licensing. While each project will have a specific context, many of the questions will be similar. We also will discuss best practices for the use of climate science in water project planning and management, and how creating the best and most appropriate science is also still a developing art. We will discuss the potential reliability of that science for consideration in long term planning, licensing, and mitigation planning for those projects. For science to be "actionable," that science must be understood and accepted by the potential users. This process is a negotiation, with climate scientists needing to understand the concerns of users and respond, and users developing a better understanding of the state of climate science in order to make an informed choice. We will also discuss what is needed to streamline providing that analysis for the many re-licensing decisions expected in the upcoming years.

  1. Establishing baseline biodiversity data prior to hydroelectric dam construction to monitoring impacts to bats in the Brazilian Amazon.

    PubMed

    Bobrowiec, Paulo Estefano D; Tavares, Valéria da Cunha

    2017-01-01

    The modification of Amazonian rivers by the construction of megaprojects of hydroelectric dams has widely increased over the last decade. Robust monitoring programs have been rarely conducted prior to the establishment of dams to measure to what extent the fauna, and its associated habitats may be affected by upcoming impacts. Using bats as models, we performed analyses throughout the area under the influence of the Santo Antônio hydroelectric dam, Southwestern Brazilian Amazonia before its construction to estimate how the fauna and its associated habitats would be affected by the upcoming impacts. We surveyed bats in 49 plots distributed along the areas going to be inundated by the dam and those remaining dry. As predictors for the species distribution, we tested the variables of vegetation structure and topography. Species composition largely differed between the dry plots and the plots located in areas that will be flooded, and this was strongly associated with the variables of forest basal area and elevation. Vegetation-related variables also had strong influence on the guilds distribution. The flooding of lower elevations areas is expected to negatively affect the species number and abundance of frugivorous species. In contrast, it is likely that animalivores will be less vulnerable to dam-induced flooding, since they were abundant in the areas not expect to be inundated. We urge for the implementation of studies to predict impacts caused by large hydroelectric dams, including tests of the influence of the local conditions that shape diversity to avoid massive losses of the biota, and to build preventive monitoring and management actions.

  2. 78 FR 17389 - Clark Canyon Hydro, LLC; Notice of Application for Amendment of License and Soliciting Comments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-21

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 12429-009] Clark Canyon...: 12429-009. c. Date Filed: January 28, 2013. d. Applicant: Northwest Power Services on behalf of Clark Canyon Hydro, LLC. e. Name of Project: Clark Canyon Dam Hydroelectric Project. f. Location: The Clark...

  3. 75 FR 6020 - Notice of Competing Preliminary Permit Applications Accepted for Filing and Soliciting Comments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-05

    ... feasibility of the George W. Andrews Hydroelectric Project located at the existing George W. Andrews Lock and.... Andrews Lock and Dam Hydroelectric Project by Brookfield Power (Project No. 13077-000, filed on November... have an average annual generation of 89 gigawatt-hours. The proposed George W. Andrews Hydroelectric...

  4. Rock Mass Behavior Under Hydropower Embankment Dams: A Two-Dimensional Numerical Study

    NASA Astrophysics Data System (ADS)

    Bondarchuk, A.; Ask, M. V. S.; Dahlström, L.-O.; Nordlund, E.

    2012-09-01

    Sweden has more than 190 large hydropower dams, of which about 50 are pure embankment dams and over 100 are concrete/embankment dams. This paper presents results from conceptual analyses of the response of typical Swedish rock mass to the construction of a hydropower embankment dam and its first stages of operation. The aim is to identify locations and magnitudes of displacements that are occurring in the rock foundation and grout curtain after construction of the dam, the first filling of its water reservoir, and after one seasonal variation of the water table. Coupled hydro-mechanical analysis was conducted using the two-dimensional distinct element program UDEC. Series of the simulations have been performed and the results show that the first filling of the reservoir and variation of water table induce largest magnitudes of displacement, with the greatest values obtained from the two models with high differential horizontal stresses and smallest spacing of sub-vertical fractures. These results may help identifying the condition of the dam foundation and contribute to the development of proper maintenance measures, which guarantee the safety and functionality of the dam. Additionally, newly developed dams may use these results for the estimation of the possible response of the rock foundation to the construction.

  5. Effect of protein quality on /sup 14/C glucose utilization in isolated rat mammary acini

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masor, M.L.; Grundleger, M.L.; Jansen, G.R.

    1986-03-01

    Poor protein quality has a deleterious effect on lactation in rats. Dams consuming a 13% wheat gluten (WG) diet are unable to maintain litters. Glucose utilization in isolated mammary acini taken from dams at either day 20 of gestation (G20) or day 4 of lactation (L4) was examined in dams consuming 13% WG vs 13% casein-methionine (CM) diets from day of breeding. Dams consuming WG had significantly smaller inguinal-abdominal mammary glands than CM dams at both G20 and L4, and mammary glands of CM but not WG dams were larger at L4 than G20. Both average pup weight and pupmore » daily gain were smaller in WG litters. Basal levels of /sup 14/C glucose oxidation (GO) and /sup 14/C glucose incorporation into lipid (GL) and lactose were examined. A large significant increase in GO and GL occurred in CM dams from G20 to L4 but not in WG dams. Both GO and GL were higher in CM dams on L4 but not at G20. The ratio of GO:GO+GL changed at parturition in CM but not WG dams. The normal changes in glucose utilization by mammary epithelial cells which occur at parturition were impaired by the WG diet.« less

  6. Watershed restoration: planning and implementing small dam removals to maximize ecosystem services

    NASA Astrophysics Data System (ADS)

    Tonitto, C.; Riha, S. J.

    2016-12-01

    River restoration and enhancing watershed connectivity is of growing concern in industrialized nations. The past two decades have seen a number of small dam removals, though many removals remain unstudied and poorly documented. We summarize socio-economic and biophysical lessons learned during the past two decades of accelerated activity regarding small dam removals throughout the United States. We present frameworks for planning and implementing removals developed by interdisciplinary engagement. Toward the goal of achieving thorough dam removal planning, we present outcomes from well-documented small dam removals covering ecological, chemical, and physical change in rivers post-dam removal, including field observation and modeling methodologies. Guiding principles of a dam removal process should include: 1) stakeholder engagement to navigate the complexity of watershed landuse, 2) an impacts assessment to inform the planning process, 3) pre- and post-dam removal observations of ecological, chemical and physical properties, 4) the expectation that there are short- and long-term ecological dynamics with population recovery depending on whether dam impacts were largely related to dispersion or to habitat destruction, 5) an expectation that changes in watershed chemistry are dependent on sediment type, sediment transport and watershed landuse, and 6) rigorous assessment of physical changes resulting from dam removal, understanding that alteration in hydrologic flows, sediment transport, and channel evolution will shape ecological and chemical dynamics, and shape how stakeholders engage with the watershed.

  7. Assessing Risks of Mine Tailing Dam Failures

    NASA Astrophysics Data System (ADS)

    Concha Larrauri, P.; Lall, U.

    2017-12-01

    The consequences of tailings dam failures can be catastrophic for communities and ecosystems in the vicinity of the dams. The failure of the Fundão tailings dam at the Samarco mine in 2015 killed 19 people with severe consequences for the environment. The financial and legal consequences of a tailings dam failure can also be significant for the mining companies. For the Fundão tailings dam, the company had to pay 6 billion dollars in fines and twenty-one executives were charged with qualified murder. There are tenths of thousands of active, inactive, and abandoned tailings dams in the world and there is a need to better understand the hazards posed by these structures to downstream populations and ecosystems. A challenge to assess the risks of tailings dams in a large scale is that many of them are not registered in publicly available databases and there is little information about their current physical state. Additionally, hazard classifications of tailings dams - common in many countries- tend to be subjective, include vague parameter definitions, and are not always updated over time. Here we present a simple methodology to assess and rank the exposure to tailings dams using ArcGIS that removes subjective interpretations. The method uses basic information such as current dam height, storage volume, topography, population, land use, and hydrological data. A hazard rating risk was developed to compare the potential extent of the damage across dams. This assessment provides a general overview of what in the vicinity of the tailings dams could be affected in case of a failure and a way to rank tailings dams that is directly linked to the exposure at any given time. One hundred tailings dams in Minas Gerais, Brazil were used for the test case. This ranking approach could inform the risk management strategy of the tailings dams within a company, and when disclosed, it could enable shareholders and the communities to make decisions on the risks they are taking.

  8. Ecosystem experiment reveals benefits of natural and simulated beaver dams to a threatened population of steelhead (Oncorhynchus mykiss)

    PubMed Central

    Bouwes, Nicolaas; Weber, Nicholas; Jordan, Chris E.; Saunders, W. Carl; Tattam, Ian A.; Volk, Carol; Wheaton, Joseph M.; Pollock, Michael M.

    2016-01-01

    Beaver have been referred to as ecosystem engineers because of the large impacts their dam building activities have on the landscape; however, the benefits they may provide to fluvial fish species has been debated. We conducted a watershed-scale experiment to test how increasing beaver dam and colony persistence in a highly degraded incised stream affects the freshwater production of steelhead (Oncorhynchus mykiss). Following the installation of beaver dam analogs (BDAs), we observed significant increases in the density, survival, and production of juvenile steelhead without impacting upstream and downstream migrations. The steelhead response occurred as the quantity and complexity of their habitat increased. This study is the first large-scale experiment to quantify the benefits of beavers and BDAs to a fish population and its habitat. Beaver mediated restoration may be a viable and efficient strategy to recover ecosystem function of previously incised streams and to increase the production of imperiled fish populations. PMID:27373190

  9. Water clarity of the Colorado River—Implications for food webs and fish communities

    USGS Publications Warehouse

    Voichick, Nicholas; Kennedy, Theodore A.; Topping, David; Griffiths, Ronald; Fry, Kyrie

    2016-11-01

    The closure of Glen Canyon Dam in 1963 resulted in drastic changes to water clarity, temperature, and flow of the Colorado River in Glen, Marble, and Grand Canyons. The Colorado River is now much clearer, water temperature is less variable throughout the year, and the river is much colder in the summer months. The flow—regulated by the dam—is now less variable annually, but has larger daily fluctuations than during pre-dam times. All of these changes have resulted in a different fish community and different food resources for fish than existed before the dam was built. Recent monitoring of water clarity, by measuring turbidity, has helped scientists and river managers understand modern water-clarity patterns in the dam-regulated Colorado River. These data were then used to estimate pre-dam turbidity in the Colorado River in order to make comparisons of pre-dam and dam-regulated conditions, which are useful for assessing biological changes in the river over time. Prior to dam construction, the large sediment load resulted in low water clarity almost all of the time, a condition which was more favorable for the native fish community.

  10. Will river erosion below the Three Gorges Dam stop in the middle Yangtze?

    NASA Astrophysics Data System (ADS)

    Lai, X.; Yin, D.; Finlayson, B. L.; Wei, T.; Li, M.; Yuan, W.; Yang, S.; Dai, Z.; Gao, S.; Chen, Z.

    2017-11-01

    The environmental impact of the Three Gorges Dam has been a subject of vigorous academic, political and social debate since its inception. This includes the key issue of post-dam river channel erosion, which was predicted by the feasibility study to extend to the river mouth. In this paper we examine the geomorphic response of the channel of the middle Yangtze for 660 km downstream of the dam. Using data on channel characteristics, bed material and sediment transport, we show that in the decade following the dam closure, pre-dam seasonal erosion has been replaced by year-round erosion, a pattern most marked at the upstream end of the study area. The sediment carrying capacity of the river channel has been largely reduced below the dam. The locus of bed scour has moved progressively downstream, ceasing as the bed material became too coarse to be transported (e.g. D50: 0.29 mm pre-dam coarsened to 20 mm below the dam by 2008). About 400 km below the dam there is a reduction in channel slope that changes the sediment carrying capacity from 0.25 kg m-3 to only about 0.05 kg m-3, which is insufficient to move bed sediment. The new long-term hydro-morphological equilibrium that will be established in this section of the middle Yangtze will prevent the further incision downstream initiated by the Three Gorges Dam. The results suggest that the full extent of adverse environmental impact predicted by the pre-dam studies will not eventuate.

  11. Umatilla River Fish Passage Operations Project : Annual Progress Report October 2007 - September 2008.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bronson, James P.; Loffink, Ken; Duke, Bill

    Threemile Falls Dam (Threemile Dam), located near the town of Umatilla, is the major collection and counting point for adult salmonids returning to the Umatilla River. Returning salmon and steelhead were enumerated at Threemile Dam from June 7, 2007 to August 11, 2008. A total of 3,133 summer steelhead (Oncorhynchus mykiss); 1,487 adult, 1,067 jack, and 999 subjack fall Chinook (O. tshawytscha); 5,140 adult and 150 jack coho (O. kisutch); and 2,009 adult, 517 jack, and 128 subjack spring Chinook (O. tshawytscha) were counted. All fish were enumerated at the east bank facility. Of the fish counted, 1,442 summer steelheadmore » and 88 adult and 84 jack spring Chinook were hauled upstream from Threemile Dam. There were 1,497 summer steelhead; 609 adult, 1,018 jack and 979 subjack fall Chinook; 5,036 adult and 144 jack coho; and 1,117 adult, 386 jack and 125 subjack spring Chinook either released at, or allowed to volitionally migrate past, Threemile Dam. Also, 110 summer steelhead; 878 adult and 43 jack fall Chinook; and 560 adult and 28 jack spring Chinook were collected as broodstock for the Umatilla River hatchery program. In addition, there were 241 adult and 15 jack spring Chinook collected at Threemile Dam for outplanting in the South Fork Walla Walla River and Mill Cr, a tributary of the mainstem Walla Walla River. The Westland Canal juvenile facility (Westland), located near the town of Echo at river mile (RM) 27, is the major collection point for out-migrating juvenile salmonids and steelhead kelts. The canal was open for 158 days between February 11, 2008 and July 18, 2008. During that period, fish were bypassed back to the river 150 days and were trapped 6 days. There were also 2 days when fish were directed into and held in the canal forebay between the time the bypass was closed and the trap opened. An estimated 64 pounds of fish were transported from the Westland trapping facility. Approximately 25.8% of the fish transported were salmonids. In addition, one adult Pacific lamprey was trapped and released above the Westland ladder this year. The Threemile Dam west bank juvenile bypass was opened on March 11, 2008 in conjunction with water deliveries and continued through the summer. West Extension Irrigation District (WEID) discontinued diverting live flow on June 24, 2008 but the bypass remained open throughout the project year. The juvenile trap was not operated this project year.« less

  12. Influence of unreasoned economic activity on the condition of macrophytes of the Bol’shoye Goluboye Lake

    NASA Astrophysics Data System (ADS)

    Palagushkina, O. V.; Zaripova, N. R.; Mingazova, N. M.; Yarutkin, T. O.

    2018-01-01

    The ecosystem of Lake Bolshoye Goluboe had undergone a strong anthropogenic impact in 2013 as a result of the implementation of the dam reconstruction project. Studies in 2014 have shown that the implementation of the project for the reconstruction of the Bolshoye Goluboe dam has negatively affected on the species richness of macrophytes. The total species composition of the lake and species richness of the water core decreased twofold, Hippuris vulgaris L., Zannichellia palustris L, Ceratophyllum demersum L., and the species listed in the Red Book of the Republic of Tatarstan - Batrachium circinatum (Sibth.) Spach disappeared from the species composition. The area occupied by macrophyte communities has decreased by 55%.

  13. Preliminary study of the water-temperature regime of the North Santiam River downstream from Detroit and Big Cliff dams, Oregon

    USGS Publications Warehouse

    Laenen, Antonius

    1985-01-01

    A riverine-temperature model and associated data-collection system were developed to help the Corps of engineers determine cost benefits of selective-withdrawal structures for future use with dams on the Willamette River System. A U.S. Geological Survey Lagrangian reference frame, digital computer model was used to simulate stream temperatures on the North Santiam River downstream of the multipurpose Detroit dam and a reregulating dam (Big Cliff), from river mile 45.6 to 2.9. In simulation, only available air-temperature and windspeed information from a nearby National Weather Service station at Salem, Oregon were used. This preliminary investigation found that the model predicted mean daily temperatures to within 0.4 C standard deviation. Analysis of projected selective-withdrawal scenarios showed that the model has the sensitivity to indicate water-temperature changes 42.7 miles downstream on the North Santiam River. (USGS)

  14. Information collection and processing of dam distortion in digital reservoir system

    NASA Astrophysics Data System (ADS)

    Liang, Yong; Zhang, Chengming; Li, Yanling; Wu, Qiulan; Ge, Pingju

    2007-06-01

    The "digital reservoir" is usually understood as describing the whole reservoir with digital information technology to make it serve the human existence and development furthest. Strictly speaking, the "digital reservoir" is referred to describing vast information of the reservoir in different dimension and space-time by RS, GPS, GIS, telemetry, remote-control and virtual reality technology based on computer, multi-media, large-scale memory and wide-band networks technology for the human existence, development and daily work, life and entertainment. The core of "digital reservoir" is to realize the intelligence and visibility of vast information of the reservoir through computers and networks. The dam is main building of reservoir, whose safety concerns reservoir and people's safety. Safety monitoring is important way guaranteeing the dam's safety, which controls the dam's running through collecting the dam's information concerned and developing trend. Safety monitoring of the dam is the process from collection and processing of initial safety information to forming safety concept in the brain. The paper mainly researches information collection and processing of the dam by digital means.

  15. Monitoring of Downstream Salmon and Steelhead at Federal Hydroelectric Facilities, 1991 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawkes, Lynette A.; Martinson, Rick D.; Smith, W. William

    1992-04-01

    The 1991 smolt monitoring project of the National Marine Fisheries Service provided data on the seaward migration of juvenile salmon and steelhead at John Day, The Dalles and Bonneville Dams. All pertinent fish capture and condition data as well as dam operations and river flow data were provided to Fish Passage Center for use in developing fish passage indices and migration timing, and for water budget and spill management.

  16. 21. Photographic copy of photograph. (Source: U.S. Department of Interior. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Photographic copy of photograph. (Source: U.S. Department of Interior. Office of Indian Affairs. Indian Irrigation Service. Annual Report, Fiscal Year 1926. Vol. I, Narrative and Photographs, RG 75, Entry 655, Box 29, National Archives, Washington, DC.) Photographer unknown. SACATON DAM, UPSTREAM SIDE FROM SOUTH END, 8/29/25 - San Carlos Irrigation Project, Sacaton Dam & Bridge, Gila River, T4S R6E S12/13, Coolidge, Pinal County, AZ

  17. 20. Photographic copy of photograph. (Source: U.S. Department of Interior. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Photographic copy of photograph. (Source: U.S. Department of Interior. Office of Indian Affairs. Indian Irrigation Service. Annual Report, Fiscal Year 1926. Vol. I, Narrative and Photographs, RG 75, Entry 655, Box 29, National Archives, Washington, DC.) Photographer unknown. SACATON DAM, BRIDGE FROM SOUTH END, 8/29/25 - San Carlos Irrigation Project, Sacaton Dam & Bridge, Gila River, T4S R6E S12/13, Coolidge, Pinal County, AZ

  18. 77 FR 1924 - FFP Missouri 15, LLC; FFP Missouri 16, LLC; Notice of Intent To File License Application, Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-12

    ... Flow Power Corporation on behalf of its subsidiary limited liability corporations (listed above and collectively referred to below as ``Free Flow Power''). e. Name of Projects: Morgantown Lock and Dam Project, P...

  19. 16. Photographic copy of drawing, dated September 1924, in possession ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Photographic copy of drawing, dated September 1924, in possession of San Carlos Irrigation Project. United States Indian Service, Irrigation. PIMA LATERAL HEADWORKS, RADIAL GATES - San Carlos Irrigation Project, Pima Lateral, Main Canal at Sacaton Dam, Coolidge, Pinal County, AZ

  20. Variability of Ecosystem State in Rivers Containing Natural Dams: A Chemical Analysis

    NASA Astrophysics Data System (ADS)

    Reynolds, Z. A.

    2015-12-01

    Flooding, and the resulting economic damage to roads and property, is associated with natural dams such as beaver dams or log jams. For this reason, humans often remove natural dams; however, river reaches with natural dams provide very different ecosystem services in comparison with free-flowing river reaches. Therefore, the goal of this project is to assess the differences in ecosystem state between these different river reach types in the northeastern United States. We focused on differences in basic chemistry (e.g., dissolved oxygen, pH, temperature, and organic carbon) to assess the impact of natural dams on river ecosystem state. Study sites include rivers in the White Mountains and southeastern New Hampshire at locations with beaver dams, beaver ponds, beaver meadows, log jams, and free-flowing reaches. Dissolved oxygen, ORP, pH, temperature, and conductivity were measured in the field with a YSI Professional Plus meter. Water samples were collected for subsequent laboratory analysis of total organic carbon with a Shimadzu TOC-L. Preliminary results show that the chemistry of river water varies with feature type. Most significantly, dissolved oxygen concentrations are highest in free-flowing reaches and lowest in beaver ponds. Although beaver ponds are often associated with lower pH, due the increased concentration of organic acids, some beaver ponds can increase pH when compared to free-flowing reaches on the same river. Early results also show that water chemistry returns quickly to the chemistry typical of the free-flowing river reaches after being altered by a natural dam. Overall, natural dams create a river system that has more heterogeneity, and therefore has opportunities to provide more ecosystem functions, than a purely free-flowing river; this can increase the number of supported instream and riparian species. By increasing the understanding of how natural dams affect the chemistry of river water, river engineers can improve their decisions on how to remove problematic natural dams that increase flooding risks; they can also investigate possibilities to mimic the ecosystem state generated by natural dams in places where these dams are regularly removed.

Top