Concepts and analysis for precision segmented reflector and feed support structures
NASA Technical Reports Server (NTRS)
Miller, Richard K.; Thomson, Mark W.; Hedgepeth, John M.
1990-01-01
Several issues surrounding the design of a large (20-meter diameter) Precision Segmented Reflector are investigated. The concerns include development of a reflector support truss geometry that will permit deployment into the required doubly-curved shape without significant member strains. For deployable and erectable reflector support trusses, the reduction of structural redundancy was analyzed to achieve reduced weight and complexity for the designs. The stiffness and accuracy of such reduced member trusses, however, were found to be affected to a degree that is unexpected. The Precision Segmented Reflector designs were developed with performance requirements that represent the Reflector application. A novel deployable sunshade concept was developed, and a detailed parametric study of various feed support structural concepts was performed. The results of the detailed study reveal what may be the most desirable feed support structure geometry for Precision Segmented Reflector/Large Deployable Reflector applications.
Deployment simulation of a deployable reflector for earth science application
NASA Astrophysics Data System (ADS)
Wang, Xiaokai; Fang, Houfei; Cai, Bei; Ma, Xiaofei
2015-10-01
A novel mission concept namely NEXRAD-In-Space (NIS) has been developed for monitoring hurricanes, cyclones and other severe storms from a geostationary orbit. It requires a space deployable 35-meter diameter Ka-band (35 GHz) reflector. NIS can measure hurricane precipitation intensity, dynamics and its life cycle. These information is necessary for predicting the track, intensity, rain rate and hurricane-induced floods. To meet the requirements of the radar system, a Membrane Shell Reflector Segment (MSRS) reflector technology has been developed and several technologies have been evaluated. However, the deployment analysis of this large size and high-precision reflector has not been investigated. For a pre-studies, a scaled tetrahedral truss reflector with spring driving deployment system has been made and tested, deployment dynamics analysis of this scaled reflector has been performed using ADAMS to understand its deployment dynamic behaviors. Eliminating the redundant constraints in the reflector system with a large number of moving parts is a challenging issue. A primitive joint and flexible struts were introduced to the analytical model and they can effectively eliminate over constraints of the model. By using a high-speed camera and a force transducer, a deployment experiment of a single-bay tetrahedral module has been conducted. With the tested results, an optimization process has been performed by using the parameter optimization module of ADAMS to obtain the parameters of the analytical model. These parameters were incorporated to the analytical model of the whole reflector. It is observed from the analysis results that the deployment process of the reflector with a fixed boundary experiences three stages. These stages are rapid deployment stage, slow deployment stage and impact stage. The insight of the force peak distributions of the reflector can help the optimization design of the structure.
STEP flight experiments Large Deployable Reflector (LDR) telescope
NASA Technical Reports Server (NTRS)
Runge, F. C.
1984-01-01
Flight testing plans for a large deployable infrared reflector telescope to be tested on a space platform are discussed. Subsystem parts, subassemblies, and whole assemblies are discussed. Assurance of operational deployability, rigidization, alignment, and serviceability will be sought.
Extreme Precision Antenna Reflector Study Results
NASA Technical Reports Server (NTRS)
Sharp, G. R.; Gilger, L. D.; Ard, K. E.
1985-01-01
Thermal and mechanical distortion degrade the RF performance of antennas. The complexity of future communications antennas requires accurate, dimensionally stable antenna reflectors and structures built from materials other than those currently used. The advantages and disadvantages of using carbon fibers in an epoxy matrix are reviewed as well as current reflector fabrications technology and adjustment. The manufacturing sequence and coefficient of thermal expansion of carbon fiber/borosilicate glass composites is described. The construction of a parabolic reflector from this material and the assembling of both reflector and antenna are described. A 3M-aperture-diameter carbon/glass reflector that can be used as a subassembly for large reflectors is depicted. The deployment sequence for a 10.5M-aperture-diameter antenna, final reflector adjustment, and the deployment sequence for large reflectors are also illustrated.
NASA Technical Reports Server (NTRS)
1984-01-01
The Large Deployable Reflector (LDR), a proposed 20 m diameter telescope designed for infrared and submillimeter astronomical measurements from space, is discussed in terms of scientific purposes, capabilities, current status, and history of development. The LDR systems goals and functional/telescope requirements are enumerated.
Membrane Shell Reflector Segment Antenna
NASA Technical Reports Server (NTRS)
Fang, Houfei; Im, Eastwood; Lin, John; Moore, James
2012-01-01
The mesh reflector is the only type of large, in-space deployable antenna that has successfully flown in space. However, state-of-the-art large deployable mesh antenna systems are RF-frequency-limited by both global shape accuracy and local surface quality. The limitations of mesh reflectors stem from two factors. First, at higher frequencies, the porosity and surface roughness of the mesh results in loss and scattering of the signal. Second, the mesh material does not have any bending stiffness and thus cannot be formed into true parabolic (or other desired) shapes. To advance the deployable reflector technology at high RF frequencies from the current state-of-the-art, significant improvements need to be made in three major aspects: a high-stability and highprecision deployable truss; a continuously curved RF reflecting surface (the function of the surface as well as its first derivative are both continuous); and the RF reflecting surface should be made of a continuous material. To meet these three requirements, the Membrane Shell Reflector Segment (MSRS) antenna was developed.
Large deployable antenna program. Phase 1: Technology assessment and mission architecture
NASA Technical Reports Server (NTRS)
Rogers, Craig A.; Stutzman, Warren L.
1991-01-01
The program was initiated to investigate the availability of critical large deployable antenna technologies which would enable microwave remote sensing missions from geostationary orbits as required for Mission to Planet Earth. Program goals for the large antenna were: 40-meter diameter, offset-fed paraboloid, and surface precision of 0.1 mm rms. Phase 1 goals were: to review the state-of-the-art for large, precise, wide-scanning radiometers up to 60 GHz; to assess critical technologies necessary for selected concepts; to develop mission architecture for these concepts; and to evaluate generic technologies to support the large deployable reflectors necessary for these missions. Selected results of the study show that deployable reflectors using furlable segments are limited by surface precision goals to 12 meters in diameter, current launch vehicles can place in geostationary only a 20-meter class antenna, and conceptual designs using stiff reflectors are possible with areal densities of 2.4 deg/sq m.
AAFE large deployable antenna development program: Executive summary
NASA Technical Reports Server (NTRS)
1977-01-01
The large deployable antenna development program sponsored by the Advanced Applications Flight Experiments of the Langley Research Center is summarized. Projected user requirements for large diameter deployable reflector antennas were reviewed. Trade-off studies for the selection of a design concept for 10-meter diameter reflectors were made. A hoop/column concept was selected as the baseline concept. Parametric data are presented for 15-meter, 30-meter, and 100-meter diameters. A 1.82-meter diameter engineering model which demonstrated the feasiblity of the concept is described.
System concept for a moderate cost Large Deployable Reflector (LDR)
NASA Technical Reports Server (NTRS)
Swanson, P. N.; Breckinridge, J. B.; Diner, A.; Freeland, R. E.; Irace, W. R.; Mcelroy, P. M.; Meinel, A. B.; Tolivar, A. F.
1986-01-01
A study was carried out at JPL during the first quarter of 1985 to develop a system concept for NASA's LDR. Major features of the concept are a four-mirror, two-stage optical system; a lightweight structural composite segmented primary reflector; and a deployable truss backup structure with integral thermal shield. The two-stage optics uses active figure control at the quaternary reflector located at the primary reflector exit pupil, allowing the large primary to be passive. The lightweight composite reflector panels limit the short-wavelength operation to approximately 30 microns but reduce the total primary reflector weight by a factor of 3 to 4 over competing technologies. On-orbit thermal analysis indicates a primary reflector equilibrium temperature of less than 200 K with a maximum gradient of about 5 C across the 20-m aperture. Weight and volume estimates are consistent with a single Shuttle launch, and are based on Space Station assembly and checkout.
NASA Technical Reports Server (NTRS)
Leidich, C. A. (Editor); Pittman, R. B. (Editor)
1984-01-01
The results of five technology panels which convened to discuss the Large Deployable Reflector (LDR) are presented. The proposed LDR is a large, ambient-temperature, far infrared/submillimeter telescope designed for space. Panel topics included optics, materials and structures, sensing and control, science instruments, and systems and missions. The telescope requirements, the estimated technology levels, and the areas in which the generic technology work has to be augmented are enumerated.
Novel large deployable antenna backing structure concepts for foldable reflectors
NASA Astrophysics Data System (ADS)
Fraux, V.; Lawton, M.; Reveles, J. R.; You, Z.
2013-12-01
This paper describes a number of large deployable antenna (LDA) reflector structure concepts developed at EnerSys-ABSL. Furthermore, EnerSys-ABSL has confirmed the desire to build a breadboard demonstrator of a backing deployable structure for a foldable reflector in the diameter range of 4-9 m. As part of this project EnerSys-ABSL has explored five novel deployable structure concepts. This paper presents the top level definition of these concepts together with the requirements considered in the design and selection of the preferred candidate. These new concepts are described and then compared through a trade-off analysis to identify the most suitable concept that EnerSys-ABSL would like to consider for the breadboard demonstrator. Finally, the kinematics of the chosen concept is described in more detail and future steps in the development process are highlighted.
New Antenna Deployment, Pointing and Supporting Mechanism
NASA Technical Reports Server (NTRS)
Costabile, V.; Lumaca, F.; Marsili, P.; Noni, G.; Portelli, C.
1996-01-01
On ITALSAT Flight 2, the Italian telecommunications satellite, the two L-Ka antennas (Tx and Rx) use two large deployable reflectors (2000-mm diameter), whose deployment and fine pointing functions are accomplished by means of an innovative mechanism concept. The Antenna Deployment & Pointing Mechanism and Supporting Structure (ADPMSS) is based on a new configuration solution, where the reflector and mechanisms are conceived as an integrated, self-contained assembly. This approach is different from the traditional configuration solution. Typically, a rigid arm is used to deploy and then support the reflector in the operating position, and an Antenna Pointing Mechanism (APM) is normally interposed between the reflector and the arm for steering operation. The main characteristics of the ADPMSS are: combined implementation of deployment, pointing, and reflector support; optimum integration of active components and interface matching with the satellite platform; structural link distribution to avoid hyperstatic connections; very light weight and; high performance in terms of deployment torque margin and pointing range/accuracy. After having successfully been subjected to all component-level qualification and system-level acceptance tests, two flight ADPMSS mechanisms (one for each antenna) are now integrated on ITALSAT F2 and are ready for launch. This paper deals with the design concept, development, and testing program performed to qualify the ADPMSS mechanism.
NASA Technical Reports Server (NTRS)
Agnew, Donald L.; Jones, Peter A.
1989-01-01
A study was conducted to define reasonable and representative large deployable reflector (LDR) system concepts for the purpose of defining a technology development program aimed at providing the requisite technological capability necessary to start LDR development by the end of 1991. This volume includes the executive summary for the total study, a report of thirteen system analysis and trades tasks (optical configuration, aperture size, reflector material, segmented mirror, optical subsystem, thermal, pointing and control, transportation to orbit, structures, contamination control, orbital parameters, orbital environment, and spacecraft functions), and descriptions of three selected LDR system concepts. Supporting information is contained in appendices.
NASA Astrophysics Data System (ADS)
Agnew, Donald L.; Vinkey, Victor F.; Runge, Fritz C.
1989-04-01
A study was conducted to determine how the Large Deployable Reflector (LDR) might benefit from the use of the space station for assembly, checkout, deployment, servicing, refurbishment, and technology development. Requirements that must be met by the space station to supply benefits for a selected scenario are summarized. Quantitative and qualitative data are supplied. Space station requirements for LDR which may be utilized by other missions are identified. A technology development mission for LDR is outlined and requirements summarized. A preliminary experiment plan is included. Space Station Data Base SAA 0020 and TDM 2411 are updated.
NASA Technical Reports Server (NTRS)
Agnew, Donald L.; Vinkey, Victor F.; Runge, Fritz C.
1989-01-01
A study was conducted to determine how the Large Deployable Reflector (LDR) might benefit from the use of the space station for assembly, checkout, deployment, servicing, refurbishment, and technology development. Requirements that must be met by the space station to supply benefits for a selected scenario are summarized. Quantitative and qualitative data are supplied. Space station requirements for LDR which may be utilized by other missions are identified. A technology development mission for LDR is outlined and requirements summarized. A preliminary experiment plan is included. Space Station Data Base SAA 0020 and TDM 2411 are updated.
Studies of low-mass star formation with the large deployable reflector
NASA Technical Reports Server (NTRS)
Hollenbach, D. J.; Tielens, Alexander G. G. M.
1984-01-01
Estimates are made of the far-infrared and submillimeter continuum and line emission from regions of low mass star formation. The intensity of this emission is compared with the sensitivity of the large deployable reflector (LDR), a large space telescope designed for this wavelength range. The proposed LDR is designed to probe the temperature, density, chemical structure, and the velocity field of the collapsing envelopes of these protostars. The LDR is also designed to study the accretion shocks on the cores and circumstellar disks of low-mass protostars, and to detect shock waves driven by protostellar winds.
Development of the Aquarius Antenna Deployment Mechanisms and Spring/Damper Actuator
NASA Technical Reports Server (NTRS)
Johnson, Joel A.
2008-01-01
The Aquarius Instrument s large radar reflector dish needed to be stowed for launch, and then deployed on-orbit. The Deployment Subsystem consisted of a cantilevered boom structure and two single-axis hinge mechanisms to accurately deploy and position the reflector dish relative to the radar feed horns. The cantilevered design demanded high stiffness and accuracy from the deployment mechanism at the root of the boom. A preload-generating end-of-travel latch was also required. To largely eliminate the need for control systems, each deployment mechanism was actuated by a passive spring motor with viscous-fluid damping. Tough requirements and adaptation of a heritage actuator to the new application resulted in numerous challenges. Fabrication, assembly, and testing encountered additional problems, though ultimately the system was demonstrated very successfully. This paper revisits the development to highlight which design concepts worked and the many important lessons learned.
Design and deploying study of a new petal-type deployable solid surface antenna
NASA Astrophysics Data System (ADS)
Huang, He; Guan, Fu-Ling; Pan, Liang-Lai; Xu, Yan
2018-07-01
Deployable solid surface reflector is still one of the most important ways to fulfill the ultra-high-accuracy and ultra-large-aperture reflector antennas. However the drawback of integrate stiffness is still a main problem for solid surface reflectors in the former research. To figure out this problem, a New Petal-type Deployable Solid Surface Antenna (NPDSSA) is developed in this study. A kind of drag springs are applied as linkages with adjacent petals to improve the integrate rigidity. The structural design is introduced and the geometric parameters are analyzed to find their effects on the rotation and package capacities. The software simulations and laboratory model tests are conducted to verify the deploying process of NPDSSA. Two models are employed to study the property of linkage butts and drag springs. It is indicated that model NPDSSA with the application of linkage butts and drag springs has better integrality and stability during the deploying. Finally it is concluded that NPDSSA is feasible for space applications.
Mechanical Technology Development on A 35-m Deployable Radar Antenna for Monitoring Hurricanes
NASA Technical Reports Server (NTRS)
Fang, Houfei; Im, Eastwood
2006-01-01
The NEXRAD in Space project develops a novel instrument concept and the associated antenna technologies for a 35-GHz Doppler radar to monitor hurricanes, cyclones, and severe storms from a geostationary orbit. Mechanical challenges of this concept include a 35-m diameter lightweight in space deployable spherical reflector and a feeder scanning mechanism. The feasibility of using shape memory polymer material to develop the large deployable reflector has been investigated by this study. A spiral scanning mechanism concept has been developed and demonstrated by an engineering model.
Prospects for Geostationary Doppler Weather Radar
NASA Technical Reports Server (NTRS)
Tanelli, Simone; Fang, Houfei; Durden, Stephen L.; Im, Eastwood; Rhamat-Samii, Yahya
2009-01-01
A novel mission concept, namely NEXRAD in Space (NIS), was developed for detailed monitoring of hurricanes, cyclones, and severe storms from a geostationary orbit. This mission concept requires a space deployable 35-m diameter reflector that operates at 35-GHz with a surface figure accuracy requirement of 0.21 mm RMS. This reflector is well beyond the current state-of-the-art. To implement this mission concept, several potential technologies associated with large, lightweight, spaceborne reflectors have been investigated by this study. These spaceborne reflector technologies include mesh reflector technology, inflatable membrane reflector technology and Shape Memory Polymer reflector technology.
The 15th Aerospace Mechanisms Symposium
NASA Technical Reports Server (NTRS)
1981-01-01
Technological areas covered include: aerospace propulsion; aerodynamic devices; crew safety; space vehicle control; spacecraft deployment, positioning, and pointing; deployable antennas/reflectors; and large space structures. Devices for payload deployment, payload retention, and crew extravehicular activities on the space shuttle orbiter are also described.
Large Deployable Reflector Technologies for Future European Telecom and Earth Observation Missions
NASA Astrophysics Data System (ADS)
Ihle, A.; Breunig, E.; Dadashvili, L.; Migliorelli, M.; Scialino, L.; van't Klosters, K.; Santiago-Prowald, J.
2012-07-01
This paper presents requirements, analysis and design results for European large deployable reflectors (LDR) for space applications. For telecommunications, the foreseeable use of large reflectors is associated to the continuous demand for improved performance of mobile services. On the other hand, several earth observation (EO) missions can be identified carrying either active or passive remote sensing instruments (or both), in which a large effective aperture is needed e.g. BIOMASS. From the European point of view there is a total dependence of USA industry as such LDRs are not available from European suppliers. The RESTEO study is part of a number of ESA led activities to facilitate European LDR development. This paper is focused on the structural-mechanical aspects of this study. We identify the general requirements for LDRs with special emphasis on launcher accommodation for EO mission. In the next step, optimal concepts for the LDR structure and the RF-Surface are reviewed. Regarding the RF surface, both, a knitted metal mesh and a shell membrane based on carbon fibre reinforced silicon (CFRS) are considered. In terms of the backing structure, the peripheral ring concept is identified as most promising and a large number of options for the deployment kinematics are discussed. Of those, pantographic kinematics and a conical peripheral ring are selected. A preliminary design for these two most promising LDR concepts is performed which includes static, modal and kinematic simulation and also techniques to generate the reflector nets.
Large Deployable Reflector (LDR) feasibility study update
NASA Technical Reports Server (NTRS)
Alff, W. H.; Banderman, L. W.
1983-01-01
In 1982 a workshop was held to refine the science rationale for large deployable reflectors (LDR) and develop technology requirements that support the science rationale. At the end of the workshop, a set of LDR consensus systems requirements was established. The subject study was undertaken to update the initial LDR study using the new systems requirements. The study included mirror materials selection and configuration, thermal analysis, structural concept definition and analysis, dynamic control analysis and recommendations for further study. The primary emphasis was on the dynamic controls requirements and the sophistication of the controls system needed to meet LDR performance goals.
A Nonlinear Dynamic Model and Free Vibration Analysis of Deployable Mesh Reflectors
NASA Technical Reports Server (NTRS)
Shi, H.; Yang, B.; Thomson, M.; Fang, H.
2011-01-01
This paper presents a dynamic model of deployable mesh reflectors, in which geometric and material nonlinearities of such a space structure are fully described. Then, by linearization around an equilibrium configuration of the reflector structure, a linearized model is obtained. With this linearized model, the natural frequencies and mode shapes of a reflector can be computed. The nonlinear dynamic model of deployable mesh reflectors is verified by using commercial finite element software in numerical simulation. As shall be seen, the proposed nonlinear model is useful for shape (surface) control of deployable mesh reflectors under thermal loads.
Special test equipment and fixturing for MSAT reflector assembly alignment
NASA Technical Reports Server (NTRS)
Young, Jeffrey A.; Zinn, Michael R.; Mccarten, David R.
1994-01-01
The MSAT Reflector Assembly is a state of the art subsystem for Mobile Satellite (MSAT), a geosynchronous-based commercial mobile telecommunication satellite program serving North America. The Reflector Assembly consisted of a deployable, three-hinge, folding-segment Boom, deployable 5.7 x 5.3-meter 16-rib Wrap-Rib Reflector, and a Reflector Pointing Mechanism (RPM). The MSAT spacecraft was based on a Hughes HS601 spacecraft bus carrying two Reflector Assemblies independently dedicated for L-band transmit and receive operations. Lockheed Missiles and Space Company (LMSC) designed and built the Reflector Assembly for MSAT under contract to SPAR Aerospace Ltd. Two MSAT satellites were built jointly by SPAR Aerospace Ltd. and Hughes Space and Communications Co. for this program, the first scheduled for launch in 1994. When scaled for wavelength, the assembly and alignment requirements for the Reflector Assembly were in many instances equivalent to or exceeded that of a diffraction-limited visible light optical system. Combined with logistical constraints inherent to large, compliant, lightweight structures; 'bolt-on' alignment; and remote, indirect spacecraft access; the technical challenges were formidable. This document describes the alignment methods, the special test equipment, and fixturing for Reflector Assembly assembly and alignment.
NASA Technical Reports Server (NTRS)
Hollenbach, D. (Editor)
1983-01-01
The scientific rationale for the large deployable reflector (LDR) and the overall technological requirements are discussed. The main scientific objectives include studies of the origins of planets, stars and galaxies, and of the ultimate fate of the universe. The envisioned studies require a telescope with a diameter of at least 20 m, diffraction-limited to wavelengths as short as 30-50 micron. In addition, light-bucket operation with 1 arcsec spatial resolution in the 2-4 microns wavelength region would be useful in studies of high-redshifted galaxies. Such a telescope would provide a large increase in spectroscopic sensitivity and spatial resolving power compared with existing or planned infrared telescopes.
Deployable reflector structure
NASA Technical Reports Server (NTRS)
Mikulas, Martin, Jr. (Inventor); Hoberman, Charles (Inventor)
1993-01-01
A deployable reflector structure is presented. The structure has a number of movable reflector panels pivotably supported on rigid arms. Several such arms are pivotably connected to a central structure. The arm can move in starburst fashion from a packaged stage, where all arms are vertical, to a deployed stage, where all arms are horizontal. All of the movable reflector panels are maintained at a predetermined angle to an axis of the reflector structure when the arms are pivoted. The reflector panels are stacked tightly on top of each other in the packaged state of the reflector structure. Simple mechanisms are used for avoiding interference between panels on different arms in the packaged stage and for fitting the movable panels together like tiles in the deployed stage.
Structural design of the Large Deployable Reflector (LDR)
NASA Technical Reports Server (NTRS)
Satter, Celeste M.; Lou, Michael C.
1991-01-01
An integrated Large Deployable Reflector (LDR) analysis model was developed to enable studies of system responses to the mechanical and thermal disturbances anticipated during on-orbit operations. Functional requirements of the major subsystems of the LDR are investigated, design trades are conducted, and design options are proposed. System mass and inertia properties are computed in order to estimate environmental disturbances, and in the sizing of control system hardware. Scaled system characteristics are derived for use in evaluating launch capabilities and achievable orbits. It is concluded that a completely passive 20-m primary appears feasible for the LDR from the standpoint of both mechanical vibration and thermal distortions.
Structural design of the Large Deployable Reflector (LDR)
NASA Astrophysics Data System (ADS)
Satter, Celeste M.; Lou, Michael C.
1991-09-01
An integrated Large Deployable Reflector (LDR) analysis model was developed to enable studies of system responses to the mechanical and thermal disturbances anticipated during on-orbit operations. Functional requirements of the major subsystems of the LDR are investigated, design trades are conducted, and design options are proposed. System mass and inertia properties are computed in order to estimate environmental disturbances, and in the sizing of control system hardware. Scaled system characteristics are derived for use in evaluating launch capabilities and achievable orbits. It is concluded that a completely passive 20-m primary appears feasible for the LDR from the standpoint of both mechanical vibration and thermal distortions.
NASA Astrophysics Data System (ADS)
Coleman, Michael J.
One class of deployable large aperture antenna consists of thin light-weight parabolic reflectors. A reflector of this type is a deployable structure that consists of an inflatable elastic membrane that is supported about its perimeter by a set of elastic tendons and is subjected to a constant hydrostatic pressure. A design may not hold the parabolic shape to within a desired tolerance due to an elastic deformation of the surface, particularly near the rim. We can compute the equilibrium configuration of the reflector system using an optimization-based solution procedure that calculates the total system energy and determines a configuration of minimum energy. Analysis of the equilibrium configuration reveals the behavior of the reflector shape under various loading conditions. The pressure, film strain energy, tendon strain energy, and gravitational energy are all considered in this analysis. The surface accuracy of the antenna reflector is measured by an RMS calculation while the reflector phase error component of the efficiency is determined by computing the power density at boresight. Our error computation methods are tailored for the faceted surface of our model and they are more accurate for this particular problem than the commonly applied Ruze Equation. Previous analytical work on parabolic antennas focused on axisymmetric geometries and loads. Symmetric equilibria are not assumed in our analysis. In addition, this dissertation contains two principle original findings: (1) the typical supporting tendon system tends to flatten a parabolic reflector near its edge. We find that surface accuracy can be significantly improved by fixing the edge of the inflated reflector to a rigid structure; (2) for large membranes assembled from flat sheets of thin material, we demonstrate that the surface accuracy of the resulting inflated membrane reflector can be improved by altering the cutting pattern of the flat components. Our findings demonstrate that the proper choice of design parameters can increase the performance of inflatable antennas, opening up new antenna applications where higher resolution and greater sensitivity are desired. These include space applications involving high data rates and high bandwidths, such as lunar surface wireless local networks and orbiting relay satellites. A light-weight inflatable antenna is also an ideal component in aerostat, airship and free balloon systems that supports communication, surveillance and remote sensing applications.
NASA Technical Reports Server (NTRS)
Heard, Walter L., Jr.; Collins, Timothy J.; Dyess, James W.; Kenner, Scott; Bush, Harold G.
1993-01-01
A concept is presented for achieving a remotely deployable truss-stiffened reflector consisting of seven integrated sandwich panels that form the reflective surface, and an integrated feed boom. The concept has potential for meeting aperture size and surface precision requirements for some high-frequency microwave remote sensing applications. The packaged reflector/feed boom configuration is a self-contained unit that can be conveniently attached to a spacecraft bus. The package has a cylindrical envelope compatible with typical launch vehicle shrouds. Dynamic behavior of a deployed configuration having a 216-inch focal length and consisting of 80-inch-diameter, two-inch-thick panels is examined through finite-element analysis. Results show that the feed boom and spacecraft bus can have a large impact on the fundamental frequency of the deployed configuration. Two candidate rib-stiffened sandwich panel configurations for this application are described, and analytical results for panel mass and stiffness are presented. Results show that the addition of only a few rib stiffeners, if sufficiently deep, can efficiently improve sandwich panel stiffness.
Large Deployable Reflector (LDR)
NASA Technical Reports Server (NTRS)
Alff, W. H.
1980-01-01
The feasibility and costs were determined for a 1 m to 30 m diameter ambient temperature, infrared to submillimeter orbiting astronomical telescope which is to be shuttle-deployed, free-flying, and have a 10 year orbital life. Baseline concepts, constraints on delivery and deployment, and the sunshield required are examined. Reflector concepts, the optical configuration, alignment and pointing, and materials are also discussed. Technology studies show that a 10 m to 30 m diameter system which is background and diffraction limited at 30 micron m is feasible within the stated time frame. A 10 m system is feasible with current mirror technology, while a 30 m system requires technology still in development.
Deployable reflector configurations
NASA Astrophysics Data System (ADS)
Meinel, A. B.; Meinel, M. P.; Woolf, N. J.
Both the theoretical reasons for considering a non-circular format for the Large Deployable Reflector, and a potentially realizable concept for such a device, are discussed. The optimum systems for diffraction limited telescopes with incoherent detection have either a single filled aperture, or two such apertures as an interferometer to synthesize a larger aperture. For a single aperture of limited area, a reflector in the form of a slot can be used to give increased angular resolution. It is shown how a 20 x 8 meter telescope can be configured to fit the Space Shuttle bay, and deployed with relatively simple operations. The relationship between the sunshield design and the inclination of the orbit is discussed. The possible use of the LDR as a basic module to permit the construction of supergiant space telescopes and interferometers both for IR/submm studies and for the entire ultraviolet through mm wave spectral region is discussed.
Deployable reflector configurations. [for space telescope
NASA Technical Reports Server (NTRS)
Meinel, A. B.; Meinel, M. P.; Woolf, N. J.
1983-01-01
Both the theoretical reasons for considering a non-circular format for the Large Deployable Reflector, and a potentially realizable concept for such a device, are discussed. The optimum systems for diffraction limited telescopes with incoherent detection have either a single filled aperture, or two such apertures as an interferometer to synthesize a larger aperture. For a single aperture of limited area, a reflector in the form of a slot can be used to give increased angular resolution. It is shown how a 20 x 8 meter telescope can be configured to fit the Space Shuttle bay, and deployed with relatively simple operations. The relationship between the sunshield design and the inclination of the orbit is discussed. The possible use of the LDR as a basic module to permit the construction of supergiant space telescopes and interferometers both for IR/submm studies and for the entire ultraviolet through mm wave spectral region is discussed.
Active wavefront control challenges of the NASA Large Deployable Reflector (LDR)
NASA Technical Reports Server (NTRS)
Meinel, Aden B.; Meinel, Marjorie P.; Manhart, Paul K.; Hochberg, Eric B.
1989-01-01
The 20-m Large Deployable Reflector will have a segmented primary mirror. Achieving diffraction-limited performance at 50 microns requires correction for the errors of tilt and piston of the primary mirror. This correction can be obtained in two ways, the use of an active primary or a correction at a demagnified pupil of the primary. A critical requirement is the means for measurement of the wavefront error and maintaining phasing during the observation of objects that may be too faint for determining the error. Absolute phasing can only be determined using a cooperative source. Maintenance of phasing can be done with an on-board source. A number of options are being explored as discussed below. The many issues concerning the assessment and control of an active segmented mirror will be addressed with an early construction of the Precision Segmented Reflector testbed.
Active wavefront control challenges of the NASA Large Deployable Reflector (LDR)
NASA Astrophysics Data System (ADS)
Meinel, Aden B.; Meinel, Marjorie P.; Manhart, Paul K.; Hochberg, Eric B.
1989-09-01
The 20-m Large Deployable Reflector will have a segmented primary mirror. Achieving diffraction-limited performance at 50 microns requires correction for the errors of tilt and piston of the primary mirror. This correction can be obtained in two ways, the use of an active primary or a correction at a demagnified pupil of the primary. A critical requirement is the means for measurement of the wavefront error and maintaining phasing during the observation of objects that may be too faint for determining the error. Absolute phasing can only be determined using a cooperative source. Maintenance of phasing can be done with an on-board source. A number of options are being explored as discussed below. The many issues concerning the assessment and control of an active segmented mirror will be addressed with an early construction of the Precision Segmented Reflector testbed.
Precision segmented reflectors for space applications
NASA Technical Reports Server (NTRS)
Lehman, David H.; Pawlik, Eugene V.; Meinel, Aden B.; Fichter, W. B.
1990-01-01
A project to develop precision segmented reflectors (PSRs) which operate at submillimeter wavelengths is described. The development of a light efficient means for the construction of large-aperture segmented reflecting space-based telescopes is the primary aim of the project. The 20-m Large Deployable Reflector (LDR) telescope is being developed for a survey mission, and it will make use of the reflector panels and materials, structures, and figure control being elaborated for the PSR. The surface accuracy of a 0.9-m PSR panel is shown to be 1.74-micron RMS, the goal of 100-micron RMS positioning accuracy has been achieved for a 4-m erectable structure. A voice-coil actuator for the figure control system architecture demonstrated 1-micron panel control accuracy in a 3-axis evaluation. The PSR technology is demonstrated to be of value for several NASA projects involving optical communications and interferometers as well as missions which make use of large-diameter segmented reflectors.
Precision segmented reflectors for space applications
NASA Astrophysics Data System (ADS)
Lehman, David H.; Pawlik, Eugene V.; Meinel, Aden B.; Fichter, W. B.
1990-08-01
A project to develop precision segmented reflectors (PSRs) which operate at submillimeter wavelengths is described. The development of a light efficient means for the construction of large-aperture segmented reflecting space-based telescopes is the primary aim of the project. The 20-m Large Deployable Reflector (LDR) telescope is being developed for a survey mission, and it will make use of the reflector panels and materials, structures, and figure control being elaborated for the PSR. The surface accuracy of a 0.9-m PSR panel is shown to be 1.74-micron RMS, the goal of 100-micron RMS positioning accuracy has been achieved for a 4-m erectable structure. A voice-coil actuator for the figure control system architecture demonstrated 1-micron panel control accuracy in a 3-axis evaluation. The PSR technology is demonstrated to be of value for several NASA projects involving optical communications and interferometers as well as missions which make use of large-diameter segmented reflectors.
NASA Technical Reports Server (NTRS)
Kittel, Peter
1988-01-01
Three cryogenic questions of importance to Large Deployable Reflector (LDR) are discussed: the primary cooling requirement, the secondary cooling requirement, and the instrument changeout requirement.
NASA Astrophysics Data System (ADS)
Akioka, M.; Orikasa, T.; Satoh, M.; Miura, A.; Tsuji, H.; Toyoshima, M.; Fujino, Y.
2016-06-01
Satellite for next generation mobile satellite communication service with small personal terminal requires onboard antenna with very large aperture reflector larger than twenty meters diameter because small personal terminal with lower power consumption in ground base requires the large onboard reflector with high antenna gain. But, large deployable antenna will deform in orbit because the antenna is not a solid dish but the flexible structure with fine cable and mesh supported by truss. Deformation of reflector shape deteriorate the antenna performance and quality and stability of communication service. However, in case of digital beam forming antenna with phased array can modify the antenna beam performance due to adjustment of excitation amplitude and excitation phase. If we can measure the reflector shape precisely in orbit, beam pattern and antenna performance can be compensated with the updated excitation amplitude and excitation phase parameters optimized for the reflector shape measured every moment. Softbank Corporation and National Institute of Information and Communications Technology has started the project "R&D on dynamic beam control technique for next generation mobile communication satellite" as a contracted research project sponsored by Ministry of Internal Affairs and Communication of Japan. In this topic, one of the problem in vision metrology application is a strong constraints on geometry for camera arrangement on satellite bus with very limited space. On satellite in orbit, we cannot take many images from many different directions as ordinary vision metrology measurement and the available area for camera positioning is quite limited. Feasibility of vision metrology application and general methodology to apply to future mobile satellite communication satellite is to be found. Our approach is as follows: 1) Development of prototyping simulator to evaluate the expected precision for network design in zero order and first order 2) Trial measurement for large structure with similar dimension with large deployable reflector to confirm the validity of the network design and instrumentation. In this report, the overview of this R&D project and the results of feasibility study of network design based on simulations on vision metrology and beam pattern compensation of antenna with very large reflector in orbit is discussed. The feasibility of assumed network design for vision metrology and satisfaction of accuracy requirements are discussed. The feasibility of beam pattern compensation by using accurately measured reflector shape is confirmed with antenna pattern simulation for deformed parabola reflector. If reflector surface of communication satellite can be measured routinely in orbit, the antenna pattern can be compensated and maintain the high performance every moment.
LSST (Hoop/Column) Maypole Antenna Development Program, phase 1, part 1
NASA Technical Reports Server (NTRS)
Sullivan, M. R.
1982-01-01
The first of a two-phase program was performed to develop the technology necessary to evaluate, design, manufacture, package, transport and deploy the hoop/column deployable antenna reflector by means of a ground based program. The hoop/column concept consists of a cable stiffened large diameter hoop and central column structure that supports and contours a radio frequency reflective mesh surface. Mission scenarios for communications, radiometer and radio astronomy, were studied. The data to establish technology drivers that resulted in a specification of a point design was provided. The point design is a multiple beam quadaperture offset antenna system wich provides four separate offset areas of illumination on a 100 meter diameter symmetrical parent reflector. The periphery of the reflector is a hoop having 48 segments that articulate into a small stowed volume around a center extendable column. The hoop and column are structurally connected by graphite and quartz cables. The prominence of cables in the design resulted in the development of advanced cable technology. Design verification models were built of the hoop, column, and surface stowage subassemblies. Model designs were generated for a half scale sector of the surface and a 1/6 scale of the complete deployable reflector.
Structural concepts for large solar concentrators
NASA Technical Reports Server (NTRS)
Hedgepeth, John M.; Miller, Richard K.
1987-01-01
The Sunflower large solar concentrator, developed in the early 1970's, is a salient example of a high-efficiency concentrator. The newly emphasized needs for solar dynamic power on the Space Station and for large, lightweight thermal sources are outlined. Existing concepts for high efficiency reflector surfaces are examined with attention to accuracy needs for concentration rates of 1000 to 3000. Concepts using stiff reflector panels are deemed most likely to exhibit the long-term consistent accuracy necessary for low-orbit operation, particularly for the higher concentration ratios. Quantitative results are shown of the effects of surface errors for various concentration and focal-length diameter ratios. Cost effectiveness is discussed. Principal sources of high cost include the need for various dished panels for paraboloidal reflectors and the expense of ground testing and adjustment. A new configuration is presented addressing both problems, i.e., a deployable Pactruss backup structure with identical panels installed on the structure after deployment in space. Analytical results show that with reasonable pointing errors, this new concept is capable of concentration ratios greater than 2000.
NASA Technical Reports Server (NTRS)
Swanson, P. N.; Gulkis, S.; Kulper, T. B. H.; Kiya, M.
1983-01-01
The history and background of the Large Deployable Reflector (LDR) are reviewed. The results of the June 1982 Asilomar (CA) workshop are incorporated into the LDR science objectives and telescope concept. The areas where the LDR may have the greatest scientific impact are in the study of star formation and planetary systems in the own and nearby galaxies and in cosmological studies of the structure and evolution of the early universe. The observational requirements for these and other scientific studies give rise to a set of telescope functional requirements. These, in turn, are satisfied by an LDR configuration which is a Cassegrain design with a 20 m diameter, actively controlled, segmented, primary reflector, diffraction limited at a wavelength of 30 to 50 microns. Technical challenges in the LDR development include construction of high tolerance mirror segments, surface figure measurement, figure control, vibration control, pointing, cryogenics, and coherent detectors. Project status and future plans for the LDR are discussed.
Large Deployable Reflector (LDR) Requirements for Space Station Accommodations
NASA Technical Reports Server (NTRS)
Crowe, D. A.; Clayton, M. J.; Runge, F. C.
1985-01-01
Top level requirements for assembly and integration of the Large Deployable Reflector (LDR) Observatory at the Space Station are examined. Concepts are currently under study for LDR which will provide a sequel to the Infrared Astronomy Satellite and the Space Infrared Telescope Facility. LDR will provide a spectacular capability over a very broad spectral range. The Space Station will provide an essential facility for the initial assembly and check out of LDR, as well as a necessary base for refurbishment, repair and modification. By providing a manned platform, the Space Station will remove the time constraint on assembly associated with use of the Shuttle alone. Personnel safety during necessary EVA is enhanced by the presence of the manned facility.
Large Deployable Reflector (LDR) requirements for space station accommodations
NASA Astrophysics Data System (ADS)
Crowe, D. A.; Clayton, M. J.; Runge, F. C.
1985-04-01
Top level requirements for assembly and integration of the Large Deployable Reflector (LDR) Observatory at the Space Station are examined. Concepts are currently under study for LDR which will provide a sequel to the Infrared Astronomy Satellite and the Space Infrared Telescope Facility. LDR will provide a spectacular capability over a very broad spectral range. The Space Station will provide an essential facility for the initial assembly and check out of LDR, as well as a necessary base for refurbishment, repair and modification. By providing a manned platform, the Space Station will remove the time constraint on assembly associated with use of the Shuttle alone. Personnel safety during necessary EVA is enhanced by the presence of the manned facility.
NASA Technical Reports Server (NTRS)
Stutzman, W. L.; Smith, W. T.
1990-01-01
Surface errors on parabolic reflector antennas degrade the overall performance of the antenna. Space antenna structures are difficult to build, deploy and control. They must maintain a nearly perfect parabolic shape in a harsh environment and must be lightweight. Electromagnetic compensation for surface errors in large space reflector antennas can be used to supplement mechanical compensation. Electromagnetic compensation for surface errors in large space reflector antennas has been the topic of several research studies. Most of these studies try to correct the focal plane fields of the reflector near the focal point and, hence, compensate for the distortions over the whole radiation pattern. An alternative approach to electromagnetic compensation is presented. The proposed technique uses pattern synthesis to compensate for the surface errors. The pattern synthesis approach uses a localized algorithm in which pattern corrections are directed specifically towards portions of the pattern requiring improvement. The pattern synthesis technique does not require knowledge of the reflector surface. It uses radiation pattern data to perform the compensation.
In-step inflatable antenna experiment
NASA Astrophysics Data System (ADS)
Freeland, R. E.; Bilyeu, G.
Large deployable space antennas are needed to accommodate a number of applications that include mobile communications, earth observation radiometry, active microwave sensing, space-orbiting very long baseline interferometry, and Department of Defense (DoD) space-based radar. The criteria for evaluating candidate structural concepts for essentially all the applications is the same; high deployment reliability, low cost, low weight, low launch volume, and high aperture precision. A new class of space structures, called inflatable deployable structures, have tremendous potential for completely satisfying the first four criteria and good potential for accommodating the longer wavelength applications. An inflatable deployable antenna under development by L'Garde Inc. of Tustin, California, represents such a concept. Its level of technology is mature enough to support a meaningful orbital technology experiment. The NASA Office of Aeronautics and Space Technology initiated the In-Space Technology Experiments Program (IN-STEP) specifically to sponsor the verification and/or validation of unique and innovative space technologies in the space environment. The potential of the L'Garde concept has been recognized and resulted in its selection for an IN-STEP experiment. The objective of the experiment is to (a) validate the deployment of a 14-meter, inflatable parabolic reflector structure, (b) measure the reflector surface accuracy, and (c) investigate structural damping characteristics under operational conditions. The experiment approach will be to use the NASA Spartan Spacecraft to carry the experiment on orbit. Reflector deployment will be monitored by two high-resolution video cameras. Reflector surface quality will be measured with a digital imaging radiometer. Structural damping will be based on measuring the decay of reflector structure amplitude. The experiment is being managed by the Jet Propulsion Laboratory. The experiment definition phase (Phase B) will be completed by the end of fiscal year (FY) 1992; hardware development (Phase C/D) is expected to start by early FY 1993; and launch is scheduled for 1995. The paper describes the accomplishments to date and the approach for the remainder of the experiment.
Vibration of a Singly-curved Thin Shell Reflector with a Unidirectional Tension Field
NASA Technical Reports Server (NTRS)
Williams, R. Brett; Klein, Kerry J.; Agnes, Gregory S.
2006-01-01
Increased science requirements for space-based instruments over the past few decades have lead to the increased popularity of deployable space structures constructed from thin, lightweight films. Such structures offer both low mass and the ability to be stowed inside conventional launch vehicles. The analysis in this work pertains to large, singly-curved lightweight deployable reflectors commonly used in radar antennas and space telescopes. These types of systems, which can vary a great deal in size, often have frequency requirement that must be met. This work discusses two missions that utilize this type of aperture technology, and then develops a Rayleigh-Ritz model that predicts the natural frequencies and mode shapes for a (nearly) flat and singly-curved reflector with unidirectional in-plane loading. The results are compared with NASTRAN analyses.
Large Deployable Reflector (LDR) thermal characteristics
NASA Technical Reports Server (NTRS)
Miyake, R. N.; Wu, Y. C.
1988-01-01
The thermal support group, which is part of the lightweight composite reflector panel program, developed thermal test and analysis evaluation tools necessary to support the integrated interdisciplinary analysis (IIDA) capability. A detailed thermal mathematical model and a simplified spacecraft thermal math model were written. These models determine the orbital temperature level and variation, and the thermally induced gradients through and across a panel, for inclusion in the IIDA.
High-Precision Shape Control of In-Space Deployable Large Membrane/Thin-Shell Reflectors
NASA Technical Reports Server (NTRS)
Watkins, Ronald; Goebel, Dan; Hofer, Richard
2010-01-01
This innovation has been developed to improve the resolutions of future spacebased active and passive microwave antennas for earth-science remote sensing missions by maintaining surface figure precisions of large membrane/thin-shell reflectors during orbiting. The intention is for these sensing instruments to be deployable at orbit altitudes one or two orders of magnitude higher than Low Earth Orbit (LEO), but still being able to acquire measurements at spatial resolution and sensitivity similar to those of LEO. Because active and passive microwave remote sensors are able to penetrate through clouds to acquire vertical profile measurements of geophysical parameters, it is desirable to elevate them to the higher orbits to obtain orbital geometries that offer large spatial coverage and more frequent observations. This capability is essential for monitoring and for detailed understanding of the life cycles of natural hazards, such as hurricanes, tropical storms, flash floods, and tsunamis. Major components of this high-precision antenna-surface-control system include a membrane/thin shell reflector, a metrology sensor, a controller, actuators, and corresponding power amplifier and signal conditioning electronics (see figure). Actuators are attached to the back of the reflector to produce contraction/ expansion forces to adjust the shape of the thin-material reflector. The wavefront-sensing metrology system continuously measures the surface figure of the reflector, converts the surface figure to digital data and feeds the data to the controller. The controller determines the control parameters and generates commands to the actuator system. The flexible, piezoelectric polymer actuators are thus activated, providing the control forces needed to correct any distortions that exist in the reflector surface. Piezoelectric polymer actuators are very thin and flexible. They can be implemented on the back of the membrane/thin-shell reflector without introducing significant amounts of mass or stiffness to the reflector. They can be rolled up or folded to accommodate the packaging needed for launch. An analytical model of the system, which includes the membrane reflector, actuator, and controller has been developed to investigate the functionality of this control system on a 35-meter-diameter membrane reflector. The performance of this system under external disturbances such as in space thermal loads and W-error due to inflation has been investigated. A subscale breadboard has been developed, and the functionality of this control concept has been demonstrated by this breadboard.
A technology program for the development of the large deployable reflector for space based astronomy
NASA Technical Reports Server (NTRS)
Kiya, M. K.; Gilbreath, W. P.; Swanson, P. N.
1982-01-01
Technologies for the development of the Large Deployable Reflector (LDR), a NASA project for the 1990's, for infrared and submillimeter astronomy are presented. The proposed LDR is a 10-30 diameter spaceborne observatory operating in the spectral region from 30 microns to one millimeter, where ground observations are nearly impossible. Scientific rationales for such a system include the study of ancient signals from galaxies at the edge of the universe, the study of star formation, and the observation of fluctuations in the cosmic background radiation. System requirements include the ability to observe faint objects at large distances and to map molecular clouds and H II regions. From these requirements, mass, photon noise, and tolerance budgets are developed. A strawman concept is established, and some alternate concepts are considered, but research is still necessary in the areas of segment, optical control, and instrument technologies.
Simulation requirements for the Large Deployable Reflector (LDR)
NASA Technical Reports Server (NTRS)
Soosaar, K.
1984-01-01
Simulation tools for the large deployable reflector (LDR) are discussed. These tools are often the transfer function variety equations. However, transfer functions are inadequate to represent time-varying systems for multiple control systems with overlapping bandwidths characterized by multi-input, multi-output features. Frequency domain approaches are the useful design tools, but a full-up simulation is needed. Because of the need for a dedicated computer for high frequency multi degree of freedom components encountered, non-real time smulation is preferred. Large numerical analysis software programs are useful only to receive inputs and provide output to the next block, and should be kept out of the direct loop of simulation. The following blocks make up the simulation. The thermal model block is a classical heat transfer program. It is a non-steady state program. The quasistatic block deals with problems associated with rigid body control of reflector segments. The steady state block assembles data into equations of motion and dynamics. A differential raytrace is obtained to establish a change in wave aberrations. The observation scene is described. The focal plane module converts the photon intensity impinging on it into electron streams or into permanent film records.
Flexibility of space structures makes design shaky
NASA Technical Reports Server (NTRS)
Hearth, D. P.; Boyer, W. J.
1985-01-01
An evaluation is made of the development status of high stiffness space structures suitable for orbital construction or deployment of large diameter reflector antennas, with attention to the control system capabilities required by prospective space structure system types. The very low structural frequencies typical of very large, radio frequency antenna structures would be especially difficult for a control system to counteract. Vibration control difficulties extend across the frequency spectrum, even to optical and IR reflector systems. Current research and development efforts are characterized with respect to goals and prospects for success.
State-of-the-art low-cost solar reflector materials
NASA Astrophysics Data System (ADS)
Kennedy, C.; Jorgensen, G.
1994-11-01
Solar thermal technologies generate power by concentrating sunlight with large mirrors. The National Renewable Energy Laboratory (NREL) is working with industrial partners to develop the optical reflector materials needed for the successful deployment of this technology. The reflector materials must be low in cost and maintain high specular reflectance for extended lifetimes in severe outdoor environments. Currently, the best candidate materials for solar mirrors are silver-coated low-iron glass and silvered polymer films. Polymer reflectors are lighter in weight, offer greater flexibility in system design, and have the potential for lower cost than glass mirrors. In parallel with collaborative activities, several innovative candidate reflector-material constructions were investigated at NREL. The low-cost material requirement necessitates manufacturing compatible with mass-production techniques. Future cooperative efforts with the web-coating industry offers the promise of exciting new alternative materials and the potential for dramatic cost savings in developing advanced solar reflector materials.
Workshop on Technology Development Issues for the Large Deployable Reflector (LDR)
NASA Technical Reports Server (NTRS)
Nishioka, Kenji (Editor)
1986-01-01
The results of the 2nd Large Deployable Reflector (LDR) Technology Review Workshop held at Asilomar, California, March 17 to 22, 1985, are summarized. The workshop was convened to update LDR Technology status and to revise as necessary the results for the first LDR Workshop held in June 1982. There were some 100 participants representing government agencies, industry, and universities. This Workshop's goal was to assess, identify, and set priorities for the LDR technology issues based on requirements identified in the first workshop. Four high-priority technology areas were identified: (1) mirror materials and construction; (2) sensing and controls; (3) system-simulation and modeling capability; and (4) submillimeter instruments. The results of the workshop were used to provide a list of technolgy issues for the development of a technology initiatives plan for the LDR by NASA's Office of Aeronautics and Space Technology.
The Large Deployable Reflector (LDR) report of the Science Coordination Group
NASA Technical Reports Server (NTRS)
1986-01-01
The Large Deployable Reflector (LDR) is a telescope designed to carry out high-angular resolution, high-sensitivity observations at far-infrared and submillimeter wavelengths. The scientific rationale for the LDR is discussed in light of the recent Infrared Astronomical Satellite (IRAS) and Kuiper Airborne Observatory (KAO) results and the several new ground-based observatories planned for the late 1980s. The importance of high sensitivity and high angular resolution observations from space in the submillimeter region is stressed. The scientific and technical problems of using the LDR in a light bucket mode at approx. less than 5 microns and in designing the LDR as an unfilled aperture with subarcsecond resolution are also discussed. The need for an aperture as large as 20 m is established, along with the requirements of beam-shape stability, spatial chopping, thermal control, and surface figure stability. The instrument complement required to cover the wavelength-spectral resolution region of interest to the LDR is defined.
A Modular Approach To Developing A Large Deployable Reflector
NASA Astrophysics Data System (ADS)
Pittman, R.; Leidich, C.; Mascy, F.; Swenson, B.
1984-01-01
NASA is currently studying the feasibility of developing a Large Deployable Reflector (LDR) astronomical facility to perform astrophysical studies of the infrared and submillimeter portion of the spectrum in the mid 1990's. The LDR concept was recommended by the Astronomy Survey Committee of the National Academy of Sciences as one of two space based projects to be started this decade. The current baseline calls for a 20 m (65.6 ft) aperture telescope diffraction limited at 30 μm and automatically deployed from a single Shuttle launch. The volume, performance, and single launch constraints place great demands on the technology and place LDR beyond the state-of-the-art in certain areas such as lightweight reflector segments. The advent of the Shuttle is opening up many new options and capabilities for producing large space systems. Until now, LDR has always been conceived as an integrated system, deployed autonomously in a single launch. This paper will look at a combination of automatic deployment and on-orbit assembly that may reduce the technological complexity and cost of the LDR system. Many technological tools are now in use or under study that will greatly enhance our capabilities to do assembly in space. Two Shuttle volume budget scenarios will be examined to assess the potential of these tools to reduce the LDR system complexity. Further study will be required to reach the full optimal combination of deployment and assembly, since in most cases the capabilities of these new tools have not been demonstrated. In order to take maximum advantage of these concepts, the design of LDR must be flexible and allow one subsystem to be modified without adversely affecting the entire system. One method of achieving this flexibility is to use a modular design approach in which the major subsystems are physically separated during launch and assembled on orbit. A modular design approach facilitates this flexibility but requires that the subsystems be interfaced in a simple, straightforward, and controlled manner. NASA is currently defining a technology development plan for LDR which will identify the technology advances that are required. The modular approach offers the flexibility to easily incorporate these new advances into the design.
Shape control of slack space reflectors using modulated solar pressure.
Borggräfe, Andreas; Heiligers, Jeannette; Ceriotti, Matteo; McInnes, Colin R
2015-07-08
The static deflection profile of a large spin-stabilized space reflector because of solar radiation pressure acting on its surface is investigated. Such a spacecraft consists of a thin reflective circular film, which is deployed from a supporting hoop structure in an untensioned, slack manner. This paper investigates the use of a variable reflectivity distribution across the surface to control the solar pressure force and hence the deflected shape. In this first analysis, the film material is modelled as one-dimensional slack radial strings with no resistance to bending or transverse shear, which enables a semi-analytic derivation of the nominal deflection profile. An inverse method is then used to find the reflectivity distribution that generates a specific, for example, parabolic deflection shape of the strings. Applying these results to a parabolic reflector, short focal distances can be obtained when large slack lengths of the film are employed. The development of such optically controlled reflector films enables future key mission applications such as solar power collection, radio-frequency antennae and optical telescopes.
NASA Astrophysics Data System (ADS)
Liu, Chao; Yang, Guigeng; Zhang, Yiqun
2015-01-01
The electrostatically controlled deployable membrane reflector (ECDMR) is a promising scheme to construct large size and high precision space deployable reflector antennas. This paper presents a novel design method for the large size and small F/D ECDMR considering the coupled structure-electrostatic problem. First, the fully coupled structural-electrostatic system is described by a three field formulation, in which the structure and passive electrical field is modeled by finite element method, and the deformation of the electrostatic domain is predicted by a finite element formulation of a fictitious elastic structure. A residual formulation of the structural-electrostatic field finite element model is established and solved by Newton-Raphson method. The coupled structural-electrostatic analysis procedure is summarized. Then, with the aid of this coupled analysis procedure, an integrated optimization method of membrane shape accuracy and stress uniformity is proposed, which is divided into inner and outer iterative loops. The initial state of relatively high shape accuracy and uniform stress distribution is achieved by applying the uniform prestress on the membrane design shape and optimizing the voltages, in which the optimal voltage is computed by a sensitivity analysis. The shape accuracy is further improved by the iterative prestress modification using the reposition balance method. Finally, the results of the uncoupled and coupled methods are compared and the proposed optimization method is applied to design an ECDMR. The results validate the effectiveness of this proposed methods.
Deployable reflector design for Ku-band operation
NASA Technical Reports Server (NTRS)
Tankersley, B. C.
1974-01-01
A project was conducted to extend the deployable antenna technology state-of-the art through the design, analysis, construction, and testing of a lightweight, high surface tolerance, 12.5 foot diameter reflector for Ku-band operation. The applicability of the reflector design to the Tracking and Data Relay Satellite (TDRS) program was one requirement to be met. A documentary of the total program is presented. The performance requirements used to guide and constrain the design are discussed. The radio frequency, structural/dynamic, and thermal performance results are reported. Appendices are used to provide test data and detailed fabrication drawings of the reflector.
NASA Technical Reports Server (NTRS)
Hodges, Richard E.; Sands, O. Scott; Huang, John; Bassily, Samir
2006-01-01
Improved surface accuracy for deployable reflectors has brought with it the possibility of Ka-band reflector antennas with extents on the order of 1000 wavelengths. Such antennas are being considered for high-rate data delivery from planetary distances. To maintain losses at reasonable levels requires a sufficiently capable Attitude Determination and Control System (ADCS) onboard the spacecraft. This paper provides an assessment of currently available ADCS strategies and performance levels. In addition to other issues, specific factors considered include: (1) use of "beaconless" or open loop tracking versus use of a beacon on the Earth side of the link, and (2) selection of fine pointing strategy (body-fixed/spacecraft pointing, reflector pointing or various forms of electronic beam steering). Capabilities of recent spacecraft are discussed.
Modular reflector concept study
NASA Technical Reports Server (NTRS)
Vaughan, D. H.
1981-01-01
A study was conducted to evaluate the feasibility of space erecting a 100 meter paraboloidal radio frequency reflector by joining a number of individually deployed structural modules. Three module design concepts were considered: (1) the deployable cell module (DCM); (2) the modular paraboloidal erectable truss antenna (Mod-PETA); and (3) the modular erectable truss antenna (META). With the space shuttle (STS) as the launch system, the methodology of packaging and stowing in the orbiter, and of dispensing, deploying and joining, in orbit, were studied and the necessary support equipment identified. The structural performance of the completed reflectors was evaluated and their overall operational capability and feasibility were evaluated and compared. The potential of the three concepts to maintain stable shape in the space environment was determined. Their ability to operate at radio frequencies of 1 GHz and higher was assessed assuming the reflector surface to consist of a number of flat, hexagonal facets. A parametric study was performed to determine figure degradation as a function of reflector size, flat facet size, and f/D ratio.
Dynamic analysis of the large deployable reflector
NASA Technical Reports Server (NTRS)
Calleson, Robert E.; Scott, A. Don
1987-01-01
The Large Deployable Reflector (LDR) is to be an astronomical observatory orbiting above Earth's obscuring atmosphere and operating in the spectral range between 30 microns and 1000 microns wavelength. The LDR will be used to study such astronomical phenomena as stellar and galactic formation, cosmology, and planetary atmospheres. The LDR will be the first observatory to be erected and assembled in space. This distinction brings with it several major technological challenges such as the development of ultra-lightweight deployable mirrors, advanced mirror fabrication techniques, advanced structures, and control of vibrations due to various sources of excitation. The purpose of this analysis is to provide an assessment of the vibrational response due to secondary mirror chopping and LDR slewing. The dynamic response of two 20-m LDR configurations was studied. Two mirror support configurations were investigated for the Ames concept, the first employs a six-strut secondary mirror support structure, while the second uses a triple-bipod support design. All three configurations were modeled using a tetrahedral truss design for the primary mirror support structure. Response resulting from secondary mirror chopping was obtained for the two Ames configurations, and the response of the primary mirror from slewing was obtained for all three configurations.
Lunar surface structural concepts and construction studies
NASA Technical Reports Server (NTRS)
Mikulas, Martin
1991-01-01
The topics are presented in viewgraph form and include the following: lunar surface structures construction research areas; lunar crane related disciplines; shortcomings of typical mobile crane in lunar base applications; candidate crane cable suspension systems; NIST six-cable suspension crane; numerical example of natural frequency; the incorporation of two new features for improved performance of the counter-balanced actively-controlled lunar crane; lunar crane pendulum mechanics; simulation results; 1/6 scale lunar crane testbed using GE robot for global manipulation; basic deployable truss approaches; bi-pantograph elevator platform; comparison of elevator platforms; perspective of bi-pantograph beam; bi-pantograph synchronously deployable tower/beam; lunar module off-loading concept; module off-loader concept packaged; starburst deployable precision reflector; 3-ring reflector deployment scheme; cross-section of packaged starburst reflector; and focal point and thickness packaging considerations.
Analysis of a microstrip reflectarray antenna for microspacecraft applications
NASA Technical Reports Server (NTRS)
Huang, J.
1995-01-01
A microstrip reflectarray is a flat reflector antenna that can be mounted conformally onto a spacecraft's outside structure without consuming a significant amount of spacecraft volume and mass. For large apertures (2 m or larger), the antenna's reflecting surface, being flat, can be more easily and reliably deployed than a curved parabolic reflector. This article presents the study results on a microstrip reflect-array with circular polarization. Its efficiency and bandwidth characteristics are analyzed. Numerous advantages of this antenna system are discussed. Three new concepts using this microstrip reflectarray are also proposed.
Wirelessly Controllable Inflated Electroactive Polymer (EAP) Reflectors
NASA Technical Reports Server (NTRS)
Bao, Xiaoqi; Bar-Cohen, Yoseph; Chang, Zensheu; Sherrit, Stewart; Badescu, Mircea
2005-01-01
Inflatable membrane reflectors are attractive for deployable, large aperture, lightweight optical and microwave systems in micro-gravity space environment. However, any fabrication flaw or temperature variation may results in significant aberration of the surface. Even for a perfectly fabricated inflatable membrane mirror with uniform thickness, theory shows it will form a Hencky curve surface but a desired parabolic or spherical surface. Precision control of the surfaceshape of extremely flexible membrane structures is a critical challenge for the success of this technology. Wirelessly controllable inflated reflectors made of electroactive polymers (EAP) are proposed in this paper. A finite element model was configured to predict the behavior of the inflatable EAP membranes under pre-strains, pressures and distributed electric charges on the surface. To explore the controllability of the inflatable EAP reflectors, an iteration algorism was developed to find the required electric actuation for correcting the aberration of the Hencky curve to the desired parabolic curve. The correction capability of the reflectors with available EAP materials was explored numerically and is presented in this paper.
A figure control sensor for the Large Deployable Reflector (LDR)
NASA Technical Reports Server (NTRS)
Bartman, R.; Dubovitsky, S.
1988-01-01
A sensing and control system is required to maintain high optical figure quality in a segmented reflector. Upon detecting a deviation of the segmented surface from its ideal form, the system drives segment mounted actuators to realign the individual segments and thereby return the surface to its intended figure. When the reflector is in use, a set of figure sensors will determine positions of a number of points on the back surface of each of the reflector's segments, each sensor being assigned to a single point. By measuring the positional deviations of these points from previously established nominal values, the figure sensors provide the control system with the information required to maintain the reflector's optical figure. The optical lever, multiple wavelength interferometer, and electronic capacitive sensor, the most promising technologies for the development of the figure sensor, are illustrated. It is concluded that to select a particular implementation of the figure sensors, performance requirement will be refined and relevant technologies investigated further.
Beam-Steerable Flat-Panel Reflector Antenna
NASA Technical Reports Server (NTRS)
Lee, Choon Sae; Lee, Chanam; Miranda, Felix A.
2005-01-01
Many space applications require a high-gain antenna that can be easily deployable in space. Currently, the most common high-gain antenna for space-born applications is an umbrella-type reflector antenna that can be folded while being lifted to the Earth orbit. There have been a number of issues to be resolved for this type of antenna. The reflecting surface of a fine wire mesh has to be light in weight and flexible while opening up once in orbit. Also the mesh must be a good conductor at the operating frequency. In this paper, we propose a different type of high-gain antenna for easy space deployment. The proposed antenna is similar to reflector antennas except the curved main reflector is replaced by a flat reconfigurable surface for easy packing and deployment in space. Moreover it is possible to steer the beam without moving the entire antenna system.
Shape control of slack space reflectors using modulated solar pressure
Borggräfe, Andreas; Heiligers, Jeannette; Ceriotti, Matteo; McInnes, Colin R.
2015-01-01
The static deflection profile of a large spin-stabilized space reflector because of solar radiation pressure acting on its surface is investigated. Such a spacecraft consists of a thin reflective circular film, which is deployed from a supporting hoop structure in an untensioned, slack manner. This paper investigates the use of a variable reflectivity distribution across the surface to control the solar pressure force and hence the deflected shape. In this first analysis, the film material is modelled as one-dimensional slack radial strings with no resistance to bending or transverse shear, which enables a semi-analytic derivation of the nominal deflection profile. An inverse method is then used to find the reflectivity distribution that generates a specific, for example, parabolic deflection shape of the strings. Applying these results to a parabolic reflector, short focal distances can be obtained when large slack lengths of the film are employed. The development of such optically controlled reflector films enables future key mission applications such as solar power collection, radio-frequency antennae and optical telescopes. PMID:26345083
Piezoelectric Polymers Actuators for Precise Shape Control of Large Scale Space Antennas
NASA Technical Reports Server (NTRS)
Chen, Qin; Natale, Don; Neese, Bret; Ren, Kailiang; Lin, Minren; Zhang, Q. M.; Pattom, Matthew; Wang, K. W.; Fang, Houfei; Im, Eastwood
2007-01-01
Extremely large, lightweight, in-space deployable active and passive microwave antennas are demanded by future space missions. This paper investigates the development of PVDF based piezopolymer actuators for controlling the surface accuracy of a membrane reflector. Uniaxially stretched PVDF films were poled using an electrodeless method which yielded high quality poled piezofilms required for this application. To further improve the piezoperformance of piezopolymers, several PVDF based copolymers were examined. It was found that one of them exhibits nearly three times improvement in the in-plane piezoresponse compared with PVDF and P(VDF-TrFE) piezopolymers. Preliminary experimental results indicate that these flexible actuators are very promising in controlling precisely the shape of the space reflectors.
Verification Test for Ultra-Light Deployment Mechanism for Sectioned Deployable Antenna Reflectors
NASA Astrophysics Data System (ADS)
Zajac, Kai; Schmidt, Tilo; Schiller, Marko; Seifart, Klaus; Schmalbach, Matthias; Scolamiero, Lucio
2013-09-01
The ultra-light deployment mechanism (UDM) is based on three carbon fibre reinforced plastics (CFRP) curved tape springs made of carbon fibre / cyanate ester prepregs.In the frame of the activity its space application suitability for the deployment of solid reflector antenna sections was investigated. A projected diameter of the full reflector of 4 m to 7 m and specific mass in the order of magnitude of 2.6kg/m2 was focused for requirement derivation.Extensive verification tests including health checks, environmental and functional tests were carried out with an engineering model to enable representative characterizing of the UDM unit.This paper presents the design and a technical description of the UDM as well as a summary of achieved development status with respect to test results and possible design improvements.
Simulation of Locking Space Truss Deployments for a Large Deployable Sparse Aperture Reflector
2015-03-01
Dr. Alan Jennings, for his unending patience with my struggles through this entire process . Without his expertise, guidance, and trust I would have...engineer since they are not automatically meshed. Fortunately, the mesh process is quite swift. Figure 13 shows both a linear hexahedral element as well...less than that of the serial process . Therefore, COMSOL’s partially parallelized algorithms will not be sped up as a function of cores added and is
Ultralightweight Space Deployable Primary Reflector Demonstrator
NASA Technical Reports Server (NTRS)
Montgomery, Edward E., IV; Zeiders, Glenn W.; Smith, W. Scott (Technical Monitor)
2002-01-01
A concept has been developed and analyzed and several generational prototypes built for a gossamer-class deployable truss for a mirror or reflector with many smaller precisely-figured solid elements attached will, for at least the next several decades, minimize the mass of a large primary mirror assembly while still providing the high image quality essential for planet-finding and cosmological astronomical missions. Primary mirror segments are mounted in turn on ultralightweight thermally-formed plastic panels that hold clusters of mirror segments in rigid arrays whose tip/tilt and piston would be corrected over the scale of the plastic panels by the control segments. Prototype panels developed under this program are 45 cm wide and fabricated from commercially available Kaplan sheets. A three-strut octahedral tensegrity is the basis for the overall support structure. Each fundamental is composed of two such octahedrons, rotated oppositely about a common triangular face. Adjacent modules are joined at the nodes of the upper and lower triangles to form a deployable structure that could be made arbitrarily large. A seven-module dowel-and-wire prototype has been constructed. Deployment techniques based on the use of collapsing toggled struts with diagonal tensional elements allows an assembly of tensegrities to be fully collapsed and redeployed. The prototype designs will be described and results of a test program for measuring strength and deformation will be presented.
Alignment and phasing of deployable telescopes
NASA Technical Reports Server (NTRS)
Woolf, N. J.; Ulich, B. L.
1983-01-01
The experiences in coaligning and phasing the Multi-Mirror Telescope (MMT), together with studies in setting up radio telescopes, are presented. These experiences are discussed, and on the basis they furnish, schemes are suggested for coaligning and phasing four large future telescopes with complex primary mirror systems. These telescopes are MT2, a 15-m-equivalent MMT, the University of California Ten Meter Telescope, the 10 m sub-mm wave telescope of the University of Arizona and the Max Planck Institute for Radioastronomy, and the Large Deployable Reflector, a future space telescope for far-IR and sub-mm waves.
2016-01-22
applications. For space applications, attitude control systems can provide good angular control of the antenna aperture with small residual angular...Bilyeu, and G.R. Veal, Development of Flight Hardware for a Large Inflatable- Deployable Antenna Experiment , Acta Astronautica, Vol. 38, Nos. 4-8
Conformal Membrane Reflectors for Deployable Optics
NASA Technical Reports Server (NTRS)
Hood, Patrick J.; Keys, Andrew S. (Technical Monitor)
2002-01-01
This presentation reports the Phase I results on NASA's Gossamer Spacecraft Exploratory Research and Technology Program. Cornerstone Research Group, Inc., the University of Rochester, and International Photonics Consultants collaborated to investigate the feasibility of free-standing, liquid-crystal-polymer (LCP) reflectors for integration into space-based optical systems. The goal of the program was to achieve large-diameter, broadband. reflective membranes that are resistant to the effects of space, specifically cryogenic environments and gamma-ray irradiation. Additionally, we assessed the applicability of utilizing the technology as tight sails, since, by their very nature, these films offer high-reflectivity at specified wavelengths. Previous research programs have demonstrated all-polymer, narrow-band Specular reflectors and diffuse membrane reflectors. The feasibility of fabricating an all-polymer broadband specular reflector and a narrow-band specular membrane reflector was assessed in the Phase I Gossamer program. In addition, preliminary gamma irradiation studies were conducted to determine the stability of the polymer reflectors to radiation. Materials and process technology were developed to fabricate coupon-scale reflectors of both broad- and narrow-band specular reflectors in Phase 1. This presentation will report the results of these studies, including, the performance of a narrow-band specular membrane. Gamma irradiation exposures indicate limited impact on the optical performance although additional exposure studies are warranted. Plans to scale up the membrane fabrication process will be presented.
Report of the Asilomar 3 LDR Workshop
NASA Technical Reports Server (NTRS)
Mahoney, M. J. (Editor)
1988-01-01
The conclusions and recommendations of the workshop held to study technology development issues critical to the Large Deployable Reflector (LDR) are summarized. LDR is to be a dedicated, orbiting, astronomical observatory, operating at wavelengths from 30 to 1000 microns, a spectral region where the Earth's atmosphere is almost completely opaque. Because it will have a large, segmented, passively cooled aperture, LDR addresses a wide range of technology areas. These include lightweight, low cost, structural composite reflector panels, primary support structures, wavefront sensing and adaptive optics, thermal background management, and integrated vibration and pointing control systems. The science objectives for LDR present instrument development challenges for coherent and direct arrayed detectors which can operate effectively at far infrared and submillimeter wavelengths, and for sub-Kelvin cryogenic systems.
A revolute joint with linear load-displacement response for a deployable lidar telescope
NASA Technical Reports Server (NTRS)
Lake, Mark S.; Warren, Peter A.; Peterson, Lee D.
1996-01-01
NASA Langley Research Center is developing concepts for an advanced spacecraft, called LidarTechSat, to demonstrate key structures and mechanisms technologies necessary to deploy a segmented telescope reflector. Achieving micron-accuracy deployment requires significant advancements in deployment mechanism design, such as the revolute joint presented herein. The joint exhibits load-cycling response that is essentially linear with less than 2% hysteresis, and the joint rotates with less than 7 mN-m (1 in-oz) of resistance. A prototype reflector metering truss incorporating the joint exhibits only a few microns of kinematic error under repected deployment and impulse loading. No other mechanically deployment structure found in the literature has been demonstrated to be this kinematically accurate.
NASA Technical Reports Server (NTRS)
Krabill, W. B.; Hoge, F. E.; Martin, C. F.
1982-01-01
The use of aircraft laser ranging for the determination of baselines between ground based retroreflectors was investigated via simulations and with tests at Wallops Flight Center using the Airborne Oceanographic Lidar (AOL) on the Wallops C-54 aircraft ranging to a reflector array deployed around one of the Wallops runways. The aircraft altitude and reflector spacing were chosen on the basis of scaled down modeling of spacecraft tracking from 1000 km of reflectors separated by some 52 km, or of high altitude (10 km) aircraft tracking of reflectors separated by some 500 m. Aircraft altitudes flown for different passes across the runway reflector array varied from 800 m to 1350 m, with 32 reflectors deployed over an approximtely 300 m x 500 m ground pattern. The AOL transmitted 400 pulses/sec with a scan rate of 5/sec in a near circular pattern, so that the majority of the pulses were reflected by the runway surface or its environs rather than by retroreflectors. The return pulse characteristics clearly showed the high reflectivity of portions of the runway, with several returns indistinguishable in amplitude from reflector returns. For each pass across the reflector field, typically six to ten reflector hits were identified, consistent with that predicted by simulations and the observed transmitted elliptical pulse size.
Validation of a unique concept for a low-cost, lightweight space-deployable antenna structure
NASA Technical Reports Server (NTRS)
Freeland, R. E.; Bilyeu, G. D.; Veal, G. R.
1993-01-01
An experiment conducted in the framework of a NASA In-Space Technology Experiments Program based on a concept of inflatable deployable structures is described. The concept utilizes very low inflation pressure to maintain the required geometry on orbit and gravity-induced deflection of the structure precludes any meaningful ground-based demonstrations of functions performance. The experiment is aimed at validating and characterizing the mechanical functional performance of a 14-m-diameter inflatable deployable reflector antenna structure in the orbital operational environment. Results of the experiment are expected to significantly reduce the user risk associated with using large space-deployable antennas by demonstrating the functional performance of a concept that meets the criteria for low-cost, lightweight, and highly reliable space-deployable structures.
Introduction to the report of the Asilomar 3 LDR workshop
NASA Technical Reports Server (NTRS)
1988-01-01
The Large Deployable Reflector (LDR) is a system concept for a dedicated, orbiting, submillimeter, far infrared, astronomical observatory. The purpose of the 3rd conference was to review the latest system concepts for LDR, update the science requirements, and assess the status of the technology development that was recommended at Asilomar 2. The technology development assessment included ongoing work within NASA, the DOD, and various universities. Problem areas and technologies not being adequately addressed were to be identified and prioritized. In particular, the CSTI program in Sensors and Precision Segmented Reflectors was reviewed for appropriateness and progress relative to LDR technology needs.
LDR: A submillimeter great observatory
NASA Astrophysics Data System (ADS)
Wilson, Robert
1990-12-01
The Large Deployable Reflector (LDR), a high Earth orbit free flying 10 to 20 m diameter deployable telescope, is described. The LDR is intended for use throughout the submillimeter band, using imaging receivers with unprecedented sensitivity and angular resolution. Its mission is to produce pictures of line emission regions in the solar neighborhood, in nearby galaxies and in objects at the edge of the known galaxy distribution. It is predicted to be an ideal instrument for exploring the first galaxies and protogalaxies as the submillimeter cooling lines should light up as soon as metals form.
Phased-array-fed antenna configuration study. Volume 1: Technology assessment
NASA Technical Reports Server (NTRS)
Sorbello, R. M.; Zaghloul, A. I.; Lee, B. S.; Siddiqi, S.; Geller, B. D.; Gerson, H. I.; Srinivas, D. N.
1983-01-01
The status of the technologies for phased-array-fed dual reflector systems is reviewed. The different aspects of these technologies, including optical performances, phased array systems, problems encountered in phased array design, beamforming networks, MMIC design and its incorporation into waveguide systems, reflector antenna structures, and reflector deployment mechanisms are addressed.
NASA Technical Reports Server (NTRS)
Bachtell, E. E.; Thiemet, W. F.; Morosow, G.
1987-01-01
To demonstrate the design and integration of a reflective mesh surface to a deployable truss structure, a mesh reflector was installed on a 15 foot box truss cube. The specific features demonstrated include: (1) sewing seams in reflective mesh; (2) mesh stretching to desired preload; (3) installation of surface tie cords; (4) installation of reflective surface on truss; (5) setting of reflective surface; (6) verification of surface shape/accuracy; (7) storage and deployment; (8) repeatability of reflector surface; and (9) comparison of surface with predicted shape using analytical methods developed under a previous task.
Fresnel Concentrators for Space Solar Power and Solar Thermal Propulsion
NASA Technical Reports Server (NTRS)
Bradford, Rodney; Parks, Robert W.; Craig, Harry B. (Technical Monitor)
2001-01-01
Large deployable Fresnel concentrators are applicable to solar thermal propulsion and multiple space solar power generation concepts. These concentrators can be used with thermophotovoltaic, solar thermionic, and solar dynamic conversion systems. Thin polyimide Fresnel lenses and reflectors can provide tailored flux distribution and concentration ratios matched to receiver requirements. Thin, preformed polyimide film structure components assembled into support structures for Fresnel concentrators provide the capability to produce large inflation-deployed concentrator assemblies. The polyimide film is resistant to the space environment and allows large lightweight assemblies to be fabricated that can be compactly stowed for launch. This work addressed design and fabrication of lightweight polyimide film Fresnel concentrators, alternate materials evaluation, and data management functions for space solar power concepts, architectures, and supporting technology development.
LDR system concepts and technology
NASA Technical Reports Server (NTRS)
Pittman, B.
1985-01-01
The Large Deployable Reflector is a 20 meter diameter infrared/submillimeter telescope planned for the late 1990's. The Astronomy Survey Committee of the National Academy of Sciences (Field Committee) recommended LDR as one of the two space based observatories that should start development in the 80's. LDR's large aperture will give it unequaled resolution in the wavelength range from 30 to 1000 microns. To meet LDR performance goals will call for advances in several technology disciplines including: optics, controls, thermal control, detectors, cryogenic cooling, and large space structures.
Test progress on the electrostatic membrane reflector
NASA Technical Reports Server (NTRS)
Mihora, D. J.
1981-01-01
An extemely lightweight type of precision reflector antenna, being developed for potential deployment from the space shuttle, uses electrostatic forces to tension a thin membrane and form it into a concave reflector surface. The typical shuttle-deployed antenna would have a diameter of 100 meters and an RMS surface smoothness of 10 to 1 mm for operation at 1 to 10 GHz. NASA Langley Research Center built and is currently testing a subscale (16 foot diameter) model of the membrane reflector portion of such an antenna. Preliminary test results and principal factors affecting surface quality are addressed. Factors included are the effect of the perimeter boundary, splicing of the membrane, the long-scale smoothness of commercial membranes, and the spatial controllability of the membrane using voltage adjustments to alter the electrostatic pressure. Only readily available commercial membranes are considered.
Hybrid Deployable Foam Antennas and Reflectors
NASA Technical Reports Server (NTRS)
Rivellini, Tommaso; Willis, Paul; Hodges, Richard; Spitz, Suzanne
2006-01-01
Hybrid deployable radio antennas and reflectors of a proposed type would feature rigid narrower apertures plus wider adjoining apertures comprising reflective surfaces supported by open-cell polymeric foam structures (see figure). The open-cell foam structure of such an antenna would be compressed for compact stowage during transport. To initiate deployment of the antenna, the foam structure would simply be released from its stowage mechanical restraint. The elasticity of the foam would drive the expansion of the foam structure to its full size and shape. There are several alternatives for fabricating a reflective surface supported by a polymeric foam structure. One approach would be to coat the foam with a metal. Another approach would be to attach a metal film or a metal-coated polymeric membrane to the foam. Yet another approach would be to attach a metal mesh to the foam. The hybrid antenna design and deployment concept as proposed offers significant advantages over other concepts for deployable antennas: 1) In the unlikely event of failure to deploy, the rigid narrow portion of the antenna would still function, providing a minimum level of assured performance. In contrast, most other concepts for deploying a large antenna from compact stowage are of an "all or nothing" nature: the antenna is not useful at all until and unless it is fully deployed. 2) Stowage and deployment would not depend on complex mechanisms or actuators, nor would it involve the use of inflatable structures. Therefore, relative to antennas deployed by use of mechanisms, actuators, or inflation systems, this antenna could be lighter, cheaper, amenable to stowage in a smaller volume, and more reliable. An open-cell polymeric (e.g., polyurethane) foam offers several advantages for use as a compressible/expandable structural material to support a large antenna or reflector aperture. A few of these advantages are the following: 3) The open cellular structure is amenable to compression to a very small volume - typically to 1/20 of its full size in one dimension. 4) At a temperature above its glass-transition temperature (T(sub g)), the foam strongly damps vibrations. Even at a temperature below T(sub g), the damping should exceed that of other materials. 5) In its macroscopic mechanical properties, an open-cell foam is isotropic. This isotropy facilitates computational modeling of antenna structures. 6) Through chemical formulation, the T(sub g) of an open-cell polyurethane foam can be set at a desired value between about - 100 and about 0 C. Depending on the application, it may or may not be necessary to rigidify a foam structure after deployment. If rigidification is necessary, then the T(sub g) of the foam can be tailored to exceed the temperature of the deployment environment, in conjunction with providing a heater to elasticize the foam for deployment. Once deployed, the foam would become rigidified by cooling to below T(sub g). 7) Techniques for molding or machining polymeric foams (especially including open-cell polyurethane foams) to desired sizes and shapes are well developed.
Development of a verification program for deployable truss advanced technology
NASA Technical Reports Server (NTRS)
Dyer, Jack E.
1988-01-01
Use of large deployable space structures to satisfy the growth demands of space systems is contingent upon reducing the associated risks that pervade many related technical disciplines. The overall objectives of this program was to develop a detailed plan to verify deployable truss advanced technology applicable to future large space structures and to develop a preliminary design of a deployable truss reflector/beam structure for use a a technology demonstration test article. The planning is based on a Shuttle flight experiment program using deployable 5 and 15 meter aperture tetrahedral truss reflections and a 20 m long deployable truss beam structure. The plan addresses validation of analytical methods, the degree to which ground testing adequately simulates flight and in-space testing requirements for large precision antenna designs. Based on an assessment of future NASA and DOD space system requirements, the program was developed to verify four critical technology areas: deployment, shape accuracy and control, pointing and alignment, and articulation and maneuvers. The flight experiment technology verification objectives can be met using two shuttle flights with the total experiment integrated on a single Shuttle Test Experiment Platform (STEP) and a Mission Peculiar Experiment Support Structure (MPESS). First flight of the experiment can be achieved 60 months after go-ahead with a total program duration of 90 months.
NASA Astrophysics Data System (ADS)
Kotik, A.; Usyukin, V.; Vinogradov, I.; Arkhipov, M.
2017-11-01
he realization of astrophysical researches requires the development of high-sensitive centimeterband parabolic space radiotelescopes (SRT) with the large-size mirrors. Constructively such SRT with the mirror size more than 10 m can be realized as deployable rigid structures. Mesh-structures of such size do not provide the reflector reflecting surface accuracy which is necessary for the centimeter band observations. Now such telescope with the 10 m diameter mirror is developed in Russia in the frame of "SPECTR - R" program. External dimensions of the telescope is more than the size of existing thermo-vacuum chambers used to prove SRT reflecting surface accuracy parameters under the action of space environment factors. That's why the numerical simulation turns out to be the basis required to accept the taken designs. Such modeling should be based on experimental working of the basic constructive materials and elements of the future reflector. In the article computational modeling of reflecting surface deviations of a centimeter-band of a large-sized deployable space reflector at a stage of his orbital functioning is considered. The analysis of the factors that determines the deviations - both determined (temperatures fields) and not-determined (telescope manufacturing and installation faults; the deformations caused by features of composite materials behavior in space) is carried out. The finite-element model and complex of methods are developed. They allow to carry out computational modeling of reflecting surface deviations caused by influence of all factors and to take into account the deviations correction by space vehicle orientation system. The results of modeling for two modes of functioning (orientation at the Sun) SRT are presented.
Millimeter radiometer system technology
NASA Technical Reports Server (NTRS)
Wilson, W. J.; Swanson, P. N.
1989-01-01
JPL has had a large amount of experience with spaceborne microwave/millimeter wave radiometers for remote sensing. All of the instruments use filled aperture antenna systems from 5 cm diameter for the microwave Sounder Units (MSU), 16 m for the microwave limb sounder (MLS) to 20 m for the large deployable reflector (LDR). The advantages of filled aperture antenna systems are presented. The requirements of the 10 m Geoplat antenna system, 10 m multified antenna, and the MLS are briefly discussed.
Millimeter radiometer system technology
NASA Astrophysics Data System (ADS)
Wilson, W. J.; Swanson, P. N.
1989-07-01
JPL has had a large amount of experience with spaceborne microwave/millimeter wave radiometers for remote sensing. All of the instruments use filled aperture antenna systems from 5 cm diameter for the microwave Sounder Units (MSU), 16 m for the microwave limb sounder (MLS) to 20 m for the large deployable reflector (LDR). The advantages of filled aperture antenna systems are presented. The requirements of the 10 m Geoplat antenna system, 10 m multified antenna, and the MLS are briefly discussed.
Large space deployable antenna systems
NASA Technical Reports Server (NTRS)
1978-01-01
The design technology is described for manufacturing a 20 m or larger space erectable antenna with high thermal stability, high dynamic stiffness, and minimum stowed size. The selected approach includes a wrap rib design with a cantilever beam basic element and graphite-epoxy composite lenticular cross section ribs. The rib configuration and powered type operated deploying mechanism are described and illustrated. Other features of the parabolic reflector discussed include weight and stowed diameter characteristics, structural dynamics characteristics, orbit thermal aperture limitations, and equivalent element and secondary (on axis) patterns. A block diagram of the multiple beam pattern is also presented.
Conceptual design studies for large free-flying solar-reflector spacecraft
NASA Technical Reports Server (NTRS)
Hedgepeth, J. M.; Miller, R. K.; Knapp, K. P. W.
1981-01-01
The 1 km diameter reflecting film surface is supported by a lightweight structure which may be automatically deployed after launch in the Space Shuttle. A twin rotor, control moment gyroscope, with deployable rotors, is included as a primary control actuator. The vehicle has a total specific mass of less than 12 g/sq m including allowances for all required subsystems. The structural elements were sized to accommodate the loads of a typical SOLARES type mission where a swam of these free flying satellites is employed to concentrate sunlight on a number of energy conversion stations on the ground.
Modeling and analysis of a large deployable antenna structure
NASA Astrophysics Data System (ADS)
Chu, Zhengrong; Deng, Zongquan; Qi, Xiaozhi; Li, Bing
2014-02-01
One kind of large deployable antenna (LDA) structure is proposed by combining a number of basic deployable units in this paper. In order to avoid vibration caused by fast deployment speed of the mechanism, a braking system is used to control the spring-actuated system. Comparisons between the LDA structure and a similar structure used by the large deployable reflector (LDR) indicate that the former has potential for use in antennas with up to 30 m aperture due to its lighter weight. The LDA structure is designed to form a spherical surface found by the least square fitting method so that it can be symmetrical. In this case, the positions of the terminal points in the structure are determined by two principles. A method to calculate the cable network stretched on the LDA structure is developed, which combines the original force density method and the parabolic surface constraint. Genetic algorithm is applied to ensure that each cable reaches a desired tension, which avoids the non-convergence issue effectively. We find that the pattern for the front and rear cable net must be the same when finding the shape of the rear cable net, otherwise anticlastic surface would generate.
View of the Laser Ranging Retro Reflector deployed by Apollo 14 astronauts
1971-02-05
AS14-67-9386 (5 Feb. 1971) --- A close-up view of the laser ranging retro reflector (LR3) which the Apollo 14 astronauts deployed on the moon during their lunar surface extravehicular activity (EVA). While astronauts Alan B. Shepard Jr., commander, and Edgar D. Mitchell, lunar module pilot, descended in the Lunar Module (LM) to explore the moon, astronaut Stuart A. Roosa, command module pilot, remained with the Command and Service Modules (CSM) in lunar orbit.
Wavefront control of large optical systems
NASA Technical Reports Server (NTRS)
Meinel, Aden B.; Meinel, Marjorie P.; Breckinridge, J. B.
1990-01-01
Several levels of wavefront control are necessary for the optimum performance of very large telescopes, especially segmented ones like the Large Deployable Reflector. In general, the major contributors to wavefront error are the segments of the large primary mirror. Wavefront control at the largest optical surface may not be the optimum choice because of the mass and inaccessibility of the elements of this surface that require upgrading. The concept of two-stage optics was developed to permit a poor wavefront from the large optics to be upgraded by means of a wavefront corrector at a small exit pupil of the system.
NASA Technical Reports Server (NTRS)
Sinha, A. K.
1989-01-01
The Wrap-Rib Antenna is a deployable lightweight shaped reflector. It consists of a central hub, parabolic ribs, and an rf reflector mesh. The wrap-rib reflector approximates the desired surface by means of pie-shaped segments of parabolic cylinders. The elements of the total system and the feasibility of the system are discussed.
FIR and sub-mm direct detection spectrometers for spaceborne astronomy
NASA Astrophysics Data System (ADS)
Wijnbergen, Jan J.; de Graauw, Thijs
1990-12-01
Candidate spaceborne sub-mm instrumentation proposed for space projects with large passively cooled telescopes are reviewed. Grating instruments and Fourier transform spectroscopy (FTS) spectrometers are discussed. Particular attention is given to imaging Fabry-Perot spectrometers. The special needs of the Large Deployable Reflector (LDR) and for the Far InfraRed Space Telescope (FIRST) missions in this area are outlined. Possible Fabry-Perot spectrometer setups are diagrammed and outlined. The use of spherical and multiplex Fabry-Perot spectrometers is discussed.
The 15-meter diameter mechanically scanned deployable antenna
NASA Technical Reports Server (NTRS)
Coyner, J. V.; Herbert, J. J.; Bachtell, E. E.
1982-01-01
A preliminary design with structural model data and thermal-performance estimates of a 15-meter mechanically scanned deployable antenna (MSDA) that could be launched onboard a Shuttle Orbiter to provide radiometric brightness temperature maps of the Earth and oceans in selected bands over a frequency range from 1.4 to 11 GHz is provided. The study objectives were met through the design of a unique, integrated, offset feed mast and reflector design that uses the deployable box-truss structure as a building block. The performance of this system is summarized. The all graphite-epoxy, 4.57-meter prototype cube that was completed in 1981 and is proposed for this reflector and feed mast design is presented.
Collapsible structure for an antenna reflector
NASA Technical Reports Server (NTRS)
Trubert, M. R. (Inventor)
1973-01-01
A collapsible support for an antenna reflector for use in supporting spacecraft antennas is described. The support has a regid base and a number of struts which are pivoted at the base. The deployment of the struts and their final configuration for supporting the antenna are illustrated.
Unfurlable satellite antennas - A review
NASA Technical Reports Server (NTRS)
Roederer, Antoine G.; Rahmat-Samii, Yahia
1989-01-01
A review of unfurlable satellite antennas is presented. Typical application requirements for future space missions are first outlined. Then, U.S. and European mesh and inflatable antenna concepts are described. Precision deployables using rigid panels or petals are not included in the survey. RF modeling and performance analysis of gored or faceted mesh reflector antennas are then reviewed. Finally, both on-ground and in-orbit RF test techniques for large unfurlable antennas are discussed.
LDR structural experiment definition
NASA Technical Reports Server (NTRS)
Russell, R. A.
1988-01-01
A system study to develop the definition of a structural flight experiment for a large precision segmented reflector on the Space Station was accomplished by the Boeing Aerospace Company for NASA's Langley Research Center. The objective of the study was to use a Large Deployable Reflector (LDR) baseline configuration as the basis for focusing an experiment definition, so that the resulting accommodation requirements and interface constraints could be used as part of the mission requirements data base for Space Station. The primary objectives of the first experiment are to construct the primary mirror support truss and to determine its structural and thermal characteristics. Addition of an optical bench, thermal shield and primary mirror segments, and alignment of the optical components, would occur on a second experiment. The structure would then be moved to the payload point system for pointing, optical control, and scientific optical measurement for a third experiment. Experiment 1 will deploy the primary support truss while it is attached to the instrument module structure. The ability to adjust the mirror attachment points and to attach several dummy primary mirror segments with a robotic system will also be demonstrated. Experiment 2 will be achieved by adding new components and equipment to experiment one. Experiment 3 will demonstrate advanced control strategies, active adjustment of the primary mirror alignment, and technologies associated with optical sensing.
MHD compressor---expander conversion system integrated with GCR inside a deployable reflector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuninetti, G.; Botta, E.; Criscuolo, C.
1989-04-20
This work originates from the proposal MHD Compressor-Expander Conversion System Integrated with a GCR Inside a Deployable Reflector''. The proposal concerned an innovative concept of nuclear, closed-cycle MHD converter for power generation on space-based systems in the multi-megawatt range. The basic element of this converter is the Power Conversion Unit (PCU) consisting of a gas core reactor directly coupled to an MHD expansion channel. Integrated with the PCU, a deployable reflector provides reactivity control. The working fluid could be either uranium hexafluoride or a mixture of uranium hexafluoride and helium, added to enhance the heat transfer properties. The original Statementmore » of Work, which concerned the whole conversion system, was subsequently redirected and focused on the basic mechanisms of neutronics, reactivity control, ionization and electrical conductivity in the PCU. Furthermore, the study was required to be inherently generic such that the study was required to be inherently generic such that the analysis an results can be applied to various nuclear reactor and/or MHD channel designs''.« less
A Wire Grid Paraboloid for Large Low Frequency Telescopes
NASA Astrophysics Data System (ADS)
Kuiper, Tom
2017-05-01
Planetary magnetic fields are usually studied remotely through their electron cyclotron maser (ECM) emission from electrons trapped in their magnetic fields. Jupiter has been well studied since the 1960's because its strong magnetic field allows emissions up to about 40 MHz to be observed. The emission from Earth and other outer planets is mostly below 1 MHz and can only be observed from space. It is reasonable to assume that most exoplanets with ECM must be observed at low frequencies from space. Even optimistic assumptions about the strength of such emission leads one to conclude that very large filled aperture telescopes, with a diameters of a kilometer or more, will be needed.This paper reports on a study of a copper wire reflector with a diameter of 1 km operating between 100 kHz and 3.75 MHz. It would require 200 kg of 0.5 mm diameter copper wire (AWG 24)) to be lifted to and deployed in space. For aluminum, the mass would be about 100 kg. By optimizing the wire spacing the mass can be reduced to 80% of a simple radial-azimuthal arrangement. A relatively flat reflector (0.6 ≤ f/D ≤ 1.0) needs to be anchored at about 5 points from center to ring along 24 radii. Station-keeping CubeSats could serve as anchors. A total of about 100-120 anchors would be needed for an f/D = 1 reflector, adding 200-300 kg. to the mass of the reflector. It would be possible to carry several such reflectors into space in a single payload.The Deep Space Network is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration.
Design of a Shape Memory Alloy deployment hinge for reflector facets
NASA Technical Reports Server (NTRS)
Anders, W. S.; Rogers, C. A.
1991-01-01
A design concept for a Shape Memory Alloy (SMA) actuated hinge mechanism for deploying segmented facet-type reflector surfaces on antenna truss structures is presented. The mechanism uses nitinol, a nickel-titanium shape memory alloy, as a displacement-force micro-actuator. An electrical current is used to resistively heat a 'plastically' elongated SMA actuator wire, causing it to contract in response to a thermally-induced phase transformation. The resulting tension creates a moment, imparting rotary motion between two adjacent panels. Mechanical stops are designed into the device to limit its range of motion and to establish positioning accuracy at the termination of deployment. The concept and its operation are discussed in detail, and an analytical dynamic simulation model is presented. The model has been used to perform nondimensionalized parametric design studies.
Advances in Mechanical Architectures of Large Precision Space Apertures
NASA Astrophysics Data System (ADS)
Datashvili, Leri; Maghaldadze, Nikoloz; Endler, Stephan; Pauw, Julian; He, Peng; Baier, Horst; Ihle, Alexander; Santiago Prowlad, Julian
2014-06-01
Recent advances in development of mechanical architectures of large deployable reflectors (LDRs) through the projects of the European Space Agency are addressed in this paper. Two different directions of LDR architectures are being investigated and developed at LSS and LLB. These are LDRs with knitted metal mesh and with flexible shell-membrane reflecting surfaces. The first direction is matured and required advancing of the novel architecture of the supporting structure that provides deployment and final shape accuracy of the metal mesh is underway. The second direction is rather new and its current development stage is focused on investigations of dimensional stability of the flexible shell-membrane reflecting surface. In both directions 5 m diameter functional models will be built to demonstrate achieved performances, which shall prepare the basis for further improvement of their technology readiness levels.
LDR structural experiment definition
NASA Technical Reports Server (NTRS)
Russell, Richard A.; Gates, Richard M.
1988-01-01
A study was performed to develop the definition of a structural flight experiment for a large precision segmented reflector that would utilize the Space Station. The objective of the study was to use the Large Deployable Reflector (LDR) baseline configuration for focusing on experiment definition activity which would identify the Space Station accommodation requirements and interface constraints. Results of the study defined three Space Station based experiments to demonstrate the technologies needed for an LDR type structure. The basic experiment configurations are the same as the JPL baseline except that the primary mirror truss is 10 meters in diameter instead of 20. The primary objectives of the first experiment are to construct the primary mirror support truss and to determine its structural and thermal characteristics. Addition of the optical bench, thermal shield and primary mirror segments and alignment of the optical components occur on the second experiment. The structure will then be moved to the payload pointing system for pointing, optical control and scientific optical measurement for the third experiment.
SweepSAR: Beam-forming on Receive Using a Reflector-Phased Array Feed Combination for Spaceborne SAR
NASA Technical Reports Server (NTRS)
Freeman, A.; Krieger, G.; Rosen, P.; Younis, M.; Johnson, W. T. K.; Huber, S.; Jordan, R.; Moreira, A.
2012-01-01
In this paper, an alternative approach is described that is suited for longer wavelength SARs in particular, employing a large, deployable reflector antenna and a much simpler phased array feed. To illuminate a wide swath, a substantial fraction of the phased array feed is excited on transmit to sub-illuminate the reflector. Shorter transmit pulses are required than for conventional SAR. On receive, a much smaller portion of the phased array feed is used to collect the return echo, so that a greater portion of the reflector antenna area is used. The locus of the portion of the phased array used on receive is adjusted using an analog beam steering network, to 'sweep' the receive beam(s) across the illuminated swath, tracking the return echo. This is similar in some respects to the whiskbroom approach to optical sensors, hence the name: SweepSAR.SweepSAR has advantages over conventional SAR in that it requires less transmit power, and if the receive beam is narrow enough, it is relatively immune to range ambiguities. Compared to direct radiating arrays with digital beam- forming, it is much simpler to implement, uses currently available technologies, is better suited for longer wavelength systems, and does not require extremely high data rates or onboard processing.
NASA Astrophysics Data System (ADS)
Hu, Fei; Song, Yanping; Huang, Zhirong; Liu, Wenlan; Li, Wan
2018-05-01
The tetrahedral elements that make up the large deployable reflector (LDR) are a kind of metamorphic element, which belongs to the multi-loop coupling mechanism. Firstly, the method of combining topology with screw theory is put forward. The parametric model and the constrained matrix are established to analyze the malleability of 3RR-3RRR tetrahedral element. Secondly, the kinematics expression of each motion pair is deduced by the relationship between the velocity and the motion spinor. Finally, the configuration of the metamorphic element is optimized to make the parabolic antenna fully folded, so that the antenna can meet the maximum folding ratio. The results show that the 3RR-3RRR element is a single-degree of freedom (DOF) mechanism. What's more, three new configurations 3RS-3RRR, 3SR-3RRR and 3UU-3RRR are obtained on the basis of optimization. In particular, it proves to be that the LDR which consists of the 3RS-3RRR metamorphic element can achieve the maximum folding ratio. This paper provides a theoretical basis for the computer-aided design of the truss antennas, which has an excellent applicability in the field of aerospace and other multi-loop coupling mechanism.
Analysis of a dual-reflector antenna system using physical optics and digital computers
NASA Technical Reports Server (NTRS)
Schmidt, R. F.
1972-01-01
The application of physical-optics diffraction theory to a deployable dual-reflector geometry is discussed. The methods employed are not restricted to the Conical-Gregorian antenna, but apply in a general way to dual and even multiple reflector systems. Complex vector wave methods are used in the Fresnel and Fraunhofer regions of the reflectors. Field amplitude, phase, polarization data, and time average Poynting vectors are obtained via an IBM 360/91 digital computer. Focal region characteristics are plotted with the aid of a CalComp plotter. Comparison between the GSFC Huygens wavelet approach, JPL measurements, and JPL computer results based on the near field spherical wave expansion method are made wherever possible.
Mechanically scanned deployable antenna study
NASA Technical Reports Server (NTRS)
1983-01-01
The conceptual design of a Mechanically Scanned Deployable Antenna which is launched by the STS (Space Shuttle) to provide radiometric brightness temperature maps of the Earth and oceans at selected frequency bands in the frequency range of 1.4 GHz to 11 GHz is presented. Unlike previous scanning radiometric systems, multiple radiometers for each frequency are required in order to fill in the resolution cells across the swath created by the 15 meter diameter spin stabilized system. This multiple beam radiometric system is sometimes designated as a ""whiskbroom'' system in that it combines the techniques of the scanning and ""pushbroom'' type systems. The definition of the feed system including possible feed elements and location, determination of the fundamental reflector feed offset geometry including offset angles and f/D ratio, preliminary estimates of the beam efficiency of the feed reflector system, a summary of reflector mesh losses at the proposed radiometric frequency bands, an overall conceptual configuration design and preliminary structural and thermal analyses are included.
Design, Development and Testing of the GMI Reflector Deployment Assembly
NASA Technical Reports Server (NTRS)
Guy, Larry; Foster, Mike; McEachen, Mike; Pellicciotti, Joseph; Kubitschek, Michael
2011-01-01
The GMI Reflector Deployment Assembly (RDA) is an articulating structure that accurately positions and supports the main reflector of the Global Microwave Imager (GMI) throughout the 3 year mission life. The GMI instrument will fly on the core Global Precipitation Measurement (GPM) spacecraft and will be used to make calibrated radiometric measurements at multiple microwave frequencies and polarizations. The GPM mission is an international effort managed by the National Aeronautics and Space Administration (NASA) to improve climate, weather, and hydrometeorological predictions through more accurate and frequent precipitation measurements1. Ball Aerospace and Technologies Corporation (BATC) was selected by NASA Goddard to design, build, and test the GMI instrument. The RDA was designed and manufactured by ATK Aerospace Systems Group to meet a number of challenging packaging and performance requirements. ATK developed a flight-like engineering development unit (EDU) and two flight mechanisms that have been delivered to BATC. This paper will focus on driving GMI instrument system requirements, the RDA design, development, and test activities performed to demonstrate that requirements have been met.
NASA Astrophysics Data System (ADS)
Adams, Matthew S.; Salgaonkar, Vasant A.; Sommer, Graham; Diederich, Chris J.
2017-02-01
Endoluminal high-intensity ultrasound offers spatially-precise thermal ablation of tissues adjacent to body lumens, but is constrained in treatment volume and penetration depth by the effective aperture of integrated transducers, which are limited in size to enable delivery through anatomical passages, endoscopic instrumentation, or laparoscopic ports. This study introduced and investigated three distinct endoluminal ultrasound applicator designs that can be delivered in a compact state then deployed or expanded at the target luminal site to increase the effective therapeutic aperture. The first design incorporated an array of planar transducers which could be unfolded at specific angles of convergence between the transducers. Two alternative designs consisted of fixed transducer sources surrounded by an expandable multicompartment balloon that contained acoustic reflector and dynamically-adjustable fluid lenses compartments. Parametric studies of acoustic output were performed across device design parameters via the rectangular radiator and secondary sources methods. Biothermal models were used to simulate resulting temperature distributions in three-dimensional heterogeneous tissue models. Simulations indicate that a deployable transducer array can increase volumetric coverage and penetration depth by 80% and 20%, respectively, while permitting more conformal thermal lesion shapes based on the degree of convergence between the transducers. The applicator designs incorporating reflector and fluid lenses demonstrated enhanced focal gain and penetration depth that increased with the diameter of the expanded reflector-lens balloon. Thermal simulations of assemblies with 12 mm compact profiles and 50 mm expanded balloon diameters demonstrated generation of localized thermal lesions at depths up to 10 cm in liver tissue.
Correcting Thermal Deformations in an Active Composite Reflector
NASA Technical Reports Server (NTRS)
Bradford, Samuel C.; Agnes, Gregory S.; Wilkie, William K.
2011-01-01
Large, high-precision composite reflectors for future space missions are costly to manufacture, and heavy. An active composite reflector capable of adjusting shape in situ to maintain required tolerances can be lighter and cheaper to manufacture. An active composite reflector testbed was developed that uses an array of piezoelectric composite actuators embedded in the back face sheet of a 0.8-m reflector panel. Each individually addressable actuator can be commanded from 500 to +1,500 V, and the flatness of the panel can be controlled to tolerances of 100 nm. Measuring the surface flatness at this resolution required the use of a speckle holography interferometer system in the Precision Environmental Test Enclosure (PETE) at JPL. The existing testbed combines the PETE for test environment stability, the speckle holography system for measuring out-of-plane deformations, the active panel including an array of individually addressable actuators, a FLIR thermal camera to measure thermal profiles across the reflector, and a heat source. Use of an array of flat piezoelectric actuators to correct thermal deformations is a promising new application for these actuators, as is the use of this actuator technology for surface flatness and wavefront control. An isogrid of these actuators is moving one step closer to a fully active face sheet, with the significant advantage of ease in manufacturing. No extensive rib structure or other actuation backing structure is required, as these actuators can be applied directly to an easy-to-manufacture flat surface. Any mission with a surface flatness requirement for a panel or reflector structure could adopt this actuator array concept to create lighter structures and enable improved performance on orbit. The thermal environment on orbit tends to include variations in temperature during shadowing or changes in angle. Because of this, a purely passive system is not an effective way to maintain flatness at the scale of microns over several meters. This technology is specifically referring to correcting thermal deformations of a large, flat structure to a specified tolerance. However, the underlying concept (an array of actuators on the back face of a panel for correcting the flatness of the front face) could be extended to many applications, including energy harvesting, changing the wavefront of an optical system, and correcting the flatness of an array of segmented deployable panels.
NASA Technical Reports Server (NTRS)
Webb, D.; Kasdin, N. J.; Lisman, D.; Shaklan, S.; Thomson, M.; Cady, E.; Marks, G. W.; Lo, A.
2014-01-01
A Starshade is a sunflower-shaped satellite with a large inner disk structure surrounded by petals that flies in formation with a space-borne telescope, creating a deep shadow around the telescope over a broad spectral band to permit nearby exoplanets to be viewed. Removing extraneous starlight before it enters the observatory optics greatly loosens the tolerances on the telescope and instrument that comprise the optical system, but the nature of the Starshade dictates a large deployable structure capable of deploying to a very precise shape. These shape requirements break down into key mechanical requirements, which include the rigid-body position and orientation of each of the petals that ring the periphery of the Starshade. To verify our capability to meet these requirements, we modified an existing flight-like Astromesh reflector, provided by Northrup Grumman, as the base ring to which the petals attach. The integrated system, including 4 of the 30 flight-like subscale petals, truss, connecting spokes and central hub, was deployed tens of times in a flight-like manner using a gravity compensation system. After each deployment, discrete points in prescribed locations covering the petals and truss were measured using a highly-accurate laser tracker system. These measurements were then compared against the mechanical requirements, and the as-measured data shows deployment accuracy well within our milestone requirements and resulting in a contrast ratio consistent with exoplanet detection and characterization.
NASA Astrophysics Data System (ADS)
Webb, D.; Kasdin, N. J.; Lisman, D.; Shaklan, S.; Thomson, M.; Cady, E.; Marks, G. W.; Lo, A.
2014-07-01
A Starshade is a sunflower-shaped satellite with a large inner disk structure surrounded by petals. A Starshade flies in formation with a space-borne telescope, creating a deep shadow around the telescope over a broad spectral band to permit nearby exoplanets to be viewed. Removing extraneous starlight before it enters the observatory optics greatly loosens the tolerances on the telescope and instrument that comprise the optical system, but the nature of the Starshade dictates a large deployable structure capable of deploying to a very precise shape. These shape requirements break down into key mechanical requirements which include the rigid-body position and orientation of each of the petals that ring the periphery of the Starshade. To verify our capability to meet these requirements, we modified an existing flight-like Astromesh reflector, provided by Northrup Grumman, as the base ring to which the petals attach. The integrated system, including 4 of the 30 flight-like subscale petals, truss, connecting spokes and central hub, was deployed tens of times in a flight-like manner using a gravity compensation system. After each deployment, discrete points in prescribed locations covering the petals and truss were measured using a highly-accurate laser tracker system. These measurements were then compared against the mechanical requirements, and the as-measured data shows deployment accuracy well within our milestone requirements and resulting in a contrast ratio consistent with exoplanet detection and characterization.
Large optics technology; Proceedings of the Meeting, San Diego, CA, August 19-21, 1985. Volume 571
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanger, G.M.
1986-01-01
The present conference on telescope primary mirror design and manufacturing technologies considers topics in mirror fabrication and testing, novel technology currently under development, recently instituted large optics development programs, and large mirror materials. Among the topics discussed are aspheric figure generation using feedback from an IR phase-shifting interferometer, thermal stability tests of CFRP sandwich panels for far-IR astronomy, Zerodur lightweight (large mirror) blanks, and the precision machining of grazing-incidence X-ray mirror substrates. Also treated are the rapid fabrication of large aspheric optics, steps toward 8-m honeycomb mirrors, a novel telescope design employing the refraction of prism rows, telescope technology formore » the Far-UV Spectroscopic Explorer, hot isostatic-pressed Be for large optics, and a concept for a moderate cost large deployable reflector.« less
Advanced Precipitation Radar Antenna to Measure Rainfall From Space
NASA Technical Reports Server (NTRS)
Rahmat-Samii, Yahya; Lin, John; Huang, John; Im, Eastwood; Lou, Michael; Lopez, Bernardo; Durden, Stephen
2008-01-01
To support NASA s planned 20-year mission to provide sustained global precipitation measurement (EOS-9 Global Precipitation Measurement (GPM)), a deployable antenna has been explored with an inflatable thin-membrane structure. This design uses a 5.3 5.3-m inflatable parabolic reflector with the electronically scanned, dual-frequency phased array feeds to provide improved rainfall measurements at 2.0-km horizontal resolution over a cross-track scan range of up to 37 , necessary for resolving intense, isolated storm cells and for reducing the beam-filling and spatial sampling errors. The two matched radar beams at the two frequencies (Ku and Ka bands) will allow unambiguous retrieval of the parameters in raindrop size distribution. The antenna is inflatable, using rigidizable booms, deployable chain-link supports with prescribed curvatures, a smooth, thin-membrane reflecting surface, and an offset feed technique to achieve the precision surface tolerance (0.2 mm RMS) for meeting the low-sidelobe requirement. The cylindrical parabolic offset-feed reflector augmented with two linear phased array feeds achieves dual-frequency shared-aperture with wide-angle beam scanning and very low sidelobe level of -30 dB. Very long Ku and Ka band microstrip feed arrays incorporating a combination of parallel and series power divider lines with cosine-over-pedestal distribution also augment the sidelobe level and beam scan. This design reduces antenna mass and launch vehicle stowage volume. The Ku and Ka band feed arrays are needed to achieve the required cross-track beam scanning. To demonstrate the inflatable cylindrical reflector with two linear polarizations (V and H), and two beam directions (0deg and 30deg), each frequency band has four individual microstrip array designs. The Ku-band array has a total of 166x2 elements and the Ka-band has 166x4 elements with both bands having element spacing about 0.65 lambda(sub 0). The cylindrical reflector with offset linear array feeds reduces the complexity from "NxN" transmit/receive (T/R) modules of a conventional planar-phased array to just "N" T/R modules. The antenna uses T/R modules with electronic phase-shifters for beam steering. The offset reflector does not provide poor cross-polarization like a double- curved offset reflector would, and it allows the wide scan angle in one plane required by the mission. Also, the cylindrical reflector with two linear array feeds provides dual-frequency performance with a single, shared aperture. The aperture comprises a reflective surface with a focal length of 1.89 m and is made from aluminized Kapton film. The reflective surface is of uniform thickness in the range of a few thousandths of an inch and is attached to the chain-link support structure via an adjustable suspension system. The film aperture rolls up, together with the chain-link structure, for launch and can be deployed in space by the deployment of the chain-link structure.
Antenna Technology Shuttle Experiment (ATSE)
NASA Technical Reports Server (NTRS)
Freeland, R. E.; Mettler, E.; Miller, L. J.; Rahmet-Samii, Y.; Weber, W. J., III
1987-01-01
Numerous space applications of the future will require mesh deployable antennas of 15 m in diameter or greater for frequencies up to 20 GHz. These applications include mobile communications satellites, orbiting very long baseline interferometry (VLBI) astrophysics missions, and Earth remote sensing missions. A Lockheed wrap rip antennas was used as the test article. The experiments covered a broad range of structural, control, and RF discipline objectives, which is fulfilled in total, would greatly reduce the risk of employing these antenna systems in future space applications. It was concluded that a flight experiment of a relatively large mesh deployable reflector is achievable with no major technological or cost drivers. The test articles and the instrumentation are all within the state of the art and in most cases rely on proven flight hardware. Every effort was made to design the experiments for low cost.
INSAT-2A and 2B development mechanisms
NASA Technical Reports Server (NTRS)
Sathyanarayan, M. N.; Rao, M. Nageswara; Nataraju, B. S.; Viswanatha, N.; Chary, M. Laxmana; Balan, K. S.; Murthy, V. Sridhara; Aller, Raju; Kumar, H. N. Suresha
1994-01-01
The Indian National Satellite (INSAT) 2A and 2B have deployment mechanisms for deploying the solar array, two C/S band antenna reflectors and a coilable lattice boom with sail. The mechanisms have worked flawlessly on both satellites. The configuration details, precautions taken during the design phase, the test philosophy, and some of the critical analysis activities are discussed.
A survey of ATL-compatible radiometer antennas
NASA Technical Reports Server (NTRS)
Love, A. W.
1975-01-01
A survey was made of antennas suitable for remote sensing of the earth's surface, in particular the world ocean, by means of microwave radiometers operating in the 1 to 26 GHz frequency region and carried on board the shuttle-launched advanced technology laboratory. Array antennas are found to be unattractive and unsuited to the task. Reflectors, including Cassegrain and offset types, as well as horn-reflectors are possible candidates but all have shortcomings which impair the accuracy of measurement. Horns of the corrugated type have excellent electrical characteristics. Although they are physically very large and will require development of suitable deployment mechanisms, they appear to be valid candidates for the task. The evolution of the periscope antenna is outlined, and it is shown to possess nearly ideal electrical characteristics for the intended application. Its only shortcoming is that the feed horn creates aperture blocking; there is no blocking due to struts or any other source. The periscope antenna is recommended for ATL radiometry.
A Novel Approach for a Low-Cost Deployable Antenna
NASA Technical Reports Server (NTRS)
Amend, Chris; Nurnberger, Michael; Oppenheimer, Paul; Koss, Steve; Purdy, Bill
2010-01-01
The Naval Research Laboratory (NRL) has designed, built, and fully qualified a low cost, low Passive Intermodulation (PIM) 12-foot (3.66-m) diameter deployable ultra high frequency (UHF) antenna for the Tacsat-4 program. The design utilized novel approaches in reflector material and capacitive coupling techniques. This paper discusses major design trades, unique design characteristics, and lessons learned from the development of the Tacsat 4 deployable antenna. This antenna development was sponsored by the Office of Naval Research.
A Revolute Joint With Linear Load-Displacement Response for Precision Deployable Structures
NASA Technical Reports Server (NTRS)
Lake, Mark S.; Warren, Peter A.; Peterson, Lee D.
1996-01-01
NASA Langley Research center is developing key structures and mechanisms technologies for micron-accuracy, in-space deployment of future space instruments. Achieving micron-accuracy deployment requires significant advancements in deployment mechanism design such as the revolute joint presented herein. The joint presented herein exhibits a load-cycling response that is essentially linear with less than two percent hysteresis, and the joint rotates with less than one in.-oz. of resistance. A prototype reflector metering truss incorporating the joint exhibits only a few microns of kinematic error under repeated deployment and impulse loading. No other mechanically deployable structure found in literature has been demonstrated to be this kinematically accurate.
NASA Astrophysics Data System (ADS)
Zhang, Yiqun; Li, Na; Yang, Guigeng; Ru, Wenrui
2017-02-01
This paper presents a dynamic analysis approach for the composite structure of a deployable truss and cable-net system. An Elastic Catenary Element is adopted to model the slack/tensioned cables. Then, from the energy standpoint, the kinetic energy, elasticity-potential energy and geopotential energy of the cable-net structure and deployable truss are derived. Thus, the flexible multi-body dynamic model of the deployable antenna is built based on the Lagrange equation. The effect of the cable-net tension on the antenna truss is discussed and compared with previous publications and a dynamic deployment analysis is performed. Both the simulation and experimental results verify the validity of the method presented.
Structural concepts for large solar concentrators
NASA Technical Reports Server (NTRS)
Hedgepeth, J. M.; Miller, R. K.
1986-01-01
Solar collectors for space use are examined, including both early designs and current concepts. In particular, attention is given to stiff sandwich panels and aluminum dishes as well as inflated and umbrella-type membrane configurations. The Sunflower concentrator is described as an example of a high-efficiency collector. It is concluded that stiff reflector panels are most likely to provide the long-term consistent accuracy necessary for low-orbit operation. A new configuration consisting of a Pactruss backup structure, with identical panels installed after deployment in space, is presented. It is estimated that concentration ratios in excess of 2000 can be achieved with this concept.
New techniques for fusion bonding and replication for large glass reflectors
NASA Technical Reports Server (NTRS)
Angel, J. R. P.
1983-01-01
Lightweight, space-deployable glass honeycomb telescope primary mirror structures are produced by a novel method which involves the heating to softening temperature of many borosilicate or silica glass tube sections that are packed to form a honeycomb matrix and filled with a high expansion coefficient refractory sand. The close packed tubes yield a hexagonal-cell honeycomb. Attention is given to the results of an experiment in which a highly refractory master was used to shape a honeycomb of less refractory glass, employing a 1-micron thick, vacuum-deposited gold coating as a parting layer between the two.
Astronomy and astrophysics for the 1980's, volume 1
NASA Technical Reports Server (NTRS)
1982-01-01
The programs recommended address the most significant questions that confront contemporary astronomy and fall into three general categories: prerequisites for research initiatives, including instrumentation and detectors, theory and data analysis, computational facilities, laboratory astrophysics, and technical support at ground-based observatories; programs including an Advanced X-ray Astrophysics Facility, a Very-Long Baseline Array, a Technology Telescope and a Large Deployable Reflector; and programs for study and development, including X-ray observatories in space, instruments for the detection of gravitational waves from astronomical objects, and long duration spaceflights of infrared telescopes. Estimated costs of these programs are provided.
NASA Technical Reports Server (NTRS)
Tubbs, Eldred F.
1986-01-01
A two-step approach to wavefront sensing for the Large Deployable Reflector (LDR) was examined as part of an effort to define wavefront-sensing requirements and to determine particular areas for more detailed study. A Hartmann test for coarse alignment, particularly segment tilt, seems feasible if LDR can operate at 5 microns or less. The direct measurement of the point spread function in the diffraction limited region may be a way to determine piston error, but this can only be answered by a detailed software model of the optical system. The question of suitable astronomical sources for either test must also be addressed.
Astronomy and astrophysics for the 1980's, volume 1
NASA Astrophysics Data System (ADS)
The programs recommended address the most significant questions that confront contemporary astronomy and fall into three general categories: prerequisites for research initiatives, including instrumentation and detectors, theory and data analysis, computational facilities, laboratory astrophysics, and technical support at ground-based observatories; programs including an Advanced X-ray Astrophysics Facility, a Very-Long Baseline Array, a Technology Telescope and a Large Deployable Reflector; and programs for study and development, including X-ray observatories in space, instruments for the detection of gravitational waves from astronomical objects, and long duration spaceflights of infrared telescopes. Estimated costs of these programs are provided.
2016-01-22
Q. J. Wei, S. Pan, S. Mohan, and S. Seager, Inflatable antenna for CubeSat : fabrication, deployment and results of experimental tests, 2014 IEEE...Aerospace Conference, pp. 1- 12. [8] A. Babuscia, T. Choi, C. Lee, and K-M. Cheung, Inflatable antennas and arrays for interplanetary communication using CubeSats and SmallSats, 2015 IEEE Aerospace Conference, pp. 1-9.
Micron Accuracy Deployment Experiment (MADE), phase A. Volume 1
NASA Technical Reports Server (NTRS)
Peterson, Lee D.; Lake, Mark S.
1995-01-01
This report documents a Phase A In-STEP flight experiment development effort. The objective of the experiment is to deploy a portion of a segmented reflector on the Shuttle and study its micron-level mechanics. Ground test data are presented which projects that the on-orbit precision of the test article should be approximately 5 microns. Extensive hardware configuration development information is also provided.
NASA Technical Reports Server (NTRS)
Stutzman, W. L.; Takamizawa, K.; Werntz, P.; Lapean, J.; Barts, R.
1991-01-01
The following subject areas are covered: General Reflector Antenna Systems Program version 7(GRASP7); Multiple Reflector Analysis Program for Cylindrical Antennas (MRAPCA); Tri-Reflector 2D Synthesis Code (TRTDS); a geometrical optics and a physical optics synthesis techniques; beam scanning reflector, the type 2 and 6 reflectors, spherical reflector, and multiple reflector imaging systems; and radiometric array design.
Shape Memory Polymer Self-Deploying Membrane Reflectors
2007-01-30
stability relative to their [Candidate A] counterparts and very low moisture uptake. Initial attempts to incorporate [this particular constituent] were...specimen (Figure 19). The sample was then reheated and "deployed" (Figure 20) while being held with the bend axis oriented vertically such that gravity...addressed as a separate task for the purposes of describing Statement of Work content, material process development was conducted in parallel with and
Detection of extrasolar planets by the large deployable reflector
NASA Technical Reports Server (NTRS)
Hollenbach, D. J.; Takahashi, T.
1984-01-01
The best wavelength for observing Jupiter-size planetary companions to stars other than the Sun is one at which a planet's thermal emission is strongest; typically this would occur in the far-infrared region. It is assumed that the orbiting infrared telescope used is diffraction-limited so that the resolution of the planet from the central star is accomplished in the wings of the star's Airy pattern. Proxima Centauri, Barnard's Star, Wolf 359, and Epsilon Eridani are just a few of the many nearest main-sequence stars that could be studied with the large deployable relfector (LDR). The detectability of a planet improves for warmer planets and less luminous stars; therefore, planets around white dwarfs and those young planets which have sufficient internal gravitational energy release so as to cause a significant increase in their temperatures are considered. If white dwarfs are as old as they are usually assumed to be (5-10 billion yr), then only the nearest white dwarf (Sirius B) is within the range of LDR. The Ursa Major cluster and Perseu cluster are within LDR's detection range mainly because of their proximity and young age, respectively.
Balloon-borne three-meter telescope for far-infrared and submillimeter astronomy
NASA Technical Reports Server (NTRS)
Fazio, Giovanni G.; Hoffmann, William F.; Harper, Doyal A.
1988-01-01
The scientific objectives, engineering analysis and design, results of technology development, and focal-plane instrumentation for a two-meter balloon-borne telescope for far-infrared and submillimeter astronomy are presented. The unique capabilities of balloon-borne observations are discussed. A program summary emphasizes the development of the two-meter design. The relationship of the Large Deployable Reflector (LDR) is also discussed. Detailed treatment is given to scientific objectives, gondola design, the mirror development program, experiment accommodations, ground support equipment requirements, NSBF design drivers and payload support requirements, the implementation phase summary development plan, and a comparison of three-meter and two-meter gondola concepts.
Pointing and figure control system for a space-based far-IR segmented telescope
NASA Technical Reports Server (NTRS)
Lau, Kenneth
1993-01-01
A pointing and figure control system for two space-based far-IR telescopes, the 10-20 m Large Deployable Reflector and the 3.6 m Submillimeter Intermediate Mission, is described. The figure maintenance control system is designed to counter the optical elements translational and rotational changes induced by long-term thermal drifts that the support structure may experience. The pointing system applies optical truss to telescope pointing; a laser metrology system is used to transfer pointing informaton from an external fine guidance sensor to the telescope optical boresight, defined by the primary mirror, secondary mirror, and focal plane assembly.
Measurement of electrostatically formed antennas using photogrammetry and theodolites
NASA Technical Reports Server (NTRS)
Goslee, J. W.; Hinson, W. F.; Kennefick, J. F.; Mihora, D. J.
1984-01-01
An antenna concept is presently being evaluated which has extremely low mass and high surface precision for potential depolyment from the Space Shuttle. This antenna concept derives its reflector surface quality from the application of electrostatic forces to tension and form a thin membrane into the desired concave reflector surface. The Shuttle-deployed antenna would have a diameter of 100 meters and an RMS surface smoothness of 10 to 1 mm for operation at 1 to 10 GHz. NASA Langley Research Center (LaRC) has built, and is currently testing, a subscale (1/20 scale) membrane reflector model of such an antenna. Several surface measurement systems were evaluated as part of the experimental surface measuring efforts. The surface measurement systems are addressed as well as some of the preliminary measurement results.
NASA Technical Reports Server (NTRS)
Stutzman, W. L.; Takamizawa, K.; Werntz, P.; Lapean, J.; Barts, R.; Shen, B.
1992-01-01
Virginia Tech has several articles which support the NASA Langley effort in the area of large aperture radiometric antenna systems. This semi-annual report reports on the following activities: a feasibility study of a synthesis procedure for array feeds to improve radiation performance of large distorted reflector antennas and the design of array feeds for large reflector antennas.
Assembly considerations for large reflectors
NASA Technical Reports Server (NTRS)
Bush, H.
1988-01-01
The technologies developed at LaRC in the area of erectable instructures are discussed. The information is of direct value to the Large Deployable Reflector (LDR) because an option for the LDR backup structure is to assemble it in space. The efforts in this area, which include development of joints, underwater assembly simulation tests, flight assembly/disassembly tests, and fabrication of 5-meter trusses, led to the use of the LaRC concept as the baseline configuration for the Space Station Structure. The Space Station joint is linear in the load and displacement range of interest to Space Station; the ability to manually assemble and disassemble a 45-foot truss structure was demonstrated by astronauts in space as part of the ACCESS Shuttle Flight Experiment. The structure was built in 26 minutes 46 seconds, and involved a total of 500 manipulations of untethered hardware. Also, the correlation of the space experience with the neutral buoyancy simulation was very good. Sections of the proposed 5-meter bay Space Station truss have been built on the ground. Activities at LaRC have included the development of mobile remote manipulator systems (which can traverse the Space Station 5-meter structure), preliminary LDR sun shield concepts, LDR construction scenarios, and activities in robotic assembly of truss-type structures.
Structural-electromagnetic bidirectional coupling analysis of space large film reflector antennas
NASA Astrophysics Data System (ADS)
Zhang, Xinghua; Zhang, Shuxin; Cheng, ZhengAi; Duan, Baoyan; Yang, Chen; Li, Meng; Hou, Xinbin; Li, Xun
2017-10-01
As used for energy transmission, a space large film reflector antenna (SLFRA) is characterized by large size and enduring high power density. The structural flexibility and the microwave radiation pressure (MRP) will lead to the phenomenon of structural-electromagnetic bidirectional coupling (SEBC). In this paper, the SEBC model of SLFRA is presented, then the deformation induced by the MRP and the corresponding far field pattern deterioration are simulated. Results show that, the direction of the MRP is identical to the normal of the reflector surface, and the magnitude is proportional to the power density and the square of cosine incident angle. For a typical cosine function distributed electric field, the MRP is a square of cosine distributed across the diameter. The maximum deflections of SLFRA linearly increase with the increasing microwave power densities and the square of the reflector diameters, and vary inversely with the film thicknesses. When the reflector diameter becomes 100 m large and the microwave power density exceeds 102 W/cm2, the gain loss of the 6.3 μm-thick reflector goes beyond 0.75 dB. When the MRP-induced deflection degrades the reflector performance, the SEBC should be taken into account.
LDR structural technology activities at JPL
NASA Technical Reports Server (NTRS)
Wada, Ben
1988-01-01
The status of the Large Deployable Reflector (LDR) technology requirements and the availability of that technology in the next few years are summarized. The research efforts at JPL related to these technology needs are also discussed. LDR requires that a large and relatively stiff truss-type backup structure have a surface accurate to 100 microns in space (initial position with thermal distortions) and the dynamic characteristics predictable and/or measurable by on-orbit system identification for micron level motion. This motion may result from the excitation of the lower modes or from wave-type motions. It is also assumed that the LDR structure can be ground tested to validate its ability to meet mission requirements. No program manager will commit a structural design based solely on analysis, unless the analysis is backed by a validation test program.
NASA Technical Reports Server (NTRS)
Schroeder, Lyle C.; Bailey, M. C.; Mitchell, John L.
1992-01-01
Methods for increasing the electromagnetic (EM) performance of reflectors with rough surfaces were tested and evaluated. First, one quadrant of the 15-meter hoop-column antenna was retrofitted with computer-driven and controlled motors to allow automated adjustment of the reflector surface. The surface errors, measured with metric photogrammetry, were used in a previously verified computer code to calculate control motor adjustments. With this system, a rough antenna surface (rms of approximately 0.180 inch) was corrected in two iterations to approximately the structural surface smoothness limit of 0.060 inch rms. The antenna pattern and gain improved significantly as a result of these surface adjustments. The EM performance was evaluated with a computer program for distorted reflector antennas which had been previously verified with experimental data. Next, the effects of the surface distortions were compensated for in computer simulations by superimposing excitation from an array feed to maximize antenna performance relative to an undistorted reflector. Results showed that a 61-element array could produce EM performance improvements equal to surface adjustments. When both mechanical surface adjustment and feed compensation techniques were applied, the equivalent operating frequency increased from approximately 6 to 18 GHz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, P
The objective of this analysis is to develop and establish the technical basis on the criticality safety controls for the storage of mixed beryllium (Be), natural uranium (Nat-U), and carbon (C)/graphite reflectors in 55-gallon waste containers and/or their equivalents in Hazardous Waste Management (HWM) facilities. Based on the criticality safety limits and controls outlined in Section 3.0, the operations involving the use of mixed-reflector drums satisfy the double-contingency principle as required by DOE Order 420.1 and are therefore criticality safe. The mixed-reflector mass limit is 120 grams for each 55-gallon drum or its equivalent. a reflector waiver of 50 gramsmore » is allowed for Be, Nat-U, or C/graphite combined. The waived reflectors may be excluded from the reflector mass calculations when determining if a drum is compliant. The mixed-reflector drums are allowed to mix with the typical 55-gallon one-reflector drums with a Pu mass limit of 120 grams. The fissile mass limit for the mixed-reflector container is 65 grams of Pu equivalent each. The corresponding reflector mass limits are 300 grams of Be, and/or 100 kilograms of Nat-U, and/or 110 kilograms of C/graphite for each container. All other unaffected control parameters for the one-reflector containers remain in effect for the mixed-reflector drums. For instance, Superior moderators, such as TrimSol, Superla white mineral oil No. 9, paraffin, and polyethylene, are allowed in unlimited quantities. Hydrogenous materials with a hydrogen density greater than 0.133 gram/cc are not allowed. Also, an isolation separation of no less than 76.2 cm (30-inch) is required between a mixed array and any other array. Waste containers in the action of being transported are exempted from this 76.2-cm (30-inch) separation requirement. All deviations from the CS controls and mass limits listed in Section 3.0 will require individual criticality safety analyses on a case-by-case basis for each of them to confirm their criticality safety prior to their deployment and implementation.« less
NASA Technical Reports Server (NTRS)
Stutzman, W. L.; Takamizawa, K.; Werntz, P.; Lapean, J.; Barts, R.; Shen, B.; Dunn, D.
1992-01-01
The topics covered include the following: (1) performance analysis of the Gregorian tri-reflector; (2) design and performance of the type 6 reflector antenna; (3) a new spherical main reflector system design; (4) optimization of reflector configurations using physical optics; (5) radiometric array design; and (7) beam efficiency studies.
High-Capacity Communications from Martian Distances Part 2: Spacecraft Antennas and Power Systems
NASA Technical Reports Server (NTRS)
Hodges, Richard E.; Kodis, Mary Anne; Epp, Larry W.; Orr, Richard; Schuchman, Leonard; Collins, Michael; Sands, O. Scott; Vyas, Hemali; Williams, W. Dan
2006-01-01
This paper summarizes recent advances in antenna and power systems technology to enable a high data rate Ka-band Mars-to-Earth telecommunications system. Promising antenna technologies are lightweight, deployable space qualified structures at least 12-m in diameter (potentially up to 25-m). These technologies include deployable mesh reflectors, inflatable reflectarray and folded thermosetting composite. Advances in 1kW-class RF power amplifiers include both TWTA and SSPA technologies.
NASA Technical Reports Server (NTRS)
Valinia, Azita; Moe, Rud; Seery, Bernard D.; Mankins, John C.
2013-01-01
We present a concept for an ISS-based optical system assembly demonstration designed to advance technologies related to future large in-space optical facilities deployment, including space solar power collectors and large-aperture astronomy telescopes. The large solar power collector problem is not unlike the large astronomical telescope problem, but at least conceptually it should be easier in principle, given the tolerances involved. We strive in this application to leverage heavily the work done on the NASA Optical Testbed Integration on ISS Experiment (OpTIIX) effort to erect a 1.5 m imaging telescope on the International Space Station (ISS). Specifically, we examine a robotic assembly sequence for constructing a large (meter diameter) slightly aspheric or spherical primary reflector, comprised of hexagonal mirror segments affixed to a lightweight rigidizing backplane structure. This approach, together with a structured robot assembler, will be shown to be scalable to the area and areal densities required for large-scale solar concentrator arrays.
Scanning properties of large dual-shaped offset and symmetric reflector antennas
NASA Astrophysics Data System (ADS)
Galindo-Israel, Victor; Veruttipong, Watt; Norrod, Roger D.; Imbriale, William A.
1992-04-01
Several characteristics of dual offset (DOSR) and symmetric shaped reflectors are examined. Among these is the amelioration of the added cost of manufacturing a shaped reflector antenna, particularly a doubly curved surface for the DOSR, if adjustable panels, which may be necessary for correction of gravity and wind distortions, are also used for improving gain by shaping. The scanning properties of shaped reflectors, both offset and circularly symmetric, are examined and compared to conic section scanning characteristics. Scanning of the pencil beam is obtained by lateral and axial translation of a single point-source feed. The feed is kept pointed toward the center of the subreflector. The effects of power spillover and aperture phase error as a function of beam scanning is examined for several different types of large reflector designs including DOSR, circularly symmetric large f/D and smaller f/D dual reflector antenna systems. It is graphically illustrated that the Abbe-sine condition for improving scanning of an optical system cannot, inherently, be satisfied in a dual-shaped reflector system shaped for high gain and low feed spillover.
A Deployable Primary Mirror for Space Telescopes
NASA Technical Reports Server (NTRS)
Lake, Mark S.; Phelps, James E.; Dyer, Jack E.; Caudle, David A.; Tam, Anthony; Escobedo, Javier; Kasl, Eldon P.
1999-01-01
NASA Langley Research Center, Composite Optics, Inc., and Nyma/ADF have developed jointly a deployable primary mirror for space telescopes that combines over five years of research on deployment of optical-precision structures and over ten years of development of fabrication techniques for optical-precision composite mirror panels and structures. The deployable mirror is directly applicable to a broad class of non-imaging "lidar" (light direction a nd ranging) telescopes whose figure-error requirements are in the range of one to ten microns RMS. Furthermore, the mirror design can be readily modified to accommodate imaging-quality reflector panels and active panel-alignment control mechanisms for application to imaging telescopes. The present paper: 1) describes the deployable mirror concept; 2) explains the status of the mirror development; and 3) provides some technical specifications for a 2.55- m-diameter, proof-of-concept mirror. Keywords: precision deployment, hinge joint, latch joint, deployable structures, fabrication, space telescopes, optical instruments, microdynamics.
NASA Technical Reports Server (NTRS)
Njoku, E.; Wilson, W.; Yueh, S.; Freeland, R.; Helms, R.; Edelstein, W.; Sadowy, G.; Farra, D.; West, R.; Oxnevad, K.
2001-01-01
This report describes a two-year study of a large-aperture, lightweight, deployable mesh antenna system for radiometer and radar remote sensing of the Earth from space. The study focused specifically on an instrument to measure ocean salinity and Soil moisture. Measurements of ocean salinity and soil moisture are of critical . importance in improving knowledge and prediction of key ocean and land surface processes, but are not currently obtainable from space. A mission using this instrument would be the first demonstration of deployable mesh antenna technology for remote sensing and could lead to potential applications in other remote sensing disciplines that require high spatial resolution measurements. The study concept features a rotating 6-m-diameter deployable mesh antenna, with radiometer and radar sensors, to measure microwave emission and backscatter from the Earth's surface. The sensors operate at L and S bands, with multiple polarizations and a constant look angle, scanning across a wide swath. The study included detailed analyses of science requirements, reflector and feedhorn design and performance, microwave emissivity measurements of mesh samples, design and test of lightweight radar electronic., launch vehicle accommodations, rotational dynamics simulations, and an analysis of attitude control issues associated with the antenna and spacecraft, The goal of the study was to advance the technology readiness of the overall concept to a level appropriate for an Earth science emission.
NASA Technical Reports Server (NTRS)
Nast, T.
1988-01-01
A brief summary from the 1985 Large Deployable Reflector (LDR) Asilomar 2 workshop of the requirements for LDR cryogenic cooling is presented. The heat rates are simply the sum of the individual heat rates from the instruments. Consideration of duty cycle will have a dramatic effect on cooling requirements. There are many possible combinations of cooling techniques for each of the three temperatures zones. It is clear that much further system study is needed to determine what type of cooling system is required (He-2, hybrid or mechanical) and what size and power is required. As the instruments, along with their duty cycles and heat rates, become better defined it will be possible to better determine the optimum cooling systems.
The Next Century Astrophysics Program
NASA Technical Reports Server (NTRS)
Swanson, Paul N.
1991-01-01
The Astrophysics Division within the NASA Office of Space Science and Applications (OSSA) has defined a set of major and moderate missions that are presently under study for flight sometime within the next 20 years. These programs include the: Advanced X Ray Astrophysics Facility; X Ray Schmidt Telescope; Nuclear Astrophysics Experiment; Hard X Ray Imaging Facility; Very High Throughput Facility; Gamma Ray Spectroscopy Observatory; Hubble Space Telescope; Lunar Transit Telescope; Astrometric Interferometer Mission; Next Generation Space Telescope; Imaging Optical Interferometer; Far Ultraviolet Spectroscopic Explorer; Gravity Probe B; Laser Gravity Wave Observatory in Space; Stratospheric Observatory for Infrared Astronomy; Space Infrared Telescope Facility; Submillimeter Intermediate Mission; Large Deployable Reflector; Submillimeter Interferometer; and Next Generation Orbiting Very Long Baseline Interferometer.
Effects of joints in truss structures
NASA Technical Reports Server (NTRS)
Ikegami, R.
1988-01-01
The response of truss-type structures for future space applications, such as Large Deployable Reflector (LDR), will be directly affected by joint performance. Some of the objectives of research at BAC were to characterize structural joints, establish analytical approaches that incorporate joint characteristics, and experimentally establish the validity of the analytical approaches. The test approach to characterize joints for both erectable and deployable-type structures was based upon a Force State Mapping Technique. The approach pictorially shows how the nonlinear joint results can be used for equivalent linear analysis. Testing of the Space Station joints developed at LaRC (a hinged joint at 2 Hz and a clevis joint at 2 Hz) successfully revealed the nonlinear characteristics of the joints. The Space Station joints were effectively linear when loaded to plus or minus 500 pounds with a corresponding displacement of about plus or minus 0.0015 inch. It was indicated that good linear joints exist which are compatible with errected structures, but that difficulty may be encountered if nonlinear-type joints are incorporated in the structure.
SMAP Instrument Mechanical System Engineering
NASA Technical Reports Server (NTRS)
Slimko, Eric; French, Richard; Riggs, Benjamin
2013-01-01
The Soil Moisture Active Passive (SMAP) mission, scheduled for launch by the end of 2014, is being developed to measure the soil moisture and soil freeze/thaw state on a global scale over a three-year period. The accuracy, resolution, and global coverage of SMAP measurements are invaluable across many science and applications disciplines including hydrology, climate, carbon cycle, and the meteorological, environment, and ecology applications communities. The SMAP observatory is composed of a despun bus and a spinning instrument platform that includes both a deployable 6 meter aperture low structural frequency Astromesh reflector and a spin control system. The instrument section has engendered challenging mechanical system issues associated with the antenna deployment, flexible antenna pointing in the context of a multitude of disturbances, spun section mass properties, spin control system development, and overall integration with the flight system on both mechanical and control system levels. Moreover, the multitude of organizations involved, including two major vendors providing the spin subsystem and reflector boom assembly plus the flight system mechanical and guidance, navigation, and control teams, has led to several unique system engineering challenges. Capturing the key physics associated with the function of the flight system has been challenging due to the many different domains that are applicable. Key interfaces and operational concepts have led to complex negotiations because of the large number of organizations that integrate with the instrument mechanical system. Additionally, the verification and validation concerns associated with the mechanical system have had required far-reaching involvement from both the flight system and other subsystems. The SMAP instrument mechanical systems engineering issues and their solutions are described in this paper.
NASA Technical Reports Server (NTRS)
Angel, Roger; Helms, Richard; Bilbro, Jim; Brown, Norman; Eng, Sverre; Hinman, Steve; Hull-Allen, Greg; Jacobs, Stephen; Keim, Robert; Ulmer, Melville
1992-01-01
What aspects of optical fabrication technology need to be developed so as to facilitate existing planned missions, or enable new ones? Throughout the submillimeter to UV wavelengths, the common goal is to push technology to the limits to make the largest possible apertures that are diffraction limited. At any one wavelength, the accuracy of the surface must be better than lambda/30 (rms error). The wavelength range is huge, covering four orders of magnitude from 1 mm to 100 nm. At the longer wavelengths, diffraction limited surfaces can be shaped with relatively crude techniques. The challenge in their fabrication is to make as large as possible a reflector, given the weight and volume constraints of the launch vehicle. The limited cargo diameter of the shuttle has led in the past to emphasis on deployable or erectable concepts such as the Large Deployable Reflector (LDR), which was studied by NASA for a submillimeter astrophysics mission. Replication techniques that can be used to produce light, low-cost reflecting panels are of great interest for this class of mission. At shorter wavelengths, in the optical and ultraviolet, optical fabrication will tax to the limit the most refined polishing methods. Methods of mechanical and thermal stabilization of the substrate will be severely stressed. In the thermal infrared, the need for large aperture is tempered by the even stronger need to control the telescope's thermal emission by cooled or cryogenic operation. Thus, the SIRTF mirror at 1 meter is not large and does not require unusually high accuracy, but the fabrication process must produce a mirror that is the right shape at a temperature of 4 K. Future large cooled mirrors will present more severe problems, especially if they must also be accurate enough to work at optical wavelengths. At the very shortest wavelengths accessible to reflecting optics, in the x-ray domain, the very low count fluxes of high energy photons place a premium on the collecting area. It is not necessary to reach or even approach the diffraction limit, which would demand subnanometer fabrication and figure control. Replication techniques that produce large very lightweight surfaces are of interest for x-ray optics just as they are for the submillimeter region. Optical fabrication requirements are examined in more detail for missions in each of the three spectral regions of interest in astrophysics.
NASA Astrophysics Data System (ADS)
Angel, Roger; Helms, Richard; Bilbro, Jim; Brown, Norman; Eng, Sverre; Hinman, Steve; Hull-Allen, Greg; Jacobs, Stephen; Keim, Robert; Ulmer, Melville
1992-08-01
What aspects of optical fabrication technology need to be developed so as to facilitate existing planned missions, or enable new ones? Throughout the submillimeter to UV wavelengths, the common goal is to push technology to the limits to make the largest possible apertures that are diffraction limited. At any one wavelength, the accuracy of the surface must be better than lambda/30 (rms error). The wavelength range is huge, covering four orders of magnitude from 1 mm to 100 nm. At the longer wavelengths, diffraction limited surfaces can be shaped with relatively crude techniques. The challenge in their fabrication is to make as large as possible a reflector, given the weight and volume constraints of the launch vehicle. The limited cargo diameter of the shuttle has led in the past to emphasis on deployable or erectable concepts such as the Large Deployable Reflector (LDR), which was studied by NASA for a submillimeter astrophysics mission. Replication techniques that can be used to produce light, low-cost reflecting panels are of great interest for this class of mission. At shorter wavelengths, in the optical and ultraviolet, optical fabrication will tax to the limit the most refined polishing methods. Methods of mechanical and thermal stabilization of the substrate will be severely stressed. In the thermal infrared, the need for large aperture is tempered by the even stronger need to control the telescope's thermal emission by cooled or cryogenic operation. Thus, the SIRTF mirror at 1 meter is not large and does not require unusually high accuracy, but the fabrication process must produce a mirror that is the right shape at a temperature of 4 K. Future large cooled mirrors will present more severe problems, especially if they must also be accurate enough to work at optical wavelengths. At the very shortest wavelengths accessible to reflecting optics, in the x-ray domain, the very low count fluxes of high energy photons place a premium on the collecting area. It is not necessary to reach or even approach the diffraction limit, which would demand subnanometer fabrication and figure control. Replication techniques that produce large very lightweight surfaces are of interest for x-ray optics just as they are for the submillimeter region. Optical fabrication requirements are examined in more detail for missions in each of the three spectral regions of interest in astrophysics.
A Deployable Primary Mirror for Space Telescopes
NASA Technical Reports Server (NTRS)
Lake, Mark S.; Phelps, James E.; Dyer, Jack E.; Caudle, David A.; Tam, Anthony
1999-01-01
NASA Langley Research Center, Composite Optics, Inc., and Nyma/ADF have developed jointly a deployable primary mirror for space telescopes that combines over five years of research on deployment of optical-precision structures and over ten years of development of fabrication techniques for optical-precision composite mirror panels and structures. The deployable mirror is directly applicable to a broad class of non-imaging "lidar" (Light direction and ranging) telescopes whose figure-error requirements are in the range of one to ten microns RMS. Furthermore, the mirror design can be readily modified to accommodate imaging-quality reflector panels and active panel-alignment control mechanisms for application to imaging telescopes. The present paper: 1) describes the deployable mirror concept; 2) explains the status of the mirror development; and 3) provides some technical specifications for a 2.55- m-diameter, proof-of-concept mirror.
A Deployable Primary Mirror for Space Telescopes
NASA Technical Reports Server (NTRS)
Lake, Mark S.; Phelps, James E.; Dyer, Jack E.; Caudle, David A.; Tam, Anthony; Escobedo, Javier; Kasl, Eldon P.
1999-01-01
NASA Langley Research Center, Composite Optics, Inc., and Nyma/ADF have developed jointly a deployable primary mirror for space telescopes that combines over five years of research on deployment of optical-precision structures and over ten years of development of fabrication techniques for optical-precision composite mirror panels and structures. The deployable mirror is directly applicable to a broad class of non-imaging "lidar" (light direction and ranging) telescopes whose figure-error requirements are in the range of one to ten microns RMS. Furthermore, the mirror design can be readily modified to accommodate imaging-quality reflector panels and active panel-alignment control mechanisms for application to imaging telescopes. The present paper: 1) describes the deployable mirror concept; 2) explains the status of the mirror development; and 3) provides some technical specifications for a 2.55-m-diameter, proof-of-concept mirror.
Optimization of spherical facets for parabolic solar concentrators
NASA Technical Reports Server (NTRS)
White, J. E.; Erikson, R. J.; Sturgis, J. D.; Elfe, T. B.
1986-01-01
Solar concentrator designs which employ deployable hexagonal panels are being developed for space power systems. An offset optical configuration has been developed which offers significant system level advantages over previously proposed collector designs for space applications. Optical analyses have been performed which show offset reflector intercept factors to be only slightly lower than those for symmetric reflectors with the same slope error. Fluxes on the receiver walls are asymmetric but manageable by varying the tilt angle of the receiver. Greater producibility is achieved by subdividing the hexagonal panels into triangular mirror facets of spherical contour. Optical analysis has been performed upon these to yield near-optimum sizes and radii.
CALISTO: A Cryogenic Far-Infrared/Submillimeter Observatory
NASA Technical Reports Server (NTRS)
Goldsmith, P. F.; Bradford, C. M.; Dragovan, M.; Khayatian, B.; Huffenberger, K.; O'Dwyer, I. J.; Gorski, K.; Yorke, H. W.; Zmuidzinas, J.; Paine, C.;
2007-01-01
We present a design for a cryogenically cooled large aperture telescope for far-infrared astronomy in the wavelength range 30 micrometers to 300 micrometers. The Cryogenic Aperture Large Infrared Space Telescope Observatory, or CALISTO, is based on an off-axis Gregorian telescope having a 4 m by 6 m primary reflector. This can be launched using an Atlas V 511, with the only optical deployment required being a simple hinged rotation of the secondary reflector. The off-axis design, which includes a cold stop, offers exceptionally good performance in terms of high efficiency and minimum coupling of radiation incident from angles far off the direction of maximum response. This means that strong astronomical sources, such as the Milky Way and zodiacal dust in the plane of the solar system, add very little to the background. The entire optical system is cooled to 4 K to make its emission less than even this low level of astronomical emission. Assuming that detector technology can be improved to the point where detector noise is less than that of the astronomical background, we anticipate unprecedented low values of system noise equivalent power, in the vicinity of 10(exp -19) WHz(exp -0.5), through CALISTO's operating range. This will enable a variety of new astronomical investigations ranging from studies of objects in the outer solar system to tracing the evolution of galaxies in the universe throughout cosmic time.
NASA Astrophysics Data System (ADS)
Pratt, T. L.
2017-12-01
Unconsolidated, near-surface sediments can influence the amplitudes and frequencies of ground shaking during earthquakes. Ideally these effects are accounted for when determining ground motion prediction equations and in hazard estimates summarized in seismic hazard maps. This study explores the use of teleseismic arrivals recorded on linear receiver arrays to estimate the seismic velocities, determine the frequencies of fundamental resonance peaks, and image the major reflectors in the Atlantic Coastal Plain (ACP) and Mississippi Embayment (ME) strata of the central and southeastern United States. These strata have thicknesses as great as 2 km near the coast in the study areas, but become thin and eventually pinch out landward. Spectral ratios relative to bedrock sites were computed from teleseismic arrivals recorded on linear arrays deployed across the sedimentary sequences. The large contrast in properties at the bedrock surface produces a strong fundamental resonance peak in the 0.2 to 4 Hz range. Contour maps of sediment thicknesses derived from drill hole data allow for the theoretical estimation of average velocities by matching the observed frequencies at which resonance peaks occur. The sloping bedrock surface allows for calculation of a depth-varying velocity profile, under the assumption that the velocities at each depth do not change laterally between stations. The spectral ratios can then be converted from frequency to depth, resulting in an image of the subsurface similar to that of a seismic reflection profile but with amplitudes being the spectral ratio caused by a reflector at that depth. The complete data set thus provides an average velocity function for the sedimentary sequence, the frequencies and amplitudes of the major resonance peaks, and a subsurface image of the major reflectors producing resonance peaks. The method is demonstrated using three major receiver arrays crossing the ACP and ME strata that originally were deployed for imaging the crust and mantle, confirming that teleseismic signals can be used to characterize sedimentary strata in the upper km.
Hybrid deployable support truss designs for LDR
NASA Technical Reports Server (NTRS)
Hedgepeth, J.
1988-01-01
Concepts for a 20-meter diameter Large Deployable Reflector (LDR) deployable truss backup structure, and analytical predictions of its structural characteristics are discussed. The concept shown is referred to as the SIXPAC; It is a combination of the PACTRUSS concept and a single-fold beam, which would make up the desired backup structure. One advantage of retaining the PACTRUSS concept is its packaging density and its capability for synchronous deployment. Various 2-meter hexagonal panel arrangements are possible for this Hybrid PACTRUSS structure depending on the panel-to-structure attachment strategies used. Static analyses of the SIXPAC using various assumptions for truss designs and panel masses of 10 kg sq meters were performed to predict the tip displacement of the structure when supported at the center. The tip displacement ranged from 0.20 to 0.44 mm without the panel mass, and from 0.9 to 3.9 mm with the panel mass (in a 1-g field). The data indicate that the structure can be adequately ground tested to validate its required performance in space, assuming the required performance in space is approximately 100 microns. The static displacement at the tip of the structure when subjected to an angular acceleration of 0.001 rad/sec squared were estimated to range from 0.8 to 7.5 microns, depending on the type of truss elements.
NASA Technical Reports Server (NTRS)
Lake, Mark S.; Heard, Walter L., Jr.; Watson, Judith J.; Collins, Timothy J.
2000-01-01
A detailed procedure is presented that enables astronauts in extravehicular activity (EVA) to efficiently assemble and repair large (i.e., greater than 10m-diameter) segmented reflectors, supported by a truss, for space-based optical or radio-frequency science instruments. The procedure, estimated timelines, and reflector hardware performance are verified in simulated 0-g (neutral buoyancy) assembly tests of a 14m-diameter, offset-focus, reflector test article. The test article includes a near-flight-quality, 315-member, doubly curved support truss and 7 mockup reflector panels (roughly 2m in diameter) representing a portion of the 37 total panels needed to fully populate the reflector. Data from the tests indicate that a flight version of the design (including all reflector panels) could be assembled in less than 5 hours - less than the 6 hours normally permitted for a single EVA. This assembly rate essentially matches pre-test predictions that were based on a vast amount of historical data on EVA assembly of structures produced by NASA Langley Research Center. Furthermore, procedures and a tool for the removal and replacement of a damaged reflector panel were evaluated, and it was shown that EVA repair of this type of reflector is feasible with the use of appropriate EVA crew aids.
RF Technologies for Advancing Space Communication Infrastructure
NASA Technical Reports Server (NTRS)
Romanofsky, Robert R.; Bibyk, Irene K.; Wintucky, Edwin G.
2006-01-01
This paper will address key technologies under development at the NASA Glenn Research Center designed to provide architecture-level impacts. Specifically, we will describe deployable antennas, a new type of phased array antenna and novel power amplifiers. The evaluation of architectural influence can be conducted from two perspectives where said architecture can be analyzed from either the top-down to determine the areas where technology improvements will be most beneficial or from the bottom-up where each technology s performance advancement can affect the overall architecture s performance. This paper will take the latter approach with focus on some technology improvement challenges and address architecture impacts. For example, using data rate as a performance metric, future exploration scenarios are expected to demand data rates possibly exceeding 1 Gbps. To support these advancements in a Mars scenario, as an example, Ka-band and antenna aperture sizes on the order of 10 meters will be required from Mars areostationary platforms. Key technical challenges for a large deployable antenna include maximizing the ratio of deployed-to-packaged volume, minimizing aerial density, maintaining RMS surface accuracy to within 1/20 of a wavelength or better, and developing reflector rigidization techniques. Moreover, the high frequencies and large apertures manifest a new problem for microwave engineers that are familiar to optical communications specialists: pointing. The fine beam widths and long ranges dictate the need for electronic or mechanical feed articulation to compensate for spacecraft attitude control limitations.
The Large Deployable Reflector (LDR) - Plans and progress
NASA Technical Reports Server (NTRS)
Swanson, Paul N.
1987-01-01
The program history, scientific aims, design, and projected performance of the LDR, a 20-m-primary two-stage four-mirror orbiting sub-mm/FIR astronomical observatory under NASA development, are reviewed. It is shown that the LDR would provide capabilities complementary to those of IRAS, the Kuiper Airborne Observatory, the IRTF, the Hubble Space Telescope, and the planned Space IR Telescope Facility for observations of small-scale background anisotropies, high-redshift galaxies, and objects at temperatures of a few times 10 K or lower. The current design concept is illustrated with extensive drawings, diagrams, and tables of instrument parameters. Particular attention is given to the graphite-epoxy facing and Al-honeycomb core of the primary structure, the focal-plane instruments, and outstanding technological problems.
Numerical form-finding method for large mesh reflectors with elastic rim trusses
NASA Astrophysics Data System (ADS)
Yang, Dongwu; Zhang, Yiqun; Li, Peng; Du, Jingli
2018-06-01
Traditional methods for designing a mesh reflector usually treat the rim truss as rigid. Due to large aperture, light weight and high accuracy requirements on spaceborne reflectors, the rim truss deformation is indeed not negligible. In order to design a cable net with asymmetric boundaries for the front and rear nets, a cable-net form-finding method is firstly introduced. Then, the form-finding method is embedded into an iterative approach for designing a mesh reflector considering the elasticity of the supporting rim truss. By iterations on form-findings of the cable-net based on the updated boundary conditions due to the rim truss deformation, a mesh reflector with a fairly uniform tension distribution in its equilibrium state could be finally designed. Applications on offset mesh reflectors with both circular and elliptical rim trusses are illustrated. The numerical results show the effectiveness of the proposed approach and that a circular rim truss is more stable than an elliptical rim truss.
Construction of Prototype Lightweight Mirrors
NASA Technical Reports Server (NTRS)
Robinson, William G.
1997-01-01
This contract and the work described was in support of a Seven Segment Demonstrator (SSD) and demonstration of a different technology for construction of lightweight mirrors. The objectives of the SSD were to demonstrate functionality and performance of a seven segment prototype array of hexagonal mirrors and supporting electromechanical components which address design issues critical to space optics deployed in large space based telescopes for astronomy and for optics used in spaced based optical communications systems. The SSD was intended to demonstrate technologies which can support the following capabilities; Transportation in dense packaging to existing launcher payload envelopes, then deployable on orbit to form space telescope with large aperture. Provide very large (less than 10 meters) primary reflectors of low mass and cost. Demonstrate the capability to form a segmented primary or quaternary mirror into a quasi-continuous surface with individual subapertures phased so that near diffraction limited imaging in the visible wavelength region is achieved. Continuous compensation of optical wavefront due to perturbations caused by imperfections, natural disturbances, and equipment induced vibrations/deflections to provide near diffraction limited imaging performance in the visible wavelength region. Demonstrate the feasibility of fabricating such systems with reduced mass and cost compared to past approaches. While the SSD could not be expected to satisfy all of the above capabilities, the intent was to start identifying and understanding new technologies that might be applicable to these goals.
The DART Cylindrical, Infrared, 1 Meter Membrane Reflector
NASA Technical Reports Server (NTRS)
Morgan, Rhonda M.; Agnes, Greg S.; Barber, Dan; Dooley, Jennifer; Dragovan, Mark; Hatheway, Al E.; Marcin, Marty
2004-01-01
The Dual Anamorphic Reflector Telescopes (DART) is an architecture for large aperture space telescopes that enables the use of membranes. A membrane can be readily shaped in one direction of curvature using a combination of boundary control and tensioning, yielding a cylindrical reflector. Two cylindrical reflectors (orthogonal and confocal) comprise the 'primary mirror' of the telescope system. The aperture is completely unobstructed and ideal for infrared and high contrast observations.
Surface measuring technique. [using a laser to scan the surface of a reflector
NASA Technical Reports Server (NTRS)
Spiers, R. B., Jr.
1980-01-01
Measurement of the surface contour of a large electrostatically formed concave reflector using a modified Foucault or knife edge test is described. The curve of the actual electrostatically formed reflector surface is compared to a curve representing a reference sphere. Measurements of surface slope and deviation are calculated every 15 cm along the reflector's horizontal and vertical diameters. Characterization of surface roughness on a small scale compared to the laser spot size at the reflector are obtained from the increased laser spot size at a distant projection screen.
Temperature Distribution and Influence Mechanism on Large Reflector Antennas under Solar Radiation
NASA Astrophysics Data System (ADS)
Wang, C. S.; Yuan, S.; Liu, X.; Xu, Q.; Wang, M.; Zhu, M. B.; Chen, G. D.; Duan, Y. H.
2017-10-01
The solar impact on antenna must be lessened for the large reflector antenna operating at high frequencies to have great electromagnetic performances. Therefore, researching the temperature distribution and its influence on large reflector antenna is necessary. The variation of solar incidence angle is first calculated. Then the model is simulated by the I-DEAS software, with the temperature, thermal stress, and thermal distortion distribution through the day obtained. In view of the important influence of shadow on antenna structure, a newly proposed method makes a comprehensive description of the temperature distribution on the reflector and its influence through the day by dividing a day into three different periods. The sound discussions and beneficial summary serve as the scientific foundation for the engineers to compensate the thermal distortion and optimize the antenna structure.
Analysis of a generalized dual reflector antenna system using physical optics
NASA Technical Reports Server (NTRS)
Acosta, Roberto J.; Lagin, Alan R.
1992-01-01
Reflector antennas are widely used in communication satellite systems because they provide high gain at low cost. Offset-fed single paraboloids and dual reflector offset Cassegrain and Gregorian antennas with multiple focal region feeds provide a simple, blockage-free means of forming multiple, shaped, and isolated beams with low sidelobes. Such antennas are applicable to communications satellite frequency reuse systems and earth stations requiring access to several satellites. While the single offset paraboloid has been the most extensively used configuration for the satellite multiple-beam antenna, the trend toward large apertures requiring minimum scanned beam degradation over the field of view 18 degrees for full earth coverage from geostationary orbit may lead to impractically long focal length and large feed arrays. Dual reflector antennas offer packaging advantages and more degrees of design freedom to improve beam scanning and cross-polarization properties. The Cassegrain and Gregorian antennas are the most commonly used dual reflector antennas. A computer program for calculating the secondary pattern and directivity of a generalized dual reflector antenna system was developed and implemented at LeRC. The theoretical foundation for this program is based on the use of physical optics methodology for describing the induced currents on the sub-reflector and main reflector. The resulting induced currents on the main reflector are integrated to obtain the antenna far-zone electric fields. The computer program is verified with other physical optics programs and with measured antenna patterns. The comparison shows good agreement in far-field sidelobe reproduction and directivity.
Large-Scale All-Dielectric Metamaterial Perfect Reflectors
Moitra, Parikshit; Slovick, Brian A.; li, Wei; ...
2015-05-08
All-dielectric metamaterials offer a potential low-loss alternative to plasmonic metamaterials at optical frequencies. In this paper, we take advantage of the low absorption loss as well as the simple unit cell geometry to demonstrate large-scale (centimeter-sized) all-dielectric metamaterial perfect reflectors made from silicon cylinder resonators. These perfect reflectors, operating in the telecommunications band, were fabricated using self-assembly based nanosphere lithography. In spite of the disorder originating from the self-assembly process, the average reflectance of the metamaterial perfect reflectors is 99.7% at 1530 nm, surpassing the reflectance of metallic mirrors. Moreover, the spectral separation of the electric and magnetic resonances canmore » be chosen to achieve the required reflection bandwidth while maintaining a high tolerance to disorder. Finally, the scalability of this design could lead to new avenues of manipulating light for low-loss and large-area photonic applications.« less
Apparatus for production of ultrapure amorphous metals utilizing acoustic cooling
NASA Technical Reports Server (NTRS)
Lee, M. C. (Inventor)
1985-01-01
Amorphous metals are produced by forming a molten unit of metal and deploying the unit into a bidirectional acoustical levitating field or by dropping the unit through a spheroidizing zone, a slow quenching zone, and a fast quenching zone in which the sphere is rapidly cooled by a bidirectional jet stream created in the standing acoustic wave field produced between a half cylindrical acoustic driver and a focal reflector or a curved driver and a reflector. The cooling rate can be further augmented first by a cryogenic liquid collar and secondly by a cryogenic liquid jacket surrounding a drop tower. The molten unit is quenched to an amorphous solid which can survive impact in a unit collector or is retrieved by a vacuum chuck.
Temperature stability limits for an isothermal demagnetization refrigerator
NASA Technical Reports Server (NTRS)
Kittel, P.
1984-01-01
It is pointed out that magnetic refrigeration can provide additional cooling for infrared detectors on space missions, taking into account the Shuttle Infrared Telescope Facility (SIRTF) and the Large Deployable Reflector (LDR). From a temperature of 2 K provided by the primary cryogens, magnetic refrigerators could cool bolometers or pumped photoconductors to 0.1 K or below. Such a reduction in operating temperature would increase the sensitivity for bolometers, while the response at longer wavelengths for pumped photoconductors would be improved. Two types of magnetic refrigeration cycles have been proposed. One type uses a complete demagnetization. The present investigation is concerned with the second type, which uses a feedback-controlled isothermal demagnetization, taking into account the temperature stability limits. Attention is given to control system resolution, thermometer noise, reaction time, and thermal time constants.
NASA Technical Reports Server (NTRS)
Agnew, Donald L.; Jones, Peter A.
1989-01-01
A study was conducted to define reasonable and representative LDR system concepts for the purpose of defining a technology development program aimed at providing the requisite technological capability necessary to start LDR development by the end of 1991. This volume presents thirteen technology assessments and technology development plans, as well as an overview and summary of the LDR concepts. Twenty-two proposed augmentation projects are described (selected from more than 30 candidates). The five LDR technology areas most in need of supplementary support are: cryogenic cooling; astronaut assembly of the optically precise LDR in space; active segmented primary mirror; dynamic structural control; and primary mirror contamination control. Three broad, time-phased, five-year programs were synthesized from the 22 projects, scheduled, and funding requirements estimated.
Inflatable Antenna Microwave Radiometer for Soil Moisture Measurement
NASA Technical Reports Server (NTRS)
Bailey, M. C.; Kendall, Bruce M.; Schroeder, Lyle C.; Harrington, Richard F.
1993-01-01
Microwave measurements of soil moisture are not being obtained at the required spatial Earth resolution with current technology. Recently, new novel designs for lightweight reflector systems have been developed using deployable inflatable antenna structures which could enable lightweight real-aperture radiometers. In consideration of this, a study was conducted at the NASA Langley Research Center (LaRC) to determine the feasibility of developing a microwave radiometer system using inflatable reflector antenna technology to obtain high spatial resolution radiometric measurements of soil moisture from low Earth orbit and which could be used with a small and cost effective launch vehicle. The required high resolution with reasonable swath width coupled with the L-band measurement frequency for soil moisture dictated the use of a large (30 meter class) real aperture antenna in conjunction with a pushbroom antenna beam configuration and noise-injection type radiometer designs at 1.4 and 4.3 GHz to produce a 370 kilometer cross-track swath with a 10 kilometer resolution that could be packaged for launch with a Titan 2 class vehicle. This study includes design of the inflatable structure, control analysis, structural and thermal analysis, antenna and feed design, radiometer design, payload packaging, orbital analysis, and electromagnetic losses in the thin membrane inflatable materials.
Detection of reflector surface from near field phase measurements
NASA Technical Reports Server (NTRS)
Ida, Nathan
1991-01-01
The deviation of a reflector antenna surface from a perfect parabolic shape causes degradation of the performance of the antenna. The problem of determining the shape of the reflector surface in a reflector antenna using near field phase measurements is not a new one. A recent issue of the IEEE tansactions on Antennas and Propagation (June 1988) contained numerous descriptions of the use of these measurements: holographic reconstruction or inverse Fourier transform. Holographic reconstruction makes use of measurement of the far field of the reflector and then applies the Fourier transform relationship between the far field and the current distribution on the reflector surface. Inverse Fourier transformation uses the phase measurements to determine the far field pattern using the method of Kerns. After the far field pattern is established, an inverse Fourier transform is used to determine the phases in a plane between the reflector surface and the plane in which the near field measurements were taken. These calculations are time consuming since they involve a relatively large number of operations. A much faster method can be used to determine the position of the reflector. This method makes use of simple geometric optics to determine the path length of the ray from the feed to the reflector and from the reflector to the measurement point. For small physical objects and low frequencies, diffraction effects have a major effect on the error, and the algorithm provides incorrect results. It is believed that the effect is less noticeable for large distortions such as antenna warping, and more noticeable for small, localized distortions such as bumps and depressions such as might be caused by impact damage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Percher, C. M.; Heinrichs, D. P.; Kim, S. K.
2016-07-18
This report documents the results of final design (CED-2) for IER 203, BERP Ball Composite Reflection, and focuses on critical configurations with a 4.5 kg α-phase plutonium sphere reflected by a combination of thin high-density polyethylene (HDPE) backed by a thick nickel reflector. The Lawrence Livermore National Laboratory’s (LLNL’s) Nuclear Criticality Safety Division, in support of fissile material operations, calculated surprisingly reactive configurations when a fissile core was surrounded by a thin, moderating reflector backed by a thick metal reflector. These composite reflector configurations were much more reactive than either of the single reflector materials separately. The calculated findings havemore » resulted in a stricter-than-anticipated criticality control set, impacting programmatic work. IER 203 was requested in response to these seemingly anomalous calculations to see if the composite reflection effect could be shown experimentally. This report focuses on the Beryllium Reflected Plutonium (BERP) ball as a fissile material core reflected by polyethylene and nickel. A total of four critical configurations were designed as part of CED-2. Fabrication costs are estimated to be $98,500, largely due to the cost of the large nickel reflectors. The IER 203 experiments could reasonably be expected to begin in early FY2017.« less
A soft actuation system for segmented reflector articulation and isolation
NASA Technical Reports Server (NTRS)
Agronin, Michael L.; Jandura, Louise
1990-01-01
Segmented reflectors have been proposed for space based applications such as optical communication and large diameter telescopes. An actuation system for mirrors in a space based segmented mirror array was developed as part of NASA's Precision Segmented Reflector program. The actuation system, called the Articulated Panel Module (APM), provides 3 degrees of freedom mirror articulation, gives isolation from structural motion, and simplifies space assembly of the mirrors to the reflector backup truss. A breadboard of the APM was built and is described.
The DART System for Far-IR/Submillimeter Space Missions
NASA Technical Reports Server (NTRS)
Dragovan, Mark
2004-01-01
The DART is a system of two cylindrical-parabolic reflectors. One reflector will produce a line focus; two reflectors properly oriented will produce a point focus. For far-infrared/submillimeter missions, the DART presents a compelling new telescope architecture that is scalable to alrge apertures, and with it's large membrane area is well suited to passive cooling.
Low concentration ratio solar array structural configuration
NASA Astrophysics Data System (ADS)
Nalbandian, S. J.
1984-01-01
The design and structural properties of a low concentration ratio solar array are discussed. The assembled module consists of six interconnected containers which are compactly stowed in a volume of 3.24 m(3) for delivery to orbit by the shuttle. The containers deploy in accordian fashion into a rectangular area of 19.4 x 68 meters and can be attached to the user spacecraft along the longitudinal centerline of the end container housing. Five rotary incremental actuators requiring about 8 watts each will execute the 180-degree rotation at each joint. Deployable masts (three per side) are used to extend endcaps from the housing in both directions. Each direction is extended by three masts requiring about 780 watts for about 27 minutes. Concentrator elements are extended by the endcaps and are supported by cable systems that are connected between the housings and endcaps. These power generating elements contain reflector panels which concentrate light onto the solar panels consisting of an aluminum radiator with solar cells positioned within the element base formed by the reflectors. A flat wire harness collects the power output of individual elements for transfer to the module container housing harnesses.
The development of composite materials for spacecraft precision reflector panels
NASA Technical Reports Server (NTRS)
Tompkins, Stephen S.; Bowles, David E.; Funk, Joan G.; Towell, Timothy W.; Lavoie, J. A.
1990-01-01
One of the critical technology needs for large precision reflectors required for future astrophysics and optical communications is in the area of structural materials. Therefore, a major area of the Precision Segmented Reflector Program at NASA is to develop lightweight composite reflector panels with durable, space environmentally stable materials which maintain both surface figure and required surface accuracy necessary for space telescope applications. Results from the materials research and development program at NASA Langley Research Center are discussed. Advanced materials that meet the reflector panel requirements are identified. Thermal, mechanical and durability properties of candidate materials after exposure to simulated space environments are compared to the baseline material.
Testing of the BipiColombo Antenna Pointing Mechanism
NASA Astrophysics Data System (ADS)
Campo, Pablo; Barrio, Aingeru; Martin, Fernando
2015-09-01
BepiColombo is an ESA mission to Mercury, its planetary orbiter (MPO) has two antenna pointing mechanism, High gain antenna (HGA) pointing mechanism steers and points a large reflector which is integrated at system level by TAS-I Rome. Medium gain antenna (MGA) APM points a 1.5 m boom with a horn antenna. Both radiating elements are exposed to sun fluxes as high as 10 solar constants without protections.A previous paper [1] described the design and development process to solve the challenges of performing in harsh environment.. Current paper is focused on the testing process of the qualification units. Testing performance of antenna pointing mechanism in its specific environmental conditions has required special set-up and techniques. The process has provided valuable feedback on the design and the testing methods which have been included in the PFM design and tests.Some of the technologies and components were developed on dedicated items priort to EQM, but once integrated, test behaviour had relevant differences.Some of the major concerns for the APM testing are:- Create during the thermal vacuum testing the qualification temperature map with gradients along the APM. From of 200oC to 70oC.- Test in that conditions the radio frequency and pointing performances adding also high RF power to check the power handling and self-heating of the rotary joint.- Test in life up to 12000 equivalent APM revolutions, that is 14.3 million motor revolutions in different thermal conditions.- Measure low thermal distortion of the mechanical chain, being at the same time insulated from external environment and interfaces (55 arcsec pointing error)- Perform deployment of large items guaranteeing during the process low humidity, below 5% to protect dry lubrication- Verify stability with representative inertia of large boom or reflector 20 Kgm2.
NASA Astrophysics Data System (ADS)
Wang, Wei; Lian, Peiyuan; Zhang, Shuxin; Xiang, Binbin; Xu, Qian
2017-05-01
Large reflector antennas are widely used in radars, satellite communication, radio astronomy, and so on. The rapid developments in these fields have created demands for development of better performance and higher surface accuracy. However, low accuracy and low efficiency are the common disadvantages for traditional panel alignment and adjustment. In order to improve the surface accuracy of large reflector antenna, a new method is presented to determinate panel adjustment values from far field pattern. Based on the method of Physical Optics (PO), the effect of panel facet displacement on radiation field value is derived. Then the linear system is constructed between panel adjustment vector and far field pattern. Using the method of Singular Value Decomposition (SVD), the adjustment value for all panel adjustors are obtained by solving the linear equations. An experiment is conducted on a 3.7 m reflector antenna with 12 segmented panels. The results of simulation and test are similar, which shows that the presented method is feasible. Moreover, the discussion about validation shows that the method can be used for many cases of reflector shape. The proposed research provides the instruction to adjust surface panels efficiently and accurately.
NASA Technical Reports Server (NTRS)
Cambell, T. G.; Bailey, M. C.; Cockrell, C. R.; Beck, F. B.
1983-01-01
The electromagnetic analysis activities at the Langley Research Center are resulting in efficient and accurate analytical methods for predicting both far- and near-field radiation characteristics of large offset multiple-beam multiple-aperture mesh reflector antennas. The utilization of aperture integration augmented with Geometrical Theory of Diffraction in analyzing the large reflector antenna system is emphasized.
Microwave performance characterization of large space antennas
NASA Technical Reports Server (NTRS)
Bathker, D. A. (Editor)
1977-01-01
Performance capabilities of large microwave space antenna configurations with apertures generally from 100 wavelengths upwards are discussed. Types of antennas considered include: phased arrays, lenses, reflectors, and hybrid combinations of phased arrays with reflectors or lenses. The performance characteristics of these broad classes of antennas are examined and compared in terms of applications.
The Position and Attitude of Sub-reflector Modeling for TM65 m Radio Telescope
NASA Astrophysics Data System (ADS)
Sun, Z. X.; Chen, L.; Wang, J. Q.
2016-01-01
In the course of astronomical observations, with changes in angle of pitch, the large radio telescope will have different degrees of deformation in the sub-reflector support, back frame, main reflector etc, which will lead to the dramatic decline of antenna efficiency in both high and low elevation. A sub-reflector system of the Tian Ma 65 m radio telescope has been installed in order to compensate for the gravitational deformations of the sub-reflector support and the main reflector. The position and attitude of the sub-reflector are variable in order to improve the pointing performance and the efficiency at different elevations. In this paper, it is studied that the changes of position and attitude of the sub-reflector have influence on the efficiency of antenna in the X band and Ku band. A model has been constructed to determine the position and attitude of the sub-reflector with elevation, as well as the point compensation model, by observing the radio source. In addition, antenna efficiency was tested with sub-reflector position adjusted and fixed. The results show that the model of sub-reflector can effectively improve the efficiency of the 65 m radio telescope. In X band, the aperture efficiency of the radio telescope reaches more than 60% over the entire elevation range.
Development of optical ground verification method for μm to sub-mm reflectors
NASA Astrophysics Data System (ADS)
Stockman, Y.; Thizy, C.; Lemaire, P.; Georges, M.; Mazy, E.; Mazzoli, A.; Houbrechts, Y.; Rochus, P.; Roose, S.; Doyle, D.; Ulbrich, G.
2017-11-01
Large reflectors and antennas for the IR to mm wavelength range are being planned for many Earth observation and astronomical space missions and for commercial communication satellites as well. Scientific observatories require large telescopes with precisely shaped reflectors for collecting the electro-magnetic radiation from faint sources. The challenging tasks of on-ground testing are to achieve the required accuracy in the measurement of the reflector shapes and antenna structures and to verify their performance under simulated space conditions (vacuum, low temperatures). Due to the specific surface characteristics of reflectors operating in these spectral regions, standard optical metrology methods employed in the visible spectrum do not provide useful measurement results. The current state-of-the-art commercial metrology systems are not able to measure these types of reflectors because they have to face the measurement of shape and waviness over relatively large areas with a large deformation dynamic range and encompassing a wide range of spatial frequencies. 3-D metrology (tactile coordinate measurement) machines are generally used during the manufacturing process. Unfortunately, these instruments cannot be used in the operational environmental conditions of the reflector. The application of standard visible wavelength interferometric methods is very limited or impossible due to the large relative surface roughnesses involved. A small number of infrared interferometers have been commercially developed over the last 10 years but their applications have also been limited due to poor dynamic range and the restricted spatial resolution of their detectors. These restrictions affect also the surface error slopes that can be captured and makes their application to surfaces manufactured using CRFP honeycomb technologies rather difficult or impossible. It has therefore been considered essential, from the viewpoint of supporting future ESA exploration missions, to develop and realise suitable verification tools based on infrared interferometry and other optical techniques for testing large reflector structures, telescope configurations and their performances under simulated space conditions. Two methods and techniques are developed at CSL. The first one is an IR-phase shifting interferometer with high spatial resolution. This interferometer shall be used specifically for the verification of high precision IR, FIR and sub-mm reflector surfaces and telescopes under both ambient and thermal vacuum conditions. The second one presented hereafter is a holographic method for relative shape measurement. The holographic solution proposed makes use of a home built vacuum compatible holographic camera that allows displacement measurements from typically 20 nanometres to 25 microns in one shot. An iterative process allows the measurement of a total of up to several mm of deformation. Uniquely the system is designed to measure both specular and diffuse surfaces.
A high-powered siren for stable acoustic levitation of dense materials in the earth's gravity
NASA Technical Reports Server (NTRS)
Gammel, Paul M.; Croonquist, Arvid P.; Wang, Taylor G.
1988-01-01
Levitation of large dense samples (e.g., 1-cm diameter steel balls) has been performed in a 1-g environment. A siren was used to study the effects of reflector geometry and variable-frequency operation in order to attain stable acoustic positioning. The harmonic content and spatial distribution of the acoustic field have been investigated. The best stability was obtained with an open reflector system, using a flat lower reflector and a slightly concave upper reflector while operating at a frequency slightly below resonance.
Diffraction, chopping, and background subtraction for LDR
NASA Technical Reports Server (NTRS)
Wright, Edward L.
1988-01-01
The Large Deployable Reflector (LDR) will be an extremely sensitive infrared telescope if the noise due to the photons in the large thermal background is the only limiting factor. For observations with a 3 arcsec aperture in a broadband at 100 micrometers, a 20-meter LDR will emit 10(exp 12) per second, while the photon noise limited sensitivity in a deep survey observation will be 3,000 photons per second. Thus the background subtraction has to work at the 1 part per billion level. Very small amounts of scattered or diffracted energy can be significant if they are modulated by the chopper. The results are presented for 1-D and 2-D diffraction calculations for the lightweight, low-cost LDR concept that uses an active chopping quaternary to correct the wavefront errors introduced by the primary. Fourier transforms were used to evaluate the diffraction of 1 mm waves through this system. Unbalanced signals due to dust and thermal gradients were also studied.
NASA Astrophysics Data System (ADS)
Andersen, Geoff; Tullson, Drew
2006-06-01
In designing next-generation, ultra-large (>20m) apertures for space, many current concepts involve compactable, curved membrane reflectors. Here we present the idea of using a flat diffractive element that requires no out-of-plane deformation and so is much simpler to deploy. The primary is a photon sieve - a diffractive element consisting of a large number of precisely positioned holes distributed according to an underlying Fresnel Zone Plate (FZP) geometry. The advantage of the photon sieve over the FZP is that all the regions are connected, so the membrane substrate under simple tension can avoid buckling. Also, the hole distribution can be varied to generate any conic or apodization for specialized telescope requirements such as exo-solar planet detection. We have designed and tested numerous photon sieves as telescope primaries. Some of these have over 10 million holes in a 0.1 m diameter aperture and all of them give diffraction limited imaging. While photon sieves are diffractive elements and thus suffer from dispersion, we will present two successful solutions to this problem.
Preliminary design approach for large high precision segmented reflectors
NASA Technical Reports Server (NTRS)
Mikulas, Martin M., Jr.; Collins, Timothy J.; Hedgepeth, John M.
1990-01-01
A simplified preliminary design capability for erectable precision segmented reflectors is presented. This design capability permits a rapid assessment of a wide range of reflector parameters as well as new structural concepts and materials. The preliminary design approach was applied to a range of precision reflectors from 10 meters to 100 meters in diameter while considering standard design drivers. The design drivers considered were: weight, fundamental frequency, launch packaging volume, part count, and on-orbit assembly time. For the range of parameters considered, on-orbit assembly time was identified as the major design driver. A family of modular panels is introduced which can significantly reduce the number of reflector parts and the on-orbit assembly time.
NASA Technical Reports Server (NTRS)
Stutzman, W. L.; Takamizawa, K.; Werntz, P.; Lapean, J.; Barts, R.; Shen, B.
1991-01-01
Virginia Tech is involved in a number of activities with NASA Langley related to large aperture radiometric antenna systems. These efforts are summarized and the focus of this report is on the feasibility study of a synthesis procedure for array feeds to improve radiation performance of large distorted reflector antennas; however, some results for all activities are reported.
Design of shape memory alloy actuated intelligent parabolic antenna for space applications
NASA Astrophysics Data System (ADS)
Kalra, Sahil; Bhattacharya, Bishakh; Munjal, B. S.
2017-09-01
The deployment of large flexible antennas is becoming critical for space applications today. Such antenna systems can be reconfigured in space for variable antenna footprint, and hence can be utilized for signal transmission to different geographic locations. Due to quasi-static shape change requirements, coupled with the demand of large deflection, shape memory alloy (SMA) based actuators are uniquely suitable for this system. In this paper, we discuss the design and development of a reconfigurable parabolic antenna structure. The reflector skin of the antenna is vacuum formed using a metalized polycarbonate shell. Two different strategies are chosen for the antenna actuation. Initially, an SMA wire based offset network is formed on the back side of the reflector. A computational model is developed using equivalent coefficient of thermal expansion (ECTE) for the SMA wire. Subsequently, the interaction between the antenna and SMA wire is modeled as a constrained recovery system, using a 1D modified Brinson model. Joule effect based SMA phase transformation is considered for the relationship between input voltage and temperature at the SMA wire. The antenna is modeled using ABAQUS based finite element methodology. The deflection found through the computational model is compared with that measured in experiment. Subsequently, a point-wise actuation system is developed for higher deflection. For power-minimization, an auto-locking device is developed. The performance of the new configuration is compared with the offset-network configuration. It is envisaged that the study will provide a comprehensive procedure for the design of intelligent flexible structures especially suitable for space applications.
NASA Technical Reports Server (NTRS)
Wales, R. O. (Editor)
1981-01-01
The overall mission and spacecraft systems, testing, and operations are summarized. The mechanical subsystems are reviewed, encompassing mechanical design requirements; separation and deployment mechanisms; design and performance evaluation; and the television camera reflector monitor. Thermal control and contamination are discussed in terms of thermal control subsystems, design validation, subsystems performance, the advanced flight experiment, and the quartz-crystal microbalance contamination monitor.
An antenna pointing mechanism for large reflector antennas
NASA Technical Reports Server (NTRS)
Heimerdinger, H.
1981-01-01
An antenna pointing mechanism for large reflector antennas on direct broadcasting communication satellites was built and tested. After listing the requirements and constraints for this equipment the model is described, and performance figures are given. Futhermore, results of the qualification level tests, including functional, vibrational, thermovacuum, and accelerated life tests are reported. These tests were completed successfully.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heath, G R
1975-07-01
During 10 days in the vicinity of 33$sup 0$20'N, 151$sup 0$00'W (MPG-2 area), three near-bottom current meters were deployed, the bathymetry and subbottom acoustic structure of the surrounding seafloor were determined, and sediment cores were collected for studies of artificial radionuclide distribution, geotechnical properties, geochemical properties, and to identify the character of shallow acoustic reflectors. Large volume water samples for artificial radionuclide studies and suspended sediment were also collected. These samples and data will supplement earlier material to be used in the evaluation of the central North Pacific as a potential site for the ultimate disposal of high-level reactor wastes.more » (auth)« less
Approaching conversion limit with all-dielectric solar cell reflectors.
Fu, Sze Ming; Lai, Yi-Chun; Tseng, Chi Wei; Yan, Sheng Lun; Zhong, Yan Kai; Shen, Chang-Hong; Shieh, Jia-Min; Li, Yu-Ren; Cheng, Huang-Chung; Chi, Gou-chung; Yu, Peichen; Lin, Albert
2015-02-09
Metallic back reflectors has been used for thin-film and wafer-based solar cells for very long time. Nonetheless, the metallic mirrors might not be the best choices for photovoltaics. In this work, we show that solar cells with all-dielectric reflectors can surpass the best-configured metal-backed devices. Theoretical and experimental results all show that superior large-angle light scattering capability can be achieved by the diffuse medium reflectors, and the solar cell J-V enhancement is higher for solar cells using all-dielectric reflectors. Specifically, the measured diffused scattering efficiency (D.S.E.) of a diffuse medium reflector is >0.8 for the light trapping spectral range (600nm-1000nm), and the measured reflectance of a diffuse medium can be as high as silver if the geometry of embedded titanium oxide(TiO(2)) nanoparticles is optimized. Moreover, the diffuse medium reflectors have the additional advantage of room-temperature processing, low cost, and very high throughput. We believe that using all-dielectric solar cell reflectors is a way to approach the thermodynamic conversion limit by completely excluding metallic dissipation.
Shape adjustment optimization and experiment of cable-membrane reflectors
NASA Astrophysics Data System (ADS)
Du, Jingli; Gu, Yongzhen; Bao, Hong; Wang, Congsi; Chen, Xiaofeng
2018-05-01
Cable-membrane structures are widely employed for large space reflectors due to their lightweight, compact and easy package. In these structures, membranes are attached to cable net, serving as reflectors themselves or as supporting structures for other reflective surface. The cable length and membrane shape have to be carefully designed and fabricated to guarantee the desired reflector surface shape. However, due to inevitable error in cable length and membrane shape during the manufacture and assembly of cable-membrane reflectors, some cables have to be designed to be capable of length adjustment. By carefully adjusting the length of these cables, the degeneration in reflector shape precision due to this inevitable error can be effectively reduced. In the paper a shape adjustment algorithm for cable-membrane reflectors is proposed. Meanwhile, model updating is employed during shape adjustment to decrease the discrepancy of the numerical model with respect to the actual reflector. This discrepancy has to be considered because during attaching membranes to cable net, the accuracy of the membrane shape is hard to guarantee. Numerical examples and experimental results demonstrate the proposed method.
Manufacturing Large Membrane Mirrors at Low Cost
NASA Technical Reports Server (NTRS)
2007-01-01
Relatively inexpensive processes have been developed for manufacturing lightweight, wide-aperture mirrors that consist mainly of reflectively coated, edge-supported polyimide membranes. The polyimide and other materials in these mirrors can withstand the environment of outer space, and the mirrors have other characteristics that make them attractive for use on Earth as well as in outer space: With respect to the smoothness of their surfaces and the accuracy with which they retain their shapes, these mirrors approach the optical quality of heavier, more expensive conventional mirrors. Unlike conventional mirrors, these mirrors can be stowed compactly and later deployed to their full sizes. In typical cases, deployment would be effected by inflation. Potential terrestrial and outer-space applications for these mirrors include large astronomical telescopes, solar concentrators for generating electric power and thermal power, and microwave reflectors for communication, radar, and short-distance transmission of electric power. The relatively low cost of manufacturing these mirrors stems, in part, from the use of inexpensive tooling. Unlike in the manufacture of conventional mirrors, there is no need for mandrels or molds that have highly precise surface figures and highly polished surfaces. The surface smoothness is an inherent property of a polyimide film. The shaped area of the film is never placed in contact with a mold or mandrel surface: Instead the shape of a mirror is determined by a combination of (1) the shape of a fixture that holds the film around its edge and (2) control of manufacturing- process parameters. In a demonstration of this manufacturing concept, spherical mirrors having aperture diameters of 0.5 and 1.0 m were fabricated from polyimide films having thicknesses ranging from <20 m to 150 m. These mirrors have been found to maintain their preformed shapes following deployment.
Characteristics of a dynamic holographic sensor for shape control of a large reflector
NASA Technical Reports Server (NTRS)
Welch, Sharon S.; Cox, David E.
1991-01-01
Design of a distributed holographic interferometric sensor for measuring the surface displacement of a large segmented reflector is proposed. The reflector's surface is illuminated by laser light of two wavelengths and volume holographic gratings are formed in photorefractive crystals of the wavefront returned from the surface. The sensor is based on holographic contouring with a multiple frequency source. It is shown that the most stringent requirement of temporal stability affects both the temporal resolution and the dynamic range. Principal factor which limit the sensor performance include the response time of photorefractive crystal, laser power required to write a hologram, and the size of photorefractive crystal.
Two-way reflector based on two-dimensional sub-wavelength high-index contrast grating on SOI
NASA Astrophysics Data System (ADS)
Kaur, Harpinder; Kumar, Mukesh
2016-05-01
A two-dimensional (2D) high-index contrast grating (HCG) is proposed as a two-way reflector on Silicon-on-insulator (SOI). The proposed reflector provides high reflectivity over two (practically important) sets of angles of incidence- normal (θ = 0 °) and oblique/grazing (θ = 80 ° - 85 ° / 90 °). Analytical model of 2D HCG is presented using improved Fourier modal method. The vertical incidence is useful for application in VCSEL while oblique/grazing incidence can be utilized in high confinement (HCG mirrors based) hollow waveguides and Bragg reflectors. The proposed two-way reflector also exhibits a large reflection bandwidth (around telecom wavelength) which is an advantage for broadband photonic devices.
Astigmatism in reflector antennas.
NASA Technical Reports Server (NTRS)
Cogdell, J. R.; Davis, J. H.
1973-01-01
Astigmatic phase error in large parabolic reflector antennas is discussed. A procedure for focusing an antenna and diagnosing the presence and degree of astigmatism is described. Theoretical analysis is conducted to determine the nature of this error in such antennas.
Non-periodic high-index contrast gratings reflector with large-angle beam forming ability
NASA Astrophysics Data System (ADS)
Fang, Wenjing; Huang, Yongqing; Duan, Xiaofeng; Fei, Jiarui; Ren, Xiaomin; Mao, Min
2016-05-01
A non-periodic high-index contrast gratings (HCGs) reflector on SOI wafer with large-angle beam forming ability has been proposed and fabricated. The proposed reflector was designed using rigorous coupled-wave analysis (RCWA) and finite-element-method (FEM). A deflection angle of 17.35° and high reflectivity of 92.31% are achieved under transverse magnetic (TM) polarized light in numerical simulation. Experimental results show that the reflected power peaked at 17.2° under a 1550 nm incident light, which is in good accordance with the simulation results. Moreover, the reflected power spectrum was also measured. Under different incident wavelengths around 1550 nm, reflected powers all peaked at 17.2°. The results show that the proposed non-periodic HCGs reflector has a good reflection and beam forming ability in a wavelength range as wide as 40 nm around 1550 nm.
NASA Astrophysics Data System (ADS)
Kaya, N.; Iwashita, M.; Nakasuka, S.; Summerer, L.; Mankins, J.
2004-12-01
Construction technology of huge structures is essential for the future space development as well as the Solar Power Satellite (SPS). The SPS needs huge antennas to transmit the generated electric power toward the ground, while the huge antenna have many useful applications in space as well as on the ground, for example, telecommunication for cellular phones, radars for remote sensing, navigation and observation, and so on. A parabola antenna was mostly used for the space antenna. However, it is very difficult for the larger parabola antenna to keep accuracy of the reflectors and the beam control, because the surfaces of the reflectors are mechanically supported and controlled. The huge space antenna with flexible and ultra-light structures is essential and necessary for the future applications. An active phased array antenna is more suitable and promising for the huge flexible antenna than the parabola antenna. We are proposing to apply the Furoshiki satellite [1] with robots for construction of the huge structures. While a web is deployed using the Furoshiki satellite in the same size of the huge antenna, all of the antenna elements crawl on the web with their own legs toward their allocated locations. We are verifying the deployment concept of the Furoshiki satellite using a sounding rocket with robots crawling on the deployed web. The robots are internationally being developed by NASA, ESA and Kobe University. The paper describes the concept of the crawling robot developed by Kobe University as well as the plan of the rocket experiment.
Shape Analysis and Deployment of the ExaVolt Antenna
NASA Astrophysics Data System (ADS)
Baginski, Frank; Zhao, Kaiyu; Furer, Joshua; Landay, Justin; Bailoor, Shantanu; Gorham, Peter; Varner, Gary; Miki, Christian; Hill, Brian; Schoorlemmer, Harm; Nguyen, Liem; Romero-Wolf, Andrew; Liewer, Kurt; Sauder, Jonathan; Brakke, Kenneth; Beatty, Jim; Connolly, Amy; Allison, Patrick; Pfendner, Carl; Dailey, Brian; Fairbrother, Debra; Said, Magdi; Lang, Steven; Young, Leyland
The ExaVolt Antenna (EVA) is the next generation balloon-borne ultra-high energy (UHE) particle observatory under development for NASA’s suborbital super-pressure balloon program in Antarctica. Unlike a typical mission where the balloon lifts a gondola that carries the primary scientific instrument, the EVA mission is a first-of-its-kind in that the balloon itself is part of the science instrument. Specifically, a toroidal RF reflector is mounted onto the outside surface of a superpressure balloon (SPB) and a feed antenna is suspended inside the balloon, creating a high-gain antenna system with a synoptic view of the Antarctic ice sheet. The EVA mission presents a number of technical challenges. For example, can a stowed feed antenna be inserted through an opening in the top-plate? Can the feed antenna be deployed during the ascent? Once float altitude is achieved, how might small shape changes in the balloon shape affect the antenna performance over the life of the EVA mission? The EVA team utilized a combination of testing with a 1/20-scale physical model, mathematical modeling and numerical simulations to probe these and related questions. While the problems are challenging, they are solvable with current technology and expertise. Experiments with a 1/20-scale EVA physical model outline a pathway for inserting a stowed feed into a SPB. Analysis indicates the EVA system will ascend, deploy and assume a stable configuration at float altitude. Nominal shape changes in an Antarctic SPB are sufficiently small to allow the use of the surface of the balloon as a high-gain reflector.
The Northwestern Atlantic Moroccan Margin From Deep Multichannel Seismic Reflection
NASA Astrophysics Data System (ADS)
Malod, J. A.; Réhault, J. P.; Sahabi, M.; Géli, L.; Matias, L.; Zitellini, N.; Sismar Group
The NW Atlantic Moroccan margin, a conjugate of the Nova Scotia margin, is one of the oldest passive margins of the world. Continental break up occurred in the early Jurassic and the deep margin is characterized by a large salt basin. The SISMAR cruise (9 April to 4 May 2001) acquired 3667 km of 360 channel seismic reflection profiles. In addition, refraction data were recorded by means of 48 OBH/OBS deployments. Simultaneously, some of the marine profiles were extended onshore with 16 portable seismic land stations. WNW-ESE profiles 4 and 5 off El Jadida show a good section of the margin. The crustal thinning in this region is fairly abrupt. These profiles image the crust above a strong seismic reflector at about 12 s.twt., interpreted as the Moho. The crust exhibits several different characteristics from the continent towards the ocean.: - highly diffractive with a thickness larger than 25 km beneath the shelf. - stratified at a deep level and topped by few "tilted blocks" with a diffractive acoustic facies and for which 2 hypotheses are proposed: either continental crust tilted during the rifting or large landslides of crustal and sedimentary material slid down later. Liassic evapor- ites are present but seem less thick than to the south. - layered with seaward dipping reflectors: this type of crust correlates with the magnetic anomaly S1 and corresponds to the continent-ocean transition. - diffractive with an oceanic character. Oceanwards, the crust becomes more typically oceanic, but shows internal reflectors that may be re- lated to compressional reactivation during the Tertiary attested by large scale inverted basins. Our results allow us to discuss the nature and location of the continent-ocean transition at a regional scale and the rifting to spreading evolution of the very ma- ture continental margin off El Jadida. This provide us with some constraints for the initial reconstruction between Africa, North America and Iberia. Moreover, these re- sults help to assess the geological hazards linked to the neotectonic activity within the Africa-Eurasia plate boundary. * SISMAR Group includes the authors and Amhrar M., Camurri F., Contrucci I., Diaz J., El Archi A., Gutscher M.A., Jaffal M., Klingelhöfer F., Legall B., Maillard A., Mehdi K., Mercier E., Moulin M., Olivet J.L., Ouajhain B., Perrot J., Rolet J., Ruellan E., Sibuet J.C., Zourarah B.
The ESA/MBB unfurlable mesh antenna development for mobile services
NASA Astrophysics Data System (ADS)
Kellermeier, H.; Vorbrugg, H.; Pontoppidan, K.; Eaton, D. C. G.
Mobile services via satellite in the 800-900 MHz frequency range have recently been studied by SPAR Aerospace Ltd in the M-SAT phase B using various unfurlable offset reflector concepts between 9 and 5 m aperture diameters for 6-, 4- and 2-beam coverage. For a 2-beam coverage of Canada and U.S.A. two offset antennas each of 5 m aperture diameter are required. The MBB offset unfurlable mesh antenna (UMA) developed since 1983 under an ESA contract is one of the attractive candidates: The design concept chosen uses foldable radial ribs of carbon fibre which deploy a gold plated molybdenum mesh on adjustable stand-offs. This concept is applicable for offset aperture diameters up to 12 m since the carbon fibre ribs are double folded and provide for a high package density when stowed at the spacecraft during launch. The electrical analysis performed by TICRA/Copenhagen was assisted by electrical measurements on mesh samples, verifying that main charactertics as ohmic resistance, transmission loss and passive intermodulation products (PIMP) lie within the required tolerances if the mesh is pretensioned to a certain configuration. For on-orbit testing and retrieval by the Shuttle the reflector shows a unique design feature of retractability by the reversable deployment sequence.
A prototype automatic phase compensation module
NASA Technical Reports Server (NTRS)
Terry, John D.
1992-01-01
The growing demands for high gain and accurate satellite communication systems will necessitate the utilization of large reflector systems. One area of concern of reflector based satellite communication is large scale surface deformations due to thermal effects. These distortions, when present, can degrade the performance of the reflector system appreciable. This performance degradation is manifested by a decrease in peak gain, and increase in sidelobe level, and pointing errors. It is essential to compensate for these distortion effects and to maintain the required system performance in the operating space environment. For this reason the development of a technique to offset the degradation effects is highly desirable. Currently, most research is direct at developing better material for the reflector. These materials have a lower coefficient of linear expansion thereby reducing the surface errors. Alternatively, one can minimize the distortion effects of these large scale errors by adaptive phased array compensation. Adaptive phased array techniques have been studied extensively at NASA and elsewhere. Presented in this paper is a prototype automatic phase compensation module designed and built at NASA Lewis Research Center which is the first stage of development for an adaptive array compensation module.
The Design and Analysis of Electrically Large Custom-Shaped Reflector Antennas
2013-06-01
GEO) satellite data are imported into STK and plotted to visualize the regions of the sky that the spherical reflector must have line of sight for...Magnetic Conductor PO Physical Optics STK Systems Tool Kit TE Transverse Electric xvii Acronym Definition TLE Two Line Element TM Transverse Magnetic...study for the spherical reflector, Systems Tool Kit ( STK ) software from Analytical Graphics Inc. (AGI) is used. In completing the cross-shaped
Inflatable Space Structures Technology Development for Large Radar Antennas
NASA Technical Reports Server (NTRS)
Freeland, R. E.; Helms, Richard G.; Willis, Paul B.; Mikulas, M. M.; Stuckey, Wayne; Steckel, Gary; Watson, Judith
2004-01-01
There has been recent interest in inflatable space-structures technology for possible applications on U.S. Department of Defense (DOD) missions because of the technology's potential for high mechanical-packaging efficiency, variable stowed geometry, and deployment reliability. In recent years, the DOD sponsored Large Radar Antenna (LRA) Program applied this new technology to a baseline concept: a rigidizable/inflatable (RI) perimeter-truss structure supporting a mesh/net parabolic reflector antenna. The program addressed: (a) truss concept development, (b) regidizable materials concepts assessment, (c) mesh/net concept selection and integration, and (d) developed potential mechanical-system performance estimates. Critical and enabling technologies were validated, most notably the orbital radiation durable regidized materials and the high modulus, inflatable-deployable truss members. These results in conjunction with conclusions from previous mechanical-packaging studies by the U.S. Defense Advanced Research Projects Agency (DARPA) Special Program Office (SPO) were the impetus for the initiation of the DARPA/SPO Innovative Space-based Antenna Technology (ISAT) Program. The sponsor's baseline concept consisted of an inflatable-deployable truss structure for support of a large number of rigid, active radar panels. The program's goal was to determine the risk associated with the application of these new RI structures to the latest in radar technologies. The approach used to define the technology maturity level of critical structural elements was to: (a) develop truss concept baseline configurations (s), (b) assess specific inflatable-rigidizable materials technologies, and (c) estimate potential mechanical performance. The results of the structures portion of the program indicated there was high risk without the essential materials technology flight experiments, but only moderate risk if the appropriate on-orbit demonstrations were performed. This paper covers both programs (LRA and ISAT) in two sections, Parts 1 and 2 respectively. Please note that the terms strut, tube, and column are all used interchangeably and refer to the basic strut element of a truss. Also, the paper contains a mix of English and metric dimensional descriptions that reflect prevailing technical discipline conventions and common usage.
Considerations in the design of large space structures
NASA Technical Reports Server (NTRS)
Hedgepeth, J. M.; Macneal, R. H.; Knapp, K.; Macgillivray, C. S.
1981-01-01
Several analytical studies of topics relevant to the design of large space structures are presented. Topics covered are: the types and quantitative evaluation of the disturbances to which large Earth-oriented microwave reflectors would be subjected and the resulting attitude errors of such spacecraft; the influence of errors in the structural geometry of the performance of radiofrequency antennas; the effect of creasing on the flatness of tensioned reflector membrane surface; and an analysis of the statistics of damage to truss-type structures due to meteoroids.
Analytical approximation of a distorted reflector surface defined by a discrete set of points
NASA Technical Reports Server (NTRS)
Acosta, Roberto J.; Zaman, Afroz A.
1988-01-01
Reflector antennas on Earth orbiting spacecrafts generally cannot be described analytically. The reflector surface is subjected to a large temperature fluctuation and gradients, and is thus warped from its true geometrical shape. Aside from distortion by thermal stresses, reflector surfaces are often purposely shaped to minimize phase aberrations and scanning losses. To analyze distorted reflector antennas defined by discrete surface points, a numerical technique must be applied to compute an interpolatory surface passing through a grid of discrete points. In this paper, the distorted reflector surface points are approximated by two analytical components: an undistorted surface component and a surface error component. The undistorted surface component is a best fit paraboloid polynomial for the given set of points and the surface error component is a Fourier series expansion of the deviation of the actual surface points, from the best fit paraboloid. By applying the numerical technique to approximate the surface normals of the distorted reflector surface, the induced surface current can be obtained using physical optics technique. These surface currents are integrated to find the far field radiation pattern.
NASA Technical Reports Server (NTRS)
Brown, Todd S.
2016-01-01
The NASA Soil Moisture Active Passive (SMAP) spacecraft was designed to use radar and radiometer measurements to produce global soil moisture measurements every 2-3 days. The SMAP spacecraft is a complicated dual-spinning design with a large 6 meter deployable mesh reflector mounted on a platform that spins at 14.6 rpm while the Guidance Navigation and Control algorithms maintain precise nadir pointing for the de-spun portion of the spacecraft. After launching in early 2015, the Guidance Navigation and Control software and hardware aboard the SMAP spacecraft underwent an intensive spacecraft checkout and commissioning period. This paper describes the activities performed by the Guidance Navigation and Control team to confirm the health and phasing of subsystem hardware and the functionality of the guidance and control modes and algorithms. The operations tasks performed, as well as anomalies that were encountered during the commissioning, are explained and results are summarized.
Application of an ultrasonic focusing radiator for acoustic levitation of submillimeter samples
NASA Technical Reports Server (NTRS)
Lee, M. C.
1981-01-01
An acoustic apparatus has been specifically developed to handle samples of submillimeter size in a gaseous medium. This apparatus consists of an acoustic levitation device, deployment devices for small liquid and solid samples, heat sources for sample heat treatment, acoustic alignment devices, a cooling system and data-acquisition instrumentation. The levitation device includes a spherical aluminum dish of 12 in. diameter and 0.6 in. thickness, 130 pieces of PZT transducers attached to the back side of the dish and a spherical concave reflector situated in the vicinity of the center of curvature of the dish. The three lowest operating frequencies for the focusing-radiator levitation device are 75, 105 and 163 kHz, respectively. In comparison with other levitation apparatus, it possesses a large radiation pressure and a high lateral positional stability. This apparatus can be used most advantageously in the study of droplets and spherical shell systems, for instance, for fusion target applications.
Analysis of on-orbit thermal characteristics of the 15-meter hoop/column antenna
NASA Technical Reports Server (NTRS)
Andersen, Gregory C.; Farmer, Jeffery T.; Garrison, James
1987-01-01
In recent years, interest in large deployable space antennae has led to the development of the 15 meter hoop/column antenna. The thermal environment the antenna is expected to experience during orbit is examined and the temperature distributions leading to reflector surface distortion errors are determined. Two flight orientations corresponding to: (1) normal operation, and (2) use in a Shuttle-attached flight experiment are examined. A reduced element model was used to determine element temperatures at 16 orbit points for both flight orientations. The temperature ranged from a minimum of 188 K to a maximum of 326 K. Based on the element temperatures, orbit position leading to possible worst case surface distortions were determined, and the subsequent temperatures were used in a static finite element analysis to quantify surface control cord deflections. The predicted changes in the control cord lengths were in the submillimeter ranges.
Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings.
Chung, Kyungjae; Yu, Sunkyu; Heo, Chul-Joon; Shim, Jae Won; Yang, Seung-Man; Han, Moon Gyu; Lee, Hong-Seok; Jin, Yongwan; Lee, Sang Yoon; Park, Namkyoo; Shin, Jung H
2012-05-08
Thin-film color reflectors inspired by Morpho butterflies are fabricated. Using a combination of directional deposition, silica microspheres with a wide size distribution, and a PDMS (polydimethylsiloxane) encasing, a large, flexible reflector is created that actually provides better angle-independent color characteristics than Morpho butterflies and which can even be bent and folded freely without losing its Morpho-mimetic photonic properties. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Deployable antenna kinematics using tensegrity structure design
NASA Astrophysics Data System (ADS)
Knight, Byron Franklin
With vast changes in spacecraft development over the last decade, a new, cheaper approach was needed for deployable kinematic systems such as parabolic antenna reflectors. Historically, these mesh-surface reflectors have resembled folded umbrellas, with incremental redesigns utilized to save packaging size. These systems are typically over-constrained designs, the assumption being that high reliability necessary for space operations requires this level of conservatism. But with the rapid commercialization of space, smaller launch platforms and satellite buses have demanded much higher efficiency from all space equipment than can be achieved through this incremental approach. This work applies an approach called tensegrity to deployable antenna development. Kenneth Snelson, a student of R. Buckminster Fuller, invented Tensegrity structures in 1948. Such structures use a minimum number of compression members (struts); stability is maintain using tension members (ties). The novelty introduced in this work is that the ties are elastic, allowing the struts to extend or contract, and in this way changing the surface of the antenna. Previously, the University of Florida developed an approach to quantify the stability and motion of parallel manipulators. This approach was applied to deployable, tensegrity, antenna structures. Based on the kinematic analyses for the 3-3 (octahedron) and 4-4 (square anti-prism) structures, the 6-6 (hexagonal anti-prism) analysis was completed which establishes usable structural parameters. The primary objective for this work was to prove the stability of this class of deployable structures, and their potential application to space structures. The secondary objective is to define special motions for tensegrity antennas, to meet the subsystem design requirements, such as addressing multiple antenna-feed locations. This work combines the historical experiences of the artist (Snelson), the mathematician (Ball), and the space systems engineer (Wertz) to develop a new, practical design approach. This kinematic analysis of tensegrity structures blends these differences to provide the design community with a new approach to lightweight, robust, adaptive structures with the high reliability that space demands. Additionally, by applying Screw Theory, a tensegrity structure antenna can be commanded to move along a screw axis, and therefore meeting the requirement to address multiple feed locations.
An innovative, highly sensitive receiver system for the Square Kilometre Array Mid Radio Telescope
NASA Astrophysics Data System (ADS)
Tan, Gie Han; Lehmensiek, Robert; Billade, Bhushan; Caputa, Krzysztof; Gauffre, Stéphane; Theron, Isak P.; Pantaleev, Miroslav; Ljusic, Zoran; Quertier, Benjamin; Peens-Hough, Adriaan
2016-07-01
The Square Kilometre Array (SKA) Project is a global science and engineering project realizing the next-generation radio telescopes operating in the metre and centimetre wavelengths regions. This paper addresses design concepts of the broadband, exceptionally sensitive receivers and reflector antennas deployed in the SKA1-Mid radio telescope to be located in South Africa. SKA1-Mid (350 MHz - 13.8 GHz with an option for an upper limit of 24 GHz) will consist of 133 reflector antennas using an unblocked aperture, offset Gregorian configuration with an effective diameter of 15 m. Details on the unblocked aperture Gregorian antennas, low noise front ends and advanced direct digitization receivers, are provided from a system design perspective. The unblocked aperture results in increased aperture efficiency and lower side-lobe levels compared to a traditional on-axis configuration. The low side-lobe level reduces the noise contribution due to ground pick-up but also makes the antenna less susceptible to ground-based RFI sources. The addition of extra shielding on the sub-reflector provides a further reduction of ground pick-up. The optical design of the SKA1-Mid reflector antenna has been tweaked using advanced EM simulation tools in combination with sophisticated models for sky, atmospheric and ground noise contributions. This optimal antenna design in combination with very low noise, partially cryogenic, receivers and wide instantaneous bandwidth provide excellent receiving sensitivity in combination with instrumental flexibility to accommodate a wide range of astronomical observation modes.
NASA Technical Reports Server (NTRS)
Acosta, Roberto J.
1988-01-01
The feasibility of electromagnetic compensation for reflector antenna surface distortions is investigated. The performance characteristics of large satellite communication reflector antenna systems degrade as the reflector surface distorts, mainly due to thermal effects from solar radiation. The technique developed can be used to maintain the antenna boresight directivity and sidelobe level independent of thermal effects on the reflector surface. With the advent of monolithic microwave integrated circuits (MMIC), a greater flexibility in array fed reflector antenna systems can be achieved. MMIC arrays provide independent control of amplitude and phase for each of the many radiating elements in the feed array. By assuming a known surface distortion profile, a simulation study is carried out to examine the antenna performance as a function of feed array size and number of elements. Results indicate that the compensation technique can effectively control boresight directivity and sidelobe level under peak surface distortion in the order of tenth of a wavelength.
Computer prediction of large reflector antenna radiation properties
NASA Technical Reports Server (NTRS)
Botula, A.
1980-01-01
A FORTRAN program for calculating reflector antenna radiation patterns was rewritten and extended to include reflectors composed of a number of panels. These individual panels must be analytic surfaces. The theoretical foundation for the program is as follows: Geometrical optics techniques are used to trace rays from a feed antenna to the reflector surface and back to a mathematical plane just in front of the reflector. The resulting tangential electric field distribution, assumed to be the only source of forward radiation, is integrated numerically to calculate the radiation pattern for a desired set of angles. When the reflector is composed of more than one panel, each panel is treated as a separated antenna, the ray-tracing procedure and integration being repeated for each panel. The results of the individual aperture plane integrations are stored and summed to yield the relative electric field strength over the angles of interest. An example and several test cases are included to demonstrate the use of the program and verify the new method of computation.
InGaAs multiple quantum well modulating retro-reflector for free-space optical communications
NASA Astrophysics Data System (ADS)
Rabinovich, William S.; Gilbreath, G. Charmaine; Goetz, Peter G.; Mahon, Rita; Katzer, D. Scott; Ikossi-Anastasiou, Kiki; Binari, Steven C.; Meehan, Timothy J.; Stell, Mena F.; Sokolsky, Ilene; Vasquez, John A.; Vilcheck, Michael J.
2002-01-01
Modulating retro-reflectors provide means for free space optical communication without the need for a laser, telescope or pointer tracker on one end of the link. These systems work by coupling a retro-reflector with an electro- optic shutter. The modulating retro-reflector is then interrogated by a cw laser beam from a conventional optical communications system and returns a modulated signal beam to the interrogator. Over the last few years the Naval Research Laboratory has developed modulating retro-reflector based on corner cubes and large area Transmissive InGaAs multiple quantum well modulators. These devices can allow optical links at speeds up to about 10 Mbps. We will discuss the critical performance characteristics of such systems including modulating rate, power consumption, optical contrast ratio and operating wavelength. In addition a new modulating retro-reflector architecture based upon cat s eye retroreflectors will be discussed. This architecture has the possibility for data rates of hundreds of megabits per second at power consumptions below 100 mW.
NASA Technical Reports Server (NTRS)
Heard, Walter L., Jr.; Lake, Mark S.
1993-01-01
A procedure that enables astronauts in extravehicular activity (EVA) to perform efficient on-orbit assembly of large paraboloidal precision reflectors is presented. The procedure and associated hardware are verified in simulated Og (neutral buoyancy) assembly tests of a 14 m diameter precision reflector mockup. The test article represents a precision reflector having a reflective surface which is segmented into 37 individual panels. The panels are supported on a doubly curved tetrahedral truss consisting of 315 struts. The entire truss and seven reflector panels were assembled in three hours and seven minutes by two pressure-suited test subjects. The average time to attach a panel was two minutes and three seconds. These efficient assembly times were achieved because all hardware and assembly procedures were designed to be compatible with EVA assembly capabilities.
A Dual-Polarized, Dual-Frequency, Corrugated Feed Horn for SMAP
NASA Technical Reports Server (NTRS)
Focardi, Paolo; Brown, Paula R.
2012-01-01
SMAP will be the first Earth science mission to use a deployable 6m mesh reflector for both radar and radiometric measurements from low Earth orbit. The instrument antenna will spin at about 14 rpm, making the design of both reflector and feed more challenging. While the performance requirements imposed by the radar instrument are relatively benign, those pertinent to the radiometer are more difficult to meet. Extreme care was necessary in designing the feed, especially from a performance stability perspective. Thermal variations due to the spacecraft going in and out of eclipse during orbit and direct solar radiation into the horn are just two of the challenges faced during the design phase. In this paper, the basic concepts behind the design of SMAP's feed will be discussed. Each component of the feed will be analyzed in detail with particular emphasis on its impact on major RF requirements. Overall performance of the feed will also be discussed.
NASA Technical Reports Server (NTRS)
Webster, Christopher R.; Sander, Stanley P.; Beer, Reinhard; May, Randy D.; Knollenberg, Robert G.
1990-01-01
A new instrument, the Probe Infrared Laser Spectrometer (PIRLS), is described for in situ sensing of the gas composition and particle size distribution of Titan's atmosphere on the NASA/ESA Cassini mission. For gas composition measurements, several narrow-band (0.0001/cm) tunable lead-salt diode lasers operating near 80 K at selected mid-IR wavelengths are directed over a path length defined by a small reflector extending over the edge of the probe spacecraft platform; volume mixing ratios of 10 to the -9th should be measurable for several species of interest. A cloud-particle-size spectrometer using a diode laser source at 780 nm shares the optical path and deployed reflector; a combination of imaging and light scattering techniques is used to determine sizes of haze and cloud particles and their number density as a function of altitude.
Composite materials for precision space reflector panels
NASA Technical Reports Server (NTRS)
Tompkins, Stephen S.; Funk, Joan G.; Bowles, David E.; Towell, Timothy W.; Connell, John W.
1992-01-01
One of the critical technology needs of large precision reflectors for future astrophysical and optical communications satellites lies in the area of structural materials. Results from a materials research and development program at NASA Langley Research Center to provide materials for these reflector applications are discussed. Advanced materials that meet the reflector panel requirements are identified, and thermal, mechanical and durability properties of candidate materials after exposure to simulated space environments are compared. A parabolic, graphite-phenolic honeycomb composite panel having a surface accuracy of 70.8 microinches rms and an areal weight of 1.17 lbm/sq ft was fabricated with T50/ERL1962 facesheets, a PAEI thermoplastic surface film, and Al and SiO(x) coatings.
Analysis and testing of a soft actuation system for segmented reflector articulation and isolation
NASA Technical Reports Server (NTRS)
Jandura, Louise; Agronin, Michael L.
1991-01-01
Segmented reflectors have been proposed for space-based applications such as optical communication and large-diameter telescopes. An actuation system for mirrors in a space-based segmented mirror array has been developed as part of the National Aeronautics and Space Administration-sponsored Precision Segmented Reflector program. The actuation system, called the Articulated Panel Module (APM), articulates a mirror panel in 3 degrees of freedom in the submicron regime, isolates the panel from structural motion, and simplifies space assembly of the mirrors to the reflector backup truss. A breadboard of the APM has been built and is described. Three-axis modeling, analysis, and testing of the breadboard is discussed.
The Use of Decentralized Control in the Design of a Large Segmented Space Reflector
NASA Technical Reports Server (NTRS)
Ryaciotaki-Boussalis, Helen; Mirmirani, Maj; Rad, Khosrow; Morales, Mauricio; Velazquez, Efrain; Chassiakos, Anastasios; Luzardo, Jose-Alberto
1997-01-01
The 3-dimensional model for a segmented reflector telescope is developed using finite element techniques. The structure is decomposed into six subsystems. System control design using neural networks is performed. Performance evaluation is demonstrated via simulation using PRO-MATLAB and SIMULINK.
Technology requirements for large flexible space structures
NASA Technical Reports Server (NTRS)
Wada, B. K.; Freeland, R. E.; Garcia, N. F.
1983-01-01
Research, test, and demonstration experiments necessary for establishing a data base that will permit construction of large, lightweight flexible space structures meeting on-orbit pointing and surface precesion criteria are discussed. Attention is focused on the wrap-rib proof-of-concept antenna structures developed from technology used on the ATS-6 satellite. The target structure will be up to 150 m in diameter or smaller, operate at RF levels, be amenable to packaging for carriage in the Shuttle bay, be capable of being ground-tested, and permit on-orbit deployment and retraction. Graphite/epoxy has been chosen as the antenna ribs material, and the antenna mesh will be gold-plated Mo wire. A 55-m diam reflector was built as proof-of-concept with ground-test capability. Tests will proceed on components, a model, the entire structure, and in-flight. An analytical model has been formulated to characterize the antenna's thermal behavior. The flight test of the 55-m prototype in-orbit offers the chance to validate the analytical model and characterize the control, mechanical, and thermal characteristics of the antenna configuration.
Description of New Inflatable/Rigidizable Hexapod Structure Testbed for Shape and Vibration Control
NASA Technical Reports Server (NTRS)
Adetona, O.; Keel, L. H.; Horta, L. G.; Cadogan, D. P.; Sapna, G. H.; Scarborough, S. E.
2002-01-01
Larger and more powerful space based instruments are needed to meet increasingly sophisticated scientific demand. To support this need, concepts for telescopes with apertures of 100 meters are being investigated, but the required technologies are not in hand today. Due to the capacity limits of launch vehicles, the idea of deploying, erecting, or inflating large structures in space is being considered. Recently, rigidization concepts of large inflatable structures have demonstrated the capability of weight reductions of up to 50% from current concepts with packaging efficiencies near 80%. One of the important aspects of inflatable structures is vibration mitigation and line-of-sight control. Such control tasks are possible only after actuators/sensors are properly integrated into a rigidizable concept. To study these issues, we have developed an inflatable/rigidizable hexapod structure testbed. The testbed integrates state of the art piezo-electric self-sensing actuators into an inflatable/rigidizable structure and a flat membrane reflector. Using this testbed, we plan to experimentally demonstrate achievable vibration and line-of-sight control. This paper contains a description of the testbed and an outline of the test plan.
Computational dynamics of soft machines
NASA Astrophysics Data System (ADS)
Hu, Haiyan; Tian, Qiang; Liu, Cheng
2017-06-01
Soft machine refers to a kind of mechanical system made of soft materials to complete sophisticated missions, such as handling a fragile object and crawling along a narrow tunnel corner, under low cost control and actuation. Hence, soft machines have raised great challenges to computational dynamics. In this review article, recent studies of the authors on the dynamic modeling, numerical simulation, and experimental validation of soft machines are summarized in the framework of multibody system dynamics. The dynamic modeling approaches are presented first for the geometric nonlinearities of coupled overall motions and large deformations of a soft component, the physical nonlinearities of a soft component made of hyperelastic or elastoplastic materials, and the frictional contacts/impacts of soft components, respectively. Then the computation approach is outlined for the dynamic simulation of soft machines governed by a set of differential-algebraic equations of very high dimensions, with an emphasis on the efficient computations of the nonlinear elastic force vector of finite elements. The validations of the proposed approaches are given via three case studies, including the locomotion of a soft quadrupedal robot, the spinning deployment of a solar sail of a spacecraft, and the deployment of a mesh reflector of a satellite antenna, as well as the corresponding experimental studies. Finally, some remarks are made for future studies.
NASA Technical Reports Server (NTRS)
Carrington, Connie; Fikes, John; Gerry, Mark; Perkinson, Don
2000-01-01
New energy sources are vital for the development of emerging nations, and the growth of industry in developed economies. Also vital is the need for these energy sources to be clean and renewable. For the past several years, NASA has been taking a new look at collecting solar energy in space and transmitting it to Earth, to planetary surfaces, and to orbiting spacecraft. Several innovative concepts are being studied for the space segment component of solar power beaming. One is the Abacus/Reflector, a large sun-oriented array structure fixed to the transmitter, and a rotating RF reflector that tracks a receiving rectenna on Earth. This concept eliminates the need for power-conducting slip rings in rotating joints between the solar collectors and the transmitter. Another concept is the Integrated Symmetrical Concentrator (ISC), composed of two very large segmented reflectors which rotate to collect and reflect the incident sunlight onto two centrally-located photovoltaic arrays. Adjacent to the PV arrays is the RF transmitter, which as a unit track the receiving rectenna, again eliminating power-conducting joints, and in addition reducing the cable lengths between the arrays and transmitter. The metering structure to maintain the position of the reflectors is a long mast, oriented perpendicular to the equatorial orbit plane. This paper presents a status of ongoing systems studies and configurations for the Abacus/Reflector and the ISC concepts, and a top-level study of packaging for launch and assembly.
NASA Technical Reports Server (NTRS)
Covault, Craig
2005-01-01
The first EADS/Astrium Inmarsat 4, the largest commercial communications satellite ever launched, has completed four maneuvers to reach geosynchronous orbit where it has deployed its 30 X 40-ft. elliptical reflector and solar arrays spanning 148 ft. The 13,183-1b. spacecraft was launched Mar. 11 from Cape Canavera1 on the most powerful version to date of the Lockheed Martin International Launch Services (ILS) Atlas V.
Geometrically Nonlinear Finite Element Analysis of a Composite Space Reflector
NASA Technical Reports Server (NTRS)
Lee, Kee-Joo; Leet, Sung W.; Clark, Greg; Broduer, Steve (Technical Monitor)
2001-01-01
Lightweight aerospace structures, such as low areal density composite space reflectors, are highly flexible and may undergo large deflection under applied loading, especially during the launch phase. Accordingly, geometrically nonlinear analysis that takes into account the effect of finite rotation may be needed to determine the deformed shape for a clearance check and the stress and strain state to ensure structural integrity. In this study, deformation of the space reflector is determined under static conditions using a geometrically nonlinear solid shell finite element model. For the solid shell element formulation, the kinematics of deformation is described by six variables that are purely vector components. Because rotational angles are not used, this approach is free of the limitations of small angle increments. This also allows easy connections between substructures and large load increments with respect to the conventional shell formulation using rotational parameters. Geometrically nonlinear analyses were carried out for three cases of static point loads applied at selected points. A chart shows results for a case when the load is applied at the center point of the reflector dish. The computed results capture the nonlinear behavior of the composite reflector as the applied load increases. Also, they are in good agreement with the data obtained by experiments.
NASA Astrophysics Data System (ADS)
Shi, L.; Ding, X.; Li, P.; Yang, J.; Zhao, L.; Yang, L.; Chang, Y.; Yan, L.
2018-04-01
On August 10, 2016, China launched its first C-band full polarimetric radar satellite, named Gaofen-3 (GF-3), for urban and agriculture monitoring, landslide detection, ocean applications, etc. According to the design specification, GF-3 is expected to work at -35 dB crosstalk and 0.5 dB channel imbalance, with less than 10 degree error. The absolute radiometric bias is expected to be less than 1.5 dB in a single scene and 2.0 dB when operating for a long time. To complete the calibration and evaluation, the Institute of Electronics, Chinese Academy Sciences (IECAS) built a test site at Inner Mongolia, and deployed active reflectors (ARs) and trihedral corner reflectors (CRs) to solve and evaluate the hardware distortion. To the best of the authors' knowledge, the product accuracy of GF-3 has not been comprehensively evaluated in any open publication. The remote sensing community urgently requires a detailed report about the product accuracy and stability, before any subsequent application. From June to August of 2017, IECAS begun its second round ground campaign and deployed 10 CRs to evaluate product distortions. In this paper, we exploit Inner Mongolia CRs to investigate polarimetric and radiometric accuracy of QPSI I Stripmap. Although some CRs found fall into AR side lobe, the rest CRs enable us to preliminarily evaluate the accuracy of some special imaging beams. In the experimental part, the image of July 6, 2017 was checked by 5 trihedral CRs and the integration estimation method demonstrated the crosstalk varying from -42.65 to -32.74 dB, and the channel imbalance varying from -0.21 to 0.47 with phase error from -2.4 to 0.2 degree. Comparing with the theoretical radar cross-section of 1.235 m trihedral CR, i.e. 35 dB, the radiometric error varies about 0.20 ± 0.29 dB in HH channel and 0.40 ± 0.20 dB in VV channel.
45 Mbps cat's eye modulating retro-reflector link over 7 Km
NASA Astrophysics Data System (ADS)
Rabinovich, W. S.; Mahon, R.; Goetz, P. G.; Swingen, L.; Murphy, J.; Ferraro, M.; Burris, R.; Suite, M.; Moore, C. I.; Gilbreath, G. C.; Binari, S.
2006-09-01
Modulating retro-reflectors (MRR) allow free space optical links with no need for pointing, tracking or a laser on one end of the link. They work by coupling a passive optical retro-reflector with an optical modulator. The most common kind of MRR uses a corner cube retro-reflector. These devices must have a modulator whose active area is as large as the area of the corner cube. This limits the ability to close longer range high speed links because the large aperture need to return sufficient light implies a large modulator capacitance. To overcome this limitation we developed the concept of a cat's eye MRR. Cat's eye MRRs place the modulator in the focal plane of a lens system designed to passively retro-reflect light. Because the light focuses onto the modulator, a small, low capacitance, modulator can be used with a large optical aperture. However, the position of the focal spot varies with the angle of incidence so an array of modulators must be placed in the focal plane, In addition, to avoid having to drive all the modulator pixels, an angle of arrival sensor must be used. We discuss several cat's eye MRR systems with near diffraction limited performance and bandwidths of 45 Mbps. We also discuss a link to a cat's eye MRR over a 7 Km range.
Nonimaging secondary concentrators for large rim angle parabolic troughs with tubular absorbers.
Ries, H; Spirkl, W
1996-05-01
For parabolic trough solar collectors with tubular absorbers, we design new tailored secondary concentrators. The design is applicable for any rim angle of a parabolic reflector. With the secondary, the concentration can be increased by a factor of more than 2 with a compact secondary reflector consisting of a single piece, even for the important case of a rim angle of 90 deg. The parabolic reflector can be used without changes; the reduced absorber is still tubular but smaller than the original absorber and slightly displaced toward the primary.
Hu, Jinyong; Wang, Hong
2014-01-01
Three-dimensional (3D) backside reflector, compared with flat reflectors, can improve the probability of finding the escape cone for reflecting lights and thus enhance the light-extraction efficiency (LEE) for GaN-based light-emitting diode (LED) chips. A triangle-lattice of microscale SiO2 cone array followed by a 16-pair Ti3O5/SiO2 distributed Bragg reflector (16-DBR) was proposed to be attached on the backside of sapphire substrate, and the light-output enhancement was demonstrated by numerical simulation and experiments. The LED chips with flat reflectors or 3D reflectors were simulated using Monte Carlo ray tracing method. It is shown that the LEE increases as the reflectivity of backside reflector increases, and the light-output can be significantly improved by 3D reflectors compared to flat counterparts. It can also be observed that the LEE decreases as the refractive index of the cone material increases. The 3D 16-DBR patterned by microscale SiO2 cone array benefits large enhancement of LEE. This microscale pattern was prepared by standard photolithography and wet-etching technique. Measurement results show that the 3D 16-DBR can provide 12.1% enhancement of wall-plug efficiency, which is consistent with the simulated value of 11.73% for the enhancement of LEE. PMID:25133262
Large incidence angle and defocus influence cat's eye retro-reflector
NASA Astrophysics Data System (ADS)
Zhang, Lai-xian; Sun, Hua-yan; Zhao, Yan-zhong; Yang, Ji-guang; Zheng, Yong-hui
2014-11-01
Cat's eye lens make the laser beam retro-reflected exactly to the opposite direction of the incidence beam, called cat's eye effect, which makes rapid acquiring, tracking and pointing of free space optical communication possible. Study the influence of cat's eye effect to cat's eye retro-reflector at large incidence angle is useful. This paper analyzed the process of how the incidence angle and focal shit affect effective receiving area, retro-reflected beam divergence angle, central deviation of cat's eye retro-reflector at large incidence angle and cat's eye effect factor using geometrical optics method, and presented the analytic expressions. Finally, numerical simulation was done to prove the correction of the study. The result shows that the efficiency receiving area of cat's eye retro-reflector is mainly affected by incidence angle when the focal shift is positive, and it decreases rapidly when the incidence angle increases; the retro-reflected beam divergence and central deviation is mainly affected by focal shift, and within the effective receiving area, the central deviation is smaller than beam divergence in most time, which means the incidence beam can be received and retro-reflected to the other terminal in most time. The cat's eye effect factor gain is affected by both incidence angle and focal shift.
Study of Membrane Reflector Technology
NASA Technical Reports Server (NTRS)
Knapp, K.; Hedgepeth, J.
1979-01-01
Very large reflective surfaces are required by future spacecraft for such purposes as solar energy collection, antenna surfaces, thermal control, attitude and orbit control with solar pressure, and solar sailing. The performance benefits in large membrane reflector systems, which may be derived from an advancement of this film and related structures technology, are identified and qualified. The results of the study are reported and summarized. Detailed technical discussions of various aspects of the study are included in several separate technical notes which are referenced.
NASA Astrophysics Data System (ADS)
Brown, S. T.; Focardi, P.; Kitiyakara, A.; Maiwald, F.; Milligan, L.; Montes, O.; Padmanabhan, S.; Redick, R.; Russell, D.
2017-12-01
Passive microwave radiometer systems have been providing important Earth observations for over 30 years, including by not limited to surface wind vector, atmospheric and surface temperature, water vapor, clouds, precipitation, snow and sea ice. These data are critical for weather forecasting and the longevity of the record, along with careful calibration, has also enabled the extraction of climate records. But the future of these systems, conically scanning systems in particular, is uncertain. These sensors are have typically been developed at high cost and deployed on large spacecraft. A solution may lie in smaller, lower-cost but equally capable sensors manifested on free-flying small-satellites which can open the door to new possibilities and an avenue for sustainable passive microwave observation. Among the possibilities are deployment in constellations to shorten revisit time to improve weather forecasting or routine deployment of single sensors over time to ensure an unbroken long duration climate record. The Compact Ocean Wind Vector Radiometer (COWVR) mission, formally the US Air Force ORS-6 mission, will demonstrate a new generation conically scanning passive microwave radiometer on a small satellite. COWVR is an 18-34 GHz fully polarimetric radiometer with a 75cm aperture designed to provide measurements of ocean vector winds with an accuracy that meets or exceeds that provided by WindSat in all non-precipitating conditions, but using a simpler design which has both performance and cost advantages. This paper will give an overview of the COWVR instrument and mission and its performance estimated from pre-launch calibration data. While the COWVR mission is a focused technology demonstration mission, the sensor design is scalable to a much broader frequency range while retaining its low-cost advantage. We will describe extensions of the COWVR design that have been developed and the capabilities of such systems when deployed in a constellation scenario or climate monitoring scenario. We will also describe deployable reflector technologies being developed at JPL to enable large apertures (>2-meter) to stow inside an ESPA volume (<80cm) and be suitable for operation from 6-200 GHz. This removes any limitations on the spatial resolution of the sensor, even when launched as a ESPA secondary payload.
1992-10-22
The Space Shuttle Columbia (STS-52) thunders off Launch Pad 39B, embarking on a 10-day flight and carrying a crew of six who will deploy the Laser Geodynamic Satellite II (LAGEOS). LAGEOS is a spherical passive satellite covered with reflectors which are illuminated by ground-based lasers to determine precise measurements of the Earth's crustal movements. The other major payload on this mission is the United States Microgravity Payload 1 (USMP-1), where experiments will be conducted by crew members while in low earth orbit (LEO).
Components of the Early Apollo Scientific Experiments Package (EASEP)
1969-07-20
AS11-37-5551 (20 July 1969) --- Two components of the Early Apollo Scientific Experiments Package (EASEP) are seen deployed on the lunar surface in this view photographed from inside the Lunar Module (LM). In the far background is the Passive Seismic Experiment Package (PSEP); and to the right and closer to the camera is the Laser Ranging Retro-Reflector (LR-3). The footprints of Apollo 11 astronauts Neil A. Armstrong and Edwin E. Aldrin Jr. are very distinct in the lunar soil.
New adaptive method to optimize the secondary reflector of linear Fresnel collectors
Zhu, Guangdong
2017-01-16
Performance of linear Fresnel collectors may largely depend on the secondary-reflector profile design when small-aperture absorbers are used. Optimization of the secondary-reflector profile is an extremely challenging task because there is no established theory to ensure superior performance of derived profiles. In this work, an innovative optimization method is proposed to optimize the secondary-reflector profile of a generic linear Fresnel configuration. The method correctly and accurately captures impacts of both geometric and optical aspects of a linear Fresnel collector to secondary-reflector design. The proposed method is an adaptive approach that does not assume a secondary shape of any particular form,more » but rather, starts at a single edge point and adaptively constructs the next surface point to maximize the reflected power to be reflected to absorber(s). As a test case, the proposed optimization method is applied to an industrial linear Fresnel configuration, and the results show that the derived optimal secondary reflector is able to redirect more than 90% of the power to the absorber in a wide range of incidence angles. Here, the proposed method can be naturally extended to other types of solar collectors as well, and it will be a valuable tool for solar-collector designs with a secondary reflector.« less
New adaptive method to optimize the secondary reflector of linear Fresnel collectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Guangdong
Performance of linear Fresnel collectors may largely depend on the secondary-reflector profile design when small-aperture absorbers are used. Optimization of the secondary-reflector profile is an extremely challenging task because there is no established theory to ensure superior performance of derived profiles. In this work, an innovative optimization method is proposed to optimize the secondary-reflector profile of a generic linear Fresnel configuration. The method correctly and accurately captures impacts of both geometric and optical aspects of a linear Fresnel collector to secondary-reflector design. The proposed method is an adaptive approach that does not assume a secondary shape of any particular form,more » but rather, starts at a single edge point and adaptively constructs the next surface point to maximize the reflected power to be reflected to absorber(s). As a test case, the proposed optimization method is applied to an industrial linear Fresnel configuration, and the results show that the derived optimal secondary reflector is able to redirect more than 90% of the power to the absorber in a wide range of incidence angles. Here, the proposed method can be naturally extended to other types of solar collectors as well, and it will be a valuable tool for solar-collector designs with a secondary reflector.« less
NASA Astrophysics Data System (ADS)
Zhong, Pei; Zhou, Yufeng
2001-12-01
To reduce the potential of vascular injury without compromising the stone comminution capability of a Dornier HM-3 lithotripter, we have devised a method to suppress intraluminal bubble expansion via in situ pulse superposition. A thin shell ellipsoidal reflector insert was designed and fabricated to fit snugly into the original reflector of an HM-3 lithotripter. The inner surface of the reflector insert shares the same first focus with the original HM-3 reflector, but has its second focus located 5 mm proximal to the generator than that of the HM-3 reflector. With this modification, the original lithotripter shock wave is partitioned into a leading lithotripter pulse (peak positive pressure of 46 MPa and positive pulse duration of 1 μs at 24 kV) and an ensuing second compressive wave of 10 MPa peak pressure and 2 μs pulse duration, separated from each other by about 4 μs. Superposition of the two waves leads to a selective truncation of the trailing tensile component of the lithotripter shock wave, and consequently, a reduction in the maximum bubble expansion up to 41% compared to that produced by the original reflector. The pulse amplitude and -6 dB beam width of the leading lithotripter shock wave from the upgraded reflector at 24 kV are comparable to that produced by the original HM-3 reflector at 20 kV. At the lithotripter focus, while only about 30 shocks are needed to cause a rupture of a blood vessel phantom made of cellulose hollow fiber (i.d.=0.2 mm) using the original HM-3 reflector at 20 kV, no rupture could be produced after 200 shocks using the upgraded reflector at 24 kV. On the other hand, after 100 shocks the upgraded reflector at 24 kV can achieve a stone comminution efficiency of 22%, which is better than the 18% efficiency produced by the original reflector at 20 kV (p=0.043). All together, it has been shown in vitro that the upgraded reflector can produce satisfactory stone comminution while significantly reducing the potential for vessel rupture in shock wave lithotripsy.
Planar shock reflection on a wedged concave reflector
NASA Astrophysics Data System (ADS)
Yu, Fan-Ming; Sheu, Kuen-Dong
2001-04-01
The investigation of shock reflection and shock diffraction phenomena upon a wedged concave reflector produced by a planar incident shock wave has been done in the shock tube facility of Institute of Aeronautics and Astronautics, National Cheng- Kung University. The experiment proceeds upon three wedged concave reflectors models the upper and lower wedge angles arrangement of them are (50 degrees, 50 degrees) - 35 degrees, 35 degrees) and (50 degrees, 35 degrees), respectively. They were tested at Mach numbers of 1.2 - 1.65 and 2.0. On the first reflector, following the regular reflection on the 50 degree-wedged surface by the incident shock wave, a Mach shock diffraction behavior has been observed as shock moves outward from the apex of the reflector. On the apex of the reflector, it behaviors as a sector of the blast shock moving on a diverging channel. On the shadowgraph pictures it has been observed there exists a pattern of gas dynamics focus upon the second reflector. The Mach reflection from the 35 degree- wedged surface as being generated by the planar incident shock wave, on which the overlapping of the two triple points from both wedged surface offers the focusing mechanism. The shock interference, which proceeds by the Mach shock reflection and the regular shock diffraction from the reflector, generates a very complicate rolling-up of slip lines system. On the third reflector, the mixed shock interference behavior has been observed of which two diffraction shocks from concave 50 degree-wedged surface and 35 degree-wedged surface interfere with each other. The measurement of the peak pressure along a ray from the model apex parallel to incident shock direction indicates that the measured maximum pressure rising is larger near the apex of the reflector. Considering the measured maximum pressure increment due to the reflection shocks indicate that the wave strength upon large apex angle reflector is greater than it is upon small apex angle reflector. However, as considering the measured maximum pressure increment following the diffraction shocks, the results show that due to the focusing process upon (35 degree, 35 degree) reflector, it is of the largest increment.
The Development of Large Inflatable Antenna for Deep-Space Communications
NASA Technical Reports Server (NTRS)
Huang, John; Fang, Houfei; Lovick, Richard; Lou, Michael
2004-01-01
NASA/JPL's deep-space exploration program has been placing emphasis on reducing the mass and stowage volume of its spacecraft's high-gain and large-aperture antennas. To achieve these goals, the concept of deployable flat reflectarray antenna using an inflatable/thin-membrane structure was introduced at JPL several years ago. A reflectarray is a flat array antenna space-fed by a low-gain feed located at its focal point in a fashion similar to that of a parabolic reflector. The ref1ectarray's elements, using microstrip technology, can be printed onto a flat thin-membrane surface and are each uniquely designed to compensate for the different phase delays due to different path lengths from the feed. Although the reflectarray suffers from limited bandwidth (typically < 10%), it offers a more reliably deployed and maintained flat "natural" surface. A recent hardware development at JPL has demonstrated that a 0.2mm rms surface tolerance (l/50th of a wavelength) was achieved on a 3-meter Ka-band inflatable reflectarray. Another recent development, to combat the reflectarray's narrow band characteristic, demonstrated that dual-band performance, such as X- and Ka-bands, with an aperture efficiency of above 50 percent is achievable by the reflectarray antenna. To mechanically deploy the antenna, the reflectarray's thin membrane aperture surface is supported, tensioned and deployed by an inflatable tubular structure. There are several critical elements and challenging issues associated with the inflatable tube structure. First, the inflatable tube must be made rigidizable so that, once the tube is fully deployed in space, it rigidizes itself and the inflation system is no longer needed. In addition, if the tube is penetrated by small space debris, the tube will maintain its rigidity and not cause deformation to the antenna structure. To support large apertures (e.g. 10m or beyond) without causing any buckling to the small-diameter inflatable tube during vibration, the tube, in addition to rigidization, is also reinforced by circumferential thin blades, as well as axial blades. Second, a controlled deployment mechanism, such as by using Velcro strips, must also be implemented into the system so that, for very large structures, the long inflatable tubes can be deployed in a time-controlled fashion and not get tangled with each other. Third, the thermal analysis is another critical element and must be performed for the tube design in order to assure that the inflated tube, under extreme space thermal conditions, will not deform significantly. Finally, the dynamic vibration analysis must also be performed on the inflatable structure. This will investigate the response of the structure due to excitation introduced by the spacecraft maneuvering and thus determine any necessary damping. Several reflectarray antennas have been developed at JPL to demonstrate the technology. These include an earlier 1-meter X-band inflatable reflectarray, a 3-meter Ka-band inflatable reflectarray, a half-meter dual-band (X and Ka) reflectarray, and the current on-going 10-meter inflatable structure development. The detailed RF and mechanical descriptions of these antennas, as well as their performances, will be presented during the conference.
Progress in the development of advanced solar reflectors
NASA Astrophysics Data System (ADS)
Kennedy, C.; Jorgensen, G.
1994-01-01
Solar thermal technologies require large mirrors to provide concentrated sunlight for renewable power generation. Such materials must be inexpensive and maintain high specular reflectance for extended lifetimes in severe outdoor environments. Polymer reflectors are lighter than glass mirrors, offer greater system design flexibility, and have the potential for lower cost. During the past year, collaborative cost-shared research and development between the National Renewable Energy Laboratory (NREL) and industrial partners has identified candidate materials that perform better than the state-of-the-art commercial silvered-polymer reflectors in terms of corrosion degradation and resistance to delamination failure. Additional cooperative efforts will produce new alternative materials with reduced costs due to high speed production line capability. NREL welcomes continued and expanded interest and web coating industry involvement in developing advanced solar reflector materials.
Large aluminium convex mirror for the cryo-optical test of the Planck primary reflector
NASA Astrophysics Data System (ADS)
Gloesener, P.; Flébus, C.; Cola, M.; Roose, S.; Stockman, Y.; de Chambure, D.
2017-11-01
In the frame of the PLANCK mission telescope development, it is requested to measure the reflector changes of the surface figure error (SFE) with respect to the best ellipsoid, between 293 K and 50 K, with 1 μm RMS accuracy. To achieve this, Infra Red interferometry has been selected and a dedicated thermo mechanical set-up has been constructed. In order to realise the test set-up for this reflector, a large aluminium convex mirror with radius of 19500 mm has been manufactured. The mirror has to operate in a cryogenic environment lower than 30 K, and has a contribution to the RMS WFE with less than 1 μm between room temperature and cryogenic temperature. This paper summarises the design, manufacturing and characterisation of this mirror, showing it has fulfilled its requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moitra, Parikshit; Slovick, Brian A.; li, Wei
All-dielectric metamaterials offer a potential low-loss alternative to plasmonic metamaterials at optical frequencies. In this paper, we take advantage of the low absorption loss as well as the simple unit cell geometry to demonstrate large-scale (centimeter-sized) all-dielectric metamaterial perfect reflectors made from silicon cylinder resonators. These perfect reflectors, operating in the telecommunications band, were fabricated using self-assembly based nanosphere lithography. In spite of the disorder originating from the self-assembly process, the average reflectance of the metamaterial perfect reflectors is 99.7% at 1530 nm, surpassing the reflectance of metallic mirrors. Moreover, the spectral separation of the electric and magnetic resonances canmore » be chosen to achieve the required reflection bandwidth while maintaining a high tolerance to disorder. Finally, the scalability of this design could lead to new avenues of manipulating light for low-loss and large-area photonic applications.« less
Structural Modeling of a Five-Meter Thin Film Inflatable Antenna/Concentrator
NASA Technical Reports Server (NTRS)
Smalley, Kurt B.; Tinker, Michael L.; Taylor, W. Scott; Brunty, Joseph A. (Technical Monitor)
2002-01-01
Inflatable structures have been the subject of renewed interest in recent years for space applications such as communications antennas, solar thermal propulsion, and space solar power. A major advantage of using inflatable structures in space is their extremely light weight. An obvious second advantage is on-orbit deployability and related space savings in the launch configuration. A recent technology demonstrator flight for inflatable structures was the Inflatable Antenna Experiment (IAE) that was deployed on orbit from the Shuttle Orbiter. Although difficulty was encountered in the inflation/deployment phase, the flight was successful overall and provided valuable experience in the use of such structures. Several papers on static structural analysis of inflated cylinders have been written, describing different techniques such as linear shell theory, and nonlinear and variational methods, but very little work had been done in dynamics of inflatable structures until recent years. In 1988 Leonard indicated that elastic beam bending modes could be utilized in approximating lower-order frequencies of inflatable beams. Main, et al. wrote a very significant 1995 paper describing results of modal tests of inflated cantilever beams and the determination of effective material properties. Changes in material properties for different pressures were also discussed, and the beam model was used in a more complex structure. The paper demonstrated that conventional finite element analysis packages could be very useful in the analysis of complex inflatable structures. The purposes of this paper are to discuss the methodology for dynamically characterizing a large 5-meter thin film inflatable reflector, and to discuss the test arrangement and results. Nonlinear finite element modal results are compared to modal test data. The work is significant and of considerable interest to researchers because of 1) the large size of the structure, making it useful for scaling studies, and 2) application of commercially available finite element software for modeling pressurized thin-film structures.
The dynamics and control of large flexible space structures, part 11
NASA Technical Reports Server (NTRS)
Bainum, Peter M.; Reddy, A. S. S. R; Diarra, Cheick M.; Li, Feiyue
1988-01-01
A mathematical model is developed to predict the dynamics of the proposed Spacecraft Control Laboratory Experiment during the stationkeeping phase. The Shuttle and reflector are assumed to be rigid, while the mass connecting the Shuttle to the reflector is assumed to be flexible with elastic deformations small as compared with its length. It is seen that in the presence of gravity-gradient torques, the system assumes a new equilibrium position primarily due to the offset in the mass attachment point to the reflector from the reflector's mass center. Control is assumed to be provided through the Shuttle's three torquers and throught six actuators located by painrs at two points on the mass and at the reflector mass center. Numerical results confirm the robustness of an LQR derived control strategy during stationkeeping with maximum control efforts significantly below saturation levels. The linear regulator theory is also used to derive control laws for the linearized model of the rigidized SCOLE configuration where the mast flexibility is not included. It is seen that this same type of control strategy can be applied for the rapid single axis slewing of the SCOLE through amplitudes as large as 20 degrees. These results provide a definite trade-off between the slightly larger slewing times with the considerable reduction in over-all control effort as compared with the results of the two point boundary value problem application of Pontryagin's Maximum Principle.
A Study of Phased Array Antennas for NASA's Deep Space Network
NASA Technical Reports Server (NTRS)
Jamnejad, Vahraz; Huang, John; Cesarone, Robert J.
2001-01-01
In this paper we briefly discuss various options but focus on the feasibility of the phased arrays as a viable option for this application. Of particular concern and consideration will be the cost, reliability, and performance compared to the present 70-meter antenna system, particularly the gain/noise temperature levels in the receive mode. Many alternative phased arrays including planar horizontal arrays, hybrid mechanically/electronically steered arrays, phased array of mechanically steered reflectors, multi-faceted planar arrays, phased array-fed lens antennas, and planar reflect-arrays are compared and their viability is assessed. Although they have many advantages including higher reliability, near-instantaneous beam switching or steering capability, the cost of such arrays is presently prohibitive and it is concluded that the only viable array options at the present are the arrays of a few or many small reflectors. The active planar phased arrays, however, may become feasible options in the next decade and can be considered for deployment in smaller configurations as supplementary options.
LDR segmented mirror technology assessment study
NASA Technical Reports Server (NTRS)
Krim, M.; Russo, J.
1983-01-01
In the mid-1990s, NASA plans to orbit a giant telescope, whose aperture may be as great as 30 meters, for infrared and sub-millimeter astronomy. Its primary mirror will be deployed or assembled in orbit from a mosaic of possibly hundreds of mirror segments. Each segment must be shaped to precise curvature tolerances so that diffraction-limited performance will be achieved at 30 micron (nominal operating wavelength). All panels must lie within 1 micron on a theoretical surface described by the optical precipitation of the telescope's primary mirror. To attain diffraction-limited performance, the issues of alignment and/or position sensing, position control of micron tolerances, and structural, thermal, and mechanical considerations for stowing, deploying, and erecting the reflector must be resolved. Radius of curvature precision influences panel size, shape, material, and type of construction. Two superior material choices emerged: fused quartz (sufficiently homogeneous with respect to thermal expansivity to permit a thin shell substrate to be drape molded between graphite dies to a precise enough off-axis asphere for optical finishing on the as-received a segment) and a Pyrex or Duran (less expensive than quartz and formable at lower temperatures). The optimal reflector panel size is between 1-1/2 and 2 meters. Making one, two-meter mirror every two weeks requires new approaches to manufacturing off-axis parabolic or aspheric segments (drape molding on precision dies and subsequent finishing on a nonrotationally symmetric dependent machine). Proof-of-concept developmental programs were identified to prove the feasibility of the materials and manufacturing ideas.
NASA Astrophysics Data System (ADS)
Yu, Bing; Liu, Guoxiang; Li, Zhilin; Zhang, Rui; Jia, Hongguo; Wang, Xiaowen; Cai, Guolin
2013-08-01
The German satellite TerraSAR-X (TSX) is able to provide high-resolution synthetic aperture radar (SAR) images for mapping surface deformation by the persistent scatterer interferometry (PSI) technique. To extend the application of PSI in detecting subsidence in areas with frequent surface changes, this paper presents a method of TSX PSI on a network of natural persistent scatterers (NPSs) and artificial corner reflectors (CRs) deployed on site. We select a suburban area of southwest Tianjin (China) as the testing site where 16 CRs and 10 leveling points (LPs) are deployed, and utilize 13 TSX images collected over this area between 2009 and 2010 to extract subsidence by the method proposed. Two types of CRs are set around the fishponds and crop parcels. 6 CRs are the conventional ones, i.e., fixed CRs (FCRs), while 10 CRs are the newly-designed ones, i.e., so-called portable CRs (PCRs) with capability of repeatable installation. The numerical analysis shows that the PCRs have the higher temporal stability of radar backscattering than the FCRs, and both of them are better than the NPSs in performance of radar reflectivity. The comparison with the leveling data at the CRs and LPs indicates that the subsidence measurements derived by the TSX PSI method can reach up to a millimeter level accuracy. This demonstrates that the TSX PSI method based on a network of NPSs and CRs is useful for detecting land subsidence in cultivated lands.
Conceptual design of a hybrid Ge:Ga detector array
NASA Technical Reports Server (NTRS)
Parry, C. M.
1984-01-01
For potential applications in space infrared astronomy missions such as the Space Infrared Telescope Facility and the Large Deployable Reflector, integrated arrays of long-wavelength detectors are desired. The results of a feasibility study which developed a design for applying integrated array techniques to a long-wavelength (gallium-doped germanium) material to achieve spectral coverage between 30 and 200 microns are presented. An approach which builds up a two-dimensional array by stacking linear detector modules is presented. The spectral response of the Ge:Ga detectors is extended to 200 microns by application of uniaxial stress to the stack of modules. The detectors are assembled with 1 mm spacing between the elements. Multiplexed readout of each module is accomplished with integration sampling of a metal-oxide-semiconductor (MOS) switch chip. Aspects of the overall design, including the anticipated level of particle effects on the array in the space environment, a transparent electrode design for 200 microns response, estimates of optical crosstalk, and mechanical stress design calculations are included.
Minimum mass design of large-scale space trusses subjected to thermal gradients
NASA Technical Reports Server (NTRS)
Williams, R. Brett; Agnes, Gregory S.
2006-01-01
Lightweight, deployable trusses are commonly used to support space-borne instruments including RF reflectors, radar panels, and telescope optics. While in orbit, these support structures are subjected to thermal gradients that vary with altitude, location in orbit, and self-shadowing. Since these instruments have tight dimensional-stability requirements, their truss members are often covered with multi-layer insulation (MLI) blankets to minimize thermal distortions. This paper develops a radiation heat transfer model to predict the thermal gradient experienced by a triangular truss supporting a long, linear radar panel in Medium Earth Orbit (MEO). The influence of self-shadowing effects of the radar panel are included in the analysis, and the influence of both MLI thickness and outer covers/coatings on the magnitude of the thermal gradient are formed into a simple, two-dimensional analysis. This thermal model is then used to size and estimate the structural mass of a triangular truss that meets a given set of structural requirements.
A Cloud and Precipitation Radar System Concept for the ACE Mission
NASA Technical Reports Server (NTRS)
Durden, S. L.; Tanelli, S.; Epp, L.; Jamnejad, V.; Perez, R.; Prata, A.; Samoska, L.; Long, E; Fang, H.; Esteban-Fernandez, D.;
2011-01-01
One of the instruments recommended for deployment on the Aerosol/Cloud/Ecosystems (ACE) mission is a new advanced cloud profiling radar. In this paper, we describe such a radar design, called ACERAD, which has 35- and 94-GHz channels, each having Doppler and dual-polarization capabilities. ACERAD will scan at Ka-band and will be nadir-looking at W-band. To get a swath of 25-30 km, considered the minimum useful for Ka-band, ACERAD needs to scan at least 2 degrees off nadir; this is at least 20 beamwidths, which is quite large for a typical parabolic reflector. This problem is being solved with a Dragonian design; a scaled prototype of the antenna is being fabricated and will be tested on an antenna range. ACERAD also uses a quasi-optical transmission line at W-band to connect the transmitter to the antenna and antenna to the receiver. A design for this has been completed and is being laboratory tested. This paper describes the current ACERAD design and status.
Superfluid helium on orbit transfer (SHOOT)
NASA Technical Reports Server (NTRS)
Dipirro, Michael J.
1987-01-01
A number of space flight experiments and entire facilities require superfluid helium as a coolant. Among these are the Space Infrared Telescope Facility (SIRTF), the Large Deployable Reflector (LDR), the Advanced X-ray Astrophysics Facility (AXAF), the Particle Astrophysics Magnet Facility (PAMF or Astromag), and perhaps even a future Hubble Space Telescope (HST) instrument. Because these systems are required to have long operational lifetimes, a means to replenish the liquid helium, which is exhausted in the cooling process, is required. The most efficient method of replenishment is to refill the helium dewars on orbit with superfluid helium (liquid helium below 2.17 Kelvin). To develop and prove the technology required for this liquid helium refill, a program of ground and flight testing was begun. The flight demonstration is baselined as a two flight program. The first, described in this paper, will prove the concepts involved at both the component and system level. The second flight will demonstrate active astronaut involvement and semi-automated operation. The current target date for the first launch is early 1991.
The survivability of large space-borne reflectors under atomic oxygen and micrometeoroid impact
NASA Technical Reports Server (NTRS)
Gulino, D. A.
1987-01-01
Solar dynamic power system mirrors for use on space station and other spacecraft flown in low Earth orbit (LEO) are exposed to the harshness of the LEO environment. Both atomic oxygen and micrometeoroids/space debris can degrade the performance of such mirrors. Protective coatings will be required to protect oxidizable reflecting media, such as silver and aluminum, from atomic oxygen attack. Several protective coating materials have been identified as good candidates for use in this application. The durability of these coating/mirror systems after pinhole defects have been inflicted during their fabrication and deployment or through micrometeoroid/space debris impact once on-orbit is of concern. Studies of the effect of an oxygen plasma environment on protected mirror surfaces with intentionally induced pinhole defects have been conducted at NASA Lewis and are reviewed. It has been found that oxidation of the reflective layer and/or the substrate in areas adjacent to a pinhole defect, but not directly exposed by the pinhole, can occur.
Phase unwrapping methods of corner reflector DInSAR monitoring slow ground deformation
NASA Astrophysics Data System (ADS)
Fu, Wenxue; Guo, Xiaofang; Tian, Qingjiu
2007-06-01
Difference interferometric Synthetic aperture radar (DInSAR) has turned out to be a very powerful technique for the measurement of land deformations, but it requires the observed area to be correlated, and coherence degradation will seriously affect the quality of interferogram. Corner reflector DInSAR (CRDInSAR) is a new technique in recently years, which can compensate for the limitation of the classical DInSAR. Due to the stable amplitude and phase performance of the reflector, the interferometric phase difference of the reflector can be used to monitor or measure the small and slowly ground deformation for the cases of large geometrical baseline and large time interval between acquisitions. Phase unwrapping is the process where the absolute phase is reconstructed from its principal value as accurately as possible. It is a key step in the analysis of DInSAR. The classical phase unwrapping methods are either of path following type or of minimum-norm type. However, if the coherence of the two images is very low, the both methods will get error result. In application of CRDInSAR, due to the scattered points, the phase unwrapping of corner reflectors is only dealt with on a sparse grid, so all the reflectors are connected with Delaunay triangulation firstly, which can be used to define neighboring points and elementary cycles. When the monitoring ground deformation is slow, that is unwrapped neighboring-CR phase gradients are supposed to equal their wrapped-phase counterparts, then path-following method and Phase unwrapping using Coefficient of Elevation-Phase-Relation can be used to phase unwrapping. However, in the cases of unwrapped gradients exceeding one-half cycle, minimum cost flow (MCF) method can be used to unwrap the interferogram.
NASA Technical Reports Server (NTRS)
Allen, N. C.
1978-01-01
Implementation of SOLARES will input large quantities of heat continuously into a stationary location on the Earth's surface. The quantity of heat released by each of the SOlARES ground receivers, having a reflector orbit height of 6378 km, exceeds by 30 times that released by large power parks which were studied in detail. Using atmospheric models, estimates are presented for the local weather effects, the synoptic scale effects, and the global scale effects from such intense thermal radiation.
Research on large spatial coordinate automatic measuring system based on multilateral method
NASA Astrophysics Data System (ADS)
Miao, Dongjing; Li, Jianshuan; Li, Lianfu; Jiang, Yuanlin; Kang, Yao; He, Mingzhao; Deng, Xiangrui
2015-10-01
To measure the spatial coordinate accurately and efficiently in large size range, a manipulator automatic measurement system which based on multilateral method is developed. This system is divided into two parts: The coordinate measurement subsystem is consists of four laser tracers, and the trajectory generation subsystem is composed by a manipulator and a rail. To ensure that there is no laser beam break during the measurement process, an optimization function is constructed by using the vectors between the laser tracers measuring center and the cat's eye reflector measuring center, then an orientation automatically adjust algorithm for the reflector is proposed, with this algorithm, the laser tracers are always been able to track the reflector during the entire measurement process. Finally, the proposed algorithm is validated by taking the calibration of laser tracker for instance: the actual experiment is conducted in 5m × 3m × 3.2m range, the algorithm is used to plan the orientations of the reflector corresponding to the given 24 points automatically. After improving orientations of some minority points with adverse angles, the final results are used to control the manipulator's motion. During the actual movement, there are no beam break occurs. The result shows that the proposed algorithm help the developed system to measure the spatial coordinates over a large range with efficiency.
The Effect of Boundary Support and Reflector Dimensions on Inflatable Parabolic Antenna Performance
NASA Technical Reports Server (NTRS)
Coleman, Michael J.; Baginski, Frank; Romanofsky, Robert R.
2011-01-01
For parabolic antennas with sufficient surface accuracy, more power can be radiated with a larger aperture size. This paper explores the performance of antennas of various size and reflector depth. The particular focus is on a large inflatable elastic antenna reflector that is supported about its perimeter by a set of elastic tendons and is subjected to a constant hydrostatic pressure. The surface accuracy of the antenna is measured by an RMS calculation, while the reflector phase error component of the efficiency is determined by computing the power density at boresight. In the analysis, the calculation of antenna efficiency is not based on the Ruze Equation. Hence, no assumption regarding the distribution of the reflector surface distortions is presumed. The reflector surface is modeled as an isotropic elastic membrane using a linear stress-strain constitutive relation. Three types of antenna reflector construction are considered: one molded to an ideal parabolic form and two different flat panel design patterns. The flat panel surfaces are constructed by seaming together panels in a manner that the desired parabolic shape is approximately attained after pressurization. Numerical solutions of the model problem are calculated under a variety of conditions in order to estimate the accuracy and efficiency of these antenna systems. In the case of the flat panel constructions, several different cutting patterns are analyzed in order to determine an optimal cutting strategy.
NASA Technical Reports Server (NTRS)
Ryaciotaki-Boussalis, Helen A.; Wang, Shyh Jong
1989-01-01
The problem of vibration suppression in segmented reflector telescopes is considered. The decomposition of the structure into smaller components is discussed, and control laws for vibration suppression as well as conditions for stability at the local level are derived. These conditions and the properties of the interconnecting patterns are then utilized to obtain sufficient conditions for global stability.
A preliminary study of a very large space radiometric antenna
NASA Technical Reports Server (NTRS)
Agrawal, P. K.
1979-01-01
An approach used to compute the size of a special radiometric reflector antenna is presented. Operating at 1 GHz, this reflector is required to produce 200 simultaneous contiguous beams, each with a 3 dB footprint of 1 km from an assumed satellite height of 650 km. The overall beam efficiency for each beam is required to be more than 90%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
May, E. K.; Forristall, R.
2005-11-01
Industrial Solar Technology has assembled a team of experts to develop a large-aperture parabolic trough for the electric power market that moves beyond cost and operating limitations of 1980's designs based on sagged glass reflectors. IST's structurally efficient space frame design will require nearly 50% less material per square meter than a Solel LS-2 concentrator and the new trough will rotate around the focal point. This feature eliminates flexhoses that increase pump power, installation and maintenance costs. IST aims to deliver a concentrator module costing less than $100 per square meter that can produce temperatures up to 400 C. Themore » IST concentrator is ideally suited for application of front surface film reflectors and ensures that US corporations will manufacture major components, except for the high temperature receivers.« less
Wavefront Correction for Large, Flexible Antenna Reflector
NASA Technical Reports Server (NTRS)
Imbriale, William A.; Jammejad, Vahraz; Rajagopalan, Harish; Xu, Shenheng
2010-01-01
A wavefront-correction system has been proposed as part of an outer-space radio communication system that would include a large, somewhat flexible main reflector antenna, a smaller subreflector antenna, and a small array feed at the focal plane of these two reflector antennas. Part of the wavefront-correction system would reside in the subreflector, which would be a planar patch-element reflectarray antenna in which the phase shifts of the patch antenna elements would be controlled via microelectromechanical systems (MEMS) radio -frequency (RF) switches. The system would include the following sensing-and-computing subsystems: a) An optical photogrammetric subsystem built around two cameras would estimate geometric distortions of the main reflector; b) A second subsystem would estimate wavefront distortions from amplitudes and phases of signals received by the array feed elements; and c) A third subsystem, built around small probes on the subreflector plane, would estimate wavefront distortions from differences among phases of signals received by the probes. The distortion estimates from the three subsystems would be processed to generate control signals to be fed to the MEMS RF switches to correct for the distortions, thereby enabling collimation and aiming of the received or transmitted radio beam to the required precision.
Near-field Testing of the 15-meter Model of the Hoop Column Antenna
NASA Technical Reports Server (NTRS)
Hoover, J.; Kefauver, N.; Cencich, T.; Osborn, J.; Osmanski, J.
1986-01-01
The technical results from near-field testing of the 15-meter model of the hoop column antenna at the Martin Marietta Denver Aerospace facility are documented. The antenna consists of a deployable central column and a 15 meter hoop, stiffened by cables into a structure with a high tolerance repeatable surface and offset feed location. The surface has been configured to have four offset parabolic apertures, each about 6 meters in diameter, and is made of gold plated molybdenum wire mesh. Pattern measurements were made with feed systems radiating at frequencies of 7.73, 11.60, 2.27, 2.225, and 4.26 (all in GHz). This report (Volume 1) covers the testing from an overall viewpoint and contains information of generalized interest for testing large antennas. This volume discusses the deployment of the antenna in the Martin Facility and the measurements to determine mechanical stability and trueness of the reflector surface, gives the test program outline, and gives a synopsis of antenna electromagnetic performance. Three techniques for measuring surface mechanical tolerances were used (theodolites, metric cameras, and near-field phase), but only the near-field phase approach is included. The report also includes an error analysis. A detailed listing of the antenna patterns are provided for the 2.225 Ghz feed in Volume 3 of this report, and for all other feeds in Volume 2.
NASA Technical Reports Server (NTRS)
Walton, W. T.; Wilheit, T. T.
1981-01-01
Definition studies and baseline design are summarized for the proposed, and now discontinued, LAMMR. The instrument is an offset parabolic reflector with Cassegrain feeds. The three-meter aperture reflector, to be constructed using graphite-epoxy technology, rotates continuously at 0.833 rps. The scan drive subsystem includes momentum compensation for the rotating mass which includes the reflector, the support arm and Cassegrain subreflector, feed horns and radiometer. Two total power radiometers are recommended for each frequency, one each for horizontal and vertical polarizations. The selection plan, definition study specifications, LAMMR performance specifications, and predicted accuracies and resolutions after processing are shown.
NASA Astrophysics Data System (ADS)
Bernhardt, P.; Nicholas, A.; Thomas, L.; Davis, M.; Hoberman, C.; Davis, M.
The Naval Research Laboratory will provide an orbiting calibration sphere to be used with ground-based laser imaging telescopes and HF radio systems. The Precision Expandable Radar Calibration Sphere (PERCS) is a practical, reliable, high-performance HF calibration sphere and laser imaging target to orbit at about 600 km altitude. The sphere will be made of a spherical wire frame with aspect independent radar cross section in the 3 to 35 MHz frequency range. The necessary launch vehicle to place the PERCS in orbit will be provided by the Department of Defense Space Test Program. The expandable calibration target has a stowed diameter of 1 meter and a fully deployed diameter of 10.2 meters. A separate deployment mechanism is provided for the sphere. After deployment, the Precision Expandable Radar Calibration Sphere (PERCS) with 180 vertices will be in a high inclination orbit to scatter radio pulses from a number of ground systems, including (1) over-the-horizon (OTH) radars operated by the United States and Australia; (2) high power HF facilities such as HAARP in Alaska, EISCAT in Norway, and Arecibo in Puerto Rico; (3) the chain of high latitude SuperDARN radars used for auroral region mapping; and (4) HF direction finding for Navy ships. With the PERCS satellite, the accuracy of HF radars can be periodically checked for range, elevation, and azimuth errors. In addition, each of the 360 vertices on the PERCS sphere will support an optical retro-reflector for operations with ground laser facilities used to track satellites. The ground laser systems will be used to measure the precise location of the sphere within one cm accuracy and will provide the spatial orientation of the sphere as well as the rotation rate. The Department of Defense facilities that can use the corner-cube reflectors on the PERCS include (1) the Air Force Maui Optical Site (AMOS), (2) the Starfire Optical Range (SOR), and (3) the NRL Optical Test Facility (OTF).
Bokeh mirror alignment for Cherenkov telescopes
NASA Astrophysics Data System (ADS)
Ahnen, M. L.; Baack, D.; Balbo, M.; Bergmann, M.; Biland, A.; Blank, M.; Bretz, T.; Bruegge, K. A.; Buss, J.; Domke, M.; Dorner, D.; Einecke, S.; Hempfling, C.; Hildebrand, D.; Hughes, G.; Lustermann, W.; Mannheim, K.; Mueller, S. A.; Neise, D.; Neronov, A.; Noethe, M.; Overkemping, A.-K.; Paravac, A.; Pauss, F.; Rhode, W.; Shukla, A.; Temme, F.; Thaele, J.; Toscano, S.; Vogler, P.; Walter, R.; Wilbert, A.
2016-09-01
Imaging Atmospheric Cherenkov Telescopes (IACTs) need imaging optics with large apertures and high image intensities to map the faint Cherenkov light emitted from cosmic ray air showers onto their image sensors. Segmented reflectors fulfill these needs, and composed from mass production mirror facets they are inexpensive and lightweight. However, as the overall image is a superposition of the individual facet images, alignment remains a challenge. Here we present a simple, yet extendable method, to align a segmented reflector using its Bokeh. Bokeh alig nment does not need a star or good weather nights but can be done even during daytime. Bokeh alignment optimizes the facet orientations by comparing the segmented reflectors Bokeh to a predefined template. The optimal Bokeh template is highly constricted by the reflector's aperture and is easy accessible. The Bokeh is observed using the out of focus image of a near by point like light source in a distance of about 10 focal lengths. We introduce Bokeh alignment on segmented reflectors and demonstrate it on the First Geiger-mode Avalanche Cherenkov Telescope (FACT) on La Palma, Spain.
Space micro-guidance and control - Applications and architectures
NASA Technical Reports Server (NTRS)
Mettler, Edward; Hadaegh, Fred Y.
1992-01-01
The features and the components of a new microscale guidance, navigation, and control (GN&C) system for future space systems are discussed. An approach is described for the utilization of new microengineering technologies for achieving major reductions in the GN&C system's mass, size, power, and costs. The micro-GN&C system and the component concepts include microactuated adaptive optics, micromachined inertial sensors, fiberoptic data nets with light-power transmission, and VLSI microcomputers. The GN&C system will be applied in microspacecraft, microlanders, microrovers, remote sensing platforms, interferometers, and deployable reflectors.
Space micro-guidance and control - Applications and architectures
NASA Astrophysics Data System (ADS)
Mettler, Edward; Hadaegh, Fred Y.
1992-07-01
The features and the components of a new microscale guidance, navigation, and control (GN&C) system for future space systems are discussed. An approach is described for the utilization of new microengineering technologies for achieving major reductions in the GN&C system's mass, size, power, and costs. The micro-GN&C system and the component concepts include microactuated adaptive optics, micromachined inertial sensors, fiberoptic data nets with light-power transmission, and VLSI microcomputers. The GN&C system will be applied in microspacecraft, microlanders, microrovers, remote sensing platforms, interferometers, and deployable reflectors.
Evaluation of the TOPSAR performance by using passive and active calibrators
NASA Technical Reports Server (NTRS)
Alberti, G.; Moccia, A.; Ponte, S.; Vetrella, S.
1992-01-01
The preliminary analysis of the C-band cross-track interferometric data (XTI) acquired during the MAC Europe 1991 campaign over the Matera test site, in Southern Italy is presented. Twenty three passive calibrators (Corner Reflector, CR) and 3 active calibrators (Active Radar Calibrator, ARC) were deployed over an area characterized by homogeneous background. Contemporaneously to the flight, a ground truth data collection campaign was carried out. The research activity was focused on the development of motion compensation algorithms, in order to improve the height measurement accuracy of the TOPSAR system.
Large Phased Array Radar Using Networked Small Parabolic Reflectors
NASA Technical Reports Server (NTRS)
Amoozegar, Farid
2006-01-01
Multifunction phased array systems with radar, telecom, and imaging applications have already been established for flat plate phased arrays of dipoles, or waveguides. In this paper the design trades and candidate options for combining the radar and telecom functions of the Deep Space Network (DSN) into a single large transmit array of small parabolic reflectors will be discussed. In particular the effect of combing the radar and telecom functions on the sizes of individual antenna apertures and the corresponding spacing between the antenna elements of the array will be analyzed. A heterogeneous architecture for the DSN large transmit array is proposed to meet the radar and telecom requirements while considering the budget, scheduling, and strategic planning constrains.
NASA Technical Reports Server (NTRS)
Gorenstein, P.
1984-01-01
Various parameters which affect the design of the proposed large area modular array of reflectors (LAMAR) are considered, including thermal control, high resolution X-ray spectroscopy, pointing control, and mirror performance. The LAMAR instrument is to be a shuttle-launched X-ray observatory to carry out cosmic X-ray investigations. The capabilities of LAMAR are enumerated. Angular resolution performance of the mirror module prototype was measured to be 30 sec of ARC for 50% of the power. The LAMAR thermal pre-collimator design concepts and test configurations are discussed in detail.
Analysis of the Thermo-Elastic Response of Space Reflectors to Simulated Space Environment
NASA Astrophysics Data System (ADS)
Allegri, G.; Ivagnes, M. M.; Marchetti, M.; Poscente, F.
2002-01-01
The evaluation of space environment effects on materials and structures is a key matter to develop a proper design of long duration missions: since a large part of satellites operating in the earth orbital environment are employed for telecommunications, the development of space antennas and reflectors featured by high dimensional stability versus space environment interactions represents a major challenge for designers. The structural layout of state of the art space antennas and reflectors is very complex, since several different sensible elements and materials are employed: particular care must be placed in evaluating the actual geometrical configuration of the reflectors operating in the space environment, since very limited distortions of the designed layout can produce severe effects on the quality of the signal both received and transmitted, especially for antennas operating at high frequencies. The effects of thermal loads due to direct sunlight exposition and to earth and moon albedo can be easily taken into account employing the standard methods of structural analysis: on the other hand the thermal cycling and the exposition to the vacuum environment produce a long term damage accumulation which affects the whole structure. The typical effects of the just mentioned exposition are the outgassing of polymeric materials and the contamination of the exposed surface, which can affect sensibly the thermo-mechanical properties of the materials themselves and, therefore, the structural global response. The main aim of the present paper is to evaluate the synergistic effects of thermal cycling and of the exposition to high vacuum environment on an innovative antenna developed by Alenia Spazio S.p.a.: to this purpose, both an experimental and numerical research activity has been developed. A complete prototype of the antenna has been exposed to the space environment simulated by the SAS facility: this latter is constituted by an high vacuum chamber, equipped by high pressure Xenon lamps to simulate the direct solar irradiation and a cryogenic heat exchanger to reproduce the earth shadowing of sunlight. The temperature of the thermal cycles ranges from -80°C up to 100°C: the thermo-elastic response of the antenna has been surveyed by employing strain gauges place on the structures at several different locations. The structure has been subjected to 100 thermal cycles, each of which lasting two hours: the total duration of the exposition to the vacuum environment has been equal to 300 hours. Finally the antenna has been disassembled and its elements have been examined to evaluate the effects of the simulated exposition on each of them: the total mass loss and the final thermo-mechanical properties of the polymeric based materials which constitute the structural core of the antenna have been surveyed. The experimental results have been compared to numerical simulation performed by the NASTRAN code: the basic FEM model, developed for the unexposed antenna, has been updated to take into account the thermo-mechanical degradation of the structural elements and materials. This has allowed to obtain, by extrapolation, a FEM based prevision of the antenna thermo-elastic response for long-term operative conditions. References. [1] D. Hastings, H. Garret "Spacecraft environment interactions", Cambridge University Press, Atmospheric Series, Cambridge, 1996. [2] IAF-01-I.6.05 "On the Reliability of Honeycomb Core Bonding Joint in Sandwich Composite Materials for Space Applications" G. Allegri, U. Lecci, M. Marchetti, F. Poscente, 52° IAF Congress, 2001. [3] Meguro A. and alii, "Technology status of the 13 m aperture deployment antenna reflectors for Engineering Test Satellite VIII", Acta Astronautica, Volume: 47, Issue: 2-9, July - November, 2000, pp. 147-152. [4] Novikov L. S. "Contemporary state of spacecraft/environment interaction research" Radiation Measurements, Volume: 30, Issue: 5, October, 1999, pp. 661-667. [5] IAF-01-I.1.02 "Development of High Performance Large Single Shaped Reflectors" Paul Archer, C. Abegg, T. Le Goff, EADS/LV, Les Mureaux, France.
Brushless Cleaning of Solar Panels and Windows
NASA Technical Reports Server (NTRS)
Schneider, H. W.
1982-01-01
Machine proposed for cleaning solar panels and reflectors uses multiple vortexes of air, solvent, and water to remove dust and dirt. Uses no brushes that might abrade solar surfaces and thereby reduce efficiency. Machine can be readily automated and can be used on curved surfaces such as aparbolic reflectors as well as on flat ones. Cleaning fluids are recycled, so that large quantities of water and solvent are not needed.
Prominent reflector beneath around the segmentation boundary between Tonankai-Nankai earthquake area
NASA Astrophysics Data System (ADS)
Nakanishi, A.; Shimomura, N.; Fujie, G.; Kodaira, S.; Obana, K.; Takahashi, T.; Yamamoto, Y.; Yamashita, M.; Takahashi, N.; Kaneda, Y.; Mochizuki, K.; Kato, A.; Iidaka, T.; Kurashimo, E.; Shinohara, M.; Takeda, T.; Shiomi, K.
2013-12-01
In the Nankai Trough subduction seismogenic zone, the Nankai and Tonankai earthquakes had often occurred simultaneously, and caused a great event. In most cases, first break of such large events of Nankai Trough usually begins from southwest off the Kii Peninsula so far. The idea of split Philippine Sea plate between the Kii Peninsula and the Shikoku Island, which explains seismicity, tectonic background, receiver function image and historical plate motion, was previously suggested. Moreover, between the Kii Peninsula and the Shikoku Island, there is a gap of deep low-frequency events observed in the belt-like zone along the strike of the subducting Philippine Sea plate. In 2010 and 2011, we conducted the large-scale high-resolution wide-angle and reflection (MCS) seismic study, and long-term observation from off Shikoku and Kii Peninsula. Marine active source seismic data have been acquired along grid two-dimensional profiles having the total length of ~800km/year. A three-dimensional seismic tomography using active and passive seismic data observed both land and ocean bottom stations have been also performed. From those data, we found a possible prominent reflector imaged in the offshore side in the Kii channel at the depth of ~18km. The velocity just beneath the reflector cannot be determined due to the lack of ray paths. Based of the amplitude information, we interpret the reflector as the forearc Moho based on the velocity gap (from ~6.4km/s to ~7.4km/s). However, the reflector is shallower than the forearc Moho of other area along the Nankai Trough. Similar reflectors are recognized along other seismic profiles around the Kii channel. In this presentation, we will show the result of structure analysis to understand the peculiar structure including the prominent reflector around the Kii channel. Relation between the structure and the existence of the segmentation of the Nankai megathrust earthquake or seismic gap of the deep low-frequency events will be also discussed. This study is part of 'Research concerning Interaction Between the Tokai, Tonankai and Nankai Earthquakes' funded by Ministry of Education, Culture, Sports, Science and Technology, Japan.
Method of manufacturing large dish reflectors for a solar concentrator apparatus
Angel, Roger P [Tucson, AZ; Olbert, Blain H [Tucson, AZ
2011-12-27
A method of manufacturing monolithic glass reflectors for concentrating sunlight in a solar energy system is disclosed. The method of manufacturing allows large monolithic glass reflectors to be made from float glass in order to realize significant cost savings on the total system cost for a solar energy system. The method of manufacture includes steps of heating a sheet of float glass positioned over a concave mold until the sheet of glass sags and stretches to conform to the shape of the mold. The edges of the dish-shaped glass are rolled for structural stiffening around the periphery. The dish-shaped glass is then silvered to create a dish-shaped mirror that reflects solar radiation to a focus. The surface of the mold that contacts the float glass preferably has a grooved surface profile comprising a plurality of cusps and concave valleys. This grooved profile minimizes the contact area and marring of the specular glass surface, reduces parasitic heat transfer into the mold and increases mold lifetime. The disclosed method of manufacture is capable of high production rates sufficiently fast to accommodate the output of a conventional float glass production line so that monolithic glass reflectors can be produced as quickly as a float glass production can make sheets of float glass to be used in the process.
Properties of solar generators with reflectors and radiators
NASA Astrophysics Data System (ADS)
Ebeling, W. D.; Rex, D.; Bierfischer, U.
1980-06-01
Radiation cooled concentrator systems using silicon and GaAs cells were studied. The principle of radiation cooling by the reflector surfaces is discussed for cylindrical parabolic reflectors (SARA), truncated hexagonal pyramids, and a small trough configuration. Beam paths, collection properties for imperfect orientation, and thermal optimization parameters were analyzed. The three concentrating systems with radiation cooling offer advantages over the plane panel and over the large trough. With silicon solar cells they exhibit considerably lower solar cell consumption per Kw and also lower mass per kW. With GaAs cells the SARA system reduces the number of solar cells needed per kW to less than 10%. Also in all other cases SARA offers the best values for alpha and F sub sol, as long as narrow angular tolerances of the panel orientation can be met. Analysis of the energy collecting properties for imperfect orientation shows the superiority of the hexagonal concentrator. This device can produce power for even large angles between the sun and the panel normal.
Pseudo-orthogonal frequency coded wireless SAW RFID temperature sensor tags.
Saldanha, Nancy; Malocha, Donald C
2012-08-01
SAW sensors are ideal for various wireless, passive multi-sensor applications because they are small, rugged, radiation hard, and offer a wide range of material choices for operation over broad temperature ranges. The readable distance of a tag in a multi-sensor environment is dependent on the insertion loss of the device and the processing gain of the system. Single-frequency code division multiple access (CDMA) tags that are used in high-volume commercial applications must have universal coding schemes and large numbers of codes. The use of a large number of bits at the common center frequency to achieve sufficient code diversity in CDMA tags necessitates reflector banks with >30 dB loss. Orthogonal frequency coding is a spread-spectrum approach that employs frequency and time diversity to achieve enhanced tag properties. The use of orthogonal frequency coded (OFC) SAW tags reduces adjacent reflector interactions for low insertion loss, increased range, complex coding, and system processing gain. This work describes a SAW tag-sensor platform that reduces device loss by implementing long reflector banks with optimized spectral coding. This new pseudo-OFC (POFC) coding is defined and contrasted with the previously defined OFC coding scheme. Auto- and cross-correlation properties of the chips and their relation to reflectivity per strip and reflector length are discussed. Results at 250 MHz of 8-chip OFC and POFC SAW tags will be compared. The key parameters of insertion loss, cross-correlation, and autocorrelation of the two types of frequency-coded tags will be analyzed, contrasted, and discussed. It is shown that coded reflector banks can be achieved with near-zero loss and still maintain good coding properties. Experimental results and results predicted by the coupling of modes model are presented for varying reflector designs and codes. A prototype 915-MHz POFC sensor tag is used as a wireless temperature sensor and the results are shown.
Reflector surface distortion analysis techniques (thermal distortion analysis of antennas in space)
NASA Technical Reports Server (NTRS)
Sharp, R.; Liao, M.; Giriunas, J.; Heighway, J.; Lagin, A.; Steinbach, R.
1989-01-01
A group of large computer programs are used to predict the farfield antenna pattern of reflector antennas in the thermal environment of space. Thermal Radiation Analysis Systems (TRASYS) is a thermal radiation analyzer that interfaces with Systems Improved Numerical Differencing Analyzer (SINDA), a finite difference thermal analysis program. The programs linked together for this analysis can now be used to predict antenna performance in the constantly changing space environment. They can be used for very complex spacecraft and antenna geometries. Performance degradation caused by methods of antenna reflector construction and materials selection are also taken into consideration. However, the principal advantage of using this program linkage is to account for distortions caused by the thermal environment of space and the hygroscopic effects of the dry-out of graphite/epoxy materials after the antenna is placed into orbit. The results of this type of analysis could ultimately be used to predict antenna reflector shape versus orbital position. A phased array antenna distortion compensation system could then use this data to make RF phase front corrections. That is, the phase front could be adjusted to account for the distortions in the antenna feed and reflector geometry for a particular orbital position.
Study of multi-kilowatt solar arrays for Earth orbit applications
NASA Technical Reports Server (NTRS)
Patterson, R. E.
1983-01-01
A miniaturized Cassegrainian concentrator (MCC) solar array concept is being developed with the objective of significantly reducing the recurring cost of multikilowatt solar arrays. The desired cost reduction is obtained as a result of using very small high efficiency solar cells in conjuction with low cost optics. The MCC single element concept incident slar radiation is reflected rom a primary parabolic reflector to a secondary hyperbolic reflector and finally to a 4 millimeter diameter solar cell. A light catcher cone is used to improve off axis performance. The solar cell is mounted to a heat fin. An element is approximately 13 millimeters thick which permits efficient launch stowage of the concentrator system panels without complex optical component deployments or retractions. The MCC elements are packed in bays within graphite epoxy frames and are electrically connected into appropriate series-parallel circuits. A MCC sngle element with a 21 sq cm entrance aperture and a 20 efficient, 0.25 sq cm gallium arsenide solar cell has the same power output as 30 sq cm of 11-percent efficiency (at 68 C) silicon solar cells.
Exposure setup for animal experiments using a parabolic reflector.
Schelkshorn, S; Tejero, S; Detlefsen, J
2007-01-01
The exposure setup presented is intended for a controlled, long-term and continuous exposition (20 Months, 24 h/day) of a large number of animals (100 rats at minimum) with standard GSM and UMTS signals, at 900 MHz and 1966 MHz, respectively. To obtain a homogeneous field within a large volume, the setup is based on the 'compact range' principle well known from antenna measurement facilities to produce a plane wave at relatively short ranges from the reflector. All requirements imposed due to the in vivo nature of the experiment, i.e. air-conditioning and easy access to the cages can be fulfilled.
Daily Planet Imagery: GIBS MODIS Products on ArcGIS Online
NASA Astrophysics Data System (ADS)
Plesea, L.
2015-12-01
The NASA EOSDIS Global Imagery Browse Services (GIBS) is rapidly becoming an invaluable GIS resource for the science community and for the public at large. Reliable, fast access to historical as well as near real time, georeferenced images form a solid basis on which many innovative applications and projects can be built. Esri has recognized the value of this effort and is a GIBS user and collaborator. To enable the use of GIBS services within the ArcGIS ecosystem, Esri has built a GIBS reflector server at http://modis.arcgis.com, server which offers the facilities of a time enabled Mosaic Service on top of the GIBS provided images. Currently the MODIS reflectance products are supported by this mosaic service, possibilities of handling other GIBS products are being explored. This reflector service is deployed on the Amazon Elastic Compute Cloud platform, and is freely available to the end users. Due to the excellent response time from GIBS, image tiles do not have to be stored by the Esri mosaic server, all needed data being retrieved directly from GIBS when needed, continuously reflecting the state of GIBS, and greatly simplifying the maintenance of this service. Response latency is usually under one second, making it easy to interact with the data. The remote data access is achieved by using the Geospatial Data Abstraction Library (GDAL) Tiled Web Map Server (TWMS) driver. The response time of this server is excellent, usually under one second. The MODIS imagery has proven to be one of the most popular ones on the ArcGIS Online platform, where it is frequently use to provide temporal context to maps, or by itself, to tell a compelling story.
Cryo-optical testing of large aspheric reflectors operating in the sub mm range
NASA Astrophysics Data System (ADS)
Roose, S.; Houbrechts, Y.; Mazzoli, A.; Ninane, N.; Stockman, Y.; Daddato, R.; Kirschner, V.; Venacio, L.; de Chambure, D.
2006-02-01
The cryo-optical testing of the PLANCK primary reflector (elliptical off-axis CFRP reflector of 1550 mm x 1890 mm) is one of the major issue in the payload development program. It is requested to measure the changes of the Surface Figure Error (SFE) with respect to the best ellipsoid, between 293 K and 50 K, with a 1 μm RMS accuracy. To achieve this, Infra Red interferometry has been used and a dedicated thermo mechanical set-up has been constructed. This paper summarises the test activities, the test methods and results on the PLANCK Primary Reflector - Flight Model (PRFM) achieved in FOCAL 6.5 at Centre Spatial de Liege (CSL). Here, the Wave Front Error (WFE) will be considered, the SFE can be derived from the WFE measurement. After a brief introduction, the first part deals with the general test description. The thermo-elastic deformations will be addressed: the surface deformation in the medium frequency range (spatial wavelength down to 60 mm) and core-cell dimpling.
NASA Astrophysics Data System (ADS)
Campbell, Bruce A.; Morgan, Gareth A.
2018-02-01
The variation of Shallow Radar (SHARAD) echo strength with frequency reveals material dielectric losses and polar layer properties. Loss tangents for Elysium and Amazonis Planitiae deposits are consistent with volcanic flows and sediments, while the Medusae Fossae Formation, lineated valley fill, and lobate debris aprons have low losses consistent with a major component of water ice. Mantling materials in Arcadia and Utopia Planitiae have higher losses, suggesting they are not dominated by ice over large fractions of their thickness. In Gemina Lingula, there are frequent deviations from a simple dependence of loss on depth. Within reflector packets, the brightest reflectors are often different among the frequency subbands, and there are cases of reflectors that occur in only the high- or low-frequency echoes. Many polar radar reflections must arise from multiple thin interfaces, or single deposits of appropriate thickness, that display resonant scattering behaviors. Reflector properties may be linked to climate-controlled polar dust deposition.
NASA Technical Reports Server (NTRS)
Li, Feiyue; Bainum, Peter M.
1990-01-01
The large-angle maneuvering of a Shuttle-beam-reflector spacecraft in the plane of a circular earth orbit is examined by considering the effects of the structural offset connection, the axial shortening, and the gravitational torque on the slewing motion. The offset effect is analyzed by changing the attachment point of the reflector to the beam. As the attachment point is moved away from the mass center of the reflector, the responses of the nonlinear system deviate from those of the linearized system. The axial geometric shortening effect induced by the deformation of the beam contributes to the system equations through second order terms in the modal amplitudes and rates. The gravitational torque effect is relatively small.
A Novel Reflector/Reflectarray Antenna: An Enabling Technology for NASA's Dual-Frequency ACE Radar
NASA Technical Reports Server (NTRS)
Racette, Paul E.; Heymsfield, Gerald; Li, Lihua; Cooley, Michael E.; Park, Richard; Stenger, Peter
2011-01-01
This paper describes a novel dual-frequency shared aperture Ka/W-band antenna design that enables wide-swath Imaging via electronic scanning at Ka-band and Is specifically applicable to NASA's Aerosol, Cloud and Ecosystems (ACE) mission. The innovative antenna design minimizes size and weight via use of a shared aperture and builds upon NASA's investments in large-aperture reflectors and high technology-readiness-level (TRL) W-band radar architectures. The antenna is comprised of a primary cylindrical reflector/reflectarray surface illuminated by a fixed W-band feed and a Ka-band Active Electronically Scanned Array (AESA) line feed. The reflectarray surface provides beam focusing at W-band, but is transparent at Ka-band.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashenfelter, J.; Jaffe, D.; Diwan, M. V.
A meter-long, 23-liter EJ-309 liquid scintillator detector has been constructed to study the light collection and pulse-shape discrimination performance of elongated scintillator cells for the PROSPECT reactor antineutrino experiment. The magnitude and uniformity of light collection and neutron-gamma discrimination power in the energy range of antineutrino inverse beta decay products have been studied using gamma and spontaneous fission calibration sources deployed along the cell axis. We also study neutron-gamma discrimination and light collection abilities for differing PMT and reflector configurations. As a result, key design features for optimizing MeV-scale response and background rejection capabilities are identified.
Performance analysis of next-generation lunar laser retroreflectors
NASA Astrophysics Data System (ADS)
Ciocci, Emanuele; Martini, Manuele; Contessa, Stefania; Porcelli, Luca; Mastrofini, Marco; Currie, Douglas; Delle Monache, Giovanni; Dell'Agnello, Simone
2017-09-01
Starting from 1969, Lunar Laser Ranging (LLR) to the Apollo and Lunokhod Cube Corner Retroreflectors (CCRs) provided several tests of General Relativity (GR). When deployed, the Apollo/Lunokhod CCRs design contributed only a negligible fraction of the ranging error budget. Today the improvement over the years in the laser ground stations makes the lunar libration contribution relevant. So the libration now dominates the error budget limiting the precision of the experimental tests of gravitational theories. The MoonLIGHT-2 project (Moon Laser Instrumentation for General relativity High-accuracy Tests - Phase 2) is a next-generation LLR payload developed by the Satellite/lunar/GNSS laser ranging/altimetry and Cube/microsat Characterization Facilities Laboratory (SCF _ Lab) at the INFN-LNF in collaboration with the University of Maryland. With its unique design consisting of a single large CCR unaffected by librations, MoonLIGHT-2 can significantly reduce error contribution of the reflectors to the measurement of the lunar geodetic precession and other GR tests compared to Apollo/Lunokhod CCRs. This paper treats only this specific next-generation lunar laser retroreflector (MoonLIGHT-2) and it is by no means intended to address other contributions to the global LLR error budget. MoonLIGHT-2 is approved to be launched with the Moon Express 1(MEX-1) mission and will be deployed on the Moon surface in 2018. To validate/optimize MoonLIGHT-2, the SCF _ Lab is carrying out a unique experimental test called SCF-Test: the concurrent measurement of the optical Far Field Diffraction Pattern (FFDP) and the temperature distribution of the CCR under thermal conditions produced with a close-match solar simulator and simulated space environment. The focus of this paper is to describe the SCF _ Lab specialized characterization of the performance of our next-generation LLR payload. While this payload will improve the contribution of the error budget of the space segment (MoonLIGHT-2) to GR tests and to constraints on new gravitational theories (like non-minimally coupled gravity and spacetime torsion), the description of the associated physics analysis and global LLR error budget is outside of the chosen scope of present paper. We note that, according to Reasenberg et al. (2016), software models used for LLR physics and lunar science cannot process residuals with an accuracy better than few centimeters and that, in order to process millimeter ranging data (or better) coming from (not only) future reflectors, it is necessary to update and improve the respective models inside the software package. The work presented here on results of the SCF-test thermal and optical analysis shows that a good performance is expected by MoonLIGHT-2 after its deployment on the Moon. This in turn will stimulate improvements in LLR ground segment hardware and help refine the LLR software code and models. Without a significant improvement of the LLR space segment, the acquisition of improved ground LLR hardware and challenging LLR software refinements may languish for lack of motivation, since the librations of the old generation LLR payloads largely dominate the global LLR error budget.
Real-time sensing of optical alignment
NASA Technical Reports Server (NTRS)
Stier, Mark T.; Wissinger, Alan B.
1988-01-01
The Large Deployable Reflector and other future segmented optical systems may require autonomous, real-time alignment of their optical surfaces. Researchers have developed gratings located directly on a mirror surface to provide interferometric sensing of the location and figure of the mirror. The grating diffracts a small portion of the incident beam to a diffractive focus where the designed diagnostics can be performed. Mirrors with diffraction gratings were fabricated in two separate ways. The formation of a holographic grating over the entire surface of a mirror, thereby forming a Zone Plate Mirror (ZPM) is described. Researchers have also used computer-generated hologram (CGH) patches for alignment and figure sensing of mirrors. When appropriately illuminated, a grid of patches spread over a mirror segment will yield a grid of point images at a wavefront sensor, with the relative location of the points providing information on the figure and location of the mirror. A particular advantage of using the CGH approach is that the holographic patches can be computed, fabricated, and replicated on a mirror segment in a mass production 1-g clean room environment.
NASA Technical Reports Server (NTRS)
Steurer, W. H.
1980-01-01
A survey of all presently defined or proposed large space systems indicated an ever increasing demand for flexible components and materials, primarily as a result of the widening disparity between the stowage space of launch vehicles and the size of advanced systems. Typical flexible components and material requirements were identified on the basis of recurrence and/or functional commonality. This was followed by the evaluation of candidate materials and the search for material capabilities which promise to satisfy the postulated requirements. Particular attention was placed on thin films, and on the requirements of deployable antennas. The assessment of the performance of specific materials was based primarily on the failure mode, derived from a detailed failure analysis. In view of extensive on going work on thermal and environmental degradation effects, prime emphasis was placed on the assessment of the performance loss by meteoroid damage. Quantitative data were generated for tension members and antenna reflector materials. A methodology was developed for the representation of the overall materials performance as related to systems service life. A number of promising new concepts for flexible materials were identified.
Control of active reflector system for radio telescope
NASA Astrophysics Data System (ADS)
Zhou, Guo-hua; Li, Guo-ping; Zhang, Yong; Zhang, Zhen-chao
2016-10-01
According to the control requirements of the active reflector surface in the 110 m radio telescope at QiTai(QTT) Xinjiang, a new displacement actuator and a new displacement control system were designed and manufactured and then their characteristics were tested by a dual-frequency laser interferometer in the micro-displacement laboratory. The displacement actuator was designed by a scheme of high precision worm and roller screw structures, and the displacement control system was based on a ARM micro-processor. Finally, the S curve acceleration control methods were used to design the hardware platform and software algorithm for the active reflection surface of the control system. The test experiments were performed based on the laser metrology system on an active reflector close-loop antenna prototype for large radio telescope. Experimental results indicate that it achieves a 30 mm working stroke and 5 μm RMS motion resolution. The accuracy (standard deviation) is 3.67 mm, and the error between the determined and theoretical values is 0.04% when the rated load is 300 kg, the step is 2 mm and the stroke is 30mm. Furthermore, the active reflector integrated system was tested by the laser sensors with the accuracy of 0.25 μm RMS on 4-panel radio telescope prototype, the measurement results show that the integrated precision of the active reflector closed-loop control system is less than 5 μm RMS, and well satisfies the technical requirements of active reflector control system of the QTT radio telescope in 3 mm wavelength.
NASA Astrophysics Data System (ADS)
Desta, Derese; Ram, Sanjay K.; Rizzoli, Rita; Bellettato, Michele; Summonte, Caterina; Jeppesen, Bjarke R.; Jensen, Pia B.; Tsao, Yao-Chung; Wiggers, Hartmut; Pereira, Rui N.; Balling, Peter; Larsen, Arne Nylandsted
2016-06-01
A new back-reflector architecture for light-management in thin-film solar cells is proposed that includes a morphologically smooth top surface with light-scattering microstructures buried within. The microstructures are pyramid shaped, fabricated on a planar reflector using TiO2 nanoparticles and subsequently covered with a layer of Si nanoparticles to obtain a flattened top surface, thus enabling growth of good quality thin-film solar cells. The optical properties of this back-reflector show high broadband haze parameter and wide angular distribution of diffuse light-scattering. The n-i-p amorphous silicon thin-film solar cells grown on such a back-reflector show enhanced light absorption resulting in improved external quantum efficiency. The benefit of the light trapping in those solar cells is evidenced by the gains in short-circuit current density and efficiency up to 15.6% and 19.3% respectively, compared to the reference flat solar cells. This improvement in the current generation in the solar cells grown on the flat-topped (buried pyramid) back-reflector is observed even when the irradiation takes place at large oblique angles of incidence. Finite-difference-time-domain simulation results of optical absorption and ideal short-circuit current density values agree well with the experimental findings. The proposed approach uses a low cost and simple fabrication technique and allows effective light manipulation by utilizing the optical properties of micro-scale structures and nanoscale constituent particles.
Reconfigurable Yagi-Uda antenna based on a silicon reflector with a solid-state plasma.
Kim, Da-Jin; Park, Jang-Soon; Kim, Cheol Ho; Hur, Jae; Kim, Choong-Ki; Cho, Young-Kyun; Ko, Jun-Bong; Park, Bonghyuk; Kim, Dongho; Choi, Yang-Kyu
2017-12-08
This paper describes the fabrication and characterization of a reconfigurable Yagi-Uda antenna based on a silicon reflector with a solid-state plasma. The silicon reflector, composed of serially connected p-i-n diodes, forms a highly dense solid-state plasma by injecting electrons and holes into the intrinsic region. When this plasma silicon reflector is turned on, the front-realized gain of the antenna increases by more than 2 dBi beyond 5.3 GHz. To achieve the large gain increment, the structure of the antenna is carefully designed with the aid of semiconductor device simulation and antenna simulation. By using an aluminum nitride (AlN) substrate with high thermal conductivity, self-heating effects from the high forward current in the p-i-n diode are efficiently suppressed. By comparing the antenna simulation data and the measurement data, we estimated the conductivity of the plasma silicon reflector in the on-state to be between 10 4 and 10 5 S/m. With these figures, silicon material with its technology is an attractive tunable material for a reconfigurable antenna, which has attracted substantial interest from many areas, such as internet of things (IoT) applications, wireless network security, cognitive radio, and mobile and satellite communications as well as from multiple-input-multiple-output (MIMO) systems.
Lane, J.W.; Joesten, P.K.; Pohll, G.M.; Mihevic, Todd
2001-01-01
Single-hole borehole-radar reflection logs were collected and interpreted in support of a study to characterize ground-water flow and transport at the Project Shoal Area (PSA) in Churchill County, Nevada. Radar logging was conducted in six boreholes using 60-MHz omni-directional electric-dipole antennas and a 60-MHz magnetic-dipole directional receiving antenna.Radar data from five boreholes were interpreted to identify the location, orientation, estimated length, and spatial continuity of planar reflectors present in the logs. The overall quality of the radar data is marginal and ranges from very poor to good. Twenty-seven reflectors were interpreted from the directional radar reflection logs. Although the range of orientation interpreted for the reflectors is large, a significant number of reflectors strike northeast-southwest and east-west to slightly northwest-southeast. Reflectors are moderate to steeply dipping and reflector length ranged from less than 7 m to more than 133 m.Qualitative scores were assigned to each reflector to provide a sense of the spatial continuity of the reflector and the characteristics of the field data relative to an ideal planar reflector (orientation score). The overall orientation scores are low, which reflects the general data quality, but also indicates that the properties of most reflectors depart from the ideal planar case. The low scores are consistent with reflections from fracture zones that contain numerous, closely spaced, sub-parallel fractures.Interpretation of borehole-radar direct-wave velocity and amplitude logs identified several characteristics of the logged boreholes: (1) low-velocity zones correlate with decreased direct-wave amplitude, indicating the presence of fracture zones; (2) direct-wave amplitude increases with depth in three of the boreholes, suggesting an increase in electrical resistivity with depth resulting from changes in mineral assemblage or from a decrease in the specific conductance of ground water; and (3) an increase in primary or secondary porosity and an associated change in mineral assemblage, or decrease in ground water specific conductance, was characterized in two of the boreholes below 300 m.The results of the radar reflection logging indicate that even where data quality is marginal, borehole-radar reflection logging can provide useful information for ground-water characterization studies in fractured rock and insights into the nature and extent of fractures and fracture zones in and near boreholes.
X-ray optics for the LAMAR facility, an overview. [Large Area Modular Array of Reflectors
NASA Technical Reports Server (NTRS)
Gorenstein, P.
1979-01-01
The paper surveys the Large Area Modular Array of Reflectors (LAMAR), the concept of which is based on meeting two major requirements in X-ray astronomy, large collecting area and moderately good or better angular resolution for avoiding source confusion and imaging source fields. It is shown that the LAMAR provides the same sensitivity and signal to noise in imaging as a single large telescope having the same area and angular resolution but is a great deal less costly to develop, construct, and integrate into a space mission. Attention is also given to the LAMAR modular nature which will allow for an evolutionary development from a modest size array on Spacelab to a Shuttle launched free flyer. Finally, consideration is given to manufacturing methods which show promise of making LAMAR meet the criteria of good angular resolution, relatively low cost, and capability for fast volume production.
All fiber passively Q-switched laser
Soh, Daniel B. S.; Bisson, Scott E
2015-05-12
Embodiments relate to an all fiber passively Q-switched laser. The laser includes a large core doped gain fiber having a first end. The large core doped gain fiber has a first core diameter. The laser includes a doped single mode fiber (saturable absorber) having a second core diameter that is smaller than the first core diameter. The laser includes a mode transformer positioned between a second end of the large core doped gain fiber and a first end of the single mode fiber. The mode transformer has a core diameter that transitions from the first core diameter to the second core diameter and filters out light modes not supported by the doped single mode fiber. The laser includes a laser cavity formed between a first reflector positioned adjacent the large core doped gain fiber and a second reflector positioned adjacent the doped single mode fiber.
Coordinate metrology of a primary surface composite panel from the Large Millimeter Telescope
NASA Astrophysics Data System (ADS)
Gale, David M.; Lucero Álvarez, Maribel; Cabrera Cuevas, Lizeth; Leon-Huerta, Andrea; Arizmendi Reyes, Edgar; Icasio Hernández, Octavio; Castro Santos, David; Hernández Ríos, Emilio; Tecuapetla Sosa, Esteban; Tzile Torres, Carlos; Viliesid Alonso, Miguel
2016-07-01
The Large Millimeter Telescope (LMT) is a single-dish fully-steerable radio telescope presently operating with a 32.5 m parabolic primary reflector, in the process of extension to 50 m. The project is managed by the Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) in México, and the University of Massachusetts Amherst, USA. A laminated surface panel from the LMT primary reflector has been subjected to a surface measurement assay at Mexico's National Metrology Center (CENAM). Data obtained using a coordinate measuring machine and laser tracker owned by CENAM is compared with measurements using an identical model laser tracker and the photogrammetry technique, the latter systems owned and operated by the LMT. All measurements were performed within the controlled metrology environment at CENAM. The measurement exercise is intended to prepare the groundwork for converting this spare surface panel into a calibrated work-piece. The establishment of a calibrated work-piece provides quality assurance for metrology through measurement traceability. It also simplifies the evaluation of measurement uncertainty for coordinate metrology procedures used by the LMT project during reflector surface qualification.
A microstrip array feed for MSAT spacecraft reflector antenna
NASA Technical Reports Server (NTRS)
Huang, John
1988-01-01
An L-band circularly polarized microstrip array antenna with relatively wide bandwidth has been developed. The array has seven subarrays which form a single cluster as part of a large overlapping cluster reflector feed array. Each of the seven subarrays consists of four uniquely arranged linearly polarized microstrip elements. A 7.5 percent impedance (VSWR less than 1.5) as well as axial ratio (less than 1 dB) bandwidths have been achieved by employing a relatively thick honeycomb substrate with special impedance matching feed probes.
Lamp system with conditioned water coolant and diffuse reflector of polytetrafluorethylene(PTFE)
Zapata, Luis E.; Hackel, Lloyd
1999-01-01
A lamp system with a very soft high-intensity output is provided over a large area by water cooling a long-arc lamp inside a diffuse reflector of polytetrafluorethylene (PTFE) and titanium dioxide (TiO.sub.2) white pigment. The water is kept clean and pure by a one micron particulate filter and an activated charcoal/ultraviolet irradiation system that circulates and de-ionizes and biologically sterilizes the coolant water at all times, even when the long-arc lamp is off.
A novel concentrator with zero-index metamaterial for space solar power station
NASA Astrophysics Data System (ADS)
Huang, Jin; Chu, Xue-mei; Fan, Jian-yu; Jin, Qi-bao; Duan, Zhu-zhu
2017-03-01
Space solar power station (SSPS) is a comprehensive system that continuously collects solar energy in space and transmits it to ground with a wireless power transmission (WPT) system. These systems have great potential to provide large-scale energy. To increase the efficiency and reduce the weight and cost of the photovoltaic (PV) components, a huge light-weighted concentrator was introduced in the latest SSPS concepts, such as integrated symmetrical concentrator (ISC) and arbitrarily large phased array (ALPHA). However, for typical SSPS running in Geostationary Earth Orbit (GEO), the sunlight direction varies with time, leading to a great challenge for concentrator design. In ISC, the two-dimensional mast is used to realize sun-tracking. However, a multi-thousand-ton structure is difficult to control precisely in space. For this reason, ALPHA comprises a large number of individually pointed thin-film reflectors to intercept sunlight, mounted on the non-moving structure. However, the real-time adjustment of the thousands of reflectors is still an open problem. Furthermore, the uniformity of the time of the power generation (UTPG) is another factor evaluating the system. Therefore, this paper proposes a novel concentrator based on zero-index metamaterial (ZIM) called Thin-film Energy Terminator (SSPS-TENT). This will aid the control of the massive reflectors while avoiding the rotation of the overall system, the control of the massive reflectors and the influence of the obliquity of the ecliptic. Also, an optimization design method is proposed to increase its solar energy collecting efficiency (ECE) and flux distribution (FD). The ray-tracing simulation results show that the ECE is more than 96% of the day. In terms of the FD, the uniformity varies from 0.3057 to 0.5748. Compared with ALPHA, the UTPG is more stable.
Innovative design of parabolic reflector light guiding structure
NASA Astrophysics Data System (ADS)
Whang, Allen J.; Tso, Chun-Hsien; Chen, Yi-Yung
2008-02-01
Due to the idea of everlasting green architecture, it is of increasing importance to guild natural light into indoors. The advantages are multifold - to have better color rendering index, excellent energy savings from environments viewpoints and make humans more healthy, etc. Our search is to design an innovative structure, to convert outdoor sun light impinges on larger surfaces, into near linear light beam sources, later convert this light beam into near point sources which enters the indoor spaces then can be used as lighting sources indoors. We are not involved with the opto-electrical transformation, to the guild light into to the building, to perform the illumination, as well as the imaging function. Because non-imaging optics, well known for apply to the solar concentrators, that can use non-imaging structures to fulfill our needs, which can also be used as energy collectors in solar energy devices. Here, we have designed a pair of large and small parabolic reflector, which can be used to collect daylight and change area from large to small. Then we make a light-guide system that is been designed by us use of this parabolic reflector to guide the collection light, can pick up the performance for large surface source change to near linear source and a larger collection area.
Lithospheric mantle structure beneath Northern Scotland: Pre-plume remnant or syn-plume signature?
NASA Astrophysics Data System (ADS)
Knapp, J.
2003-04-01
Upper mantle reflectors (Flannan and W) beneath the northwestern British Isles are some of the best-known and most-studied examples of preserved structure within the continental mantle lithosphere, and are spatially coincident with the surface location of early Iceland plume volcanism in the British Tertiary Province. First observed on BIRPS (British Institutions Reflection Profiling Syndicate) marine deep seismic reflection profiles in the early 1980's, these reflectors have subsequently been imaged and correlated on additional reflection and refraction profiles in the offshore area of northern and western Scotland. The age and tectonic significance of these reflectors remains a subject of wide debate, due in part to the absence of robust characterization of the upper mantle velocity structure in this tectonically complex area. Interpretations advanced over the past two decades for the dipping Flannan reflector range from fossilized subduction complex to large-scale extensional shear zone, and span ages from Proterozoic to early Mesozoic. Crustal geology of the region records early Paleozoic continental collision and late Paleozoic to Mesozoic extension. Significant modification of the British lithosphere in early Tertiary time, including dramatic thinning and extensive basaltic intrusion associated with initiation and development of the Iceland plume, suggests either (1) an early Tertiary age for the Flannan reflector or (2) preservation of ancient features within the mantle lithosphere despite such pervasive modification. Exisitng constraints are consistent with a model for early Tertiary origin of the Flannan reflector as the downdip continuation of the Rockall Trough extensional system of latest Cretaceous to earliest Tertiary age during opening of the northern Atlantic Ocean and initiation of the Iceland plume. Lithopsheric thinning beneath present-day northern Scotland could have served to focus the early expression of plume volcanism (British Tertiary Province), despite the inferred distant locus of the initial plume head. Alternatively, preservation of large-scale pre-plume fabric in the Scottish mantle would imply long-lived tectonic heredity in the continental lithospheric mantle, and place important constraints on the plume-related effects (or lack thereof) in the mantle lithosphere.
DESIGN CHARACTERISTICS OF THE IDAHO NATIONAL LABORATORY HIGH-[TEMPERATURE GAS-COOLED TEST REACTOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sterbentz, James; Bayless, Paul; Strydom, Gerhard
A point design for a graphite-moderated, high-temperature, gas-cooled test reactor (HTG TR) has been developed by Idaho National Laboratory (INL) as part of a United States (U.S.) Department of Energy (DOE) initiative to explore and potentially expand the existing U.S. test reactor capabilities. This paper provides a summary of the design and its main attributes. The 200 MW HTG TR is a thermal-neutron spectrum reactor composed of hexagonal prismatic fuel and graphite reflector blocks. Twelve fuel columns (96 fuel blocks total and 6.34 m active core height) are arranged in two hexagonal rings to form a relatively compact, high-power density,more » annular core sandwiched between inner, outer, top, and bottom graphite reflectors. The HTG-TR is designed to operate at 7 MPa with a coolant inlet/outlet temperature of 325°C/650°C, and utilizes TRISO particle fuel from the DOE AGR Program with 425 ?m uranium oxycarbide (UCO) kernels and an enrichment of 15.5 wt% 235U. The primary mission of the HTG TR is material irradiation and therefore the core has been specifically designed and optimized to provide the highest possible thermal and fast neutron fluxes. The highest thermal neutron flux (3.90E+14 n/cm2s) occurs in the outer reflector, and the maximum fast flux levels (1.17E+14 n/cm2s) are produced in the central reflector column where most of the graphite has been removed. Due to high core temperatures under accident conditions, all the irradiation test facilities have been located in the inner and outer reflectors where fast flux levels decline. The core features a large number of irradiation positions with large test volumes and long test lengths, ideal for thermal neutron irradiation of large test articles. The total available test volume is more than 1100 liters. Up to four test loop facilities can be accommodated with pressure tube boundaries to isolate test articles and test fluids (e.g., liquid metal, liquid salt, light water) from the helium primary coolant system.« less
REVIEW ARTICLE: Bioluminescent signals and the role of reflectors
NASA Astrophysics Data System (ADS)
Herring, Peter J.
2000-11-01
Organisms in a well lit environment use optical signals derived from the selective reflection of ambient light. In a dim or dark environment it is very difficult (because of low photon numbers) to detect the contrast between light reflected from the organism and that from the background, and many organisms use bioluminescent signals instead. The use of such signals on land is largely restricted to sexual signalling by the luminous beetles, but in the deep ocean their use is widespread, involving both many different organisms and a range of uses which parallel those of reflective signals on land. Some bioluminescent signals rely almost entirely on an optically unmodified light source (e.g. a secretion) but others depend upon complex optical structures, particularly reflectors, in the light-emitting organs. Reflectors in the light organs of many shrimp, squid and fish are based on constructive interference systems but employ different biological materials. They and other structures modify the angular, spectral and intensity distributions of bioluminescent signals. The ready availability of highly efficient biological reflectors has been a formative influence in the evolution of bioluminescent signalling in the sea.
Triangulation methods for automated docking
NASA Technical Reports Server (NTRS)
Bales, John W.
1996-01-01
An automated docking system must have a reliable method for determining range and orientation of the passive (target) vehicle with respect to the active vehicle. This method must also provide accurate information on the rates of change of range to and orientation of the passive vehicle. The method must be accurate within required tolerances and capable of operating in real time. The method being developed at Marshall Space Flight Center employs a single TV camera, a laser illumination system and a target consisting, in its minimal configuration, of three retro-reflectors. Two of the retro-reflectors are mounted flush to the same surface, with the third retro-reflector mounted to a post fixed midway between the other two and jutting at a right angle from the surface. For redundancy, two additional retroreflectors are mounted on the surface on a line at right angles to the line containing the first two retro-reflectors, and equally spaced on either side of the post. The target vehicle will contain a large target for initial acquisition and several smaller targets for close range.
Short-range/Long-range Integrated Target (SLIT) for Video Guidance Sensor Rendezvous and Docking
NASA Technical Reports Server (NTRS)
Roe, Fred D. (Inventor); Bryan, Thomas C. (Inventor)
2009-01-01
A laser target reflector assembly for mounting upon spacecraft having a long-range reflector array formed from a plurality of unfiltered light reflectors embedded in an array pattern upon a hemispherical reflector disposed upon a mounting plate. The reflector assembly also includes a short-range reflector array positioned upon the mounting body proximate to the long-range reflector array. The short-range reflector array includes three filtered light reflectors positioned upon extensions from the mounting body. The three filtered light reflectors retro-reflect substantially all incident light rays that are transmissive by their monochromatic filters and received by the three filtered light reflectors. In one embodiment the short-range reflector array is embedded within the hemispherical reflector,
Calvert, A.J.; Ramachandran, K.; Kao, H.; Fisher, M.A.
2006-01-01
Seismic reflection profiles from three different surveys of the Cascadia forearc are interpreted using P wave velocities and relocated hypocentres, which were both derived from the first arrival travel time inversion of wide-angle seismic data and local earthquakes. The subduction decollement, which is characterized beneath the continental shelf by a reflection of 0.5 s duration, can be traced landward into a large duplex structure in the lower forearc crust near southern Vancouver Island. Beneath Vancouver Island, the roof thrust of the duplex is revealed by a 5–12 km thick zone, identified previously as the E reflectors, and the floor thrust is defined by a short duration reflection from a − 1. We suggest that these relatively low velocities indicate the presence of either crustal rocks from the oceanic plate that have been underplated to the continent or crustal rocks from the forearc that have been transported downward by subduction erosion. The absence of seismicity from within the E reflectors implies that they are significantly weaker than the overlying crust, and the reflectors may be a zone of active ductile shear. In contrast, seismicity in parts of the D reflectors can be interpreted to mean that ductile shearing no longer occurs in the landward part of the duplex. Merging of the D and E reflectors at 42–46 km depth creates reflectivity in the uppermost mantle with a vertical thickness of at least 15 km. We suggest that pervasive reflectivity in the upper mantle elsewhere beneath Puget Sound and the Strait of Georgia arises from similar shear zones.
Photovoltaic generator with a spherical imaging lens for use with a paraboloidal solar reflector
Angel, Roger P
2013-01-08
The invention is a generator for photovoltaic conversion of concentrated sunlight into electricity. A generator according to the invention incorporates a plurality of photovoltaic cells and is intended for operation near the focus of a large paraboloidal reflector pointed at the sun. Within the generator, the entering concentrated light is relayed by secondary optics to the cells arranged in a compact, concave array. The light is delivered to the cells at high concentration, consistent with high photovoltaic conversion efficiency and low cell cost per unit power output. Light enters the generator, preferably first through a sealing window, and passes through a field lens, preferably in the form of a full sphere or ball lens centered on the paraboloid focus. This lens forms a concentric, concave and wide-angle image of the primary reflector, where the intensity of the concentrated light is stabilized against changes in the position of concentrated light entering the generator. Receiving the stabilized light are flat photovoltaic cells made in different shapes and sizes and configured in a concave array corresponding to the concave image of a given primary reflector. Photovoltaic cells in a generator are also sized and interconnected so as to provide a single electrical output that remains high and stable, despite aberrations in the light delivered to the generator caused by, for example, mispointing or bending of the primary reflector. In some embodiments, the cells are set back from the image formed by the ball lens, and part of the light is reflected onto each cell small secondary reflectors in the form of mirrors set around its perimeter.
Astronomical observatories on the Moon
NASA Astrophysics Data System (ADS)
Swanson, Paul N.; Cutts, James A.
1994-06-01
The Space Exploration Initiative presents an opportunity to construct astronomical telescopes on the Moon using the infrastructure provided by the lunar outpost. Small automatically deployed telescopes can be carried on the survey missions, be deployed on the lunar surface and be operated remotely from the Earth. Possibilities for early, small optical telescopes are a zenith pointed transit telescope, a student telescope, and a 0.5 to 1 meter automatic, fully steerable telescope. After the lunar outpost is established the lunar interferometers will be constructed in an evolutionary fashion. There are three lunar interferometers which have been studied. The most ambitious is the optical interferometer with a 1 to 2 -km baseline and seven 1.5 aperture elements arranged in a 'Y' configuration with a central beam combiner. The Submillimeter interferometer would use seven, 5-m reflectors in a 'Y' or circular configuration with a 1-km baseline. The Very Low Frequency (VLF) array would operate below 30 mHz with as many as 100 elements and a 200-km baseline.
Development of the 15 meter diameter hoop column antenna
NASA Technical Reports Server (NTRS)
1986-01-01
The building of a deployable 15-meter engineering model of the 100 meter antenna based on the point-design of an earlier task of this contract, complete with an RF-capable surface is described. The 15 meter diameter was selected so that the model could be tested in existing manufacturing, near-field RF, thermal vacuum, and structural dynamics facilities. The antenna was designed with four offset paraboloidal reflector surfaces with a focal length of 366.85 in and a primary surface accuracy goal of .069 in rms. Surface adjustment capability was provided by manually resetting the length of 96 surface control cords which emanated from the lower column extremity. A detailed description of the 15-meter Hoop/Column Antenna, major subassemblies, and a history of its fabrication, assembly, deployment testing, and verification measurements are given. The deviation for one aperture surface (except the outboard extremity) was measured after adjustments in follow-on tests at the Martin Marietta Near-field Facility to be .061 in; thus the primary surface goal was achieved.
ATS-6 - A satellite for human needs. [Health, Education, Telecommunications Experiment
NASA Technical Reports Server (NTRS)
Whalen, A. A.; Johnston, W. A., Jr.
1975-01-01
On May 30, 1974, NASA launched the ATS-6 experimental communications satellite into a geosynchronous orbit at a station centered over the United States. The 1400 kg satellite was designed to be body-stabilized with a 3-axis control system capable of precision offset pointing. It deployed a 9.1 meter (30 foot) parabolic reflector antenna with a transponder that covered a frequency range from VHF through C-band. The high RF gains obtained with the antenna were to be used for many dramatic communications experiments, one of which was the Health/Education Telecommunications Experiment (HET), a demonstration of direct broadcast of color television to low cost terminals in remote regions of the United States. More than 120 terminals with 3-meter antennas were deployed in Alaska, Washington, the Rocky Mountains, and Appalachia to provide educational and health services to selected community centers. After 11 months of nearly continuous service, the performance of both the satellite and the experiment have exceeded all expectations.
Study of wrap-rib antenna design
NASA Technical Reports Server (NTRS)
Wade, W. D.; Sinha, A.; Singh, R.
1979-01-01
The results of a parametric design study conducted to develop the significant characteristics and technology limitations of space deployable antenna systems with aperture sizes ranging from 50 up to 300 m and F/D ratios between 0.5 and 3.0 are presented. Wrap/rib type reflectors of both the prime and offset fed geometry and associated feed support structures were considered. The significant constraints investigated as limitations on achievable aperture were inherent manufacturability, orbit dynamic and thermal stability, antenna weight, and antenna stowed volume. A data base, resulting in the defined maximum achievable aperture size as a function of diameter, frequency and estimated cost, was formed.
NASA Astrophysics Data System (ADS)
Ashenfelter, J.; Balantekin, B.; Band, H. R.; Barclay, G.; Bass, C. D.; Berish, D.; Bowden, N. S.; Bowes, A.; Brodsky, J. P.; Bryan, C. D.; Cherwinka, J. J.; Chu, R.; Classen, T.; Commeford, K.; Davee, D.; Dean, D.; Deichert, G.; Diwan, M. V.; Dolinski, M. J.; Dolph, J.; Dwyer, D. A.; Gaison, J. K.; Galindo-Uribarri, A.; Gilje, K.; Glenn, A.; Goddard, B. W.; Green, M.; Han, K.; Hans, S.; Heeger, K. M.; Heffron, B.; Jaffe, D. E.; Langford, T. J.; Littlejohn, B. R.; Martinez Caicedo, D. A.; McKeown, R. D.; Mendenhall, M. P.; Mueller, P.; Mumm, H. P.; Napolitano, J.; Neilson, R.; Norcini, D.; Pushin, D.; Qian, X.; Romero, E.; Rosero, R.; Saldana, L.; Seilhan, B. S.; Sharma, R.; Sheets, S.; Stemen, N. T.; Surukuchi, P. T.; Varner, R. L.; Viren, B.; Wang, W.; White, B.; White, C.; Wilhelmi, J.; Williams, C.; Wise, T.; Yao, H.; Yeh, M.; Yen, Y. R.; Zangakis, G.; Zhang, C.; Zhang, X.
2015-11-01
A meter-long, 23-liter EJ-309 liquid scintillator detector has been constructed to study the light collection and pulse-shape discrimination performance of elongated scintillator cells for the PROSPECT reactor antineutrino experiment. The magnitude and uniformity of light collection and neutron-gamma discrimination power in the energy range of antineutrino inverse beta decay products have been studied using gamma and spontaneous fission calibration sources deployed along the cell axis. We also study neutron-gamma discrimination and light collection abilities for differing PMT and reflector configurations. Key design features for optimizing MeV-scale response and background rejection capabilities are identified.
Space reflector technology and its system implications
NASA Technical Reports Server (NTRS)
Billman, K. W.; Gilbreath, W. P.; Bowen, S. W.
1979-01-01
The technical feasibility of providing nearly continuous solar energy to a world-distributed set of conversion sites by means of a system of orbiting, large-area, low-areal-density reflecting structures is examined. Requisite mirror area to provide a chosen, year-averaged site intensity is shown. A modeled reflector structure, with suitable planarity and ability to meet operational torques and loads, is discussed. Typical spatial and temporal insolation profiles are presented. These determine the sizing of components and the output electric power from a baselined photovoltaic conversion system. Technical and economic challenges which, if met, would allow the system to provide a large fraction of future world energy needs at costs competitive to circa-1995 fossil and nuclear sources are discussed.
Use of a compact range approach to evaluate rf and dual-mode missiles
NASA Astrophysics Data System (ADS)
Willis, Kenneth E.; Weiss, Yosef
2000-07-01
This paper describes a hardware-in-the-loop (HWIL) system developed for testing Radio Frequency (RF), Infra-Red (IR), and Dual-Mode missile seekers. The system consists of a unique hydraulic five-axis (three seeker axes plus two target axes) Flight Motion Table (FMT), an off-axis parabolic reflector, and electronics required to generate the signals to the RF feeds. RF energy that simulates the target is fed into the reflector from three orthogonal feeds mounted on the inner target axis, at the focal point area of the parabolic reflector. The parabolic reflector, together with the three RF feeds (the Compact Range), effectively produces a far-field image of the target. Both FMT target axis motion and electronic control of the RF beams (deflection) modify the simulated line-of-sight target angles. Multiple targets, glint, multi-path, ECM, and clutter can be introduced electronically. To evaluate dual-mode seekers, the center section of the parabolic reflector is replaced with an IR- transparent, but RF-reflective section. An IR scene projector mounts to the FMT target axes, with its image focused on the intersection of the FMT seeker axes. The system eliminates the need for a large anechoic chamber and 'Target Wall' or target motion system used with conventional HWIL systems. This reduces acquisition and operating costs of the facility.
Array feed synthesis for correction of reflector distortion and Vernier Beamsteering
NASA Technical Reports Server (NTRS)
Blank, S. J.; Imbriale, W. A.
1986-01-01
An algorithmic procedure for the synthesis of planar array feeds for paraboloidal reflectors is described which simultaneously provides electronic correction of systematic reflector surface distortions as well as a Vernier electronic beamsteering capability. Simple rules of thumb for the optimum choice of planar array feed configuration (i.e., number and type of elements) are derived from a parametric study made using the synthesis procedure. A number of f/D ratios and distortion models were examined that are typical of large paraboloidal reflectors. Numerical results are presented showing that, for the range of distortion models considered, good on-axis gain restoration can be achieved with as few as seven elements. For beamsteering to +/- 1 beamwidth (BW), 19 elements are required. For arrays with either 7 or 19 elements, the results indicate that the use of high-aperture-efficiency elements (e.g., disk-on-rod and short backfire) in the array yields higher system gain than can be obtained with elements having lower aperture efficiency (e.g., open-ended waveguides). With 37 elements, excellent gain and beamsteering performance to +/- 1.5 BW are obtained independent of the assumed effective aperture of the array element. An approximate expression is derived for the focal-plane field distribution of the distorted reflector. Contour plots of the focal-plane fields are also presented for various distortion and beam scan angle cases. The results obtained show the effectiveness of the array feed approach.
Very large Arecibo-type telescopes
NASA Technical Reports Server (NTRS)
Drake, Frank D.
1988-01-01
The Arecibo-type radio telescope, based on a fixed spherical reflector, is a very effective design for a large radio telescope on the Moon. In such telescopes, major structural members are provided by the ground on which they are built, and thus are provided at no cost in materials or transportation. The strong compression members, the tall towers which support the suspended platform, are an expensive part of the Arecibo telescope. The need for such towers can be eliminated if a suitable valley or crater can be found wherein the rim of the depression can be used as the support point for the cables which support the suspended platform. With an Arecibo-type radio telescope on the Moon, there are no changing gravity loads because of the design and no changing wind loads because of the location; therefore, the only source of time variation in the telescope geometry is thermal changes. Calculations show that with conventional materials, such as steel, it should be possible to construct an Arecibo-type telescope with a reflector diameter of some 30 km on the Moon, and with a reflector diameter of some 60 to 90 km if materials of high specific strength are used.
All-reflective optical target illumination system with high numerical aperture
Sigler, Robert D.
1978-01-01
An all-reflective optical system for providing illumination of a target focal region at high numerical aperture from a pair of co-axially, confluent collimated light beams. A target cavity is defined by a pair of opposed inner ellipsoidal reflectors having respective first focal points within a target region and second focal points at a vertex opening in the opposing reflector. Outwardly of each inner reflector is the opposed combination of a spherical reflector, and an outer generally ellipsoidal reflector having an aberrated first focal point coincident with the focus of the opposing spherical reflector and a second focal point coincident with the second focal point of the opposing inner ellipsoidal reflector through a vertex opening in the spherical reflector. The confluent collimated beams are incident through vertex openings in the outer ellipsoidal reflectors onto respective opposing spherical reflectors. Each beam is reflected by the associated spherical reflector onto the opposing outer ellipsoidal reflector and focused thereby onto the opposing inner ellipsoidal reflector, and then onto the target region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertelson, P.C.; Francis, T.L.
1959-10-21
Studies of reflector control for the Advanced Engineering Test Reactor were made. The performance of various parts of the reflector control system model such as the safety reflector and the water jet educator, boric acid injection, and demineralizer systems is discussed. The experimental methods and results obtained are discussed. Four reflector control schemes were studied. The schemes were a single-region and three-region reflector schemes two separate reflectors, and two connected reflectors. Calculations were made of shim and safety reflector worth for a variety of parameters. Safety reflector thickness was varied from 7.75 to 0 inches, with and without boron. Boricmore » acid concentration was varied from 100 to 2% of saturation in the shim reflectors. Neutron flux plots are presented (C.J.G.)« less
NASA Astrophysics Data System (ADS)
Loignon-Houle, Francis; Pepin, Catherine M.; Charlebois, Serge A.; Lecomte, Roger
2017-04-01
The 3M-ESR multilayer polymer film is a widely used reflector in scintillation detector arrays. As specified in the datasheet and confirmed experimentally by measurements in air, it is highly reflective (> 98 %) over the entire visible spectrum (400-1000 nm) for all angles of incidence. Despite these outstanding characteristics, it was previously found that light crosstalk between pixels in a bonded LYSO scintillator array with ESR reflector can be as high as ∼30-35%. This unexplained light crosstalk motivated further investigation of ESR optical performance. Analytical simulation of a multilayer structure emulating the ESR reflector showed that the film becomes highly transparent to incident light at large angles when surrounded on both sides by materials of refractive index higher than air. Monte Carlo simulations indicate that a considerable fraction (∼25-35%) of scintillation photons are incident at these leaking angles in high aspect ratio LYSO scintillation crystals. The film transparency was investigated experimentally by measuring the scintillation light transmission through the ESR film sandwiched between a scintillation crystal and a photodetector with or without layers of silicone grease. Strong light leakage, up to nearly 30%, was measured through the reflector when coated on both sides with silicone, thus elucidating the major cause of light crosstalk in bonded arrays. The reflector transparency was confirmed experimentally for angles of incidence larger than 60 ° using a custom designed setup allowing illumination of the bonded ESR film at selected grazing angles. The unsuspected ESR film transparency can be beneficial for detector arrays exploiting light sharing schemes, but it is highly detrimental for scintillator arrays designed for individual pixel readout.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gee, Randy C.
A high-performance reflective film has been successfully developed for Concentrating Solar Power (CSP) solar concentrators. Anti-soiling properties and abrasion resistance have been incorporated into the reflector to reduce reflector cleaning costs and to enhance durability. This approach has also resulted in higher reflectance and improved specularity. From the outset of this project we focused on the use of established high-volume roll-to-roll manufacturing techniques to achieve low manufacturing costs on a per ubit area basis. Roll-to-roll manufacturng equipment has a high capital cost so there is an entire industry devoted to roll-to-roll “toll” manufacturing, where the equipment is operated “around themore » clock” to produce a multitude of products for a large variety of uses. Using this approach, the reflective film can be manufactured by toll coaters/converters on an as-needed basis.« less
Planetary benchmarks. [structural design criteria for radar reference devices on planetary surfaces
NASA Technical Reports Server (NTRS)
Uphoff, C.; Staehle, R.; Kobrick, M.; Jurgens, R.; Price, H.; Slade, M.; Sonnabend, D.
1978-01-01
Design criteria and technology requirements for a system of radar reference devices to be fixed to the surfaces of the inner planets are discussed. Offshoot applications include the use of radar corner reflectors as landing beacons on the planetary surfaces and some deep space applications that may yield a greatly enhanced knowledge of the gravitational and electromagnetic structure of the solar system. Passive retroreflectors with dimensions of about 4 meters and weighing about 10 kg are feasible for use with orbiting radar at Venus and Mars. Earth-based observation of passive reflectors, however, would require very large and complex structures to be delivered to the surfaces. For Earth-based measurements, surface transponders offer a distinct advantage in accuracy over passive reflectors. A conceptual design for a high temperature transponder is presented. The design appears feasible for the Venus surface using existing electronics and power components.
Achieving uniform efficient illumination with multiple asymmetric compound parabolic luminaires
NASA Astrophysics Data System (ADS)
Gordon, Jeffrey M.; Kashin, Peter
1994-01-01
Luminaire designs based on multiple asymmetric nonimaging compound parabolic reflectors are proposed for 2-D illumination applications that require highly uniform far-field illuminance, while ensuring maximal lighting efficiency and sharp angular cutoffs. The new designs derive from recent advances in nonimaging secondary concentrators for line-focus solar collectors. The light source is not treated as a single entity, but rather is divided into two or more separate adjoining sources. An asymmetric compound parabolic luminaire is then designed around each half-source. Attaining sharp cutoffs requires relatively large reflectors. However, severe truncation of the reflectors renders these devices as compact as many conventional luminaires, at the penalty of a small fraction of the radiation being emitted outside the nominal cutoff. The configurations that maximize the uniformity of far-field illuminance offer significant improvements in flux homogeneity relative to alternative designs to date.
Achieving uniform efficient illumination with multiple asymmetric compound parabolic luminaires
NASA Astrophysics Data System (ADS)
Gordon, Jeffrey M.; Kashin, Peter
1993-11-01
Luminaire designs based on multiple asymmetric nonimaging compound parabolic reflectors are proposed for 2-D illumination applications that require highly uniform far-field illuminance, while insuring maximal lighting efficiency and sharp angular cutoffs. The new designs derive from recent advances in nonimaging secondary concentrators for line-focus solar collectors. The light source is not treated as a single entity, but rather is divided into two or more separate adjoining sources. An asymmetric Compound Parabolic Luminaire is then designed around each half-source. Attaining sharp cutoffs requires relatively large reflectors. However, severe truncation of the reflectors renders these devices as compact as many conventional luminaires, at the penalty of a small fraction of the radiation being emitted outside the nominal cutoff. The configurations that maximize the uniformity of far-field illumination offer significant improvements in flux homogeneity relative to alternative designs to date.
Reflector system for a lighting fixture
Siminovitch, Michael J.; Page, Erik; Gould, Carl T.
1998-01-01
Disclosed herein is a reflector system for a lighting fixture having a illumination source surrounded by an envelope. The reflector system includes a first reflector surrounding the illumination source. The reflector system also includes a second reflector which is non-contiguous with the first reflector and which surrounds the illumination source. The illumination source creates light rays which are reflected by the first and second reflectors. The first reflector directs light rays toward the center line of the fixture. However, the reflected rays despite being so reflected do not substantially intersect the envelope. The reflected light rays from the second reflector being directed so that they diverge from the center line of the fixture avoiding intersection with the semi-transparent envelope.
Reflector system for a lighting fixture
Siminovitch, Michael J.; Page, Erik; Gould, Carl T.
2001-01-01
Disclosed herein is a reflector system for a lighting fixture having a illumination source surrounded by an envelope. The reflector system includes a first reflector surrounding the illumination source. The reflector system also includes a second reflector which is non-contiguous with the first reflector and which surrounds the illumination source. The illumination source creates light rays which are reflected by the first and second reflectors. The first reflector directs light rays toward the center line of the fixture. However, the reflected rays despite being so reflected do not substantially intersect the envelope. The reflected light rays from the second reflector being directed so that they diverge from the center line of the fixture avoiding intersection with the semi-transparent envelope.
Ultra-Compact Ka-Band Parabolic Deployable Antenna for RADAR and Interplanetary CubeSats
NASA Technical Reports Server (NTRS)
Sauder, Jonathan; Chahat, Nacer; Thomson, Mark; Hodges, Richard; Peral, Eva; Rahmat-Samii, Yahya
2015-01-01
Over the past several years, technology and launch opportunities for CubeSats have exploded, enabling a wide variety of missions. However, as instruments become more complex and CubeSats travel deeper into space, data communication rates become an issue. To solve this challenge, JPL has initiated a research and technology development effort to design a 0.5 meter Ka-band parabolic deployable antenna (KaPDA) which would stow in 1.5U (10 x 10 x 15 cu cm) and provide 42dB of gain (50% efficiency). A folding rib architecture and dual reflector Cassegrainian design was selected as it best balances RF gain and stowed size. The design implements an innovative telescoping waveguide and gas powered deployment. RF simulations show that after losses, the antenna would have over 42 dB gain, supported by preliminary test results. KaPDA would create opportunities for a host of new CubeSat missions by allowing high data rate communication which would enable using high fidelity instruments or venturing further into deep space, including potential interplanetary missions. Additionally KaPDA would provide a solution for other small antenna needs and the opportunity to obtain Earth science data. This paper discusses the design challenges encountered, the architecture of the solution, and the antennas expected performance capabilities.
Phased Array-Fed Reflector (PAFR) Antenna Architectures for Space-Based Sensors
NASA Technical Reports Server (NTRS)
Cooley, Michael E.
2014-01-01
Communication link and target ranges for satellite communications (SATCOM) and space-based sensors (e.g. radars) vary from approximately 1000 km (for LEO satellites) to 35,800 km (for GEO satellites). At these long ranges, large antenna gains are required and legacy payloads have usually employed large reflectors with single beams that are either fixed or mechanically steered. For many applications, there are inherent limitations that are associated with the use of these legacy antennas/payloads. Hybrid antenna designs using Phased Array Fed Reflectors (PAFRs) provide a compromise between reflectors and Direct Radiating phased Arrays (DRAs). PAFRs provide many of the performance benefits of DRAs while utilizing much smaller, lower cost (feed) arrays. The primary limitation associated with hybrid PAFR architectures is electronic scan range; approximately +/-5 to +/- 10 degrees is typical, but this range depends on many factors. For LEO applications, the earth FOV is approximately +/-55 degrees which is well beyond the range of electronic scanning for PAFRs. However, for some LEO missions, limited scanning is sufficient or the CONOPS and space vehicle designs can be developed to incorporate a combination mechanical slewing and electronic scanning. In this paper, we review, compare and contrast various PAFR architectures with a focus on their general applicability to space missions. We compare the RF performance of various PAFR architectures and describe key hardware design and implementation trades. Space-based PAFR designs are highly multi-disciplinary and we briefly address key hardware engineering design areas. Finally, we briefly describe two PAFR antenna architectures that have been developed at Northrop Grumman.
NASA Astrophysics Data System (ADS)
Cortés-Medellín, Germán; Herter, Terry
2006-06-01
The Cornell Caltech Atacama Telescope (CCAT) is a 25m-class sub-millimeter radio telescope capable of operating from 300GHz up to 1.5 THz. The CCAT optical design is an f/8 Ritchey-Chretien (RC) system in a dual Nasmyth focus configuration and a 20 arc-min FOV (diffraction limited imaging performance better than 0.31" at the edge of the field). The large FOV is capable to accommodate up to 1200x1200 (Nyquist Sampled) Pixels at 200 microns, with better than 96% Strehl ratio. The telescope pedestal assembly is a counterbalanced elevation over azimuth design. The main reflector surface is segmented and actively controlled to attain diffraction-limited operation up to 200 microns. A flat Mirror located behind the main reflector vertex provides the optical path relay to either of the two Nasmyth platforms and to a bent-Cassegrain focus for surface calibration. We present the imaging characteristics of the CCAT over the 20arc-min FOV at 200 microns at the Nasmyth focal plane, as well as the positioning sensitivity analysis of CCAT's 3.2m-diameter sub-reflector given in terms of the telescope optical performance, antenna pointing requirements and sub-reflector chopping characteristics.
Feasibility of Very Large Sparse Aperture Deployable Antennas
2014-03-27
FEASIBILITY OF VERY LARGE SPARSE APERTURE DEPLOYABLE ANTENNAS THESIS Jason C. Heller, Captain...States. AFIT-ENY-14-M-24 FEASIBILITY OF VERY LARGE SPARSE APERTURE DEPLOYABLE ANTENNAS THESIS Presented to the Faculty...UNLIMITED AFIT-ENY-14-M-24 FEASIBILITY OF VERY LARGE SPARSE APERTURE DEPLOYABLE ANTENNAS Jason C. Heller, B.S., Aerospace
Reflector system for a lighting fixture
Siminovitch, M.J.; Page, E.; Gould, C.T.
1998-09-08
Disclosed herein is a reflector system for a lighting fixture having a illumination source surrounded by an envelope. The reflector system includes a first reflector surrounding the illumination source. The reflector system also includes a second reflector which is non-contiguous with the first reflector and which surrounds the illumination source. The illumination source creates light rays which are reflected by the first and second reflectors. The first reflector directs light rays toward the center line of the fixture. However, the reflected rays despite being so reflected do not substantially intersect the envelope. The reflected light rays from the second reflector being directed so that they diverge from the center line of the fixture avoiding intersection with the semi-transparent envelope. 5 figs.
Development of FIR arrays with integrating amplifiers
NASA Technical Reports Server (NTRS)
Young, Erick T.
1988-01-01
The development of optimized photoconductor arrays suitable for far infrared space astronomical applications are described. Although the primary impetus is the production of a 16 by 16 element Ge:Ga demonstration array for SIRTF, the extension of this technology to Large Deployable Reflector (LDR) is considered. The optimization of Ge:Ga and Ge:Be photoconductor materials is discussed. In collaboration with Lawrence Berkeley Laboratory, measurements of FIR photoconductors with quantum efficiencies greater than 20 percent at 100 micrometers, and dark currents below 300 electrons/s are presented. Integrating J-FET amplifier technology is discussed. The current generation of integrating amplifiers has a demonstrated read noise of less than 20 electrons for an integration time of 100 s. The design is shown for a stackable 16 x n Ge:Ga array that utilizes a 16-channel monolithic version of the J-FET integrator. A part of the design is the use of a thin, thermally insulating substrate that allows the electronics to operate at the optimum temperature of 50 K while maintaining thermal and optical isolation from the detectors at 2 K. The power dissipation for the array is less than 16 mW. The array design may particularly be applicable to high resolution imaging spectrometers for LDR.
Development of FIR arrays with integrating amplifiers
NASA Astrophysics Data System (ADS)
Young, Erick T.
1988-08-01
The development of optimized photoconductor arrays suitable for far infrared space astronomical applications are described. Although the primary impetus is the production of a 16 by 16 element Ge:Ga demonstration array for SIRTF, the extension of this technology to Large Deployable Reflector (LDR) is considered. The optimization of Ge:Ga and Ge:Be photoconductor materials is discussed. In collaboration with Lawrence Berkeley Laboratory, measurements of FIR photoconductors with quantum efficiencies greater than 20 percent at 100 micrometers, and dark currents below 300 electrons/s are presented. Integrating J-FET amplifier technology is discussed. The current generation of integrating amplifiers has a demonstrated read noise of less than 20 electrons for an integration time of 100 s. The design is shown for a stackable 16 x n Ge:Ga array that utilizes a 16-channel monolithic version of the J-FET integrator. A part of the design is the use of a thin, thermally insulating substrate that allows the electronics to operate at the optimum temperature of 50 K while maintaining thermal and optical isolation from the detectors at 2 K. The power dissipation for the array is less than 16 mW. The array design may particularly be applicable to high resolution imaging spectrometers for LDR.
Array feed synthesis for correction of reflector distortion and Vernier beamsteering
NASA Technical Reports Server (NTRS)
Blank, Stephen J.; Imbriale, William A.
1988-01-01
An algorithmic procedure for the synthesis of planar array feeds for paraboloidal reflectors is described which simultaneously provides electronic correction of systematic reflector surface distortions as well as a Vernier electronic beamsteering capability. Simple rules of thumb for the optimum chioce of planar array feed configuration (i.e., the number and type of elements) are derived from a parametric study made using the synthesis procedure. A number of f/D ratios and distortion models were examined that are typical of large paraboloidal reflectors. Numerical results are presented showing that, for the range of distortion models considered, good on-axis gain restoration can be achieved with as few as seven elements. For beamsteering to +/- 1 beamwidth (BW), 19 elements are required. For arrays with either 7 or 19 elements, the results indicate that the use of high-aperture-efficiency elements (e.g., disk-on-rod and short backfire) in the array yields higher system gain than can be obtained with elements having lower aperture efficiency (e.g., open-ended waveguides). With 37 elements, excellent gain and beamsteering performance to +/- 1.5 BW are obtained independent of the assumed effective aperture of the array element. An approximate expression is derived for the focal-plane field distribution of the distorted reflector. Contour plots of the focal-plane fields are also presented for various distortion and beam scan angle cases. The results obtained show the effectiveness of the array feed approach.
Modeling the Economic Impacts of Large Deployments on Local Communities
2008-12-01
MODELING THE ECONOMIC IMPACTS OF LARGE DEPLOYMENTS ON LOCAL COMMUNITIES THESIS Aaron L... MODELING THE ECONOMIC IMPACTS OF LARGE DEPLOYMENTS ON LOCAL COMMUNITIES THESIS Presented to the Faculty Department of Systems Engineering and...APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED AFIT/GCA/ENV/08-D01 MODELING THE ECONOMIC IMPACTS OF LARGE DEPLOYMENTS ON LOCAL
The community satellite 1. [social implications of ATS 6
NASA Technical Reports Server (NTRS)
1974-01-01
NASA's Applications Technology Satellite-6 is being used to test a variety of new space communications concepts requiring the use of a geosynchronous-orbit spacecraft. These include broadcast of health and education television programs to small, low-cost ground receiving units in remote regions. Other studies to be conducted are related to aeronautical and maritime communications, position-location, and traffic-control techniques. Questions concerning spacecraft tracking and data relay are also investigated. The 1,402 kg spacecraft consists essentially of an Earth Viewing Module connected to a deployable reflector antenna. Details regarding the planned experiments and the spacecraft design are discussed and a brief history of the ATS program is presented.
Ashenfelter, J.; Jaffe, D.; Diwan, M. V.; ...
2015-11-06
A meter-long, 23-liter EJ-309 liquid scintillator detector has been constructed to study the light collection and pulse-shape discrimination performance of elongated scintillator cells for the PROSPECT reactor antineutrino experiment. The magnitude and uniformity of light collection and neutron-gamma discrimination power in the energy range of antineutrino inverse beta decay products have been studied using gamma and spontaneous fission calibration sources deployed along the cell axis. We also study neutron-gamma discrimination and light collection abilities for differing PMT and reflector configurations. As a result, key design features for optimizing MeV-scale response and background rejection capabilities are identified.
NASA Astrophysics Data System (ADS)
Grall, C.; Henry, P.; Thomas, Y.; Marsset, B.; Westbrook, G.; Saritas, H.; Géli, L.; Ruffine, L.; Dupré, S.; Scalabrin, C.; Augustin, J. M.; Cifçi, G.; Zitter, T.
2012-04-01
Along the northern branch of the North Anatolian Fault Zone (NAFZ) within the Sea of Marmara, numerous gas seeps occur. A large part of the gas origin is biogenic but on the Western High, gas bubbles and gas hydrate with a thermogenic signature have been sampled. The expulsion of deep fluids opened new perspective about the permeability, the mechanical properties and the monitoring of the NAFZ. Consequently, the Western High was selected for the deployment of a 3D seismic acquisition layout during the MARMESONET cruise (2009). Thirty-three km2 of high resolution seismic data (with a frequency content of 50-180 Hz) have been collected within the shear band of the fault. The SIMRAD EM-302 was also operated to detect acoustic anomalies related to the presence of gas bubbles in the water column. Within the upper sedimentary cover (seismic penetration ranges from 100 to 500 m bsf), high seismic amplitude variations of the reflectors allow to identify gas traps and gas pathways. Local high amplitude of negative polarity, such as flat spots and bright spots, are observed. Amplitude anomalies are located above and within anticlines and along normal faults. They often correlate with seafloor manifestations of fluid outflow and gas plumes in the water column. This suggests that gas migrates from depth towards the seafloor along normal faults and permeable strata, and part of it is trapped in anticlines. North of the NAF, seabed mounds, corresponding to active hydrocarbon gas seeps, are aligned along a NE-SW direction. They are linked in depth to buried mud volcanoes with an episodic activity. The last mud eruption activity apparently just before or during the Red-H1 horizon deposition which is a prominent reflector of high amplitude and negative polarity occurring all over the Sea of Marmara. It has been interpreted as a stratigraphic horizon, corresponding to slow sedimentation and high sea-level interglacial period.
Bifocal reflector for electrohydraulic lithotripters.
Prieto, F E; Loske, A M
1999-03-01
To describe the design and construction of a bifocal reflector that could be used in electrohydraulic extracorporeal shockwave lithotripters in order to increase their efficiency. The new reflector is obtained by joining two sectors of two rotationally symmetric ellipsoidal reflectors having different distances between their foci, which results in a bifocal composite reflector with the F1 foci in coincidence and the two F2 foci separated by a certain distance. As in conventional reflectors, shockwaves are generated by the electrical breakdown of water between two electrodes, located at the focus (F1) closest to the reflector. A prototype was constructed and tested in an experimental shockwave generator of our own make, using two different types of kidney-stone models, one to test the stone fragmentation abilities, and the other to test the stone pitting abilities. Fragmentation data for the new reflector were compared with those of a conventional ellipsoidal reflector tested on the same device. The new design appeared to be more efficient in breaking up both types of kidney-stone models than the conventional reflector. Pressure measurements were obtained with both reflectors using needle hydrophones. The physical background of shockwave reflection on both reflectors is also explained. With this new reflector, it could be possible, in principle, to reduce the treatment time of extracorporeal shockwave lithotripsy.
NASA Technical Reports Server (NTRS)
Billman, Kenneth W.; Gilbreath, William P.; Bowen, Stuart W.
1978-01-01
A system of orbiting, large-area, low mass density reflector satellites which provide nearly continuous solar energy to a world-distributed set of conversion sites is examined under the criteria for any potential new energy system: technical feasibility, significant and renewable energy impact, economic feasibility and social/political acceptability. Although many technical issues need further study, reasonable advances in space technology appear sufficient to implement the system. The enhanced insolation is shown to greatly improve the economic competitiveness of solar-electric generation to circa 1995 fossil/nuclear alternatives. The system is shown to have the potential for supplying a significant fraction of future domestic and world energy needs. Finally, the environmental and social issues, including a means for financing such a large shift to a world solar energy dependence, is addressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendelsohn, M.; Lowder, T.; Canavan, B.
Over the last several years, solar energy technologies have been, or are in the process of being, deployed at unprecedented levels. A critical recent development, resulting from the massive scale of projects in progress or recently completed, is having the power sold directly to electric utilities. Such 'utility-scale' systems offer the opportunity to deploy solar technologies far faster than the traditional 'behind-the-meter' projects designed to offset retail load. Moreover, these systems have employed significant economies of scale during construction and operation, attracting financial capital, which in turn can reduce the delivered cost of power. This report is a summary ofmore » the current U.S. utility-scale solar state-of-the-market and development pipeline. Utility-scale solar energy systems are generally categorized as one of two basic designs: concentrating solar power (CSP) and photovoltaic (PV). CSP systems can be further delineated into four commercially available technologies: parabolic trough, central receiver (CR), parabolic dish, and linear Fresnel reflector. CSP systems can also be categorized as hybrid, which combine a solar-based system (generally parabolic trough, CR, or linear Fresnel) and a fossil fuel energy system to produce electric power or steam.« less
Dual annular rotating "windowed" nuclear reflector reactor control system
Jacox, Michael G.; Drexler, Robert L.; Hunt, Robert N. M.; Lake, James A.
1994-01-01
A nuclear reactor control system is provided in a nuclear reactor having a core operating in the fast neutron energy spectrum where criticality control is achieved by neutron leakage. The control system includes dual annular, rotatable reflector rings. There are two reflector rings: an inner reflector ring and an outer reflector ring. The reflectors are concentrically assembled, surround the reactor core, and each reflector ring includes a plurality of openings. The openings in each ring are capable of being aligned or non-aligned with each other. Independent driving means for each of the annular reflector rings is provided so that reactor criticality can be initiated and controlled by rotation of either reflector ring such that the extent of alignment of the openings in each ring controls the reflection of neutrons from the core.
Computer prediction of dual reflector antenna radiation properties
NASA Technical Reports Server (NTRS)
Christodoulou, C.
1981-01-01
A program for calculating radiation patterns for reflector antennas with either smooth analytic surfaces or with surfaces composed of a number of panels. Techniques based on the geometrical optics (GO) approach were used in tracing rays over the following regions: from a feed antenna to the first reflector surface (subreflector); from this reflector to a larger reflector surface (main reflector); and from the main reflector to a mathematical plane (aperture plane) in front of the main reflector. The equations of GO were also used to calculate the reflected field components for each ray making use of the feed radiation pattern and the parameters defining the surfaces of the two reflectors. These resulting fields form an aperture distribution which is integrated numerically to compute the radiation pattern for a specified set of angles.
NASA Technical Reports Server (NTRS)
Sreekantamurthy, Tham; Gaspar, James L.; Mann, Troy; Behun, Vaughn; Pearson, James C., Jr.; Scarborough, Stephen
2007-01-01
Ultra-light weight and ultra-thin membrane inflatable antenna concepts are fast evolving to become the state-of-the-art antenna concepts for deep-space applications. NASA Langley Research Center has been involved in the structural dynamics research on antenna structures. One of the goals of the research is to develop structural analysis methodology for prediction of the static and dynamic response characteristics of the inflatable antenna concepts. This research is focused on the computational studies to use nonlinear large deformation finite element analysis to characterize the ultra-thin membrane responses of the antennas. Recently, structural analyses have been performed on a few parabolic reflector antennas of varying size and shape, which are referred in the paper as 0.3 meters subscale, 2 meters half-scale, and 4 meters full-scale antenna. The various aspects studied included nonlinear analysis methodology and solution techniques, ways to speed convergence in iterative methods, the sensitivities of responses with respect to structural loads, such as inflation pressure, gravity, and pretension loads in the ground and in-space conditions, and the ultra-thin membrane wrinkling characteristics. Several such intrinsic aspects studied have provided valuable insight into evaluation of structural characteristics of such antennas. While analyzing these structural characteristics, a quick study was also made to assess the applicability of dynamics scaling of the half-scale antenna. This paper presents the details of the nonlinear structural analysis results, and discusses the insight gained from the studies on the various intrinsic aspects of the analysis methodology. The predicted reflector surface characteristics of the three inflatable ultra-thin membrane parabolic reflector antenna concepts are presented as easily observable displacement fringe patterns with associated maximum values, and normal mode shapes and associated frequencies. Wrinkling patterns are presented to show how surface wrinkle progress with increasing tension loads. Antenna reflector surface accuracies were found to be very much dependent on the type and size of the antenna, the reflector surface curvature, reflector membrane supports in terms of spacing of catenaries, as well as the amount of applied load.
The dynamics and control of large flexible space structures - 13
NASA Technical Reports Server (NTRS)
Bainum, Peter M.; Li, Feiyue; Xu, Jianke
1990-01-01
The optimal control of three-dimensional large angle maneuvers and vibrations of a Shuttle-mast-reflector system is considered. The nonlinear equations of motion are formulated by using Lagrange's formula, with the mast modeled as a continuous beam subject to three-dimensional deformations. Pontryagin's Maximum Principle is applied to the slewing problem, to derive the necessary conditions for the optimal controls, which are bounded by given saturation levels. The resulting two point boundary value problem is then solved by using the quasilinearization algorithm and the method of particular solutions. The study of the large angle maneuvering of the Shuttle-beam-reflector spacecraft in the plane of a circular earth orbit is extended to consider the effects of the structural offset connection, the axial shortening, and the gravitational torque on the slewing motion. Finally the effect of additional design parameters (such as related to additional payload requirement) on the linear quadratic regulator based design of an orbiting control/structural system is examined.
Effects of space plasma discharge on the performance of large antenna structures in low Earth orbit
NASA Technical Reports Server (NTRS)
Blume, Hans-Juergen C.
1987-01-01
The anomalous plasma around spacecrafts in low Earth orbit represents the coma of an artificial comet. The plasma discharge is caused by an energetic disturbance of charged particles which were formerly in a state of equilibrium. The plasma can effect the passive and active radio frequency operation of large space antennas by inducing corona discharge or strong arcing in the antenna feeds. One such large space antenna is the 15-meter hoop column antenna which consists of a mesh membrane material (tricot knitted gold plated wire) reflector and carbon fiber tension cords. The atomic oxygen in the plasma discharge state can force the wire base metal particles through the gold lattice and oxydize the metal particles to build a Schottky-barrier contact at the point where the wires meet. This effect can cause strong deviations in the reflector performance in terms of antenna pattern and losses. Also, the carbon-fiber cords can experience a strength reduction of 30 percent over a 40-hour exposure time.
Comparison of acoustic fields produced by the original and upgraded HM-3 lithotripter
NASA Astrophysics Data System (ADS)
Zhou, Yufeng; Zhu, Songlin; Dreyer, Thomas; Liebler, Marko; Zhong, Pei
2003-10-01
To reduce tissue injury in shock wave lithotripsy (SWL) while maintaining satisfactory stone comminution, an original HM-3 lithotripter was upgraded by a reflector insert to suppress large intraluminal bubble expansion, which is a primary mechanism of vascular injury in SWL. The pressure waveforms produced by the original and upgraded HM-3 lithotripter were measured by using a fiber optical probe hydrophone (FOPH), which was scanned both along and transverse to the lithotripter axis at 1-mm step using a computer-controlled 3-D positioning system. At F2, the pressure waveform produced by the upgraded HM-3 lithotripter at 22 kV has a distinct dual-pulse structure, with a leading shock wave of ~45 MPa from the reflector insert and a 4-μs delayed second pulse of ~15 MPa reflected from the uncovered bottom surface of the original HM-3 reflector. The beam sizes of the original and upgraded HM-3 lithotripter are comparable in both axial and lateral directions. The pressure waveforms measured at the reflector aperture will be used as input to the KZK equation to predict the lithotripter shock wave at F2. Furthermore, bubble dynamics predicted by the Gilmore model will be compared with experimental observation by high-speed imaging. [Work supported by NIH.
Preliminary design notes on a low F-number EMR
NASA Technical Reports Server (NTRS)
Mihora, D. J.
1982-01-01
Conceptual design studies were completed on a new Electrostatic Membrane Reflector, EMR. This new model incorporates both a preformed, curved membrane reflector and membrane control surface. This improved model is the second step toward a high precision large space antenna that could eventually exhibit a performance in terms of aperture diameter to surface quality exceeding 1,000,000. Design trades indicate that the goal of a low ratio of focal length to aperture diameter (f sub n) can be achieved while operating in a humid sea-level environment. A nominal surface quality of 1.0 mm (RMS) is possible using available off-the-shelf commercial membranes. Both the membrane reflector and control electrode surface are fabricated from 12 gore segments and attached to the available 12 sided, 4.88 m diameter rim. The preferred conceptual design has a f sub n = 1.0. The 4.88 m aperture is performed with a centerline displacement of 0.306 m. The nominal spacing between the membrane reflector and the electrode control surface is 50.8 mm. The centerline membrane displacement from its performed to its tensioned, smooth shape is about 3 mm. The membrane tensioning is achieved by application of an electrostatic pressure of 2.6 N/sq cm and a voltage of about 38 kV.
NASA Astrophysics Data System (ADS)
Teranishi, Y.; Inamori, T.; Kobayashi, T.; Fujii, T.; Saeki, T.; Takahashi, H.; Kobayashi, F.
2017-12-01
JOGMEC carries out seismic monitoring surveys before and after the 2nd offshore methane hydrate (MH) production test in the Eastern Nankai Trough and evaluates MH dissociation behavior from the time-lapse seismic response. In 2016, JOGMEC deployed Ocean Bottom Cable (OBC) system provided by OCC in the Daini Atsumi Knoll with water depths of 900-1100 m. The main challenge of the seismic survey was to optimize the cable layout for ensuring an effective time-lapse seismic detectability while overcoming the following two issues: 1. OBC receiver lines were limited to only two lines. It was predicted that the imaging of shallow reflectors would suffer from lack of continuity and resolution due to this limitation of receiver lines. 2. The seafloor and shallow sedimentary layers including monitoring target are dipping to the Northwest direction. It was predicted that the refection points would laterally shift to up-dip direction (Southeast direction). In order to understand the impact of the issues above, the seismic survey was designed with elastic wave field simulation. The reflection seismic survey for baseline data was conducted in August 2016. A total of 70 receiver stations distributed along one cable were deployed successfully and a total of 9952 shots were fired. After the baseline seismic survey, the hydrophone and geophone vertical component datasets were processed as outlined below: designaturing, denoising, surface consistent deconvolution and surface consistent amplitude correction. High-frequency imaging with Reverse Time Migration (RTM) was introduced to these data sets. Improvements in imaging from the RTM are remarkable compared to the Kirchhoff migration and the existing Pre-stack time migration with 3D marine surface seismic data obtained and processed in 2002, especially in the following parts. The MH concentrated zone which has complex structures. Below the Bottom Simulating Reflector (BSR) which is present as a impedance-contrast boundary
The improvement of surface roughness for OAP aluminum mirrors: from terahertz to ultraviolet
NASA Astrophysics Data System (ADS)
Peng, Jilong; Yu, Qian; Shao, Yajun; Wang, Dong; Yi, Zhong; Wang, Shanshan
2018-01-01
Aluminum reflector, especially OAP (Off-Axis Parabolic) reflector, has been widely used in terahertz and infrared systems for its low cost, lightweight, good machinability, small size, simple structure, and having the same thermal expansion and contraction with the system structure which makes it have a wide temperature adaptability. Thorlabs, Daheng and other large optical components companies even have Aluminum OAP sold on shelf. Most of the precision Aluminum OAP is fabricated by SPDT (single point diamond turing). Affected by intermittent shock, the roughness of aluminum OAP mirrors through conventional single-point diamond lathes is around 7 nm which limits the scope of application for aluminum mirrors, like in the high power density terahertz/infrared systems and visible/UV optical systems. In this paper, a continuous process frock is proposed, which effectively reduces the influence of turning impact on the mirror roughness. Using this process, an off-axis parabolic aluminum reflector with an effective diameter of 50 mm, off-axis angle of 90 degree is fabricated, and the performances are validated. Measurement by VEECO NT1100 optical profiler with 20× objects, the surface roughness achieves 2.3 nm, and the surface figure error is within λ/7 RMS (λ= 632.8 nm) tested by FISB Aμ Phase laser interferometer with the help of a standard flat mirror. All these technical specifications are close to the traditional glass-based reflectors, and make it possible for using Aluminum reflectors in the higher LIDT (laser induced damage threshold) systems and even for the micro sensor of ionospheric for vacuum ultraviolet micro nano satellites.
NASA Technical Reports Server (NTRS)
Shaffer, Joe R.; Headley, David E.
1993-01-01
Compact storable components expand to create large shelter. Fully deployed structure provides large, unobstructed bay. Deployed trusses support wall and roof blankets. Provides temporary cover for vehicles, people, and materials. Terrestrial version used as garage, hangar, or large tent.
Adaptive Full Aperture Wavefront Sensor Study
NASA Technical Reports Server (NTRS)
Robinson, William G.
1997-01-01
This grant and the work described was in support of a Seven Segment Demonstrator (SSD) and review of wavefront sensing techniques proposed by the Government and Contractors for the Next Generation Space Telescope (NGST) Program. A team developed the SSD concept. For completeness, some of the information included in this report has also been included in the final report of a follow-on contract (H-27657D) entitled "Construction of Prototype Lightweight Mirrors". The original purpose of this GTRI study was to investigate how various wavefront sensing techniques might be most effectively employed with large (greater than 10 meter) aperture space based telescopes used for commercial and scientific purposes. However, due to changes in the scope of the work performed on this grant and in light of the initial studies completed for the NGST program, only a portion of this report addresses wavefront sensing techniques. The wavefront sensing techniques proposed by the Government and Contractors for the NGST were summarized in proposals and briefing materials developed by three study teams including NASA Goddard Space Flight Center, TRW, and Lockheed-Martin. In this report, GTRI reviews these approaches and makes recommendations concerning the approaches. The objectives of the SSD were to demonstrate functionality and performance of a seven segment prototype array of hexagonal mirrors and supporting electromechanical components which address design issues critical to space optics deployed in large space based telescopes for astronomy and for optics used in spaced based optical communications systems. The SSD was intended to demonstrate technologies which can support the following capabilities: Transportation in dense packaging to existing launcher payload envelopes, then deployable on orbit to form a space telescope with large aperture. Provide very large (greater than 10 meters) primary reflectors of low mass and cost. Demonstrate the capability to form a segmented primary or quaternary mirror into a quasi-continuous surface with individual subapertures phased so that near diffraction limited imaging in the visible wavelength region is achieved. Continuous compensation of optical wavefront due to perturbations caused by imperfections, natural disturbances, and equipment induced vibrations/deflections to provide near diffraction limited imaging performance in the visible wavelength region. Demonstrate the feasibility of fabricating such systems with reduced mass and cost compared to past approaches.
Dual annular rotating [open quotes]windowed[close quotes] nuclear reflector reactor control system
Jacox, M.G.; Drexler, R.L.; Hunt, R.N.M.; Lake, J.A.
1994-03-29
A nuclear reactor control system is provided in a nuclear reactor having a core operating in the fast neutron energy spectrum where criticality control is achieved by neutron leakage. The control system includes dual annular, rotatable reflector rings. There are two reflector rings: an inner reflector ring and an outer reflector ring. The reflectors are concentrically assembled, surround the reactor core, and each reflector ring includes a plurality of openings. The openings in each ring are capable of being aligned or non-aligned with each other. Independent driving means for each of the annular reflector rings is provided so that reactor criticality can be initiated and controlled by rotation of either reflector ring such that the extent of alignment of the openings in each ring controls the reflection of neutrons from the core. 4 figures.
In the grip of the big telescope age
NASA Astrophysics Data System (ADS)
Devorkin, David H.
2009-08-01
George Ellery Hale was a man of many dreams. One of his most persistent was to find the means to collect as much light as possible, but there is another element in his designs for the modern astrophysical observatory that has even greater significance, as it defines and distinguishes the practice of astrophysics from that of classical astronomy. Here we examine factors that either impeded or drove the acceptance of reflectors over refractors around the turn of the twentieth century at the outset of what may best be called the “Hale era.” This commenced in the late nineteenth century, when the first large multi-focus photographic reflectors emerged during the reign of the great refractors. It lasted through to the onset of World War II when astronomical practice was dominated by ten reflectors with mirrors between 60 and 100 in., and was about to add one more whose surface area would almost double that of all the rest combined. We will touch upon how design choice reflected both scientific priorities and technological limitations.
Thin Semiconductor/Metal Films For Infrared Devices
NASA Technical Reports Server (NTRS)
Lamb, James L.; Nagendra, Channamallappa L.
1995-01-01
Spectral responses of absorbers and reflectors tailored. Thin cermet films composites of metals and semiconductors undergoing development for use as broadband infrared reflectors and absorbers. Development extends concepts of semiconductor and dielectric films used as interference filters for infrared light and visible light. Composite films offer advantages over semiconductor films. Addition of metal particles contributes additional thermal conductivity, reducing thermal gradients and associated thermal stresses, with resultant enhancements of thermal stability. Because values of n in composite films made large, same optical effects achieved with lesser thicknesses. By decreasing thicknesses of films, one not only decreases weights but also contributes further to reductions of thermal stresses.
NASA Astrophysics Data System (ADS)
Banakh, Viktor A.; Sazanovich, Valentina M.; Tsvik, Ruvim S.
1997-09-01
The influence of diffraction on the object, coherently illuminated and viewed through a random medium from the same point, on the image quality betterment caused by the counter wave correlation is studied experimentally. The measurements were carried out with the use of setup modeling artificial convective turbulence. It is shown that in the case of spatially limited reflector with the Fresnel number of the reflector surface radius r ranging from 3 to 12 the contribution of the counter wave correlation into image intensity distribution is maximal as compared with the point objects (r
DSN 100-meter X and S band microwave antenna design and performance
NASA Technical Reports Server (NTRS)
Williams, W. F.
1978-01-01
The RF performance is studied for large reflector antenna systems (100 meters) when using the high efficiency dual shaped reflector approach. An altered phase was considered so that the scattered field from a shaped surface could be used in the JPL efficiency program. A new dual band (X-S) microwave feed horn was used in the shaping calculations. A great many shaping calculations were made for various horn sizes and locations and final RF efficiencies are reported. A conclusion is reached that when using the new dual band horn, shaping should probably be performed using the pattern of the lower frequency
Tailored edge-ray concentrators as ideal second stages for Fresnel reflectors.
Gordon, J M; Ries, H
1993-05-01
For both linear and point-focus Fresnel reflectors, we present a new type of ideal nonimaging secondary concentrator, the tailored edge-ray concentrator, that can closely approach the thermodynamic limit of concentration. For large rim-angle heliostat fields, practical-sized secondaries with shapes that should be relatively easy to fabricate can achieve concentrations substantially above those of compound parabolic concentrators. This superiority stems from designing so as to accommodate the particular flux from the heliostat field. The edge-ray principle used for generating the new secondary dictates a heliostat tracking strategy that is different from the conventional one but is equally easy to implement.
Spinrad, B.I.
1960-01-12
A novel thermal reactor was designed in which a first reflector formed from a high atomic weight, nonmoderating material is disposed immediately adjacent to the reactor core. A second reflector composed of a moderating material is disposed outwardly of the first reflector. The advantage of this novel reflector arrangement is that the first reflector provides a high slow neutron flux in the second reflector, where irradiation experiments may be conducted with a small effect on reactor reactivity.
Kasner, William H.; Racki, Daniel J.; Swenson, Clark E.
1984-01-01
A plurality of pivotal reflectors direct a high-power laser beam onto a workpiece, and a rotatable reflector is movable to a position wherein it intercepts the beam and deflects a major portion thereof away from its normal path, the remainder of the beam passing to the pivotal reflectors through an aperture in the rotating reflector. A plurality of targets are movable to positions intercepting the path of light traveling to the pivotal reflectors, and a preliminary adjustment of the latter is made by use of a low-power laser beam reflected from the rotating reflector, after which the same targets are used to make a final adjustment of the pivotal reflectors with the portion of the high-power laser beam passed through the rotating reflector.
Off-axis reflective optical apparatus
NASA Technical Reports Server (NTRS)
Ames, Lawrence L. (Inventor); Leary, David F. (Inventor); Mammini, Paul V. (Inventor)
2005-01-01
Embodiments of the present invention are directed to a simple apparatus and a convenient and accurate method of mounting the components to form an off-axis reflective optical apparatus such as a collimator. In one embodiment, an off-axis reflective optical apparatus comprises a mounting block having a ferrule holder support surface and an off-axis reflector support surface which is generally perpendicular to the ferrule holder support surface. An optical reflector is mounted on the off-axis reflector support surface and has a reflected beam centerline. The optical reflector has a conic reflective surface and a conic center. A ferrule holder is mounted on the ferrule holder support surface. The ferrule holder provides a ferrule for coupling to an optical fiber and orienting a fiber tip of the optical fiber along a fiber axis toward the optical reflector. The fiber axis is nonparallel to the reflected beam centerline. Prior to mounting the optical reflector to the off-axis reflector support surface and prior to mounting the ferrule holder to the ferrule holder support surface, the optical reflector is movable on the off-axis reflector surface and the ferrule holder is movable on the ferrule holder support surface to align the conic center of the optical reflector with respect to the fiber tip of the optical fiber, and the apparatus has at least one of the following features: (1) the optical reflector is movable on the off-axis reflector support surface to adjust a focus of the fiber tip with respect to the optical reflector, and (2) the ferrule holder is movable on the ferrule holder support surface to adjust the focus of the fiber tip with respect to the optical reflector.
NASA Astrophysics Data System (ADS)
Xia, Jinan; Hoan O, Beom; Gol Lee, Seung; Hang Lee, El
2005-03-01
High-performance InGaAs/InGaAlAs multiple-quantum-well vertical-cavity surface-emitting lasers (VCSELs) with InGaAlAs/InP distributed Bragg reflectors are proposed for operation at the wavelength of 1.55 μm. The lasers have good heat diffusion characteristic, large index contrast in DBRs, and weak temperature sensitivity. They could be fabricated either by metal-organic chemical vapor deposition (MOCVD) or by molecular beam epitaxy (MBE) growth. The laser light-current characteristics indicate that a suitable reflectivity of the DBR on the light output side in a laser makes its output power increase greatly and its lasing threshold current reduce significantly, and that a small VCSEL could output the power around its maximum for the output mirror at the reflectivity varying in a broader range than a large VCSEL does.
Inflated concepts for the earth science geostationary platform and an associated flight experiment
NASA Technical Reports Server (NTRS)
Friese, G.
1992-01-01
Large parabolic reflectors and solar concentrators are of great interest for microwave transmission, solar powered rockets, and Earth observations. Collector subsystems have been under slow development for a decade. Inflated paraboloids have a great weight and package volume advantage over mechanically erected systems and, therefore, have been receiving greater attention recently. The objective of this program was to produce a 'conceptual definition of an experiment to assess in-space structural damping characteristics and effects of the space meteoroid environment upon structural integrity and service life of large inflatable structures.' The flight experiment was to have been based upon an inflated solar concentration, but much of that was being done on other programs. To avoid redundancy, the Earth Science Geostationary Platform (ESGP) was selected as a focus mission for the experiment. Three major areas were studied: the ESGP reflector configuration; flight experiment; and meteoroids.
A new fabrication method for precision antenna reflectors for space flight and ground test
NASA Technical Reports Server (NTRS)
Sharp, G. Richard; Wanhainen, Joyce S.; Ketelsen, Dean A.
1991-01-01
Communications satellites are using increasingly higher frequencies that require increasingly precise antenna reflectors for use in space. Traditional industry fabrication methods for space antenna reflectors employ successive modeling techniques using high- and low-temperature molds for reflector face sheets and then a final fit-up of the completed honeycomb sandwich panel antenna reflector to a master pattern. However, as new missions are planned at much higher frequencies, greater accuracies will be necessary than are achievable using these present methods. A new approach for the fabrication of ground-test solid-surface antenna reflectors is to build a rigid support structure with an easy-to-machine surface. This surface is subsequently machined to the desired reflector contour and coated with a radio-frequency-reflective surface. This method was used to fabricate a 2.7-m-diameter ground-test antenna reflector to an accuracy of better than 0.013 mm (0.0005 in.) rms. A similar reflector for use on spacecraft would be constructed in a similar manner but with space-qualified materials. The design, analysis, and fabrication of the 2.7-m-diameter precision antenna reflector for antenna ground tests and the extension of this technology to precision, space-based antenna reflectors are described.
A Wideband Corner-Reflector Antenna for 240 to 400 MHz.
1983-09-19
8217 .; ,:,:. .-.:.,.;.. - -... - .- . -.. .-- v...- ..... .-. .-.- 1,.:..- FIGURES 1. Corner Reflector with Open-Sleeve Dipole Feed ............ ...... 7 2...Open-Sleeve Dipole Feed for Corner Reflector, 240-400 MHz........ 8 3. Closeup Photo of Open-Sleeve Dpole ..................... ...... 8 4. VSWR of...4-ft Corner Reflector, Open-Sleeve Dipole Feed .......... 9 5. Gain of Corner Reflector............ .............. . ....... 9 6. Measured E- and H
Pressure-release versus rigid reflector for extracorporeal shockwave lithotripsy.
Loske, Achim M; Prieto, Fernando E
2002-06-01
To evaluate the advantages and disadvantages of using a pressure-release reflector instead of a rigid reflector to concentrate shockwaves for extracorporeal shockwave lithotripsy (SWL). As in all electrohydraulic lithotripters, shockwaves were generated by electrical breakdown of water between two electrodes, located at the focus (F1) closest to a paraellipsoidal reflector. A pressure-release reflector, made out of polyurethane foam, was constructed and tested on a research lithotripter using kidney stone models. Fragmentation data and pressure measurements were compared with those of a conventional rigid reflector tested on the same device. The weight of stone model fragments remaining after shockwave exposure was less with the pressure-release reflector after screening through a 3.0 x 3.0-mm mesh. The residual fragment weight was less with the rigid reflector using 1.0 x 1.0- and 0.6 x 0.6-mm meshes. Pressure-release reflectors may maintain acceptable stone fragmentation while offering improved patient safety and should be considered for SWL.
The Paleohydrology of Sluice Pond, NE Massachusetts, and its Regional Significance
Seismic, pollen, stable isotope and lithologic stratigraphies of Sluice Pond, northeastern Massachusetts, were investigated to reconstruct local climate conditions fromthe latest Pleistocene to present. We present a new lake-level curve, constrained largely by acoustic reflectors...
Effects of deterministic surface distortions on reflector antenna performance
NASA Technical Reports Server (NTRS)
Rahmat-Samii, Y.
1985-01-01
Systematic distortions of reflector antenna surfaces can cause antenna radiation patterns to be undesirably different from those of perfectly smooth reflector surfaces. In this paper, a simulation model for systematic distortions is described which permits an efficient computation of the effects of distortions in the reflector pattern. The model uses a vector diffraction physical optics analysis for the determination of both the co-polar and cross-polar fields. An interpolation scheme is also presented for the description of reflector surfaces which are prescribed by discrete points. Representative numerical results are presented for reflectors with sinusoidally and thermally distorted surfaces. Finally, comparisons are made between the measured and calculated patterns of a slowly-varying distorted offset parabolic reflector.
Demonstration of a Single-Crystal Reflector-Filter for Enhancing Slow Neutron Beams
Muhrer, Guenter; Schönfeldt, Troels; Iverson, Erik B.; ...
2016-06-14
The cold polycrystalline beryllium reflector-filter concept has been used to enhance the cold neutron emission of cryogenic hydrogen moderators, while suppressing the intermediate wavelength and fast neutron emission at the same time. While suppressing the fast neutron emission is often desired, the suppression of intermediate wavelength neutrons is often unwelcome. It has been hypothesized that replacing the polycrystalline reflector-filter concept with a single-crystal reflector-filter concept would overcome the suppression of intermediate wavelength neutrons and thereby extend the usability of the reflector-filter concept to shorter but still important wavelengths. In this paper we present the first experimental data on a single-crystalmore » reflector-filter and compare experimental results with hypothesized performance. We find that a single-crystal reflector-filter retains the long-wavelength benefit of the polycrystalline reflector-filter, without suffering the same loss of important intermediate wavelength neutrons. Ultimately, this finding extends the applicability of the reflector-filter concept to intermediate wavelengths, and furthermore indicates that the reflector-filter benefits arise from its interaction with fast (background) neutrons, not with intermediate wavelength neutrons of potential interest in many types of neutron scattering.« less
NASA Technical Reports Server (NTRS)
Gammell, P. M.; Wang, T. G.; Croonquist, A.; Lee, M. C.
1985-01-01
Dense materials, such as steel balls, continuously levitated with energy provided by efficient high-powered siren in combination with shaped reflector. Reflector system, consisting of curved top reflector and flat lower reflector, eliminates instability in spatial positioning of sample.
Thermal Stability of a 4 Meter Primary Reflector for the Scanning Microwave Limb Sounder
NASA Technical Reports Server (NTRS)
Cofield, Richard E.; Kasl, Eldon P.
2011-01-01
The Scanning Microwave Limb Sounder (SMLS) is a space-borne heterodyne radiometer which will measure pressure, temperature and atmospheric constituents from thermal emission in [180,680] GHz. SMLS, planned for the NRC Decadal Survey's Global Atmospheric Composition Mission, uses a novel toric Cassegrain antenna to perform both elevation and azimuth scanning. This provides better horizontal and temporal resolution and coverage than were possible with elevation-only scanning in the two previous MLS satellite instruments. SMLS is diffraction-limited in the vertical plane but highly astigmatic in the horizontal (beam aspect ratio approx. 1:20). Nadir symmetry ensures that beam shape is nearly invariant over plus or minus 65 deg azimuth. A low-noise receiver FOV is swept over the reflector system by a small azimuth-scanning mirror. We describe the fabrication and thermal-stability test of a composite demonstration primary reflector, having full 4m height and 1/3 the width planned for flight. Using finite-element models of reflectors and structure, we evaluate thermal deformations and optical performance for 4 orbital environments and isothermal soak. We compare deformations with photogrammetric measurements made during soak tests in a chamber. The test temperature range exceeds predicted orbital ranges by large factors, implying in-orbit thermal stability of 0.21 micron rms (root mean square)/C, which meets SMLS requirements.
Nonuniform sampling techniques for antenna applications
NASA Technical Reports Server (NTRS)
Rahmat-Samii, Yahya; Cheung, Rudolf Lap-Tung
1987-01-01
A two-dimensional sampling technique, which can employ irregularly spaced samples (amplitude and phase) in order to generate the complete far-field patterns is presented. The technique implements a matrix inversion algorithm, which depends only on the nonuniform sampled data point locations and with no dependence on the actual field values at these points. A powerful simulation algorithm is presented to allow a real-life simulation of many reflector/feed configurations and to determine the usefulness of the nonuniform sampling technique for the copolar and cross-polar patterns. Additionally, an overlapped window concept and a generalized error simulation model are discussed to identify the stability of the technique for recovering the field data among the nonuniform sampled data. Numerical results are tailored for the pattern reconstruction of a 20-m offset reflector antenna operating at L-band. This reflector is planned to be used in a proposed measurement concept of large antenna aboard the Space Shuttle, whereby it would be almost impractical to accurately control the movement of the Shuttle with respect to the RF source in prescribed directions in order to generate uniform sampled points. Also, application of the nonuniform sampling technique to patterns obtained using near-field measured data is demonstrated. Finally, results of an actual far-field measurement are presented for the construction of patterns of a reflector antenna from a set of nonuniformly distributed measured amplitude and phase data.
Subduction Related Crustal and Mantle Deformations and Their Implications for Plate Dynamics
NASA Astrophysics Data System (ADS)
Okeler, Ahmet
Ocean-continent convergence and subsequent continental collision are responsible for continental growth, mountain building, and severe tectonic events including volcanic eruptions and earthquake activity. They are also key driving forces behind the extensive thermal and compositional heterogeneities at crustal and mantle depths. Active subduction along the Calabrian Arc in southern Italy and the Hellenic Arc are examples of such collisional tectonics. The first part of this thesis examines the subduction related deformations within the crust beneath the southern Apennines. By modeling regional surface wave recordings of the largest temporary deployment in the southern Apennines, a lower-crustal/upper-mantle low-velocity volume extending down to 50 km beneath the mountain chain is identified. The magnitude (˜ 0.4 km/s slower) and anisotropic nature (˜ 10%) of the anomaly suggest the presence of hot and partially molten emplacement that may extend into the upper-crust towards Mt. Vulture, a once active volcano. Since the Apulian basement units are deformed during the compressional and consequent extensional events, our observations favor the "thick-skin" tectonic growth model for the region. In the deeper mantle, active processes are thermodynamically imprinted on the depth and strength of the phase transitions. This thesis examines more than 15000 SS precursors and provides the present-day reflectivity structure and topography associated with these phase transitions. Through case studies I present ample evidence for both slab penetration into the lower mantle (beneath the Hellenic Arc, Kurile Island and South America) and slab stagnation at the bottom of the Mantle Transition Zone (beneath the Tyrrhenian Sea and eastern China). Key findings include (1) thermal anomalies (˜ 200 K) at the base of the MTZ, which represent the deep source for Cenozoic European Rift Zone, Mount Etna and Mount Cameroon volcanism, (2) significant depressions (by 20-40 km) at the bottom of the Mantle Transition Zone beneath subducting slabs, (3) a strong 520-km reflector near subducting slabs, (4) a weak and elevated (15-25 km) 410-km reflector within active deformation zones, (5) strong lower mantle reflectors (˜ 900 km) while slabs penetrate into the lower mantle, and (6) consistency between the topography of a 300-km reflector and an exothermic phase transformation.
Further Constraints and Uncertainties on the Deep Seismic Structure of the Moon
NASA Technical Reports Server (NTRS)
Lin, Pei-Ying Patty; Weber, Renee C.; Garnero, Ed J.; Schmerr, Nicholas C.
2011-01-01
The Apollo Passive Seismic Experiment (APSE) consisted of four 3-component seismometers deployed between 1969 and 1972, that continuously recorded lunar ground motion until late 1977. The APSE data provide a unique opportunity for investigating the interior of a planet other than Earth, generating the most direct constraints on the elastic structure, and hence the thermal and compositional evolution of the Moon. Owing to the lack of far side moonquakes, past seismic models of the lunar interior were unable to constrain the lowermost 500 km of the interior. Recently, array methodologies aimed at detecting deep lunar seismic reflections found evidence for a lunar core, providing an elastic model of the deepest lunar interior consistent with geodetic parameters. Here we study the uncertainties in these models associated with the double array stacking of deep moonquakes for imaging deep reflectors in the Moon. We investigate the dependency of the array stacking results on a suite of parameters, including amplitude normalization assumptions, polarization filters, assumed velocity structure, and seismic phases that interfere with our desired target phases. These efforts are facilitated by the generation of synthetic seismograms at high frequencies (approx. 1Hz), allowing us to directly study the trade-offs between different parameters. We also investigate expected amplitudes of deep reflections relative to direct P and S arrivals, including predictions from arbitrarily oriented focal mechanisms in our synthetics. Results from separate versus combined station stacking help to establish the robustness of stacks. Synthetics for every path geometry of data were processed identically to that done with data. Different experiments were aimed at examining various processing assumptions, such as adding random noise to synthetics and mixing 3 components to some degree. The principal stacked energy peaks put forth in recent work persist, but their amplitude (which maps into reflector impedance contrast) and timing (which maps into reflector depth) depend on factors that are not well constrained -- most notably, the velocity structure of the overlying lunar interior. Thus, while evidence for the lunar core remains strong, the depths of imaged reflectors have associated uncertainties that will require new seismic data and observations to constrain. These results strongly advocate further investigations on the Moon to better resolve the interior (e.g., Selene missions), for the Moon apparently has a rich history of construction and evolution that is inextricably tied to that of Earth.
NASA Technical Reports Server (NTRS)
Wilkerson, Gary W.; Huegele, Vinson
1998-01-01
The Marshall Space Flight Center (MSFC) has been developing a space deployable, lightweight membrane concentrator to focus solar energy into a solar furnace while remaining aligned to the sun. For an inner surface, this furnace has a cylindrical heat exchanger cavity coaligned to the optical axis; the furnace warms gas to propel the spacecraft. The membrane concentrator is a 1727 mm (68.00 in.) diameter, F/1.7 Fresnel lens. This large membrane is made from polyimide and is 0.076 mm (0.0030 in.) thick; it has the Fresnel grooves cast into it. The solar concentrator system has a super fast paraboloid reflector near the lens focus and immediately adjacent to the cylindrical exchanger cavity. The paraboloid collects the wide bandwidth and some of the solar energy scattered by the Fresnel lens. Finally, the paraboloid feeds the light into the cylinder. The Fresnel lens also possesses a narrow annular zone that focuses a reference beam toward four detectors that keep the optical system aligned to the sun; thus, occurs a refracting lens that focuses two places! The result can be summarized as a composite Fresnel lens for solar concentration and alignment.
Structural and thermal testing of lightweight reflector panels
NASA Technical Reports Server (NTRS)
Mcgregor, J.; Helms, R.; Hill, T.
1992-01-01
The paper describes the test facility developed for testing large lightweight reflective panels with very accurate and stable surfaces, such as the mirror panels of composite construction developed for the NASA's Precision Segmented Reflector (PSR). Special attention is given to the panel construction and the special problems posed by the characteristics of these panels; the design of the Optical/Thermal Vacuum test facility for structural and thermal testing, developed at the U.S. AFPL; and the testing procedure. The results of the PSR panel test program to date are presented. The test data showed that the analytical approaches used for the panel design and for the prediction of the on-orbit panel behavior were adequate.
Ka-Band Digital Beamforming and SweepSAR Demonstration for Ice and Solid Earth Topography
NASA Technical Reports Server (NTRS)
Sadowy, Gregory; Ghaemi, Hirad; Heavy, Brandon; Perkovic, Dragana; Quddus, Momin; Zawadzki, Mark; Moller, Delwyn
2010-01-01
GLISTIN is an instrument concept for a single-pass interferometric SAR operating at 35.6 GHz. To achieve large swath widths using practical levels of transmitter power, a digitally-beamformed planar waveguide array is used. This paper describes results from a ground-based demonstration of a 16-receiver prototype. Furthermore, SweepSAR is emerging as promising technique for achieving very wide swaths for surface change detection. NASA and DLR are studying this approach for the DESDynI and Tandem-L missions. SweepSAR employs a reflector with a digitally-beamformed array feed. We will describe development of an airborne demonstration of SweepSAR using the GLISTIN receiver array and a reflector.
Lightweight 3.66-meter-diameter conical mesh antenna reflector
NASA Technical Reports Server (NTRS)
Moore, D. M.
1974-01-01
A description is given of a 3.66 m diameter nonfurlable conical mesh antenna incorporating the line source feed principle recently developed. The weight of the mesh reflector and its support structure is 162 N. An area weighted RMS surface deviation of 0.28 mm was obtained. The RF performance measurements show a gain of 48.3 db at 8.448 GHz corresponding to an efficiency of 66%. During the design and development of this antenna, the technology for fabricating the large conical membranes of knitted mesh was developed. As part of this technology a FORTRAN computer program, COMESH, was developed which permits the user to predict the surface accuracy of a stretched conical membrane.
Reflectivity Spectra for Commonly Used Reflectors
NASA Astrophysics Data System (ADS)
Janecek, Martin
2012-06-01
Monte Carlo simulations play an important role in developing and evaluating the performance of radiation detection systems. To accurately model a reflector in an optical Monte Carlo simulation, the reflector's spectral response has to be known. We have measured the reflection coefficient for many commonly used reflectors for wavelengths from 250 nm to 800 nm. The reflectors were also screened for fluorescence and angular distribution changes with wavelength. The reflectors examined in this work include several polytetrafluoroethylene (PTFE) reflectors, Spectralon, GORE diffuse reflector, titanium dioxide paint, magnesium oxide, nitrocellulose filter paper, Tyvek paper, Lumirror, Melinex, ESR films, and aluminum foil. All PTFE films exhibited decreasing reflectivity with longer wavelengths due to transmission. To achieve >;0.95 reflectivity in the 380 to 500 nm range, the PTFE films have to be at least 0.5 mm thick-nitrocellulose is a good alternative if a thin diffuse reflector is needed. Several of the reflectors have sharp declines in reflectivity below a cut-off wavelength, including TiO2 (420 nm), ESR film (395 nm), nitrocellulose (330 nm), Lumirror (325 nm), and Melinex (325 nm). PTFE-like reflectors were the only examined reflectors that had reflectivity above 0.90 for wavelengths below 300 nm. Lumirror, Melinex, and ESR film exhibited fluorescence. Lumirror and Melinex are excited by wavelengths between 320 and 420 nm and have their emission peaks located at 440 nm, while ESR film is excited by wavelengths below 400 nm and the emission peak is located at 430 nm. Lumirror and Melinex also exhibited changing angular distributions with wavelength.
Evaluation of deer warning reflectors in Virginia.
DOT National Transportation Integrated Search
2003-01-01
A deer warning reflector consists of a red, double-sided reflector mounted on posts, similar to those used for roadside delineators along roadways. As vehicles approach and move through the road section, it is purported that the reflector reflects th...
Experimental study of an adaptive CFRC reflector for high order wave-front error correction
NASA Astrophysics Data System (ADS)
Lan, Lan; Fang, Houfei; Wu, Ke; Jiang, Shuidong; Zhou, Yang
2018-03-01
The recent radio frequency communication system developments are generating the need for creating space antennas with lightweight and high precision. The carbon fiber reinforced composite (CFRC) materials have been used to manufacture the high precision reflector. The wave-front errors caused by fabrication and on-orbit distortion are inevitable. The adaptive CFRC reflector has received much attention to do the wave-front error correction. Due to uneven stress distribution that is introduced by actuation force and fabrication, the high order wave-front errors such as print-through error is found on the reflector surface. However, the adaptive CFRC reflector with PZT actuators basically has no control authority over the high order wave-front errors. A new design architecture assembled secondary ribs at the weak triangular surfaces is presented in this paper. The virtual experimental study of the new adaptive CFRC reflector has conducted. The controllability of the original adaptive CFRC reflector and the new adaptive CFRC reflector with secondary ribs are investigated. The virtual experimental investigation shows that the new adaptive CFRC reflector is feasible and efficient to diminish the high order wave-front error.
Precision of radio science instrumentation for planetary exploration
NASA Technical Reports Server (NTRS)
Asmar, S. W.; Armstrong, J. W.; Iess, L.; Tortora, P.
2004-01-01
The Deep Space Network is the largest and most sensitive scientific telecommunications facility Primary function: providing two-way communication between the Earth and spacecraft exploring the solar system Instrumented with large parabolic reflectors, high-power transmitters, low-noise amplifiers & receivers.
The Successful Deployment of a New Sub-Seafloor Observatory
NASA Astrophysics Data System (ADS)
Lado Insua, T.; Moran, K.; Kulin, I.; Farrington, S.; Newman, J. B.; Riedel, M.; Iturrino, G. J.; Masterson, W. A.; Furman, C. R.; Klaus, A.; Storms, M.; Attryde, J.; Hetmaniak, C.; Huey, D.
2013-12-01
The Simple Cabled Instrument for Measuring Parameters In-Situ (SCIMPI) is a new ocean observatory instrument designed to study dynamic processes in the sub-seafloor. The first SCIMPI prototype comprises nine modules that collect time series measurements of temperature, pressure and electrical resistivity of sediments at pre-selected depths below seafloor. These modules are joined in an array by flexible cables. Floats are attached to the cables of the system to keep the cabling taught against the weight of a sinker bar at the bottom of the string. The system was designed for deployment through drillpipe using D/V JOIDES Resolution. SCIMPI is designed for sediments that will collapse around the observatory after deployment. After five years in development, SCIMPI was successfully deployed within the NEPTUNE Canada observatory in May 2013. The IODP Expedition 341S took place on the Cascadia Margin. The deployment Site U1416 is within an active gas hydrate vent field. Spacing of SCIMPI modules was tailored to measure parameters in the accreted sediment and above and below the Bottom Simulating Reflector (BSR). The location of the modules was dimensioned based on a multivariate analysis of physical properties derived from IODP boreholes located nearby. Members of the SCIMPI team, science party, technical support, crew and participants of the School of Rock assembled the instrument on deck during the days leading up to the deployment. During deployment, SCIMPI was connected to the Multi-Function-Telemetry-Module (from LDEO) and was lowered through drillpipe on the wireline logging cable. SCIMPI communicated data to a shipboard computer until its release, providing assurance that measurements were active on all sensors. The observatory was released with the Electronic Release System (ERS) and the drillpipe was pulled out of the borehole. A camera system was used to check on the installation immediately after deployment. An Ocean Networks Canada expedition revisited the site a month later to assess the borehole collapse around SCIMPI. Its four year battery life will allow SCIMPI to record data on its command module while waiting to be connected to the NEPTUNE Canada observatory in 2014. The modular design of SCIMPI allows adapting its configuration for different situations and environments. SCIMPI is now available for exploring other dynamic sub-seafloor settings in future expeditions.
NASA Astrophysics Data System (ADS)
Pekar, S. F.; Speece, M. A.; Wilson, G. S.; Sunwall, D. A.; Tinto, K. J.
2010-12-01
In the austral spring 2008, the ANDRILL (ANtarctic geological DRILLing) Program’s Offshore New Harbor Expedition successfully collected over 48 km of multi-channel seismic (MCS) data to investigate the stratigraphic and tectonic history of westernmost Southern McMurdo Sound during the Greenhouse World (Eocene) and the start of the Icehouse World (Oligocene). This survey represents an important step for identifying future drilling targets for ANDRILL, which is a multinational program, with the aim to recover stratigraphic intervals for interpreting Antarctica’s climate and glacial history over the past 50 million years. The goal of the Offshore New Harbor Project is to recover proximal archives from two widely recognized but unresolved time intervals regarding Antarctica’s history: 1) the mid-Paleogene cryospheric development on Antarctica; and 2) the abrupt climate shift across the Eocene/Oligocene transition. The ONH seismic survey used methods successfully employed by previous ANDRILL’s surveys in Southern McMurdo Sound (2005) and in Mackay Sea Valley (2007), which included deploying a Generator Injector (G.I.) airgun through holes drilled through the ice and a 1.5 km long streamer that used 60 gimbled geophones to measure the returning reflected seismic energy. Processing of the seismic data was successfully able to remove the bottom water multiple, permitting deeper seismic reflectors to be identified for the first time in this area. Since one of the two seismic lines crossed close to the previously drilled CIROS-1, correlation was possible between the seismic reflectors and the entire stratigraphic section at CIROS-1, which has been dated as old as Late Eocene (~37 Ma). Additionally, seismic and gravity data indicated that a thick sedimentary wedge of up to 5 km lie immediately east of CIROS-1. With the Devonian Beacon Sandstone Formation having been observed to be no thicker than 2 km on land, an additional 3 km of Cenozoic sediments may lie below and down dip of CIROS-1. The Oligocene strata are characterized by a clinoformal geometry, with reflectors down lapping onto the two prominent reflectors that correspond to the Eocene / Oligocene Boundary and the “mid” Oligocene hiatus recognized in the CIROS-1 borehole. These new data support the idea that substantial Eocene and Oligocene strata can be recovered by drilling east of the location of the CIROS-1 borehole. The upper units imaged below the base of CIROS-1 represent the potential for future drilling objectives for the ANDRILL Program. Additionally, reflectors that contained trough-like shapes were interpreted as representing incised valleys, which were most likely cut by ice streams. These valleys provide prima facie documentation of when the ice sheet extended beyond the present-day coastline. These reflectors were correlated to CIROS-1 as well as the ANDRILL AND-2A borehole, providing ages on the timing of major ice stream advances of the East Antarctic Ice Sheet in the western Ross Sea area.
Boucher, G.; Reimnitz, E.; Kempema, E.
1981-01-01
High-resolution seismic reflection data, recorded offshore from Prudhoe Bay, Alaska, were processed digitally to determine the reflectivity structure of the uppermost layers of the seafloor. A prominent reflector, found at 27 m below the mud line (water depths 7-9 m), has a negative reflection coefficient greater than 0.5. The large acoustic impedance contrast, coupled with a report of gas encountered at a corresponding depth in a nearby drillhole, shows that the reflector is the upper boundary of a zone containing gas. The gas exists in sandy gravel capped by stiff, silty clay. Analysis of unprocessed conventional high-resolution records from the region indicates that the gas-bearing layer may extend over an area of at least 50 km2 at a depth of 20-35 m below the mud line. Similar-appearing reflectors (Reimnitz, 1972), previously unexplained, occur in patches over wide regions of the shelf where offshore oil development is beginning at a rapid pace. This suggests the exercise of caution with respect to possible hazards from shallow gas pockets.
NASA Technical Reports Server (NTRS)
Farmer, Jeffrey T.; Wahls, Deborah M.; Wright, Robert L.
1990-01-01
The global change technology initiative calls for a geostationary platform for Earth science monitoring. One of the major science instruments is the high frequency microwave sounder (HFMS) which uses a large diameter, high resolution, high frequency microwave antenna. This antenna's size and required accuracy dictates the need for a segmented reflector. On-orbit disturbances may be a significant factor in its design. A study was performed to examine the effects of the geosynchronous thermal environment on the performance of the strongback structure for a proposed antenna concept for this application. The study included definition of the strongback and a corresponding numerical model to be used in the thermal and structural analyses definition of the thermal environment, determination of structural element temperature throughout potential orbits, estimation of resulting thermal distortions, and assessment of the structure's capability to meet surface accuracy requirements. Analyses show that shadows produced by the antenna reflector surface play a major role in increasing thermal distortions. Through customization of surface coating and element expansion characteristics, the segmented reflector concept can meet the tight surface accuracy requirements.
A new approach for shaping of dual-reflector antennas
NASA Technical Reports Server (NTRS)
Lee, Teh-Hong; Burnside, W. D.; Rudduck, Roger C.
1987-01-01
The shaping of 2-D dual-reflector antenna systems to generate a prescribed distribution with uniform phase at the aperture of the second reflector is examined. This method is based on the geometrical nature of Cassegrain and Gregorian dual-reflector antennas. The method of syntheses satisfies the principles of geometrical optics which are the foundations of dual-reflector designs. Instead of setting up differential equations or heuristically designing the subreflector, a set of algebraic equations is formulated and solved numerically to obtain the desired surfaces. The caustics of the reflected rays from the subreflector can be obtained and examined. Several examples of 2-D dual-reflector shaping are shown to validate the study. Geometrical optics and physical optics are used to calculate the scattered fields from the reflectors.
NASA Technical Reports Server (NTRS)
Spence, Brian; White, Steve; Schmid, Kevin; Douglas Mark
2012-01-01
The Flexible Array Concentrator Technology (FACT) is a lightweight, high-performance reflective concentrator blanket assembly that can be used on flexible solar array blankets. The FACT concentrator replaces every other row of solar cells on a solar array blanket, significantly reducing the cost of the array. The modular design is highly scalable for the array system designer, and exhibits compact stowage, good off-pointing acceptance, and mass/cost savings. The assembly s relatively low concentration ratio, accompanied by a large radiative area, provides for a low cell operating temperature, and eliminates many of the thermal problems inherent in high-concentration-ratio designs. Unlike other reflector technologies, the FACT concentrator modules function on both z-fold and rolled flexible solar array blankets, as well as rigid array systems. Mega-ROSA (Mega Roll-Out Solar Array) is a new, highly modularized and extremely scalable version of ROSA that provides immense power level range capability from 100 kW to several MW in size. Mega-ROSA will enable extremely high-power spacecraft and SEP-powered missions, including space-tug and largescale planetary science and lunar/asteroid exploration missions. Mega-ROSA's inherent broad power scalability is achieved while retaining ROSA s solar array performance metrics and missionenabling features for lightweight, compact stowage volume and affordability. This innovation will enable future ultra-high-power missions through lowcost (25 to 50% cost savings, depending on PV and blanket technology), lightweight, high specific power (greater than 200 to 400 Watts per kilogram BOL (beginning-of-life) at the wing level depending on PV and blanket technology), compact stowage volume (greater than 50 kilowatts per cubic meter for very large arrays), high reliability, platform simplicity (low failure modes), high deployed strength/stiffness when scaled to huge sizes, and high-voltage operation capability. Mega-ROSA is adaptable to all photovoltaic and concentrator flexible blanket technologies, and can readily accommodate standard multijunction and emerging ultra-lightweight IMM (inverted metamorphic) photovoltaic flexible blanket assemblies, as well as ENTECHs Stretched Lens Array (SLA) and DSSs (Deployable Space Systems) FACT, which allows for cost reduction at the array level.
16 CFR 1512.16 - Requirements for reflectors.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 1512.16 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT... vehicle headlamps. The use of reflector combinations off the center plane of the bicycle (defined in...) Front reflector. The reflector or mount shall not contact the ground plane when the bicycle is resting...
NASA Astrophysics Data System (ADS)
Bidault, Marie; Geoffroy, Laurent; Arbaret, Laurent; Aubourg, Charles
2017-04-01
Deep seismic reflection profiles of present-day volcanic passive margins often show a 2-layered lower crust, from top to bottom: an apparently ductile 12 km-thick middle-lower layer (LC1) of strong folded reflectors and a 4 km-thick supra-Moho layer (LC2) of horizontal and parallel reflectors. Those layers appear to be structurally disconnected and to develop at the early stages of margins evolution. A magmatic origin has been suggested by several studies to explain those strong reflectors, favoring mafic sills intrusion hypothesis. Overlying mafic and acidic extrusives (Seaward Dipping Reflectors sequences) are bounded by continentward-dipping detachment faults rooting in, and co-structurated with, the ductile part of the lower crust (LC1). Consequently the syn-rift to post-rift evolution of volcanic passive margins (and passive margins in general) largely depends on the nature and the properties of the lower crust, yet poorly understood. We propose to investigate the properties and rheology of a magma-injected extensional lower crust with a field analogue, the Ivrea Zone (Southern Alps, Italy). The Ivrea Zone displays a complete back-thrusted section of a Variscan continental lower crust that first underwent gravitational collapse, and then lithospheric extension. This Late Paleozoic extension was apparently associated with the continuous intrusion of a large volume of mafic to acid magma. Both the magma timing and volume, and the structure of the Ivrea lower crust suggest that this section represents an adequate analogue of a syn-magmatic in-extension mafic rift zone which aborted at the end of the Permian. Notably, we may recognize the 2 layers LC1 and LC2. From a number of tectonic observations, we reconstitute the whole tectonic history of the area, focusing on the strain field evolution with time, in connection with mafic magma injection. We compare those results with available data from extensional mafic lower crusts at rifts and margins.
NASA Technical Reports Server (NTRS)
2010-01-01
Topics covered include: Instrument for Analysis of Greenland's Glacier Mills Cryogenic Moisture Apparatus; A Transportable Gravity Gradiometer Based on Atom Interferometry; Three Methods of Detection of Hydrazines; Crossed, Small-Deflection Energy Analyzer for Wind/Temperature Spectrometer; Wavefront Correction for Large, Flexible Antenna Reflector; Novel Micro Strip-to-Waveguide Feed Employing a Double-Y Junction; Thin-Film Ferro Electric-Coupled Microstripline Phase Shifters With Reduced Device Hysteresis; Two-Stage, 90-GHz, Low-Noise Amplifier; A 311-GHz Fundamental Oscillator Using InP HBT Technology; FPGA Coprocessor Design for an Onboard Multi-Angle Spectro-Polarimetric Imager; Serrating Nozzle Surfaces for Complete Transfer of Droplets; Turbomolecular Pumps for Holding Gases in Open Containers; Triaxial Swirl Injector Element for Liquid-Fueled Engines; Integrated Budget Office Toolbox; PLOT3D Export Tool for Tecplot; Math Description Engine Software Development Kit; Astronaut Office Scheduling System Software; ISS Solar Array Management; Probabilistic Structural Analysis Program; SPOT Program; Integrated Hybrid System Architecture for Risk Analysis; System for Packaging Planetary Samples for Return to Earth; Offset Compound Gear Drive; Low-Dead-Volume Inlet for Vacuum Chamber; Simple Check Valves for Microfluidic Devices; A Capillary-Based Static Phase Separator for Highly Variable Wetting Conditions; Gimballing Spacecraft Thruster; Finned Carbon-Carbon Heat Pipe with Potassium Working Fluid; Lightweight Heat Pipes Made from Magnesium; Ceramic Rail-Race Ball Bearings; Improved OTEC System for a Submarine Robot; Reflector Surface Error Compensation in Dual-Reflector Antennas; Enriched Storable Oxidizers for Rocket Engines; Planar Submillimeter-Wave Mixer Technology with Integrated Antenna; Widely Tunable Mode-Hop-Free External-Cavity Quantum Cascade Laser; Non-Geiger-Mode Single-Photon Avalanche Detector with Low Excess Noise; Using Whispering-Gallery-Mode Resonators for Refractometry; RF Device for Acquiring Images of the Human Body; Reactive Collision Avoidance Algorithm; Fast Solution in Sparse LDA for Binary Classification; Modeling Common-Sense Decisions in Artificial Intelligence; Graph-Based Path-Planning for Titan Balloons; Nanolaminate Membranes as Cylindrical Telescope Reflectors; Air-Sea Spray Airborne Radar Profiler Characterizes Energy Fluxes in Hurricanes; Large Telescope Segmented Primary Mirror Alignment; and Simplified Night Sky Display System.
Origin and late quaternary tectonism of a western Canadian continental shelf trough
NASA Astrophysics Data System (ADS)
Moslow, Thomas F.; Luternauer, John L.; Rohr, Kristin
1991-08-01
Analyses of high resolution and multi-channel seismic profiles from the central continental shelf of western Canada ascribe a late Quaternary glacial origin to large-scale troughs. Along the margins of Moresby Trough, one of three large-scale cross-shelf bathymetric depressions in Queen Charlotte Sound, seismic profiles within Quaternary sediments show a divergence of reflectors, thickening and folding of seismic units, and concavity of reflectors suggestive of drag. Compactional subsidence, growth faulting, and compaction faulting are also observed. Fault traces commonly terminate below the seabed. Deformation of Quaternary sediments due to faulting is plastic in nature and maximum offset of reflectors is 2.5 m. The observed Quaternary deformation appears to be a product of rapid deposition, loading and subsidence of late Quaternary sediment, which is unrelated to seismic activity. In addition, Quaternary faulting was probably activated by post-glacial loading and isostatic rebound of consolidated Tertiary strata along the margins of continental shelf troughs. The presence of mass movement (slump or debris flow) deposits overlying lithified Tertiary strata along the flanks of Moresby Trough provides the only evidence of seismic activity in the study area. The lack of a mud drape over these deposits implies a late Holocene age for the timing of their emplacement. The Quaternary troughs are incised into Tertiary-aged sedimentary fill of the Queen Charlotte basin. Previous workers had interpreted seafloor escarpments paralleling the trough margins to indicate that the location of Moresby Trough was controlled by renewed or continued activity on Tertiary-aged faults. A multi-channel seismic line across Moresby Trough shows that such an escarpment on the seafloor does not correlate to faults either in the Tertiary basin fill or the underlying basement. Tertiary reflectors are continuous underneath Moresby Trough; the seafloor escarpment is an erosional feature and was not created by reactivation of Tertiary structures. Trough erosion and subsequent fill (up to 175 m thick) are entirely of Quaternary age.
Solar energy collection system
NASA Technical Reports Server (NTRS)
Miller, C. G.; Stephens, J. B. (Inventor)
1979-01-01
A fixed, linear, ground-based primary reflector having an extended curved sawtooth-contoured surface covered with a metalized polymeric reflecting material, reflects solar energy to a movably supported collector that is kept at the concentrated line focus reflector primary. The primary reflector may be constructed by a process utilizing well known freeway paving machinery. The solar energy absorber is preferably a fluid transporting pipe. Efficient utilization leading to high temperatures from the reflected solar energy is obtained by cylindrical shaped secondary reflectors that direct off-angle energy to the absorber pipe. A seriatim arrangement of cylindrical secondary reflector stages and spot-forming reflector stages produces a high temperature solar energy collection system of greater efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakry, A.; Abdulrhmann, S.; Ahmed, M., E-mail: mostafa.farghal@mu.edu.eg
2016-06-15
We theoretically model the dynamics of semiconductor lasers subject to the double-reflector feedback. The proposed model is a new modification of the time-delay rate equations of semiconductor lasers under the optical feedback to account for this type of the double-reflector feedback. We examine the influence of adding the second reflector to dynamical states induced by the single-reflector feedback: periodic oscillations, period doubling, and chaos. Regimes of both short and long external cavities are considered. The present analyses are done using the bifurcation diagram, temporal trajectory, phase portrait, and fast Fourier transform of the laser intensity. We show that adding themore » second reflector attracts the periodic and perioddoubling oscillations, and chaos induced by the first reflector to a route-to-continuous-wave operation. During this operation, the periodic-oscillation frequency increases with strengthening the optical feedback. We show that the chaos induced by the double-reflector feedback is more irregular than that induced by the single-reflector feedback. The power spectrum of this chaos state does not reflect information on the geometry of the optical system, which then has potential for use in chaotic (secure) optical data encryption.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-05
... Reflector Lamps, Products Containing Same and Components Thereof; Institution of Investigation AGENCY: U.S... fluorescent reflector lamps, products containing same and components thereof by reason of infringement of... compact fluorescent reflector lamps, products containing same and components thereof by reason of...
Solar thermal collectors using planar reflector
NASA Technical Reports Server (NTRS)
Espy, P. N.
1978-01-01
Specular reflectors have been used successfully with flat-plate collectors to achieve exceptionally high operating temperatures and high delivered energy per unit collector area. Optimal orientation of collectors and reflectors can result in even higher performance with an improved relationship between energy demand and supply. This paper reports on a study providing first order optimization of collector-reflector arrays in which single- and multiple-faceted reflectors in fixed or singly adjustable configurations provide delivered energy maxima in either summer or winter.
Space Radar Image of Death Valley in 3-D
NASA Technical Reports Server (NTRS)
1999-01-01
This picture is a three-dimensional perspective view of Death Valley, California. This view was constructed by overlaying a SIR-C radar image on a U.S. Geological Survey digital elevation map. The SIR-C image is centered at 36.629 degrees north latitude and 117.069 degrees west longitude. We are looking at Stove Pipe Wells, which is the bright rectangle located in the center of the picture frame. Our vantage point is located atop a large alluvial fan centered at the mouth of Cottonwood Canyon. In the foreground on the left, we can see the sand dunes near Stove Pipe Wells. In the background on the left, the Valley floor gradually falls in elevation toward Badwater, the lowest spot in the United States. In the background on the right we can see Tucki Mountain. This SIR-C/X-SAR supersite is an area of extensive field investigations and has been visited by both Space Radar Lab astronaut crews. Elevations in the Valley range from 70 meters (230 feet) below sea level, the lowest in the United States, to more than 3,300 meters (10,800 feet) above sea level. Scientists are using SIR-C/X-SAR data from Death Valley to help the answer a number of different questions about Earth's geology. One question concerns how alluvial fans are formed and change through time under the influence of climatic changes and earthquakes. Alluvial fans are gravel deposits that wash down from the mountains over time. They are visible in the image as circular, fan-shaped bright areas extending into the darker valley floor from the mountains. Information about the alluvial fans helps scientists study Earth's ancient climate. Scientists know the fans are built up through climatic and tectonic processes and they will use the SIR-C/X-SAR data to understand the nature and rates of weathering processes on the fans, soil formation and the transport of sand and dust by the wind. SIR-C/X-SAR's sensitivity to centimeter-scale (inch-scale) roughness provides detailed maps of surface texture. Such information can be used to study the occurrence and movement of dust storms and sand dunes. The goal of these studies is to gain a better understanding of the record of past climatic changes and the effects of those changes on a sensitive environment. This may lead to a better ability to predict future response of the land to different potential global climate-change scenarios. Vertical exaggeration is 1.87 times; exaggeration of relief is a common tool scientists use to detect relationships between structure (for example, faults and fractures) and topography. Death Valley is also one of the primary calibration sites for SIR-C/X-SAR. In the lower right quadrant of the picture frame two bright dots can be seen which form a line extending to Stove Pipe Wells. These dots are corner reflectors that have been set up to calibrate the radar as the shuttle passes overhead. Thirty triangular-shaped reflectors (they look like aluminum pyramids) have been deployed by the calibration team from JPL over a 40- by 40-kilometer (25- by 25-mile) area in and around Death Valley. The signatures of these reflectors were analyzed by JPL scientists to calibrate the image used in this picture. The calibration team here also deployed transponders (electronic reflectors) and receivers to measure the radar signals from SIR-C/X-SAR on the ground. SIR-C/X-SAR radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, in conjunction with aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fur Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI).
Photogrammetry research for FAST eleven-meter reflector panel surface shape measurement
NASA Astrophysics Data System (ADS)
Zhou, Rongwei; Zhu, Lichun; Li, Weimin; Hu, Jingwen; Zhai, Xuebing
2010-10-01
In order to design and manufacture the Five-hundred-meter Aperture Spherical Radio Telescope (FAST) active reflector measuring equipment, measurement on each reflector panel surface shape was presented, static measurement of the whole neutral spherical network of nodes was performed, real-time dynamic measurement at the cable network dynamic deformation was undertaken. In the implementation process of the FAST, reflector panel surface shape detection was completed before eleven-meter reflector panel installation. Binocular vision system was constructed based on the method of binocular stereo vision in machine vision, eleven-meter reflector panel surface shape was measured with photogrammetry method. Cameras were calibrated with the feature points. Under the linearity camera model, the lighting spot array was used as calibration standard pattern, and the intrinsic and extrinsic parameters were acquired. The images were collected for digital image processing and analyzing with two cameras, feature points were extracted with the detection algorithm of characteristic points, and those characteristic points were matched based on epipolar constraint method. Three-dimensional reconstruction coordinates of feature points were analyzed and reflective panel surface shape structure was established by curve and surface fitting method. The error of reflector panel surface shape was calculated to realize automatic measurement on reflector panel surface shape. The results show that unit reflector panel surface inspection accuracy was 2.30mm, within the standard deviation error of 5.00mm. Compared with the requirement of reflector panel machining precision, photogrammetry has fine precision and operation feasibility on eleven-meter reflector panel surface shape measurement for FAST.
33 CFR 118.120 - Radar reflectors and racons.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Radar reflectors and racons. 118... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.120 Radar reflectors and racons. The District Commander may require or authorize the installation of radar reflectors and racons on bridge structures, stakes...
46 CFR 169.726 - Radar reflector.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Radar reflector. 169.726 Section 169.726 Shipping COAST... Control, Miscellaneous Systems, and Equipment § 169.726 Radar reflector. Each nonmetallic vessel less than 90 feet in length must exhibit a radar reflector of suitable size and design while underway. Markings ...
33 CFR 118.120 - Radar reflectors and racons.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Radar reflectors and racons. 118... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.120 Radar reflectors and racons. The District Commander may require or authorize the installation of radar reflectors and racons on bridge structures, stakes...
46 CFR 169.726 - Radar reflector.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Radar reflector. 169.726 Section 169.726 Shipping COAST... Control, Miscellaneous Systems, and Equipment § 169.726 Radar reflector. Each nonmetallic vessel less than 90 feet in length must exhibit a radar reflector of suitable size and design while underway. Markings ...
46 CFR 169.726 - Radar reflector.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Radar reflector. 169.726 Section 169.726 Shipping COAST... Control, Miscellaneous Systems, and Equipment § 169.726 Radar reflector. Each nonmetallic vessel less than 90 feet in length must exhibit a radar reflector of suitable size and design while underway. Markings ...
33 CFR 118.120 - Radar reflectors and racons.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Radar reflectors and racons. 118... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.120 Radar reflectors and racons. The District Commander may require or authorize the installation of radar reflectors and racons on bridge structures, stakes...
46 CFR 169.726 - Radar reflector.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Radar reflector. 169.726 Section 169.726 Shipping COAST... Control, Miscellaneous Systems, and Equipment § 169.726 Radar reflector. Each nonmetallic vessel less than 90 feet in length must exhibit a radar reflector of suitable size and design while underway. Markings ...
33 CFR 118.120 - Radar reflectors and racons.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Radar reflectors and racons. 118... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.120 Radar reflectors and racons. The District Commander may require or authorize the installation of radar reflectors and racons on bridge structures, stakes...
46 CFR 169.726 - Radar reflector.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Radar reflector. 169.726 Section 169.726 Shipping COAST... Control, Miscellaneous Systems, and Equipment § 169.726 Radar reflector. Each nonmetallic vessel less than 90 feet in length must exhibit a radar reflector of suitable size and design while underway. Markings ...
33 CFR 118.120 - Radar reflectors and racons.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Radar reflectors and racons. 118... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.120 Radar reflectors and racons. The District Commander may require or authorize the installation of radar reflectors and racons on bridge structures, stakes...
Enhanced light absorption of silicon solar cells with dielectric nanostructured back reflector
NASA Astrophysics Data System (ADS)
Ren, Rui; Zhong, Zheng
2018-06-01
This paper investigates the light absorption property of nanostructured dielectric reflectors in silicon thin film solar cells using numerical simulation. Flat thin film solar cell with ZnO nanostructured back reflector can produce comparable photocurrent to the control model with Ag nanostructured back reflector. Furthermore, when it is integrated with nano-pillar surface decoration, a photocurrent density of 29.5 mA/cm2 can be achieved, demonstrating a photocurrent enhancement of 5% as compared to the model with Ag nanostructured back reflector.
Deployment dynamics and control of large-scale flexible solar array system with deployable mast
NASA Astrophysics Data System (ADS)
Li, Hai-Quan; Liu, Xiao-Feng; Guo, Shao-Jing; Cai, Guo-Ping
2016-10-01
In this paper, deployment dynamics and control of large-scale flexible solar array system with deployable mast are investigated. The adopted solar array system is introduced firstly, including system configuration, deployable mast and solar arrays with several mechanisms. Then dynamic equation of the solar array system is established by the Jourdain velocity variation principle and a method for dynamics with topology changes is introduced. In addition, a PD controller with disturbance estimation is designed to eliminate the drift of spacecraft mainbody. Finally the validity of the dynamic model is verified through a comparison with ADAMS software and the deployment process and dynamic behavior of the system are studied in detail. Simulation results indicate that the proposed model is effective to describe the deployment dynamics of the large-scale flexible solar arrays and the proposed controller is practical to eliminate the drift of spacecraft mainbody.
NASA Technical Reports Server (NTRS)
Angel, J. R. P.
1985-01-01
The capability and understanding of how to finish the reflector surfaces needed for large space telescopes is discussed. The technology for making very light glass substrates for mirrors is described. Other areas of development are in wide field imaging design for very fast primaries, in data analysis and retrieval methods for astronomical images, and in methods for making large area closely packed mosaics of solid state array detectors.
Evaluation of retroreflective durability of raised pavement markers : final report.
DOT National Transportation Integrated Search
1975-08-01
The Louisiana Department of Highways began using reflectorized raised pavement markers on a large scale basis in 1967 when such markers were placed on the Mississippi River Bridge along Route I-10 at Baton Rouge. The Department has engaged in a consi...
Khandelwal, Hitesh; Loonen, Roel C G M; Hensen, Jan L M; Debije, Michael G; Schenning, Albertus P H J
2015-07-01
Electrically switchable broadband infrared reflectors that are relatively transparent in the visible region have been fabricated using polymer stabilised cholesteric liquid crystals. The IR reflectors can change their reflection/transmission properties by applying a voltage in response to changes in environmental conditions. Simulations predict that a significant amount of energy can be saved on heating, cooling and lighting of buildings in places such as Madrid by using this switchable IR reflector. We have also fabricated a switchable IR reflector which can also generate electricity. These polymer based switchable IR reflectors are of high potential as windows of automobiles and buildings to control interior temperatures and save energy.
NASA Astrophysics Data System (ADS)
Zaremba, Krzysztof
2008-06-01
Application of directional-mixed reflectors results in a luminance decrease of the apparent image of light emitting diodes (LEDs), which is advantageous as far as glare reduction is concerned. On the other hand, reflectors have a negative impact on luminous intensity curves of the luminaries. This work analyzes an impact of surfaces with directional-mixed reflection properties in a mirror reflector designed for a luminary equipped with high-power LEDs. We present an algorithm used to determine the shape of the reflector of the surface with small scattering, where the axis twist angle for a parabolic reflector varies in a predefined range and follows a power function.
Khandelwal, Hitesh; Loonen, Roel C. G. M.; Hensen, Jan L. M.; Debije, Michael G.; Schenning, Albertus P. H. J.
2015-01-01
Electrically switchable broadband infrared reflectors that are relatively transparent in the visible region have been fabricated using polymer stabilised cholesteric liquid crystals. The IR reflectors can change their reflection/transmission properties by applying a voltage in response to changes in environmental conditions. Simulations predict that a significant amount of energy can be saved on heating, cooling and lighting of buildings in places such as Madrid by using this switchable IR reflector. We have also fabricated a switchable IR reflector which can also generate electricity. These polymer based switchable IR reflectors are of high potential as windows of automobiles and buildings to control interior temperatures and save energy. PMID:26132328
Back surface reflectors for solar cells
NASA Technical Reports Server (NTRS)
Chai, A. T.
1980-01-01
Sample solar cells were fabricated to study the effects of various back surface reflectors on the device performance. They are typical 50 micrometers thick, space quality, silicon solar cells except for variations of the back contact configuration. The back surfaces of the sample cells are polished to a mirror like finish, and have either conventional full contacts or grid finger contacts. Measurements and evaluation of various metallic back surface reflectors, as well as cells with total internal reflection, are presented. Results indicate that back surface reflectors formed using a grid finger back contact are more effective reflectors than cells with full back metallization and that Au, Ag, or Cu are better back surface reflector metals than Al.
NASA Technical Reports Server (NTRS)
Wilkie, William Keats; Williams, R. Brett; Agnes, Gregory S.; Wilcox, Brian H.
2007-01-01
This paper presents a feasibility study of robotically constructing a very large aperture optical space telescope on-orbit. Since the largest engineering challenges are likely to reside in the design and assembly of the 150-m diameter primary reflector, this preliminary study focuses on this component. The same technology developed for construction of the primary would then be readily used for the smaller optical structures (secondary, tertiary, etc.). A reasonable set of ground and on-orbit loading scenarios are compiled from the literature and used to define the structural performance requirements and size the primary reflector. A surface precision analysis shows that active adjustment of the primary structure is required in order to meet stringent optical surface requirements. Two potential actuation strategies are discussed along with potential actuation devices at the current state of the art. The finding of this research effort indicate that successful technology development combined with further analysis will likely enable such a telescope to be built in the future.
Surface coil proton MR imaging at 2 T.
Röschmann, P; Tischler, R
1986-10-01
We describe the design and application of surface coils for magnetic resonance (MR) imaging at high resonance frequencies (85 MHz). Circular, rectangular-frame, and reflector-type surface coils were used in the transmit-and-receive mode. With these coils, the required radio frequency power is reduced by factors of two up to 100 with respect to head and body coils. With the small, circular coils, high-resolution images of a small region of interest can be obtained that are free of foldback and motion artifacts originating outside the field of interest. With the rectangular-frame and reflector coils, large fields of view are also accessible. As examples of applications, single- and multiple-section images of the eye, knee, head and shoulder, and spinal cord are provided.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-18
... diameter, elliptical reflector (ER), and bulged reflector (BR) incandescent reflector lamps. In that... document or any other aspect of the rulemaking for certain small diameter, ER, and BR incandescent..., ER, and BR incandescent reflector lamps, and provide docket number EERE-2010- BT-STD-0005 and/or RIN...
Corrosion protection for silver reflectors
Arendt, Paul N.; Scott, Marion L.
1991-12-31
A method of protecting silver reflectors from damage caused by contact with gaseous substances which are often present in the atmosphere and a silver reflector which is so protected. The inventive method comprises at least partially coating a reflector with a metal oxide such as aluminum oxide to a thickness of 15 .ANG. or less.
Lightweight composite reflectors for space optics
NASA Astrophysics Data System (ADS)
Williams, Brian E.; McNeal, Shawn R.; Ono, Russell M.
1998-01-01
The primary goal of this work was to advance the state of the art in lightweight, high optical quality reflectors for space- and Earth-based telescopes. This was accomplished through the combination of a precision silicon carbide (SiC) reflector surface and a high specific strength, low-mass SiC structural support. Reducing the mass of components launched into space can lead to substantial cost savings, but an even greater benefit of lightweight reflectors for both space- and Earth-based optics applications is the fact that they require far less complex and less expensive positioning systems. While Ultramet is not the first company to produce SiC by chemical vapor deposition (CVD) for reflector surfaces, it is the first to propose and demonstrate a lightweight, open-cell SiC structural foam that can support a thin layer of the highly desirable polished SiC reflector material. SiC foam provides a substantial structural and mass advantage over conventional honeycomb supports and alternative finned structures. The result is a reflector component that meets or exceeds the optical properties of current high-quality glass, ceramic, and metal reflectors while maintaining a substantially lower areal density.
The effects of stainless steel radial reflector on core reactivity for small modular reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Jung Kil, E-mail: jkkang@email.kings.ac.kr; Hah, Chang Joo, E-mail: changhah@kings.ac.kr; Cho, Sung Ju, E-mail: sungju@knfc.co.kr
Commercial PWR core is surrounded by a radial reflector, which consists of a baffle and water. Radial reflector is designed to reflect neutron back into the core region to improve the neutron efficiency of the reactor and to protect the reactor vessels from the embrittling effects caused by irradiation during power operation. Reflector also helps to flatten the neutron flux and power distributions in the reactor core. The conceptual nuclear design for boron-free small modular reactor (SMR) under development in Korea requires to have the cycle length of 4∼5 years, rated power of 180 MWth and enrichment less than 5more » w/o. The aim of this paper is to analyze the effects of stainless steel radial reflector on the performance of the SMR using UO{sub 2} fuels. Three types of reflectors such as water, water/stainless steel 304 mixture and stainless steel 304 are selected to investigate the effect on core reactivity. Additionally, the thickness of stainless steel and double layer reflector type are also investigated. CASMO-4/SIMULATE-3 code system is used for this analysis. The results of analysis show that single layer stainless steel reflector is the most efficient reflector.« less
Tracking reflector assembly for a skylight
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dominquez, R.L.
1984-02-07
A tracking reflector assembly for a skylight includes a ring-shaped base member rotatably supported above the skylight by a plurality of rollers which engage a channel formed within an annular wall of the ring. A reflector is pivotally coupled to the ring for reflecting light into the skylight to supplement light which strikes the skylight directly. A vertical drive motor operates in response to a pair of photosensors for raising and lowering the reflector to follow changes in the angular elevation of the sun. The ring-shaped base member includes a toothed lower surface engaged by a gear coupled to amore » horizontal drive motor for rotating the ring-shaped base member in response to a third photosensor for following east-to-west movement of the sun. Each of the aforementioned photosensors is normally shaded and actuates the associated drive motor only when being struck by direct sunlight. A vertical limit switch limits the amount by which the reflector may be pivotally raised to avoid reflecting midday summer sunlight into the skylight. Another switch is responsive to closure of the reflector over the base member for preventing the vertical drive motor from attempting to further pivot the reflector downwardly. A fourth photosensor senses darkness resulting from sunset or heavy overcast conditions for pivoting the reflector downwardly and returning the base member and reflector to an easterly direction. A limit switch senses the return of the base member to the full east position for terminating actuation of the horizontal drive motor. A user operated switch selectively enables the tracking reflector assembly to operate automatically or causes the reflector to be lowered and the base member to be returned to the full east position until the user again enables the automatic control circuitry.« less
Charge efficiency of Ni/H2 cells during transfer orbit of Telstar 4 satellites
NASA Technical Reports Server (NTRS)
Fang, W. C.; Maurer, Dean W.; Vyas, B.; Thomas, M. N.
1994-01-01
The TELSTAR 4 communication satellites being manufactured by Martin Marietta Astro Space (Astro Space) for AT&T are three axis stabilized spacecraft scheduled to be launched on expendable vehicles such as the Atlas or Ariane rockets. Typically, these spacecraft consist of a box that holds the electronics and supports the antenna reflectors and the solar array wings. The wings and reflectors are folded against the sides of the box during launch and the spacecraft is spun for attitude control in that phase; they are then deployed after achieving the final orbit. The launch phase and transfer orbits required to achieve the final geosynchronous orbit typically take 4 to 5 days during which time the power required for command, telemetry, attitude control, heaters, etc., is provided by two 50 AH nickel hydrogen batteries augmented by the exposed outboard solar panels. In the past, this situation has presented no problem since there was a considerable excess of power available from the array. In the case of large high powered spacecraft such as TELSTAR 4, however, the design power levels in transfer orbit approach the time-averaged power available from the exposed surface area of the solar arrays, resulting in a very tight power margin. To compound the difficulty, the array output of the spinning spacecraft in transfer orbit is shaped like a full wave rectified sine function and provides very low charging rates to the batteries during portions of the rotation. In view of the typically low charging efficiency of alkaline nickel batteries at low rates, it was decided to measure the efficiency during a simulation of the TELSTAR 4 conditions at the expected power levels and temperatures on three nickel hydrogen cells of similar design. The unique feature of nickel hydrogen cells that makes the continuous measurement of efficiency possible is that hydrogen is one of the active materials and thus, cell pressure is a direct measure of the state of charge or available capacity. The pressure is measured with a calibrated strain gage mounted on the outside of the pressurized cell.
10 CFR 429.35 - Bare or covered (no reflector) medium base compact fluorescent lamps.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Bare or covered (no reflector) medium base compact....35 Bare or covered (no reflector) medium base compact fluorescent lamps. (a) Sampling plan for... reflector) medium base compact fluorescent lamps; and (2) For each basic model of bare or covered (no...
10 CFR 429.35 - Bare or covered (no reflector) medium base compact fluorescent lamps.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Bare or covered (no reflector) medium base compact....35 Bare or covered (no reflector) medium base compact fluorescent lamps. (a) Sampling plan for... reflector) medium base compact fluorescent lamps; and (2) For each basic model of bare or covered (no...
10 CFR 429.35 - Bare or covered (no reflector) medium base compact fluorescent lamps.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Bare or covered (no reflector) medium base compact....35 Bare or covered (no reflector) medium base compact fluorescent lamps. (a) Sampling plan for... reflector) medium base compact fluorescent lamps; and (2) For each basic model of bare or covered (no...
43 CFR 2806.43 - How does BLM calculate rent for passive reflectors and local exchange networks?
Code of Federal Regulations, 2011 CFR
2011-10-01
... reflectors and local exchange networks? 2806.43 Section 2806.43 Public Lands: Interior Regulations Relating...-Of-Way § 2806.43 How does BLM calculate rent for passive reflectors and local exchange networks? (a) BLM calculates rent for passive reflectors and local exchange networks by using the same rent...
Weighted SAW reflector gratings for orthogonal frequency coded SAW tags and sensors
NASA Technical Reports Server (NTRS)
Puccio, Derek (Inventor); Malocha, Donald (Inventor)
2011-01-01
Weighted surface acoustic wave reflector gratings for coding identification tags and sensors to enable unique sensor operation and identification for a multi-sensor environment. In an embodiment, the weighted reflectors are variable while in another embodiment the reflector gratings are apodized. The weighting technique allows the designer to decrease reflectively and allows for more chips to be implemented in a device and, consequently, more coding diversity. As a result, more tags and sensors can be implemented using a given bandwidth when compared with uniform reflectors. Use of weighted reflector gratings with OFC makes various phase shifting schemes possible, such as in-phase and quadrature implementations of coded waveforms resulting in reduced device size and increased coding.
Deployment of Large-Size Shell Constructions by Internal Pressure
NASA Astrophysics Data System (ADS)
Pestrenin, V. M.; Pestrenina, I. V.; Rusakov, S. V.; Kondyurin, A. V.
2015-11-01
A numerical study on the deployment pressure (the minimum internal pressure bringing a construction from the packed state to the operational one) of large laminated CFRP shell structures is performed using the ANSYS engineering package. The shell resists both membrane and bending deformations. Structures composed of shell elements whose median surface has an involute are considered. In the packed (natural) states of constituent elements, the median surfaces coincide with their involutes. Criteria for the termination of stepwise solution of the geometrically nonlinear problem on determination of the deployment pressure are formulated, and the deployment of cylindrical, conical (full and truncated cones), and large-size composite shells is studied. The results obtained are shown by graphs illustrating the deployment pressure in relation to the geometric and material parameters of the structure. These studies show that large pneumatic composite shells can be used as space and building structures, because the deployment pressure in them only slightly differs from the excess pressure in pneumatic articles made from films and soft materials.
The LAMAR: A high throughput X-ray astronomy facility for a moderate cost mission
NASA Technical Reports Server (NTRS)
Gorenstein, P.; Schwartz, D.
1981-01-01
The performance of a large area modular array of reflectors (LAMAR) is considered in several hypothetical observations relevant to: (1) cosmology, the X-ray background, and large scale structure of the universe; (2) clusters of galaxies and their evolution; (3) quasars and other active galactic nuclei; (4) compact objects in our galaxy; (5) stellar coronae; and (6) energy input to the interstellar medium.
Piezocomposite Actuator Arrays for Correcting and Controlling Wavefront Error in Reflectors
NASA Technical Reports Server (NTRS)
Bradford, Samuel Case; Peterson, Lee D.; Ohara, Catherine M.; Shi, Fang; Agnes, Greg S.; Hoffman, Samuel M.; Wilkie, William Keats
2012-01-01
Three reflectors have been developed and tested to assess the performance of a distributed network of piezocomposite actuators for correcting thermal deformations and total wave-front error. The primary testbed article is an active composite reflector, composed of a spherically curved panel with a graphite face sheet and aluminum honeycomb core composite, and then augmented with a network of 90 distributed piezoelectric composite actuators. The piezoelectric actuator system may be used for correcting as-built residual shape errors, and for controlling low-order, thermally-induced quasi-static distortions of the panel. In this study, thermally-induced surface deformations of 1 to 5 microns were deliberately introduced onto the reflector, then measured using a speckle holography interferometer system. The reflector surface figure was subsequently corrected to a tolerance of 50 nm using the actuators embedded in the reflector's back face sheet. Two additional test articles were constructed: a borosilicate at window at 150 mm diameter with 18 actuators bonded to the back surface; and a direct metal laser sintered reflector with spherical curvature, 230 mm diameter, and 12 actuators bonded to the back surface. In the case of the glass reflector, absolute measurements were performed with an interferometer and the absolute surface was corrected. These test articles were evaluated to determine their absolute surface control capabilities, as well as to assess a multiphysics modeling effort developed under this program for the prediction of active reflector response. This paper will describe the design, construction, and testing of active reflector systems under thermal loads, and subsequent correction of surface shape via distributed peizeoelctric actuation.
White Paper on Dish Stirling Technology: Path Toward Commercial Deployment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andraka, Charles E.; Stechel, Ellen; Becker, Peter
2016-07-01
Dish Stirling energy systems have been developed for distributed and large-scale utility deployment. This report summarizes the state of the technology in a joint project between Stirling Energy Systems, Sandia National Laboratories, and the Department of Energy in 2011. It then lays out a feasible path to large scale deployment, including development needs and anticipated cost reduction paths that will make a viable deployment product.
Proposed suitable electron reflector layer materials for thin-film CuIn1-xGaxSe2 solar cells
NASA Astrophysics Data System (ADS)
Sharbati, Samaneh; Gharibshahian, Iman; Orouji, Ali A.
2018-01-01
This paper investigates the electrical properties of electron reflector layer to survey materials as an electron reflector (ER) for chalcopyrite CuInGaSe solar cells. The purpose is optimizing the conduction-band and valence-band offsets at ER layer/CIGS junction that can effectively reduce the electron recombination near the back contact. In this work, an initial device model based on an experimental solar cell is established, then the properties of a solar cell with electron reflector layer are physically analyzed. The electron reflector layer numerically applied to baseline model of thin-film CIGS cell fabricated by ZSW (efficiency = 20.3%). The improvement of efficiency is achievable by electron reflector layer materials with Eg > 1.3 eV and -0.3 < Δχ < 0.7, depends on bandgap. Our simulations examine various electron reflector layer materials and conclude the most suitable electron reflector layer for this real CIGS solar cells. ZnSnP2, CdSiAs2, GaAs, CdTe, Cu2ZnSnS4, InP, CuO, Pb10Ag3Sb11S28, CuIn5S8, SnS, PbCuSbS3, Cu3AsS4 as well as CuIn1-xGaxSe (x > 0.5) are efficient electron reflector layer materials, so the potential improvement in efficiency obtained relative gain of 5%.
Choi, Chang-Hoon; Han, Jaecheon; Park, Jae-Seong; Seong, Tae-Yeon
2013-11-04
The enhanced light output power of a InGaN/AlGaN-based light-emitting diodes (LEDs) using three different types of highly reflective Sn-doped indium oxide (ITO)/Al-based p-type reflectors, namely, ITO/Al, Cu-doped indium oxide (CIO)/s-ITO(sputtered)/Al, and Ag nano-dots(n-Ag)/CIO/s-ITO/Al, is presented. The ITO/Al-based reflectors exhibit lower reflectance (76 - 84% at 365 nm) than Al only reflector (91.1%). However, unlike Al only n-type contact, the ITO/Al-based contacts to p-GaN show good ohmic characteristics. Near-UV (365 nm) InGaN/AlGaN-based LEDs with ITO/Al, CIO/s-ITO/Al, and n-Ag/CIO/s-ITO/Al reflectors exhibit forward-bias voltages of 3.55, 3.48, and 3.34 V at 20 mA, respectively. The LEDs with the ITO/Al and CIO/s-ITO/Al reflectors exhibit 9.5% and 13.5% higher light output power (at 20 mA), respectively, than the LEDs with the n-Ag/CIO/s-ITO/Al reflector. The improved performance of near UV LEDs is attributed to the high reflectance and low contact resistivity of the ITO/Al-based reflectors, which are better than those of conventional Al-based reflectors.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-14
... reflector (ER) and bulged reflector (BR) bulb shapes, and with diameters of 2.75 inches or less. Therefore....25 and 2.75 inches, as well as lamps with ER, BR, bulged parabolic aluminized reflector (BPAR), or... certain reflector (R), ER and BR IRLs. DOE has concluded, for the reasons that follow, that it has the...
Primary reflector for solar energy collection systems
NASA Technical Reports Server (NTRS)
Miller, C. G. (Inventor); Stephens, J. B.
1978-01-01
A fixed, linear, ground-based primary reflector is disclosed which has an extended curved sawtooth-contoured surface covered with a metalized polymeric reflecting material. The device reflects solar energy to a movably supported collector that is kept at the concentrated line focus of the reflector primary. The primary reflector may be constructed by a process utilizing well-known freeway paving machinery.
Primary reflector for solar energy collection systems and method of making same
NASA Technical Reports Server (NTRS)
Miller, C. G.; Stephens, J. B. (Inventor)
1979-01-01
Solar energy is reflected to a movably supported collector that is kept at the concentrated line focus of the reflector primary by a fixed, linear, ground-based primary reflector having an extended curved sawtooth contoured surface covered with a metalized polymeric reflecting material. The primary reflector was constructed by a process utilizing well-known freeway paving machinery.
Electrophoretic deposited TiO 2 pigment-based back reflectors for thin film solar cells
Bills, Braden; Morris, Nathan; Dubey, Mukul; ...
2015-01-16
Highly reflective coatings with strong light scattering effect have many applications in optical components and optoelectronic devices. This paper reports titanium dioxide (TiO 2) pigment-based reflectors that have 2.5 times higher broadband diffuse reflection than commercially produced aluminum or silver based reflectors and result in efficiency enhancements of a single-junction amorphous Si solar cell. Electrophoretic deposition is used to produce pigment-based back reflectors with high pigment density, controllable film thickness and site-specific deposition. Electrical conductivity of the pigment-based back reflectors is improved by creating electrical vias throughout the pigment-based back reflector by making holes using an electrical discharge / dielectricmore » breakdown approach followed by a second electrophoretic deposition of conductive nanoparticles into the holes. While previous studies have demonstrated the use of pigment-based back reflectors, for example white paint, on glass superstrate configured thin film Si solar cells, this work presents a scheme for producing pigment-based reflectors on complex shape and flexible substrates. Finally, mechanical durability and scalability are demonstrated on a continuous electrophoretic deposition roll-to-roll system which has flexible metal substrate capability of 4 inch wide and 300 feet long.« less
Design method of LED rear fog lamp based on freeform micro-surface reflectors
NASA Astrophysics Data System (ADS)
Yu, Jindong; Wu, Heng
2017-11-01
We propose a practical method for the design of a light-emitting diode (LED) rear fog lamp based on freeform micro-surface reflectors. The lamp consists of nine LEDs and each of them has a freeform micro-surface reflector correspondingly. The micro-surface reflector design includes three steps. An initial freeform reflector is first built based on the light energy maps. The micro-surface reflector is then constructed on the bias of the initial one. Finally, a two-step method is designed to optimize the micro-surface reflector. With the proposed method, a module is designed and LCW DURIS E5 LED source whose emitting surface is 5.7 mm × 3.0 mm is adopted for simulation. A prototype is also assembled and fabricated to verify the real performance. Both the simulation and experimental results demonstrate that the luminous intensity distribution can well fulfill the requirements of ECE No.38 regulation. Furthermore, more than 79% energy can be saved when compared with the rear fog lamps using conventional sources.
Wide scanning spherical antenna
NASA Technical Reports Server (NTRS)
Shen, Bing (Inventor); Stutzman, Warren L. (Inventor)
1995-01-01
A novel method for calculating the surface shapes for subreflectors in a suboptic assembly of a tri-reflector spherical antenna system is introduced, modeled from a generalization of Galindo-Israel's method of solving partial differential equations to correct for spherical aberration and provide uniform feed to aperture mapping. In a first embodiment, the suboptic assembly moves as a single unit to achieve scan while the main reflector remains stationary. A feed horn is tilted during scan to maintain the illuminated area on the main spherical reflector fixed throughout the scan thereby eliminating the need to oversize the main spherical reflector. In an alternate embodiment, both the main spherical reflector and the suboptic assembly are fixed. A flat mirror is used to create a virtual image of the suboptic assembly. Scan is achieved by rotating the mirror about the spherical center of the main reflector. The feed horn is tilted during scan to maintain the illuminated area on the main spherical reflector fixed throughout the scan.
Feasibility Study of Graphite Epoxy Antenna for a Microwave Limb Sounder Radiometer (MLSR)
NASA Technical Reports Server (NTRS)
1979-01-01
Results are presented of a feasibility study to design graphite epoxy antenna reflectors for a jet propulsion laboratory microwave limb sounder instrument (MLSR). Two general configurations of the offset elliptic parabolic reflectors are presented that will meet the requirements on geometry and reflector accuracy. The designs consist of sandwich construction for the primary reflectors, secondary reflector support structure and cross-tie members between reflector pairs. Graphite epoxy materials of 3 and 6 plies are used in the facesheets of the sandwich. An aluminum honeycomb is used for the core. A built-in adjustment system is proposed to reduce surface distortions during assembly. The manufacturing and environmental effects are expected to result in surface distortions less than .0015 inch and pointing errors less than .002 degree.
Reflector and Protections in a Sodium-cooled Fast Reactor: Modelling and Optimization
NASA Astrophysics Data System (ADS)
Blanchet, David; Fontaine, Bruno
2017-09-01
The ASTRID project (Advanced Sodium Technological Reactor for Industrial Demonstration) is a Generation IV nuclear reactor concept under development in France [1]. In this frame, studies are underway to optimize radial reflectors and protections. Considering radial protections made in natural boron carbide, this study is conducted to assess the neutronic performances of the MgO as the reference choice for reflector material, in comparison with other possible materials including a more conventional stainless steel. The analysis is based upon a simplified 1-D and 2-D deterministic modelling of the reactor, providing simplified interfaces between core, reflector and protections. Such models allow examining detailed reaction rate distributions; they also provide physical insights into local spectral effects occurring at the Core-Reflector and at the Reflector-Protection interfaces.
Interaction of acoustic levitation field with liquid reflecting surface
NASA Astrophysics Data System (ADS)
Hong, Z. Y.; Xie, W. J.; Wei, B.
2010-01-01
Single-axis acoustic levitation of substances, such as foam, water, polymer, and aluminum, is achieved by employing various liquids as the sound reflectors. The interaction of acoustic levitation field with liquid reflecting surface is investigated theoretically by considering the deformation of the liquid surface under acoustic radiation pressure. Numerical calculations indicate that the deformation degree of the reflecting surface shows a direct proportion to the acoustic radiation power. Appropriate deformation is beneficial whereas excessive deformation is unfavorable to enhance the levitation capability. Typically, the levitation capability with water reflector is smaller than that with the concave rigid reflector but slightly larger than that with the planar rigid reflector at low emitter vibration intensity. Liquid reflectors with larger surface tension and higher density behave more closely to the planar rigid reflector.
Cable-catenary large antenna concept
NASA Technical Reports Server (NTRS)
Akle, W.
1985-01-01
Deployable to very large diameters (over 1000 ft), while still remaining compatible with a complete satellite system launch by STS, the cable-catenary antenna comprises: 8 radial deployable boom masts; a deployable hub and feed support center mast; balanced front and back, radial and circumferential catenary cabling for highly accurate (mm) surface control; no interfering cabling in the antenna field; and an RF reflecting mesh supported on the front catenaries. Illustrations show the antenna-satellite system deployed and stowed configurations; the antenna deployment sequence; the design analysis logic; the sizing analysis output, and typical parametric design data.
Supporting Knowledge Transfer in IS Deployment Projects
NASA Astrophysics Data System (ADS)
Schönström, Mikael
To deploy new information systems is an expensive and complex task, and does seldom result in successful usage where the system adds strategic value to the firm (e.g. Sharma et al. 2003). It has been argued that innovation diffusion is a knowledge integration problem (Newell et al. 2000). Knowledge about business processes, deployment processes, information systems and technology are needed in a large-scale deployment of a corporate IS. These deployments can therefore to a large extent be argued to be a knowledge management (KM) problem. An effective deployment requires that knowledge about the system is effectively transferred to the target organization (Ko et al. 2005).
NASA Technical Reports Server (NTRS)
Death, M. D.
1984-01-01
The evolution of an Antenna Deployment Mechanism (ADM) from a Hinge Actuator Mechanism (HAM) is described as it pertains to the deployment of large satellite antennas. Design analysis and mechanical tests are examined in detail.
Foil Panel Mirrors for Nonimaging Applications
NASA Technical Reports Server (NTRS)
Kuyper, D. J.; Castillo, A. A.
1984-01-01
Large durable, lightweight mirrors made by bonding thick aluminum foil to honeycomb panels or other rigid, flat backings. Mirrors suitable for use as infrared shields, telescope doors, solar-furnance doors, advertising displays, or other reflectors that require low thermal emissivity and high specularity but do not require precise surface figure necessary for imaging.
MOLTEN PLUTONIUM FUELED FAST BREEDER REACTOR
Kiehn, R.M.; King, L.D.P.; Peterson, R.E.; Swickard, E.O. Jr.
1962-06-26
A description is given of a nuclear fast reactor fueled with molten plutonium containing about 20 kg of plutonium in a tantalum container, cooled by circulating liquid sodium at about 600 to 650 deg C, having a large negative temperature coefficient of reactivity, and control rods and movable reflector for criticality control. (AEC)
Hopkins, Ronald J.; Land, John T.; Misvel, Michael C.
1994-01-01
A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled.
Hopkins, R.J.; Land, J.T.; Misvel, M.C.
1994-06-07
A nuclear reactor reflector is disclosed that comprises a stack of reflector blocks with vertical water flow passages to cool the reflector. The interface between blocks is opposite support points for reactor fuel rods. Water flows between the reflector and the reactor barrel from passages in a bottom block. The top block contains a flange to limit this flow and the flange has a slot to receive an alignment pin that is welded to the barrel. The pin is held in the slot by two removable shims. Alignment bars extend the length of the stack in slots machined in each block when the stack is assembled. 12 figs.
Tailored reflectors for illumination.
Jenkins, D; Winston, R
1996-04-01
We report on tailored reflector design methods that allow the placement of general illumination patterns onto a target plane. The use of a new integral design method based on the edge-ray principle of nonimaging optics gives much more compact reflector shapes by eliminating the need for a gap between the source and the reflector profile. In addition, the reflectivity of the reflector is incorporated as a design parameter. We show the performance of design for constant irradiance on a distant plane, and we show how a leading-edge-ray method may be used to achieve general illumination patterns on nearby targets.
Data appendix: F-number=1.0 EMR with a flexible back electrode
NASA Technical Reports Server (NTRS)
Mihora, D. J.
1984-01-01
A 12.5 micron Tedlar low f-number electrostatic membrane reflector was tested. The antenna reflector was designed to achieve a spherical reflector surface with a focal length to diameter ratio f(sub n) of one and a potential accuracy of 1.0 over its 4.88 m diameter. The configuration required the cutting and joining of twelve pie-shaped panels to form the reflector surface. Electrostatic forces are used to tension this preformed membrane reflector. The test data is spare-only three sets of measurements were taken due to lack of funds.
Gravity deformation measurements of 70m reflector surfaces
NASA Technical Reports Server (NTRS)
Brenner, Michael; Imbriale, William A.; Britcliffe, Michael K.
2001-01-01
Two of NASA's Deep Space Network (DSN) 70-meter reflectors are measured using a Leica TDM-5000 theodolite. The main reflector surface was measured at five elevation angles so that a gravity deformation model could be derived that described the main reflector distortions over the entire range of elevation angles. The report describes the measurement equipment and accuracy and the results derived from the data.
Impact of HFIR LEU Conversion on Beryllium Reflector Degradation Factors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilas, Dan
2013-10-01
An assessment of the impact of low enriched uranium (LEU) conversion on the factors that may cause the degradation of the beryllium reflector is performed for the High Flux Isotope Reactor (HFIR). The computational methods, models, and tools, comparisons with previous work, along with the results obtained are documented and discussed in this report. The report documents the results for the gas and neutronic poison production, and the heating in the beryllium reflector for both the highly enriched uranium (HEU) and LEU HFIR configurations, and discusses the impact that the conversion to LEU may have on these quantities. A time-averagingmore » procedure was developed to calculate the isotopic (gas and poisons) production in reflector. The sensitivity of this approach to different approximations is gauged and documented. The results show that the gas is produced in the beryllium reflector at a total rate of 0.304 g/cycle for the HEU configuration; this rate increases by ~12% for the LEU case. The total tritium production rate in reflector is 0.098 g/cycle for the HEU core and approximately 11% higher for the LEU core. A significant increase (up to ~25%) in the neutronic poisons production in the reflector during the operation cycles is observed for the LEU core, compared to the HEU case, for regions close to the core s horizontal midplane. The poisoning level of the reflector may increase by more than two orders of magnitude during long periods of downtime. The heating rate in the reflector is estimated to be approximately 20% lower for the LEU core than for the HEU core. The decrease is due to a significantly lower contribution of the heating produced by the gamma radiation for the LEU core. Both the isotopic (gas and neutronic poisons) production and the heating rates are spatially non-uniform throughout the beryllium reflector volume. The maximum values typically occur in the removable reflector and close to the midplane.« less
Multi-mode horn antenna simulation
NASA Technical Reports Server (NTRS)
Dod, L. R.; Wolf, J. D.
1980-01-01
Radiation patterns were computed for a circular multimode horn antenna using waveguide electric field radiation expressions. The circular multimode horn was considered as a possible reflector feed antenna for the Large Antenna Multifrequency Microwave Radiometer (LAMMR). This horn antenna uses a summation of the TE sub 11 deg and TM sub 11 deg modes to generate far field primary radiation patterns with equal E and H plane beamwidths and low sidelobes. A computer program for the radiation field expressions using the summation of waveguide radiation modes is described. The sensitivity of the multimode horn antenna radiation patterns to phase variations between the two modes is given. Sample radiation pattern calculations for a reflector feed horn for LAMMR are shown. The multimode horn antenna provides a low noise feed suitable for radiometric applications.
A description of the lunar ranging station at McDonald Observatory.
NASA Technical Reports Server (NTRS)
Silverberg, E. C.; Currie, D. G.
1972-01-01
The equipment of this station which has been in operation since the deployment of the first corner reflector by the Apollo 11 astronauts. The McDonald 2.7-m telescope is used for both transmission and reception of pulsed ruby laser light during three 45-minute daily laser runs about three weeks in a month. The present laser pulse width, timing system, calibration procedures, and signal levels are designed to achieve ranging with an accuracy to 1 nanosecond. The data rates obtained since September, 1970, are consistent with the scientific commitments of the lunar ranging program. Most of the over 200 acquisitions obtained have an accuracy to better than plus or minus 30 cm. Details of the telescope matching optics, guiding and timing equipment, and calibration procedures are discussed. Representative lunar range data are included.
Design, Development and Testing of the GMI Launch Locks
NASA Technical Reports Server (NTRS)
Sexton, Adam; Dayton, Chris; Wendland, Ron; Pellicciotti, Joseph
2011-01-01
Ball Aerospace will deliver the GPM Microwave Imager (GMI), to NASA as one of the 3 instruments to fly on the Global Precipitation Measurement (GPM) mission, for launch in 2013. The radiometer, when deployed, is over 8 feet tall and rotates at 32 revolutions per minute (RPM) can be described as a collection of mechanisms working to achieve its scientific objectives. This collection precisely positions a 1.2 meter reflector to a 48.5 degree off nadir angle while rotating, transferring electrical power and signals to and from the RF receivers, designs two very stable calibration sources, and provides the structural integrity of all the components. There are a total of 7 launch restraints coupling across the moving and stationary elements of the structure,. Getting from design to integration will be the focus of this paper.
Zhou, Yufeng; Zhong, Pei
2006-06-01
A theoretical model for the propagation of shock wave from an axisymmetric reflector was developed by modifying the initial conditions for the conventional solution of a nonlinear parabolic wave equation (i.e., the Khokhlov-Zabolotskaya-Kuznestsov equation). The ellipsoidal reflector of an HM-3 lithotripter is modeled equivalently as a self-focusing spherically distributed pressure source. The pressure wave form generated by the spark discharge of the HM-3 electrode was measured by a fiber optic probe hydrophone and used as source conditions in the numerical calculation. The simulated pressure wave forms, accounting for the effects of diffraction, nonlinearity, and thermoviscous absorption in wave propagation and focusing, were compared with the measured results and a reasonably good agreement was found. Furthermore, the primary characteristics in the pressure wave forms produced by different reflector geometries, such as that produced by a reflector insert, can also be predicted by this model. It is interesting to note that when the interpulse delay time calculated by linear geometric model is less than about 1.5 micros, two pulses from the reflector insert and the uncovered bottom of the original HM-3 reflector will merge together. Coupling the simulated pressure wave form with the Gilmore model was carried out to evaluate the effect of reflector geometry on resultant bubble dynamics in a lithotripter field. Altogether, the equivalent reflector model was found to provide a useful tool for the prediction of pressure wave form generated in a lithotripter field. This model may be used to guide the design optimization of reflector geometries for improving the performance and safety of clinical lithotripters.
Zhou, Yufeng; Zhong, Pei
2007-01-01
A theoretical model for the propagation of shock wave from an axisymmetric reflector was developed by modifying the initial conditions for the conventional solution of a nonlinear parabolic wave equation (i.e., the Khokhlov–Zabolotskaya–Kuznestsov equation). The ellipsoidal reflector of an HM-3 lithotripter is modeled equivalently as a self-focusing spherically distributed pressure source. The pressure wave form generated by the spark discharge of the HM-3 electrode was measured by a fiber optic probe hydrophone and used as source conditions in the numerical calculation. The simulated pressure wave forms, accounting for the effects of diffraction, nonlinearity, and thermoviscous absorption in wave propagation and focusing, were compared with the measured results and a reasonably good agreement was found. Furthermore, the primary characteristics in the pressure wave forms produced by different reflector geometries, such as that produced by a reflector insert, can also be predicted by this model. It is interesting to note that when the interpulse delay time calculated by linear geometric model is less than about 1.5 μs, two pulses from the reflector insert and the uncovered bottom of the original HM-3 reflector will merge together. Coupling the simulated pressure wave form with the Gilmore model was carried out to evaluate the effect of reflector geometry on resultant bubble dynamics in a lithotripter field. Altogether, the equivalent reflector model was found to provide a useful tool for the prediction of pressure wave form generated in a lithotripter field. This model may be used to guide the design optimization of reflector geometries for improving the performance and safety of clinical lithotripters. PMID:16838506
Reflector for efficient coupling of a laser beam to air or other fluids
Kare, Jordin T.
1992-01-01
A reflector array is disclosed herein that provides a controlled region or regions of plasma breakdowns from a laser beam produced at a remotely-based laser source. The plasma may be applied to produce thrust to propel a spacecraft, or to diagnose a laser beam, or to produce shockwaves. The spacecraft propulsion system comprises a reflector array attached to the vehicle. The reflector array comprises a plurality of reflectors spaced apart on a reflective surface, with each reflector acting as an independent focusing mirror. The reflectors are spaced closely together to form a continuous or partially-continuous surface. The reflector array may be formed from a sheet of reflective material, such as copper or aluminum. In operation, a beam of electromagnetic energy, such as a laser beam, is directed at the reflectors which focus the reflected electromagnetic energy at a plurality of regions off the surface. The energy concentrated in the focal region causes a breakdown of the air or other fluid in the focal region, creating a plasma. Electromagnetic energy is absorbed in the plasma and it grows in volume, compressing and heating the adjacent fluid thereby providing thrust. Laser pulses may be applied repetitively. After each such thrust pulse, fresh air can be introduced next to the surface either laterally, or through a perforated surface. If air or some other gas or vapor is supplied, for example from a tank carried on board a vehicle, this invention may also be used to provide thrust in a vacuum environment.
NASA/DOD Control/Structures Interaction Technology, 1986
NASA Technical Reports Server (NTRS)
Wright, Robert L. (Compiler)
1986-01-01
Control/structures interactions, deployment dynamics and system performance of large flexible spacecraft are discussed. Spacecraft active controls, deployable truss structures, deployable antennas, solar power systems for space stations, pointing control systems for space station gimballed payloads, computer-aided design for large space structures, and passive damping for flexible structures are among the topics covered.
2015-09-01
ARL-TR-7473 ● SEP 2015 US Army Research Laboratory Bragg Reflector-Induced Increased Nonradiative Lifetime in Gallium Arsenide...return it to the originator. ARL-TR-7473 ● SEP 2015 US Army Research Laboratory Bragg Reflector-Induced Increased Nonradiative ...3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Bragg Reflector-Induced Increased Nonradiative Lifetime in Gallium Arsenide (GaAs)/Aluminum
Coaxial Virtual Cathode Enhancement
2004-10-20
need more solid evidence to clarify them. Table 2. Frequency list for geometries without reflectors, showing the microwave frequencies based on their...frequency. V. The Functions of the Reflectors Table 3 is a frequency list with the donut reflector at different positions. From Table 3, we can see that...both cases. We do observe that the microwave power generally is decreased by the donut reflector. Table 3. Frequency list for geometries with a donut
Fabrication of Spherical Reflectors in Outer Space
NASA Technical Reports Server (NTRS)
Wang, Yu; Dooley, Jennifer; Dragovan, Mark; Serivens, Wally
2005-01-01
A process is proposed for fabrication of lightweight spherical reflectors in outer space for telescopes, radio antennas, and light collectors that would be operated there. The process would obviate the relatively massive substrates and frames needed to support such reflectors in normal Earth gravitation. According to the proposal, fabrication of a reflector would begin with blowing of a bubble to the specified reflector radius. Taking advantage of the outer-space vacuum as a suitable environment for evaporative deposition of metal, a metal-evaporation source would be turned on and moved around the bubble to deposit a reflective metal film over the specified reflector area to a thickness of several microns. Then the source would be moved and aimed to deposit more metal around the edge of the reflector area, increasing the thickness there to approximately equal to 100 micron to form a frame. Then the bubble would be deflated and peeled off the metal, leaving a thin-film spherical mirror having an integral frame. The mirror would then be mounted for use. The feasibility of this technology has been proved by fabricating a prototype at JPL. As shown in the figure, a 2-in. (.5-cm) diameter hemispherical prototype reflector was made from a polymer bubble coated with silver, forming a very smooth surface.
NASA Astrophysics Data System (ADS)
Dehls, John F.; Larsen, Yngvar; Marinkovic, Petar; Perski, Zbigniew
2017-04-01
The Sentinel-1 mission has been in operational mode for more than two years, and with the successful commissioning of S1B in Sep 2016, the constellation is now complete. While the InSAR community initially faced many processing challenges due to the introduction of the new TOPS mode, these issues can by now considered resolved. However, truly operational workflows are still to be designed and deployed, and there are a number of integration and interpretation challenges that need to be addressed to achieve operational processing of 6-day revisit InSAR data. In this contribution, we will focus mainly on the integration and interpretation of InSAR products in scientific workflows, rather than on algorithmic details. We will motivate discussion with results obtained from selected pilot sites within the ESA SEOM InSARap project. The sites cover a large part of the application domain for InSAR - "from decimeter to millimeter". Specifically, landslide and corner reflector validation test sites in Norway and Poland will be discussed. The results will serve as basis for a discussion on how to communicate and streamline a portfolio of subsidence products to end users, which is a challenge in itself. We will conclude with a discussion on remaining open questions regarding how we as a community can address these issues to a wider audience.
NASA Astrophysics Data System (ADS)
Valsecchi, G.; Banham, R.; Bianucci, G.; Eder, J.; Ghislanzoni, R.; Ritucci, A.; Terraneo, M.; Zocchi, F. E.; Smith, D.; Gale, D.; Hughes, D.
2016-07-01
The Large Millimeter Telescope (LMT) Alfonso Serrano is a 50 m diameter single-dish radio telescope optimized for astronomical observations at wavelengths of about a millimeter. Built and operated by the Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) in collaboration with the University of Massachusetts (UMASS), the telescope is located at the 4600 m summit of volcano Sierra Negra, Mexico. Anticipating the completion of the main reflector, currently operating over a 32 m subaperture, INAOE has contracted Media Lario for the design and manufacturing of a new 2.63 m subreflector that will enable higher efficiency astronomical observations with the entire main reflector surface. The new subreflector manufactured by Media Lario is segmented in 9 smaller panels, one central dome and eight identical petals, assembled and precisely aligned on a steel truss structure that will be connected to the hexapod mounted on the tetrapod head. Each panel was fabricated with Media Lario's unique laminated technology consisting of front and rear Nickel skins, electroformed from precise molds and bonded to a lightweight Aluminum honeycomb core. The reflecting surface of each panel was given a thin galvanic Rhodium coating that ensures that the reflector survives the harsh environmental conditions at the summit of Sierra Negra during the 30 year lifetime of the telescope. Finally, the 2.63 m subreflector produced by Media Lario was qualified for typical cold night through hot day observation conditions with a maximum RMS error of 24.8 μm, which meets INAOE's requirements.
A method to design blended rolled edges for compact range reflectors
NASA Technical Reports Server (NTRS)
Gupta, Inder J.; Burnside, Walter D.
1989-01-01
A method to design blended rolled edges for arbitrary rim shape compact range reflectors is presented. The reflectors may be center-fed or offset-fed. The method leads to rolled edges with minimal surface discontinuities. It is shown that the reflectors designed using the prescribed method can be defined analytically using simple expressions. A procedure to obtain optimum rolled edges parameter is also presented. The procedure leads to blended rolled edges that minimize the diffracted fields emanating from the junction between the paraboloid and the rolled edge surface while satisfying certain constraints regarding the reflector size and the minimum operating frequency of the system.
NASA Technical Reports Server (NTRS)
Cherrette, A. R.; Lee, S. W.; Acosta, R. J.
1988-01-01
Eliminating the corporate feed network in shaped contour beam antennas will reduce the expense, weight, and RF loss of the antenna system. One way of producing a shaped contour beam without using a feed network is to use a single shaped reflector with a single feed element. For a prescribed contour beam and feed, an optimization method for designing the reflector shape is given. As a design example, a shaped reflector is designed to produce a continental U.S. coverage (CONUS) beam. The RF performance of the shaped reflector is then verified by physical optics.
A method to design blended rolled edges for compact range reflectors
NASA Technical Reports Server (NTRS)
Gupta, Inder J.; Ericksen, Kurt P.; Burnside, Walter D.
1990-01-01
A method to design blended rolled edges for arbitrary rim shape compact range reflectors is presented. The reflectors may be center-fed or offset-fed. The method leads to rolled edges with minimal surface discontinuities. It is shown that the reflectors designed using the prescribed method can be defined analytically using simple expressions. A procedure to obtain optimum rolled edges parameters is also presented. The procedure leads to blended rolled edges that minimize the diffracted fields emanating from the junction between the paraboloid and the rolled edge surface while satisfying certain constraints regarding the reflector size and the minimum operating frequency of the system.
The novel support structure design of high stability for space borne primary reflector
NASA Astrophysics Data System (ADS)
Yu, Fei; Ding, Lin; Tan, Ting; Pei, Jing-yang.; Zhao, Xue-min; Bai, Shao-jun
2018-01-01
The novel support structure design of high stability for space borne primary mirror is presented. The structure is supported by a ball head support rod, for statically determinate support of reflector. The ball head assembly includes the supporting rod, nesting, bushing and other important parts. The liner bushing of the resistant material is used to fit for ball head approximated with the reflector material, and then the bad impact of thermal mismatch could be minimized to minimum. In order to ensure that the structure of the support will not be damaged, the glue spots for limitation is added around the reflector, for position stability of reflector. Through analysis and calculation, it can be seen that the novel support structure would not transfer the external stresses to the reflector, and the external stresses usually result from thermal mismatch and assembly misalignment. The novel method is useful for solving the problem of the bad influence form thermal stress and assembly force. In this paper, the supporting structure is introduced and analyzed in detail. The simulation results show that the ball head support reflector works more stably.
Local Seismicity of the Rainbow Massif on the Mid-Atlantic Ridge
NASA Astrophysics Data System (ADS)
Horning, G.; Sohn, R. A.; Canales, J. P.; Dunn, R. A.
2018-02-01
The Rainbow massif, an oceanic core complex located in a nontransform discontinuity on the Mid-Atlantic Ridge (36°N), is notable for hosting high-temperature hydrothermal discharge through ultramafic rocks. Here we report results from a 9 month microearthquake survey conducted with a network of 13 ocean bottom seismometers deployed on and around the Rainbow massif as part of the MARINER experiment in 2013-2014. High rates ( 300 per day) of low-magnitude (average ML 0.5) microearthquakes were detected beneath the massif. The hypocenters do not cluster along deeply penetrating fault surfaces and do not exhibit mainshock/aftershock sequences, supporting the hypothesis that the faulting associated with the exhumation of the massif is currently inactive. Instead, the hypocenters demarcate a diffuse zone of continuous, low-magnitude deformation at relatively shallow (< 3 km) depths beneath the massif, sandwiched in between the seafloor and seismic reflectors interpreted to be magmatic sills driving hydrothermal convection. Most of the seismicity is located in regions where seismic refraction data indicate serpentinized ultramafic host rock, and although the seismic network we deployed was not capable of constraining the focal mechanism of most events, our analysis suggests that serpentinization may play an important role in microearthquake generation at the Rainbow massif.
Materials and process optimization for dual-shell satellite antenna reflectors
NASA Astrophysics Data System (ADS)
Balaski, Darcy R.; van Oyen, Hans J.; Nissan, Sorin J.
A comprehensive, design-optimization test program was conducted for satellite antenna reflectors composed of two offset paraboloidal Kevlar-reinforced sandwich shells separated by a circular sandwich structure. In addition to standard mechanical properties testing, coefficient of thermal expansion and hygroscopic tests were conducted to predict reflector surface accuracy in the thermal cycling environment of orbital space. Attention was given to the relative placement of components during assembly, in view of reflector surface measurements.
Lamp with a truncated reflector cup
Li, Ming; Allen, Steven C.; Bazydola, Sarah; Ghiu, Camil-Daniel
2013-10-15
A lamp assembly, and method for making same. The lamp assembly includes first and second truncated reflector cups. The lamp assembly also includes at least one base plate disposed between the first and second truncated reflector cups, and a light engine disposed on a top surface of the at least one base plate. The light engine is configured to emit light to be reflected by one of the first and second truncated reflector cups.
Wideband QAMC reflector's antenna for low profile applications
NASA Astrophysics Data System (ADS)
Grelier, M.; Jousset, M.; Mallégol, S.; Lepage, A. C.; Begaud, X.; LeMener, J. M.
2011-06-01
A wideband reflector's antenna based on quasi-artificial magnetic conductor is proposed. To validate the design, an Archimedean spiral has been backed to this new reflector. In comparison to classical solution using absorbent material, the prototype presents a very low thickness of λ/15 at the lowest operating frequency and an improved gain over a 2.4:1 bandwidth. The whole methodology to design this reflector can be applied to other wideband antennas.
Holst, Christoph; Schunck, David; Nothnagel, Axel; Haas, Rüdiger; Wennerbäck, Lars; Olofsson, Henrik; Hammargren, Roger; Kuhlmann, Heiner
2017-08-09
For accurate astronomic and geodetic observations based on radio telescopes, the elevation-dependent deformation of the radio telescopes' main reflectors should be known. Terrestrial laser scanning has been used for determining the corresponding changes of focal lengths and areal reflector deformations at several occasions before. New in this publication is the situation in which we minimize systematic measurement errors by an improved measurement and data-processing concept: Sampling the main reflector in both faces of the laser scanner and calibrating the laser scanner in situ in a bundle adjustment. This concept is applied to the Onsala Space Observatory 20-m radio telescope: The focal length of the main reflector decreases by 9.6 mm from 85 ∘ to 5 ∘ elevation angle. Further local deformations of the main reflector are not detected.
Graphical method to design multilayer phase retarders.
Apfel, J H
1981-03-15
When multilayer reflectors are used at nonnormal incidence, the two planes of polarization generally have different phase shifts. This difference, known as phase retardance, depends on the multilayer design, the incidence angle, and the wavelength. Heretofore, the design of reflectors with specific phase retardance has been carried out by computer optimization except for the case of a single layer on a metal substrate. A graph of phase retardance D vs the average phase shift A as a function of layer thickness provides a means for visualization that is useful in reflector designs. A D-A graph predicts the phase properties of a reflector as a function of the index and thickness of an added layer. Graphs of phase retardance vs average phase for two different materials can be superposed to predict the composite performance of a multilayer reflector. This graphical technique is employed to design and analyze reflectors with specified phase retardance.
Main-Reflector Manufacturing Technology for the Deep Space Optical Communications Ground Station
NASA Technical Reports Server (NTRS)
Britcliffe, M. J.; Hoppe, D. J.
2001-01-01
The Deep Space Network (DSN) has plans to develop a 10-m-diameter optical communications receiving station. The system uses the direct detection technique, which has much different requirements from a typical astronomical telescope. The receiver must operate in daylight and nighttime conditions. This imposes special requirements on the optical system to reject stray light from the Sun and other sources. One of the biggest challenges is designing a main-reflector surface that meets these requirements and can be produced at a reasonable cost. The requirements for the performance of the reflector are presented. To date, an aspherical primary reflector has been assumed. A reflector with a spherical reflector has a major cost advantage over an aspherical design, with no sacrifice in performance. A survey of current manufacturing techniques for optical mirrors of this type was performed. Techniques including solid glass, lightweight glass, diamond-turned aluminum, and composite mirrors were investigated.
Flat Engineered Multichannel Reflectors
NASA Astrophysics Data System (ADS)
Asadchy, V. S.; Díaz-Rubio, A.; Tcvetkova, S. N.; Kwon, D.-H.; Elsakka, A.; Albooyeh, M.; Tretyakov, S. A.
2017-07-01
Recent advances in engineered gradient metasurfaces have enabled unprecedented opportunities for light manipulation using optically thin sheets, such as anomalous refraction, reflection, or focusing of an incident beam. Here, we introduce a concept of multichannel functional metasurfaces, which are able to control incoming and outgoing waves in a number of propagation directions simultaneously. In particular, we reveal a possibility to engineer multichannel reflectors. Under the assumption of reciprocity and energy conservation, we find that there exist three basic functionalities of such reflectors: specular, anomalous, and retroreflections. Multichannel response of a general flat reflector can be described by a combination of these functionalities. To demonstrate the potential of the introduced concept, we design and experimentally test three different multichannel reflectors: three- and five-channel retroreflectors and a three-channel power splitter. Furthermore, by extending the concept to reflectors supporting higher-order Floquet harmonics, we forecast the emergence of other multichannel flat devices, such as isolating mirrors, complex splitters, and multi-functional gratings.
Interferometric Polarization Control
NASA Technical Reports Server (NTRS)
Wollack, Edward J. (Inventor); Moseley, Samuel H. (Inventor); Chuss, David T. (Inventor); Novak, Giles A. (Inventor)
2008-01-01
A signal conditioning module provides a polarimeter capability in a photometric system. The module may include multiple variable delay polarization modulators. Each modulator may include an input port, and a first arm formed to include a first reflector and first rooftop mirror arranged in opposed relationship. The first reflector may direct an input radiation signal to the first rooftop mirror. Each modulator also may include an output port and a second arm formed to include a second reflector and second rooftop mirror arranged in opposed relationship. The second reflector can guide a signal from the second rooftop mirror towards the output port to provide an output radiation signal. A beamsplitting grid may be placed between the first reflector and the first rooftop mirror, and also between the second reflector and the second rooftop mirror. A translation apparatus can provide adjustment relative to optical path length vis-a-vis the first arm, the second arm and the grid.
Interferometric polarization control
NASA Technical Reports Server (NTRS)
Wollack, Edward J. (Inventor); Novak, Giles A. (Inventor); Moseley, Samuel H. (Inventor); Chuss, David T. (Inventor)
2009-01-01
A signal conditioning module provides a polarimeter capability in a photometric system. The module may include multiple variable delay polarization modulators. Each modulator may include an input port, and a first arm formed to include a first reflector and first rooftop mirror arranged in opposed relationship. The first reflector may direct an input radiation signal to the first rooftop mirror. Each modulator also may include an output port and a second arm formed to include a second reflector and second rooftop mirror arranged in opposed relationship. The second reflector can guide a signal from the second rooftop mirror towards the output port to provide an output radiation signal. A beamsplitting grid may be placed between the first reflector and the first rooftop mirror, and also between the second reflector and the second rooftop mirror. A translation apparatus can provide adjustment relative to optical path length vis-a-vis the first arm, the second arm and the grid.
Schunck, David; Nothnagel, Axel; Haas, Rüdiger; Wennerbäck, Lars; Olofsson, Henrik; Hammargren, Roger; Kuhlmann, Heiner
2017-01-01
For accurate astronomic and geodetic observations based on radio telescopes, the elevation-dependent deformation of the radio telescopes’ main reflectors should be known. Terrestrial laser scanning has been used for determining the corresponding changes of focal lengths and areal reflector deformations at several occasions before. New in this publication is the situation in which we minimize systematic measurement errors by an improved measurement and data-processing concept: Sampling the main reflector in both faces of the laser scanner and calibrating the laser scanner in situ in a bundle adjustment. This concept is applied to the Onsala Space Observatory 20-m radio telescope: The focal length of the main reflector decreases by 9.6 mm from 85∘ to 5∘ elevation angle. Further local deformations of the main reflector are not detected. PMID:28792449
Beyond Wires and Seeds: Reflector-guided Breast Lesion Localization and Excision.
Mango, Victoria L; Wynn, Ralph T; Feldman, Sheldon; Friedlander, Lauren; Desperito, Elise; Patel, Sejal N; Gomberawalla, Ameer; Ha, Richard
2017-08-01
Purpose To evaluate outcomes of Savi Scout (Cianna Medical, Aliso Viejo, Calif) reflector-guided localization and excision of breast lesions by analyzing reflector placement, localization, and removal, along with target excision and rates of repeat excision (referred to as re-excision). Materials and Methods A single-institution retrospective review of 100 women who underwent breast lesion localization and excision by using the Savi Scout surgical guidance system from June 2015 to May 2016 was performed. By using image guidance 0-8 days before surgery, 123 nonradioactive, infrared-activated, electromagnetic wave reflectors were percutaneously inserted adjacent to or within 111 breast targets. Twenty patients had two or three reflectors placed for bracketing or for localizing multiple lesions, and when ipsilateral, they were placed as close as 2.6 cm apart. Target and reflector were localized intraoperatively by one of two breast surgeons who used a handpiece that emitted infrared light and electromagnetic waves. Radiographs of the specimen and pathologic analysis helped verify target and reflector removal. Target to reflector distance was measured on the mammogram and radiograph of the specimen, and reflector depth was measured on the mammogram. Pathologic analysis was reviewed. Re-excision rates and complications were recorded. By using statistics software, descriptive statistics were generated with 95% confidence intervals (CIs) calculated. Results By using sonographic (40 of 123; 32.5%; 95% CI: 24.9%, 41.2%) or mammographic (83 of 123; 67.5%; 95% CI: 58.8% 75.1%) guidance, 123 (100%; 95% CI: 96.4%, 100%) reflectors were placed. Mean mammographic target to reflector distance was 0.3 cm. All 123 (100%; 95% CI: 96.4%, 100%) targets and reflectors were excised. Pathologic analysis yielded 54 of 110 malignancies (49.1%; 95% CI: 39.9%, 58.3%; average, 1.0 cm; range, 0.1-5 cm), 32 high-risk lesions (29.1%; 95% CI: 21.4%, 38.2%), and 24 benign lesions (21.8%; 95% CI: 115.1%, 30.4%). Four of 54 malignant cases (7.4%; 95% CI: 2.4%, 18.1%) demonstrated margins positive for cancer that required re-excision. Five of 110 radiographs of the specimen (4.5%; 95% CI: 1.7%, 10.4%) demonstrated increased distance between the target and reflector distance of greater than 1.0 cm (range, 1.1-2.6 cm) compared with postprocedure mammogram the day of placement, three of five were associated with hematomas, two of five migrated without identifiable cause. No related postoperative complications were identified. Conclusion Savi Scout is an accurate, reliable method to localize and excise breast lesions with acceptable margin positivity and re-excision rates. Bracketing is possible with reflectors as close as 2.6 cm. Savi Scout overcomes many limitations of other localization methods, which warrants further study. © RSNA, 2017.
Reflector for efficient coupling of a laser beam to air or other fluids
Kare, J.T.
1992-10-06
A reflector array is disclosed herein that provides a controlled region or regions of plasma breakdowns from a laser beam produced at a remotely-based laser source. The plasma may be applied to produce thrust to propel a spacecraft, or to diagnose a laser beam, or to produce shock waves. The spacecraft propulsion system comprises a reflector array attached to the vehicle. The reflector array comprises a plurality of reflectors spaced apart on a reflective surface, with each reflector acting as an independent focusing mirror. The reflectors are spaced closely together to form a continuous or partially-continuous surface. The reflector array may be formed from a sheet of reflective material, such as copper or aluminum. In operation, a beam of electromagnetic energy, such as a laser beam, is directed at the reflectors which focus the reflected electromagnetic energy at a plurality of regions off the surface. The energy concentrated in the focal region causes a breakdown of the air or other fluid in the focal region, creating a plasma. Electromagnetic energy is absorbed in the plasma and it grows in volume, compressing and heating the adjacent fluid thereby providing thrust. Laser pulses may be applied repetitively. After each such thrust pulse, fresh air can be introduced next to the surface either laterally, or through a perforated surface. If air or some other gas or vapor is supplied, for example from a tank carried on board a vehicle, this invention may also be used to provide thrust in a vacuum environment. 10 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurd, Alan J.
2016-04-29
While the stated reason for asking this question is “to understand better our ability to warn policy makers in the unlikely event of an unanticipated SRM geoengineering deployment or large-scale field experiment”, my colleagues and I felt that motives would be important context because the scale of any meaningful SRM deployment would be so large that covert deployment seems impossible. However, several motives emerged that suggest a less-than-global effort might be important.
TeraHertz Space Telescope (TST)
NASA Astrophysics Data System (ADS)
Dunn, Marina Madeline; Lesser, David; O'Dougherty, Stephan; Swift, Brandon; Pat, Terrance; Cortez, German; Smith, Steve; Goldsmith, Paul; Walker, Christopher K.
2017-01-01
The Terahertz Space Telescope (TST) utilizes breakthrough inflatable technology to create a ~25 m far-infrared observing system at a fraction of the cost of previous space telescopes. As a follow-on to JWST and Herschel, TST will probe the FIR/THz regime with unprecedented sensitivity and angular resolution, answering fundamental questions concerning the origin and destiny of the cosmos. Prior and planned space telescopes have barely scratched the surface of what can be learned in this wavelength region. TST will pick up where JWST and Herschel leave off. At ~30µm TST will have ~10x the sensitivity and ~3x the angular resolution of JWST. At longer wavelengths it will have ~1000x the sensitivity of Herschel and ~7 times the angular resolution. TST can achieve this at low cost through the innovative use of inflatable technology. A recently-completed NIAC Phase II study (Large Balloon Reflector) validated, both analytically and experimentally, the concept of a large inflatable spherical reflector and demonstrated critical telescope functions. In our poster we will introduce the TST concept and compare its performance to past, present, and proposed far-infrared observatories.
Objective for EUV microscopy, EUV lithography, and x-ray imaging
Bitter, Manfred; Hill, Kenneth W.; Efthimion, Philip
2016-05-03
Disclosed is an imaging apparatus for EUV spectroscopy, EUV microscopy, EUV lithography, and x-ray imaging. This new imaging apparatus could, in particular, make significant contributions to EUV lithography at wavelengths in the range from 10 to 15 nm, which is presently being developed for the manufacturing of the next-generation integrated circuits. The disclosure provides a novel adjustable imaging apparatus that allows for the production of stigmatic images in x-ray imaging, EUV imaging, and EUVL. The imaging apparatus of the present invention incorporates additional properties compared to previously described objectives. The use of a pair of spherical reflectors containing a concave and convex arrangement has been applied to a EUV imaging system to allow for the image and optics to all be placed on the same side of a vacuum chamber. Additionally, the two spherical reflector segments previously described have been replaced by two full spheres or, more precisely, two spherical annuli, so that the total photon throughput is largely increased. Finally, the range of permissible Bragg angles and possible magnifications of the objective has been largely increased.
Optical properties of nonimaging concentrators with corrugated reflectors
NASA Astrophysics Data System (ADS)
Roennelid, Mats; Perers, Bengt; Karlsson, Bjorn
1994-09-01
A ray tracing study has been performed on the optical properties of cylindrical nonimaging concentrators with linear corrugated reflectors. The corrugations are assumed to be V-formed and to have an extension parallel to the meridian plane of the concentrators. It is shown that the acceptance angle for radiation incident in the meridian plane can be increased for moderate corrugations. This increased acceptance is balanced by a decreased acceptance of radiation from other directions. Calculations of angular acceptance for a 2X compound parabolic concentrator is presented. It is shown that the annual irradiation on a solar collector with booster reflector can be increased if corrugated reflectors are used instead of smooth reflectors.
Methodes d'optimisation des parametres 2D du reflecteur dans un reacteur a eau pressurisee
NASA Astrophysics Data System (ADS)
Clerc, Thomas
With a third of the reactors in activity, the Pressurized Water Reactor (PWR) is today the most used reactor design in the world. This technology equips all the 19 EDF power plants. PWRs fit into the category of thermal reactors, because it is mainly the thermal neutrons that contribute to the fission reaction. The pressurized light water is both used as the moderator of the reaction and as the coolant. The active part of the core is composed of uranium, slightly enriched in uranium 235. The reflector is a region surrounding the active core, and containing mostly water and stainless steel. The purpose of the reflector is to protect the vessel from radiations, and also to slow down the neutrons and reflect them into the core. Given that the neutrons participate to the reaction of fission, the study of their behavior within the core is capital to understand the general functioning of how the reactor works. The neutrons behavior is ruled by the transport equation, which is very complex to solve numerically, and requires very long calculation. This is the reason why the core codes that will be used in this study solve simplified equations to approach the neutrons behavior in the core, in an acceptable calculation time. In particular, we will focus our study on the diffusion equation and approximated transport equations, such as SPN or S N equations. The physical properties of the reflector are radically different from those of the fissile core, and this structural change causes important tilt in the neutron flux at the core/reflector interface. This is why it is very important to accurately design the reflector, in order to precisely recover the neutrons behavior over the whole core. Existing reflector calculation techniques are based on the Lefebvre-Lebigot method. This method is only valid if the energy continuum of the neutrons is discretized in two energy groups, and if the diffusion equation is used. The method leads to the calculation of a homogeneous reflector. The aim of this study is to create a computational scheme able to compute the parameters of heterogeneous, multi-group reflectors, with both diffusion and SPN/SN operators. For this purpose, two computational schemes are designed to perform such a reflector calculation. The strategy used in both schemes is to minimize the discrepancies between a power distribution computed with a core code and a reference distribution, which will be obtained with an APOLLO2 calculation based on the method Method Of Characteristics (MOC). In both computational schemes, the optimization parameters, also called control variables, are the diffusion coefficients in each zone of the reflector, for diffusion calculations, and the P-1 corrected macroscopic total cross-sections in each zone of the reflector, for SPN/SN calculations (or correction factors on these parameters). After a first validation of our computational schemes, the results are computed, always by optimizing the fast diffusion coefficient for each zone of the reflector. All the tools of the data assimilation have been used to reflect the different behavior of the solvers in the different parts of the core. Moreover, the reflector is refined in six separated zones, corresponding to the physical structure of the reflector. There will be then six control variables for the optimization algorithms. [special characters omitted]. Our computational schemes are then able to compute heterogeneous, 2-group or multi-group reflectors, using diffusion or SPN/SN operators. The optimization performed reduces the discrepancies distribution between the power computed with the core codes and the reference power. However, there are two main limitations to this study: first the homogeneous modeling of the reflector assemblies doesn't allow to properly describe its physical structure near the core/reflector interface. Moreover, the fissile assemblies are modeled in infinite medium, and this model reaches its limit at the core/reflector interface. These two problems should be tackled in future studies. (Abstract shortened by UMI.).
SELF-REGULATING BOILING-WATER NUCLEAR REACTORS
Ransohoff, J.A.; Plawchan, J.D.
1960-08-16
A boiling-water reactor was designed which comprises a pressure vessel containing a mass of water, a reactor core submerged within the water, a reflector tank disposed within the reactor, the reflector tank being open at the top to the interior of the pressure vessel, and a surge tank connected to the reflector tank. In operation the reflector level changes as a function of the pressure witoin the reactor so that the reactivity of the reactor is automatically controlled.
Integrated reflector antenna design and analysis
NASA Technical Reports Server (NTRS)
Zimmerman, M. L.; Lee, S. W.; Ni, S.; Christensen, M.; Wang, Y. M.
1993-01-01
Reflector antenna design is a mature field and most aspects were studied. However, of that most previous work is distinguished by the fact that it is narrow in scope, analyzing only a particular problem under certain conditions. Methods of analysis of this type are not useful for working on real-life problems since they can not handle the many and various types of perturbations of basic antenna design. The idea of an integrated design and analysis is proposed. By broadening the scope of the analysis, it becomes possible to deal with the intricacies attendant with modem reflector antenna design problems. The concept of integrated reflector antenna design is put forward. A number of electromagnetic problems related to reflector antenna design are investigated. Some of these show how tools for reflector antenna design are created. In particular, a method for estimating spillover loss for open-ended waveguide feeds is examined. The problem of calculating and optimizing beam efficiency (an important figure of merit in radiometry applications) is also solved. Other chapters deal with applications of this general analysis. The wide angle scan abilities of reflector antennas is examined and a design is proposed for the ATDRSS triband reflector antenna. The development of a general phased-array pattern computation program is discussed and how the concept of integrated design can be extended to other types of antennas is shown. The conclusions are contained in the final chapter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
John D. Bess; Leland M. Montierth
2013-03-01
In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters.more » One benchmark experiment was evaluated in this report: Core 4. Core 4 represents the only configuration with random pebble packing in the HTR-PROTEUS series of experiments, and has a moderator-to-fuel pebble ratio of 1:1. Three random configurations were performed. The initial configuration, Core 4.1, was rejected because the method for pebble loading, separate delivery tubes for the moderator and fuel pebbles, may not have been completely random; this core loading was rejected by the experimenters. Cores 4.2 and 4.3 were loaded using a single delivery tube, eliminating the possibility for systematic ordering effects. The second and third cores differed slightly in the quantity of pebbles loaded (40 each of moderator and fuel pebbles), stacked height of the pebbles in the core cavity (0.02 m), withdrawn distance of the stainless steel control rods (20 mm), and withdrawn distance of the autorod (30 mm). The 34 coolant channels in the upper axial reflector and the 33 coolant channels in the lower axial reflector were open. Additionally, the axial graphite fillers used in all other HTR-PROTEUS configurations to create a 12-sided core cavity were not used in the randomly packed cores. Instead, graphite fillers were placed on the cavity floor, creating a funnel-like base, to discourage ordering effects during pebble loading. Core 4 was determined to be acceptable benchmark experiment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bess, John D.; Montierth, Leland M.; Sterbentz, James W.
2014-03-01
In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters.more » One benchmark experiment was evaluated in this report: Core 4. Core 4 represents the only configuration with random pebble packing in the HTR-PROTEUS series of experiments, and has a moderator-to-fuel pebble ratio of 1:1. Three random configurations were performed. The initial configuration, Core 4.1, was rejected because the method for pebble loading, separate delivery tubes for the moderator and fuel pebbles, may not have been completely random; this core loading was rejected by the experimenters. Cores 4.2 and 4.3 were loaded using a single delivery tube, eliminating the possibility for systematic ordering effects. The second and third cores differed slightly in the quantity of pebbles loaded (40 each of moderator and fuel pebbles), stacked height of the pebbles in the core cavity (0.02 m), withdrawn distance of the stainless steel control rods (20 mm), and withdrawn distance of the autorod (30 mm). The 34 coolant channels in the upper axial reflector and the 33 coolant channels in the lower axial reflector were open. Additionally, the axial graphite fillers used in all other HTR-PROTEUS configurations to create a 12-sided core cavity were not used in the randomly packed cores. Instead, graphite fillers were placed on the cavity floor, creating a funnel-like base, to discourage ordering effects during pebble loading. Core 4 was determined to be acceptable benchmark experiment.« less
NASA Astrophysics Data System (ADS)
Urlaub, M.; Krastel, S.; Geersen, J.; Schwenk, T.
2017-12-01
Numerous studies invoke weak layers to explain the occurrence of large submarine landslides (>100 km³), in particular those on very gentle slopes (<3°). Failure conditions are thought to be met only within this layer, which is embedded between stable sediments. Although key to understanding failure mechanisms, little is known about the nature and composition of such weak layers, mainly because they are (1) often destroyed with the landslide and (2) difficult to reach with ship-based gravity and piston coring. The Northwest African continental slope hosts numerous large submarine landslides that are translational, such that failure takes place along bedding-parallel surfaces at different stratigraphic depths. This suggests that failure occurs along weak layers, which are deposited repeatedly over time. Using high resolution seismic reflection data we trace several failure surfaces of the Cap Blanc Slide complex offshore Northwest Africa to ODP-Site 658. Core-seismic integration shows that the failure surfaces coincide with diatom oozes that are topped by clay. Along Northwest Africa diatom-rich sediments are typically deposited at the end of glacial periods. In the seismic data these oozes show up as distinct high amplitude reflectors due to their characteristic low densities. Similar high-amplitude reflectors embedded into low-reflective seismic units are commonly observed in shallow sediments (<100 m below seafloor) along the entire Northwest African continental slope. The failure surfaces of at least three large landslides coincide with such reflectors. As the most recent Pleistocene glacial periods likely influenced sediment deposition along the entire Northwest African margin in a similar manner we hypothesize that diatom oozes play a critical role for the generation of submarine landslides off Northwest Africa as well as globally within subtropical regions. An initiative to drill the Northwest African continental slope with IODP is ongoing, within which this hypothesis shall be tested.