Sample records for large depth range

  1. Microbiome variation in corals with distinct depth distribution ranges across a shallow-mesophotic gradient (15-85 m)

    NASA Astrophysics Data System (ADS)

    Glasl, Bettina; Bongaerts, Pim; Elisabeth, Nathalie H.; Hoegh-Guldberg, Ove; Herndl, Gerhard J.; Frade, Pedro R.

    2017-06-01

    Mesophotic coral ecosystems (MCEs) are generally poorly studied, and our knowledge of lower MCEs (below 60 m depth) is largely limited to visual surveys. Here, we provide a first detailed assessment of the prokaryotic community associated with scleractinian corals over a depth gradient to the lower mesophotic realm (15-85 m). Specimens of three Caribbean coral species exhibiting differences in their depth distribution ranges ( Agaricia grahamae, Madracis pharensis and Stephanocoenia intersepta) were collected with a manned submersible on the island of Curaçao, and their prokaryotic communities assessed using 16S rRNA gene sequencing analysis. Corals with narrower depth distribution ranges (depth-specialists) were associated with a stable prokaryotic community, whereas corals with a broader niche range (depth-generalists) revealed a higher variability in their prokaryotic community. The observed depth effects match previously described patterns in Symbiodinium depth zonation. This highlights the contribution of structured microbial communities over depth to the coral's ability to colonize a broader depth range.

  2. Long range surface plasmon resonance with ultra-high penetration depth for self-referenced sensing and ultra-low detection limit using diverging beam approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isaacs, Sivan, E-mail: sivan.isaacs@gmail.com; Abdulhalim, Ibrahim; NEW CREATE Programme, School of Materials Science and Engineering, 1 CREATE Way, Research Wing, #02-06/08, Singapore 138602

    2015-05-11

    Using an insulator-metal-insulator structure with dielectric having refractive index (RI) larger than the analyte, long range surface plasmon (SP) resonance exhibiting ultra-high penetration depth is demonstrated for sensing applications of large bioentities at wavelengths in the visible range. Based on the diverging beam approach in Kretschmann-Raether configuration, one of the SP resonances is shown to shift in response to changes in the analyte RI while the other is fixed; thus, it can be used as a built in reference. The combination of the high sensitivity, high penetration depth and self-reference using the diverging beam approach in which a dark linemore » is detected of the high sensitivity, high penetration depth, self-reference, and the diverging beam approach in which a dark line is detected using large number of camera pixels with a smart algorithm for sub-pixel resolution, a sensor with ultra-low detection limit is demonstrated suitable for large bioentities.« less

  3. Design of high-performance adaptive objective lens with large optical depth scanning range for ultrabroad near infrared microscopic imaging

    PubMed Central

    Lan, Gongpu; Mauger, Thomas F.; Li, Guoqiang

    2015-01-01

    We report on the theory and design of adaptive objective lens for ultra broadband near infrared light imaging with large dynamic optical depth scanning range by using an embedded tunable lens, which can find wide applications in deep tissue biomedical imaging systems, such as confocal microscope, optical coherence tomography (OCT), two-photon microscopy, etc., both in vivo and ex vivo. This design is based on, but not limited to, a home-made prototype of liquid-filled membrane lens with a clear aperture of 8mm and the thickness of 2.55mm ~3.18mm. It is beneficial to have an adaptive objective lens which allows an extended depth scanning range larger than the focal length zoom range, since this will keep the magnification of the whole system, numerical aperture (NA), field of view (FOV), and resolution more consistent. To achieve this goal, a systematic theory is presented, for the first time to our acknowledgment, by inserting the varifocal lens in between a front and a back solid lens group. The designed objective has a compact size (10mm-diameter and 15mm-length), ultrabroad working bandwidth (760nm - 920nm), a large depth scanning range (7.36mm in air) — 1.533 times of focal length zoom range (4.8mm in air), and a FOV around 1mm × 1mm. Diffraction-limited performance can be achieved within this ultrabroad bandwidth through all the scanning depth (the resolution is 2.22 μm - 2.81 μm, calculated at the wavelength of 800nm with the NA of 0.214 - 0.171). The chromatic focal shift value is within the depth of focus (field). The chromatic difference in distortion is nearly zero and the maximum distortion is less than 0.05%. PMID:26417508

  4. Rapid change with depth in megabenthic structure-forming communities of the Makapu'u deep-sea coral bed

    NASA Astrophysics Data System (ADS)

    Long, Dustin J.; Baco, Amy R.

    2014-01-01

    Seamounts are largely unexplored undersea mountains rising abruptly from the ocean floor, which can support an increased abundance and diversity of organisms. Deep-sea corals are important benthic structure-formers on current-swept hard substrates in these habitats. While depth is emerging as a factor structuring the fauna of seamounts on a large spatial scale, most work addressing deep-sea coral and seamount community structure has not considered the role of small-scale variation in species distributions. Video from six ROV dives over a depth range of ~320-530 m were analyzed to assess the diversity and density of benthic megafaunal invertebrates across the Makapu'u deep-sea coral bed, offshore of Oahu, Hawaii. At the same time, the physical environment along the dive track was surveyed to relate biotic patterns with abiotic variables including depth, aspect, rugosity, substrate, slope and relief to test the factors structuring community assemblages. Despite the narrow range examined, depth was found to be the strongest structuring gradient, and six unique macrobenthic communities were found, with a 93% faunal dissimilarity over the depth surveyed. Relief, rugosity and slope were also factors in the final model. Alcyonacean octocorals were the dominant macrofaunal invertebrates at all but the deepest depth zone. The commercially harvested precious coral C. secundum was the dominant species at depths 370-470 m, with a distribution that is on average deeper than similar areas. This may be artificial due to the past harvesting of this species on the shallower portion of its range. Primnoid octocorals were the most abundant octocoral family overall. This work yields new insight on the spatial ecology of seamounts, pointing out that community changes can occur over narrow depth ranges and that communities can be structured by small-scale physiography.

  5. High resolution axicon-based endoscopic FD OCT imaging with a large depth range

    NASA Astrophysics Data System (ADS)

    Lee, Kye-Sung; Hurley, William; Deegan, John; Dean, Scott; Rolland, Jannick P.

    2010-02-01

    Endoscopic imaging in tubular structures, such as the tracheobronchial tree, could benefit from imaging optics with an extended depth of focus (DOF). This optics could accommodate for varying sizes of tubular structures across patients and along the tree within a single patient. In the paper, we demonstrate an extended DOF without sacrificing resolution showing rotational images in biological tubular samples with 2.5 μm axial resolution, 10 ìm lateral resolution, and > 4 mm depth range using a custom designed probe.

  6. Path perception during rotation: influence of instructions, depth range, and dot density

    NASA Technical Reports Server (NTRS)

    Li, Li; Warren, William H Jr

    2004-01-01

    How do observers perceive their direction of self-motion when traveling on a straight path while their eyes are rotating? Our previous findings suggest that information from retinal flow and extra-retinal information about eye movements are each sufficient to solve this problem for both perception and active control of self-motion [Vision Res. 40 (2000) 3873; Psych. Sci. 13 (2002) 485]. In this paper, using displays depicting translation with simulated eye rotation, we investigated how task variables such as instructions, depth range, and dot density influenced the visual system's reliance on retinal vs. extra-retinal information for path perception during rotation. We found that path errors were small when observers expected to travel on a straight path or with neutral instructions, but errors increased markedly when observers expected to travel on a curved path. Increasing depth range or dot density did not improve path judgments. We conclude that the expectation of the shape of an upcoming path can influence the interpretation of the ambiguous retinal flow. A large depth range and dense motion parallax are not essential for accurate path perception during rotation, but reference objects and a large field of view appear to improve path judgments.

  7. Large depth of focus dynamic micro integral imaging for optical see-through augmented reality display using a focus-tunable lens.

    PubMed

    Shen, Xin; Javidi, Bahram

    2018-03-01

    We have developed a three-dimensional (3D) dynamic integral-imaging (InIm)-system-based optical see-through augmented reality display with enhanced depth range of a 3D augmented image. A focus-tunable lens is adopted in the 3D display unit to relay the elemental images with various positions to the micro lens array. Based on resolution priority integral imaging, multiple lenslet image planes are generated to enhance the depth range of the 3D image. The depth range is further increased by utilizing both the real and virtual 3D imaging fields. The 3D reconstructed image and the real-world scene are overlaid using an optical see-through display for augmented reality. The proposed system can significantly enhance the depth range of a 3D reconstructed image with high image quality in the micro InIm unit. This approach provides enhanced functionality for augmented information and adjusts the vergence-accommodation conflict of a traditional augmented reality display.

  8. Anti-aliasing techniques in photon-counting depth imaging using GHz clock rates

    NASA Astrophysics Data System (ADS)

    Krichel, Nils J.; McCarthy, Aongus; Collins, Robert J.; Buller, Gerald S.

    2010-04-01

    Single-photon detection technologies in conjunction with low laser illumination powers allow for the eye-safe acquisition of time-of-flight range information on non-cooperative target surfaces. We previously presented a photon-counting depth imaging system designed for the rapid acquisition of three-dimensional target models by steering a single scanning pixel across the field angle of interest. To minimise the per-pixel dwelling times required to obtain sufficient photon statistics for accurate distance resolution, periodic illumination at multi- MHz repetition rates was applied. Modern time-correlated single-photon counting (TCSPC) hardware allowed for depth measurements with sub-mm precision. Resolving the absolute target range with a fast periodic signal is only possible at sufficiently short distances: if the round-trip time towards an object is extended beyond the timespan between two trigger pulses, the return signal cannot be assigned to an unambiguous range value. Whereas constructing a precise depth image based on relative results may still be possible, problems emerge for large or unknown pixel-by-pixel separations or in applications with a wide range of possible scene distances. We introduce a technique to avoid range ambiguity effects in time-of-flight depth imaging systems at high average pulse rates. A long pseudo-random bitstream is used to trigger the illuminating laser. A cyclic, fast-Fourier supported analysis algorithm is used to search for the pattern within return photon events. We demonstrate this approach at base clock rates of up to 2 GHz with varying pattern lengths, allowing for unambiguous distances of several kilometers. Scans at long stand-off distances and of scenes with large pixel-to-pixel range differences are presented. Numerical simulations are performed to investigate the relative merits of the technique.

  9. Subsurface Supergranular Vertical Flows as Measured Using Large Distance Separations in Time-Distance Helioseismology

    NASA Technical Reports Server (NTRS)

    Duvall, T. L., Jr.; Hanasoge, S. M.

    2012-01-01

    As large-distance rays (say, 10-24 deg) approach the solar surface approximately vertically, travel times measured from surface pairs for these large separations are mostly sensitive to vertical flows, at least for shallow flows within a few Mm of the solar surface. All previous analyses of supergranulation have used smaller separations and have been hampered by the difficulty of separating the horizontal and vertical flow components. We find that the large separation travel times associated with upergranulation cannot be studied using the standard phase-speed filters of time-distance helioseismology. These filters, whose use is based upon a refractive model of the perturbations,reduce the resultant travel time signal by at least an order of magnitude at some distances. More effective filters are derived. Modeling suggests that the center-annulus travel time difference in the separation range 10-24 deg is insensitive to the horizontally diverging flow from the centers of the supergranules and should lead to a constant signal from the vertical flow. Our measurement of this quantity for the average supergranule, 5.1 s, is constant over the distance range. This magnitude of signal cannot be caused by the level of upflow at cell centers seen at the photosphere of 10 m/s extended in depth. It requires the vertical flow to increase with depth. A simple Gaussian model of the increase with depth implies a peak upward flow of 240 m/s at a depth of 2.3 Mm and a peak horizontal flow of 700 m/s at a depth of 1.6 Mm.

  10. Electronic archival tags provide first glimpse of bathythermal habitat use by free-ranging adult lake sturgeon Acipenser fulvescens

    USGS Publications Warehouse

    Briggs, Andrew S.; Hondorp, Darryl W.; Quinlan, Henry R.; Boase, James C.; Mohr, Lloyd C.

    2016-01-01

    Information on lake sturgeon (Acipenser fulvescens) depth and thermal habitat use during non-spawning periods is unavailable due to the difficulty of observing lake sturgeon away from shallow water spawning sites. In 2002 and 2003, lake sturgeon captured in commercial trap nets near Sarnia, Ontario were implanted with archival tags and released back into southern Lake Huron. Five of the 40 tagged individuals were recaptured and were at large for 32, 57, 286, 301, and 880 days. Temperatures and depths recorded by archival tags ranged from 0 to 23.5 ºC and 0.1 to 42.4 m, respectively. For the three lake sturgeon that were at large for over 200 days, temperatures occupied emulated seasonal fluctuations. Two of these fish occupied deeper waters during winter than summer while the other occupied similar depths during non-spawning periods. This study provides important insight into depth and thermal habitat use of lake sturgeon throughout the calendar year along with exploring the feasibility of using archival tags to obtain important physical habitat attributes during non-spawning periods.

  11. Rank order scaling of pictorial depth

    PubMed Central

    van Doorn, Andrea; Koenderink, Jan; Wagemans, Johan

    2011-01-01

    We address the topic of “pictorial depth” in cases of pictures that are unlike photographic renderings. The most basic measure of “depth” is no doubt that of depth order. We establish depth order through the pairwise depth-comparison method, involving all pairs from a set of 49 fiducial points. The pictorial space for this study was evoked by a capriccio (imaginary landscape) by Francesco Guardi (1712–1793). In such a drawing pictorial space is suggested by the artist through a small set of conventional depth cues. As a result typical Western observers tend to agree largely in their visual awareness when looking at such art. We rank depths for locations that are not on a single surface and far apart in pictorial space. We find that observers resolve about 40 distinct depth layers and agree largely in this. From a previous experiment we have metrical data for the same observers. The rank correlations between the results are high. Perhaps surprisingly, we find no correlation between the number of distinct depth layers and the total metrical depth range. Thus, the relation between subjective magnitude and discrimination threshold fails to hold for pictorial depth. PMID:23145256

  12. Phonatory Effects of Type I Thyroplasty Implant Shape and Depth of Medialization in Unilateral Vocal Fold Paralysis

    PubMed Central

    Orestes, Michael I.; Neubauer, Juergen; Sofer, Elazar; Salinas, Jonathon; Chhetri, Dinesh K.

    2015-01-01

    Objectives/Hypothesis Medialization thyroplasty (MT) is commonly used to treat glottic insufficiency. In this study, we investigated the phonatory effects of MT implant medialization depth and medial surface shape. Methods Recurrent laryngeal nerve (RLN) and vagal paralysis were simulated in an in vivo canine. A type 1 MT was performed using a silicone elastomer implant with variable medialization depths and medial surface shapes: rectangular, V-shaped, divergent, and convergent. The effects on phonation onset flow/pressure relationships and acoustics were measured. Results Increasing depth of medialization led to improvements in fundamental frequency (F0) range and normalization of the slope of pressure/flow relationship toward baseline activation conditions. The effects of implant medial shape also depended on depth of medialization. Outcome measures were similar among the implants at smaller medialization depths. With large medialization depths and vagal paralysis conditions, the divergent implant maintained pressure/flow relationship closer to baseline. The vagal paralysis conditions also demonstrated decreased fundamental frequency range and worse flow/pressure relationship compared to RLN paralysis. Conclusions The depth and medial shape of a medialization laryngoplasty (ML) implant significantly affect both the F0 range and aerodynamic power required for phonation. These effects become more notable with increasing depth of medialization. The study also illustrates that ML is less effective in vagal paralysis compared to RLN paralysis. PMID:25046146

  13. Subsurface Supergranular Vertical Flows as Measured Using Large Distance Separations in Time-Distance Helioseismology

    NASA Technical Reports Server (NTRS)

    Duvall, Thomas L., Jr.; Hanasoge, S. M.

    2012-01-01

    As large-distance rays (say, 10 - 24deg) approach the solar surface approximately vertically, travel times measured from surface pairs for these large separations are mostly sensitive to vertical flows, at least for shallow flows within a few Mm of the solar surface. All previous analyses of supergranulation have used smaller separations and have been hampered by the difficulty of separating the horizontal and vertical flow components. We find that the large-separation travel times associated with supergranulation cannot be studied using the standard phase-speed filters of time-distance helioseismology. These filters, whose use is based upon a refractive model of the perturbations, reduce the resultant travel time signal by at least an order of magnitude at some distances. More effective filters are derived. Modeling suggests that the center-annulus travel-time difference [outward-going time minus inward-going time] in the separation range delta= 10 - 24deg is insensitive to the horizontally diverging flow from the centers of the supergranules and should lead to a constant signal from the vertical flow. Our measurement of this quantity, 5.1+/-0.1 seconds, is constant over the distance range. This magnitude of the signal cannot be caused by the level of upflow at cell centers seen at the photosphere of 10 ms(exp-1) extended in depth. It requires the vertical flow to increase with depth. A simple Gaussian model of the increase with depth implies a peak upward flow of 240 ms(exp-1) at a depth of 2.3 Mm and a peak horizontal flow of 700 ms(exp-1) at a depth of 1.6 Mm.

  14. Helioseismic Constraints on the Depth Dependence of Large-Scale Solar Convection

    NASA Astrophysics Data System (ADS)

    Woodard, Martin F.

    2017-08-01

    A recent helioseismic statistical waveform analysis of subsurface flow based on a 720-day time series of SOHO/MDI Medium-l spherical-harmonic coefficients has been extended to cover a greater range of subphotospheric depths. The latest analysis provides estimates of flow-dependent oscillation-mode coupling-strength coefficients b(s,t;n,l) over the range l = 30 to 150 of mode degree (angular wavenumber) for solar p-modes in the approximate frequency range 2 to 4 mHz. The range of penetration depths of this mode set covers most of the solar convection zone. The most recent analysis measures spherical harmonic (s,t) components of the flow velocity for odd s in the angular wavenumber range 1 to 19 for t not much smaller than s at a given s. The odd-s b(s,t;n,l) coefficients are interpreted as averages over depth of the depth-dependent amplitude of one spherical-harmonic (s,t) component of the toroidal part of the flow velocity field. The depth-dependent weighting function defining the average velocity is the fractional kinetic energy density in radius of modes of the (n,l) multiplet. The b coefficients have been converted to estimates of root velocity power as a function of l0 = nu0*l/nu(n,l), which is a measure of mode penetration depth. (nu(n,l) is mode frequency and nu0 is a reference frequency equal to 3 mHz.) A comparison of the observational results with simple convection models will be presented.

  15. Sonic depth sounder for laboratory and field use

    USGS Publications Warehouse

    Richardson, E.V.; Simons, Daryl B.; Posakony, G.J.

    1961-01-01

    The laboratory investigation of roughness in alluvial channels has led to the development of a special electronic device capable of mapping the streambed configuration under dynamic conditions. This electronic device employs an ultrasonic pulse-echo principle, similar to that of a fathometer, that utilizes microsecond techniques to give high accuracy in shallow depths. This instrument is known as the sonic depth sounder and was designed to cover a depth range of 0 to 4 feet with an accuracy of ? 0.5 percent. The sonic depth sounder is capable of operation at frequencies of 500, 1,000 and 2,000 kilocycles. The ultrasonic beam generated at the transducer is designed to give a minimum-diameter interrogating signal over the extended depth range. The information obtained from a sonic depth sounder is recorded on a strip-chart recorder. This permanent record allows an analysis to be made of the streambed configuration under different dynamic conditions. The model 1024 sonic depth sounder was designed principally as a research instrument to meet laboratory needs. As such, it is somewhat limited in its application as a field instrument on large streams and rivers. The principles employed in this instrument, however, have many potentials for field applications such as the indirect measurement of bed load when the bed roughness is ripples and (or) dunes, depth measurement, determination of bed configuration, and determination of depth of scour around bridge piers and abutments. For field application a modification of the present system into a battery-operated lightweight instrument designed to operate at a depth range of 0 to 30 feet is possible and desirable.

  16. Exploring proximity effects and large depth of field in helium ion beam lithography: large-area dense patterns and tilted surface exposure.

    PubMed

    Flatabø, Ranveig; Agarwal, Akshay; Hobbs, Richard; Greve, Martin M; Holst, Bodil; Berggren, Karl K

    2018-07-06

    Helium ion beam lithography (HIL) is an emerging nanofabrication technique. It benefits from a reduced interaction volume compared to that of an electron beam of similar energy, and hence reduced long-range scattering (proximity effect), higher resist sensitivity and potentially higher resolution. Furthermore, the small angular spread of the helium ion beam gives rise to a large depth of field. This should enable patterning on tilted and curved surfaces without the need of any additional adjustments, such as laser-auto focus. So far, most work on HIL has been focused on exploiting the reduced proximity effect to reach single-digit nanometer resolution, and has thus been concentrated on single-pixel exposures over small areas. Here we explore two new areas of application. Firstly, we investigate the proximity effect in large-area exposures and demonstrate HIL's capabilities in fabricating precise high-density gratings on large planar surfaces (100 μm × 100 μm, with pitch down to 35 nm) using an area dose for exposure. Secondly, we exploit the large depth of field by making the first HIL patterns on tilted surfaces (sample stage tilted 45°). We demonstrate a depth of field greater than 100 μm for a resolution of about 20 nm.

  17. Depth inpainting by tensor voting.

    PubMed

    Kulkarni, Mandar; Rajagopalan, Ambasamudram N

    2013-06-01

    Depth maps captured by range scanning devices or by using optical cameras often suffer from missing regions due to occlusions, reflectivity, limited scanning area, sensor imperfections, etc. In this paper, we propose a fast and reliable algorithm for depth map inpainting using the tensor voting (TV) framework. For less complex missing regions, local edge and depth information is utilized for synthesizing missing values. The depth variations are modeled by local planes using 3D TV, and missing values are estimated using plane equations. For large and complex missing regions, we collect and evaluate depth estimates from self-similar (training) datasets. We align the depth maps of the training set with the target (defective) depth map and evaluate the goodness of depth estimates among candidate values using 3D TV. We demonstrate the effectiveness of the proposed approaches on real as well as synthetic data.

  18. Crustal magmatism and lithospheric geothermal state of western North America and their implications for a magnetic mantle

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Li, Chun-Feng

    2015-01-01

    The western North American lithosphere experienced extensive magmatism and large-scale crustal deformation due to the interactions between the Farallon and North American plates. To further understand such subduction-related dynamic processes, we characterize crustal structure, magmatism and lithospheric thermal state of western North America based on various data processing and interpretation of gravimetric, magnetic and surface heat flow data. A fractal exponent of 2.5 for the 3D magnetization model is used in the Curie-point depth inversion. Curie depths are mostly small to the north of the Yellowstone-Snake River Plain hotspot track, including the Steens Mountain and McDermitt caldera that are the incipient eruption locations of the Columbia River Basalts and Yellowstone hotspot track. To the south of the Yellowstone hotspot track, larger Curie depths are found in the Great Basin. The distinct Curie depths across the Yellowstone-Snake River Plain hotspot track can be attributed to subduction-related magmatism induced by edge flow around fractured slabs. Curie depths confirm that the Great Valley ophiolite is underlain by the Sierra Nevada batholith, which can extend further west to the California Coast Range. The Curie depths, thermal lithospheric thickness and surface heat flow together define the western edge of the North American craton near the Roberts Mountains Thrust (RMT). To the east of the RMT, large Curie depths, large thermal lithospheric thickness, and low thermal gradient are found. From the differences between Curie-point and Moho depth, we argue that the uppermost mantle in the oceanic region is serpentinized. The low temperature gradients beneath the eastern Great Basin, Montana and Wyoming permit magnetic uppermost mantle, either by serpentinization/metasomatism or in-situ magnetization, which can contribute to long-wavelength and low-amplitude magnetic anomalies and thereby large Curie-point depths.

  19. Direct-path acoustic ranging across the Japan Trench axis, Adjacent to the Large Shallow Thrusting in the 2011 Tohoku-Oki earthquake

    NASA Astrophysics Data System (ADS)

    Osada, Y.; Kido, M.; Ito, Y.; Iinuma, T.; Fujimoto, H.; Hino, R.

    2014-12-01

    Seafloor geodetic data, i.e. GPS/acoustic measurement and continuous seafloor pressure monitoring, brought important evidences showing that the 2011 Tohoku-oki earthquake (Mw 9.0) caused huge (> 50 m) coseismic slip near the Japan Trench. The postseismic behavior of the large slipped area is required to clarify to understand why large amount seismic slip could occur there. We started making direct-path acoustic ranging across the trench axis to reveal the convergence rate between the subducting Pacific and overriding continental plates. We expect the change of the baseline length across the trench axis, the plate boundary, reflects the slip rate at the shallow megathrust, which is difficult to estimate only from other geodetic observations largely affected by intraplate deformation caused by the postseismic viscoelastic relaxation process.  To this end, we developed an ultra-deep seafloor acoustic ranging system. Our previous ranging systems have been designed to measure baseline length ~ 1 km and to be deployed up to 7,000 m water-depth (Osada et al., 2008, 2012). In order to realize the measurement across the Japan Trench, we improved this system to enhance range of acoustic ranging as well as operational depth of instruments. The improved system was designed to allow acoustic ranging up to 3 km and to be durable under the high-pressure equivalent to water depth of 9,000 m. In May 2013, we carried out a test deployment of the new ranging system. The system is composed of three seafloor instruments equipped with precision transponder (PXPs). Two of the PXPs were set on the landward slope of the Japan Trench, where large coseismic slip happened in 2011. Another PXP was deployed on the seaward side of the trench so that the baseline change associated with the slip on the plate boundary fault, if any, can be detected. Continuous records of baseline lengths were successfully obtained for four months. The repeatability of the distance measurements was about 20 mm for each of the two baselines. Although the duration of the observation was not long enough to estimate precise rate of baseline length changes, it is unlikely that the shortening rates of the baseline lengths exceed the rate of plate convergence (~ 8 cm/a). The results do not support occurrence of evident afterslip along the shallow plate boundary fault in 2013.

  20. Low-frequency source parameters of twelve large earthquakes. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Harabaglia, Paolo

    1993-01-01

    A global survey of the low-frequency (1-21 mHz) source characteristics of large events are studied. We are particularly interested in events unusually enriched in low-frequency and in events with a short-term precursor. We model the source time function of 12 large earthquakes using teleseismic data at low frequency. For each event we retrieve the source amplitude spectrum in the frequency range between 1 and 21 mHz with the Silver and Jordan method and the phase-shift spectrum in the frequency range between 1 and 11 mHz with the Riedesel and Jordan method. We then model the source time function by fitting the two spectra. Two of these events, the 1980 Irpinia, Italy, and the 1983 Akita-Oki, Japan, are shallow-depth complex events that took place on multiple faults. In both cases the source time function has a length of about 100 seconds. By comparison Westaway and Jackson find 45 seconds for the Irpinia event and Houston and Kanamori about 50 seconds for the Akita-Oki earthquake. The three deep events and four of the seven intermediate-depth events are fast rupturing earthquakes. A single pulse is sufficient to model the source spectra in the frequency range of our interest. Two other intermediate-depth events have slower rupturing processes, characterized by a continuous energy release lasting for about 40 seconds. The last event is the intermediate-depth 1983 Peru-Ecuador earthquake. It was first recognized as a precursive event by Jordan. We model it with a smooth rupturing process starting about 2 minutes before the high frequency origin time superimposed to an impulsive source.

  1. On the accuracy potential of focused plenoptic camera range determination in long distance operation

    NASA Astrophysics Data System (ADS)

    Sardemann, Hannes; Maas, Hans-Gerd

    2016-04-01

    Plenoptic cameras have found increasing interest in optical 3D measurement techniques in recent years. While their basic principle is 100 years old, the development in digital photography, micro-lens fabrication technology and computer hardware has boosted the development and lead to several commercially available ready-to-use cameras. Beyond their popular option of a posteriori image focusing or total focus image generation, their basic ability of generating 3D information from single camera imagery depicts a very beneficial option for certain applications. The paper will first present some fundamentals on the design and history of plenoptic cameras and will describe depth determination from plenoptic camera image data. It will then present an analysis of the depth determination accuracy potential of plenoptic cameras. While most research on plenoptic camera accuracy so far has focused on close range applications, we will focus on mid and long ranges of up to 100 m. This range is especially relevant, if plenoptic cameras are discussed as potential mono-sensorial range imaging devices in (semi-)autonomous cars or in mobile robotics. The results show the expected deterioration of depth measurement accuracy with depth. At depths of 30-100 m, which may be considered typical in autonomous driving, depth errors in the order of 3% (with peaks up to 10-13 m) were obtained from processing small point clusters on an imaged target. Outliers much higher than these values were observed in single point analysis, stressing the necessity of spatial or spatio-temporal filtering of the plenoptic camera depth measurements. Despite these obviously large errors, a plenoptic camera may nevertheless be considered a valid option for the application fields of real-time robotics like autonomous driving or unmanned aerial and underwater vehicles, where the accuracy requirements decrease with distance.

  2. Three-dimensional anterior segment imaging in patients with type 1 Boston Keratoprosthesis with switchable full depth range swept source optical coherence tomography

    PubMed Central

    Poddar, Raju; Cortés, Dennis E.; Werner, John S.; Mannis, Mark J.

    2013-01-01

    Abstract. A high-speed (100 kHz A-scans/s) complex conjugate resolved 1 μm swept source optical coherence tomography (SS-OCT) system using coherence revival of the light source is suitable for dense three-dimensional (3-D) imaging of the anterior segment. The short acquisition time helps to minimize the influence of motion artifacts. The extended depth range of the SS-OCT system allows topographic analysis of clinically relevant images of the entire depth of the anterior segment of the eye. Patients with the type 1 Boston Keratoprosthesis (KPro) require evaluation of the full anterior segment depth. Current commercially available OCT systems are not suitable for this application due to limited acquisition speed, resolution, and axial imaging range. Moreover, most commonly used research grade and some clinical OCT systems implement a commercially available SS (Axsun) that offers only 3.7 mm imaging range (in air) in its standard configuration. We describe implementation of a common swept laser with built-in k-clock to allow phase stable imaging in both low range and high range, 3.7 and 11.5 mm in air, respectively, without the need to build an external MZI k-clock. As a result, 3-D morphology of the KPro position with respect to the surrounding tissue could be investigated in vivo both at high resolution and with large depth range to achieve noninvasive and precise evaluation of success of the surgical procedure. PMID:23912759

  3. A magnetic and gravity investigation of the Liberia Basin, West Africa

    NASA Astrophysics Data System (ADS)

    Morris Cooper, S.; Liu, Tianyou

    2011-02-01

    Gravity and magnetic analysis provide an opportunity to deduce and understand to a large extent the stratigraphy, structure and shape of the substructure. Euler deconvolution is a useful tool for providing estimates of the localities and depth of magnetic and gravity sources. Wavelet analysis is an interesting tool for filtering and improving geophysical data. The application of these two methods to gravity and magnetic data of the Liberia Basin enable the definition of the geometry and depth of the subsurface geologic structures. The study reveals the basin is sub-divided and the depth to basement of the basin structure ranges from about 5 km at its North West end to 10 km at its broadest section eastward. Magnetic data analysis indicates shallow intrusives ranging from a depth of 0.09 km to 0.42 km with an average depth of 0.25 km along the margin. Other intrusives can be found at average depths of 0.6 km and 1.7 km respectively within the confines of the basin. An analysis of the gravity data indicated deep faults intersecting the transform zone.

  4. 33 CFR 207.640 - Sacramento Deep Water Ship Channel Barge Lock and Approach Canals; use, administration, and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION... and the bottom of the lock chamber are −13.0 feet elevation, CofE datum, and usually provides a depth of water ranging from 14.0 feet at LLW to 19.4 feet at HHW, with greater depths during large floods...

  5. Stereoscopic perception of real depths at large distances.

    PubMed

    Palmisano, Stephen; Gillam, Barbara; Govan, Donovan G; Allison, Robert S; Harris, Julie M

    2010-06-01

    There has been no direct examination of stereoscopic depth perception at very large observation distances and depths. We measured perceptions of depth magnitude at distances where it is frequently reported without evidence that stereopsis is non-functional. We adapted methods pioneered at distances up to 9 m by R. S. Allison, B. J. Gillam, and E. Vecellio (2009) for use in a 381-m-long railway tunnel. Pairs of Light Emitting Diode (LED) targets were presented either in complete darkness or with the environment lit as far as the nearest LED (the observation distance). We found that binocular, but not monocular, estimates of the depth between pairs of LEDs increased with their physical depths up to the maximum depth separation tested (248 m). Binocular estimates of depth were much larger with a lit foreground than in darkness and increased as the observation distance increased from 20 to 40 m, indicating that binocular disparity can be scaled for much larger distances than previously realized. Since these observation distances were well beyond the range of vertical disparity and oculomotor cues, this scaling must rely on perspective cues. We also ran control experiments at smaller distances, which showed that estimates of depth and distance correlate poorly and that our metric estimation method gives similar results to a comparison method under the same conditions.

  6. Seismic scatterers in the mid-lower mantle beneath Tonga-Fiji

    NASA Astrophysics Data System (ADS)

    Kaneshima, Satoshi

    2018-01-01

    We analyze deep and intermediate-depth earthquakes at the Tonga-Fiji region in order to reveal the distribution of scattering objects in the mid-lower mantle. By array processing waveform data recorded at regional seismograph stations in the US, Alaska, and Japan, we investigate S-to-P scattering waves in the P coda, which arise from kilometer-scale chemically distinct objects in the mid-lower mantle beneath Tonga-Fiji. With ten scatterers previously reported by the author included, twenty-three mid-lower mantle scatterers have been detected below 900 km depth, while scatterers deeper than 1900 km have not been identified. Strong mid-lower mantle S-to-P scattering most frequently occurs at the scatterers located within a depth range between 1400 km and 1600 km. The number of scatterers decreases below 1600 km depth, and the deeper objects tend to be weaker. The scatterer distribution may reflect diminishing elastic anomalies of basaltic rocks with depth relative to the surrounding mantle rocks, which mineral physics has predicted to occur. The predominant occurrence of strong S-to-P scattering waves within a narrow depth range may reflect significant reduction of rigidity due to the ferro-elastic transformation of stishovite in basaltic rocks. Very large signals associated with mid-mantle scatterers are observed only for a small portion of the entire earthquake-array pairs. Such infrequent observations of large scattering signals, combined with quite large event-to-event differences in the scattering intensity for each scatterer, suggest both that the strong arrivals approximately represent ray theoretical S-to-P converted waves at objects with a plane geometry. The plane portions of the strong scatterers may often dip steeply, with the size exceeding 100 km. For a few strong scatterers, the range of receivers showing clear scattered waves varies substantially from earthquake-array pair to pair. Some of the scatterers are also observed at different arrays that have significantly different directions of incident waves to the scatterers. Furthermore, weak but coherent P-to-P scattered waves as well as S-to-P waves are observed for a few of the scatterers. These observations indicate that the locally plane scatterers also possess substantial topography.

  7. Optimizing the depth of field for short object distance of capsule endoscope

    NASA Astrophysics Data System (ADS)

    Ou-Yang, Mang; Huang, Shih-Wei; Su, Wei-Kai; Feng, Han-Ming; Chen, Zhao-Yu; Wu, Hsien-Ming; Kuo, Yi-Ting

    2008-02-01

    Research of depth of field (DOF) for capsule endoscope is important for the reason that the shapes of the object plane of the intestine or the stomach are curve surfaces of "<" shape or "c" shape. The depth of field is dependent on following factors: focal length, circle of confusion, aperture, and subject distance. The first three factors are improved for wide view angle in prior paper and determined by the chosen sensor, and it is not going against depth of field. Last factor, subject distance, is the more freedom to enlarge the depth of field. However, depth of field is the range between near depth of field limit and far depth of field limit that are acceptably sharp. The fraction of the depth of field behind the focus is always large then the one in front of the focus distance. The depth of field does change with object distance, and it is increasing as object distance is increasing. But the object distance of the design for capsule endoscope is short. The object distance setting in front of the dorm is more efficient to use the depth of field than the one setting at the dome top. Therefore there is an appropriate design of object distance to make depth of field be used efficiently to inspect curve surface of intestine and stomach. The more vision information of inspect digestive system is get and is compared easily to diagnose patients' condition under wide and efficient range of depth of field.

  8. High-resolution depth profiling using a range-gated CMOS SPAD quanta image sensor.

    PubMed

    Ren, Ximing; Connolly, Peter W R; Halimi, Abderrahim; Altmann, Yoann; McLaughlin, Stephen; Gyongy, Istvan; Henderson, Robert K; Buller, Gerald S

    2018-03-05

    A CMOS single-photon avalanche diode (SPAD) quanta image sensor is used to reconstruct depth and intensity profiles when operating in a range-gated mode used in conjunction with pulsed laser illumination. By designing the CMOS SPAD array to acquire photons within a pre-determined temporal gate, the need for timing circuitry was avoided and it was therefore possible to have an enhanced fill factor (61% in this case) and a frame rate (100,000 frames per second) that is more difficult to achieve in a SPAD array which uses time-correlated single-photon counting. When coupled with appropriate image reconstruction algorithms, millimeter resolution depth profiles were achieved by iterating through a sequence of temporal delay steps in synchronization with laser illumination pulses. For photon data with high signal-to-noise ratios, depth images with millimeter scale depth uncertainty can be estimated using a standard cross-correlation approach. To enhance the estimation of depth and intensity images in the sparse photon regime, we used a bespoke clustering-based image restoration strategy, taking into account the binomial statistics of the photon data and non-local spatial correlations within the scene. For sparse photon data with total exposure times of 75 ms or less, the bespoke algorithm can reconstruct depth images with millimeter scale depth uncertainty at a stand-off distance of approximately 2 meters. We demonstrate a new approach to single-photon depth and intensity profiling using different target scenes, taking full advantage of the high fill-factor, high frame rate and large array format of this range-gated CMOS SPAD array.

  9. Tank Investigation of a Powered Dynamic Model of a Large Long-Range Flying Boat

    NASA Technical Reports Server (NTRS)

    Parkinson, John B; Olson, Roland E; Harr, Marvin I

    1947-01-01

    Principles for designing the optimum hull for a large long-range flying boat to meet the requirements of seaworthiness, minimum drag, and ability to take off and land at all operational gross loads were incorporated in a 1/12-size powered dynamic model of a four-engine transport flying boat having a design gross load of 165,000 pounds. These design principles included the selection of a moderate beam loading, ample forebody length, sufficient depth of step, and close adherence to the form of a streamline body. The aerodynamic and hydrodynamic characteristics of the model were investigated in Langley tank no. 1. Tests were made to determine the minimum allowable depth of step for adequate landing stability, the suitability of the fore-and-aft location of the step, the take-off performance, the spray characteristics, and the effects of simple spray-control devices. The application of the design criterions used and test results should be useful in the preliminary design of similar large flying boats.

  10. Anomalies of rupture velocity in deep earthquakes

    NASA Astrophysics Data System (ADS)

    Suzuki, M.; Yagi, Y.

    2010-12-01

    Explaining deep seismicity is a long-standing challenge in earth science. Deeper than 300 km, the occurrence rate of earthquakes with depth remains at a low level until ~530 km depth, then rises until ~600 km, finally terminate near 700 km. Given the difficulty of estimating fracture properties and observing the stress field in the mantle transition zone (410-660 km), the seismic source processes of deep earthquakes are the most important information for understanding the distribution of deep seismicity. However, in a compilation of seismic source models of deep earthquakes, the source parameters for individual deep earthquakes are quite varied [Frohlich, 2006]. Rupture velocities for deep earthquakes estimated using seismic waveforms range from 0.3 to 0.9Vs, where Vs is the shear wave velocity, a considerably wider range than the velocities for shallow earthquakes. The uncertainty of seismic source models prevents us from determining the main characteristics of the rupture process and understanding the physical mechanisms of deep earthquakes. Recently, the back projection method has been used to derive a detailed and stable seismic source image from dense seismic network observations [e.g., Ishii et al., 2005; Walker et al., 2005]. Using this method, we can obtain an image of the seismic source process from the observed data without a priori constraints or discarding parameters. We applied the back projection method to teleseismic P-waveforms of 24 large, deep earthquakes (moment magnitude Mw ≥ 7.0, depth ≥ 300 km) recorded since 1994 by the Data Management Center of the Incorporated Research Institutions for Seismology (IRIS-DMC) and reported in the U.S. Geological Survey (USGS) catalog, and constructed seismic source models of deep earthquakes. By imaging the seismic rupture process for a set of recent deep earthquakes, we found that the rupture velocities are less than about 0.6Vs except in the depth range of 530 to 600 km. This is consistent with the depth variation of deep seismicity: it peaks between about 530 and 600 km, where the fast rupture earthquakes (greater than 0.7Vs) are observed. Similarly, aftershock productivity is particularly low from 300 to 550 km depth and increases markedly at depth greater than 550 km [e.g., Persh and Houston, 2004]. We propose that large fracture surface energy (Gc) value for deep earthquakes generally prevent the acceleration of dynamic rupture propagation and generation of earthquakes between 300 and 700 km depth, whereas small Gc value in the exceptional depth range promote dynamic rupture propagation and explain the seismicity peak near 600 km.

  11. Range-Depth Tracking of Sounds from a Single-Point Deployment by Exploiting the Deep-Water Sound Speed Minimum

    DTIC Science & Technology

    2014-09-30

    beaked whales , and shallow-diving mysticetes, with a focus on humpback whales . Report Documentation Page Form ApprovedOMB No. 0704-0188 Public...obtained via large-aperture vertical array techniques (for humpback whales ). APPROACH The experimental approach used by this project uses data...m depth. The motivation behind these multiple deployments is that multiple techniques can be used to estimate humpback whale call position, and

  12. Creating unconventional geometric beams with large depth of field using double freeform-surface optics.

    PubMed

    Feng, Zexin; Froese, Brittany D; Huang, Chih-Yu; Ma, Donglin; Liang, Rongguang

    2015-07-10

    We consider here creation of an unconventional flattop beam with a large depth of field by employing double freeform optical surfaces. The output beam is designed with continuous variations from the flattop to almost zero near the edges to resist the influence of diffraction on its propagation. We solve this challenging problem by naturally incorporating an optimal transport map computation scheme for unconventional boundary conditions with a simultaneous point-by-point double surface construction procedure. We demonstrate experimentally the generation of a long-range propagated triangular beam through a plano-freeform lens pair fabricated by a diamond-tuning machine.

  13. Robust calibration of an optical-lattice depth based on a phase shift

    NASA Astrophysics Data System (ADS)

    Cabrera-Gutiérrez, C.; Michon, E.; Brunaud, V.; Kawalec, T.; Fortun, A.; Arnal, M.; Billy, J.; Guéry-Odelin, D.

    2018-04-01

    We report on a method to calibrate the depth of an optical lattice. It consists of triggering the intrasite dipole mode of the cloud by a sudden phase shift. The corresponding oscillatory motion is directly related to the interband frequencies on a large range of lattice depths. Remarkably, for a moderate displacement, a single frequency dominates the oscillation of the zeroth and first orders of the interference pattern observed after a sufficiently long time of flight. The method is robust against atom-atom interactions and the exact value of the extra weak external confinement superimposed to the optical lattice.

  14. [Spatial variation of soil carbon and stable isotopes in the southern margin desert of Junggar Basin, China].

    PubMed

    Wang, Na; Xu, Wen Qiang; Xu, Hua Jun; Feng, Yi Xing; Li, Chao Fan

    2017-07-18

    The southern margin desert of Junggar Basin in the central arid region of Asia was selec-ted as the study area. To gain insight into the distribution characteristic of stable carbon isotope and the relationship between the change of soil carbon and the distance to oasis of soil organic carbon (SOC) and soil inorganic carbon (SIC), three belt transects were set according to the distance between the desert and the oasis in edge, middle and hinterland of the desert respectively, and collected the soil profile samples with depth of 2 m. The results indicated that the SOC content reduced with the soil depth, and the variation with the distance to oasis was the edge> the middle> the hinterland. The δ 13 C value of SOC varied in the range of -21.92‰ to -17.41‰, and decreased with the depth; the range in the middle and hinterland was -25.20‰ to -19.30‰, and increased then declined with the depth. Therefore, we could infer that the C3 plants played a dominant role in the central of desert, and had experienced the succession from C3 plants to C4 plants. The average content of SIC was 38.98 g·kg -1 in the edge of desert, which was about 6.01 folds as large as the content in the hinterland. This indicated that a large number of SIC with 0-2 m depth were clustered in the edge of the desert. The δ 13 C value of SIC increased first then decreased with the soil depth, and enriched in the bottom layer, which was mainly affected by the original carbonate content and soil carbon dioxide.

  15. A method for rapid 3D scanning and replication of large paleontological specimens

    PubMed Central

    Das, Anshuman J.; Murmann, Denise C.; Cohrn, Kenneth; Raskar, Ramesh

    2017-01-01

    We demonstrate a fast and cost-effective technique to perform three dimensional (3D) scanning and replication of large paleontological specimens, in this case the entire skull of a Tyrannosaurus rex (T.rex) with a volume in the range of 2 m3. The technique involves time-of-flight (TOF) depth sensing using the Kinect scanning module commonly used in gesture recognition in gaming. Raw data from the Kinect sensor was captured using open source software and the reconstruction was done rapidly making this a viable method that can be adopted by museums and researchers in paleontology. The current method has the advantage of being low-cost as compared to industrial scanners and photogrammetric methods but also of accurately scanning a substantial volume range which is well suited for large specimens. The depth resolution from the Kinect sensor was measured to be around 0.6 mm which is ideal for scanning large specimens with reasonable structural detail. We demonstrate the efficacy of this method on the skull of FMNH PR 2081, also known as SUE, a near complete T.rex at the Field Museum of Natural History. PMID:28678817

  16. A method for rapid 3D scanning and replication of large paleontological specimens.

    PubMed

    Das, Anshuman J; Murmann, Denise C; Cohrn, Kenneth; Raskar, Ramesh

    2017-01-01

    We demonstrate a fast and cost-effective technique to perform three dimensional (3D) scanning and replication of large paleontological specimens, in this case the entire skull of a Tyrannosaurus rex (T.rex) with a volume in the range of 2 m3. The technique involves time-of-flight (TOF) depth sensing using the Kinect scanning module commonly used in gesture recognition in gaming. Raw data from the Kinect sensor was captured using open source software and the reconstruction was done rapidly making this a viable method that can be adopted by museums and researchers in paleontology. The current method has the advantage of being low-cost as compared to industrial scanners and photogrammetric methods but also of accurately scanning a substantial volume range which is well suited for large specimens. The depth resolution from the Kinect sensor was measured to be around 0.6 mm which is ideal for scanning large specimens with reasonable structural detail. We demonstrate the efficacy of this method on the skull of FMNH PR 2081, also known as SUE, a near complete T.rex at the Field Museum of Natural History.

  17. Large pore mesoporous silica nanomaterials for application in delivery of biomolecules

    NASA Astrophysics Data System (ADS)

    Knežević, Nikola Ž.; Durand, Jean-Olivier

    2015-01-01

    Various approaches for the synthesis of mesoporous silicate nanoparticles (MSN) with large pore (LP) diameters (in the range of 3-50 nm) are reviewed in this article. The work also covers the construction of magnetic analogues of large pore-mesoporous silica nanoparticles (LPMMSN) and their biomedical applications. The constructed materials exhibit vast potential for application in the loading and delivery of large drug molecules and biomolecules. Literature reports on the application of LPMSN and LPMMSN materials for the adsorption and delivery of proteins, enzymes, antibodies, and nucleic acids are covered in depth, which exemplify their highly potent characteristics for use in drug and biomolecule delivery to diseased tissues.Various approaches for the synthesis of mesoporous silicate nanoparticles (MSN) with large pore (LP) diameters (in the range of 3-50 nm) are reviewed in this article. The work also covers the construction of magnetic analogues of large pore-mesoporous silica nanoparticles (LPMMSN) and their biomedical applications. The constructed materials exhibit vast potential for application in the loading and delivery of large drug molecules and biomolecules. Literature reports on the application of LPMSN and LPMMSN materials for the adsorption and delivery of proteins, enzymes, antibodies, and nucleic acids are covered in depth, which exemplify their highly potent characteristics for use in drug and biomolecule delivery to diseased tissues. Dedicated to Professor Jeffrey I. Zink on the occasion of his 70th birthday.

  18. The Influence of Surface Gravity Waves on Marine Current Turbine Performance

    NASA Astrophysics Data System (ADS)

    Lust, E.; Luznik, L.; Flack, K. A.; Walker, J.; Van Benthem, M.

    2013-12-01

    Surface gravity waves can significantly impact operating conditions for a marine current turbine, imparting unsteady velocities several orders of magnitude larger than the ambient turbulence. The influence of surface waves on the performance characteristics of a two-bladed horizontal axis marine current turbine was investigated experimentally in a large towing tank facility at the United States Naval Academy. The turbine model had a 0.8 m diameter (D) rotor with a NACA 63-618 cross section, which is Reynolds number independent with respect to lift coefficient in the operating range of Rec ≈ 4 x 105. The torque, thrust and rotational speed were measured at a range of tip speed ratios (TSR) from 5 < TSR < 11. Tests were performed at two rotor depths (1.3D and 2.25D) with and without waves. The average turbine performance characteristics were largely unchanged by depth or the presence of waves. However, tests with waves indicate large variations in thrust, rotational speed, and torque occurred with the passage of the wave. These results demonstrate the impact of surface gravity waves on power production and structural loading and suggest that turbines should be positioned vertically within the water column at a depth which maximizes power output while minimizing material fatigue. Keywords-- marine current turbine, tidal turbine, towing-tank experiments, surface gravity waves, fatigue loading, phase averaging

  19. Fish depth distributions in the Lower Mississippi River

    USGS Publications Warehouse

    Killgore, K. J.; Miranda, Leandro E.

    2014-01-01

    A substantial body of literature exists about depth distribution of fish in oceans, lakes and reservoirs, but less is known about fish depth distribution in large rivers. Most of the emphasis on fish distributions in rivers has focused on longitudinal and latitudinal spatial distributions. Knowledge on depth distribution is necessary to understand species and community habitat needs. Considering this void, our goal was to identify patterns in fish benthic distribution along depth gradients in the Lower Mississippi River. Fish were collected over 14 years in depths down to 27 m. Fish exhibited non-random depth distributions that varied seasonally and according to species. Species richness was highest in shallow water, with about 50% of the 62 species detected no longer collected in water deeper than 8 m and about 75% no longer collected in water deeper than 12 m. Although richness was highest in shallow water, most species were not restricted to shallow water. Rather, most species used a wide range of depths. A weak depth zonation occurred, not as strong as that reported for deep oceans and lakes. Larger fish tended to occur in deeper water during the high-water period of an annual cycle, but no correlation was evident during the low-water period. The advent of landscape ecology has guided river research to search for spatial patterns along the length of the river and associated floodplains. Our results suggest that fish assemblages in large rivers are also structured vertically. 

  20. Arsenic-related water quality with depth and water quality of well-head samples from production wells, Oklahoma, 2008

    USGS Publications Warehouse

    Becker, Carol J.; Smith, S. Jerrod; Greer, James R.; Smith, Kevin A.

    2010-01-01

    The U.S. Geological Survey well profiler was used to describe arsenic-related water quality with well depth and identify zones yielding water with high arsenic concentrations in two production wells in central and western Oklahoma that yield water from the Permian-aged Garber-Wellington and Rush Springs aquifers, respectively. In addition, well-head samples were collected from 12 production wells yielding water with historically large concentrations of arsenic (greater than 10 micrograms per liter) from the Garber-Wellington aquifer, Rush Springs aquifer, and two minor aquifers: the Arbuckle-Timbered Hills aquifer in southern Oklahoma and a Permian-aged undefined aquifer in north-central Oklahoma. Three depth-dependent samples from a production well in the Rush Springs aquifer had similar water-quality characteristics to the well-head sample and did not show any substantial changes with depth. However, slightly larger arsenic concentrations in the two deepest depth-dependent samples indicate the zones yielding noncompliant arsenic concentrations are below the shallowest sampled depth. Five depth-dependent samples from a production well in the Garber-Wellington aquifer showed increases in arsenic concentrations with depth. Well-bore travel-time information and water-quality data from depth-dependent and well-head samples showed that most arsenic contaminated water (about 63 percent) was entering the borehole from perforations adjacent to or below the shroud that overlaid the pump. Arsenic concentrations ranged from 10.4 to 124 micrograms per liter in 11 of the 12 production wells sampled at the well head, exceeding the maximum contaminant level of 10 micrograms per liter for drinking water. pH values of the 12 well-head samples ranged from 6.9 to 9. Seven production wells in the Garber-Wellington aquifer had the largest arsenic concentrations ranging from 18.5 to 124 micrograms per liter. Large arsenic concentrations (10.4-18.5) and near neutral to slightly alkaline pH values (6.9-7.4) were detected in samples from one well in the Garber-Wellington aquifer, three production wells in the Rush Springs aquifer, and one well in an undefined Permian-aged aquifer. All well-head samples were oxic and arsenate was the only species of arsenic in water from 10 of the 12 production wells sampled. Arsenite was measured above the laboratory reporting level in water from a production well in the Garber-Wellington aquifer and was the only arsenic species measured in water from the Arbuckle-Timbered Hills aquifer. Fluoride and uranium were the only trace elements, other than arsenic, that exceeded the maximum contaminant level for drinking water in well-head samples collected for the study. Uranium concentrations in four production wells in the Garber-Wellington aquifer ranged from 30.2 to 99 micrograms per liter exceeding the maximum contaminant level of 30 micrograms per liter for drinking water. Water from these four wells also had the largest arsenic concentrations measured in the study ranging from 30 to 124 micrograms

  1. The multifocus plenoptic camera

    NASA Astrophysics Data System (ADS)

    Georgiev, Todor; Lumsdaine, Andrew

    2012-01-01

    The focused plenoptic camera is based on the Lippmann sensor: an array of microlenses focused on the pixels of a conventional image sensor. This device samples the radiance, or plenoptic function, as an array of cameras with large depth of field, focused at a certain plane in front of the microlenses. For the purpose of digital refocusing (which is one of the important applications) the depth of field needs to be large, but there are fundamental optical limitations to this. The solution of the above problem is to use and array of interleaved microlenses of different focal lengths, focused at two or more different planes. In this way a focused image can be constructed at any depth of focus, and a really wide range of digital refocusing can be achieved. This paper presents our theory and results of implementing such camera. Real world images are demonstrating the extended capabilities, and limitations are discussed.

  2. Large Vesicomyidae (Mollusca: Bivalvia) from cold seeps in the Gulf of Guinea off the coasts of Gabon, Congo and northern Angola

    NASA Astrophysics Data System (ADS)

    von Cosel, Rudo; Olu, Karine

    2009-12-01

    Two new genera and three new species of large Vesicomyidae are described from cold-seep sites on pockmarks and other sulfide-rich environments in the Gulf of Guinea (tropical east Atlantic) off Gabon, Congo (Brazzaville) and northern Angola, from 500 to 4000 m depth: " Calyptogena" (s.l.) regab n. sp., Wareniconcha (n.g.) guineensis (Thiele and Jaeckel 1931), Elenaconcha guiness n.g. n. sp., and Isorropodon atalantae n. sp. For two other species already taken by the R/V Valdivia in 1898, Calyptogena valdiviae (Thiele and Jaeckel 1931) and Isorropodon striatum (Thiele and Jaeckel 1931) new localities were discovered, and the species are rediscussed. E. guiness n.g. n.sp. is also recorded from off Banc d'Arguin, Mauritania, collected by commercial fishing vessels. The vesicomyid species here treated were encountered in different depth ranges along the Gabon-Congo-Angola margin, between 500 and 4000 m depth, and it was found that, in comparison with the dredge samples taken by the Valdivia expedition off southern Cameroon and off Rio de Oro (both at 2500 m), the same species occur in other depth ranges, in some cases with a vertical difference of more than 1000 m. .That means that the species are not confined to a given depth thought being typical for them and that the characteristics of the biotope are likely to play a major role in the distribution of the vesicomyids associated to cold seeps or other reduced environments along the West African margin.

  3. What is the optimal chest compression depth during out-of-hospital cardiac arrest resuscitation of adult patients?

    PubMed

    Stiell, Ian G; Brown, Siobhan P; Nichol, Graham; Cheskes, Sheldon; Vaillancourt, Christian; Callaway, Clifton W; Morrison, Laurie J; Christenson, James; Aufderheide, Tom P; Davis, Daniel P; Free, Cliff; Hostler, Dave; Stouffer, John A; Idris, Ahamed H

    2014-11-25

    The 2010 American Heart Association guidelines suggested an increase in cardiopulmonary resuscitation compression depth with a target >50 mm and no upper limit. This target is based on limited evidence, and we sought to determine the optimal compression depth range. We studied emergency medical services-treated out-of-hospital cardiac arrest patients from the Resuscitation Outcomes Consortium Prehospital Resuscitation Impedance Valve and Early Versus Delayed Analysis clinical trial and the Epistry-Cardiac Arrest database. We calculated adjusted odds ratios for survival to hospital discharge, 1-day survival, and any return of circulation. We included 9136 adult patients from 9 US and Canadian cities with a mean age of 67.5 years, mean compression depth of 41.9 mm, and a return of circulation of 31.3%, 1-day survival of 22.8%, and survival to hospital discharge of 7.3%. For survival to discharge, the adjusted odds ratios were 1.04 (95% CI, 1.00-1.08) for each 5-mm increment in compression depth, 1.45 (95% CI, 1.20-1.76) for cases within 2005 depth range (>38 mm), and 1.05 (95% CI, 1.03-1.08) for percentage of minutes in depth range (10% change). Covariate-adjusted spline curves revealed that the maximum survival is at a depth of 45.6 mm (15-mm interval with highest survival between 40.3 and 55.3 mm) with no differences between men and women. This large study of out-of-hospital cardiac arrest patients demonstrated that increased cardiopulmonary resuscitation compression depth is strongly associated with better survival. Our adjusted analyses, however, found that maximum survival was in the depth interval of 40.3 to 55.3 mm (peak, 45.6 mm), suggesting that the 2010 American Heart Association cardiopulmonary resuscitation guideline target may be too high. http://www.clinicaltrials.gov. Unique identifier: NCT00394706. © 2014 American Heart Association, Inc.

  4. In-depth methods for systemic exposure predictions

    EPA Science Inventory

    Exposure to a wide range of chemicals is ubiquitous and largely unavoidable within modern society. The potential for human exposure, however, has not been quantified for the vast majority of chemicals with wide commercial use. Creative advances in exposure science are needed to s...

  5. Geomorphology of the north flank of the Uinta Mountains

    USGS Publications Warehouse

    Bradley, W.H.

    1936-01-01

    beds now form hogbacks ranked along the sides of the fold. In places large faults, approximating the regional strike, cut these steeply inclined beds. Gently warped Tertiary sediments, mostly of Eocene age, fill the large Green River Basin, which lies north of the range, to a depth of several thousand feet and lap up on the flanks of the mountains, from which they were chiefly derived.

  6. Petrologic Constraints on Magma Plumbing Systems Beneath Hawaiian Volcanoes

    NASA Astrophysics Data System (ADS)

    Li, Y.; Peterman, K. J.; Scott, J. L.; Barton, M.

    2016-12-01

    We have calculated the pressures of partial crystalliztion of basaltic magmas from Hawaii using a petrological method. A total of 1576 major oxide analyses of glasses from four volcanoes (Kilauea and the Puna Ridge, Loihi, Mauna Loa, and Mauna Kea, on the Big Island) were compiled and used as input data. Glasses represent quenched liquid compositions and are ideal for calculation of pressures of partial crystallization. The results were filtered to exclude samples that yielded unrealistic high errors associated with the calculated pressure or negative value of pressure, and to exclude samples with non-basaltic compositions. Calculated pressures were converted to depths of partial crystallization. The majority (68.2%) of pressures for the shield-stage subaerial volcanoes Kilauea, Mauna Loa, and Mauna Kea, fall in the range 0-140 MPa, corresponding to depths of 0-5 km. Glasses from the Puna Ridge yield pressures ranging from 18 to 126 MPa and are virtually identical to pressures determined from glasses from Kilauea (0 to 129 MPa). These results are consistent with the presence of magma reservoirs at depths of 0-5 km beneath the large shield volcanoes. The inferred depth of the magma reservoir beneath the summit of Kilauea (average = 1.8 km, maximum = 5 km) agrees extremely well with depths ( 2-6 km) estimated from seismic studies. The results for Kilauea and Mauna Kea indicate that significant partial crystallization also occurs beneath the summit reservoirs at depths up to 11 km. These results are consistent with seismic evidence for the presence of a magma reservoir at 8-11 km beneath Kilauea at the base of the volcanic pile. The results for Loihi indicate crystallization at higher average pressures (100-400 MPa) and depths (3-14 km) than the large shield volcanoes, suggesting that the plumbing system is not yet fully developed, and that the Hawaiian volcanic plumbing systems evolve over time.

  7. Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases

    NASA Astrophysics Data System (ADS)

    Li, Hejie; Rieker, Gregory B.; Liu, Xiang; Jeffries, Jay B.; Hanson, Ronald K.

    2006-02-01

    Tunable diode laser absorption measurements at high pressures by use of wavelength-modulation spectroscopy (WMS) require large modulation depths for optimum detection of molecular absorption spectra blended by collisional broadening or dense spacing of the rovibrational transitions. Diode lasers have a large and nonlinear intensity modulation when the wavelength is modulated over a large range by injection-current tuning. In addition to this intensity modulation, other laser performance parameters are measured, including the phase shift between the frequency modulation and the intensity modulation. Following published theory, these parameters are incorporated into an improved model of the WMS signal. The influence of these nonideal laser effects is investigated by means of wavelength-scanned WMS measurements as a function of bath gas pressure on rovibrational transitions of water vapor near 1388 nm. Lock-in detection of the magnitude of the 2f signal is performed to remove the dependence on detection phase. We find good agreement between measurements and the improved model developed for the 2f component of the WMS signal. The effects of the nonideal performance parameters of commercial diode lasers are especially important away from the line center of discrete spectra, and these contributions become more pronounced for 2f signals with the large modulation depths needed for WMS at elevated pressures.

  8. The 2017 Mw = 8.2 Tehuantepec earthquake: a slab bending or slab pull rupture?

    NASA Astrophysics Data System (ADS)

    Duputel, Z.; Gombert, B.; Simons, M.; Fielding, E. J.; Rivera, L. A.; Bekaert, D. P.; Jiang, J.; Liang, C.; Moore, A. W.; Liu, Z.

    2017-12-01

    On September 8th 2017, a regionally destructive Mw 8.2 intra-slab earthquake struck Mexico in the Gulf of Tehuantepec. While large intermediate depth intra-slab earthquakes are a major hazard, we have only a limited knowledge of the strain budgets within subducting slabs. Several mechanisms have been proposed to explain intraplate earthquakes in subduction zones. Bending stresses might cause the occurrence of seismic events located at depths where the slab dip changes abruptly. However, an alternative explanation is needed if the ruptures are found to propagate through the entire lithosphere. Depending on the coupling of the subduction interface, intraplate earthquakes occurring updip or downdip of the locked zone could also be caused by the negative buoyancy of the sinking slab (i.e., slab pull). The increasing availability of near-fault data provides a unique opportunity to better constrain the seismogenic behavior of large intra-slab earthquakes. Teleseismic analyses of the 2017 Tehuantepec earthquake lead to contrasting statements about the depth extent of the rupture: while most of long period centroid moment tensor inversions yield fairly large centroid depths (>40 km), some finite-fault models suggest much shallower slip concentrated at depths less than 30 km. In this study, we analyze GPS, InSAR, tsunami and seismological data to constrain the earthquake location, fault geometry and slip distribution. We use a Bayesian approach devoid of significant spatial smoothing to characterize the range of allowable rupture depths. In addition, to cope with potential artifacts in centroid depth estimates due to unmodeled lateral heterogeneities, we also analyze long-period seismological data using a full 3D Earth model. Preliminary results suggest a fairly deep rupture consistent with a slab-pull process breaking a significant proportion of the lithosphere and potentially reflecting at least local detachment of the slab.

  9. Generalized Chirp Scaling Combined with Baseband Azimuth Scaling Algorithm for Large Bandwidth Sliding Spotlight SAR Imaging

    PubMed Central

    Yi, Tianzhu; He, Zhihua; He, Feng; Dong, Zhen; Wu, Manqing

    2017-01-01

    This paper presents an efficient and precise imaging algorithm for the large bandwidth sliding spotlight synthetic aperture radar (SAR). The existing sub-aperture processing method based on the baseband azimuth scaling (BAS) algorithm cannot cope with the high order phase coupling along the range and azimuth dimensions. This coupling problem causes defocusing along the range and azimuth dimensions. This paper proposes a generalized chirp scaling (GCS)-BAS processing algorithm, which is based on the GCS algorithm. It successfully mitigates the deep focus along the range dimension of a sub-aperture of the large bandwidth sliding spotlight SAR, as well as high order phase coupling along the range and azimuth dimensions. Additionally, the azimuth focusing can be achieved by this azimuth scaling method. Simulation results demonstrate the ability of the GCS-BAS algorithm to process the large bandwidth sliding spotlight SAR data. It is proven that great improvements of the focus depth and imaging accuracy are obtained via the GCS-BAS algorithm. PMID:28555057

  10. A Comprehensive Snow Density Model for Integrating Lidar-Derived Snow Depth Data into Spatial Snow Modeling

    NASA Astrophysics Data System (ADS)

    Marks, D. G.; Kormos, P.; Johnson, M.; Bormann, K. J.; Hedrick, A. R.; Havens, S.; Robertson, M.; Painter, T. H.

    2017-12-01

    Lidar-derived snow depths when combined with modeled or estimated snow density can provide reliable estimates of the distribution of SWE over large mountain areas. Application of this approach is transforming western snow hydrology. We present a comprehensive approach toward modeling bulk snow density that is reliable over a vast range of weather and snow conditions. The method is applied and evaluated over mountainous regions of California, Idaho, Oregon and Colorado in the western US. Simulated and measured snow density are compared at fourteen validation sites across the western US where measurements of snow mass (SWE) and depth are co-located. Fitting statistics for ten sites from three mountain catchments (two in Idaho, one in California) show an average Nash-Sutcliff model efficiency coefficient of 0.83, and mean bias of 4 kg m-3. Results illustrate issues associated with monitoring snow depth and SWE and show the effectiveness of the model, with a small mean bias across a range of snow and climate conditions in the west.

  11. Measurements of lateral penumbra for uniform scanning proton beams under various beam delivery conditions and comparison to the XiO treatment planning system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rana, Suresh; Zeidan, Omar; Ramirez, Eric

    2013-09-15

    Purpose: The main purposes of this study were to (1) investigate the dependency of lateral penumbra (80%–20% distance) of uniform scanning proton beams on various factors such as air gap, proton range, modulation width, compensator thickness, and depth, and (2) compare the lateral penumbra calculated by a treatment planning system (TPS) with measurements.Methods: First, lateral penumbra was measured using solid–water phantom and radiographic films for (a) air gap, ranged from 0 to 35 cm, (b) proton range, ranged from 8 to 30 cm, (c) modulation, ranged from 2 to 10 cm, (d) compensator thickness, ranged from 0 to 20 cm,more » and (e) depth, ranged from 7 to 15 cm. Second, dose calculations were computed in a virtual water phantom using the XiO TPS with pencil beam algorithm for identical beam conditions and geometrical configurations that were used for the measurements. The calculated lateral penumbra was then compared with the measured one for both the horizontal and vertical scanning magnets of our uniform scanning proton beam delivery system.Results: The results in the current study showed that the lateral penumbra of horizontal scanning magnet was larger (up to 1.4 mm for measurement and up to 1.0 mm for TPS) compared to that of vertical scanning magnet. Both the TPS and measurements showed an almost linear increase in lateral penumbra with increasing air gap as it produced the greatest effect on lateral penumbra. Lateral penumbra was dependent on the depth and proton range. Specifically, the width of lateral penumbra was found to be always lower at shallower depth than at deeper depth within the spread out Bragg peak (SOBP) region. The lateral penumbra results were less sensitive to the variation in the thickness of compensator, whereas lateral penumbra was independent of modulation. Overall, the comparison between the results of TPS with that of measurements indicates a good agreement for lateral penumbra, with TPS predicting higher values compared to measurements.Conclusions: Lateral penumbra of uniform scanning proton beams depends on air gap, proton range, compensator thickness, and depth, whereas lateral penumbra is not dependent on modulation. The XiO TPS typically overpredicted lateral penumbra compared to measurements, within 1 mm for most cases, but the difference could be up to 2.5 mm at a deep depth and large air gap.« less

  12. Assessing the variability of glacier lake bathymetries and potential peak discharge based on large-scale measurements in the Cordillera Blanca, Peru

    NASA Astrophysics Data System (ADS)

    Cochachin, Alejo; Huggel, Christian; Salazar, Cesar; Haeberli, Wilfried; Frey, Holger

    2015-04-01

    Over timescales of hundreds to thousands of years ice masses in mountains produced erosion in bedrock and subglacial sediment, including the formation of overdeepenings and large moraine dams that now serve as basins for glacial lakes. Satellite based studies found a total of 8355 glacial lakes in Peru, whereof 830 lakes were observed in the Cordillera Blanca. Some of them have caused major disasters due to glacial lake outburst floods in the past decades. On the other hand, in view of shrinking glaciers, changing water resources, and formation of new lakes, glacial lakes could have a function as water reservoirs in the future. Here we present unprecedented bathymetric studies of 124 glacial lakes in the Cordillera Blanca, Huallanca, Huayhuash and Raura in the regions of Ancash, Huanuco and Lima. Measurements were carried out using a boat equipped with GPS, a total station and an echo sounder to measure the depth of the lakes. Autocad Civil 3D Land and ArcGIS were used to process the data and generate digital topographies of the lake bathymetries, and analyze parameters such as lake area, length and width, and depth and volume. Based on that, we calculated empirical equations for mean depth as related to (1) area, (2) maximum length, and (3) maximum width. We then applied these three equations to all 830 glacial lakes of the Cordillera Blanca to estimate their volumes. Eventually we used three relations from the literature to assess the peak discharge of potential lake outburst floods, based on lake volumes, resulting in 3 x 3 peak discharge estimates. In terms of lake topography and geomorphology results indicate that the maximum depth is located in the center part for bedrock lakes, and in the back part for lakes in moraine material. Best correlations are found for mean depth and maximum width, however, all three empirical relations show a large spread, reflecting the wide range of natural lake bathymetries. Volumes of the 124 lakes with bathymetries amount to 0.9 km3 while the volume of all glacial lakes of the Cordillera Blanca ranges between 1.15 and 1.29 km3. The small difference in volume of the large lake sample as compared to the smaller sample of bathymetrically surveyed lakes is due to the large size of the measured lakes. The different distributions for lake volume and peak discharge indicate the range of variability in such estimates, and provides valuable first-order information for management and adaptation efforts in the field of water resources and flood prevention.

  13. A global reference model of Curie-point depths based on EMAG2

    NASA Astrophysics Data System (ADS)

    Li, Chun-Feng; Lu, Yu; Wang, Jian

    2017-03-01

    In this paper, we use a robust inversion algorithm, which we have tested in many regional studies, to obtain the first global model of Curie-point depth (GCDM) from magnetic anomaly inversion based on fractal magnetization. Statistically, the oceanic Curie depth mean is smaller than the continental one, but continental Curie depths are almost bimodal, showing shallow Curie points in some old cratons. Oceanic Curie depths show modifications by hydrothermal circulations in young oceanic lithosphere and thermal perturbations in old oceanic lithosphere. Oceanic Curie depths also show strong dependence on the spreading rate along active spreading centers. Curie depths and heat flow are correlated, following optimal theoretical curves of average thermal conductivities K = ~2.0 W(m°C)-1 for the ocean and K = ~2.5 W(m°C)-1 for the continent. The calculated heat flow from Curie depths and large-interval gridding of measured heat flow all indicate that the global heat flow average is about 70.0 mW/m2, leading to a global heat loss ranging from ~34.6 to 36.6 TW.

  14. A global reference model of Curie-point depths based on EMAG2.

    PubMed

    Li, Chun-Feng; Lu, Yu; Wang, Jian

    2017-03-21

    In this paper, we use a robust inversion algorithm, which we have tested in many regional studies, to obtain the first global model of Curie-point depth (GCDM) from magnetic anomaly inversion based on fractal magnetization. Statistically, the oceanic Curie depth mean is smaller than the continental one, but continental Curie depths are almost bimodal, showing shallow Curie points in some old cratons. Oceanic Curie depths show modifications by hydrothermal circulations in young oceanic lithosphere and thermal perturbations in old oceanic lithosphere. Oceanic Curie depths also show strong dependence on the spreading rate along active spreading centers. Curie depths and heat flow are correlated, following optimal theoretical curves of average thermal conductivities K = ~2.0 W(m°C) -1 for the ocean and K = ~2.5 W(m°C) -1 for the continent. The calculated heat flow from Curie depths and large-interval gridding of measured heat flow all indicate that the global heat flow average is about 70.0 mW/m 2 , leading to a global heat loss ranging from ~34.6 to 36.6 TW.

  15. Range-Depth Tracking of Sounds from a Single-Point Deployment by Exploiting the Deep-Water Sound Speed Minimum

    DTIC Science & Technology

    2015-09-30

    dispersion of received signals with measured range. Two broad classes of calls are to be examined: deep-diving odontocetes such as sperm and potentially...comparison with satellite-tag positions (for sperm whales) or by comparison with ranges obtained via large-aperture vertical array techniques (for...depredating sperm whales, three of which had been tagged by satellite tags just before the deployment. Location fixes from the satellite tags are used to

  16. Strike-slip earthquakes in the oceanic lithosphere: Observations of exceptionally high apparent stress

    USGS Publications Warehouse

    Choy, George; McGarr, A.

    2002-01-01

    The radiated energies, ES, and seismic moments, M0, for 942 globally distributed earthquakes that occurred between 1987 to 1998 are examined to find the earthquakes with the highest apparent stresses (τa=μES/M0, where μ is the modulus of rigidity). The globally averaged τa for shallow earthquakes in all tectonic environments and seismic regions is 0.3 MPa. However, the subset of 49 earthquakes with the highest apparent stresses (τa greater than about 5.0 MPa) is dominated almost exclusively by strike-slip earthquakes that occur in oceanic environments. These earthquakes are all located in the depth range 7–29 km in the upper mantle of the young oceanic lithosphere. Many of these events occur near plate-boundary triple junctions where there appear to be high rates of intraplate deformation. Indeed, the small rapidly deforming Gorda Plate accounts for 10 of the 49 high-τa events. The depth distribution of τa, which shows peak values somewhat greater than 25 MPa in the depth range 20–25 km, suggests that upper bounds on this parameter are a result of the strength of the oceanic lithosphere. A recently proposed envelope for apparent stress, derived by taking 6 per cent of the strength inferred from laboratory experiments for young (less than 30 Ma) deforming oceanic lithosphere, agrees well with the upper-bound envelope of apparent stresses over the depth range 5–30 km. The corresponding depth-dependent shear strength for young oceanic lithosphere attains a peak value of about 575 MPa at a depth of 21 km and then diminishes rapidly as the depth increases. In addition to their high apparent stresses, which suggest that the strength of the young oceanic lithosphere is highest in the depth range 10–30 km, our set of high-τa earthquakes show other features that constrain the nature of the forces that cause interplate motion. First, our set of events is divided roughly equally between intraplate and transform faulting with similar depth distributions of τa for the two types. Secondly, many of the intraplate events have focal mechanisms with the T-axes that are normal to the nearest ridge crest or subduction zone and P-axes that are normal to the proximate transform fault. These observations suggest that forces associated with the reorganization of plate boundaries play an important role in causing high-τa earthquakes inside oceanic plates. Extant transform boundaries may be misaligned with current plate motion. To accommodate current plate motion, the pre-existing plate boundaries would have to be subjected to large horizontal transform push forces. A notable example of this is the triple junction near which the second large aftershock of the 1992 April Cape Mendocino, California, sequence occurred. Alternatively, subduction zone resistance may be enhanced by the collision of a buoyant lithosphere, a process that also markedly increases the horizontal stress. A notable example of this is the Aleutian Trench near which large events occurred in the Gulf of Alaska in late 1987 and the 1998 March Balleny Sea M= 8.2 earthquake within the Antarctic Plate.

  17. Determining rates of chemical weathering in soils - Solute transport versus profile evolution

    USGS Publications Warehouse

    Stonestrom, David A.; White, A.F.; Akstin, K.C.

    1998-01-01

    SiO2 fluxes associated with contemporary solute transport in three deeply weathered granitoid profiles are compared to bulk SiO2 losses that have occurred during regolith development. Climates at the three profiles range from Mediterranean to humid to tropical. Due to shallow impeding alluvial layers at two of the profiles, and seasonally uniform rainfall at the third, temporal variations in hydraulic and chemical state variables are largely attenuated below depths of 1-2 m. This allows current SiO2 fluxes below the zone of seasonal variations to be estimated from pore-water concentrations and average hydraulic flux densities. Mean-annual SiO2 concentrations were 0.1-1.5 mM. Hydraulic conductivities for the investigated range of soil-moisture saturations ranged from 10-6 m s-1. Estimated hydraulic flux densities for quasi-steady portions of the profiles varied from 6 x 10-9 to 14 x 10-9 m s-1 based on Darcy's law and field measurements of moisture saturations and pressure heads. Corresponding fluid-residence times in the profiles ranged from 10 to 44 years. Total SiO2 losses, based on chemical and volumetric changes in the respective profiles, ranged from 19 to 110 kmoles SiO2 m-2 of land surface as a result of 0.2-0.4 Ma of chemical weathering. Extrapolation of contemporary solute fluxes to comparable time periods reproduced these SiO2 losses to about an order of magnitude. Despite the large range and non-linearity of measured hydraulic conductivities, solute transport rates in weathering regoliths can be estimated from characterization of hydrologic conditions at sufficiently large depths. The agreement suggests that current weathering rates are representative of long-term average weathering rates in the regoliths.SiO2 fluxes associated with contemporary solute transport in three deeply weathered granitoid profiles are compared to bulk SiO2 losses during regolith development. Due to shallow impeding alluvial layers at two of the profiles, and seasonally uniform rainfall at the third, temporal variations in hydraulic and chemical state variables are largely attenuated below depths of 1-2 m. Hydraulic conductivities for the investigated range of soil-moisture saturations of 10-6 m/s-1. Estimated hydraulic flux densities for quasi-steady portions of the profiles varied from 6??10-9 to 14??10-9 m/s based on Darcy's law and field measurements of moisture saturations and pressure heads.

  18. What can the dihedral angle of conjugate-faults tell us?

    NASA Astrophysics Data System (ADS)

    Ismat, Zeshan

    2015-04-01

    Deformation within the upper crust (elastico-frictional regime) is largely accommodated by fractures and conjugate faults. The Coulomb fracture criterion leads us to expect that the average dihedral angle of conjugate-fault sets is expected to be ∼60°. Experiments, however, reveal a significant amount of scatter from this 60° average. The confining pressure under which these rocks are deformed is a contributing factor to this scatter. The Canyon Range syncline, Sevier fold-thrust belt (USA) and the Jebel Bani, Anti-Atlas fold-belt (Morocco) both folded under different depths, within the elastico-frictional regime, by cataclastic flow. Conjugate-fault sets assisted deformation by cataclastic flow. The Canyon Range syncline and the Jebel Bani are used here as natural examples to test the relationship between the dihedral angle of conjugate-faults and confining pressure. Variations is confining pressure are modeled by the difference in depth of deformation and position within the folds. Results from this study show that the dihedral angle increases with an increase in depth and within the hinge regions of folds, where space problems commonly occur. Moreover, the shortening directions based on the acute bisectors of conjugate-faults may not be accurately determined if the dihedral angles are unusually large or small, leading to incorrect kinematic analyses.

  19. Germination and emergence of annual species and burial depth: Implications for restoration ecology

    NASA Astrophysics Data System (ADS)

    Limón, Ángeles; Peco, Begoña

    2016-02-01

    Due to the high content of viable seeds, topsoil is usually spread on ground left bare during railway and motorway construction to facilitate the regeneration of vegetation cover. However, during handling of the topsoil, seeds are often buried deeply and they cannot germinate or the seedlings cannot emerge from depth. This study experimentally explores the predictive value of seed mass for seed germination, mortality and seedling emergence at different burial depths for 13 common annual species in semiarid Mediterranean environments. We separate the effect of burial depth on germination and emergence by means of two experiments. In the germination experiment, five replicates of 20 seeds for each species were buried at depths ranging from 0 to 4 cm under greenhouse conditions. Germinated and empty or rotten seeds were counted after 8 weeks. In the emergence experiment, five replicates of four newly-germinated seeds per species were buried at the same depths under controlled conditions and emergence was recorded after 3 weeks. The effect of burial depth on percentage of germination and seedling emergence was dependent on seed size. Although all species showed a decrease in germination with burial depth, this decrease was greater for small-than large-seeded species. Percentage of emergence was positively related to seed mass but negatively related to burial depth. Seed mortality was higher for small-than large-seeded species, but there was no general effect of burial depth on this variable. Thus, the current practice of spreading 30 cm deep layers of topsoil in post-construction restoration projects is unadvisable. In this restoration scenario, thinner layers of topsoil should be used to achieve the maximum potential of the topsoil for germination and seedling establishment.

  20. The contribution of large trees to total transpiration rates in a pre-montane tropical forest and its implications for selective logging practices

    NASA Astrophysics Data System (ADS)

    Orozco, G.; Moore, G. W.; Miller, G. R.

    2012-12-01

    In the humid tropics, conservationists generally prefer selective logging practices over clearcutting. Large valuable timber is removed while the remaining forest is left relatively undisturbed. However, little is known about the impact of selective logging on site water balance. Because large trees have very deep sapwood and exposed canopies, they tend to have high transpiration. The first objective was to evaluate the methods used for scaling sap flow measurements to the watershed with particular emphasis on large trees. The second objective of this study was to determine the relative contribution of large trees to site water balance. Our study was conducted in a pre-montane transitional forest at the Texas A&M University Soltis Center in north-central Costa Rica. During the period between January and July 2012, sap flux was monitored in a 30-m diameter plot within a 10-ha watershed. Two pairs of heat dissipation sensors were installed in the outer 0-20 mm of each of 15 trees selected to represent the full range of tree sizes. In six of the largest trees, depth profiles were recorded at 10-mm intervals to a depth of 60 mm using compensation heat pulse sensors. To estimate sapwood basal area of the entire watershed, a stand survey was conducted in three 30-m-diameter plots. In each plot, we measured basal area of all trees and estimated sapwood basal area from sapwood depth measured in nearly half of the trees. An estimated 36.5% of the total sapwood area in this watershed comes from the outer 20 mm of sapwood, with the remaining 63.5% of sapwood from depths deeper than 20 mm. Nearly 13% of sapwood is from depths beyond 60 mm. Sap velocity profiles indicate the highest flow rates occurred in the 0-2 cm depths, with declines of 17% and 25% in the 20-40 mm and 40-60 mm ranges, respectively. Our results demonstrate the need to measure sap velocity profiles in large tropical trees. If total transpiration had been estimated solely from the 0-20 mm heat dissipation probes, it would have been overestimated by at least 15%. Total transpiration averaged 1.49 mm over the 6-month study period. However, the largest 10% of trees contributed disproportionately to this amount. Trees greater than 110 cm in diameter represented over half of the total basal area and 32% of the total sapwood area. These results highlight the importance of large trees in estimating watershed-scale transpiration. From a forest management perspective, selectively logging only the very largest trees, a common practice among these tropical forests of Costa Rica, is likely to disproportionately impact the site water balance unless water use of smaller trees can fully compensate.

  1. Measurement of in-situ strength using projectile penetration: Tests of a new launching system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hearst, J.R.; Newmark, R.L.; Charest, J.A.

    1987-10-01

    The Lawrence Livermore National Laboratory has a continuing need to measure rock strength in situ, both for simple prediction of cavity size, and as input to computational models. In a previous report we compared two methods for measuring formation strength in situ: projectile penetration and a cone penetrometer. We determined that the projectile method was more promising for application to our large-diameter (2-4-m) hole environment. A major practical problem has been the development of a launcher and an apparatus for measuring depth of penetration that would be suitable for use in large-diameter holes. We are developing a gas-gun launcher systemmore » that will be capable of measuring both depth of penetration and deceleration of a reusable projectile. The current version of the launcher is trailer-mounted for testing at our Nevada Test Site (NTS) in tunnels and outcrops, but its design is such that it can be readily adapted for emplacement hole use. We test the current launcher on 60-cm cubes of gypsum cement, mixed to provie a range of densities (1.64 to 2.0 g/cc) and strengths (3 to 17 MPa). We compared depth of penetration of a 84-g projectile from a ''Betsy'' seismic gun - traveling on the order of 500 m/s - with the depth of penetration of a 13-kg projectile from the gas gun - traveling on the order of 30 m/s. For projectiles with the same nose size and shape, impacting targets of approximately constant strength, penetration depth was proportional to projectile kinetic energy. The ratio of kinetic energy to penetration depth was approximately proportional to target strength. Tests in tuffs with a wide range of strengths at NTS gave a similar linear relationship between the ratio of kinetic energy to penetration and target strength, and also a linear relationship between deceleration and strength. It appears that penetration can indeed be used as a semiquantitative measure of strength.« less

  2. Crude oil degradation as an explanation of the depth rule

    USGS Publications Warehouse

    Price, L.C.

    1980-01-01

    Previous studies of crude oil degradation by water washing and bacterial attack have documented the operation of these processes in many different petroleum basins of the world. Crude oil degradation substantially alters the chemical and physical makeup of a crude oil, changing a light paraffinic low-S "mature" crude to a heavy naphthenic or asphalt base, "immature appearing" high-S crude. Rough calculations carried out in the present study using experimentally determined solubility data of petroleum in water give insight into the possible magnitude of water washing and suggest that the process may be able to remove large amounts of petroleum in small divisions of geologic time. Plots of crude oil gravity vs. depth fail to show the expected correlation of increasing API gravity (decreasing specific gravity) with depth below 2.44 km (8000 ft.). Previous studies which have been carried out to document in-reservoir maturation have used crude oil gravity data shallower than 2.44 km (8000 ft.). The changes in crude oil composition as a function of depth which have been attributed to in-reservoir maturation over these shallower depths, are better explained by crude oil degradation. This study concludes that changes in crude oil composition that result from in-reservoir maturation are not evident from existing crude oil gravity data over the depth and temperature range previously supposed, and that the significant changes in crude oil gravity which are present over the shallow depth range are due to crude oil degradation. Thus the existence of significant quantities of petroleum should not necessarily be ruled out below an arbitrarily determined depth or temperature limit when the primary evidence for this is the change in crude oil gravity at shallow depths. ?? 1980.

  3. Retrieving the axial position of fluorescent light emitting spots by shearing interferometry

    NASA Astrophysics Data System (ADS)

    Schindler, Johannes; Schau, Philipp; Brodhag, Nicole; Frenner, Karsten; Osten, Wolfgang

    2016-12-01

    A method for the depth-resolved detection of fluorescent radiation based on imaging of an interference pattern of two intersecting beams and shearing interferometry is presented. The illumination setup provides the local addressing of the excitation of fluorescence and a coarse confinement of the excitation volume in axial and lateral directions. The reconstruction of the depth relies on the measurement of the phase of the fluorescent wave fronts. Their curvature is directly related to the distance of a source to the focus of the imaging system. Access to the phase information is enabled by a lateral shearing interferometer based on a Michelson setup. This allows the evaluation of interference signals even for spatially and temporally incoherent light such as emitted by fluorophors. An analytical signal model is presented and the relations for obtaining the depth information are derived. Measurements of reference samples with different concentrations and spatial distributions of fluorophors and scatterers prove the experimental feasibility of the method. In a setup optimized for flexibility and operating in the visible range, sufficiently large interference signals are recorded for scatterers placed in depths in the range of hundred micrometers below the surface in a material with scattering properties comparable to dental enamel.

  4. Retrieving the axial position of fluorescent light emitting spots by shearing interferometry.

    PubMed

    Schindler, Johannes; Schau, Philipp; Brodhag, Nicole; Frenner, Karsten; Osten, Wolfgang

    2016-12-01

    A method for the depth-resolved detection of fluorescent radiation based on imaging of an interference pattern of two intersecting beams and shearing interferometry is presented. The illumination setup provides the local addressing of the excitation of fluorescence and a coarse confinement of the excitation volume in axial and lateral directions. The reconstruction of the depth relies on the measurement of the phase of the fluorescent wave fronts. Their curvature is directly related to the distance of a source to the focus of the imaging system. Access to the phase information is enabled by a lateral shearing interferometer based on a Michelson setup. This allows the evaluation of interference signals even for spatially and temporally incoherent light such as emitted by fluorophors. An analytical signal model is presented and the relations for obtaining the depth information are derived. Measurements of reference samples with different concentrations and spatial distributions of fluorophors and scatterers prove the experimental feasibility of the method. In a setup optimized for flexibility and operating in the visible range, sufficiently large interference signals are recorded for scatterers placed in depths in the range of hundred micrometers below the surface in a material with scattering properties comparable to dental enamel.

  5. Deep skin structural and microcirculation imaging with extended-focus OCT

    NASA Astrophysics Data System (ADS)

    Blatter, Cedric; Grajciar, Branislav; Huber, Robert; Leitgeb, Rainer A.

    2012-02-01

    We present an extended focus OCT system for dermatologic applications that maintains high lateral resolution over a large depth range by using Bessel beam illumination. More, Bessel beams exhibit a self-reconstruction property that is particularly useful to avoid shadowing from surface structures such as hairs. High lateral resolution and high-speed measurement, thanks to a rapidly tuning swept source, allows not only for imaging of small skin structures in depth but also for comprehensive visualization of the small capillary network within the human skin in-vivo. We use this information for studying temporal vaso-responses to hypothermia. In contrast to other perfusion imaging methods such as laser Doppler imaging (LDI), OCT gives specific access to vascular responses in different vascular beds in depth.

  6. Depth-resolved cathodoluminescence of a homoepitaxial AlN thin film

    NASA Astrophysics Data System (ADS)

    Silveira, E.; Freitas, J. A.; Slack, G. A.; Schowalter, L. J.; Kneissl, M.; Treat, D. W.; Johnson, N. M.

    2005-07-01

    In the present work we will report on the optical properties of an AlN film homoepitaxially grown on a high-quality large bulk AlN single crystal. The latter was grown by a sublimation-recondensation technique, while the film was grown by organometallic vapor-phase epitaxy. Cathodoluminescence measurements were performed using electron beam energies between 2 and 10 keV in order to excite the sample and so to probe different sample depths, making it possible to differentiate between different features which originate in the AlN homoepitaxial film. The penetration depth has been determined through the calculation of the Bohr-Bethe maximum range of excitation using the approximation to the Everhart-Hoff expression for the energy loss within a solid.

  7. A global reference model of Curie-point depths based on EMAG2

    PubMed Central

    Li, Chun-Feng; Lu, Yu; Wang, Jian

    2017-01-01

    In this paper, we use a robust inversion algorithm, which we have tested in many regional studies, to obtain the first global model of Curie-point depth (GCDM) from magnetic anomaly inversion based on fractal magnetization. Statistically, the oceanic Curie depth mean is smaller than the continental one, but continental Curie depths are almost bimodal, showing shallow Curie points in some old cratons. Oceanic Curie depths show modifications by hydrothermal circulations in young oceanic lithosphere and thermal perturbations in old oceanic lithosphere. Oceanic Curie depths also show strong dependence on the spreading rate along active spreading centers. Curie depths and heat flow are correlated, following optimal theoretical curves of average thermal conductivities K = ~2.0 W(m°C)−1 for the ocean and K = ~2.5 W(m°C)−1 for the continent. The calculated heat flow from Curie depths and large-interval gridding of measured heat flow all indicate that the global heat flow average is about 70.0 mW/m2, leading to a global heat loss ranging from ~34.6 to 36.6 TW. PMID:28322332

  8. The WiZard Collaboration cosmic ray muon measurements in the atmosphere

    NASA Astrophysics Data System (ADS)

    Circella, M.; Ambriola, M. L.; Barbiellini, G.; Bartalucci, S.; Bellotti, R.; Bergström, D.; Bidoli, V.; Boezio, M.; Bravar, U.; Cafagna, F.; Carlson, P.; Casolino, M.; Ciacio, F.; Circella, M.; de Marzo, C. N.; de Pascale, M. P.; Finetti, N.; Francke, T.; Grinstein, S.; Hof, M.; Khalchukov, F.; Kremer, J.; Menn, W.; Mitchell, J. W.; Morselli, A.; Ormes, J. F.; Papini, P.; Piccardi, S.; Picozza, P.; Ricci, M.; Schiavon, P.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stephens, S. A.; Stochaj, S. J.; Streitmatter, R. E.; Suffert, M.; Vacchi, A.; Zampa, N.

    Balloon-borne experiments allow cosmic ray measurements to be performed over large ranges of atmospheric depths. The WiZard Collaboration is involved in a long-range investigation of the cosmic ray muon fluxes in the atmosphere. In this paper, we will discuss the relevance of such measurements to the atmospheric neutrino calculations and will review the results reported by the Collaboration, with particular emphasis on those coming from the latest flight CAPRICE98

  9. Miniature objective lens with variable focus for confocal endomicroscopy

    PubMed Central

    Kim, Minkyu; Kang, DongKyun; Wu, Tao; Tabatabaei, Nima; Carruth, Robert W.; Martinez, Ramses V; Whitesides, George M.; Nakajima, Yoshikazu; Tearney, Guillermo J.

    2014-01-01

    Spectrally encoded confocal microscopy (SECM) is a reflectance confocal microscopy technology that can rapidly image large areas of luminal organs at microscopic resolution. One of the main challenges for large-area SECM imaging in vivo is maintaining the same imaging depth within the tissue when patient motion and tissue surface irregularity are present. In this paper, we report the development of a miniature vari-focal objective lens that can be used in an SECM endoscopic probe to conduct adaptive focusing and to maintain the same imaging depth during in vivo imaging. The vari-focal objective lens is composed of an aspheric singlet with an NA of 0.5, a miniature water chamber, and a thin elastic membrane. The water volume within the chamber was changed to control curvature of the elastic membrane, which subsequently altered the position of the SECM focus. The vari-focal objective lens has a diameter of 5 mm and thickness of 4 mm. A vari-focal range of 240 μm was achieved while maintaining lateral resolution better than 2.6 μm and axial resolution better than 26 μm. Volumetric SECM images of swine esophageal tissues were obtained over the vari-focal range of 260 μm. SECM images clearly visualized cellular features of the swine esophagus at all focal depths, including basal cell nuclei, papillae, and lamina propria. PMID:25574443

  10. Estimates of velocity structure and source depth using multiple P waves from aftershocks of the 1987 Elmore Ranch and Superstition Hills, California, earthquakes

    USGS Publications Warehouse

    Mori, J.

    1991-01-01

    Event record sections, which are constructed by plotting seismograms from many closely spaced earthquakes recorded on a few stations, show multiple free-surface reflections (PP, PPP, PPPP) of the P wave in the Imperial Valley. The relative timing of these arrivals is used to estimate the strength of the P-wave velocity gradient within the upper 5 km of the sediment layer. Consistent with previous studies, a velocity model with a value of 1.8 km/sec at the surface increasing linearly to 5.8 km/sec at a depth of 5.5 km fits the data well. The relative amplitudes of the P and PP arrivals are used to estimate the source depth for the aftershock distributions of the Elmore Ranch and Superstition Hills main shocks. Although the depth determination has large uncertainties, both the Elmore Ranch and Superstition Hills aftershock sequencs appear to have similar depth distribution in the range of 4 to 10 km. -Author

  11. Large-scale mapping and predictive modeling of submerged aquatic vegetation in a shallow eutrophic lake.

    PubMed

    Havens, Karl E; Harwell, Matthew C; Brady, Mark A; Sharfstein, Bruce; East, Therese L; Rodusky, Andrew J; Anson, Daniel; Maki, Ryan P

    2002-04-09

    A spatially intensive sampling program was developed for mapping the submerged aquatic vegetation (SAV) over an area of approximately 20,000 ha in a large, shallow lake in Florida, U.S. The sampling program integrates Geographic Information System (GIS) technology with traditional field sampling of SAV and has the capability of producing robust vegetation maps under a wide range of conditions, including high turbidity, variable depth (0 to 2 m), and variable sediment types. Based on sampling carried out in August-September 2000, we measured 1,050 to 4,300 ha of vascular SAV species and approximately 14,000 ha of the macroalga Chara spp. The results were similar to those reported in the early 1990s, when the last large-scale SAV sampling occurred. Occurrence of Chara was strongly associated with peat sediments, and maximal depths of occurrence varied between sediment types (mud, sand, rock, and peat). A simple model of Chara occurrence, based only on water depth, had an accuracy of 55%. It predicted occurrence of Chara over large areas where the plant actually was not found. A model based on sediment type and depth had an accuracy of 75% and produced a spatial map very similar to that based on observations. While this approach needs to be validated with independent data in order to test its general utility, we believe it may have application elsewhere. The simple modeling approach could serve as a coarse-scale tool for evaluating effects of water level management on Chara populations.

  12. The impact of Hurricane Sandy on the shoreface and inner shelf of Fire Island, New York: large bedform migration but limited erosion

    USGS Publications Warehouse

    Goff, John A.; Flood, Roger D.; Austin, James A.; Schwab, William C.; Christensen, Beth A.; Browne, Cassandra M.; Denny, Jane F.; Baldwin, Wayne E.

    2015-01-01

    We investigate the impact of superstorm Sandy on the lower shoreface and inner shelf offshore the barrier island system of Fire Island, NY using before-and-after surveys involving swath bathymetry, backscatter and CHIRP acoustic reflection data. As sea level rises over the long term, the shoreface and inner shelf are eroded as barrier islands migrate landward; large storms like Sandy are thought to be a primary driver of this largely evolutionary process. The “before” data were collected in 2011 by the U.S. Geological Survey as part of a long-term investigation of the Fire Island barrier system. The “after” data were collected in January, 2013, ~two months after the storm. Surprisingly, no widespread erosional event was observed. Rather, the primary impact of Sandy on the shoreface and inner shelf was to force migration of major bedforms (sand ridges and sorted bedforms) 10’s of meters WSW alongshore, decreasing in migration distance with increasing water depth. Although greater in rate, this migratory behavior is no different than observations made over the 15-year span prior to the 2011 survey. Stratigraphic observations of buried, offshore-thinning fluvial channels indicate that long-term erosion of older sediments is focused in water depths ranging from the base of the shoreface (~13–16 m) to ~21 m on the inner shelf, which is coincident with the range of depth over which sand ridges and sorted bedforms migrated in response to Sandy. We hypothesize that bedform migration regulates erosion over these water depths and controls the formation of a widely observed transgressive ravinement; focusing erosion of older material occurs at the base of the stoss (upcurrent) flank of the bedforms. Secondary storm impacts include the formation of ephemeral hummocky bedforms and the deposition of a mud event layer.

  13. The Generation of a Stochastic Flood Event Catalogue for Continental USA

    NASA Astrophysics Data System (ADS)

    Quinn, N.; Wing, O.; Smith, A.; Sampson, C. C.; Neal, J. C.; Bates, P. D.

    2017-12-01

    Recent advances in the acquisition of spatiotemporal environmental data and improvements in computational capabilities has enabled the generation of large scale, even global, flood hazard layers which serve as a critical decision-making tool for a range of end users. However, these datasets are designed to indicate only the probability and depth of inundation at a given location and are unable to describe the likelihood of concurrent flooding across multiple sites.Recent research has highlighted that although the estimation of large, widespread flood events is of great value to flood mitigation and insurance industries, to date it has been difficult to deal with this spatial dependence structure in flood risk over relatively large scales. Many existing approaches have been restricted to empirical estimates of risk based on historic events, limiting their capability of assessing risk over the full range of plausible scenarios. Therefore, this research utilises a recently developed model-based approach to describe the multisite joint distribution of extreme river flows across continental USA river gauges. Given an extreme event at a site, the model characterises the likelihood neighbouring sites are also impacted. This information is used to simulate an ensemble of plausible synthetic extreme event footprints from which flood depths are extracted from an existing global flood hazard catalogue. Expected economic losses are then estimated by overlaying flood depths with national datasets defining asset locations, characteristics and depth damage functions. The ability of this approach to quantify probabilistic economic risk and rare threshold exceeding events is expected to be of value to those interested in the flood mitigation and insurance sectors.This work describes the methodological steps taken to create the flood loss catalogue over a national scale; highlights the uncertainty in the expected annual economic vulnerability within the USA from extreme river flows; and presents future developments to the modelling approach.

  14. Arsenic, vanadium, iron, and manganese biogeochemistry in a deltaic wetland, southern Louisiana, USA

    DOE PAGES

    Telfeyan, Katherine; Breaux, Alexander; Kim, Jihyuk; ...

    2017-04-05

    Geochemical cycling of the redox-sensitive trace elements arsenic (As) and vanadium (V) was examined in shallow pore waters from a marsh in an interdistributary embayment of the lower Mississippi River Delta. In particular, we explore how redox changes with depth and distance from the Mississippi River affect As and V cycling in the marsh pore waters. Previous geophysical surveys and radon mass balance calculations suggested that Myrtle Grove Canal and bordering marsh receive fresh groundwater, derived in large part from seepage of the Mississippi River, which subsequently mixes with brackish waters of Barataria Bay. In addition, the redox geochemistry ofmore » pore waters in the wetlands is affected by Fe and S cycling in the shallow subsurface (0-20 cm). Sediments with high organic matter content undergo SO 4 2- reduction, a process ubiquitous in the shallow subsurface but largely absent at greater depths (~3 m). Instead, at depth, in the absence of organic-rich sediments, Fe concentrations are elevated, suggesting that reduction of Fe(III) oxides/oxyhydroxides buffers redox conditions. Arsenic and V cycling in the shallow subsurface are decoupled from their behavior at depth, where both V and As appear to be removed from solution by either diffusion or adsorption onto, or co-precipitation with, authigenic minerals within the deeper aquifer sediments. Pore water As concentrations are greatest in the shallow subsurface (e.g., up to 315 nmol kg -1 in the top ~20 cm of the sediment) but decrease with depth, reaching values <30 nmol kg -1 at depths between 3 and 4 m. Vanadium concentrations appear to be tightly coupled to Fe cycling in the shallow subsurface, but at depth, V may be adsorbed to clay or sedimentary organic matter (SOM). Diffusive fluxes are calculated to examine the export of trace elements from the shallow marsh pore waters to the overlying canal water that floods the marsh. The computed fluxes suggest that the shallow sediment serves as a source of Fe, Mn, and As to the surface waters, whereas the sediments act as a sink for V. Iron and Mn fluxes are substantial, ranging from 50 to 30,000 and 770 to 4,300 nmol cm -2 day -1, respectively, whereas As fluxes are much less, ranging from 2.1 to 17 nmol cm -2 day -1. Vanadium fluxes range from 3.0 nmol cm -2 day -1 directed into the sediment to 1.7 nmol cm -2 day -1 directed out of the sediment« less

  15. Arsenic, vanadium, iron, and manganese biogeochemistry in a deltaic wetland, southern Louisiana, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Telfeyan, Katherine; Breaux, Alexander; Kim, Jihyuk

    Geochemical cycling of the redox-sensitive trace elements arsenic (As) and vanadium (V) was examined in shallow pore waters from a marsh in an interdistributary embayment of the lower Mississippi River Delta. In particular, we explore how redox changes with depth and distance from the Mississippi River affect As and V cycling in the marsh pore waters. Previous geophysical surveys and radon mass balance calculations suggested that Myrtle Grove Canal and bordering marsh receive fresh groundwater, derived in large part from seepage of the Mississippi River, which subsequently mixes with brackish waters of Barataria Bay. In addition, the redox geochemistry ofmore » pore waters in the wetlands is affected by Fe and S cycling in the shallow subsurface (0-20 cm). Sediments with high organic matter content undergo SO 4 2- reduction, a process ubiquitous in the shallow subsurface but largely absent at greater depths (~3 m). Instead, at depth, in the absence of organic-rich sediments, Fe concentrations are elevated, suggesting that reduction of Fe(III) oxides/oxyhydroxides buffers redox conditions. Arsenic and V cycling in the shallow subsurface are decoupled from their behavior at depth, where both V and As appear to be removed from solution by either diffusion or adsorption onto, or co-precipitation with, authigenic minerals within the deeper aquifer sediments. Pore water As concentrations are greatest in the shallow subsurface (e.g., up to 315 nmol kg -1 in the top ~20 cm of the sediment) but decrease with depth, reaching values <30 nmol kg -1 at depths between 3 and 4 m. Vanadium concentrations appear to be tightly coupled to Fe cycling in the shallow subsurface, but at depth, V may be adsorbed to clay or sedimentary organic matter (SOM). Diffusive fluxes are calculated to examine the export of trace elements from the shallow marsh pore waters to the overlying canal water that floods the marsh. The computed fluxes suggest that the shallow sediment serves as a source of Fe, Mn, and As to the surface waters, whereas the sediments act as a sink for V. Iron and Mn fluxes are substantial, ranging from 50 to 30,000 and 770 to 4,300 nmol cm -2 day -1, respectively, whereas As fluxes are much less, ranging from 2.1 to 17 nmol cm -2 day -1. Vanadium fluxes range from 3.0 nmol cm -2 day -1 directed into the sediment to 1.7 nmol cm -2 day -1 directed out of the sediment« less

  16. Nitrous oxide as an indicator of nitrogen transformation in a septic system plume

    NASA Astrophysics Data System (ADS)

    Li, L.; Spoelstra, J.; Robertson, W. D.; Schiff, S. L.; Elgood, R. J.

    2014-11-01

    This study evaluates the use of ground water N2O concentration and stable isotope composition for providing insights into nitrogen cycling processes in a large septic system plume in southern Ontario, Canada. An extremely large range of dissolved N2O concentrations were measured (0.4-1071 μg N/L) that were higher than atmospheric equilibrium values of ∼0.3 μg N/L, demonstrating substantial N2O production in the subsurface. The highest N2O concentrations occurred around the periphery of a mid-depth zone where NO3- attenuation, elevated DOC concentration, and NO3- stable isotope ratios provided evidence that denitrification was occurring. Broad ranges in δ15N-N2O (-45.8‰ to +30.6‰) and δ18O-N2O (+20.4‰ to +96.0‰) were evident. Using literature isotopic enrichment factors, which differ for N2O produced during nitrification and denitrification, and measured ranges of plume NH4+ and NO3- isotopic ratios, zones of both nitrifier-derived N2O (shallow zone) and denitrifier-N2O (mid-depth and deeper zones) could be identified. Time series sampling showed that nitrifier N2O was present early in the summer season (June) but then denitrifier N2O was more dominant later in the season. In a mid-depth NO3- depleted zone, the production of denitrifier-N2O was evident early in the season when 15N and 18O enrichment of NO3- was not sufficiently advanced to be indicative of denitrification, although δ15N and δ18O values of NO3- increased later in the season. The analysis of N2O concentrations and stable isotopic composition, in conjunction with conventional chemical analyses, provides insights into N-cycling processes in the Long Point ground water septic plume. However, large ranges in the isotopic composition of N2O produced by nitrifiers and denitrifiers meant that δ15N and δ18O analysis of ground water N2O provided qualitative, rather than quantitative, information on denitrifier versus nitrifier production of N2O at this site.

  17. Imaging high-pressure rock exhumation along the arc-continent suture in eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Brown, Dennis; Feng, Kuan-Fu; Wu, Yih-Min; Huang, Hsin-Hua

    2015-04-01

    Imaging high-pressure rock exhumation in active tectonic settings is considered to be one of the important observations that could potentially help to move forward the understanding of how this process works. Petrophysical analyses carried out along a high velocity zone imaged by seismic travel time tomography along the suture zone between the actively colliding Luzon Arc and the southeastern margin of Eurasia in Taiwan suggests that high-pressure rocks are being exhumed from at least a depth of 50 km below the arc-continent suture to the shallow subsurface where they coincide with an outcropping tectonic mélange called the Yuli Belt. The Yuli Belt comprises mainly greenschist facies quartz-mica schist, with lesser metabasite, metamorphosed mantle fragments and, importantly, minor blueschist. Modeling of published data bases of measured seismic velocities for a large suite of rocks suggests that all of the Yuli belt lithologies fit well with the measured Vp, Vs, and Vp/Vs at ambient pressures and temperatures (a 20 oC/km geotherm is used) from 10 to about 20 km depth. With the exception of hornblendite, mantle rocks need 30% to 40 % serpentinization to approximate the in situ range of Vp and and Vs at these depths. From about 20 km to 30 km, most continental crust and volcanic arc lithologies move out of the range of velocities measured by the tomography model at these depths. Blueschist (including the calculated Vp and Vs for the Yuli Belt samples), pyroxenite, and harzburgite, lherzolite, and dunite with around 20% to 30% serpentinization now enter into the range of velocities for these depths. From 40 km to 50 km depth, the mantle rocks pyroxenite, and weakly to unserpentinized harzburgite, lherzolite, and dunite, together with mafic eclogite velocities best fit the range of Vp, Vs and Vp/Vs at these depths. Seismicity along the arc-continent suture, the upper bounding fault of the high velocity zone examined here, indicate that it is a moderately oblique-slip thrust. The western boundary is a near vertical, sharp velocity gradient that, in the upper 10 to 15 km appears to link with a sinistral strike-slip fault. The high velocity zone itself is very seismically active down to a depth of 50 km. Focal mechanisms determined from within the high velocity zone are mostly strike-slip, oblique-slip, and extensional, with rare thrust mechanisms.

  18. Effects of variable regolith depth, hydraulic properties, and rainfall on debris-flow initiation during the September 2013 northern Colorado Front Range rainstorm

    NASA Astrophysics Data System (ADS)

    Baum, R. L.; Coe, J. A.; Kean, J. W.; Jones, E. S.; Godt, J.

    2015-12-01

    Heavy rainfall during 9 - 13 September 2013 induced about 1100 debris flows in the foothills and mountains of the northern Colorado Front Range. Weathered bedrock was partially exposed in the basal surfaces of many of the shallow source areas at depths ranging from 0.2 to 5 m. Typical values of saturated hydraulic conductivity of soils and regolith units mapped in the source areas range from about 10-4 - 10-6 m/s, with a median value of 2.8 x 10-5 m/s based on number of source areas in each map unit. Rainfall intensities varied spatially and temporally, from 0 to 2.5 x 10-5 m/s (90 mm/hour), with two periods of relatively heavy rainfall on September 12 - 13. The distribution of debris flows appears to correlate with total storm rainfall, and reported times of greatest landslide activity coincide with times of heaviest rainfall. Process-based models of rainfall infiltration and slope stability (TRIGRS) representing the observed ranges of regolith depth, hydraulic conductivity, and rainfall intensity, provide additional insights about the timing and distribution of debris flows from this storm. For example, small debris flows from shallower source areas (<2 m) occurred late on September 11 and in the early morning of September 12, whereas large debris flows from deeper (3 - 5 m) source areas in the western part of the affected area occurred late on September 12. Timing of these flows can be understood in terms of the time required for pore pressure rise depending on regolith depth and rainfall intensity. The variable hydraulic properties combined with variable regolith depth and slope angles account for much of the observed range in timing in areas of similar rainfall intensity and duration. Modeling indicates that the greatest and most rapid pore pressure rise likely occurred in areas of highest rainfall intensity and amount. This is consistent with the largest numbers of debris flows occurring on steep canyon walls in areas of high total storm rainfall.

  19. Longitudinal development of muons in large air showers studies from the arrival time distributions measured at 900m above sea level

    NASA Technical Reports Server (NTRS)

    Kakimoto, F.; Tsuchimoto, I.; Enoki, T.; Suga, K.; Nishi, K.

    1985-01-01

    The arrival time distributions of muons with energies above 1.0GeV and 0.5GeV have been measured in the Akeno air-shower array to study the longitudinal development of muons in air showers with primary energies in the range 10 to the 17th power to 10 to the 18th power ev. The average rise times of muons with energies above 1.0GeV at large core distances are consistent with those expected from very high multiplicity models and, on the contrary, with those expected from the low multiplicity models at small core distances. This implies that the longitudinal development at atmospheric depth smaller than 500 cm square is very fast and that at larger atmospheric depths is rather slow.

  20. Detection range enhancement using circularly polarized light in scattering environments for infrared wavelengths

    DOE PAGES

    van der Laan, J. D.; Sandia National Lab.; Scrymgeour, D. A.; ...

    2015-03-13

    We find for infrared wavelengths there are broad ranges of particle sizes and refractive indices that represent fog and rain where the use of circular polarization can persist to longer ranges than linear polarization. Using polarization tracking Monte Carlo simulations for varying particle size, wavelength, and refractive index, we show that for specific scene parameters circular polarization outperforms linear polarization in maintaining the intended polarization state for large optical depths. This enhancement with circular polarization can be exploited to improve range and target detection in obscurant environments that are important in many critical sensing applications. Specifically, circular polarization persists bettermore » than linear for radiation fog in the short-wave infrared, for advection fog in the short-wave infrared and the long-wave infrared, and large particle sizes of Sahara dust around the 4 micron wavelength.« less

  1. A review of modern approaches to the hydrodynamic characterisation of polydisperse macromolecular systems in biotechnology.

    PubMed

    Gillis, Richard B; Rowe, Arthur J; Adams, Gary G; Harding, Stephen E

    2014-10-01

    This short review considers the range of modern techniques for the hydrodynamic characterisation of macromolecules - particularly large glycosylated systems used in the food, biopharma and healthcare industries. The range or polydispersity of molecular weights and conformations presents special challenges compared to proteins. The review is aimed, without going into any great theoretical or methodological depth, to help the Industrial Biotechnologist choose the appropriate methodology or combination of methodologies for providing the detail he/she needs for particular applications.

  2. Broadband and high modulation-depth THz modulator using low bias controlled VO2-integrated metasurface.

    PubMed

    Zhou, Gaochao; Dai, Penghui; Wu, Jingbo; Jin, Biaobing; Wen, Qiye; Zhu, Guanghao; Shen, Ze; Zhang, Caihong; Kang, Lin; Xu, Weiwei; Chen, Jian; Wu, Peiheng

    2017-07-24

    An active vanadium dioxide integrated metasurface offering broadband transmitted terahertz wave modulation with large modulation-depth under electrical control is demonstrated. The device consists of metal bias-lines arranged with grid-structure patterned vanadium dioxide (VO 2 ) film on sapphire substrate. Amplitude transmission is continuously tuned from more than 78% to 28% or lower in the frequency range from 0.3 THz to 1.0 THz, by means of electrical bias at temperature of 68 °C. The physical mechanism underlying the device's electrical tunability is investigated and found to be attributed to the ohmic heating. The developed device possessing over 87% modulation depth with 0.7 THz frequency band is expected to have many potential applications in THz regime such as tunable THz attenuator.

  3. Validation of TOMS Aerosol Products using AERONET Observations

    NASA Technical Reports Server (NTRS)

    Bhartia, P. K.; Torres, O.; Sinyuk, A.; Holben, B.

    2002-01-01

    The Total Ozone Mapping Spectrometer (TOMS) aerosol algorithm uses measurements of radiances at two near UV channels in the range 331-380 nm to derive aerosol optical depth and single scattering albedo. Because of the low near UV surface albedo of all terrestrial surfaces (between 0.02 and 0.08), the TOMS algorithm has the capability of retrieving aerosol properties over the oceans and the continents. The Aerosol Robotic Network (AERONET) routinely derives spectral aerosol optical depth and single scattering albedo at a large number of sites around the globe. We have performed comparisons of both aerosol optical depth and single scattering albedo derived from TOMS and AERONET. In general, the TOMS aerosol products agree well with the ground-based observations, Results of this validation will be discussed.

  4. Implementation of School Choice Policy: Interpretation and Response by Parents of Students with Special Educational Needs.

    ERIC Educational Resources Information Center

    Bagley, Carl; Woods, Philip A.; Woods, Glenys

    2001-01-01

    Provides empirically based insights into preferences, perceptions, and responses of parents of students with special education needs to the 1990s restructured school system in England. Uses analyses of quantitative/qualitative data generated by a large-scale research study on school choice. Reveals depth and range of problems encountered by these…

  5. Soil and surface temperatures at the Viking landing sites

    NASA Technical Reports Server (NTRS)

    Kieffer, H. H.

    1976-01-01

    The annual temperature range for the Martian surface at the Viking lander sites is computed on the basis of thermal parameters derived from observations made with the infrared thermal mappers. The Viking lander 1 (VL1) site has small annual variations in temperature, whereas the Viking lander 2 (VL2) site has large annual changes. With the Viking lander images used to estimate the rock component of the thermal emission, the daily temperature behavior of the soil alone is computed over the range of depths accessible to the lander; when the VL1 and VL2 sites were sampled, the daily temperature ranges at the top of the soil were 183 to 263 K and 183 to 268 K, respectively. The diurnal variation decreases with depth with an exponential scale of about 5 centimeters. The maximum temperature of the soil sampled from beneath rocks at the VL2 site is calculated to be 230 K. These temperature calculations should provide a reference for study of the active chemistry reported for the Martian soil.

  6. Soil and surface temperatures at the viking landing sites.

    PubMed

    Kieffer, H H

    1976-12-11

    The annual temperature range for the martian surface at the Viking lander sites is computed on the basis of thermal parameters derived from observations made with the infrared thermal mappers. The Viking lander 1 (VL1) site has small annual variations in temperature, whereas the Viking lander 2 (VL2) site has large annual changes. With the Viking lander images used to estimate the rock component of the thermal emission, the daily temperature behavior of the soil alone is computed over the range of depths accessible to the lander; when the VL1 and VL2 sites were sampled, the daily temperature ranges at the top of the soil were 183 to 263 K and 183 to 268 K, respectively. The diurnal variation decreases with depth with an exponential scale of about 5 centimeters. The maximum temperature of the soil sampled from beneath rocks at the VL2 site is calculated to be 230 K. These temperature calculations should provide a reference for study of the active chemistry reported for the martian soil.

  7. A wide depth distribution of seismic tremors along the northern Cascadia margin.

    PubMed

    Kao, Honn; Shan, Shao-Ju; Dragert, Herb; Rogers, Garry; Cassidy, John F; Ramachandran, Kumar

    2005-08-11

    The Cascadia subduction zone is thought to be capable of generating major earthquakes with moment magnitude as large as M(w) = 9 at an interval of several hundred years. The seismogenic portion of the plate interface is mostly offshore and is currently locked, as inferred from geodetic data. However, episodic surface displacements-in the direction opposite to the long-term deformation motions caused by relative plate convergence across a locked interface-are observed about every 14 months with an unusual tremor-like seismic signature. Here we show that these tremors are distributed over a depth range exceeding 40 km within a limited horizontal band. Many occurred within or close to the strong seismic reflectors above the plate interface where local earthquakes are absent, suggesting that the seismogenic process for tremors is fluid-related. The observed depth range implies that tremors could be associated with the variation of stress field induced by a transient slip along the deeper portion of the Cascadia interface or, alternatively, that episodic slip is more diffuse than originally suggested.

  8. Utilizing Ocean Thermal Energy in a Submarine Robot

    NASA Technical Reports Server (NTRS)

    Jones, Jack; Chao, Yi

    2009-01-01

    A proposed system would exploit the ocean thermal gradient for recharging the batteries in a battery-powered unmanned underwater vehicle [UUV (essentially, a small exploratory submarine robot)] of a type that has been deployed in large numbers in research pertaining to global warming. A UUV of this type travels between the ocean surface and depths, measuring temperature and salinity. The proposed system is related to, but not the same as, previously reported ocean thermal energy conversion (OTEC) systems that exploit the ocean thermal gradient but consist of stationary apparatuses that span large depth ranges. The system would include a turbine driven by working fluid subjected to a thermodynamic cycle. CO2 has been provisionally chosen as the working fluid because it has the requisite physical properties for use in the range of temperatures expected to be encountered in operation, is not flammable, and is much less toxic than are many other commercially available refrigerant fluids. The system would be housed in a pressurized central compartment in a UUV equipped with a double hull (see figure). The thermodynamic cycle would begin when the UUV was at maximum depth, where some of the CO2 would condense and be stored, at relatively low temperature and pressure, in the annular volume between the inner and outer hulls. The cycle would resume once the UUV had ascended to near the surface, where the ocean temperature is typically greater than or equals 20 C. At this temperature, the CO2 previously stored at depth in the annular volume between the inner and outer hulls would be pressurized to approx. equals 57 bar (5.7 MPa). The pressurized gaseous CO2 would flow through a check valve into a bladder inside the pressurized compartment, thereby storing energy of the relatively warm, pressurized CO2 for subsequent use after the next descent to maximum depth.

  9. Observed and Predicted Pier Scour in Maine

    USGS Publications Warehouse

    Hodgkins, Glenn A.; Lombard, Pamela J.

    2002-01-01

    Pier-scour and related data were collected and analyzed for nine high river flows at eight bridges across Maine from 1997 through 2001. Six bridges had multiple piers. Fifteen of 23 piers where data were measured during a high flow had observed maximum scour depths ranging from 0.5 feet (ft) to 12.0 ft. No pier scour was observed at the remaining eight piers. The maximum predicted pier-scour depths associated with the 23 piers were computed using the equations in the Federal Highway Administration's Hydraulic Engineering Circular number 18 (HEC-18), with data collected for this study. The predicted HEC-18 maximum pier-scour depths were compared to the observed maximum pier-scour depths. The HEC-18 pier-scour equations are intended to be envelope equations, ideally never underpredicting scour depths and not appreciably overpredicting them. The HEC-18 pier-scour equations performed well for rivers in Maine. Twenty-two out of 23 pier-scour depths were overpredicted by 0.7 ft to 18.3 ft. One pier-scour depth was underpredicted by 4.5 ft. For one pier at each of two bridges, large amounts of debris lodged on the piers after high-flow measurements were made at those sites. The scour associated with the debris increased the maximum pier-scour depths by about 5 ft in each case.

  10. Influence of breeding habitat on bear predation and age at maturity and sexual dimorphism of sockeye salmon populations

    USGS Publications Warehouse

    Quinn, Thomas P.; Wetzel, Lisa A.; Bishop, Susan; Overberg, Kristi; Rogers, Donald E.

    2001-01-01

    Age structure and morphology differ among Pacific salmon (Oncorhynchus spp.) populations. Sexual selection and reproductive capacity (fecundity and egg size) generally favor large (old), deep-bodied fish. We hypothesized that natural selection from physical access to spawning grounds and size-biased predation by bears, Ursus spp., opposes such large, deep-bodied salmon. Accordingly, size and shape of salmon should vary predictably among spawning habitats. We tested this hypothesis by measuring the age composition and body depth of sockeye salmon, Oncorhynchus nerka, and the intensity of predation in a range of breeding habitats in southwestern Alaska. Stream width was positively correlated with age at maturity and negatively correlated with predation level. However, salmon spawning on lake beaches were not consistently old, indicating that different factors affect age in riverine- and beach-spawning populations. Body depths of male and female salmon were positively correlated with water depth across all sites, as predicted. However, the mouths of some streams were so shallow that they might select against large or deep-bodied salmon, even in the absence of bear predation. Taken together, the results indicated that habitat has direct and indirect effects (via predation) on life history and morphology of mature salmon.

  11. Estimating water use by sugar maple trees: considerations when using heat-pulse methods in trees with deep functional sapwood.

    PubMed

    Pausch, Roman C.; Grote, Edmund E.; Dawson, Todd E.

    2000-03-01

    Accurate estimates of sapwood properties (including radial depth of functional xylem and wood water content) are critical when using the heat pulse velocity (HPV) technique to estimate tree water use. Errors in estimating the volumetric water content (V(h)) of the sapwood, especially in tree species with a large proportion of sapwood, can cause significant errors in the calculations ofsap velocity and sap flow through tree boles. Scaling to the whole-stand level greatly inflates these errors. We determined the effects of season, tree size and radial wood depth on V(h) of wood cores removed from Acer saccharum Marsh. trees throughout 3 years in upstate New York. We also determined the effects of variation in V(h) on sap velocity and sap flow calculations based on HPV data collected from sap flow gauges inserted at four depths. In addition, we compared two modifications of Hatton's weighted average technique, the zero-step and zero-average methods, for determining sap velocity and sap flow at depths beyond those penetrated by the sap flow gauges. Parameter V(h) varied significantly with time of year (DOY), tree size (S), and radial wood depth (RD), and there were significant DOY x S and DOY x RD interactions. Use of a mean whole-tree V(h) value resulted in differences ranging from -6 to +47% for both sap velocity and sap flow for individual sapwood annuli compared with use of the V(h) value determined at the specific depth where a probe was placed. Whole-tree sap flow was 7% higher when calculated on the basis of the individual V(h) value compared with the mean whole-tree V(h) value. Calculated total sap flow for a tree with a DBH of 48.8 cm was 13 and 19% less using the zero-step and the zero-average velocity techniques, respectively, than the value obtained with Hatton's weighted average technique. Smaller differences among the three methods were observed for a tree with a DBH of 24.4 cm. We conclude that, for Acer saccharum: (1) mean V(h) changes significantly during the year and can range from nearly 50% during winter and early spring, to 20% during the growing season;(2) large trees have a significantly greater V(h) than small trees; (3) overall, V(h) decreases and then increases significantly with radial wood depth, suggesting that radial water movement and storage are highly dynamic; and (4) V(h) estimates can vary greatly and influence subsequent water use calculations depending on whether an average or an individual V(h) value for a wood core is used. For large diameter trees in which sapwood comprises a large fraction of total stem cross-sectional area (where sap flow gauges cannot be inserted across the entire cross-sectional area), the zero-average modification of Hatton's weighted average method reduces the potential for large errors in whole-tree and landscape water balance estimates based on the HPV method.

  12. Homogeneous near surface activity distribution by double energy activation for TLA

    NASA Astrophysics Data System (ADS)

    Takács, S.; Ditrói, F.; Tárkányi, F.

    2007-10-01

    Thin layer activation (TLA) is a versatile tool for activating thin surface layers in order to study real-time the surface loss by wear, corrosion or erosion processes of the activated parts, without disassembling or stopping running mechanical structures or equipment. The research problem is the determination of the irradiation parameters to produce point-like or large area optimal activity-depth distribution in the sample. Different activity-depth profiles can be produced depending on the type of the investigated material and the nuclear reaction used. To produce activity that is independent of the depth up to a certain depth is desirable when the material removed from the surface by wear, corrosion or erosion can be collected completely. By applying dual energy irradiation the thickness of this quasi-constant activity layer can be increased or the deviation of the activity distribution from a constant value can be minimized. In the main, parts made of metals and alloys are suitable for direct activation, but by using secondary particle implantation the wear of other materials can also be studied in a surface range a few micrometers thick. In most practical cases activation of a point-like spot (several mm2) is enough to monitor the wear, corrosion or erosion, but for special problems relatively large surfaces areas of complicated spatial geometry need to be activated uniformly. Two ways are available for fulfilling this task, (1) production of large area beam spot or scanning the beam over the surface in question from the accelerator side, or (2) a programmed 3D movement of the sample from the target side. Taking into account the large variability of tasks occurring in practice, the latter method was chosen as the routine solution in our cyclotron laboratory.

  13. Audiomagnetotellurics-Magnetotelluric (AMT-MT) survey of the Campi Flegrei inner caldera

    NASA Astrophysics Data System (ADS)

    Siniscalchi, Agata; Tripaldi, Simona; Romano, Gerardo; D'Auria, Luca; Improta, Luigi; Petrillo, Zaccaria

    2017-04-01

    In the framework of the EU project MED-SUV, an audiomagnetotellurics-magnetotelluric (AMT-MT) survey in the frequency band 0.1-100kHz was performed in the eastern border of the Campi Flegrei inner caldera comprising the area where seismicity is concentred in the last decade. This survey was aimed to provide new insights on the electrical resistivity structure of the subsoil. Among all the collected MT soundings, twenty-two, on a total of forty-three, were selected along a WSW-ENE alignment that crosses the main fumarole emissions (Solfatara, Pisciarelli and Agnano) and used for 2D regularized inversion. The obtained model is characterized by a quite narrow resistivity range that well matches typical range of enhanced geothermal environment as largely documented in the international literature. In particular focusing on the Solfatara and Pisciarelli districts the resistivity distribution clearly calls to mind the behavior of a high temperature geothermal system with a very conductive cap in the shallower part. Here the presence of gaps in this conductor just in correspondence of the main superficial emissions describes the inflow and outflow pathway of the shallow fluids circulation. A high resistive reservoir appearing at a depth of about 500 m b.s.l.. WithinWithin this region we selected a vertical resistivity profile just in correspondence of a Vp/Vs profile versus depth coming from a passive seismic tomography (Vanorio et al., 2005). The comparison of the two behaviors shows a clear anti-correlation between the two physical parameters (high resistivity and low Vp/Vs) in the depth range 500-1000 m supporting the interpretation that an over-pressurized gas bearing rocks under supercritical conditions constituting the reservoir of the enhanced geothermal system. On the eastern side of this resistive plume up to 2.5 km of depth is present a local relative conductive unit underneath the Pisciarelli area. In the same volume most of the recent (from 2005 up to date) micro-earthquake hypocenters are confined suggesting that in this volume geothermal fluid, pushed by the reservoir pressure and mixed with the powerful aquifer (testified in the well CF23), propagates in widespread pores and cracks triggering microseismicity. The present resistivity model is limited to 3 km of depth due to the adopted frequency range, thus does not investigate the magma feeding system of the Plegrean Field caldera that seismic imaging suggest to be a large magmatic sill within the basement formations at about 7.5 km of depth (Zollo et al., 2008). On the contrary it well image for the first time with higher resolution than in the past the geothermal system underneath Solfatara-Pisciarelli districts giving insights of the whole hydro-geothermal circulation.

  14. Sharing the slope: depth partitioning of agariciid corals and associated Symbiodinium across shallow and mesophotic habitats (2-60 m) on a Caribbean reef

    PubMed Central

    2013-01-01

    Background Scleractinian corals and their algal endosymbionts (genus Symbiodinium) exhibit distinct bathymetric distributions on coral reefs. Yet, few studies have assessed the evolutionary context of these ecological distributions by exploring the genetic diversity of closely related coral species and their associated Symbiodinium over large depth ranges. Here we assess the distribution and genetic diversity of five agariciid coral species (Agaricia humilis, A. agaricites, A. lamarcki, A. grahamae, and Helioseris cucullata) and their algal endosymbionts (Symbiodinium) across a large depth gradient (2-60 m) covering shallow to mesophotic depths on a Caribbean reef. Results The five agariciid species exhibited distinct depth distributions, and dominant Symbiodinium associations were found to be species-specific, with each of the agariciid species harbouring a distinct ITS2-DGGE profile (except for a shared profile between A. lamarcki and A. grahamae). Only A. lamarcki harboured different Symbiodinium types across its depth distribution (i.e. exhibited symbiont zonation). Phylogenetic analysis (atp6) of the coral hosts demonstrated a division of the Agaricia genus into two major lineages that correspond to their bathymetric distribution (“shallow”: A. humilis / A. agaricites and “deep”: A. lamarcki / A. grahamae), highlighting the role of depth-related factors in the diversification of these congeneric agariciid species. The divergence between “shallow” and “deep” host species was reflected in the relatedness of the associated Symbiodinium (with A. lamarcki and A. grahamae sharing an identical Symbiodinium profile, and A. humilis and A. agaricites harbouring a related ITS2 sequence in their Symbiodinium profiles), corroborating the notion that brooding corals and their Symbiodinium are engaged in coevolutionary processes. Conclusions Our findings support the hypothesis that the depth-related environmental gradient on reefs has played an important role in the diversification of the genus Agaricia and their associated Symbiodinium, resulting in a genetic segregation between coral host-symbiont communities at shallow and mesophotic depths. PMID:24059868

  15. Surface boundary layer turbulence in the Southern ocean

    NASA Astrophysics Data System (ADS)

    Merrifield, Sophia; St. Laurent, Louis; Owens, Breck; Naveira Garabato, Alberto

    2015-04-01

    Due to the remote location and harsh conditions, few direct measurements of turbulence have been collected in the Southern Ocean. This region experiences some of the strongest wind forcing of the global ocean, leading to large inertial energy input. While mixed layers are known to have a strong seasonality and reach 500m depth, the depth structure of near-surface turbulent dissipation and diffusivity have not been examined using direct measurements. We present data collected during the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) field program. In a range of wind conditions, the wave affected surface layer (WASL), where surface wave physics are actively forcing turbulence, is contained to the upper 15-20m. The lag-correlation between wind stress and turbulence shows a strong relationship up to 6 hours (˜1/2 inertial period), with the winds leading the oceanic turbulent response, in the depth range between 20-50m. We find the following characterize the data: i) Profiles that have a well-defined hydrographic mixed layer show that dissipation decays in the mixed layer inversely with depth, ii) WASLs are typically 15 meters deep and 30% of mixed layer depth, iii) Subject to strong winds, the value of dissipation as a function of depth is significantly lower than predicted by theory. Many dynamical processes are known to be missing from upper-ocean parameterizations of mixing in global models. These include surface-wave driven processes such as Langmuir turbulence, submesocale frontal processes, and nonlocal representations of mixing. Using velocity, hydrographic, and turbulence measurements, the existence of coherent structures in the boundary layer are investigated.

  16. Evidence for large compositional ranges in coeval melts erupted from Kīlauea's summit reservoir: Chapter 7

    USGS Publications Warehouse

    Helz, Rosalind T.; Clague, David A.; Mastin, Larry G.; Rose, Timothy R.; Carey, Rebecca; Cayol, Valérie; Poland, Michael P.; Weis, Dominique

    2015-01-01

    Petrologic observations on Kīlauea's lavas include abundant microprobe analyses of glasses, which show the range of melts available in Kīlauea's summit reservoir over time. During the past two centuries, compositions of melts erupted within the caldera have been limited to MgO = 6.3–7.5 wt%. Extracaldera lavas of the 1959, 1971, and 1974 eruptions contain melts with up to 10.2, 8.9, and 9.2 wt% MgO, respectively, and the 1924 tephra contains juvenile Pele's tears with up to 9.1 wt% MgO. Melt compositions from explosive deposits at Kīlauea, including the Keanakāko‘i (A.D. 1500–1800), Kulanaokuaiki (A.D. 400–1000), and Pāhala (10–25 ka) tephra units, show large ranges of MgO contents. The range of melt MgO is 6.5–11.0 wt% for the Keanakāko‘i; the Kulanaokuaiki extends to 12.5% MgO and the Pāhala Ash includes rare shards with 13–14.5% MgO. The frequency distributions for MgO in the Keanakāko‘i and Kulanaokuaiki glasses are bimodal, suggesting preferential magma storage at two different depths. Kīlauea's summit reservoir contains melts ranging from 6.5 to at least 11.0 wt% MgO, and such melts were available for sampling near instantaneously and repeatedly over centuries. More magnesian melts are inferred to have risen directly from greater depth.

  17. The upper crust laid on its side: tectonic implications of steeply tilted crustal slabs for extension in the basin and range

    USGS Publications Warehouse

    Howard, Keith A.

    2005-01-01

    Tilted slabs expose as much as the top 8–15 km of the upper crust in many parts of the Basin and Range province. Exposures of now-recumbent crustal sections in these slabs allow analysis of pre-tilt depth variations in dike swarms, plutons, and thermal history. Before tilting the slabs were panels between moderately dipping, active Tertiary normal faults. The slabs and their bounding normal faults were tilted to piggyback positions on deeper footwalls that warped up isostatically beneath them during tectonic unloading. Stratal dips within the slabs are commonly tilted to vertical or even slightly overturned, especially in the southern Basin and Range where the thin stratified cover overlies similarly tilted basement granite and gneiss. Some homoclinal recumbent slabs of basement rock display faults that splay upward into forced folds in overlying cover sequences, which thereby exhibit shallower dips. The 15-km maximum exposed paleodepth for the slabs represents the base of the brittle upper crust, as it coincides with the depth of the modern base of the seismogenic zone and the maximum focal depths of large normal-fault earthquakes in the Basin and Range. Many upended slabs accompany metamorphic core complexes, but not all core complexes have corresponding thick recumbent hanging-wall slabs. The Ruby Mountains core complex, for example, preserves only scraps of upper-plate rocks as domed-up extensional klippen, and most of the thick crustal section that originally overlay the uplifted metamorphic core now must reside below little-tilted hanging-wall blocks in the Elko-Carlin area to the west. The Whipple and Catalina Mountains core complexes in contrast are footwall to large recumbent hanging-wall slabs of basement rock exposing 8-15 km paleodepths that originally roofed the metamorphic cores; the exposed paleodepths require that a footwall rolled up beneath the slabs.

  18. Coupled analysis of high and low frequency resonant ultrasound spectroscopy: Application to the detection of defects in ceramic balls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deneuville, Francois; Duquennoy, Marc; Ouaftouh, Mohammadi

    2009-05-15

    A coupled analysis of high and low frequency resonant ultrasound spectroscopy of spheroidal modes is presented in this paper. Experimentally, by using an ultrasonic probe for the excitation (piezoelectric transducer) and a heterodyne optic probe for the receiver (interferometer), it was possible to take spectroscopic measurements of spheroidal vibrations over a large frequency range of 100 kHz-45 MHz in a continuous regime. This wide analysis range enabled variations in velocity due to the presence of defects to be differentiated from the inherent characteristics of the balls and consequently, it offers the possibility of detecting cracks independently of production variations. Thismore » kind of defect is difficult to detect because the C-shaped surface crack is very small and narrow (500x5 {mu}m{sup 2}), and its depth does not exceed 50 {mu}m. The proposed methodology can excite spheroidal vibrations in the ceramic balls and detect such vibrations over a large frequency range. On the one hand, low frequency resonances are used in order to estimate the elastic coefficients of the balls according to various inspection depths. This method has the advantage of providing highly accurate evaluations of the elastic coefficients over a wide frequency range. On the other hand, high frequency vibrations are considered because they are similar to the surface waves propagating in the surface zone of the ceramic balls and consequently can be used to detect C-crack defects.« less

  19. Focal Depth of the WenChuan Earthquake Aftershocks from modeling of Seismic Depth Phases

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Zeng, X.; Chong, J.; Ni, S.; Chen, Y.

    2008-12-01

    After the 05/12/2008 great WenChuan earthquake in Sichuan Province of China, tens of thousands earthquakes occurred with hundreds of them stronger than M4. Those aftershocks provide valuable information about seismotectonics and rupture processes for the mainshock, particularly accurate spatial distribution of aftershocks is very informational for determining rupture fault planes. However focal depth can not be well resolved just with first arrivals recorded by relatively sparse network in Sichuan Province, therefore 3D seismicity distribution is difficult to obtain though horizontal location can be located with accuracy of 5km. Instead local/regional depth phases such as sPmP, sPn, sPL and teleseismic pP,sP are very sensitive to depth, and be readily modeled to determine depth with accuracy of 2km. With reference 1D velocity structure resolved from receiver functions and seismic refraction studies, local/regional depth phases such as sPmP, sPn and sPL are identified by comparing observed waveform with synthetic seismograms by generalized ray theory and reflectivity methods. For teleseismic depth phases well observed for M5.5 and stronger events, we developed an algorithm in inverting both depth and focal mechanism from P and SH waveforms. Also we employed the Cut and Paste (CAP) method developed by Zhao and Helmberger in modeling mechanism and depth with local waveforms, which constrains depth by fitting Pnl waveforms and the relative weight between surface wave and Pnl. After modeling all the depth phases for hundreds of events , we find that most of the M4 earthquakes occur between 2-18km depth, with aftershocks depth ranging 4-12km in the southern half of Longmenshan fault while aftershocks in the northern half featuring large depth range up to 18km. Therefore seismogenic zone in the northern segment is deeper as compared to the southern segment. All the aftershocks occur in upper crust, given that the Moho is deeper than 40km, or even 60km west of the Longmenshan fault. Absence of mid-lower crustal shocks supports the model of lower crustal flow beneath eastern Tibetan plateau, which is probably responsible for Longmenshan uplifting and hence the Wenchuan earthquake.

  20. LiDAR monitoring of retrogressive processes on the steep rockslope of a large landslide in the Japanese Alps

    NASA Astrophysics Data System (ADS)

    Nishii, R.; Imaizumi, F.; Murakami, W.; Daimaru, H.; Miyamae, T.; Ogawa, Y.

    2012-04-01

    Akakuzure landslide in Japanese Alps is located in a steep mountain slope experienced deep-seated gravitational slope deformation. The landslide is 700 m high (1200-1900 m a.s.l.), 700 m wide and 400000 m2 in area with post-collapsed sediment ca 27 million m3 in volume. The steep rockslope (>40°) in the landslide shows anaclinal structure consisting of sandstone interbedding with shale. Large volume of sediment produced from the landslide has actively formed an alluvial fan on the outlet of the landslide. The volume and processes of the sediment production in the upper part (ca.40000 m^2) of the landslide were evaluated by geodetic surveys using techniques of airborne and ground-based LiDAR (Light Detection and Ranging). The airborne and ground-based LiDAR surveys were performed twice (2003 and 2007) and 3 times (2010-2011), respectively. Ground surface temperatures were monitored at 3 locations within the landslide from 2010 to 2011. Precipitation and air temperature have been also observed on a meteorological station near the study site. The average erosion depths in the observed rockslope reached 0.89 m (0.22 m/yr) during the first 4 years (2003-2007) and 0.55 m (0.18 m/yr) during the later 3 years (2007-2010). The erosion mainly occurred within the landslide rather than on the edge of the landslide (i.e. no significant retreat of the main scarp). Such large sediment production can be divided into three processes based on the depth of detachment. Deep detachment (>5 m in depth), significantly contributing to the retreat of the rockslope, happened to large blocks had located just above knick lines. During the observation period, at least five large blocks fell down, which appears to originate from sliding along the detachment zone steeper than 30°. Second, anaclinal bedding-parallel blocks (1-2 m in depth) fell down, which mainly occurred around sandstone layers. Finally, thin detachment (<1 m in depth) widely occurred on the rockslope. On one part of shale layers, the erosion depth reached 0.35 m from 2010 to 2011. In Akakuzure landside, numerous fractures of the bedrock, probably produced by gravitational deformation, play an important role to promote the rapid erosion, in addition to external triggers such as heavy rainfalls and frost actions.

  1. Geohydrology and water quality of the Roubidoux Aquifer, northeastern Oklahoma

    USGS Publications Warehouse

    Christenson, S.C.; Parkhurst, D.L.; Fairchild, R.W.

    1990-01-01

    The Roubidoux aquifer is an important source of freshwater for public supplies, commerce, industry, and rural water districts in northeastern Oklahoma. Ground-water withdrawals from the aquifer in 1981 were estimated to be 4.8 million gallons per day, of which about 90 percent was withdrawn in Ottawa County. Wells drilled at the beginning of the 20th century originally flowed at the land surface, but in 1981 water levels ranged from 22 to 471 feet below land surface. A large cone of depression has formed as a result of ground water withdrawals near Miami. Wells completed in the Roubidoux aquifer have yields that range from about 100 to more than 1,000 gallons per minute. An aquifer test and a digital ground-water flow model were used to estimate aquifer and confining-layer hydraulic characteristics. Using these methods, the transmissivity of the aquifer was estimated to be within a range of 400 to 700 square feet per day. The leakance of the confining layer was determined to be within a range from 0 to 0.13 per day, with a best estimate value in a range from 4.3 x 10-8 to 7.7 x 10-8 per day. Analyses of water samples collected as part of this study and of water-quality data from earlier work indicate that a large areal change in major-ion chemistry occurs in ground water in the Roubidoux aquifer in northeastern Oklahoma. The ground water in the easternmost part of the study unit has relatively small dissolved-solids concentrations (less than 200 milligrams per liter) with calcium, magnesium, and bicarbonate as the major ions. Ground water in the westernmost part of the study unit has relatively large dissolved-solids concentrations (greater than 800 milligrams per liter) with sodium and chloride as the major ions. A transition zone of intermediate sodium, chloride, and dissolved-solids concentrations exists between the easternmost and westernmost parts of the study unit. Three water-quality problems are apparent in the Roubidoux aquifer in northeast Oklahoma: (1) Contamination by mine water, (2) large concentrations of sodium and chloride, and (3) large radium-226 concentrations. Many wells in the mining area have been affected by mine-water contamination. At present (1990), all instances of ground-water contamination by mine water can be explained by faulty seals or leaky casings in wells that pass through the zone of mine workings and down to the Roubidoux aquifer. None of the data available to date demonstrate that mine water has migrated from the Boone Formation through the pores and fractures of the intervening geologic units to the Roubidoux aquifer. Ground water with large concentrations of sodium and chloride occurs at some depth throughout the study unit. In the eastern part of the study unit, chloride concentrations greater than 250 milligrams per liter are found at depths greater than approximately 1,200 to 1,500 feet. Data are too few to determine the depth to ground water with large concentrations of sodium and chloride in the southern and southwestern parts of the study unit. Large concentrations of gross-alpha radioactivity in ground water occur near the western edge of the transition zone. Generally, ground water with large concentrations of gross-alpha radioactivity was found to exceed the maximum contaminant level for radium-226. (available as photostat copy only)

  2. Maximum Neutral Buoyancy Depth of Juvenile Chinook Salmon: Implications for Survival during Hydroturbine Passage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pflugrath, Brett D.; Brown, Richard S.; Carlson, Thomas J.

    This study investigated the maximum depth at which juvenile Chinook salmon Oncorhynchus tshawytscha can acclimate by attaining neutral buoyancy. Depth of neutral buoyancy is dependent upon the volume of gas within the swim bladder, which greatly influences the occurrence of injuries to fish passing through hydroturbines. We used two methods to obtain maximum swim bladder volumes that were transformed into depth estimations - the increased excess mass test (IEMT) and the swim bladder rupture test (SBRT). In the IEMT, weights were surgically added to the fishes exterior, requiring the fish to increase swim bladder volume in order to remain neutrallymore » buoyant. SBRT entailed removing and artificially increasing swim bladder volume through decompression. From these tests, we estimate the maximum acclimation depth for juvenile Chinook salmon is a median of 6.7m (range = 4.6-11.6 m). These findings have important implications to survival estimates, studies using tags, hydropower operations, and survival of juvenile salmon that pass through large Kaplan turbines typical of those found within the Columbia and Snake River hydropower system.« less

  3. Snow-mediated ptarmigan browsing and shrub expansion in arctic Alaska

    Treesearch

    Ken D. Tape; Rachel Lord; Hans-Peter Marshall; Roger W. Ruess

    2010-01-01

    Large, late-winter ptarmigan migrations heavily impact the shoot, plant, and patch architecture of shrubs that remain above the snow surface. Ptarmigan browsing on arctic shrubs was assessed in the vicinity of Toolik Lake, on the north side of the Brooks Range in Alaska. Data were collected in early May 2007, at maximum snow depth, after the bulk of the ptarmigan...

  4. Determining bathymetric distributions of the eelgrass Zostera ...

    EPA Pesticide Factsheets

    Improved methods for determining bathymetric distributions of dominant intertidal plants throughout their estuarine range are needed. Zostera marina is a seagrass native to estuaries of the northeastern Pacific and many other sectors of the world ocean. The technique described here employed large format aerial photography using false color near-infrared film with digital image classification, and the production of digital bathymetric models of shallow estuaries such as those occurring in turbid waters of the Pacific Northwest USA. Application of geographic information system procedures to the eelgrass classifications and bathymetry distributions yielded digital bathymetric distributions based upon a very large number of observations. Similar bathymetric patterns were obtained for the three estuaries surveyed, and approximately 90% of the classified eelgrass occurred within the depth range -1.0 m to +1.0 m (MLLW). Comparison of these distributions with ground surveys of eelgrass lower depth limits indicated that the area of undetected subtidal eelgrass constituted 86% overall accuracy) in each estuary. The pattern of eelgrass in one estuary was distinctly different from those in the other two systems, illustrating the potential usefulness of this technique in exploring causative factors for such differences in estuarine intertidal vegetation distributions. Improved methods for determining bathymetric distributions of dominant intertidal plants throughout

  5. A terahertz EO detector with large dynamical range, high modulation depth and signal-noise ratio

    NASA Astrophysics Data System (ADS)

    Pan, Xinjian; Cai, Yi; Zeng, Xuanke; Zheng, Shuiqin; Li, Jingzhen; Xu, Shixiang

    2017-05-01

    The paper presents a novel design for terahertz (THz) free-space time domain electro-optic (EO) detection where the static birefringent phases of the two balanced arms are set close to zero but opposite to each other. Our theoretical and numerical analyses show this design has much stronger ability to cancel the optical background noise than both THz ellipsometer and traditional crossed polarizer geometry (CPG). Its optical modulation depth is about twice as high as that of traditional CPG, but about ten times as high as that of THz ellipsometer. As for the dynamical range, our improved design is comparable to the THz ellipsometer but obviously larger than the traditional CPG. Some experiments for comparing our improved CPG with traditional CPG agree well with the corresponding theoretical predictions. Our experiments also show that the splitting ratio of the used non-polarization beam splitter is critical for the performance of our design.

  6. Dimensional metrology of micro structure based on modulation depth in scanning broadband light interferometry

    NASA Astrophysics Data System (ADS)

    Zhou, Yi; Tang, Yan; Deng, Qinyuan; Zhao, Lixin; Hu, Song

    2017-08-01

    Three-dimensional measurement and inspection is an area with growing needs and interests in many domains, such as integrated circuits (IC), medical cure, and chemistry. Among the methods, broadband light interferometry is widely utilized due to its large measurement range, noncontact and high precision. In this paper, we propose a spatial modulation depth-based method to retrieve the surface topography through analyzing the characteristics of both frequency and spatial domains in the interferogram. Due to the characteristics of spatial modulation depth, the technique could effectively suppress the negative influences caused by light fluctuations and external disturbance. Both theory and experiments are elaborated to confirm that the proposed method can greatly improve the measurement stability and sensitivity with high precision. This technique can achieve a superior robustness with the potential to be applied in online topography measurement.

  7. Nonextensive statistics and skin depth of transverse wave in collisional plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashemzadeh, M., E-mail: hashemzade@gmail.com

    Skin depth of transverse wave in a collisional plasma is studied taking into account the nonextensive electron distribution function. Considering the kinetic theory for charge particles and using the Bhatnagar-Gross-Krook collision model, a generalized transverse dielectric permittivity is obtained. The transverse dispersion relation in different frequency ranges is investigated. Obtaining the imaginary part of the wave vector from the dispersion relation, the skin depth for these frequency ranges is also achieved. Profiles of the skin depth show that by increasing the q parameter, the penetration depth decreases. In addition, the skin depth increases by increasing the electron temperature. Finally, itmore » is found that in the high frequency range and high electron temperature, the penetration depth decreases by increasing the collision frequency. In contrast, by increasing the collision frequency in a highly collisional frequency range, the skin depth of transverse wave increases.« less

  8. The XMM Large Scale Structure Survey

    NASA Astrophysics Data System (ADS)

    Pierre, Marguerite

    2005-10-01

    We propose to complete, by an additional 5 deg2, the XMM-LSS Survey region overlying the Spitzer/SWIRE field. This field already has CFHTLS and Integral coverage, and will encompass about 10 deg2. The resulting multi-wavelength medium-depth survey, which complements XMM and Chandra deep surveys, will provide a unique view of large-scale structure over a wide range of redshift, and will show active galaxies in the full range of environments. The complete coverage by optical and IR surveys provides high-quality photometric redshifts, so that cosmological results can quickly be extracted. In the spirit of a Legacy survey, we will make the raw X-ray data immediately public. Multi-band catalogues and images will also be made available on short time scales.

  9. Dual beam organic depth profiling using large argon cluster ion beams

    PubMed Central

    Holzweber, M; Shard, AG; Jungnickel, H; Luch, A; Unger, WES

    2014-01-01

    Argon cluster sputtering of an organic multilayer reference material consisting of two organic components, 4,4′-bis[N-(1-naphthyl-1-)-N-phenyl- amino]-biphenyl (NPB) and aluminium tris-(8-hydroxyquinolate) (Alq3), materials commonly used in organic light-emitting diodes industry, was carried out using time-of-flight SIMS in dual beam mode. The sample used in this study consists of a ∽400-nm-thick NPB matrix with 3-nm marker layers of Alq3 at depth of ∽50, 100, 200 and 300 nm. Argon cluster sputtering provides a constant sputter yield throughout the depth profiles, and the sputter yield volumes and depth resolution are presented for Ar-cluster sizes of 630, 820, 1000, 1250 and 1660 atoms at a kinetic energy of 2.5 keV. The effect of cluster size in this material and over this range is shown to be negligible. © 2014 The Authors. Surface and Interface Analysis published by John Wiley & Sons Ltd. PMID:25892830

  10. Underwater linear polarization: physical limitations to biological functions

    PubMed Central

    Shashar, Nadav; Johnsen, Sönke; Lerner, Amit; Sabbah, Shai; Chiao, Chuan-Chin; Mäthger, Lydia M.; Hanlon, Roger T.

    2011-01-01

    Polarization sensitivity is documented in a range of marine animals. The variety of tasks for which animals can use this sensitivity, and the range over which they do so, are confined by the visual systems of these animals and by the propagation of the polarization information in the aquatic environment. We examine the environmental physical constraints in an attempt to reveal the depth, range and other limitations to the use of polarization sensitivity by marine animals. In clear oceanic waters, navigation that is based on the polarization pattern of the sky appears to be limited to shallow waters, while solar-based navigation is possible down to 200–400 m. When combined with intensity difference, polarization sensitivity allows an increase in target detection range by 70–80% with an upper limit of 15 m for large-eyed animals. This distance will be significantly smaller for small animals, such as plankton, and in turbid waters. Polarization-contrast detection, which is relevant to object detection and communication, is strongly affected by water conditions and in clear waters its range limit may reach 15 m as well. We show that polarization sensitivity may also serve for target distance estimation, when examining point source bioluminescent objects in the photic mesopelagic depth range. PMID:21282168

  11. Gain-Compensating Circuit For NDE and Ultrasonics

    NASA Technical Reports Server (NTRS)

    Kushnick, Peter W.

    1987-01-01

    High-frequency gain-compensating circuit designed for general use in nondestructive evaluation and ultrasonic measurements. Controls gain of ultrasonic receiver as function of time to aid in measuring attenuation of samples with high losses; for example, human skin and graphite/epoxy composites. Features high signal-to-noise ratio, large signal bandwidth and large dynamic range. Control bandwidth of 5 MHz ensures accuracy of control signal. Currently being used for retrieval of more information from ultrasonic signals sent through composite materials that have high losses, and to measure skin-burn depth in humans.

  12. Mechanisms controlling lateral and vertical porewater migration of depleted uranium (DU) at two UK weapons testing sites.

    PubMed

    Graham, Margaret C; Oliver, Ian W; MacKenzie, Angus B; Ellam, Robert M; Farmer, John G

    2011-04-15

    Uranium associations with colloidal and truly dissolved soil porewater components from two Ministry of Defence Firing Ranges in the UK were investigated. Porewater samples from 2-cm depth intervals for three soil cores from each of the Dundrennan and Eskmeals ranges were fractionated using centrifugal ultrafiltration (UF) and gel electrophoresis (GE). Soil porewaters from a transect running downslope from the Dundrennan firing area towards a stream (Dunrod Burn) were examined similarly. Uranium concentrations and isotopic composition were determined using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) and Multi-Collector-Inductively Coupled Plasma-Mass Spectrometry (MC-ICP-MS), respectively. The soils at Dundrennan were Fe- and Al-rich clay-loam soils whilst at Eskmeals, they were Fe- and Al-poor sandy soils; both, however, had similar organic matter contents due to the presence of a near-surface peaty layer at Eskmeals. These compositional features influenced the porewater composition and indeed the associations of U (and DU). In general, at Dundrennan, U was split between large (100kDa-0.2μm) and small (3-30kDa) organic colloids whilst at Eskmeals, U was mainly in the small colloidal and truly dissolved fractions. Especially below 10cm depth, association with large Fe/Al/organic colloids was considered to be a precursor to the removal of U from the Dundrennan porewaters to the solid phase. In contrast, the association of U with small organic colloids was largely responsible for inhibiting attenuation in the Eskmeals soils. Lateral migration of U (and DU) through near-surface Dundrennan soils will involve both large and small colloids but, at depth, transport of the smaller amounts of U remaining in the porewaters may involve large colloids only. For one of the Dundrennan cores the importance of redox-related processes for the re-mobilisation of DU was also indicated as Mn(IV) reduction resulted in the release of both Mn(II) and U(VI) into the truly dissolved phase. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Lithology of the basement underlying the Campi Flegrei caldera: Volcanological and petrological constraints

    NASA Astrophysics Data System (ADS)

    D'Antonio, Massimo

    2011-02-01

    A geologically reasonable working hypothesis is proposed for the lithology of the basement underlying the Campi Flegrei caldera in the ca. 4-8 km depth range. In most current geophysical modeling, this portion of crust is interpreted as composed of Meso-Cenozoic carbonate rocks, underlain by a ca. 1 km thick sill of partially molten rock, thought to be a main magma reservoir. Shallower magma reservoirs likely occur in the 3-4 km depth range. However, the lack of carbonate lithics in any Campi Flegrei caldera volcanic rocks does not support the hypothesis of a limestone basement. Considering the major caldera-forming eruptions, which generated widespread and voluminous ignimbrites during late Quaternary times, including the Campanian Ignimbrite and Neapolitan Yellow Tuff eruptions, the total volume of trachytic to phonolitic ejected magma is conservatively estimated at not less than 350 km 3. Results of least-squared mass-balance calculations suggest that this evolved magma formed through fractional crystallization from at least 2500 km 3 of parent shoshonitic magma, in turn derived from even more voluminous, more mafic, K-basaltic magma. Calculations suggest that shoshonitic magma, likely emplaced at ca. 8 km depth, must have crystallized about 2100 km 3 of solid material, dominated by alkali-feldspar and plagioclase, with a slightly lower amount of mafic minerals, during its route toward shallower magma reservoirs, before feeding the Campi Flegrei large-volume eruptions. The calculated volume of cumulate material, likely syenitic in composition at least in its upper portions, is more than enough to completely fill the basement volume in the 4-8 km depth range beneath the Campi Flegrei caldera, estimated at ca. 1250 km 3. Thus, it is proposed that the basement underlying the Campi Flegrei caldera below 4 km is composed mostly of crystalline igneous rocks, as for many large calderas worldwide. Syenite sensu lato would meet physical properties requirements for geophysical data interpretations, explain some geochemical and isotopic features of the past 15 ka volcanics, and justify the carbon isotopic composition of fumaroles at the Campi Flegrei caldera. This implies that Meso-Cenozoic limestones, if still present today beneath the Campi Flegrei caldera, no longer constitute significant portions of its basement.

  14. Robust Fusion of Color and Depth Data for RGB-D Target Tracking Using Adaptive Range-Invariant Depth Models and Spatio-Temporal Consistency Constraints.

    PubMed

    Xiao, Jingjing; Stolkin, Rustam; Gao, Yuqing; Leonardis, Ales

    2017-09-06

    This paper presents a novel robust method for single target tracking in RGB-D images, and also contributes a substantial new benchmark dataset for evaluating RGB-D trackers. While a target object's color distribution is reasonably motion-invariant, this is not true for the target's depth distribution, which continually varies as the target moves relative to the camera. It is therefore nontrivial to design target models which can fully exploit (potentially very rich) depth information for target tracking. For this reason, much of the previous RGB-D literature relies on color information for tracking, while exploiting depth information only for occlusion reasoning. In contrast, we propose an adaptive range-invariant target depth model, and show how both depth and color information can be fully and adaptively fused during the search for the target in each new RGB-D image. We introduce a new, hierarchical, two-layered target model (comprising local and global models) which uses spatio-temporal consistency constraints to achieve stable and robust on-the-fly target relearning. In the global layer, multiple features, derived from both color and depth data, are adaptively fused to find a candidate target region. In ambiguous frames, where one or more features disagree, this global candidate region is further decomposed into smaller local candidate regions for matching to local-layer models of small target parts. We also note that conventional use of depth data, for occlusion reasoning, can easily trigger false occlusion detections when the target moves rapidly toward the camera. To overcome this problem, we show how combining target information with contextual information enables the target's depth constraint to be relaxed. Our adaptively relaxed depth constraints can robustly accommodate large and rapid target motion in the depth direction, while still enabling the use of depth data for highly accurate reasoning about occlusions. For evaluation, we introduce a new RGB-D benchmark dataset with per-frame annotated attributes and extensive bias analysis. Our tracker is evaluated using two different state-of-the-art methodologies, VOT and object tracking benchmark, and in both cases it significantly outperforms four other state-of-the-art RGB-D trackers from the literature.

  15. Towards a global harmonized permafrost soil organic carbon stock estimates.

    NASA Astrophysics Data System (ADS)

    Hugelius, G.; Mishra, U.; Yang, Y.

    2017-12-01

    Permafrost affected soils store disproportionately large amount of organic carbon stocks due to multiple cryopedogenic processes. Previous permafrost soil organic carbon (SOC) stock estimates used a variety of approaches and reported substantial uncertainty in SOC stocks of permafrost soils. Here, we used spatially referenced data of soil-forming factors (topographic attributes, land cover types, climate, and bedrock geology) and SOC pedon description data (n = 2552) in a regression kriging approach to predict the spatial and vertical heterogeneity of SOC stocks across the Northern Circumpolar and Tibetan permafrost regions. Our approach allowed us to take into account both environmental correlation and spatial autocorrelation to separately estimate SOC stocks and their spatial uncertainties (95% CI) for three depth intervals at 250 m spatial resolution. In Northern Circumpolar region, our results show 1278.1 (1009.33 - 1550.45) Pg C in 0-3 m depth interval, with 542.09 (451.83 - 610.15), 422.46 (306.48 - 550.82), and 313.55 (251.02 - 389.48) Pg C in 0 - 1, 1 - 2, and 2 - 3 m depth intervals, respectively. In Tibetan region, our results show 26.68 (9.82 - 79.92) Pg C in 0 - 3 m depth interval, with 13.98 (6.2 - 32.96), 6.49 (1.73 - 25.86), and 6.21 (1.889 - 20.90) Pg C in 0 - 1, 1 - 2, and 2 - 3 m depth intervals, respectively. Our estimates show large spatial variability (50 - 100% coefficient of variation, depending upon the study region and depth interval) and higher uncertainty range in comparison to existing estimates. We will present the observed controls of different environmental factors on SOC at the AGU meeting.

  16. Statistical characterization of Earth’s heterogeneities from seismic scattering

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Wu, R.

    2009-12-01

    The distortion of a teleseismic wavefront carries information about the heterogeneities through which the wave propagates and it is manifestited as logarithmic amplitude (logA) and phase fluctuations of the direct P wave recorded by a seismic network. By cross correlating the fluctuations (e.g., logA-logA or phase-phase), we obtain coherence functions, which depend on spatial lags between stations and incident angles between the incident waves. We have mathematically related the depth-dependent heterogeneity spectrum to the observable coherence functions using seismic scattering theory. We will show that our method has sharp depth resolution. Using the HiNet seismic network data in Japan, we have inverted power spectra for two depth ranges, ~0-120km and below ~120km depth. The coherence functions formed by different groups of stations or by different groups of earthquakes at different back azimuths are similar. This demonstrates that the method is statistically stable and the inhomogeneities are statistically stationary. In both depth intervals, the trend of the spectral amplitude decays from large scale to small scale in a power-law fashion with exceptions at ~50km for the logA data. Due to the spatial spacing of the seismometers, only information from length scale 15km to 200km is inverted. However our scattering method provides new information on small to intermediate scales that are comparable to scales of the recycled materials and thus is complimentary to the global seismic tomography which reveals mainly large-scale heterogeneities on the order of ~1000km. The small-scale heterogeneities revealed here are not likely of pure thermal origin. Therefore, the length scale and strength of heterogeneities as a function of depth may provide important constraints in mechanical mixing of various components in the mantle convection.

  17. Antarctic Sea Ice Thickness and Snow-to-Ice Conversion from Atmospheric Reanalysis and Passive Microwave Snow Depth

    NASA Technical Reports Server (NTRS)

    Markus, Thorsten; Maksym, Ted

    2007-01-01

    Passive microwave snow depth, ice concentration, and ice motion estimates are combined with snowfall from the European Centre for Medium Range Weather Forecasting (ECMWF) reanalysis (ERA-40) from 1979-200 1 to estimate the prevalence of snow-to-ice conversion (snow-ice formation) on level sea ice in the Antarctic for April-October. Snow ice is ubiquitous in all regions throughout the growth season. Calculated snow- ice thicknesses fall within the range of estimates from ice core analysis for most regions. However, uncertainties in both this analysis and in situ data limit the usefulness of snow depth and snow-ice production to evaluate the accuracy of ERA-40 snowfall. The East Antarctic is an exception, where calculated snow-ice production exceeds observed ice thickness over wide areas, suggesting that ERA-40 precipitation is too high there. Snow-ice thickness variability is strongly controlled not just by snow accumulation rates, but also by ice divergence. Surprisingly, snow-ice production is largely independent of snow depth, indicating that the latter may be a poor indicator of total snow accumulation. Using the presence of snow-ice formation as a proxy indicator for near-zero freeboard, we examine the possibility of estimating level ice thickness from satellite snow depths. A best estimate for the mean level ice thickness in September is 53 cm, comparing well with 51 cm from ship-based observations. The error is estimated to be 10-20 cm, which is similar to the observed interannual and regional variability. Nevertheless, this is comparable to expected errors for ice thickness determined by satellite altimeters. Improvement in satellite snow depth retrievals would benefit both of these methods.

  18. Enhanced Graphics for Extended Scale Range

    NASA Technical Reports Server (NTRS)

    Hanson, Andrew J.; Chi-Wing Fu, Philip

    2012-01-01

    Enhanced Graphics for Extended Scale Range is a computer program for rendering fly-through views of scene models that include visible objects differing in size by large orders of magnitude. An example would be a scene showing a person in a park at night with the moon, stars, and galaxies in the background sky. Prior graphical computer programs exhibit arithmetic and other anomalies when rendering scenes containing objects that differ enormously in scale and distance from the viewer. The present program dynamically repartitions distance scales of objects in a scene during rendering to eliminate almost all such anomalies in a way compatible with implementation in other software and in hardware accelerators. By assigning depth ranges correspond ing to rendering precision requirements, either automatically or under program control, this program spaces out object scales to match the precision requirements of the rendering arithmetic. This action includes an intelligent partition of the depth buffer ranges to avoid known anomalies from this source. The program is written in C++, using OpenGL, GLUT, and GLUI standard libraries, and nVidia GEForce Vertex Shader extensions. The program has been shown to work on several computers running UNIX and Windows operating systems.

  19. Spectrally resolved chromatic confocal interferometry for one-shot nano-scale surface profilometry with several tens of micrometric depth range

    NASA Astrophysics Data System (ADS)

    Chen, Liang-Chia; Chen, Yi-Shiuan; Chang, Yi-Wei; Lin, Shyh-Tsong; Yeh, Sheng Lih

    2013-01-01

    In this research, new nano-scale measurement methodology based on spectrally-resolved chromatic confocal interferometry (SRCCI) was successfully developed by employing integration of chromatic confocal sectioning and spectrally-resolve white light interferometry (SRWLI) for microscopic three dimensional surface profilometry. The proposed chromatic confocal method (CCM) using a broad band while light in combination with a specially designed chromatic dispersion objective is capable of simultaneously acquiring multiple images at a large range of object depths to perform surface 3-D reconstruction by single image shot without vertical scanning and correspondingly achieving a high measurement depth range up to hundreds of micrometers. A Linnik-type interferometric configuration based on spectrally resolved white light interferometry is developed and integrated with the CCM to simultaneously achieve nanoscale axis resolution for the detection point. The white-light interferograms acquired at the exit plane of the spectrometer possess a continuous variation of wavelength along the chromaticity axis, in which the light intensity reaches to its peak when the optical path difference equals to zero between two optical arms. To examine the measurement accuracy of the developed system, a pre-calibrated accurate step height target with a total step height of 10.10 μm was measured. The experimental result shows that the maximum measurement error was verified to be less than 0.3% of the overall measuring height.

  20. Domain-averaged snow depth over complex terrain from flat field measurements

    NASA Astrophysics Data System (ADS)

    Helbig, Nora; van Herwijnen, Alec

    2017-04-01

    Snow depth is an important parameter for a variety of coarse-scale models and applications, such as hydrological forecasting. Since high-resolution snow cover models are computational expensive, simplified snow models are often used. Ground measured snow depth at single stations provide a chance for snow depth data assimilation to improve coarse-scale model forecasts. Snow depth is however commonly recorded at so-called flat fields, often in large measurement networks. While these ground measurement networks provide a wealth of information, various studies questioned the representativity of such flat field snow depth measurements for the surrounding topography. We developed two parameterizations to compute domain-averaged snow depth for coarse model grid cells over complex topography using easy to derive topographic parameters. To derive the two parameterizations we performed a scale dependent analysis for domain sizes ranging from 50m to 3km using highly-resolved snow depth maps at the peak of winter from two distinct climatic regions in Switzerland and in the Spanish Pyrenees. The first, simpler parameterization uses a commonly applied linear lapse rate. For the second parameterization, we first removed the obvious elevation gradient in mean snow depth, which revealed an additional correlation with the subgrid sky view factor. We evaluated domain-averaged snow depth derived with both parameterizations using flat field measurements nearby with the domain-averaged highly-resolved snow depth. This revealed an overall improved performance for the parameterization combining a power law elevation trend scaled with the subgrid parameterized sky view factor. We therefore suggest the parameterization could be used to assimilate flat field snow depth into coarse-scale snow model frameworks in order to improve coarse-scale snow depth estimates over complex topography.

  1. Crustal attenuation characteristics in western Turkey

    NASA Astrophysics Data System (ADS)

    Kurtulmuş, Tevfik Özgür; Akyol, Nihal

    2013-11-01

    We analysed 1764 records produced by 322 micro- and moderate-size local earthquakes in western Turkey to estimate crustal attenuation characteristics in the frequency range of 1.0 ≤ f ≤ 10 Hz. In the first step, we obtained non-parametric attenuation functions and they show that seismic recordings of transverse and radial S waves exhibit different characteristics at short and long hypocentral distances. Applying a two-step inversion, we parametrized Q( f ) and geometrical spreading exponent b( f ) for the entire distance range between 10 and 200 km and then we estimated separately Q and b values for short (10-70 km) and large (120-200 km) distance ranges. We could not observe significant frequency dependencies of b for short distance range, whereas the significant frequency dependence of b was observed for large distances. Low Q0 values (˜60) with strong frequency dependence of Q (˜1.4) for short distances suggest that scattering might be an important factor contributing to the attenuation of body waves in the region, which could be associated to a high degree of fracturing, fluid filled cracks, young volcanism and geothermal activity in the crust. Weak Q frequency dependence and higher Q0 values for large distances manifest more homogenous medium because of increasing pressure and enhanced healing of cracks with increasing temperature and depth. Q anisotropy was also observed for large hypocentral distance ranges.

  2. Optimizing visual comfort for stereoscopic 3D display based on color-plus-depth signals.

    PubMed

    Shao, Feng; Jiang, Qiuping; Fu, Randi; Yu, Mei; Jiang, Gangyi

    2016-05-30

    Visual comfort is a long-facing problem in stereoscopic 3D (S3D) display. In this paper, targeting to produce S3D content based on color-plus-depth signals, a general framework for depth mapping to optimize visual comfort for S3D display is proposed. The main motivation of this work is to remap the depth range of color-plus-depth signals to a new depth range that is suitable to comfortable S3D display. Towards this end, we first remap the depth range globally based on the adjusted zero disparity plane, and then present a two-stage global and local depth optimization solution to solve the visual comfort problem. The remapped depth map is used to generate the S3D output. We demonstrate the power of our approach on perceptually uncomfortable and comfortable stereoscopic images.

  3. Isotopic and trace element variations in the Ruby Batholith, Alaska, and the nature of the deep crust beneath the Ruby and Angayucham Terranes

    USGS Publications Warehouse

    Arth, Joseph G.; Zmuda, Clara C.; Foley, Nora K.; Criss, Robert E.; Patton, W.W.; Miller, T.P.

    1989-01-01

    Thirty-six samples from plutons of the Ruby batholith of central Alaska were collected and analyzed for 22 trace elements, and many were analyzed for the isotopic compositions of Sr, Nd, O, and Pb in order to delimit the processes that produced the diversity of granodioritic to granitic compositions, to deduce the nature of the source of magmas at about 110 Ma, and to characterize the deep crust beneath the Ruby and Angayucham terranes. Plutons of the batholith show a substantial range in initial 87Sr/86Sr (SIR) of 0.7055–0.7235 and a general decrease from southwest to northeast. Initial 143Nd/144Nd (NIR) have a range of 0.51150–0.51232 and generally increase from southwest to northeast. The δ18O values for most whole rocks have a range of +8.4 to +11.8 and an average of +10.3‰. Rb, Cs, U, and Th show large ranges of concentration, generally increase as SiO2 increases, and are higher in southwest than in northeast plutons. Sr, Ba, Zr, Hf, Ta, Sc, Cr, Co, and Zr show large ranges of concentration and generally decrease as SiO2 increases. Rare earth elements (REE) show fractionated patterns and negative Eu anomalies. REE concentrations and anomalies are larger in the southwest than in the northeast plutons. Uniformity of SIR and NIR in Sithylemenkat and Jim River plutons suggests a strong role for fractional crystallization or melting of uniform magma sources at depth. Isotopic variability in Melozitna, Ray Mountains, Hot Springs, and Kanuti plutons suggests complex magmatic processes such as magma mixing and assimilation, probably combined with fractional crystallization, or melting of a complex source at depth. The large variations in SIR and NIR in the batholith require a variation in source materials at depth. The southwestern plutons probably had dominantly siliceous sources composed of metamorphosed Proterozoic and Paleozoic upper crustal rocks. The northeastern plutons probably had Paleozoic sources that were mixtures of siliceous and intermediate to mafic crustal rocks. The inferred sources could well have been the higher-metamorphic-grade lithologic equivalents of the exposed Proterozoic(?) to Paleozoic schists, orthogneisses, and metavolcanic rocks of Ruby terrane, the silicic portions of which are quite radiogenic. The deeper crustal sources that gave rise to most of the batholithic magmas are inferred to be similar under both the Ruby metamorphic terrane and the Angayucham ophiolitic terrane.

  4. SU-F-T-194: Analyzing the Effect of Range Shifter Air Gap On TPS Dose Modeling Accuracy in Superficial PBS Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirey, R; Wu, H

    2016-06-15

    Purpose: Treatment planning systems (TPS) may not accurately model superficial dose distributions of range shifted proton pencil beam scanning (PBS) treatments. Numerous patient-specific QA tests performed on superficially treated PBS plans have shown a consistent overestimate of dose by the TPS. This study quantifies variations between TPS planned dose and measured dose as a function of range shifter air gap and treatment depths up to 5 cm. Methods: PBS treatment plans were created in the TPS to uniformly irradiate a volume of solid water. One plan was created for each range shifter position analyzed, and all plans utilized identical dosemore » optimization parameters. Each optimized plan was analyzed in the TPS to determine the planned dose at varying depths. A PBS proton therapy system with a 3.5 cm lucite range shifter delivered the treatment plans, and a parallel plate chamber embedded in RW3 solid water measured dose at shallow depths for each air gap. Differences between measured and planned doses were plotted and analyzed. Results: The data show that the TPS more accurately models superficial dose as the air gap between the range shifter and patient surface decreases. Air gaps less than 10 cm have an average dose difference of only 1.6%, whereas air gaps between 10 and 20 cm differ by 3.0% and gaps greater than 20 cm differ by 4.4%. Conclusion: This study has shown that the TPS is unable to accurately model superficial dose with a large range shifter air gap. Dose differences greater than 3% will likely cause QA failure, as many institutions analyze patient QA with a 3%/3mm gamma analysis. For superficial PBS therapy, range shifter positions should be chosen to keep the air gap less then 10 cm when patient setup and gantry geometry allow.« less

  5. Depth as a driver of evolution in the deep sea: Insights from grenadiers (Gadiformes: Macrouridae) of the genus Coryphaenoides.

    PubMed

    Gaither, Michelle R; Violi, Biagio; Gray, Howard W I; Neat, Francis; Drazen, Jeffrey C; Grubbs, R Dean; Roa-Varón, Adela; Sutton, Tracey; Hoelzel, A Rus

    2016-11-01

    Here we consider the role of depth as a driver of evolution in a genus of deep-sea fishes. We provide a phylogeny for the genus Coryphaenoides (Gadiformes: Macrouridae) that represents the breadth of habitat use and distributions for these species. In our consensus phylogeny species found at abyssal depths (>4000m) form a well-supported lineage, which interestingly also includes two non-abyssal species, C. striaturus and C. murrayi, diverging from the basal node of that lineage. Biogeographic analyses suggest the genus may have originated in the Southern and Pacific Oceans where contemporary species diversity is highest. The abyssal lineage seems to have arisen secondarily and likely originated in the Southern/Pacific Oceans but diversification of this lineage occurred in the Northern Atlantic Ocean. All abyssal species are found in the North Atlantic with the exception of C. yaquinae in the North Pacific and C. filicauda in the Southern Ocean. Abyssal species tend to have broad depth ranges and wide distributions, indicating that the stability of the deep oceans and the ability to live across wide depths may promote population connectivity and facilitate large ranges. We also confirm that morphologically defined subgenera do not agree with our phylogeny and that the Giant grenadier (formerly Albatrossia pectoralis) belongs to Coryphaenoides, indicating that a taxonomic revision of the genus is needed. We discuss the implications of our findings for understanding the radiation and diversification of this genus, and the likely role of adaptation to the abyss. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jager, Yetta; Forsythe, Patrick S.; McLaughlin, Robert L.

    The majority of large North American rivers are fragmented by dams that interrupt migrations of wide-ranging fishes like sturgeons. Reconnecting habitat is viewed as an important means of protecting sturgeon species in U.S. rivers because these species have lost between 5% and 60% of their historical ranges. Unfortunately, facilities designed to pass other fishes have rarely worked well for sturgeons. The most successful passage facilities were sized appropriately for sturgeons and accommodated bottom-oriented species. For upstream passage, facilities with large entrances, full-depth guidance systems, large lifts, or wide fishways without obstructions or tight turns worked well. However, facilitating upstream migrationmore » is only half the battle. Broader recovery for linked sturgeon populations requires safe round-trip passage involving multiple dams. The most successful downstream passage facilities included nature-like fishways, large canal bypasses, and bottom-draw sluice gates. We outline an adaptive approach to implementing passage that begins with temporary programs and structures and monitors success both at the scale of individual fish at individual dams and the scale of metapopulations in a river basin. The challenge will be to learn from past efforts and reconnect North American sturgeon populations in a way that promotes range expansion and facilitates population recovery.« less

  7. Reconnecting fragmented sturgeon populations in North American rivers

    USGS Publications Warehouse

    Jager, Henriette; Parsley, Michael J.; Cech, Joseph J. Jr.; McLaughlin, R.L.; Forsythe, Patrick S.; Elliott, Robert S.

    2016-01-01

    The majority of large North American rivers are fragmented by dams that interrupt migrations of wide-ranging fishes like sturgeons. Reconnecting habitat is viewed as an important means of protecting sturgeon species in U.S. rivers because these species have lost between 5% and 60% of their historical ranges. Unfortunately, facilities designed to pass other fishes have rarely worked well for sturgeons. The most successful passage facilities were sized appropriately for sturgeons and accommodated bottom-oriented species. For upstream passage, facilities with large entrances, full-depth guidance systems, large lifts, or wide fishways without obstructions or tight turns worked well. However, facilitating upstream migration is only half the battle. Broader recovery for linked sturgeon populations requires safe “round-trip” passage involving multiple dams. The most successful downstream passage facilities included nature-like fishways, large canal bypasses, and bottom-draw sluice gates. We outline an adaptive approach to implementing passage that begins with temporary programs and structures and monitors success both at the scale of individual fish at individual dams and the scale of metapopulations in a river basin. The challenge will be to learn from past efforts and reconnect North American sturgeon populations in a way that promotes range expansion and facilitates population recovery.

  8. Experimental study on the sensitive depth of backwards detected light in turbid media.

    PubMed

    Zhang, Yunyao; Huang, Liqing; Zhang, Ning; Tian, Heng; Zhu, Jingping

    2018-05-28

    In the recent past, optical spectroscopy and imaging methods for biomedical diagnosis and target enhancing have been widely researched. The challenge to improve the performance of these methods is to know the sensitive depth of the backwards detected light well. Former research mainly employed a Monte Carlo method to run simulations to statistically describe the light sensitive depth. An experimental method for investigating the sensitive depth was developed and is presented here. An absorption plate was employed to remove all the light that may have travelled deeper than the plate, leaving only the light which cannot reach the plate. By measuring the received backwards light intensity and the depth between the probe and the plate, the light intensity distribution along the depth dimension can be achieved. The depth with the maximum light intensity was recorded as the sensitive depth. The experimental results showed that the maximum light intensity was nearly the same in a short depth range. It could be deduced that the sensitive depth was a range, rather than a single depth. This sensitive depth range as well as its central depth increased consistently with the increasing source-detection distance. Relationships between sensitive depth and optical properties were also investigated. It also showed that the reduced scattering coefficient affects the central sensitive depth and the range of the sensitive depth more than the absorption coefficient, so they cannot be simply added as reduced distinct coefficients to describe the sensitive depth. This study provides an efficient method for investigation of sensitive depth. It may facilitate the development of spectroscopy and imaging techniques for biomedical diagnosis and underwater imaging.

  9. Basalt depths in lunar basins using impact craters as stratigraphic probes: Evaluation of a method using orbital geochemical data

    NASA Technical Reports Server (NTRS)

    Andre, C. G.

    1986-01-01

    A rare look at the chemical composition of subsurface stratigraphy in lunar basins filled with mare basalt is possible at fresh impact craters. Mg/Al maps from orbital X-ray flourescence measurements of mare areas indicate chemical anomalies associated with materials ejected by large post-mare impacts. A method of constraining the wide-ranging estimates of mare basalt depths using the orbital MG/Al data is evaluated and the results are compared to those of investigators using different indirect methods. Chemical anomalies at impact craters within the maria indicate five locations where higher Mg/Al basalt compositions may have been excavated from beneath the surface layer. At eight other locations, low Mg/Al anomalies suggest that basin-floor material was ejected. In these two cases, the stratigraphic layers are interpreted to occur at depths less than the calculated maximum depth of excavation. In five other cases, there is no apparent chemical change between the crater and the surrounding mare surface. This suggests homogeneous basalt compositions that extend down to the depths sampled, i.e., no anorthositic material that might represent the basin floor was exposed.

  10. Method and system for determining depth distribution of radiation-emitting material located in a source medium and radiation detector system for use therein

    DOEpatents

    Benke, Roland R.; Kearfott, Kimberlee J.; McGregor, Douglas S.

    2003-03-04

    A method, system and a radiation detector system for use therein are provided for determining the depth distribution of radiation-emitting material distributed in a source medium, such as a contaminated field, without the need to take samples, such as extensive soil samples, to determine the depth distribution. The system includes a portable detector assembly with an x-ray or gamma-ray detector having a detector axis for detecting the emitted radiation. The radiation may be naturally-emitted by the material, such as gamma-ray-emitting radionuclides, or emitted when the material is struck by other radiation. The assembly also includes a hollow collimator in which the detector is positioned. The collimator causes the emitted radiation to bend toward the detector as rays parallel to the detector axis of the detector. The collimator may be a hollow cylinder positioned so that its central axis is perpendicular to the upper surface of the large area source when positioned thereon. The collimator allows the detector to angularly sample the emitted radiation over many ranges of polar angles. This is done by forming the collimator as a single adjustable collimator or a set of collimator pieces having various possible configurations when connected together. In any one configuration, the collimator allows the detector to detect only the radiation emitted from a selected range of polar angles measured from the detector axis. Adjustment of the collimator or the detector therein enables the detector to detect radiation emitted from a different range of polar angles. The system further includes a signal processor for processing the signals from the detector wherein signals obtained from different ranges of polar angles are processed together to obtain a reconstruction of the radiation-emitting material as a function of depth, assuming, but not limited to, a spatially-uniform depth distribution of the material within each layer. The detector system includes detectors having different properties (sensitivity, energy resolution) which are combined so that excellent spectral information may be obtained along with good determinations of the radiation field as a function of position.

  11. Stereoscopic depth perception varies with hues

    NASA Astrophysics Data System (ADS)

    Chen, Zaiqing; Shi, Junsheng; Tai, Yonghang; Yun, Lijun

    2012-09-01

    The contribution of color information to stereopsis is controversial, and whether the stereoscopic depth perception varies with chromaticity is ambiguous. This study examined the changes in depth perception caused by hue variations. Based on the fact that a greater disparity range indicates more efficient stereoscopic perception, the effect of hue variations on depth perception was evaluated through the disparity range with random-dot stereogram stimuli. The disparity range was obtained by constant-stimulus method for eight chromaticity points sampled from the CIE 1931 chromaticity diagram. Eight sample points include four main color hues: red, yellow, green, and blue at two levels of chroma. The results show that the disparity range for the yellow hue is greater than the red hue, the latter being greater than the blue hue and the disparity range for green hue is smallest. We conclude that the perceived depth is not the same for different hues for a given size of disparity. We suggest that the stereoscopic depth perception can vary with chromaticity.

  12. Dietary flexibility in three representative waterbirds across salinity and depth gradients in salt ponds of San Francisco Bay

    USGS Publications Warehouse

    Takekawa, John Y.; Miles, A.K.; Tsao-Melcer, D. C.; Schoellhamer, D.H.; Fregien, S.; Athearn, N.D.

    2009-01-01

    Salt evaporation ponds have existed in San Francisco Bay, California, for more than a century. In the past decade, most of the salt ponds have been retired from production and purchased for resource conservation with a focus on tidal marsh restoration. However, large numbers of waterbirds are found in salt ponds, especially during migration and wintering periods. The value of these hypersaline wetlands for waterbirds is not well understood, including how different avian foraging guilds use invertebrate prey resources at different salinities and depths. The aim of this study was to investigate the dietary flexibility of waterbirds by examining the population number and diet of three feeding guilds across a salinity and depth gradient in former salt ponds of the Napa-Sonoma Marshes. Although total invertebrate biomass and species richness were greater in low than high salinity salt ponds, waterbirds fed in ponds that ranged from low (20 g l-1) to very high salinities (250 g l -1). American avocets (surface sweeper) foraged in shallow areas at pond edges and consumed a wide range of prey types (8) including seeds at low salinity, but preferred brine flies at mid salinity (40-80 g l-1). Western sandpipers (prober) focused on exposed edges and shoal habitats and consumed only a few prey types (2-4) at both low and mid salinities. Suitable depths for foraging were greatest for ruddy ducks (diving benthivore) that consumed a wide variety of invertebrate taxa (5) at low salinity, but focused on fewer prey (3) at mid salinity. We found few brine shrimp, common in higher salinity waters, in the digestive tracts of any of these species. Dietary flexibility allows different guilds to use ponds across a range of salinities, but their foraging extent is limited by available water depths. ?? 2009 USGS, US Government.

  13. Helium ions at the heidelberg ion beam therapy center: comparisons between FLUKA Monte Carlo code predictions and dosimetric measurements

    NASA Astrophysics Data System (ADS)

    Tessonnier, T.; Mairani, A.; Brons, S.; Sala, P.; Cerutti, F.; Ferrari, A.; Haberer, T.; Debus, J.; Parodi, K.

    2017-08-01

    In the field of particle therapy helium ion beams could offer an alternative for radiotherapy treatments, owing to their interesting physical and biological properties intermediate between protons and carbon ions. We present in this work the comparisons and validations of the Monte Carlo FLUKA code against in-depth dosimetric measurements acquired at the Heidelberg Ion Beam Therapy Center (HIT). Depth dose distributions in water with and without ripple filter, lateral profiles at different depths in water and a spread-out Bragg peak were investigated. After experimentally-driven tuning of the less known initial beam characteristics in vacuum (beam lateral size and momentum spread) and simulation parameters (water ionization potential), comparisons of depth dose distributions were performed between simulations and measurements, which showed overall good agreement with range differences below 0.1 mm and dose-weighted average dose-differences below 2.3% throughout the entire energy range. Comparisons of lateral dose profiles showed differences in full-width-half-maximum lower than 0.7 mm. Measurements of the spread-out Bragg peak indicated differences with simulations below 1% in the high dose regions and 3% in all other regions, with a range difference less than 0.5 mm. Despite the promising results, some discrepancies between simulations and measurements were observed, particularly at high energies. These differences were attributed to an underestimation of dose contributions from secondary particles at large angles, as seen in a triple Gaussian parametrization of the lateral profiles along the depth. However, the results allowed us to validate FLUKA simulations against measurements, confirming its suitability for 4He ion beam modeling in preparation of clinical establishment at HIT. Future activities building on this work will include treatment plan comparisons using validated biological models between proton and helium ions, either within a Monte Carlo treatment planning engine based on the same FLUKA code, or an independent analytical planning system fed with a validated database of inputs calculated with FLUKA.

  14. Helium ions at the heidelberg ion beam therapy center: comparisons between FLUKA Monte Carlo code predictions and dosimetric measurements.

    PubMed

    Tessonnier, T; Mairani, A; Brons, S; Sala, P; Cerutti, F; Ferrari, A; Haberer, T; Debus, J; Parodi, K

    2017-08-01

    In the field of particle therapy helium ion beams could offer an alternative for radiotherapy treatments, owing to their interesting physical and biological properties intermediate between protons and carbon ions. We present in this work the comparisons and validations of the Monte Carlo FLUKA code against in-depth dosimetric measurements acquired at the Heidelberg Ion Beam Therapy Center (HIT). Depth dose distributions in water with and without ripple filter, lateral profiles at different depths in water and a spread-out Bragg peak were investigated. After experimentally-driven tuning of the less known initial beam characteristics in vacuum (beam lateral size and momentum spread) and simulation parameters (water ionization potential), comparisons of depth dose distributions were performed between simulations and measurements, which showed overall good agreement with range differences below 0.1 mm and dose-weighted average dose-differences below 2.3% throughout the entire energy range. Comparisons of lateral dose profiles showed differences in full-width-half-maximum lower than 0.7 mm. Measurements of the spread-out Bragg peak indicated differences with simulations below 1% in the high dose regions and 3% in all other regions, with a range difference less than 0.5 mm. Despite the promising results, some discrepancies between simulations and measurements were observed, particularly at high energies. These differences were attributed to an underestimation of dose contributions from secondary particles at large angles, as seen in a triple Gaussian parametrization of the lateral profiles along the depth. However, the results allowed us to validate FLUKA simulations against measurements, confirming its suitability for 4 He ion beam modeling in preparation of clinical establishment at HIT. Future activities building on this work will include treatment plan comparisons using validated biological models between proton and helium ions, either within a Monte Carlo treatment planning engine based on the same FLUKA code, or an independent analytical planning system fed with a validated database of inputs calculated with FLUKA.

  15. Identification of copy number variants in whole-genome data using Reference Coverage Profiles

    PubMed Central

    Glusman, Gustavo; Severson, Alissa; Dhankani, Varsha; Robinson, Max; Farrah, Terry; Mauldin, Denise E.; Stittrich, Anna B.; Ament, Seth A.; Roach, Jared C.; Brunkow, Mary E.; Bodian, Dale L.; Vockley, Joseph G.; Shmulevich, Ilya; Niederhuber, John E.; Hood, Leroy

    2015-01-01

    The identification of DNA copy numbers from short-read sequencing data remains a challenge for both technical and algorithmic reasons. The raw data for these analyses are measured in tens to hundreds of gigabytes per genome; transmitting, storing, and analyzing such large files is cumbersome, particularly for methods that analyze several samples simultaneously. We developed a very efficient representation of depth of coverage (150–1000× compression) that enables such analyses. Current methods for analyzing variants in whole-genome sequencing (WGS) data frequently miss copy number variants (CNVs), particularly hemizygous deletions in the 1–100 kb range. To fill this gap, we developed a method to identify CNVs in individual genomes, based on comparison to joint profiles pre-computed from a large set of genomes. We analyzed depth of coverage in over 6000 high quality (>40×) genomes. The depth of coverage has strong sequence-specific fluctuations only partially explained by global parameters like %GC. To account for these fluctuations, we constructed multi-genome profiles representing the observed or inferred diploid depth of coverage at each position along the genome. These Reference Coverage Profiles (RCPs) take into account the diverse technologies and pipeline versions used. Normalization of the scaled coverage to the RCP followed by hidden Markov model (HMM) segmentation enables efficient detection of CNVs and large deletions in individual genomes. Use of pre-computed multi-genome coverage profiles improves our ability to analyze each individual genome. We make available RCPs and tools for performing these analyses on personal genomes. We expect the increased sensitivity and specificity for individual genome analysis to be critical for achieving clinical-grade genome interpretation. PMID:25741365

  16. Coulomb Mechanics And Landscape Geometry Explain Landslide Size Distribution

    NASA Astrophysics Data System (ADS)

    Jeandet, L.; Steer, P.; Lague, D.; Davy, P.

    2017-12-01

    It is generally observed that the dimensions of large bedrock landslides follow power-law scaling relationships. In particular, the non-cumulative frequency distribution (PDF) of bedrock landslide area is well characterized by a negative power-law above a critical size, with an exponent 2.4. However, the respective role of bedrock mechanical properties, landscape shape and triggering mechanisms on the scaling properties of landslide dimensions are still poorly understood. Yet, unravelling the factors that control this distribution is required to better estimate the total volume of landslides triggered by large earthquakes or storms. To tackle this issue, we develop a simple probabilistic 1D approach to compute the PDF of rupture depths in a given landscape. The model is applied to randomly sampled points along hillslopes of studied digital elevation models. At each point location, the model determines the range of depth and angle leading to unstable rupture planes, by applying a simple Mohr-Coulomb rupture criterion only to the rupture planes that intersect downhill surface topography. This model therefore accounts for both rock mechanical properties, friction and cohesion, and landscape shape. We show that this model leads to realistic landslide depth distribution, with a power-law arising when the number of samples is high enough. The modeled PDF of landslide size obtained for several landscapes match the ones from earthquakes-driven landslides catalogues for the same landscape. In turn, this allows us to invert landslide effective mechanical parameters, friction and cohesion, associated to those specific events, including Chi-Chi, Wenchuan, Niigata and Gorkha earthquakes. The cohesion and friction ranges (25-35 degrees and 5-20 kPa) are in good agreement with previously inverted values. Our results demonstrate that reduced complexity mechanics is efficient to model the distribution of unstable depths, and show the role of landscape variability in landslide size distribution.

  17. Short-range, overpressure-driven methane migration in coarse-grained gas hydrate reservoirs

    DOE PAGES

    Nole, Michael; Daigle, Hugh; Cook, Ann E.; ...

    2016-08-31

    Two methane migration mechanisms have been proposed for coarse-grained gas hydrate reservoirs: short-range diffusive gas migration and long-range advective fluid transport from depth. Herein we demonstrate that short-range fluid flow due to overpressure in marine sediments is a significant additional methane transport mechanism that allows hydrate to precipitate in large quantities in thick, coarse-grained hydrate reservoirs. Two-dimensional simulations demonstrate that this migration mechanism, short-range advective transport, can supply significant amounts of dissolved gas and is unencumbered by limitations of the other two end-member mechanisms. Here, short-range advective migration can increase the amount of methane delivered to sands as compared tomore » the slow process of diffusion, yet it is not necessarily limited by effective porosity reduction as is typical of updip advection from a deep source.« less

  18. Short-range, overpressure-driven methane migration in coarse-grained gas hydrate reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nole, Michael; Daigle, Hugh; Cook, Ann E.

    Two methane migration mechanisms have been proposed for coarse-grained gas hydrate reservoirs: short-range diffusive gas migration and long-range advective fluid transport from depth. Herein we demonstrate that short-range fluid flow due to overpressure in marine sediments is a significant additional methane transport mechanism that allows hydrate to precipitate in large quantities in thick, coarse-grained hydrate reservoirs. Two-dimensional simulations demonstrate that this migration mechanism, short-range advective transport, can supply significant amounts of dissolved gas and is unencumbered by limitations of the other two end-member mechanisms. Here, short-range advective migration can increase the amount of methane delivered to sands as compared tomore » the slow process of diffusion, yet it is not necessarily limited by effective porosity reduction as is typical of updip advection from a deep source.« less

  19. Quality assurance of proton beams using a multilayer ionization chamber system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhanesar, Sandeep; Sahoo, Narayan; Kerr, Matthew

    2013-09-15

    Purpose: The measurement of percentage depth-dose (PDD) distributions for the quality assurance of clinical proton beams is most commonly performed with a computerized water tank dosimetry system with ionization chamber, commonly referred to as water tank. Although the accuracy and reproducibility of this method is well established, it can be time-consuming if a large number of measurements are required. In this work the authors evaluate the linearity, reproducibility, sensitivity to field size, accuracy, and time-savings of another system: the Zebra, a multilayer ionization chamber system.Methods: The Zebra, consisting of 180 parallel-plate ionization chambers with 2 mm resolution, was used tomore » measure depth-dose distributions. The measurements were performed for scattered and scanned proton pencil beams of multiple energies delivered by the Hitachi PROBEAT synchrotron-based delivery system. For scattered beams, the Zebra-measured depth-dose distributions were compared with those measured with the water tank. The principal descriptors extracted for comparisons were: range, the depth of the distal 90% dose; spread-out Bragg peak (SOBP) length, the region between the proximal 95% and distal 90% dose; and distal-dose fall off (DDF), the region between the distal 80% and 20% dose. For scanned beams, the Zebra-measured ranges were compared with those acquired using a Bragg peak chamber during commissioning.Results: The Zebra demonstrated better than 1% reproducibility and monitor unit linearity. The response of the Zebra was found to be sensitive to radiation field sizes greater than 12.5 × 12.5 cm; hence, the measurements used to determine accuracy were performed using a field size of 10 × 10 cm. For the scattered proton beams, PDD distributions showed 1.5% agreement within the SOBP, and 3.8% outside. Range values agreed within −0.1 ± 0.4 mm, with a maximum deviation of 1.2 mm. SOBP length values agreed within 0 ± 2 mm, with a maximum deviation of 6 mm. DDF values agreed within 0.3 ± 0.1 mm, with a maximum deviation of 0.6 mm. For the scanned proton pencil beams, Zebra and Bragg peak chamber range values demonstrated agreement of 0.0 ± 0.3 mm with a maximum deviation of 1.3 mm. The setup and measurement time for all Zebra measurements was 3 and 20 times less, respectively, compared to the water tank measurements.Conclusions: Our investigation shows that the Zebra can be useful not only for fast but also for accurate measurements of the depth-dose distributions of both scattered and scanned proton beams. The analysis of a large set of measurements shows that the commonly assessed beam quality parameters obtained with the Zebra are within the acceptable variations specified by the manufacturer for our delivery system.« less

  20. Density of basalt core from Hilo drill hole, Hawaii

    USGS Publications Warehouse

    Moore, J.G.

    2001-01-01

    Density measurements of 1600 samples of core from 889 to 3097 m depth below sea level in the Hawaii Scientific Drilling Program hole near Hilo, Hawaii show marked differences between the basaltic rock types and help define stratigraphy in the hole. Water-saturated densities of subaerial lava flows (occurring above 1079 m depth) have the broadest range because of the large density variation within a single lava flow. Water-saturated densities commonly range from 2.0 to 3.0 with an average of 2.55 ?? 0.24 g/cc. Dikes and sills range from 2.8 to 3.1 g/cc). Densities of hyaloclastite commonly range from 2.3 to 2.7, with an overall average of about 2.5 g/cc. The low-density of most hyaloclastite is due primarily to palagonitization of abundant glass and presence of secondary minerals in the interstices between fragments. Four principal zones of pillow lava, separated by hyaloclastite, occur in the drill core. The shallowest (1983-2136 m) is paradoxically the densest, averaging 3.01 ?? 0.10 g/cc. The second (2234-2470 m) is decidedly the lightest, averaging 2.67 ?? 0.13 g/cc. The third (2640-2790 m) and fourth (2918-bottom at 3097 m) are high, averaging 2.89 ?? 0.17 and 2.97 ?? 0.08 g/cc, respectively. The first pillow zone includes degassed pillows i.e. lava erupted on land that flowed into the sea. These pillows are poor in vesicles, because the subaerial, one-atmosphere vesicles were compressed when the flow descended to deeper water and higher pressure. The second (low-density, non-degassed) pillow zone is the most vesicle-rich, apparently because it was erupted subaqueously at a shallow depth. The higher densities of the third and fourth zones result from a low vesicularity of only a few percent and an olivine content averaging more than 5% for the third zone and about 10% for the fourth zone. The uppermost hyaloclastite extending about 400 m below the bottom of the subaerial basalt is poorly cemented and absorbs up to 6 wt% of water when immersed. Progressing downward the hyaloclastite absorbs less water and becomes better cemented. This change is apparently due to palagonitization of glass and addition of secondary minerals in the deeper older hyaloclastite, a process favored by the increase of temperature with depth. The cementation is largely complete at 1800 m depth where the temperature attains about 20??C. The zone of freshest, uncemented hyaloclastite represents the weakest rock in the drill hole and is a likely level for tectonic or landslide disruption. ?? 2001 Published by Elsevier Science B.V.

  1. The Role of Technical Vocational Education and Training in Transition Countries. The Case of Central and Eastern Europe and the New Independent States. Working Document.

    ERIC Educational Resources Information Center

    European Training Foundation, Turin (Italy).

    In comparison with the context in which reforms usually occur, the current vocational education and training (VET) reforms in Central and Eastern Europe (CEE) and New Independent States (NIS) have these two unusual aspects: breadth, range, and depth of VET reforms are extremely large; and the reform process is exceptionally rapid. The European…

  2. Reflection Acoustic Microscopy for Micro-NDE.

    DTIC Science & Technology

    1983-02-01

    WORDS (Coni, wu rere side. 14 It noeeeey And Idenify1 by block esife) Nondestructive Evaluation Acoustic Microscopy I Subsurface Imaging Pulsecio Cmrsin... subsurface imaging is presented and it is shown that with such lenses it is possible to obtain good focussing performance over a wide depth range...typically few millimeters at 50 MHz. A major problem in subsurface imaging derives from the large reflection obtained frnm the surface, and the small amount

  3. Case study: the introduction of stereoscopic games on the Sony PlayStation 3

    NASA Astrophysics Data System (ADS)

    Bickerstaff, Ian

    2012-03-01

    A free stereoscopic firmware update on Sony Computer Entertainment's PlayStation® 3 console provides the potential to increase enormously the popularity of stereoscopic 3D in the home. For this to succeed though, a large selection of content has to become available that exploits 3D in the best way possible. In addition to the existing challenges found in creating 3D movies and television programmes, the stereography must compensate for the dynamic and unpredictable environments found in games. Automatically, the software must map the depth range of the scene into the display's comfort zone, while minimising depth compression. This paper presents a range of techniques developed to solve this problem and the challenge of creating twice as many images as the 2D version without excessively compromising the frame rate or image quality. At the time of writing, over 80 stereoscopic PlayStation 3 games have been released and notable titles are used as examples to illustrate how the techniques have been adapted for different game genres. Since the firmware's introduction in 2010, the industry has matured with a large number of developers now producing increasingly sophisticated 3D content. New technologies such as viewer head tracking and head-mounted displays should increase the appeal of 3D in the home still further.

  4. New beam line for time-of-flight medium energy ion scattering with large area position sensitive detector

    NASA Astrophysics Data System (ADS)

    Linnarsson, M. K.; Hallén, A.; Åström, J.; Primetzhofer, D.; Legendre, S.; Possnert, G.

    2012-09-01

    A new beam line for medium energy ion mass scattering (MEIS) has been designed and set up at the Ångström laboratory, Uppsala University, Sweden. This MEIS system is based on a time-of-flight (ToF) concept and the electronics for beam chopping relies on a 4 MHz function generator. Repetition rates can be varied between 1 MHz and 63 kHz and pulse widths below 1 ns are typically obtained by including beam bunching. A 6-axis goniometer is used at the target station. Scattering angle and energy of backscattered ions are extracted from a time-resolved and position-sensitive detector. Examples of the performance are given for three kinds of probing ions, 1H+, 4He+, and 11B+. Depth resolution is in the nanometer range and 1 and 2 nm thick Pt layers can easily be resolved. Mass resolution between nearby isotopes can be obtained as illustrated by Ga isotopes in GaAs. Taking advantage of the large size detector, a direct imaging (blocking pattern) of crystal channels are shown for hexagonal, 4H-SiC. The ToF-MEIS system described in this paper is intended for use in semiconductor and thin film areas. For example, depth profiling in the sub nanometer range for device development of contacts and dielectric interfaces. In addition to applied projects, fundamental studies of stopping cross sections in this medium energy range will also be conducted.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, Garry J.; Birkby, Jeff

    Tribal lands owned by Assiniboine and Sioux Tribes on the Fort Peck Indian Reservation, located in Northeastern Montana, overlie large volumes of deep, hot, saline water. Our study area included all the Fort Peck Reservation occupying roughly 1,456 sq miles. The geothermal water present in the Fort Peck Reservation is located in the western part of the Williston Basin in the Madison Group complex ranging in depths of 5500 to 7500 feet. Although no surface hot springs exist on the Reservation, water temperatures within oil wells that intercept these geothermal resources in the Madison Formation range from 150 to 278more » degrees F.« less

  6. Glacial-interglacial dynamics of Antarctic firn columns: comparison between simulations and ice core air-?15N measurements

    NASA Astrophysics Data System (ADS)

    Capron, E.; Landais, A.; Buiron, D.; Cauquoin, A.; Chappellaz, J. A.; Debret, M.; Jouzel, J.; Leuenberger, M.; Martinerie, P.; Masson-Delmotte, V.; Mulvaney, R.; Parrenin, F.; Prié, F.

    2013-12-01

    Correct estimation of the firn lock-in depth is essential for correctly linking gas and ice chronologies in ice core studies. Here, two approaches to constrain the firn depth evolution in Antarctica are presented over the last deglaciation: outputs of a firn densification model, and measurements of δ15N of N2 in air trapped in ice core, assuming that δ15N is only affected by gravitational fractionation in the firn column. Since the firn densification process is largely governed by surface temperature and accumulation rate, we have investigated four ice cores drilled in coastal (Berkner Island, BI, and James Ross Island, JRI) and semi-coastal (TALDICE and EPICA Dronning Maud Land, EDML) Antarctic regions. Combined with available ice core air- δ15N measurements from the EPICA Dome C (EDC) site, the studied regions encompass a large range of surface accumulation rates and temperature conditions. Our δ15N profiles reveal a heterogeneous response of the firn structure to glacial-interglacial climatic changes. While firn densification simulations correctly predict TALDICE δ15N variations, they systematically fail to capture the large millennial-scale δ15N variations measured at BI and the δ15N glacial levels measured at JRI and EDML - a mismatch previously reported for central East Antarctic ice cores. New constraints of the EDML gas-ice depth offset during the Laschamp event (41 ka) and the last deglaciation do not favour the hypothesis of a large convective zone within the firn as the explanation of the glacial firn model- δ15N data mismatch for this site. While we could not conduct an in-depth study of the influence of impurities in snow for firnification from the existing datasets, our detailed comparison between the δ15N profiles and firn model simulations under different temperature and accumulation rate scenarios suggests that the role of accumulation rate may have been underestimated in the current description of firnification models.

  7. Glacial-interglacial dynamics of Antarctic firn columns: comparison between simulations and ice core air-δ15N measurements

    NASA Astrophysics Data System (ADS)

    Capron, E.; Landais, A.; Buiron, D.; Cauquoin, A.; Chappellaz, J.; Debret, M.; Jouzel, J.; Leuenberger, M.; Martinerie, P.; Masson-Delmotte, V.; Mulvaney, R.; Parrenin, F.; Prié, F.

    2013-05-01

    Correct estimation of the firn lock-in depth is essential for correctly linking gas and ice chronologies in ice core studies. Here, two approaches to constrain the firn depth evolution in Antarctica are presented over the last deglaciation: outputs of a firn densification model, and measurements of δ15N of N2 in air trapped in ice core, assuming that δ15N is only affected by gravitational fractionation in the firn column. Since the firn densification process is largely governed by surface temperature and accumulation rate, we have investigated four ice cores drilled in coastal (Berkner Island, BI, and James Ross Island, JRI) and semi-coastal (TALDICE and EPICA Dronning Maud Land, EDML) Antarctic regions. Combined with available ice core air-δ15N measurements from the EPICA Dome C (EDC) site, the studied regions encompass a large range of surface accumulation rates and temperature conditions. Our δ15N profiles reveal a heterogeneous response of the firn structure to glacial-interglacial climatic changes. While firn densification simulations correctly predict TALDICE δ15N variations, they systematically fail to capture the large millennial-scale δ15N variations measured at BI and the δ15N glacial levels measured at JRI and EDML - a mismatch previously reported for central East Antarctic ice cores. New constraints of the EDML gas-ice depth offset during the Laschamp event (~41 ka) and the last deglaciation do not favour the hypothesis of a large convective zone within the firn as the explanation of the glacial firn model-δ15N data mismatch for this site. While we could not conduct an in-depth study of the influence of impurities in snow for firnification from the existing datasets, our detailed comparison between the δ15N profiles and firn model simulations under different temperature and accumulation rate scenarios suggests that the role of accumulation rate may have been underestimated in the current description of firnification models.

  8. Structure and seismic hazard of the Ventura Avenue anticline and Ventura fault, California: Prospect for large, multisegment ruptures in the Western Transverse Ranges

    USGS Publications Warehouse

    Hubbard, Judith; Shaw, John H.; Dolan, James F.; Pratt, Thomas L.; McAuliffe, Lee J.; Rockwell, Thomas K.

    2014-01-01

    The Ventura Avenue anticline is one of the fastest uplifting structures in southern California, rising at ∼5  mm/yr. We use well data and seismic reflection profiles to show that the anticline is underlain by the Ventura fault, which extends to seismogenic depth. Fault offset increases with depth, implying that the Ventura Avenue anticline is a fault‐propagation fold. A decrease in the uplift rate since ∼30±10  ka is consistent with the Ventura fault breaking through to the surface at that time and implies that the fault has a recent dip‐slip rate of ∼4.4–6.9  mm/yr.To the west, the Ventura fault and fold trend continues offshore as the Pitas Point fault and its associated hanging wall anticline. The Ventura–Pitas Point fault appears to flatten at about 7.5 km depth to a detachment, called the Sisar decollement, then step down on a blind thrust fault to the north. Other regional faults, including the San Cayetano and Red Mountain faults, link with this system at depth. We suggest that below 7.5 km, these faults may form a nearly continuous surface, posing the threat of large, multisegment earthquakes.Holocene marine terraces on the Ventura Avenue anticline suggest that it grows in discrete events with 5–10 m of uplift, with the latest event having occurred ∼800 years ago (Rockwell, 2011). Uplift this large would require large earthquakes (Mw 7.7–8.1) involving the entire Ventura/Pitas Point system and possibly more structures along strike, such as the San Cayetano fault. Because of the local geography and geology, such events would be associated with significant ground shaking amplification and regional tsunamis.

  9. An optical fiber expendable seawater temperature/depth profile sensor

    NASA Astrophysics Data System (ADS)

    Zhao, Qiang; Chen, Shizhe; Zhang, Keke; Yan, Xingkui; Yang, Xianglong; Bai, Xuejiao; Liu, Shixuan

    2017-10-01

    Marine expendable temperature/depth profiler (XBT) is a disposable measuring instrument which can obtain temperature/depth profile data quickly in large area waters and mainly used for marine surveys, scientific research, military application. The temperature measuring device is a thermistor in the conventional XBT probe (CXBT)and the depth data is only a calculated value by speed and time depth calculation formula which is not an accurate measurement result. Firstly, an optical fiber expendable temperature/depth sensor based on the FBG-LPG cascaded structure is proposed to solve the problems of the CXBT, namely the use of LPG and FBG were used to detect the water temperature and depth, respectively. Secondly, the fiber end reflective mirror is used to simplify optical cascade structure and optimize the system performance. Finally, the optical path is designed and optimized using the reflective optical fiber end mirror. The experimental results show that the sensitivity of temperature and depth sensing based on FBG-LPG cascade structure is about 0.0030C and 0.1%F.S. respectively, which can meet the requirements of the sea water temperature/depth observation. The reflectivity of reflection mirror is in the range from 48.8% to 72.5%, the resonant peak of FBG and LPG are reasonable and the whole spectrum are suitable for demodulation. Through research on the optical fiber XBT (FXBT), the direct measurement of deep-sea temperature/depth profile data can be obtained simultaneously, quickly and accurately. The FXBT is a new all-optical seawater temperature/depth sensor, which has important academic value and broad application prospect and is expected to replace the CXBT in the future.

  10. The 2013 Mw 6.2 Khaki-Shonbe (Iran) Earthquake: Seismic Shortening of the Zagros Sedimentary Cover

    NASA Astrophysics Data System (ADS)

    Elliott, J. R.; Bergman, E.; Copley, A.; Ghods, A.; Nissen, E.; Oveisi, B.; Walters, R. J.

    2014-12-01

    The 2013 Mw 6.2 Khaki-Shonbe earthquake occurred in the Simply Folded Belt of the Zagros Mountains, Iran. This is the largest earthquake in the Zagros since the November 1990 Mw 6.4 Furg (Hormozgan) thrust faulting event, and therefore the largest in the period for which dense InSAR ground displacements are available. It is also the biggest seismic event to have occurred in the Simply Folded Belt since the March 1977 Mw 6.7 Khurgu earthquake. This earthquake therefore potentially provides valuable insights into a range of controversies: (1) the preponderance of earthquake faulting in the crystalline basement versus the sedimentary cover and the potential importance of lithology in controlling and limiting seismic rupture; (2) the nature of surface folding and whether or not there is a one-to-one relationship between buried reverse faults and surface anticlines; and (3) the presence or absence of large pulses of aseismic slip triggered by mainshock rupture. We combine seismological solutions and aftershock relocations with satellite interferometric ground displacements and observations from the field to determine the geometry of faulting and its relationship with the structure, stratigraphy and tectonics of the Central Zagros. The earthquake rupture involved reverse slip on two along-strike southwest dipping fault segments, the rupture initiating at the northern and bottom end of the larger north-west segment. These faults verge away from the foreland and towards the high range interior, contrary to the fault geometries depicted in many structural cross-sections of the Zagros. The slip measured on the reverse segments occurred over two mutually exclusive depth ranges, 10-5 km and 4-2 km, resulting in long (16 km), narrow (7 km) rupture segments. Conversely, aftershocks are found to cluster in the depth range 8-16 km, beneath the main rupture segment. This indicates only significant reverse slip and coseismic shortening in the sedimentary cover, with the slip distribution likely to be lithologically controlled in depth by the Hormuz salt at the base of the sedimentary cover, and the Kazhdumi Formation mudrocks at upper-levels (5 km), and aftershocks constrained largely beneath the main coseismic rupture planes.

  11. Enhanced submarine ground water discharge form mixing of pore water and estuarine water

    USGS Publications Warehouse

    Martin, Jonathan B.; Cable, Jaye E.; Swarzenski, Peter W.; Lindenberg, Mary K.

    2004-01-01

    Submarine ground water discharge is suggested to be an important pathway for contaminants from continents to coastal zones, but its significance depends on the volume of water and concentrations of contaminants that originate in continental aquifers. Ground water discharge to the Banana River Lagoon, Florida, was estimated by analyzing the temporal and spatial variations of Cl− concentration profiles in the upper 230 cm of pore waters and was measured directly by seepage meters. Total submarine ground water discharge consists of slow discharge at depths > ∼70 cm below seafloor (cmbsf) of largely marine water combined with rapid discharge of mixed pore water and estuarine water above ∼70 cmbsf. Cl− profiles indicate average linear velocities of ∼0.014 cm/d at depths > ∼70 cmbsf. In contrast, seepage meters indicate water discharges across the sediment-water interface at rates between 3.6 and 6.9 cm/d. The discrepancy appears to be caused by mixing in the shallow sediment, which may result from a combination of bioirrigation, wave and tidal pumping, and convection. Wave and tidal pumping and convection would be minor because the tidal range is small, the short fetch of the lagoon limits wave heights, and large density contacts are lacking between lagoon and pore water. Mixing occurs to ∼70 cmbsf, which represents depths greater than previously reported. Mixing of oxygenated water to these depths could be important for remineralization of organic matter.

  12. Benthic Bioprocessing of Hydrocarbons in the Natural Deep-Sea Environment

    NASA Astrophysics Data System (ADS)

    MacDonald, I. R.; Bohrmann, G.; Schubotz, F.; Johansen, C.

    2017-12-01

    Science is accustomed to quantifying ecosystem processes that consume carbon from primary production as it drifts downward through the photic zone. Comparably efficient processes operate in reverse, as living and non-living components sequester and re-mineralize a large fraction of hydrocarbons that migrate out of traps and reservoirs to the seafloor interface. Together, they comprise a sink that prevents these hydrocarbons from escaping upward into the water column. Although quantification of the local or regional magnitude of this sink poses steep challenges, we can make progress by classifying and mapping the biological communities and geological intrusions that are generated from hydrocarbons in the deep sea. Gulf of Mexico examples discussed in this presentation extend across a broad range of depths (550, 1200, and 3200 m) and include major differences in hydrocarbon composition (from gas to liquid oil to asphaltene-dominated solids). Formation of gas hydrate is a dynamic process in each depth zone. At upper depths, gas hydrate is unstable at a timescale of months to years and serves as a substrate for microbial consortia and mussel symbiosis. At extreme depths, gas hydrate supports large and dense tubeworm colonies that conserve the material from decomposition. Timescales for biogeochemical weathering of oil and asphalts are decadal or longer, as shown by sequential alterations and changing biological colonization. Understanding these processes is crucial as we prepare for wider and deeper energy exploitation in the Gulf of Mexico and beyond.

  13. Measurement of the Muon Production Depths at the Pierre Auger Observatory

    DOE PAGES

    Collica, Laura

    2016-09-08

    The muon content of extensive air showers is an observable sensitive to the primary composition and to the hadronic interaction properties. The Pierre Auger Observatory uses water-Cherenkov detectors to measure particle densities at the ground and therefore is sensitive to the muon content of air showers. We present here a method which allows us to estimate the muon production depths by exploiting the measurement of the muon arrival times at the ground recorded with the Surface Detector of the Pierre Auger Observatory. The analysis is performed in a large range of zenith angles, thanks to the capability of estimating and subtracting the electromagnetic component, and for energies betweenmore » $$10^{19.2}$$ and $$10^{20}$$ eV.« less

  14. Velocities of Subducted Sediments and Continents

    NASA Astrophysics Data System (ADS)

    Hacker, B. R.; van Keken, P. E.; Abers, G. A.; Seward, G.

    2009-12-01

    The growing capability to measure seismic velocities in subduction zones has led to unusual observations. For example, although most minerals have VP/ VS ratios around 1.77, ratios <1.7 and >1.8 have been observed. Here we explore the velocities of subducted sediments and continental crust from trench to sub-arc depths using two methods. (1) Mineralogy was calculated as a function of P & T for a range of subducted sediment compositions using Perple_X, and rock velocities were calculated using the methodology of Hacker & Abers [2004]. Calculated slab-top temperatures have 3 distinct depth intervals with different dP/dT gradients that are determined by how coupling between the slab and mantle wedge is modeled. These three depth intervals show concomitant changes in VP and VS: velocities initially increase with depth, then decrease beyond the modeled decoupling depth where induced flow in the wedge causes rapid heating, and increase again at depth. Subducted limestones, composed chiefly of aragonite, show monotonic increases in VP/ VS from 1.63 to 1.72. Cherts show large jumps in VP/ VS from 1.55-1.65 to 1.75 associated with the quartz-coesite transition. Terrigenous sediments dominated by quartz and mica show similar, but more-subdued, transitions from ~1.67 to 1.78. Pelagic sediments dominated by mica and clinopyroxene show near-monotonic increases in VP/ VS from 1.74 to 1.80. Subducted continental crust that is too dry to transform to high-pressure minerals has a VP/ VS ratio of 1.68-1.70. (2) Velocity anisotropy calculations were made for the same P-T dependent mineralogies using the Christoffel equation and crystal preferred orientations measured via electron-backscatter diffraction for typical constituent phases. The calculated velocity anisotropies range from 5-30%. For quartz-rich rocks, the calculated velocities show a distinct depth dependence because crystal slip systems and CPOs change with temperature. In such rocks, the fast VP direction varies from slab-normal at shallow depths through trench-parallel at moderate depths to down-dip approaching sub-arc depths. Vertically incident waves have VP/ VS of 1.7-1.3 over the same range of depths, waves propagating up dip have VP/ VS of 1.7-1.3, and waves propagating along the slab at constant depth have VP/ VS of 1.7-1.45. These remarkably low VP/ VS ratios are due to the anomalous elastic behavior of quartz. More aluminous lithologies have elevated VP/ VS ratios: 1.85 for slab-normal waves, 1.75 for trench-parallel waves, and 1.65 for down-dip waves. Subducted continental crust that is too dry to transform to high-pressure minerals has relatively ordinary VP/ VS ratio of 1.71-1.75 for vertically incident waves, 1.6-1.7 for waves propagating up dip, and 1.65-1.75 for waves propagating along the slab. Thus, subducted mica-rich sediments can have high VP/ VS ratios, whereas quartzose lithologies generate low VP/ VS ratios.

  15. Site characterisation in north-western Turkey based on SPAC and HVSR analysis of microtremor noise

    NASA Astrophysics Data System (ADS)

    Asten, Michael W.; Askan, Aysegul; Ekincioglu, E. Ezgi; Sisman, F. Nurten; Ugurhan, Beliz

    2014-02-01

    The geology of the north-western Anatolia (Turkey) ranges from hard Mesozoic bedrock in mountainous areas to large sediment-filled, pull-apart basins formed by the North Anatolian Fault zone system. Düzce and Bolu city centres are located in major alluvial basins in the region, and both suffered from severe building damage during the 12 November 1999 Düzce earthquake (Mw = 7.2). In this study, a team consisting of geophysicists and civil engineers collected and interpreted passive array-based microtremor data in the cities of Bolu and Düzce, both of which are localities of urban development located on topographically flat, geologically young alluvial basins of Miocene age. Interpretation of the microtremor data under an assumption of dominant fundamental-mode Rayleigh-wave noise allowed derivation of the shear-wave velocity (Vs) profile. The depth of investigation was ~100 m from spatially-averaged coherency (SPAC) data alone. High-frequency microtremor array data to 25 Hz allows resolution of a surface layer with Vs < 200 m/s and thickness 5 m (Bolu) and 6 m (Düzce). Subsequent inclusion of spectral ratios between horizontal and vertical components of microtremor data (HVSR) in the curve fitting process extends useful frequencies up to a decade lower than those for SPAC alone. This allows resolution of two interfaces of moderate Vs contrasts in soft Miocene and Eocene sediments, first, at a depth in the range 136-209 m, and second, at a depth in the range 2000 to 2200 m.

  16. Response of the Atmospheric Boundary Layer and Soil Layer to a High Altitude, Dense Aerosol Cover.

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.; Pittock, A. B.; Walsh, K.

    1990-01-01

    The response of the atmospheric boundary layer to the appearance of a high-altitude smoke layer has been investigated in a mesoscale numerical model of the atmosphere. Emphasis is placed on the changes in mean boundary-layer structure and near-surface temperatures when smoke of absorption optical depth (AOD) in the, range 0 to 1 is introduced. Calculations have been made at 30°S, for different soil thermal properties and degrees of surface wetness, over a time period of several days during which major smoke-induced cooling occurs. The presence of smoke reduces the daytime mixed-layer depth and, for large enough values of AOD, results in a daytime surface inversion with large cooling confined to heights of less than a few hundred meters. Smoke-induced reductions in daytime soil and air temperatures of several degrees are typical, dependent critically upon soil wetness and smoke AOD. Locations near the coast experience reduced cooling whenever there is a significant onshore flow related to a sea breeze (this would also be the case with a large-scale onshore flow). The sea breeze itself disappears for large enough smoke AOD and, over sloping coastal terrain, a smoke-induced, offshore drainage flow may exist throughout the diurnal cycle.

  17. Dynamics of Gross Methane Production and Oxidation in a Peatland Soil

    NASA Astrophysics Data System (ADS)

    McNicol, G.; Yang, W. H.; Teh, Y.; Silver, W. L.

    2012-12-01

    Globally, peatlands are major sources of the potent greenhouse gas methane (CH4) that is implicated in 20% of the post-industrial increase in radiative forcing. Many temperate peatlands have been drained for alternative land-use and are characterized by a layer of unsaturated soil overlying the remnant organic histosol. Drained soil layers may attenuate surface CH4 emissions from deeper, flooded peat layers via microbial CH4 consumption. We measured gross rates of CH4 production and oxidation seasonally across a range of topographic landforms in a partially drained peatland on Sherman Island, California. Net CH4 fluxes across the soil-atmosphere interface ranged from -7.4 to 1096 mg-C m-2 d-1 across all landforms. Fluxes were highest in May and in irrigation ditches (date, p < 0.001; landform, p < 0.001; n = 55). Gross CH4 production rates ranged from 0-1461 mg-C m-2 d-1 and oxidation rates ranged from 0-40 mg-C m-2 d-1. Excluding the irrigation ditches, gross fluxes did not vary seasonally. Gross CH4 fluxes were significantly higher in the hollow/hummock than in the slope. We subsequently selected the hollow/hummock based upon the observation of a strong redox gradient with depth and characterized gross fluxes of CH4 both in the field and in laboratory incubations of four soil depth increments (0-10 cm, 10-30 cm, 30-60 cm, 60-80 cm). The laboratory incubation consisted of 3 separate gross flux experiments: the first using fresh soil under ambient headspace, the second after incubation in an N2 headspace, and the third after incubation in an ambient headspace. Gross CH4 fluxes in the field varied from a slight sink (-0.11 mg-C m-2 d-1) to a large source (23.9 mg-C m-2 d-1). In 3 plots net fluxes were reduced by competing CH4 oxidation. In the depth profile experiment, production and consumption were observed in the fresh soil, but without a clear depth trend. In contrast, we found that consumption rates increased with depth following the aerobic incubation and production showed the same trend with depth under N2. Our field results demonstrate that flooded drainage ditches can act as CH4 emission hotspots in drained peatlands due to high production rates and low oxidation rates, disproportionately impacting ecosystem CH4 emissions. In contrast CH4 oxidation rates in the drained landforms even led to negative fluxes at times. The depth profile experiment showed that the strongest potential for both production and consumption of CH4 was at depths close to, or below, the water table. Thus despite significant CH4 production potential at depth, drained peatlands may be only minor sources, or even slight sinks, of CH4 if the extent and persistence of flooded landforms is minimal.

  18. Explosive change in crater properties during high power nanosecond laser ablation of silicon

    NASA Astrophysics Data System (ADS)

    Yoo, J. H.; Jeong, S. H.; Greif, R.; Russo, R. E.

    2000-08-01

    Mass removed from single crystal silicon samples by high irradiance (1×109 to 1×1011W/cm2) single pulse laser ablation was studied by measuring the resulting crater morphology with a white light interferometric microscope. The craters show a strong nonlinear change in both the volume and depth when the laser irradiance is less than or greater than ≈2.2×1010W/cm2. Time-resolved shadowgraph images of the ablated silicon plume were obtained over this irradiance range. The images show that the increase in crater volume and depth at the threshold of 2.2×1010W/cm2 is accompanied by large size droplets leaving the silicon surface, with a time delay ˜300 ns. A numerical model was used to estimate the thickness of the layer heated to approximately the critical temperature. The model includes transformation of liquid metal into liquid dielectric near the critical state (i.e., induced transparency). In this case, the estimated thickness of the superheated layer at a delay time of 200-300 ns shows a close agreement with measured crater depths. Induced transparency is demonstrated to play an important role in the formation of a deep superheated liquid layer, with subsequent explosive boiling responsible for large-particulate ejection.

  19. Investigating smoke's influence on primary production throughout the Amazon

    NASA Astrophysics Data System (ADS)

    Flanner, M. G.; Mahowald, N. M.; Zender, C. S.; Randerson, J. T.; Tosca, M. G.

    2007-12-01

    Smoke from annual burning in the Amazon causes large reduction in surface insolation and increases the diffuse fraction of photosynthetically-active radiation (PAR). These effects have competing influence on gross primary production (GPP). Recent studies indicate that the sign of net influence depends on aerosol optical depth, but the magnitude of smoke's effect on continental-scale carbon cycling is very poorly constrained and may constitute an important term of fire's net impact on carbon storage. To investigate widespread effects of Amazon smoke on surface radiation properties, we apply a version of the NCAR Community Atmosphere Model with prognostic aerosol transport, driven with re-analysis winds. Carbon aerosol emissions are derived from the Global Fire Emissions Database (GFED). We use AERONET observations to identify model biases in aerosol optical depth, single-scatter albedo, and surface radiative forcing, and prescribe new aerosol optical properties based on field observations to improve model agreement with AERONET data. Finally, we quantify a potential range of smoke-induced change in large-scale GPP based on: 1) ground measurements of GPP in the Amazon as a function of aerosol optical depth and diffuse fraction of PAR, and 2) empirical functions of ecosystem-scale photosynthesis rates currently employed in models such as the Community Land Model (CLM).

  20. Photosynthetic parameters in the Beaufort Sea in relation to the phytoplankton community structure

    NASA Astrophysics Data System (ADS)

    Huot, Y.; Babin, M.; Bruyant, F.

    2013-05-01

    To model phytoplankton primary production from remotely sensed data, a method to estimate photosynthetic parameters describing the photosynthetic rates per unit biomass is required. Variability in these parameters must be related to environmental variables that are measurable remotely. In the Arctic, a limited number of measurements of photosynthetic parameters have been carried out with the concurrent environmental variables needed. Such measurements and their relationship to environmental variables will be required to improve the accuracy of remotely sensed estimates of phytoplankton primary production and our ability to predict future changes. During the MALINA cruise, a large dataset of these parameters was obtained. Together with previously published datasets, we use environmental and trophic variables to provide functional relationships for these parameters. In particular, we describe several specific aspects: the maximum rate of photosynthesis (Pmaxchl) normalized to chlorophyll decreases with depth and is higher for communities composed of large cells; the saturation parameter (Ek) decreases with depth but is independent of the community structure; and the initial slope of the photosynthesis versus irradiance curve (αchl) normalized to chlorophyll is independent of depth but is higher for communities composed of larger cells. The photosynthetic parameters were not influenced by temperature over the range encountered during the cruise (-2 to 8 °C).

  1. Photosynthetic parameters in the Beaufort Sea in relation to the phytoplankton community structure

    NASA Astrophysics Data System (ADS)

    Huot, Y.; Babin, M.; Bruyant, F.

    2013-01-01

    To model phytoplankton primary production from remotely sensed data a method to estimate photosynthetic parameters describing the photosynthetic rates per unit biomass is required. Variability in these parameters must be related to environmental variables that are measurable remotely. In the Arctic, a limited number of measurements of photosynthetic parameter have been carried out with the concurrent environmental variables needed. Therefore, to improve the accuracy of remote estimates of phytoplankton primary production as well as our ability to predict changes in the future such measurements and relationship to environmental variables are required. During the MALINA cruise, a large dataset of these parameters were obtained. Together with previously published datasets, we use environmental and trophic variables to provide functional relationships for these parameters. In particular, we describe several specific aspects: the maximum rate of photosynthesis (Pmaxchl) normalized to chlorophyll decreases with depth and is higher for communities composed of large cells; the saturation parameter (Ek) decreases with depth but is independent of the community structure; and the initial slope of the photosynthesis versus irradiance curve (αchl) normalized to chlorophyll is independent of depth but is higher for communities composed of larger cells. The photosynthetic parameters were not influenced by temperature over the range encountered during the cruise (-2 to 8 °C).

  2. Remote sensing in biological oceanography

    NASA Technical Reports Server (NTRS)

    Esaias, W. E.

    1981-01-01

    The main attribute of remote sensing is seen as its ability to measure distributions over large areas on a synoptic basis and to repeat this coverage at required time periods. The way in which the Coastal Zone Color Scanner, by showing the distribution of chlorophyll a, can locate areas productive in both phytoplankton and fishes is described. Lidar techniques are discussed, and it is pointed out that lidar will increase the depth range for observations.

  3. FAST TRACK COMMUNICATION: Stable propagation of a modulated positron beam in a bent crystal channel

    NASA Astrophysics Data System (ADS)

    Kostyuk, A.; Korol, A. V.; Solov'yov, A. V.; Greiner, W.

    2010-08-01

    The propagation of a modulated positron beam in a planar crystal channel is investigated. It is demonstrated that the beam preserves its modulation at sufficiently large penetration depths, which opens the prospect of using a crystalline undulator as a coherent source of hard x-rays. This finding is a crucial milestone in developing a new type of laser radiating in the hard x-ray and gamma-ray range.

  4. High Resolution Insights into Snow Distribution Provided by Drone Photogrammetry

    NASA Astrophysics Data System (ADS)

    Redpath, T.; Sirguey, P. J.; Cullen, N. J.; Fitzsimons, S.

    2017-12-01

    Dynamic in time and space, New Zealand's seasonal snow is largely confined to remote alpine areas, complicating ongoing in situ measurement and characterisation. Improved understanding and modeling of the seasonal snowpack requires fine scale resolution of snow distribution and spatial variability. The potential of remotely piloted aircraft system (RPAS) photogrammetry to resolve spatial and temporal variability of snow depth and water equivalent in a New Zealand alpine catchment is assessed in the Pisa Range, Central Otago. This approach yielded orthophotomosaics and digital surface models (DSM) at 0.05 and 0.15 m spatial resolution, respectively. An autumn reference DSM allowed mapping of winter (02/08/2016) and spring (10/09/2016) snow depth at 0.15 m spatial resolution, via DSM differencing. The consistency and accuracy of the RPAS-derived surface was assessed by comparison of snow-free regions of the spring and autumn DSMs, while accuracy of RPAS retrieved snow depth was assessed with 86 in situ snow probe measurements. Results show a mean vertical residual of 0.024 m between DSMs acquired in autumn and spring. This residual approximated a Laplace distribution, reflecting the influence of large outliers on the small overall bias. Propagation of errors associated with successive DSMs saw snow depth mapped with an accuracy of ± 0.09 m (95% c.l.). Comparing RPAS and in situ snow depth measurements revealed the influence of geo-location uncertainty and interactions between vegetation and the snowpack on snow depth uncertainty and bias. Semi-variogram analysis revealed that the RPAS outperformed systematic in situ measurements in resolving fine scale spatial variability. Despite limitations accompanying RPAS photogrammetry, this study demonstrates a repeatable means of accurately mapping snow depth for an entire, yet relatively small, hydrological basin ( 0.5 km2), at high resolution. Resolving snowpack features associated with re-distribution and preferential accumulation and ablation, snow depth maps provide geostatistically robust insights into seasonal snow processes, with unprecedented detail. Such data may enhance understanding of physical processes controlling spatial and temporal distribution of seasonal snow, and their relative importance at varying spatial and temporal scales.

  5. Seismic imaging of slab metamorphism and genesis of intermediate-depth intraslab earthquakes

    NASA Astrophysics Data System (ADS)

    Hasegawa, Akira; Nakajima, Junichi

    2017-12-01

    We review studies of intermediate-depth seismicity and seismic imaging of the interior of subducting slabs in relation to slab metamorphism and their implications for the genesis of intermediate-depth earthquakes. Intermediate-depth events form a double seismic zone in the depth range of c. 40-180 km, which occur only at locations where hydrous minerals are present, and are particularly concentrated along dehydration reaction boundaries. Recent studies have revealed detailed spatial distributions of these events and a close relationship with slab metamorphism. Pressure-temperature paths of the crust for cold slabs encounter facies boundaries with large H2O production rates and positive total volume change, which are expected to cause highly active seismicity near the facies boundaries. A belt of upper-plane seismicity in the crust nearly parallel to 80-90 km depth contours of the slab surface has been detected in the cold Pacific slab beneath eastern Japan, and is probably caused by slab crust dehydration with a large H2O production rate. A seismic low-velocity layer in the slab crust persists down to the depth of this upper-plane seismic belt, which provides evidence for phase transformation of dehydration at this depth. Similar low-velocity subducting crust closely related with intraslab seismicity has been detected in several other subduction zones. Seismic tomography studies in NE Japan and northern Chile also revealed the presence of a P-wave low-velocity layer along the lower plane of a double seismic zone. However, in contrast to predictions based on the serpentinized mantle, S-wave velocity along this layer is not low. Seismic anisotropy and pore aspect ratio may play a role in generating this unique structure. Although further validation is required, observations of these distinct low P-wave velocities along the lower seismic plane suggest the presence of hydrated rocks or fluids within that layer. These observations support the hypothesis that dehydration-derived H2O causes intermediate-depth intraslab earthquakes. However, it is possible that dual mechanisms generate these earthquakes; the initiation of earthquake rupture may be caused by local excess pore pressure from H2O, and subsequent ruptures may propagate through thermal shear instability. In either case, slab-derived H2O plays an important role in generating intermediate-depth events.

  6. Heat dissipation sensors of variable length for the measurement of sap flow in trees with deep sapwood.

    PubMed

    James, Shelley A; Clearwater, Michael J; Meinzer, Frederick C; Goldstein, Guillermo

    2002-03-01

    Robust thermal dissipation sensors of variable length (3 to 30 cm) were developed to overcome limitations to the measurement of radial profiles of sap flow in large-diameter tropical trees with deep sapwood. The effective measuring length of the custom-made sensors was reduced to 1 cm at the tip of a thermally nonconducting shaft, thereby minimizing the influence of nonuniform sap flux density profiles across the sapwood. Sap flow was measured at different depths and circumferential positions in the trunks of four trees at the Parque Natural Metropolitano canopy crane site, Panama City, Republic of Panama. Sap flow was detected to a depth of 24 cm in the trunks of a 1-m-diameter Anacardium excelsum (Bertero & Balb. ex Kunth) Skeels tree and a 0.65-m-diameter Ficus insipida Willd. tree, and to depths of 7 cm in a 0.34-m-diameter Cordia alliodora (Ruiz & Pav.) Cham. trunk, and 17 cm in a 0.47-m-diameter Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin trunk. Sap flux density was maximal in the outermost 4 cm of sapwood and declined with increasing sapwood depth. Considerable variation in sap flux density profiles was observed both within and among the trees. In S. morototoni, radial variation in sap flux density was associated with radial variation in wood properties, particularly vessel lumen area and distribution. High variability in radial and circumferential sap flux density resulted in large errors when measurements of sap flow at a single depth, or a single radial profile, were used to estimate whole-plant water use. Diurnal water use ranged from 750 kg H2O day-1 for A. excelsum to 37 kg H2O day-1 for C. alliodora.

  7. Research on a New Method of Estimating the Potential Depth of Slope Failure Using the Airborne Electromagnetic Survey

    NASA Astrophysics Data System (ADS)

    Seto, Shuji; Takahara, Teruyoshi; Kinoshita, Atsuhiko; Mizuno, Hideaki; Kawato, Katsushi; Okumura, Minoru; Kageura, Ryouta

    2017-04-01

    In Japan, at Ontake volcano in 1984 and Kurikoma volcano in 2008, parts of the volcanoes collapsed and large-scale sediment-related disasters occurred. These disasters were unrelated to volcanic eruption directly. We conducted the case studies by using the airborne electromagnetic surveys to investigate the slopes likely to induce landslides on such volcanoes. The airborne electromagnetic surveys are the effective exploration tool when we investigate in extreme environments that person can't enter and it's necessary to investigate with wide range by a short time. The surveys were conducted by using a helicopter carrying the survey instruments; this method of non-contact investigation acquires resistivity data by the electromagnetic induction. In Japan, the surveys were conducted of 15 active volcanoes where volcanic disasters could have serious social implications. These cases focused on the seeking for the possible slopes that landslides would occur. However, the depth of the slope failure was not evaluated. Therefore in the study, we proposed a new method to determine the potential depth of slope failure. First, we categorized the three characteristics as the cap rock type, the extended collapse type, and the landslide type on the basis of collapsed cases and paid attention to the slope of the cap rock type and also defined the collapse range based on the topography and geological properties. Second, we analyzed resistivity structure about collapsed cases with the differential filter and made clear that collapse occurred in the depth which resistivity suddenly changes. In other volcanoes, we could estimate failure depth by extracting the part which resistivity suddenly changes. In the study, we use the three volcanoes as the main cases, Hokkaido Komagatake, Asama Volcano, and Ontake volcano.

  8. Innovative High-Accuracy Lidar Bathymetric Technique for the Frequent Measurement of River Systems

    NASA Astrophysics Data System (ADS)

    Gisler, A.; Crowley, G.; Thayer, J. P.; Thompson, G. S.; Barton-Grimley, R. A.

    2015-12-01

    Lidar (light detection and ranging) provides absolute depth and topographic mapping capability compared to other remote sensing methods, which is useful for mapping rapidly changing environments such as riverine systems. Effectiveness of current lidar bathymetric systems is limited by the difficulty in unambiguously identifying backscattered lidar signals from the water surface versus the bottom, limiting their depth resolution to 0.3-0.5 m. Additionally these are large, bulky systems that are constrained to expensive aircraft-mounted platforms and use waveform-processing techniques requiring substantial computation time. These restrictions are prohibitive for many potential users. A novel lidar device has been developed that allows for non-contact measurements of water depth down to 1 cm with an accuracy and precision of < 1 cm by exploiting the polarization properties of the light-surface interaction. This system can transition seamlessly from ranging over land to shallow to deep water allowing for shoreline charting, measuring water volume, mapping bottom topology, and identifying submerged objects. The scalability of the technique opens up the ability for handheld or UAS-mounted lidar bathymetric systems, which provides for potential applications currently unavailable to the community. The high laser pulse repetition rate allows for very fine horizontal resolution while the photon-counting technique permits real-time depth measurement and object detection. The enhanced measurement capability, portability, scalability, and relatively low-cost creates the opportunity to perform frequent high-accuracy monitoring and measuring of aquatic environments which is crucial for understanding how rivers evolve over many timescales. Results from recent campaigns measuring water depth in flowing creeks and murky ponds will be presented which demonstrate that the method is not limited by rough water surfaces and can map underwater topology through moderately turbid water.

  9. Innovative Technique for High-Accuracy Remote Monitoring of Surface Water

    NASA Astrophysics Data System (ADS)

    Gisler, A.; Barton-Grimley, R. A.; Thayer, J. P.; Crowley, G.

    2016-12-01

    Lidar (light detection and ranging) provides absolute depth and topographic mapping capability compared to other remote sensing methods, which is useful for mapping rapidly changing environments such as riverine systems and agricultural waterways. Effectiveness of current lidar bathymetric systems is limited by the difficulty in unambiguously identifying backscattered lidar signals from the water surface versus the bottom, limiting their depth resolution to 0.3-0.5 m. Additionally these are large, bulky systems that are constrained to expensive aircraft-mounted platforms and use waveform-processing techniques requiring substantial computation time. These restrictions are prohibitive for many potential users. A novel lidar device has been developed that allows for non-contact measurements of water depth down to 1 cm with an accuracy and precision of < 1 cm by exploiting the polarization properties of the light-surface interaction. This system can transition seamlessly from ranging over land to shallow to deep water allowing for shoreline charting, measuring water volume, mapping bottom topology, and identifying submerged objects. The scalability of the technique opens up the ability for handheld or UAS-mounted lidar bathymetric systems, which provides for potential applications currently unavailable to the community. The high laser pulse repetition rate allows for very fine horizontal resolution while the photon-counting technique permits real-time depth measurement and object detection. The enhanced measurement capability, portability, scalability, and relatively low-cost creates the opportunity to perform frequent high-accuracy monitoring and measuring of aquatic environments which is crucial for monitoring water resources on fast timescales. Results from recent campaigns measuring water depth in flowing creeks and murky ponds will be presented which demonstrate that the method is not limited by rough water surfaces and can map underwater topology through moderately turbid water.

  10. Is Centrophorus squamosus a highly migratory deep-water shark?

    NASA Astrophysics Data System (ADS)

    Rodríguez-Cabello, Cristina; Sánchez, Francisco

    2014-10-01

    Deep-water sharks are considered highly vulnerable species due to their life characteristics and very low recovery capacity against overfishing. However, there is still limited information on the ecology or population connectivity of these species. The aim of this study was to investigate if the species Centrophorus squamosus could make long displacements and thus confirm the existence of connectivity between different deep-water areas. In addition, the study was the first attempt to use tagging techniques on deep-water sharks, since it has never been undertaken before. Five C. squamosus were tagged with satellite tags (PAT) in the El Cachucho Marine Protected Area (Le Danois Bank) located in waters of the North of Spain, Cantabrian Sea (NE Atlantic). Data from four of these tags were recovered. One of the sharks travelled approximately 287 nm toward the north east (French continental shelf) hypothetically following the continental slope at a mean depth of 901±109 m for 45 days. Two other sharks spent almost 4 months traveling, in which time they moved 143 and 168 nm, respectively, to the west (Galician coast). Finally, another leafscale gulper shark travelled to the NW (Porcupine Bank) during a period of 3 months at a mean depth of 940±132 m. Depth and temperature preferences for all the sharks are discussed. Minimum and maximum depths recorded were 496 and 1848 m, respectively. The temperature range was between 6.2 and 11.4 °C, but the mean temperature was approximately 9.9±0.7 °C. The sharks made large vertical displacements throughout the water column with a mean daily depth range of 345±27 m. These preliminary results support the suggestion of a whole population in the NE Atlantic and confirm the capacity of this species to travel long distances.

  11. Eddy current effect on the microwave permeability of Fe-based nanocrystalline flakes with different sizes

    NASA Astrophysics Data System (ADS)

    Wu, Yanhui; Han, Mangui; Tang, Zhongkai; Deng, Longjiang

    2014-04-01

    The effective permeability values of composites containing Fe-Cu-Nb-Si-B nanocrystalline flakes have been studied within 0.5-10 GHz. Obvious differences in microwave permeability have been observed between large flakes (size range: 23-111 μm, average thickness: 4.5 μm) and small flakes (size range: 3-21 μm, average thickness: 1.3 μm). The initial real part of microwave permeability of large flakes is larger but it is decreasing faster. The larger flakes also show a larger magnetic loss. Taking into account the eddy current effect, the intrinsic microwave permeability values have been extracted based on the modified Maxwell-Garnet law, which have also been verified by the Acher's law. The dependences of skin depth on frequency have been calculated for both kinds of flakes. It is shown that the eddy current effect in the large flakes is significant. However, the eddy current effect can be ignored in the small flakes.

  12. Flow resistance and suspended load in sand-bed rivers: Simplified stratification model

    USGS Publications Warehouse

    Wright, S.; Parker, G.

    2004-01-01

    New methods are presented for the prediction of the flow depth, grain-size specific near-bed concentration, and bed-material suspended sediment transport rate in sand-bed rivers. The salient improvements delineated here all relate to the need to modify existing formulations in order to encompass the full range of sand-bed rivers, and in particular large, low-slope sand-bed rivers. They can be summarized as follows: (1) the inclusion of density stratification effects in a simplified manner, which have been shown in the companion paper to be particularly relevant for large, low-slope, sand-bed rivers; (2) a new predictor for near-bed entrainment rate into suspension which extends a previous relation to the range of large, low-slope sand-bed rivers; and (3) a new predictor for form drag which again extends a previous relation to include large, low-slope sand-bed rivers. Finally, every attempt has been made to cast the relations in the simplest form possible, including the development of software, so that practicing engineers may easily use the methods. ?? ASCE.

  13. Ground-water monitoring plan, water quality, and variability of agricultural chemicals in the Missouri River alluvial aquifer near the City of Independence, Missouri, well field, 1998-2000

    USGS Publications Warehouse

    Kelly, Brian P.

    2002-01-01

    A detailed ground-water sampling plan was developed and executed for 64 monitoring wells in the city of Independence well field to characterize ground-water quality in the 10-year zone of contribution. Samples were collected from monitoring wells, combined Independence well field pumpage, and the Missouri River at St. Joseph, Missouri, from 1998 through 2000. In 328 ground-water samples from the 64 monitoring wells and combined well field pumpage samples, specific conductance values ranged from 511 to 1,690 microsiemens per centimeter at 25 degrees Celsius, pH values ranged from 6.4 to 7.7, water temperature ranged from 11.3 to 23.6 degrees Celsius, and dissolved oxygen concentrations ranged from 0 to 3.3 milligrams per liter. In 12 samples from the combined well field pumpage samples, specific conductance values ranged from 558 to 856 microsiemens per centimeter at 25 degrees Celsius, pH values ranged from 6.9 to 7.7, water temperature ranged from 5.8 to 22.9 degrees Celsius, and dissolved oxygen concentrations ranged from 0 to 2.4 milligrams per liter. In 45 Missouri River samples, specific conductance values ranged from 531 to 830 microsiemens per centimeter at 25 degrees Celsius, pH ranged from 7.2 to 8.7, water temperature ranged from 0 to 30 degrees Celsius, and dissolved oxygen concentrations ranged from 5.0 to 17.6 milligrams per liter. The secondary maximum contaminant level for sulfate in drinking water was exceeded once in samples from two monitoring wells, the maximum contaminant level (MCL) for antimony was exceeded once in a sample from one monitoring well, and the MCL for barium was exceeded once in a sample from one monitoring well. The MCL for iron was exceeded in samples from all monitoring wells except two. The MCL for manganese was exceeded in all samples from monitoring wells and combined well field pumpage. Enzyme linked immunoassay methods indicate total benzene, toluene, ethyl benzene, and xylene (BTEX) was detected in samples from five wells. The highest total BTEX concentration was less than the MCL of toluene, ethyl benzene, or xylene but greater than the MCL for benzene. Total BTEX was not detected in samples from any well more than once. Atrazine was detected in samples from nine wells, and exceeded the MCL once in a sample from one well. Alachlor was detected in samples from 22 wells but the MCL was never exceeded in any sample. Samples from five wells analyzed for a large number of organic compounds indicate concentrations of volatile organic compounds did not exceed the MCL for drinking water. No semi-volatile organic compounds were detected; dieldrin was detected in one well sample, and no other pesticides, herbicides, polychlorinated biphenyls, or polychlorinated napthalenes were detected. Dissolved ammonia, dissolved nitrite plus nitrate, dissolved orthophosphorus, alachlor, and atrazine analyses were used to determine the spatial and temporal variability of agricultural chemicals in ground water. Detection frequencies for dissolved ammonia increased with well depth, decreased with depth for dissolved nitrite plus nitrate, and remained relatively constant with depth for dissolved orthophosphorus. Maximum concentrations of dissolved ammonia, dissolved nitrite plus nitrate, and dissolved orthophosphorus were largest in the shallowest wells and decreased with depth, which may indicate the land surface as the source. However, median concentrations increased with depth for dissolved ammonia, were less than the detection limit for dissolved nitrite plus nitrate, and decreased with depth for dissolved orthophosphorus. This pattern does not indicate a well-defined single source for these constituents. Dissolved orthophosphorus median concentrations were similar, but decreased slightly with depth, and may indicate the land surface as the source. Seasonal variability of dissolved ammonia, dissolved nitrite plus nitrate, a

  14. Optical-domain subsampling for data efficient depth ranging in Fourier-domain optical coherence tomography

    PubMed Central

    Siddiqui, Meena; Vakoc, Benjamin J.

    2012-01-01

    Recent advances in optical coherence tomography (OCT) have led to higher-speed sources that support imaging over longer depth ranges. Limitations in the bandwidth of state-of-the-art acquisition electronics, however, prevent adoption of these advances into the clinical applications. Here, we introduce optical-domain subsampling as a method for imaging at high-speeds and over extended depth ranges but with a lower acquisition bandwidth than that required using conventional approaches. Optically subsampled laser sources utilize a discrete set of wavelengths to alias fringe signals along an extended depth range into a bandwidth limited frequency window. By detecting the complex fringe signals and under the assumption of a depth-constrained signal, optical-domain subsampling enables recovery of the depth-resolved scattering signal without overlapping artifacts from this bandwidth-limited window. We highlight key principles behind optical-domain subsampled imaging, and demonstrate this principle experimentally using a polygon-filter based swept-source laser that includes an intra-cavity Fabry-Perot (FP) etalon. PMID:23038343

  15. Tuning the sensing range of silicon pressure sensor by trench etching technology

    NASA Astrophysics Data System (ADS)

    Chou, Yu-Tuan; Lin, Hung-Yi; Hu, Hsin-Hua

    2006-01-01

    The silicon pressure sensor has been developed for over thirty years and widely used in automobiles, medical instruments, commercial electronics, etc. There are many different specifications of silicon pressure sensors that cover a very large sensing range, from less than 1 psi to as high as 1000 psi. The key elements of the silicon pressure sensor are a square membrane and the piezoresistive strain gages near the boundary of the membrane. The dimensions of the membrane determine the full sensing range and the sensitivity of the silicon sensor, including thickness and in-plane length. Unfortunately, in order to change the sensing range, the manufacturers need to order a customized epi wafer to get the desired thickness. All masks (usually six) have to be re-laid and re-fabricated for different membrane sizes. The existing technology requires at least three months to deliver the prototype for specific customer requests or the new application market. This research proposes a new approach to dramatically reduce the prototyping time from three months to one week. The concept is to tune the rigidity of the sensing membrane by modifying the boundary conditions without changing the plenary size. An extra mask is utilized to define the geometry and location of deep-RIE trenches and all other masks remain the same. Membranes with different depths and different patterns of trenches are designed for different full sensing ranges. The simulation results show that for a 17um thick and 750um wide membrane, the adjustable range by tuning trench depth is about 45% (from 5um to 10um), and can go to as high as 100% by tuning both the pattern and depth of the trenches. Based on an actual test in a product fabrication line, we verified that the total delivery time can be minimized to one week to make the prototyping very effective and cost-efficient.

  16. Flexible non-diffractive vortex microscope for three-dimensional depth-enhanced super-localization of dielectric, metal and fluorescent nanoparticles

    NASA Astrophysics Data System (ADS)

    Bouchal, Petr; Bouchal, Zdeněk

    2017-10-01

    In the past decade, probe-based super-resolution using temporally resolved localization of emitters became a groundbreaking imaging strategy in fluorescence microscopy. Here we demonstrate a non-diffractive vortex microscope (NVM), enabling three-dimensional super-resolution fluorescence imaging and localization and tracking of metal and dielectric nanoparticles. The NVM benefits from vortex non-diffractive beams (NBs) creating a double-helix point spread function that rotates under defocusing while maintaining its size and shape unchanged. Using intrinsic properties of the NBs, the dark-field localization of weakly scattering objects is achieved in a large axial range exceeding the depth of field of the microscope objective up to 23 times. The NVM was developed using an upright microscope Nikon Eclipse E600 operating with a spiral lithographic mask optimized using Fisher information and built into an add-on imaging module or microscope objective. In evaluation of the axial localization accuracy the root mean square error below 18 nm and 280 nm was verified over depth ranges of 3.5 μm and 13.6 μm, respectively. Subwavelength gold and polystyrene beads were localized with isotropic precision below 10 nm in the axial range of 3.5 μm and the axial precision reduced to 30 nm in the extended range of 13.6 μm. In the fluorescence imaging, the localization with isotropic precision below 15 nm was demonstrated in the range of 2.5 μm, whereas in the range of 8.3 μm, the precision of 15 nm laterally and 30-50 nm axially was achieved. The tracking of nanoparticles undergoing Brownian motion was demonstrated in the volume of 14 × 10 × 16 μm3. Applicability of the NVM was tested by fluorescence imaging of LW13K2 cells and localization of cellular proteins.

  17. Plumbing Coastal Depths in Titan Kraken Mare

    NASA Image and Video Library

    2014-11-10

    Radar data from NASA's Cassini spacecraft reveal the depth of liquid methane/ethane seas on Saturn's moon Titan. Cassini's Titan flyby on August 21, 2014, included a segment designed to collect altimetry (or height) data, using the spacecraft's radar instrument, along a 120-mile (200-kilometer) shore-to-shore track on Kraken Mare, Titan's largest hydrocarbon sea. For a 25-mile (40-kilometer) stretch of this data, along the sea's eastern shoreline, Cassini's radar beam bounced off the sea bottom and back to the spacecraft, revealing the sea's depth in that area. Observations in this region, near the mouth of a large, flooded river valley, showed depths ranging from 66 to 115 feet (20 to 35 meters). Plots of three radar echoes are shown at left, indicating depths of 89 feet (27 meters), 108 feet (33 meters) and 98 feet (30 meters), respectively. The altimetry echoes show the characteristic double-peaked returns of a bottom-reflection. The tallest peak represents the sea surface; the shorter of the pair represents the sea bottom. The distance between the two peaks is a measure of the liquid's depth. The Synthetic Aperture Radar (SAR) image at right shows successive altimetry observations as black circles. The three blue circles indicate the locations of the three altimetry echoes shown in the plots at left. http://photojournal.jpl.nasa.gov/catalog/PIA19046

  18. Population Differentiation and Species Formation in the Deep Sea: The Potential Role of Environmental Gradients and Depth

    PubMed Central

    Jennings, Robert M.; Etter, Ron J.; Ficarra, Lynn

    2013-01-01

    Ecological speciation probably plays a more prominent role in diversification than previously thought, particularly in marine ecosystems where dispersal potential is great and where few obvious barriers to gene flow exist. This may be especially true in the deep sea where allopatric speciation seems insufficient to account for the rich and largely endemic fauna. Ecologically driven population differentiation and speciation are likely to be most prevalent along environmental gradients, such as those attending changes in depth. We quantified patterns of genetic variation along a depth gradient (1600-3800m) in the western North Atlantic for a protobranch bivalve ( Nuculaatacellana ) to test for population divergence. Multilocus analyses indicated a sharp discontinuity across a narrow depth range, with extremely low gene flow inferred between shallow and deep populations for thousands of generations. Phylogeographical discordance occurred between nuclear and mitochondrial loci as might be expected during the early stages of species formation. Because the geographic distance between divergent populations is small and no obvious dispersal barriers exist in this region, we suggest the divergence might reflect ecologically driven selection mediated by environmental correlates of the depth gradient. As inferred for numerous shallow-water species, environmental gradients that parallel changes in depth may play a key role in the genesis and adaptive radiation of the deep-water fauna. PMID:24098590

  19. Diving behavior and movements of juvenile hawksbill turtles Eretmochelys imbricata on a Caribbean coral reef

    NASA Astrophysics Data System (ADS)

    Blumenthal, J. M.; Austin, T. J.; Bothwell, J. B.; Broderick, A. C.; Ebanks-Petrie, G.; Olynik, J. R.; Orr, M. F.; Solomon, J. L.; Witt, M. J.; Godley, B. J.

    2009-03-01

    As historically abundant spongivores, hawksbill turtles Eretmochelys imbricata likely played a key ecological role on coral reefs. However, coral reefs are now experiencing global declines and many hawksbill populations are critically reduced. For endangered species, tracking movement has been recognized as fundamental to management. Since movements in marine vertebrates encompass three dimensions, evaluation of diving behavior and range is required to characterize marine turtle habitat. In this study, habitat use of hawksbill turtles on a Caribbean coral reef was elucidated by quantifying diel depth utilization and movements in relation to the boundaries of marine protected areas. Time depth recorders (TDRs) and ultrasonic tags were deployed on 21 Cayman Islands hawksbills, ranging in size from 26.4 to 58.4 cm straight carapace length. Study animals displayed pronounced diel patterns of diurnal activity and nocturnal resting, where diurnal dives were significantly shorter, deeper, and more active. Mean diurnal dive depth (±SD) was 8 ± 5 m, range 2-20 m, mean nocturnal dive depth was 5 ± 5 m, range 1-14 m, and maximum diurnal dive depth was 43 ± 27 m, range 7-91 m. Larger individuals performed significantly longer dives. Body mass was significantly correlated with mean dive depth for nocturnal but not diurnal dives. However, maximum diurnal dive depth was significantly correlated with body mass, suggesting partitioning of vertical habitat by size. Thus, variable dive capacity may reduce intraspecific competition and provide resistance to degradation in shallow habitats. Larger hawksbills may also represent important predators on deep reefs, creating a broad ecological footprint over a range of depths.

  20. Reconnecting fragmented sturgeon populations in North American rivers

    DOE PAGES

    Jager, Yetta; Forsythe, Patrick S.; McLaughlin, Robert L.; ...

    2016-02-24

    The majority of large North American rivers are fragmented by dams that interrupt migrations of wide-ranging fishes like sturgeons. Reconnecting habitat is viewed as an important means of protecting sturgeon species in U.S. rivers because these species have lost between 5% and 60% of their historical ranges. Unfortunately, facilities designed to pass other fishes have rarely worked well for sturgeons. The most successful passage facilities were sized appropriately for sturgeons and accommodated bottom-oriented species. For upstream passage, facilities with large entrances, full-depth guidance systems, large lifts, or wide fishways without obstructions or tight turns worked well. However, facilitating upstream migrationmore » is only half the battle. Broader recovery for linked sturgeon populations requires safe round-trip passage involving multiple dams. The most successful downstream passage facilities included nature-like fishways, large canal bypasses, and bottom-draw sluice gates. We outline an adaptive approach to implementing passage that begins with temporary programs and structures and monitors success both at the scale of individual fish at individual dams and the scale of metapopulations in a river basin. The challenge will be to learn from past efforts and reconnect North American sturgeon populations in a way that promotes range expansion and facilitates population recovery.« less

  1. Imaging Magma Plumbing Beneath Askja Volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Greenfield, T. S.; White, R. S.

    2015-12-01

    Using a dense seismic network we have imaged the plumbing system beneath Askja, a large central volcano in the Northern Volcanic Zone, Iceland. Local and regional earthquakes have been used as sources to solve for the velocity structure beneath the volcano. We find a pronounced low-velocity anomaly beneath the caldera at a depth of ~7 km around the depth of the brittle-ductile transition. The anomaly is ~10% slower than the initial best fitting 1D model and has a Vp/Vs ratio higher than the surrounding crust, suggesting the presence of increased temperature or partial melt. We use relationships between mineralogy and seismic velocities to estimate that this region contains ~10% partial melt, similar to observations made at other volcanoes such as Kilauea. This low-velocity body is deeper than the depth range suggested by geodetic studies of a deflating source beneath Askja. Beneath the large low-velocity zone a region of reduced velocities extends into the lower crust and is coincident with seismicity in the lower crust. This is suggestive of a high temperature channel into the lower crust which could be the pathway for melt rising from the mantle. This melt either intrudes into the lower crust or stalls at the brittle-ductile boundary in the imaged body. Above this, melt can travel into the fissure swarm through large dikes or erupt within the Askja caldera itself.We generate travel time tables using a finite difference technique and the residuals used to simultaneously solve for both the earthquake locations and velocity structure. The 2014-15 Bárðarbunga dike intrusion has provided a 45 km long, distributed source of large earthquakes which are well located and provide accurate arrival time picks. Together with long-term background seismicity these provide excellent illumination of the Askja volcano from all directions.hhhh

  2. POPO AGIE PRIMITIVE AREA, WYOMING.

    USGS Publications Warehouse

    Pearson, Robert C.; Patten, L.L.

    1984-01-01

    A mineral-resource appraisal was made of the Popo Agie Primitive Area and some adjoining lands. This scenic mountainous region of the Wind River Range in west-central Wyoming is composed largely of ancient granitic rocks in which virtually no evidence of mineral deposits was found. Deep crustal seismic-reflection profiles obtained across the southern Wind River Range suggest the possibility that young sedimentary rocks, similar to those at the surface along the northeast flank of the range, are present at depth beneath the granite in the Popo Agie primitive Area. If present, such buried sedimentary rocks could be petroleum bearing. Additional seismic and gravity studies would probably add valuable information, but ultimately very expensive, very deep drilling will be necessary to test this possibility.

  3. Image registration reveals central lens thickness minimally increases during accommodation

    PubMed Central

    Schachar, Ronald A; Mani, Majid; Schachar, Ira H

    2017-01-01

    Purpose To evaluate anterior chamber depth, central crystalline lens thickness and lens curvature during accommodation. Setting California Retina Associates, El Centro, CA, USA. Design Healthy volunteer, prospective, clinical research swept-source optical coherence biometric image registration study of accommodation. Methods Ten subjects (4 females and 6 males) with an average age of 22.5 years (range: 20–26 years) participated in the study. A 45° beam splitter attached to a Zeiss IOLMaster 700 (Carl Zeiss Meditec Inc., Jena, Germany) biometer enabled simultaneous imaging of the cornea, anterior chamber, entire central crystalline lens and fovea in the dilated right eyes of subjects before, and during focus on a target 11 cm from the cornea. Images with superimposable foveal images, obtained before and during accommodation, that met all of the predetermined alignment criteria were selected for comparison. This registration requirement assured that changes in anterior chamber depth and central lens thickness could be accurately and reliably measured. The lens radii of curvatures were measured with a pixel stick circle. Results Images from only 3 of 10 subjects met the predetermined criteria for registration. Mean anterior chamber depth decreased, −67 μm (range: −0.40 to −110 μm), and mean central lens thickness increased, 117 μm (range: 100–130 μm). The lens surfaces steepened, anterior greater than posterior, while the lens, itself, did not move or shift its position as appeared from the lack of movement of the lens nucleus, during 7.8 diopters of accommodation, (range: 6.6–9.7 diopters). Conclusion Image registration, with stable invariant references for image correspondence, reveals that during accommodation a large increase in lens surface curvatures is associated with only a small increase in central lens thickness and no change in lens position. PMID:28979092

  4. A confidence interval analysis of sampling effort, sequencing depth, and taxonomic resolution of fungal community ecology in the era of high-throughput sequencing.

    PubMed

    Oono, Ryoko

    2017-01-01

    High-throughput sequencing technology has helped microbial community ecologists explore ecological and evolutionary patterns at unprecedented scales. The benefits of a large sample size still typically outweigh that of greater sequencing depths per sample for accurate estimations of ecological inferences. However, excluding or not sequencing rare taxa may mislead the answers to the questions 'how and why are communities different?' This study evaluates the confidence intervals of ecological inferences from high-throughput sequencing data of foliar fungal endophytes as case studies through a range of sampling efforts, sequencing depths, and taxonomic resolutions to understand how technical and analytical practices may affect our interpretations. Increasing sampling size reliably decreased confidence intervals across multiple community comparisons. However, the effects of sequencing depths on confidence intervals depended on how rare taxa influenced the dissimilarity estimates among communities and did not significantly decrease confidence intervals for all community comparisons. A comparison of simulated communities under random drift suggests that sequencing depths are important in estimating dissimilarities between microbial communities under neutral selective processes. Confidence interval analyses reveal important biases as well as biological trends in microbial community studies that otherwise may be ignored when communities are only compared for statistically significant differences.

  5. Expanding the Detection of Traversable Area with RealSense for the Visually Impaired

    PubMed Central

    Yang, Kailun; Wang, Kaiwei; Hu, Weijian; Bai, Jian

    2016-01-01

    The introduction of RGB-Depth (RGB-D) sensors into the visually impaired people (VIP)-assisting area has stirred great interest of many researchers. However, the detection range of RGB-D sensors is limited by narrow depth field angle and sparse depth map in the distance, which hampers broader and longer traversability awareness. This paper proposes an effective approach to expand the detection of traversable area based on a RGB-D sensor, the Intel RealSense R200, which is compatible with both indoor and outdoor environments. The depth image of RealSense is enhanced with IR image large-scale matching and RGB image-guided filtering. Traversable area is obtained with RANdom SAmple Consensus (RANSAC) segmentation and surface normal vector estimation, preliminarily. A seeded growing region algorithm, combining the depth image and RGB image, enlarges the preliminary traversable area greatly. This is critical not only for avoiding close obstacles, but also for allowing superior path planning on navigation. The proposed approach has been tested on a score of indoor and outdoor scenarios. Moreover, the approach has been integrated into an assistance system, which consists of a wearable prototype and an audio interface. Furthermore, the presented approach has been proved to be useful and reliable by a field test with eight visually impaired volunteers. PMID:27879634

  6. A confidence interval analysis of sampling effort, sequencing depth, and taxonomic resolution of fungal community ecology in the era of high-throughput sequencing

    PubMed Central

    2017-01-01

    High-throughput sequencing technology has helped microbial community ecologists explore ecological and evolutionary patterns at unprecedented scales. The benefits of a large sample size still typically outweigh that of greater sequencing depths per sample for accurate estimations of ecological inferences. However, excluding or not sequencing rare taxa may mislead the answers to the questions ‘how and why are communities different?’ This study evaluates the confidence intervals of ecological inferences from high-throughput sequencing data of foliar fungal endophytes as case studies through a range of sampling efforts, sequencing depths, and taxonomic resolutions to understand how technical and analytical practices may affect our interpretations. Increasing sampling size reliably decreased confidence intervals across multiple community comparisons. However, the effects of sequencing depths on confidence intervals depended on how rare taxa influenced the dissimilarity estimates among communities and did not significantly decrease confidence intervals for all community comparisons. A comparison of simulated communities under random drift suggests that sequencing depths are important in estimating dissimilarities between microbial communities under neutral selective processes. Confidence interval analyses reveal important biases as well as biological trends in microbial community studies that otherwise may be ignored when communities are only compared for statistically significant differences. PMID:29253889

  7. Correction of a liquid lens for 3D imaging systems

    NASA Astrophysics Data System (ADS)

    Bower, Andrew J.; Bunch, Robert M.; Leisher, Paul O.; Li, Weixu; Christopher, Lauren A.

    2012-06-01

    3D imaging systems are currently being developed using liquid lens technology for use in medical devices as well as in consumer electronics. Liquid lenses operate on the principle of electrowetting to control the curvature of a buried surface, allowing for a voltage-controlled change in focal length. Imaging systems which utilize a liquid lens allow extraction of depth information from the object field through a controlled introduction of defocus into the system. The design of such a system must be carefully considered in order to simultaneously deliver good image quality and meet the depth of field requirements for image processing. In this work a corrective model has been designed for use with the Varioptic Arctic 316 liquid lens. The design is able to be optimized for depth of field while minimizing aberrations for a 3D imaging application. The modeled performance is compared to the measured performance of the corrected system over a large range of focal lengths.

  8. Diffraction-Limited Plenoptic Imaging with Correlated Light

    NASA Astrophysics Data System (ADS)

    Pepe, Francesco V.; Di Lena, Francesco; Mazzilli, Aldo; Edrei, Eitan; Garuccio, Augusto; Scarcelli, Giuliano; D'Angelo, Milena

    2017-12-01

    Traditional optical imaging faces an unavoidable trade-off between resolution and depth of field (DOF). To increase resolution, high numerical apertures (NAs) are needed, but the associated large angular uncertainty results in a limited range of depths that can be put in sharp focus. Plenoptic imaging was introduced a few years ago to remedy this trade-off. To this aim, plenoptic imaging reconstructs the path of light rays from the lens to the sensor. However, the improvement offered by standard plenoptic imaging is practical and not fundamental: The increased DOF leads to a proportional reduction of the resolution well above the diffraction limit imposed by the lens NA. In this Letter, we demonstrate that correlation measurements enable pushing plenoptic imaging to its fundamental limits of both resolution and DOF. Namely, we demonstrate maintaining the imaging resolution at the diffraction limit while increasing the depth of field by a factor of 7. Our results represent the theoretical and experimental basis for the effective development of promising applications of plenoptic imaging.

  9. Diffraction-Limited Plenoptic Imaging with Correlated Light.

    PubMed

    Pepe, Francesco V; Di Lena, Francesco; Mazzilli, Aldo; Edrei, Eitan; Garuccio, Augusto; Scarcelli, Giuliano; D'Angelo, Milena

    2017-12-15

    Traditional optical imaging faces an unavoidable trade-off between resolution and depth of field (DOF). To increase resolution, high numerical apertures (NAs) are needed, but the associated large angular uncertainty results in a limited range of depths that can be put in sharp focus. Plenoptic imaging was introduced a few years ago to remedy this trade-off. To this aim, plenoptic imaging reconstructs the path of light rays from the lens to the sensor. However, the improvement offered by standard plenoptic imaging is practical and not fundamental: The increased DOF leads to a proportional reduction of the resolution well above the diffraction limit imposed by the lens NA. In this Letter, we demonstrate that correlation measurements enable pushing plenoptic imaging to its fundamental limits of both resolution and DOF. Namely, we demonstrate maintaining the imaging resolution at the diffraction limit while increasing the depth of field by a factor of 7. Our results represent the theoretical and experimental basis for the effective development of promising applications of plenoptic imaging.

  10. GISAXS modelling of helium-induced nano-bubble formation in tungsten and comparison with TEM

    NASA Astrophysics Data System (ADS)

    Thompson, Matt; Sakamoto, Ryuichi; Bernard, Elodie; Kirby, Nigel; Kluth, Patrick; Riley, Daniel; Corr, Cormac

    2016-05-01

    Grazing-incidence small angle x-ray scattering (GISAXS) is a powerful non-destructive technique for the measurement of nano-bubble formation in tungsten under helium plasma exposure. Here, we present a comparative study between transmission electron microscopy (TEM) and GISAXS measurements of nano-bubble formation in tungsten exposed to helium plasma in the Large Helical Device (LHD) fusion experiment. Both techniques are in excellent agreement, suggesting that nano-bubbles range from spheroidal to ellipsoidal, displaying exponential diameter distributions with mean diameters μ=0.68 ± 0.04 nm and μ=0.6 ± 0.1 nm measured by TEM and GISAXS respectively. Depth distributions were also computed, with calculated exponential depth distributions with mean depths of 8.4 ± 0.5 nm and 9.1 ± 0.4 nm for TEM and GISAXS. In GISAXS modelling, spheroidal particles were fitted with an aspect ratio ε=0.7 ± 0.1. The GISAXS model used is described in detail.

  11. Depth as an organizer of fish assemblages in floodplain lakes

    USGS Publications Warehouse

    Miranda, L.E.

    2011-01-01

    Depth reduction is a natural process in floodplain lakes, but in many basins has been accelerated by anthropogenic disturbances. A diverse set of 42 floodplain lakes in the Yazoo River Basin (Mississippi, USA) was examined to test the hypothesis of whether depth reduction was a key determinant of water quality and fish assemblage structure. Single and multiple variable analyses were applied to 10 commonly monitored water variables and 54 fish species. Results showed strong associations between depth and water characteristics, and between depth and fish assemblages. Deep lakes provided less variable environments, clearer water, and a wider range of microhabitats than shallow lakes. The greater environmental stability was reflected by the dominant species in the assemblages, which included a broader representation of large-body species, species less tolerant of extreme water quality, and more predators. Stability in deep lakes was further reflected by reduced among-lake variability in taxa representation. Fish assemblages in shallow lakes were more variable than deep lakes, and commonly dominated by opportunistic species that have early maturity, extended breeding seasons, small adult size, and short lifespan. Depth is a causal factor that drives many physical and chemical variables that contribute to organizing fish assemblages in floodplain lakes. Thus, correlations between fish and water transparency, temperature, oxygen, trophic state, habitat structure, and other environmental descriptors may ultimately be totally or partly regulated by depth. In basins undergoing rapid anthropogenic modifications, local changes forced by depth reductions may be expected to eliminate species available from the regional pool and could have considerable ecological implications. ?? 2010 Springer Basel AG (outside the USA).

  12. Oxygen minimum zone: An important oceanographic habitat for deep-diving northern elephant seals, Mirounga angustirostris.

    PubMed

    Naito, Yasuhiko; Costa, Daniel P; Adachi, Taiki; Robinson, Patrick W; Peterson, Sarah H; Mitani, Yoko; Takahashi, Akinori

    2017-08-01

    Little is known about the foraging behavior of top predators in the deep mesopelagic ocean. Elephant seals dive to the deep biota-poor oxygen minimum zone (OMZ) (>800 m depth) despite high diving costs in terms of energy and time, but how they successfully forage in the OMZ remains largely unknown. Assessment of their feeding rate is the key to understanding their foraging behavior, but this has been challenging. Here, we assessed the feeding rate of 14 female northern elephant seals determined by jaw motion events (JME) and dive cycle time to examine how feeding rates varied with dive depth, particularly in the OMZ. We also obtained video footage from seal-mounted videos to understand their feeding in the OMZ. While the diel vertical migration pattern was apparent for most depths of the JME, some very deep dives, beyond the normal diel depth ranges, occurred episodically during daylight hours. The midmesopelagic zone was the main foraging zone for all seals. Larger seals tended to show smaller numbers of JME and lower feeding rates than smaller seals during migration, suggesting that larger seals tended to feed on larger prey to satisfy their metabolic needs. Larger seals also dived frequently to the deep OMZ, possibly because of a greater diving ability than smaller seals, suggesting their dependency on food in the deeper depth zones. Video observations showed that seals encountered the rarely reported ragfish ( Icosteus aenigmaticus ) in the depths of the OMZ, which failed to show an escape response from the seals, suggesting that low oxygen concentrations might reduce prey mobility. Less mobile prey in OMZ would enhance the efficiency of foraging in this zone, especially for large seals that can dive deeper and longer. We suggest that the OMZ plays an important role in structuring the mesopelagic ecosystem and for the survival and evolution of elephant seals.

  13. Lack of Physiological Depth Patterns in Conspecifics of Endemic Antarctic Brown Algae: A Trade-Off between UV Stress Tolerance and Shade Adaptation?

    PubMed Central

    Gómez, Iván; Huovinen, Pirjo

    2015-01-01

    A striking characteristic of endemic Antarctic brown algae is their broad vertical distribution. This feature is largely determined by the shade adaptation in order to cope with the seasonal variation in light availability. However, during spring-summer months, when light penetrates deep in the water column these organisms have to withstand high levels of solar radiation, including UV. In the present study we examine the light use characteristics in parallel to a potential for UV tolerance (measured as content of phenolic compounds, antioxidant activity and maximum quantum yield of fluorescence) in conspecific populations of four Antarctic brown algae (Ascoseira mirabilis, Desmarestia menziesii, D. anceps and Himantothallus grandifolius) distributed over a depth gradient between 5 and 30 m. The main results indicated that a) photosynthetic efficiency was uniform along the depth gradient in all the studied species, and b) short-term (6 h) exposure to UV radiation revealed a high tolerance measured as chlorophyll fluorescence, phlorotannin content and antioxidant capacity. Multivariate analysis of similarity indicated that light requirements for photosynthesis, soluble phlorotannins and antioxidant capacity are the variables determining the responses along the depth gradient in all the studied species. The suite of physiological responses of algae with a shallower distribution (A. mirabilis and D. menziesii) differed from those with deeper vertical range (D. anceps and H. grandifolius). These patterns are consistent with the underwater light penetration that defines two zones: 0–15 m, with influence of UV radiation (1% of UV-B and UV-A at 9 m and 15 m respectively) and a zone below 15 m marked by PAR incidence (1% up to 30 m). These results support the prediction that algae show a UV stress tolerance capacity along a broad depth range according to their marked shade adaptation. The high contents of phlorotannins and antioxidant potential appear to be strongly responsible for the lack of clear depth patterns in light demand characteristics and UV tolerance. PMID:26252953

  14. Surface folding-induced attraction and motion of particles in a soft elastic gel: cooperative effects of surface tension, elasticity, and gravity.

    PubMed

    Chakrabarti, Aditi; Chaudhury, Manoj K

    2013-12-17

    We report some experimental observations regarding a new type of long-range interaction between rigid particles that prevails when they are suspended in an ultrasoft elastic gel. A denser particle submerges itself to a considerable depth inside the gel and becomes elasto-buoyant by balancing its weight against the elastic force exerted by the surrounding medium. By virtue of a large elasto-capillary length, the surface of the gel wraps around the particle and closes to create a line singularity connecting the particle to the free surface of the gel. A substantial amount of tensile strain is thus developed in the gel network parallel to the free surface that penetrates to a significant depth inside the gel. The field of this tensile strain is rather long-range because of a large gravito-elastic correlation length and sufficiently strong to pull two submerged particles into contact. The particles move toward each other with an effective force following an inverse linear distance law. When more monomers or dimers of the particles are released inside the gel, they orient rather freely inside the capsules where they are located and attract each other to form closely packed clusters. Eventually, these clusters themselves interact and coalesce. This is an emergent phenomenon in which gravity, capillarity, and elasticity work in tandem to create a long-range interaction. We also present the results of a related experiment, in which a particle suspended inside a thickness-graded gel moves accompanied by the continuous folding and the relaxation of the gel's surface.

  15. Target-depth estimation in active sonar: Cramer-Rao bounds for a bilinear sound-speed profile.

    PubMed

    Mours, Alexis; Ioana, Cornel; Mars, Jérôme I; Josso, Nicolas F; Doisy, Yves

    2016-09-01

    This paper develops a localization method to estimate the depth of a target in the context of active sonar, at long ranges. The target depth is tactical information for both strategy and classification purposes. The Cramer-Rao lower bounds for the target position as range and depth are derived for a bilinear profile. The influence of sonar parameters on the standard deviations of the target range and depth are studied. A localization method based on ray back-propagation with a probabilistic approach is then investigated. Monte-Carlo simulations applied to a summer Mediterranean sound-speed profile are performed to evaluate the efficiency of the estimator. This method is finally validated on data in an experimental tank.

  16. [Spatial-temporal distribution of bigeye tuna Thunnus obesus in the tropical Atlantic Ocean based on Argo data].

    PubMed

    Yang, Sheng-long; Jin, Shao-fei; Hua, Cheng-jun; Dai, Yang

    2015-02-01

    In order to analyze the correlation between spatial-temporal distribution of the bigeye tuna ( Thunnus obesus) and subsurface factors, the study explored the isothermal distribution of subsurface temperatures in the bigeye tuna fishing grounds in the tropical Atlantic Ocean, and built up the spatial overlay chart of the isothermal lines of 9, 12, 13 and 15 °C and monthly CPUE (catch per unit effort) from bigeye tuna long-lines. The results showed that the bigeye tuna mainly distributed in the water layer (150-450 m) below the lower boundary depth of thermocline. At the isothermal line of 12 °C, the bigeye tuna mainly lived in the water layer of 190-260 m, while few individuals were found at water depth more than 400 m. As to the 13 °C isothermal line, high CPUE often appeared at water depth less than 250 m, mainly between 150-230 m, while no CPUE appeared at water depth more than 300 m. The optimum range of subsurface factors calculated by frequency analysis and empirical cumulative distribution function (ECDF) exhibited that the optimum depth range of 12 °C isothermal depth was 190-260 m and the 13 °C isothermal depth was 160-240 m, while the optimum depth difference range of 12 °C isothermal depth was -10 to 100 m and the 13 °C isothermal depth was -40 to 60 m. The study explored the optimum range of subsurface factors (water temperature and depth) that drive horizontal and vertical distribution of bigeye tuna. The preliminary result would help to discover the central fishing ground, instruct fishing depth, and provide theoretical and practical references for the longline production and resource management of bigeye tuna in the Atlantic Ocean.

  17. Imaging the ascent path of fluids and partial melts at convergent plate boundaries by geophysical characteristics

    NASA Astrophysics Data System (ADS)

    Luehr, B. G.; Koulakov, I.; Kopp, H.; Rabbel, W.; Zschau, J.

    2011-12-01

    During the last decades many investigations were carried out at active continental margins to understand the link between the subduction of the fluid saturated oceanic plate and the process of ascent of fluids and partial melts forming a magmatic system that leads to volcanism at the earth surface. For this purpose structural information are needed about the slap itself, the part above it, the ascent paths as well as the storage of fluids and partial melts in the mantle and the crust above the down going slap up to the volcanoes on the surface. If we consider statistically the distance between the trench and the volcanic chain as well as the inclination angle of the down going plate, then the mean value of the depth distance down to the Wadati Benioff zone results of approximately 100 kilometers. Surprisingly, this depth range shows pronounced seismicity at most of all subduction zones. Additionally, mineralogical investigations in the lab have shown that the diving plate is maximal dehydrated around 100 km depth because of temperature and pressure conditions at this depth range. However, assuming a vertical fluid ascent there are exceptions. For instance at the Sunda Arc beneath Central Java the vertical distance results in approximately 150 km. But, in this case seismic investigations have shown that the fluids do not ascend vertically, but inclined even from a source area at around the 100 km depth. The ascent of the fluids and the appearance of partial melts as well as the distribution of these materials in the crust can be proved by seismic and seismological methods. With the seismic tomography these areas are imaged by lowered seismic velocities, high Vp/Vs ratios, as well as increased attenuation of seismic shear waves. But, to explore plate boundaries large and complex amphibious experiments are required, in which active and passive seismic investigations should be combined. They have to recover a range from before the trench to far behind the volcanic chain, to provide under favorable conditions information down to a depth of 150 km. In particular the record of the natural seismicity and its distribution allows the three-dimensional imaging of the entire crust and lithosphere structure above the Wadati Benioff zone with the help of tomographic procedures, and therewith the entire ascent path region of the fluids and melts, which are responsible for volcanism. The seismic velocity anomalies detected so far are within a range of a few per cent to more than 30% reduction. In the lecture findings of different subduction zones are compared and discussed.

  18. Hydraulic characteristics of, and ground-water flow in, coal-bearing rocks of southwestern Virginia

    USGS Publications Warehouse

    Harlow, George E.; LeCain, Gary D.

    1993-01-01

    This report presents the results of a study by the U.S Geological Survey, in cooperation with the Virginia Department of Mines, Minerals, and Energy, Division of Mined Land Reclamation, and the Powell River Project, to describe the hydraulic characteristics of major water-bearing zones in the coal-bearing rocks of southwestern Virginia and to develop a conceptual model of the ground-water-flow system. Aquifer testing in1987 and 1988 of 9-ft intervals in coal-exploration coreholes indicates that transmissivity decreases with increasing depth. Most rock types are permeable to a depth of approximately 100 ft; however, only coal seams are consistently permeable (transmissivity greater than 0.001 ft/d) at depths greater than 200 ft . Constant-head injection testing of rock intervals adjacent to coal seams usually indicated lower values of transmissivity than those values obtained when coal seams were isolated within the test interval; thus, large values of horizontal hydraulic conductivity at depth are associated with coal seams. Potentiometric-head measurements indicate that high topographic areas (ridges) function as recharge areas; water infiltrates through the surface, percolates into regolith, and flows downward and laterally through fractures in the shallow bedrock. Hydraulic conductivity decreases with increasing depth, and ground water flows primarily in the lateral direction along fractures or bedding planes or through coal seams. If vertical hydraulic conductivity is negligible, ground water continues to flow laterally, discharging as springs or seeps on hill slopes. Where vertical hydraulic conductivity is appreciable, groundwater follows a stair step path through the regolith, fractures, bedding planes, and coal seams, discharging to streams and (or) recharging coal seams at depth. Permeable coal seams probably underlie valleys in the region; however, aquifer-test data indicate that the horizontal hydraulic conductivity of coal is a function of depth and probably decreases under ridges because of increased overburden pressures. Ground water beneath valleys that does not discharge to streams probably flows down gradient as underflow beneath the streams. Topographic relief in the area provides large hydraulic-head differences (greater than 300 ft in some instances) for the ground-water-flow system. Transmissivity data from the range of depths tested during this study indicate that most ground-water flow takes place at moderate depths (less than 300 ft) and that little deep regional ground-water flow occurs.

  19. Multiple spatial scale analyses provide new clues on patterns and drivers of deep-sea nematode diversity

    NASA Astrophysics Data System (ADS)

    Danovaro, Roberto; Carugati, Laura; Corinaldesi, Cinzia; Gambi, Cristina; Guilini, Katja; Pusceddu, Antonio; Vanreusel, Ann

    2013-08-01

    The deep sea is the largest biome of the biosphere. The knowledge of the spatial variability of deep-sea biodiversity is one of the main challenges of marine ecology and evolutionary biology. The choice of the observational spatial scale is assumed to play a key role for understanding processes structuring the deep-sea benthic communities and one of the most typical features of marine biodiversity distribution is the existence of bathymetric gradients. However, the analysis of biodiversity bathymetric gradients and the associated changes in species composition (beta diversity) typically compared large depth ranges (with intervals of 500 to 1000 or even 2000 m depth among sites). To test whether significant changes in alpha and beta diversity occur also at fine-scale bathymetric gradients (i.e., within few hundred-meter depth intervals) the variability of deep-sea nematode biodiversity and assemblage composition along a bathymetric transect (200-1200 m depth) with intervals of 200 m among sampling depths, was investigated. A hierarchical sampling strategy for the analysis of nematode species richness, beta diversity, functional (trophic) diversity, and related environmental variables, was used. The results indicate the lack of significant differences in taxonomic and functional diversity across sampling depths, but the presence of high beta diversity at all spatial scales investigated: between cores collected from the same box corer (on average 56%), among deployments at the same depth (58%), and between all sampling depths (62%). Such high beta diversity is influenced by the presence of small-scale patchiness in the deep sea and is also related to the large number of rare or very rare species (typically accounting for >80% of total species richness). Moreover, the number of ubiquitous nematode species across all sampling depths is quite low (ca. 15%). Multiple regression analyses provide evidence that such patterns could be related to the different availability, composition and size spectra of food particles in the sediments. Additionally, though to a lesser extent, our results indicate, that selective predation can influence the nematode trophic composition. These findings suggest that a multiple scale analysis based on a nested sampling design could significantly improve our knowledge of bathymetric patterns of deep-sea biodiversity and its drivers.

  20. A global reference model of Moho depths based on WGM2012

    NASA Astrophysics Data System (ADS)

    Zhou, D.; Li, C.

    2017-12-01

    The crust-mantle boundary (Moho discontinuity) represents the largest density contrast in the lithosphere, which can be detected by Bouguer gravity anomaly. We present our recent inversion of global Moho depths from World Gravity Map 2012. Because oceanic lithospheres increase in density as they cool, we perform thermal correction based on the plate cooling model. We adopt a temperature Tm=1300°C at the bottom of lithosphere. The plate thickness is tested by varying by 5 km from 90 to 140 km, and taken as 130 km that gives a best-fit crustal thickness constrained by seismic crustal thickness profiles. We obtain the residual Bouguer gravity anomalies by subtracting the thermal correction from WGM2012, and then estimate Moho depths based on the Parker-Oldenburg algorithm. Taking the global model Crust1.0 as a priori constraint, we adopt Moho density contrasts of 0.43 and 0.4 g/cm3 , and initial mean Moho depths of 37 and 20 km in the continental and oceanic domains, respectively. The number of iterations in the inversion is set to be 150, which is large enough to obtain an error lower than a pre-assigned convergence criterion. The estimated Moho depths range between 0 76 km, and are averaged at 36 and 15 km in continental and oceanic domain, respectively. Our results correlate very well with Crust1.0 with differences mostly within ±5.0 km. Compared to the low resolution of Crust1.0 in oceanic domain, our results have a much larger depth range reflecting diverse structures such as ridges, seamounts, volcanic chains and subduction zones. Base on this model, we find that young(<5 Ma) oceanic crust thicknesses show dependence on spreading rates: (1) From ultraslow (<4mm/yr) to slow (4 45mm/yr) spreading ridges, the thicknesses increase dramatically; (2)From slow to fast (45 95mm/yr) spreading ridges , the thickness decreases slightly; (3) For the super-fast ridges (>95mm/yr) we observe relatively thicker crust. Conductive cooling of lithosphere may constrain the melting of the mantle at ultraslow spreading centers. Lower mantle temperatures indicated by deeper Curie depths at slow and fast spreading ridges may decrease the volume of magmatism and crustal thickness. This new global model of gravity-derived Moho depth, combined with geochemical and Curie point depth, can be used to investigate thermal evolution of lithosphere.

  1. Composite Megathrust Rupture From Deep Interplate to Trench of the 2016 Solomon Islands Earthquake

    NASA Astrophysics Data System (ADS)

    Lee, Shiann-Jong; Lin, Tzu-Chi; Feng, Kuan-Fu; Liu, Ting-Yu

    2018-01-01

    The deep plate boundary has usually been recognized as an aseismic area, with few large earthquakes occurring at the 60-100 km depth interface. In contrast, we use a finite-fault rupture model to demonstrate that large slip in the 2016 M7.9 Solomon Islands earthquake may have originated from the deep subduction interface and propagated all the way up to the trench. The initial rupture occurred at a depth of about 100 km, forming a deep asperity and then propagating updip to the middle-depth large coseismic slip area. Our proposed source model indicates that the depth-varying rupture characteristics of this event could shift to deeper depths with respect to other subduction zones. This result also implied that the deep subducting plate boundary could also be seismogenic, which might trigger rupture at the typical middle-depth stress-locked zone and develop into rare composite megathrust events.

  2. Fluctuating water depths affect American alligator (Alligator mississippiensis) body condition in the Everglades, Florida, USA

    USGS Publications Warehouse

    Brandt, Laura A.; Beauchamp, Jeffrey S.; Jeffery, Brian M.; Cherkiss, Michael S.; Mazzotti, Frank J.

    2016-01-01

    Successful restoration of wetland ecosystems requires knowledge of wetland hydrologic patterns and an understanding of how those patterns affect wetland plant and animal populations.Within the Everglades, Florida, USA restoration, an applied science strategy including conceptual ecological models linking drivers to indicators is being used to organize current scientific understanding to support restoration efforts. A key driver of the ecosystem affecting the distribution and abundance of organisms is the timing, distribution, and volume of water flows that result in water depth patterns across the landscape. American alligators (Alligator mississippiensis) are one of the ecological indicators being used to assess Everglades restoration because they are a keystone species and integrate biological impacts of hydrological operations through all life stages. Alligator body condition (the relative fatness of an animal) is one of the metrics being used and targets have been set to allow us to track progress. We examined trends in alligator body condition using Fulton’s K over a 15 year period (2000–2014) at seven different wetland areas within the Everglades ecosystem, assessed patterns and trends relative to restoration targets, and related those trends to hydrologic variables. We developed a series of 17 a priori hypotheses that we tested with an information theoretic approach to identify which hydrologic factors affect alligator body condition. Alligator body condition was highest throughout the Everglades during the early 2000s and is approximately 5–10% lower now (2014). Values have varied by year, area, and hydrology. Body condition was positively correlated with range in water depth and fall water depth. Our top model was the “Current” model and included variables that describe current year hydrology (spring depth, fall depth, hydroperiod, range, interaction of range and fall depth, interaction of range and hydroperiod). Across all models, interaction between range and fall water depth was the most important variable (relative weight of 1.0) followed by spring and fall water depths (0.99), range (0.96), hydroperiod (0.95) and interaction between range and hydroperiod (0.95). Our work provides additional evidence that restoring a greater range in annual water depths is important for improvement of alligator body condition and ecosystem function. This information can be incorporated into both planning and operations to assist in reaching Everglades restoration goals.

  3. Depth gradients in food web processes linking habitats in large lakes: Lake Superior as an exemplar ecosystem

    EPA Science Inventory

    In large lakes around the world, water depth is often associated with shifts in ecological communities. Depth-based changes in the abundance and distribution of invertebrate and fish species suggest that there may be concomitant changes in patterns of resource allocation. Using L...

  4. Effect of Electropolishing and Low-Temperature Baking on the Superconducting Properties of Large-Grain Niobium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. S. Dhavale, G. Ciovati, G. R. Myneni

    Measurements of superconducting properties such as bulk and surface critical fields and thermal conductivity have been carried out in the temperature range from 2 K to 8 K on large-grain samples of different purity and on a high-purity fine-grain sample, for comparison. The samples were treated by electropolishing and low temperature baking (120° C, 48 h). While the residual resistivity ratio changed by a factor of ~3 among the samples, no significant variation was found in their superconducting properties. The onset field for flux penetration at 2 K, Hffp, measured within a ~30 µm depth from the surface, was ~160more » mT, close to the bulk value. The baking effect was mainly to increase the field range up to which a coherent superconducting phase persists on the surface, above the upper critical field.« less

  5. Reliability of the American Academy of Sleep Medicine Rules for Assessing Sleep Depth in Clinical Practice.

    PubMed

    Younes, Magdy; Kuna, Samuel T; Pack, Allan I; Walsh, James K; Kushida, Clete A; Staley, Bethany; Pien, Grace W

    2018-02-15

    The American Academy of Sleep Medicine has published manuals for scoring polysomnograms that recommend time spent in non-rapid eye movement sleep stages (stage N1, N2, and N3 sleep) be reported. Given the well-established large interrater variability in scoring stage N1 and N3 sleep, we determined the range of time in stage N1 and N3 sleep scored by a large number of technologists when compared to reasonably estimated true values. Polysomnograms of 70 females were scored by 10 highly trained sleep technologists, two each from five different academic sleep laboratories. Range and confidence interval (CI = difference between the 5th and 95th percentiles) of the 10 times spent in stage N1 and N3 sleep assigned in each polysomnogram were determined. Average values of times spent in stage N1 and N3 sleep generated by the 10 technologists in each polysomnogram were considered representative of the true values for the individual polysomnogram. Accuracy of different technologists in estimating delta wave duration was determined by comparing their scores to digitally determined durations. The CI range of the ten N1 scores was 4 to 39 percent of total sleep time (% TST) in different polysomnograms (mean CI ± standard deviation = 11.1 ± 7.1 % TST). Corresponding range for N3 was 1 to 28 % TST (14.4 ± 6.1 % TST). For stage N1 and N3 sleep, very low or very high values were reported for virtually all polysomnograms by different technologists. Technologists varied widely in their assignment of stage N3 sleep, scoring that stage when the digitally determined time of delta waves ranged from 3 to 17 seconds. Manual scoring of non-rapid eye movement sleep stages is highly unreliable among highly trained, experienced technologists. Measures of sleep continuity and depth that are reliable and clinically relevant should be a focus of clinical research. © 2018 American Academy of Sleep Medicine

  6. The ZH ratio Analysis of Global Seismic Data

    NASA Astrophysics Data System (ADS)

    Yano, T.; Shikato, S.; Rivera, L.; Tanimoto, T.

    2007-12-01

    The ZH ratio, the ratio of vertical to horizontal component of the fundamental Rayleigh wave as a function of frequency, is an alternative approach to phase/group velocity analysis for constructing the S-wave velocity structure. In this study, teleseismic Rayleigh wave data for the frequency range between 0.004Hz to 0.04Hz is used to investigate the interior structure. We have analyzed most of the GEOSCOPE network data and some IRIS GSN stations using a technique developed by Tanimoto and Rivera (2007). Stable estimates of the ZH ratios were obtained for the frequency range for most stations. We have performed the inversion of the measured ZH ratios for the structure in the crust and mantle by using nonlinear iterative scheme. The depth sensitivity kernels for inversion are numerically calculated. Depth sensitivity of the lowest frequency extends to depths beyond 500 km but the sensitivity of the overall data for the frequency band extends down to about 300km. We found that an appropriate selection of an initial model, particularly the depth of Mohorovicic discontinuity, is important for this inversion. The inversion result depends on the initial model and turned out to be non-unique. We have constructed the initial model from the CRUST 2.0. Inversion with equal weighting to each data point tends to reduce variance of certain frequency range only. Therefore, we have developed a scheme to increase weighting to data points that do not fit well after the fifth iteration. This occurs more often for low frequency range, 0.004-0.007Hz. After fitting the lower frequency region, the low velocity zone around a depth of 100km is observed under some stations such as KIP (Kipapa, Hawaii) and ATD (Arta Cave, Djibouti). We have also carried out an analysis on the resolving power of data by examining the eigenvalues-eigenvectors of the least-squares problem. Unfortunately, the normal matrix usually has 1-2 very large eigenvalues, followed by much smaller eigenvalues. The third one is often an order of magnitude smaller. The largest eigenvalue is always dominated by an eigenfunction that has the peak at the surface. It indicates that the ZH ratio is sensitive to shallow structure but it has limited form in resolving power for underlying structure. We will report on the details on the resolving capabilities of the ZH ratios.

  7. Nearshore Bathymetric Change Resolved by Depth Inversions, Sonic Altimeters, and In-Situ Surveys

    NASA Astrophysics Data System (ADS)

    Brodie, K. L.; Palmsten, M. L.; Hesser, T.; Dickhudt, P.; Ladner, H.; Elgar, S.; Raubenheimer, B.; Penko, A.

    2016-12-01

    Video-based remote sensing of shoaling and breaking surface gravity waves combined with a depth-inversion algorithm, cBathy, may be able to provide bathymetry information with high spatial and temporal resolution in the nearshore (Holman et al., 2013, JGR, Vol 118). Although the accuracy of cBathy has been assessed in low-wave conditions when coincident in-situ surveys are available, it has not been tested for many conditions with significant wave height > 1.5 m. During high wave conditions, the use of linear wave theory in the depth-inversion algorithm may result in estimates of water depth that are too deep. Here, measurements from an in-situ array of sonic altimeters and from frequent watercraft surveys are used to assess the ability of cBathy to estimate the spatio-temporal evolution of the seafloor during a range of wave conditions at a micro-tidal sandy beach in Duck, NC. Observations were collected continuously from 14 October to 01 November 2015 with 8 altimeters in 1.5 to 4 m water depth on 2 cross-shore transects separated by 75 m in the alongshore during waves that ranged from 0.5 to 1.0 m. Nearshore bathymetry was alongshore variable, with a crescentic bar that attached to the shoreline along one transect and was 150 m offshore along the other transect. Sand levels changed by as much as 1 m in some locations. Additional measurements were collected with 3 altimeters on a single cross-shore transect for 6 months, with wave heights from 0.3 to 5.0 m and sand level fluctuations of up to 1 m in a single day. Initial comparisons with surveys show cBathy RMSE and bias are of similar magnitude to prior studies. Although cBathy resolves the large-scale spatial morphology of the sandbar, when Hs > 1.3 m cBathy estimates of the sandbar location are 10 to 50 m onshore of the surveyed location. cBathy uncertainty estimates were a poor representation of actual errors when compared with the surveys. Six-month-long time series of altimeter data will be used to assess cBathy's performance during large wave conditions, and altimeter and survey data will be used to assess the spatial and temporal scales of change that can be resolved with cBathy. Funded by USACE, ASAALT, NRL, and ASD(R&E).

  8. Depth and temperature of permafrost on the Alaskan Arctic Slope; preliminary results

    USGS Publications Warehouse

    Lachenbruch, Arthur H.; Sass, J.H.; Lawver, L.A.; Brewer, M.C.; Moses, T.H.

    1982-01-01

    As permafrost is defined by its temperature, the only way to determine its depth is to monitor the return to equilibrium of temperatures in boreholes that penetrate permafrost. Such measurements are under way in 25 wells on the Alaskan Arctic Slope; 21 are in Naval Petroleum Reserve Alaska (NPRA), and 4 are in the foothills to the east. Near-equilibrium results indicate that permafrost thickness in NPRA generally ranges between 200 and 400 m (compared to 600+ m at Prudhoe Bay); there are large local variations and no conspicuous regional trends. By contrast the long-term mean temperature of the ground surface (one factor determining permafrost depth) varies systematically from north to south in a pattern modified by the regional topography. The observed variation in permafrost temperature and depth cannot result primarily from effects of surface bodies of water or regional variations in heat flow; they are consistent, however, with expectable variations in the thermal conductivity of the sediments. It remains to be determined (with conductivity measurements) whether certain sites with anomalously high local gradients have anomalously high heat flow; if they do, they might indicate upwelling of interstitial fluids in the underlying basin sediments.

  9. Optimal spatial sampling techniques for ground truth data in microwave remote sensing of soil moisture

    NASA Technical Reports Server (NTRS)

    Rao, R. G. S.; Ulaby, F. T.

    1977-01-01

    The paper examines optimal sampling techniques for obtaining accurate spatial averages of soil moisture, at various depths and for cell sizes in the range 2.5-40 acres, with a minimum number of samples. Both simple random sampling and stratified sampling procedures are used to reach a set of recommended sample sizes for each depth and for each cell size. Major conclusions from statistical sampling test results are that (1) the number of samples required decreases with increasing depth; (2) when the total number of samples cannot be prespecified or the moisture in only one single layer is of interest, then a simple random sample procedure should be used which is based on the observed mean and SD for data from a single field; (3) when the total number of samples can be prespecified and the objective is to measure the soil moisture profile with depth, then stratified random sampling based on optimal allocation should be used; and (4) decreasing the sensor resolution cell size leads to fairly large decreases in samples sizes with stratified sampling procedures, whereas only a moderate decrease is obtained in simple random sampling procedures.

  10. SNR improvement for hyperspectral application using frame and pixel binning

    NASA Astrophysics Data System (ADS)

    Rehman, Sami Ur; Kumar, Ankush; Banerjee, Arup

    2016-05-01

    Hyperspectral imaging spectrometer systems are increasingly being used in the field of remote sensing for variety of civilian and military applications. The ability of such instruments in discriminating finer spectral features along with improved spatial and radiometric performance have made such instruments a powerful tool in the field of remote sensing. Design and development of spaceborne hyper spectral imaging spectrometers poses lot of technological challenges in terms of optics, dispersion element, detectors, electronics and mechanical systems. The main factors that define the type of detectors are the spectral region, SNR, dynamic range, pixel size, number of pixels, frame rate, operating temperature etc. Detectors with higher quantum efficiency and higher well depth are the preferred choice for such applications. CCD based Si detectors serves the requirement of high well depth for VNIR band spectrometers but suffers from smear. Smear can be controlled by using CMOS detectors. Si CMOS detectors with large format arrays are available. These detectors generally have smaller pitch and low well depth. Binning technique can be used with available CMOS detectors to meet the large swath, higher resolution and high SNR requirements. Availability of larger dwell time of satellite can be used to bin multiple frames to increase the signal collection even with lesser well depth detectors and ultimately increase the SNR. Lab measurements reveal that SNR improvement by frame binning is more in comparison to pixel binning. Effect of pixel binning as compared to the frame binning will be discussed and degradation of SNR as compared to theoretical value for pixel binning will be analyzed.

  11. Independent Pixel and Two Dimensional Estimates of LANDSAT-Derived Cloud Field Albedo

    NASA Technical Reports Server (NTRS)

    Chambers, L. H.; Wielicki, Bruce A.; Evans, K. F.

    1996-01-01

    A theoretical study has been conducted on the effects of cloud horizontal inhomogeneity on cloud albedo bias. A two-dimensional (2D) version of the Spherical Harmonic Discrete Ordinate Method (SHDOM) is used to estimate the albedo bias of the plane parallel (PP-IPA) and independent pixel (IPA-2D) approximations for a wide range of 2D cloud fields obtained from LANDSAT. They include single layer trade cumulus, open and closed cell broken stratocumulus, and solid stratocumulus boundary layer cloud fields over ocean. Findings are presented on a variety of averaging scales and are summarized as a function of cloud fraction, mean cloud optical depth, cloud aspect ratio, standard deviation of optical depth, and the gamma function parameter Y (a measure of the width of the optical depth distribution). Biases are found to be small for small cloud fraction or mean optical depth, where the cloud fields under study behave linearly. They are large (up to 0.20 for PP-IPA bias, -0.12 for IPA-2D bias) for large v. On a scene average basis PP-IPA bias can reach 0.30, while IPA-2D bias reaches its largest magnitude at -0.07. Biases due to horizontal transport (IPA-2D) are much smaller than PP-IPA biases but account for 20% RMS of the bias overall. Limitations of this work include the particular cloud field set used, assumptions of conservative scattering, constant cloud droplet size, no gas absorption or surface reflectance, and restriction to 2D radiative transport. The LANDSAT data used may also be affected by radiative smoothing.

  12. [Study on good agricultural practice for Tulipa edulis--planting density and sowing depth tests].

    PubMed

    Bing, Qi-Zhong; Zhang, Ben-Gang; Zhang, Zhao; Chen, Zi-Hong

    2008-11-01

    To study optimum planting density and sowing depth of Tulipa edulis. The effects of different planting densities, sowing depth and thin plastic film cover were studied on yield, rate of increase, bulb weight increased multiples, and proliferation rate of bulb. Under 30-200 bulbs per squremeter density range, the yield increased with the density increasing, and reached significance level. In 5-20 centimeter depth range, the yield and the number of harvested bulbs enhanced along with the sowing depth increasing, and the best sowing depth was 20 cm. Thin plastic film cover showed no effect on the growth.

  13. Circumpolar assessment of rhizosphere priming shows limited increase in carbon loss estimates for permafrost soils but large regional variability

    NASA Astrophysics Data System (ADS)

    Wild, B.; Keuper, F.; Kummu, M.; Beer, C.; Blume-Werry, G.; Fontaine, S.; Gavazov, K.; Gentsch, N.; Guggenberger, G.; Hugelius, G.; Jalava, M.; Koven, C.; Krab, E. J.; Kuhry, P.; Monteux, S.; Richter, A.; Shazhad, T.; Dorrepaal, E.

    2017-12-01

    Predictions of soil organic carbon (SOC) losses in the northern circumpolar permafrost area converge around 15% (± 3% standard error) of the initial C pool by 2100 under the RCP 8.5 warming scenario. Yet, none of these estimates consider plant-soil interactions such as the rhizosphere priming effect (RPE). While laboratory experiments have shown that the input of plant-derived compounds can stimulate SOC losses by up to 1200%, the magnitude of RPE in natural ecosystems is unknown and no methods for upscaling exist so far. We here present the first spatial and depth explicit RPE model that allows estimates of RPE on a large scale (PrimeSCale). We combine available spatial data (SOC, C/N, GPP, ALT and ecosystem type) and new ecological insights to assess the importance of the RPE at the circumpolar scale. We use a positive saturating relationship between the RPE and belowground C allocation and two ALT-dependent rooting-depth distribution functions (for tundra and boreal forest) to proportionally assign belowground C allocation and RPE to individual soil depth increments. The model permits to take into account reasonable limiting factors on additional SOC losses by RPE including interactions between spatial and/or depth variation in GPP, plant root density, SOC stocks and ALT. We estimate potential RPE-induced SOC losses at 9.7 Pg C (5 - 95% CI: 1.5 - 23.2 Pg C) by 2100 (RCP 8.5). This corresponds to an increase of the current permafrost SOC-loss estimate from 15% of the initial C pool to about 16%. If we apply an additional molar C/N threshold of 20 to account for microbial C limitation as a requirement for the RPE, SOC losses by RPE are further reduced to 6.5 Pg C (5 - 95% CI: 1.0 - 16.8 Pg C) by 2100 (RCP 8.5). Although our results show that current estimates of permafrost soil C losses are robust without taking into account the RPE, our model also highlights high-RPE risk in Siberian lowland areas and Alaska north of the Brooks Range. The small overall impact of the RPE is largely explained by the interaction between belowground plant C allocation and SOC depth distribution. Our findings thus highlight the importance of fine scale interactions between plant and soil properties for large scale carbon fluxes and we provide a first model that bridges this gap and permits the quantification of RPE across a large area.

  14. The timing of deglacial circulation changes in the Atlantic

    NASA Astrophysics Data System (ADS)

    Waelbroeck, C.; Skinner, L.; Gersonde, R.; Mackensen, A.; Michel, E.; Labeyrie, L. D.; Duplessy, J.

    2009-12-01

    We present new benthic isotopic data from core MD07-3076 retrieved in the Atlantic sector of the Southern Ocean (44°09’S, 14°13’W, 3770 m water depth), and place them in the context of well-dated published Atlantic benthic foraminifera isotopic records covering the last 30 ky. Dating of core MD07-3076 was achieved by a combination of 14C AMS measurements on planktonic foraminifera and correlation of sea surface temperature signals derived from both planktonic foraminifera Mg/Ca and census counts, with Antarctic ice isotopic records (Skinner et al., submitted). Comparison of benthic isotopic records from various depths in the North and South Atlantic reveals that circulation changes over the last deglaciation did not take place simultaneously in the 1000-2000 m and in the 3000-4500 m depth ranges. Circulation changes first occurred at lower depth, causing large and relatively rapid changes in benthic δ18O and δ13C at the beginning of Heinrich Stadial 1 (HS1) and the Younger Dryas. Below 3000 m depth, North Atlantic deep water hydrology changed only gradually until a large increase in deep water ventilation took place, resulting from the resumption of North Atlantic Deep Water formation at the end of HS1. In contrast, our deep South Atlantic record indicates that Circumpolar Deep Water around 3800 m depth remained quasi-isolated from northern water masses until the end of HS1. Furthermore, our record shows that core MD07-3076 site was then flushed with better ventilated waters for a few hundred years from ~14.5 to 14 calendar ky BP, before benthic δ18O and δ13C values resumed their progression towards Holocene levels. In conclusion, this set of well-dated Atlantic records demonstrates that benthic δ18O records followed different time evolutions across the last deglaciation, depending on the site latitude and water depth, so that benthic δ18O can not be used as a global correlation tool with a precision better than 3 ky.

  15. Quantifying spatial variability of depth of peat burn in wetlands in relation to antecedent characteristics using field data, multi-temporal and multi-spectral LiDAR

    NASA Astrophysics Data System (ADS)

    Chasmer, L.; Flade, L.; Virk, R.; Montgomery, J. S.; Hopkinson, C.; Thompson, D. K.; Petrone, R. M.; Devito, K.

    2017-12-01

    Landscape changes in the hydrological characteristics of wetlands in some parts of the Boreal region of Canada are occurring as a result of climate-induced feedbacks and anthropogenic disturbance. Wetlands are largely resilient to wildfire, however, natural, climatic and anthropogenic disturbances can change surface water regimes and predispose wetlands to greater depth of peat burn. Over broad areas, peat loss contributes to significant pollution emissions, which can affect community health. In this study, we a) quantify depth of peat burn and relationships to antecedent conditions (species type, topography, surficial geology) within three classified wetlands found in the Boreal Plains ecoregion of western Canada; and b) examine the impacts of wildfire on post-fire ground surface energy balance to determine how peat loss might affect local hydro-climatology and surface water feedbacks. High-resolution optical imagery, pre- and post-burn multi-spectral Light Detection And Ranging (LiDAR), airborne thermal infrared imagery, and field validation data products are integrated to identify multiple complex interactions within the study wetlands. LiDAR-derived depth of peat burn is within 1 cm (average) compared with measured (RMSE = 9 cm over the control surface), demonstrating the utility of LiDAR with high point return density. Depth of burn also correlates strongly with variations in Normalised Burn Ratio (NBR) determined for ground surfaces only. Antecedent conditions including topographic position, soil moisture, soil type and wetland species also have complex interactions with depth of peat loss within wetlands observed in other studies. However, while field measurements are important for validation and understanding eco-hydrological processes, results from remote sensing are spatially continuous. Temporal LiDAR data illustrate the full range of variability in depth of burn and wetland characteristics following fire. Finally, measurements of instantaneous surface temperature indicate that the temperatures of burned wetlands are significantly warmer by up to 10oC compared to non-burned wetlands, altering locally variable sensible vs. latent energy exchanges and implications for further post-fire evaporative losses.

  16. Reconstructing the Gamma-Ray Photon Optical Depth of the Universe To Z Approx. 4 from Multiwavelength Galaxy Survey Data

    NASA Technical Reports Server (NTRS)

    Helgason, Kari; Kashlinsky, Alexander

    2012-01-01

    Reconstructing the Gamma-Ray Photon Optical Depth of the Universe To Z Approx. 4fFrom Multiwavelength Galaxy Survey Data We reconstruct the gamma-ray opacity of the universe out to z approx. < 3–4 using an extensive library of 342 observed galaxy luminosity function (LF) surveys extending to high redshifts .We cover the whole range from UV to mid-IR (0.15–25 micron ) providing for the first time a robust empirical calculation of the gamma gamma optical depth out to several TeV. Here, we use the same database as Helgason et al. where the extragalactic background light was reconstructed from LFs out to 4.5 micron and was shown to recover observed galaxy counts to high accuracy. We extend our earlier library Of LFs to 25micron such that it covers the energy range of pair production with gamma -rays (1) in the entire Fermi/LAT energy range, and (2) at higher TeV energies probed by ground-based Cherenkov telescopes. In the absence of significant contributions to the cosmic diffuse background from unknown populations, such as the putative Population III era sources, the universe appears to be largely transparent to gamma-rays at all Fermi/LAT energies out to z approx.. 2 whereas it becomes opaque to TeV photons already at z approx. < 0.2 and reaching tau approx 10 at z = 1. Comparing with the currently available Fermi/LAT gamma-ray burst and blazar data shows that there is room for significant emissions originating in the first stars era.

  17. A new data set for estimating organic carbon storage to 3 m depth in soils of the northern circumpolar permafrost region

    USGS Publications Warehouse

    Hugelius, G.; Bockheim, James G.; Camill, P.; Elberling, B.; Grosse, G.; Harden, J.W.; Johnson, Kevin; Jorgenson, T.; Koven, C.D.; Kuhry, P.; Michaelson, G.; Mishra, U.; Palmtag, J.; Ping, C.-L.; O'Donnell, J.; Schirrmeister, L.; Schuur, E.A.G.; Sheng, Y.; Smith, L.C.; Strauss, J.; Yu, Z.

    2013-01-01

    High-latitude terrestrial ecosystems are key components in the global carbon cycle. The Northern Circumpolar Soil Carbon Database (NCSCD) was developed to quantify stocks of soil organic carbon (SOC) in the northern circumpolar permafrost region (a total area of 18.7 × 106 km2). The NCSCD is a geographical information system (GIS) data set that has been constructed using harmonized regional soil classification maps together with pedon data from the northern permafrost region. Previously, the NCSCD has been used to calculate SOC storage to the reference depths 0–30 cm and 0–100 cm (based on 1778 pedons). It has been shown that soils of the northern circumpolar permafrost region also contain significant quantities of SOC in the 100–300 cm depth range, but there has been no circumpolar compilation of pedon data to quantify this deeper SOC pool and there are no spatially distributed estimates of SOC storage below 100 cm depth in this region. Here we describe the synthesis of an updated pedon data set for SOC storage (kg C m-2) in deep soils of the northern circumpolar permafrost regions, with separate data sets for the 100–200 cm (524 pedons) and 200–300 cm (356 pedons) depth ranges. These pedons have been grouped into the North American and Eurasian sectors and the mean SOC storage for different soil taxa (subdivided into Gelisols including the sub-orders Histels, Turbels, Orthels, permafrost-free Histosols, and permafrost-free mineral soil orders) has been added to the updated NCSCDv2. The updated version of the data set is freely available online in different file formats and spatial resolutions that enable spatially explicit applications in GIS mapping and terrestrial ecosystem models. While this newly compiled data set adds to our knowledge of SOC in the 100–300 cm depth range, it also reveals that large uncertainties remain. Identified data gaps include spatial coverage of deep (> 100 cm) pedons in many regions as well as the spatial extent of areas with thin soils overlying bedrock and the quantity and distribution of massive ground ice. An open access data-portal for the pedon data set and the GIS-data sets is available online at http://bolin.su.se/data/ncscd/.

  18. A new data set for estimating organic carbon storage to 3 m depth in soils of the northern circumpolar permafrost region

    DOE PAGES

    Hugelius, Gustaf; Bockheim, J. G.; Camill, P.; ...

    2013-12-23

    High-latitude terrestrial ecosystems are key components in the global carbon cycle. The Northern Circumpolar Soil Carbon Database (NCSCD) was developed to quantify stocks of soil organic carbon (SOC) in the northern circumpolar permafrost region (a total area of 18.7 × 10 6 km 2). The NCSCD is a geographical information system (GIS) data set that has been constructed using harmonized regional soil classification maps together with pedon data from the northern permafrost region. Previously, the NCSCD has been used to calculate SOC storage to the reference depths 0–30 cm and 0–100 cm (based on 1778 pedons). It has been shownmore » that soils of the northern circumpolar permafrost region also contain significant quantities of SOC in the 100–300 cm depth range, but there has been no circumpolar compilation of pedon data to quantify this deeper SOC pool and there are no spatially distributed estimates of SOC storage below 100 cm depth in this region. Here we describe the synthesis of an updated pedon data set for SOC storage (kg C m -2) in deep soils of the northern circumpolar permafrost regions, with separate data sets for the 100–200 cm (524 pedons) and 200–300 cm (356 pedons) depth ranges. These pedons have been grouped into the North American and Eurasian sectors and the mean SOC storage for different soil taxa (subdivided into Gelisols including the sub-orders Histels, Turbels, Orthels, permafrost-free Histosols, and permafrost-free mineral soil orders) has been added to the updated NCSCDv2. The updated version of the data set is freely available online in different file formats and spatial resolutions that enable spatially explicit applications in GIS mapping and terrestrial ecosystem models. While this newly compiled data set adds to our knowledge of SOC in the 100–300 cm depth range, it also reveals that large uncertainties remain. In conclusion, identified data gaps include spatial coverage of deep (> 100 cm) pedons in many regions as well as the spatial extent of areas with thin soils overlying bedrock and the quantity and distribution of massive ground ice.« less

  19. Mapping the Moho with seismic surface waves: Sensitivity, resolution, and recommended inversion strategies

    NASA Astrophysics Data System (ADS)

    Lebedev, Sergei; Adam, Joanne; Meier, Thomas

    2013-04-01

    Seismic surface waves have been used to study the Earth's crust since the early days of modern seismology. In the last decade, surface-wave crustal imaging has been rejuvenated by the emergence of new, array techniques (ambient-noise and teleseismic interferometry). The strong sensitivity of both Rayleigh and Love waves to the Moho is evident from a mere visual inspection of their dispersion curves or waveforms. Yet, strong trade-offs between the Moho depth and crustal and mantle structure in surface-wave inversions have prompted doubts regarding their capacity to resolve the Moho. Although the Moho depth has been an inversion parameter in numerous surface-wave studies, the resolution of Moho properties yielded by a surface-wave inversion is still somewhat uncertain and controversial. We use model-space mapping in order to elucidate surface waves' sensitivity to the Moho depth and the resolution of their inversion for it. If seismic wavespeeds within the crust and upper mantle are known, then Moho-depth variations of a few kilometres produce large (over 1 per cent) perturbations in phase velocities. However, in inversions of surface-wave data with no a priori information (wavespeeds not known), strong Moho-depth/shear-speed trade-offs will mask about 90 per cent of the Moho-depth signal, with remaining phase-velocity perturbations 0.1-0.2 per cent only. In order to resolve the Moho with surface waves alone, errors in the data must thus be small (up to 0.2 per cent for resolving continental Moho). If the errors are larger, Moho-depth resolution is not warranted and depends on error distribution with period, with errors that persist over broad period ranges particularly damaging. An effective strategy for the inversion of surface-wave data alone for the Moho depth is to, first, constrain the crustal and upper-mantle structure by inversion in a broad period range and then determine the Moho depth in inversion in a narrow period range most sensitive to it, with the first-step results used as reference. We illustrate this strategy with an application to data from the Kaapvaal Craton. Prior information on crustal and mantle structure reduces the trade-offs and thus enables resolving the Moho depth with noisier data; such information should be sought and used whenever available (as has been done, explicitly or implicitly, in many previous studies). Joint analysis or inversion of surface-wave and other data (receiver functions, topography, gravity) can reduce uncertainties further and facilitate Moho mapping. Alone or as a part of multi-disciplinary datasets, surface-wave data offer unique sensitivity to the crustal and upper-mantle structure and are becoming increasingly important in the seismic imaging of the crust and the Moho. Reference Lebedev, S., J. Adam, T. Meier. Mapping the Moho with seismic surface waves: A review, resolution analysis, and recommended inversion strategies. Tectonophysics, "Moho" special issue, 10.1016/j.tecto.2012.12.030, 2013.

  20. Detection of spatio-temporal change of ocean acoustic velocity for observing seafloor crustal deformation applying seismological methods

    NASA Astrophysics Data System (ADS)

    Eto, S.; Nagai, S.; Tadokoro, K.

    2011-12-01

    Our group has developed a system for observing seafloor crustal deformation with a combination of acoustic ranging and kinematic GPS positioning techniques. One of the effective factors to reduce estimation error of submarine benchmark in our system is modeling variation of ocean acoustic velocity. We estimated various 1-dimensional velocity models with depth under some constraints, because it is difficult to estimate 3-dimensional acoustic velocity structure including temporal change due to our simple acquisition procedure of acoustic ranging data. We, then, applied the joint hypocenter determination method in seismology [Kissling et al., 1994] to acoustic ranging data. We assume two conditions as constraints in inversion procedure as follows: 1) fixed acoustic velocity in deeper part because it is usually stable both in space and time, 2) each inverted velocity model should be decreased with depth. The following two remarkable spatio-temporal changes of acoustic velocity 1) variations of travel-time residuals at the same points within short time and 2) larger differences between residuals at the neighboring points, which are one's of travel-time from different benchmarks. The First results cannot be explained only by the effect of atmospheric condition change including heating by sunlight. To verify the residual variations mentioned as the second result, we have performed forward modeling of acoustic ranging data with velocity models added velocity anomalies. We calculate travel time by a pseudo-bending ray tracing method [Um and Thurber, 1987] to examine effects of velocity anomaly on the travel-time differences. Comparison between these residuals and travel-time difference in forward modeling, velocity anomaly bodies in shallower depth can make these anomalous residuals, which may indicate moving water bodies. We need to apply an acoustic velocity structure model with velocity anomaly(s) in acoustic ranging data analysis and/or to develop a new system with a large number of sea surface stations to detect them, which may be able to reduce error of seafloor benchmarker position.

  1. Finite-fault slip model of the 2011 Mw 5.6 Prague, Oklahoma earthquake from regional waveforms

    USGS Publications Warehouse

    Sun, Xiaodan; Hartzell, Stephen

    2014-01-01

    The slip model for the 2011 Mw 5.6 Prague, Oklahoma, earthquake is inferred using a linear least squares methodology. Waveforms of six aftershocks recorded at 21 regional stations are used as empirical Green's functions (EGFs). The solution indicates two large slip patches: one located around the hypocenter with a depth range of 3–5.5 km; the other located to the southwest of the epicenter with a depth range from 7.5 to 9.5 km. The total moment of the solution is estimated at 3.37 × 1024 dyne cm (Mw 5.65). The peak slip and average stress drop for the source at the hypocenter are 70 cm and 90 bars, respectively, approximately one half the values for the Mw 5.8 2011 Mineral, Virginia, earthquake. The stress drop averaged over all areas of slip is 16 bars. The relatively low peak slip and stress drop may indicate an induced component in the origin of the Prague earthquake from deep fluid injection.

  2. Commissioning of full energy scanning irradiation with carbon-ion beams ranging from 55.6 to 430 MeV/u at the NIRS-HIMAC

    NASA Astrophysics Data System (ADS)

    Hara, Y.; Furukawa, T.; Mizushima, K.; Inaniwa, T.; Saotome, N.; Tansho, R.; Saraya, Y.; Shirai, T.; Noda, K.

    2017-09-01

    Since 2011, a three-dimensional (3D) scanning irradiation system has been utilized for treatments at the National Institute of Radiological Sciences-Heavy Ion Medical Accelerator in Chiba (NIRS-HIMAC). In 2012, a hybrid depth scanning method was introduced for the depth direction, in which 11 discrete beam energies are used in conjunction with the range shifter. To suppress beam spread due to multiple scattering and nuclear reactions, we then developed a full energy scanning method. Accelerator tuning and beam commissioning tests prior to a treatment with this method are time-consuming, however. We therefore devised a new approach to obtain the pencil beam dataset, including consideration of the contribution of large-angle scattered (LAS) particles, which reduces the time spent on beam data preparation. The accuracy of 3D dose delivery using this new approach was verified by measuring the dose distributions for different target volumes. Results confirmed that the measured dose distributions agreed well with calculated doses. Following this evaluation, treatments using the full energy scanning method were commenced in September 2015.

  3. Long-term measurements of acoustic background noise in very deep sea

    NASA Astrophysics Data System (ADS)

    Riccobene, G.; NEMO Collaboration

    2009-06-01

    The NEMO (NEutrino Mediterranean Observatory) Collaboration installed, 25 km E offshore the port of Catania (Sicily) at 2000 m depth, an underwater laboratory to perform long-term tests of prototypes and new technologies for an underwater high energy neutrino km-scale detector in the Mediterranean Sea. In this framework the Collaboration deployed and successfully operated for about two years, starting from January 2005, an experimental apparatus for on-line monitoring of deep-sea noise. The station was equipped with four hydrophones and it is operational in the range 30 Hz-43 kHz. This interval of frequencies matches the range suitable for the proposed acoustic detection technique of high energy neutrinos. Hydrophone signals were digitized underwater at 96 kHz sampling frequency and 24 bits resolution. The stored data library, consisting of more than 2000 h of recordings, is a unique tool to model underwater acoustic noise at large depth, to characterize its variations as a function of environmental parameters, biological sources and human activities (ship traffic, etc.), and to determine the presence of cetaceans in the area.

  4. Comprehensive analysis of Curie-point depths and lithospheric effective elastic thickness at Arctic Region

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Li, C. F.

    2017-12-01

    Arctic Ocean remains at the forefront of geological exploration. Here we investigate its deep geological structures and geodynamics on the basis of gravity, magnetic and bathymetric data. We estimate Curie-point depth and lithospheric effective elastic thickness to understand deep geothermal structures and Arctic lithospheric evolution. A fractal exponent of 3.0 for the 3D magnetization model is used in the Curie-point depth inversion. The result shows that Curie-point depths are between 5 and 50 km. Curie depths are mostly small near the active mid-ocean ridges, corresponding well to high heat flow and active shallow volcanism. Large curie depths are distributed mainly at continental marginal seas around the Arctic Ocean. We present a map of effective elastic thickness (Te) of the lithosphere using a multitaper coherence technique, and Te are between 5 and 110 km. Te primarily depends on geothermal gradient and composition, as well as structures in the lithosphere. We find that Te and Curie-point depths are often correlated. Large Te are distributed mainly at continental region and small Te are distributed at oceanic region. The Alpha-Mendeleyev Ridge (AMR) and The Svalbard Archipelago (SA) are symmetrical with the mid-ocean ridge. AMR and SA were formed before an early stage of Eurasian basin spreading, and they are considered as conjugate large igneous provinces, which show small Te and Curie-point depths. Novaya Zemlya region has large Curie-point depths and small Te. We consider that fault and fracture near the Novaya Zemlya orogenic belt cause small Te. A series of transform faults connect Arctic mid-ocean ridge with North Atlantic mid-ocean ridge. We can see large Te near transform faults, but small Curie-point depths. We consider that although temperature near transform faults is high, but mechanically the lithosphere near transform faults are strengthened.

  5. Successful application of frequency-domain airborne electromagnetic system with a grounded electric source

    NASA Astrophysics Data System (ADS)

    Kang, L.; Lin, J.; Liu, C.; Zhou, H.; Ren, T.; Yao, Y.

    2017-12-01

    A new frequency-domain AEM system with a grounded electric source, which was called ground-airborne frequency-domain electromagnetic (GAFEM) system, was proposed to extend penetration depth without compromising the resolution and detection efficiency. In GAFEM system, an electric source was placed on the ground to enlarge the strength of response signals. UVA was chosen as aircraft to reduce interaction noise and improve its ability to adapt to complex terrain. Multi-source and multi-frequency emission method has been researched and applied to improve the efficiency of GAFEM system. 2n pseudorandom sequence was introduced as transmitting waveform, to ensure resolution and detection efficiency. Inversion-procedure based on full-space apparent resistivity formula was built to realize GAFEM method and extend the survey area to non-far field. Based on GAFEM system, two application was conducted in Changchun, China, to map the deep conductive structure. As shown in the results of this exploration, GAFEM system shows its effectiveness to conductive structure, obtaining a depth of about 1km with a source-receiver distance of over 6km. And it shows the same level of resolution with CSAMT method with an over 10 times of efficiency. This extended a range of important applications where the terrain is too complex to be accessed or large penetration depth is required in a large survey area.

  6. The CETAC ADX-500 Autodiluter System: A Study of Dilution Performance with the ELAN 6000 ICP-MS and ELAN Software

    USGS Publications Warehouse

    May, T.W.; Wiedmeyer, Ray H.

    1998-01-01

    The CETAC ADX-500 autodiluter system was tested with ELAN?? v 2.1 software and the ELAN 6000 ICP-MS instrument to determine on-line automated dilution performance during analysis of standard solutions containing nine analytes representative of the mass spectral range (mass 9 to mass 238). Two or more dilution schemes were tested for each of 5 test tube designs. Dilution performance was determined by comparison of analyte concentration means of diluted and non-diluted standards. Accurate dilutions resulted with one syringe pump addition of diluent in small diameter round-bottomed (13 mm OD) or conical-tipped (18 mm OD) tubes and one or more syringe pump additions in large diameter (28 mm OD) conical-tipped tubes. Inadequate dilution mixing which produced high analyte concentration means was observed for all dilutions conducted in flat-bottomed tubes, and for dilutions requiring multiple syringe additions of diluent in small diameter round-bottomed and conical tipped tubes. Effective mixing of diluted solutions was found to depend largely upon tube diameter and liquid depth: smaller tube diameters and greater liquid depth resulted in ineffective mixing, whereas greater tube diameter and shallower liquid depth facilitated effective mixing. Two design changes for the autodiluter were suggested that would allow effective mixing to occur using any dilution scheme and tube design.

  7. Accuracy and robustness evaluation in stereo matching

    NASA Astrophysics Data System (ADS)

    Nguyen, Duc M.; Hanca, Jan; Lu, Shao-Ping; Schelkens, Peter; Munteanu, Adrian

    2016-09-01

    Stereo matching has received a lot of attention from the computer vision community, thanks to its wide range of applications. Despite of the large variety of algorithms that have been proposed so far, it is not trivial to select suitable algorithms for the construction of practical systems. One of the main problems is that many algorithms lack sufficient robustness when employed in various operational conditions. This problem is due to the fact that most of the proposed methods in the literature are usually tested and tuned to perform well on one specific dataset. To alleviate this problem, an extensive evaluation in terms of accuracy and robustness of state-of-the-art stereo matching algorithms is presented. Three datasets (Middlebury, KITTI, and MPEG FTV) representing different operational conditions are employed. Based on the analysis, improvements over existing algorithms have been proposed. The experimental results show that our improved versions of cross-based and cost volume filtering algorithms outperform the original versions with large margins on Middlebury and KITTI datasets. In addition, the latter of the two proposed algorithms ranks itself among the best local stereo matching approaches on the KITTI benchmark. Under evaluations using specific settings for depth-image-based-rendering applications, our improved belief propagation algorithm is less complex than MPEG's FTV depth estimation reference software (DERS), while yielding similar depth estimation performance. Finally, several conclusions on stereo matching algorithms are also presented.

  8. Monte Carlo study of si diode response in electron beams.

    PubMed

    Wang, Lilie L W; Rogers, David W O

    2007-05-01

    Silicon semiconductor diodes measure almost the same depth-dose distributions in both photon and electron beams as those measured by ion chambers. A recent study in ion chamber dosimetry has suggested that the wall correction factor for a parallel-plate ion chamber in electron beams changes with depth by as much as 6%. To investigate diode detector response with respect to depth, a silicon diode model is constructed and the water/silicon dose ratio at various depths in electron beams is calculated using EGSnrc. The results indicate that, for this particular diode model, the diode response per unit water dose (or water/diode dose ratio) in both 6 and 18 MeV electron beams is flat within 2% versus depth, from near the phantom surface to the depth of R50 (with calculation uncertainty <0.3%). This suggests that there must be some other correction factors for ion chambers that counter-balance the large wall correction factor at depth in electron beams. In addition, the beam quality and field-size dependence of the diode model are also calculated. The results show that the water/diode dose ratio remains constant within 2% over the electron energy range from 6 to 18 MeV. The water/diode dose ratio does not depend on field size as long as the incident electron beam is broad and the electron energy is high. However, for a very small beam size (1 X 1 cm(2)) and low electron energy (6 MeV), the water/diode dose ratio may decrease by more than 2% compared to that of a broad beam.

  9. Immediate postarousal sleep dynamics: an important determinant of sleep stability in obstructive sleep apnea.

    PubMed

    Younes, Magdy; Hanly, Patrick J

    2016-04-01

    Arousability from sleep is increasingly recognized as an important determinant of the clinical spectrum of sleep disordered breathing (SDB). Patients with SDB display a wide range of arousability. The reason for these differences is not known. We hypothesized that differences in the speed with which sleep deepens following arousals/awakenings (postarousal sleep dynamics) is a major determinant of these differences in arousability in patients with SDB. We analyzed 40 preexisting clinical polysomnography records from patients with a range of SDB severity (apnea-hypopnea index 5-135/h). Sleep depth was determined every 3 s using the odds ratio product (ORP) method, a continuous index of sleep depth (0 = deep sleep, 2.5 = full wakefulness) that correlates strongly (r = 0.98) with arousability (Younes M, Ostrowski M, Soiferman M, Younes H, Younes M, Raneri J, and Hanly P. Sleep 38: 641-654, 2015). Time course of ORP was determined from end of arousal until the next arousal. All arousals were analyzed (142 ± 65/polysomnogram). ORP increased from 0.58 ± 0.32 during sleep to 1.67 ± 0.35 during arousals. ORP immediately (first 9 s) following arousals/awakenings (ORP-9) ranged from 0.21(very deep sleep) to 1.71 (highly arousable state) in different patients. In patients with high ORP-9, sleep deepened slowly (over minutes) beyond 9 s but only if no arousals/awakenings recurred. ORP-9 correlated strongly with average non-rapid eye movement sleep depth (r = 0.87, P < 2E-13), the arousal/awakening index (r = 0.68, P < 5E-6), and with the apnea-hypopnea index (r = 0.60, P < 0.001). ORP-9 was consistent within each patient and did not change on continuous positive airway pressure despite marked improvement in sleep architecture. We conclude that postarousal sleep dynamics are highly variable among patients with sleep-disordered breathing and largely determine average sleep depth and continuity. Copyright © 2016 the American Physiological Society.

  10. Downstream Variation of Bankfull Geometry for the Continental and Overseas Hydro-Eco-Regions of France.

    NASA Astrophysics Data System (ADS)

    Tamisier, V.; Gob, F.; Thommeret, N.; Bilodeau, C.; Raufaste, S.; Kreutzenberger, K.

    2016-12-01

    Bankfull channel geometry is a fundamental and widely used concept in hydrology, fluvial geomorphology, and ecosystem studies. We develop and compare downstream hydraulic geometry relationships for bankfull channel width (w) and depth (d) as a function of drainage area A, respectively w=aAb (DHGwA) and d=cAf (DHGdA), for the 12 of the 21 French Hydro-Eco-Regions which are defined in terms of climate, topography and geology. The models have been built from a database (CARHYCE) that includes 1500 river reaches for which a unique standardized field protocol was used. River reach morphology was described based on a survey of 15 cross-sections spaced at intervals of one bankfull width. Sediment size and riverine vegetation were also measured and characterized. This database covers a wide range of French river diversity in terms of geomorphic types and anthropogenic impacts. Sampled stream reaches range from 1 to 70 000 km² in drainage area, 1 to 320 m in bankfull width and 0.3 to 8.5 m in bankfull depth. Approximately 500 poorly disturbed reaches were identified from several indices of disturbance at reach and basin scale (large dams, urbanization, channelization, etc.). For these reference sites, drainage areas display strong power-law relationships with both the width and the depth in most Hydro-Eco-Regions, with coefficients of determination (R²) ranging from 0.73 to 0.91 for DHGwA and from 0.57 to 0.77 for DHGdA (p-value < 0.001, t-test). The DHG exponent b and f ranges from 0.36 to 0.5 for DHGwA and from 0.21 to 0.3 for DHGdA. This implies that widths increase more strongly than depths with increasing drainage areas. The relative position of the models are compared to the national model and discussed with regard to the geologic, climatic and topographic characteristics. In Hydro-Eco-Regions which exhibit poor DHG relationships, the role of spatial variability in natural controls (climate, topography and geology) is discussed. Finally, reaches identified as potentially disturbed by human activities are compared to the reference models.

  11. The application of Caesium-137 and Plutonium-239+240 measurements to investigate floodplain deposition in a semi-arid, low-fallout environment

    NASA Astrophysics Data System (ADS)

    Amos, K. J.; Croke, J. C.; Timmers, H.; Owens, P. N.

    2009-04-01

    Floodplains comprise geomorphologically important sources and sinks for sediments and associated pollutants, yet the sedimentology of large dryland floodplains is not well understood. Processes occurring on such floodplains are often difficult to observe, and techniques used to investigate smaller perennial floodplains are often not practical in these environments. This study assesses the utility of Cs-137 inventory and depth-profile techniques for determining relative amounts of floodplain sedimentation in the Fitzroy River, north-eastern Australia; a 143 000 km2 semi-arid river system. Caesium-137 inventories were calculated for floodplain and reference location bulk soil cores collected from four sites. Depth profiles of Cs-137 concentration from each floodplain site and a reference location were recorded. The areal density of Cs-137 at reference locations ranged from 13-978 Bq m-2 (0-1367 Bq m-2 at the 95% confidence interval), and the mean value ± 2(standard error of the mean) was 436±264 Bq m-2, similar to published data from other southern hemisphere locations. Floodplain inventories ranged from 68-1142 Bq m-2 (0-1692 Bq m-2 at the 95% confidence interval), essentially falling within the range of reference inventory values, thus preventing calculation of erosion or deposition. Depth-profiles of Cs-137 concentration indicate erosion at one site and over 66 cm of deposition at another since 1954. Analysis of 239+240Pu concentrations in a depositional core substantiated the interpretation made from Cs-137 data, and depict a more tightly constrained peak in concentration. Average annual deposition rates range from 0-15 mm. The similarity between floodplain and reference bulk inventories does not necessarily indicate a lack of erosion or deposition, due to low Cs-137 fallout in the region and associated high measurement uncertainties, and a likely influence of gully and bank eroded sediments with no or limited adsorbed Cs-137. In this low-fallout environment, detailed depth-profile data are necessary for investigating sedimentation using Cs-137.

  12. Efficient RPG detection in noisy 3D image data

    NASA Astrophysics Data System (ADS)

    Pipitone, Frank

    2011-06-01

    We address the automatic detection of Ambush weapons such as rocket propelled grenades (RPGs) from range data which might be derived from multiple camera stereo with textured illumination or by other means. We describe our initial work in a new project involving the efficient acquisition of 3D scene data as well as discrete point invariant techniques to perform real time search for threats to a convoy. The shapes of the jump boundaries in the scene are exploited in this paper, rather than on-surface points, due to the large error typical of depth measurement at long range and the relatively high resolution obtainable in the transverse direction. We describe examples of the generation of a novel range-scaled chain code for detecting and matching jump boundaries.

  13. Bathymetric zonation and diversity gradient of gastropods and bivalves in West Antarctica from the South Shetland Islands to the Bellingshausen Sea

    NASA Astrophysics Data System (ADS)

    Aldea, Cristian; Olabarria, Celia; Troncoso, Jesús S.

    2008-03-01

    Depth-related zonation and diversity patterns are important topics in the study of deep-sea fauna, at both species and assemblage levels. These patterns may be attributed to complex and combined physical and/or biological factors. The lack of information about the West Antarctic deep sea is an important handicap to understanding the global-scale benthic diversity patterns. Detailed studies of the bathymetric distributions and diversity of deep-sea species in the Antarctic are needed to elucidate the factors contributing to global-scale benthic patterns. This study, based on a large data set, examined the bathymetric distribution, patterns of zonation and diversity-depth trends of gastropods and bivalves in West Antarctica, from the South Shetland Islands to the Bellingshausen Sea, a very poorly known area. A total of 647 individuals of gastropods belonging to 82 species and a total of 2934 individuals of bivalves belonging to 52 species were collected. Most gastropods showed discrete depth distributions, whereas most bivalves showed broader depth ranges. Replacement of species with depth was more gradual for bivalves than gastropods. Nevertheless, three bathymetric boundaries could be recognized: (1) a continental shelf zone from 0 to 400 m with a gradual rate of succession, (2) an upper slope zone from 400 to 800 m and (3) a lower slope zone from 800 to 2000 m, extending to 3300 m for bivalves. Diversity patterns were complex for both groups with no significant trends with depth.

  14. Subjective method of refractometry and depth of focus

    PubMed Central

    Sergienko, Nikolai M.; Gromova, Anastasia; Sergienko, Nikolai

    2012-01-01

    Purpose To study the impact of the depth of focus on subjective refraction and distribution of myopic and hyperopic refractions. Methods A total of 450 eyes of 305 subjects in the age range of 23–34 years were recruited for the study. A distribution of refractions was examined using a traditional method of the subjective refractometry on the basis of point-like posterior focus notion. Correction of the results was made on the assumption that the emmetropic eye retains high visual acuity when applying convex lenses with values which are fewer or equal to the depth of focus values. The following values of the depth of focus were used: ±0.55 D, ±0.35 D and ±0.2 D for visual acuity 1.0, 1.5 and 2.0, respectively. Results Application of the traditional method of refractometry produced the following occurrence of refractions: hypermetropia 59.3%, myopia 22% and emmetropia 18.7%. After correction of the initial results of values of the depth of focus the distribution of refractions was as follows: hypermetropia 12.7%, myopia 22% and emmetropia 65.3%. Conclusion The traditional method of subjective refractometry with application of trial lenses was developed on the basis of data of large optical aberrations and significant depth of focus which values should be taken into account during interpretation of results of subjective refractometry. Our data regarding to prevalence of emmetropic refraction falls in line with basic science provisions in respect of the physiology of the eye.

  15. Depth dependence of earthquake frequency-magnitude distributions in California: Implications for rupture initiation

    USGS Publications Warehouse

    Mori, J.; Abercrombie, R.E.

    1997-01-01

    Statistics of earthquakes in California show linear frequency-magnitude relationships in the range of M2.0 to M5.5 for various data sets. Assuming Gutenberg-Richter distributions, there is a systematic decrease in b value with increasing depth of earthquakes. We find consistent results for various data sets from northern and southern California that both include and exclude the larger aftershock sequences. We suggest that at shallow depth (???0 to 6 km) conditions with more heterogeneous material properties and lower lithospheric stress prevail. Rupture initiations are more likely to stop before growing into large earthquakes, producing relatively more smaller earthquakes and consequently higher b values. These ideas help to explain the depth-dependent observations of foreshocks in the western United States. The higher occurrence rate of foreshocks preceding shallow earthquakes can be interpreted in terms of rupture initiations that are stopped before growing into the mainshock. At greater depth (9-15 km), any rupture initiation is more likely to continue growing into a larger event, so there are fewer foreshocks. If one assumes that frequency-magnitude statistics can be used to estimate probabilities of a small rupture initiation growing into a larger earthquake, then a small (M2) rupture initiation at 9 to 12 km depth is 18 times more likely to grow into a M5.5 or larger event, compared to the same small rupture initiation at 0 to 3 km. Copyright 1997 by the American Geophysical Union.

  16. Depth information in natural environments derived from optic flow by insect motion detection system: a model analysis

    PubMed Central

    Schwegmann, Alexander; Lindemann, Jens P.; Egelhaaf, Martin

    2014-01-01

    Knowing the depth structure of the environment is crucial for moving animals in many behavioral contexts, such as collision avoidance, targeting objects, or spatial navigation. An important source of depth information is motion parallax. This powerful cue is generated on the eyes during translatory self-motion with the retinal images of nearby objects moving faster than those of distant ones. To investigate how the visual motion pathway represents motion-based depth information we analyzed its responses to image sequences recorded in natural cluttered environments with a wide range of depth structures. The analysis was done on the basis of an experimentally validated model of the visual motion pathway of insects, with its core elements being correlation-type elementary motion detectors (EMDs). It is the key result of our analysis that the absolute EMD responses, i.e., the motion energy profile, represent the contrast-weighted nearness of environmental structures during translatory self-motion at a roughly constant velocity. In other words, the output of the EMD array highlights contours of nearby objects. This conclusion is largely independent of the scale over which EMDs are spatially pooled and was corroborated by scrutinizing the motion energy profile after eliminating the depth structure from the natural image sequences. Hence, the well-established dependence of correlation-type EMDs on both velocity and textural properties of motion stimuli appears to be advantageous for representing behaviorally relevant information about the environment in a computationally parsimonious way. PMID:25136314

  17. Lower Mesophotic Coral Communities (60-125 m Depth) of the Northern Great Barrier Reef and Coral Sea

    PubMed Central

    Englebert, Norbert; Bongaerts, Pim; Muir, Paul R.; Hay, Kyra B.; Pichon, Michel; Hoegh-Guldberg, Ove

    2017-01-01

    Mesophotic coral ecosystems in the Indo-Pacific remain relatively unexplored, particularly at lower mesophotic depths (≥60 m), despite their potentially large spatial extent. Here, we used a remotely operated vehicle to conduct a qualitative assessment of the zooxanthellate coral community at lower mesophotic depths (60–125 m) at 10 different locations in the Great Barrier Reef Marine Park and the Coral Sea Commonwealth Marine Reserve. Lower mesophotic coral communities were present at all 10 locations, with zooxanthellate scleractinian corals extending down to ~100 metres on walls and ~125 m on steep slopes. Lower mesophotic coral communities were most diverse in the 60–80 m zone, while at depths of ≥100 m the coral community consisted almost exclusively of the genus Leptoseris. Collections of coral specimens (n = 213) between 60 and 125 m depth confirmed the presence of at least 29 different species belonging to 18 genera, including several potential new species and geographic/depth range extensions. Overall, this study highlights that lower mesophotic coral ecosystems are likely to be ubiquitous features on the outer reefs of the Great Barrier Reef and atolls of the Coral Sea, and harbour a generic and species richness of corals that is much higher than thus far reported. Further research efforts are urgently required to better understand and manage these ecosystems as part of the Great Barrier Reef Marine Park and Coral Sea Commonwealth Marine Reserve. PMID:28146574

  18. Lower Mesophotic Coral Communities (60-125 m Depth) of the Northern Great Barrier Reef and Coral Sea.

    PubMed

    Englebert, Norbert; Bongaerts, Pim; Muir, Paul R; Hay, Kyra B; Pichon, Michel; Hoegh-Guldberg, Ove

    2017-01-01

    Mesophotic coral ecosystems in the Indo-Pacific remain relatively unexplored, particularly at lower mesophotic depths (≥60 m), despite their potentially large spatial extent. Here, we used a remotely operated vehicle to conduct a qualitative assessment of the zooxanthellate coral community at lower mesophotic depths (60-125 m) at 10 different locations in the Great Barrier Reef Marine Park and the Coral Sea Commonwealth Marine Reserve. Lower mesophotic coral communities were present at all 10 locations, with zooxanthellate scleractinian corals extending down to ~100 metres on walls and ~125 m on steep slopes. Lower mesophotic coral communities were most diverse in the 60-80 m zone, while at depths of ≥100 m the coral community consisted almost exclusively of the genus Leptoseris. Collections of coral specimens (n = 213) between 60 and 125 m depth confirmed the presence of at least 29 different species belonging to 18 genera, including several potential new species and geographic/depth range extensions. Overall, this study highlights that lower mesophotic coral ecosystems are likely to be ubiquitous features on the outer reefs of the Great Barrier Reef and atolls of the Coral Sea, and harbour a generic and species richness of corals that is much higher than thus far reported. Further research efforts are urgently required to better understand and manage these ecosystems as part of the Great Barrier Reef Marine Park and Coral Sea Commonwealth Marine Reserve.

  19. Soil thermal dynamics, snow cover, and frozen depth under five temperature treatments in an ombrotrophic bog: Constrained forecast with data assimilation: Forecast With Data Assimilation

    DOE PAGES

    Huang, Yuanyuan; Jiang, Jiang; Ma, Shuang; ...

    2017-08-18

    We report that accurate simulation of soil thermal dynamics is essential for realistic prediction of soil biogeochemical responses to climate change. To facilitate ecological forecasting at the Spruce and Peatland Responses Under Climatic and Environmental change site, we incorporated a soil temperature module into a Terrestrial ECOsystem (TECO) model by accounting for surface energy budget, snow dynamics, and heat transfer among soil layers and during freeze-thaw events. We conditioned TECO with detailed soil temperature and snow depth observations through data assimilation before the model was used for forecasting. The constrained model reproduced variations in observed temperature from different soil layers,more » the magnitude of snow depth, the timing of snowfall and snowmelt, and the range of frozen depth. The conditioned TECO forecasted probabilistic distributions of soil temperature dynamics in six soil layers, snow, and frozen depths under temperature treatments of +0.0, +2.25, +4.5, +6.75, and +9.0°C. Air warming caused stronger elevation in soil temperature during summer than winter due to winter snow and ice. And soil temperature increased more in shallow soil layers in summer in response to air warming. Whole ecosystem warming (peat + air warmings) generally reduced snow and frozen depths. The accuracy of forecasted snow and frozen depths relied on the precision of weather forcing. Uncertainty is smaller for forecasting soil temperature but large for snow and frozen depths. Lastly, timely and effective soil thermal forecast, constrained through data assimilation that combines process-based understanding and detailed observations, provides boundary conditions for better predictions of future biogeochemical cycles.« less

  20. Soil thermal dynamics, snow cover, and frozen depth under five temperature treatments in an ombrotrophic bog: Constrained forecast with data assimilation: Forecast With Data Assimilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yuanyuan; Jiang, Jiang; Ma, Shuang

    We report that accurate simulation of soil thermal dynamics is essential for realistic prediction of soil biogeochemical responses to climate change. To facilitate ecological forecasting at the Spruce and Peatland Responses Under Climatic and Environmental change site, we incorporated a soil temperature module into a Terrestrial ECOsystem (TECO) model by accounting for surface energy budget, snow dynamics, and heat transfer among soil layers and during freeze-thaw events. We conditioned TECO with detailed soil temperature and snow depth observations through data assimilation before the model was used for forecasting. The constrained model reproduced variations in observed temperature from different soil layers,more » the magnitude of snow depth, the timing of snowfall and snowmelt, and the range of frozen depth. The conditioned TECO forecasted probabilistic distributions of soil temperature dynamics in six soil layers, snow, and frozen depths under temperature treatments of +0.0, +2.25, +4.5, +6.75, and +9.0°C. Air warming caused stronger elevation in soil temperature during summer than winter due to winter snow and ice. And soil temperature increased more in shallow soil layers in summer in response to air warming. Whole ecosystem warming (peat + air warmings) generally reduced snow and frozen depths. The accuracy of forecasted snow and frozen depths relied on the precision of weather forcing. Uncertainty is smaller for forecasting soil temperature but large for snow and frozen depths. Lastly, timely and effective soil thermal forecast, constrained through data assimilation that combines process-based understanding and detailed observations, provides boundary conditions for better predictions of future biogeochemical cycles.« less

  1. Upper mantle velocity structure beneath southern Africa from modeling regional seismic data

    NASA Astrophysics Data System (ADS)

    Zhao, Ming; Langston, Charles A.; Nyblade, Andrew A.; Owens, Thomas J.

    1999-03-01

    The upper mantle seismic velocity structure beneath southern Africa is investigated using travel time and waveform data which come from a large mine tremor in South Africa (mb 5.6) recorded by the Tanzania broadband seismic experiment and by several stations in southern Africa. The waveform data show upper mantle triplications for both the 410- and 670-km discontinuities between distances of 2100 and 3000 km. Auxiliary travel time data along similar profiles obtained from other moderate events are also used. P wave travel times are inverted for velocity structure down to ˜800-km depth using the Wiechert-Herglotz technique, and the resulting model is evaluated by perturbing it at three depth intervals and then testing the perturbed model against the travel time and waveform data. The results indicate a typical upper mantle P wave velocity structure for a shield. P wave velocities from the top of the mantle down to 300-km depth are as much as 3% higher than the global average and are slightly slower than the global average between 300- and 420-km depth. Little evidence is found for a pronounced low-velocity zone in the upper mantle. A high-velocity gradient zone is required above the 410-km discontinuity, but both sharp and smooth 410-km discontinuities are permitted by the data. The 670-km discontinuity is characterized by high-velocity gradients over a depth range of ˜80 km around 660-km depth. Limited S wave travel time data suggest fast S wave velocities above ˜150-km depth. These results suggest that the bouyant support for the African superswell does not reside at shallow depths in the upper mantle.

  2. Autecology of the Endangered Plant Howellia Aquatilis; Implications for Management and Reserve Design.

    PubMed

    Lesica, Peter

    1992-11-01

    Howellia aquatilis is an annual aquatic plant of ephemeral ponds. It is considered extirpated or endangered throughout its range in the United States Pacific Northwest. I studied populations in the Swan Valley of Montana to determine life history traits and ecological attributed in order to influence planning decisions on lands managed for multiple use. Germination trials demonstrated that seeds of H. aquatilis require an aerobic environment and cool temperatures to germinate. Germination was highest with daily alternating temperatures and total darkness, and was unaffected by different light regime and aeration retreatment conditions of 50- and 100-d durations. Natural seed banks were largest immediately following seed dispersal and pond drawdown, but were reduced 82-90% by the following spring. Seeds remaining in the seed bank showed reduced germinability and vigor. Aquarium experiments indicate that growth of H. aquatilis is best in the peat substrate in which it occurs naturally, and is reduced by 45% in a more fine-textured organic soil and by 85% in a mineral soil. Multiple regression analyses of 12 environmental variables from 23 H. aquatilis ponds and comparisons between ponds with and without H. aquatilis suggest that pond depth, amount of dissolved solids in pond water, depth and composition of pond substrate, and degree of human-caused disturbance have significant effects on the abundance of H. aquatilis in the Swan Valley. Taken together, these results suggest that Howellia aquatilis is rare because it can persist in only a small subset of wetlands-freshwater ephemeral ponds with a shallow, coarse textured organic surface horizon. Thus, H. aquatilis will be sensitive to disturbances that alter pond water quality or substrate composition. Lack of a persistent seed bank makes H. aquatilis prone to large fluctuations in population size due to environmental fluctuations. Both habitat specificity and large variations in population size are often associated with a high risk of extinction. Howellia aquatilis can only persist during periods of climatic fluctuation as a metapopulation in an area that contains large numbers of appropriate ponds of various depths. Consequently, long-term protection of this rare species will require habitat protection in large wetland complexes throughout its range. © 1992 by the Ecological Society of America.

  3. The sexual attitudes and lifestyles of London's Eastern Europeans (SALLEE Project): design and methods.

    PubMed

    Evans, Alison R; Parutis, Violetta; Hart, Graham; Mercer, Catherine H; Gerry, Christopher; Mole, Richard; French, Rebecca S; Imrie, John; Burns, Fiona

    2009-10-30

    Since May 2004, ten Central and Eastern European (CEE) countries have joined the European Union, leading to a large influx of CEE migrants to the United Kingdom (UK). The SALLEE project (sexual attitudes and lifestyles of London's Eastern Europeans) set out to establish an understanding of the sexual lifestyles and reproductive health risks of CEE migrants. CEE nationals make up a small minority of the population resident in the UK with no sampling frame from which to select a probability sample. There is also difficulty estimating the socio-demographic and geographical distribution of the population. In addition, measuring self-reported sexual behaviour which is generally found to be problematic, may be compounded among people from a range of different cultural and linguistic backgrounds. This paper will describe the methods adopted by the SALLEE project to address these challenges. The research was undertaken using quantitative and qualitative methods: a cross-sectional survey of CEE migrants based on three convenience samples (recruited from community venues, sexual health clinics and from the Internet) and semi-structured in-depth interviews with a purposively selected sample of CEE migrants. A detailed social mapping exercise of the CEE community was conducted prior to commencement of the survey to identify places where CEE migrants could be recruited. A total of 3,005 respondents took part in the cross-sectional survey, including 2,276 respondents in the community sample, 357 in the clinic sample and 372 in the Internet sample. 40 in-depth qualitative interviews were undertaken with a range of individuals, as determined by the interview quota matrix. The SALLEE project has benefited from using quantitative research to provide generalisable data on a range of variables and qualitative research to add in-depth understanding and interpretation. The social mapping exercise successfully located a large number of CEE migrants for the community sample and is recommended for other migrant populations, especially when little or no official data are available for this purpose. The project has collected timely data that will help us to understand the sexual lifestyles, reproductive health risks and health service needs of CEE communities in the UK.

  4. The selection of the optimal baseline in the front-view monocular vision system

    NASA Astrophysics Data System (ADS)

    Xiong, Bincheng; Zhang, Jun; Zhang, Daimeng; Liu, Xiaomao; Tian, Jinwen

    2018-03-01

    In the front-view monocular vision system, the accuracy of solving the depth field is related to the length of the inter-frame baseline and the accuracy of image matching result. In general, a longer length of the baseline can lead to a higher precision of solving the depth field. However, at the same time, the difference between the inter-frame images increases, which increases the difficulty in image matching and the decreases matching accuracy and at last may leads to the failure of solving the depth field. One of the usual practices is to use the tracking and matching method to improve the matching accuracy between images, but this algorithm is easy to cause matching drift between images with large interval, resulting in cumulative error in image matching, and finally the accuracy of solving the depth field is still very low. In this paper, we propose a depth field fusion algorithm based on the optimal length of the baseline. Firstly, we analyze the quantitative relationship between the accuracy of the depth field calculation and the length of the baseline between frames, and find the optimal length of the baseline by doing lots of experiments; secondly, we introduce the inverse depth filtering technique for sparse SLAM, and solve the depth field under the constraint of the optimal length of the baseline. By doing a large number of experiments, the results show that our algorithm can effectively eliminate the mismatch caused by image changes, and can still solve the depth field correctly in the large baseline scene. Our algorithm is superior to the traditional SFM algorithm in time and space complexity. The optimal baseline obtained by a large number of experiments plays a guiding role in the calculation of the depth field in front-view monocular.

  5. Determination of Energy of a Clinical Electron Beam as Part of a Routine Quality Assurance and Audit System

    NASA Astrophysics Data System (ADS)

    Hernández-Bello, Jimmy; D'Souza, Derek; Rossenberg, Ivan

    2002-08-01

    A method to determine the electron beam energy and an electron audit based on the current IPEM electron Code of Practice has been devised. During the commissioning on the new Varian 2100CD linear accelerator in The Middlesex Hospital, two methods were devised for the determination of electron energy. The first method involves the use of a two-depth method, whereby the ratio of ionisation (presented as a percentage) measured by an ion chamber at two depths in solid water is used to compare against the baseline ionisation depth value for that energy. The second method involves the irradiation of an X-ray film in solid water to obtain a depth dose curve and, hence determine the half value depth and practical range of the electrons. The results showed that the two-depth method has a better accuracy, repeatability, reliability and consistency than the X-ray method. The results for the electron audit showed that electron absolute outputs are obtained from ionisation measurements in solid water, where the energy-range parameters such as practical range and the depth at which ionisation is 50% of that at the maximum for the depth-ionisation curve are determined.

  6. Detour factors in water and plastic phantoms and their use for range and depth scaling in electron-beam dosimetry.

    PubMed

    Fernández-Varea, J M; Andreo, P; Tabata, T

    1996-07-01

    Average penetration depths and detour factors of 1-50 MeV electrons in water and plastic materials have been computed by means of analytical calculation, within the continuous-slowing-down approximation and including multiple scattering, and using the Monte Carlo codes ITS and PENELOPE. Results are compared to detour factors from alternative definitions previously proposed in the literature. Different procedures used in low-energy electron-beam dosimetry to convert ranges and depths measured in plastic phantoms into water-equivalent ranges and depths are analysed. A new simple and accurate scaling method, based on Monte Carlo-derived ratios of average electron penetration depths and thus incorporating the effect of multiple scattering, is presented. Data are given for most plastics used in electron-beam dosimetry together with a fit which extends the method to any other low-Z plastic material. A study of scaled depth-dose curves and mean energies as a function of depth for some plastics of common usage shows that the method improves the consistency and results of other scaling procedures in dosimetry with electron beams at therapeutic energies.

  7. Observations of Strong Surface Radar Ducts over the Persian Gulf.

    NASA Astrophysics Data System (ADS)

    Brooks, Ian M.; Goroch, Andreas K.; Rogers, David P.

    1999-09-01

    Ducting of microwave radiation is a common phenomenon over the oceans. The height and strength of the duct are controlling factors for radar propagation and must be determined accurately to assess propagation ranges. A surface evaporation duct commonly forms due to the large gradient in specific humidity just above the sea surface; a deeper surface-based or elevated duct frequently is associated with the sudden change in temperature and humidity across the boundary layer inversion.In April 1996 the U.K. Meteorological Office C-130 Hercules research aircraft took part in the U.S. Navy Ship Antisubmarine Warfare Readiness/Effectiveness Measuring exercise (SHAREM-115) in the Persian Gulf by providing meteorological support and making measurements for the study of electromagnetic and electro-optical propagation. The boundary layer structure over the Gulf is influenced strongly by the surrounding desert landmass. Warm dry air flows from the desert over the cooler waters of the Gulf. Heat loss to the surface results in the formation of a stable internal boundary layer. The layer evolves continuously along wind, eventually forming a new marine atmospheric boundary layer. The stable stratification suppresses vertical mixing, trapping moisture within the layer and leading to an increase in refractive index and the formation of a strong boundary layer duct. A surface evaporation duct coexists with the boundary layer duct.In this paper the authors present aircraft- and ship-based observations of both the surface evaporation and boundary layer ducts. A series of sawtooth aircraft profiles map the boundary layer structure and provide spatially distributed estimates of the duct depth. The boundary layer duct is found to have considerable spatial variability in both depth and strength, and to evolve along wind over distances significant to naval operations (100 km). The depth of the evaporation duct is derived from a bulk parameterization based on Monin-Obukhov similarity theory using near-surface data taken by the C-130 during low-level (30 m) flight legs and by ship-based instrumentation. Good agreement is found between the two datasets. The estimated evaporation ducts are found to be generally uniform in depth; however, localized regions of greatly increased depth are observed on one day, and a marked change in boundary layer structure resulting in merging of the surface evaporation duct with the deeper boundary layer duct was observed on another. Both of these cases occurred within exceptionally shallow boundary layers (100 m), where the mean evaporation duct depths were estimated to be between 12 and 17 m. On the remaining three days the boundary layer depth was between 200 and 300 m, and evaporation duct depths were estimated to be between 20 and 35 m, varying by just a few meters over ranges of up to 200 km.The one-way radar propagation factor is modeled for a case with a pronounced change in duct depth. The case is modeled first with a series of measured profiles to define as accurately as possible the refractivity structure of the boundary layer, then with a single profile collocated with the radar antenna and assuming homogeneity. The results reveal large errors in the propagation factor when derived from a single profile.

  8. The Cosmology Large Angular Scale Surveyor

    NASA Technical Reports Server (NTRS)

    Harrington, Kathleen; Marriage, Tobias; Ali, Aamir; Appel, John; Bennett, Charles; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe; hide

    2016-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from inflation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).

  9. The effect of depth of step on the water performance of a flying-boat hull model

    NASA Technical Reports Server (NTRS)

    Bell, Joe W

    1935-01-01

    NACA model 11-C was tested with four different depths of step to obtain information as to the effect of the depth of step on the water performance. The depths of step were selected to cover the practicable range of depths and in each case the included angle between the forebody and afterbody keels was kept the same 6-1/2 degrees. Small depths of step were found to give lower resistance at speeds below and at the hump speed of the model and greater depths of step lower resistance at high speeds. For low resistance throughout the speed range of the model investigated the most desirable depth of step is from 2.5 to 4.0 percent of the beam. The change of the best trim angle caused by variation of the depth of step was not appreciable. Increased depth of step caused increases in the maximum positive trimming moments at all trim angles investigated.

  10. Benthic communities in the deep Mediterranean Sea: exploring microbial and meiofaunal patterns in slope and basin ecosystems

    NASA Astrophysics Data System (ADS)

    Sevastou, K.; Lampadariou, N.; Polymenakou, P. N.; Tselepides, A.

    2012-12-01

    The long held perception of the deep sea consisting of monotonous slopes and uniform oceanic basins has over the decades given way to the idea of a complex system with wide habitat heterogeneity. Under the prism of a highly diverse environment, a large dataset was used to describe and compare spatial patterns of the dominant small-size components of deep-sea benthos, metazoan meiofauna and bacteria, from Mediterranean basins and slopes. A grid of 73 stations sampled at five geographical areas along the central-eastern Mediterranean basin (central Mediterranean, northern Aegean Sea, Cretan Sea, Libyan Sea, eastern Levantine) spanning over 4 km in depth revealed a high diversity in terms of both metazoan meiofauna and microbial communities. The higher meiofaunal abundance and richness observed in the northern Aegean Sea highlights the effect of productivity on benthic patterns. Non parametric analyses detected no differences for meiobenthic standing stocks and major taxa diversity (α, β, γ and δ components) between the two habitats (basin vs. slope) for the whole investigated area and within each region, but revealed significant bathymetric trends: abundance and richness follow the well-known gradient of decreasing values with increasing depth, whereas differentiation diversity (β- and δ-diversity) increases with depth. In spite of a similar bathymetric trend observed for nematode genera richness, no clear pattern was detected with regard to habitat type; the observed number of nematode genera suggests higher diversity in slopes, whereas richness estimator Jack1 found no differences between habitats. On the other hand, δ-diversity was higher at the basin habitat, but no differences were found among depth ranges, though turnover values were high in all pairwise comparisons of the different depth categories. Results of multivariate analysis are in line with the above findings, indicating high within habitat variability of meiofaunal communities and a gradual change of meiofaunal structure towards the abyssal stations. In contrast to meiobenthic results, microbial richness is significantly higher at the basin ecosystem and tends to increase with depth, while community structure varies greatly among samples regardless of the type of habitat, depth or area. The results presented here suggest that differences in benthic parameters between the two habitats are neither strong nor consistent; it appears that within habitat variability is high and differences among depth ranges are more important.

  11. Volumetric full-range magnetomotive optical coherence tomography

    PubMed Central

    Ahmad, Adeel; Kim, Jongsik; Shemonski, Nathan D.; Marjanovic, Marina; Boppart, Stephen A.

    2014-01-01

    Abstract. Magnetomotive optical coherence tomography (MM-OCT) can be utilized to spatially localize the presence of magnetic particles within tissues or organs. These magnetic particle-containing regions are detected by using the capability of OCT to measure small-scale displacements induced by the activation of an external electromagnet coil typically driven by a harmonic excitation signal. The constraints imposed by the scanning schemes employed and tissue viscoelastic properties limit the speed at which conventional MM-OCT data can be acquired. Realizing that electromagnet coils can be designed to exert MM force on relatively large tissue volumes (comparable or larger than typical OCT imaging fields of view), we show that an order-of-magnitude improvement in three-dimensional (3-D) MM-OCT imaging speed can be achieved by rapid acquisition of a volumetric scan during the activation of the coil. Furthermore, we show volumetric (3-D) MM-OCT imaging over a large imaging depth range by combining this volumetric scan scheme with full-range OCT. Results with tissue equivalent phantoms and a biological tissue are shown to demonstrate this technique. PMID:25472770

  12. Patterns of Deep-Water Coral Diversity in the Caribbean Basin and Adjacent Southern Waters: An Approach based on Records from the R/V Pillsbury Expeditions

    PubMed Central

    Hernández-Ávila, Iván

    2014-01-01

    The diversity of deep-water corals in the Caribbean Sea was studied using records from oceanographic expeditions performed by the R/V Pillsbury. Sampled stations were sorted according to broad depth ranges and ecoregions and were analyzed in terms of species accumulation curves, variance in the species composition and contributions to alpha, beta and gamma diversity. According to the analysis of species accumulation curves using the Chao2 estimator, more diversity occurs on the continental slope (200–2000 m depth) than on the upper continental shelf (60–200 m depth). In addition to the effect of depth sampling, differences in species composition related to depth ranges were detected. However, the differences between ecoregions are dependent on depth ranges, there were fewer differences among ecoregions on the continental slope than on the upper continental shelf. Indicator species for distinctness of ecoregions were, in general, Alcyonaria and Antipatharia for the upper continental shelf, but also the scleractinians Madracis myriabilis and Cladocora debilis. In the continental slope, the alcyonarian Placogorgia and the scleractinians Stephanocyathus and Fungiacyathus were important for the distinction of ecoregions. Beta diversity was the most important component of gamma diversity in the Caribbean Basin. The contribution of ecoregions to alpha, beta and gamma diversity differed with depth range. On the upper continental shelf, the Southern Caribbean ecoregion contributed substantially to all components of diversity. In contrast, the northern ecoregions contributed substantially to the diversity of the Continental Slope. Strategies for the conservation of deep-water coral diversity in the Caribbean Basin must consider the variation between ecoregions and depth ranges. PMID:24671156

  13. Large scale clear-water local pier scour experiments

    USGS Publications Warehouse

    Sheppard, D.M.; Odeh, M.; Glasser, T.

    2004-01-01

    Local clear-water scour tests were performed with three different diameter circular piles (0. 114, 0.305, and 0.914 m), three different uniform cohesionless sediment diameters (0.22, 0.80, and 2.90 mm) and a range of water depths and flow velocities. The tests were performed in the 6.1 m wide, 6.4 m deep, and 38.4 m long flume at the United States Geological Survey Conte Research Center in Turners Falls, Mass. These tests extend local scour data obtained in controlled experiments to prototype size piles and ratios of pile diameter to sediment diameter to 4,155. Supply water for this flow through flume was supplied by a hydroelectric power plant reservoir and the concentration of suspended fine sediment (wash load) could not be controlled. Equilibrium scour depths were found to depend on the wash load concentration. ?? ASCE.

  14. Observational Inferences of Lateral Eddy Diffusivity in the Halocline of the Beaufort Gyre

    NASA Astrophysics Data System (ADS)

    Meneghello, Gianluca; Marshall, John; Cole, Sylvia T.; Timmermans, Mary-Louise

    2017-12-01

    Using Ekman pumping rates mediated by sea ice in the Arctic Ocean's Beaufort Gyre (BG), the magnitude of lateral eddy diffusivities required to balance downward pumping is inferred. In this limit—that of vanishing residual-mean circulation—eddy-induced upwelling exactly balances downward pumping. The implied eddy diffusivity varies spatially and decays with depth, with values of 50-400 m2/s. Eddy diffusivity estimated using mixing length theory applied to BG mooring data exhibits a similar decay with depth and range of values from 100 m2/s to more than 600 m2/s. We conclude that eddy diffusivities in the BG are likely large enough to balance downward Ekman pumping, arresting the deepening of the gyre and suggesting that eddies play a zero-order role in buoyancy and freshwater budgets of the BG.

  15. Miniature all-optical probe for photoacoustic and ultrasound dual-modality imaging

    NASA Astrophysics Data System (ADS)

    Li, Guangyao; Guo, Zhendong; Chen, Sung-Liang

    2018-02-01

    Photoacoustic (PA) imaging forms an image based on optical absorption contrasts with ultrasound (US) resolution. In contrast, US imaging is based on acoustic backscattering to provide structural information. In this study, we develop a miniature all-optical probe for high-resolution PA-US dual-modality imaging over a large imaging depth range. The probe employs three individual optical fibers (F1-F3) to achieve optical generation and detection of acoustic waves for both PA and US modalities. To offer wide-angle laser illumination, fiber F1 with a large numerical aperture (NA) is used for PA excitation. On the other hand, wide-angle US waves are generated by laser illumination on an optically absorbing composite film which is coated on the end face of fiber F2. Both the excited PA and backscattered US waves are detected by a Fabry-Pérot cavity on the tip of fiber F3 for wide-angle acoustic detection. The wide angular features of the three optical fibers make large-NA synthetic aperture focusing technique possible and thus high-resolution PA and US imaging. The probe diameter is less than 2 mm. Over a depth range of 4 mm, lateral resolutions of PA and US imaging are 104-154 μm and 64-112 μm, respectively, and axial resolutions of PA and US imaging are 72-117 μm and 31-67 μm, respectively. To show the imaging capability of the probe, phantom imaging with both PA and US contrasts is demonstrated. The results show that the probe has potential for endoscopic and intravascular imaging applications that require PA and US contrast with high resolution.

  16. Modern Foraminifera from a depth transect offshore Brunei Darussalam: diversity, sedimentation rate and preservation pathways.

    NASA Astrophysics Data System (ADS)

    Briguglio, Antonino; Goeting, Sulia; Kusli, Rosnani; Roslim, Amajida; Polgar, Gianluca; Kocsis, Laszlo

    2016-04-01

    For this study, 11 samples have been collected by scuba diving from 5 to 35 meters water depth off shore Brunei Darussalam. The locations sampled are known as: Pelong Rock (5 samples, shallow reef with soft and stony corals and larger foraminifera, 5 to 8 meters water depth), Abana Rock (1 sample, shallow reef with mainly soft corals and larger foraminifera, 13 to 18 meters water depth), Oil Rig wreck (1 sample, very sandy bottom with larger foraminifera, 18 meters water depth), Dolphin wreck (1 sample, muddy sand with many small rotaliids, 24 meters water depth), US wreck, (1 sample, sand with small clay fraction, 28 meters water depth), Australian wreck (1 sample, mainly medium to coarse sand with larger foraminifera, 34 meters water depth) and Blue water wreck (1 sample, mainly coarse sand, coral rubble and larger foraminifera, 35 meters water depth). Those samples closer to the river inputs are normally richer in clay, while the most distant samples are purely sandy. Some additional samples have been collected next to reef environments which, even if very shallow, are mainly sandy with almost no clay fraction. The deepest sample, which is 30 km offshore, contains some planktonic foraminifera and is characterized by a large range of preservations concerning foraminifera, thus testifying the presence or relict sediments at the sea bottom. The presence of relict sediments was already pointed out by older oil-related field studies offshore Brunei Darussalam, and now it is possible to draw the depth limit of these deposits. The diversity of the benthic foraminiferal fauna is relatively high but not as higher as neighboring regions as some studies have highlighted. The species collected and identified are more than 50: in reef environment the most abundant are Calcarina defrancii, Neorotalia calcar and the amphisteginidae; deeper in the muddy sediments the most abundant is Pararotalia schroeteriana and in the deepest sandy sample the most abundant are Calcarina hispida, followed by Operculina ammonoides.

  17. Preliminary assessment of facial soft tissue thickness utilizing three-dimensional computed tomography models of living individuals.

    PubMed

    Parks, Connie L; Richard, Adam H; Monson, Keith L

    2014-04-01

    Facial approximation is the technique of developing a representation of the face from the skull of an unknown individual. Facial approximation relies heavily on average craniofacial soft tissue depths. For more than a century, researchers have employed a broad array of tissue depth collection methodologies, a practice which has resulted in a lack of standardization in craniofacial soft tissue depth research. To combat such methodological inconsistencies, Stephan and Simpson 2008 [15] examined and synthesized a large number of previously published soft tissue depth studies. Their comprehensive meta-analysis produced a pooled dataset of averaged tissue depths and a simplified methodology, which the researchers suggest be utilized as a minimum standard protocol for future craniofacial soft tissue depth research. The authors of the present paper collected craniofacial soft tissue depths using three-dimensional models generated from computed tomography scans of living males and females of four self-identified ancestry groups from the United States ranging in age from 18 to 62 years. This paper assesses the differences between: (i) the pooled mean tissue depth values from the sample utilized in this paper and those published by Stephan 2012 [21] and (ii) the mean tissue depth values of two demographically similar subsets of the sample utilized in this paper and those published by Rhine and Moore 1984 [16]. Statistical test results indicate that the tissue depths collected from the sample evaluated in this paper are significantly and consistently larger than those published by Stephan 2012 [21]. Although a lack of published variance data by Rhine and Moore 1984 [16] precluded a direct statistical assessment, a substantive difference was also concluded. Further, the dataset presented in this study is representative of modern American adults and is, therefore, appropriate for use in constructing contemporary facial approximations. Published by Elsevier Ireland Ltd.

  18. Influence of tundra snow layer thickness on measured and modelled radar backscatter

    NASA Astrophysics Data System (ADS)

    Rutter, N.; Sandells, M. J.; Derksen, C.; King, J. M.; Toose, P.; Wake, L. M.; Watts, T.

    2017-12-01

    Microwave radar backscatter within a tundra snowpack is strongly influenced by spatial variability of the thickness of internal layering. Arctic tundra snowpacks often comprise layers consisting of two dominant snow microstructures; a basal depth hoar layer overlain by a layer of wind slab. Occasionally there is also a surface layer of decomposing fresh snow. The two main layers have strongly different microwave scattering properties. Depth hoar has a greater capacity for scattering electromagnetic energy than wind slab, however, wind slab usually has a larger snow water equivalent (SWE) than depth hoar per unit volume due to having a higher density. So, determining the relative proportions of depth hoar and wind slab from a snowpack of a known depth may help our future capacity to invert forward models of electromagnetic backscatter within a data assimilation scheme to improve modelled estimates of SWE. Extensive snow measurements were made within Trail Valley Creek, NWT, Canada in April 2013. Snow microstructure was measured at 18 pit and 9 trench locations throughout the catchment (trench extent ranged between 5 to 50 m). Ground microstructure measurements included traditional stratigraphy, near infrared stratigraphy, Specific Surface Area (SSA), and density. Coincident airborne Lidar measurements were made to estimate distributed snow depth across the catchment, in addition to airborne radar snow backscatter using a dual polarized (VV/VH) X- and Ku-band Synthetic Aperture Radar (SnowSAR). Ground measurements showed the mean proportion of depth hoar was just under 30% of total snow depth and was largely unresponsive to increasing snow depth. The mean proportion of wind slab is consistently greater than 50% and showed an increasing trend with increasing total snow depth. A decreasing trend in the mean proportion of surface snow (approximately 25% to 10%) with increasing total depth accounted for this increase in wind slab. This new knowledge of variability in stratigraphic thickness, relative to respective proportions of total snow depth, was used to investigate the representativeness of point measurements of density and microstructure for forward simulations of the SMRT microwave scattering model, using Lidar derived snow depths.

  19. A comparison of observed and analytically derived remote sensing penetration depths for turbid water

    NASA Technical Reports Server (NTRS)

    Morris, W. D.; Usry, J. W.; Witte, W. G.; Whitlock, C. H.; Guraus, E. A.

    1981-01-01

    The depth to which sunlight will penetrate in turbid waters was investigated. The tests were conducted in water with a single scattering albedo range, and over a range of solar elevation angles. Two different techniques were used to determine the depth of light penetration. It showed little change in the depth of sunlight penetration with changing solar elevation angle. A comparison of the penetration depths indicates that the best agreement between the two methods was achieved when the quasisingle scattering relationship was not corrected for solar angle. It is concluded that sunlight penetration is dependent on inherent water properties only.

  20. Scour assessments and sediment-transport simulation for selected bridge sites in South Dakota

    USGS Publications Warehouse

    Niehus, C.A.

    1996-01-01

    Scour at bridges is a major concern in the design of new bridges and in the evaluation of structural stability of existing bridges. Equations for estimating pier, contraction, and abutment scour have been developed from numerous laboratory studies using sand-bed flumes, but little verification of these scour equations has been done for actual rivers with various bed conditions. This report describes the results of reconnaissance and detailed scour assessments and a sediment-transport simulation for selected bridge sites in South Dakota. Reconnaissance scour assessments were done during 1991 for 32 bridge sites. The reconnaissance assessments for each bridge site included compilation of general and structural data, field inspection to record and measure pertinent scour variables, and evaluation of scour susceptibility using various scour-index forms. Observed pier scour at the 32 sites ranged from 0 to 7 feet, observed contraction scour ranged from 0 to 4 feet, and observed abutment scour ranged from 0 to 10 feet. Thirteen bridge sites having high potential for scour were selected for detailed assessments, which were accomplished during 1992-95. These detailed assessments included prediction of scour depths for 2-, 100-, and 500-year flows using selected published scour equations; measurement of scour during high flows; comparison of measured and predicted scour; and identification of which scour equations best predict actual scour. The medians of predicted pier-scour depth at each of the 13 bridge sites (using 13 scour equations) ranged from 2.4 to 6.8 feet for the 2-year flows and ranged from 3.4 to 13.3 feet for the 500-year flows. The maximum pier scour measured during high flows ranged from 0 to 8.5 feet. Statistical comparison (Spearman rank correlation) of predicted pier-scour depths (using flow data col- lected during scour measurements) indicate that the Laursen, Shen (method b), Colorado State University, and Blench (method b) equations correlate closer with measured scour than do the other prediction equations. The predicted pier-scour depths using the Varzeliotis and Carstens equations have weak statistical rela- tions with measured scour depths. Medians of predicted pier-scour depth from the Shen (method a), Chitale, Bata, and Carstens equations are statistically equal to the median of measured pier-scour depths, based on the Wilcoxon signed-ranks test. The medians of contraction scour depth at each of the 13 bridge sites (using one equation) ranged from -0.1 foot for the 2- year flows to 23.2 feet for the 500-year flows. The maximum contraction scour measured during high flows ranged from 0 to 3.0 feet. The contraction- scour prediction equation substantially overestimated the scour depths in almost all comparisons with the measured scour depths. A significant reason for this discrepancy is due to the wide flood plain (as wide as 5,000 feet) at most of the bridge sites that were investigated. One possible way to reduce this effect for bridge design is to make a decision on what is the effective approach section and thereby limit the size of the bridge flow approach width. The medians of abutment-scour depth at each of the 13 bridge sites (using five equations) ranged from 8.2 to 16.5 feet for the 2-year flows and ranged from 5.7 to 41 feet for the 500-year flows. The maximum abutment scour measured during high flows ranged from 0 to 4.0 feet. The abutment-scour prediction equations also substantially overestimated the scour depths in almost all comparisons with the measured scour depths. The Liu and others (live bed) equation predicted abutment-scour depths substantially lower than the other four abutment-scour equations and closer to the actual measured scour depths. However, this equation at times predicted greater scour depths for 2-year flows than it did for 500-year flows, making its use highly questionable. Again, limiting the bridge flow approach width would produce more reasonable predicted abutment scour.

  1. Winter range arrival and departure of white-tailed deer in northeastern Minnesota

    USGS Publications Warehouse

    Nelson, M.E.

    1995-01-01

    I analyzed 364 spring and 239 fall migrations by 194 white-tailed deer (Odocoileus virginianus) from 1975 to 1993 in northeastern Minnesota to determine the proximate cause of arrivals on and departures from winter ranges. The first autumn temperatures below -7?C initiated fall migrations for 14% (95% confidence interval (CI) = 0-30) of female deer prior to snowfall in three autumns, but only 2% remained on winter ranges. During 14 autumns, the first temperatures below -7?C coincidental with snowfalls elicited migration in 45% (95% CI = 34-57) of females, and 91 % remained on winter ranges. Arrival dates failed to correlate with independent variables of temperature and snow depth, precluding predictive modeling of arrival on winter ranges. During 13 years, a mean of 80% of females permanently arrived on winter ranges by 31 December. Mean departure dates from winter ranges varied annually (19 March - 4 May) and between winter ranges (14 days) and according to snow depth (15-cm differences). Only 15 - 41 % of deer departed when snow depths were> 30 cm but 80% had done so by the time of lO-cm depths. Mean weekly snow depths in March (18-85 cm) and mean temperature in April (0.3 -8.1 ?c) explained most of the variation in mean departure dates from two winter ranges (Ely, R2 = 0.87, P < 0.0005, n = 19 springs; Isabella, R2 = 0.85, P = 0.0001, n = 12 springs). Mean differences between observed mean departure dates and mean departure dates predicted from equations ranged from 3 days (predictions within the study area) to 8 days (predictions for winter ranges 100-440 km distant).

  2. Evaluating analytical approaches for estimating pelagic fish biomass using simulated fish communities

    USGS Publications Warehouse

    Yule, Daniel L.; Adams, Jean V.; Warner, David M.; Hrabik, Thomas R.; Kocovsky, Patrick M.; Weidel, Brian C.; Rudstam, Lars G.; Sullivan, Patrick J.

    2013-01-01

    Pelagic fish assessments often combine large amounts of acoustic-based fish density data and limited midwater trawl information to estimate species-specific biomass density. We compared the accuracy of five apportionment methods for estimating pelagic fish biomass density using simulated communities with known fish numbers that mimic Lakes Superior, Michigan, and Ontario, representing a range of fish community complexities. Across all apportionment methods, the error in the estimated biomass generally declined with increasing effort, but methods that accounted for community composition changes with water column depth performed best. Correlations between trawl catch and the true species composition were highest when more fish were caught, highlighting the benefits of targeted trawling in locations of high fish density. Pelagic fish surveys should incorporate geographic and water column depth stratification in the survey design, use apportionment methods that account for species-specific depth differences, target midwater trawling effort in areas of high fish density, and include at least 15 midwater trawls. With relatively basic biological information, simulations of fish communities and sampling programs can optimize effort allocation and reduce error in biomass estimates.

  3. Gamma-ray energy buildup factor calculations and shielding effects of some Jordanian building structures

    NASA Astrophysics Data System (ADS)

    Sharaf, J. M.; Saleh, H.

    2015-05-01

    The shielding properties of three different construction styles, and building materials, commonly used in Jordan, were evaluated using parameters such as attenuation coefficients, equivalent atomic number, penetration depth and energy buildup factor. Geometric progression (GP) method was used to calculate gamma-ray energy buildup factors of limestone, concrete, bricks, cement plaster and air for the energy range 0.05-3 MeV, and penetration depths up to 40 mfp. It has been observed that among the examined building materials, limestone offers highest value for equivalent atomic number and linear attenuation coefficient and the lowest values for penetration depth and energy buildup factor. The obtained buildup factors were used as basic data to establish the total equivalent energy buildup factors for three different multilayer construction styles using an iterative method. The three styles were then compared in terms of fractional transmission of photons at different incident photon energies. It is concluded that, in case of any nuclear accident, large multistory buildings with five layers exterior walls, style A, could effectively attenuate radiation more than small dwellings of any construction style.

  4. Sonar gas flux estimation by bubble insonification: application to methane bubble flux from seep areas in the outer Laptev Sea

    NASA Astrophysics Data System (ADS)

    Leifer, Ira; Chernykh, Denis; Shakhova, Natalia; Semiletov, Igor

    2017-06-01

    Sonar surveys provide an effective mechanism for mapping seabed methane flux emissions, with Arctic submerged permafrost seepage having great potential to significantly affect climate. We created in situ engineered bubble plumes from 40 m depth with fluxes spanning 0.019 to 1.1 L s-1 to derive the in situ calibration curve (Q(σ)). These nonlinear curves related flux (Q) to sonar return (σ) for a multibeam echosounder (MBES) and a single-beam echosounder (SBES) for a range of depths. The analysis demonstrated significant multiple bubble acoustic scattering - precluding the use of a theoretical approach to derive Q(σ) from the product of the bubble σ(r) and the bubble size distribution where r is bubble radius. The bubble plume σ occurrence probability distribution function (Ψ(σ)) with respect to Q found Ψ(σ) for weak σ well described by a power law that likely correlated with small-bubble dispersion and was strongly depth dependent. Ψ(σ) for strong σ was largely depth independent, consistent with bubble plume behavior where large bubbles in a plume remain in a focused core. Ψ(σ) was bimodal for all but the weakest plumes. Q(σ) was applied to sonar observations of natural arctic Laptev Sea seepage after accounting for volumetric change with numerical bubble plume simulations. Simulations addressed different depths and gases between calibration and seep plumes. Total mass fluxes (Qm) were 5.56, 42.73, and 4.88 mmol s-1 for MBES data with good to reasonable agreement (4-37 %) between the SBES and MBES systems. The seepage flux occurrence probability distribution function (Ψ(Q)) was bimodal, with weak Ψ(Q) in each seep area well described by a power law, suggesting primarily minor bubble plumes. The seepage-mapped spatial patterns suggested subsurface geologic control attributing methane fluxes to the current state of subsea permafrost.

  5. Quantifying the accuracy of snow water equivalent estimates using broadband radar signal phase

    NASA Astrophysics Data System (ADS)

    Deeb, E. J.; Marshall, H. P.; Lamie, N. J.; Arcone, S. A.

    2014-12-01

    Radar wave velocity in dry snow depends solely on density. Consequently, ground-based pulsed systems can be used to accurately measure snow depth and snow water equivalent (SWE) using signal travel-time, along with manual depth-probing for signal velocity calibration. Travel-time measurements require a large bandwidth pulse not possible in airborne/space-borne platforms. In addition, radar backscatter from snow cover is sensitive to grain size and to a lesser extent roughness of layers at current/proposed satellite-based frequencies (~ 8 - 18 GHz), complicating inversion for SWE. Therefore, accurate retrievals of SWE still require local calibration due to this sensitivity to microstructure and layering. Conversely, satellite radar interferometry, which senses the difference in signal phase between acquisitions, has shown a potential relationship with SWE at lower frequencies (~ 1 - 5 GHz) because the phase of the snow-refracted signal is sensitive to depth and dielectric properties of the snowpack, as opposed to its microstructure and stratigraphy. We have constructed a lab-based, experimental test bed to quantify the change in radar phase over a wide range of frequencies for varying depths of dry quartz sand, a material dielectrically similar to dry snow. We use a laboratory grade Vector Network Analyzer (0.01 - 25.6 GHz) and a pair of antennae mounted on a trolley over the test bed to measure amplitude and phase repeatedly/accurately at many frequencies. Using ground-based LiDAR instrumentation, we collect a coordinated high-resolution digital surface model (DSM) of the test bed and subsequent depth surfaces with which to compare the radar record of changes in phase. Our plans to transition this methodology to a field deployment during winter 2014-2015 using precision pan/tilt instrumentation will also be presented, as well as applications to airborne and space-borne platforms toward the estimation of SWE at high spatial resolution (on the order of meters) over large regions (> 100 square kilometers).

  6. Detecting Thin Cirrus in Multiangle Imaging Spectroradiometer Aerosol Retrievals

    NASA Technical Reports Server (NTRS)

    Pierce, Jeffrey R.; Kahn, Ralph A.; Davis, Matt R.; Comstock, Jennifer M.

    2010-01-01

    Thin cirrus clouds (optical depth (OD) < 03) are often undetected by standard cloud masking in satellite aerosol retrieval algorithms. However, the Mu]tiangle Imaging Spectroradiometer (MISR) aerosol retrieval has the potential to discriminate between the scattering phase functions of cirrus and aerosols, thus separating these components. Theoretical tests show that MISR is sensitive to cirrus OD within Max{0.05 1 20%l, similar to MISR's sensitivity to aerosol OD, and MISR can distinguish between small and large crystals, even at low latitudes, where the range of scattering angles observed by MISR is smallest. Including just two cirrus components in the aerosol retrieval algorithm would capture typical MISR sensitivity to the natural range of cinus properties; in situations where cirrus is present but the retrieval comparison space lacks these components, the retrieval tends to underestimate OD. Generally, MISR can also distinguish between cirrus and common aerosol types when the proper cirrus and aerosol optical models are included in the retrieval comparison space and total column OD is >-0.2. However, in some cases, especially at low latitudes, cirrus can be mistaken for some combinations of dust and large nonabsorbing spherical aerosols, raising a caution about retrievals in dusty marine regions when cirrus is present. Comparisons of MISR with lidar and Aerosol Robotic Network show good agreement in a majority of the cases, but situations where cirrus clouds have optical depths >0.15 and are horizontally inhomogeneous on spatial scales shorter than 50 km pose difficulties for cirrus retrieval using the MISR standard aerosol algorithm..

  7. Relative f-values from interstellar absorption lines: advantages and pitfalls

    NASA Astrophysics Data System (ADS)

    Jenkins, Edward B.

    2009-05-01

    Interstellar absorption features seen in the ultraviolet and visible spectra of stars provide opportunities for comparing the strengths of different transitions out of the ground electronic states of atoms, ions and simple molecules. In principle, such measurements are straightforward since the radiative transfer is manifested as a simple exponential absorption law at any given radial velocity. Complications arise when the velocity structures of the lines are not completely resolved, or when the lines are either very strongly saturated or too weak to observe. Dynamic range limitations can compromise the comparisons of two transitions that have very different absorption f-values, but they can be mitigated if there are examples with very different column densities and transitions of intermediate strength that can help to bridge the large gap in line strengths. Attempts to unravel the effects of saturation include the use of a curve of growth when only equivalent widths are available, or the measurements of the 'apparent optical depth' when the line is mostly resolved by the instrument. Unfortunately, the application of the curve of growth for one constituent to that of another can sometimes create systematic errors, since the two may have different velocity structures. Likewise, unresolved fine velocity structures in features that have large optical depths can make the apparent optical depths misrepresent the smoothed versions of the true optical depths. One method to compare the strength of a very weak line to that of a very strong one is to measure the total absorption of the former and compare it with the strength of the damping wings of the latter. However in many circumstances, small amounts of gas at velocities well displaced from the line center can masquerade as damping wings. For this reason, it is important to check that these wings have the proper shape.

  8. The crustal thickness of Australia

    USGS Publications Warehouse

    Clitheroe, G.; Gudmundsson, O.; Kennett, B.L.N.

    2000-01-01

    We investigate the crustal structure of the Australian continent using the temporary broadband stations of the Skippy and Kimba projects and permanent broadband stations. We isolate near-receiver information, in the form of crustal P-to-S conversions, using the receiver function technique. Stacked receiver functions are inverted for S velocity structure using a Genetic Algorithm approach to Receiver Function Inversion (GARFI). From the resulting velocity models we are able to determine the Moho depth and to classify the width of the crust-mantle transition for 65 broadband stations. Using these results and 51 independent estimates of crustal thickness from refraction and reflection profiles, we present a new, improved, map of Moho depth for the Australian continent. The thinnest crust (25 km) occurs in the Archean Yilgarn Craton in Western Australia; the thickest crust (61 km) occurs in Proterozoic central Australia. The average crustal thickness is 38.8 km (standard deviation 6.2 km). Interpolation error estimates are made using kriging and fall into the range 2.5-7.0 km. We find generally good agreement between the depth to the seismologically defined Moho and xenolith-derived estimates of crustal thickness beneath northeastern Australia. However, beneath the Lachlan Fold Belt the estimates are not in agreement, and it is possible that the two techniques are mapping differing parts of a broad Moho transition zone. The Archean cratons of Western Australia appear to have remained largely stable since cratonization, reflected in only slight variation of Moho depth. The largely Proterozoic center of Australia shows relatively thicker crust overall as well as major Moho offsets. We see evidence of the margin of the contact between the Precambrian craton and the Tasman Orogen, referred to as the Tasman Line. Copyright 2000 by the American Geophysical Union.

  9. Wide field polarimetry around the Perseus cluster at 350 MHz

    NASA Astrophysics Data System (ADS)

    Brentjens, M. A.

    2011-02-01

    Aims: This paper investigates the fascinating diffuse polarization structures at 350 MHz that have previously been tentatively attributed to the Perseus cluster and, more specifically, tries to find out whether the structures are located at (or near) the Perseus cluster, or in the Milky Way. Methods: A wide field, eight point Westerbork Synthesis Radio Telescope mosaic of the area around the Perseus cluster was observed in full polarization. The frequency range was 324 to 378 MHz and the resolution of the polarization maps was 2' × 3'. The maps were processed using Faraday rotation measure synthesis to counter bandwidth depolarization. The RM-cube covers Faraday depths of -384 to +381 rad m-2 in steps of 3 rad m-2. Results: There is emission all over the field at Faraday depths between -50 and +100 rad m-2. All previously observed structures were detected. However, no compelling evidence was found supporting association of those structures with either the Perseus cluster or large scale structure formation gas flows in the Perseus-Pisces super cluster. On the contrary, one of the structures is clearly associated with a Galactic depolarization canal at 1.41 GHz. Another large structure in polarized intensity, as well as Faraday depth at a Faraday depth of +30 rad m-2, coincides with a dark object in WHAM Hα maps at a kinematic distance of 0.5 ± 0.5 kpc. All diffuse polarized emission at 350 MHz towards the Perseus cluster is most likely located within 1 kpc from the Sun. The layers that emit the polarized radiation are less than 40 pc/|B_∥| thick. Appendix is only available in electronic form at http://www.aanda.org

  10. Particle-Image Velocimeter Having Large Depth of Field

    NASA Technical Reports Server (NTRS)

    Bos, Brent

    2009-01-01

    An instrument that functions mainly as a particle-image velocimeter provides data on the sizes and velocities of flying opaque particles. The instrument is being developed as a means of characterizing fluxes of wind-borne dust particles in the Martian atmosphere. The instrument could also adapted to terrestrial use in measuring sizes and velocities of opaque particles carried by natural winds and industrial gases. Examples of potential terrestrial applications include monitoring of airborne industrial pollutants and airborne particles in mine shafts. The design of this instrument reflects an observation, made in field research, that airborne dust particles derived from soil and rock are opaque enough to be observable by use of bright field illumination with high contrast for highly accurate measurements of sizes and shapes. The instrument includes a source of collimated light coupled to an afocal beam expander and an imaging array of photodetectors. When dust particles travel through the collimated beam, they cast shadows. The shadows are magnified by the beam expander and relayed to the array of photodetectors. Inasmuch as the images captured by the array are of dust-particle shadows rather of the particles themselves, the depth of field of the instrument can be large: the instrument has a depth of field of about 11 mm, which is larger than the depths of field of prior particle-image velocimeters. The instrument can resolve, and measure the sizes and velocities of, particles having sizes in the approximate range of 1 to 300 m. For slowly moving particles, data from two image frames are used to calculate velocities. For rapidly moving particles, image smear lengths from a single frame are used in conjunction with particle- size measurement data to determine velocities.

  11. Where is the 1-million-year-old ice at Dome A?

    NASA Astrophysics Data System (ADS)

    Zhao, Liyun; Moore, John C.; Sun, Bo; Tang, Xueyuan; Guo, Xiaoran

    2018-05-01

    Ice fabric influences the rheology of ice, and hence the age-depth profile at ice core drilling sites. To investigate the age-depth profile to be expected of the ongoing deep ice coring at Kunlun station, Dome A, we use the depth-varying anisotropic fabric suggested by the recent polarimetric measurements around Dome A along with prescribed fabrics ranging from isotropic through girdle to single maximum in a three-dimensional, thermo-mechanically coupled full-Stokes model of a 70 × 70 km2 domain around Kunlun station. This model allows for the simulation of the near basal ice temperature and age, and ice flow around the location of the Chinese deep ice coring site. Ice fabrics and geothermal heat flux strongly affect the vertical advection and basal temperature which consequently control the age profile. Constraining modeled age-depth profiles with dated radar isochrones to 2/3 ice depth, the surface vertical velocity, and also the spatial variability of a radar isochrones dated to 153.3 ka BP, limits the age of the deep ice at Kunlun to between 649 and 831 ka, a much smaller range than previously inferred. The simple interpretation of the polarimetric radar fabric data that we use produces best fits with a geothermal heat flux of 55 mW m-2. A heat flux of 50 mW m-2 is too low to fit the deeper radar layers, and 60 mW m-2 leads to unrealistic surface velocities. The modeled basal temperature at Kunlun reaches the pressure melting point with a basal melting rate of 2.2-2.7 mm a-1. Using the spatial distribution of basal temperatures and the best fit fabric suggests that within 400 m of Kunlun station, 1-million-year-old ice may be found 200 m above the bed, and that there are large regions where even older ice is well above the bedrock within 5-6 km of the Kunlun station.

  12. Complex movements, philopatry and expanded depth range of a severely threatened pelagic shark, the oceanic whitetip (Carcharhinus longimanus) in the western North Atlantic.

    PubMed

    Howey-Jordan, Lucy A; Brooks, Edward J; Abercrombie, Debra L; Jordan, Lance K B; Brooks, Annabelle; Williams, Sean; Gospodarczyk, Emily; Chapman, Demian D

    2013-01-01

    Oceanic whitetip sharks (Carcharhinus longimanus) have recently been targeted for conservation in the western North Atlantic following severe declines in abundance. Pop-up satellite archival tags were applied to 11 mature oceanic whitetips (10 females, 1 male) near Cat Island in the central Bahamas 1-8 May 2011 to provide information about the horizontal and vertical movements of this species. Another large female was opportunistically tagged in the U.S. Exclusive Economic Zone (EEZ). Data from 1,563 total tracking days and 1,142,598 combined depth and temperature readings were obtained. Sharks tagged at Cat Island stayed within 500 km of the tagging site for ~30 days before dispersing across 16,422 km(2) of the western North Atlantic. Maximum individual displacement from the tagging site ranged from 290-1940 km after times at liberty from 30-245 days, with individuals moving to several different destinations (the northern Lesser Antilles, the northern Bahamas, and north of the Windward Passage). Many sharks returned to The Bahamas after ~150 days. Estimated residency times within The Bahamas EEZ, where longlining and commercial trade of sharks is illegal, were generally high (mean = 68.2% of time). Sharks spent 99.7% of their time shallower than 200 m and did not exhibit differences in day and night mean depths. There was a positive correlation between daily sea surface temperature and mean depth occupied, suggesting possible behavioral thermoregulation. All individuals made short duration (mean = 13.06 minutes) dives into the mesopelagic zone (down to 1082 m and 7.75°C), which occurred significantly more often at night. Ascent rates during these dives were significantly slower than descent rates, suggesting that these dives are for foraging. The sharks tracked appear to be most vulnerable to pelagic fishing gear deployed from 0-125 m depths, which they may encounter from June to October after leaving the protected waters of The Bahamas EEZ.

  13. Flexural bending of the Zagros foreland basin

    NASA Astrophysics Data System (ADS)

    Pirouz, Mortaza; Avouac, Jean-Philippe; Gualandi, Adriano; Hassanzadeh, Jamshid; Sternai, Pietro

    2017-09-01

    We constrain and model the geometry of the Zagros foreland to assess the equivalent elastic thickness of the northern edge of the Arabian plate and the loads that have originated due to the Arabia-Eurasia collision. The Oligo-Miocene Asmari formation, and its equivalents in Iraq and Syria, is used to estimate the post-collisional subsidence as they separate passive margin sediments from the younger foreland deposits. The depth to these formations is obtained by synthesizing a large database of well logs, seismic profiles and structural sections from the Mesopotamian basin and the Persian Gulf. The foreland depth varies along strike of the Zagros wedge between 1 and 6 km. The foreland is deepest beneath the Dezful embayment, in southwest Iran, and becomes shallower towards both ends. We investigate how the geometry of the foreland relates to the range topography loading based on simple flexural models. Deflection of the Arabian plate is modelled using point load distribution and convolution technique. The results show that the foreland depth is well predicted with a flexural model which assumes loading by the basin sedimentary fill, and thickened crust of the Zagros. The model also predicts a Moho depth consistent with Free-Air anomalies over the foreland and Zagros wedge. The equivalent elastic thickness of the flexed Arabian lithosphere is estimated to be ca. 50 km. We conclude that other sources of loading of the lithosphere, either related to the density variations (e.g. due to a possible lithospheric root) or dynamic origin (e.g. due to sublithospheric mantle flow or lithospheric buckling) have a negligible influence on the foreland geometry, Moho depth and topography of the Zagros. We calculate the shortening across the Zagros assuming conservation of crustal mass during deformation, trapping of all the sediments eroded from the range in the foreland, and an initial crustal thickness of 38 km. This calculation implies a minimum of 126 ± 18 km of crustal shortening due to ophiolite obduction and post-collisional shortening.

  14. Aftershocks of the june 20, 1978, Greece earthquake: A multimode faulting sequence

    USGS Publications Warehouse

    Carver, D.; Bollinger, G.A.

    1981-01-01

    A 10-station portable seismograph network was deployed in northern Greece to study aftershocks of the magnitude (mb) 6.4 earthquake of June 20, 1978. The main shock occurred (in a graben) about 25 km northeast of the city of Thessaloniki and caused an east-west zone of surface rupturing 14 km long that splayed to 7 km wide at the west end. The hypocenters for 116 aftershocks in the magnitude range from 2.5 to 4.5 were determined. The epicenters for these events cover an area 30 km (east-west) by 18 km (north-south), and focal depths ranges from 4 to 12 km. Most of the aftershocks in the east half of the aftershock zone are north of the surface rupture and north of the graben. Those in the west half are located within the boundaries of the graben. Composite focalmechanism solutions for selected aftershocks indicate reactivation of geologically mapped normal faults in the area. Also, strike-slip and dip-slip faults that splay off the western end of the zone of surface ruptures may have been activated. The epicenters for four large (M ??? 4.8) foreshocks and the main shock were relocated using the method of joint epicenter determination. Collectively, those five epicenters form an arcuate pattern convex southward, that is north of and 5 km distant from the surface rupturing. The 5-km separation, along with a focal depth of 8 km (average aftershock depth) or 16 km (NEIS main-shock depth), implies that the fault plane dips northward 58?? or 73??, respectively. A preferred nodal-plane dip of 36?? was determined by B.C. Papazachos and his colleagues in 1979 from a focal-mechanism solution for the main shock. If this dip is valid for the causal fault and that fault projects to the zone of surface rupturing, a decrease of dip with depth is required. ?? 1981.

  15. Femtosecond-Assisted Arcuate Keratotomy for the Correction of Postkeratoplasty Astigmatism: Vector Analysis and Accuracy of Laser Incisions.

    PubMed

    Loriaut, Patrick; Borderie, Vincent M; Laroche, Laurent

    2015-09-01

    To assess the clinical and refractive outcomes of femtosecond-assisted arcuate keratotomy in postkeratoplasty patients, and the accuracy of the incisions, using optical coherence tomography. This is a retrospective study of patients with high postkeratoplasty astigmatism. Patients with a minimum of 4 diopters (D) of postkeratoplasty regular astigmatism were included. The main outcome measures were corrected distance visual acuity, keratometry, corneal topography, and the depth of corneal incisions. Arcuate keratotomy procedures were performed using the IntraLase Femtosecond laser. The depth of keratotomies was set to 75% of the thinnest pachymetry. Twenty eyes of 20 patients were recruited in this study. The mean age at surgery was 51 years, and the mean follow-up period was 17 ± 7.9 months. The corrected distance visual acuity improved significantly from 20/60 preoperatively to 20/41 after surgery (P = 0.004). The mean preoperative and postoperative spherical equivalents were -4.34 ± 2.91 D and -4.44 ± 3.64 D, respectively (P = 0.49). The mean keratometric cylinder decreased from 9.45 ± 2.97 D (range, 4.2-15.2 D) to 4.64 ± 2.79 D (range, 1.4-11.8 D) (P < 0.001). There was no statistical difference between the mean surgical-induced astigmatism and the mean target-induced astigmatism (P = 0.313). The mean difference between the scheduled and actual incision depth was 10.5 ± 22.2 μm (P = 0.057). No complications occurred during the procedures. Femtosecond-assisted keratotomy seems to be a safe and efficient technique for the reduction of large amounts of corneal astigmatism. Although overcorrection and undercorrection may occur, the visual outcome is satisfactory. Optical coherence tomography analysis reports a good predictability of the depth of incisions.

  16. Aerosol-Induced Radiative Flux Changes Off the United States Mid-Atlantic Coast: Comparison of Values Calculated from Sunphotometer and In Situ Data with Those Measured by Airborne Pyranometer

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Livingston, J. M.; Hignett, P.; Kinne, S.; Wong, J.; Chien, A.; Bergstrom, R.; Durkee, P.; Hobbs, P. V.

    2000-01-01

    The Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) measured a variety of aerosol radiative effects (including flux changes) while simultaneously measuring the chemical, physical, and optical properties of the responsible aerosol particles. Here we use TARFOX-determined aerosol and surface properties to compute shortwave radiative flux changes for a variety of aerosol situations, with midvisible optical depths ranging from 0.06 to 0.55. We calculate flux changes by several techniques with varying degrees of sophistication, in part to investigate the sensitivity of results to computational approach. We then compare computed flux changes to those determined from aircraft measurements. Calculations using several approaches yield downward and upward flux changes that agree with measurements. The agreement demonstrates closure (i.e. consistency) among the TARFOX-derived aerosol properties, modeling techniques, and radiative flux measurements. Agreement between calculated and measured downward flux changes is best when the aerosols are modeled as moderately absorbing (midvisible single-scattering albedos between about 0.89 and 0.93), in accord with independent measurements of the TARPOX aerosol. The calculated values for instantaneous daytime upwelling flux changes are in the range +14 to +48 W/sq m for midvisible optical depths between 0.2 and 0.55. These values are about 30 to 100 times the global-average direct forcing expected for the global-average sulfate aerosol optical depth of 0.04. The reasons for the larger flux changes in TARFOX include the relatively large optical depths and the focus on cloud-free, daytime conditions over the dark ocean surface. These are the conditions that produce major aerosol radiative forcing events and contribute to any global-average climate effect.

  17. Adaptive DOF for plenoptic cameras

    NASA Astrophysics Data System (ADS)

    Oberdörster, Alexander; Lensch, Hendrik P. A.

    2013-03-01

    Plenoptic cameras promise to provide arbitrary re-focusing through a scene after the capture. In practice, however, the refocusing range is limited by the depth of field (DOF) of the plenoptic camera. For the focused plenoptic camera, this range is given by the range of object distances for which the microimages are in focus. We propose a technique of recording light fields with an adaptive depth of focus. Between multiple exposures { or multiple recordings of the light field { the distance between the microlens array (MLA) and the image sensor is adjusted. The depth and quality of focus is chosen by changing the number of exposures and the spacing of the MLA movements. In contrast to traditional cameras, extending the DOF does not necessarily lead to an all-in-focus image. Instead, the refocus range is extended. There is full creative control about the focus depth; images with shallow or selective focus can be generated.

  18. Source Biases in Magnetotelluric Transfer Functions due to Pc3/Pc4 ( 10-100s) Geomagnetic Activity at Mid-Latitudes

    NASA Astrophysics Data System (ADS)

    Murphy, B. S.; Egbert, G. D.

    2017-12-01

    Discussion of possible bias in magnetotelluric (MT) transfer functions due to the finite spatial scale of external source fields has largely focused on long periods (>1000 s), where skin depths are large, and high latitudes (>60° N), where sources are dominated by narrow electrojets. However, a significant fraction ( 15%) of the 1000 EarthScope USArray apparent resistivity and phase curves exhibit nonphysical "humps" over a narrow period range (typically between 25-60 s) that are suggestive of narrow-band source effects. Maps of locations in the US where these biases are seen support this conclusion: they mostly occur in places where the Earth is highly resistive, such as cratonic regions, where skin depths are largest and hence where susceptibility to bias from short-wavelength sources would be greatest. We have analyzed EarthScope MT time series using cross-phase techniques developed in the space physics community to measure the period of local field line resonances associated with geomagnetic pulsations (Pc's). In most cases the biases occur near the periods of field line resonance determined from this analysis, suggesting that at mid-latitude ( 30°-50° N) Pc's can bias the time-averaged MT transfer functions. Because Pc's have short meridional wavelengths (hundreds of km), even at these relatively short periods the plane-wave assumption of the MT technique may be violated, at least in resistive domains with large skin depths. It is unclear if these biases (generally small) are problematic for MT data inversion, but their presence in the transfer functions is already a useful zeroth-order indicator of resistive regions of the Earth.

  19. The impact of flow focusing on gas hydrate accumulations in overpressured marine sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nole, Michael; Daigle, Hugh; Cook, Ann

    This study demonstrates the potential for flow focusing due to overpressuring in marine sedimentary environments to act as a significant methane transport mechanism from which methane hydrate can precipitate in large quantities in dipping sandstone bodies. Traditionally, gas hydrate accumulations in nature are discussed as resulting from either short-range diffusive methane migration or from long-range advective fluid transport sourced from depth. However, 3D simulations performed in this study demonstrate that a third migration mechanism, short-range advective transport, can provide a significant methane source that is unencumbered by limitations of the other two end-member mechanisms. Short-range advective sourcing is advantageous overmore » diffusion because it can convey greater amounts of methane to sands over shorter timespans, yet it is not necessarily limited by down-dip pore blocking in sands as is typical of updip advection from a deep source. These results are novel because they integrate pore size impacts on spatial solubility gradients, grid block properties that evolve through time, and methane sourcing through microbial methanogenesis into a holistic characterization of environments exposed to multiple methane hydrate sourcing mechanisms. We show that flow focusing toward sand bodies transports large quantities of methane, the magnitude of which are determined by the sand-clay solubility contrast, and generates larger quantities of hydrate in sands than a solely diffusive system; after depositing methane as hydrate, fluid exiting a sand body is depleted in methane and leaves a hydrate free region in its wake above the sand. Additionally, we demonstrate that in overpressured environments, hydrate growth is initially diffusively dominated before transitioning to an advection-dominated regime. The timescale and depth at which this transition takes place depends primarily on the rate of microbial metabolism and the sedimentation rate but only depends loosely on the degree of overpressuring.« less

  20. Effects of currents and tides on fine-scale use of marine bird habitats in a Southeast Alaska hotspot

    USGS Publications Warehouse

    Drew, Gary S.; Piatt, John F.; Hill, David J.

    2013-01-01

    Areas with high species richness have become focal points in the establishment of marine protected areas, but an understanding of the factors that support this diversity is still incomplete. In coastal areas, tidal currents—modulated by bathymetry and manifested in variable speeds—are a dominant physical feature of the environment. However, difficulties resolving tidally affected currents and depths at fine spatial-temporal scales have limited our ability to understand their influence the distribution of marine birds. We used a hydrographic model of the water mass in Glacier Bay, Alaska to link depths and current velocities with the locations of 15 common marine bird species observed during fine-scale boat-based surveys of the bay conducted during June of four consecutive years (2000-2003). Marine birds that forage on the bottom tended to occupy shallow habitats with slow-moving currents; mid-water foragers used habitats with intermediate depths and current speeds; and surface-foraging species tended to use habitats with fast-moving, deep waters. Within foraging groups there was variability among species in their use of habitats. While species obligated to foraging near bottom were constrained to use similar types of habitat, species in the mid-water foraging group were associated with a wider range of marine habitat characteristics. Species also showed varying levels of site use depending on tide stage. The dramatic variability in bottom topography—especially the presence of numerous sills, islands, headlands and channels—and large tidal ranges in Glacier Bay create a wide range of current-affected fine-scale foraging habitats that may contribute to the high diversity of marine bird species found there.

  1. Expansion-based passive ranging

    NASA Technical Reports Server (NTRS)

    Barniv, Yair

    1993-01-01

    A new technique of passive ranging which is based on utilizing the image-plane expansion experienced by every object as its distance from the sensor decreases is described. This technique belongs in the feature/object-based family. The motion and shape of a small window, assumed to be fully contained inside the boundaries of some object, is approximated by an affine transformation. The parameters of the transformation matrix are derived by initially comparing successive images, and progressively increasing the image time separation so as to achieve much larger triangulation baseline than currently possible. Depth is directly derived from the expansion part of the transformation. To a first approximation, image-plane expansion is independent of image-plane location with respect to the focus of expansion (FOE) and of platform maneuvers. Thus, an expansion-based method has the potential of providing a reliable range in the difficult image area around the FOE. In areas far from the FOE the shift parameters of the affine transformation can provide more accurate depth information than the expansion alone, and can thus be used similarly to the way they were used in conjunction with the Inertial Navigation Unit (INU) and Kalman filtering. However, the performance of a shift-based algorithm, when the shifts are derived from the affine transformation, would be much improved compared to current algorithms because the shifts - as well as the other parameters - can be obtained between widely separated images. Thus, the main advantage of this new approach is that, allowing the tracked window to expand and rotate, in addition to moving laterally, enables one to correlate images over a very long time span which, in turn, translates into a large spatial baseline - resulting in a proportionately higher depth accuracy.

  2. Expansion-based passive ranging

    NASA Technical Reports Server (NTRS)

    Barniv, Yair

    1993-01-01

    This paper describes a new technique of passive ranging which is based on utilizing the image-plane expansion experienced by every object as its distance from the sensor decreases. This technique belongs in the feature/object-based family. The motion and shape of a small window, assumed to be fully contained inside the boundaries of some object, is approximated by an affine transformation. The parameters of the transformation matrix are derived by initially comparing successive images, and progressively increasing the image time separation so as to achieve much larger triangulation baseline than currently possible. Depth is directly derived from the expansion part of the transformation. To a first approximation, image-plane expansion is independent of image-plane location with respect to the focus of expansion (FOE) and of platform maneuvers. Thus, an expansion-based method has the potential of providing a reliable range in the difficult image area around the FOE. In areas far from the FOE the shift parameters of the affine transformation can provide more accurate depth information than the expansion alone, and can thus be used similarly to the way they have been used in conjunction with the Inertial Navigation Unit (INU) and Kalman filtering. However, the performance of a shift-based algorithm, when the shifts are derived from the affine transformation, would be much improved compared to current algorithms because the shifts--as well as the other parameters--can be obtained between widely separated images. Thus, the main advantage of this new approach is that, allowing the tracked window to expand and rotate, in addition to moving laterally, enables one to correlate images over a very long time span which, in turn, translates into a large spatial baseline resulting in a proportionately higher depth accuracy.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKee, E.H.

    Ground water flow through the region south and west of Frenchman Flat, in the Ash Meadows subbasin of the Death Valley ground water flow system, is controlled mostly by the distribution of permeable and impermeable rocks. Geologic structures such as faults are instrumental in arranging the distribution of the aquifer and aquitard rock units. Most permeability is in fractures caused by faulting in carbonate rocks. Large faults are more likely to reach the potentiometric surface about 325 meters below the ground surface and are more likely to effect the flow path than small faults. Thus field work concentrated on identifyingmore » large faults, especially where they cut carbonate rocks. Small faults, however, may develop as much permeability as large faults. Faults that are penetrative and are part of an anastomosing fault zone are particularly important. The overall pattern of faults and joints at the ground surface in the Spotted and Specter Ranges is an indication of the fracture system at the depth of the water table. Most of the faults in these ranges are west-southwest-striking, high-angle faults, 100 to 3500 meters long, with 10 to 300 /meters of displacement. Many of them, such as those in the Spotted Range and Rock Valley are left-lateral strike-slip faults that are conjugate to the NW-striking right-lateral faults of the Las Vegas Valley shear zone. These faults control the ground water flow path, which runs west-southwest beneath the Spotted Range, Mercury Valley and the Specter Range. The Specter Range thrust is a significant geologic structure with respect to ground water flow. This regional thrust fault emplaces siliceous clastic strata into the north central and western parts of the Specter Range.« less

  4. Changes in dive profiles as an indicator of feeding success in king and Adélie penguins

    NASA Astrophysics Data System (ADS)

    Bost, C. A.; Handrich, Y.; Butler, P. J.; Fahlman, A.; Halsey, L. G.; Woakes, A. J.; Ropert-Coudert, Y.

    2007-02-01

    Determining when and how deep avian divers feed remains a challenge despite technical advances. Systems that record oesophageal temperature are able to determine rate of prey ingestion with a high level of accuracy but technical problems still remain to be solved. Here we examine the validity of using changes in depth profiles to infer feeding activity in free-ranging penguins, as more accessible proxies of their feeding success. We used oesophageal temperature loggers with fast temperature sensors, deployed in tandem with time-depth recorders, on king and Adélie penguins. In the king penguin, a high correspondence was found between the number of ingestions recorded per dive and the number of wiggles during the bottom and the ascent part of the dives. In the Adélie penguins, which feed on smaller prey, the number of large temperature drops was linearly related to the number of undulations per dive. The analysis of change in depth profiles from high-resolution time-depth recorders can provide key information to enhance the study of feeding rate and foraging success of these predators. Such potential is especially relevant in the context of using Southern marine top predators to study change in availability of marine resources.

  5. Crustal shortening followed by extensional collapse of the Cordilleran orogenic belt in northwestern Montana: Evidence from vintage seismic reflection profiles acquired in the Swan Range and Swan Valley

    NASA Astrophysics Data System (ADS)

    Rutherford, B. S.; Speece, M. A.; Stickney, M. C.; Mosolf, J. G.

    2013-12-01

    Reprocessing of one 24-fold (96 channel) and four 30-fold (120 channel) 2D seismic reflection profiles have revealed crustal scale reflections in the Swan Range and adjacent Swan River Valley of northwestern Montana. The five reprocessed profiles constitute 142.6 of the 303.3 linear km acquired in 1983-84 by Techo of Denver, Colorado. The four 30-fold profiles used helicopter-assisted dynamite shooting (Poulter method) and the 24-fold profile used the Vibroseis method. Acquisition parameters were state of the art for the time. The Swan Range lies east of the Rocky Mountain Trench and is part of the Cordilleran foreland thrust belt where the Lewis thrust system emplaced a thick slab of Proterozoic Belt Supergroup strata eastward and over Paleozoic and Mesozoic rocks during the Late Cretaceous to early Paleocene Laramide orogeny. Deeply drilled borehole data are absent within the study area; however, we generated a synthetic seismogram from the Arco-Marathon 1 Paul Gibbs well (total depth=5418 m), located approximately 70 km west of the reprocessed profiles, and correlated the well data to surface seismic profiles. Large impedance contrasts in the log data are interpreted to be tholeiitic Moyie sills within the Prichard Formation argillite (Lower Belt), which produce strong reflection events in regional seismic sections and result in highly reflective, east-dipping events in the reprocessed profiles. We estimate a depth of 10 km (3 to 3.5 seconds) to the basal detachment of the Lewis thrust sheet. The décollement lies within Belt Supergroup strata to the west of the Swan River Valley before contacting unreflective, west-dipping crystalline basement beneath the Swan Range--a geometry that results in a wedge of eastward-thinning, autochthonous Belt rocks. Distinct fault-plane signatures from the west-dipping, range-bounding Swan fault--produced by extensional collapse of the over-thickened Cordillera--are not successfully imaged. However, reflections from Cenozoic half-graben fill suggest up to 1.5 km of Cenozoic basin filling sediments are present. Refraction tomography velocity modeling of distinct refracted arrivals, prevalent in the gathers, constrain a half-graben geometry for the Swan Valley. Signal attenuation within the low-velocity valley fill make correlation of reflectors at the depth of the décollement impossible underneath the Swan Valley. Prestack depth migration of the sections is anticipated to improve geometric constraints on major structural features of the Swan Range and Swan Valley.

  6. Velocity Model Analysis Based on Integrated Well and Seismic Data of East Java Basin

    NASA Astrophysics Data System (ADS)

    Mubin, Fathul; Widya, Aviandy; Eka Nurcahya, Budi; Nurul Mahmudah, Erma; Purwaman, Indro; Radityo, Aryo; Shirly, Agung; Nurwani, Citra

    2018-03-01

    Time to depth conversion is an important processof seismic interpretationtoidentify hydrocarbonprospectivity. Main objectives of this research are to minimize the risk of error in geometry and time to depth conversion. Since it’s using a large amount of data and had been doing in the large scale of research areas, this research can be classified as a regional scale research. The research was focused on three horizons time interpretation: Top Kujung I, Top Ngimbang and Basement which located in the offshore and onshore areas of east Java basin. These three horizons was selected because they were assumed to be equivalent to the rock formation, which is it has always been the main objective of oil and gas exploration in the East Java Basin. As additional value, there was no previous works on velocity modeling for regional scale using geological parameters in East Java basin. Lithology and interval thickness were identified as geological factors that effected the velocity distribution in East Java Basin. Therefore, a three layer geological model was generated, which was defined by the type of lithology; carbonate (layer 1: Top Kujung I), shale (layer 2: Top Ngimbang) and Basement. A statistical method using three horizons is able to predict the velocity distribution on sparse well data in a regional scale. The average velocity range for Top Kujung I is 400 m/s - 6000 m/s, Top Ngimbang is 500 m/s - 8200 m/s and Basement is 600 m/s - 8000 m/s. Some velocity anomalies found in Madura sub-basin area, caused by geological factor which identified as thick shale deposit and high density values on shale. Result of velocity and depth modeling analysis can be used to define the volume range deterministically and to make geological models to prospect generation in details by geological concept.

  7. Particulate organic carbon export across the Antarctic Circumpolar Current at 10°E: Differences between north and south of the Antarctic Polar Front

    NASA Astrophysics Data System (ADS)

    Puigcorbé, Viena; Roca-Martí, Montserrat; Masqué, Pere; Benitez-Nelson, Claudia R.; Rutgers v. d. Loeff, Michiel; Laglera, Luis M.; Bracher, Astrid; Cheah, Wee; Strass, Volker H.; Hoppema, Mario; Santos-Echeandía, Juan; Hunt, Brian P. V.; Pakhomov, Evgeny A.; Klaas, Christine

    2017-04-01

    The vertical distribution of 234Th was measured along the 10°E meridian between 44°S and 53°S in the Antarctic Circumpolar Current (ACC) during the austral summer of 2012. The overarching goal of this work was to estimate particulate organic carbon (POC) export across three fronts: the Sub-Antarctic Front (SAF), the Antarctic Polar Front (APF) and the Southern Polar Front (SPF). Steady state export fluxes of 234Th in the upper 100 m ranged from 1600 to 2600 dpm m-2 d-1, decreasing with increasing latitude. Using large particle (>53 μm) C/234Th ratios, the 234Th-derived POC fluxes at 100 m ranged from 25 to 41 mmol C m-2 d-1. Observed C/234Th ratios decreased with increasing depth north of the APF while south of the APF, ratios remained similar or even increased with depth. These changes in C/234Th ratios are likely due to differences in the food web. Indeed, satellite images, together with macronutrients and dissolved iron concentrations suggest two different planktonic community structures north and south of the APF. Our results indicate that higher ratios of POC flux at 100 m to primary production occurred in nanophytoplankton dominated surface waters, where primary production rates were lower. Satellite images prior to the expedition suggest that the higher export efficiencies obtained in the northern half of the transect may be the result of the decoupling between production and export (Buesseler 1998). Transfer efficiencies to 400 m, i.e. the fraction of exported POC that reached 400 m, were found to be higher south of the APF, where diatoms were dominant and salps largely abundant. This suggests different remineralization pathways of sinking particles, influencing the transfer efficiency of exported POC to depth.

  8. Capability assessment and challenges for quantum technology gravity sensors for near surface terrestrial geophysical surveying

    NASA Astrophysics Data System (ADS)

    Boddice, Daniel; Metje, Nicole; Tuckwell, George

    2017-11-01

    Geophysical surveying is widely used for the location of subsurface features. Current technology is limited in terms of its resolution (thus size of features it can detect) and penetration depth and a suitable technique is needed to bridge the gap between shallow near surface investigation using techniques such as EM conductivity mapping and GPR commonly used to map the upper 5 m below ground surface, and large features at greater depths detectable using conventional microgravity (> 5 m below ground surface). This will minimise the risks from unknown features buried in and conditions of the ground during civil engineering work. Quantum technology (QT) gravity sensors potentially offer a step-change in technology for locating features which lie outside of the currently detectable range in terms of size and depth, but that potential is currently unknown as field instruments have not been developed. To overcome this, a novel computer simulation was developed for a large range of different targets of interest. The simulation included realistic noise modelling of instrumental, environmental and location sources of noise which limit the accuracy of current microgravity measurements, in order to assess the potential capability of the new QT instruments in realistic situations and determine some of the likely limitations on their implementation. The results of the simulations for near surface features showed that the new technology is best employed in a gradiometer configuration as opposed to the traditional single sensor gravimeter used by current instruments due to the ability to suppress vibrational environmental noise effects due to common mode rejection between the sensors. A significant improvement in detection capability of 1.5-2 times was observed, putting targets such as mineshafts into the detectability zone which would be a major advantage for subsurface surveying. Thus this research, for the first time, has demonstrated clearly the benefits of QT gravity gradiometer sensors thereby increasing industry's confidence in this new technology.

  9. The maximum economic depth of groundwater abstraction for irrigation

    NASA Astrophysics Data System (ADS)

    Bierkens, M. F.; Van Beek, L. P.; de Graaf, I. E. M.; Gleeson, T. P.

    2017-12-01

    Over recent decades, groundwater has become increasingly important for agriculture. Irrigation accounts for 40% of the global food production and its importance is expected to grow further in the near future. Already, about 70% of the globally abstracted water is used for irrigation, and nearly half of that is pumped groundwater. In many irrigated areas where groundwater is the primary source of irrigation water, groundwater abstraction is larger than recharge and we see massive groundwater head decline in these areas. An important question then is: to what maximum depth can groundwater be pumped for it to be still economically recoverable? The objective of this study is therefore to create a global map of the maximum depth of economically recoverable groundwater when used for irrigation. The maximum economic depth is the maximum depth at which revenues are still larger than pumping costs or the maximum depth at which initial investments become too large compared to yearly revenues. To this end we set up a simple economic model where costs of well drilling and the energy costs of pumping, which are a function of well depth and static head depth respectively, are compared with the revenues obtained for the irrigated crops. Parameters for the cost sub-model are obtained from several US-based studies and applied to other countries based on GDP/capita as an index of labour costs. The revenue sub-model is based on gross irrigation water demand calculated with a global hydrological and water resources model, areal coverage of crop types from MIRCA2000 and FAO-based statistics on crop yield and market price. We applied our method to irrigated areas in the world overlying productive aquifers. Estimated maximum economic depths range between 50 and 500 m. Most important factors explaining the maximum economic depth are the dominant crop type in the area and whether or not initial investments in well infrastructure are limiting. In subsequent research, our estimates of maximum economic depth will be combined with estimates of groundwater depth and storage coefficients to estimate economically attainable groundwater volumes worldwide.

  10. Ab initio Potential Energy Surface for H-H2

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- (mu)E(sub h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(sub 0) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  11. Evidence for Coseismic Rupture Beyond the Base of the Seismogenic Layer

    NASA Astrophysics Data System (ADS)

    Zielke, O.; Wesnousky, S.

    2010-12-01

    For scientific reasons and hazard assessment it is important to better understand the physics and rupture characteristics of large, destructive earthquakes. However, those events occur infrequently, severely obstructing their analysis. Smaller but more frequent earthquakes are usually studied and their characteristics are extrapolated to assess large earthquake behavior, assuming that small and large events are associated with the same physical processes and parameters. For small and moderate size earthquakes it was observed and independently derived from elastic models that coseismic stress drop is independent of earthquake size and that slip is proportional to the smallest rupture dimension. It is therefore assumed that large earthquake stress drops are essentially equal to the stress drop of their smaller size siblings. It is further assumed that the slip amount of large events does not further increase once it ruptures the full seismogenic layer--the base of the seismogenic layer is commonly thought to limit the earthquake down-dip rupture extend and thus defines the smallest rupture dimension. However, slip observations for many large strike-slip events show how offset gradually increases with rupture length. Two explanations have been formulated: If the rupture width of those events were indeed limited by the base of the seismogenic layer, the observations would imply larger stress drops and possibly other processes involved in large earthquake rupture, questioning the validity of the aforementioned extrapolation from small to large earthquakes. On the other hand, if rupture width of large earthquakes were not limited by the base of the seismogenic layer but were allowed to extend further down (as suggested by recent studies), the increased slip amount may be explained without an increase in stress drop or additional rupture mechanisms for large earthquakes. For the study we present here, we analyzed seismic data constraining the depth extent of large earthquakes relative to the depth of the seismogenic base. We utilized time series data of aftershock depths for a number of large strike-slip earthquakes, generating aftershock time vs. depth histograms to investigate the temporal variation in depth distribution. Based on hypocenter depth of small earthquakes along the Landers fault (causing the 1992 M7.3 Landers earthquake), we identified the base of the seismogenic layer at ~10km. Aftershocks that occurred only days after the Landers earthquake had maximum depths of ~18km, suggesting that rupture of the main shock extended this far down and therefore went well below the base of the seismogenic layer. Maximum aftershock depth then decayed roughly logarithmically, reaching the previous value of ~10km after about 5.5years. We argue that these observations are a logical consequence of the visco-elastic rheology of crustal rocks: Coseismically highly increased strains elevate the crustal stiffness, temporarily lowering the base of the seismogenic layer and permitting initiation of slip instabilities at depths that are otherwise characterized by viscous behavior. Extrapolation from small to large earthquakes is therefore permitted. No additional stress drop or rupture mechanism is required to explain the data.

  12. Level II scour analysis for Bridge 32 (CONCTH00030032) on Town Highway 3, crossing the Moose River, Concord, Vermont

    USGS Publications Warehouse

    Olson, Scott A.

    1996-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 0.7 ft. Abutment scour ranged from 9.9 to 16.4 ft. Pier scour ranged from 14.4 to 16.2 ft. The worst-case contraction, abutment, and pier scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  13. Two-dimensional basement modeling of central loop transient electromagnetic data from the central Azraq basin area, Jordan

    NASA Astrophysics Data System (ADS)

    Yogeshwar, P.; Tezkan, B.

    2017-01-01

    Thick sedimentary sequences are deposited in the central area of the Azraq basin in Jordan consisting mostly of hyper-saline clay and various evaporates. These sediment successions form the 10 km × 10 km large Azraq mudflat and are promising archives for a palaeoclimatical reconstruction. Besides palaeoclimatical research, the Azraq area is of tremendous importance to Jordan due to groundwater and mineral resources. The heavy exploitation of groundwater has lead to a drastic decline of the water table and drying out of the former Azraq Oasis. Two 7 and 5 km long transects were investigated from the periphery of the mudflat across its center using a total of 150 central loop transient electromagnetic (TEM) soundings. The scope of the survey was to detect the thickness of sedimentary deposits along both transects and to provide a basis for future drilling activities. We derive a two-dimensional model which can explain the TEM data for all soundings along each profile simultaneously. Previously uncertain depths of geological boundaries were determined along both transects. Particularly the thickness of the deposited mudflat sediments was identified and ranges from 40 m towards the periphery down to approximately 130 m at the deepest location. Besides that, the depth and lateral extent of a buried basalt layer was identified. In the basin center the groundwater is hyper-saline. The lateral extent of the saline water body was determined precisely along both transects. In order to investigate the detectability of the basement below the high conductive mudflat sediments an elaborate two-dimensional modeling study was performed. Both, the resistivity and depth of the basement were varied systematically. The basement resistivity cannot be determined precisely in most zones and may range roughly between 1 and 100 Ωm without deteriorating the misfit. In contrast to that, the depth down to the basement is detected accurately in most zones and along both transects. Varying the depth of the basement or removing it completely results in a poor data fitting and, therefore, proves its significance. From the modeling study we derived bounds for the resistivity and depth of the base layer as a measure of their uncertainty.

  14. Measuring the influence of aerosols and albedo on sky polarization.

    PubMed

    Kreuter, A; Emde, C; Blumthaler, M

    2010-11-01

    All-sky distributions of the polarized radiance are measured using an automated fish-eye camera system with a rotating polarizer. For a large range of aerosol and surface albedo situations, the influence on the degree of polarization and sky radiance is investigated. The range of aerosol optical depth and albedo is 0.05-0.5 and 0.1-0.75, respectively. For this range of parameters, a reduction of the degree of polarization from about 0.7 to 0.4 was observed. The analysis is done for 90° scattering angle in the principal plane under clear sky conditions for a broadband channel of 450 ± 25 nm and solar zenith angles between 55° and 60°. Radiative transfer calculations considering three different aerosol mixtures are performed and and agree with the measurements within the statistical error.

  15. Repeated Earthquakes in the Vrancea Subcrustal Source and Source Scaling

    NASA Astrophysics Data System (ADS)

    Popescu, Emilia; Otilia Placinta, Anica; Borleasnu, Felix; Radulian, Mircea

    2017-12-01

    The Vrancea seismic nest, located at the South-Eastern Carpathians Arc bend, in Romania, is a well-confined cluster of seismicity at intermediate depth (60 - 180 km). During the last 100 years four major shocks were recorded in the lithosphere body descending almost vertically beneath the Vrancea region: 10 November 1940 (Mw 7.7, depth 150 km), 4 March 1977 (Mw 7.4, depth 94 km), 30 August 1986 (Mw 7.1, depth 131 km) and a double shock on 30 and 31 May 1990 (Mw 6.9, depth 91 km and Mw 6.4, depth 87 km, respectively). The probability of repeated earthquakes in the Vrancea seismogenic volume is relatively large taking into account the high density of foci. The purpose of the present paper is to investigate source parameters and clustering properties for the repetitive earthquakes (located close each other) recorded in the Vrancea seismogenic subcrustal region. To this aim, we selected a set of earthquakes as templates for different co-located groups of events covering the entire depth range of active seismicity. For the identified clusters of repetitive earthquakes, we applied spectral ratios technique and empirical Green’s function deconvolution, in order to constrain as much as possible source parameters. Seismicity patterns of repeated earthquakes in space, time and size are investigated in order to detect potential interconnections with larger events. Specific scaling properties are analyzed as well. The present analysis represents a first attempt to provide a strategy for detecting and monitoring possible interconnections between different nodes of seismic activity and their role in modelling tectonic processes responsible for generating the major earthquakes in the Vrancea subcrustal seismogenic source.

  16. RAPID DETERMINATION OF FOCAL DEPTH USING A GLOBAL NETWORK OF SMALL-APERTURE SEISMIC ARRAYS

    NASA Astrophysics Data System (ADS)

    Seats, K.; Koper, K.; Benz, H.

    2009-12-01

    The National Earthquake Information Center (NEIC) of the United States Geological Survey (USGS) operates 24 hours a day, 365 days a year with the mission of locating and characterizing seismic events around the world. A key component of this task is quickly determining the focal depth of each seismic event, which has a first-order effect on estimates of ground shaking used in the impact assessment applications of emergency response activities. Current methods of depth estimation used at the NEIC include arrival time inversion both with and without depth phases, a Bayesian depth constraint based on historical seismicity (1973-present), and moment tensor inversion primarily using P- and S-wave waveforms. In this study, we explore the possibility of automated modeling of waveforms from vertical-component arrays of the International Monitoring System (IMS) to improve rapid depth estimation at NEIC. Because these arrays are small-aperture, they are effective at increasing signal to noise ratios for frequencies of 1 Hz and higher. Currently, NEIC receives continuous real-time data from 23 IMS arrays. Following work done by previous researchers, we developed a technique that acts as an array of arrays. For a given epicentral location we calculate fourth root beams for each IMS array in the distance range of 30 to 95 degrees at the expected slowness vector of the first arrival. Because the IMS arrays are small-aperture, these beams highlight energy that has slowness similar to the first arrival, such as depth phases. The beams are rectified by taking the envelope and then automatically aligned on the largest peak within 5 seconds of the expected arrival time. The station beams are then combined into network beams assuming a range of depths varying from 10 km to 700 km in increments of 1 km. The network beams are computed assuming both pP and sP propagation, and a measure of beam power is output as a function of depth for both propagation models, as well as their sum. We validated this approach using several hundred seismic events in the magnitude range 4.5-6.5 mb that occurred in 2008 and 2009. In most cases, clear spikes in the network beam power existed at depths around those estimated by the NEIC using traditional location procedures. However, in most cases there was also a bimodality in the network beam power because of the ambiguity between assuming pP or sP propagation for later arriving energy. There were only a handful of cases in which a seismic event generated both sP and pP phases with sizes large enough to resolve the ambiguity. We are currently working to include PKP arrivals into the network beams and experimenting with various tuning parameters to improve the efficiency of the algorithm. This promising approach will allow NEIC to significantly and systematically improve the quality of hypocentral locations reported in the PDE and provide NEIC with additional valuable information on seismic source parameters needed in emergency response applications.

  17. A compact large-format streak tube for imaging lidar

    NASA Astrophysics Data System (ADS)

    Hui, Dandan; Luo, Duan; Tian, Liping; Lu, Yu; Chen, Ping; Wang, Junfeng; Sai, Xiaofeng; Wen, Wenlong; Wang, Xing; Xin, Liwei; Zhao, Wei; Tian, Jinshou

    2018-04-01

    The streak tubes with a large effective photocathode area, large effective phosphor screen area, and high photocathode radiant sensitivity are essential for improving the field of view, depth of field, and detectable range of the multiple-slit streak tube imaging lidar. In this paper, a high spatial resolution, large photocathode area, and compact meshless streak tube with a spherically curved cathode and screen is designed and tested. Its spatial resolution reaches 20 lp/mm over the entire Φ28 mm photocathode working area, and the simulated physical temporal resolution is better than 30 ps. The temporal distortion in our large-format streak tube, which is shown to be a non-negligible factor, has a minimum value as the radius of curvature of the photocathode varies. Furthermore, the photocathode radiant sensitivity and radiant power gain reach 41 mA/W and 18.4 at the wavelength of 550 nm, respectively. Most importantly, the external dimensions of our streak tube are no more than Φ60 mm × 110 mm.

  18. Tunable negative-tap photonic microwave filter based on a cladding-mode coupler and an optically injected laser of large detuning.

    PubMed

    Chan, Sze-Chun; Liu, Qing; Wang, Zhu; Chiang, Kin Seng

    2011-06-20

    A tunable negative-tap photonic microwave filter using a cladding-mode coupler together with optical injection locking of large wavelength detuning is demonstrated. Continuous and precise tunability of the filter is realized by physically sliding a pair of bare fibers inside the cladding-mode coupler. Signal inversion for the negative tap is achieved by optical injection locking of a single-mode semiconductor laser. To couple light into and out of the cladding-mode coupler, a pair of matching long-period fiber gratings is employed. The large bandwidth of the gratings requires injection locking of an exceptionally large wavelength detuning that has never been demonstrated before. Experimentally, injection locking with wavelength detuning as large as 27 nm was achieved, which corresponded to locking the 36-th side mode. Microwave filtering with a free-spectral range tunable from 88.6 MHz to 1.57 GHz and a notch depth larger than 35 dB was obtained.

  19. Migration depth and residence time of juvenile salmonids in the forebays of hydropower dams prior to passage through turbines or juvenile bypass systems: implications for turbine-passage survival.

    PubMed

    Li, Xinya; Deng, Zhiqun D; Brown, Richard S; Fu, Tao; Martinez, Jayson J; McMichael, Geoffrey A; Skalski, John R; Townsend, Richard L; Trumbo, Bradly A; Ahmann, Martin L; Renholds, Jon F

    2015-01-01

    Little is known about the three-dimensional depth distributions in rivers of individually marked fish that are in close proximity to hydropower facilities. Knowledge of the depth distributions of fish approaching dams can be used to understand how vulnerable fish are to injuries such as barotrauma as they pass through dams. To predict the possibility of barotrauma injury caused by pressure changes during turbine passage, it is necessary to understand fish behaviour relative to acclimation depth in dam forebays as they approach turbines. A guiding study was conducted using high-resolution three-dimensional tracking results of salmonids implanted with Juvenile Salmon Acoustic Telemetry System transmitters to investigate the depth distributions of subyearling and yearling Chinook salmon (Oncorhynchus tshawytscha) and juvenile steelhead (Oncorhynchus mykiss) passing two dams on the Snake River in Washington State. Multiple approaches were evaluated to describe the depth at which fish were acclimated, and statistical analyses were performed on large data sets extracted from ∼28 000 individually tagged fish during 2012 and 2013. Our study identified patterns of depth distributions of juvenile salmonids in forebays prior to passage through turbines or juvenile bypass systems. This research indicates that the median depth at which juvenile salmonids approached turbines ranged from 2.8 to 12.2 m, with the depths varying by species/life history, year, location (which dam) and diel period (between day and night). One of the most enlightening findings was the difference in dam passage associated with the diel period. The amount of time that turbine-passed fish spent in the immediate forebay prior to entering the powerhouse was much lower during the night than during the day. This research will allow scientists to understand turbine-passage survival better and enable them to assess more accurately the effects of dam passage on juvenile salmon survival.

  20. Changes in water clarity in response to river discharges on the Great Barrier Reef continental shelf: 2002-2013

    NASA Astrophysics Data System (ADS)

    Fabricius, K. E.; Logan, M.; Weeks, S. J.; Lewis, S. E.; Brodie, J.

    2016-05-01

    Water clarity is a key factor for the health of marine ecosystems. The Australian Great Barrier Reef (GBR) is located on a continental shelf, with >35 major seasonal rivers discharging into this 344,000 km2 tropical to subtropical ecosystem. This work investigates how river discharges affect water clarity in different zones along and across the GBR. For each day over 11 years (2002-2013) we calculated 'photic depth' as a proxy measure of water clarity (calibrated to be equivalent to Secchi depth), for each 1 km2 pixel from MODIS-Aqua remote sensing data. Long-term and seasonal changes in photic depth were related to the daily discharge volumes of the nearest rivers, after statistically removing the effects of waves and tides on photic depth. The relationships between photic depths and rivers differed across and along the GBR. They typically declined from the coastal to offshore zones, and were strongest in proximity to rivers in agriculturally modified catchments. In most southern inner zones, photic depth declined consistently throughout the 11-year observation period; such long-term trend was not observed offshore nor in the northern regions. Averaged across the GBR, photic depths declined to 47% of local maximum values soon after the onset of river floods, and recovery to 95% of maximum values took on average 6 months (range: 150-260 days). The river effects were strongest at latitude 14.5°-19.0°S, where river loads are high and the continental shelf is narrow. Here, even offshore zones showed a >40% seasonal decline in photic depth, and 17-24% reductions in annual mean photic depth in years with large river nutrients and sediment loads. Our methodology is based on freely available data and tools and may be applied to other shelf systems, providing valuable insights in support of ecosystem management.

  1. Migration depth and residence time of juvenile salmonids in the forebays of hydropower dams prior to passage through turbines or juvenile bypass systems: implications for turbine-passage survival

    PubMed Central

    Li, Xinya; Deng, Zhiqun D.; Brown, Richard S.; Fu, Tao; Martinez, Jayson J.; McMichael, Geoffrey A.; Skalski, John R.; Townsend, Richard L.; Trumbo, Bradly A.; Ahmann, Martin L.; Renholds, Jon F.

    2015-01-01

    Little is known about the three-dimensional depth distributions in rivers of individually marked fish that are in close proximity to hydropower facilities. Knowledge of the depth distributions of fish approaching dams can be used to understand how vulnerable fish are to injuries such as barotrauma as they pass through dams. To predict the possibility of barotrauma injury caused by pressure changes during turbine passage, it is necessary to understand fish behaviour relative to acclimation depth in dam forebays as they approach turbines. A guiding study was conducted using high-resolution three-dimensional tracking results of salmonids implanted with Juvenile Salmon Acoustic Telemetry System transmitters to investigate the depth distributions of subyearling and yearling Chinook salmon (Oncorhynchus tshawytscha) and juvenile steelhead (Oncorhynchus mykiss) passing two dams on the Snake River in Washington State. Multiple approaches were evaluated to describe the depth at which fish were acclimated, and statistical analyses were performed on large data sets extracted from ∼28 000 individually tagged fish during 2012 and 2013. Our study identified patterns of depth distributions of juvenile salmonids in forebays prior to passage through turbines or juvenile bypass systems. This research indicates that the median depth at which juvenile salmonids approached turbines ranged from 2.8 to 12.2 m, with the depths varying by species/life history, year, location (which dam) and diel period (between day and night). One of the most enlightening findings was the difference in dam passage associated with the diel period. The amount of time that turbine-passed fish spent in the immediate forebay prior to entering the powerhouse was much lower during the night than during the day. This research will allow scientists to understand turbine-passage survival better and enable them to assess more accurately the effects of dam passage on juvenile salmon survival. PMID:27293685

  2. Deep permeability of the San Andreas Fault from San Andreas Fault Observatory at Depth (SAFOD) core samples

    USGS Publications Warehouse

    Morrow, Carolyn A.; Lockner, David A.; Moore, Diane E.; Hickman, Stephen H.

    2014-01-01

    The San Andreas Fault Observatory at Depth (SAFOD) scientific borehole near Parkfield, California crosses two actively creeping shear zones at a depth of 2.7 km. Core samples retrieved from these active strands consist of a foliated, Mg-clay-rich gouge containing porphyroclasts of serpentinite and sedimentary rock. The adjacent damage zone and country rocks are comprised of variably deformed, fine-grained sandstones, siltstones, and mudstones. We conducted laboratory tests to measure the permeability of representative samples from each structural unit at effective confining pressures, Pe up to the maximum estimated in situ Pe of 120 MPa. Permeability values of intact samples adjacent to the creeping strands ranged from 10−18 to 10−21 m2 at Pe = 10 MPa and decreased with applied confining pressure to 10−20–10−22 m2 at 120 MPa. Values for intact foliated gouge samples (10−21–6 × 10−23 m2 over the same pressure range) were distinctly lower than those for the surrounding rocks due to their fine-grained, clay-rich character. Permeability of both intact and crushed-and-sieved foliated gouge measured during shearing at Pe ≥ 70 MPa ranged from 2 to 4 × 10−22 m2 in the direction perpendicular to shearing and was largely insensitive to shear displacement out to a maximum displacement of 10 mm. The weak, actively-deforming foliated gouge zones have ultra-low permeability, making the active strands of the San Andreas Fault effective barriers to cross-fault fluid flow. The low matrix permeability of the San Andreas Fault creeping zones and adjacent rock combined with observations of abundant fractures in the core over a range of scales suggests that fluid flow outside of the actively-deforming gouge zones is probably fracture dominated.

  3. Enhancing swimming pool safety by the use of range-imaging cameras

    NASA Astrophysics Data System (ADS)

    Geerardyn, D.; Boulanger, S.; Kuijk, M.

    2015-05-01

    Drowning is the cause of death of 372.000 people, each year worldwide, according to the report of November 2014 of the World Health Organization.1 Currently, most swimming pools only use lifeguards to detect drowning people. In some modern swimming pools, camera-based detection systems are nowadays being integrated. However, these systems have to be mounted underwater, mostly as a replacement of the underwater lighting. In contrast, we are interested in range imaging cameras mounted on the ceiling of the swimming pool, allowing to distinguish swimmers at the surface from drowning people underwater, while keeping the large field-of-view and minimizing occlusions. However, we have to take into account that the water surface of a swimming pool is not a flat, but mostly rippled surface, and that the water is transparent for visible light, but less transparent for infrared or ultraviolet light. We investigated the use of different types of 3D cameras to detect objects underwater at different depths and with different amplitudes of surface perturbations. Specifically, we performed measurements with a commercial Time-of-Flight camera, a commercial structured-light depth camera and our own Time-of-Flight system. Our own system uses pulsed Time-of-Flight and emits light of 785 nm. The measured distances between the camera and the object are influenced through the perturbations on the water surface. Due to the timing of our Time-of-Flight camera, our system is theoretically able to minimize the influence of the reflections of a partially-reflecting surface. The combination of a post image-acquisition filter compensating for the perturbations and the use of a light source with shorter wavelengths to enlarge the depth range can improve the current commercial cameras. As a result, we can conclude that low-cost range imagers can increase swimming pool safety, by inserting a post-processing filter and the use of another light source.

  4. Nocturnality constrains morphological and functional diversity in the eyes of reef fishes.

    PubMed

    Schmitz, Lars; Wainwright, Peter C

    2011-11-19

    Ambient light levels are often considered to drive the evolution of eye form and function. Diel activity pattern is the main mechanism controlling the visual environment of teleost reef fish, with day-active (diurnal) fish active in well-illuminated conditions, whereas night-active (nocturnal) fish cope with dim light. Physiological optics predicts several specific evolutionary responses to dim-light vision that should be reflected in visual performance features of the eye. We analyzed a large comparative dataset on morphological traits of the eyes in 265 species of teleost reef fish in 43 different families. The eye morphology of nocturnal reef teleosts is characterized by a syndrome that indicates better light sensitivity, including large relative eye size, high optical ratio and large, rounded pupils. Improved dim-light image formation comes at the cost of reduced depth of focus and reduction of potential accommodative lens movement. Diurnal teleost reef fish, released from the stringent functional requirements of dim-light vision have much higher morphological and optical diversity than nocturnal species, with large ranges of optical ratio, depth of focus, and lens accommodation. Physical characteristics of the environment are an important factor in the evolution and diversification of the vertebrate eye. Both teleost reef fish and terrestrial amniotes meet the functional requirements of dim-light vision with a similar evolutionary response of morphological and optical modifications. The trade-off between improved dim-light vision and reduced optical diversity may be a key factor in explaining the lower trophic diversity of nocturnal reef teleosts.

  5. Distribution, abundance, and resting microhabitat of burbot on Julian's Reef, southwestern Lake Michigan

    USGS Publications Warehouse

    Edsall, Thomas A.; Kennedy, Gregory W.; Horns, William H.

    1993-01-01

    We used a remotely operated submersible vehicle equipped with a color video camera to videotape the lake bed and document the distribution and abundance of burbot Lota lota on a 156-hectare portion of Julian's Reef in southwestern Lake Michigan. The substrates and bathymetry of the study area had been mapped recently by side-scan sonar. Burbot density determined from videotapes covering 6,900 m2 of lake bed at depths of 23-41 m averaged 139 individuals/ hectare (range, 0-571/hectare). This density was substantially higher than the highest burbot density (59-95/hectare) reported in the literature. Burbot were present on the lake bed at depths of 23-36 m, but were most abundant near the crest of the reef at 23-28 m, where the water temperature was 8-13°C, their preferred summer temperature range. Substrates in that temperature range on the reef were bedrock, bedrock ridges, and bedrock and rubble. Burbot were most abundant on the bedrock and rubble. Small fish and macroinvertebrates typically eaten by burbot elsewhere in western Lake Michigan were distributed on the reef according to their summer preferred temperatures and were not seen in abundance where burbot density was highest. We saw no lake trout Salvelinus namaycush on Julian's Reef, although large numbers of juvenile lake trout have been stocked there annually and temperatures on the reef were in the preferred summer temperature range for lake trout.

  6. Distribution, abundance, and resting microhabitat of burbot on Julian's Reef, southwestern Lake Michigan

    USGS Publications Warehouse

    Edsall, Thomas A.; Kennedy, Gregory W.; Horns, William H.

    1993-01-01

    We used a remotely operated submersible vehicle equipped with a color video camera to videotape the lake bed and document the distribution and abundance of burbot Lota lotaon a 156-hectare portion of Julian's Reef in southwestern Lake Michigan. The substrates and bathymetry of the study area had been mapped recently by side-scan sonar. Burbot density determined from videotapes covering 6,900 m2 of lake bed at depths of 23–41 m averaged 139 individuals/ hectare (range, 0–571/hectare). This density was substantially higher than the highest burbot density (59–95/hectare) reported in the literature. Burbot were present on the lake bed at depths of 23–36 m, but were most abundant near the crest of the reef at 23–28 m, where the water temperature was 8–13°C, their preferred summer temperature range. Substrates in that temperature range on the reef were bedrock, bedrock ridges, and bedrock and rubble. Burbot were most abundant on the bedrock and rubble. Small fish and macroinvertebrates typically eaten by burbot elsewhere in western Lake Michigan were distributed on the reef according to their summer preferred temperatures and were not seen in abundance where burbot density was highest. We saw no lake trout Salvelinus namaycush on Julian's Reef, although large numbers of juvenile lake trout have been stocked there annually and temperatures on the reef were in the preferred summer temperature range for lake trout.

  7. A computational prediction for the effective drug and stem cell treatment of human airway burns.

    PubMed

    Park, Seungman

    2016-01-01

    Burns in the airway from inhaling hot gases lead to one of the most common causes of death in the United States. In order to navigate tissues with large burn areas, the velocity, temperature, and heat flux distributions throughout the human airway system are computed for the inhalation of hot air using the finite-element method. From there, the depth of burned tissue is estimated for a range of exposure times. Additionally, the effectiveness of drug or stem cell delivery to the burned airway tissue is considered for a range of drug or cell sizes. Results showed that the highest temperature and lowest heat flux regions are observed near the pharynx and just upstream of the glottis. It was found that large particles such as stem cells (>20 μm) are effective for treatment of the upper airways, whereas small particles (<10 μm) such as drug nanoparticles are effective in the lower airways.

  8. A flow resistance model for assessing the impact of vegetation on flood routing mechanics

    NASA Astrophysics Data System (ADS)

    Katul, Gabriel G.; Poggi, Davide; Ridolfi, Luca

    2011-08-01

    The specification of a flow resistance factor to account for vegetative effects in the Saint-Venant equation (SVE) remains uncertain and is a subject of active research in flood routing mechanics. Here, an analytical model for the flow resistance factor is proposed for submerged vegetation, where the water depth is commensurate with the canopy height and the roughness Reynolds number is sufficiently large so as to ignore viscous effects. The analytical model predicts that the resistance factor varies with three canonical length scales: the adjustment length scale that depends on the foliage drag and leaf area density, the canopy height, and the water level. These length scales can reasonably be inferred from a range of remote sensing products making the proposed flow resistance model eminently suitable for operational flood routing. Despite the numerous simplifications, agreement between measured and modeled resistance factors and bulk velocities is reasonable across a range of experimental and field studies. The proposed model asymptotically recovers the flow resistance formulation when the water depth greatly exceeds the canopy height. This analytical treatment provides a unifying framework that links the resistance factor to a number of concepts and length scales already in use to describe canopy turbulence. The implications of the coupling between the resistance factor and the water depth on solutions to the SVE are explored via a case study, which shows a reasonable match between empirical design standard and theoretical predictions.

  9. Optimal arrangements of fiber optic probes to enhance the spatial resolution in depth for 3D reflectance diffuse optical tomography with time-resolved measurements performed with fast-gated single-photon avalanche diodes

    NASA Astrophysics Data System (ADS)

    Puszka, Agathe; Di Sieno, Laura; Dalla Mora, Alberto; Pifferi, Antonio; Contini, Davide; Boso, Gianluca; Tosi, Alberto; Hervé, Lionel; Planat-Chrétien, Anne; Koenig, Anne; Dinten, Jean-Marc

    2014-02-01

    Fiber optic probes with a width limited to a few centimeters can enable diffuse optical tomography (DOT) in intern organs like the prostate or facilitate the measurements on extern organs like the breast or the brain. We have recently shown on 2D tomographic images that time-resolved measurements with a large dynamic range obtained with fast-gated single-photon avalanche diodes (SPADs) could push forward the imaged depth range in a diffusive medium at short source-detector separation compared with conventional non-gated approaches. In this work, we confirm these performances with the first 3D tomographic images reconstructed with such a setup and processed with the Mellin- Laplace transform. More precisely, we investigate the performance of hand-held probes with short interfiber distances in terms of spatial resolution and specifically demonstrate the interest of having a compact probe design featuring small source-detector separations. We compare the spatial resolution obtained with two probes having the same design but different scale factors, the first one featuring only interfiber distances of 15 mm and the second one, 10 mm. We evaluate experimentally the spatial resolution obtained with each probe on the setup with fast-gated SPADs for optical phantoms featuring two absorbing inclusions positioned at different depths and conclude on the potential of short source-detector separations for DOT.

  10. Does the Dual-Mobility Hip Prosthesis Produce Better Joint Kinematics During Extreme Hip Flexion Task?

    PubMed

    Catelli, Danilo S; Kowalski, Erik; Beaulé, Paul E; Lamontagne, Mario

    2017-10-01

    Total hip arthroplasty (THA) using dual-mobility (DM) design permits larger hip range of motion. However, it is unclear how it benefits the patients during activities of daily living. The purpose was to compare kinematic variables of the operated limb between THA patients using either DM or single-bearing (SB) implants during a squat task. Twenty-four THA patients were randomly assigned to either a DM or SB implant and matched to 12 healthy controls (CTRLs). They underwent 3-dimensional squat motion analysis before and 9 months after surgery. Sagittal and frontal plane angles of the pelvis and the hip were analyzed using statistical parametric mapping. Paired analyses compared presurgery and postsurgery squat depth. Peak sagittal pelvis angle of DM was closer to normal compared with that of SB. Both implant groups had similar hip angle patterns and magnitude but significantly lower than the CTRLs. SB reached a much large hip abduction compared with the other groups. Both surgical groups had significantly worst squat depth than the CTRLs. Neither THA implant groups were able to return pelvis and hip kinematics to the level of CTRLs. The deficit of DM implants at the pelvis combined with the poorer functional scores should caution clinicians to use this implant design in active patients. SB design causes a larger hip abduction to reach their maximum squat depth. Post-THA rehabilitation should focus on improving joint range of motion and strength. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Kinematics of a large-scale intraplate extending lithosphere: The Basin-Range

    NASA Technical Reports Server (NTRS)

    Smith, R. B.; Eddington, P. K.

    1985-01-01

    Upper lithospheric structure of the Cordilleran Basin Range (B-R) is characterised by an E-W symmetry of velocity layering. The crust is 25 km thick on its eastern active margin, thickening to 30 km within the central portion and thinning to approx. 25 km on the west. Pn velocities of 7.8 to 7.9 km/s characterize the upper mantle low velocity cushion, 7.4 km/s to 7.5 km/s, occurs at a depth of approx. 25 km in the eastern B-R and underlies the area of active extension. An upper-crustal low-velocity zone in the eastern B-R shows a marked P-wave velocity inversion of 7% at depths of 7 to 10 km also in the area of greatest extension. The seismic velocity models for this region of intraplate extension suggest major differences from that of a normal, thermally underformed continental lithosphere. Interpretations of seismic reflection data demonstrate the presence of extensive low-angle reflections in the upper-crust of the eastern B-R at depths from near-surface to 7 to 10 km. These reflections have been interpreted to represent low-angle normal fault detachments or reactivated thrusts. Seismic profiles across steeply-dipping normal faults in unconsolidated sediments show reflections from both planar to downward flatening (listric) faults that in most cases do not penetrate the low-angle detachments. These faults are interpreted as late Cenozoic and cataclastic mylonitic zones of shear displacement.

  12. Chemical diagenesis, porosity reduction, and rock strength, IODP Site U1480: Influences on great earthquakes at shallow depths

    NASA Astrophysics Data System (ADS)

    Song, Insun; Milliken, Kitty; Dugan, Brandon; Bourlange, Sylvain; Colson, Tobias; Frederik, Marina; Jeppson, Tamara; Kuranaga, Mebae; Nair, Nisha; Henstock, Timothy

    2017-04-01

    International Ocean Discovery Program (IODP) Expedition 362 drilled two sites, U1480 and U1481, on the Indian oceanic plate ˜250 km west of the Sunda subduction zone to a maximum depth of 1500 meters below seafloor (mbsf). One of the primary objectives was to understand the mechanism of great earthquakes such as the 2004 Sumatra earthquake (Mw 9.0) which showed unexpectedly shallow megathrust slip by establishing the initial and evolving properties of the North Sumatran incoming sedimentary section. Core sampling and logging from the complete sedimentary section at U1480 indicates a distinct change in sedimentation rate from a slowly deposited pelagic system to a rapidly deposited submarine fan system at late Miocene. Following burial, sediments of the Nicobar Fan underwent compaction leading to porosity reduction from 66±9% near seafloor to ˜30% at the base of the sampled Nicobar Fan section (˜1250 mbsf), representing a normal consolidation behavior. Rock strength gradually increases with depth as the sediments are mechanically compacted. Below the fan (1250-1415 mbsf), the pelagic sediments are composed of tuffaceous, calcareous, and siliceous sediments/rocks and their porosity is dependent upon lithology more than upon depth. Tuffaceous materials exhibit high porosity ranging from ˜30-60%, even higher than that of overlying layers. However, porosity of most calcareous samples is lower than 20% at the same depth. The large variation in porosity depends on the degree of cementation, which in turn is controlled by grain assemblage composition and environmental conditions such as slow sedimentation rates and locally high temperatures related to igneous activity as documented by local igneous intrusives and extrusives. The minor cementation in tuffaceous sandy sediments has retained high porosity, but strengthened their skeleton so as to bear the overburden. The low porosity in calcareous rocks is considered to come from extensive cementation rather than mechanical compaction. The rock strengthening by mechanical compaction is dependent on effective stress, and does not facilitate storage of a large amount of elastic energy at shallow depth. However, chemical diagenesis (cementation) can lead to high strength that does not necessarily arise directly from burial. This chemical diagenesis potentially influences sediment strengthening that localizes great earthquakes at shallow depths.

  13. Temperature sensitivity differences with depth and season between carbon, nitrogen, and phosphorus cycling enzyme activities in an ombrotrophic peatland system

    NASA Astrophysics Data System (ADS)

    Steinweg, J. M.; Kostka, J. E.; Hanson, P. J.; Schadt, C. W.

    2017-12-01

    Northern peatlands have large amounts of soil organic matter due to reduced decomposition. Breakdown of organic matter is initially mediated by extracellular enzymes, the activity of which may be controlled by temperature, moisture, and substrate availability, all of which vary seasonally throughout the year and with depth. In typical soils the majority of the microbial biomass and decomposition occurs within the top 30cm due to reduced organic matter inputs in the subsurface however peatlands by their very nature contain large amounts of organic matter throughout their depth profile. We hypothesized that potential enzyme activity would be greatest at the surface of the peat due to a larger microbial biomass compared to 40cm and 175cm below the surface and that temperature sensitivity would be greatest at the surface during winter but lowest during the summer due to high temperatures and enzyme efficiency. Peat samples were collected in February, July, and August 2012 from the DOE Spruce and Peatland Responses Under Climatic and Environmental Change project at Marcell Experimental Forest S1 bog. We measured potential activity of hydrolytic enzymes involved in three different nutrient cycles: beta-glucosidase (carbon), leucine amino peptidase (nitrogen), and phosphatase (phosphorus) at 15 temperature points ranging from 3°C to 65°C. Enzyme activity decreased with depth as expected but there was no concurrent change in activation energy (Ea). The reduction in enzyme activity with depth indicates a smaller pool which coincided with a decreased microbial biomass. Differences in enzyme activity with depth also mirrored the changes in peat composition from the acrotelm to the catotelm. Season did play a role in temperature sensitivity with Ea of β-glucosidase and phosphatase being the lowest in August as expected but leucine amino peptidase (a nitrogen acquiring enzyme) Ea was not influenced by season. As temperatures rise, especially in winter months, enzymatic carbon and phosphorus acquisition in the Marcell bog may increase whereas nitrogen acquisition would remain unchanged. The lack of temperature response for leucine amino peptidase has been measured in other systems but may be less of a concern in the Marcell bog due to low microbial biomass and enzymatic activity at depth and relatively low peat C:N ratios.

  14. Large Root Cortical Cell Size Improves Drought Tolerance in Maize1[C][W][OPEN

    PubMed Central

    Chimungu, Joseph G.; Brown, Kathleen M.

    2014-01-01

    The objective of this study was to test the hypothesis that large cortical cell size (CCS) would improve drought tolerance by reducing root metabolic costs. Maize (Zea mays) lines contrasting in root CCS measured as cross-sectional area were grown under well-watered and water-stressed conditions in greenhouse mesocosms and in the field in the United States and Malawi. CCS varied among genotypes, ranging from 101 to 533 µm2. In mesocosms, large CCS reduced respiration per unit of root length by 59%. Under water stress in mesocosms, lines with large CCS had between 21% and 27% deeper rooting (depth above which 95% of total root length is located in the soil profile), 50% greater stomatal conductance, 59% greater leaf CO2 assimilation, and between 34% and 44% greater shoot biomass than lines with small CCS. Under water stress in the field, lines with large CCS had between 32% and 41% deeper rooting (depth above which 95% of total root length is located in the soil profile), 32% lighter stem water isotopic ratio of 18O to 16O signature, signifying deeper water capture, between 22% and 30% greater leaf relative water content, between 51% and 100% greater shoot biomass at flowering, and between 99% and 145% greater yield than lines with small cells. Our results are consistent with the hypothesis that large CCS improves drought tolerance by reducing the metabolic cost of soil exploration, enabling deeper soil exploration, greater water acquisition, and improved growth and yield under water stress. These results, coupled with the substantial genetic variation for CCS in diverse maize germplasm, suggest that CCS merits attention as a potential breeding target to improve the drought tolerance of maize and possibly other cereal crops. PMID:25293960

  15. Gulf of Aden eddies and their impact on Red Sea Water

    NASA Astrophysics Data System (ADS)

    Bower, Amy S.; Fratantoni, David M.; Johns, William E.; Peters, Hartmut

    2002-11-01

    New oceanographic observations in the Gulf of Aden in the northwestern Indian Ocean have revealed large, energetic, deep-reaching mesoscale eddies that fundamentally influence the spreading rates and pathways of intermediate-depth Red Sea Water (RSW). Three eddies were sampled in February 2001, two cyclonic and one anticyclonic, with diameters 150-250 km. Both cyclones had surface-intensified velocity structure with maxima ~0.5 m s-1, while the equally-energetic anticyclone appeared to be decoupled from the surface circulation. All three eddies reached nearly to the 1000-2000 m deep sea floor, with speeds as high as 0.2-0.3 m s-1 extending through the depth range of RSW. Comparison of salinity and direct velocity measurements indicates that the eddies advect and stir RSW through the Gulf of Aden. Anomalous water properties in the center of the anticyclonic eddy point to a possible formation site in the Somali Current System.

  16. Ocean water color assessment from ERTS-1 RBV and MSS imagery

    NASA Technical Reports Server (NTRS)

    Ross, D. S. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Photo-optical and electronic density slicing were applied to ERTS-1 E 1007-151651-4, 30 July 1972, an area in the Caribbean showing deep ocean water, and shallow areas on the Great Baham Bank ranging from 0.5 meter or less to 18 meters. The density slicing processes were adjusted to correlate water radiance to bathmetric contours shown on C and GS Chart 1112. A number of large areas corresponding to water depths of 2 meters or less, 5 to 10 meters, and 10 to about 20 meters were isolated by both processes. Where clear water and uniformly reflective bottom was found, clear of marine growths, the photo-optical and electronic image density slicing processes proved effective in delineating areas where the depth was in the order of 5 meters, plus or minus 1 meter.

  17. The p-wave upper mantle structure beneath an active spreading centre - The Gulf of California

    NASA Technical Reports Server (NTRS)

    Walck, M. C.

    1984-01-01

    Over 1400 seismograms of earthquakes in Mexico are analyzed and data sets for the travel time, apparent phase velocity, and relative amplitude information are utilized to produce a tightly constrained, detailed model for depths to 900 km beneath an active oceanic ridge region, the Gulf of California. The data are combined by first inverting the travel times, perturbing that model to fit the p-delta data, and then performing trial and error synthetic seismogram modelling to fit the short-period waveforms. The final model satisfies all three data sets. The ridge model is similar to existing upper mantle models for shield, tectonic-continental, and arc-trench regimes below 400 km, but differs significantly in the upper 350 km. Ridge model velocities are very low in this depth range; the model 'catches up' with the others with a very large velocity gradient from 225 to 390 km.

  18. The jumbo squid, Dosidicus gigas (Ommastrephidae), living in oxygen minimum zones II: Blood-oxygen binding

    NASA Astrophysics Data System (ADS)

    Seibel, Brad A.

    2013-10-01

    Dosidicus gigas is a large, metabolically active squid that migrates across a strong oxygen and temperature gradient in the Eastern Pacific. Here we analyze the oxygen-binding properties of the squid's respiratory protein (hemocyanin, Hc) that facilitate such activity. A high Hc-oxygen affinity, strong temperature dependence, and pronounced pH sensitivity (P50=0.009T2.03, pH 7.4; Bohr coefficient=ΔlogP50/ΔpH=-1.55+0.034T) of oxygen binding facilitate night-time foraging in the upper water column, and support suppressed oxygen demand in hypoxic waters at greater depths. Expanding hypoxia may act to alter the species habitable depth range. This analysis supports the contention that ocean acidification could limit oxygen carrying capacity in squids at warmer temperature leading to reduced activity levels or altered distribution.

  19. Observational Inferences of Lateral Eddy Diffusivity in the Halocline of the Beaufort Gyre

    NASA Astrophysics Data System (ADS)

    Meneghello, G.; Marshall, J.; Cole, S. T.; Timmermans, M. L.

    2017-12-01

    Using Ekman pumping rates mediated by sea-ice in the Arctic Ocean's Beaufort Gyre (BG), the magnitude of lateral eddy diffusivities required to balance downward pumping is inferred. In this limit — that of vanishing residual-mean circulation — eddy-induced upwelling exactly balances downward pumping. The implied eddy diffusivity varies spatially with values of 50-400 m2/s, and decays with depth. Eddy diffusivity estimated using mixing length theory applied to BG mooring data exhibits a similar range of values from 100 m2/s to more than 600 m2/s, and also decays with depth. We conclude that eddy diffusivities in the BG are likely large enough to balance downward Ekman pumping, arresting the deepening of the gyre and suggesting that eddies play a zero-order role in buoyancy and freshwater budgets of the BG.

  20. Impact of Gas Hydrate and Related Fluid Seepage on Submarine Slope Failures along the Margins of the Ulleung Basin, East Sea (Japan Sea)

    NASA Astrophysics Data System (ADS)

    Horozal, S.; Bahk, J. J.; Urgeles, R.; Kim, G. Y.; Cukur, D.; Lee, G. H.; Lee, S. H.; Kim, S. P.; Ryu, B. J.; Kim, J. H.

    2016-12-01

    The Ulleung Basin is a back-arc basin that is known to retain gas hydrate reservoirs in the East (Japan) Sea. The basin contains large volumes of mass-transport deposits (MTDs) due to submarine slope failures along its margins since the Neogene. In this study, seismic indicators of gas hydrate and associated gas and fluid flow were re-compiled on a regional multi-channel seismic reflection data. The gas hydrate occurrence zone (GHOZ) is defined by the BSR (bottom-simulating reflector) distribution. It is more pronounced along the southwestern slope with a minimum depth of 100 mbsf (meters below seafloor) at 295 mbsl (meter below sea level) on the southern, while its thickness is the greatest (250 mbsf) at the southwestern margin. Flow and seepage structures reflected on the seismic data as columnar acoustic-blanking zones varying in width and height (up to hundreds of meters) were classified into: (a) buried seismic chimneys (BSC), (b) chimneys with a mound (SCM), and (c) chimneys with a depression (SCD) on the seafloor. Pockmarks which are not associated with seismic chimneys, reflection anomalies (i.e., enhanced reflections below the BSR and hyperbolic reflections), and SCD are predominant features in the western margin, while the BSR, BSC and SCM are densely distributed in the south-southwestern margin. Present-day gas hydrate stability zone (GHSZ) is calculated using in-situ bottom-water temperature and geothermal gradient measurements (ranging between 0-17.5 oC and 25-200 oC/km, respectively) and multibeam bathymetry data. The GHSZ thickness exceeds 190 m, and the upslope limit of GHSZ ranges between about 180 and 260 mbsl. This depth range is in the proximity of the uppermost depths of landslide scars ( 190 mbsl) which are common features on the slopes along with glide planes, slides/slumps and MTDs. Overall, the base of GHSZ (BGHSZ) and the BSR depths are well-correlated in the basin. However, the BSR depths are typically greater (up to 50 m) than the BGHSZ depths on the slopes suggesting that the GHOZ is not stable. A close correlation exists between the spatial distributions of the landslides, and indicators of gas hydrate and gas/fluid flow and the GHSZ. This may imply that excess pore-pressure caused by dissociation/dissolution of gas hydrates could have played a role on slope failures.

  1. Estimation of subsurface formation temperature in the Tarim Basin, northwest China: implications for hydrocarbon generation and preservation

    NASA Astrophysics Data System (ADS)

    Liu, Shaowen; Lei, Xiao; Feng, Changge; Hao, Chunyan

    2016-07-01

    Subsurface formation temperature in the Tarim Basin, northwest China, is vital for assessment of hydrocarbon generation and preservation, and of geothermal energy potential. However, it has not previously been well understood, due to poor data coverage and a lack of highly accurate temperature data. Here, we combined recently acquired steady-state temperature logging data with drill stem test temperature data and measured rock thermal properties, to investigate the geothermal regime and estimate the subsurface formation temperature at depth in the range of 1000-5000 m, together with temperatures at the lower boundary of each of four major Lower Paleozoic marine source rocks buried in this basin. Results show that heat flow of the Tarim Basin ranges between 26.2 and 66.1 mW/m2, with a mean of 42.5 ± 7.6 mW/m2; the geothermal gradient at depth of 3000 m varies from 14.9 to 30.2 °C/km, with a mean of 20.7 ± 2.9 °C/km. Formation temperature estimated at the depth of 1000 m is between 29 and 41 °C, with a mean of 35 °C, while 63-100 °C is for the temperature at the depth of 3000 m with a mean of 82 °C. Temperature at 5000 m ranges from 97 to 160 °C, with a mean of 129 °C. Generally spatial patterns of the subsurface formation temperature at depth are basically similar, characterized by higher temperatures in the uplift areas and lower temperatures in the sags, which indicates the influence of basement structure and lateral variations in thermal properties on the geotemperature field. Using temperature to identify the oil window in the source rocks, most of the uplifted areas in the basin are under favorable condition for oil generation and/or preservation, whereas the sags with thick sediments are favorable for gas generation and/or preservation. We conclude that relatively low present-day geothermal regime and large burial depth of the source rocks in the Tarim Basin are favorable for hydrocarbon generation and preservation. In addition, it is found that the oil and gas fields discovered in the Tarim Basin are usually associated with relatively high-temperature anomalies, and the upward migration and accumulation of hot geofluids along faults as conduit from below could explain this coincidence. Accordingly, this thermal anomaly could be indicative of hydrocarbon exploration targets in the basin.

  2. Towards industrial ultrafast laser microwelding: SiO2 and BK7 to aluminum alloy.

    PubMed

    Carter, Richard M; Troughton, Michael; Chen, Jianyong; Elder, Ian; Thomson, Robert R; Daniel Esser, M J; Lamb, Robert A; Hand, Duncan P

    2017-06-01

    We report systematic analysis and comparison of ps-laser microwelding of industry relevant Al6082 parts to SiO 2 and BK7. Parameter mapping of pulse energy and focal depth on the weld strength is presented. The welding process was found to be strongly dependent on the focal plane but has a large tolerance to variation in pulse energy. Accelerated lifetime tests by thermal cycling from -50° to +90°C are presented. Welds in Al6082-BK7 parts survive over the full temperature range where the ratio of thermal expansion coefficients is 3.4:1. Welds in Al6082-SiO 2 parts (ratio 47.1:1) survive only a limited temperature range.

  3. Investigation of Kodak extended dose range (EDR) film for megavoltage photon beam dosimetry.

    PubMed

    Chetty, Indrin J; Charland, Paule M

    2002-10-21

    We have investigated the dependence of the measured optical density on the incident beam energy, field size and depth for a new type of film, Kodak extended dose range (Kodak EDR). Film measurements have been conducted over a range of field sizes (3 x 3 cm2 to 25 x 25 cm2) and depths (d(max) to 15 cm), for 6 MV and 15 MV photons within a solid water phantom, and the variation in sensitometric response (net optical density versus dose) has been reported. Kodak EDR film is found to have a linear response with dose, from 0 to 350 cGy, which is much higher than that typically seen for Kodak XV film (0-50 cGy). The variation in sensitometric response for Kodak EDR film as a function of field size and depth is observed to be similar to that of Kodak XV film; the optical density varied in the order of 2-3% for field sizes of 3 x 3 cm2 and 10 x 10 cm2 at depths of d(max), 5 cm and 15 cm in the phantom. Measurements for a 25 x 25 cm2 field size showed consistently higher optical densities at depths of d(max), 5 cm and 15 cm, relative to a 10 x 10 cm2 field size at 5 cm depth, with 4-5% differences noted at a depth of 15 cm. Fractional depth dose and profiles conducted with Kodak EDR film showed good agreement (2%/2 mm) with ion chamber measurements for all field sizes except for the 25 x 25 cm2 at depths greater than 15 cm, where differences in the order of 3-5% were observed. In addition, Kodak EDR film measurements were found to be consistent with those of Kodak XV film for all fractional depth doses and profiles. The results of this study indicate that Kodak EDR film may be a useful tool for relative dosimetry at higher dose ranges.

  4. Effects of depth and crayfish size on predation risk and foraging profitability of a lotic crayfish

    USGS Publications Warehouse

    Flinders, C.A.; Magoulick, D.D.

    2007-01-01

    We conducted field surveys and experiments to determine whether observed distributions of crayfish among habitats were influenced by differential resource availability, foraging profitability, and predation rates and whether these factors differed with crayfish size and habitat depth. We sampled available food resources (detritus and invertebrates) and shelter as rock substrate in deep (>50 cm) and shallow (<30 cm) habitats. We used an enclosure-exclosure experiment to examine the effects of water depth and crayfish size on crayfish biomass and survival, and to determine whether these factors affected silt accrual, algal abundance (chlorophyll a [chl a]), and detritus and invertebrate biomass (g ash-free dry mass) differently from enclosures without crayfish. We conducted tethering experiments to assess predation on small (13-17 mm carapace length [CL]) and large (23-30 mm CL) Orconectes marchandi and to determine whether predation rates differed with water depth. Invertebrate biomass was significantly greater in shallow water than in deep water, whereas detritus biomass did not differ significantly between depths. Cobble was significantly more abundant in shallow than in deep water. Depth and crayfish size had a significant interactive effect on change in size of enclosed crayfish when CL was used as a measure of size but not when biomass was used as a measure of size. CL of small crayfish increased significantly more in enclosures in shallow than in deep water, but CL of large crayfish changed very little at either depth. Silt, chl a, and detritus biomass were significantly lower on tiles in large- than in small- and no-crayfish enclosures, and invertebrate biomass was significantly lower in large- than in no-crayfish enclosures. Significantly more crayfish were consumed in deep than in shallow water regardless of crayfish size. Our results suggest that predation and resource availability might influence the depth distribution of small and large crayfish. Small crayfish grew faster in shallow habitats where they might have had a fitness advantage caused by high prey availability and reduced predation risk. Size-dependent reduction of silt by crayfish might influence benthic habitats where large crayfish are abundant. ?? 2007 by The North American Benthological Society.

  5. "Live" (stained) benthic foraminiferal living depths, stable isotopes, and taxonomy offshore South Georgia, Southern Ocean: implications for calcification depths

    NASA Astrophysics Data System (ADS)

    Dejardin, Rowan; Kender, Sev; Allen, Claire S.; Leng, Melanie J.; Swann, George E. A.; Peck, Victoria L.

    2018-01-01

    It is widely held that benthic foraminifera exhibit species-specific calcification depth preferences, with their tests recording sediment pore water chemistry at that depth (i.e. stable isotope and trace metal compositions). This assumed depth-habitat-specific pore water chemistry relationship has been used to reconstruct various palaeoenvironmental parameters, such as bottom water oxygenation. However, many deep-water foraminiferal studies show wide intra-species variation in sediment living depth but relatively narrow intra-species variation in stable isotope composition. To investigate this depth-habitat-stable-isotope relationship on the shelf, we analysed depth distribution and stable isotopes of living (Rose Bengal stained) benthic foraminifera from two box cores collected on the South Georgia shelf (ranging from 250 to 300 m water depth). We provide a comprehensive taxonomic analysis of the benthic fauna, comprising 79 taxonomic groupings. The fauna shows close affinities with shelf assemblages from around Antarctica. We find live specimens of a number of calcareous species from a range of depths in the sediment column. Stable isotope ratios (δ13C and δ18O) were measured on stained specimens of three species, Astrononion echolsi, Cassidulinoides porrectus, and Buccella sp. 1, at 1 cm depth intervals within the downcore sediment sequences. In agreement with studies in deep-water settings, we find no significant intra-species variability in either δ13Cforam or δ18Oforam with sediment living depth on the South Georgia shelf. Our findings add to the growing evidence that infaunal benthic foraminiferal species calcify at a fixed depth. Given the wide range of depths at which we find living, infaunal species, we speculate that they may actually calcify predominantly at the sediment-seawater interface, where carbonate ion concentration and organic carbon availability is at a maximum.

  6. Large-scale human skin lipidomics by quantitative, high-throughput shotgun mass spectrometry.

    PubMed

    Sadowski, Tomasz; Klose, Christian; Gerl, Mathias J; Wójcik-Maciejewicz, Anna; Herzog, Ronny; Simons, Kai; Reich, Adam; Surma, Michal A

    2017-03-07

    The lipid composition of human skin is essential for its function; however the simultaneous quantification of a wide range of stratum corneum (SC) and sebaceous lipids is not trivial. We developed and validated a quantitative high-throughput shotgun mass spectrometry-based platform for lipid analysis of tape-stripped SC skin samples. It features coverage of 16 lipid classes; total quantification to the level of individual lipid molecules; high reproducibility and high-throughput capabilities. With this method we conducted a large lipidomic survey of 268 human SC samples, where we investigated the relationship between sampling depth and lipid composition, lipidome variability in samples from 14 different sampling sites on the human body and finally, we assessed the impact of age and sex on lipidome variability in 104 healthy subjects. We found sebaceous lipids to constitute an abundant component of the SC lipidome as they diffuse into the topmost SC layers forming a gradient. Lipidomic variability with respect to sampling depth, site and subject is considerable, and mainly accredited to sebaceous lipids, while stratum corneum lipids vary less. This stresses the importance of sampling design and the role of sebaceous lipids in skin studies.

  7. Integration time for the perception of depth from motion parallax.

    PubMed

    Nawrot, Mark; Stroyan, Keith

    2012-04-15

    The perception of depth from relative motion is believed to be a slow process that "builds-up" over a period of observation. However, in the case of motion parallax, the potential accuracy of the depth estimate suffers as the observer translates during the viewing period. Our recent quantitative model for the perception of depth from motion parallax proposes that relative object depth (d) can be determined from retinal image motion (dθ/dt), pursuit eye movement (dα/dt), and fixation distance (f) by the formula: d/f≈dθ/dα. Given the model's dynamics, it is important to know the integration time required by the visual system to recover dα and dθ, and then estimate d. Knowing the minimum integration time reveals the incumbent error in this process. A depth-phase discrimination task was used to determine the time necessary to perceive depth-sign from motion parallax. Observers remained stationary and viewed a briefly translating random-dot motion parallax stimulus. Stimulus duration varied between trials. Fixation on the translating stimulus was monitored and enforced with an eye-tracker. The study found that relative depth discrimination can be performed with presentations as brief as 16.6 ms, with only two stimulus frames providing both retinal image motion and the stimulus window motion for pursuit (mean range=16.6-33.2 ms). This was found for conditions in which, prior to stimulus presentation, the eye was engaged in ongoing pursuit or the eye was stationary. A large high-contrast masking stimulus disrupted depth-discrimination for stimulus presentations less than 70-75 ms in both pursuit and stationary conditions. This interval might be linked to ocular-following response eye-movement latencies. We conclude that neural mechanisms serving depth from motion parallax generate a depth estimate much more quickly than previously believed. We propose that additional sluggishness might be due to the visual system's attempt to determine the maximum dθ/dα ratio for a selection of points on a complicated stimulus. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Surface-water-quality assessment of the Upper Illinois River basin in Illinois, Indiana, and Wisconsin; cross-sectional and depth variation of water-quality constituents and properties in the Upper Illinois River basin, 1987-88

    USGS Publications Warehouse

    Marron, Donna C.; Blanchard, Stephen F.

    1995-01-01

    Data on water velocity, temperature, specific con- ductance, pH, dissolved oxygen concentration, chlorophyll concentration, suspended sediment con- centration, fecal-coliform counts, and the percen- tage of suspended sediment finer than 62 micrometers ranged up to 21 percent; and cross-section coefficients of variation of the concentrations of suspended sediment, fecal coliform, and chlorophyll ranged from 7 to 115 percent. Midchannel measure- ments of temperature, specific conductance, and pH were within 5 percent of mean cross-sectional values of these properties at the eight sampling sites, most of which appear well mixed because of the effect of dams and reservoirs. Measurements of the concentration of dissolved oxygen at various cross- section locations and at variable sampling depths are required to obtain a representative value of this constituent at these sites. The large varia- bility of concentrations of chlorophyll and suspended sediment, and fecal-coliform counts at the eight sampling sites indicates that composite rather than midchannel or mean values of these constituents are likely to be most representative of the channel cross section.

  9. Beaked whales echolocate on prey.

    PubMed Central

    Johnson, Mark; Madsen, Peter T; Zimmer, Walter M X; de Soto, Natacha Aguilar; Tyack, Peter L

    2004-01-01

    Beaked whales (Cetacea: Ziphiidea) of the genera Ziphius and Mesoplodon are so difficult to study that they are mostly known from strandings. How these elusive toothed whales use and react to sound is of concern because they mass strand during naval sonar exercises. A new non-invasive acoustic ording tag was attached to four beaked whales(two Mesoplodon densirostris and two Ziphius cavirostris) and recorded high-frequency clicks during deep dives. The tagged whales only clicked at depths below 200 m, down to a maximum depth of 1267 m. Both species produced a large number of short, directional, ultrasonic clicks with significant energy below 20 kHz. The tags recorded echoes from prey items; to our knowledge, a first for any animal echolocating in the wild. As far as we are aware, these echoes provide the first direct evidence on how free-ranging toothed whales use echolocation in foraging. The strength of these echoes suggests that the source level of Mesoplodon clicks is in the range of 200-220 dB re 1 microPa at 1 m.This paper presents conclusive data on the normal vocalizations of these beaked whale species, which may enable acoustic monitoring to mitigate exposure to sounds intense enough to harm them. PMID:15801582

  10. Coping with copepods: do right whales (Eubalaena glacialis) forage visually in dark waters?

    PubMed Central

    Fasick, Jeffry I.; Kezmoh, Lorren J.; Baumgartner, Mark F.

    2017-01-01

    North Atlantic right whales (Eubalaena glacialis) feed during the spring and early summer in marine waters off the northeast coast of North America. Their food primarily consists of planktonic copepods, Calanus finmarchicus, which they consume in large numbers by ram filter feeding. The coastal waters where these whales forage are turbid, but they successfully locate copepod swarms during the day at depths exceeding 100 m, where light is very dim and copepod patches may be difficult to see. Using models of E. glacialis visual sensitivity together with measurements of light in waters near Cape Cod where they feed and of light attenuation by living copepods in seawater, we evaluated the potential for visual foraging by these whales. Our results suggest that vision may be useful for finding copepod patches, particularly if E. glacialis searches overhead for silhouetted masses or layers of copepods. This should permit the whales to locate C. finmarchicus visually throughout most daylight hours at depths throughout their foraging range. Looking laterally, the whales might also be able to see copepod patches at short range near the surface. This article is part of the themed issue ‘Vision in dim light’. PMID:28193812

  11. Coping with copepods: do right whales (Eubalaena glacialis) forage visually in dark waters?

    PubMed

    Cronin, Thomas W; Fasick, Jeffry I; Schweikert, Lorian E; Johnsen, Sönke; Kezmoh, Lorren J; Baumgartner, Mark F

    2017-04-05

    North Atlantic right whales ( Eubalaena glacialis ) feed during the spring and early summer in marine waters off the northeast coast of North America. Their food primarily consists of planktonic copepods, Calanus finmarchicus , which they consume in large numbers by ram filter feeding. The coastal waters where these whales forage are turbid, but they successfully locate copepod swarms during the day at depths exceeding 100 m, where light is very dim and copepod patches may be difficult to see. Using models of E. glacialis visual sensitivity together with measurements of light in waters near Cape Cod where they feed and of light attenuation by living copepods in seawater, we evaluated the potential for visual foraging by these whales. Our results suggest that vision may be useful for finding copepod patches, particularly if E. glacialis searches overhead for silhouetted masses or layers of copepods. This should permit the whales to locate C. finmarchicus visually throughout most daylight hours at depths throughout their foraging range. Looking laterally, the whales might also be able to see copepod patches at short range near the surface.This article is part of the themed issue 'Vision in dim light'. © 2017 The Author(s).

  12. Multiple kernel SVR based on the MRE for remote sensing water depth fusion detection

    NASA Astrophysics Data System (ADS)

    Wang, Jinjin; Ma, Yi; Zhang, Jingyu

    2018-03-01

    Remote sensing has an important means of water depth detection in coastal shallow waters and reefs. Support vector regression (SVR) is a machine learning method which is widely used in data regression. In this paper, SVR is used to remote sensing multispectral bathymetry. Aiming at the problem that the single-kernel SVR method has a large error in shallow water depth inversion, the mean relative error (MRE) of different water depth is retrieved as a decision fusion factor with single kernel SVR method, a multi kernel SVR fusion method based on the MRE is put forward. And taking the North Island of the Xisha Islands in China as an experimentation area, the comparison experiments with the single kernel SVR method and the traditional multi-bands bathymetric method are carried out. The results show that: 1) In range of 0 to 25 meters, the mean absolute error(MAE)of the multi kernel SVR fusion method is 1.5m,the MRE is 13.2%; 2) Compared to the 4 single kernel SVR method, the MRE of the fusion method reduced 1.2% (1.9%) 3.4% (1.8%), and compared to traditional multi-bands method, the MRE reduced 1.9%; 3) In 0-5m depth section, compared to the single kernel method and the multi-bands method, the MRE of fusion method reduced 13.5% to 44.4%, and the distribution of points is more concentrated relative to y=x.

  13. Results of borehole geophysical logging and hydraulic tests conducted in Area D supply wells, former U.S. Naval Air Warfare Center, Warminster, Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.; Grazul, Kevin E.

    1998-01-01

    Borehole geophysical logging, aquifer tests, and aquifer-isolation (packer) tests were conducted in four supply wells at the former U.S. Naval Air Warfare Center (NAWC) in Warminster, PA, to identify the depth and yield of water-bearing zones, occurrence of borehole flow, and effect of pumping on nearby wells. The study was conducted as part of an ongoing evaluation of ground-water contamination at the NAWC. Caliper, natural-gamma, single-point resistance, fluid resistivity, and fluid temperature logs and borehole television surveys were run in the supply wells, which range in depth from 242 to 560 ft (feet). Acoustic borehole televiewer and borehole deviation logs were run in two of the wells. The direction and rate of borehole-fluid movement under non-pumping conditions were measured with a high-resolution heatpulse flowmeter. The logs were used to locate water-bearing fractures, determine probable zones of vertical borehole-fluid movement, and determine the depth to set packers. An aquifer test was conducted in each well to determine open-hole specific capacity and the effect of pumping the open borehole on water levels in nearby wells. Specific capacities ranged from 0.21 to 1.7 (gal/min)/ft (gallons per minute per foot) of drawdown. Aquifer-isolation tests were conducted in each well to determine depth-discrete specific capacities and to determine the effect of pumping an individual fracture or fracture zone on water levels in nearby wells. Specific capacities of individual fractures and fracture zones ranged from 0 to 2.3 (gal/min)/ft. Most fractures identified as water-producing or water-receiving zones by borehole geophysical methods produced water when isolated and pumped. All hydrologically active fractures below 250 ft below land surface were identified as water-receiving zones and produced little water when isolated and pumped. In the two wells greater then 540 ft deep, downward borehole flow to the deep water-receiving fractures is caused by a large difference in head (as much as greater then 49 ft) between water-bearing fractured in the upper and lower part of the borehole. Vertical distribution of specific capacity between land surface and 250 ft below land surface is not related to depth.

  14. High-uniformity centimeter-wide Si etching method for MEMS devices with large opening elements

    NASA Astrophysics Data System (ADS)

    Okamoto, Yuki; Tohyama, Yukiya; Inagaki, Shunsuke; Takiguchi, Mikio; Ono, Tomoki; Lebrasseur, Eric; Mita, Yoshio

    2018-04-01

    We propose a compensated mesh pattern filling method to achieve highly uniform wafer depth etching (over hundreds of microns) with a large-area opening (over centimeter). The mesh opening diameter is gradually changed between the center and the edge of a large etching area. Using such a design, the etching depth distribution depending on sidewall distance (known as the local loading effect) inversely compensates for the over-centimeter-scale etching depth distribution, known as the global or within-die(chip)-scale loading effect. Only a single DRIE with test structure patterns provides a micro-electromechanical systems (MEMS) designer with the etched depth dependence on the mesh opening size as well as on the distance from the chip edge, and the designer only has to set the opening size so as to obtain a uniform etching depth over the entire chip. This method is useful when process optimization cannot be performed, such as in the cases of using standard conditions for a foundry service and of short turn-around-time prototyping. To demonstrate, a large MEMS mirror that needed over 1 cm2 of backside etching was successfully fabricated using as-is-provided DRIE conditions.

  15. Effect of snow cover on soil frost penetration

    NASA Astrophysics Data System (ADS)

    Rožnovský, Jaroslav; Brzezina, Jáchym

    2017-12-01

    Snow cover occurrence affects wintering and lives of organisms because it has a significant effect on soil frost penetration. An analysis of the dependence of soil frost penetration and snow depth between November and March was performed using data from 12 automated climatological stations located in Southern Moravia, with a minimum period of measurement of 5 years since 2001, which belong to the Czech Hydrometeorological institute. The soil temperatures at 5 cm depth fluctuate much less in the presence of snow cover. In contrast, the effect of snow cover on the air temperature at 2 m height is only very small. During clear sky conditions and no snow cover, soil can warm up substantially and the soil temperature range can be even higher than the range of air temperature at 2 m height. The actual height of snow is also important - increased snow depth means lower soil temperature range. However, even just 1 cm snow depth substantially lowers the soil temperature range and it can therefore be clearly seen that snow acts as an insulator and has a major effect on soil frost penetration and soil temperature range.

  16. Laser range profiling for small target recognition

    NASA Astrophysics Data System (ADS)

    Steinvall, Ove; Tulldahl, Michael

    2017-03-01

    Long range identification (ID) or ID at closer range of small targets has its limitations in imaging due to the demand for very high-transverse sensor resolution. This is, therefore, a motivation to look for one-dimensional laser techniques for target ID. These include laser vibrometry and laser range profiling. Laser vibrometry can give good results, but is not always robust as it is sensitive to certain vibrating parts on the target being in the field of view. Laser range profiling is attractive because the maximum range can be substantial, especially for a small laser beam width. A range profiler can also be used in a scanning mode to detect targets within a certain sector. The same laser can also be used for active imaging when the target comes closer and is angularly resolved. Our laser range profiler is based on a laser with a pulse width of 6 ns (full width half maximum). This paper will show both experimental and simulated results for laser range profiling of small boats out to a 6 to 7-km range and a unmanned arrial vehicle (UAV) mockup at close range (1.3 km). The naval experiments took place in the Baltic Sea using many other active and passive electro-optical sensors in addition to the profiling system. The UAV experiments showed the need for a high-range resolution, thus we used a photon counting system in addition to the more conventional profiler used in the naval experiments. This paper shows the influence of target pose and range resolution on the capability of classification. The typical resolution (in our case 0.7 m) obtainable with a conventional range finder type of sensor can be used for large target classification with a depth structure over 5 to 10 m or more, but for smaller targets such as a UAV a high resolution (in our case 7.5 mm) is needed to reveal depth structures and surface shapes. This paper also shows the need for 3-D target information to build libraries for comparison of measured and simulated range profiles. At closer ranges, full 3-D images should be preferable.

  17. Tectonic history of the Syria Planum province of Mars

    USGS Publications Warehouse

    Tanaka, K.L.; Davis, P.A.

    1988-01-01

    We attribute most of the development of extensive fractures in the Tharsis region to discrete tectonic provinces within the region, rather than to Tharsis as a single entity. One of these provinces is in Syria Planum. Faults and collapse structures in the Syria Planum tectonic province on Mars are grouped into 13 sets based on relative age, areal distribution, and morphology. According to superposition and fault crosscutting relations and crater counts we designate six distinct episodes of tectonic activity. Photoclinometric topographic profiles across 132 grabens and fault scarps show that Syria Planum grabens have widths (average of 2.5 km, and most range from 1 to 6 km) similar to lunar grabens, but the Martian grabens have slightly higher side walls (average abour 132 m) and gentler wall slopes (average of 9?? and range of 2??-25??) than lunar grabens (93 m high and 18?? slopes). Estimates of the amount of extension for individual grabens range from 20 to 350 m; most estimates of the thickness of the faulted layer range from 0.5 to 4.5 km (average is 1.5 km). This thickness range corresponds closely to the 0.8- to 3.6-km range in depth for pits, troughs, and canyons in Noctis Labyrinthus and along the walls of Valles Marineris. We propose that the predominant 1- to 1.5-km values obtained for both the thickness of the faulted layer and the depths of the pits, troughs, and theater heads of the canyons reflect the initial depth to the water table in this region, as governed by the depth to the base of ground ice. Maximum depths for these features may indicate lowered groundwater table depths and the base of ejecta material. -from Authors

  18. Depth gradients in food web processes linking large lake habitats

    EPA Science Inventory

    In large lakes around the world, shifts in ecological communities are often associated with water depth. This suggests that there may be concomitant changes in patterns of resource allocation. Using Lake Superior as an example, we explored this idea through stable isotope analyse...

  19. The Cosmology Large Angular Scale Surveyor

    NASA Astrophysics Data System (ADS)

    Harrington, Kathleen; Marriage, Tobias; Ali, Aamir; Appel, John W.; Bennett, Charles L.; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe; Dahal, Sumit; Denis, Kevin; Dünner, Rolando; Eimer, Joseph; Essinger-Hileman, Thomas; Fluxa, Pedro; Halpern, Mark; Hilton, Gene; Hinshaw, Gary F.; Hubmayr, Johannes; Iuliano, Jeffrey; Karakla, John; McMahon, Jeff; Miller, Nathan T.; Moseley, Samuel H.; Palma, Gonzalo; Parker, Lucas; Petroff, Matthew; Pradenas, Bastián.; Rostem, Karwan; Sagliocca, Marco; Valle, Deniz; Watts, Duncan; Wollack, Edward; Xu, Zhilei; Zeng, Lingzhen

    2016-07-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from in ation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145/217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).

  20. The Cosmology Large Angular Scale Surveyor (CLASS)

    NASA Technical Reports Server (NTRS)

    Harrington, Kathleen; Marriange, Tobias; Aamir, Ali; Appel, John W.; Bennett, Charles L.; Boone, Fletcher; Brewer, Michael; Chan, Manwei; Chuss, David T.; Colazo, Felipe; hide

    2016-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) is a four telescope array designed to characterize relic primordial gravitational waves from in ation and the optical depth to reionization through a measurement of the polarized cosmic microwave background (CMB) on the largest angular scales. The frequencies of the four CLASS telescopes, one at 38 GHz, two at 93 GHz, and one dichroic system at 145/217 GHz, are chosen to avoid spectral regions of high atmospheric emission and span the minimum of the polarized Galactic foregrounds: synchrotron emission at lower frequencies and dust emission at higher frequencies. Low-noise transition edge sensor detectors and a rapid front-end polarization modulator provide a unique combination of high sensitivity, stability, and control of systematics. The CLASS site, at 5200 m in the Chilean Atacama desert, allows for daily mapping of up to 70% of the sky and enables the characterization of CMB polarization at the largest angular scales. Using this combination of a broad frequency range, large sky coverage, control over systematics, and high sensitivity, CLASS will observe the reionization and recombination peaks of the CMB E- and B-mode power spectra. CLASS will make a cosmic variance limited measurement of the optical depth to reionization and will measure or place upper limits on the tensor-to-scalar ratio, r, down to a level of 0.01 (95% C.L.).

  1. Stress-intensity factors for circumferential surface cracks in pipes and rods under tension and bending loads

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Newman, J. C., Jr.

    1985-01-01

    The purpose of this paper is to present stress-intensity factors for a wide range of nearly semi-elliptical surface cracks in pipes and rods. The configurations were subjected to either remote tension or bending loads. For pipes, the ratio of crack depth to crack length (a/c) ranged from 0.6 to 1; the ratio of crack depth to wall thickness (a/t) ranged from 0.2 to 0.8; and the ratio of internal radius to wall thickness (R/t) ranged from 1 to 10. For rods, the ratio of crack depth to crack length also ranged from 0.6 to 1; and the ratio of crack depth to rod diameter (a/D) ranged from 0.05 to 0.35. These particular crack configurations were chosen to cover the range of crack shapes (a/c) that have been observed in experiments conducted on pipes and rods under tension and bending fatigue loads. The stress-intensity factors were calculated by a three-dimensional finite-element method. The finite-element models employed singularity elements along the crack front and linear-strain elements elsewhere. The models had about 6500 degrees of freedom. The stress-intensity factors were evaluated using a nodal-force method.

  2. Quantifying Cr(VI) Production and Export from Serpentine Soil of the California Coast Range

    DOE PAGES

    McClain, Cynthia N.; Fendorf, Scott; Webb, Samuel M.; ...

    2016-11-22

    Here, hexavalent chromium (Cr(VI)) is generated in serpentine soils and exported to surface and groundwaters at levels above health-based drinking water standards. Although Cr(VI) concentrations are elevated in serpentine soil pore water, few studies have reported field evidence documenting Cr(VI) production rates and fluxes that govern Cr(VI) transport from soil to water sources. We report Cr speciation (i) in four serpentine soil depth profiles derived from the California Coast Range serpentinite belt and (ii) in local surface waters. Within soils, we detected Cr(VI) in the same horizons where Cr(III)-minerals are colocated with biogenic Mn(III/IV)-oxides, suggesting Cr(VI) generation through oxidation bymore » Mn-oxides. Water-extractable Cr(VI) concentrations increase with depth constituting a 7.8 to 12 kg/km 2 reservoir of Cr(VI) in soil. Here, Cr(VI) is produced at a rate of 0.3 to 4.8 kg Cr(VI)/km 2/yr and subsequently flushed from soil during water infiltration, exporting 0.01 to 3.9 kg Cr(VI)/km 2/yr at concentrations ranging from 25 to 172 μg/L. Although soil-derived Cr(VI) is leached from soil at concentrations exceeding 10 μg/L, due to reduction and dilution during transport to streams, Cr(VI) levels measured in local surface waters largely remain below California’s drinking water limit.« less

  3. Quantifying Cr(VI) Production and Export from Serpentine Soil of the California Coast Range.

    PubMed

    McClain, Cynthia N; Fendorf, Scott; Webb, Samuel M; Maher, Kate

    2017-01-03

    Hexavalent chromium (Cr(VI)) is generated in serpentine soils and exported to surface and groundwaters at levels above health-based drinking water standards. Although Cr(VI) concentrations are elevated in serpentine soil pore water, few studies have reported field evidence documenting Cr(VI) production rates and fluxes that govern Cr(VI) transport from soil to water sources. We report Cr speciation (i) in four serpentine soil depth profiles derived from the California Coast Range serpentinite belt and (ii) in local surface waters. Within soils, we detected Cr(VI) in the same horizons where Cr(III)-minerals are colocated with biogenic Mn(III/IV)-oxides, suggesting Cr(VI) generation through oxidation by Mn-oxides. Water-extractable Cr(VI) concentrations increase with depth constituting a 7.8 to 12 kg/km 2 reservoir of Cr(VI) in soil. Here, Cr(VI) is produced at a rate of 0.3 to 4.8 kg Cr(VI)/km 2 /yr and subsequently flushed from soil during water infiltration, exporting 0.01 to 3.9 kg Cr(VI)/km 2 /yr at concentrations ranging from 25 to 172 μg/L. Although soil-derived Cr(VI) is leached from soil at concentrations exceeding 10 μg/L, due to reduction and dilution during transport to streams, Cr(VI) levels measured in local surface waters largely remain below California's drinking water limit.

  4. Level II scour analysis for Bridge 120 (LEICUS00070120) on U.S. Route 7, crossing the Leicester River, Leicester, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Severance, Timothy

    1997-01-01

    Contraction scour for all modelled flows ranged from 3.8 to 6.1 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 4.0 to 6.7 ft. The worst-case abutment scour also occurred at the 500-year discharge. Pier scour ranged from 9.1 to 10.2. The worst-case pier scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  5. Level II scour analysis for Bridge 49 (WODSTH00990049) on Town Highway 99, crossing Gulf Brook, Woodstock, Vermont

    USGS Publications Warehouse

    Olson, Scott A.; Hammond, Robert E.

    1996-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 0.9 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour at the left abutment ranged from 3.1 to 10.3 ft. with the worst-case occurring at the 500-year discharge. Abutment scour at the right abutment ranged from 6.4 to 10.4 ft. with the worst-case occurring at the 100-year discharge.Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  6. Level II scour analysis for Bridge 37 (TOWNTH00290037) on Town Highway 29, crossing Mill Brook, Townshend, Vermont

    USGS Publications Warehouse

    Burns, R.L.; Medalie, Laura

    1998-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 2.1 ft. The worst-case contraction scour occurred at the 500-year discharge. Left abutment scour ranged from 6.7 to 8.7 ft. The worst-case left abutment scour occurred at the incipient roadway-overtopping discharge. Right abutment scour ranged from 7.8 to 9.5 ft. The worst-case right abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A crosssection of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and Davis, 1995, p. 46). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  7. Using a Cell Phone to Investigate the Skin Depth Effect in Salt Water

    NASA Astrophysics Data System (ADS)

    Rayner, John

    2017-02-01

    This paper describes an experimental investigation of the skin depth effect for electromagnetic waves in salt water using a cell phone that is immersed to a critical depth where it no longer responds when called. We show that this critical depth is directly proportional to the theoretical skin depth for a range of salt concentrations.

  8. Using a Cell Phone to Investigate the Skin Depth Effect in Salt Water

    ERIC Educational Resources Information Center

    Rayner, John

    2017-01-01

    This paper describes an experimental investigation of the skin depth effect for electromagnetic waves in salt water using a cell phone that is immersed to a critical depth where it no longer responds when called. We show that this critical depth is directly proportional to the theoretical skin depth for a range of salt concentrations.

  9. A range/depth modulation transfer function (RMTF) framework for characterizing 3D imaging LADAR performance

    NASA Astrophysics Data System (ADS)

    Staple, Bevan; Earhart, R. P.; Slaymaker, Philip A.; Drouillard, Thomas F., II; Mahony, Thomas

    2005-05-01

    3D imaging LADARs have emerged as the key technology for producing high-resolution imagery of targets in 3-dimensions (X and Y spatial, and Z in the range/depth dimension). Ball Aerospace & Technologies Corp. continues to make significant investments in this technology to enable critical NASA, Department of Defense, and national security missions. As a consequence of rapid technology developments, two issues have emerged that need resolution. First, the terminology used to rate LADAR performance (e.g., range resolution) is inconsistently defined, is improperly used, and thus has become misleading. Second, the terminology does not include a metric of the system"s ability to resolve the 3D depth features of targets. These two issues create confusion when translating customer requirements into hardware. This paper presents a candidate framework for addressing these issues. To address the consistency issue, the framework utilizes only those terminologies proposed and tested by leading LADAR research and standards institutions. We also provide suggestions for strengthening these definitions by linking them to the well-known Rayleigh criterion extended into the range dimension. To address the inadequate 3D image quality metrics, the framework introduces the concept of a Range/Depth Modulation Transfer Function (RMTF). The RMTF measures the impact of the spatial frequencies of a 3D target on its measured modulation in range/depth. It is determined using a new, Range-Based, Slanted Knife-Edge test. We present simulated results for two LADAR pulse detection techniques and compare them to a baseline centroid technique. Consistency in terminology plus a 3D image quality metric enable improved system standardization.

  10. Boosting of Nonvolcanic Tremor by Regional Earthquakes 2011-2012 in Guerrero, Mexico

    NASA Astrophysics Data System (ADS)

    Real, J. A.; Kostoglodov, V.; Husker, A. L.; Payero, J. S.; G-GAP Research Team

    2013-05-01

    Sistematic observation of nonvolcanic tremor (NVT) in Guerrero, Mexico started in 2005 after the installation of MASE broadband seismic network. Since 2008 the new "G-GAP" network of 10 seismic mini-arrays provides the data for the NVT detailed studies together with the broadband stations of the Servicio Seimologogico Nacional (SSN). Most of the NVT recorded in the central Guerrero area are of so called ambient type, which in most cases are related with the occurrence of aseismic slow slip events (SSE). While the locations of NVT are estimated relatively well, their depths are not reliable but distributed close to the subduction plate interface. The ambient NVT activity increases periodically every 3-4 months and is strongly modulated by large SSE. Another type of tremor has been observed in Guerrero during and after several large teleseismic events, such as Mw=8.8, 2010 Maule, Chile earthquake. This NVT was triggered by the surface waves when they traveled across the tremor-generating area. Large teleseismic events may also activate a noticeable post-seismic NVT activity. In subduction zones, triggering of the NVT and its post-seismic activation by the regional and local earthquakes have not yet been observed. We tried to detect the NVT triggered or boosting of post-seismic tremor activity by two recent large earthquakes that occurred in Guerrero: December 11, 2011, Mw=6.5 Zumpango, and March 20, 2012, Mw=7.4 Ometepec. The first earthquake was of the intraplate type, with normal focal mechanism, at the depth of 58 km, and the second was the shallow interplate event of the thrust type, at the depth of ~15 km. It is technically difficult to separate the NVT signal in its characteristic 1-10 Hz frequency range from the high frequency input from the regional earthquake. The Zumpango event, which is located closer to the NVT area, produced a noticeable boosting of post-seismic NVT activity to the North of its epicenter. Meanwhile the larger magnitude Ometepec earthquake apparently had no any observable influence on the NVT occurrence, furthermore some NVT activity observed before this event has not persisted after it. Further study should reveal the role of different factors on the NVT triggering and activation such as: the type of the seismic event, its magnitude, depth, and the distance from the NVT zone.

  11. Seasonal frost conditions in different periglacial landforms in the Eastern Pyrenees from 2003 to 2015

    NASA Astrophysics Data System (ADS)

    Salvador-Franch, Ferran; Salvà-Catarineu, Montserrat; Oliva, Marc; Gómez-Ortiz, Antonio

    2016-04-01

    Glaciers shaped the headwaters and valley floors in the Eastern Pyrenees during the Last Glaciation at elevations above 2100-2200 m. Since the deglaciation of these areas, periglacial processes have generated a wide range of periglacial landforms, such as rock glaciers, patterned ground and debris slopes. The role of soil temperatures is decisive for the degree of activity of periglacial processes: cryoturbation, solifluction, frost weathering, etc. Nowadays, periglacial processes in the Eastern Pyrenees are driven by a seasonal frozen layer extending 5-7 months. In general, at 2100 m the seasonal frost reaches 20 cm depth, while at 2700 m reaches 50 cm depth. However, soil temperatures, and thus, periglacial processes are strongly controlled by the large interannual variability of the snow cover. With the purpose of understanding the rhythm and intensity of soil freezing/thawing in 2003 we set up several monitoring sites along a vertical transect from the valley floors (1100 m) to the high plateaus (2700 m) across the southern slope of the Puigpedrós massif (2914 m), in the Eastern Pyrenees. The monitoring of soil temperatures has been conducted from 2003 to 2015 in different periglacial landforms using UTL and Hobo loggers. These loggers were installed at depths of 5, 20 and 50 cm at five sites: Calmquerdós (2730 m), Malniu (2230 m), La Feixa (2150 m), Meranges (1600 m) and Das (1097 m). Air temperatures used as reference come from two automatic stations of the Catalan Meteorological Survey in Malniu and Das, and with two loggers installed in La Feixa and Meranges. No permafrost regime was detected in none of the sites. Data shows evidence of the control of snow cover on the depth of the frozen layer and on the number of freeze-thaw cycles. Air temperatures at 2000-2200 m show a mean of 150 freeze-thaw cycles per year. In La Feixa, with very thin snow cover, only 67 cycles are recorded at 5 cm depth and 5 cycles at 50 cm depth. In Malniu, located at a higher elevation showing a thicker and longer snow cover, only 17 freeze-thaw cycles per year are recorded at 5 cm depth, with no cycles recorded at 50 cm depth. Soils remain unfrozen during years with a very thick snow cover. The snow cover is also largely conditioned by the microtopography and exposure to the dominant winds. These factors condition the distribution, duration and intensity of the frozen ground and, thus, determine the intensity of periglacial processes in these areas.

  12. Depth gradients in food web processes linking large lake habitats -presentation

    EPA Science Inventory

    In large lakes around the world, shifts in ecological communities are often associated with water depth. This suggests that there may be concomitant changes in patterns of resource allocation. Using Lake Superior as an example, we explored this idea through stable isotope analyse...

  13. Influence of trophic variables on the depth-range distributions and zonation rates of deep-sea megafauna: the case of the Western Mediterranean assemblages

    NASA Astrophysics Data System (ADS)

    Cartes, Joan E.; Carrassón, Maite

    2004-02-01

    We studied in a deep-sea megafaunal community the relationship of different trophic variables to the depth ranges inhabited by and depth zonation of species, after the ordination of fish and decapod crustaceans in feeding guilds. The variables studied included trophic level of species, food sources exploited, mean weight of predators and prey, feeding intensity and dietary diversity of species. We compiled data on the diets of 18 species of fish and 14 species of decapod crustaceans distributed between 862 and 2261 m in the Catalano-Balearic Basin (Western Mediterranean). Feeding guilds were identified for fish and decapods separately and at two depth strata (862-1400 and 1400-2261 m). The zonation rates (degree of depth overlap) between species within each trophic guild differed by guild and taxon (fish and decapods). The three guilds (G1, G2 and G3) of decapod crustaceans showed quite significantly distinct overlap. G1 (plankton feeders) showed the widest overlap (1326-1381 m) and G3 (benthos feeders) the narrowest (330-476 m). Among the four guilds established for fish, G1, comprising larger predators such as sharks, showed the lowest overlap (between 194 and 382 m). Macrourids overlap ranged between 122 and 553 m, the rest of benthopelagic feeders ranged between 423 and 970 m, and G3 (benthos feeders) gave overlaps between 867 and 1067 m. Significant differences were detected between the depth overlap of most feeding guilds excluding the paired comparisons between G1/macrourids, and G2/G3. Among decapods higher zonation rates (=lower depth overlap) were identified in those guilds occupying higher trophic levels (TL), with a similar, though not as general, trend among fish. In the ordination of species in feeding guilds, TL as indicated by δ15N measurements, was significantly correlated with Dimension 1 (D1) of ordination—MDS-analysis, both in fish and decapods at 862-1400 m. However, deeper (at 1400-2261 m), D1 was not significantly correlated with TL but with the mean weight of predator and prey in fish. In general, TL was again the main explanatory variable (accumulated variances, r2, explained by multi-linear regression—MLR-models between 0.54 and 0.69) both of the zonation rates and the depth ranges occupied by megafauna (fish and decapods together) throughout all the depth range studied. Possible relationships between zonation rates /depth distributions and other biological variables (i.e. egg size, fecundity) are also discussed.

  14. In Terms of the Logarithmic Mean Annual Seismicity Rate and Its Standard Deviation to Present the Gutenberg-Richter Relation

    NASA Astrophysics Data System (ADS)

    Chen, K. P.; Chang, W. Y.; Tsai, Y. B.

    2016-12-01

    The main purpose of this study is to apply an innovative approach to assess the median annual seismicity rates and their dispersions for Taiwan earthquakes in different depth ranges. This approach explicitly represents the Gutenberg-Richter (G-R) relation in terms of both the logarithmic mean annual seismicity rate and its standard deviation, instead of just the arithmetic mean. We use the high-quality seismicity data obtained by the Institute of Earth Sciences (IES) and the Central Weather Bureau (CWB) in an earthquake catalog with homogenized moment magnitudes from 1975 to 2014 for our study. The selected data set is shown to be complete for Mw>3.0. We first use it to illustrate the merits of our new approach for dampening the influence of spuriously large or small event numbers in individual years on the determination of median annual seismicity rate and its standard deviation. We further show that the logarithmic annual seismicity rates indeed possess a well-behaved lognormal distribution. The final results are summarized as follows: log10N=5.75-0.90Mw+/-(0.245-0.01Mw) for focal depth 0 300 km; log10N=5.78-0.94Mw+/-(0.195+0.01Mw) for focal depth 0-35 km; log10N=4.72-0.89Mw+/-(-0.075+0.075Mw) for focal depth 35-70 km; and log10N=4.69-0.88Mw+/-(-0.47+0.16Mw) for focal depth 70-300 km. Above results show distinctly different values for the parameters a and b in the G-R relations for Taiwan earthquakes in different depth ranges. These analytical equations can be readily used for comprehensive probabilistic seismic hazard assessment. Furthermore, a numerical table on the corresponding median annual seismicity rates and their upper and lower bounds at median +/- one standard deviation levels, as calculated from above analytical equations, is presented at the end. This table offers an overall glance of the estimated median annual seismicity rates and their dispersions for Taiwan earthquakes of various magnitudes and focal depths. It is interesting to point out that the seismicity rate of crustal earthquakes, which tend to contribute most hazards, accounts for only about 74% of the overall seismicity rate in Taiwan. Accordingly, direct use of the entire earthquake catalog without differentiating the focal depth may result in substantial overestimates of potential seismic hazards.

  15. The response of a radiophotoluminescent glass dosimeter in megavoltage photon and electron beams.

    PubMed

    Araki, Fujio; Ohno, Takeshi

    2014-12-01

    This study investigated the response of a radiophotoluminescent glass dosimeter (RGD) in megavoltage photon and electron beams. The RGD response was compared with ion chamber measurements for 4-18 MV photons and 6-20 MeV electrons in plastic water phantoms. The response was also calculated via Monte Carlo (MC) simulations with EGSnrc/egs_chamber and Cavity user-codes, respectively. In addition, the response of the RGD cavity was analyzed as a function of field sizes and depths according to Burlin's general cavity theory. The perturbation correction factor, PQ, in the RGD cavity was also estimated from MC simulations for photon and electron beams. The calculated and measured RGD energy response at reference conditions with a 10 × 10 cm(2) field and 10 cm depth in photons was lower by up to 2.5% with increasing energy. The variation in RGD response in the field size range of 5 × 5 cm(2) to 20 × 20 cm(2) was 3.9% and 0.7%, at 10 cm depth for 4 and 18 MV, respectively. The depth dependence of the RGD response was constant within 1% for energies above 6 MV but it increased by 2.6% and 1.6% for a large (20 × 20 cm(2)) field at 4 and 6 MV, respectively. The dose contributions from photon interactions (1 - d) in the RGD cavity, according to Burlin's cavity theory, decreased with increasing energy and decreasing field size. The variation in (1 - d) between field sizes became larger with increasing depth for the lower energies of 4 and 6 MV. PQ for the RGD cavity was almost constant between 0.96 and 0.97 at 10 MV energies and above. Meanwhile, PQ depends strongly on field size and depth for 4 and 6 MV photons. In electron beams, the RGD response at a reference depth, dref, varied by less than 1% over the electron energy range but was on average 4% lower than the response for 6 MV photons. The RGD response for photon beams depends on both (1 - d) and perturbation effects in the RGD cavity. Therefore, it is difficult to predict the energy dependence of RGD response by Burlin's theory and it is recommended to directly measure RGD response or use the MC-calculated RGD response, regarding the practical use. The response for electron beams decreased rapidly at a depth beyond dref for lower mean electron energies <3 MeV and in contrast PQ increased.

  16. Research on subsurface defects of potassium dihydrogen phosphate crystals fabricated by single point diamond turning technique

    NASA Astrophysics Data System (ADS)

    Tie, Guipeng; Dai, Yifan; Guan, Chaoliang; Chen, Shaoshan; Song, Bing

    2013-03-01

    Potassium dihydrogen phosphate (KDP) crystals, which are widely used in high-power laser systems, are required to be free of defects on fabricated subsurfaces. The depth of subsurface defects (SSD) of KDP crystals is significantly influenced by the parameters used in the single point diamond turning technique. In this paper, based on the deliquescent magnetorheological finishing technique, the SSD of KDP crystals is observed and the depths under various cutting parameters are detected and discussed. The results indicate that no SSD is generated under small parameters and with the increase of cutting parameters, SSD appears and the depth rises almost linearly. Although the ascending trends of SSD depths caused by cutting depth and feed rate are much alike, the two parameters make different contributions. Taking the same material removal efficiency as a criterion, a large cutting depth generates shallower SSD depth than a large feed rate. Based on the experiment results, an optimized cutting procedure is obtained to generate defect-free surfaces.

  17. Microlensing of Kepler stars as a method of detecting primordial black hole dark matter.

    PubMed

    Griest, Kim; Lehner, Matthew J; Cieplak, Agnieszka M; Jain, Bhuvnesh

    2011-12-02

    If the dark matter consists of primordial black holes (PBHs), we show that gravitational lensing of stars being monitored by NASA's Kepler search for extrasolar planets can cause significant numbers of detectable microlensing events. A search through the roughly 150,000 light curves would result in large numbers of detectable events for PBHs in the mass range 5×10(-10) M(⊙) to 10(-4) M(⊙). Nondetection of these events would close almost 2 orders of magnitude of the mass window for PBH dark matter. The microlensing rate is higher than previously noticed due to a combination of the exceptional photometric precision of the Kepler mission and the increase in cross section due to the large angular sizes of the relatively nearby Kepler field stars. We also present a new formalism for calculating optical depth and microlensing rates in the presence of large finite-source effects. © 2011 American Physical Society

  18. PARKA II Experiment Utilizing SEA SPIDER. ONR Scientific Plan 2-69

    DTIC Science & Technology

    1969-06-26

    speed and wave height, and take a bathythermograph record to establish depth of surface layer . Log layer depth only with wind and wave data. Step 12...range acoustic propagation experiments designed to support the advanced development objectives of the Long Range Acoustic Propagation Project (LRAPP...environmental experiments conducted under the Long Range Acoustic Propagation Project (LR PP) for the purpose of, evaluating and improving

  19. Geophysical setting of western Utah and eastern Nevada between latitudes 37°45′ and 40°N

    USGS Publications Warehouse

    Mankinen, Edward A.; McKee, Edwin H.; Tripp, Bryce; Krahulec, Ken; Jordan, Lucy

    2009-01-01

    Gravity and aeromagnetic data refine the structural setting for the region of western Utah and eastern Nevada between Snake and Hamlin Valleys on the west and Tule Valley on the east. These data are used here as part of a regional analysis. An isostatic gravity map shows large areas underlain by gravity lows, the most prominent of which is a large semi-circular low associated with the Indian Peak caldera complex in the southwestern part of the study area. Another low underlies the Thomas caldera in the northeast, and linear lows elsewhere indicate low-density basin-fill in all major north-trending graben valleys. Gravity highs reflect pre-Cenozoic rocks mostly exposed in the mountain ranges. In the Confusion Range, however, the gravity high extends about 15 km east of the range front to Coyote Knolls, indicating a broad pediment cut on upper Paleozoic rocks and covered by a thin veneer of alluvium. Aeromagnetic highs sharply delineate Oligocene and Miocene volcanic rocks and intracaldera plutons associated with the Indian Peak caldera complex and the Pioche–Marysvale igneous belt. Jurassic to Eocene plutons and volcanic rocks elsewhere in the study area, however, have much more modest magnetic signatures. Some relatively small magnetic highs in the region are associated with outcrops of volcanic rock, and the continuation of those anomalies indicates that the rocks are probably extensive in the subsurface. A gravity inversion method separating the isostatic gravity anomaly into fields representing pre-Cenozoic basement rocks and Cenozoic basin deposits was used to calculate depth to basement and estimate maximum amounts of alluvial and volcanic fill within the valleys. Maximum depths within the Indian Peak caldera complex average about 2.5 km, locally reaching 3 km. North of the caldera complex, thickness of valley fill in most graben valleys ranges from 1.5 to 3 km thick, with Hamlin and Pine Valleys averaging ~3 km. The main basin beneath Tule Valley is relatively shallow (~0.6 km), reaching a maximum depth of ~1 km over a small area northeast of Coyote Knolls. Maximum horizontal gradients were calculated for both long-wavelength gravity and magnetic-potential data, and these were used to constrain major density and magnetic lineaments. These lineaments help delineate deep-seated crustal structures that separate major tectonic domains, potentially localizing Cenozoic tectonic features that may control regional ground-water flow.

  20. Magnetotelluric Detection Thresholds as a Function of Leakage Plume Depth, TDS and Volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, X.; Buscheck, T. A.; Mansoor, K.

    We conducted a synthetic magnetotelluric (MT) data analysis to establish a set of specific thresholds of plume depth, TDS concentration and volume for detection of brine and CO 2 leakage from legacy wells into shallow aquifers in support of Strategic Monitoring Subtask 4.1 of the US DOE National Risk Assessment Partnership (NRAP Phase II), which is to develop geophysical forward modeling tools. 900 synthetic MT data sets span 9 plume depths, 10 TDS concentrations and 10 plume volumes. The monitoring protocol consisted of 10 MT stations in a 2×5 grid laid out along the flow direction. We model the MTmore » response in the audio frequency range of 1 Hz to 10 kHz with a 50 Ωm baseline resistivity and the maximum depth up to 2000 m. Scatter plots show the MT detection thresholds for a trio of plume depth, TDS concentration and volume. Plumes with a large volume and high TDS located at a shallow depth produce a strong MT signal. We demonstrate that the MT method with surface based sensors can detect a brine and CO 2 plume so long as the plume depth, TDS concentration and volume are above the thresholds. However, it is unlikely to detect a plume at a depth larger than 1000 m with the change of TDS concentration smaller than 10%. Simulated aquifer impact data based on the Kimberlina site provides a more realistic view of the leakage plume distribution than rectangular synthetic plumes in this sensitivity study, and it will be used to estimate MT responses over simulated brine and CO 2 plumes and to evaluate the leakage detectability. Integration of the simulated aquifer impact data and the MT method into the NRAP DREAM tool may provide an optimized MT survey configuration for MT data collection. This study presents a viable approach for sensitivity study of geophysical monitoring methods for leakage detection. The results come in handy for rapid assessment of leakage detectability.« less

  1. Mid-crustal detachment and ramp faulting in the Markham Valley, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Stevens, C.; McCaffrey, R.; Silver, E. A.; Sombo, Z.; English, P.; van der Kevie, J.

    1998-09-01

    Earthquakes and geodetic evidence reveal the presence of a low-angle, mid-crustal detachment fault beneath the Finisterre Range that connects to a steep ramp surfacing near the Ramu-Markham Valley of Papua New Guinea. Waveforms of three large (Mw 6.3 to 6.9) thrust earthquakes that occurred in October 1993 beneath the Finisterre Range 10 to 30 km north of the valley reveal 15° north-dipping thrusts at about 20 km depth. Global Positioning System measurements show up to 20 cm of coseismic slip occurred across the valley, requiring that the active fault extend to within a few hundred meters of the Earth's surface beneath the Markham Valley. Together, these data imply that a gently north-dipping thrust fault in the middle or lower crust beneath the Finisterre Range steepens and shallows southward, forming a ramp fault beneath the north side of the Markham Valley. Waveforms indicate that both the ramp and detachment fault were active during at least one of the earthquakes. While the seismic potential of mid-crustal detachments elsewhere is debated, in Papua New Guinea the detachment fault shows the capability of producing large earthquakes.

  2. Association of Cryptosporidium with bovine faecal particles and implications for risk reduction by settling within water supply reservoirs.

    PubMed

    Brookes, Justin D; Davies, Cheryl M; Hipsey, Matthew R; Antenucci, Jason P

    2006-03-01

    Artificial cow pats were seeded with Cryptosporidium oocysts and subjected to a simulated rainfall event. The runoff from the faecal pat was collected and different particle size fractions were collected within settling columns by exploiting the size-dependent settling velocities. Particle size and Cryptosporidium concentration distribution at 10 cm below the surface was measured at regular intervals over 24 h. Initially a large proportion of the total volume of particles belonged to the larger size classes (> 17 microm). However, throughout the course of the experiment, there was a sequential loss of the larger size classes from the sampling depth and a predominance of smaller particles (< 17 microm). The Cryptosporidium concentration at 10 cm depth did not change throughout the experiment. In the second experiment samples were taken from different depths within the settling column. Initially 26% of particles were in the size range 124-492 microm. However, as these large particles settled there was an enrichment at 30 cm after one hour (36.5-49.3%). There was a concomitant enrichment of smaller particles near the surface after 1 h and 24 h. For Pat 1 there was no difference in Cryptosporidium concentration with depth after 1 h and 24 h. In Pat 2 there was a difference in concentration between the surface and 30 cm after 24 h. However, this could be explained by the settling velocity of a single oocyst. The results suggested that oocysts are not associated with large particles, but exist in faecal runoff as single oocysts and hence have a low (0.1 m(d-1)) settling velocity. The implications of this low settling velocity on Cryptosporidium risk reduction within water supply reservoirs was investigated through the application of a three-dimensional model of oocyst fate and transport to a moderately sized reservoir (26 GL). The model indicated that the role of settling on oocyst concentration reduction within the water column is between one and three orders of magnitude less than that caused by advection and dilution, depending on the strength of hydrodynamic forcing.

  3. Glacial-interglacial dynamics of Antarctic firn columns: comparison between simulations and ice core air-δ15N measurements

    NASA Astrophysics Data System (ADS)

    Capron, E.; Landais, A.; Buiron, D.; Cauquoin, A.; Chappellaz, J.; Debret, M.; Jouzel, J.; Leuenberger, M.; Martinerie, P.; Masson-Delmotte, V.; Mulvaney, R.; Parrenin, F.; Prié, F.

    2012-12-01

    Correct estimate of the firn lock-in depth is essential for correctly linking gas and ice chronologies in ice cores studies. Here, two approaches to constrain the firn depth evolution in Antarctica are presented over the last deglaciation: output of a firn densification model and measurements of δ15N of N2 in air trapped in ice core. Since the firn densification process is largely governed by surface temperature and accumulation rate, we have investigated four ice cores drilled in coastal (Berkner Island, BI, and James Ross Island, JRI) and semi coastal (TALDICE and EPICA Dronning Maud Land, EDML) Antarctic regions. Combined with available δ15N measurements performed from the EPICA Dome C (EDC) site, the studied regions encompass a large range of surface accumulation rate and temperature conditions. While firn densification simulations are able to correctly represent most of the δ15N trends over the last deglaciation measured in the EDC, BI, TALDICE and EDML ice cores, they systematically fail to capture BI and EDML δ15N glacial levels, a mismatch previously seen for Central East Antarctic ice cores. Using empirical constraints of the EDML gas-ice depth offset during the Laschamp event (~ 41 ka), we can rule out the existence of a large convective zone as the explanation of the glacial firn model-δ15N data mismatch for this site. The good match between modelled and measured δ15N at TALDICE as well as the lack of any clear correlation between insoluble dust concentration in snow and δ15N records in the different ice cores suggest that past changes in loads of impurities are not the only main driver of glacial-interglacial changes in firn lock-in depth. We conclude that firn densification dynamics may instead be driven mostly by accumulation rate changes. The mismatch between modelled and measured δ15N may be due to inaccurate reconstruction of past accumulation rate or underestimated influence of accumulation rate in firnification models.

  4. Measuring the influence of aerosols and albedo on sky polarization

    PubMed Central

    Kreuter, A.; Emde, C.; Blumthaler, M.

    2010-01-01

    All-sky distributions of the polarized radiance are measured using an automated fish-eye camera system with a rotating polarizer. For a large range of aerosol and surface albedo situations, the influence on the degree of polarization and sky radiance is investigated. The range of aerosol optical depth and albedo is 0.05–0.5 and 0.1–0.75, respectively. For this range of parameters, a reduction of the degree of polarization from about 0.7 to 0.4 was observed. The analysis is done for 90° scattering angle in the principal plane under clear sky conditions for a broadband channel of 450 ± 25 nm and solar zenith angles between 55° and 60°. Radiative transfer calculations considering three different aerosol mixtures are performed and and agree with the measurements within the statistical error. PMID:24068851

  5. Quantifying the effect of air gap, depth, and range shifter thickness on TPS dosimetric accuracy in superficial PBS proton therapy.

    PubMed

    Shirey, Robert J; Wu, Hsinshun Terry

    2018-01-01

    This study quantifies the dosimetric accuracy of a commercial treatment planning system as functions of treatment depth, air gap, and range shifter thickness for superficial pencil beam scanning proton therapy treatments. The RayStation 6 pencil beam and Monte Carlo dose engines were each used to calculate the dose distributions for a single treatment plan with varying range shifter air gaps. Central axis dose values extracted from each of the calculated plans were compared to dose values measured with a calibrated PTW Markus chamber at various depths in RW3 solid water. Dose was measured at 12 depths, ranging from the surface to 5 cm, for each of the 18 different air gaps, which ranged from 0.5 to 28 cm. TPS dosimetric accuracy, defined as the ratio of calculated dose relative to the measured dose, was plotted as functions of depth and air gap for the pencil beam and Monte Carlo dose algorithms. The accuracy of the TPS pencil beam dose algorithm was found to be clinically unacceptable at depths shallower than 3 cm with air gaps wider than 10 cm, and increased range shifter thickness only added to the dosimetric inaccuracy of the pencil beam algorithm. Each configuration calculated with Monte Carlo was determined to be clinically acceptable. Further comparisons of the Monte Carlo dose algorithm to the measured spread-out Bragg Peaks of multiple fields used during machine commissioning verified the dosimetric accuracy of Monte Carlo in a variety of beam energies and field sizes. Discrepancies between measured and TPS calculated dose values can mainly be attributed to the ability (or lack thereof) of the TPS pencil beam dose algorithm to properly model secondary proton scatter generated in the range shifter. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  6. Wavelength-dependent penetration depth of near infrared radiation into cartilage.

    PubMed

    Padalkar, M V; Pleshko, N

    2015-04-07

    Articular cartilage is a hyaline cartilage that lines the subchondral bone in the diarthrodial joints. Near infrared (NIR) spectroscopy is emerging as a nondestructive modality for the evaluation of cartilage pathology; however, studies regarding the depth of penetration of NIR radiation into cartilage are lacking. The average thickness of human cartilage is about 1-3 mm, and it becomes even thinner as OA progresses. To ensure that spectral data collected is restricted to the tissue of interest, i.e. cartilage in this case, and not from the underlying subchondral bone, it is necessary to determine the depth of penetration of NIR radiation in different wavelength (frequency) regions. In the current study, we establish how the depth of penetration varies throughout the NIR frequency range (4000-10 000 cm(-1)). NIR spectra were collected from cartilage samples of different thicknesses (0.5 mm to 5 mm) with and without polystyrene placed underneath. A separate NIR spectrum of polystyrene was collected as a reference. It was found that the depth of penetration varied from ∼1 mm to 2 mm in the 4000-5100 cm(-1) range, ∼3 mm in the 5100-7000 cm(-1) range, and ∼5 mm in the 7000-9000 cm(-1) frequency range. These findings suggest that the best NIR region to evaluate cartilage with no subchondral bone contribution is in the range of 4000-7000 cm(-1).

  7. Level II scour analysis for Bridge 37, (BRNETH00740037) on Town Highway 74, crossing South Peacham Brook, Barnet, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Severance, Timothy

    1997-01-01

    Contraction scour for all modelled flows ranged from 15.8 to 22.5 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 6.7 to 11.1 ft. The worst-case abutment scour also occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in Tables 1 and 2. A cross-section of the scour computed at the bridge is presented in Figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  8. Simultaneous determination of the quantity and isotopic signature of dissolved organic matter from soil water using high-performance liquid chromatography/isotope ratio mass spectrometry.

    PubMed

    Scheibe, Andrea; Krantz, Lars; Gleixner, Gerd

    2012-01-30

    We assessed the accuracy and utility of a modified high-performance liquid chromatography/isotope ratio mass spectrometry (HPLC/IRMS) system for measuring the amount and stable carbon isotope signature of dissolved organic matter (DOM) <1 µm. Using a range of standard compounds as well as soil solutions sampled in the field, we compared the results of the HPLC/IRMS analysis with those from other methods for determining carbon and (13)C content. The conversion efficiency of the in-line wet oxidation of the HPLC/IRMS averaged 99.3% for a range of standard compounds. The agreement between HPLC/IRMS and other methods in the amount and isotopic signature of both standard compounds and soil water samples was excellent. For DOM concentrations below 10 mg C L(-1) (250 ng C total) pre-concentration or large volume injections are recommended in order to prevent background interferences. We were able to detect large differences in the (13)C signatures of soil solution DOM sampled in 10 cm depth of plots with either C3 or C4 vegetation and in two different parent materials. These measurements also demonstrated changes in the (13)C signature that demonstrate rapid loss of plant-derived C with depth. Overall the modified HLPC/IRMS system has the advantages of rapid sample preparation, small required sample volume and high sample throughput, while showing comparable performance with other methods for measuring the amount and isotopic signature of DOM. Copyright © 2011 John Wiley & Sons, Ltd.

  9. Pose-Invariant Face Recognition via RGB-D Images.

    PubMed

    Sang, Gaoli; Li, Jing; Zhao, Qijun

    2016-01-01

    Three-dimensional (3D) face models can intrinsically handle large pose face recognition problem. In this paper, we propose a novel pose-invariant face recognition method via RGB-D images. By employing depth, our method is able to handle self-occlusion and deformation, both of which are challenging problems in two-dimensional (2D) face recognition. Texture images in the gallery can be rendered to the same view as the probe via depth. Meanwhile, depth is also used for similarity measure via frontalization and symmetric filling. Finally, both texture and depth contribute to the final identity estimation. Experiments on Bosphorus, CurtinFaces, Eurecom, and Kiwi databases demonstrate that the additional depth information has improved the performance of face recognition with large pose variations and under even more challenging conditions.

  10. Evaluating the value of ENVISAT ASAR Data for the mapping and monitoring of peatland water table depths

    NASA Astrophysics Data System (ADS)

    Bechtold, Michel; Schlaffer, Stefan

    2015-04-01

    The Advanced Synthetic Aperture Radar (ASAR) onboard ENVISAT collected C-Band microwave backscatter data from 2005 to 2012. Backscatter in the C-Band depends to a large degree on the roughness and the moisture status of vegetation and soil surface with a penetration depth of ca. 3 cm. In wetlands with stable high water levels, the annual soil surface moisture dynamics are very distinct compared to the surrounding areas, which allows the monitoring of such environments with ASAR data (Reschke et al. 2012). Also in drained peatlands, moisture status of vegetation and soil surface strongly depends on water table depth due to high hydraulic conductivities of many peat soils in the low suction range (Dettmann et al. 2014). We hypothesize that this allows the characterization of water table depths with ASAR data. Here we analyze whether ASAR data can be used for the spatial and temporal estimation of water table depths in different peatlands (natural, near-natural, agriculturally-used and rewetted). Mapping and monitoring of water table depths is of crucial importance, e.g. for upscaling greenhouse gas emissions and evaluating the success of peatland rewetting projects. Here, ASAR data is analyzed with a new map of water table depths for the organic soils in Germany (Bechtold et al. 2014) as well as with a comprehensive data set of monitored peatland water levels from 1100 dip wells and 54 peatlands. ASAR time series from the years 2005-2012 with irregular temporal sampling intervals of 3-14 days were processed. Areas covered by snow were masked. Primary results about the accuracy of spatial estimates show significant correlations between long-term backscatter statistics and spatially-averaged water table depths extracted from the map at the resolution of the ASAR data. Backscatter also correlates with long-term averages of point-scale water table depth data of the monitoring wells. For the latter, correlation is highest between the dry reference backscatter values and summer mean water table depth. Using the boosted regression tree model of Bechtold et al., we evaluate whether the ASAR data can improve prediction accuracy and/or replace parts of ancillary data that is often not available in other countries. In the temporal domain primary results often show a better dependency between backscatter and water table depths compared to the spatial domain. For a variety of vegetation covers the temporal monitoring potential of ASAR data is evaluated at the level of annual water table depth statistics. Bechtold, M., Tiemeyer, B., Laggner, A., Leppelt, T., Frahm, E., and Belting, S., 2014. Large-scale regionalization of water table depth in peatlands optimized for greenhouse gas emission upscaling, Hydrol. Earth Syst. Sci., 18, 3319-3339. Dettmann, U., Bechtold, M., Frahm, E., Tiemeyer, B., 2014. On the applicability of unimodal and bimodal van Genuchten-Mualem based models to peat and other organic soils under evaporation conditions. Journal of Hydrology, 515, 103-115. Reschke, J., Bartsch, A., Schlaffer, S., Schepaschenko, D., 2012. Capability of C-Band SAR for Operational Wetland Monitoring at High Latitudes. Remote Sens. 4, 2923-2943.

  11. The changing face of the lithosphere-asthenosphere boundary: Imaging continental-scale patterns in upper mantle structure across the contiguous U.S. with Sp converted waves

    NASA Astrophysics Data System (ADS)

    Hopper, E.; Fischer, K. M.

    2017-12-01

    The contiguous U.S.A. is a rich tapestry of tectonism spanning over two billion years. On the broadest scale, this complex history can be simplified to three regimes: the tectonically active western U.S., the largely quiescent Archean and Proterozoic cratons of the central U.S., and the Phanerozoic orogen and rifted margin of the eastern U.S. The transitions between these regions can be clearly observed with Sp converted wave images of the uppermost mantle. We use common conversion point stacked Sp waves recorded by EarthScope's Transportable Array and other permanent and temporary broadband stations to image the transition from a strong, sharp velocity decrease in the shallow upper mantle of the western U.S. (the lithosphere-asthenosphere boundary, or LAB) to deeper, more diffuse features moving east that largely lie within the lithosphere. Only sparse, localized, weak phases are seen at LAB depths beneath the cratonic interior. This transition is clearly revealed by cluster analysis, which also shows the eastern U.S. as more similar to the western U.S. than the ancient interior, particularly beneath New England. In the western U.S., the observed strong LAB indicates a large enough velocity decrease to imply that melt has ponded beneath the lithosphere. We compare western U.S. LAB properties to the age distribution of most recent volcanism from NavDat. While LAB properties vary widely within a given age range, their distributions indicate a relationship between age of surface volcanism and LAB phase strength and breadth. LAB depth does not appear to have a clear correlation. In general, the LAB is strongest and broadest beneath zones that have been magmatically active in the last 50 Myr, suggesting an observable fraction of melt that is distributed over a depth range of 10's of kilometers, perhaps due to variations in the degree of thermochemical erosion of the lithosphere even on very local scales. The LAB is strongest and broadest for magmatic ages of 5-10 Ma, but beneath the youngest volcanism (<5 Ma), the LAB is seen as significantly weaker, suggesting more complete destruction of the high velocity lid. The timescale of these changes in LAB character suggests the presence and possibly production of melt in the asthenosphere for many 10's of Myr after surface volcanism ceases.

  12. Evaluation of the dosimetric properties of a synthetic single crystal diamond detector in high energy clinical proton beams.

    PubMed

    Mandapaka, A K; Ghebremedhin, A; Patyal, B; Marinelli, Marco; Prestopino, G; Verona, C; Verona-Rinati, G

    2013-12-01

    To investigate the dosimetric properties of a synthetic single crystal diamond Schottky diode for accurate relative dose measurements in large and small field high-energy clinical proton beams. The dosimetric properties of a synthetic single crystal diamond detector were assessed by comparison with a reference Markus parallel plate ionization chamber, an Exradin A16 microionization chamber, and Exradin T1a ion chamber. The diamond detector was operated at zero bias voltage at all times. Comparative dose distribution measurements were performed by means of Fractional depth dose curves and lateral beam profiles in clinical proton beams of energies 155 and 250 MeV for a 14 cm square cerrobend aperture and 126 MeV for 3, 2, and 1 cm diameter circular brass collimators. ICRU Report No. 78 recommended beam parameters were used to compare fractional depth dose curves and beam profiles obtained using the diamond detector and the reference ionization chamber. Warm-up∕stability of the detector response and linearity with dose were evaluated in a 250 MeV proton beam and dose rate dependence was evaluated in a 126 MeV proton beam. Stem effect and the azimuthal angle dependence of the diode response were also evaluated. A maximum deviation in diamond detector signal from the average reading of less than 0.5% was found during the warm-up irradiation procedure. The detector response showed a good linear behavior as a function of dose with observed deviations below 0.5% over a dose range from 50 to 500 cGy. The detector response was dose rate independent, with deviations below 0.5% in the investigated dose rates ranging from 85 to 300 cGy∕min. Stem effect and azimuthal angle dependence of the diode signal were within 0.5%. Fractional depth dose curves and lateral beam profiles obtained with the diamond detector were in good agreement with those measured using reference dosimeters. The observed dosimetric properties of the synthetic single crystal diamond detector indicate that its behavior is proton energy independent and dose rate independent in the investigated energy and dose rate range and it is suitable for accurate relative dosimetric measurements in large as well as in small field high energy clinical proton beams.

  13. Enabling large-scale next-generation sequence assembly with Blacklight

    PubMed Central

    Couger, M. Brian; Pipes, Lenore; Squina, Fabio; Prade, Rolf; Siepel, Adam; Palermo, Robert; Katze, Michael G.; Mason, Christopher E.; Blood, Philip D.

    2014-01-01

    Summary A variety of extremely challenging biological sequence analyses were conducted on the XSEDE large shared memory resource Blacklight, using current bioinformatics tools and encompassing a wide range of scientific applications. These include genomic sequence assembly, very large metagenomic sequence assembly, transcriptome assembly, and sequencing error correction. The data sets used in these analyses included uncategorized fungal species, reference microbial data, very large soil and human gut microbiome sequence data, and primate transcriptomes, composed of both short-read and long-read sequence data. A new parallel command execution program was developed on the Blacklight resource to handle some of these analyses. These results, initially reported previously at XSEDE13 and expanded here, represent significant advances for their respective scientific communities. The breadth and depth of the results achieved demonstrate the ease of use, versatility, and unique capabilities of the Blacklight XSEDE resource for scientific analysis of genomic and transcriptomic sequence data, and the power of these resources, together with XSEDE support, in meeting the most challenging scientific problems. PMID:25294974

  14. Structure of Infaunal Communities on the Beaufort Sea Shelf and Slope: Insights from Morphological and Environmental DNA Sequencing Approaches

    NASA Astrophysics Data System (ADS)

    Hardy, S. M.; Bik, H.; Walker, A.; Sharma, J.; Blanchard, A.

    2016-02-01

    Rapid change is occurring in the Arctic concurrently with increased human activity, yet our knowledge of the structure and function of high-Arctic sediment communities is still rudimentary. The Beaufort Sea is particularly poorly sampled, and largely unexplored at slope depths, providing little information with which to assess the impacts of petroleum exploration activities now beginning in this area. We are investigating diversity and community structure of meio- and macrobenthic infauna on the continental shelf and slope of the Beaufort Sea across a range of depths (50 to 1000 m) using traditional taxonomic and environmental DNA sequencing approaches, and comparing results to additional sites in the adjacent NE Chukchi Sea petroleum lease-sale area. The Beaufort slope is topographically complex and characterized by an east-west gradient in benthic habitat characteristics, with heavy input of terrestrial organic matter particularly in the region of the Mackenzie River delta. Warmer, saltier subsurface Atlantic water masses impact benthic communities at mid-slope depths, likely influencing turnover in community structure observed with depth. Food resources are variable across the region, with very high sediment chlorophyll concentrations at 350 m depth in some areas. Differences in nematode assemblages were detected across the Beaufort Sea shelf/slope, across depths within the Beaufort Sea, and between the Beaufort and adjacent NE Chukchi Sea. These differences were apparent in both morphological and environmental sequencing data. Macrofaunal communities showed variable community structure among transects, with high abundance and high dominance in polychaete assemblages coincident with the chlorophyll maximum. Sequencing data also revealed an abundance of protists in sediments which have been mostly ignored in studies of ecosystem dynamics in this region, and may represent an important component of the food web.

  15. Locomotion and behavior of Humboldt squid, Dosidicus gigas, in relation to natural hypoxia in the Gulf of California, Mexico.

    PubMed

    Gilly, William F; Zeidberg, Louis D; Booth, J Ashley T; Stewart, Julia S; Marshall, Greg; Abernathy, Kyler; Bell, Lauren E

    2012-09-15

    We studied the locomotion and behavior of Dosidicus gigas using pop-up archival transmitting (PAT) tags to record environmental parameters (depth, temperature and light) and an animal-borne video package (AVP) to log these parameters plus acceleration along three axes and record forward-directed video under natural lighting. A basic cycle of locomotor behavior in D. gigas involves an active climb of a few meters followed by a passive (with respect to jetting) downward glide carried out in a fins-first direction. Temporal summation of such climb-and-glide events underlies a rich assortment of vertical movements that can reach vertical velocities of 3 m s(-1). In contrast to such rapid movements, D. gigas spends more than 80% of total time gliding at a vertical velocity of essentially zero (53% at 0±0.05 m s(-1)) or sinking very slowly (28% at -0.05 to -0.15 m s(-1)). The vertical distribution of squid was compared with physical features of the local water column (temperature, oxygen and light). Oxygen concentrations of ≤20 μmol kg(-1), characteristic of the midwater oxygen minimum zone (OMZ), can influence the daytime depth of squid, but this depends on location and season, and squid can 'decouple' from this environmental feature. Light is also an important factor in determining daytime depth, and temperature can limit nighttime depth. Vertical velocities were compared over specific depth ranges characterized by large differences in dissolved oxygen. Velocities were generally reduced under OMZ conditions, with faster jetting being most strongly affected. These data are discussed in terms of increased efficiency of climb-and-glide swimming and the potential for foraging at hypoxic depths.

  16. Joint optic disc and cup boundary extraction from monocular fundus images.

    PubMed

    Chakravarty, Arunava; Sivaswamy, Jayanthi

    2017-08-01

    Accurate segmentation of optic disc and cup from monocular color fundus images plays a significant role in the screening and diagnosis of glaucoma. Though optic cup is characterized by the drop in depth from the disc boundary, most existing methods segment the two structures separately and rely only on color and vessel kink based cues due to the lack of explicit depth information in color fundus images. We propose a novel boundary-based Conditional Random Field formulation that extracts both the optic disc and cup boundaries in a single optimization step. In addition to the color gradients, the proposed method explicitly models the depth which is estimated from the fundus image itself using a coupled, sparse dictionary trained on a set of image-depth map (derived from Optical Coherence Tomography) pairs. The estimated depth achieved a correlation coefficient of 0.80 with respect to the ground truth. The proposed segmentation method outperformed several state-of-the-art methods on five public datasets. The average dice coefficient was in the range of 0.87-0.97 for disc segmentation across three datasets and 0.83 for cup segmentation on the DRISHTI-GS1 test set. The method achieved a good glaucoma classification performance with an average AUC of 0.85 for five fold cross-validation on RIM-ONE v2. We propose a method to jointly segment the optic disc and cup boundaries by modeling the drop in depth between the two structures. Since our method requires a single fundus image per eye during testing it can be employed in the large-scale screening of glaucoma where expensive 3D imaging is unavailable. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Broadband sensitive pump-probe setup for ultrafast optical switching of photonic nanostructures and semiconductors.

    PubMed

    Euser, Tijmen G; Harding, Philip J; Vos, Willem L

    2009-07-01

    We describe an ultrafast time resolved pump-probe spectroscopy setup aimed at studying the switching of nanophotonic structures. Both femtosecond pump and probe pulses can be independently tuned over broad frequency range between 3850 and 21,050 cm(-1). A broad pump scan range allows a large optical penetration depth, while a broad probe scan range is crucial to study strongly photonic crystals. A new data acquisition method allows for sensitive pump-probe measurements, and corrects for fluctuations in probe intensity and pump stray light. We observe a tenfold improvement of the precision of the setup compared to laser fluctuations, allowing a measurement accuracy of better than DeltaR=0.07% in a 1 s measurement time. Demonstrations of the improved technique are presented for a bulk Si wafer, a three-dimensional Si inverse opal photonic bandgap crystal, and z-scan measurements of the two-photon absorption coefficient of Si, GaAs, and the three-photon absorption coefficient of GaP in the infrared wavelength range.

  18. Water Raman normalization of airborne laser fluorosensor measurements - A computer model study

    NASA Technical Reports Server (NTRS)

    Poole, L. R.; Esaias, W. E.

    1982-01-01

    The technique for normalizing airborne lidar measurements of chlorophyll fluoresence by the water Raman scattering signal is investigated for laser-excitation wavelengths of 480 and 532 nm using a semianalytic Monte Carlo methodology (SALMON). The signal-integration depth for chlorophyll fluorescence Z(90,F), is found to be insensitive to excitation wavelength and ranges from a maximum of 4.5 m in clearest waters to less than 1 m at a chlorophyll concentration of 20 microgram/liter. For excitation at 532 nm, the signal-integration depth for Raman scattering, Z(90,R), is comparable to Z(90,F). For excitation at 480 nm, Z(90,R) is four times as large as Z(90,F) in clearest waters but nearly equivalent at chlorophyll concentrations greater than 2-3 microgram/liter. Absolute signal levels are stronger with excitation at 480 nm than with excitation at 532 nm, but this advantage must be weighed against potential ambiguities resulting from different integration depths for the fluorescence and Raman scattering signals in clearer waters. To the precision of the simulations, Raman normalization produces effectively linear response to chlorophyll concentration for both excitation wavelengths.

  19. An elastic-plastic fracture mechanics analysis of weld-toe surface cracks in fillet welded T-butt joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, B.

    1994-12-31

    This paper describes an elastic-plastic fracture mechanics (EPFM) study of shallow weld-toe cracks. Two limiting crack configurations, plane strain edge crack and semi-circular surface crack in fillet welded T-butt plate joint, were analyzed using the finite element method. Crack depth ranging from 2 to 40% of plate thickness were considered. The elastic-plastic analysis, assuming power-law hardening relationship and Mises yield criterion, was based on incremental plasticity theory. Tension and bending loads applied were monotonically increased to a level causing relatively large scale yielding at the crack tip. Effects of weld-notch geometry and ductile material modeling on prediction of fracture mechanicsmore » characterizing parameter were assessed. It was found that the weld-notch effect reduces and the effect of material modeling increases as crack depth increases. Material modeling is less important than geometric modeling in analysis of very shallow cracks but is more important for relatively deeper cracks, e.g. crack depth more than 20% of thickness. The effect of material modeling can be assessed using a simplified structural model. Weld magnification factors derived assuming linear elastic conditions can be applied to EPFM characterization.« less

  20. Design, Fabrication and Characterization of A Bi-Frequency Co-Linear Array

    PubMed Central

    Wang, Zhuochen; Li, Sibo; Czernuszewicz, Tomasz J; Gallippi, Caterina M.; Liu, Ruibin; Geng, Xuecang

    2016-01-01

    Ultrasound imaging with high resolution and large penetration depth has been increasingly adopted in medical diagnosis, surgery guidance, and treatment assessment. Conventional ultrasound works at a particular frequency, with a −6 dB fractional bandwidth of ~70 %, limiting the imaging resolution or depth of field. In this paper, a bi-frequency co-linear array with resonant frequencies of 8 MHz and 20 MHz was investigated to meet the requirements of resolution and penetration depth for a broad range of ultrasound imaging applications. Specifically, a 32-element bi-frequency co-linear array was designed and fabricated, followed by element characterization and real-time sectorial scan (S-scan) phantom imaging using a Verasonics system. The bi-frequency co-linear array was tested in four different modes by switching between low and high frequencies on transmit and receive. The four modes included the following: (1) transmit low, receive low, (2) transmit low, receive high, (3) transmit high, receive low, (4) transmit high, receive high. After testing, the axial and lateral resolutions of all modes were calculated and compared. The results of this study suggest that bi-frequency co-linear arrays are potential aids for wideband fundamental imaging and harmonic/sub-harmonic imaging. PMID:26661069

  1. Hybrid Welding of 45 mm High Strength Steel Sections

    NASA Astrophysics Data System (ADS)

    Bunaziv, Ivan; Frostevarg, Jan; Akselsen, Odd M.; Kaplan, Alexander F.

    Thick section welding has significant importance for oil and gas industry in low temperature regions. Arc welding is usually employed providing suitable quality joints with acceptable toughness at low temperatures with very limited productivity compared to modern high power laser systems. Laser-arc hybrid welding (LAHW) can enhance the productivity by several times due to higher penetration depth from laser beam and combined advantages of both heat sources. LAHW was applied to join 45 mm high strength steel with double-sided technique and application of metal cored wire. The process was captured by high speed camera, allowing process observation in order to identify the relation of the process stability on weld imperfections and efficiency. Among the results, it was found that both arc power and presence of a gap increased penetration depth, and that higher welding speeds cause unstable processing and limits penetration depth. Over a wide range of heat inputs, the welds where found to consist of large amounts of fine-grained acicular ferrite in the upper 60-75% part of welds. At the root filler wire mixing was less and cooling faster, and thus found to have bainitic transformation. Toughness of deposited welds provided acceptable toughness at -50 °C with some scattering.

  2. Habitat heterogeneity of hadal trenches: Considerations and implications for future studies

    NASA Astrophysics Data System (ADS)

    Stewart, Heather A.; Jamieson, Alan J.

    2018-02-01

    The hadal zone largely comprises a series of subduction trenches that do not form part of the continental shelf-slope rise to abyssal plain continuum. Instead they form geographically isolated clusters of deep-sea (6000-11,000 m water depth) environments. There is a growing realization in hadal science that ecological patterns and processes are not driven solely by responses to hydrostatic pressure, with comparable levels of habitat heterogeneity as observed in other marine biozones. Furthermore, this heterogeneity can be expressed at multiple scales from inter-trench levels (degrees of geographical isolation, and biochemical province), to intra-trench levels (variation between trench flanks and axis), topographical features within the trench interior (sedimentary basins, ridges, escarpments, 'deeps', seamounts) to the substrate of the trench floor (seabed-sediment composition, mass movement deposits, bedrock outcrop). Using best available bathymetry data combined with the largest lander-derived imaging dataset that spans the full depth range of three hadal trenches (including adjacent slopes); the Mariana, Kermadec and New Hebrides trenches, the topographic variability, fine-scale habitat heterogeneity and distribution of seabed sediments of these three trenches have been assessed for the first time. As well as serving as the first descriptive study of habitat heterogeneity at hadal depths, this study also provides guidance for future hadal sampling campaigns taking into account geographic isolation, total trench particulate organic matter flux, maximum water depth and area.

  3. Deep-sea scleractinian coral age and depth distributions in the northwest Atlantic for the last 225,000 years

    USGS Publications Warehouse

    Robinson, L.F.; Adkins, J.F.; Scheirer, D.S.; Fernandez, D.P.; Gagnon, A.; Waller, R.G.

    2007-01-01

    Deep-sea corals have grown for over 200,000 yrs on the New England Seamounts in the northwest Atlantic, and this paper describes their distribution both with respect to depth and time. Many thousands of fossil scleractinian corals were collected on a series of cruises from 2003-2005; by contrast, live ones were scarce. On these seamounts, the depth distribution of fossil Desmophyllum dianthus (Esper, 1794) is markedly different to that of the colonial scleractinian corals, extending 750 m deeper in the water column to a distinct cut-off at 2500 m. This cut-off is likely to be controlled by the maximum depth of a notch-shaped feature in the seamount morphology. The ages of D. dianthus corals as determined by U-series measurements range from modern to older than 200,000 yrs. The age distribution is not constant over time, and most corals have ages from the last glacial period. Within the glacial period, increases in coral population density at Muir and Manning Seamounts coincided with times at which large-scale ocean circulation changes have been documented in the deep North Atlantic. Ocean circulation changes have an effect on coral distributions, but the cause of the link is not known. ?? 2007 Rosenstiel School of Marine and Atmospheric Science of the University of Miami.

  4. Shear heating and metamorphism in subduction zones, 2. The seismic-aseismic transition at c. 50 km depth.

    NASA Astrophysics Data System (ADS)

    Castro, A. E.; Spear, F. S.; Kohn, M. J.

    2017-12-01

    Recent work demonstrates that shear heating, which is required for explaining fore-arc heat flow, reconciles thermal models with pressure-temperature (P-T) conditions determined from exhumed metamorphic rocks, i.e. exhumed rocks are representative of normal subduction. However, the range of subduction conditions on Earth (age, angle and rate of subducting plate, character of overriding plate, coefficient of friction, etc.) implies a ≥250 °C range of corresponding temperatures at the depth of the seismic-aseismic transition (SAT), which is consistently observed at 40-60 km in subduction zones worldwide. Here we show that the predicted rheologies and mineral stabilities for 3 common rock types fail to explain the global consistency of the SAT depth, and we propose that mechanical removal of the weakest rocks is required. Using either realistic thermal models, or P-T conditions recorded by exhumed metamorphic rocks, a substantial subset of depths corresponding with any single petrologic or rheological process falls outside the relatively restricted 40-60 km depth of the SAT. For example, a thermal weakening mechanism (the brittle-ductile transition) implies a wide range of depths, regardless of proposed T (e.g. 20-30 km (300 °C), 25-60 km (400 °C), 35 to >85 km (500 °C), etc). Similarly, individual dehydration reactions span a larger range of depths than observed for the SAT; for example, chlorite-out (metapelites: 35 to >85 km; metabasalts: 40 to >85 km), brucite-out (35-75 km) and serpentine/talc-out (50 to >80 km). The failure of a single petrologic and rheological trigger for these characteristic rocks to produce a consistent SAT depth implies that these rocks do not control the SAT, and consequently must not be abundant at depths below the SAT. That is, these hydrated, weak, and buoyant rocks must be squeezed out of the subduction system, although subduction of discontinuous blobs or lenses to greater depth, e.g. to feed arc volcanoes, may occur. The SAT instead may represent progressive strengthening of the subduction interface through mechanical exclusion of weak rocks and formation of stiffer minerals with increasing temperature and depth. Ultimately, as the strengths of the slab and mantle wedge converge at c. 80 km depth, mechanical coupling occurs, driving mantle wedge convection.

  5. Cosmogenic nuclide budgeting of floodplain sediment transfer

    NASA Astrophysics Data System (ADS)

    Wittmann, H.; von Blanckenburg, F.

    2009-08-01

    Cosmogenic nuclides produced in quartz may either decay or accumulate while sediment is moved through a river basin. A change in nuclide concentration resulting from storage in a floodplain is potentially important in large drainage basins in which sediment is prone to repeated burial and remobilization as a river migrates through its floodplain. We have modeled depth- and time-dependent cosmogenic nuclide concentration changes for 10Be, 26Al, and 14C during sediment storage and mixing in various active floodplain settings ranging from confined, shallow rivers with small floodplains to foreland-basin scale floodplains traversed by deep rivers. Floodplain storage time, estimated from channel migration rates, ranges from 0.4 kyr for the Beni River basin (Bolivia) to 7 kyr for the Amazon River basin, while floodplain storage depth, estimated from channel depth, ranges from 1 to 25 m. For all modeled active floodplain settings, the long-lived nuclides 10Be and 26Al show neither significant increase in nuclide concentration from irradiation nor decrease from decay. We predict a hypothetical response time after which changes in 10Be or 26Al concentrations become analytically resolvable. This interval ranges from 0.07 to 2 Myr and exceeds in all cases the typical residence time of sediment in a floodplain. Due to the much shorter half life of 14C, nuclide concentrations modeled for the in situ-produced variety of this nuclide are, however, sensitive to floodplain storage on residence times of < 20 kyr. The cosmogenic nuclide composition of old deposits in currently inactive floodplains that have been isolated for periods of millions of years from the river that once deposited them is predicted to either increase or decrease in 10Be and 26Al concentration, depending on the depositional depth. These conditions can be evaluated using the 26Al/ 10Be ratio that readily discloses the depth and duration of storage. We illustrate these models with examples from the Amazon basin. As predicted, modern bedload collected from an Amazon tributary, the Bolivian Beni River, shows no systematic change in nuclide concentration as sediment is moved through 500 km of floodplain by river meandering. In contrast, in the central Amazon floodplain currently untouched by the modern river system, low 26Al/ 10Be ratios account for minimum burial depths of 5 to 10 m for a duration of > 5 Myr. The important result of this analysis is that in all likely cases of active floodplains, cosmogenic 10Be and 26Al concentrations remain virtually unchanged over the interval sediment usually spends in the basin. Thus, spatially-averaged denudation rates of the sediment-producing area can be inferred throughout the entire basin, provided that nuclide production rates are scaled for the altitudes of the sediment-producing area only, because floodplain storage does not modify nuclide concentrations introduced from the sediment source area.

  6. Increased fracture depth range in controlled spalling of (100)-oriented germanium via electroplating

    DOE PAGES

    Crouse, Dustin; Simon, John; Schulte, Kevin L.; ...

    2018-01-31

    Controlled spalling in (100)-oriented germanium using a nickel stressor layer shows promise for semiconductor device exfoliation and kerfless wafering. Demonstrated spall depths of 7-60 um using DC sputtering to deposit the stressor layer are appropriate for the latter application but spall depths < 5 um may be required to minimize waste for device applications. This work investigates the effect of tuning both electroplating current density and electrolyte chemistry on the residual stress in the nickel and on the achievable spall depth range for the Ni/Ge system as a lower-cost, higher-throughput alternative to sputtering. By tuning current density and electrolyte phosphorousmore » concentration, it is shown that electroplating can successfully span the same range of spalled thicknesses as has previously been demonstrated by sputtering and can reach sufficiently high stresses to enter a regime of thickness (<7 um) appropriate to minimize substrate consumption for device applications.« less

  7. Increased fracture depth range in controlled spalling of (100)-oriented germanium via electroplating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crouse, Dustin; Simon, John; Schulte, Kevin L.

    Controlled spalling in (100)-oriented germanium using a nickel stressor layer shows promise for semiconductor device exfoliation and kerfless wafering. Demonstrated spall depths of 7-60 um using DC sputtering to deposit the stressor layer are appropriate for the latter application but spall depths < 5 um may be required to minimize waste for device applications. This work investigates the effect of tuning both electroplating current density and electrolyte chemistry on the residual stress in the nickel and on the achievable spall depth range for the Ni/Ge system as a lower-cost, higher-throughput alternative to sputtering. By tuning current density and electrolyte phosphorousmore » concentration, it is shown that electroplating can successfully span the same range of spalled thicknesses as has previously been demonstrated by sputtering and can reach sufficiently high stresses to enter a regime of thickness (<7 um) appropriate to minimize substrate consumption for device applications.« less

  8. Hydrogeologic Factors Affecting Base-Flow Yields in the Jefferson County Area, West Virginia, October-November 2007

    USGS Publications Warehouse

    Evaldi, Ronald D.; Paybins, Katherine S.; Kozar, Mark D.

    2009-01-01

    Base-flow yields at approximately the annual 75-percent-duration flow were determined for watersheds in the Jefferson County area, WV, from stream-discharge measurements made during October 31 to November 2, 2007. Five discharge measurements of Opequon Creek defined increased flow from 29,000,000 gallons per day (gal/d) at Carters Ford to 51,400,000 gal/d near Vanville. No flow was observed at 45 of 110 additional stream sites inspected, and discharge at the 65 flowing stream sites ranged from 1,940 to 17,100,000 gallons per day (gal/d). Discharge at 28 springs ranged from no flow to 2,430,000 gal/d. Base-flow yields were computed as the change in stream-channel discharge between measurement sites divided by the change in drainage area between the sites. Yields were negative for losing (influent) channel reaches and positive for gaining (effluent) reaches. Channels in 14 watersheds were determined to have lost flow ranging from -9.6 to -1,770 gallons per day per acre (gal/d/acre). Channels in 51 watersheds were determined to have gained flow ranging from 3.4 to 235,000 gal/d/acre. Water temperature at the stream sites ranged from 5.0 to 16.3 deg C (quarry pumpage), and specific conductance ranged from 51 to 881 microsiemens per centimeter (uS/cm). Water temperature at the springs ranged from 11.5 to 15.0 deg C, and specific conductance ranged from 22 to 958 uS/cm. Large springs in some watersheds in western Jefferson County are adjacent to other watersheds with little or no surface-water discharge; this is probably the result of interbasin transfer of groundwater along faults that dissect the area. Most watersheds located adjacent to the Potomac River in northeastern Jefferson County were not flowing during this study; this is most likely because the Potomac River is deeply incised, and groundwater flows directly to it rather than to the local stream systems in these areas. Except for one watershed with a yield of 651 gal/d/acre, no watersheds in northeastern Jefferson County yielded more than 305 gal/d/acre. Base-flow yields of several watersheds in south-central Jefferson County exceeded 400 gal/d/acre, and the effect of the Shenadoah River on base flows in the watershed appears to be less than that of the Potomac River in the northeastern part of the county. In the southeastern part of the county, because of steep relief and low-permeability bedrock, several streams were not flowing at the time of the study, and yields from all flowing streams were all less than 100 gal/d/acre. On the basis of historical data from 1961 through 2008, the mean and median depths to groundwater in 213 wells in western Jefferson County were 33.4 and 29.3 ft, respectively. Mean and median depths to groundwater in 69 wells in the northeastern county area were 56.0 and 55.0 ft below land surface, respectively. However, mean and median depths to groundwater in 28 wells within 1.5 miles of the Potomac River were 70.0 and 71.3 ft below land surface, respectively. Mean and median depths to groundwater in 108 wells in the south-central county area were 53.9 and 52.8 ft below land surface, respectively. Mean and median depths to groundwater of 26 wells in the southeastern county area were 86.6 and 59.5 ft below land surface, respectively.

  9. A quantitative analysis of global intermediate and deep seismicity

    NASA Astrophysics Data System (ADS)

    Ruscic, Marija; Becker, Dirk; Le Pourhiet, Laetitita; Agard, Philippe; Meier, Thomas

    2017-04-01

    The seismic activity in subduction zones around the world shows a large spatial variabilty with some regions exhibiting strong seismic activity down to depths of almost 700km while in other places seismicity terminates at depths of about 200 or 300 km. Also the decay of the number of seismic events or of the seismic moment with depth is more pronounced in some regions than in others. The same is true for the variability of the ratio of large to small events (the b-value of the Gutenberg-Richter relation) that is varying with depth. These observations are often linked to parameters of the downgoing plate like age or subduction velocity. In this study we investigate a subset of subduction zones utilizing the revised ISC catalogue of intermediate and deep seismicity to determine statistical parameters well suited to describe properties of intermediate deep and deep events. The seismicity is separated into three depth intervals from 50-175km, 175-400km and >400km based on the depth at which the plate contact decouples, the observed nearly exponential decay of the event rate with depth and the supposed depth of phase transition at 410 km depth where also an increase of the event number with depth is observed. For estimation of the b-value and the exponential decay with depth, a restriction of the investigated time interval to the period after 1997 produced significantly better results indicating a globally homogeneous magnitude scale with the magnitude of completeness of about Mw 5. On a global scale the b-value decreases with depth from values of about 1 at 50-175km to values of slightly below 0.8 for events below 400km. Also, there is a slight increase of the b-value with the age of the subducting plate. These changes in the b-value with depth and with age may indicate a varying fragmentation of the slab. With respect to the ratio of the seismic moment between deeper and shallower parts of the subduction zones a dependence on the age is apparent with older slabs exhibiting higher ratios indicating stronger hydration of older slabs and consequently stronger seismic activity at depth in older and thicker slabs. Furthermore, older slabs show the tendency to larger b-values. This indicates stronger fragmentation of older slabs favoring smaller events. Between 50 km and 300 km depth, seismicity in subduction zones decays nearly exponentially with depth. However, the majority of subduction zones show between about 60 km and 100 km lower seismic activity than expected by an exponential decay. This observation correlates well with findings from petrological studies that rocks are rarely scraped off from the downgoing plate at these depths indicating low seismic coupling and low stresses at the plate interface in a depth range below the seismogenic zone and above 100 km depth were dehydration reactions become virulent. Interestingly, the percentage of this deficit becomes larger with plate age for event frequency (reduced number of events), but decreases for moment release (events have larger magnitudes). It is observed that the forearc high is located above the plate interface with reduced seismic coupling. The forearc high is thus an indication of upward directed return flow along the seismically decoupled plate interface. In addition, it is found that the topography of the forearc high is larger above shallow dipping slabs. A correlation of the depth dependent seismic behavior with the subduction or trench velocity is not observed for the investigated subduction zones. Plate age seems to be the dominating factor for properties of intermediate deep and deep seismicity.

  10. Habitat impacts of offshore drilling, eastern Gulf of Mexico

    USGS Publications Warehouse

    Shinn, Eugene A.; Lidz, Barbara H.; Reich, Christopher D.

    1994-01-01

    In this survey six offshore exploratory drill sites in a variety of environments and water depths were examined using a small research submersible. Sites varied from locations off northwest Florida to as far west as offshore Alabama. Water depths ranged from 21 m (70 ft) to 149 m (489 ft), and bottom sediments ranged from carbonate mud to Shelly quartz sand and silt to hard limestone. The age of the sites (the time between cessation of drilling activities and our observations) ranged from 15 months to 17 years . In a previous MMS-funded study, Shinn et al. (1989) and Dustan et al . (1991) examined eight sites off South Florida, where the age of the sites ranged from 2 to 29 years. The study documented repeatedly variability of impact from site to site . In the present study, we note a similar wide divergence of impacts . Using the concentration of barium (the major component of drill mud), cuttings, and trace metals as a basis, we found that time is the single most important factor determining the nature of habitat recovery. Older sites, particularly the 17-year-old site, were relatively pristine. At a 7-year-old site, two hurricanes did far more damage than drilling . At other sites, we documented a significant amount of discarded debris, and at two 5-year-old sites, large concentrations of barium and cuttings. Impacts, such as the extent of debris and cuttings, affected the bottom ranging in area from almost negligible (17-year-old site) to as much as 3 acres (4-year-old site) . As suspected, those sites with the most debris and/or open boreholes attracted the most abundant and diverse fish fauna.

  11. Nocturnality constrains morphological and functional diversity in the eyes of reef fishes

    PubMed Central

    2011-01-01

    Background Ambient light levels are often considered to drive the evolution of eye form and function. Diel activity pattern is the main mechanism controlling the visual environment of teleost reef fish, with day-active (diurnal) fish active in well-illuminated conditions, whereas night-active (nocturnal) fish cope with dim light. Physiological optics predicts several specific evolutionary responses to dim-light vision that should be reflected in visual performance features of the eye. Results We analyzed a large comparative dataset on morphological traits of the eyes in 265 species of teleost reef fish in 43 different families. The eye morphology of nocturnal reef teleosts is characterized by a syndrome that indicates better light sensitivity, including large relative eye size, high optical ratio and large, rounded pupils. Improved dim-light image formation comes at the cost of reduced depth of focus and reduction of potential accommodative lens movement. Diurnal teleost reef fish, released from the stringent functional requirements of dim-light vision have much higher morphological and optical diversity than nocturnal species, with large ranges of optical ratio, depth of focus, and lens accommodation. Conclusions Physical characteristics of the environment are an important factor in the evolution and diversification of the vertebrate eye. Both teleost reef fish and terrestrial amniotes meet the functional requirements of dim-light vision with a similar evolutionary response of morphological and optical modifications. The trade-off between improved dim-light vision and reduced optical diversity may be a key factor in explaining the lower trophic diversity of nocturnal reef teleosts. PMID:22098687

  12. Blister formation at subcritical doses in tungsten irradiated by MeV protons

    NASA Astrophysics Data System (ADS)

    Gavish Segev, I.; Yahel, E.; Silverman, I.; Makov, G.

    2017-12-01

    The material response of tungsten to irradiation by MeV protons has been studied experimentally, in particular with respect to bubble and blister formation. Tungsten samples were irradiated by 2.2 MeV protons at the Soreq Applied Research Accelerator Facility (SARAF) to doses of the order of 1017 protons/cm2 which are below the reported critical threshold for blister formation derived from keV range irradiation studies. Large, well-developed blisters are observed indicating that for MeV range protons the critical threshold is at least an order of magnitude lower than the lowest value reported previously. The effects of fluence, flux, and corresponding temperature on the distribution and characteristics of the obtained blisters were studied. FIB cross sections of several blisters exposed their depth and structure.

  13. Large depth high-precision FMCW tomography using a distributed feedback laser array

    NASA Astrophysics Data System (ADS)

    DiLazaro, Thomas; Nehmetallah, George

    2018-02-01

    Swept-source optical coherence tomography (SS-OCT) has been widely employed in the medical industry for the high resolution imaging of subsurface biological structures. SS-OCT typically exhibits axial resolutions on the order of tens of microns at speeds of hundreds of kilohertz. Using the same coherent heterodyne detection technique, frequency modulated continuous wave (FMCW) ladar has been used for highly precise ranging for distances up to kilometers. Distributed feedback lasers (DFBs) have been used as a simple and inexpensive source for FMCW ranging. Here, we use a bandwidth-combined DFB array for sub-surface volume imaging at a 27 μm axial resolution over meters of distance. 2D and 3D tomographic images of several semi-transparent and diffuse objects at distances up to 10 m will be presented.

  14. Level II scour analysis for Bridge 81 (MARSUS00020081) on U.S. Highway 2, crossing the Winooski River, Marshfield, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.

    1997-01-01

    Contraction scour for all modelled flows ranged from 2.1 to 4.2 ft. The worst-case contraction scour occurred at the 500-year discharge. Left abutment scour ranged from 14.3 to 14.4 ft. The worst-case left abutment scour occurred at the incipient roadwayovertopping and 500-year discharge. Right abutment scour ranged from 15.3 to 18.5 ft. The worst-case right abutment scour occurred at the 100-year and the incipient roadwayovertopping discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) give “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  15. Enhanced truncated-correlation photothermal coherence tomography with application to deep subsurface defect imaging and 3-dimensional reconstructions

    NASA Astrophysics Data System (ADS)

    Tavakolian, Pantea; Sivagurunathan, Koneswaran; Mandelis, Andreas

    2017-07-01

    Photothermal diffusion-wave imaging is a promising technique for non-destructive evaluation and medical applications. Several diffusion-wave techniques have been developed to produce depth-resolved planar images of solids and to overcome imaging depth and image blurring limitations imposed by the physics of parabolic diffusion waves. Truncated-Correlation Photothermal Coherence Tomography (TC-PCT) is the most successful class of these methodologies to-date providing 3-D subsurface visualization with maximum depth penetration and high axial and lateral resolution. To extend the depth range and axial and lateral resolution, an in-depth analysis of TC-PCT, a novel imaging system with improved instrumentation, and an optimized reconstruction algorithm over the original TC-PCT technique is developed. Thermal waves produced by a laser chirped pulsed heat source in a finite thickness solid and the image reconstruction algorithm are investigated from the theoretical point of view. 3-D visualization of subsurface defects utilizing the new TC-PCT system is reported. The results demonstrate that this method is able to detect subsurface defects at the depth range of ˜4 mm in a steel sample, which exhibits dynamic range improvement by a factor of 2.6 compared to the original TC-PCT. This depth does not represent the upper limit of the enhanced TC-PCT. Lateral resolution in the steel sample was measured to be ˜31 μm.

  16. The implementation of depth measurement and related algorithms based on binocular vision in embedded AM5728

    NASA Astrophysics Data System (ADS)

    Deng, Zhiwei; Li, Xicai; Shi, Junsheng; Huang, Xiaoqiao; Li, Feiyan

    2018-01-01

    Depth measurement is the most basic measurement in various machine vision, such as automatic driving, unmanned aerial vehicle (UAV), robot and so on. And it has a wide range of use. With the development of image processing technology and the improvement of hardware miniaturization and processing speed, real-time depth measurement using dual cameras has become a reality. In this paper, an embedded AM5728 and the ordinary low-cost dual camera is used as the hardware platform. The related algorithms of dual camera calibration, image matching and depth calculation have been studied and implemented on the hardware platform, and hardware design and the rationality of the related algorithms of the system are tested. The experimental results show that the system can realize simultaneous acquisition of binocular images, switching of left and right video sources, display of depth image and depth range. For images with a resolution of 640 × 480, the processing speed of the system can be up to 25 fps. The experimental results show that the optimal measurement range of the system is from 0.5 to 1.5 meter, and the relative error of the distance measurement is less than 5%. Compared with the PC, ARM11 and DMCU hardware platforms, the embedded AM5728 hardware is good at meeting real-time depth measurement requirements in ensuring the image resolution.

  17. Level II scour analysis for Bridge 16, (NEWBTH00500016) on Town Highway 50, crossing Halls Brook, Newbury, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Degnan, James R.

    1997-01-01

    Contraction scour for all modelled flows ranged from 2.6 to 4.6 ft. The worst-case contraction scour occurred at the incipient roadway-overtopping discharge. The left abutment scour ranged from 11.6 to 12.1 ft. The worst-case left abutment scour occurred at the incipient road-overtopping discharge. The right abutment scour ranged from 13.6 to 17.9 ft. The worst-case right abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in Tables 1 and 2. A cross-section of the scour computed at the bridge is presented in Figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 46). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  18. Level II scour analysis for Bridge 65 (NEWBTH00500065) on Town Highway 50, crossing Peach Brook, Newbury, Vermont

    USGS Publications Warehouse

    Burns, R.L.; Severance, Timothy

    1997-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 1.3 ft. The worst-case contraction scour occurred at the incipient roadway-overtopping discharge, which was less than the 100-year discharge. The right abutment scour ranged from 6.1 to 7.2 ft. The worstcase right abutment scour occurred at the incipient roadway-overtopping discharge. The left abutment scour ranged from 7.1 to 10.3 ft. The worst-case left abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented he

  19. Microhabitat use, home range, and movements of the alligator snapping turtle, Macrochelys temminckii, in Oklahoma

    USGS Publications Warehouse

    Riedle, J.D.; Shipman, P.A.; Fox, S. F.; Leslie, David M.

    2006-01-01

    Little is known about the ecology of the alligator snapping turtle, Macrochelys temminckii, particularly dentography and behavior. To learn more about the species in Oklahoma, we conducted a telemetry project on 2 small streams at Sequoyah National Wildlife Refuge, an 8,417.5-ha refuge located in east-central Oklahoma. Between June 1999 and August 2000, we fitted 19 M. temminckii with ultrasonic telemetry tags and studied turtle movements and microhahitat use. Turtles were checked 2 to 3 times weekly in summer and sporadically in winter. Several microhabitat variables were measured at each turtle location and a random location to help quantify microhabitat use vs. availability. We recorded 147 turtle locations. Turtles were always associated with submerged cover with a high percentage of overhead canopy cover. Turtles used deeper depths in late summer (but not deeper depths than random locations) and deeper depths in mid-winter (and deeper depths than random locations) than in early summer. They used shallower depths than random locations in early summer. This seasonal shift in depth use might be thermoregulatory, although evidence for this is indirect. The mean linear home range for all turtles was 777.8 m. Females had larger home ranges than males, and juveniles had larger home ranges than adults, although the latter was not statistically significant. Macrochelys temminckii used submerged structures as a core site, and stayed at each core site for an average of 12.3 d.

  20. Spring habitat use by stocked one year old European sturgeon Acipenser sturio in the freshwater-oligohaline area of the Gironde estuary

    NASA Astrophysics Data System (ADS)

    Acolas, M. L.; Le Pichon, C.; Rochard, E.

    2017-09-01

    Post release habitat selection was studied on forty eight 10-month-old hatchery reared European sturgeon (mean fork length 31.0 cm ± 3.0) in the tidal part of their native catchment using acoustic telemetry. Most of the fish reached the oligohaline estuary within 2-4 days (70 km downstream the release site). Seventy four percent of the fish migrated rapidly downstream of the estuary into mesohaline waters while 26% selected habitat in the freshwater/oligohaline part of the estuary based on their linearity and residency indices. We focused on individual habitat use of these fish. The home range size (HR) was calculated using two methods: the kernel utilization distribution (KUD) which is driven by the maximum detection location density, and the Brownian Bridge (BB) approach which allows the time component of the trajectory path to be taken into account. The average 50% HR KUD was 5.6 ± 2.7 km2 (range 1.1-10.3 km2) and it was estimated to be 6 times larger using the 50% HR BB method (average reaching 31.9 ± 20.7 km2, range 5.2-77.8 km2). Habitat characterization (available prey, substrate and depth) in the studied area was described and the Ivlev electivity index was calculated using the habitat within the 50% HR BB for each individual. Despite the spatial use of different core areas among the fish tagged, we observed a convergence in habitat preference. For substrates, sturgeons showed avoidance of gravel and large rocks as well as fine and medium gravel. There was a significant preference for sand, silts and clay. For depth, they exhibited a preference firstly for the 5-8 m depth range and secondly for the 2-5 m range, a strong avoidance of depth range 8-20 m and a slight avoidance of shallow (0-2 m) and intertidal areas. For prey, individual variability was high. The most homogenous results were found for annelid polychaeta, with a slight preference for areas with this group of preys which are abundant in the saline estuary. For some individuals, a preference for areas with crustacea or nematodea and avoidance for areas with mollusks, insects or oligochaeta occured. We explain our results in light of foraging behavior and adaptation to the wild environment after captivity. For sturgeon population restoration projects in western Europe, these habitat preferences are key-features needed to evaluate the essential habitat availability for A. sturio juveniles in the tidal area at the front of the freshwater/saline transition waters.

  1. Abiotic control of underwater light in a drinking water reservoir: Photon budget analysis and implications for water quality monitoring

    NASA Astrophysics Data System (ADS)

    Watanabe, Shohei; Laurion, Isabelle; Markager, Stiig; Vincent, Warwick F.

    2015-08-01

    In optically complex inland waters, the underwater attenuation of photosynthetically active radiation (PAR) is controlled by a variable combination of absorption and scattering components of the lake or river water. Here we applied a photon budget approach to identify the main optical components affecting PAR attenuation in Lake St. Charles, a drinking water reservoir for Québec City, Canada. This analysis showed the dominant role of colored dissolved organic matter (CDOM) absorption (average of 44% of total absorption during the sampling period), but with large changes over depth in the absolute and relative contribution of the individual absorption components (water, nonalgal particulates, phytoplankton and CDOM) to PAR attenuation. This pronounced vertical variation occurred because of the large spectral changes in the light field with depth, and it strongly affected the average in situ diffuse absorption coefficients in the water column. For example, the diffuse absorption coefficient for pure-water in the ambient light field was 10-fold higher than the value previously measured in the blue open ocean and erroneously applied to lakes and coastal waters. Photon absorption budget calculations for a range of limnological conditions confirmed that phytoplankton had little direct influence on underwater light, even at chlorophyll a values above those observed during harmful algal blooms in the lake. These results imply that traditional measures of water quality such as Secchi depth and radiometric transparency do not provide a meaningful estimate of the biological state of the water column in CDOM-colored lakes and reservoirs.

  2. Why Does Some Subducted Continental Crust Escape Deformation and Transformation?

    NASA Astrophysics Data System (ADS)

    Garber, J. M.; Kylander-Clark, A. R.; Stearns, M.; Seward, G.; Hacker, B. R.

    2016-12-01

    Titanite geochemistry and geochronology from the Western Gneiss Region (WGR) of Norway shows that large portions of continental crust were deeply subducted and exhumed without significantly deforming or transforming, indicating heterogeneous mechanical behavior of crust at mantle depths. Titanite is stable in granitic rocks over a significant P-T range, and contains numerous major, minor, and trace elements that record 1) P-T conditions, 2) interactions with other major and accessory phases, and 3) information about the composition of coeval melts and fluids. A large titanite LA-ICP-MS dataset from WGR granitic gneisses and leucosomes yields a record that depends strongly on textural setting: some titanites formed after the decomposition of other phases at mantle depths, but other titanites preserve inherited isotopic dates and chemistry with variable recrystallization at grain rims. Differences in rock textures, as well as changes in volatile abundances (F and OH) among different titanite populations, suggest that the persistence of crustal minerals at mantle depths is coupled with limited prograde fluid infiltration, which restricted the efficacy of metamorphic reactions, likely increased rock strength, and caused heterogeneities in the density of the subducting slab. The observed expanses of untransformed, undeformed granitic crust may have been critical to coupling the continental crust to underlying mantle lithosphere, which prevented significant internal deformation of the slab (e.g,. Young et al., 2007; Butler et al., 2015). Finally, our statistical approach shows the utility of dimensional reduction in geochemical studies: rather than comparing individual element or isotopic abundances or ratios, principal components or discriminant analyses can condense variables and help efficiently distinguish between distinct geologic agents or geochemical reservoirs.

  3. Small scale temporal distribution of radiocesium in undisturbed coniferous forest soil: Radiocesium depth distribution profiles.

    PubMed

    Teramage, Mengistu T; Onda, Yuichi; Kato, Hiroaki

    2016-04-01

    The depth distribution of pre-Fukushima and Fukushima-derived (137)Cs in undisturbed coniferous forest soil was investigated at four sampling dates from nine months to 18 months after the Fukushima nuclear power plant accident. The migration rate and short-term temporal variability among the sampling profiles were evaluated. Taking the time elapsed since the peak deposition of pre-Fukushima (137)Cs and the median depth of the peaks, its downward displacement rates ranged from 0.15 to 0.67 mm yr(-1) with a mean of 0.46 ± 0.25 mm yr(-1). On the other hand, in each examined profile considerable amount of the Fukushima-derived (137)Cs was found in the organic layer (51%-92%). At this moment, the effect of time-distance on the downward distribution of Fukushima-derived (137)Cs seems invisible as its large portion is still found in layers where organic matter is maximal. This indicates that organic matter seems the primary and preferential sorbent of radiocesium that could be associated with the physical blockage of the exchanging sites by organic-rich dusts that act as a buffer against downward propagation of radiocesium, implying radiocesium to be remained in the root zone for considerable time period. As a result, this soil section can be a potential source of radiation dose largely due to high radiocesium concentration coupled with its low density. Generally, such kind of information will be useful to establish a dynamic safety-focused decision support system to ease and assist management actions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Sea-Floor Topography of Quadrangle 2 in the Great South Channel, Western Georges Bank

    USGS Publications Warehouse

    Valentine, Page C.; Malczyk, Jeremy T.; Middleton, Tammie J.

    2002-01-01

    The Great South Channel separates the western part of Georges Bank from Nantucket Shoals and is a major conduit for the exchange of water between the Gulf of Maine to the north and the Atlantic Ocean to the south. Water depths range mostly between 65 and 80 m in the region. A minimum depth of 45 m occurs in the east-central part of the mapped area, and a maximum depth of 100 m occurs in the northwest corner. The channel region is characterized by strong tidal and storm currents that flow dominantly north and south. Major topographic features of the seabed were formed by glacial and postglacial processes. Ice containing rock debris moved from north to south, sculpting the region into a broad shallow depression and depositing sediment to form the irregular depressions and low gravelly mounds and ridges that are visible in parts of the mapped area. Many other smaller glacial featuresprobably have been eroded by waves and currents at worksince the time when the region, formerly exposed bylowered sea level or occupied by ice, was invaded by the sea. The low, irregular and somewhat lumpy fabric formed by the glacial deposits is obscured in places by drifting sand and by the linear, sharp fabric formed by modern sand features. Today, sand transported by the strong north-south-flowing tidal and storm currents has formed large, east-west-trending dunes. These bedforms (ranging between 5 and 20 m in height) contrast strongly with, and partly mask, the subdued topography of the older glacial features.

  5. Are the initial frequency-modulated components of the mustached bat's biosonar pulses important for ranging?

    PubMed

    Fitzpatrick, D C; Suga, N; Misawa, H

    1991-12-01

    1. FM-FM neurons in the auditory cortex of the mustached bat, Pteronotus parnellii, are specialized to process target range. They respond when the terminal frequency-modulated component (TFM) of a biosonar pulse is paired with the TFM of the echo at a particular echo delay. Recently, it has been suggested that the initial FM components (IFMs) of biosonar signals may also be important for target ranging. To examine the possible role of IFMs in target ranging, we characterized the properties of IFMs and TFMs in biosonar pulses emitted by bats swung on a pendulum. We then studied responses of FM-FM neurons to synthesized biosonar signals containing IFMs and TFMs. 2. The mustached bat's biosonar signal consists of four harmonics, of which the second (H2) is the most intense. Each harmonic has an IFM in addition to a constant-frequency component (CF) and a TFM. Therefore each pulse potentially consists of 12 components, IFM1-4, CF1-4, and TFM1-4. The IFM sweeps up while the TFM sweeps down. 3. The IFM2 and TFM2 depths (i.e., bandwidths) were measured in 217 pulses from four animals. The mean IFM2 depth was much smaller than the mean TFM2 depth, 2.87 +/- 1.52 (SD) kHz compared with 16.27 +/- 1.08 kHz, respectively. The amplitude of the IFM2 continuously increased throughout its duration and was always less than the CF2 amplitude, whereas the TFM2 was relatively constant in amplitude over approximately three-quarters of its duration and was often the most intense part of the pulse. The maximum amplitude of the IFM2 was, on average, 11 dB smaller than that of the TFM2. Because range resolution increases with depth and the maximum detectable range increases with signal amplitude, the IFMs are poorly suited for ranging compared with the TFMs. 4. FM-FM neurons (n = 77) did not respond or responded very poorly to IFMs with depths and intensities similar to those emitted on the pendulum. The mean IFM2 depth at which a just-noticeable response appeared was 4.48 +/- 1.98 kHz. Only 14% of the pulses emitted on the pendulum had IFM2 depths that exceeded the mean IFM2 depth threshold of FM-FM neurons. 5. Most FM-FM neurons responded to IFMs that had depths comparable with those of TFMs. However, when all parameters were adjusted to optimize the response to TFMs and then readjusted to maximize the response to IFMs, 52% of 27 neurons tested responded significantly better to the optimal TFMs than to the optimal IFMs (P less than 0.05, t test).(ABSTRACT TRUNCATED AT 400 WORDS)

  6. Depth dependent variation of the echolocation pulse rate of bottlenose dolphins (Tursiops truncatus).

    PubMed

    Simard, Peter; Hibbard, Ashley L; McCallister, Kimberly A; Frankel, Adam S; Zeddies, David G; Sisson, Geoffrey M; Gowans, Shannon; Forys, Elizabeth A; Mann, David A

    2010-01-01

    Trained odontocetes appear to have good control over the timing (pulse rate) of their echolocation clicks; however, there is comparatively little information about how free-ranging odontocetes modify their echolocation in relation to their environment. This study investigates echolocation pulse rate in 14 groups of free-ranging bottlenose dolphins (Tursiops truncatus) at a variety of depths (2.4-30.1 m) in the Gulf of Mexico. Linear regression models indicated a significant decrease in mean pulse rate with mean water depth. Pulse rates for most groups were multi-modal. Distance to target estimates were as high as 91.8 m, assuming that echolocation was produced at a maximal rate for the target distance. A 5.29-ms processing lag time was necessary to explain the pulse rate modes observed. Although echolocation is likely reverberation limited, these results support the hypotheses that free-ranging bottlenose dolphins in this area are adapting their echolocation signals for a variety of target detection and ranging purposes, and that the target distance is a function of water depth.

  7. Refining the Magnitude of the Shallow Slip Deficit

    NASA Astrophysics Data System (ADS)

    Xu, X.; Tong, X.; Sandwell, D. T.; Milliner, C. W. D.

    2014-12-01

    Geodetic inversions for slip versus depth for several major (Mw > 7) strike-slip earthquakes (e.g. 1992 Landers, 1999 Hector Mine, 2010 El_Mayor-Cucapah) show a 10% to 40% reduction in slip near surface (depth < 2 km) compared to the slip at deeper depths (5 to 8 km). This has been called the shallow slip deficit (SSD). The large magnitude of this deficit has been an enigma since it cannot be explained by shallow creep during the interseismic period or by triggered slip from nearby earthquakes. One potential explanation for the SSD is that the previous geodetic inversions used incomplete data that do not go close to fault so the shallow portions of the slip models were poorly resolved and generally underestimated. In this study we improve the geodetic inversion, especially at shallow depth by: 1) refining the InSAR processing with non-boxcar phase filtering, model-dependent range corrections, more complete phase unwrapping by SNAPHU using a correlation mask and allowing a phase discontinuity along the rupture; 2) including near-fault offset data from optical imagery and SAR azimuth offsets; 3) using more detailed fault geometry; 4) and using additional campaign GPS data. With these improved observations, the slip inversion has significantly increased resolution at shallow depth. For the Landers rupture the SSD is reduced from 45% to 16%. Similarly for the Hector Mine rupture the SSD is reduced from 15% to 5%. We are assembling all the relevant co-seismic data for the El Major-Cucapah earthquake and will report the inversion result with its SSD at the meeting.

  8. L-band InSAR Penetration Depth Experiment, North Slope Alaska

    NASA Astrophysics Data System (ADS)

    Muskett, Reginald

    2017-04-01

    Since the first spacecraft-based synthetic aperture radar (SAR) mission NASA's SEASAT in 1978 radars have been flown in Low Earth Orbit (LEO) by other national space agencies including the Canadian Space Agency, European Space Agency, India Space Research Organization and the Japanese Aerospace Exploration Agency. Improvements in electronics, miniaturization and production have allowed for the deployment of SAR systems on aircraft for usage in agriculture, hazards assessment, land-use management and planning, meteorology, oceanography and surveillance. LEO SAR systems still provide a range of needful and timely information on large and small-scale weather conditions like those found across the Arctic where ground-base weather radars currently provide limited coverage. For investigators of solid-earth deformation attention must be given to the atmosphere on Interferometric SAR (InSAR) by aircraft and spacecraft multi-pass operations. Because radar has the capability to penetrate earth materials at frequencies from the P- to X-band attention must be given to the frequency dependent penetration depth and volume scattering. This is the focus of our new research project: to test the penetration depth of L-band SAR/InSAR by aircraft and spacecraft systems at a test site in Arctic Alaska using multi-frequency analysis and progressive burial of radar mesh-reflectors at measured depths below tundra while monitoring environmental conditions. Knowledge of the L-band penetration depth on lowland Arctic tundra is necessary to constrain analysis of carbon mass balance and hazardous conditions arising form permafrost degradation and thaw, surface heave and subsidence and thermokarst formation at local and regional scales.

  9. An objective algorithm for estimating maximum oceanic mixed layer depth using seasonality indices derived from Argo temperature/salinity profiles

    NASA Astrophysics Data System (ADS)

    Chen, Ge; Yu, Fangjie

    2015-01-01

    In this study, we propose a new algorithm for estimating the annual maximum mixed layer depth (M2LD) analogous to a full range of local "ventilation" depth, and corresponding to the deepest surface to which atmospheric influence can be "felt." Two "seasonality indices" are defined, respectively, for temperature and salinity through Fourier analysis of their time series using Argo data, on the basis of which a significant local minimum of the index corresponding to a maximum penetration depth can be identified. A final M2LD is then determined by maximizing the thermal and haline effects. Unlike most of the previous schemes which use arbitrary thresholds or subjective criteria, the new algorithm is objective, robust, and property adaptive provided a significant periodic geophysical forcing such as annual cycle is available. The validity of our methodology is confirmed by the spatial correlation of the tropical dominance of saline effect (mainly related to rainfall cycle) and the extratropical dominance of thermal effect (mainly related to solar cycle). It is also recognized that the M2LD distribution is characterized by the coexistence of basin-scale zonal structures and eddy-scale local patches. In addition to the fundamental buoyancy forcing caused mainly by latitude-dependent solar radiation, the impressive two-scale pattern is found to be primarily attributable to (1) large-wave climate due to extreme winds (large scale) and (2) systematic eddy shedding as a result of persistent winds (mesoscale). Moreover, a general geographical consistency and a good quantitative agreement are found between the new algorithm and those published in the literature. However, a major discrepancy in our result is the existence of a constantly deeper M2LD band compared with other results in the midlatitude oceans of both hemispheres. Given the better correspondence of our M2LDs with the depth of the oxygen saturation limit, it is argued that there might be a systematic underestimation with existing criteria in these regions. Our results demonstrate that the M2LD may serve as an integrated proxy for studying the coherent multidisciplinary variabilities of the coupled ocean-atmosphere system.

  10. Deep fluid transfer evidenced by surface deformation during the 2014-2015 unrest at Piton de la Fournaise volcano

    NASA Astrophysics Data System (ADS)

    Peltier, Aline; Beauducel, François; Villeneuve, Nicolas; Ferrazzini, Valérie; Di Muro, Andrea; Aiuppa, Alessandro; Derrien, Allan; Jourde, Kevin; Taisne, Benoit

    2016-07-01

    Identifying the onset of volcano unrest and providing an unequivocal identification of volcano reawakening remain challenging problems in volcanology. At Piton de la Fournaise, renewal of eruptive activity in 2014-2015, after 41 months of quiescence and deflation, was associated with long-term continuous edifice inflation measured by GNSS. Inflation started on June 9, 2014, and its rate progressively increased through 2015. Inflation onset was rapidly followed by an eruption on June 20-21, 2014, showing that volcano reactivation can be extremely fast, even after long non-eruptive phases. This short-lived eruption involved a shallow source (1.3-1.9 km depth below the summit). The inflation that followed, and eruptions in 2015, involved a larger depth range of fluid accumulation, constrained by inverse modeling at ca. 3.9 to 1.2-1.7 km depth. This time evolution reveals that volcano reawakening was associated with continuous pressurization of the shallowest parts of its plumbing system, triggered by progressive upwards transfer of magma from greater depth. A deep magma pulse occurred in mid-April 2015 and was associated with deep seismicity (3 to 9.5 km depth) and CO2 enrichment in fluids emitted by summit fumaroles. From this date, ground deformation accelerated and the output rates of eruptions increased, culminating in the long-lasting, large-volume, August-October eruption ( 36 Mm3). This evolution suggests that deep magma/fluid transfer through an open conduit system first provoked the expulsion of the top of the plumbing system in June 2014, and then induced the progressive vertical transfer of the entire plumbing system down to 9 km (four eruptions in 2015). The new sustained feeding of the volcano was also at the origin of the hydrothermal system perturbation and the acceleration of the eastern flank motion, which favor lateral dike propagation and the occurrence of frequent and increasingly large eruptions. Our results highlight the fast and progressive way in which basaltic magmatic systems can wake up.

  11. Short-cavity squeezing in barium

    NASA Technical Reports Server (NTRS)

    Hope, D. M.; Bachor, H-A.; Manson, P. J.; Mcclelland, D. E.

    1992-01-01

    Broadband phase sensitive noise and squeezing were experimentally observed in a system of barium atoms interacting with a single mode of a short optical cavity. Squeezing of 13 +/- 3 percent was observed. A maximum possible squeezing of 45 +/- 8 percent could be inferred for out experimental conditions, after correction for measured loss factors. Noise reductions below the quantum limit were found over a range of detection frequencies 60-170 MHz and were best for high cavity transmission and large optical depths. The amount of squeezing observed is consistent with theoretical predictions from a full quantum statistical model of the system.

  12. Thermal, optical, and electrical engineering of an innovative tunable white LED light engine

    NASA Astrophysics Data System (ADS)

    Trivellin, Nicola; Meneghini, Matteo; Ferretti, Marco; Barbisan, Diego; Dal Lago, Matteo; Meneghesso, Gaudenzio; Zanoni, Enrico

    2014-02-01

    Color temperature, intensity and blue spectrum of the light affects the ganglion receptors in human brain stimulating the human nervous system. With this work we review different methods for obtaining tunable light emission spectra and propose an innovative white LED lighting system. By an in depth study of the thermal, electrical and optical characteristics of GaN and GaP based compound semiconductors for optoelectronics a specific tunable spectra has been designed. The proposed tunable white LED system is able to achieve high CRI (above 95) in a large CCT range (3000 - 5000K).

  13. Measuring the size of an earthquake

    USGS Publications Warehouse

    Spence, W.

    1977-01-01

    Earthquakes occur in a broad range of sizes. A rock burst in an Idaho silver mine may involve the fracture of 1 meter of rock; the 1965 Rat island earthquake in the Aleutian arc involved a 650-kilometer lenght of Earth's crust. Earthquakes can be even smaller and even larger. if an earthquake is felt or causes perceptible surface damage, then its intesnity of shaking can be subjectively estimated. But many large earthquakes occur in oceanic area or at great focal depths. These are either simply not felt or their felt pattern does not really indicate their true size. 

  14. Geoid, topography, and convection-driven crustal deformation on Venus

    NASA Technical Reports Server (NTRS)

    Simons, Mark; Hager, Bradford H.; Solomon, Sean C.

    1992-01-01

    High-resolution Magellan images and altimetry of Venus reveal a wide range of styles and scales of surface deformation that cannot readily be explained within the classical terrestrial plate tectonic paradigm. The high correlation of long-wavelength topography and gravity and the large apparent depths of compensation suggest that Venus lacks an upper-mantle low-viscosity zone. A key difference between Earth and Venus may be the degree of coupling between the convecting mantle and the overlying lithosphere. Mantle flow should then have recognizable signatures in the relationships between surface topography, crustal deformation, and the observed gravity field.

  15. Towards AEM bathymetry and conductivity estimation in very shallow hypersaline waters of the Coorong, South Australia

    NASA Astrophysics Data System (ADS)

    Vrbancich, Julian

    2013-01-01

    The Coorong is a shallow (typically 1.5m) narrow coastal lagoon extending ~110km parallel to the coastline, and forms an extensive wetland area of international significance. It is divided into two lagoons, the North and South lagoons. The northern lagoon section opens into the mouth of the Murray River and the southern lagoon section is essentially closed, being connected to the North Lagoon via a choke point. During periods of extended drought where there is no flooding to flush the lagoon system, hypersalinisation gradually increases, especially in the southern lagoon section where salinity may be in excess of four times that of seawater. A helicopter time-domain EM (TEM) system was flown along the Coorong, as extensive flood waters from Queensland (2010) were reaching the North Lagoon lowering the salinity. The derived bathymetry from TEM data was shown to be in fair agreement with known bathymetry in areas of high salinity. The conductivities of waters ranging from saline to hypersaline in the North Lagoon and upper half of the South Lagoon, and underlying sediment, was estimated from inversion of TEM data using the known water depth as a fixed parameter. The derived conductivity varied from ~1.6S/m in the north of the North Lagoon to ~8-10S/m at its southern end and in the South Lagoon. These values underestimate the known strong salinity gradient (~0.6 to ~13S/m respectively) observed from a sparse distribution of fixed conductivity meters located in the Coorong. The application of AEM in this region is challenging because of the very large range of water conductivities and because the average water depths are comparable to the typical residuals between known depths and depths derived from AEM data in previous studies in Australian coastal waters. These results do however show that AEM has the potential to remotely map shallow water depths, and water conductivity gradients using known bathymetry to monitor hypersalinisation in these significant wetland areas where changes in the ecology have been linked to high salinity.

  16. Delineation of the southern elephant seal's main foraging environments defined by temperature and light conditions

    NASA Astrophysics Data System (ADS)

    Vacquié-Garcia, Jade; Guinet, Christophe; Laurent, Cécile; Bailleul, Frédéric

    2015-03-01

    Changes in marine environments, induced by the global warming, are likely to influence the prey field distribution and consequently the foraging behaviour and the distribution of top marine predators. Thanks to bio-logging, the simultaneous measurements of fine-scale foraging behaviors and oceanographic parameters by predators allow characterizing their foraging environments and provide insights into their prey distribution. In this context, we propose to delimit and to characterize the foraging environments of a marine predator, the Southern Elephant Seal (SES). To do so, the relationship between oceanographic factors and prey encounter events (PEE) was investigated in 12 females SES from Kerguelen Island simultaneously equipped with accelerometers and with a range of physical sensors (temperature, light and depth). PEEs were assessed from the accelerometer data at high spatio-temporal precision while the physical sensors allowed the continuous monitoring of environmental conditions encountered by the SES when diving. First, visited and foraging environments were distinguished according to the oceanographic conditions encountered in the absence and in presence of PEE. Then, a hierarchical classification of the physical parameters recorded during PEEs led to the distinction of five different foraging environments. These foraging environments were structured according to the main frontal systems of the SO. One was located north to the subantarctic front (SAF) and characterized by high temperature and depth, and low light levels. Another, characterized by intermediate levels of temperature, light and depth, was located between the SAF and the polar front (PF). And finally, the last three environments were all found south to the PF and, characterized by low temperature but highly variable depth and light levels. The large physical and/or spatial differences found between these environments suggest that, depending on the location, different prey communities are targeted by SES over a broad range of water temperature, light level and depth conditions. This result highlights the versatility of this marine predator. In addition, in most cases, PEEs were found deeper during the day than during the night, which is indicative of mesopelagic prey performing nycthemeral migration, a behaviour consistent with myctophids species thought to represent the bulk of Kerguelen SES female diets.

  17. Complex Movements, Philopatry and Expanded Depth Range of a Severely Threatened Pelagic Shark, the Oceanic Whitetip (Carcharhinus longimanus) in the Western North Atlantic

    PubMed Central

    Howey-Jordan, Lucy A.; Brooks, Edward J.; Abercrombie, Debra L.; Jordan, Lance K. B.; Brooks, Annabelle; Williams, Sean; Gospodarczyk, Emily; Chapman, Demian D.

    2013-01-01

    Oceanic whitetip sharks (Carcharhinus longimanus) have recently been targeted for conservation in the western North Atlantic following severe declines in abundance. Pop-up satellite archival tags were applied to 11 mature oceanic whitetips (10 females, 1 male) near Cat Island in the central Bahamas 1–8 May 2011 to provide information about the horizontal and vertical movements of this species. Another large female was opportunistically tagged in the U.S. Exclusive Economic Zone (EEZ). Data from 1,563 total tracking days and 1,142,598 combined depth and temperature readings were obtained. Sharks tagged at Cat Island stayed within 500 km of the tagging site for ∼30 days before dispersing across 16,422 km2 of the western North Atlantic. Maximum individual displacement from the tagging site ranged from 290–1940 km after times at liberty from 30–245 days, with individuals moving to several different destinations (the northern Lesser Antilles, the northern Bahamas, and north of the Windward Passage). Many sharks returned to The Bahamas after ∼150 days. Estimated residency times within The Bahamas EEZ, where longlining and commercial trade of sharks is illegal, were generally high (mean = 68.2% of time). Sharks spent 99.7% of their time shallower than 200 m and did not exhibit differences in day and night mean depths. There was a positive correlation between daily sea surface temperature and mean depth occupied, suggesting possible behavioral thermoregulation. All individuals made short duration (mean = 13.06 minutes) dives into the mesopelagic zone (down to 1082 m and 7.75°C), which occurred significantly more often at night. Ascent rates during these dives were significantly slower than descent rates, suggesting that these dives are for foraging. The sharks tracked appear to be most vulnerable to pelagic fishing gear deployed from 0–125 m depths, which they may encounter from June to October after leaving the protected waters of The Bahamas EEZ. PMID:23437180

  18. Experimental constraints on the fate of subducted upper continental crust beyond the "depth of no return"

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Wu, Y.; WANG, C.; Jin, Z.

    2015-12-01

    Large-scale oceanic/continental subduction introduces a range of crustal materials into the Earth's mantle. These subducted material will be gravitationally trapped in the deep mantle when they have been transported to a depth of greater than ~250-300 km ("depth of no return"). However, little is known about the fate of these trapped continental material. Here, we conduct experimental study on a natural continental rock which compositionally similar to the average upper continental crust (UCC) over a pressure and temperature range of 9-16 GPa and 1300-1800 oC to constraint the fate of these trapped continental materials. The experimental results demonstrate that subducted UCC produces ~20-30 wt% K-rich melt (>55 wt% SiO2) in the upper mantle (9-13 GPa). The melting residue is mainly composed of coesite/stishovite + clinopyroxene + kyanite. In contrast, partial melting of subducted UCC in the MTZ produces ~10 wt% K-rich melt (<50 wt% SiO2), together with stishovite, clinopyroxene, K-Hollandite, garnet and CAS-phase as the residue phases. The melting residue phases achieve densities greater than the surrounding mantle, which provides a driving force for descending across the 410 km seismic discontinuity into the MTZ. However, this density relationship is reversed at the base of MTZ, leaving the descended residues being accumulated above the 660 km seismic discontinuity and may contribute to the stagnated "second continent". On the other hand, the melt is ~0.3-0.7 g/cm3 less dense than the surrounding mantle and provides a buoyancy force for the ascending of melt to shallow depth. The ascending melt preserves a significant portion of the bulk-rock REEs and LILEs. Thus, chemical reaction between the melt and the surrounding mantle would leads to a variably metasomatised mantle. Re-melting of the metasomatised mantle may contribute to the origin of the "enriched mantle sources" (EM-sources). Therefore, through subduction, stagnation, partial melting and melt segregation of continental crust may create EM-sources and"second continent" at shallow depth and the base of the MTZ respectively, which may contribute to the observed geochemical/geophysical heterogeneity in Earth's interior.

  19. The Universe at Moderate Redshift

    NASA Technical Reports Server (NTRS)

    Cen, Renyue; Ostriker, Jeremiah P.

    1997-01-01

    The report covers the work done in the past year and a wide range of fields including properties of clusters of galaxies; topological properties of galaxy distributions in terms of galaxy types; patterns of gravitational nonlinear clustering process; development of a ray tracing algorithm to study the gravitational lensing phenomenon by galaxies, clusters and large-scale structure, one of whose applications being the effects of weak gravitational lensing by large-scale structure on the determination of q(0); the origin of magnetic fields on the galactic and cluster scales; the topological properties of Ly(alpha) clouds the Ly(alpha) optical depth distribution; clustering properties of Ly(alpha) clouds; and a determination (lower bound) of Omega(b) based on the observed Ly(alpha) forest flux distribution. In the coming year, we plan to continue the investigation of Ly(alpha) clouds using larger dynamic range (about a factor of two) and better simulations (with more input physics included) than what we have now. We will study the properties of galaxies on 1 - 100h(sup -1) Mpc scales using our state-of-the-art large scale galaxy formation simulations of various cosmological models, which will have a resolution about a factor of 5 (in each dimension) better than our current, best simulations. We will plan to study the properties of X-ray clusters using unprecedented, very high dynamic range (20,000) simulations which will enable us to resolve the cores of clusters while keeping the simulation volume sufficiently large to ensure a statistically fair sample of the objects of interest. The details of the last year's works are now described.

  20. Lithium isotopes in large rivers reveal the cannibalistic nature of modern continental weathering and erosion

    NASA Astrophysics Data System (ADS)

    Dellinger, Mathieu; Gaillardet, Jérôme; Bouchez, Julien; Calmels, Damien; Galy, Valier; Hilton, Robert G.; Louvat, Pascale; France-Lanord, Christian

    2014-09-01

    The erosion of major mountain ranges is thought to be largely cannibalistic, recycling sediments that were deposited in the ocean or on the continents prior to mountain uplift. Despite this recognition, it has not yet been possible to quantify the amount of recycled material that is presently transported by rivers to the ocean. Here, we have analyzed the Li content and isotope composition (δLi7) of suspended sediments sampled along river depth profiles and bed sands in three of the largest Earth's river systems (Amazon, Mackenzie and Ganga-Brahmaputra rivers). The δLi7 values of river-sediments transported by these rivers range from +5.3 to -3.6‰ and decrease with sediment grain size. We interpret these variations as reflecting a mixture of unweathered rock fragments (preferentially transported at depth in the coarse fraction) and present-day weathering products (preferentially transported at the surface in the finest fraction). Only the finest surface sediments contain the complementary reservoir of Li solubilized by water-rock interactions within the watersheds. Li isotopes also show that river bed sands can be interpreted as a mixture between unweathered fragments of igneous and sedimentary rocks. A mass budget approach, based on Li isotopes, Li/Al and Na/Al ratios, solved by an inverse method allows us to estimate that, for the large rivers analyzed here, the part of solid weathering products formed by present-day weathering reactions and transported to the ocean do not exceed 35%. Li isotopes also show that the sediments transported by the Amazon, Mackenzie and Ganga-Brahmaputra river systems are mostly sourced from sedimentary rocks (>60%) rather than igneous rocks. This study shows that Li isotopes in the river particulate load are a good proxy for quantifying both the erosional rock sources and the fingerprint of present-day weathering processes. Overall, Li isotopes in river sediments confirm the cannibalistic nature of erosion and weathering.

  1. Analysis of current-meter data at Columbia River gaging stations, Washington and Oregon

    USGS Publications Warehouse

    Savini, John; Bodhaine, G.L.

    1971-01-01

    The U.S. Geological Survey developed equipment to measure stream velocity simultaneously with 10 current meters arranged in a vertical and to measure velocity closer to the streambed than attainable with conventional equipment. With the 10 current meters, synchronous velocities were recorded for a period of 66 minutes at 10 different depths in one vertical of one gaging-station cross section. In addition, with a current meter installed on a special bracket to allow measurements to 0.5 foot above streambed, data were obtained at two to four verticals in four gaging-station cross sections. The mean velocity determined for the 66-minute period of record was 3.30 fps (feet per second). The graphic record of velocity was analyzed on a minute-by-minute basis. It was noted that the shape of the vertical velocity curves (plot of horizontal flow velocities measured in a vertical) changed from one minute to the next, but the change seemed to be random. Velocities obtained at different depths in the, profile fluctuated significantly, with the 1-minute velocities obtained at 0.05 depth (5 percent of total depths measured from the surface at indicated vertical) showing the smallest range--0.66 fps--and those at 0.55 depth the largest range--l.22 fps. The standard deviation, expressed in feet per second, of the velocity at each point in the vertical tended to increase with depth--from 0.16 fps at 0.05 depth to a maximum of 0.24 fps at 0.75 depth. The standard deviation, expressed as a percentage of the mean velocity, ranged from about 4 percent near the surface to 11 percent at 0.95 depth. In spite of the fluctuation in mean velocity that occurred during the 66 minutes and observation period of 4 minutes yields a mean velocity that differs from the 66-minute mean by less than one-half of a percent. Determining the mean velocity by averaging the 10-point observations of the 66minute run proved to be as accurate as by plotting the vertical velocity curvy (from the averaged 10 points) and then integrating the depth-velocity profile. In comparing the velocity obtained by integrating the depth-velocity profile with the 10-point mean velocity for other field data, collected beyond that obtained during the 66-minute run, the difference ranged from -1.3 to +1.7 percent and averaged -0.2 percent. Extension of the curve below the 0.95 depth by use of a power function proved to be fairly accurate (when compared with actual measurements within this reach made with the special current-meter bracket). However, the extension did not improve significantly the accuracy of the integrated-curve mean velocity. Both the one- and two-point methods were found to agree with the 10-point velocity. In computing mean river velocity, values determined by the two-point method ranged from -1.4 to +1.6 percent when compared with the base integrated-curve mean river velocity. The one-point method yielded results that ranged from -1.9 to +4.4 percent and averaged 40.1 percent. In determining river flow by use of the midsection and mean-section methods, the mean-section method uniformly yields lower flows for the same dart.. The range in difference is from -0.2 percent to -1.6 percent, with an average difference of -0.6 percent.

  2. Miniaturized multiwavelength digital holography sensor for extensive in-machine tool measurement

    NASA Astrophysics Data System (ADS)

    Seyler, Tobias; Fratz, Markus; Beckmann, Tobias; Bertz, Alexander; Carl, Daniel

    2017-06-01

    In this paper we present a miniaturized digital holographic sensor (HoloCut) for operation inside a machine tool. With state-of-the-art 3D measurement systems, short-range structures such as tool marks cannot be resolved inside a machine tool chamber. Up to now, measurements had to be conducted outside the machine tool and thus processing data are generated offline. The sensor presented here uses digital multiwavelength holography to get 3D-shape-information of the machined sample. By using three wavelengths, we get a large artificial wavelength with a large unambiguous measurement range of 0.5mm and achieve micron repeatability even in the presence of laser speckles on rough surfaces. In addition, a digital refocusing algorithm based on phase noise is implemented to extend the measurement range beyond the limits of the artificial wavelength and geometrical depth-of-focus. With complex wave field propagation, the focus plane can be shifted after the camera images have been taken and a sharp image with extended depth of focus is constructed consequently. With 20mm x 20mm field of view the sensor enables measurement of both macro- and micro-structure (such as tool marks) with an axial resolution of 1 µm, lateral resolution of 7 µm and consequently allows processing data to be generated online which in turn qualifies it as a machine tool control. To make HoloCut compact enough for operation inside a machining center, the beams are arranged in two planes: The beams are split into reference beam and object beam in the bottom plane and combined onto the camera in the top plane later on. Using a mechanical standard interface according to DIN 69893 and having a very compact size of 235mm x 140mm x 215mm (WxHxD) and a weight of 7.5 kg, HoloCut can be easily integrated into different machine tools and extends no more in height than a typical processing tool.

  3. SU-E-T-586: Field Size Dependence of Output Factor for Uniform Scanning Proton Beams: A Comparison of TPS Calculation, Measurement and Monte Carlo Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Y; Singh, H; Islam, M

    2014-06-01

    Purpose: Output dependence on field size for uniform scanning beams, and the accuracy of treatment planning system (TPS) calculation are not well studied. The purpose of this work is to investigate the dependence of output on field size for uniform scanning beams and compare it among TPS calculation, measurements and Monte Carlo simulations. Methods: Field size dependence was studied using various field sizes between 2.5 cm diameter to 10 cm diameter. The field size factor was studied for a number of proton range and modulation combinations based on output at the center of spread out Bragg peak normalized to amore » 10 cm diameter field. Three methods were used and compared in this study: 1) TPS calculation, 2) ionization chamber measurement, and 3) Monte Carlos simulation. The XiO TPS (Electa, St. Louis) was used to calculate the output factor using a pencil beam algorithm; a pinpoint ionization chamber was used for measurements; and the Fluka code was used for Monte Carlo simulations. Results: The field size factor varied with proton beam parameters, such as range, modulation, and calibration depth, and could decrease over 10% from a 10 cm to 3 cm diameter field for a large range proton beam. The XiO TPS predicted the field size factor relatively well at large field size, but could differ from measurements by 5% or more for small field and large range beams. Monte Carlo simulations predicted the field size factor within 1.5% of measurements. Conclusion: Output factor can vary largely with field size, and needs to be accounted for accurate proton beam delivery. This is especially important for small field beams such as in stereotactic proton therapy, where the field size dependence is large and TPS calculation is inaccurate. Measurements or Monte Carlo simulations are recommended for output determination for such cases.« less

  4. Multi-Depth-Map Raytracing for Efficient Large-Scene Reconstruction.

    PubMed

    Arikan, Murat; Preiner, Reinhold; Wimmer, Michael

    2016-02-01

    With the enormous advances of the acquisition technology over the last years, fast processing and high-quality visualization of large point clouds have gained increasing attention. Commonly, a mesh surface is reconstructed from the point cloud and a high-resolution texture is generated over the mesh from the images taken at the site to represent surface materials. However, this global reconstruction and texturing approach becomes impractical with increasing data sizes. Recently, due to its potential for scalability and extensibility, a method for texturing a set of depth maps in a preprocessing and stitching them at runtime has been proposed to represent large scenes. However, the rendering performance of this method is strongly dependent on the number of depth maps and their resolution. Moreover, for the proposed scene representation, every single depth map has to be textured by the images, which in practice heavily increases processing costs. In this paper, we present a novel method to break these dependencies by introducing an efficient raytracing of multiple depth maps. In a preprocessing phase, we first generate high-resolution textured depth maps by rendering the input points from image cameras and then perform a graph-cut based optimization to assign a small subset of these points to the images. At runtime, we use the resulting point-to-image assignments (1) to identify for each view ray which depth map contains the closest ray-surface intersection and (2) to efficiently compute this intersection point. The resulting algorithm accelerates both the texturing and the rendering of the depth maps by an order of magnitude.

  5. Receiver Functions Imaging of the Moho and LAB in the Southern Caribbean plate boundary and Venezuela

    NASA Astrophysics Data System (ADS)

    Masy, J.; Levander, A.; Niu, F.

    2011-12-01

    We have made teleseismic Ps and Sp receiver functions from data recorded from 2003 to 2009 by the permanent national seismic network of Venezuela, the BOLIVAR (Broadband Onshore-offshore Lithospheric Investigation of Venezuela and the Antilles arc Region) and WAVE (Western Array for Venezuela) experiments. The receiver functions show rapid variations in Moho and lithosphere-asthenosphere boundary (LAB) depths both across and along the southern Caribbean plate boundary region. We used a total of 69 events with Mw > 6 occurring at epicentral distances from 30° to 90° for the Ps receiver functions, and 43 events with Mw > 5.7 from 55° to 85° to make Sp receiver functions. For CCP stacking we constructed a 3D velocity model from numerous active source profiles (Schmitz et al., 2001; Bezada et al., 2007; Clark et al., 2008; Guedez, 2008; Magnani et al., 2009), from finite-frequency P wave upper mantle tomography model of Bezada et al., (2010) and the Rayleigh wave tomography model of Miller et al., (2009). The Moho ranges in depth from ~25 km beneath the Caribbean Large Igneous Provinces to ~55 km beneath the Mérida Andes in western Venezuela. These results are consistent with previous receiver functions studies (Niu et al., 2007) and the available active source profiles. Beneath the Maracaibo Block in northwestern Venezuela, we observe a strong positive signal at 40 to 60 km depth dipping ~6° towards the continent. We interpret this as the Moho of the Caribbean slab subducting beneath northernmost South America from the west. Beneath northern Colombia and northwestern Venezuela the top of this slab has been previously inferred from intermediate depth seismicity (Malavé and Suarez, 1995), which indicates a slab dipping between 20° - 30° beneath Lake Maracaibo. Our results could indicate that the slab is tearing beneath Lake Maracaibo as suggested previously by Masy et al. (2011). The deeper (> 100 km depth) part of the slab has been imaged using P-wave tomography (Bezada et al, 2010). Like others we attribute the uplift of the Mérida Andes to flat Caribbean slab subduction (for example Kellogg and Bonini, 1982). In central Venezuela beneath the Cordillera de la Costa we observe a positive signal shallower than the Moho at <30 km depth beneath the entire range. We interpret this as a detachment surface beneath Caribbean & arc terranes thrust onto the SA margin (Bezada et al., 2010). The lithosphere-asthenosphere boundary (LAB) beneath the Mérida Andes is shallow, ~65km depth, and parallels the range. In the plate boundary region under the Cordillera de la Costa the lithosphere is also thin, ~65km, beneath the Cariaco basin the lithosphere thickens to 85 km. In the far east under Serranía del Interior the lithosphere is ~75 km. Cratonic lithosphere thickness varies from 85 to 100 km.

  6. Into the subduction plate interface: insights from exhumed terranes (Invited)

    NASA Astrophysics Data System (ADS)

    Agard, P.; Angiboust, S.; Plunder, A.

    2013-12-01

    In order to place constraints on the still elusive lithological and physical nature of the subduction plate interface, we herein present critical petrological (and modelling) data from intermediate depths along the subduction interface. Their implications, ranging from long-term underplating and exhumation to short-lived seismic events, are confronted with the recent wealth of geophysical/chemical data from the literature. Emphasis is placed on findings from two major localities showing deeply subducted ophiolitic remnants (Zermatt-Saas, Monviso), which crop out in the classic, well-preserved fossil subduction setting of the Western Alps. Both ophiolite remnants in fact represent large, relatively continuous fragments of oceanic lithosphere (i.e., several km-thick tectonic slices across tens of km) exhumed from ~80 km depths and thereby provide important constraints on interplate coupling mechanisms. We show that pervasive hydrothermal processes and seafloor alteration promoting fluid incorporation in both mafic and associated ultramafic rocks was essential, together with the presence of km-thick serpentinite soles, to decrease the density of the tectonic slices and prevent them from an irreversible sinking into the mantle. The Monviso case sudy (particularly the Lago Superiore Unit) provides further insights on both seismicity and fluid flow along the subduction plate interface at ~80 km depths: (1) Eclogite breccias, reported here for the first time, mark the locus of an ancient fault zone associated with intraslab, intermediate-depth earthquakes at ~80 km depth. They correspond to m-sized blocks made of 1-10 cm large fragments of eclogite mylonite later embedded in serpentinite in a ~100m thick eclogite facies shear zone. We suggest that seismic brecciation (possibly at magnitudes Mw ~4) occurred in the middle part of the oceanic crust, accompanied by the input of externally-derived fluids. (2) Prominent fluid-rock interactions, as attested by ubiquitous metasomatic rinds, affected the fragments of mylonitic basaltic eclogites and calcschists dragged and dismembered within serpentinite during eclogite-facies deformation. Detailed petrological and geochemical investigations point to a massive, pulse-like, fluid-mediated element transfer essentially originating from serpentinite. Antigorite breakdown, occurring ca. 15 km deeper than the maximum depth reached by these eclogites, is regarded as the likely source of this highly focused fluid/rock interaction and element transfer. Such a pulse-like, subduction-parallel fluid migration pathway within the downgoing oceanic lithosphere may have been promoted by transient slip behaviour along the LSZ under eclogite-facies conditions. Bi-phase numerical models allowing for fluid migration (driven by concentrations in the rocks, non-lithostatic pressure gradients and deformation), mantle wedge hydration and mechanical weakening of the plate interface indicate that the detachment of such large-scale oceanic tectonic slices is promoted by fluid circulation along the subduction interface (as well as by subducting a strong and originally discontinuous mafic crust).

  7. Level II scour analysis for Bridge 29 (LONDTH00410029) on Town Highway 41, crossing Cook Brook, Londonderry, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Wild, Emily C.

    1997-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 1.5. Abutment scour ranged from 8.4 to 15.1 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  8. Level II scour analysis for Bridge 17 (SHEFTH00380017) on Town Highway 38, crossing Miller Run, Sheffield, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Degnan, James R.

    1997-01-01

    Contraction scour for modelled flows ranged from 0.0 to 2.4 ft. Abutment scour ranged from 6.1 to 7.9 ft at the left abutment and 11.4 to 17.4 ft at the right abutment. The worstcase contraction and abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  9. SU-F-T-129: Impact of Radial Fluctuations in RBE for Therapeutic Proton Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butkus, M; Palmer, T

    Purpose: To evaluate the off axis relative biological effectiveness (RBE) for actively scanned proton beams and determine if a constant radial RBE can be assumed. Methods: The PHITS Monte Carlo code paired with a microscopic analytical function was used to determine probability distribution functions of the lineal energy in 0.3µm diameter spheres throughout a water phantom. Twenty million primary protons were simulated for a 0.6cm diameter pencil beam. Beam energies corresponding to Bragg Peak depths of 50, 100, 150, 200, 250, and 300mm were used and evaluated transversely every millimeter and radially for annuli of 1.0, 2.0, 3.0, 3.2, 3.4,more » 3.6, 4.0, 5.0, 10.0, 15.0, 20.0 and 25.0mm outer radius. The acquired probability distributions were reduced to dose-mean lineal energies and applied to the modified microdosimetric kinetic model, for human submandibular gland (HSG) cells, to calculate relative biological effectiveness (RBE) compared to 60Co beams at the 10% survival threshold. Results: RBE was generally seen to increase as distance from the central axis (CAX) increased. However, this increase was only seen in low dose regions and its overall effects on the transverse biological dose remains low. In the entrance region of the phantom (10mm depth), minimum and maximum calculated RBEs varied between 15.22 and 18.88% for different energies. At the Bragg peak, this difference ranged from 3.15 to 26.77%. Despite these rather large variations the dose-weighted RBE and the CAX RBE varied by less than 0.14% at 10mm depth and less than 0.16% at the Bragg peak. Similarly small variations were found at all depths proximal of the Bragg peak. Conclusion: Although proton RBE does vary radially, its overall effect on biological dose is minimal and the use of a radially constant RBE in treatment planning for scanned proton beams would not produce large errors.« less

  10. Fracture characterization and fracture-permeability estimation at the underground research laboratory in southeastern Manitoba, Canada

    USGS Publications Warehouse

    Paillet, Frederick L.

    1988-01-01

    Various conventional geophysical well logs were obtained in conjunction with acoustic tube-wave amplitude and experimental heat-pulse flowmeter measurements in two deep boreholes in granitic rocks on the Canadian shield in southeastern Manitoba. The objective of this study is the development of measurement techniques and data processing methods for characterization of rock volumes that might be suitable for hosting a nuclear waste repository. One borehole, WRA1, intersected several major fracture zones, and was suitable for testing quantitative permeability estimation methods. The other borehole, URL13, appeared to intersect almost no permeable fractures; it was suitable for testing methods for the characterization of rocks of very small permeability and uniform thermo-mechanical properties in a potential repository horizon. Epithermal neutron , acoustic transit time, and single-point resistance logs provided useful, qualitative indications of fractures in the extensively fractured borehole, WRA1. A single-point log indicates both weathering and the degree of opening of a fracture-borehole intersection. All logs indicate the large intervals of mechanically and geochemically uniform, unfractured granite below depths of 300 m in the relatively unfractured borehole, URL13. Some indications of minor fracturing were identified in that borehole, with one possible fracture at a depth of about 914 m, producing a major acoustic waveform anomaly. Comparison of acoustic tube-wave attenuation with models of tube-wave attenuation in infinite fractures of given aperture provide permeability estimates ranging from equivalent single-fractured apertures of less than 0.01 mm to apertures of > 0.5 mm. One possible fracture anomaly in borehole URL13 at a depth of about 914 m corresponds with a thin mafic dike on the core where unusually large acoustic contrast may have produced the observed waveform anomaly. No indications of naturally occurring flow existed in borehole URL13; however, flowmeter measurements indicated flow at < 0.05 L/min from the upper fracture zones in borehole WRA1 to deeper fractures at depths below 800 m. (Author 's abstract)

  11. Assessing prey fish populations in Lake Michigan: Comparison of simultaneous acoustic-midwater trawling with bottom trawling

    USGS Publications Warehouse

    Fabrizio, Mary C.; Adams, Jean V.; Curtis, Gary L.

    1997-01-01

    The Lake Michigan fish community has been monitored since the 1960s with bottom trawls, and since the late 1980s with acoustics and midwater trawls. These sampling tools are limited to different habitats: bottom trawls sample fish near bottom in areas with smooth substrates, and acoustic methods sample fish throughout the water column above all substrate types. We compared estimates of fish densities and species richness from daytime bottom trawling with those estimated from night-time acoustic and midwater trawling at a range of depths in northeastern Lake Michigan in summer 1995. We examined estimates of total fish density as well as densities of alewife Alosa pseudoharengus (Wilson), bloater Coregonus hoyi (Gill), and rainbow smelt Osmerus mordax (Mitchell) because these three species are the dominant forage of large piscivores in Lake Michigan. In shallow water (18 m), we detected more species but fewer fish (in fish/ha and kg/ha) with bottom trawls than with acoustic-midwater trawling. Large aggregations of rainbow smelt were detected by acoustic-midwater trawling at 18 m and contributed to the differences in total fish density estimates between gears at this depth. Numerical and biomass densitites of bloaters from all depths were significantly higher when based on bottom trawl samples than on acoustic-midwater trawling, and this probably contributed to the observed significant difference between methods for total fish densities (kg/ha) at 55 m. Significantly fewer alewives per ha were estimated from bottom trawling than from acoustics-midwater trawling at 55 m, and in deeper waters, no alewives were taken by bottom trawling. The differences detected between gears resulted from alewife, bloater, and rainbow smelt vertical distributions, which varied with lake depth and time of day. Because Lake Michigan fishes are both demersal and pelagic, a single sampling method cannot be used to completely describe characteristics of the fish community.

  12. TH-C-BRD-04: Beam Modeling and Validation with Triple and Double Gaussian Dose Kernel for Spot Scanning Proton Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirayama, S; Takayanagi, T; Fujii, Y

    2014-06-15

    Purpose: To present the validity of our beam modeling with double and triple Gaussian dose kernels for spot scanning proton beams in Nagoya Proton Therapy Center. This study investigates the conformance between the measurements and calculation results in absolute dose with two types of beam kernel. Methods: A dose kernel is one of the important input data required for the treatment planning software. The dose kernel is the 3D dose distribution of an infinitesimal pencil beam of protons in water and consists of integral depth doses and lateral distributions. We have adopted double and triple Gaussian model as lateral distributionmore » in order to take account of the large angle scattering due to nuclear reaction by fitting simulated inwater lateral dose profile for needle proton beam at various depths. The fitted parameters were interpolated as a function of depth in water and were stored as a separate look-up table for the each beam energy. The process of beam modeling is based on the method of MDACC [X.R.Zhu 2013]. Results: From the comparison results between the absolute doses calculated by double Gaussian model and those measured at the center of SOBP, the difference is increased up to 3.5% in the high-energy region because the large angle scattering due to nuclear reaction is not sufficiently considered at intermediate depths in the double Gaussian model. In case of employing triple Gaussian dose kernels, the measured absolute dose at the center of SOBP agrees with calculation within ±1% regardless of the SOBP width and maximum range. Conclusion: We have demonstrated the beam modeling results of dose distribution employing double and triple Gaussian dose kernel. Treatment planning system with the triple Gaussian dose kernel has been successfully verified and applied to the patient treatment with a spot scanning technique in Nagoya Proton Therapy Center.« less

  13. Depth of array micro-holes with large aspect ratio in Al based cast alloy

    NASA Astrophysics Data System (ADS)

    Jin, Meiling; Qu, Yingdong; Li, Rongde

    2018-03-01

    In order to study on the depth of array micro-holes on Al base cast alloy, micro-hole with depth of 50 mm and diameter of 0.55 mm are successfully prepared by using poor wetting between carbon and Al. Accordingly, the mold of depth is established, the results show that calculated depth of micro-hole is 53.22 mm, relative error is 6% compare with the actual measured depth, and the depth of hole exponentially increases with the increasing of distance between two micro-holes. Surface tension and metallostatic pressure of metal molten are mainly affecting factors for depth of micro-holes.

  14. Using light-dependent scleractinia to define the upper boundary of mesophotic coral ecosystems on the reefs of Utila, Honduras.

    PubMed

    Laverick, Jack H; Andradi-Brown, Dominic A; Rogers, Alex D

    2017-01-01

    Shallow water zooxanthellate coral reefs grade into ecologically distinct mesophotic coral ecosystems (MCEs) deeper in the euphotic zone. MCEs are widely considered to start at an absolute depth limit of 30m deep, possibly failing to recognise that these are distinct ecological communities that may shift shallower or deeper depending on local environmental conditions. This study aimed to explore whether MCEs represent distinct biological communities, the upper boundary of which can be defined and whether the depth at which they occur may vary above or below 30m. Mixed-gas diving and closed-circuit rebreathers were used to quantitatively survey benthic communities across shallow to mesophotic reef gradients around the island of Utila, Honduras. Depths of up to 85m were sampled, covering the vertical range of the zooxanthellate corals around Utila. We investigate vertical reef zonation using a variety of ecological metrics to identify community shifts with depth, and the appropriateness of different metrics to define the upper MCE boundary. Patterns observed in scleractinian community composition varied between ordination analyses and approaches utilising biodiversity indices. Indices and richness approaches revealed vertical community transition was a gradation. Ordination approaches suggest the possibility of recognising two scleractinian assemblages. We could detect a mesophotic and shallow community while illustrating that belief in a static depth limit is biologically unjustified. The switch between these two communities occurred across bathymetric gradients as small as 10m and as large as 50m in depth. The difference between communities appears to be a loss of shallow specialists and increase in depth-generalist taxa. Therefore, it may be possible to define MCEs by a loss of shallow specialist species. To support a biological definition of mesophotic reefs, we advocate this analytical framework should be applied around the Caribbean and extended into other ocean basins where MCEs are present.

  15. Inorganic material profiling using Arn+ cluster: Can we achieve high quality profiles?

    NASA Astrophysics Data System (ADS)

    Conard, T.; Fleischmann, C.; Havelund, R.; Franquet, A.; Poleunis, C.; Delcorte, A.; Vandervorst, W.

    2018-06-01

    Retrieving molecular information by sputtering of organic systems has been concretized in the last years due to the introduction of sputtering by large gas clusters which drastically eliminated the compound degradation during the analysis and has led to strong improvements in depth resolution. Rapidly however, a limitation was observed for heterogeneous systems where inorganic layers or structures needed to be profiled concurrently. As opposed to organic material, erosion of the inorganic layer appears very difficult and prone to many artefacts. To shed some light on these problems we investigated a simple system consisting of aluminum delta layer(s) buried in a silicon matrix in order to define the most favorable beam conditions for practical analysis. We show that counterintuitive to the small energy/atom used and unlike monoatomic ion sputtering, the information depth obtained with large cluster ions is typically very large (∼10 nm) and that this can be caused both by a large roughness development at early stages of the sputtering process and by a large mixing zone. As a consequence, a large deformation of the Al intensity profile is observed. Using sample rotation during profiling significantly improves the depth resolution while sample temperature has no significant effect. The determining parameter for high depth resolution still remains the total energy of the cluster instead of the energy per atom in the cluster.

  16. Underwater research methods for study of nuclear bomb craters, Enewetak, Marshall Islands

    USGS Publications Warehouse

    Shinn, E.A.; Halley, R.B.; Kindinger, J.L.; Hudson, J.H.; Slate, R.A.

    1990-01-01

    Three craters, created by the explosion of nuclear fusion devices, were mapped, sampled, core drilled and excavated with airlifts at Enewetak Atoll in the Marshall Islands by using scuba and a research submersible. The craters studied were Mike, Oak, and Koa. Tests took place near sea level at the transition between lithified reef flat and unlithified lagoonal sediments, where water depth ranged from 1 to 4 m. Craters produced by the blasts ranged from 30 to 60 m in depth. The purpose of our study was to determine crater diameter and depth immediately after detonation. Observations of submerged roadways and testing structures and upturned crater rims similar to those characteristic of meteor impacts indicate that the initial, or transient, craters were smaller than their present size. At some later time, while the area was too radioactive for direct examination, the sides of the craters slumped owing to dewatering of under lying pulverized rock. Core drilling of crater margins with a diver-operated hydraulic coring device provided additional data. On the seaward margin of the atoll, opposite Mike, a large portion of the atoll rim approximately the size of a city block had slumped into the deep ocean, leaving a clean vertical rock section more than 400m high. An abundance of aggressive grey reef sharks displaying classic territorial behavior prevented use of scuba at the Mike slump site. The two-person submersible R.V. Delta provided protection and allowed observations down to 300 m. During the 6-week period of study, we made more than 300 scuba and 275 submersible dives. Mapping was with side scan sonar and continuous video sweeps supplemented by tape-recorded verbal descriptions made from within the submersible. A mini-ranger navigation system linked to the submersible allowed plotting of bottom features, depth and sediment type with spatial accuracy to within 2 m.

  17. Sunphotometry of the 2006-2007 aerosol optical/radiative properties at the Himalayan Nepal Climate Observatory-Pyramid (5079 m a.s.l.)

    NASA Astrophysics Data System (ADS)

    Gobbi, G. P.; Angelini, F.; Bonasoni, P.; Verza, G. P.; Marinoni, A.; Barnaba, F.

    2010-11-01

    In spite of being located at the heart of the highest mountain range in the world, the Himalayan Nepal Climate Observatory (5079 m a.s.l.) at the Ev-K2-CNR Pyramid is shown to be affected by the advection of pollution aerosols from the populated regions of southern Nepal and the Indo-Gangetic plains. Such an impact is observed along most of the period April 2006-March 2007 addressed here, with a minimum in the monsoon season. Backtrajectory-analysis indicates long-range transport episodes occurring in this year to originate mainly in the west Asian deserts. At this high altitude site, the measured aerosol optical depth is observed to be about one order of magnitude lower than the one measured at Ghandi College (60 m a.s.l.), in the Indo-Gangetic basin. As for Ghandi College, and in agreement with the in situ ground observations at the Pyramid, the fine mode aerosol optical depth maximizes during winter and minimizes in the monsoon season. Conversely, total optical depth maximizes during the monsoon due to the occurrence of elevated, coarse particle layers. Possible origins of these particles are wind erosion from the surrounding peaks and hydrated/cloud-processed aerosols. Assessment of the aerosol radiative forcing is then expected to be hampered by the presence of these high altitude particle layers, which impede an effective, continuous measurement of anthropogenic aerosol radiative properties from sky radiance inversions and/or ground measurements alone. Even though the retrieved absorption coefficients of pollution aerosols were rather large (single scattering albedo of the order of 0.6-0.9 were observed in the month of April 2006), the corresponding low optical depths (~0.03 at 500 nm) are expected to limit the relevant radiative forcing. Still, the high specific forcing of this aerosol and its capability of altering snow surface albedo provide good reasons for continuous monitoring.

  18. NEUTRAL HYDROGEN OPTICAL DEPTH NEAR STAR-FORMING GALAXIES AT z Almost-Equal-To 2.4 IN THE KECK BARYONIC STRUCTURE SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakic, Olivera; Schaye, Joop; Steidel, Charles C.

    We study the interface between galaxies and the intergalactic medium by measuring the absorption by neutral hydrogen in the vicinity of star-forming galaxies at z Almost-Equal-To 2.4. Our sample consists of 679 rest-frame UV-selected galaxies with spectroscopic redshifts that have impact parameters <2 (proper) Mpc to the line of sight of one of the 15 bright, background QSOs and that fall within the redshift range of its Ly{alpha} forest. We present the first two-dimensional maps of the absorption around galaxies, plotting the median Ly{alpha} pixel optical depth as a function of transverse and line-of-sight separation from galaxies. The Ly{alpha} opticalmore » depths are measured using an automatic algorithm that takes advantage of all available Lyman series lines. The median optical depth, and hence the median density of atomic hydrogen, drops by more than an order of magnitude around 100 kpc, which is similar to the virial radius of the halos thought to host the galaxies. The median remains enhanced, at the >3{sigma} level, out to at least 2.8 Mpc (i.e., >9 comoving Mpc), but the scatter at a given distance is large compared with the median excess optical depth, suggesting that the gas is clumpy. Within 100 (200) kpc, and over {+-}165 km s{sup -1}, the covering fraction of gas with Ly{alpha} optical depth greater than unity is 100{sup +0}{sub -32}% (66% {+-} 16%). Absorbers with {tau}{sub Ly{alpha}} > 0.1 are typically closer to galaxies than random. The mean galaxy overdensity around absorbers increases with the optical depth and also as the length scale over which the galaxy overdensity is evaluated is decreased. Absorbers with {tau}{sub Ly{alpha}} {approx} 1 reside in regions where the galaxy number density is close to the cosmic mean on scales {>=}0.25 Mpc. We clearly detect two types of redshift space anisotropies. On scales <200 km s{sup -1}, or <1 Mpc, the absorption is stronger along the line of sight than in the transverse direction. This 'finger of God' effect may be due to redshift errors, but is probably dominated by gas motions within or very close to the halos. On the other hand, on scales of 1.4-2.0 Mpc the absorption is compressed along the line of sight (with >3{sigma} significance), an effect that we attribute to large-scale infall (i.e., the Kaiser effect).« less

  19. Lithospheric scale conductivity anomalies at the Proterozoic-Phanerozoic transition of Australia- Insights from AusLAMP MT data

    NASA Astrophysics Data System (ADS)

    Robertson, K. E.; Thiel, S.; Heinson, G. S.

    2017-12-01

    The intraplate deformation of the north-south trending Neoproterozoic Ikara-Flinders Ranges in South Australia, Australia, draws interest due to its high heat flow, elevated seismicity and the presence of diamondiferous kimberlites and mineral deposits. To the west lies the highly prospective Archean-Paleoproterozoic Gawler Craton, boasting the world's largest IOCG-U deposit, Olympic Dam. The Paleo-Mesoproterozoic Curnamona Province lies to the east, thought to have once been connected to the Gawler Craton and host to the world-class Broken Hill Ag-Pb-Zn deposit. A total of 162 long-period (10 s - 10,000 s) magnetotelluric (MT) stations from the Australia-wide AusLAMP (Australian Lithospheric Architecture Magnetotelluric Project) dataset were used to image the electrical resistivity beneath the Ikara-Flinders Ranges and adjacent Curnamona Province. The most recent acquisition extends this survey region northward to an area predominantly covered with Paleo-Mesozoic sedimentary basins including the most significant on-shore oil and gas region in Australia, the Cooper Basin. The resultant model from 3D inversions using ModEM software shows a relatively resistive Ikara-Flinders Ranges, with two parallel arcuate conductors (the WNAC and ENAC) at 20 to 80 km depth in the Nackara Arc. These conductors correlate well with locations of diamondiferous kimberlites which suggests that the conductors may have derived from the ascent of carbon-rich kimberlite-hosting magma and volatiles up large lithospheric scale structures. The conductors appear to have no correlation with regions of intraplate seismicity within the Ikara-Flinders Ranges which may mean that enhanced pore fluid pressure is not the main cause for the seismicity as was recently proposed. A large conductor covering most of the Curnamona Province (the CC) extends over depths of 10-40 km. The Curnamona Province's most recent tectonothermal activity is from Delamerian reworking during the Cambrian at its margins but is thought to exhibit a mostly cratonic core, supported by high wavespeeds imaged using seismic tomography. Given the pervasive nature of the conductor, it is attributed to a widespread fossil fluid flux event, perhaps either a long-lived response from Olarian (1.6 Ga) subduction-related fluids or a more recent event.

  20. Poor flight performance in deep-diving cormorants.

    PubMed

    Watanabe, Yuuki Y; Takahashi, Akinori; Sato, Katsufumi; Viviant, Morgane; Bost, Charles-André

    2011-02-01

    Aerial flight and breath-hold diving present conflicting morphological and physiological demands, and hence diving seabirds capable of flight are expected to face evolutionary trade-offs regarding locomotory performances. We tested whether Kerguelen shags Phalacrocorax verrucosus, which are remarkable divers, have poor flight capability using newly developed tags that recorded their flight air speed (the first direct measurement for wild birds) with propeller sensors, flight duration, GPS position and depth during foraging trips. Flight air speed (mean 12.7 m s(-1)) was close to the speed that minimizes power requirement, rather than energy expenditure per distance, when existing aerodynamic models were applied. Flights were short (mean 92 s), with a mean summed duration of only 24 min day(-1). Shags sometimes stayed at the sea surface without diving between flights, even on the way back to the colony, and surface durations increased with the preceding flight durations; these observations suggest that shags rested after flights. Our results indicate that their flight performance is physiologically limited, presumably compromised by their great diving capability (max. depth 94 m, duration 306 s) through their morphological adaptations for diving, including large body mass (enabling a large oxygen store), small flight muscles (to allow for large leg muscles for underwater propulsion) and short wings (to decrease air volume in the feathers and hence buoyancy). The compromise between flight and diving, as well as the local bathymetry, shape the three-dimensional foraging range (<26 km horizontally, <94 m vertically) in this bottom-feeding cormorant.

  1. Welding with the thin disc laser: new processing and application potentials

    NASA Astrophysics Data System (ADS)

    Hügel, H.; Ruβ, A.; Weberpals, J.; Dausinger, F.

    2005-09-01

    Thin disc lasers represent a new class of welding lasers in that they combine the beneficial characteristics of CO2- and Nd:YAG-lasers. Their good focusability--values of M2 around 20 are typical for devices in the multi kW power range--can be utilized in several ways to improve the welding performance: compared to lamp-pumped Nd:YAG-lasers, the laser power required at the threshold to the deep penetration regime can be reduced, the welding depth can be increased and far higher values of traverse speed are applicable at prescribed welding depths. Alternatively, the high beam quality allows the use of focusing optics with large focal lengths, hence enabling the realization of "remote welding" concepts. At the same time, a wavelength of 1.03 μm (Yb:YAG) provides, in comparison to CO2-lasers, a high absorptivity at metallic workpieces and a low sensitivity against plasma production; both effects contribute to the efficiency, stability and achievable quality of the welding process. Further, beam delivery via flexible glass fibers with core diameters of 100 μm to 150 μm is possible. With these features and an overall (plug) efficiency of more than 20 %, this laser offers a large potential for many applications.

  2. Geohydrology of volcanic tuff penetrated by test well UE-25b#1, Yucca Mountain, Nye County, Nevada

    USGS Publications Warehouse

    Lahoud, R.G.; Lobmeyer, D.H.; Whitfield, M.S.

    1984-01-01

    Test well UE-25bNo1, located on the east side of Yucca Mountain in the southwestern part of the Nevada Test Site, was drilled to a total depth of 1,220 meters and hydraulically tested as part of a program to evaluate the suitability of Yucca Mountain as a nuclear-waste repository. The well penetrated almost 46 meters of alluvium and 1,174 meters of Tertiary volcanic tuffs. The composite hydraulic head for aquifers penetrated by the well was 728.9 meters above sea level (471.4 meters below land surface) with a slight decrease in loss of hydraulic head with depth. Average hydraulic conductivities for stratigraphic units determined from pumping tests, borehole-flow surveys, and packer-injection tests ranged from less than 0.001 meter per day for the Tram Member of the Crater Flat Tuff to 1.1 meters per day for the Bullfrog Member of the Crater Flat Tuff. The small values represented matrix permeability of unfractured rock; the large values probably resulted from fracture permeability. Chemical analyses indicated that the water is a soft sodium bicarbonate type, slightly alkaline, with large concentrations of dissolved silica and sulfate. Uncorrected carbon-14 age dates of the water were 14,100 and 13,400 years. (USGS)

  3. W-band PELDOR with 1 kW microwave power: molecular geometry, flexibility and exchange coupling.

    PubMed

    Reginsson, Gunnar W; Hunter, Robert I; Cruickshank, Paul A S; Bolton, David R; Sigurdsson, Snorri Th; Smith, Graham M; Schiemann, Olav

    2012-03-01

    A technique that is increasingly being used to determine the structure and conformational flexibility of biomacromolecules is Pulsed Electron-Electron Double Resonance (PELDOR or DEER), an Electron Paramagnetic Resonance (EPR) based technique. At X-band frequencies (9.5 GHz), PELDOR is capable of precisely measuring distances in the range of 1.5-8 nm between paramagnetic centres but the orientation selectivity is weak. In contrast, working at higher frequencies increases the orientation selection but usually at the expense of decreased microwave power and PELDOR modulation depth. Here it is shown that a home-built high-power pulsed W-band EPR spectrometer (HiPER) with a large instantaneous bandwidth enables one to achieve PELDOR data with a high degree of orientation selectivity and large modulation depths. We demonstrate a measurement methodology that gives a set of PELDOR time traces that yield highly constrained data sets. Simulating the resulting time traces provides a deeper insight into the conformational flexibility and exchange coupling of three bisnitroxide model systems. These measurements provide strong evidence that W-band PELDOR may prove to be an accurate and quantitative tool in assessing the relative orientations of nitroxide spin labels and to correlate those orientations to the underlying biological structure and dynamics. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Drivers of epibenthic megafaunal composition in the sponge grounds of the Sackville Spur, northwest Atlantic

    NASA Astrophysics Data System (ADS)

    Beazley, Lindsay; Kenchington, Ellen; Yashayaev, Igor; Murillo, Francisco Javier

    2015-04-01

    Deep-water sponges are considered ecosystem engineers, and the presence of large aggregations of these organisms, commonly referred to as sponge grounds, is associated with enhanced biodiversity and abundance of epibenthic fauna compared to non-sponge habitat. However, the degree and magnitude to which the presence of these sponge grounds elicits large changes in composition of the associated megafaunal community remains unknown. Here we identify the external drivers of epibenthic megafaunal community composition and explore the patterns and magnitude of compositional change in the megafaunal community within the sponge grounds of the Sackville Spur, northwest Atlantic. Epibenthic megafauna were quantified from five image transects collected on the Sackville Spur in 2009 between 1080 and 1723 m depth. Using Gradient Forest Modelling we found that the abundance of structure-forming sponges was the most important variable for predicting compositional patterns in the Sackville Spur megafaunal community, followed by depth, range in bottom current speed, in situ salinity, and longitude. Along the gradient in structure-forming sponge abundance, the largest turnover in megafaunal community composition occurred when the sponges reached 15 individuals m-2. Examination of the regional hydrographic conditions suggests that the dense sponge grounds of the Sackville Spur are associated with a warm, salty water mass that occurs between ~1300 and 1800 m.

  5. Range verification for eye proton therapy based on proton-induced x-ray emissions from implanted metal markers

    NASA Astrophysics Data System (ADS)

    La Rosa, Vanessa; Kacperek, Andrzej; Royle, Gary; Gibson, Adam

    2014-06-01

    Metal fiducial markers are often implanted on the back of the eye before proton therapy to improve target localization and reduce patient setup errors. We aim to detect characteristic x-ray emissions from metal targets during proton therapy to verify the treatment range accuracy. Initially gold was chosen for its biocompatibility properties. Proton-induced x-ray emissions (PIXE) from a 15 mm diameter gold marker were detected at different penetration depths of a 59 MeV proton beam at the CATANA proton facility at INFN-LNS (Italy). The Monte Carlo code Geant4 was used to reproduce the experiment and to investigate the effect of different size markers, materials, and the response to both mono-energetic and fully modulated beams. The intensity of the emitted x-rays decreases with decreasing proton energy and thus decreases with depth. If we assume the range to be the depth at which the dose is reduced to 10% of its maximum value and we define the residual range as the distance between the marker and the range of the beam, then the minimum residual range which can be detected with 95% confidence level is the depth at which the PIXE peak is equal to 1.96 σbkg, which is the standard variation of the background noise. With our system and experimental setup this value is 3 mm, when 20 GyE are delivered to a gold marker of 15 mm diameter. Results from silver are more promising. Even when a 5 mm diameter silver marker is placed at a depth equal to the range, the PIXE peak is 2.1 σbkg. Although these quantitative results are dependent on the experimental setup used in this research study, they demonstrate that the real-time analysis of the PIXE emitted by fiducial metal markers can be used to derive beam range. Further analysis are needed to demonstrate the feasibility of the technique in a clinical setup.

  6. River meanders and channel size

    USGS Publications Warehouse

    Williams, G.P.

    1986-01-01

    This study uses an enlarged data set to (1) compare measured meander geometry to that predicted by the Langbein and Leopold (1966) theory, (2) examine the frequency distribution of the ratio radius of curvature/channel width, and (3) derive 40 empirical equations (31 of which are original) involving meander and channel size features. The data set, part of which comes from publications by other authors, consists of 194 sites from a large variety of physiographic environments in various countries. The Langbein-Leopold sine-generated-curve theory for predicting radius of curvature agrees very well with the field data (78 sites). The ratio radius of curvature/channel width has a modal value in the range of 2 to 3, in accordance with earlier work; about one third of the 79 values is less than 2.0. The 40 empirical relations, most of which include only two variables, involve channel cross-section dimensions (bankfull area, width, and mean depth) and meander features (wavelength, bend length, radius of curvature, and belt width). These relations have very high correlation coefficients, most being in the range of 0.95-0.99. Although channel width traditionally has served as a scale indicator, bankfull cross-sectional area and mean depth also can be used for this purpose. ?? 1986.

  7. Source, transport and fluxes of Amazon River particulate organic carbon: Insights from river sediment depth-profiles

    NASA Astrophysics Data System (ADS)

    Bouchez, Julien; Galy, Valier; Hilton, Robert G.; Gaillardet, Jérôme; Moreira-Turcq, Patricia; Pérez, Marcela Andrea; France-Lanord, Christian; Maurice, Laurence

    2014-05-01

    In order to reveal particulate organic carbon (POC) source and mode of transport in the largest river basin on Earth, we sampled the main sediment-laden tributaries of the Amazon system (Solimões, Madeira and Amazon) during two sampling campaigns, following vertical depth-profiles. This sampling technique takes advantage of hydrodynamic sorting to access the full range of solid erosion products transported by the river. Using the Al/Si ratio of the river sediments as a proxy for grain size, we find a general increase in POC content with Al/Si, as sediments become finer. However, the sample set shows marked variability in the POC content for a given Al/Si ratio, with the Madeira River having lower POC content across the measured range in Al/Si. The POC content is not strongly related to the specific surface area (SSA) of the suspended load, and bed sediments have a much lower POC/SSA ratio. These data suggest that SSA exerts a significant, yet partial, control on POC transport in Amazon River suspended sediment. We suggest that the role of clay mineralogy, discrete POC particles and rock-derived POC warrant further attention in order to fully understand POC transport in large rivers.

  8. In situ grazing experiments apply new technology to gain insights into deep-sea microbial food webs

    NASA Astrophysics Data System (ADS)

    Pachiadaki, Maria G.; Taylor, Craig; Oikonomou, Andreas; Yakimov, Michail M.; Stoeck, Thorsten; Edgcomb, Virginia

    2016-07-01

    Predation by grazing protists in aquatic habitats can influence prokaryotic community structure and provides a source of new, labile organic matter. Due to methodological difficulties associated with studies of deep-sea (below photic zone) microbiota, trophic interactions between eukaryotes and prokaryotes in mesopelagic and bathypelagic realms are largely obscured. Further complicating matters, examinations of trophic interactions using water samples that have been exposed to upwards of hundreds of atmospheres of pressure change prior to initiating experiments can potentially introduce significant artifacts. Here we present results of the first study of protistan grazing in water layers ranging from the euphotic zone to the bathypelagic, utilizing the Microbial Sampler-Submersible Incubation Device (MS-SID) that makes possible in situ studies of microbial activities. Protistan grazing in the mesopelagic and bathypelagic realm of the East Mediterranean Sea was quantified using fluorescently labeled prokaryotes (FLP) prepared from the naturally-occurring prokaryotic assemblages. These studies reveal daily prokaryotic removal due to grazing ranging from 31.3±5.9% at 40 m depth to 0.5±0.3% at 950 m. At 3540 m depth, where a chemocline habitat exists with abundant and active prokaryotes above Urania basin, the daily consumption of prokaryotes by protists was 19.9±6.6% of the in situ abundance.

  9. Dose dependence of nano-hardness of 6H-SiC crystal under irradiation with inert gas ions

    NASA Astrophysics Data System (ADS)

    Yang, Yitao; Zhang, Chonghong; Su, Changhao; Ding, Zhaonan; Song, Yin

    2018-05-01

    Single crystal 6H-SiC was irradiated by inert gas ions (He, Ne, Kr and Xe ions) to various damage levels at room temperature. Nano-indentation test was performed to investigate the hardness change behavior with damage. The depth profile of nano-hardness for 6H-SiC decreased with increasing depth for both the pristine and irradiated samples, which was known as indentation size effect (ISE). Nix-Gao model was proposed to determine an asymptotic value of nano-hardness by taking account of ISE for both the pristine and irradiated samples. In this study, nano-hardness of the irradiated samples showed a strong dependence on damage level and showed a weak dependence on ions species. From the dependence of hardness on damage, it was found that the change of hardness demonstrated three distinguishable stages with damage: (I) The hardness increased with damage from 0 to 0.2 dpa and achieved a maximum of hardening fraction ∼20% at 0.2 dpa. The increase of hardness in this damage range was contributed to defects produced by ion irradiation, which can be described well by Taylor relation. (II) The hardness reduced rapidly with large decrement in the damage range from 0.2 to 0.5 dpa, which was considered to be from the covalent bond breaking. (III) The hardness reduced with small decrement in the damage range from 0.5 to 2.2 dpa, which was induced by extension of the amorphous layer around damage peak.

  10. Temporal and spatial variability in thalweg profiles of a gravel-bed river

    USGS Publications Warehouse

    Madej, Mary Ann

    1999-01-01

    This study used successive longitudinal thalweg profiles in gravel-bed rivers to monitor changes in bed topography following floods and associated large sediment inputs. Variations in channel bed elevations, distributions of residual water depths, percentage of channel length occupied by riffles, and a spatial autocorrelation coefficient (Moran's I) were used to quantify changes in morphological diversity and spatial structure in Redwood Creek basin, northwestern California. Bed topography in Redwood Creek and its major tributaries consists primarily of a series of pools and riffles. The size, frequency and spatial distribution of the pools and riffles have changed significantly during the past 20 years. Following large floods and high sediment input in Redwood Creek and its tributaries in 1975, variation in channel bed elevations was low and the percentage of the channel length occupied by riffles was high. Over the next 20 years, variation in bed elevations increased while the length of channel occupied by riffles decreased. An index [(standard deviation of residual water depth/bankfull depth) × 100] was developed to compare variations in bed elevation over a range of stream sizes, with a higher index being indicative of greater morphological diversity. Spatial autocorrelation in the bed elevation data was apparent at both fine and coarse scales in many of the thalweg profiles and the observed spatial pattern of bed elevations was found to be related to the dominant channel material and the time since disturbance. River reaches in which forced pools dominated, and in which large woody debris and bed particles could not be easily mobilized, exhibited a random distribution of bed elevations. In contrast, in reaches where alternate bars dominated, and both wood and gravel were readily transported, regularly spaced bed topography developed at a spacing that increased with time since disturbance. This pattern of regularly spaced bed features was reversed following a 12-year flood when bed elevations became more randomly arranged.

  11. Evaluation of Remote Delivery of Passive Integrated Transponder (PIT) Technology to Mark Large Mammals

    PubMed Central

    Walter, W. David; Anderson, Charles W.; VerCauteren, Kurt C.

    2012-01-01

    Methods to individually mark and identify free-ranging wildlife without trapping and handling would be useful for a variety of research and management purposes. The use of Passive Integrated Transponder technology could be an efficient method for collecting data for mark-recapture analysis and other strategies for assessing characteristics about populations of various wildlife species. Passive Integrated Transponder tags (PIT) have unique numbered frequencies and have been used to successfully mark and identify mammals. We tested for successful injection of PIT and subsequent functioning of PIT into gelatin blocks using 4 variations of a prototype dart. We then selected the prototype dart that resulted in the least depth of penetration in the gelatin block to assess the ability of PIT to be successfully implanted into muscle tissue of white-tailed deer (Odocoileus virginianus) post-mortem and long-term in live, captive Rocky Mountain elk (Cervus elaphus). The prototype dart with a 12.7 mm (0.5 inch) needle length and no powder charge resulted in the shallowest mean (± SD) penetration depth into gelatin blocks of 27.0 mm (±5.6 mm) with 2.0 psi setting on the Dan-Inject CO2-pressured rifle. Eighty percent of PIT were successfully injected in the muscle mass of white-tailed deer post-mortem with a mean (± SD) penetration depth of 22.2 mm (±3.8 mm; n = 6). We injected PIT successfully into 13 live, captive elk by remote delivery at about 20 m that remained functional for 7 months. We successfully demonstrated that PIT could be remotely delivered in darts into muscle mass of large mammals and remain functional for >6 months. Although further research is warranted to fully develop the technique, remote delivery of PIT technology to large mammals is possible using prototype implant darts. PMID:22984572

  12. Eastern South Pacific water mass geometry during the last glacial-interglacial transition

    NASA Astrophysics Data System (ADS)

    De Pol-Holz, R.; Reyes, D.; Mohtadi, M.

    2012-12-01

    The eastern South Pacific is characterized today by a complex thermocline structure where large salinity and oxygen changes as a function of depth coexist. Surface waters from tropical origin float on top of subantarctic fresher water (the so-called 'shallow salinity minimum of the eastern south Pacific'), which in turn, flow above aged equatorial and deeper recently ventilated Antarctic Intermediate waters. Little is known however about the water mass geometry changes that could have occurred during the last glacial maximum boundary conditions (about 20,000 years before the present), despite this information being critical for the assessment of potential mechanisms that have been proposed as explanations for the deglacial onset of low oxygen conditions in the area and the atmospheric CO2 increase during the same time. Here we present benthic and planktonic foraminifera stable isotope and radiocarbon data from a set of sediment cores from the Chilean continental margin covering a large -yet still limited- geographical area and depth range. Sedimentations rates were relatively high (>10 cm/kyr) precluding major caveats from bioturbation in all of our archives. The distribution of δ13C of ΣCO2 shows the presence of a very depleted (δ13C < -1‰ V-PDB) water mass overlaying more recently ventilated waters at intermediate depths as indicated by thermocline foraminifer dwellers being more depleted in 13C than the benthic species. The origin of this depleted end-member is probably upwelling from the Southern Ocean as expressed by the radiocarbon content and the large reservoir effect associated with the last glacial maximum and the beginning of the deglaciation along the margin. Our data suggest that the Tropical waters that today bath the lower latitude cores was displaced by surface waters of southern origin and therefore in line with the evidence of a latitudinal shift of the frontal systems.

  13. Geology of 243 Ida

    USGS Publications Warehouse

    Sullivan, R.; Greeley, R.; Pappalardo, R.; Asphaug, E.; Moore, Johnnie N.; Morrison, D.; Belton, M.J.S.; Carr, M.; Chapman, C.R.; Geissler, P.; Greenberg, R.; Granahan, J.; Head, J. W.; Kirk, R.; McEwen, A.; Lee, P.; Thomas, P.C.; Veverka, J.

    1996-01-01

    The surface of 243 Ida is dominated by the effects of impacts. No complex crater morphologies are observed. A complete range of crater degradation states is present, which also reveals optical maturation of the surface (darkening and reddening of materials with increasing exposure age). Regions of bright material associated with the freshest craters might be ballistically emplaced deposits or the result of seismic disturbance of loosely-bound surface materials. Diameter/depth ratios for fresh craters on Ida are ???1:6.5, similar to Gaspra results, but greater than the 1:5 ratios common on other rocky bodies. Contributing causes include rim degradation by whole-body "ringing," relatively thin ejecta blankets around crater rims, or an extended strength gradient in near-surface materials due to low gravitational self-packing. Grooves probably represent expressions in surface debris of reactivated fractures in the deeper interior. Isolated positive relief features as large as 150 m are probably ejecta blocks related to large impacts. Evidence for the presence of debris on the surface includes resolved ejecta blocks, mass-wasting scars, contrasts in color and albedo of fresh crater materials, and albedo streaks oriented down local slopes. Color data indicate relatively uniform calcium abundance in pyroxenes and constant pyroxene/olivine ratio. A large, relatively blue unit across the northern polar area is probably related to regolith processes involving ejecta from Azzurra rather than representing internal compositional heterogeneity. A small number of bluer, brighter craters are randomly distributed across the surface, unlike on Gaspra where these features are concentrated along ridges. This implies that debris on Ida is less mobile and/or consistently thicker than on Gaspra. Estimates of the average depth of mobile materials derived from chute depths (20-60 m), grooves (???30 m), and shallowing of the largest degraded craters (20-50 m minimum, ???100 m maximum) suggest a thickness of potentially mobile materials of ???50 m, and a typical thickness for the debris layer of 50-100 m. ?? 1996 Academic Press, Inc.

  14. Estimating Source Duration for Moderate and Large Earthquakes in Taiwan

    NASA Astrophysics Data System (ADS)

    Chang, Wen-Yen; Hwang, Ruey-Der; Ho, Chien-Yin; Lin, Tzu-Wei

    2017-04-01

    Estimating Source Duration for Moderate and Large Earthquakes in Taiwan Wen-Yen Chang1, Ruey-Der Hwang2, Chien-Yin Ho3 and Tzu-Wei Lin4 1 Department of Natural Resources and Environmental Studies, National Dong Hwa University, Hualien, Taiwan, ROC 2Department of Geology, Chinese Culture University, Taipei, Taiwan, ROC 3Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan, ROC 4Seismology Center, Central Weather Bureau, Taipei, Taiwan, ROC ABSTRACT To construct a relationship between seismic moment (M0) and source duration (t) was important for seismic hazard in Taiwan, where earthquakes were quite active. In this study, we used a proposed inversion process using teleseismic P-waves to derive the M0-t relationship in the Taiwan region for the first time. Fifteen earthquakes with MW 5.5-7.1 and focal depths of less than 40 km were adopted. The inversion process could simultaneously determine source duration, focal depth, and pseudo radiation patterns of direct P-wave and two depth phases, by which M0 and fault plane solutions were estimated. Results showed that the estimated t ranging from 2.7 to 24.9 sec varied with one-third power of M0. That is, M0 is proportional to t**3, and then the relationship between both of them was M0=0.76*10**23(t)**3 , where M0 in dyne-cm and t in second. The M0-t relationship derived from this study was very close to those determined from global moderate to large earthquakes. For further understanding the validity in the derived relationship, through the constructed relationship of M0-, we inferred the source duration of the 1999 Chi-Chi (Taiwan) earthquake with M0=2-5*10**27 dyne-cm (corresponding to Mw = 7.5-7.7) to be approximately 29-40 sec, in agreement with many previous studies for source duration (28-42 sec).

  15. Gravity, magnetic, and radiometric data for Newberry Volcano, Oregon, and vicinity

    USGS Publications Warehouse

    Wynn, Jeff

    2014-01-01

    Newberry Volcano in central Oregon is a 3,100-square-kilometer (1,200-square-mile) shield-shaped composite volcano, occupying a location east of the main north-south trend of the High Cascades volcanoes and forming a transition between the High Lava Plains subprovince of the Basin and Range Province to the east and the Cascade Range to the west. Magnetic, gravity, and radiometric data have been gathered and assessed for the region around the volcano. These data have widely varying quality and resolution, even within a given dataset, and these limitations are evaluated and described in this release. Publicly available gravity data in general are too sparse to permit detailed modeling except along a few roads with high-density coverage. Likewise, magnetic data are also unsuitable for all but very local modeling, primarily because available data consist of a patchwork of datasets with widely varying line-spacing. Gravity data show only the broadest correlation with mapped geology, whereas magnetic data show moderate correlation with features only in the vicinity of Newberry Caldera. At large scales, magnetic data correlate poorly with both geologic mapping and gravity data. These poor correlations are largely due to the different sensing depths of the two potential fields methods, which respond to physical properties deeper than the surficial geology. Magnetic data derive from rocks no deeper than the Curie-point isotherm depth (10 to 15 kilometers, km, maximum), whereas gravity data reflect density-contrasts to 100 to 150 km depths. Radiometric data from the National Uranium Resource Evaluation (NURE) surveys of the 1980s have perhaps the coarsest line-spacing of all (as much as 10 km between lines) and are extremely “noisy” for several reasons inherent to this kind of data. Despite its shallow-sensing character, only a few larger anomalies in the NURE data correlate well with geologic mapping. The purpose of this data series release is to collect and place the available geophysical data in the hands of other investigators in a readily comprehensible form. All data-compilation, splicing, filtering, and overlay-map displays were accomplished with the commercial Geosoft™ system, Advanced Option. Images are provided in both JPG and PDF formats.

  16. Inversion analysis of slip distribution of the 2008 Iwate-Miyagi Nairiku earthquake: Very high stress-drop or a conjugate fault slip?

    NASA Astrophysics Data System (ADS)

    Fukahata, Y.; Fukushima, Y.

    2009-05-01

    On 14 June 2008, the Iwate-Miyagi Nairiku earthquake struck northeast Japan, where active seismicity has been observed under east-west compressional stress fields. The magnitude and hypocenter depth of the earthquake are reported as Mj 7.2 and 8 km, respectively. The earthquake is considered to have occurred on a west-dipping reverse fault with a roughly north-south strike. The earthquake caused significant surface displacements, which were detected by PALSAR, a Synthetic Aperture Radar (SAR) onboard the Japanese ALOS satellite. Several pairs of PALSAR images from six different paths are available to measure the coseismic displacements. Interferometric SAR (InSAR) is useful to obtain crustal displacements in the region where coseismic displacement is not so large (less than 1 m), whereas range and azimuth offsets provide displacement measurements up to a few meters on the whole processed area. We inverted the obtained displacement data to estimate slip distribution on the fault. Since the precise location and direction of the fault are not well known, the inverse problem is nonlinear. Following the method of Fukahata and Wright (2008), we resolved the weak non-linearity based on Akaike's Bayesian Information Criterion. We first estimated slip distribution by assuming a pure dip slip. The optimal fault geometry was estimated at dip 26 and strike 203 degrees. The maximum slip is more than 8 m and most slips concentrate at shallow depths (less than 4 km). The azimuth offset data suggest non-negligible right lateral slip components, so we next estimated slip distribution without fixing the rake angle. Again, a large slip area with the maximum slip of about 8 m in the shallow depth was obtained. Such slip models contradict with our existing common sense; our results indicate that the released strain is more than 10 to the power of -3. Range and azimuth offsets computed from SAR images obtained from both ascending and descending orbits appear to be more consistent with a conjugate fault slip, which contributes to lower the stress drop possibly to a level typical to this kind of earthquakes.

  17. Storage of fluids and melts at subduction zones detectable by seismic tomography

    NASA Astrophysics Data System (ADS)

    Luehr, B. G.; Koulakov, I.; Rabbel, W.; Brotopuspito, K. S.; Surono, S.

    2015-12-01

    During the last decades investigations at active continental margins discovered the link between the subduction of fluid saturated oceanic plates and the process of ascent of these fluids and partial melts forming a magmatic system that leads to volcanism at the earth surface. For this purpose the geophysical structure of the mantle and crustal range above the down going slap has been imaged. Information is required about the slap, the ascent paths, as well as the reservoires of fluids and partial melts in the mantle and the crust up to the volcanoes at the surface. Statistically the distance between the volcanoes of volcanic arcs down to their Wadati Benioff zone results of approximately 100 kilometers in mean value. Surprisingly, this depth range shows pronounced seismicity at most of all subduction zones. Additionally, mineralogical laboratory investigations have shown that dehydration of the diving plate has a maximum at temperature and pressure conditions we find at around 100 km depth. The ascent of the fluids and the appearance of partial melts as well as the distribution of these materials in the crust can be resolved by seismic tomographic methods using records of local natural seismicity. With these methods these areas are corresponding to lowered seismic velocities, high Vp/Vs ratios, as well as increased attenuation of seismic shear waves. The anomalies and their time dependence are controlled by the fluids. The seismic velocity anomalies detected so far are within a range of a few per cent to more than 30% reduction. But, to explore plate boundaries large and complex amphibious experiments are required, in which active and passive seismic investigations should be combined to achieve best results. The seismic station distribution should cover an area from before the trench up to far behind the volcanic chain, to provide under favorable conditions information down to 150 km depth. Findings of different subduction zones will be compared and discussed.

  18. Level II scour analysis for Bridge 38 (CONCTH00060038) on Town Highway 6, crossing the Moose River, Concord, Vermont

    USGS Publications Warehouse

    Olson, Scott A.

    1996-01-01

    Contraction scour for all modelled flows ranged from 0.1 to 3.1 ft. The worst-case contraction scour occurred at the incipient-overtopping discharge. Abutment scour at the left abutment ranged from 10.4 to 12.5 ft with the worst-case occurring at the 500-year discharge. Abutment scour at the right abutment ranged from 25.3 to 27.3 ft with the worst-case occurring at the incipient-overtopping discharge. The worst-case total scour also occurred at the incipient-overtopping discharge. The incipient-overtopping discharge was in between the 100- and 500-year discharges. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  19. On the relationships between higher and lower bit-depth system measurements

    NASA Astrophysics Data System (ADS)

    Burks, Stephen D.; Haefner, David P.; Doe, Joshua M.

    2018-04-01

    The quality of an imaging system can be assessed through controlled laboratory objective measurements. Currently, all imaging measurements require some form of digitization in order to evaluate a metric. Depending on the device, the amount of bits available, relative to a fixed dynamic range, will exhibit quantization artifacts. From a measurement standpoint, measurements are desired to be performed at the highest possible bit-depth available. In this correspondence, we described the relationship between higher and lower bit-depth measurements. The limits to which quantization alters the observed measurements will be presented. Specifically, we address dynamic range, MTF, SiTF, and noise. Our results provide guidelines to how systems of lower bit-depth should be characterized and the corresponding experimental methods.

  20. High-performance etching of multilevel phase-type Fresnel zone plates with large apertures

    NASA Astrophysics Data System (ADS)

    Guo, Chengli; Zhang, Zhiyu; Xue, Donglin; Li, Longxiang; Wang, Ruoqiu; Zhou, Xiaoguang; Zhang, Feng; Zhang, Xuejun

    2018-01-01

    To ensure the etching depth uniformity of large-aperture Fresnel zone plates (FZPs) with controllable depths, a combination of a point source ion beam with a dwell-time algorithm has been proposed. According to the obtained distribution of the removal function, the latter can be used to optimize the etching time matrix by minimizing the root-mean-square error between the simulation results and the design value. Owing to the convolution operation in the utilized algorithm, the etching depth error is insensitive to the etching rate fluctuations of the ion beam, thereby reducing the requirement for the etching stability of the ion system. As a result, a 4-level FZP with a circular aperture of 300 mm was fabricated. The obtained results showed that the etching depth uniformity of the full aperture could be reduced to below 1%, which was sufficiently accurate for meeting the use requirements of FZPs. The proposed etching method may serve as an alternative way of etching high-precision diffractive optical elements with large apertures.

  1. Characterization of the phantom material virtual water in high-energy photon and electron beams.

    PubMed

    McEwen, M R; Niven, D

    2006-04-01

    The material Virtual Water has been characterized in photon and electron beams. Range-scaling factors and fluence correction factors were obtained, the latter with an uncertainty of around 0.2%. This level of uncertainty means that it may be possible to perform dosimetry in a solid phantom with an accuracy approaching that of measurements in water. Two formulations of Virtual Water were investigated with nominally the same elemental composition but differing densities. For photon beams neither formulation showed exact water equivalence-the water/Virtual Water dose ratio varied with the depth of measurement with a difference of over 1% at 10 cm depth. However, by using a density (range) scaling factor very good agreement (<0.2%) between water and Virtual Water at all depths was obtained. In the case of electron beams a range-scaling factor was also required to match the shapes of the depth dose curves in water and Virtual Water. However, there remained a difference in the measured fluence in the two phantoms after this scaling factor had been applied. For measurements around the peak of the depth-dose curve and the reference depth this difference showed some small energy dependence but was in the range 0.1%-0.4%. Perturbation measurements have indicated that small slabs of material upstream of a detector have a small (<0.1% effect) on the chamber reading but material behind the detector can have a larger effect. This has consequences for the design of experiments and in the comparison of measurements and Monte Carlo-derived values.

  2. Interpretation of aeromagnetic data over Abeokuta and its environs, Southwest Nigeria, using spectral analysis (Fourier transform technique)

    NASA Astrophysics Data System (ADS)

    Olurin, Oluwaseun T.; Ganiyu, Saheed A.; Hammed, Olaide S.; Aluko, Taiwo J.

    2016-10-01

    This study presents the results of spectral analysis of magnetic data over Abeokuta area, Southwestern Nigeria, using fast Fourier transform (FFT) in Microsoft Excel. The study deals with the quantitative interpretation of airborne magnetic data (Sheet No. 260), which was conducted by the Nigerian Geological Survey Agency in 2009. In order to minimise aliasing error, the aeromagnetic data was gridded at spacing of 1 km. Spectral analysis technique was used to estimate the magnetic basement depth distributed at two levels. The result of the interpretation shows that the magnetic sources are mainly distributed at two levels. The shallow sources (minimum depth) range in depth from 0.103 to 0.278 km below ground level and are inferred to be due to intrusions within the region. The deeper sources (maximum depth) range in depth from 2.739 to 3.325 km below ground and are attributed to the underlying basement.

  3. Water ice and sub-micron ice particles on Tethys and Mimas

    NASA Astrophysics Data System (ADS)

    Scipioni, Francesca; Nordheim, Tom; Clark, Roger Nelson; D'Aversa, Emiliano; Cruikshank, Dale P.; Tosi, Federico; Schenk, Paul M.; Combe, Jean-Philippe; Dalle Ore, Cristina M.

    2017-10-01

    IntroductionWe present our ongoing work, mapping the variation of the main water ice absorption bands, and the distribution of the sub-micron particles, across Mimas and Tethys’ surfaces using Cassini-VIMS cubes acquired in the IR range (0.8-5.1 μm). We present our results in the form of maps of variation of selected spectral indicators (depth of absorption bands, reflectance peak height, spectral slopes).Data analysisVIMS acquires hyperspectral data in the 0.3-5.1 μm spectral range. We selected VIMS cubes of Tethys and Mimas in the IR range (0.8-5.1 μm). For all pixels in the selected cubes, we measured the band depths for water-ice absorptions at 1.25, 1.5 and 2.02 μm and the height of the 3.6 μm reflection peak. Moreover, we considered the spectral indictors for particles smaller than 1 µm [1]: (i) the 2 µm absorption band is asymmetric and (ii) it has the minimum shifted to longer λ (iii) the band depth ratio 1.5/2.0 µm decreases; (iv) the reflection peak at 2.6 µm decreases; (v) the Fresnel reflection peak is suppressed; (vi) the 5 µm reflectance is decreased relative to the 3.6 µm peak. To characterize the global variation of water-ice band depths, and of sub-micron particles spectral indicators, across Mimas and Tethys, we sampled the two satellites’ surfacees with a 1°x1° fixed-resolution grid and then averaged the band depths and peak values inside each square cell.3. ResultsFor both moons we find that large geologic features, such as the Odysseus and Herschel impact basins, do not correlate with water ice’s abundance variation. For Tethys, we found a quite uniform surface on both hemispheres. The only deviation from this pattern shows up on the trailing hemisphere, where we notice two north-oriented, dark areas around 225° and 315°. For Mimas, the leading and trailing hemispheres appear to be quite similar in water ice abundance, the trailing portion having water ice absorption bands lightly more suppressed than the leading side.References[1] Clark, R., et al., 2013. Observed ices in the solar system. In: Gudipati, M. S., Castillo-Rogez, J. (Eds.), The Science of Solar System Ices. Vol. 356. Astrophysics and Space Science Library, Springer Science+Business Media New York, p. 3.

  4. Salton Seismic Imaging Project Line 5—the San Andreas Fault and Northern Coachella Valley Structure, Riverside County, California

    NASA Astrophysics Data System (ADS)

    Rymer, M. J.; Fuis, G.; Catchings, R. D.; Goldman, M.; Tarnowski, J. M.; Hole, J. A.; Stock, J. M.; Matti, J. C.

    2012-12-01

    The Salton Seismic Imaging Project (SSIP) is a large-scale, active- and passive-source seismic project designed to image the San Andreas Fault (SAF) and the adjacent basins (Imperial and Coachella Valleys) in southern California. Here, we focus on SSIP Line 5, one of four 2-D NE-SW-oriented seismic profiles that were acquired across the Coachella Valley. The 38-km-long SSIP-Line-5 seismic profile extends from the Santa Rosa Ranges to the Little San Bernardino Mountains and crosses both strands of the SAF, the Mission Creek (MCF) and Banning (BF) strands, near Palm Desert. Data for Line 5 were generated from nine buried explosive sources (most spaced about 2 to 8 km apart) and were recorded on approximately 281 Texan seismographs (average spacing 138 m). First-arrival refractions were used to develop a refraction tomographic velocity image of the upper crust along the seismic profile. The seismic data were also stacked and migrated to develop low-fold reflection images of the crust. From the surface to about 8 km depth, P-wave velocities range from about 2 km/s to more than 7.5 km/s, with the lowest velocities within a well-defined (~2-km-deep, 15-km-wide) basin (< 4 km/s), and the highest velocities below the transition from the Coachella Valley to the Santa Rosa Ranges on the southwest and within the Little San Bernardino Mountains on the northeast. The MCF and BF strands of the SAF bound an approximately 2.5-km-wide horst-type structure on the northeastern side of the Coachella Valley, beneath which the upper crust is characterized by a pronounced low-velocity zone that extends to the bottom of the velocity image. Rocks within the low-velocity zone have significantly lower velocities than those to the northeast and the southwest at the same depths. Conversely, the velocities of rocks on both sides of the Coachella Valley are greater than 7 km/s at depths exceeding about 4 km. The relatively narrow zone of shallow high-velocity rocks between the surface traces of the MCF and BF strands is associated with a zone of uplifted strata. Along SSIP Line 5, we infer that the MCF and BF strands are steeply dipping and merge at about 2 km depth. We base our interpretation on a prominent basement low-velocity zone (fault zone) that is centered southwest of the MCF and BF strands and extends to at least 8 km depth.

  5. Measurement of Tritium in Gas Phase Soil Moisture and Helium-3 in Soil Gas at the Hanford Townsite and 100 K Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KB Olsen; GW Patton; R Poreda

    2000-07-05

    In 1999, soil gas samples for helium-3 measurements were collected at two locations on the Hanford Site. Eight soil gas sampling points ranging in depth from 1.5 to 9.8 m (4.9 to 32 ft) below ground surface (bgs) in two clusters were installed adjacent to well 699-41-1, south of the Hanford Townsite. Fifteen soil gas sampling points, ranging in depth from 2.1 to 3.2 m (7 to 10.4 ft) bgs, were installed to the north and east of the 100 KE Reactor. Gas phase soil moisture samples were collected using silica gel traps from all eight sampling locations adjacent tomore » well 699-41-1 and eight locations at the 100 K Area. No detectable tritium (<240 pCi/L) was found in the soil moisture samples from either the Hanford Townsite or 100 K Area sampling points. This suggests that tritiated moisture from groundwater is not migrating upward to the sampling points and there are no large vadose zone sources of tritium at either location. Helium-3 analyses of the soil gas samples showed significant enrichments relative to ambient air helium-3 concentrations with a depth dependence consistent with a groundwater source from decay of tritium. Helium-3/helium-4 ratios (normalized to the abundances in ambient air) at the Hanford Townsite ranged from 1.012 at 1.5 m (5 ft) bgs to 2.157 at 9.8 m (32 ft) bgs. Helium-3/helium-4 ratios at the 100 K Area ranged from 0.972 to 1.131. Based on results from the 100 K Area, the authors believe that a major tritium plume does not lie within that study area. The data also suggest there may be a tritium groundwater plume or a source of helium-3 to the southeast of the study area. They recommend that the study be continued by placing additional soil gas sampling points along the perimeter road to the west and to the south of the initial study area.« less

  6. Earthquakes initiation and thermal shear instability in the Hindu Kush intermediate depth nest

    NASA Astrophysics Data System (ADS)

    Poli, Piero; Prieto, German; Rivera, Efrain; Ruiz, Sergio

    2016-02-01

    Intermediate depth earthquakes often occur along subducting lithosphere, but despite their ubiquity the physical mechanism responsible for promoting brittle or brittle-like failure is not well constrained. Large concentrations of intermediate depth earthquakes have been found to be related to slab break-off, slab drip, and slab tears. The intermediate depth Hindu Kush nest is one of the most seismically active regions in the world and shows the correlation of a weak region associated with ongoing slab detachment process. Here we study relocated seismicity in the nest to constraint the geometry of the shear zone at the top of the detached slab. The analysis of the rupture process of the Mw 7.5 Afghanistan 2015 earthquake and other several well-recorded events over the past 25 years shows an initially slow, highly dissipative rupture, followed by a dramatic dynamic frictional stress reduction and corresponding large energy radiation. These properties are typical of thermal driven rupture processes. We infer that thermal shear instabilities are a leading mechanism for the generation of intermediated-depth earthquakes especially in presence of weak zone subjected to large strain accumulation, due to ongoing detachment process.

  7. Analysis of surface cracks in finite plates under tension or bending loads

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Raju, I. S.

    1979-01-01

    Stress-intensity factors calculated with a three-dimensional, finite-element analysis for shallow and deep semielliptical surface cracks in finite elastic isotropic plates subjected to tension or bending loads are presented. A wide range of configuration parameters was investigated. The ratio of crack depth to plate thickness ranged from 0.2 to 0.8 and the ratio of crack depth to crack length ranged from 0.2 to 2.0. The effects of plate width on stress-intensity variations along the crack front was also investigated. A wide-range equation for stress-intensity factors along the crack front as a function of crack depth, crack length, plate thickness, and plate width was developed for tension and bending loads. The equation was used to predict patterns of surface-crack growth under tension or bending fatigue loads. A modified form of the equation was also used to correlate surface-crack fracture data for a brittle epoxy material within + or - 10 percent for a wide range of crack shapes and crack sizes.

  8. Long-term shifts in the north western Mediterranean coastal seascape: The habitat-forming seaweed Codium vermilara.

    PubMed

    Ricart, Aurora M; García, María; Weitzmann, Boris; Linares, Cristina; Hereu, Bernat; Ballesteros, Enric

    2018-02-01

    Long-term ecological studies are crucial to understand how and why natural ecosystems change over time and space. Through a revision of historical data and a comparison with current in situ field data, we contribute to the understanding of how the Mediterranean coastal seascape has changed in the last decades. Here we describe the large decrease of the main habitat-forming species Codium vermilara along the Catalan coast (NW Mediterranean). We have analyzed data on presence/absence, abundance and biomass. Since the 70s-80s, when the species reached its highest abundances, the species has totally disappeared from 45% of the revisited sites, and showed a decrease in 95% of its abundance and 97% of its biomass. Codium vermilara has also shown a reduction in its depth range, from 30 to the first 20m depth. This study highlights the importance of having historical data to detect and describe changes in ecological systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Modeling of porosity loss during compaction and cementation of sandstones

    NASA Astrophysics Data System (ADS)

    Lemée, Claire; Guéguen, Yves

    1996-10-01

    Irreversible inelastic processes are responsible for mechanical and chemical compaction of sedimentary rocks at the time of burying. Our purpose is to describe the inelastic response of the rock at large time scales. In order to do this, we build a model that describes how porosity progressively decreases at depth. We use a previous geometrical model for the compaction process of a sandstone by grain interpenetration that is restricted to the case of mass conservation. In addition, we introduce a compaction equilibrium concept. Solid grains can support stresses up to a critical effective stress, σc, before plastic flow occurs. This critical stress depends on temperature and is derived from the pressure-solution deformation law. Pressure solution is the plastic deformation mechanism implemented during compaction. Our model predicts a porosity destruction at a depth of about 3 km. This model has the property to define a range of compaction curves. We investigate the sensitivity of the model to the main input parameters: liquid film thickness, grain size, temperature gradient, and activation energy.

  10. Probing Pluto's underworld: Ice temperatures from microwave radiometry decoupled from surface conditions

    NASA Astrophysics Data System (ADS)

    Leyrat, Cedric; Lorenz, Ralph D.; Le Gall, Alice

    2016-04-01

    Present models admit a wide range of 2015 surface conditions at Pluto and Charon, where the atmospheric pressure may undergo dramatic seasonal variation and for which measurements are imminent from the New Horizons mission. One anticipated observation is the microwave brightness temperature, heretofore anticipated as indicating surface conditions relevant to surface-atmosphere equilibrium. However, drawing on recent experience with Cassini observations at Iapetus and Titan, we call attention to the large electrical skin depth of outer Solar System materials such as methane, nitrogen or water ice, such that this observation may indicate temperatures averaged over depths of several or tens of meters beneath the surface. Using a seasonally-forced thermal model to determine microwave emission we predict that the southern hemisphere observations (in polar night) of New Horizons in July 2015 will suggest effective temperatures of ∼40 K, reflecting deep heat buried over the last century of summer, even if the atmospheric pressure suggests that the surface nitrogen frost point may be much lower.

  11. Proposed water-supply investigations in Sidamo Province, Ethiopia

    USGS Publications Warehouse

    Phoenix, David A.

    1966-01-01

    The present report describes the results of an air and ground hydrologic reconnaissance of some 32,000 square kilometers in Sidamo Province of southern Ethiopia. Existing (1966) water resources developments, chiefly for livestock and village supplies, include surface reservoirs, a few drilled wells, several clusters of dug wells in the Mega area, several scattered springs, and the perennial Dawa Parma River. Surface-water reservoirs range from hand-dug ponds of a few hundred cubic meters capacity to large machine-constructed excavations built to hold 62,000 cubic meters of water. All the existing drilled wells tap saturated alluvium at depths of less than 120 meters. The dug wells tap water-bearing zones in tuffaceous lacustrine deposits or stream-channel alluvium generally at depths of less than 30 meters. The springs mostly rise from fractured Precambrian quartzite and individual discharges are all less than 75 liters per minute. The report also outlines the terms of reference for a longer term water-resources investigation of the region including staffing, housing and equipment requirements and other logistic support.

  12. Selection for intramuscular fat and lean meat yield will improve the bloomed colour of Australian lamb loin meat.

    PubMed

    Calnan, H B; Jacob, R H; Pethick, D W; Gardner, G E

    2017-09-01

    The colour of bloomed m. longissimus was measured 24h post slaughter for 8165 lamb carcasses produced over 5years across 8 sites in Australia. Intramuscular fat across a 2 to 8% range and shortloin fat weight were positively associated with meat lightness (L*), redness (a*), yellowness (b*), hue and chroma (P<0.01). Shortloin muscle weight was negatively associated with these meat colour parameters (P<0.01), although this was largely accounted for by correlated changes in intramuscular fat (P<0.01). The effect of sire breeding values for lamb weight, shortloin muscle depth and fat depth on loin L*, a*, b*, hue and chroma were small and varied between lambs of different sire type, dam breed and sex. Thus selection for lean meat yield will have neutral or positive effects on meat colour, while selection for increased intramuscular fat will make the bloomed colour of lamb meat lighter and redder. Copyright © 2017. Published by Elsevier Ltd.

  13. Experimental demonstration of multiuser communication in deep water using time reversal.

    PubMed

    Shimura, T; Ochi, H; Song, H C

    2013-10-01

    Multiuser communication is demonstrated using experimental data (450-550 Hz) collected in deep water, south of Japan. The multiple users are spatially distributed either in depth or range while a 114-m long, 20-element vertical array (i.e., base station) is deployed to around the sound channel axis (~1000 m). First, signals received separately from ranges of 150 km and 180 km at various depths are combined asynchronously to generate multiuser communication sequences for subsequent processing, achieving an aggregate data rate of 300 bits/s for up to three users. Adaptive time reversal is employed to separate collided packets at the base station, followed by a single channel decision feedback equalizer. Then it is demonstrated that two users separated by 3 km in range at ~1000 m depth can transmit information simultaneously to the base station at ~500 km range with an aggregate data rate of 200 bits/s.

  14. 3D seismic imaging of an active, normal fault zone in southern Apennines (Italy): Clues on fluid-driven microearthquake fracturing

    NASA Astrophysics Data System (ADS)

    Amoroso, O.; Zollo, A.; Virieux, J.

    2012-12-01

    We have reconstructed a 3D detailed image of the crustal volume embedding the active normal fault system in southern Apennines (Italy). It is obtained by the inversion of P and S first arrival times from microearthquakes recorded in the area. The issues of data quality and the implementation of robust tomographic inversion strategy have been addressed to improve the resolution of the seismic image. The arrival times measurements are enhanced by applying techniques based on polarization filtering and refined re-picking. Data inversion has been performed by using a delay-time 3D tomographic method for the joint determination of source locations and velocity model. The dataset consists of 1311 events with magnitude ranging between [0.1, 3.2], recorded from August 2005 to April 2011 by 42 stations operated by the consortium AMRA scarl and INGV. We used a multi-scale inversion approach, in order to first estimate the large wavelength components of the velocity model and then to progressively introduce smaller scale components. P- and S-wave velocity models show a strong lateral variation along a direction orthogonal to the Apeninic chain, between 0-15 km depth. This variation defines two geological formations which are characterized by relatively low and high P-wave velocities. The sharpest lateral transition occurs in the NE direction: it is well correlated with the location of the NW-SE oriented, primary normal fault associated with the 1980, Ms 6.9 earthquake, which cuts at SW the outcrops of the carbonatic Campanian platform, and separates at NE the older Mesozoic limestone formations from the younger Pliocene-Quaternary basin deposits. The main lithological formations, as identified in the referenced active seismic CROP04 profile, can be recognized in the inferred velocity model. In particular, the structural feature associated with the uplift of the Apulian Platform is well detected by the high P-velocity anomaly ranging between 6.0-6.8 km/s. The thickening of the Lagonegro units located in the axial sector is well reproduced by the low P-wave anomalies ranging between 4.0-4.5 km/s. Their eastward extension is just above the Apulian Platform in the depth range between 4.0 and 8.0 km . The seismicity spatial distribution delineates at SE the border of the Irpinia master fault, while at NE it shows a more diffused pattern due to the presence of a system of highly organized, sub-parallel normal faults as it has been inferred from the fault mechanisms and the coherent orientation of the tensional axes. The Vp/Vs ratio shows a large variability ranging from 1.7-1.8 at shallow depths and increasing up to 2-2.2 between 5 km and 12 km depths, where most of present microseismicity occurs. Such high values are a strong proxy for a fluid-saturated state of rock formations and of their inner pore pressure conditions. The evidence for a predominant microearthquake activity confined within the volume of highest Vp/Vs ratio indicates that pore pressure changes induced by fluid flow/diffusion in a highly fractured medium, may be the primary mechanism controlling and driving the background seismic activity along the Irpinia fault zone.

  15. The collection of clear-water contraction and abutment scour data at selected bridge sites in the coastal plain and piedmont of South Carolina

    USGS Publications Warehouse

    Benedict, Stephen T.; Caldwell, Andy W.; Edited by Abt, S. R. and others

    1998-01-01

    Clear-water contraction and abutment scour data were collected at 128 bridge sites in South Carolina. In the sandy soils of the Coastal Plain, clear-water-scour data were collected at 63 sites (scour depths ranged from 0.4 to 7.2 meters.) In the clayey soils of the Piedmont, clear-water-scour data were collected at 47 sites (scour depths ranged from 0 to 1.4 meters.) In the sandy, clayey soils of the Piedmont, clear-water-scour data were collected at 18 sites (scour depths ranged from 0.9 to 5.5 meters.) The field data are to be compiled into a data base that will include bridge age; basin, soil and hydraulic characteristics; and theoretical scour data. The data are planned to be statistically analyzed for significant relations that may help explain and (or) predict maximum scour depths at bridges in South Carolina.

  16. The influence of agricultural management on soil's CO2 regime in semi-arid and arid regions

    NASA Astrophysics Data System (ADS)

    Eshel, G.; Lifshithz, D.; Sternberg, M.; Ben-Dor, E.; Bonfile, D. J.; Arad, B.; Mingelgrin, U.; Fine, P.; Levy, G. J.

    2008-12-01

    Two of the more important parameters which may help us better evaluate the impact of agricultural practices on the global carbon cycle are the in-situ soil pCO2 profile and the corresponding CO2 fluxes to the atmosphere. In an ongoing study, we monitored the pCO2 to a depth of 5 m in two adjacent irrigated Avocado orchards in the coastal plain of Israel (semi-arid region), and to a depth of 2 m in a semi- arid rain-fed and a arid rain-fed wheat fields in southern Israel. The soil pCO2 profiles and CO2 fluxes measurements were supplemented by measurements of soil moisture and temperature. The results showed differences in the CO2 profiles (both in the depth of the highest concentration and its absolute values) and the CO2 fluxes between the orchards and the wheat fields as well as along the year. In the irrigated Avocado orchards pCO2 values were in the range of 1.5 kPa at a depth of 0.5 m up to 8 kPa at depths of 3-5 m (even though Avocado trees are characterized by shallow roots). Such levels could affect reactions (e.g., enhancement of inorganic carbon dissolution) that may take place in the soil and some of its chemical properties (e.g., pH). As expected, soil pCO2 was affected by soil moisture and temperature, and the distance from the trees. Maximum soil respiration was observed during the summer when the orchards are under irrigation. In the wheat fields pCO2 level ranged from 0.2- 0.6 kPa at a depth of 0.2 m to 0.2-1 kPa at depths of 1-1.5 m (in arid and semiarid respectively). These pCO2 levels were much lower than those obtained in the irrigated orchards and seemed to depend on the wheat growing cycle (high concentration were noted at depth of 1-1.5 m close to the end of grain filling) and precipitation gradient (arid vs. semiarid). Since CO2 fluxes are directly affected by the pCO2 profile and soil moister and temperature the CO2 fluxes from the wheat fields were much lower (0.02- 0.2 ml min-1 m-2) compared to those obtained from the Avocado orchards (2-7 ml min-1 m-2). Our results clearly demonstrate the large variability in soil pCO2 concentration and flux to the atmosphere, and its dependence on the soil moisture regime (annual precipitation and irrigation) and type of cropping (orchard vs. field crop).

  17. Evaluation on Geant4 Hadronic Models for Pion Minus, Pion Plus and Neutron Particles as Major Antiproton Annihilation Products

    PubMed Central

    Tavakoli, Mohammad Bagher; Mohammadi, Mohammad Mehdi; Reiazi, Reza; Jabbari, Keyvan

    2015-01-01

    Geant4 is an open source simulation toolkit based on C++, which its advantages progressively lead to applications in research domains especially modeling the biological effects of ionizing radiation at the sub-cellular scale. However, it was shown that Geant4 does not give a reasonable result in the prediction of antiproton dose especially in Bragg peak. One of the reasons could be lack of reliable physic model to predict the final states of annihilation products like pions. Considering the fact that most of the antiproton deposited dose is resulted from high-LET nuclear fragments following pion interaction in surrounding nucleons, we reproduced depth dose curves of most probable energy range of pions and neutron particle using Geant4. We consider this work one of the steps to understand the origin of the error and finally verification of Geant4 for antiproton tracking. Geant4 toolkit version 9.4.6.p01 and Fluka version 2006.3 were used to reproduce the depth dose curves of 220 MeV pions (both negative and positive) and 70 MeV neutrons. The geometry applied in the simulations consist a 20 × 20 × 20 cm3 water tank, similar to that used in CERN for antiproton relative dose measurements. Different physic lists including Quark-Gluon String Precompound (QGSP)_Binary Cascade (BIC)_HP, the recommended setting for hadron therapy, were used. In the case of pions, Geant4 resulted in at least 5% dose discrepancy between different physic lists at depth close to the entrance point. Even up to 15% discrepancy was found in some cases like QBBC compared to QGSP_BIC_HP. A significant difference was observed in dose profiles of different Geant4 physic list at small depths for a beam of pions. In the case of neutrons, large dose discrepancy was observed when LHEP or LHEP_EMV lists were applied. The magnitude of this dose discrepancy could be even 50% greater than the dose calculated by LHEP (or LHEP_EMV) at larger depths. We found that effect different Geant4 physic list in reproducing depth dose profile of the beam of pions was not negligible. Because the discrepancies were pronounced in smaller depth and also regarding the contribution of pions in deposited dose of a beam of antiproton, further investigation on choosing most suitable and accurate physic list for this purpose should be done. Furthermore, this study showed careful attention must be paid to choose the appropriate Geant4 physic list for neutron tracking depending to the applications criteria. We failed to find any agreement between results from Geant4 and Fluka to reproduce depth dose profile of pion with the energy range used in this study. PMID:26120569

  18. The response of a radiophotoluminescent glass dosimeter in megavoltage photon and electron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Araki, Fujio, E-mail: f-araki@kumamoto-u.ac.jp; Ohno, Takeshi

    Purpose: This study investigated the response of a radiophotoluminescent glass dosimeter (RGD) in megavoltage photon and electron beams. Methods: The RGD response was compared with ion chamber measurements for 4–18 MV photons and 6–20 MeV electrons in plastic water phantoms. The response was also calculated via Monte Carlo (MC) simulations with EGSnrc/egs-chamber and Cavity user-codes, respectively. In addition, the response of the RGD cavity was analyzed as a function of field sizes and depths according to Burlin’s general cavity theory. The perturbation correction factor, P{sub Q}, in the RGD cavity was also estimated from MC simulations for photon and electronmore » beams. Results: The calculated and measured RGD energy response at reference conditions with a 10 × 10 cm{sup 2} field and 10 cm depth in photons was lower by up to 2.5% with increasing energy. The variation in RGD response in the field size range of 5 × 5 cm{sup 2} to 20 × 20 cm{sup 2} was 3.9% and 0.7%, at 10 cm depth for 4 and 18 MV, respectively. The depth dependence of the RGD response was constant within 1% for energies above 6 MV but it increased by 2.6% and 1.6% for a large (20 × 20 cm{sup 2}) field at 4 and 6 MV, respectively. The dose contributions from photon interactions (1 − d) in the RGD cavity, according to Burlin’s cavity theory, decreased with increasing energy and decreasing field size. The variation in (1 − d) between field sizes became larger with increasing depth for the lower energies of 4 and 6 MV. P{sub Q} for the RGD cavity was almost constant between 0.96 and 0.97 at 10 MV energies and above. Meanwhile, P{sub Q} depends strongly on field size and depth for 4 and 6 MV photons. In electron beams, the RGD response at a reference depth, d{sub ref}, varied by less than 1% over the electron energy range but was on average 4% lower than the response for 6 MV photons. Conclusions: The RGD response for photon beams depends on both (1 − d) and perturbation effects in the RGD cavity. Therefore, it is difficult to predict the energy dependence of RGD response by Burlin’s theory and it is recommended to directly measure RGD response or use the MC-calculated RGD response, regarding the practical use. The response for electron beams decreased rapidly at a depth beyond d{sub ref} for lower mean electron energies <3 MeV and in contrast P{sub Q} increased.« less

  19. Changes in Soil Carbon Storage in Industrial Forests of Western Oregon and Washington Following Modern Timber Harvesting Practices

    NASA Astrophysics Data System (ADS)

    Holub, S. M.; Hatten, J. A.

    2016-12-01

    Carbon in forest soils is often overlooked because it is less conspicuous than the live trees, downed wood, and forest floor layer that are easily visible when walking through a forest. However, the amount of carbon in forest soils to one meter depth is generally one to two times the amount of carbon we see above ground in mature forests, making soils an important carbon storage pool in forest ecosystems. Given the large quantity of carbon stored in soil, there is some concern that disturbances to forest ecosystems could push some soils out of steady state and lead to a release of carbon from the soil, potentially contributing to the already large amount of greenhouse gas emissions from the burning of fossil fuels for energy. This has implications for the carbon neutrality of timberlands. Thus, careful investigation of the carbon cycle in forest soils is a key component in deciphering the gains and losses of carbon from forests, and ultimately understanding the effects of forest soils on the global carbon cycle. The study objective was to measure pre-harvest soil carbon stores to 1 m depth with enough precision to detect a small change upon resampling post-harvest. The 9 sites examined ranged from 100 to 400 Mg C / ha before harvest with minimum detectible differences around 5%. Three and a half years post-harvest the average of all 9 sites showed a very modest increase in mineral soil carbon as a result of modern timber harvest. Mineral soil carbon did not change significantly at 6 of the 9 sites, individually (range -2% to +5%), while two sites gained soil carbon (+6% and +11%) and soil carbon decreased at one site (-6%).

  20. Antarctic sub-shelf melt rates via SIMPEL

    NASA Astrophysics Data System (ADS)

    Reese, Ronja; Albrecht, Torsten; Winkelmann, Ricarda

    2017-04-01

    Ocean-induced melting below ice-shelves is currently suspected to be the dominant cause of mass loss from the Antarctic Ice Sheet (e.g. Depoorter et al. 2013). Although thinning of ice shelves does not directly contribute to sea-level rise, it may have a significant indirect impact through the potential of ice shelves to buttress their adjacent ice sheet. Hence, an appropriate representation of sub-shelf melt rates is essential for modelling the evolution of ice sheets with marine terminating outlet glaciers. Due to computational limits of fully-coupled ice and ocean models, sub-shelf melt rates are often parametrized in large-scale or long-term simulations (e.g. Matin et al. 2011, Pollard & DeConto 2012). These parametrizations usually depend on the depth of the ice shelf base or its local slope but do not include the physical processes in ice shelf cavities. Here, we present the Sub Ice shelf Melt Potsdam modEL (SIMPEL) which mimics the first-order large-scale circulation in ice shelf cavities based on an ocean box model (Olbers & Hellmer, 2010), implemented in the Parallel Ice Sheet Model (Bueler & Brown 2009, Winkelmann et al. 2011, www.pism-docs.org). In SIMPEL, ocean water is transported at depth towards the grounding line where sub-shelf melt rates are highest, and then rises along the shelf base towards the calving front where refreezing can occur. Melt rates are computed by a description of ice-ocean interaction commonly used in high-resolution models (McPhee 1992, Holland & Jenkins 1999). This enables the model to capture a wide-range of melt rates, comparable to the observed range for Antarctic ice shelves (Rignot et al. 2013).

  1. Post-16 Physics and Chemistry Uptake: Combining Large-Scale Secondary Analysis with In-Depth Qualitative Methods

    ERIC Educational Resources Information Center

    Hampden-Thompson, Gillian; Lubben, Fred; Bennett, Judith

    2011-01-01

    Quantitative secondary analysis of large-scale data can be combined with in-depth qualitative methods. In this paper, we discuss the role of this combined methods approach in examining the uptake of physics and chemistry in post compulsory schooling for students in England. The secondary data analysis of the National Pupil Database (NPD) served…

  2. Catastrophic onset of fast magnetic reconnection with a guide field

    NASA Astrophysics Data System (ADS)

    Cassak, P. A.; Drake, J. F.; Shay, M. A.

    2007-05-01

    It was recently shown that the slow (collisional) Sweet-Parker and the fast (collisionless) Hall magnetic reconnection solutions simultaneously exist for a wide range of resistivities; reconnection is bistable [Cassak, Shay, and Drake, Phys. Rev. Lett., 95, 235002 (2005)]. When the thickness of the dissipation region becomes smaller than a critical value, the Sweet-Parker solution disappears and fast reconnection ensues, potentially explaining how large amounts of magnetic free energy can accrue without significant release before the onset of fast reconnection. Two-fluid numerical simulations extending the previous results for anti-parallel reconnection (where the critical thickness is the ion skin depth) to component reconnection with a large guide field (where the critical thickness is the thermal ion Larmor radius) are presented. Applications to laboratory experiments of magnetic reconnection and the sawtooth crash are discussed.

  3. Benthic algal production across lake size gradients: interactions among morphometry, nutrients, and light.

    PubMed

    Vadeboncoeur, Yvonne; Peterson, Garry; Vander Zanden, M Jake; Kalff, Jacob

    2008-09-01

    Attached algae play a minor role in conceptual and empirical models of lake ecosystem function but paradoxically form the energetic base of food webs that support a wide variety of fishes. To explore the apparent mismatch between perceived limits on contributions of periphyton to whole-lake primary production and its importance to consumers, we modeled the contribution of periphyton to whole-ecosystem primary production across lake size, shape, and nutrient gradients. The distribution of available benthic habitat for periphyton is influenced by the ratio of mean depth to maximum depth (DR = z/ z(max)). We modeled total phytoplankton production from water-column nutrient availability, z, and light. Periphyton production was a function of light-saturated photosynthesis (BPmax) and light availability at depth. The model demonstrated that depth ratio (DR) and light attenuation strongly determined the maximum possible contribution of benthic algae to lake production, and the benthic proportion of whole-lake primary production (BPf) declined with increasing nutrients. Shallow lakes (z < or =5 m) were insensitive to DR and were dominated by either benthic or pelagic primary productivity depending on trophic status. Moderately deep oligotrophic lakes had substantial contributions by benthic primary productivity at low depth ratios and when maximum benthic photosynthesis was moderate or high. Extremely large, deep lakes always had low fractional contributions of benthic primary production. An analysis of the world's largest lakes showed that the shapes of natural lakes shift increasingly toward lower depth ratios with increasing depth, maximizing the potential importance of littoral primary production in large-lake food webs. The repeatedly demonstrated importance of periphyton to lake food webs may reflect the combination of low depth ratios and high light penetration characteristic of large, oligotrophic lakes that in turn lead to substantial contributions of periphyton to autochthonous production.

  4. Smoke optical depths - Magnitude, variability, and wavelength dependence

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Russell, P. B.; Colburn, D. A.; Ackerman, T. P.; Allen, D. A.

    1988-01-01

    An airborne autotracking sun-photometer has been used to measure magnitudes, temporal/spatial variabilities, and the wavelength dependence of optical depths in the near-ultraviolet to near-infrared spectrum of smoke from two forest fires and one jet fuel fire and of background air. Jet fuel smoke optical depths were found to be generally less wavelength dependent than background aerosol optical depths. Forest fire smoke optical depths, however, showed a wide range of wavelength depedences, such as incidents of wavelength-independent extinction.

  5. Optically controlled redshift switching effects in hybrid fishscale metamaterials

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Zhu, Jinwei; Zhang, Hao; Zhang, Wenxing; Dong, Guohua; Ye, Peng; Lv, Tingting; Zhu, Zheng; Li, Yuxiang; Guan, Chunying; Shi, Jinhui

    2018-05-01

    We numerically demonstrate optically controlled THz response in a hybrid fishscale metamaterial with embedded photoconductive silicon at oblique incidence of TE wave. The oblique incidence allows excitation of Fano-type trapped mode resonance in a 2-fold rotational symmetric metamaterial. The hybrid fishscale metamaterial exhibits an optically controlled redshift switching effect in the THz range. The switching effect is dominated by the conductivity of the silicon instead of mechanically adjusting angles of incidence. The tuning frequency range is up to 0.3THz with a large modulation depth and high transmission in the "ON" state. The fishscale metamaterial-based switching has been experimentally verified by its microwave counterpart integrated by variable resistors. Our work provides an alternative route to realize tunable Fano-type response in metamaterials and is of importance to active manipulation, sensing and switching of THz waves in practical applications.

  6. Isotopic ratios of 36Cl/Cl in Japanese surface soil

    NASA Astrophysics Data System (ADS)

    Seki, R.; Matsuhiro, T.; Nagashima, Y.; Takahashi, T.; Sasa, K.; Sueki, K.; Tosaki, Y.; Bessho, K.; Matsumura, H.; Miura, T.

    2007-06-01

    We have measured the 36Cl/Cl ratio of uncultivated surface soil samples collected from 11 areas distributed throughout Japan to determine the undisturbed value of the ratio. The ratio was found to be on the order of 10-13 except for the Tokai-mura area, where four research reactors, two commercial nuclear power plants and a nuclear fuel reprocessing plant have been operated. The observed ratio in the Tokai-mura area was higher than 10-12. Notably, soil samples collected from a site of commercial BWR nuclear power plants in Fukushima prefecture showed no significant increase in 36Cl/Cl ratio. The 36Cl/Cl ratio depth profiles of soil samples collected at both of Makabe-town and Tokai-mura were also measured. Since Makabe-town is located about 50 km apart from Tokai-mura, we do not expect it to be affected by the nuclear facilities. No large variations were observed in the Makabe depth profile; the measured ratios ranged from ∼3 to ∼5 × 10-13. The result obtained for Tokai-mura is significantly different in that from the surface to about 80 cm depth, the measured ratios, ∼10-12, are much higher than any at Makabe. At depth below 80 cm, the Tokai-mura ratios are lower and become indistinguishable from those at Makabe. The 36Cl/Cl ratio in unaffected areas of Japan is estimated to be 3-4 × 10-13.

  7. Rapid replication and facile modulation of subwavelength antireflective polymer film using injection nanomolding and optical property of multilayer coatings

    PubMed Central

    2013-01-01

    A rapid, cost-effective and high-throughput process for nanotexturing subwavelength structures with high uniformity using the polycarbonate (PC) is realized via injection nanomolding. The process enables the precise control of nanohole array (NHA) surface topography (nanohole depth, diameter, and periodicity) over large areas thereby presenting a highly versatile platform for fabricating substrates with user-defined, functional performance. Specifically, the optical property of the PC substrates were systematically characterized and tuned through the modulation of the depths of NHA. The aspect ratio submicron holes can be easily modulated and experimentally proven by simply adjusting the molding temperature. The nanotextured depths were reliably fabricated in the range of 200 to 400 nm with a period of approximately 700 nm. The fabricated PC films can reduce the reflectivity from an original bare film of 10.2% and 8.9% to 1.4% and 2.1% with 400-nm depth of nanoholes at the wavelength of 400 and 550 nm, respectively. Compared with conventional moth-like nanostructures with nanopillar arrays with heights adjustable only by an etching process, this paper proposes a facile route with submicron holes to achieve a similar antireflective function, with a significantly reduced time and facile height modulation capability. Furthermore, the effects of multilayer coatings of dielectric and metallic layers on the nanomolded NHA have been performed and potential sensing application is explored. PMID:24088185

  8. Long-term hydrologic effects on marsh plant community structure in the southern Everglades

    USGS Publications Warehouse

    Busch, David E.; Loftus, W.F.; Bass, O.L.

    1998-01-01

    Although large-scale transformation of Everglades landscapes has occurred during the past century, the patterns of association among hydrologic factors and southern Everglades freshwater marsh vegetation have not been well-defined. We used a 10-year data base on the aquatic biota of Shark Slough to classify vegetation and describe plant community change in intermediate- to long-hydroperiod Everglades marshes. Study area marsh vegetation was quantitatively grouped into associations dominated by 1) Cladium jamaicense, 2) a group of emergents including Eleocharis cellulosa, Sagittaria lancifolia, and Rhyncospora tracyi, 3) taxa associated with algal mats (Utricularia spp. and Bacopa caroliniana), and 4) the grasses Panicum hemitomon and Paspalidium geminatum. During the decade evaluated, the range of water depths that characterized our study sites approached both extremes depicted in the 40-year hydrologic record for the region. Water depths were near the long-term average during the mid-1980s, declined sharply during a late 1980s drought, and underwent a prolonged increase from 1991 through 1995. Overall macrophyte cover varied inversely with water depth, while the response of periphyton was more complex. An ordination analysis, based on plant species abundance, revealed that study area vegetation structure was associated with hydrologic patterns. Marsh plant community structure showed evidence of cyclic interannual variation corresponding to hydrologic change over the decade evaluated. Lower water depths, the occurrence of marl substrates, and high periphyton cover were correlated. These factors contributed to reduced macrophyte cover in portions of the study area from which water had been diverted.

  9. Seismic imaging of a mid-lithospheric discontinuity beneath Ontong Java Plateau

    NASA Astrophysics Data System (ADS)

    Tharimena, Saikiran; Rychert, Catherine A.; Harmon, Nicholas

    2016-09-01

    Ontong Java Plateau (OJP) is a huge, completely submerged volcanic edifice that is hypothesized to have formed during large plume melting events ∼90 and 120 My ago. It is currently resisting subduction into the North Solomon trench. The size and buoyancy of the plateau along with its history of plume melting and current interaction with a subduction zone are all similar to the characteristics and hypothesized mechanisms of continent formation. However, the plateau is remote, and enigmatic, and its proto-continent potential is debated. We use SS precursors to image seismic discontinuity structure beneath Ontong Java Plateau. We image a velocity increase with depth at 28 ± 4 km consistent with the Moho. In addition, we image velocity decreases at 80 ± 5 km and 282 ± 7 km depth. Discontinuities at 60-100 km depth are frequently observed both beneath the oceans and the continents. However, the discontinuity at 282 km is anomalous in comparison to surrounding oceanic regions; in the context of previous results it may suggest a thick viscous root beneath OJP. If such a root exists, then the discontinuity at 80 km bears some similarity to the mid-lithospheric discontinuities (MLDs) observed beneath continents. One possibility is that plume melting events, similar to that which formed OJP, may cause discontinuities in the MLD depth range. Plume-plate interaction could be a mechanism for MLD formation in some continents in the Archean prior to the onset of subduction.

  10. Design and fabrication of sub-wavelength annular apertures on fiber tip for femtosecond laser machining

    NASA Astrophysics Data System (ADS)

    Tung, Yen-Chun; Chung, Ming-Han; Sung, I.-Hui; Lee, Chih-Kung

    2014-03-01

    Adopting optical technique to pursue micromachining must make a compromise between the focal spot sizes the depth of focus. The focal spot size determines the minimum features can be fabricated. On the other hand, the depth of focus influences the ease of alignment in positioning the fabrication light beam. A typical approach to bypass the diffraction limit is to adopt the near-field approach, which has spot size in the range of the optical fiber tip. However, the depth of focus of the emitted light beam will be limited to tens of nanometers in most cases, which posts a difficult challenge to control the distance between the optical fiber tip and the sample to be machined optically. More specifically, problems remained in this machining approach, which include issues such as residue induced by laser ablation tends to deposit near the optical fiber tip and leads to loss of coupling efficiency. We proposed a method based on illuminating femtosecond laser through a sub-wavelength annular aperture on metallic film so as to produce Bessel light beam of sub-wavelength while maintaining large depth of focus first. To further advance the ease of use in one such system, producing sub-wavelength annular aperture on a single mode optical fiber head with sub-wavelength focusing ability is detailed. It is shown that this method can be applied in material machining with an emphasis to produce high aspect ratio structure. Simulations and experimental results are presented in this paper.

  11. Evaluating methods for controlling depth perception in stereoscopic cinematography

    NASA Astrophysics Data System (ADS)

    Sun, Geng; Holliman, Nick

    2009-02-01

    Existing stereoscopic imaging algorithms can create static stereoscopic images with perceived depth control function to ensure a compelling 3D viewing experience without visual discomfort. However, current algorithms do not normally support standard Cinematic Storytelling techniques. These techniques, such as object movement, camera motion, and zooming, can result in dynamic scene depth change within and between a series of frames (shots) in stereoscopic cinematography. In this study, we empirically evaluate the following three types of stereoscopic imaging approaches that aim to address this problem. (1) Real-Eye Configuration: set camera separation equal to the nominal human eye interpupillary distance. The perceived depth on the display is identical to the scene depth without any distortion. (2) Mapping Algorithm: map the scene depth to a predefined range on the display to avoid excessive perceived depth. A new method that dynamically adjusts the depth mapping from scene space to display space is presented in addition to an existing fixed depth mapping method. (3) Depth of Field Simulation: apply Depth of Field (DOF) blur effect to stereoscopic images. Only objects that are inside the DOF are viewed in full sharpness. Objects that are far away from the focus plane are blurred. We performed a human-based trial using the ITU-R BT.500-11 Recommendation to compare the depth quality of stereoscopic video sequences generated by the above-mentioned imaging methods. Our results indicate that viewers' practical 3D viewing volumes are different for individual stereoscopic displays and viewers can cope with much larger perceived depth range in viewing stereoscopic cinematography in comparison to static stereoscopic images. Our new dynamic depth mapping method does have an advantage over the fixed depth mapping method in controlling stereo depth perception. The DOF blur effect does not provide the expected improvement for perceived depth quality control in 3D cinematography. We anticipate the results will be of particular interest to 3D filmmaking and real time computer games.

  12. Volcanic Infillings of Large Basins on Mercury as Indicators of Mantle Thermal State and Composition

    NASA Astrophysics Data System (ADS)

    Padovan, Sebastiano; Tosi, Nicola; Plesa, Ana-Catalina; Ruedas, Thomas

    2017-04-01

    The crust of Mercury is mostly the cumulative result of partial melting in the mantle associated with solid-state convection [1]. The details of how the surface composition represents the result of dynamical processes in the interior are difficult to elucidate. Explanations for the observed geochemically varied surface include a heterogeneous mantle, the effects of ancient giant impacts, an evolving mantle composition, or a combination of these processes [e.g., 2]. Here we explore the effects of large impacts on mantle dynamics and associated melt production. With the convection code GAIA we compute thermal evolution histories of Mercury compatible with the expected amount of heat producing elements in the mantle and with the crustal thickness inferred from gravity and topography data. We estimate the thermal anomalies in the mantle generated by large impacts using scaling laws [3]. Impactors have a velocity of 42 km/s and an impact angle of 45°, as appropriate for Mercury [4]. Their size is varied in order to produce basins with diameters in the range from 715 km (Rembrandt) to 1550 km (Caloris). Depending on the timing of the impact, the melt erupting in the basin interior is a combination of convective melt generated at depth and shallow melt resulting from shallow impact-induced convective currents. The volcanic infillings following an impact happening early in the evolution of the planet, when convection is still vigorous, are dominated by convective melt. Later in the evolution, the erupted melt shows the signature of the impact-induced shallow melt. We show that the properties of melt sheets within the young large basins Caloris and Rembrandt depend on the mantle thermal state and composition. In particular, we predict the source depth of the volcanic plains within large young basins to be different from the source depth of older surface units, a result that can help explaining the peculiar composition of the volcanic plains inside Caloris [2, 5]. [1] Tosi N. et al. (2013), JGR-Planets, 118, 2474—2487. [2] Weider S.Z. et al. (2015) EPSL, 416, 109—120. [3] Roberts J.H. and Barnouin O.S. (2012), JGR-Planets, 117, E02007. [4] Le Feuvre M. and Wieczorek M.A. (2008), Icarus, 197, 291—306. [5] Namur O. and Charlier B. (2017), Nature Geosc., 10, 9—13.

  13. Fast surface-based travel depth estimation algorithm for macromolecule surface shape description.

    PubMed

    Giard, Joachim; Alface, Patrice Rondao; Gala, Jean-Luc; Macq, Benoît

    2011-01-01

    Travel Depth, introduced by Coleman and Sharp in 2006, is a physical interpretation of molecular depth, a term frequently used to describe the shape of a molecular active site or binding site. Travel Depth can be seen as the physical distance a solvent molecule would have to travel from a point of the surface, i.e., the Solvent-Excluded Surface (SES), to its convex hull. Existing algorithms providing an estimation of the Travel Depth are based on a regular sampling of the molecule volume and the use of the Dijkstra's shortest path algorithm. Since Travel Depth is only defined on the molecular surface, this volume-based approach is characterized by a large computational complexity due to the processing of unnecessary samples lying inside or outside the molecule. In this paper, we propose a surface-based approach that restricts the processing to data defined on the SES. This algorithm significantly reduces the complexity of Travel Depth estimation and makes possible the analysis of large macromolecule surface shape description with high resolution. Experimental results show that compared to existing methods, the proposed algorithm achieves accurate estimations with considerably reduced processing times.

  14. Spatiotemporal variability of snow depth across the Eurasian continent from 1966 to 2012

    NASA Astrophysics Data System (ADS)

    Zhong, Xinyue; Zhang, Tingjun; Kang, Shichang; Wang, Kang; Zheng, Lei; Hu, Yuantao; Wang, Huijuan

    2018-01-01

    Snow depth is one of the key physical parameters for understanding land surface energy balance, soil thermal regime, water cycle, and assessing water resources from local community to regional industrial water supply. Previous studies by using in situ data are mostly site specific; data from satellite remote sensing may cover a large area or global scale, but uncertainties remain large. The primary objective of this study is to investigate spatial variability and temporal change in snow depth across the Eurasian continent. Data used include long-term (1966-2012) ground-based measurements from 1814 stations. Spatially, long-term (1971-2000) mean annual snow depths of >20 cm were recorded in northeastern European Russia, the Yenisei River basin, Kamchatka Peninsula, and Sakhalin. Annual mean and maximum snow depth increased by 0.2 and 0.6 cm decade-1 from 1966 through 2012. Seasonally, monthly mean snow depth decreased in autumn and increased in winter and spring over the study period. Regionally, snow depth significantly increased in areas north of 50° N. Compared with air temperature, snowfall had greater influence on snow depth during November through March across the former Soviet Union. This study provides a baseline for snow depth climatology and changes across the Eurasian continent, which would significantly help to better understanding climate system and climate changes on regional, hemispheric, or even global scales.

  15. Technique for estimating depth of floods in Tennessee

    USGS Publications Warehouse

    Gamble, C.R.

    1983-01-01

    Estimates of flood depths are needed for design of roadways across flood plains and for other types of construction along streams. Equations for estimating flood depths in Tennessee were derived using data for 150 gaging stations. The equations are based on drainage basin size and can be used to estimate depths of the 10-year and 100-year floods for four hydrologic areas. A method also was developed for estimating depth of floods having recurrence intervals between 10 and 100 years. Standard errors range from 22 to 30 percent for the 10-year depth equations and from 23 to 30 percent for the 100-year depth equations. (USGS)

  16. Variation of froude number with discharge for large-gradient steams

    USGS Publications Warehouse

    Wahl, Kenneth L.; ,

    1993-01-01

    Under chemical-control conditions, the Froude number (f) for a cross-section can be approximated as a function of the ratio R2/ 3/d 1/2 , where R is the hydraulic radius and d is the average depth. For cross sections where the ratio increases with increasing depth, F can also increase with depth Current-meter measurement data for 433 streamflow gaging stations in Colorado were reviewed, and 62 stations were identified at which F increases with depth of flow. Data for four streamflow gaging stations are presented. In some cases, F approaches 1 as the discharge approaches the magnitude of the median annual peak discharge. The data also indicate that few actual current meter measurement have been made at the large discharges where velocities can be supercritical.

  17. Local Helioseismology of Emerging Active Regions: A Case Study

    NASA Astrophysics Data System (ADS)

    Kosovichev, Alexander G.; Zhao, Junwei; Ilonidis, Stathis

    2018-04-01

    Local helioseismology provides a unique opportunity to investigate the subsurface structure and dynamics of active regions and their effect on the large-scale flows and global circulation of the Sun. We use measurements of plasma flows in the upper convection zone, provided by the Time-Distance Helioseismology Pipeline developed for analysis of solar oscillation data obtained by Helioseismic and Magnetic Imager (HMI) on Solar Dynamics Observatory (SDO), to investigate the subsurface dynamics of emerging active region NOAA 11726. The active region emergence was detected in deep layers of the convection zone about 12 hours before the first bipolar magnetic structure appeared on the surface, and 2 days before the emergence of most of the magnetic flux. The speed of emergence determined by tracking the flow divergence with depth is about 1.4 km/s, very close to the emergence speed in the deep layers. As the emerging magnetic flux becomes concentrated in sunspots local converging flows are observed beneath the forming sunspots. These flows are most prominent in the depth range 1-3 Mm, and remain converging after the formation process is completed. On the larger scale converging flows around active region appear as a diversion of the zonal shearing flows towards the active region, accompanied by formation of a large-scale vortex structure. This process occurs when a substantial amount of the magnetic flux emerged on the surface, and the converging flow pattern remains stable during the following evolution of the active region. The Carrington synoptic flow maps show that the large-scale subsurface inflows are typical for active regions. In the deeper layers (10-13 Mm) the flows become diverging, and surprisingly strong beneath some active regions. In addition, the synoptic maps reveal a complex evolving pattern of large-scale flows on the scale much larger than supergranulation

  18. Rift Structure in Eastern Papua New Guinea From the Joint Inversion of Receiver Functions and Seismic Noise

    NASA Astrophysics Data System (ADS)

    Abers, G. A.; Obrebski, M. J.; Jin, G.; Eilon, Z.

    2014-12-01

    The recent CDPapua seismic array in the active D'Entrecasteaux-Woodlark Rift provides insights into how continental crust accommodates large extension. Here, >100 km of extension has occurred in the last 4-6 Ma, exhuming rocks from 100 km depth. To better understand the modes of deformation of the crust, we analyze shear wave velocity (Vs) distribution for a set of temporary land and ocean bottom broadband stations. We resolve the depth of the main velocity contrasts using receiver function (RF) analysis, alleviating the intrinsic trade-off between depth and velocity intrinsic by joint inversion with dispersion constraints (10 - 100 s) from earthquake surface waves and ambient noise. A transdimensional Bayesian scheme explores the model space (Vs in each layer, number of interfaces and their respective depths), minimizing the number of layers required to fit the observations given their noise level. Preliminary results suggest that the Moho is sharp in most places, with a depth of 28-38 km and 20-27 km below the Papuan Peninsula and the highly-extended D'Entracasteaux Islands, respectively. The mid-lower crust of these regions appears to be similar and consistent with felsic compositions, 3.25≤Vs≤3.5 km/s, and may represent the Owen-Stanley Metamorphic Belt or underlying continental rocks. A fast layer (3.75≤Vs≤4 km/s) is observed below the Papuan Peninsula in the 20-30 km depth range and may indicate more mafic lower crust. In contrast, faster velocities between 10 and 20km depth are modeled below the Goodenough Basin (3.75≤Vs≤4 km/s) and the Trobriand Basin (3.5≤Vs≤3.75 km/s) where rocks of the Papuan Ultramafic Belt have been suggested, although these results partly depend upon complicated signals from ocean-bottom seismometers. Well-located seismicity shows that active fault systems generally follow the boundaries between regions of different crustal velocity structure. Overall these results confirm a continental velocity structure for the onshore parts of the rift, but allow for much more mafic crust beneath intervening basins. Much of the rifting at crustal depths could have been accommodated by opening these basins.

  19. Level II scour analysis for Bridge 71 (WODSTH00050071) on Town Highway 5, crossing Kedron Brook, Woodstock, Vermont

    USGS Publications Warehouse

    Olson, S.A.; Ayotte, J.D.

    1997-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 2.5 ft. The worst-case contraction scour occurred at the incipient roadway-overtopping discharge, which was less than the 100-year discharge. The contraction scour depths do not take the concrete channel bed under the bridge into account. Abutment scour ranged from 8.7 to 18.2 ft. The worstcase abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scouredstreambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particlesize distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  20. Fluvial entrainment of low density peat blocks (block carbon)

    NASA Astrophysics Data System (ADS)

    Warburton, Jeff

    2014-05-01

    In many fluvial environments low density materials are transported in significant quantities and these form an important part of the stream load and /or have a distinct impact on sedimentation in these environments. However, there are significant gaps in understanding of how these materials are entrained and transported by streams and rivers. Eroding upland peatland environments in particular, frequently have fluvial systems in which large eroded peat blocks, often exceeding 1 m in length; form an important component of the stream material flux. Transport of this material is significant in determining rates of erosion but also has important impacts in terms of damage to infrastructure and carbon loss. This paper describes a field experiment designed to establish for the first time the conditions under which large peat blocks (c. > 0.1 m b axis) are initially entrained from a rough gravel bed. The field site is Trout Beck, in the North Pennines, Northern England which is an upland wandering river channel with occasional lateral and mid channel bars. Mean low flow stage is typically 0.2 m but during flood can rapidly rise, in one to two hours, to over 1.5 m. To study peat block entrainment a bespoke data acquisition system consisting of two pressure transducers, four release triggers and time lapse camera was set up. The pressure transducers provided a record of local depth and the release triggers were embedded in peat blocks to record initial motion and arranged on the rough stream bed. The time lapse camera provided verification of timing of block entrainment (during daylight hours) and also provided information on the mechanism of initial movement. Peat blocks were cut from a local source and were equidimensional, ranging in size from 0.1 to 0.7 m. The derived entrainment function is related to a critical depth of entrainment. Results demonstrate that peat blocks are entrained when the local depth approximates the height of the peat block. Blocks frequently shift position prior to entrainment but once entrained are rapidly transported downstream. Because of the rough stream bed local depth, measured on the four sides of the block varies markedly and needs to be considered in developing an appropriate entrainment function and; is useful in explaining initial movement prior to entrainment. In some experiments a small accelerometer (HOBO Pendant G data logger) was used to investigate transport dynamics following entrainment. Further work will seek to improve the entrainment function by extending the size range of tests, developing a shear stress related function and investigating the importance of block shape (rounding) on entrainment.

Top